## THE

## EvčCLOPEDIA BRITANNICA

## LATEST EDITION

## A DICTIONARY OF ARTS, SCIENCES, AND GENERAL LITERATURE

NEW MAPS AND MANY ORIGINAL AMERICAN ARTICIEES BY EMINENT AUTHORS<br>FULLY ILLUSTRATED, WTTH OVER TEN THOUSAND PORTRAITS, PLATES, AND ENGRAVINGS

original ninth edition in twenty-five volumes edited by
Profs. SPENCER BAYNES, LL.D., and W. ROBERTSON SMITH, LL.D.
ASSISTED BY OVER ONE THOUSAND CONTRIBUTORS

IN THIRTY VOLUMES WITH

EDITED UNDER THE PERSONAL SUPERVISION OF
DAY OTIS KELLOGG, D.D.
Formerly Bofessor of English Literahure and History, Kiunsas State L'niversity, etc., eic.
ASSISTED BY A CORPS OF EXPERIENCED WRITERS

# TWENTIETH CENTURY EDITION <br> REVISED, WITH LARGE ADDITIONS, TO JANUARY I, 190I 

VOLUME XV

THE WERNER COMPANY

# Encyclopædia Britannica. 

## VOL. XV.-(LOO-MEM).

Total number of Articles, 677.

## PRINCIPAL CONTENTS.

Loo. Henry Jonfs, author of "Card Essays."
lorraine. Reinhold pauli, LL.D., late Professor iu Gattingen University.
Lotteries. W. C. Smith, LL.B.
Lotze. J. Theodore Merz.
louisiana. Prof.e. C. Hintington, b.a., University of Nashville.
LUBRICANTS. Prof. R. H. Smith, Birmingham.
lucan. Richard Giriett, hif.D.
lucerne, John ball, M.A., F. R.S., author of "Alpline Guide."
lucian. F. A. paley, Lle.D., editor of " Æhchylus" rud "Euripides."
LuCretius. W. Y. Sellar, LL.D., Professor of humanity, University of Ediuburgh.
LUKE. Rev. Edwin ifatch, D.D., Vice Prineipal of st. Mary IIall, aud Grinfield Leeturer, Oxford.
LULLY'. Rev. Edwin Waiface, M.A., Vice-Provost, Worcestar Callege, Oxford.
luther and lutherans. Rev. Prof. t. M. Lindsay, D.D.
LyCanthropy. J. F. M•Lennan, ll.b.
lycla. E. h. Bunbury, author of "History of Aneient Geography."
lyCURGUS. Rev. W. J. Brodribb, m.a.
LYDIA. Rev. A. II. Sayce, M.A., Deputy Professor of Comparative Philology, University of Oxford.
lyly. Birs. humphay Ward.
LYRE. A. J. Hipkins.
LYSIAS. R. C. Jebr, LL.D., Prolessor of Greek, University of Glasgow.
lytton. Prof. W. Minto, M.A.
macaulay", Rev. Mark Pattison, b.D., Reetor of Liocoln College, Oxford.
m'CULLOCH, J. R. J. K. Ingram, LL.D., Librarian, Trinity College, Dubliu.
macedonia. Rev. II. F. Tozer, m.A., author of " Leetures ou the Geography of Greece."
macedonian empire. Rev. C. W. Boase, m.a., Leeturer in Modero Ilistory, Exeter College, Oxford.
MACHIAVELLI. J. A. Symonds, M.A., author of "The Renaissance in Italy."
Maciilie tools. C. P. B. Shelley, Lecturer on Maehinery, King's College, London.
mackerel. A. Gunthea, m.D., F.r.s.
maclaurin. benjamin Williamson, F.R.S., Tridity (:nllege, Dublin.
macleud. Rev. Walter C. Smith, D.D., author of "Olrig Grange. :*
MadAGASCAR. Rev. J. sibree, Jun., author of "The Great Africao Island."
MADEIRA. J. Y. Joinson, quthor of "Handhook to Madeira."
madras. IIon. W. W. II unter, hL.D., Director-General of Statistics to the Goveroment of Indiu.
MAGiC. E. B. TYLOR, D.C.L., LLL.I., F.R.S.
magic, wihte. J. Algernon Ciarke.
magic lantern, prof. James bhyth. M.a.
magic square. Rev. A. II. Frost, M.A.
MAGNESIUM. Prof, Ditman, F.R.S.
magnetism. Georfie Chrystal, M.A., Professor of Mathematics, Uuiversity of Edinburgh.
Magnetism, animal. J. G. M'Kendage, M.D., LL.D., Professor of the Institutes of Medicine, Unfversity of Glasgow.
Mailmud. Ged. R. Marlagan, R.E.
mailrattas. Sir Ricifaris Temple, Bart., D.C.l.
maimonides, s. M. Sminhea-szivessy, Ph.i., Rerder in Talmudie Literature, University of Canbrldge.
Maine. Prof. E. C. Muntington, B.A., University of Nashyille.
maize. Thev. (ieorge llenslow, M.A., author of "Floral Disscetlons."
malacili. Prof. W. Robertson Smith, LL.D.

MALARIA. Chas. Creighton, M.A., M.D.
malay peninsula and malays. Prof. Keane and Reinhold Rost, Ph.d.
maldive islands. Col. Menry yule, C.b.
Malta. Miss l., Toulmin smith.
maltilus. Thomas kirkep, M.a.
Mammalia. W. II. Flower, LL.D., F.R.S., Profeseor on Comparative Autnmy, Royal College of Surgeons, and Surgeon-Major Dobson, F.R.S.
MaMMOTH CAVE, Rev. h. C. Hovey.
MANCHESTER. W. E. A, AXON.
MANCIIURIA. Prof. R. K. Dotglas.
MAND.ANS. Prof. K. Kesslfre, University of Marhurg
Mandevilee, jeitan de. E. B. Nicholgon, Ma. Bodliau Library, Oxford, and Col. Yele.
Mantluelsh. Prof. Abolif farnack.
MaNitoba. Prof, George bryce, Winuipeg.
Mantre, A. Voelcker, F.R.S., Professor of Chemlstry to the Royal Agricultural Society of Eugland.
map. Sophes Rege, Ph.D.
mafat. H. Morse Stephens, author of "The History of the French Revolution."
mafble. F. W. Remler, Curator of Museuul of Practical Geology, London.
marcantonio. Sidney Colvin, M. A., Slade Professor of Fiue Art, University of Cambridge.
Marines. Captaiu C. C. King, Professor of Tactics, \&c., Royal Military College, Sandhurst.
mark. Rev. Prof. hatch.
marlborougil. W. P. Courtafy.
marlowe. Ahemen C. Swlebtrne.
marmot. Oldfielin Thomas, British Museum.
marot. George sainthbury, m.a.
Marriage. Edmero Roberteon, Ll.D., M.P., Professor of Roman Law, University College, Londou.
marseilles. Gaston meissas.
martial. Prof.sellar.
martinead. Mibs Clementina Black, author of "Orlaudo."
maryele. Osmusd airy, m.a
mary (The Virgis). Rey. J. Sutherland black.
Mary (of Exghand). James Galrdner, Publle Record Office, Londor.
mary (of Scotland). A.C. swinburne.
MARYLAND. Prof. EdWaro licntington Fallows, B.a. masaniello. G. II bianchi, M.a.
massachusetts. Prof. E. C. ilentingtoy, b.a.
massinger. Prof Minto.
matciles. James laton, Curator of Corporatou Galleries of Art, Glastow.
Mathematics. Prof. Christal.
Matthew of Paris. J. Bass Mullinger, M.a.
mafritius. Rev. J, Sirree.Jin.
Mazzini. Rev.J.s. black.
MEASLES J. O. Affieck, M.D.
MEASUREMENT. R. A. BALL, LL.D., F.R.S., Royal As. tronomer for Ireland.
mecea. Prol. W. Robertson Smith
MECHANICS. 1. (9. TAIT, M.A., Profesfor of Natural Philosophy, C'uiversity of Edinlurgh, and the late W. j, Macquory Rankine, iL.d., Fili.s.
 turer on Chemistry, Guy's Hospital, Londou.
medici. Prof. P. Vilhari, Royal Iustitiste. Fiorence, anthor of "Savonarola" and "Machiavelli."
medicine: Charles Crehinton, m..A., M.D., and J. F. pafne, M.D.
MEDINA. Prof. W. Rorertan Simith.
mediterraneani. J. Y'. buchavas, late of the "Challenger " Expedition.
MFLANCHTHOS. Fev, Johs Wesos, M.A.
melbofRe. A. Sththrlasd, M.a., Carlton College, Melhourne.
MEMLING. J. A. Cbowe, phtbor of "Painting in Italy."

# ENCYCLOP ÆDIA BRITANNICA. 

## L 00

L00 (formerly called Lanterloo), a round game of cards. Loo may be played by any number of persons; from five to seven makes the best game. "Three-card loo" is the game usually played. A pack of fifty-two cards is required. The players being seated, the pack is shuffled and a card dealt face upwards to each. The player to whom a knave falls has the first deal, the player to his left deals nest, and so on in rotation. Each player is entitled to a deal, i.e., the game should not be abandoned till it returns to the original dealer; but, if there is a loo in the last deal of a round, the game continues till there is a hand without a loo. The pack is cut to the dealer, who deals three cards to each player and an extra hand called miss. The dealer turns up the top of the undealt cards for trumps. The dealer is sometimes permitted to deal the cards in any order he pleases; but the best rule is to require that the carc's be dealt one at a time in rotation, as at whist. During the deal each player contributes to the pool a sum previously agreed upon, the dealer contributing double. The unit for a single stake should be divisible by three without a ramainder, e.g., three counters or three pence. The players are bound to put in the stake before the deal is completed; sometimes a penalty is enforced for neglect. The deal being completed and the pool formed, each player in rotation, beginning from the dealer's left, looks at his cards, and declares whether ho will play, resign, or take miss. If the former, he says "I play." If he takes miss he places his cards face downwards in the middle of the table, and takes up the extra hand. If he resigns, he similarly places bis cards face downwards in the imiddle of the table. If miss is taken, the subsequent players only have the option of playing or resigning. A player who takes miss must play. Those who have deciared to play, and the one-if there is one-who has taken miss, then play one card each in rotation, beginning from the dealer's left, the cards thus played constituting a trick. The trick is won by the highest card of the suit led, or, if trumped, by the highest trump, the cards ranking as at whist. The winner of the trick leads to the next, and so on, until the hand is played out. The cards remain face upwards in front of the persons playing them.
Rulcs of Pluy.- If the lea ler holds ace of trumps he must lead it (or king, if ace is turned up). If the leader has two trumpra
he must lead one of them, and if one is ace (or king, ace being turned up) he must lead it. With this exception the leader is not bound to lead his highest trump if more than two declare to play; but if there are only two declared players the leader with more than one trump must lead the highest. Except with trumps as above stated he may lead any card be chooses. The subsequent players must head the trick if able, and must follow suit if able. Holding none of the suit led, they must head the trick with a trump, if able. Otherwise they may play any card they please. The winner of the first trick is subject to the rules already stated respecting the lead, and in addition he must lead a trump if able (called trump after trick).

When the hand has been played out, the winners of tha tricks divide the pool, each receiving one-third of the amount for each trick. If only one declared to play, the denler plays miss either for limself or for the pool. - If he plays for the pool he must declare before seeing miss that he does not play for himself. Any tricks he may win, when playing for the pool, remain there as an addition to the next pool.

If each declared player wins at least one trick it is a single, i.c., a fresh pool is made as already described; but if ona of the declared players fails to make a trick he is loocd. Then, only the player who is looed contributes to the next pool, together with the dealer, who puts in a singlastake. If more than one player is looed, each has to contribute. At unlimited 700 each player looed has to put in the amount there was in the pool. But it is generally agreed to limit the loo, so that it shall not exceed a certain fixed sum. Thus, at eighteen-penny 100 , the $l o o$ is generally limited to half a guinea. If there is less than the limit in the pool the payment is regulated as before; but if there is more than the limit, the loo is the fixed sum agreed on.

The gama is sometimes taried by forces, i.e., by compelling every one to play, either whenever there is no loo the previous deal (a singlc), or whenever clubs are trumps (club lazo). When there is a force no miss is dealt. Irish loo is played by allowing declared players to exchange sonte or all of their cards for cards dealt from the top of the pack. There is no miss, and it is not compulsory to lead a trump with two trumps, unless there are only two declared plajers. At five-card loo each player has five cards instead of three, and a single stake should be divisible by five. Pam (knave of clubs) ranks as the highest trump, whatever suit is turned up. There is no miss, and cards may be exchanged as at lrish loo. If ace of trumps is lcd, the leader says "Pam be civil," when the holder of that card must pass the trick if he can do sn without revoking. A flush (five cards of the same suit, or four with Pam) loos the board, i.c., the holder receives the amount of a loo from every one, and the hand is not played. A trump flush takes precederce of flushes in other suits. If more than one flush is held, or if Pam is held, the holder is exempted from payment. As betreen two flushes which do not take precedence, the elder hand wins.

Declaring to Play, and Piaying (three-card loo).-Play on two ':unips. Tho first to declare should blay on an honnur in tiumpe
and ats are In phain suile Play also on king of trumps ; but somo 1s, ers throw up king of trumss singlo unless with it another king or a guanlel guoen is held. Aso play on one trump with two other cari, high ns queesis; 20112 players throw up this hand. Holding a hump anl two aces, lead the tramp if throo others declare to H. y: lub ubherwiso los 1 an ace. Do not play on a hand without a t-mp: ex. pt, play on any cards that give a reasonablo chanco of a 161 k , or tako mise, if tho amount in the pool is conssderable, and the loo is himited. If the number of players is less than five, or if $=1$ il throw up, weaker liands may lw phayed; on the other ohle, if woveral have declarod to play, only a very etrong hand Di whe tho rasked. If there aro only thred left in, all others havil: thrown un. misesahould bo taken, bnt not when thero aro in - than two to fillow the phayer whose turn it is to declare.
L: if $L$. -These vary greasly, and should be ngreed on
 play it merly everg crror, aro very lisi. Tha following are to 1 on the law of thinio Dilenteim Clube. 1. First knave deals $\therefore$ La h llwer has a right in thutlle. 3. Tho player to the dealer's righ: suth the pek \& The deaier must deliver tho cards, ono by on, in rocation, na at whist, and rutust deal one card for miss at tha enlif euch round: he mus: turn up the top card of the nndcalt cards Er trumpas 5. If tho dealer deals without having the pack cut, of Bhuth s an $r$ it is cut, or deals exeept as prorided in law 4, or d al iwo cards togother and then deala a third without rectifying the orror, or exposes a card, or deals too many carde, ho forfeits a anglo to the pool, an 1 dals again. ${ }^{1}$ 6. The flayer to the left of the denler deals next. If a player deals out of turn, he may bo stopped lieforo tha trump car 1 is turned, otherwise tho deal stands Foorf, and the player th his left deala next. 7. Plagers must declaro to play iu rotation, beginning to the dealer's left. A p.oyer looking a: his curles before his turn forfcits a singlo to tho pool 8. A Flayer who declares befuro his tura, or who exposes a card, forfuits a single to the proot, on I must throw up his band ${ }^{3}$ o. If a declared 1 layer expas a a card beforo his turn to plaj, or glays out of tnrn, is before all hare declared, or detaches a eard so that it can be num-d by nay other declared player, or revokes, he mnst learo in the prool any tri ka ho may make, and forfeit four times the amount of asingle. If he makes no trick ho is lood, and there is no further Fayles. 10. If tho leader holds neo of trumps and does not lead I: (or kine, ace being turned up), or if ho bolds two trumps and dows not lat one, or tha higheat of two or more trungs when thers are only two declared phayers (unlegs hls cards are sequence cards or cards of equal ralue), of if a player does not head tha trick wh in able, or if ho docs not lead irnmp after trick (if ho holds a trumpl', ho is liable to tho same penalty as in law $90^{3} 11$. In cass of rovocics or errors in play the hand must be replayed if so desired by ans one except tho offondor. 12. The place of an aftercomer is dicided by dealisg a card between every two of tha playora The ait nomer sits whero the first Enave falls.
(11. J.)

## LOOCHOO. See Lew-chew Islatds. <br> LOOM. Seo Weatino.

LOOM, or Loos (Icelandic, Lúmr), a pamo applicd to water-liveds of threc distinct Families, all remarkable for their clumsy gait on land. ${ }^{\text {. The first of them is the }}$ Colymbidie, to which the term Direr (q.v.) is nowadays usually restricted in books; the second the Podicipedidx, or (irenes (sce vol xi p. 30); and the third tho Alcidx. The furm Loon is most commonly used both in the British Ialands and in North America for all the specics of the genus Colymbus, or Lulyies according to some ornithologists, frequently with the prefix Sprat, indicating the kind of fists on which they oro supposed to prey; thongh it is the local name of the Great Crested Grebs (Podiceps cris! t'us) wherever that bird is sufficiently well known to have one; and, as sppears from Grers (Mus. Reg. Soc., pl. 69), it was formerly given to the Little Grebe or Dabebick ( ${ }^{\prime}$ '. fintiathlis or minor) as well. The other form Loom seems
${ }^{1}$ The law which loos a flayer for misdealing 4 atrocious, and sbull slways be oppoicd.

- Frerito of a magle go 10 ibcreaso the prool alreads formed, and see note ts law 5 .
${ }_{3}{ }^{2}$ Tri ks lef in the pool and fines nnder laws 9 and 10 go to the It pocl and D: to the pool already formed. Many players inflict ren peatily of a 100 for tho offences uamed in laws 2 ond 10 ; bat the seie ahore, as plase! at tbe Blenheim, is the best.
- The word also takes boe i rm "Lamme" (fide Montagu), nnd, as Finfessor Skeat observes, is probsbly connected with lare. The sign ficaion of 600 m , a clumay follow, and metaphorically a mapleton, hobvious to any one who has seen the cttempt of the tirds to which the naze is girea to walk.
more confined in its application to tho north, and is said by Mr T. Edmonston (Etym. Gloss. Shell. and Orkro. Dialeet, p. 67) to be the proper name in Sbetlend of Colymbus septentrionalis ${ }^{3}$; but it has come into conmon use among Arclic scamen as the name of the species of Guillenot (Alca arra or bruennichi) which in thonsands throngs the cliffs of far northern lands, from whoso (hence called) "luomerics" they obtain a considerable stock of wholesome food, while the writer believes be has heard the word locally applicd to tho Razorbell (q.v.).

LOI'E DE VEGa. Seo Vega Carpio.
LoI'E゙L, Carlos Anrosito (1790-1862), a Paraguayan rulcr of great ability, bora at Asuacion, Norember 4: 1790, was educated in the ecclesiastical seminary of that city, and by his ability altracted tho hostility of tho dictator, Francia, in conscquenco of which be was forced to kecp in biding for several jears. He acquired, however, by study, so unusual a knowledge of law and governmental affairs that, on Francia's dealh in 1840, he soon acquired an almost andisputed control of the Paraguayan state, which ho maintained uninterruptedly until his own desth in 1862 . IIe reas suceessively secretary of tho ruling military junta (1810-41), one of the two consuls (1841-44), and president with dictatorial powers (1844-1862) by successiro elections for ten and three years, and in 1857 again for ten years, with porer to nominate his own successor. Though nominally' a president acting under a republican constitulion, he suled despotically, the congress assembling only rarcly and on his call, and then only to ratify bis decrecs. His governament was in general directed with wise encrgy tomards devcloping the material resources snd strengthening the military power of the country. His jealousy of foreign approach screral times iuvolved him in diplomatic disputes with Brazil, England, and the United States, which nearly resulted in war, but each time be extricated himself by skilful evasions. Paraguay rapidly advanced under bis firm nnd, on the whole, patriotic administration. IIo died Seplember 10, 1862.

LOPEZ, Frisicisco Sorino (1826-1870), eldest son of Carlos Antorio Lopez above noticed, was born near Asuncion, Parsguay, July 24, 1826. During his boybood his father was in hiding, and in consequence his education was wholly neglecled. Soon after his father's aecession to the presideacy, Francisco, then in his ninetecnth year, ras made commander-in-chief of the Paraguayan army, during the spasmodic hostilities then prevaling with the Argentino Republic. After receiring successively tho highest offices of the state, bo was sent in 1853 as minister to England, France, and Italy, to ratify formally treaties made with these porwers the previous year. He spent a year and a half in Europe, and succeeded in purchasing largo quantities of srms and mililary supplies, togetber with sereral stcamers, and organized a project for building a railroad snd establishing a Freach colony in Paraguay. He slso formed the acquaintance of Madamo Lyach, an Irish adrentaress of many talcnts and popular qualities, who became his mistress, and strongly influenced his later ambitions schemes. Relurning to Paraguay, be became in 1855 minister of rar, and on his father's death in 1862 st once assumed the reins of government as rice-president, in accordance with a prorision of his father's will, and called a congress by which he was chosen president for ten years. He had long cherished ambitious designs, and now set himself to enlarge the army, and purchase in Europe large quantities of military stores. In 1864 he began open sggression on Brazil by demanding, in his self-styled capacity of "protector of the equilibrium of the La Plata,"

[^0] nemo of teis species in Shetland.
revolutionary struggle then in progress in Uruguay. No attention being paid to his demand, he trescherously seized a Brazilisn merchant steamer in the harbour of Asuncion, and threw into prison the Brazilian governor of the province of Matto Grosso who was on board. In the following month (December 1864) he despatched a force to invade Matto Grosso, which seized and sacked its capital Cuyabá, and took possession of the province and its diamond mines. Lopez next sought to send an army to the relief of the Uruguayan president Aguirro against the revolutionary aspirant Flores, who was supported by Brazilian tronps. The refusal of the Argentine prosident, Mitre, to allow this force to cross the intervening province of Corrientes, was seized upon by Lopez as an occasion for war with the Argeñtine Republic.
A congress, hastily summoned and composed of his own nominees, bestowed upon Lopez the title of marshal, with extraordinary war powers, snd on April 13, 1865, he declared mar, at the same time seizing two Argentine warvessels in the bay of Corrientes, and on the neat day occupied the town of Corrientes, instituted a provisional government of his Argentine partisans, and summarily announced the annexation to Paraguay of the provinces of Corrientes and Entre Rios. Meantime the party of Flores had been successful in Uruguay, and that state on April 18 united with the Argentine Republic in a declaration of war on Paraguay, the news of the treacherous proceedings of Lopez having then but just reached Buenos Ayrea. On May lst Brazil joined these two states in a secret alliance, which stipulated that they should unitedly prosecute the war "until the existing government of Paraguay should be overthrown," and "until no arms or elements of war should be left to it." This agreement was literslly carried out.

The war which ensued, lasting until April 1, 1870, was on the largest acale of any that South America had experienced, and was carried on with great stubbornness and with alternating fortunes, though with a steadily increasing tide of disssters to Lopez (see Parageay). In 1898, when the allies were pressing him hard before the various.strongholds still remaining to him in Paraguay, his mind, natursily suspicious and revengeful, led him to conceive that a conspiracy had been formed against his life in his own capital and by his chief adherents. His bloodthirsty rage knew no bounds. In a short time several hundred of the chief Paraguayan citizens were seized and executed by his order, including his brothers and brothers-in-low, cabinet ministers, judges, prefects, military officers of the highest grade, the bishops and priests, and nine-tenths of the civil offcers, together with more than two hundred foreigners, among them several members of the different diplomatic legations.
Lopez was at last driven with a mere handful of troons to the northern frontier of Paraguay, where on April 1 , 1870, he was surprised by a Brazilian force and killed as he reas. endesvouring to escape by ewimming the river Aquidabsn. His ill-sterred ambition had in a fer years reduced Paraguay from the prosperity which it had enjoyed under his father to a condition of hopeless weakness, and it has sinco remained a virtual dependency of Brazil.
LORCA, a town of Spain, in the province of Murcia, on the right sido of the Sangonera (here called the Guadalentin), by which it is separated from the suburb or quarter of San Cristobsl. It is situated about 38 miles west from Cartagena, snd 37 aouth-west from Murcia, at the foot of the Sierra del Caño. The principal buildings are the collegiate chnrch of San Patricio, rith a Corinthian façade, and the parish church of Santa Maria, in the Gothic style. The principal msuufactures are soda, ealtpetre, 'gunpowder, and cloth ; the trade, apart from that which these articles
involve, is insignificant. The population of the municipality was 52,934 in 1877.
Lorca (Arab. Lurka) is the Eliocroca of the Itin Ant., and probably also the Morci of Pliny (iii. 3). It was the key of Murcia during the Moorish wars, and was frequently taken and retaken. On April 30, 1802, it auffered severely by the hursting of the reservoir known as the Pantano de Puentes, in which the waters of the Guadalentin were stored for purposes of irrigation ; the Barrio de San Cristobal was completely ruined, and more than six hundred persons perished in the disaster. In 1810 it suffered greatly from the French.

Lorenzo Marques, or Lourenço Marques, the chief place, and indeed the only European settlement, in the district of its own name in the Portuguese province of Mozambique in south-eastern Africa, is situated on Delagoa Bey, at the mouth of the Lorenzo Marques or English River, in $25^{\circ} 58^{\prime}$ S. lat. and $32^{\circ} 30^{\prime}$ E. long. At the time of Mr Erskine's visit in 1871 it was a poor place, with narrow streets, fairly good fist-roofed honses, grass huts, decayed forts, and rusty cannon, enclosed by a wall 6 feet high recently erected aad protected by bastions at intervals. In 1878 Governor Castelho returned the white population of all tho district (whose area is estimsted at 210,000 aquare miles) as 458 , and the natives as from 50,000 to 80,000 . A coumission aent by the Government in 1876 to drain the marshy land near the settlement, to plant the blue gum tree, and to build a hospital and church, only partly accomplished its task; and other commissions have succeeded it. In 1878-79 a survey mas taken for a railway from Lorenzo Marques to the Transvaal (see Bol. da Soc. de Geogr. de Lisboa, 1880), and the completion of this enterprise will make the settlement (which already possesses the best harbour on the African coast between the Cape and Zanzibar) a place of considerable importance. It became a regular port of call for the steamers of the British India Steam Navigation Company in 1879, and for those of the Donald Currie line in 1880. Since 1879 it is also a station on the telegraph line between Aden and South Africa. Both Germany and England maintain consular agents in the settlement.
See Delaooa Bar, vol. vii. p. 40 ; and Lobo de Bulhaes, Les Colonies portugaises (Lisbon, 1878).

LORETO, \& city in the province and circondario of Ancona, Italy, is situsted some 15 miles by rail south-west from Ancona on the Ancons-Foggia railway, 16 miles north-east from Macerata, and 3 from the sea. It lies upon the right bank of the Musone, st some distance from the railway station, on a bill-side commanding splendid riews from the Apennines to the Adriatic. The city itself consists of Little more than one long narrow street, lined with booths for the sale of rossries, medals, crucifixes, and similar objects, the manufacture of which is the sole industry of the place. The population in 1871 was only 1241 ; but, when the suburbs Montereale, Porta Marins, and Casette are included, the population is given as 4755 , that of the commune being 8083 . The number of pilgrims is eaid to amount to about 500,000 annually. The principal buildings, occupying the four sides of the piazza, are the college of the Jesuits, the Palazzo Apostolico (designed by Bremente), and the architecturally insignificant cathedral church of the Holy House (Chiesa deila C3sa Sants). The handsome faģade of the church was erected under Sixtus V., who fortified Loreto and gave it the privileges of a town (1586); his colossal statue atands in the middle of the flight of steps in front. Over the principal doorway is a life-size bronze statue of the Virgin and Child by Girolamo Lombardo ; the three superb broeze doors executed under Psul V. (1605-21) are also by Lombardo, his sons, and his pupils. The richly decorsted campanile, by Vanvitelli, is of great height ; the principal bell, presented by Leo $X$. in 1516, weighs 11 tons. The
interior of the church has mosaics by Domenichino and Guido Reni, a beautiful bronze font and other works of 3 rt ; but the chief object of interest is the Holy House itself, which occuries a central place. It is a plain brick buildlng, measuring 28 feet by $12 \frac{1}{2}$, and $13 \frac{1}{2}$ feet in height; it has a door on tho north side and a window on the west; nod a nicho contains a small black image of the Virgin and Child, in Lebanon cedar, and richly adorned rith jewcls. St Luke is alleged to have becn the sculptor; its workmanship suggests the latter half of the 15 th century. Around the Santa Casa is a lofty marble screen, desigued by Bramante, and esccuted under Popes Leo X., Clement VII., and Paul IIL, by Andrea Sansovino, Girolamo Lombardo, Bandinelli, Gugliclmo della Porta, and othcra The four sides represent the Annunciation, the Nativity, the Arrival of the Santa Casa at Loreto, and the Nativity of the Virgin respectively. The treasury of the church contains a large variety of rich and curious votive offerings.
The legend of the Holy House, b5 which Loreto bccame what has been not inappropriately called the Christian Mecca, scems to have sprung up, how is not exactly known, at the close of the crusading period. It is briefly referred to in the Italia Illhestrata of Flavius Blondus, secretary to Popes Eugeuius 15., Sichelas V., Calixtus III., and Pius 11. (ob. 1464); it is to be read in all its fulness in the "Redemptoris inundi Natris Ecclesiæ Lauretana historia," by a certain Teremannus, contained in the Opera Omnia (1576) of Bap. tista Mantuanus. According to this narrative the house at Nazareth in which Mary had been born and brought uf, had received the annunciation, and hat lived during the childhood of Jesus and after His ascension, was conrerted into a church by the apostles, and worship continued to be held in it until the fall of the kinglom of Jerusalcm. Threatened with destruction by the Turks, it was carried by ancels throngh the air and deposited (1291) in the first instance on a hill at Tersato in Dalmatia (some miles iuland from Zengg), where an appearance of the Virgin and numerous miraculous cures attested its sacredness, which mas confirmed by investigations made at Nazareth by messengers from the governor of Dalmatia. In 1294 the angels carried it across the $\Delta$ driatic to a wood near Recanati; from this rood (lanretum), or from the name of its proprietrix (Laureta), the clapel derived the name which it atill retains ("sacclum glorioss Tirginis in Laureto"). From this spot it was afterwards (1295) removed to the present hill, ono other slight adjustment being required to fix it in its actual site. Bulls in farour of the shrine at Loreto mere issucd by Sixtus IV. in 1491 and by Julins II. in 1507, the last alluding to the translation of the house with oome cantion ("ut pie creditur et fama est "). Tha recognition of the sanctuary by snbsequent pontiffs has alrcady been alluded to. In the end of tha 17 th century Innocent XII. appointed a "missa cnm officio proprio" for the feast of the Translation of the Holy ITonse, and tho Festum Translationis Alme Domns Lauretanæ B. M, $\overline{\text { I }}$. is still enjoined in the Spanish Breviary as a "duplex majus" (December 10). In the sixth lesson it is stated that "the house in mhich the Virgin was born, haring been consecrated to the divine mysteries, was by the ministry of angels removed from the power of the infidels first to Dalmatia and afterwards to the Lawetzo feld during the nontificate of Colestine V . That it is the identical houso in which the Word was mada flesh and dwelt among men is attested by papal documents, by the veneration of all the world, by continued miracles, and by the grace of heavenly blessings."

LORIENT, capital of an arrondissement in the department of Morbiban, and of one of the fire maritime prefectures of France, a military port and fortified place, stands on the right bank of the Scorff, at its confluence with the Blaret, in $47^{\circ} 45^{\prime} \mathrm{N}$. lat. and $3^{\circ} 31^{\prime} \mathrm{W}$. long., on the railmay line from Nantes to Brest, at a distance of 117 miles from the former and 111 from the latter. The town, which is modern and regularly built, contains no buildings of special architectural or antiquarian interest; it derives all its importance from its uaral establishments lining the righte bank of the river, which include sail-making works, cooperages, and shops for all kinds of ship carpentry. The rope-work forms a parallelogram more than 1000 feet in length by 100 broad. The foundries, fitting shops, and smiths' shops are on an equally extensive scale, the forges numbering eighty-four. Of the graving'docks the largest is 509 feet in length, about 98 in breadth, and more than 26 feet in depth below low-water marls. The Prée, an
area oi 40 ocres reclained from the sea, contains bnatbuilding jards, steam saw-nills, and wond stures; a tloatiug bridge 300 feet long connects it with the shipbuilding establishments of Caudan. which occupy the peninsula formed by the confluence of the Scorf and the Blavet. Apart from its naval constructions, in which Lorient holds the first rank in France, it has an important place in the manufacture of marine artillery. Prirate industry is also engaged in engine making. The trade in fresh fish and sardines within the arrondissement reaches an annual ralue of 35 millions of francs. South from the town, also on the Scorff, is the harbour, which comprises a dry dock and a wet dock, measuring about 1650 feet by 200 . The roadstead, formed by the cstuary of the Blaret, is accossible to ressels of the largest size; the entrance, 3 or 4 miles south from Lorient, which is defended by numerous forts, is marked on the east by the peninsula of Gâvre (an artillery practising ground) and the fortified town of Port Louis; on the west are the fort of Loqueltas, and, higher up, the battery of nernevel. In the middle of the channel is the granite rock of St Michel, occapied by a porder magazine. Opposite it, on the right bank of the Blavet, is the mouth of the cirer Ter, with fish and oyster breeding establishments, from which 10 millicns of oysters are annually obtained. Above Lorient on the Scorff, here spanned by a suspensior bridge, is Kerantrech, a pretty rillage surrounded by numerous country houses. The population of Lorient in 1876 was 35,165 , including 6360 of the military and official class.
Lorient has taken the place of Port Louis as the port of the Blavet. The latter stands on the site of an ancient hamlet which mas fortified during the mars of the League and handed over by Mercecur to the Spaniards. After the treaty of Vervins it was restored to France, and it received its name of Port Lonis under Richelien. Some Breton merchants trading with the Indies had established themselves first at Port Lonis, but in 1628 they bailt their warehouses on the other bank. The Compagnie des Indes, created in 166 t, took possession of these, giving them the name of Lorient. In 1745 the company, then at the acme of its prosperity, owned thirty-five ships of the largest class and many others of considerable size. The failure of the attempt of the English under Lestock a gainst Lorient is still commemorated by the inhabitants by an annual procession on the first Sunday of October. The decadence of the company dates from 1753. In 1782 the town was acquired by purchase by Lonis XVI., on the bankroptoy of its former owners, the Rohan-Guéméné family.

LORRAINE (Lotharingla, Lothringen) is geographically the cstensive Austrasian portion of the realm nllotted by the partition treaty of Verdun in August 843 to the emperor Lothair I., and inherited by his second son, King Lothair II., 855-869, from whose days the name Regnum Lotharii first arose. This border-land between the realms of the Eastern and Western Franks in its original extent took in most of the Frisian lowlands between the mouths of the Rhine and the Ems, and a strip of the right shore of the Rhine to within a few miles of Bonn. In the neighbourhood of Bingen it receded from the left shore of the river so as to exclude the dioceses of Worms and Spires, but to admit a certain connexion with Alsace. Towards the west it included nearly the whole territory which is watered by the rivers Moselle and Meuse, and spread over the dioceses of Cologne, Treves, Metz, Toul, Verdun, Liége, and Cambrai. Hence this artificial realm embraced, broadly speaking, almost all modern Holland and Belgium (with the exception of Flanders), part of the Prussisn Rhine provinces, and what is still called Lorraine, partly French and partly German, divided, however, from Alsace and the Palatinate by the natural frontier line of the Vosges and the Haardt mountains. Its inhabitants were soon called Illotharii, Lotharienses, Lotharingi. Lotharingia, as the designation of the country, hardly appears before the middle of the 10th century.
Up to this time Lorraine had belonged alternately to
the eastern ene the western kingdom ever since Lcuis the ferman and Charles the Bald divided the realm of Lothair II. nore ethnogrephically by the treaty of Meerson, August 8, 870. After the deposition in 887 of the em peror Charles III., who for a short time appeared at the head of the three reunited realms, the country still remained distinct, though the invasions of the Northmen and feudal disintegration creeping in from the west vied to tear it to pieces. Yet the emperor Arnulf, after his success against the Scaudinavians, restored some order, and made his son Zwentebulch king over that part of the empire in 894. But he never overcame the difficulties inherent in a country peopled by Franks, Burgundians, Almains, Frisians, and Scandinavians, speaking various Fomance and Teutonic dialects, the western group being evidently attracted by the growth of a French, the eastern by that of a German nationality. King Zweatebulch quarrelled with certain powerful lords, offended mortally the bishops, especially that of Treves, and finally lost his life in battle on the 13th August 900. In the days of Louis the Child, the last of the eastern Carolings, there rose to ducal dignity Reginar Long-neck, count of Haspengau, Hennegau, or Hainault, who owned a number of fiefs and monasteries in the diocese of Liége. He found it profitable to adhere to Charles, king of the Western Franks, especially after Louis's death in 91 I . His son Gisilbert from 915 began to rule the Lotharingians likewise in opposition to Conrad I. and Henry I., who were the successors of Lonis the Child, with the exception, however, of Alsace and the Frisian districts, which now separated, definitively to remain with the German kingdom. By the treaty of Bonn (921) the Lotharingian duchy was ceded formally to France, until Henry I., profiting by the disunion between Charles the Simple and his rivals, subdued Gisilbert and his dominion (925), and about 928 returned it to him with the hand of his daughter as a member of the German kingdom, though rather more independent than other duchies. Its western frontier now appears to have extended up to the Dutch Zealands.

Henry's son, the great Otto I., when his brother rebeiled in conjuaction with Eberhard and Gisilbert, the dukes of Franconia and Lotharingia, best and annihilated these two vassals (939), and secured the latter country by a treaty with the French king Louis'IV., who married Gisilbert's widow, entrusting it consecutively to his brother Henry, to a Duke Otto, and from 944 to Conrad the Red, his son-in-law. Chietly with the help of the Lotharingians be invaded France in order to reinstato the king, who had been dethroned by his proud vassals. But a few years later, when Liudnlf, the son of King Otto and the English Edith, and Duke Conrad, discontented with certain measures, rose against their father and lord, the everrestless spirit of the Lotharingians broke out into new commotions. The stern king, however, suppressed them, removed both his son and his son-in-law from their offices, , and appointed his yonngest brother, the learned and statesmanlike Bron, archbishop of Cologne and chancellor of the realm, to be also duke or, as he is called, archduke of Lotharingia. Brun saatched what was still left of demesne lands and some wealthy abheys like St Maximine near Treves from the rapacious nobles, who had entirely converted the offices of counts and other functionarics into hereditary property. Ho presided over their diets, enforced tho public peace, and defended with their nssistance the frontier lands of Germany against the pernicious influence of the death siruggle fought between the last Carolings of Laon and the dukes of Paris. Quclling the insurrections of a younger Reginar in the lower or ripuarian regions, he admittcd a faithful Count Frederick, who possessed much land in the Ardennes, at Verdun, and at Bar, to ducal
dignity. Altlough the emperor, after Brun's early death, October 10, 965, took the berder-land into his own hands, he connived, as it appears, at the beginning of a final division betwcen an upper and a lower duchy,-leaving the first to Frederick and his descendants, while the other, administered by a Duke Gottfrid, was again disturbed by a third Reginar and his brother Lambert of Louvain. When Otto II. actually restored their fiefs to them in 976 , be nevertheless granted the lower duchy to Charles, a son of the Caroling Louis IV., and his own aunt Gerberga. Henceforth there are two duchies of Lorraine, the official name applying originally only to the first, but the two dignitaries being distinguished as $D u x$ Mosellanorum and Dux Ripuariorum, or later on Dux Metensis or Barrensis and Dux Lovaniensis, de Brabantia, Bullionis, or de Limburg. Both territories now swarmed with ecclesiastical and temporal lords, who struggled to be independent, and, though nominally the subjects of the German kings and emperors, frequently held fiefs from the kings and the grand seigneurs of France. ${ }^{\gamma}$

Between powerful vassals and encroaching ueighbours the imperial delegate in the lower duchy could only be a still more powerful seigneur. But Duke Charles became the captive of the bishop of Laon, and died in 994 . His son, Duke Otto, dying childless (1004), left two sisters married to the counts of Louvain and Namur. Between 1012 and 1023 appears Duke Gottfrid I., son of a count of Verdun, and supporter of the emperor Heary 1I., who, fighting his way against the counts of Louvain, Namur, Luxemburg, and Holland, is succeeded by his brother Gozelo I., hitherto margrave of Antwerp, who since 1033, with the emperor's permission, ruled also Upper Lorraine, and defended the frontier bravelyagainst the incursions of Count Odo of Blois, the adversary of Conrad II. At his death (1046) the upper duchy want to his second son Gottfrid, while the eldest, Gozelo II., succeeded in the lower, until he died childless (1046). But Gottfrid II. (the Bearded), an energetic but untrnstworthy vassal, rebelled twice in alliance with King Heary I. of France and Count Baldwin V. of Flanders against the emperor Henry V., who opposed a union of the duchies in such hands. Lower Lorraine therefore was given (1046) to Count Frederick of Luxemburg, after whose death (1065) it was nevertheless held by Gottfrid, who in the mean time, being banished the conntry, had married Beatrice, the widow of Boniface of Tuscany, and acted a prominent part in the affairs of Italy. As duke of Spoleto and champion of the Holy See he rose to great importance during the turbulent minority of Henry IV. When he died December 21, 1069, his son Gottfrid III., the Ennchbacked, succeeded in the lower duchy, who for a sho:t time was the husband to Matilda of Canossa, the daughter of Boniface and Beatrice. Soon, however, be turned his back on Italy and the pope, joined Henry IV., fonght with the Saxon rebels and liobert of Flanders, and in the end was miserably murdered by an emissary of the connt of Holland, February 26, 1076. Conrad, the emperor's young son, now held the duchy nominally till it was granted 1088 to Gottfrid IV., count of Bouillon, and son of Ida, a sister of Gottfrid III., and Count Eastace of Bonlogne, the hero of the first crusade, who died king of Jerusalem in 1100. After him Henry, count of Limbnrg, obtained the country; but, adhering to the old emperor in his last struggles, he was removed by the son in May 1106 to make room for Gottfrid V., the great-grandson to Lambert I., count of Lorraine, a descendant of the first ducal house, which had been expellcd by Otto the Great. Nevertheless he joined his predecessor in rebellion against the emperor (1114), but returned to his side in the war ahout the see of Liége. Later on he opposed Fing Lothair III., who in turn supported Walram, son of Henry of Limburg, but died in peace with Conrad
[IL, January 15, 1139. His son Gottfrid VI. was the ast duke of Lower Lorraine, and second duke of Brabant. Henceforth the duchy split definitely into that of Limburg, the inheritance of the counts of Verdun, and that of Louvain or Brabant, the dominion of the ancient line of the counts of Haspengau. Various fragmente remained in the hands of the counts of Luxemburg, Namur, Flandera, Hollaad, Juliers, \&c.
Upper Lorraine, a hilly table-land, is bordered on the rast by the ridge of the Vosges, on the north by the Ardennes, and on the south by the table-land of Langres. Towards the west the open country stretches on into Champagne. The Meuse and the Moselle, the latter with its tributaries Meurthe and Saar, run through it from S.E. to N.W. in a direction parallel to the ridge of the Argonnes. In this country Duke Frederick was succeeded by his son and grandson till 1033. Afterwards Gozelo I. and Gottfrid the Bearded, Count Albert of Alsace and his brother or nephew Gerard, held the duchy successively under very insecure circumstances. The ducal territories were even then on all sides surrounded and broken in upon, not only by those of the three bishops, but also by the powerful counts of Bar. Moreover, then in 1070 a new dynasty was established in Theodoric, son of Count Gerard of Alsace, his brother Gerard of Vaudemont became the founder of a separate line. The former political and feudal ties still connected the duchy with the empire. The bishops were the suffragans of the archbishop of Treves, who rose to be one of the prince-electors. The dukes, however, descendiag from Theodoric in the male line, though much weakened by the iacessant dilapidation of their property, for two centuries adhered gezerally to the emperor. Duke Simon L was step-brother of the emperor Lothair IIL.; his son Matthew I. intermarried with the Hohenstaufen family. His son and graudsons appear traditionally on the side of Heary VI., Philip, Frederick IL., and but rarely prefer the Welfish opponent. Later on Theobald II. and Frederick IV. supported Albert and Frederick of Austria against Louis the Bavarian. Yet duriag the same age French feudalism and chivalry, French custom and language, advanced steadily to the disadrantage of German policy and German idioms amongst knights and citizens. King Philip Augustus already promoted Frencamen to the sees of Cembrai, Verdun, and Toul. Though remaining a fief of the empire, the duchy of Lorraine itself, a loose accumulation of centrifugal elements, was irresistibly attracted by its western neighbour, although the progress of French monarchy for a time mas volently checked by the English invasion. Duke Rudolf, a great grandson of Rudolf of Hapsburg, died at Crécy among the French chivalry, like his brother-in-law the count of Bar. To his son John, who was poisoned at Paris (1391), Charles, called the Bold, succeeded, while his brother Frederick, who was slain at Agincourt, had annesed the county of Vaudemont by right of his wife. Charles, who died in 1431 withont malo issue, had bestowed his daughter Isabella in marriage on René, count of Anjou, and titular king of Naples, Sicily, and Jerusalem, and also a French rassal for fragments of the duchy of Bar, and the fefs of Pont \& Mousson and Guise. However, when he obtained by right of his wife the duchy of Lorraine, he mas defeated by Anthony, the son of Frederick of Vaudemont. But by his daughter Iolanthe marrying Frederick II., Count Anthony's son and beir, the duchies of Lorraine and Bar mere in the end united by René II. with the county of Vaudemont and its dependencies Aumale, Mayenne, and Elbœuf. In the meantime all these prospects were nearly annihilated by the coaquests of Charles of Burgundy, who evidently had chosen Lorraine to be the keystone of a rast realm stretching from the North see to the Jedierranean. This new border
empire, separating Germany from France, fell almost instantly to pieces, however, when the bold Burgundian lost his conquests and his life in the battle of Nancy, January 4, 1477. After this the duchy tottered on, merging ever more into the stream of French history, though its bishops were priaces of the empire and resided in imperial cities. At the death of René II. (1508), his eldest son Aathnny, who had been educated in the court of France, inherited Lorraine with its dependencies. The second, Claude, was first duke of Guise, and the third, Johu, alternately or conjointly with his nephew Ificolaus, bishop of Matz, Toul, and Verdun, better known as the cardival of Lorraine. Still the old connexion reappeared occasiovally during the French wars of the emperor Charles V. In 1525 the country was invaded by German insurgents, and Lutheranism began to spread in the towns. When Maurice, elector of Saxony, and the German princes rose agaiust the emperor (1552), they sold the three hishoprics and the cities of Toul, Metz, and Verdun, as well as Cambrai, to King Henry II., and hailed him as imperial vicar aud vindex libertatis Germanix. In vain did Charles V. lay siege to Metz for nearly three months; the town, already eatirely French, was successfully defended by the duke of Guise. German heresy also lost its hold in these territories owing to the Catholic influence of the house of Guise, which ruled the court of France during an eventful period. Charles II., the grandson of Duke Authony, who as a descendant of Charles the Caroling even ventured to claim the French crown against the house of Bourbon, had by his wife, a daughter of King Heary II., two sons. But Henry, the eldest, brother-in-law to Heary of Navarre, leaving no sons, the duchy at his death, July 31, 1624 , reverted to his brother Francis, who, on November 26, 1625, resigned it in favour of his son Charles III., the husband of Duke Henry's eldest daughter. Siding against Richelieu with the house of Austria and Duke Gaston of Orleans, Charles, after being driven out by the French aod the Swedes, resigned the duchy, January 19, 1634; and like the three bishoprics it was actually allotted to France by the peace of Westphalia. The duke, however, after fighting with the Fronde, and with Condé and Spain against Turenne and Mazarin, andquarrelling in tura with Spain, was nevertheless reinstated by the treaty of the Pyrenees (1659) under hard conditions. He had to cede the duchy of Bar, to raze the fortifications of Nancy, and to yield the French free passage to the bishoprics and Alsace. But, restless as ever, after trying to be raised among the princes of the blood royal in retura for a promise to cede the duchy, he broke again with Louis XIV., and was expelled once more together with his nephew and heir Charles IV. Leopold. Both fought in the Dutch war on the German side in the vain hope of reconquering their country. When Charles IV. after his uncle's death refused to yield the towns of Longwy and Nancy according to the peace of Nimeguen, Louis XIV. retained the duchy, while its proprietor acted as governor of Tyrol, and fought the Turks for the emperor Leopold I., whose sister he had married. In the next French war he commanded the imperial troops. Hence his son Leopold Joseph, at the cost of Saarlouis, regained the duchy once more by the treaty of Ryswick (1697). This prince carefully held the balance between the contending parties, when Europe struggled for and against the Eourbon succession in Spain, so that his court became a sanctuary for pretenders and persecuted partisans. His second son Francis Stepher, by a daughter of Duke Philip of Orleans, and his neir since 1729, surrendered the duchy ultimately, owing to the defeat of Austria in the war for the Polish crown (1735). This being lost by Stanislaus Leszczynski, the father-in-law of Louis XV., the usufruct of Lorraine and a comfortable residence at Nancy were granted to the

Polish prince till his death (1766). And now for more than a century all Lorraine and Alsace up to the Rhine were French. Meanwhile Francis Stephen, since 1736 the husband of Archduchess Maria Theresa, had obtained in compensation the grand-duchy of Tuscany, where the last of the Medici died in 1737. He became his wife's coregent in the Austrian provinces (1740), and was elected king of the Romans and crowned emperor 1745, the ancestor of the present rulers of Austria. Wheu in the recent FrancoGerman war both Strasburg and Metz were taken by the German troops after a gallant defence, the French had to submit in the peace of Frankfort, May 10, 1871, to the political and strategical decisions of the conquerors. Old German territory, all Alsace, and a portion of Lorraine, the upper valley of the Saar, the strong fortresses of Diedenhofen (Thionville) and Metz on the Moselle, with the surrounding districts, viz., the greater part of the Moselle and the Meurthe departments, where here and there German is still the language of the inhabitants, were the spoils of victory. They are now united and administered in all civil and military matters as an imperial province of the new German empire.

See Calmet, Histoire Ecclesiastique et civile de la Lorrcine, 3 vols. ; Mascov, Disscrtatio de nexut Lotharingix regni cum imperio Romano Gcrmanico ; Usinger, "Das deutsche Staatsgebiet bis gegen Ende des eilften Jahrhunderts," Hist, Zeitschrift, xxvii. 374; Waitz, Deutsche Verfassungsgeschichtc, vols. v.-vii.; Giesebreeht, Geschichte der Deutschen Kaiscrzeit, vols. i.-v. ; Henri Martin, Histoirc de Francc, 17 vols.; Ranke, Doutsche Gcschichte im Zeitalter der Reformation, 6 vols.; Ranke, Firansösische Geschichte, 5 vols.; A. Sclimidt, Elsass and Lothringen, Nachweis wie diese Provinzen dem deutschen Reiche verloren gingen, 1859.
(R. P.)

LORY, a word of Malayan origin signifying Parrot, ${ }^{1}$ in general use with but slight variation of form in many European languages, is the name of certain birds of the order Psittaci, mostly from the Moluccas and New Guinea, which are remarkable for their bright scarlet or crimson colouring, though also, and perhaps subsequently, applied to some others in which the plumage is chiefly green. The "Lories" have been referred to a considerable number of genera, of which Eclectus, Lorius (the Domicella of some authors), Eos, and Chalcopsittacus may be here particularized, while under the equally vague name of "Lorikeets" may be comprehended the genera Charmosyna, Loriculus, and Coriphilus. By most systematista some of these forms have been placed far apart, even in different families of Psittaci, but Garrod has shown (Proc. Zool. Society, 1874, pp. 586-598, and 1876 , p. 692) the many common charactera they possess, which thus goes some way to justify the relationship implied by their popular designation. The latest and perhaps the most complete account of these birds is to be found in the first part of Count T. Salvadori's

[^1]Ormitologia della Papuasia e delle Molucche, published at Turin in 1880, though he does not entirely accept Garrod'a arrangement. Of the genus Eclectus the Italian naturalist admits five species, namely, $E$. pectoralis and $E$. roratus, (which are respectively the polychlorus and grandis of most authors), E.cardinalis (otherwise intermedius), $E$. westermani, and E, cornelia-the last two from an unknown habitat, though doubtless within the limits of his labour, while the first seems to range from Waigiou and Mysol through New Guinea, including the Kei and Aru groups, to the Solomon Islands, and the second is peçuliar to the Moluccas and the third to Bouru, Amboyna, and Ceram. Still more recently Dr A. B. Meyer has described (Proc. Zool. Society, 1881, p. 917) what he considers to be another species, E. riedeli, from Cera or Seirah, one of the Tenimber group, of which Timor Laut is the chief, to the south-west of New Guinea. ${ }^{2}$ Much interest has been excited of late by the discovery in 1873 , by the traveller and naturalist last named, that the birds of this genus possessing a red plumage were the females of those wearing green feathers. So unexpected a discovery, which was announced by Dr Meyer on the 4th of March 1874, to the Zoological and Botanical Society of Vienna, ${ }^{8}$ naturally provoked not a little controversy, for the difference of coloration is so marked that it had even been proposed to separate the Green from the Red Lories generically ${ }^{4}$; but now the truth of his assertion is generally admitted, and the story is very fully told by him in a note contributed to Gould's Birds of Nerv Guinea (part viii., lst October 1878), though several interesting matters therewith connected are still undetermined. Among these is the question of the colour of the first plumage of the young, a point not without important signification to the student of phylogeny. ${ }^{5}$

Though the name Lory has long been used for the species of Eclectus, and some other genera related thereto, some writers would restrict its application to the birds of the genera Lorius, Eos, Chalcopsittacus, and their near allies, which are often placed in a subfamily, Loriin $\mathscr{E}$, belonging to the so-called Family of Trichoglossidx, or "Brushtongued " Parrots. Garrod in the course of his investigations on the anatomy of Psittaci was led not to attach much importance to the structure indicated by the epithet "brush-tongued," 8tating (Proc. Zool. Society, 1874, p. 597) that it "is only an excessive development of the papille which are always found on the lingual surface." The birds of this group are very characteristic of the NewGuinea Subregion, ${ }^{6}$ in which occur, according to Count Salvadori, ten species of Lorius, eight of Eos, and four of Chalcopsittacus; but none seem here to require any further notice, ${ }^{7}$ though among them, and particularly in the genus Eos, are included some of the most richly-coloured birds to be found in the whole world; nor does it appear that more need be said of the so-called Lorikeets. (A. N.)

LOS ANGELES, a city of the United States, the capital of Los Angeles county, California, is situated in the lowland between the Sierra Madre and the Pacific, about 17 miles from the coast, on the west bauk of a stream of its

[^2]own name. It lies $48 \hat{3}$ miles by rail south-sonth-east of San Francisco on the Sonthern Pacific Railroad, and is connected by branch lines with Wilmington, Santa Monica (both on the coast), and Santa Ana. As the centro of a fine orange and grape growing conntry, and a resort for invalids, Los Angeles is a piace of some importance; and since the opening of the railways it has been in full prosperity, the old adobe buildings rapidly giving place to more substantial structures. Founded in 1781 by the Spaniards, it received the name. "Town of the Queen of the Angels" ( $P_{\text {aubblo de la Reina de los Angeles) as a }}$ tribute to the beauty and pleasantness of the spot. It was the capital of the Mexican state of California from 1836 to 1846, in whicl latter year it was captured by United States forces. The population has increased from 5728 in 1870 to 11,311 in 1880.
LOT, the ancestor of Moab and Ammon, was the son of Haran and grandson of Terah, and accompanied his uncle Abraham in his migration from Haran to Canaan. At Bethel ${ }^{1}$ Lot separated from Abraham, and, while the uncle went on to Hebron, the nephew settled in the district of Sodom. When Jehovah was abont to destroy Sodom and the other cities of the plain two divine messengers appeared, spent the night in Lot's honse, and next morning led Lot, bis wife, and his two unmarried danghters out of the city, His wife looked back and was changed to a pillar of salt, ${ }^{2}$ but Let with his two daughters escaped first to Zoar and then to the mountains east of the Dead Sea, where the daughters, supposing themselves the only survivors of the catastrophe that had destroyed their home, planned and executed an incest by which they became mothers. The sons were the ancestors of Ammon and Moab. Such is the outline of the Jahvistic history of Lot, which the prestly narrator epitomizes in a few words, the only suatement peculiar to his narrative being that in Gen. xi. 27-32. 'The account of Chedorlaomer's invasion and of Lot's rescue by Abraham belongs to an independent source, the age' and historical value of which has been much disputed. See on the one hand Ewald, Geschichte, vol, i., and Tuch in his Genesis, and in an essay originally published in Z.D.M.G., vol. i., and reprinted in the second edition of his Genesis, and on the other hand the essay in Nöldeke, Untersuchungen, and Wellbausen, ut supra, p. 414.
The name Lot (vilf; signifies "a veil," which has led Goldzieher, Mrythologic, p. 216 sq., to the arbitrary hypothesis that the story of Lot and lis daughters is a mayth about the night. Lot and his dlaughters passed into Arabic tradition from the Jews. The daughters are named $Z$ ahy and Rasima by Mas'tady, ii. 139; but other Arabian writers give otber forins.
LOT, a south-westerly department of central France, corresponding to what was formerly kuown as Quercy (the country of the Cadurci), a district of the old province of Guyenne, is situated between $44^{\circ} 12^{\prime}$ and $45^{\circ} 5^{\prime}$ N. lat., and between $1^{\circ}$ and $2^{\circ} 12^{\prime} \mathrm{E}$. long., and is bounded on the N. by Correze, on the W. by Dordogne and Let-et-Garonne, on the S. by Tarn-et-Garonne, and on the E. by Aveyron and Cantal. Its extreme length, from north-east to south-west, is about 52 miles, and its breadth from north-west to south-east 31 miles, with an area of 2013 square miles. It slopes towards the south-west, from a maximum altitude of 2560 fect on the borders of Cantal to a minimum of 213 feet at the point where the river Lot quits the department, through a wide geological range beginning with primary rocks (granite, gneiss, mica-schists),

[^3]which are succeeded by lias, oclitic limestone (occupying the greater portion of the area), chalks, and finally by Tertiary formations. Tho Let, which traverses it from east to west, is navigable for the whole distance ( 78 miles) with the help of locks; its principal tributary within the department is the Célé (on the right). In the north of the department the Dordogne has a course of 37 miles; among its tributaries are the Cère, which has its rise in Cantal, and the Ouysse, a river of no great length, but remarkable for the abundance of its waters. The streams in the south of Lot all flow into the Tarn. By the Dordogne and Lot the surface is divided into a number of limestone plateans known by the name of "causses"; that to the north of the Dordogne is called the Causse de Martel ; between the Dordogne and the Lor is the Causse de Gramat or de Rocamadour: south of the Lot is the Causse de Cahors. These "causses," owing to tine rapid disappearance of the rain throngh the faults in the, limestone, have for the most part an arid appearance, and their rivulets are generally mere dry beds; but their altitude (from 700 to 1300 feet, much lower therefore than that of the similar plateaus in Lozère, Hérault, and Aveyron) admits of the cultivation of the vine; they also yield a small quantity of maize, wheat, oats, rye, and potatoes, and some wood. The deep intervening valleys are full of verdure, being well watered by abundant springs supplied by drainage from the plateaux above. The climate is on the whole that of the Girondine region; the valleys are warm, and the rainfall is somewhat above the average for France. The difference of temperature between the higher parts of the department belonging to the central platean and the sheltered valleys of the south-west is considerable. Of the entire area of the department 691,920 acres are arable, 222,402 are forest land, 168,038 are occupied by vineyards, 64,250 are heath, and 61,778 are meadow. Sheep are the mostabundant kind of live atock; but pigs, horned cattle, horses, asses, and mules, ard goats aro also reared, as well as poultry in large quantities, and bees. Wine is the principal product of the department, the most valued being that of Cahors or Côte du Lot. It is used partly for blending with other wines and partly for local consumption. The north-east cantons supply large quantities of chestnuts; apples, cherries, and peaches are common, and the department also grows tobacco and supplies truffles. The iron, lead, and zinc deposits are unimportant. Marble, millstones, limestone, and clay are obtained to some extent, but phosphate of lime is the most valuable mineral product of Lot. The manufactures are inconsiderable; but there are numerous mills, and wool spinning and carding as well as cloth making, tanning, currying, brewing, and agricultural implement making are carried on to some extent. The exports consist of grain, flour, wine, brandy, live stock, nuts, truffles, prunes, tobaccó, wood, phosphate of lime, leather, and wool. The population in 1876 was 276,512 . The three arrondissements are Cahors, Figeac, and Gourdon; there are twenty-nine cantons and three hundred and twenty-three communes.
LOT-ET-GARONNE, a department of south-western France, made up of Agenais and Bazadais, two districts of the former province of Guyenné, and Condomois and Lomagne, formerly portions of 'Gascony, lies between $43^{\circ} 50^{\prime}$ and $44^{\circ} 45^{\circ} \mathrm{N}$. lat., and $1^{\circ} 7^{\prime} \mathrm{E}$. and $8^{\prime} \mathrm{W}$. long., and is bounded on the W. by Gironde, on the N. by Dordogne, on the E. by Lot and Tarn-et-Garonne, on the S. by Gers, and on the S.W. by Landes; its extreme length from south-west to north-east is 62 miles, and it has an area of 2067 square miles. The Garonne, which traverses the department from south-cast to north-west, divides it into two unequal parts ; in that to the north the slope is from east to west, while in that to the south it is directly from south to north. A small portion in the south-west belongs
to the sterile region of the Landes; the valleys of the Garonne and of the Lot (its greatest affluent here) on the other hand are proverbial for their fertility. The wildest part is in the borders of Dordogne, where oak, chestrut, and beech forests are numerous; the lighest point is also here ( 896 feet). The Garonne, where it quits the department, is anly some 33 or 36 feet abuve the sea-level; it is navigable throughout, with the help of its lateral canal, as also are the Lot and Bayse with the help of locks. The Dropt, a right affluent of the Garonne in the nuth of the department, is also navigable in the lower part of its course. The climate is that of the Girondine region, the inean temperature of Agen being $56^{\circ} \cdot 6$ Fahr., or $5^{\circ}$ above that of Paris; the rainfall ( 31.5 inches) is also above the average of France. Of the entire area 741,342 acres are arable, 210,047 are vineyard, 172,980 under wood, 85,254 natural meadow, and 56,836 waste. Horned cattlo are the chief live stock; nest in order come pigs, sheep, horses, asses, and mules, and a small number of goats. Poultry and bees are also reared. Its wines and its cereals are a great source of wealth to the department; in 1875 488,000 quarters of grain and $14,000,000$ gallons of wine were produced. Potatoes, beetroot, pulse, and maize are also largely grown; next come rye, barley, meslin, and buckwheat. In 18777759 acres produced $5,838,849$ it of tobacco, worth upwards of two million francs. Colza, hemp, and flax are also extensively cultivated. The fruit harrest (nuts, chestnuts, apricots) is large and valuable, the prunes which take their name from Agen being efpecially in demand. The forests in the south-west supply pine wood and cork. The forges, high furnaces, and foundries of the department are important ; brazier's ware is also produced; and there are workshops for the manufacture of agricultural implements and other machines. The making of plaster, lime, and hydraulic cement, of tiles, bricks, and pottery, of confectionery and other eatables, and brewing and distilling, occupy many of the inhabitants. At Tunveins there is a national tobacco manufactory, and the list of industries is completed by the mention of boatbuilding, cork cutting, hat and candle making, wool spinning, weaving of woollen and cotton stuffs, tanning; paper making, nil waking, and Hour and saw milling. In 1876 the populatiou was 316,920 ( 1100 Protestants). The inlabitants speak a patois in which elegant and graceful works have been written, such as the poems of Jasmin (q.v.). The arrondissements are four,-Agen, Marmande, Nérac, and Villeneuve; and there are thirty-five cautons and three hundred and twenty-five communes.
LOTHAIR I., Roman emperor, eldest son of Lovis the Pious, was born in 795. At a diet held at Aix-la-Chapelle in 817 he received Austrasia with the greater part of Germany, and was associated with his father in the empire, while separate territeries were granted to his brothers Louis and Pippin. This arrangement being modified in favour of Louis's joungest son Charles (afterwards Charles the Bald), the three brothers repeatedly rebelled, and for a time Lothair usurped supreme power. After the death of Louis in 840, Lothair, as his successor, claimed the right to govern the whole empire. His brothers Louis and Charles (Pippin being dead) united against him, and in 841 he was defeated in tho great batile of Fontenay. On the 11th of August 843 the war was brought to an end by the treaty of Verdun, by which Lothair was confirmed in the imperial title, but received as his inmediate territory only Italy (which he kad ruled from 822) with a long narrow district reaching past the Rhone and the Rhine to the North Sea. IIis snlsequent reign was full of trouble, for many of his vassals liad become virtunlly independeut, and he was unable to contend successfully with the Norsemen and the Saracens. In 855 , weary of
the cares of government, he divided his kingdom among bis sous, and retired to the monastery of Prium, where he died on the 28 th of September of the sanie year. As emperor he was succeeded by his son Louis II.

LOTHAIR the Saxoy, German king and Roman emperor, was originally count of Suplinburg. In 1106 he was made duke of Saxony by the emperor Henry V., against whom he afterwards repeatedly rebelled. After the death of Henry V. in 1125, the party which supported imperial in opposition to papal claims wished to grant the crown to Duke Frederick of Swabia, grandson of Henry IV. The papal party, however, headed by Archbishor? Adalbert of Mainz, managed to sccure the election of Lothair, who obtained their favour by making large concessions by which he was afterwards seriously hampered. In 1133 be was crowned emperor in Rome by Innocent II., whom he had supported in a disputer papal election. In later times the church pretended that he had doue homage to the pope for the empire, but what he really received in fef was the hereditary territory of the Countess Matilda. Meanwhile he had been engaged in bitter strife with the Hohenstaufen family, from whon he had demanded the allodial lands which they had inherited from the emperor Henry V. Duke Frederick of Swahia, and Lis brother Conrad, had resisted these pretensions; and Conrad had even been crowned king in Mlilan. The quarre! was ultimately settled by the lands in dispute being granted in fief to the house of Hohenstaufen. In order to strengthen his position, Lothair had given his danghter Gertrude (a child of eleven) in marriage to Henry the Proud, duke of Bavaria, whom he made also duke of Saxony. Heury was further euriched by receiving the hereditary and imperial territories of the Countess Matilda, so that the Guelphs became by far the most powerful family in the empire. Lothair secured other important adherents by giving North Saxony (afterwards Brandenburg) to Albert the Bear, and Thuriugia (which be took from Landgrave Hermann) to Count Louis. In his relations to the neighbouring populations Lothair acted with great vigour. The duke of Bohemia and the duke of Poland were compelled to do homage, and the margraviate of Meissen and the county of Burgundy he gave to two of his supporters, the former to Count Conrad of Wettio, the latter to Duke Conrad of Zähringen. The kingdon of the Abotrites he granted to the Danish king Cnut; and Cout's successor Magnus was forced to accept it as a feef of the empire. In 1136 Lothair undertook a second expedition to Italy for the defence of Pope Innocent II, against Roger of Sicily, and after accor.pllishing his object he died on the 3d of Deceuber 1137, in an Alpine hut near Trent, on his may back to Germany. During his reign the papacy gained ground in its rivalry with the empire, but he displayed courage and resource in maintaining the rights of the crown against all his secular opponents.
See Gervais, Politische Geschichte Deutschlands uenter der Regiernny der Kaiser Heinrich IV. und Lothar III., 1841-42; Jalli, Geschichue des doutschen Ricichs unter Lothar dem Sachsen, ist3.

LOTHiAN, Lotmene, Laodonta, a name whose origio is unknown, ${ }^{1}$ now preserved in the three Scattish counties of East, West, and Mid Lothian-Haddington, Linlithgow, and Edinderger (q.u.) -originally estended from the Furth to the Tweed. The Forth separated it from Celtic Alba, and tho Tweed from the southern part of Bryncich (Bernicia). Its western boundarics appear to have been the Cheviots and the Lorsthers. After the Anglo-Saxon migration it formed part of the Anglian kiugdom of Northumberland, founded by Ida the Flame-bearer in 5.47 , which in it9
${ }^{1}$ Loth, son of Anna, the sister of Arthur, a Scottish consul and
Iorl of Laudonia (Fordun, iii. 24), the Llew of the Arthurian legead (Skene Four Books of W'alcs, clap. iv.), is, of course, an ejonymus.
widest extent, under the powerful Northumbrian kings of the 7 th century, reached from the Humber to the Forth. A different but allied branch of the Angles settled along the tributaries of the Tweed, and the Cheviot, Lowther, Moorfoot, and Pentland (Pictish) hiils separated the colonists of southern Scotland from the British kingdom of Strath Clyde or Cumbria The victories of Catreth (596) and Dagsastan (603) in the reign of Ethelfrith represent the close of the struggle which drove the British or Cumbrian Celts (Cymry) into the western hill conntry, afterwards known as Westmoreland and Cumberland, and the Picts to the north of the Forth and Clyde, so that Anglian Northumberland aecured the former river as its northern boundary, and even fan a time threatened to pass it. Edwin of Deira (617-33), the cbief king of England in his time, probably founded Ediaburgh, although its Celtic name Dun Eden has been thought by some to suggest a different derivation. Egfrid at the close of the 7 th century established an Anglian bishop at Abercorn on the Forth, but was defeated and slain at Nechtansmere, or Dunnichen, in Forfarshire by the Pictish king Brade (685), and Trumwine the bishop at Abercorn was forced to retire to Whitby. In the 8th century the Northumbrian kings were engaged in a conflict with Mercia, and in 827 the supremacy of Egbert, the founder of the West Saxon monarchy, was acknowledged, although on the part of the Northumbrians the recognition must have been at first almost nominal, for it was not until more than a century later that Athelstan, by the victory of Brunanburg (937) over the allied Welsh, Scots, and Northumbrian Daues, really extended the boundaries of the Wessex kingdom over the greater part of Northombria, which was reduced to an earldom by Edred in 954. Athelstan lad in 934 ravaged Scotland north of the Forth, and must for a time have reduced Lothian, the northern district of Northumberland, but it does not appear that either he or any of his successors had real sovereignty over Lothian, which was left to the rule of Northumbrian earls, sometimes of Anglian and at other times of Danish race. Its population continued Anglian, as is proved by the fact that there are no Danish monuments and few Danish place names between the Tweed and the Forth. The Scottish Celts, like the English Anglo-Saxans, were during this period occupied with warding off the Danes and Norsemen, but about the middle of the 9th century Kenneth Macalpine united the Scottish and Pictish kingdoms, and fixed the capital at Scone. This monarch is said by the Pictish chronicle to have six times invaded Saxony (the name given by the Celts to the Aaglo-Saxon territory); and to have burnt Dunbar and Melrose. The Anglians of Northumbria bad been converted to Christianity by Paulinus in 627 , and reconverted by a Celtic mission from Iona between 635 and 651 under Aidan, who planted a mission station - a southern Iona-on the Holy Island, and became first bishop of Lisdisfarne. Cuthbert, one of his successors in this bishopric, which had become Anglian and conformed to the Roman ritual and discipline after the council of Whitby (664), has the credit of spreading the gospel in Lothian, where he had been first monk and then prior of the recently founded monastery of Melrose.

About the middle of the 10 th century (954-62) Edinburgh was abandoned by the Northumbrian Angles and occupied by Indulph, son of Constantive, king of the Scots. According to John of Wallingford and Roger of Wendover, Edgar the West Saxon king ceded in 966 Lothian to Kenneth III., son of Malcolm I., on condition that he ahould do homage for it and give pledges not to deprive the people of that region of their ancient customs, and that they should atill retain the name and lengunge of the Augles. This cession, which is not in the older
chroaicles, has oeen matter of controvergy between Freeman (Norman Conquest, i., note B, p. 610), who accepts the statement, and E. W. Robertson (Scotland under her Early Kings, i. 390) and Skene (Celtic Scotland, i 370), who reject it upon what appear better grounds. But the dlspute is of small importance, as it is admitted on the authority of Simeon of Durbam that, whether or not it ras then ceded on.condition of homage, it was anuexed to Scotland by conquest in 1018 in consequence of the victory at Carbam by Malcolm the son of Kenneth over the Northumbrian earl Eadulf Ciudel, "Hoc modo," says Simeon writing before 1129, "Lodonium adjectum est regno Scotix." Canute and William the Conqueror made temporary conquests of Scotland including Lothian, and homage of various kinds was rendered to them and other Norman monarchs, but there is no trace of any special homage for Lothian except in tro dubious charters by Edgar to William Rufus, so that it seems certain that from the begioning of the 1 th century it was an integral part of Scotland. Freeman, in his Historical Geography, styles it an English earldom, but it is never so called in any authentic record. While it was an integral part of Scotland its population was recognized as a dirtinct branch of the Scottish nation, and the men of Lothian are frequently separately named, as in the contemporary account of the Battle of the Standard (1138). It also retained its language, customs, and laws, which were those of the Angles of Northumbria. Although united in civil goverament to Scotland, Lothian, or at least many places in it, continned ecclesiastically subject to the aee of Durham, which had aucceeded that of Lindisfarne, until the beginning of the 12 th century (Stubbs and Haddan, Concilia, ii. p. 161), but it then came under the bishop of St Audrews, and was divided into three rural deaneries, the Merse, Haddington, and Linlithgow, with an archdeacon of Lothian, who first distinctly appears under that name at the commencement of the 13th century.

The division of Scotland into shires was probably made by David I., and Lothian included the shires of Berwick or the Merse (the march or borderland, as English Mercia and Spanish Murcia), Roxburgh, and Edinburgh, which included the constabularies of Haddington and Linlithgow, afterwarda erected into separate counties. Ita principal burghs - Berwick, Roxburgh, and Edinburgh -formed along with Stirling the court of the four burghs, whose laws were collected by David I. ("Leges Quatuor Burgorum," Act. Parl. Scot., i. 327), and whose meeting-place was Haddington, but the frequent occupation of Berwick and Roxburgh by the English caused Lanark and Linlitigow to be substituted, and the place of meeting to be changed to Stirling in 1368. The convention of royal burghs may be traced back to this court.
The independence of Scotland, including Lothian, though frequently disputed by the English sovereigns, was always maintained by the Scotch, except when surrendered by William the Lion as a prisoner by the treaty of Falaise 1174, cancelled by Richard I. in 1189 . It was finally acknowledged by Edward I. in the treaty of Brigham, but after the death of the Maid of Norway this acknowledg. ment was repudiated, and it was only finally. established by the war of indcpendence, and definitely recognized in the treaty of Northampton in 1328.

By a siogular but fortunate series of events, of which the first was the marriage of Malcolm Canmore with the Saxon princess Margaret, Lothian, the Anglian part of the Scottish kingdom, though its burderland, became its ceatre. Edinburgh, its chief town, was from that time a favourite residence of the court, and under the Stuart kings became the capital of the kingdom. Its language, the dialect of northern England, became the besis of the Lomland Scots.
at first called Inglys or English, but afterwaras Scotch, when Celtic, Erse, or Gaelic had ceased to be spoken in the lowland districts, in distinction from southern English. Its customary law, with additions prior to the war of independence of Norman feudal institutions from England, is the basis of those parts of the common law of Scotland which are not taken from Roman jurisprudence. And it was from Lothian that Anglo-Saxon and AngloNorman civilization radiated to the remotest parts of the Highlands and Islands.
(є. м.)
LOTTERIES. The word lottery has no very definite signification. It may be applied to any process of determining prizes by lot, whether the object be amusement, or gambling, or public profit. In the Roman Saturnalia and in the banquets of aristocratic Romans the object was amusement; the guests received apophoreta. The same plan was followed on a magnificent scale by some of the emperors. Nero excited the people by giving such prizes as a house or a slave. Heliogabalns introduced an element of absurdity,-one ticket for a golden vase, another for six flies. This amusing custom descended to the festivals given by the fendal and merchant princes of Europe, especially of Italy; and it afterwards formed a prominent feature of the splendid ceurt hospitality of Louis XIV. In the Italian republics of the 16th century the lottery principle was applied to encourage the sale of merchandise. The lotto of Florence and the seminario of Genoa are well known, and Venice established a monopoly and drew a considerable revenue for the state. The first letters patent for a lottery in France were granted by Francis I., and in 1656 the Itulian Tonti (the originator of "Tontines") opened another for the huilding of a stone bridge between the Lourre and the Faubourg St Germain. The institutien became very popular in France, and gradually assumed an important place in the Government finance. The parliaments frequently protested against it, but it had the support of Mazarin, and Pontchartrain by this means raised the expenses of the Spanish Snccession War. Necker, in his Administration des Finances, estimates the public charge for lotteries at $4,000,000$ livres per annum. There were also lotteries for the benefit of religious communities and charitable purposes. Two of the largest were the Loteries de Piêté and des Enfans Trouvés. These and also the great Loterie de l'Ecole militaire were practically merged in the Loterie Royale by the famons decree of 1776 , suppressing all private lotteries in France. The financial basis of these larger lotteries was to take $\frac{-5}{24}$ ths for expenses and benefit, and return $\frac{19}{24}$ ths to the public who subscribed. The calculation of chances had become a familiar science. It is explained in detail by M. Caminade de Castres in Enc. Méth. Finances, ii., s. v. "Loterie." The names of the winning numbers in the first drawing were (I) extrait, (2) ambe, (3) terne, (4) quaterne, (5) quine. After this there were four drawings called primes gratuites. The extrait gave fifteen times the price of the ticket; the quine gave one million times the price. These are said to be much more favouratle terms than were given in Vienna, Frankfort, and other leading European cities at the end of the 18th century. There is no doult that lotteries had a demoralizing effect on French society. They were denounced by the eloquent bishop of Autun as no better than the popular games of belle and biribi; they were condemned on financial gronuds by Turget; and Condillac compared them to the debasement of money which was at one time practised by the kinga of France. The Loterie Royale was ultimately auppressed in. 1836. Under the law of 29th May 1844 lotteries may be held for the assiatance of charity and the fine arts. The Société du Credit Foncier, and many of the large towns, are per-
mitted to contract loans, the periedical repayments of which are determined by lot. This practice, which is prohibited in Germany and England, resembles the older system of giving higher aud lower rates of interest for money according to lot. Lotteriea were suppressed in Belgium in 1830, but they still figure largely in the State budgets of Germany, Holland, Spain, and ltaly.

In England the earliest lotteries sanctioned by Government were for such purposes as the repair of harbours in 1569 , and the Virginia Company in 1612. In 1696 by the Act $10 \& 11$ Will. III. c. 17 lotteries, with the exception of the Royal Oak lottery, were prohibited as common nuisances, by which children, servants, and other unwary persous had been rained. This prohibition was in the 18th century gradually extended to illegal insurances on marriages and other events, und to a great many games with dice, such as faro, basset, hazard, except backgammun and games played in the royal palace. In spite of these prohibitions, the Government from 1709 down to 1824 showed a bad example to the uation by annually raising considerable sums in lotteries anthorized by Act of Parliament. The prizes were in the form of terminable or perpetual annuities. The $£ 10$ tickets were sold at a premium of say 40 per cent. to contractors who resold them in retail (sometimes in one-sisteenth parts) by "morocco men," or mea with red leather bouks who travelled throngl the country. As the drawiog extended over forty days, a very pernicious system arose of insuring the fate of tickets during the drawing for a small premium of 4 d . or 6 d . This was partly cured by the Little Go Act of 1802, 42 Geo. III. c. 119, directed against the itinerant wheels which plied between the state lotteries, and partly by Perceval's Act in 1806, which confined the drawing of each lottery to one day. From 1793 to 1824 the Government made an average yearly profit of $£ 346,765$. Cope, one of the largest contractors, is said to have spent $£ 36,000$ in.advertisementa in a single year. The English lotteries were used to raise loans for general purposes, but latterly they were confined to particnlar objects, such as the improvement of London, the disposal of Cox's museum, the purchase of Tomkin's picture gallery, \&c. Through the efforts of Lyttleton and others a strong public opinion was formed against them, and in 1826 they were finally prohibited. An energetic proposal to revive the system was mado before the select committee on metropolitan improvements in 1830, but it was not listened to. By a unique blunder in legislation, authority was given to hold a lottery under the Act 1 it 2 Will. IV. c. 8, which provides ascheme for the improvement of the city of Glasgow. These "Glasgow Intteries" were suppressed by 4 \& 5 Will. IV. c. 37. The statute law in Scotland is the same as in England. At common larr in Scotland it is probable that all letteries and raftles, for whatever purpose held, nay be indicted as nuisances. The art unions are supposed to be protected by a special statute.

The Anerican Congress of $17 \% 6$ instituted a national lottery. The scheme was warmly advocated by Jeffcrson and other statesmen, and before 18 20 at least seventy Acts were passed by Congress authorizing lotterics for various public purposes, such as schools, ronds, de., -nbuit 85 per cent. of the subscriptions bcing returned in prizes. sounder opinion now prerails on this subject in America.
The only systematie work on this subject is tho Critique hist. pol. mor. ccon, ct comm. sur les lotcries anc. cl. moot. syirituclles et icmporcllcs des Etats al des Eglises, Amsterdam, 1697, 3 vols, by the Bolognese historian Gregorio Leti. The subject is also dealt with by J. Dessuulx in his work Do la passion du jou depuis les ancicrs temps jusqu' ì nos jorres, Paris, 1779 (W. C. S.)

LOTUS-EATERS (Greck Awroфáyou) wcre a Libyan tribe known to the Greels as carly as the time of Homer. Herodotus (iv. 175) describes their constry as in the

Syrtic district, and says that a caravan ronte led from it to Egypt. The lotus still grows there in great abundance. It is a prickly slrub, the jujube tree, bearing a fruit of a sweet taste, compared by Herodotus to that of the date ; it is still eaten by the natives, and a kind of wine is made from the juice (see JuJube). Marrellous tales mere current aming the early Grecks of the virtucs of the lotus, as we see in Odys., ix. St. When Ulysses comes to the coast many of his sailors eat the lutus and lose all wish to return home. The idea has becu worked up by Tennysun in a very fine poens. This lotus must not be confounded with the Egyptian plant, a kind of rater-lily that grows in the Nile. See Ritter, Eiddiunde, i. ; and Heeren, Ideen, ii., or in Historical Researches, $\mathbb{L} \mathrm{c}$.
lotze, Rudolph Hermasis, one of the most eminent philosophers of our age, was born May 21, 1817, in Bautzen, in the kingdom of Saxony, and died at Berlin 1st July 1SS1. The incinents of the life of a philosopher, especially if his career has been exclusively an academic one, are usually passed over as unimportant. In external events no life could be less striking than that of Lotze, who, moreorer, was of a retiring disposition, and was forced through delicate health to seclude himself from even such external excitement and dissipation as the quiet university town of Göttingen, where he passed nearly forty years of his life, might afford. His iuterests on the contrary, as exhibited in his various writings, are most universal; and in a surprising degree he possessed the porer of appreciating the wants of practical life, and the demands of a civilizution so complicated as that of our age, so full of elements which have not yet yielded to scientific treatment. But, althnugh in his teachings he rose more than most thiukers beyond the temporary and casual influeuces which surrounded him, it was significant for the development of his ideas that the same country produced him which gave to Germany Lessing and Fichte, that the received his education in the gymnasium of Zittau under the guidance of eminent and energetic teachers, who mursed in him a love and tasteful appreciation of the classical authors, of which in much later years he gave a unique example in his masterly translation of the Antigone of Sophocles into Latin, and that, himself the son of a physician, be ment to the university of Lcipsic as a student of philosophy and natural sciences, but enlisted officially as a student of medicine. He was then only seventeen. It appears that thus early Lotze's studies were gorerned by tro distinct interests and emanated from tro centres. The first was his scientific interest and culture, based upon mathematical and physical studies, under the guidance of such eminent representatives of modern exact research as E . H. Weber, W. Volckmann, and G. T. Fechner. The others were his sesthetical and artistic predilections, which were developed under the care of C. H. Weisse. To the former he owes his appreciation of exact investigation and a complete knowledge of the aims of science, to the latter an equal admiration for the great circie of ideas which had becn cultivated and diffused through the teachings of Fichte, Schelling, and Hegel. But each of these aspects, which early in life must have been familiar to him, exerted on the other a tempering and modifying influence. The true method of science which he possessed forced him to condemn as useless the entire form which Schelling's and Hegel's expositions had adopted, especially the dialectic method of the latter, whilst his love of art and beauty, and lis appreciation of moral purposes, revealed to him the existence beyond the phenomenal world of a world of values or worths into which no exact science could penetratc. It is evident horr this initial position at once defined to him-a variety of tasks which philosophy had to perform. First there were the natural sciences themselves only just
emerging from an unclear conception of their true method, especially those which studied the borderland of physical and mental phenomena, the medical sciences, pre-eninently that science which has since become so popular, the science of biology. Lotze's first essay was his dissertation De futura biologix principibus philosophicis, with which he gained ( 1838 ) the degree of doctor of medicine, after haring only four months previously got the degree of doctor of philosophy. Then, secondly, there arose the question whether the methods of exact science sufficed to explain the connexion of phenomena, or whether for the explanation of this the thinking mind mas forced to resort to some hypothesis not inmediately verifiable by observation, but dictated by our higher aspirations and interests. And, if to satisfy these we were forced to maintain the existence of a world of moral standards, it was, thirdly, necessary to form some opinion as to the relation of these moral standards of value to the forms and facts of phenomenal existence. These different tasks, which philosophy bad tc fulfil, mark pretty accurately the aims of Lotze's writings, and the order in which they were published. But, though he laid the foundation of his philosophical system very early, in his Metaphysik (Leipsic, 1841) and bis Logik (1843), nod commenced lecturing when only trenty-two years old on philosophical subjects, in Leipsic, though he accepted in 1844 a call to Göttingen to fill the chair of philosophy which had become vacant through the death of Herbart, he did not proceed to an exhaustive development of his peculiar views till very much later, and only during the last decade of his life, after having natured them in his eminently popular lectures, did he with much hesitation renture to present his ideas in something like a systematic form. The two small publications just referred to remained unnoticed by the reading public, and Lotze became first known to a larger circle through a series of works which had the object of establishing in the study of the physical and mental phenomeus of the human organism in its normal and diseased states the same general principles which had been adopted in the investigation of inorganic phenomena. These works were his Allgemeine Pathologie und Therapie als mechanische Naturvissenschuften (Leipsic, 1842, 2d ed. 1848), the articles "Lebenskrait" (1843) and "Seele und Seelenleben" (1846) in Rud. Wagner's Handtörterbuch der Physiologie, his Allgemeine Physiologie des Körperlichen Lebens (Leipsic, 1851), and his Medizinische Psychologie oder Physiologie der Seele (Leipsic, 1852). When Lotze came out with hese works, medical science was still much under the influence of Schelling's philosophy of nature. The mechanical lams, to which esternal things were subject, were conceised as being valid only in the inorganic world; in the organic and mental morlds these mechanical laws were conceired as being disturbed or overridden by other powers, such as the influence of final causes, the existence of types, the wnrk of vital and mental forces. This confusion Lotze, who had been trained in the school of mathematical reasoning, tried to dispel. The laws which govern particles of matter in the inorganic morld govern them likewise if they are joined into an organism. A phenomenon $a$, if followed by $b$ in the one case, is followed by the same $b$ also in the other case. Final causes, rital and mental forces, the soul itself can, if they act at all, only act through the inexorable mechanism of natural laws, If $a$ is to be followed by $d$ and not by $b$, this can only be effected by the additional existence of a third something $c$, which again by purely mechanical lams would change $b$ into $d_{0}$ as we therefore have only to do with the study of existing complexes of material and spiritual phenomena, the changes in these must be explained in ecience by the rule of mechenical laws, zuch as obtain everywhere in the world, and only by such. Ono of the results of thess
investigations was to extend the meaning of the word mechanism, and comprise under it all laws which obtain in the phenomenal world, not excepting the phenomena of life and mind. Mechanism was the unalteable connexion of every phenomenon $a$ with other phenomena $b, c, d$, either as following or preceding it ; mechanism was the inexorable form into which the events of this world are cast, and by which they are connected. The object of those writings wns to establish the all-pervading rule of mechanism. But the mechanical view of nature is not identical with the materialistic. In the last of the above-mentioned works the question is discussed at great length how we have to consider mind, and the relation between mind and body; the answer is-we have to consider mind as an immaterial principle, its action, however, on the body and vice versa as purely mechanical, indicated by the fixed laws of a 1sycho-physical mechanism. These doctrines of Lotzethough pronounced with the distinct and reiterated reserve tlat they did not contain a solution of the philosophical question regarding the nature, origin, or deeper meaning of this all-pervading mechanism, neither an explanation how the action of external things on each other takes place nor yet of the relation of mind and body, that they were merely a prelimioary formula of practical scientific value, itself requiring a deeper interpretation-these doctrincs were nevertheless by many considered to be the last word of the philosopher who, denouncing the reveries of Schelling or the idealistic theories of Hegel, established the science of life and mind on the same basis as that of material things. Published as they were during the years when the modern school of Germau materialism was at its height, ${ }^{1}$ these works of Lotze were counted among the opposition literature which destroged the phantom of Hegelian wisdom and rindicated the independent and selfsufficiog position of empirical philosophy. Even philosophers of the eminence of. J. H. Fichte (the younger) did not escape this misinterpretation of Lotze's true meaning, though they bad his Metaphysik and Logik to refer to, though he promised in his Allgemeine Physiologie (1851) to enter in a subsequent work upon the "bounding province between æsthetics and physiology," and though in his 'Medicinische Psychologie he bad distinctly stated that his position was neither the idealism of Hegel nor the realism of Herbart, nor materialism, but that it was the conviction that the essence of everything is the part it plays in the realization of some idea which is in itself valuable, that the sense of an all-pervading mechanism is to be sought in this that it denotes the ways and means by which the highest idea, which we may call the idea of the good, has voluntarily chosen to realize itself.

The misinterpretations which be had suffered induced Lotze to publish a small pamplilet of a polemical character (Streitschriften, Leipsic, 1857), in which he corrected two mistakes. The opposition which he had made to Hegel's formalism had induced some to associate him with the materialistic school, others to count him among the followers of Herbart, the principal philosopher of eminence who had maintained a lifelong protest against the development which Kani's doctrines had met with at the bands of Fichte, Schelling, and Hegel. Lotze publicly and formally denied that he belonged to the school of Herbart, though he admitted that historically the same doctrine which might be considered the furerunner of Herbart's teachings might lead to his own views, viz., the monadology of Leibnitz.

Wheu Lotze wrote these explamations, he had already given to the world the first volume of his great work,

[^4]Mikrokosmus (vol. i. 185G, vol. ii. 1858, vol. iii. 18ố4; 3 d ed., 1876-1880). In many passages of his works on pathology, physiology, and psychology. Lotze had distinctly stated that the method of research which he advocated there did not give an explanation of the phenomena of life and mind, but only the means of observing and connecting thom together; that the meaning of all phenomena, and the reason of their peculiar connexions, was a philosophical problem which required to be attacked from a different point of view ; and that the significance especially which lay in the phenomena of life and miud wonld only unfold itsclf if by an exhaustive survey of the entire life of man, individually, socially, and historically, we gain the necessary, data for deciding what meaning attaches to the existence of this microcosm, or small world of human life, in the macrocosm of the universe. This review, which extends, in three volumes, over the wide field of anthropology, beginning rith the human frame, the soul, and their uninn in life, advancing to man, his mind, and the cuurse of the world, and concluding with history, progress, and the connexion of thinge, ends with the same idea which was expressed in Lotze's earliest work,-Metaphysiti. The view peculiar to him is reached in the end as the crowning conception towards which all separate chamnels of thought have tended, and in the light of which the life of man in nature and mind, in the individual and in society, had been surveyed. This riew can be briefly stated as follows. Everywhere in the wide realm of observation we find three distinct regions,--the region of facts, the region of laws, and the region of standards of value and worth. These three regions are separate only in our thoughts, not in reality. To comprehend the real position we are forced to the conviction that the world of facts is the field in which, and that laws are the means by which, those higher standards of moral and æesthetical value are heing realized; and such a union can again only become intelligible through the idea of a personal Deity, who in the creation and preservation of a world has voluntarily chosen certain forms and lams, through the natural operation of which the ends of His' work are gained.

Whilst Lotze had thus in his published works closed the circle of his thought, beginning with a conception metaphysically gained, proceeding to an exhaustive contemplation of things in the light it aforded, and ending with the stronger conviction of its truth which observation, experience, and life could afford, he had all the time been lecturing on the various branches of philosophy according to the scheme of academicnl lectures transmitted from his predecessors. Nor can it be considered anything but a gain that he was thus induced to expound his views with regard to those topics, and in connexion with those problems, which were the traditional forms of philosophical utterance. His lectures ranged over a wide feld : he delivered annually lectures on psychology and on logic (the latter including a survey of the entirety of philosophical research under the title Encyclopädie der Philosophie), then at longer intervals lectures ou metaphysics, philosophy of nature, philosophy of art, philosophy of religion, rarely on bistory of philosophy and ethics. . In these lectures he expounded his peculiar views in a stricter form, and during the last decade of his life he embodied the substance of those courses in his System der Philosophie, of which only two volumes have appeared (rol. i. Logik, 1st ed., Leipsic, $1874,2 \mathrm{~d}$ ed., 1880 ; rol. ii. Metaphysik, 1879 ). The third and concluding volume, which was to treat in a more condensed form the principal problems of practical philosophy, of philosophy of art and religion, did not appear. A small pamphlet on psychology, containing the last furm in which lie had begun to trent the sulyect in his lectures (abruptly terminated through his dcath) during the sura-
mer session of 1881, has been published by his son. Appended to this volume is a complete list of Lotze's writings, compiled by Professor Rehnisch of Göttingen.
To understand this series of Lotze's mritings, it is necessary to start with his defuition of philosoply. This is given after bis exposition of legic has established two points, viz., the existence in our mind of certain laws and forms according to which we connect the material sapplied to us by our senses, and, secondly, the fact that logical thought cannot be usefully employed without the assumption of a further set of connexions, not logically necessary, but assumed to exist between the data of experience and observation. These connexions of a real not formal character are banded to us by the separate sciences and by the usage and culture of everyday life. Language has crystallized them into certain definite notions and expressions, without which we cannot procced a siogle step, but which we have accepted without knowing their exact meaning, much less their origin. In consequence the speciel sciences and the wisdom of common life entangle themselves easily and frequently in contradictions. A problem of a purely formal character thus presents itself, viz., this-to try to bring unity and harmony into the scattered thoughts of our general culture, to trace them to their primary assumptions and follow them into their ultimate consequences, to connect them all together, to remodel, curtail, or amplify them, so as to remove their apparent contradictions, and to combine them in the unity of an harmonious view of thiugs, and espeefally to make those conceptions from which the single sciences start as assamptions the object of research, and fix the limits of their applicability. This is the formal definition of philosophy. Whether an harmonious conception thus gained will represent more than an agreement among our thoughts, whether it will represent the real connexion of things, and thus possess objective not merely subjective value, cannot bedecided at the outset. It is also unwarranted to start with the expectation that everything in the world should be explained by one principle, and it is a needless restriction of our means to expect unity of method. Nor are we able to start our philosophical investigations by an inquiry into the nature of human thought and its capacity to attain an objective knewledge, as in this case we would be actually using that instrument the usefulness of which we were trying to determine. The main proof of the objective value of the view we may gain will rather lie in the degree in which it succeeds in assigning to every element of culture its' due position', or in which it is 'able to appreciate and combine different and apparently opposite tendencies and intereste, in the sort of justice with which it weighs our manifold desires and aspirations, balancing them in due proportions, nor sacrificing to a one-sided principle any truth or conviction which experience has proven to be useful and necessary. The investigations will then naturally divide themselves into three parts, the first of which deals with those to our mind inevitable forms in which we are obliged to think about things, if we think at all (metaphysics), the second being devoted to the great region of facts, trying to apply the results of metaphysics to these, specially the two great regions of external and joental phenomena (cosmology and psychelogy), the third dealing with those standards of value from which we pronounce our æsthetical or ethical approval or disapproval. In each department we shall have to aim first of all at vieus clear and consistent within themselves, but, secondly, we shall in the end wish to form some general idea or to risk an opinion how laws, faets, and standards of value may be combined in oue comprehensive view. Considerations of this kind will naturally turn up in the two great departments of cosmology and psychology, or they may be delegated to an independent research under the name of religious philosophy. We havc already mentioned the final conception in which Lotze's speculation culminates, tbat of a personal Deity, Hirnself the cssence of all that merits existence for its own sake, who in the creation and government of a world has voluntarily chosen certain laws and forms through which His ends are to be realized. We may add that according to this view nothing is real but the living spirit of God and the world of living spirits which He has created ; the things of this world have only reality in so far as they are tho appearance of spiritual substance, which underlies everything. it is natural that Lotze, having this great and final conception alrays beforc him, works under its influence from the very beginning of his speculations, permitting us-as we pregress-to gain every now and then a glimpse of that interpretation of things which to him contains the solution of our diff. culties.
The key to Lotze's theoretical philosophy lies in his metaphysics, to the exposition of which important subject the first and last of his larger publications have been devoted. To understand Latze's philosophy, a careful and repeated lerusal of these works is absolutely recessary. The olject of his metaphysics is so to remodel the current notions regarding the existence of things and their connexions with which the usage of language supplies us as to make them consistent and thinkable. The further assumption, that the modified notions thus gaincd have an ohjective meaning,
and that they somehow correspond to the real order of the existing world which of course they can never actually describe, depends upon a general confidence which we must have in our reasoning powers, and in the significance of a world in which we ourselves with all the necessary courses of our thoughts have a place assigned to thern in barmony with the whole. The object therefore of these investigations is opposed to two attenpts frequently repeated in the history of philosophy, viz. :-(1) the attempt to establish general laws or forms, which the development of things nust have abeyed, of which a Creator must have followed in the creation of a world (Hegel) ; and (2) the attempt to trace the genesis of our notions, and decide as to their meaning and value (modern theories of knowledgc). Neither of these attempts is practicable. The world of many things surrounds us; our notions, by which we manage correctly or incorrectly to describe it, are also ready made. What remains to be done is, not to explain how such a world manages to be what it is, nor how we came to form these notions, but merely this-to expel from the circle and totality of our conceptions those abstract, notions which are inconsistent and jarring, or to remedel and define them so that they may constitutes consistent and harmonious view. In this endeavour Lotze discards as useless and untenable many favourite conceptions of the school, many cruce notions of everyday life. The course of things and their connexion is only thinkable by the assumption of many things the reality of whieh (as distinguished from their existence in our thoughts) can be conceived only as a multitude of relations. This, standing in relation to other things, gives to a thing its reality. And tlie nature of this reality agair: can neither be consistently represented as a fixed and hard substance nor as an unalterable something, but only as a fixed order of recur. rence of continually changing events or impressions. But, further, every attempt to think clearly what those relations are, what we really mean, if we talk of a fixed order of events, forces upon us the necessity of thinking also that the differeat things which stand in relations or the different phases which follow each other cannot be mercly externally strung together or morod about by some indefinable external power, in the form of some predestination or inexorable fate. The things themselves which exist and their changing phases must stand in some internal connexion; they themselves must be active or passive, capable of doing or suffering. This would lead to the view of Leibnitz, that the world consists of monads, self-sufficient beings, leading an inger life. But this idea involves the further conception of Leibnitz, that of a pre-established larmony, by which the Creator has cared to arrange the life of each monad, so that it agrees with that of all others. This conception, according to Lotze, is neither necessary nor theroughly intelligible. Why not interpret at once and render intelligible the conception of everyday life originatiug in natural science, viz., that of a system of laws which governs the many things? But, in attempting to make this concention quite clear and thinkable, we are forced to represent the colnexion of things as a universal substance, the essence of which we conceire as a systen of laws which inderlies everything and in its owo self connects everything, but imperceptible, and known to us merely through the impressions it produces on us, which we csll things. A final reflexion then teaches us that the nature of this universal and all-pervading substance can only be imagincel liy us as something analogous to our own mental life, where alone we experience the unity of a aubstance (which we call self) preserved in the multitude of its (mental) states. It also becomes clear that only where such neatal life really appears need we assign an independent existence, lut that the purposes of everyday life as well as those of scicnce are equally served if we deprive the material thiogs outsicle of us of an independence, and assign to then merely a connected existence through the universal substance by the action of which alone they can appear to us.
The universal substance, which we may call the absolute, ia at this stage of our investigations not endowed with the attributes of a personal Deity, and it will remaio to be seen by further analysis in how far we are able-without contradiction-to identify it with the object of religious veneration, in how far that which to metaphysies is merely a postulate can be gradually brought nearer to us and become a living power. Much in this direction is said by Lotze in valious passages of his writings; anything conplete, however, on the subject is wanting. Nor wonld it seem as if it could be the intention of the author to do much more than point out the lines on which the fuither treatment of the subject should advance. The actual result of his personal inquiries, the great idea which lies at the foundation of his philosophy, we know. It may be safely stated that Lotze would allow much latitude to individual convictions, as indeed it is evident that the empty notion of nn absolute can only becorne living and significant to us in the same degree as experience and thought have taught us to realize the seriousness of life, the sigoificance of creation, the value of the beautifnl and the goorl, and the supreme worth of personal holiness. To endov the universal substance with moral attributes, to maintain that it is more than the metaphysical ground of everything, to say it is the perfect realization of the boly, the beautiful, and the goou,
ean only have a meaning for hini who feels within limsell what real not imaginay values are clothed in thosa expressions.

We have still to mention that esthetics formied a principal and favourite study of Lotze's, and that he has treated this subject also in the light of the leading ideas of his philosoplyy. See his essays Ucber den Begriff dcr Schönheit, Gottingen, 1845 , and Uéber Beclingungen eler Kunstschönheit, ibid., 1847 ; 8Ad especially his Geschichte der. Esihctik in Doutschland, Munich, IS68.

Lotze's historical position is of mueh interest. Though he disclaims being a follower of Herbart, his formal definition of plilosopliy and his conception of the object of metaphysics are similar te those of Herbart, who defines philosophy as an attempt to remodel the notions given by experience. In this endeavour ha forms with Herhart an opposition to the plilosaphies of Fielite, Schelling, and Hegel, wlich aimed at objective and absoluta znowledge, and also to the criticism of Kant, which, aimed at determining the validity of all human knowledge. But this formal agreement involves material differences, and tha spirit which breathes in Lotze's writings is more akin to the objects and aspirations of the idealistic school than to the cold formalism of Herbart. What, however, with the idcalists was an object of thought alone, the absolute, is to Lotze only inadequately definable in rigorous philosophical language; the aspirations of the luman heart, the contents of our feelings and clesircs, the ains of art, and the tenets of religious faith must be grasped in order to fill the empty idea of the absolute with meaning. These manifestations of the divine spirit again cannot be traced and understood by reducing (as Hegel did) the growth of the himnan mind in the iadividual, in society, and in history to the monotonous rhythm of a opeculative schematism; the essence and worth which is in them reveals itself only to the student of detail, for reality is larger and wider than philosophy; the problem, "how the one can be many," is only solved for us in the numberless examples in life and experience which surronnd us, for which we must retain a lifelong interest, and which constitute the true field of all useful human work. This conviction of the emptiness of terms and abstract notions, and of tha fulness of individual life, has enabled lotze to combina in his writings the two courses into which German philosophical thought had been movine since the death of its great founder, Leibnitz. We may defins these courses by the terms esoteric and exoteric, - the former the philosorhy of the school, cultivated principally at the universities, trying to systematize everything and reduce all our knowledge to an intelligible principle, losing in this attempt the deeper meaning of Leibnitz's philosophy; the latter the philosophy of general culture, contained in the literature of thg classical period, in the unsystematic writings of Lessing, Winkelmän, Gocthe, Schiller, and Herder, who more or less expressed their jadebtedness to Leibnitz. Lotze can basaid to have brought philosophy out ol' the schoolroom into the market of life. By understanding and combining what was great and valuable in those divided and scattered endeavours, he has become the true successor of Leibnitz, and his philosophy will no doubt attain that universal celehrity which was attained by the monadology and the system of pre-established harmony.

The aga in which Lotze lived and wrote in Germany was not one peculiarly fitted to appreciate the position lae took up. Frequently misunderstood, yet rarely criticized, he was nevertheless greatly admired, listeaed to by devoted hearers, and read by an increasing circle. Bit no watchword of easy currency, no ready Shibboleth, attracts or helps to combine this mereasing circle to the unity of a philosophical school. The real meaning of Latze's teaching is reached only by patient study, and thosa who in a larcer or narrower sense call themselves his followers will probably feel themsclves indehted to him more for the general dirction ha has given to their thoughts, for the tone he has imparted to their inner life, for the seriousness with which he has taught thern to consider even small affarrs and prantical duties, and for the indicstructible confidence with which his Ihllosophy permits them to disregard the materialism of science, the snptirism of shallow culture, the disquicting results of philosophical and bistorical criticism. It is not unlikely that the present phass of English thought will more easily assimilate the valuable olfments of Lotze's philosophy, as indeed fragments and begrnnings of a similar riert exist already in English hterature. Wherever his writings are widely read and appreciated. It will oo on account of the great moral influence which his phlosoply exerts in common with some syetems of the past, but almost alone among the systems of the day.
(J. T. M.)

LOUDUN, capital of in arrondissement in the department of Vienne, France, stands on an eminence of 320 feet, overlooking a fertile plain, $4 \overline{\mathrm{~J}}$ miles (by rail) southwest from Tours. It was formerly surrounded by wails, of which only tivo towers and a single gateway now remain. Of the old castle which was destroyed under Fichelieu, and of which the site is now turned into a public
pronenade, a fino old rectangular donjon of the wis century has been preserved; at its base traces of Roalan constructions have been found, with fragments of porphyry pavement, mosaics, and mural paintings. The Carmelite convent, now occupiod by the Brethren of Christian Doctrine, was the scene of the trial of Urban Grandier, who was burat alive for witchcraft in 1634 (see Bayle's Dictionnaire) ; the old Byzantine church of Sainte Croix, of which he was cure, is now used as a market. There are several curious old houses in the town. Lace making and candle making are the chief industries, and there is a considerable trade in grain and flour. Before the revocation of the edict of Nantes the inhabitants numbered, it is said, more than 12,000; in 1876 the population was 4522.

LOUGHBOROUGH, the second town in Leicestershire; England, on the Midland Railway, 11 miles from Leicester and 14 from Nottingham. In 1881 its three parishes bad a population of 14,733 . A large tract of meadow land lics betweon the town and the river Soar, which is connected with the town by two canals,-the 'Loughborough canal, formed in 1776, and the Leicester canal, opened in 1791. On the Charnwood Furest side of the town there were once. extensive parks. The open fields in the lordship were enclosed in 1762. The town has an excellent market-place, and is in the centre of a rich agricultural district. Its malt was once of special note. The old parish church of All Saints stands on rising ground, and is a conspicuous object for many miles round ; the church itself (restored in 1862) is of the Decorated style, and dates from the 14th century; the tower is Perpendicular. Emmanuel church was completed in 1837, and Holy Truity in 1878. The Roman Catholic chapel was built in 1833, and the estensive Early Enghish convent, since enlarged, in 1850. The town-hall and corn exchange, in the market-place, were erected in 1855, and the cemetery and its elegant church date frous 1857. The grammar school is a Tudor structure, standing in some 15 acres of ornamental grounds and walks ; it owes its origin to Thomas Burton's charity, in 1495. The present buildings were erected in 1852, and the new scheme was devised under the Grammar School Act of $3 \& 4$ Vict. The girls' grammar school, in the Early Eughsh style, was erected in 1879. The other public buildings comprise a dispensary and infirmary (bult at the cost of Mr and Miss Herrick in 1862!, local board offices, police station, schouls, and nonconformist chapels. There are several large hosiery factories. Lace was astaple trade until 1816 (see Heathcоat). Bell-founding was introduced 2 an 1840 , and Messrs Taylor cast here in 1881 the great bell for St Paul's, London ( $17 \frac{1}{2}$ tons). Iron-foundries, dye-works, and horticultural glass-works also provide employment
The town is mentioned under tha name of Lucteburne in Domesday Book. William the Conqueror gave the town and manor to Hugh Lupus, from whom they passed to the more famous Despensers. They were held by tha Beaunonts fron 1326 to 1464 , when they passed in to the Hastings famlly, returning to them, after several changes of ownership, in 1554. Lord Moira sold the manor in 1818, and the major part of tha manorial rights have now been purchased by the loeal beard. The title of Baron Hastings of Loughborough was given to Sir Eilward Hastings in 1558, and to Colonel Henry Hastings in 1643 . Alexander Wedderhurn, when mada lord chancollor, assumed the title of Lord Loughborongh, in 1780. ${ }^{1}$ John Cleaveland, the royalist poct, was born here in 1613 ; John Howa, the Puritan divine, in 1630; and Richard Pulteney, tha botanist, in 1730 .

See Themas Pocl in s ITislorical Description, 1770 (vol. vill. of Bibliohliesa Topoo graphica Briannica). Pottry's Walks Round Loughoorough; Wood's Plan of Loughtorough, $195^{\circ}$ : W. G. Dimeck Fletcher's Farish Regisfers. 1873, Fectors of Loughborough, and Ilistorical Llandbook, 1 SS1.
LOUIS I., Roman cmperor (callcd "der Fromme," also "le Débonnaire "), was born in 778. He succeeded his father Charlemagno in 814, having in the previous ycar
${ }^{1}$ The present courtesy titic borne by the eldest son of the carl of Rosslyn was taken from Loughbarougla in Surcy, in 1795.
been declared co-regent. At the beginning of his reiga he excited high anticipations by the earnestness with which he attacked the abuses that had accumulated during the liter years of Charlemagne's sovereignty. The licentiousness which prevailed at court he sternly suppressed; he punished counts who were proved to have misused their authority; and he sought to reform the manuers botlo of the secular and of the regular clergy. The Saxons and the Frisiaus, who, although conquered, had never cordially accepted Frankish rule, were concilinted by mild and generous treatment. A period of trouble and confusion, however, was opened in 817 , when Louis, anxious to establish the order of succession, declared his eldest son Lothair his successor, and made hion co-regent, grantiog hiin Austrasia with the greater part of Germany. The younger sons of Louis, Pippin and Louis, received, the former Aquitauia, the latter Bararia, Bohemia, Carinthia, and the subject Slavonic and Avar territories. This arraugement was resented by Bernard, kiug of Italy, the emperor's nephew, who forthwith rebelled. He was soon captured, and condemned to the loss of his sight, while his kingdom was transferred to Lothair. After the death of Bernard, the emperor, who was a man of a gentle and sensitive temper, bitterly repented the harsh punishment which he had sanctioncd, and, being further depressed by the death of his first wife, he proposed to resign the crown and retire to a monastery. He was induced to abaudon this intention, and (in 819) to marry Judith, the beautiful daughter of Count Welf of Bararia. In 829 he made a new division of the erapire in favour of Charles (afterwards Charles the Bald, his son by his second wife. The three brothers, deeply dissatisfied, combined to declare war against him, and at Compiègne he was taken prisoner. The empress Judith was condemned to the cloister for alleged infidelity to her husband, and Louis was virtunlly deposed. Pippin and the younger Louis, suspecting that Lothair meant to usurp exclusive authority, changed their policy, and at a diet in Nimeguen the emperor was restured. Soun afterwards he provoked fresh disturbance by granting Aquitania, the territory of Pippin, to Charles, and in $\$ 33$ the army of the three brothers confronted that of t'eir father near Colmar. When Louis was negotiating wit' P Pope Gregory IV., who had crossed the Alps in the hop of restoring peace, his troops were persuaded to desert him, and on the Lügenfeld ("the field of lies") ho was voliged to surrender to his sons. The empress was sent to Italy, her son to the monastcry of Prim, and at Soissons Lovis not only abdicated, but made public confession of his sins, a long list of which he read aloud. Again the arrogance of Lothair awoke the distrust of his brothers, and they succeeded in reasserting the rights of the empcror, whose sufferings had excited general sympathy. He went through the ceremony of corvulition a second time, and Lothair found it necossary to confine himself to Italy. After the death of Pippin in 835 Louis proposed a scheme 193 which the whole empire, with the exception of Bavaria, would have been divided between Charles and Lathair, to whom the empress had been reconciled. The youuger Louis Irepared to oppose this injustice, and he was supported by the people of Aquitania in the interest of Pippin's sons. A diet was sumnioned at Worms to settle the dispute, but before it met the emperor died on an island in the Rhine near Mainz, on the 20th of June 840 . He had capacities which might have made him a great churchman, bnt as a secular ruler he lacked prudence and vigour, and his mismanagement prepared the way for the destruction of the empire established by his father. His son Lothair I succeeded to the imperial title.
See Funck, Ludwig der Froinme, 1832 ; and Simson, Juhrbicher des Fränkischun Rciches unter Ludwig dem Fromnien, 1874-76

LOUIS II., Roman emperor, grandson of the preceding, was born about 822 and crowned king of Lumbardy in 844. From 849 he shared the imperial title with lis father, Lothair I., being crowned at Rome by Len IV. in 850. He succeeded to the undivided but almost entirely nominal dignity in 855 . On the death of his childess brother, Lothair of Lorraine, in 869, the inheritance was seized and shared by his uncles Charles the Bald and Louis the German ; the pope, however, espoused the cause of the emperor, crowning him king of Lorraine in 872. Lonis II. died in 875, and the inperial cruwn was fortbwith bestowed on Charles the Bald.

LOUIS III., Roman emperor, surnamed "The Blind," was the son of Boso, king of Provence, and, through his mother, grandson of the emperor Louis II. He ras boru about 880 , called to the throne of Provence in 890 , aud crowned emperor in succession ta Berengar I. at Rome in 901. In 905 , while residing at Veruna, he was surprised by bis discrowned rival, blinded, and ultimately sent back to Provence, where ho lived in inactivity and comparative obscurity until 929.

LOUIS the Child, though he never actually received the imperial crown, is usunlly reckoned as the euperor Louis III. or Louis IV. He was the son of the emperor Arnulf, was born in 893 , and succeeded to the throne of East Francia or Germany in 900 , wheu he was sis years of age. During his brief reign Germany was desulated by the Hungarians, who invaded the country year after year, defeating every force that rentured to oppose them. At the same time the kingdom was weakened by iuternal strife. The result of the prevailing anarchy was that the imperial constitution established by Charlemagne broke down, and Germany was gradually divided into several great duchies, the rulers of which, while acknowledging the supremacy of the king, sought to become virtually indenendeut. Louis, the last of the Carolingian race in Germany, died in 911.

LOUIS IV. (or V.), "the Bavarian," Germao king and Boman emperor, was born in 1286. He was the son of the duke of Bavaria, and in 1314, after the death of the emperor Henry VIL., was clected to the throne by five of the electors, the others giving their votes for Frederick, duke of Austria. This double election led to a ciril war, ju which Frederick was supported by the church and by many nobles, while the inlabitants of the great cities rallied round Louis. In 1322 Louis gained the battle of Mühldorf, taking Frederick prisoner; but the war still weat on. Pope John XXII. excommunicated Louis in 1324; whereupon, wishing to bring the conflict to an end, Louis offered to liberate Frederick on condition that he would withdraw his claim to the thronc, and restore the cities and imperial lands seized by lis party in Swabia. Frederick, finding that the obstinacy of his brother, Duke Leopold, would render it impossible to fulfil these terms, returned to captivity; and Lonis was so touched by his magnanimity that lie proposed that they should share the responsibilities of government. The plan was tried but did not succeed, and was virtually abandoned before Frederick's death in 1330. In 1327 Louis had gone to defend his rights id Italy, where he was crowned emperor by Pope Nicholas, whom he supported in opposition to Iope John XXiE Returning to Germany in the year of Frederick's deati?, he made peace with the house of Austria, but John XXIL refused to be conciliated, and his successor Benedict XII., acting in part under the influence of France, continued the struggle. Irritated by the revival of papal pretensions which no longer commanded respect in Germany, the electors met at Rhense, and on the 15 th of ouly 1338 , issned an important declaration to the effect that the emperor derived his right to the German and imperial crowns, not Ifrom. the pope, but from the electors by whom he was

21pointed. As the representative ot national independence, Conis might lave nuade himself one of the most popular of the emperors, but he excited bitter jealousies by his grasping and unserupulons disposition. By his marriage with Margaret, the sister of Count Willian of Holland, he secured IIulland, Zealand, Friesland, and Hainault ; and he obtained the mastery of Tyrol by separating the heiress, Margaret Maultaseb, from her lusband, a son of John, the powerful king of Sohemia, and making her the wife of his own son Louis, to whom (in 1322) he had granted the march of Br 2 ndenburg. The enemies he thus created were reiuforeed by Tope Clement VI., whe not only escommunicated him again, bat (in 1316) persuaded a party of the electors to appoint a now king. Their choice fell on Charles, margrave of Moravia, the son of King John of Bohemia, who at once made an unsuccessful attempt to recover Tyrol. The outbreak of a new civil war was prevented by the sudden death of Louis at a bear hunt near Munich, on the 11th of October 1347. The conflict between the papacy and the empire was practically closed during the reign of Louis, and he marked an epoch by his elleouragement of the cities in opposition to the princes and nebles.
See Mannert, Kaiscr Luthwig IV., 1812; Fr. von Wcechl, Kaiscr Ludwig der Baicr und König Johann von Bömen, 1860 ; and Döbner, Dic Auscinandersctizung zwischicn Ludwig IV. denn Baicr aund Frieetrich dem Schönch von Oesterreich, 1875.

LOUIS the Germin, son of the emperor Louis I., was born in 804. In the first partition of the empire in 817 he received Bavaria, Bohemia, Carinthia, and the subject territories on his eastern frontier. Displeased by later schemes of partition in favour of his half-brother Charles, he associated himself with his brothers Lethair and Pippin against the cmperor, and he was in the field in defence of his rights when his father died. After the emperor's death in 840 , Louis and Charles united against Lothair, whom they defeated in the battle of Fontenay, and in 843 Louis received by the treaty of Verdun the whole of Germany to the east of the Rhine, with Mainz, Spires, and Worms on the left bank. He was a wise and vigorous ruler, but his forces were inadequate to protect the northern part of his kingdom against the Norsemen, and he was not always suecessful in his wars with Slavonic tribes. In 858 he invaded West Francia, which he hoped to unite with East Francia, his own state; but Charles the Bald proved to be stronger than Leuis had suppesed, and he was obliged to retreat. When Lothair of Lorraine died in 869, his kingdom was seized by Charles, whe caused himself to be crowned at Metz; hut in the following year, by the treaty of Mersen, the eastern half of the country was ceded to Louis. Louis expected to receive the imperial crown after the death of the emperor Louis II. Charles, however, outwitted him, and Louis was attempting to arenge this supposed wrong when he died at Frankfort on August 28, 876. East Francia and West Francia wero again united under Charles the Fat; but, as Louis was the first sovereign whe ruled over the Germans, and over no other Western people, he is generally considered the founder of the German kingden.

## See Dümmler, Gescrichte des Ostfränzischen Rcichs, 1862.

LOUIS I., king of France, surnamed Lc Débennaire or the Pious. Seo France, vol. ix. p. 533 ; Germany, rol. x. p. 480 ; and Lous L., emperor, supra.

LOUIS IL., suraamed Le Bèguc or the Stammerer, the son of Charles L ("The Gald") hy Irmentrud of Orleans, and the grandson of Louis the Pious, was born on November 1,846 . On the death of his elder brother Charles, the second son of Charles the Bald, he was consccrated king of Aquitania in 867 , and ten years afterwards he succeeded his father, being crowned by Hincmar of

Rheims under the title of "king of the French, by the mercy of God and the election of the people" (Decenber 8, 877). In the following year (September T) be availed himself of the presence of Pope John VIII. at, Troyes to obtain a fresh consecration. He died at Compiégne, after a feeble and ineffectual reign of eighteen menths, on April 10, 879.
LOUIS III., son of the preceding by Ansgarde, daughter of Count Hardouin of Brittany, was born about the year 863 , and in 879 was designated by his father sole heir to the French throne. It was decided among the nobles, however, that the inheritance should be divided between Louis and his younger brother Carleman, the former receiving Neustria, or all France north of the Loire, and the latter Aquitania and Burgundy. On the Loire and elsewhere the two brothers inflicted several defeats on the Northmen (879-881); but in 882 Louis succumbed to the fatigues of war, leaving his inheritance to Carloman.

LOUIS IV., surnamed D'Ontremer (Transmarinus), son of Cuarles III.' ("The Simple") and grandsor of Louis II., was born in 921 . In consequence of the disasters which befell his father in 922 , Louis was takea by his mother Odgiva, sister of Athelstan, to Eagland, where bis boyhood mas spent,-a circumstance to which he owes his surname. In the death of Raoul or Rodolph of Burgundy, who had been elected king in place of Charles, the choice of Hugh the Great, count of Paris, and the othcr nobles, fell upen Louis, who was accordingly brought over the Clannel and consecrated in 936. His de facto sovercignty. however, was confined to the countship of Laen. In 939 he became involved in a struggle with Otto I. ("The Great ") of Germany about Lorraine, which had transferred its allegiaince to him ; the victory remained at last with the emperor, who married his sister Gerberga to Louis. After the death of William Longswerd, duke of Normady, Louis endeavoured to strengthen his influence in the duchy by obtaining possession of the person of Richard the infant heir, but a series of intrigues resulted only in his own captivity at Rouen in 944 , from which he was not released in the following year until he had agreed to surrender Laon to his powerful vassal Hugh the Great. By the interposition of Otto, the brother-in-law of Louis, Hugh, who for some years had effectually resisted both the carmal. resources of the empirc and the spiritual weapons of, the church, was at last persuaded to restore Laon. The last years of this reign were marked by repeated Hurgarian invasions of France. Louis died in 954, and was Euccceded by his son Lothaire.
LOUIS V., Le Fainéant, son of Lothaire and grandson of Louis IV., the last of the Carolingian dynasty, was born io 966 , succeeded Lothaire in March 986, and died in May 987. He was suceeeded by Hugh Capet.

LOUIS VI., surnamed Le Gros, L'Éveille, and Le Batailleur, the son of Philip I. of France and Bertha of Holland, was bern about 1078, was associated with his father in the government in 1100, and succeedcd him i 1108. For some account of his character, and of the cvents of his reign, seo Frazee, vol. ix. pp. 538, 539. He died on August 1, 1137.

LOUIS VII., Le Jcune and Le Pieux, son of Louis VI., was born in 1120, and was associnted with his father on the death of his elder brother Philip in 1131, being crowned at Rheims on October 25 by Pope Innocent II. He succecded to the undivided sovereignty in 1137, the news of his father's death reaching him as he was engaged at Poitiers in the festivities connected with his unlucky marriage to Elcanor of Aquitania. In 11.11 be made an unsuecessful attempt to asscrt his rights as duke of Aquitania over tho comutship of Toulouse, and in 1142 he fell into a vchement quarrel with Popo Inwoeent II., who
had presumed too much on the piety of the well broughtup young prince by appoiating a nephew of his own to the archhishopric of Bourges. In the course of the contest Louis, who had been excommunicated, pursued the new archbishop into the territory of the count of Champagae, and stormed Vitry, in the sack of which the cathedral was burned, causing the death of three hundred persons who had taken refuge within its walls (1143). Louis, horrorstruck, made neace with the pope and his secular adverary, but found that nothing less than a pilgrimage to the Holy Land wọuld suffice to expiate his offence. The capture of Edessa and the massacre of the Christians in 1144 led to the preaching of the second crasade by St Bernard, and in. 1147 the king, leaving the regency in the hands of the Abbé Suger and Raoul, count of Vermandois, set out for the East; accompanied by his queen, a large company of nobles, and twenty-four theusand men. The disastrous results of tbe expedition, personal, domestic, and public, have already been recorded in the article France (vol. ix. p. 540), where also his' long struggle with Heary IL of England; which terminsted only in 1178, is briefly described. In 1178 he made a pilgrimage to the tomb of St Thomas of Canterbury on behalf of his eldest son Philip Augustus, then dangerously ill, and in the following year he associated him with himself in the sovereignty. Louis died on September 18, 1180.
LOUIS:VIII., surnamed Le Lion, born on September 5, 1187, was the son of Philip Augustus, whom he succeeded in July 1223. In 1200 he had married Blanche of Castile, the granddaughter of Henry II. of England, and in virtue of this connexion ho received from the English barons in 1216 an offer of the crown, which he accepted. Landing in England in May, he achieved several military successes, but retired early in 1217 ; later in the same year he renerred the attempt to make good his claims, but finally quitted English soil in September. He next took charge of the war against the Albigenses with varying success; it continued after his accession to the throne, and ultimately proved fatal to him. He died, most probably of pestilence, shortly after the capture of Avignon, at Montpensier in Auvergne on November 8, 1226, and was succeeded by his son Louis IX.
LOUIS IX., Saint (1215-1270). See France, vol. ix. pp. 542, 543. He was canonized by Boniface VIII. in 1297, and is commemorated 'in the Roman Catholic Church on August 25 or 26. He was succeeded by his son Philip III.
LOUIS X., Le Hutia, was the eldest son of Philip IV. (the Fair) and Joan of Navarre, and was bern in 1289. He succeeded his mother in the kingdom of Navarre and countships of Champagne and Brie in 1305. Historians are not agreed as to the origin of the surname ("The Quarreller") by which he is known in France, but it seems with most probability to commemorate the wild and boisterous character of his youth. He succeeded his father in 1314, and died, after a short and unimportant reign of less than two years, in June 1316. He was succeeded by his brother Philip V.

LOUIS XI., son of Charles VIL and Mary of Anjou, was born at Bourges on July 3, 1423. His jealous, embitions, and restloss character early manifested itself in the attitude of opposition he assumed to his father's mistress Agnes Sorel, and in the part he took (1439) as leader of the "Praguerie," as tha league formed by the nobles against the introduction of a starding army was called. Though pardoned by his father in 1440 after the failure of the attempt, he never thenceforward enjoyed any of his confidence. He distinguished himself in the yeara immediately following in several military expeditions, but finally settled (1446) in his apanage of Dauphiné, where
he acted with great independence, until in 1456 Charles, irritated by the intrigues of his son, intimated his intention of himself resuming the government of that province. Not waiting the arrival of the army wlich had been sent to take possession, Louis fled for protection to his uncle the duke of Burgundy, who assigned him a pension and a residence at Nieppe near Brussels. The death of Charles on July 22, 1461, permitted his return to France, where he was crowned at Rheims as Louis XI. in the following month. For the leading events of the three periods of his reign the reader is referred to Feance, vol. ix. pp. 552, 553. He died at Plessis-lès-Tours on August 30. 1483, and was succeeded by his son Charles VIIL.
LOUIS XII. was born at Blois in 1462. His father was Charles, duke of Orleans, the grandson of Charles V. and the cousin of Charles VIL, who spent twenty-five years of captivity in England, and who still holds an honourable place on the roll of French poets. Louis himself was for three years ( $1487-90$ ) the prisoner of his second cousin, Charles VIII., in the castle of Bourges, but afterwards seconded his ambitious schemes faithfully and well, and on his death (1498) succeeded bim, taking the titles of king of Frince, Jerusalem, and the Two Sicilies, and duke of Milan. For the events of his reign see Frince, vol. ix. pp. 554,555 . Hedied on January 1,1515 , and was succeeded by Francis I .
LOUIS XIII., the son of Henry IV. and Mary de' Medici, was born at Fontainebleau on September 27, 1601, and surceeded his father on May 14, 1610, his mother meanwhile availing herself of the confusion caused by the assassination to seize the regency. For some years the affairs of the kingdom were directed by the council of regency in which the Florentine Concini, created Marquis d'Ancre and a marshal of France, was the most promineut figure. After the assassination of D'Ancre in 1617, Miarshal Luynes, the favourite of the weak young king, held the reins of power for about four years; his death of camp fever in the end of 1621, in the course of the Huguenot campaign, left Louis free to assert his own independence, which he did by carrying on the war with some vigour until its termination in the peace of Montpellier (1622). In 1624 Richelieu entered the council of state, and guided the affairs of Louis and of France for the nezteighteen years (see F'ravee, vol. ix. pp. 568-571). Louis, who died at.St Germain-en-Laye on May 14, 1643, was married at the age of fouteen (December 1615) to Anne of Austria, daughter of Philip III. of. Spain; but his eldest son, who succeeded him as Louis XIV., was. not born until twenty-tbree years afterwards.
LOUIS XIV., surnamed Le Grand, the elder son of the preceding, was born at Saint-Germain-en-Laye on September 16, 1638, succeeded to the throne of France in his fifth year, was declared of age in September 1651, and was crowned on June 7, 1654 . His marriage with the infanta Maria Theresa of Austria, daughter of the Spanieh Philip IV., was solemnized at St Jean-de-Luz on June 9, 1660. On the death of Mazarin in 1661 Louis XIV. began his true reign, the leading events of which will be found recorded in the article France (vol. ix. p. 574-584). He died at Versailles on September 1, 1715. Of his legitimate children by Maria Theresa, only one, Louis the Dauphin (1661-1711), reached manhood; he was married to a Bavarian princess by whom he had three sons-Louis the Dauphin, duke of Burgundy, who was the father of Louis XV. ; Philip; duke of Anjou, afterwards Philip V. of Spain ; and Charles, duke of Berri.

LOUIS XV., great-grandson and successor of the preceding, born at Versailles on February 15, 1710, was the third son of Louis, duke of Burgundy. His father became dauphin in 1711, and died in 1712, and he him.
self succeeded to the throne of France on September 1, 1715. His majority was declared in February 1723, and on Soptember 5, 1725 (bis cousin, to whom be had been engaged since 1721, having been sent back to Spain), his marriage to Maria Leczinski of Poland, his senior by seven years, was solemnized at Fontainebleau. This union continued to subsist after a fashion uatil the queen's death in 1768; but the successive relations of the king with De Châteauroux, De Pompadour, and Du Barry are elements of much greater interest and importance to the student of his reign. His surname of "Le Bien-aime" is said to date from August 1744 , when he was seized with a dangerous illness at Metz; the people of Paris rushed in crowds to the churches to pray for his recovery, nor could they sleep, eat, or enjoy any amusement until the "well,beloved king" was out of danger. He died of small-pox on May 10, 1774, having been predeceased for some years by his only son Louis. His successor was his grandsou Louis XTI. = For Lis reign see France (vol. i.r. pp. 584593).

LOUIS XVI., third son of Louis the Dauphin, and grandson of Louis XV., was born at Versailles on August 23,1754 , was married to Marie Antoinette, archduchess of Austria, at Versailles, on May 16, 1770, succeeded his grandfather on May 10, 1774, and was beheaded on January 21, 1793. See France (vel. ix. pp. 593-604).

LOUIS XVII., titular king of France, the third son of Louis XVI. and Marie Antoinette, was born at Versailles on March 27, 1785, became dauphin in June 1789, was proclaimed king after the execution of his father, was recognized as such by the Governments of England and Russia, but died in captivity in the Temple, Paris, June 8, 1795.

LOUIS XVIII., brother of Louis XVI., was the fourth grandson of Louis XV., and was born at Versailles on November 17, 1755, receiving at his birth the title of count of Provence. During the earlier stages of the revolutionary struggle he showed considerable sympathy with the pepular party, but in June 1791 be found it necessary to withdraw to Coblentz, and subsequently he took some part in the operations of the army of Condé. He was at Hamm in Westphalia when tidings of his brother's murder arrived, and lost no time in proclaiming the succession of his nephew Louis XVII., himself being recognized as regent. In June 1795 he succeeded to the regal title;"after several years of involuntary wandering be fouod an asylum in England from October 1807 till April 1814, when be re-entered France. Ho only once left it again, during the "Hundred Days" (March to June 1815); his death took place at Paris on September 18, 1824. For his reign, see France (vol. ix. pp. 617-619). He was succeeded by his brother Charles X .
LOUIS-PHILIPPE, king of the French, was bora at the Palais Royal, Paris, on October.6, 1773. His father was Louis-Philippe-Joseph, duke of Orleans, a descendant of the younger brother of Louis XIV., and by his mether he derived his origin from the Comte de Toulouse, the legitimized son of Louis XIV. and Madame de Montespan. At his birth he received the title of duke of Valeis ; and after 1785, when his father succeeded to the Orleans title, lie himself bore that of duke of Chartres. In 1781 Madame de Gealis was appointed his "gouverneur." From 1789 onwards he manifested siocere sympathy with the new ideas then gainiog currency, and in June 1791 he joined at Vendôme the regiment of dragoons of which he had been colonel since 1785 . In 1792 he took part in the battles of Valmy and Jemmapes, holding high military rank under Kellermann and Dumouriez; in the following year he was present at the bembardment of Venloo and of Maestricht, and showed remarkable courage at Neerwinden. Proscribed
along with Dumouriez, be eatered upon a period of twenty: one jears of exile from France, spent partly in Switzerland and other European countries, partly in the United States and in the Spanish American colonies. By the execution of his father he became duke of Orleans in 1793; and be was married to Marie Amélie, daughter of Ferdinand IV. of Naples, at Palerma, on November 25, 1809. In $\Lambda$ pril 1814 he returned to Pariz, where his old military rank and the property of his father were restored to him; the "Hundred Days" in 1815 condemned hin to a renered but much briefer exile ; during the reign of Louis XVInI. he was regarded with some jealousy by the coutt on account of his liberal opinions, but enjoyed greater favour under Charles X .; immediately after the three days of July 1830, he was called to exercise the functions of "lieutenant. general of the kingdon,", and on August 9 he accepted the title of king of the French. For his reign see France (vol. ix. p. 620-622). Escaping in disguise from Paris at the Revolution of 1848, he on March 3 reached England, where Claremont was his home until his death on August 26, 1850 .

LOUISA (1776-1810), queen of Prussia, was born March 10, 1776, in Hanover, where her father, Duke Charles of Mecklenburg-Strelitz, was commandant. After the death of her mother, whe was by birth a princess of Hesse-Darmstadt, she was entrusted to the care of a Fräulein von Wolzogen, and afterwards to that of her grandmother, the landgravine of Hesse-Darmstadt. During the peried of the revolutionary wars, she lived for some time with her sister Charlatte, the wife of Duke Frederick of Saxe Hildburghausen. In 1793 she met at Frankfort the crown' prince of Prussia, afterwards King Frederick Tilliam III. who was so fascinated by her beauty, and by the nobleness of her character, that he asked her to becone his wife. On April 24 of the same year they were betrothed, and on the 24th of December they were married. As queen of Prussia she commanded universal respect and affection, and nothing in Prussian history is more pathetic than the patience and dignity with which sho bore the suferings. inflicted on her and her family during the war between Prussia and France. After the battle of Jena she went with her husband to Königsberg, and when the battles of Eylau and Friedland had placed Prussia absolutely at the mercy of France, she made a personal appeal to Napoleon at his headquarters in Tilsit, but without success. Early in 1808 she accompanied the king from Nemel to Königsberg, whence, tewards the end of the year, she risited St Petershurg, returning to Berlin on the 23d of December 1809. During the war Napoleon, with incredible brutality, attempted to destroy the queen's reputation, but the only effect of his charges in Prussia was to make her mere deeply beloved. On the 19th of July 1810 she died in her busband's arms, while visiting her father in Strelitz. No other queen in modern times has been more sincerely mourned. She was buried in the garden of the palace at Charlottenburg, where a beautiful mausoleum; containing a fine recumbent statue by Rauch, was built over her grave. In 1840 her husband was buried by her side. The Louisa Foundation (Luisenstift) for the education of girls was established in her honour, and in 1814 Frederick William III. iustituted the Order of Levisa (Luisenerden). On the 10th of March 1876 the Prussian people celebrated the hundredth anniversary of ber birth, and it was theu decided to erect a statue of Queen Louisa in the Thiergarten at Berlin.
See Adami, Luise, Königin ron Preussen, 7th ed., 1875; Engel, Kinigin Luise, 1sio; Kluekhohn, Luise, Königin von Preusscn, 1876 ; Mommsen and Treitsehke, Königin Luise, 1876; in English, Hudson, Life and Times of Louisa, Qucen of Prussia. 1874.

## LOUISIANA.

LOU1SIANA, one of the southernmost States of the American Union, was admitted into the United States of America on the thirtieth of April, 1812. It is bounded on the north by Arkansas, on the east by Mississippi, on the south by the Gulf of Mexico, on the west by Texas. The western line begins on the gulf at the mouth of the Sabine River, and follows a line drawn along the middle of that stream, so as to inchude all islands to the thirty-second degree north latitude, and thence due north to the thirty-third degree. The northers line follows this parallel of latitude to a point in the middle of the Mississippi River. From this point the eastern line follows the middle of the river to the thirty-first degree, and runs on the parallel to the eastern branch of Pearl Hiver; the line then follows the middle of this stream to its mouth in the estuary, which conneets Lake Pontchartrain with the gulf. The State is 290 miles from east to west and 200 from north to south. The area is a superfice of about $4 \mathrm{~s}, 000$ square miles, Louisiana being in extent about equal to North Carolina. There are 1,060 square miles of land-locked bays, 1,700 of inland lakes and 540 of river surface, which leaves, according to the last census, 45,420 square miles of land area for the State.

Climate.-The elimate of the State is semi-tropical. The mean annual temperature is between $60^{\circ}$ and $75^{\circ}$ Fahr. The mean temperature for the hottest month is $85^{\circ}$ aud for the coldest month abont $45^{\circ}$. Summer is the longest season; it continues for five months, and besides there are many hot days in Narch and April, October and November. The thermoneter sometimes reaches $105^{\circ}$ in the summer, and in winter it has fallen to $17^{\circ}$. Ulloa relates that he has seen the Mississippi frozen, before New Orleans, for several yards from the shore. The variations in the thermometer are frequent and sudden; it falls and rises, within a few hours, from ten to $t$ wenty-four degrees.

The fall of the year is the most pleasant season in Louisiana, and when the wind is northerly the sky is remarkably serene. The transition from winter to summer is by an extremely short spring. The winds are generally erratic and changeable, blowing within a short space of time from every point of the compass.

Surface-By a singularity of which Louisiana offers perhaps the only instance, the more elerated ground in the State is found on the banks of its rivers. The average elevation of the whole State is only 75 feet, and no part is much over 400 feet above sea level. Back from the rivers, especially from the Mississippi, are found swamps, which drain the arable land. These give to some parts of the state in the vicinity of this great stream a disagreeable aspect. They also obstruct communication and insulate the planters. Each of the larger rivers flows through a belt of alluvial soil. In the case of the Mississippi, it varies in width from 10 to 50 miles. The Mississippi rises at its flood higher than the neighboring land and inundates it, where it is not protected by an artificial bank or levee. Thus this river flows on a ridge formed by its own deposits. The declisity of the land on the east side of the river toward Lake Pontchartrain shows that the earth which the water of the Mississippi deposited, formed, in course of time, the island on which the city of New Orleans now stands. All the maritime coast of Lonisiana is low and manhy; that from the month of the Pearl River to the Perdido is faced by low and sandy islands of which the prineipal ones are those of Chandeleur; besides those there in a large number of islets.

The swamps extend inland from 10 to 60 miles, and the water-courses afford the only means of approaching the coast, except where the ridges which contain the rivers approach the gulf. Here and there may be seen a live-eak ridge, or a small extent of slightly elevated prairie. This coast region, where at all cultivated, is devoted to raising rice and sugar-cane. These low basins, comprisiug marsh and alluvial lands, take up about one-half of the land area of the state ; the rest is forest prairie or upland country.

Rivers and Lakes.-The largest river of the State in the Mis-
sissippi, which bas 600 miles on the border of and through the State. This river discharges itself into the gulf, at the southern extremity of Louisiana, through sereral mouths. The east pass, which is largely used, is the shortest, being 20 miles in length; the south pass is 22, and the southwest 25 . The bans which obstruct these passes are subject to change, but immediately on entering the river there are from three to thirty fathoms of water. The channel of the river is very deep, which helps to preserve its course at flood times, when it overflows its banks. It is evident that the levees will not serve much longer as a safeguard against overflow. As fast as the levees are built up the bed of the river itself rises, and the only result is that the river itself is raised still higher above the surrounding country. It will require more thought and engineering skill to contain this mighty stream, which has a perceptible ebb and flow of tide even at St. Louis, than has yet been expended upon it, if the rich alluvial lands along its course are to be made uscful.

Red River empties its watens into the Mississippi. This juncture of the two rivers is memorable as being the spot on which the army of Charles I., of Spain, under De Soto, towards the middle of the sisteenth century, committed the body of their chief to the water in order to prevent its falling into the hands of the Indians. The Ouachita or Washita, Sabine and Peall are among the other large riters of the State. All are navigable except the Pearl. The southern part of the State is much cut up by rivers, whiel have received the local appellation of bayons. Thee are secondary outlets often for the larger rivens or lakes, and furnish a means of draining the swamps. In Hood time this network of bayous is almost indispensable for carrying off the surplus of water. Some are useful in narigation, as the Achafalaya Bayou, Bayou la Fourehe and Bayou Boenf. The name bayou has come to be a common one, and is now applied to almost any sluggish or half stagnant stream.
Considering the low level of the land, it is not strange to find the State, especially the sonthern part, interlocked with lakes. Along the coast there are P'ontchartrain, Borgue, Maurepas and Sabine lakes. These, with others situated along the gulf eoast, are properly lagoons. Along the river, lakes are formed by a change of chamel-the deposit of silt gradually cutting off portions of the river and forming little lakes. This happens frequently on the Mississippi and sometimes on the Red River. A third class of lakes is that which the "raft" in the river, at flood times, forms by causing a "set-back" in the water. This is the case in the river above Shreveport.

Teqetution.-The allurial lands furnish a soil of remarkable permanence and fertility. Lonisiana, like liorida, is a land of flowers, and the flowers yield the richest perfinme. About onefifth of the State is wet, swampy and unfit for any sort of cultivation, and the greater part of this covered with lofty cypress trees or wide-spreading live-oaks, from which hangs the Spanish moss in long festoons, giving the forests a most weird appearance. The trees that flourish in the allurial regions are the ash, hickory, sweet gum, walnut, magnolia; and the Spanish, black, white, post, water and chestnut oak; also Florida anise, tulip tree, linden, lance-leaved buckthorn, acacia, cherry, holly, pomegranate, arbor vitae, lime, pecan, tillandsia, white cedar, red cedar, syeamore and yellow pine, besides the willow, cottonwoods, hamket uaks and other similar species. On the uplands, or terliary formations, are found poplar, elm, maple, hones locust, prickly ash, persimmon, lox-elder, dogwood, hackberry, mulberry, saswatras, tupelo and black locust. The principal fruit trees are the orange, papaw, jeach, quince, phum, fig and olive. The tertiary region has not so good a soil as the alluvial, hat Indian corn yieds a better crop in that soil Cotton is grown here as well as on the rich alluminm. The coan lands are unsurpassed for the production of rice and sugar-care While the deltas raise sweet potatoes, buckwheat, barley and figs. On the inlands off the cuast is produced the famous sea island cotton to a limited exteot. Oranges grow abmolantly it the southern part of the State, and their blowoms, together with the jessamines, camelias, cleanders and roses, as well as the other flowers native to a semi-tropical climate, make the air redolent with perfume throngh nearly the entire yearr. Almost every kind of fruit common to a similar climate is to be foume here.
Zoulogy.-The hot, moist climate is favorable to certain animals. Erery lake and bayou contains alligators, while lizards,


turtles, horned toads, rattlesnakes and moccasins are quite abundant.

In the forests black bears are sometimes met with, also the panther, wild-cat, raccoon, opossum, otter and squirrel. The bald and gray eagle, vulture, hawk, owl, pelican, crane, turkey, goose, partridge, duck, gull, heron and turkey-luzzard are among the more common species of birds. There are many rarieties of smailer birds, some of which are of brilliant plumage. The fish are of many varieties and excellent quality. The species are those conmon io the gulf.

Ccology.-The geological formations, so far as can be seen, are in no wise complex. The Mississippi and Red River basins, covering three-lifths of the area of the State, are alluvial and dilurial formations. Some of these deposits are 60 feet deep. These "made lands." especially about the deltas, are constantly growing and pushing out into the gulf. The rest of the State, which comprises the region west of the Ouachita and Calcasien rivers is tertiary. A few islands in the northwestern part of the State are cretaceons. The alluvial region belongs to the quaternary formation. The cretaceous rocks are mostly limestone, gypsum and salt-bearing strata. In the Tertiary region is found lignite or brown coal, of an inferior quality, iron and salt deposits. The salt strata on I'etite Anse island have been extensively worked. In the southern part of the State there are sulphur deposits, 112 feet in thickness, which yield from 60 to 96 per cent. of pure sulphur. Copper, jasper, agates, sardonyx and onyx have been found in the tertiary regions.

Government.-The present constitution of Louisiana was adopted and ratified by the people April, 1868. The government consists of an executive, legislative and judicial department. The executice department is made up of a governor, lieutenant-governor, secretary of state, auditor, treasurer, superintendent of education and attorney general. These officers are all elected by the people, and hold their offices for a term of four years. The legislative department consists of a senate and house of representatives. The representatives are elected every two years, and, by law, the number must never be less than 90 or more than 120 . There are 36 senators, and the senatorial districts are arranged aceording to population. Senators hold office for four years. The sessions are limited to 60 days, excent by a two-thirds vote of the members of both houses. The judicial power is vested in a supreme court, distriet courts, parish courts and justices of the peace. The supreme court has appellate jurisdiction only, except in special cases provided for by law. It consists of one chief justice and four associate justices, appointed by the governor, with the adrice and consent of the senate, for the term of eight years. They must be citizens of the United States, have practiced law eight years, and for the last three years in Louisiana. There are is judicial distriets, with a judge, elected by popular vote, for each district. These courts have original jurisdiction in all eriminal cases, and in civil cases of over $\$ 500$, and appellate juriseliction in cases of orer $\$ 100$. The parish judges are chosen by the people for a term of two years, as are also the justices of the peace. The State has fifty-eight parishes or counties. Each parish is divided into a certain number of police wards, which are designated by numbers. Every male person of the age of 21 years or upwards, born or naturalized in the United States, who has resided in the State for one year next preceding an election, and in the parish where he votes for ten days-except an insane or idiotic person or one convicted of telony-is deemed a voter. Louisiana has two senators in the National Congress. They are chosen by the members of the legislature of the State, and hold oflice for six years. The State sends six representatives to Congress, who are chosen by the people from the several representative districts.

Mechanical and Manufacturing Industries.-Louisiana has begun to realize the advantage of home industries, and in the last few years has made great adrancement along these lines. The following table shows the extent of her leading manufactories:

| Industry. | No. | Capltal. | Value of materlals. | Value of products. |
| :---: | :---: | :---: | :---: | :---: |
| Sugar and molasses, refined. | 4 | \$385,000 | \$1,340,000 | \$1,483,000 |
| Lumber, sıwed.... .......... | 175 | 903,950 | 1,187.059 | 1,764,640 |
| Foundry and machine shops | 31 | -910,625 | 777,000 | 1,554,485 |
| Oll, cottonseed and coke.... Men's clathing | ${ }_{34}^{12}$ | $1,557,500$ 190,375 | $\begin{array}{r}2,280,910 \\ \hline 748,907\end{array}$ | $3.739,406$ <br> 1,079 |
| Men'a clothing <br> Rice cleaning and polishing. etc. | 34 6 | 190,375 295,000 | 743,907 $1,828,857$ | $1,079,559$ $1,573,281$ |
| Total of all tndustriea. | 1,553 | 11,462,468 | 14,442,506 | 24,205,188 |

Finances.-The assessed ratuation of real estate, in 1880, was $\$ 122,362,297$; of perconal property, $\$ 37,800,142$; total, $\$ 160,162,439$. The taxation for the State was $\$ 1,761,084$; for the parishes, $\$ 10,573$; for the cities, towns and villages, $\$ 1,914,219$; or a total of $\$ 4,395,876$. The total bonded debt for the same year was $\$ 38,643,462$, floating debt, $\$ 4,226,473$; gross debt, $42,569,935$; sinking fund, $\$ 3,983$; net debt, $\$ 42$. 865,952.
There were 7 National banks in the State in 1880, with a capita! of $\$ 2,875,000 ; 3$ State banks, with a capital of $\$ 2,723,698$; S pricate banks, with a capital of $\$ 53,333$.

The population in 1880 was 939,946 , dirided as follows:

| White | 454,954 | Colored | .483,655 |
| :---: | :---: | :---: | :---: |
| Male | 468,754 | Female. | 471,192 |
| Native | 865,800 | Foreign | 54,146 |
| Indiaus | 848 | Chinese | 489 |

The following shows the growth of the State since 1810:

| year. | Population. | Density. |
| :---: | :---: | :---: |
| 1810. | 76,556 | 1.7 |
| 1820 | 152,923 | 3.4 |
| 1830. | 215, 739 | 4.7 |
| 1840. | 352,411 | 7.8 |
| 1850. | 517,762 | 11.4 |
| 1860. | 708,002 | 15.6 |
| $1870 .$. | 726,915 | 160 |
| 1880. | 939,946 | 20.6 |
| 1890. | 1,115,000 |  |

The largest city in the State is Ner Orlcans, with a population of 216,090 ; Shrereport comes next, with 8,009 inhabitants. The State capital, Baton Rouge, has 7,197 according to the census of 1880 .

Agriculture.-The leading industry of Louisiana is agriculture. The production of cotton takes the first place. In 1880 Louisiana stood seventh in the list of cotton-producing States. The following shows the farm areas and farm ralues:

| Number of farms | 48,292 |
| :---: | :---: |
| Number of acres. | $2.739,972$ |
| Value of farms, feuces and bufldings | \$50,989,117 |
| Value of farm implements and machin | 5,435,525 |
| Value of live stock | 12,345,905 |
| Cost of luildings and repairing fences | 1,452,121 |
| Cost of fertilizers | 378.305 |
| Estimated value of all | 42.883,522 |

The amount of agricultural produce for 1880 is as follows:

| Cotton | 508,569 bales. |
| :---: | :---: |
| Rice. | 23.188,311 younds. |
| Indian corn | 9, $\times 29,689$ bushela. |
| Molasses. | 11,690, 24 |
| Sweet potatoe | 1,318,110 bushels. |
| Irish potatoes | 150.115 bushels. |
| Sugar. | 171.706 hhds . |
| Oats.. | 229.449 busbels. |
| Rre | 1,013 bushels. |
| Wheat. | $5.0 \% 4$ burhels. |
| Tohaceo | $55^{5}, 9.51$ Hounds. |
| Hay. | 37,029 tous. |

Railroads and Steam Craft.-The State is better supplied with means of transportation by water than hy rail. There were but 1,660 miles of road in Louisiana in 18 siti, and 940 miles were operated. The capital stock was $\$ 42,837,600$, and the enst of the roads and equipments was $\$ 8,5,416,5: 2$. The carninge from passengers amounted to $\$ 1,133,00$ ) , and those from freight, to $\$ 5,399,78$, while the net earnings were $\$ 1,856,7-4$. The railroads of importance are the Chicago, Lit. Louis \& New Orleans, the Louisiana \& Texas, the Louisiana Western, and the New Orleans \& I'acilic.

The following table shows the number, tomage, value and capital invested in steam craft :
Number of steamers
Tonnage.

|  |  |
| ---: | ---: |
| 53.662 .89 | Capital invested. |
| Gruss earnings... |  |

$\$ 1,639,500$
Value :.....
$\$ 4,365,700 /$ Freight traffic
979,877 tons.

Education.-I Ouisiana is not very well provided for in regard to schools. The school age is from bito 18 . For 1856 the estimated number of children in the State, between ti and 14, was 218,605 , and of these only 103,416 were cnrolled, while the average daily attendance was 73,091. There were 318,3^0
persons, over ten rears of age, who could not read: of these 259,429 were colored, 1 ndians or Chinese. There were cleven colleges and univerities in the state, employing 148 instruetors in the preparatory and collegiate departments, with $1,0 \not 0$ students in the prepratory and $\bar{i} 01$ in the collegiate department.
History.-The annals of Lonisiana will always be an interesting chapter in the history of the world. It does not concern merely the area whielt is now included within the boundaries of the present State; it embraces the story of the repeated and persistent attempts of Franee to found an empire in the new world, which should extend from the mouth of the St. Lawrence aeross the great lakes to the mouth of the Mississippi. The Lonisiana of the serententh century extended from the Alleghanies to the Kocky Mlountains and from the Rio Grande and the gulf to the dim regions which now eonstitute British America. It was first visited by Europeans in 154]. De Soto, of the $S_{\text {panish government service, with his followers, explor- }}^{\text {g }}$ ing the eoast west of Florida, came to the Missiwippi Rirer. Ife explored the country on both sides of the river, where now stands the city of New Orleans. In 15t: he was taken sick and died. Ilis followers buried him in the Missisippi River, at the point where it is met by the lied liver. In 1673 Father Marquette and his Canalians, starting from Canada, descended the great river from $1 l$ linois to the mouth of the A:kansas. The ricer was again descended by La Salle, in 16S.2, who took possession of the country in the name of Lous AI', and for him named the country Lousisiana. He explored the river to its mouth, and, returning to Franee, organized plans for establishing a colony. The ship failed to reach the month of the Mississippi and the colony landed in Texas. It is doubtfnl whether any colony was established in Lonisiana before 1699, Then lberville with a company attempted a settlement at Biloxi. This was the chief toisn till 1702 when Biensille mored the headquarters to the west bank of the Mobile River. The soil of Biloxi is rery sterile, and the settlers seem to have depended mainly on snipplies from France or St. Domingo. On the 26 th of September, 1112 the entire commerce of Lonisiana, with a considerable control in its government, was granted to Anthony Crozat, an eminent French merchant. The grant to Crozat, so nagnificent on paper, proved of but little nse to him and of no benefit to the colony, and in 171 S he surrendered the privilege. In the same year, on the 6th of September, the charter of the Western or Mississippi Company was registered in the parliament of Paris. The exelusire commeree of Louisiana was granted to it for twenty-fire years, and a monopoly of the beaver trade of Canada, together with other extraordinary privileges, and it entered at once on its new domains. Bienville was appointed governor of the eolony for the second time. He had become satisfied that the chief citt of the colony should be situated on the Mississippi River, and therefore, in 17 i 8 , New Orleans was founded. It was about this time that the engineer, Panger, reported a plan for remoring the bar at the mouth of one of the passes, by a system very much the same as that so suceessfully executod recently by Captain Eads. It was a mooted question, however, tor some time, whether Jew Orleans, Manelae or Natchez should be the colonial capital; but Bienrille had his own uray, and remored the seat of goverument to New Orleans in 1722. The Western Company possessed and controlled Lonisiana some fourteen years, whien finding the prineipality of little ralue, it surrendered it in January, 1732. In 1763 oceurred an event which left a deep impression on the history of Lonisiana. On the third of November of that year France, by a secret treaty, ceded to Spain all that portion of Louisiana which lay west of the Mississippi, together with the eity of New Orleans, and the island on which it stands. The war between England, France and Spain was terminated by the treaty of Paris in February, 1764. By the terms of this treaty, the boundary between the Freneln and English poscessions in Xorth Anerica was fixed by a line dravn along the middle of the Misi-sippi, from its source to the River Iberville, and from thence hy a line in the middle of that stream and Lakes Maurepas and Pontchartrain to the sea. The Frenel inlabitants were astonished when they found themselves transferred to Spanish domination. Some of them were even so rach as to organize in resistance to the cession, and finally in 1766 ordered away the Spanish governor, Antonio de Ulloa. In 1769 Alexander $O$ lieilly, the commandant of a large Spanish foree, arrived and reduced the province to actual possession. The colony grew slowly from this time until the administration of Baron de Carondelet, but under his management, from 1992 to $1 \overline{9} \overline{1}$, marked improvements were made. In $1 \overline{9} 9$ the first newspaper was established-the Moniteur. On the lst of October,
1800. a treaty was concluded hetween France and Spain by which the latter promised to restore to France the province of Louisiana. Franee, however, did not receive formal possession till Norember 30, 1803. But France did not remain long in possession. The cession to her had been procured by Napoleon, and he did not deem it politic to retain such a province. In April, 1803, it was ceded to the Enited States, and on the $20 t h$ of Deeember of that rear the United States took possession. The price paid was $60,000,000$ francs, besides $\$ 3,750,000$ for French spoliation claims. In 1804 the territory of Orleans was established by order of Congress. The rest of the immense purchase was at fist ereeted into the district of Louisiana; then, in 1005 , into the territory of Louisiana, and, in $1: 12$, into the territors of Missouri. At the time of the American possession, in $1 \$ 03$, Laussat the Freneh colonial prefect, declared that justice was then administered "worse than in Turkey." With the American domination came new ideas. In 1808 a civil code of law was for the first time adopted bs legislature in Louisiana. It was based, to a large extent, on a draft of the Code Napoleon. By aet of Congress, in 1s1], the inhabitants of the territory were authorized to form a constitution, with a view to the establishment of a State government. The debates in the National house of representatives on this bill were long and interesting. The bill haring been passed, however, the constitution of 1812 was framed and adopted, and in April, 1812, Congress passed an ant for the admission of Louisiana into the Union.

Three months after thls, war was declared against England by the [uited states. The contest continued until the treaty of Ghent. December 24,1814 . However, before the news of perce could cross the ocean, a force of 12.000 English soldiers, uuder Sir John Packenham, landed in Louisiana and attacked New Orleans, which Packenam, successlully resisted by General Jackson with only 5.000 men, Was successiulli resisted by General Jackson with only 5.000 ,
most of whom were militia from Tenaessee and kentucky.
The progress of the State from this time until the ontbreak of the civil War was very rapid. Louisiana had a large interest in slacery. On account of the extensive eultivation of cotton, rice and sugar-cane, and the consequent demand for labor, her slave population almost equaled the white. At the outbreak of the was for the Union, Lonisiana promptly took a position in favor of se, cession. Its ordinance of secession from the Union was passed December 23,1860 , by a vote of 117 to 113 . On March 21,1861 , the same convention adopted the Confederate constitution, withont submitting it to the people, and in order to coniorm it to their State constitution passed amendments for that purpose. From thia time until the close of the war, the State government was nominally in the hands of the Confederates, though for the last nominally in the havds of the contederates, though or ciril strife its territory, for the most part, was in the two years of ciril strife its territory, for the most part, was in the
hands of the Federals. Some of the earliest as well as the latest hands of the Federals. Some in the war were enacted in this State.

In April, 1 sin, Farragut's command entered the Mississippi Rirer. He succeeded in passing and silencing Forts Jackson and St. Philip, whieh defended the approaches to New Orleans, and captured tha city on the 25 th of April. 1862 . It was afterwards handed over to the land forces under General Butler and General Banks. By July, $1 * 63$, all the Confederate strongholds on the Mississipp1 were reduced, the towns captured, and the river opened to navigation. In 1863, Geveral Banks brought the Attakapas country into subjection to the Linited States, and in lwat other excursions into the region of the Red River were made by him, With but partial success.

Iu April, 186t, a new constitution was drawn up, preparatory to the act of readmission of the state into the Union. This consti. tution was ratifed by the people in September, 1864. Under this constitution officers of the State were elected, but the general gov* ernment refused to recognize the constitution. In December, 1867 another convention was called, and its constitntion was submitted to the people to be voted upon according to the provisions of that act. This constitntiou was adopted March 6, 1568. Louisiana was again admitted to the Union on condition of her ratification of the Fourteenth amendmeut This was done on Jnly 9, 1865, and on the 13th of that same month the goverument was transferred from the military to the eivil powers.
E. C. H.

LOUISVILLE, the sixteenth eity of the United States in population, and the most important port in the State of Kentucky, is situated on the sonth bank of the Ohio River, in $38^{\circ}$ $3^{\prime}$ N. lat., $85^{\circ} 30^{\prime} \mathrm{W}$. long. The river is here interrupted by a series of rapids which, except at high water, oblige the steamboat traffic to make nse of the Louissille and Portland canal ( $2 \frac{1}{2}$ miles long, constructed in 1833). The city, which has an area of 13 square miles, and a water front of 8 miles, oceupies an almost lerel site about 70 feet above low-water mark. lts plan is regular and spacious, and, in the residential portions the houses, for the most part, hare lawns and gardens in front. Among the public buildings of importance may be mentioned the city-hall, the court-house, the public library, the female high school, the industrial exhibition building, the Koman Catholie cathedral, and the State sehool for the blind.

From the time of the introduction of steam navigation upon the Ohio by Fulton in 1812 Louisville rapidly gained in importance as a center of river trade. Owing to its
position at the "falls of the Ohio," which obstruction long made necessary the transfer of goods at this point, the city became an important deput of supplies for the cotton-grow. ing States lying immediately to the south. The owners of plantations in those States devoted themselves wholly to the culture of cotton, and relied upon Kentucky for supplies of wheat, Indian corn, oats, and the like cereals, for the hempen bagging and rope used in baling the cotton, and for mules and horses, large droves of which were annually driven south from Louisville. The city was also for many years one of the principal poiats in the United States for pork-packing.

After the close of the cavil war, the development of Kentucky, as of the South generally, entered new channels. Largely increased facilities of railway transportation, while bringing Louisville into more direct competition with Cincinnati, St Louis, and Chicago, resulted in a marked increase of both its commercial and manufacturing interests, notwithstanding the decline of the river trade. The extensive tobacco crop of Kentucky, with much of that grown
in neighbouring States, now finds a market at Louisville, instead of at New Orleans as formerly; and it has become probably the largest market in the world for leaf tobacco, 68,300 hogsheads of which, of an aggregate value exceed: ing $\$ 5,000,000$, were sold here during 1881. The manufacture of whisky is also important, this, with that of tabacco, paying to the Federal Government nearly $\$ 3,000,000$ annually in revenue taxes, in the Louisville district. Pork-packing employs a capital of $\$ 2,520,000$, and the tanning of leather $\$ 1,704,000$, this iadustry being twenty times larger than before the war, and the product, especially of sole.leather, being in high demand. The manufacture of agricultural and mechanical imple ments employs $\$ 1,915,000$ capital, the plough factories, which produce 125,000 , ploughs annually, being among the largest in the United States. Steam-power is chielly employed, the available water-power of the rapids having been neglected. The greater part of the coal consumed by the factories is brought down the Ohio from Pittsburg. The nountainous eastera portion of the State, rich in rast


IIan of Louisville.
deposits of both coal and iron, is now penetrated by several railroads, and others are being constructed, whose influence in developing this mineral wealth will add largely to the prosperity of the city.
The reports of the United States census of 1880 give the following aummary of the industries of the city :-

|  | 1860. | 1870. | 1880. |
| :---: | :---: | :---: | :---: |
| Nunber of establish ments. | \} 436 | 801 | 1,191 |
| Number of hands employed | \} 7,396 | 11,589 | 1,937 |
| Capital invested...... | \$5,023,491 | \$11,129,291 | \$20, 864, 449 |
| Wages paid ........... | 2,120,179 | 4,464,040 | -5,765,387 |
| Value of material .... | 7,896, 891 | 10,369,556 | 22,362,704 |
| Valne of product .... | 14,135,517 | 20,364,650 | 35,908,338 |

The Louiaville and Nashville Railway, opened in 1859, controls, under one management, nearly 4000 miles of connected lines, reaching New Orleans, Pensicola, and Savannah. Various other lines contribute to make Louisville an important railway centre.

A bridge across the river, $5218_{3}^{2}$ feet long between abutmeats, with twenty-seven apans, and admitting tho free passage of steamboats at high water, affords continuous railway transit, and connects the city with the thriving towns of New Albany (population 16,423) and Jeffersonville (population 9357), aituated on the opposite
bank of the Ohio, in the State of Indiana. A second railway bridge, having waggon-ways and foot-ways in addition, is now (1882) building.

Louisville is provided with adequate water-works, gasworks, $\mathbb{d c}$. The famons Dupont artesian well, 2066 fcet deep, has a flow of 330,000 gallons per day, with a force of ten horse-power, its water resembling slightly that of the Kissengen and Blue Lick (Ky.) springs. Although once regarded as unhealthy, the city has now an effective system of sewerage, and is in good sanitary condition.
The public achool system is austained at an annual expense of over $\$ 300,000$, abundant separate prorision being made for coloured children. There are four medical colleges, having a large attendance and reputation, and numerous private seminaries and schools. Among the newspapers published at Lonisville the Courier Journal deserres mention both for its early connexion with Georgo D. Prentice, and as a leading representative of the best order of American journalism. There are four other dailies (two English and two German), besides thirteen weekly sheets.

Louisville is a port of entry for forcign imports, which aggregate annually about $\$ 125,000$. The city is governed by a mayor, elected every third year, with a board of aldernien and a common council, the former containing one, and the latter two representatives of each of the twelvo wards. The population in 1830 was 10,341 ; in 1840, 21,210 ; in $1850,43,196$; in $1860,68,033$; in $1870,100,753$;
and in 1880 it was 123,758 . This last total includes 20,905 persons of colour aud 23,156 foreigners, the larger proportion of the latter being Germians.
It was in 1 178 that Colonel Ceorge Rogers Clarke, ou his way lown the Ohio, left a company of settlers who took possession of Corn Island (no longer existing), near the Rentuely shore ahove the falls; and in the following year the first rule eluster of eabins nppeared on the site of tho present eity, An Act of the Iirginian legislature in 1780 gare the little setilement the rank of a town, and ealled it Louisville in honomr of Lovis AT'l. of France, then assisting the American colonies in thdir struggle for independence. The rank of city was conferred by the lientucky legislature in 1828.
LOULIE, an old town of Portugal, in the district of Faro and province of Aigarve, is beautifully situated in an inland hilly district about 5 miles to the notth-west of the port of Faro. It is surrouuled by walls and towers dating from the Moorish period, and the principal church is large and finc. The special industry of the place is basket-making. The population in 1878 was 14,869 . The neighbouring church of Nuestra Senlora da Pietade is a favourite resort of. pilgrims

LOURDES, capital of a canton, and seat of the ciril court of the arrondissement of Argeles, in the departmeut of Hautes-1 Prrinées, France, lies 12 miles by rail south-south-west of Tarbes, on the right bank of the Gave de Pau, and at the mouth of the valley of Argeles. It has grown up around what was originally a Roman castellum, and subsequently a feudal castle, picturesquely situated on the summit of a bare scarped rock. Near the town are marble quarries employing six hundred workpeople ; and forty slate quarries give occupation to two hundred and sixty more. The pastures of the highly picturesque neighbourhood support the race of milch cows which is most highly valued in south-westeri France. The present fame of Lourdes is entirely associated with the grotto of Massavielle, where the Virgin Mary is believed in the Catholic world to liave revealed herself repeatedly to a peasant girl in 1858 ; the spot, which is resorted to by multitudes of pilgrims from all quarters of the world, is now marked by a large church abeve the grotto, consecrated in 1876 in presence of thirty-five cardinals and other high ecclesiastical dignitaries. There is a considerable traie in rosaries'and other "objets de pieté," as well es in the wonder-working water of the fountain, for which a miraculous origin is claimed. Not far from the grotto of Massavielle are several other caves where prehistoric remains, going back to the Stone Age and the period of the reindeer, have been found. The population of Lourdes in 1876 was 5470 .

LOUSE, a term applied indiscriminately in its broad sense to all epizoic parasites on the bodies of othcr animals. From a more particular point of view, however, it is strictly applicable only to certain of these creatures that affect the bodies of mammals and birds. The former may be considered as lice proper, the latter are commonly known as bird-lice (althongh a few of their number infest mammalia). Scientifically they are now generally separated into. Anoplura and Mallophaga, although some authors would include all under the former term. In the article Issecrs it has been shown that modern ideas tend towards placing the Anoplura as degraded members of the order Hemiptera, and IFalloplaga as equally degraded Pseudo-Neurroptera, according to the different formation of the mouth parts, Both agree in having nothing that can be termed a metamorphosis; they are active from the time of their exit fron the egg to their death, gradually jncreasing in size, and undergoing several moults or changes of skin ; but it should be remembered that many insects of the hemimetabolic division would scarcely present any stronger indications of metamorphoses were it not for the usual outgrowth of wings, which are totally wanting in the lice.

The true lice (or Anoplura) are foumt on the bodies of many mammalia, and, as is too well known, occasion by their presence intolerable irritation. The number of geuera is few. Two species of ledlirulus are found on the human body, and are known ordinarily as the head-luase ( $P$. canitis) and the body-louse ( $I$. vestimenti); some appear to recognize a third ( $P$. tuliescentirm), particularly affecting persons suffering from discase, burrowing (at any rate when young) beneath the skin, and setting up what is termed "phthiriasis" in such a terrible form that the unhappy victims at length succumb to its attacks; to this several historical personages both ancient and modern are said to have fallen victims, but it is open to very grave doubts whether this frightful condition of things was due to other than the attacks of myriads of the ordinary bodylouse. P. cupitis is found on the head, especially of children. - The eggs, laid on the hairs, hatcl in about cight days, and the lice are tull grown in about a month. Such is the fecundity of lice that it is asserled by Leenwenhoek that one female (prubably of $P$. vestimenti) may in the course of cight weeks witness the birth of five thousand descendants. Want of cleanliness undoubtedly favours their multiplication in a high degree, but it is scarcely necessary here to allude to the idea once existing, and probably still held by the very ignorant, to the effect that they are directly engendered from dirt. The irritation is caused by the rostrum of the insect being inserted into the skin, from which the blood is rapidly pumped up. Attempts have been made to prove that the head-louse (and, in a smaller degree, the body-louse) is liable to slight rariation in structure, and also in colour, according to the races of men infested. This was probably first enunciated by Pouchet in 1841, and the subject received more extended examination by Andrew Murray in a paper published in the Transactions of the Royal Society of Edinburgh in 1861 (rol xxii. pp. $567-577$ ), who apparently shows that some amount of variation does exist, but there is yet need for further investigation. That lice are considered.bonnes borelees by certain uncivilized tribes is well known. It would be out of place to discuss here the possible interprotation of the Biblical reference to "lice" (cf. Exodus viii. 16, 17). A third human louse is known as the crab-louse (Phthirius pubis) ; this disgusting creature is found amongst the hairs on other parts of the body, particularly those of the pubic region, but probably never on the bead; although its presence may generally be looked upon as indicating dissolute association, it should not be regarded as always resulting therefrom, as it may be accidentally acquired by the most innocent. The louse of monkeys is now generally considered as forming a separate genus (Pediciuus), but the greater part of those infesting domestic and wild quadrupeds are mostly grouped in the large genus Hæmatopinus, and very rarely is the same species found on different kinds of animals; one species is found on the seal, and even the walrus does not escape, a new species (H. trichechi) having been recently disoovered affecting the axillæ (and other parts where the skin is comparatively soft) of that animal.

The bird-lice (or Mallophaga) are far more numerous in species, although the number of genera is comparatively small. With the exception of the genus Trichodectes, the various species of which are found on mammalia, all infest birds (as their English name implies). As the month parts of these creatures are not capable of being extended into a sucking tube, but are clearly mandibulate, it appears probable that they feed more particularly on the scurf of the skin and feathers; wevertheless great irritation must be caused by their presence, for it is notorious that cage-birds, much infested, will peck themselv's to such an extent as to cause death in their endeavours to get rid of the parasites. Several hundred species are already known. Sometirnes
two or three species (irdinarily of dilferent genera) infest the same species of bird, and the same spectes of lonse is not often found in dufferent birds, unless those latter liappen to be closely allied. But in aviaries and zoological gardens such cases do occasionally occur, as is natural under the circumstances. These are aualogous to the occasional presence of the flea of the cat, dog, domestic fowl, \&c., on man ; temporary annoyance is cansed thereby, but the conditions are not favourable for the permanent locatiou of the parasites. Notwithstanding the marked preference shown by a special kind of bird-lice for a special host, there is also a marked preference shown by the individual species of certin genera or groups of lice for allied species of birds, which bears upan the question of the possible variation of human lice according to the race infested.
Litcrature. -The following works are the most important:Denny, Monographia Anoplurorum Britannia, Londun, 1843; Giebel, Insecta Epizoa (which contains the working-up of Nitzsch's posthumous materials), Leipsic, 1874 ; Yan Beneden, Anzmal Parasiles, London, 1876 ; Piaget, Les Pediculines, Leyden, 1880 ; Mégnin, Les Parasites et İcs Maladies Parasilaires, Paris, 1880.
LOUTH, a maritime county in the province of Leinster, Ireland, is bounded on the N.E. by Carlingford Bay and the county of Down, E. by the Irish Sea, S.W. by Meath, and N.W. by Monaglian and Armagh. It is the smallest county in Ireland, the area comprising 202.124 acres, or 316 square miles.
The greater part of the surface is undulating, with occasionally lofty hills; and in the north-eist, on the borders of Carlingfurd Bay, there is a range of mountains approaching 2000 feet in height. Many of the hills are finely wooded, and towards the sea-coast the scenery, in the more elevated districts, is strikingly picturesque. The northern mountains are composed of felspathic and pyroxenic rocks. The lower districts rest chiefly on clayslate and limestone. With the exception of the promontory of Clogher Hend, which rises abruptly to a height of 180 feet, the sea-coast is for the host part low and sandy. The narrow and picturesque bay of Carlingford is navigahle beyond the limits of the county, and the bay of Dundalk stretches to the town of that name and affords convenient shelter for a harbour. The principal rivers are the Fane, the Lagan, the Glyde, and the Dee, which all flow eastwards. None of these are navigable, but the Boyne, which fnrms the southern boundary of the county, is navigable fnr large vessels as far as Drogheda.

Agriculture.-In the lower regions the soil is a very rich deep mould, admirably adapted both for cereals and green crops. The higher mountain reginns are covered principally with heath. Agriculture generally is in an advanced condition, and the farms are for the most part woll drained.

In 1880 there were 97,954 acres, or nearly one.half of the total area, under tillage, while 74,944 were pasture, 4585 plantations, and 24,135 waste. The total umber of holdings in 1850 was 8216 , of which 1294 were less than 1 acre in extent. No less than 5340 were below 15 acres in extent, and of these 2486 were between 5 and 15 acres. The following table shows the areas under the mrincipal crops in 1855 and 1881 :-

|  | Wheat. | Oats. | Other Cereals. | Putatoes. | Tıunips. | Other Green Crups. | Flax. | Steadnw and Clover. | Total. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18.55 | 9,674 | 38,530 | 22.028 | 12.010 | 9,23.5 | 2.548 | 190 | 17.286 | 111,5m1 |
| 1881 | 3,352 | 26,513 | 20,620 | 11,356 | 8,906 | 1,696 | 1,307 | 22.551 | 97,391 |

Between 1855 and 1881 horses have diminislicd from 12,133 to 10,810 , of which 7394 are used for agricultural purposes. The number of cattle has increased only slightly, from 32,107 to 34,739 , of which 8728 are milch cows. Slieep in 1855 nunibered 31,712 , and 33,362 in 1881. Pigs in 1881 numbered 10,471 , and loultry 241,446. According to the last return the land was divided anong 1279 proprietors, who possessed $200,287 \mathrm{acres}$, with an numual rateable value of $£ 209,090$, or 20 s .10 d . per acre. Of the owners, 45 ser cent. poasessed less then 1 acre, and the average sizo of the
propertics was $\mathbf{1 5 6}$ acres. The largest proprietors were Lort Clermont, 20,3G9 acres; Viscount Masscjerir, 7193; A. H. Smith Barry, 6239; Culonel J. C. W. Fortcscne, 5262 ; and Lord Bellew, 5109.

Mraufacturcs and Trade. - Sheetings and conse linen cloth are manufactured in some places. Many of the inhabitants are engaged in deep-sea fishing, and there is a very valuable oyster fishery in Carlingfurd Bay. At Newry, Drogheda, and Dundalk a considerable coasting trade is carricd on.

Railways. - The connty is intersected from north to south by the Dundalk and Belfast line, ant the Irish North-Western line passes westwards from Dundalk to Enniskillen.

Adminisirction and Population. -The county includes 6 baronies, 64 prishes, and 674 townlands. It is in the north-eastern circuit. Assizes are held at Dundalk, and quarter sessions at Ardec, Drogheda, and Dundalk. There arc ten petty sessions districts pithin the county and a portion of one. It includes portions of the three poor-lavi unions of Ardee, Droglieda, and Dundalk. With the exception of Drogheda, whicl, is in the Dublin nititary district, the county is in the Lelfast military district ; and there are barracks at Dundalk. Besides the two members at present returned by the county, and one member by each of the boronghs of Drogheda and Dundalk, Louth in the Jrish parhanient was represented by au additional member for each of the boroughs of Drogheda and Dindalk, and by twa members for each of the boroughs of Ardce, Carhngforl, and Dunleer The principal towns are Drogheda ( 14,662 ) and Dundalk $(12,294)$. In 1760 the population was estimated at 67,572, which in 1841 had increased to 128,347 , but in 1851 had diminslied to 108,018 , in 1871 to 84,021 , and in 1881 to 78,228 , of whom 38,241 were inalles and 39,987 females. From Ist May 1851 to 31 st December 1881 , the number of emigrants was 33,521 , a percentage of $37 \cdot 2$ of the average population during that period. The marsiage rate to every 1000 of estimated population in 1880 was 34 , the birth rate $23 \cdot 5$, and the death rate 21.4 .
History and Antiquitics. - In the time of Ptolemy, Louth was inhabited by the Voluntii. Subsequently it was inchuded in tbe principality of Orgial or Argial, which comprehended also the greater part of Meath, Monaghan, and Armagh. A subordinato territory which included Louth wasknown as Hy-Conal and MachuircConal. The chieftain of the district was conyurred by Joln de Courcy in 1183 , and in 1210 that nart of the tcritory now known as Louth was made shire ground by King John, and peopled by English settlers. Until the tinue of Elizabeth it was included in Ulster.

In the county there are a large number of antiquarian remains of special unterest There are ruins of Diuidical altarsnt Balrighen and Carrick Edmond, and of a Druidical temple at Ballinahatrey near Dundalk. The romnd tower at Monasterboice is in very good preservation, and there are remains of another at Dromiskin. The most remarkable cromlechs are those on Killin Hill and at Ballymascanlan. At Killon Hill there is an extraordinary fort called Faghs-na-ain-cighe, or "the one night's work"; and near Ballymascanlan is Castle Rath, surrounded by lesser raths, and having a remarkable tumulus in its vicinity. Abont 2 miles from Dundalk there is a very ancient structure, the origin of which has been much discussed. Near Balrighan there is a cmrous nitificial cave. A large number of spears, swords, axes of bronze, gold omaments, and other relics of antiquity have been discovered. Tbere are a great number of Danish and other old foats. Originally there are said to have been no fewer than twenty rehgious houscs within the county. Of these there are interesing remains at Carlingford; at Faughart, where is also to be seen St Bridget's stone and pillar; at Mellifont, the architecture of which is spectally beaulifu! sud elaborate; and at Monasterbonce, where there are two crosses, one of which, St Boyne's, is the most ancient and most fincly decorated in Ireland.
LOUTH, a municipal borougk: and market-town of Lincolnshire, England, is pleasantly situated on the river Lud, and on a branch of the Great Northern Railway, 25 miles east-north-east of Lincoln. By means of a canal, completed in 1763, at a cost of $£ 28,000$, there is water communication with Hull. The torn is about a mile in length, and is well built and paved. The church of St James, completed about 1516, in the Later English style, with a spire 288 feet in height, is one of the finest ecclesiastical buildings in the county. There are an Fdward VI. grammar school, which is richly endowed, a commercial school founded in 1676, and a national school. The other public buildings include a town-hall, a corn exchange, and a market-lan!!. In the vicinity are the ruins of a Cistercian abbey, founded in 1139. The industries include the manufacture of carpets, tanning, iron-foundiog, brewing, malting, linse burning, and rope and brickimaking.

The prpulation, which in 1851 was 10,467 , had increased iII 1871 to 10,500 , and in 1881 to 10,690 .
L.outh is a corruption of Ludd, the ancient name of the river Lud. It reeeived a charter of incorporation from Edward VI. In 1536 the town took part in the "Pilgrimage of Grace," on which account the vicar was executed at Tyburn. Alfred and Charles Tennyson were educated at the grammar school, and their little volume entitled Pocms by Two Brothers mas published by a Louth bookseller, whose shep still exists.

LOUVAIN, a town of Belgium in the province of Brabant, IS miles east of Brussels, on the Liége and Culogne Railway, and on the river Dyle. The population in 1880 was 34,700 . Louvain possesses some fine epecimens of Gothic art,-the town-ball, which displays a wealth of decorative architecture almost unequalled on the Continent, and the collegiate church of St Pierre, with some fine sculptures and panels by Quentin Matsys. The general aspect of the town to the casual observer is dull and cheerless; the newer portions, extending betreen the town-hall and station, consist of broad streets of monotonous regularity, while the old medirval quarter, despite its historic interest, is somewhat dingy and lifeless. Louvain has a market for corn and cattle as well as for cloth wares ; wood carving is also carried on ; but the chief industry of the locality is brewing, the Louvain beer, a lemon-coloured frothy beverage, being held in high repute in the country. In the world of science Louvain holds honourable rank, having a celebrated university, an academy of painting, a school of music, extensive bibliographic collections, a museum of natural history, and a botanical garden. The university, a stronghold of the Roman Catholic faith, was first instituted in 1425 , and soon grew famous among the learned of all nations. In the 15 th and 16 th ceuturies not less than six thousand students flocked thither yearly, and it became the nursery of many illustrious men. Swept away for a time by the first French Revolution, it was reestablished in 1835 ; and, though less conspicuous thau in bygone ages, and more generally confined to the instruction of the youth of Belgium, it is yet of considerable importance in the country as the only Catholic unirersity, and one of the main supports of the Conservative party.

Like Bruges and many other Flemish towna, Lourain was at one time a great and flourishing city, with a population of 200,000 sonls, and one of the prineipal markets of the Continent. The turbulent spirit of the people, their frequent outbreaka against their rulers, and in particular the massacre of the patricians in 1378, were the chief causes of its decline. Duke Wenceslaus of Brabant, in a spirit of revenge after the last-mentioned rising, imposed so beavy taxes upon the people that they emigrated in large numbers. A hundred thousand weavers left the country, carrying abroad, mainly to Eng. land, the secrets of their trade; and from that period tho material Irosperity of Louvain has steadily diminished.

LOUVIERS, capital of an arrondissement in the department of Eure, France, is pleasantly situated, in a green valley surrounded by wouded hills, on the Eure (here divided into many branches), 71 miles west-north-west from Paris, and some 13 miles frou Fouen and Erreux. The old part of the town, built of wood, stands on the left bank of the river; the more modern portions, in brick and hewn stone, on the right. There are several good squares, and the place is surrounded by boulevards. The Gothic chursh of Notre Dame has a fine square tower, recently restored, and a portal which ranka among the richest and most beautiful works of the kind produced in the $15 \mathrm{tl}_{1}$ century; it contains several interesting works of art. The chief industry of Louviers is the cloth and flannel manufacture. There are also nineteen wool-spinning mills, five fulling mills, and important thread factories; and papermaking, tanning, currying and tawing, dyeing, and bleaching are also carried on. The town has a court of first instance, a tribunal of commerce, chambers of manufacturea and agriculture, and a council of prudhommes. The porulation in 1876 was 10,973.

Louviers was originally a villa of the dukes of Normandy; its eloth-making industry first arose in the beginning of the 13 ti sen. tury. It changed hands onea and again during the Hundred l'ears' War, and fiom Charles V'II. it received extensive privileges, and the title of Louviers la Frane for the bravery of its inhabitants in driving the English from Pont de 1'Arche, Verneuil, and Harcourt. It passed through various troubles successively at the period of the "ligue du bien public" under Louis X1., in the religious wars ( $w$ hen the parliament of Rouen sat for a time at Louviers), and in the wars of the Fronde. 1ts industries nevertheless developed eteadily; before the Revolution its production of cloth amounted to 3000 pienes annually, in 1837 the number had risen to 15,000 , and it is still greater now.
louvois, François Michel le Tellier, Marquis de (1641-1691), the great war minister of Louis XIV., was born at Paris on January 18, 1641. His father, Michel le Tellier, sprung from a bourgeois family of Paris, but had attached himself to the parlement of Paris, and married the nirece of the chancellor Aligre. He won the favour of De Bullion, the superintendent of finances, and through hin obtained the intendancy of Piedmont, where he made the acquaintance of Mazarin. He mas Mazarin's right hand through the troublous times of the Fronde, and was the medium of communication between him and the queen, when the cardinal was in nominal disgrace at Brühl. He had been made secretary of state in 1643, and on the death of Mazarin was continued in his office. Liko Colbert and unlike Fouquet he recognized the fact that Louis inteuded to govern, and by humouring his master's passion for knowing every detail of personnel and administration he gained great favour with him. He married his son to a rich heiress, the Marquise de Courtenvaux, and soon began to instruct him in the management of state business. The young man speedily won the kiug's confidence, and in 1666 was made secretary of stata for war in his father's room. His talents were perceived by the great Turenne in the short war of the Devolution (1667-68), who gave him instruction not so much in the art of war as in the art of providing armies. The peace of Aix-la-Chapelle signed, Louvois devoted himself to the great work of organizing the French army. The years between 1668 and 1672, says Camille Rousset, "were years of preparation, wheu Lionne was labouring with all his might to find allies, Colbert to find money, and Louvois soldiers for Louis." Lauvois's work was not the least important of the three. Till then armies were either bodies of free lances collected round a particular general and looking to him for pay, or a sort of armed militia, who looked on soldiering as an interlude, not a profession. Louvois understood the new condition of things, and organized a national standing army. In his organization, which lasted almost without a change till tha period of the French Revolution, the leading points must be noted. First among them was the almost forcible enrolment of the nobility and gentry of France, which St Simon so bitterly complains of, and in which Louvgis carried out part of Lanis's measures for curbing the spirit of independence by service in the army or at court. Then must be mentioned his elaborate hierarchy of officers, the grades of which with their respective dutiea he established for the first time, and his nen system of drill, perfected by Martinet. Besides the army itself, he organized for its support a system of payment and commissariat, and a hospital system, which made it more like a machine, less dependent on the weather, and far superior to the old German system. Further, with the help of Vauban he formed a corpa of engincers, and lastly, to provide the deserving with suitable reward, and eacourage the daring, he reorganized the military orders of merit, and founded tho Hôtel des Invalides at Paris. The success of his measures is to be seen in the victories of the great war of $1672-$ 1678, in which his old instructor Turenne was killed. After the feace of Nimeguen in 1678, Loavois was high
in favour, his father Michel le Tellier had been made chancellor, and his only opponent Colbert was in growing disfavour. The ten years of peace between 1678 and 1688 were distinguished in French history by the rise of Madame de Maintenon, the crpture of Strasburg, and the revocation of the edict of Nantes, in all of which Lonvois bore a prominent part. The.surprise of Strasburg in It 81 in time of peace, in pursuance of an order of the chamber of reunion, was not only planned but executed by Louvois and Monclar, and after the revocation of the Edict of Nantes he claims the credit of inventing the dragonnades. Colbert died in 1683, and had been replaced by Le Pelleticr, an adherent of Louveis, in the controller-generalship of finances, and by Louvois himself in his ministry for public buildings, which he took that he might be the minister able to gratify the king's two favourite pastinies, war and buildings. Louvois was able to superintend the successes of the first years of the war of 1688 , but died suddenly of apoplexy after leaving the king's cabinet on July 16, 1691. His sudden death caused a suspicion of poison, and struck everybody with surprise. "He is dead," writes Madane de Sevigné, "that great minister, that important man, who held so grand a position, and whose Moi sprearl so far, who was the centre of so much." "Tell the king of England," said Louis the next day, "that I have lost a good minister, but that his affairs and mine will go none the worse for that." He was very wrong; with Louvois the organizer of victory was gone. Great war ministers are far rarer than great generals. French history can only point to Carnot as his equal, English history only to the elder Pitt. The comparison with Cainot is an instructive one: both had to organize armies out of old material on a new system, both had to reform the principle of appointing officers, both were admirable contrivers of campaigns, and both devoted themselves to the material well-being of the soldiers. But in private life the comparison will not hold; Carnet was a good husband, an upright man, and a broad minded thinker and politician, whilo Louvois married for money and lived openly with various mistresses, most notoriously with the beautiful Madame de Courcelles, used all means to overthrow his rivals, and boasted of having revived persecution in his herrible system of the dragonnades.

The principal anthority for Louvois's life and times is Camille rousset's IFistoire de Lourvois, 4 vols., 1862-63, a gri at work founded on the 900 volumes of his despatches at the Depôt de la Guerre. Saint Simon from his class prejudiees is hardly to be trusted, but Madame de Sevigné throws many bright side-lights on his times. Testament Politique de Louvois (1695) is spurious.

Lovat, Simon Fraser, Baron, a famous Jacobite intriguer, executed for the part which he took in the rebellion of 1745 , was born about the year 1676 , and was the second sor of Thomas, afterwards twelfth Lord Lovat. He was educated at King's College, Aberdeen, and there seems reason to belicve that he was there no negligent student, as his correspondence afterwards gives abundant pronf, not only of a therough command of good English and idiomatis French, but of such an acquaintance with the Latin classics as to leave him never at a loss for an apt quatation from Virgil or Horace. Whether Lovat ever felt any real principle of leyalty to the Stuarts or was actuated throughout merely by what he supposed to be sclf-intercst it is difficult to determinc, but that he was a born traitor and deceiver there can be no doubt. One of his first acts on leaving college was to rccruit three hundred men from his clan to form part of a regiment in the service of William and Mary, in which he himself was to hold a command, his object being, as he unhesitatingly avows, to have a body of well-trained soldiers under his influence, whom at a moment's notice he might carry over to the intercst of ling James. " Anong other wild outrages in which he was engaged about this time was a rape and forced marriage committed on
the widow of a previeus Lard Lorat with the view appar. ently of securing his own succession to the estates; and it is a curious instance of his plasibility and power of influencing others that, after being subjected by him to the most horrible ill-usage, the moman is said to have ultimately become seriously attached to him. A prosecution for his violence, however, haring been inctituted against him by Lady Lovat's family, Simon found it prudent to retire first to his native strongholds in the Highlands, and afterwards to France, where he at length fcund his way in July 1702 to the court of St Germains. One of his first steps towards gaining influence there seems to have been to announce his conversion to the Catholic faith. He then proceeded to put the great project of restoring the exiled family into a practical shape. Hitherto nothing seems, to lave been known among the Jacobite exiles of the efficiency of the Highlanders as a military force. But Lovat, who was of course well acquainted with their capabilities, saw that, as they were the only part of the British population accus. tomed to the independent use of arms, they could be at once put in action against the reigning power. His plan therefore was to land five thousand French troops at Dundee, where they might reach the north-eastern passes of the Highlands in a day's march, and be in a position to divert the British tronps till the Highlands should have time to rise. Immediately afterwards five hundred men were to land on the rest coast, seize Fort William or Inverlochy, and thus preveru the access of any military force from the south to the central Highlands. The whole scheme affords strong indication of Lovat's sagacity as a military strategist, and it is observable that his plan is that which was continuously kept in view in all the future attempts of the Jacobites, and finally acted on in the last outbreak of 1745 . The advisers of the Pretender seem to have been either slow to trust their astute coad. jutor or slow to comprehend his project. At last, however, he was despatched on a secret mission to the Highlands to suund those of the chiefs who were likely to rise, and to ascertain what forces they could bring into the field. He very soon found, however, that there was little disposition to join the rebellion, and he then made up his mind to secure his own safety by revealing all that he knew to the Government of Queen Anne. Having by this means obtained a pardon for all his previous crimes, he was sent back to Frauce to act as a spy on the Jacobites. On returning to Paris suspicions soon got afloat as to his proceedings, and in the end he was committed close prisoner in the castle of Angoulême, where he remained for nearly ten years, or till November 1714, when he made his escape to England. For some twenty-five years after this he was chiefly occupied in lawsuits for the recovery of his estates and the re-establishment of his fortune, in both of which objects he was successful. The intervals of his leisure were filled up by Jacobite and Anti-Jacobite intrigues, in which he seems to have alternately, as suited his interests, acted the traiter to buth parties. But he so far obtanea the confidence of the Government as to have secured the appointments of sheriff of Inverncss and of coloncl of an independent company. Ilis disloyal practices, however, soon lod to his being suspected; and he was deprived of both his appointments. When the rebellion of 1745 broke out, Levat acted with his characteristic duplicity. He represented to the Tacobites - what was probably in the main trac-that though cayer for their success his weab health and advanced ycars prevented him from joining the standard of the prince in peisun, while to the Lord President Forbes he professed his cordial attachment to the existing state of things, but lamented that his headstrning son, in spite of all his remonstrances, had insisted on joining the 1'retender, and succeeded in taking with him a strong f.ree from the clan of the Frusers. The truth was that the poor
lad was most unwilling to go out, but raa compelled by his father to do so. Lovat's false professions of fidelity did not of course long deceive the Government, and after the battle of Culloden he ras obliged to retreat to some of the wildest recesses of the Highlands, after seeing from a distant height his proud castle of Dounie delivered th the Cannes by the royal army. Even then, however, broken down by disease and old age, carried about on a litter and unable to move without assistance, his menta! resonrces did not fail him; and in a conference with several of the Jacobite leaders he proposed that they should raise a body of three thousand men, which would be enough to make their mountains impregnable, and at length force the Government to give them advantageous terms. The project, though. by no means a chimerical one, was not carried out, and Lovat, after enduring incredible hardships in his wanderings, was at last arrested on an island in Loch Morar close upon the west coast.' He was conveyed in a litter to London, and after a trial of five days sentence of death in "the ordinary brutal form peculiar to England "was pronounced npon him on the 19th of March 1747. His execution took place on the 9 th of April following. His conduct to the last was dignified and evea cheerful,--his humour, his power of sarcasm, and his calm defiance of fate never deserting him. Just before submitting his head to the block he repeated the line from Horace-
"Dulce et decorum est pro patria mori."
LOVE-BIRD, a name somewhat indefnitely bestowed, chiefly by dealers in live animals and their customers, on some of the smaller short-tailed Parrots, from the remarkable affection which examples of opposite sexes exhibit towards each other, an affection popularly believed to be so great that of a pair that have been kept together in captivity neither can long survive the loss of its partner. By many systematic oruithologists the little birds thus named, brought almost entirely from Africa and South America, have been retained in a single genus, Psittacula, though those belonging to the former country were by others separated as Agapornis. Thais separation, however, was by no means generally approved, and incleed it mas not easily justified, until Garrod (Proc. Zool. Society, 1874, p. 593) assigned good anatomical ground, afforded. by the structure of. the carotid artery, for regarding the two groups as distinct, and thus remored whst had seemed to be the slmost unintelligibls puzzle presented by the geographical distribution of the species of Psittacula in a large sense, though Professor Huxley (op. cit., 1868, p. 319) had indeed already suggested one way of meeting the difficulty. As the genus is now restricted, only one of the six species of Psittacula enumerated in the Nomenclator Avium of Messrs Sclater and Salvin is known to be found outside of the Neotropical Region, the exceptionsl instance being the Mexican P. cyanopygia, and not one of the seren recognized by the same authors as forming the very nearly allied genus Urochroma. On the other hand, of Agapornis, from which the so-called genus Poliopsitta can scarcely be separated, five if not six species are known, all. belonging to the Ethiopian Region, and all but one, A. cana (which is indigenous to Madagascar, and thence has been widely disseminated), are natives of Africa. In this group probably comes also Psittinus, with a single species from the Malayan Subregion. These Old-World forms are the "Love-birds" proper; the others scarcely deserve that desigpation, and still less do certain even smaller. Parrots, the very smallest indeed. of the Order 'Psittaci, included in the genera Cyclopsittc and Nasiterrat, which are peculiar to the Australian Region, though on sccount of their dininutive size they may here be just mentioned by name, but their real affrity remains to be determined.
( A . N.)

Lovelace, Rictard (1618-1658), English poeh mas born in 1618. On the father's side he was a scion of a Kentish family, and inherited a tradition of military distinction, maintained by successive generations from the time of Edward III. His mothcr's family was legal ; her grandfathe, had been chief 'baron of the exchequer. Lovelace's fame has been kept alive by a few songs and the romance of his career, and his poems are commonly spoken of as careless improvisations, and merely tho amusements of an actire soider. But the unhappy course of his life gave him more leisure for verse-making than opportunity of soidiering. Before the ontbreak of the civil war iu 1642 his only active service was in the bloodless expedition which ended in the Pacification of Berwick in 1640. By that time he was one of the most distinguished of the company of courtly poets gathered round Queen Heurietta, and influenced as a school by contemporary French writers of vers de société. Lovelace had probably a more serious and sustained poetical ambition than any of them. He wrote a comedy, The Scholar, when he was sixteen, and a tragerly, The Soldier, when le was one and tweuty. From what he says of Fletcher, it would seem that this dramatist was his model, but only the spirited prologue and epilogue to his comedy have been preserved. When the rupture between king and parliament took place, Lovelace was committed to the Gatehouse at Westminster for presenting to the Commons a petition from Keutish royalists an the king's favour. It was then that he wrote his most famous sung, "To Alth:ea from Prison." He was liberated on bail of $£ 40,000$, - a sign of bis importance in the eyes of the parliament,-and throughout the civil war was a prisoner on parole, with this security in the hands of his enemies. His only active service was after 1646, when he raised a regiment for the French king, and took part in the siege of Dunkirk. Returning to England in 1648, he was again thrown into prison. During this second imprisonment, he collected and revised for the press a volume of occasional poems, many if not most of which had previously appearcd in various publications. The volume was published in 1649 under the title of Lucasta, his peetical name-contracted from Lux Casta-for Lucy Sache:erell, a lady who married another during bis absence in France, on a report that he had died of his womds at Dunkirk. The last ten years of Lovelsce's life were passed in obscurity. His fortune had been exhausted in the king's interest, and he is said to bave been supported by the generosity of more fortunate friends. He died, according to Aubrey, "in a cellar in Longacre." A rolume of Lovelace's Posthume Poems was published in 1659 by one of his brothers. They are of very inferior merit to his own collection.
The world has done no injustice to Lovelace in neglecting all but a fevo of his nodest offeringa to literature. But eritics often do limm injustice in dismissing him as a gay cavalier, who dashed off his verses hastily, and cared little what became of them. It is a ristake to class hina with Suckling; he has neither Suckling's easy grace ner his rcekless spoutaneity. We have only to comprase the rersion of any of his poems in Luccasta with the form in which the originally appeared to see how fastidious was liis revision. In nany places it takes time to decipher his meaning. The expression is often elliptical, the syntax inverted and tortuous, the train of is oftenght intricate and discontinuous. These faults-they ara not of course to be found in his two or three popular lyrics, "Going to the Wars," "To Althæa from- Prison," "The Sciutiny"-are, herwerer, as in the case of his poetical master, Donne, the faulta not of haste but of ever-elaboration. His thoughts are not the first thoughts of an improvisatore, but thoughts ten or twenty stages removed from the first, and they are generally as closely packed as they are far-fetched. Lovelace is not named by Johnson among the "metaphysical poets," but in claboration of workmanahip as well as in intellectual force he comes vearer than any other disciple to the fonnder of the school. His most far-fetched conceits are worth the carriage, and there is genuine warmth in them. The wine of his poetry is a dry wine, but it is wine, and not an
artificial imitation. His career as a dramatist was checked by the suppression of the stage; if he had been born thirty years carlier or thrrty years later; Fletcher or Congreve would have had in hin a powerful rival.' The inost recent clition of his poems is that by W. C. Hazlitt, in 1864.

LOVER, Samper (1797-1868), novelise, artist, songwriter, and musician, was born in Dublin in 1797. His father was a member of the stock exchange. Lover begau lifo as an artist, and was elected an academician of the Koyal Hibernian Society of Arts-a body of which he afterwards became secretary. He acquired repute as a miniature painter; and a number oi the local aristocracy sat to him for their portraits. His love for music showed itself at a very early age. At a dinner given to the poet Moore in 1818 Lover sang one of his own songs, which elicited special praise from Moore. One of his best known portraits was that of Paganini, which avas exhibited at the Royal Academy. He attracted attention as an author by his Legends and Stories of Ireland (1832), and whs one of the first writers for the Dublin University Magazine. He went to London about 1835, where, among others, he painted Lord Brougham in his robes as lord chancellor. His varied gifts rendered him very popular in society; and he appeared often at Lady Blessington's evening receptions.: There he sang several of his sougs, which were so well received that he published them (Songs and Ballads, 1839). Some of them illustrated Irish superstitions, among these being "Rory O'More," "The Angel's Whisper," "The May Dew," and "The Fourleaved Shamrock." In 1837 appeared Rory O'More, a. National Romance, which at once made him a great reputation as a novelist; he afterwards dramatized it for the Adelphi Theatre, London. In 1842 was published his best known work, Handy Andy, an Irish Tale. Meanwhile his multifarious pursuits had seriously affected his health; and in 1844 he gave up writing for some time, substituting instead public entertainments, called by him "Irish Eveniogs," illustrative of his own works and his powers as a musician and composer. These were very successful both in Great Britain and in America. In addition to publishing numerous songs of his own, Lover edited a collection entitled The Lyrics of Ireland, which appeared in $\cdot 1858$. He died on July 6, 1868. Lover was remarkable for his versatility; but his fame rests mainly on his songs and novels; the latter are full of sunny Irish humour, and teem with felicitous pictures of national life. Besides those already mentioned he wrote Treasure Trove (1844), and Metrical Tales and Other Poems (1860).

LOWELL, the twenty-seventh city in population of the United States, in Middlesex county, Massachusetts, at the junction of the Concord and Merrimack rivers, 26 miles north-west from Boston. It is often called the "Spindle City," and the "Manchester of America," because of the extent of its cotton manufacture. The principal source of its water-power is Pawtucket Falls in the Merrimack, and steam is employed as an auxiliary to the amount of 19,793 horse-power. The first cotton-mill was started in 1823, when the place was the village of East Chelmısford. In 1826 it was made a town, and named Lowell in memory of Francis Cabot Lowell, from whose plans it had been developed, but who died in 1817. It was incorporated as a city in 1836. It originally comprised 2885 acres, but by annexation from neighbouring towns its area has been increased to 7615 acres, or 11.8 square miles. The population, which io 1836 was 17,633 , was 40,928 in 1870 , and 59,485 in 1880 (males, 26,855 ; females, 32,630 ), and in 1882 was estimated at 64,000 .

The following table shows the extent of tho principal manufacturing companies in 1882 :-

| Compeny. | Estab Ilshed. | Looms. | Splodles. | Opera. tives. | Yerds per Weck. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Merrimack. | 1823 | 4,267 | 153,552 | 3,300 | 947,000 |
| Hamilton. | 1825 | 1,597 | 59,816 | 1,387 | 364,000 |
| Appleton. | 1828 | 1,228 | 45,000 | 820 | 285,000 |
| Lowell ... | 1828 | 392 | 24,750 | 1,700 | 48,000 |
| Middlcsex .............. | 1830 | 250 | 18,640 | 836 | 25,000 |
| Tremont and Sutrolk. | 1832 | 2,700 | 94,000 | 1,500 | 550,000 |
| Lawrence | 1833 | 2,360 | 100,000 | 2,130 | 425,000 |
| Booth | 1836 | 3,600 | 127,000 | 1,875 | 650,000 |
| Massachuse | 1840 | 3,658 | 119,528 | 1,717 | 907,000 |

The capital invested is $\$ 17,300,000$; number of mills, 153; spindles, 806,000 ; looms, 20,521 ; females eniployed, 12,809; males, 9750 ; yards per year, cotton 209,050,000, woollen $8,335,000$, carpetings 2,700,000; shawls, 350,000 hosiery per year, $13,695,520$ pairs; cotton consumed annually, 34,087 tons; clean wool, $11,750,000 \mathrm{1b}$; yards cotton dyed and printed, $97,240,000$; coal consumed, 80,000 tons. There are many secondary industries connected with the cotton menufacturé, including the making of machinery, elastic and leather goods, tools,-boilers, \&c., and also a number of small factories for the production of cartridges, chemicals, wire cloth, paper, doors, sashes, blinds, and carriages. The Lowell machine-shop employs 1400 men in the manufacture of machinery, and consumes 9800 tons of iron and steel annually. Lowell has 90 public day schools, 6 evening and 4 technical schools, a reform school, and 2 parochial schools. The principal public buildings are the city-ball, court-house, Middleses county jail, Green school-house, and St John's Hospital. There are 7 national banks with a total capital of $\$ 2,500,000$, and 6 savings banks with deposits of $\$ 11,000,000$. The religious congregations number 35 , all but three of which own their places of worship. The two largest Roman Catholic churches, St Patrick's and the Church of the Immaculate Conception, are among the finest in the State. Seven railroads connect Lowell with the railroad system of the country. The benevolent iustitutions include a home for young women and children, and one for aged women, 2 orphanages, and 3 hospitals. There are 2 reading-rooms, 5 daily newspapers (one Erench), 6 weeklies, and 4 public libraries. Lowell was early famed for the high character of its operatives, who for some years published a periodical of considerable literary merit called The Lowell Offering, which was, it is believed, the only publication of the kind ever sustained by worlpeople. Many of the young women rose to positions of prominence in American society, and at least one, Miss Lucy Larcom, is known to readers on both sides of the Atlantic by her contribntions to leading magazines.
In 1843 Charles Dickens visited the place, and deroted a chapter of his American Notes to its praisc. The mannfacturers hare from the first provided for the moral and social as well as the physical wellbeing of their operatives, so that labour tronbles have been exceedingly rare in Lowell. The corporation boarding-houses are model dwellings for the workpeople. The first blood shed in the American civil war was that of two Lowell young men, Luther C. Ladd and A. O. Whitncy, who wero killed by a noob while their regiment was passing through the streets of Baltimore, on the way to tho defence of Washington, April 19, 1861. In their houour a granito monument has been erected in Merrimack Street, and in tho same enclosure is a bronze statue of Victory by the German sculptor Raucl to commemorate the triumph of the Northern cause.
The assessed valuation in May 1881 was $842,785,434$ an increaso of $\$ 3,108,035$ since 1879 ); the net debt Dccember 31,1881 , was $\$ 1,992,868$, of which $\$ 1,565,539$ was on account of the introduction of water in 1873.

Lowell is divided into six wards, and is governed by a mayor, a board of eight aldermen, and a common council of twenty-four members.

LOWESTOFT, a watering-place, seaport, and markettown of Suffolk, England, is picturesquely situated on a lofty declivity, which includes the most easterly point of land in Englaod, 23 miles south-icest of Norwich by rail. Previous to the opening of a railivay, it was only a small fishing villare, but since then it has risen to some importance as a seaport, while its picturesque situation, and its facilitics for sea-bathing, bave rendered it a favourite watering place. The church of St Margaret, in the Later English style, with tower and spire, possesses a very ancient font. There are a town-hall, a county-hall, tro foundation schools, a large general hospital, and a number of charities. Along the shore there is a fine esplanade, and a new park was opened in 1874. Two piers 1300 feet in length enclose a harbour of 20 acres, which is much used as a harbour of refuge. For the last five years the average value of the foreign and colonial imports has been over $£ 100,000$, and the exports have been valued at about $£ 5000$. The fisheries of Lowestoft are of some importance, and there are shipbuilding yards, oil and flour mills, and rope-works. The population of the urban sanitary district in 1871 was 15,246, and in 1881 it had increased to 19,597 .

LOWICL, a town of Russian Poland, on the Bzura river, in the government of Warsaw, 54 miles by rail west from the capital, on the line between Skiernewice and Bromberg. It has lately become a centre of manufacture and trade, and the population (6650 in 1872 ) is rapidly increasing. Its fairs are important as regards the trade in horses and cattle. In the immediate neighbourhood are situated the hamlet Liczcowice, which has a beetroot sugar factory, and the rich estates Nieboron and Villa Arcadia of the Radziwill family.

LOWTH, Robert (1710-1787), bishop of London, was born at Buriton, Hampshire, or, according to other authorities, in the Close of Winchester, on November 27, 1710. He was the younger son of Dr William Luwth (1661-1732), rector of Buriton, a man of considerable learning, author of A Findication of the Divine Authority and Inspiration of the Old and New Testaments (1692), Directions for the Profitable Reading of the Holy Scriptures (1708-26), and A Commentary on the Prophets (4 vols., 1714). Robert was educated on the foundation of Winchester College, and in 1730 was elected to a scholarship at New College, Oxford, where he took his degree of M.A. in 1737. In 1741 he was appointed professor of poetry, and it was in this capacity that be delivered the Prelectiones Academicx de Sacra Poesi ILebræorum, afterwards published in 1753. Bishop Hoadly appointed him in 1744 to the rectory of Ovington, Hampshire, in 1750 to the archdeaconry of Winchester, and in 1753 to the rectory of East Woodhay, also in Hampshire. In 1754 he received the degree of doctor of divinity from his university, and in the following year he went to Treland along with the duke of Devonshire, then lord-lieutenant, as first chaplain. Soon afterwards he declined a presentation to the see of Limerick, but accepted a prebendal stall at Durham and the rectory of Sedgfield. In 1758 he published his Life of William of $\Pi^{r}$ jkeham, which was followed in 1762 by A Short Introduction to English Grammar. In 1765, the jear of his election into the Royal Societies of London and Göttingen, he engaged in a lot war of pamphlets with Warburton on a now obsolete question about the relations between the book of Job and the Mosaic economy ; and (Gibbon being judge), "whatsoever might be the merits of an insignificant controversy, his victory was clearly established by the silent confession of Warburton and his
slaves." In Junc 1766 Lowth was promoted to the see of St David's, whence about four months afterwards he wae translated to that of Oxford, where he remained till 1777, When he becamo bishop of London. This last appointment he continued to hold until his death, having declined the archbishopric of Canterbury in 1783. In 1778 appeared his last work, Isaial, a new Translation, with a Preliminary Dissertation, and Notes, Critical, Philological, and Explanatory. He died at Fulham on November 1787.

The Prallectiones oxcreised a great influence bothin England and on the Continent. Their chief importance lay in the idea of look. ing at the sacred poetry as poetry, aud examining it by the atandards applied to profane literature. Lowth's æsthetic criticism was that of the ngc, and is now in great part obsolete, a more natural method having been soon after introduced by Herder. The principal point in which Lowth's influence has been lasting is his doctrine of poetic parallelism, and even here his aomewhat mechanical classification of the forms of Hebrew aense-rhythm, as it slould rather be called, is opeu to serious objections. The Prælectioncs reached a second cdition in 1763, and were repnblished with notes by J. D. Michaelis in 1770; both text and notes were translated by G. Gregory (1787 ; 4th ed., 1839). The Oxford edition of the originsl (1821) contains additions by Rosenmiller, Richter, and Weiss. The editions of Lowth's Isaiah have been numerous (13th ed., 1842), but the book is now much less read than the Pralectiones. A volume of Scrmons and other Remains, with memoir by Hall, was published in 1834, and there is a comparatively recent edition of the Popular Works of Robert Lowth, 3 vols., 1843.

LOYALTY ISLANDS, a group in the South Pacific, about 60 miles cast of New Caledonia, consistiog of Uvea or Uea (the northmost), Lifu, Toka and several small islands, and Mare o: Nengone. They are coral islands of comparatively recent elevation, and in no place rise more than 250 feet above the level of the sea. Lifu, the largest, is about 50 miles in length by 25 in breadth. Enough of its rocky surface is covered with a thin coating of soil to enable the natives to grow yams, taro, bananas, \&c., for their support; cotton thrives well, and has even been exported in small quantities, but there is no space available for its cultivation on any considerable scale. Fresh water, rising and falling with the tide, is found in certain large caverns, and, in fact, by sinking to the sea-level a supply may be obtained in any part of the island. The popula tion, about 7000 , is on the decrease. The island called Neugone by the natives and Mare by the inhabitants of the Tsle of Pines is about 80 miles in circumference, and contains about 6000 souls. Uvea, the most recent part of the group, consists of a circle of about twenty islets enclosing a lagoon 20 miles in width; the largest is about 30 miles in length, and in some places 3 miles wide, and the next largest is about 12 miles in lengtls The inhabitants, numbering about 2500. export considerable quantities of cocoa-nut oil.

The Loyalty islanders are classed as Melanesian ; the several islands have cach its serarate larguage, and in Uvea the one tribe uses a Samoan and the other a New Hebridean form of speech. Captain Cook passed to the east of New Caledonia without observing the loyalty group; but it was discovered soon afterwards, and Dumont D'Urville laid down the several islands in his chart. For many years after their discovery the natives had a bad repnte as dangerous cannibals. Christianity was introduced into Mare by native teachers from Rarotonga and Sanoz; missionaries were settled by the London Missionary Society at Mare in 1854, at Lifu in 1859, and at Uvea in 1865; Roman Catholic missionaries also arrived from New Caledonia; and in 1864 the French, considering the islands a dependency of that colony, formally instituted a commsndant. An attempt was made by this official to pnt a stop to the English inissions by violence; but the report of his conduct led to so much indignation in Anstralia and in England that the einperor Napoleon, on receipt of a protest from Lord Shaftesbury and others, callsed a commission of inquiry to be aps pointed, and frec liberty of worship to be secured to the Protestant missions. A new persccution of the Christians in Uvea, during 1875, called forth a protest on the part of the English Government. and matters appear to have since improved.

See W. Gill, Gcms from the Cora? Istands, now edition, 1871. S. Macfarlane, Story of the Lifu Missijn, 1873.
loyola, Ignatius de, St. Inigo, the yeungest son n. Beltran de Loyula, was born in 1491 at the castle of Loyola, the family seat, situated on the river Urola, about a mile from the town of Azpeitia, in the province of Guipuzena, Spain. He died at Rome on July 31, 1556, was beatified by Paul V. in 1609, and canenized along with Francis Xavier by Gregory XV. on March 13, 1823 , the bull being published by Urban VItt. on August 6 . His festival (duplex) is observed on July 31. See Jesuits.

LOZERE, a department of sontb-eastern France, but belonging to the great central plateau, is composed of almost the whole of Geraudan and of some parishes of the old dioceses of Alais and Uzès, districts all formerly included in the prowince of Languedoc. It lies between $44^{\circ} 6^{\prime}$ and $44^{\circ} 58^{\prime} \mathrm{N}$. lat., and between $2^{\circ} 58^{\prime}$ and $4^{\circ} \mathrm{E}$. long., and is bouuded on the N.W. by Cantal, on the N.E. by Haute-Loire, on the E. by Ardeche, on the S.E. by Gard, and on the S.W. by Aveyron, haring an cxtreme length of 65 miles, an estreme breadth of 50 , and an area of 1996 square miles. Lozère is mountainous throughout, and its average elevation makes it the lighest of all the French departments. It has three distinct regions-the Cevennes to the south-east, the "causses" to the southwest, and the mountain tracts which occupy the rest. The Cevennes, forming the watershed between the Garonne and Loire basins to the west and that of the Rione to the east, begin (within Lozère) with Mount Aigounl, which rises to a leight of more than 5100 feet; parallel to this are the mountaius of Bougès, a range between the rivers Tarn and Tarnon, bold and bare on its southern face, but falling gently away with wooded slopes toward the north. To the north of the Tarn is the range of Lozere, including the peak of Finiels, the highest point of the department ( 5584 feet). Further on occurs the broad marshy plateau of Mentbel, from which the water drains southward to the Lot, northwards to the Allier, eastward by the Chassezac to the Ardèche. From this plateau extend the meuntains of La Margeride, a long series of undulating granitic tablelands partly clothed with woods of oak, beech, and fir, and partly covered with pastures, to which the flocks are brought up from lower Languedoc in summer. The highest peint (Mount de Randon) is 5098 feet. Adjoining the Margeride hills on the west is the volcanic range of Aubrac, an extensive pastoral district where horned cattle take the place of sheep; the highest point is 4826 feet. The "causses" of Lozère, baving an area of about 483 square miles, censist of extensive calcareeus trats, fissured and arid, but separated from each other by deep and well-watered gorges, whose freshness and beauty are in pleasant contrast with the desolate aspect of the plateaus. The "causse" of Sauveterre, between the Lot and the Tarn, ranges from 3000 to 3300 feet in height; that of Méjean has nearly the same average altitude, but has peaks some 1000 feet higher. Between these tre "causses" the Tarn flows through a series of landscapes which are anong the most picturesque and grand in France. The Lot and the Tarn, the two most important tributaries of the Gareune, both have their sources in this department, as also have the Allier, the two Gardons, which unite to form the Gard, the Cèze, and the Chassezac with its affluent the Altier. The climate of Lozère varies greatly with the locality. The mean temperature of Mende, the capital, is below that of Paris; that of the mountains is always low, but in the "causses" the summer is scorching and the winter severe; in the Cevennes the climate becones mild enough at their base ( 656 feet) to permit the growth of the olive. Rain falls in vivient storms, causing disastrous floods. On the Mediterranean versaut there are $78 \cdot 7$ inches, in the Garonne basin 45.5 , and in that of the Loire only 27.95 . The
general character of the department is pastoral ; only onefourth of the area is occupied by arable land; 91,500 acres are meadow, 155,700 wood, and 90,000 chestnut plantation. The number of sheep (which is doubled in summer) is 300,000 ; there are 50,000 head of cattle; and pigs, goats, horses, asses, and mules are also reared. Bees are also kept, and, ameng the Cevennes, silkworns. The export of clestnuts from the Cevennes is considerable. Rye is the chief cereal; but nats, wheat, meslin, barley, and many potatoes are also grown. Great care is bestowed on cultivation in the valleys adjoining the Ardeche; fruit trees and leguminous plants are irrigated by small canals ("béals") on terraces which have been made or are maintained with much labour. The department yields argentiferows lead (Villefort), slates, and mineral waters, among which those of Bagnols are most frequented. The exportation of its antimeny, manganese, marble, and lithographic stones is undeveloped as yet. The tufa of Mende is well adapted for building purposes. The manufactures are unimportant. The population in 1876 was 138,319, having decreased by 5000 since 1801 , and by a still greater number since the end of the 17 th century. There are about 20,000 Pretestants. The arrendissements are three (Mende, Florac, and Marvejols), the cantons twenty-four, and the communes one hundred and ninetysix.

LUBECK, a free city of Germany, situated in $53^{\circ} 52^{\prime}$ N. lat. and $10^{\circ} 41^{\prime}$ E. long., on a gentle ridge between the rivers Trave and Wakenitz, 10 miles S.W. of the mouth of the former, and 40 miles by rail N.E. of Hamburg. Old Liibeck, the chief emporium of the Slav inlabitants of Wagria (Enst Holstein), stood on the left bank of the Trave, where it is joined by the river Schwartau, and was ulti-

mately destro od in 1138. Five years later Count Adolphus II. of Holstein founded new Lübeck, a few miles farther up, on the peninsula Buku, where the deep curreat of the Trave is joined on the right by the Wakenitz, the bread emissary of the Lake of Ratzeburg. A most escellent harbour, well sheltered against pirates, it became almost at once a successful combetitor for the commerce of
the Baltie. Its foundation coincided with the beginning of the genemal advance of the Low Gcrman tribes of Flanders, F'riesland, and Westphnlia along the southern shores of the great inland sea,-the secund great emigration of the culonizing Saxon element. In 1140 Wagria, in 1142 the country of the Polabes (Ratzeburg and Lauenburg), had been annesed by the Holtsatns (the Transilbingian Saxons). From 1166 onwards there was a Siaxon connt at Schwerin. Frisian and Saxon mercliants fromı Socst, Bardewieck, and other locnlities in Lower Germany, who already navigated the Baltic and had their factory in the distant isle of Gothland, sattled in the new town, where Wendish speech and customs never entered. About 1157 Henry the Lion, duke of Saxony, forced his vassal, the count of Holstein, to give up Lubeck; and in 1163 he renoved thither the tottering episcopal see of Oldenburg (Stargard), founding at the same time the dioceses of Farzeburg and Schwerin. He issued the first charter to the citizens, and deliberately constituted them a free Saxon community liaving its own magistrate, an inestimable advantage over all other towns of his dominions. He invited the traders of the towns and realms of the north to visit his new market free of toll and custom, provided his subjects were promised similar privileges in return. From the very beginning the king of Denmark granted them a settlement for their herring fishery on the coast of Schoonen. Adopting the statutes of Soest in Westphalia as their code, Saxon merchants exclusively ruled the city. In concurrence with the duke's reeve they-recognized only one right of judicature within the town, to which nobles as well as artisans had to submit. Under these circumstances the population grew rapidly in wealth and influence by land and sen, so that, when Henry was attainted by the emperor, who had come in person to besiege Lübeck, Barbarossa, "in consideration of its revenues and its situation on the frontier of the empire," fixed by charter, dated September 19, 1188, the limits, and enlarged the liberties, of the free town. Evil times, however, were in store when the Hohenstaufen dynasty became more and more involved in its Italian projects. In the year 1201 Luibeck was conquered by Waldemar II. of Denmark, who prided himself on the possession of such a city. But in 1223 it regained its liberty, after the king had been taken captive by the count of Schwerin. In 1226 it was incorporated as an independent city of the empire by Frcderick II., aud took an active part with the enemies of the Danish king in the victory of Yornhövd, 1227. The citizens, distinguished by the firmness and wisdon with which they pursued their objects, and fully conscious that they were the piuneers of civilization in the barbarian regions of the north-east, repelled the persistent encroachments of their dynastic neighbours alike in Holstein and in Mecklenburg. On the other hand their town, being the principal emporium of the Baltic by the middle of the 13 th century, acted as the firm ally of the Teutonic knights in Livonia. Generation after generation of crusaders earbarked to found new cities and newosees of Low Germaa speech among alien and pagan reees; and thus in the course of a century the commerce of Liibeck had fully supplanted that of Westphalia. In close connexion with the Germans at Wisby, the capital of Gothland, and at Riga, where they harl a house from 1231, the people of Libheci with their armed vessels scoured the sca between the Trave and the Neva. They were encouraged by papal bulls in their brave contest for the rights of property in wrecks, and for the protection of shipping against pirates and slave-hunters. Before the close of the century the statutes of Luibeck were adopted by most Baltic towus having a German population, and Wisby mised her protest in vain thant the city on the Trave harl become the acknowledged court of appeal for nearly all these cities, and eren for the German settlement in

Kussian Noivgorod. In course of time more than a hundred places were embraced in this relation, the last vestiges of which did not disappear uutil the beginning of the 18th century. Hithcrto only independent inerchants, individual Westphalian and Saxon citizens, had Hocked together at so many out-lying posts. From about 1299 Liubeck presided over a league of cities, Wismar, Rostock, Stralsund, Greifswald, and some snaller ones, commonly called the Wendish towns. A Hansa of towns became heir to a Hansa of traders simultaneously on the eastern and the western sea, after Lübeck and her confederates had been admitted to the same privileges with Cologne, Dortmund, and Soest at Bruges and in the Steclyards of London, Lynn, and Boston. Such progress of civic liberty and federal union held its own, cliefly along the maritime outskitts of the empire, rather against the will of king and emperor. Nevertheless Rudolf of Hapsburg and several of his successors issued new clarters to Liibenk. Charles IV., who, like his son after bim, deliberately opposea all confederacies of the Franconian and Swabian towns in Upper Germany, surrendered to the municipal goverument of Litheck the little that remained of inuperial jurisdiction by transferring to them the clief responsibility for preserving the public peace within the surrounding territories. Under these circumstances the citizens, like independent members of ti:e empire, stond, valiantly together with their sister towns against encroaching princes, or joined the princes against the lawless freebooters of the nobility. As early as 1241 Lübeck, Hamburg, and Soest had combined to secure their common highways agaiast robber knights. Solemn treaties to enforce the public peace were coucluded in 1291 and 1338 with the dukes of Brunswick, Neckilenburg, and Pomerania, and the counts of Holstein. From Libbeek families, the descendants of Low German immigrants with a certailn admixture of patrician and even junker blood, arose a number of wise councillors, keen diplomatists, and brave warriors to attend almost incessantly the many diets of the league, to decide squabbles, petty or grave, of its members, to interfere with shressd consistency when the authorities in Flanders, or king and parliament in England, touched their ancient commercial privileges, to take the command of a fleet against the kings of Norway or Denmark. Though the great federal arriament against Waldemar IV., the destroyer of Wisby, was decreed by the city representatives assemhled at Cologne in 1367, Lïbeck was the lending spirit in the war which ended with the surrender of Copenhagen and the glorious peace concluded at Stralsunnd on 24 th May 1370. Her burgomaster, Brun Warendorp, who commanded in person the combined naval and land forces, died bravely in harness. In 1368 the seal of the city, a double-headed imperial eagle (which in the 14th century took the place of the more ancient ship), was expressly adopted as the common seal of the confederated towns (civitates maritimæ), some seventy of which had united to bear the brunt of the strife. By and by, however, towards the end of tie 15 th century, the power of the Hanseatic League hegan slowly to decline, owing to the rise of Purgundy in the west, of Poland and Russia in the east, and tie emancipation of the Scundinavian kingdom from the fetters of the union of Calmar. ' Still Lïbeck, even when nearly isolated, strove manfully to preserve its predominance in a war with Denmark (1501-12), supporting Gustavus Vasa in. Sweden, lording it over the north of Europe during the yenrs 1534 and 1535 in the person of Jürgen Wullenwever, the democratic burgomaster, who professed the most advanced principles of the lieformation, and engaging with Sweden in a severe naval wiar (1563-70). Before the end of the century the old privileges of the London Steelyard were definitely suppressed by Elizabeth. As early as 1425 the reynlar
shoals of herring, a constant source of early wealth, began to forsake the Baltic waters. Later on, by the discovery of a new continent, general commerce was diverted into new directions. Finally, with the Thirty Years' War, misfortunes and ruin came thick. The last Hanseatic diet met at Lübeck in 1630, shortly after Wallenstein`s unsuccessful attack on Stralsund; and from that time merciless sovereign powers stopped free intercourse on all sides. Danes and Swedes battled for the possession of the Sound and its heary dues. The often ckanging masters of Holstein and Lauenburg abstracted much of the valuable landed property of the city and of the chapter of Liibeck. Still, torards the end of the 18 th century, there were signs of improvement. Though the Danes temporarily occupied the town in 1801, it preserved its freedom and gained some of the chapter lands when the imperial constitution of Germany was broken up by the Act of February 25, 1803. Trade and commerce prospered marvellously for a few years. But in November 1806, when General Blücher, retiring from the catastrophe of Jena, had to capitulate in the vicinity of Lübeck, the town was taken and sacked by the enemy. Napoleon annexed it to the empire in December 1810. But it rose against the French, March 19, 1813, was reoccupied by them till the 5th December, and was ultimately declared a free and Hanse town of the German Confederation by the Act of Vienna, June 9, 1815. The Hanseatic League, however, having never been officially dissolved, Liubeck still enjoyed its traditional connesion with Bremen and Hamburg. In 1853 they sold their common property, the London Steelyard. Till 1866 they enlisted by special contract their military contingents for the German Confederation. Down to the year 1879 they had their own court of appeal at Luibeck. The town, however, joined the Prussian Customs Union as well as the North German Union in 1866, profiting by the final retirement from Holstein and Lauenburg of the Danes, whose intcrference bad prevented as long as possible a direct railroad between Liubeck and Hamburg.

Liibeck through many changes in the course of eight centuries has preserved its republican government. At the first rise of the town, justice was administered to the inhabitants by the rogt (reeve) of the count. Simuitaneously with the incorporation by Henry the Lion, who presented the citizens with the privileges of mint, toll, and market of their own, thero appears a magistracy of six persons, elected probably by the reero from the schoffen (scabini, probi hoinines). The members of the town council had to be frecmen, bern in lawful wedlock, in the enjeyment of free property, and of unstained repute. Vassals or eervants of any lord and tradespeople were excluded. A third of the number had annually to retire fer a year, so that two-thirds formed the sitting, tho other third the reposing council. By the middle of the 13the centary there were two burgomasters (magistri burgensium, mayistri civium, proconsules). Meanwhile the number of magistrates (consulcs) had largely increased, but was indefinite, ranging from twenty to forty and upwards. The council appointed its ovn officers in the various brancles of the udministration,-chancellor, chaplain, surgeon, stadesscriverc (recorders), notaries, seeretaries, marshal, censtablo, keeper of the ordnance, miessengery, watehmen. In tho face of so much self.gevernment the rogt by and by ranished completely. IIe is by no means to be confounded with the rector, a neighbonring prince, whem the Liiboekers occasionally adopted ns their honorary guardian. There were three classes of inhabitants-full freemen, half freemen, guests or foreigners. I'eoplo of Siav origin being considered unfree, all intermarriage with them tuinted the blood. Hence nearly all surnames point to Saxon, especially Westphalian, and even Flemish descent.
Sinco the end of the 13 th century the city has been entered by the same getes and traversed by the same strects as at the present day. Stately churches of the Gothic order in glazed lrick rose s!?wly,-last not least St Mary's or Dic Rathskirche close to the Rathhaus (tern-hall) and tho spacious market-place with its long rows of booths and the pillory. Within its precincts is the Dom (cathodral) dedicated to St Nicholas, the patron onint of navigaters; in Protestant times down to 1803 the secularizcd chapter was generally presided over by a prince of the ducal houso of Gottorp. There were magnificent convents of the Dominicane, the Franciscans, aud the nuns of St Clara. The population,
when the city and tho Hansa were In full power abont 1400, can seareely have been under 80,000 . But such prosperity was not obtained by foreign commerce alone, though this was the principal occupation of the upper classes:-the Junker or Zirkel cempany, a sort of patriciate (since 1379); the merchant company, also patrieians, but mostly "rentiers"; the "nations" of the Bergcnfaherer, Schonenfahrer, Novgorodfahrer, Rigafuhier, Slockholmfahrer. From the very beginuing various tradespeople and handicraftsmen lad settled in the town, all of them freemen, of German parentage, and with preperty and houses of their own. Though not eligible for the council, they shared to a certain extent in the self-government through the aldermen of each corporation (amt, otticium, guild), of which some appear as early as the statutes of 1240, ond many more arise and disappear in course of time under authority of the council and the guidance of certain police magistrates (wellcherren). A number still exist, and own their old picturesque gable houses. The rolls of nearly all have been kept most carefuliy. Naturally there arose much jealousy betreen the guilds and the aristocratic companies, which exclusively ruled the republic. After an attenipt to upset the merchants bad been suppressed in 1384, the guilds succeeded under mere favourable circumstances in 1408 . The old patrician council left the oity to appeal to the Hansa and to the imperial autherities, while a new council, elected chiefly from the guilds, with democratic tendencies, took their place. In 1416, however, there was a complete resteration, owing to the interference of the confeclerated cities and of tro kings of the Romans, Rupert and Sigismund. The aristocratic government was expelled a second time when democracy and religious sectaranism got the upper hand under the dictatorship of Wullenwever, till the old order of things was once more re-established in 1535. Nevertheless the medixval church had been finally supplanted by the Lutheran Reformation, and the tendency to increase the political privileges of the commonalty appeared again and again. In the constitution of 1669, under the pressure of a great public debt, the seven upper companies yielded to (8) tho Gewandschncider (merchant tailors), (9) the grocers, (10) the brewers, (11) the mariners, and (12) the combined four great guilds, viz., the smiths, bakers, tailors, and shoemakers, a specified share in the financial administration. Nevertheless they continued to cboose the magistrates by co-optation among themselves. Three of the four burgomasters and two of the senaters, however, henceforth had to bo graduates in law. Their constitution, set aside only during the French ascendency, has subsequently been slowly reformed. From 1813 senatorial and civic deputies joined in the administration of an annual budget of income, expenditure, and public debt. But the reform committee of 1814, of which the object was to substituto for the rule of the old companies a wider participation of the citizens in their common affairs (most of the learned professions, many proprietors, ond the suburban pepulation being without any renresentation), had made very little progress, when under tio piessure of the events of the year 1848 a representative assembly of one hundred and twenty members, elected by universal suffrage, obtained a place beside the senatorial government. By the constitution of the 29th December 1851 the senate, for which all citizens above thirty years of age are eligible, has at present fourteen members. Eight must be taken from the learned professions, of whem six have to be lawyers, while of the rest five ought to be merchants. Every second year the offices and depertments are redistributed, to be in most cascs administered conjointly with deputies of the assembly. The president of the senate, chosen for two years, retains the old title of burgomaster. Tho members of the assembly, which participates in all public affairs, are elected for six years, and must be summoned at leust six times a year, while a committee of thirty members meets every fortnight simultaneously with the periodical sessions of the senate. These truly democratic institutions have beun sarcely at all molified by the resuscitation of the German cmpire under the king of Prussia. But evidently the ancient repnblie has lost some impartant attributes of a sovereign state by giving up its own military contingent, its right of levying customs, its coinage, its postal dues, its judicature, to the new national empire. On the other hand, it has preserved its municipal self-government and its own territory, the inhabitants of which now enjoy equal political privileges with the citizens. The territory, of obout $5 \frac{1}{3}$ German square miles (116 Eng. eq. m.), partly extends towards the month of the river Trave, where the borough of Travenuinde has been the property of Libbeck siuce 1329, and partly consists of numerous villages, manors, farms, and corn, pasture, and forest lands seattered over the adjoining portions of the duchics of Ilolstein and Lanenturg. The manor and boreugh of Bergedorf on the Flbe, if German square miles, long held by Luibeck in common with llamburg, was ceded to the latter by treaty of 1st July 1867. The lands which remain to Litbeck are thinly penpled, for, according to the census of 1875 , of the total of 56,912 juhabitants 44,799 lived in Lubeek itself. The vast majority, 55,693, are IAtheran Protestants, whose service continues in the magnificent city churches, the cathedral, twe parishes ot Travemunde, and the four country parishics. A celebrated high
school (gymmaslum) is situated in the spaclors buillings of St Catharine, formerly the house of the Franciscans. The charitable mstrtutions enjoy a large, well-adninistored property, chiefly the Iands of the monastery of St John and the hospital of the Holy Ghost. Since 1789 there has existed a "Gesellschaft zur Beforderung Germeiunuitziger Thatigkeit," with a branch union for the history and the antiquiticstof Libeck, which has collected a valuable museum and promotes important historical publications, the materials of which are kept in the most unique muicinal archives iu existence. The income and expenditure of the Lubeck budget of 1881 balance with 2,739,382 marks; the public debt anounts to $23,804,913$ marks.
The manulactures of the torn are numerous, but not large or im portant (woollen, linen, cotton, and silk goods, leather wares, hardware, tohacco, anl preserves). The commeree, on the other hand, is considcrable, the chief exports being corn, cattle, wool, timber, and iron ; whilo wines, silks, cottons, hardware, colonial prolucts, and dye-stuffs are importod. There is regular steamship communicatiou with Copenhagen and the Baltic ports, and four lines of railway converge in Luibeck. Since the deepening of the Trave (1850-54) sea-going ships can come up to Liibcok itself; formerly they requircd to unload at Travemuinde. In 1878 the local shipping of Lubeck amounted to 46 vessels of 10,223 aggregate tonnage ( 27 steamers, 1504 horsc-power, 6463 tons). In 18772302 vessels (981 steamers) with a tonnage of 301,910 cntered, and 2332 vessels (979 steamers) with a tonnage of 307,567 cleared the port.
Sce Codex Diplomaticus Lubicensir, 6 vols., 184.3-81; C. W. Pauli, Lübeckische Zustände zum Anfang des vierzehnten Jahrhunderts, 1847: Waitz, Lübeck unter Jïrgen Wullenwecer, 3 vols, 1855, 1856; W. Mansel's "Luibcck" In Bluntschli and Ptater, Deutsches Staatsuörterbuch. iv. p. 731; Wehrmann, Dis älteren Lübecrischen Zunflrollen, 18i2; D. Schäler, Die Hansestädle und König Walde mar von Dünenark, 1879.
(R. P.)

LUBLIN, a totra of Russian Poland, capital of the prorince of same name, 60 miles south-enst of Warsaw, on the Bistrayca, a tributary of the Wieprz. It is the most important town of Poland after Warsaw and Lodz. It has an old citadel, many churches, and several educational and charitable institutions, and it is the see of a bishop. Lublin is one of the chief centres of the manufacture of thread-yarn and of linen and hemp goods (to the value of more than $£ 250,000$ ), as well as of woollen stuffs; there is also an active trade in corn and cattle. The three annual fairs have a certain importance for the neighbouring district. The population in $1873{ }^{\circ}$ was $28_{2} 900$, and is rapidly increasing.
The date of the fonndation of Lublin is unknown, but it was in existence in the 10th certury, and has a clurch which is said to have been built in 986. Duing the time of the Jagellons it mas the most important city between the Vistula and the Dnieper, having 40,000 inhahitants ( 70,000 according to other authorities), and keeping in its hands all the trade with Podolia, Volhynia, and Red Russia. Indeed, the present town is surrounded with heaps of ruins, which prove that it formerly covered a mucl larger area. But it was frequently destroged by the inroads of Tartars aud Cossacks. In 1568 and 1569 it was the seat of the stormy convention at which the union between Poland and Lithuania was decided. In 1702 another convention was held in Lublin, in favour of Augustus 1I. and against Charles XII., who carried the town by assault, giving it over to his arny to be plundered, and stayed for six weeks at Jacohowice, the estatt of Prince Lubomirsky, in the immediate neighbourhood. In 1831 Lublin was taken by the Russians after a battle. The whole surrounding country is rich in historical reminiscences of the struggle of Poland for independence.

LUBRICANTS are fluids whicu are interposed between solid machine sarfaces that are required to slide on each other. The object is to lessen the friction, which is injurious both in weariog away the surfaces, and thus destroying the fit between them, and in dissipating and rendering useless part of the energy transmitted through the machine. The difference between the wear on unlubricated and that on- Jubricated surfaces is so serious that a comparison between the cost of lubrication and the money saving in avoidance of repairs is superfluous. But the difference in wear when two different lubricants are used is not very great, and the proper choice between the two lubricants depends on a comparison of their cost with the amount of working power they save from dissipation. If the price of oil per gallon, inclusive of wages for its application to the journals, \&sc., be $p$; if, ia order to
lubricate as well as can be done with this oil any one wrorking surface or set of such surfaces, it is necessary to use the fraction $g$ of a gallon of oil per hour ; if, with the use of this quantity of the oil, there is still wasted in friction at these surfaces H horse-power; and if the cost in fuel, water, wages, repairs, \&c., of the working energy is P per hour per horse-power; then the money loss per hour caused by the friction is $\mathrm{pg}+\mathrm{PH}$. By comparing the ralues of this quantity for two oils, it can be determined which it is more advantageous to use. Of the commonly used oils, the higher priced are much more efficient.as lubricants. If two oils of which the same amount requires to bs used bave the prices $p_{1}$ and $p_{2}$, and allow $\mathrm{H}_{1}$ and $\mathrm{H}_{2}$ horse-power to be wasted, then the moky advantage to be gained par hour by using the first (the higher priced) rather than the second ie $\mathrm{P}\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right) \cdot \cdot\left(p_{1}-p_{2}\right) g$. This is positive if

$$
\frac{\mathrm{H}_{2}-\mathrm{H}_{1}}{g}>\frac{p_{1}-p_{3}}{\mathrm{P}}
$$

If this inequality is fornd not to be true in any special comparison, then the cheaper oil should bo used. I varies from $\frac{3}{4} \mathrm{~d}$. to over $1 \frac{1}{2} \mathrm{~d}$., accordiag to the class of engine aud boiler and to the good or bad management of the works, while $p_{1}-p_{2}$, in comparing the extremes of cheap and expensire commercial lubricants, amounts to 2 s . 6 d . or more.

To compare the advantages of using a larger or smaller amount of the same oil, let $g_{1}$ and $g_{2}$ be the quantities used, and the resulting wastes of horse-pormer be $\mathrm{H}_{1}$ and $\mathrm{H}_{2}$. Then the use of the larger quantity $g_{1}$ will be economical if

$$
\mathrm{P}\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)-p\left(g_{1}-g_{2}\right)>0 \text {; or } \frac{\mathrm{H}_{2}-\mathrm{H}_{1}}{g_{1}-g_{2}}>\frac{p}{\mathrm{P}} \text {. }
$$

Consideriag the meaning of this inequality in the two cases of a bigh-priced and of a low-priced oil, in the former case $\frac{p}{\mathrm{P}}$ has a larger value, while $\frac{\mathrm{H}_{2}-\mathrm{H}_{1}}{g_{1}-g_{2}}$ has also a larger value thon in the latter case. In both cases this latter fraction decreases with increase of $g_{1}$; but it decreases more rapidly in the case of a high-priced than in that of a low-priced oil, because the former is a better lubricator. Thus with the dearer oil the limit beyond which it is uneconomical to increase the consumption of oil is reached sooner than with the cheaper, and it follows that of the cheaper oils it is best to use a large quantity, while of the dearer a smaller amount is what is most usefully employed. If the law according to which $H$ varies with $g$ bo found for any oil, by experiment or otherwise, then the exact most economical quantity can be found by differentiating $p g+\mathrm{PH}$ with respect to $g$, and equatiog the differential coefficient to zero; thus

$$
\frac{d \mathrm{H}}{d g}=-\frac{p}{\mathrm{P}},
$$

When $\frac{d \mathrm{H}}{d g}$ is expressed in terms of $g$, gives this most economical value of $g$. An example of the actual yalues of the quantities involved in these formulas is given by an experiment by Van Cleve on a jonrnal 6 inches in diameter by 7 inches long, in which the coefficient of friction was found to be about 0.07 , and there was wasted $3 \cdot 4$ borsepower when 023 of a gallon was used per hour.

Of the animal oils and fats suitable for lubrication those commonly used are sperm, lard, neats-foot, tallow, and common whale oil. Of regetable oils olive, cotton-seed, and rape-seed are extensively emplojed, the first mostly in those countries where the olire is grown, and generally in the pure condition, while the last two are more used for mising with higher class and more expensive oils. Various fish oilis are also much used, and mineral oils now form a
large proportion of the many lubricating compositions that are in use. For machinery where considerable pressure is exerted between the bearing surfaces the mineral oils are too thin, or, as it is termed, are too wanting in "body" to be quite suitable without being mixed with an animal or regetable oil. Unless a lubricant has considerable "body" it is quickly pressed out of the bearing, and an unnecessarily rapid supply bas to be provided. The same oil may be used several times over, and several ingenious designs of bearings for rotating slafts, such as Player Brotbers' or Taylor \& Challen's, whereby the shaft itself as it runs round continually pumps up again to the top of the bearing the oil that has once been used, have been very successful in practice. If an automatic arrangement of this sort is not employed, the oil dripping from the bearing should be collected in a pan and used again to fill the oil-cups. The oil gets gradually worn out as a lubricant by becoming filled with dirt, partly the dust of the atmosphere and partly the minute iron and brass dust that is continually rubbed of the bearing surfaces. Oils that have been used two or three times can be to a certain extent repurified by washing in a solution of carbonate of soda or potash and chloride of calcium in boiling water. But it must not be supposed that. with repurification an oil may be used an indefinite time as a lubricant. A large portion of it is actually eraporated by the heat caused by the friction at the journal, and the unevaporated portion seems to undergo sonie chemical change injurious to its lubricating properties. Vegetable oils are peculiarly rich in volatile constituents, and it is this fact probably, even more than the greater cheapness of mineral oils, that has led to the largely increased use of the latter in the lubrication of machinery.

The quality of an oil may be tested by chemical analysis; by measurement of density and viscosity; by observation of the temperature necessary for ignition in the atmosphere, or, as it is called, the "flashing" tempcrature; by observation of the succession of figured patterns produced when a single drop of the oil is let fall upon the surface of pure water in a clean dish; by the measurement of the temperatures to which a journal rises when running at different speeds and under different pressures, and when supplied with a given amount of the lubricant per minute; and by the measurement of the coeficient of friction at the same journal with varying speeds of rotation and pressures. The last two methods of test are the most interesting and directly useful from a mechanical point of view, i.e., considering the oil as a lubricant sitoply.
The machine designed and used by Professor Thurston of the Stevens Institute of technology is the hest that has yet been constructed to carry out these tests. In it a syindle is revolved in horizontal bearings by a belt from the main slaft of the workshop of the 1nstitute. On the overhanging end of this spindle is formed a journal from which is lung a heavily-weighted rod. The hearings in this rod by which it hangs on the journal are of brass, and the two halves are pressed down upon the journal with any desired pressure by menns of a spiral spring placed in the centre of the rod. The weight of this pendulum prevents it revolving along with tho spindle, , but the friction at the journal deflects the penduhum from the rertical througlo an angle whose sine is a mensure of the frictional effort. Thcie is also inserted in the bearings a thermometer by which the effect of the friction in increasing the temperature is observed. With this macline Professor Thurston las obtained extrenely interesting results regarding the variation of the coeflicient of friction with temperature, pressure, and velocity of rubbing. These are summas:zcil as follows. With great intensity of pressure and low velocity, the friction increases as the temperature is raised; hut for cach low velocity the rate of increase of friction with temperaturo becomes slower as the pressure dinuinislics, nnd becomes zero at a certain limit'of pressure which is higher the higher the velocity is. With high velocities the variation of friction with temperaturo is in the opprosite direction within the limits of pressure gommonly used. Again at a given temperature and a given pressure the frictiou first decieases very rapidly with increase of velocity, and then above a certain limit of velocity increases again slowly with further increase of velocity. The limit of velocity at which
the direction of variation clanges from negative to positive does not appear to depend on the intensity of yressure, but the change occurs at much lower: velocity-limits with low than with high Icmperatures. Thirdly, with a given temperaturo and a given velocity the coellicient of friction, i.e, the ratio of frictiou to normal pressure, at first decreases rapiuily with increase of pressure at low pressures, and then at higher pressures increascs agaiu mith the pressure. This law seems to hold for all temperatures ancl all velocities ; but how the limit of pressure at which the variation changes in direction is altered by alteration of temperature and velocity is not as yet certainly determined.
It is thus seen that the variation of friction at lubricated journals is extremely complicated, and has no resemblance to the simple law of constunt proportionality between the friction and the normal pressure which until lately was commonly believed to hold good for unlubricated flat surfaces. This simple law is really true for mauy unlubricated surfaces and through a tolerably wide range of conditions, but is not true for all such surfaccs, or under all, and esperially extreme, conditions of pressure, velocity, and temperature.
Professor Thurston has endeavoured to represent these resnlts in algebraic formule, but the number of his experiments seems hardly sumficient to establish any general nathematical law which will be true under all circumstances, and the particular iormule which he has adopted give values differing very considerably from those given by some of his experiments.
The friction at a lubricated journal depends really much more on the riscosity of the lubricant than on the frictional properties of either of the solids, which never come in contact when the Jubrication is carefully attended to. The layer of oil immediately in contact with either solid prohably does not move at all relatively to the solid. The rubbing, therefore, in all probability takes place hetween two surfaces, or rather between an indefinitely large number of pairs of surfaces, of oil. The viscosity of the oil, which hinders this relative motion, is, howerer, sery likely affected by the adhesive force between the solid and liquid surfaces, because, especially if the intensity of bearing pressure be great and the film of lubricant consequently very thiu, some at least of the liquid motion will take place within the sphere of action of the cohesive. forces.
It is of the greatest importance in order to secure economy in thē use of lubricants to maintain the supply to each journal at a constant uniform rate. To effect this, numberless "automatic lubrid cators" have been invented. The common syphon oil-cup is very efficient so long as the rate of working is steady; but the supply does not antomatically vary with the requirements. The "needle" lubricator allows the oil to flow down to the journal through a small straight tube in which is placed a wire which nearly blucks up the tube. When the wire is motionless the dimensions of the space, between the wire and the tube are capillary, and no oil lows. When the shaft runs, however, its surface scraping on the end of the wire throws it into continual vibration, and this allows a slow stream of oil to pass downwards which is auttomatically regulated in accordance with the speed of revolution. The necessity of very perfect lubrication of the cylinders of gas engines, which rmm at a high speed and at a high temperature, has led to the adoption by Messis Crossley Brothers of an extremely neat and perfect arrangement. A small crank on the end of a spindle, driven at a rate proportional to that of the engine, has suspended from the crank pin a short wire pendulum. At the lower part of the revolution this pendulum dips into a basin of oil and lifts a drop from it. In the upper half of the circular motion, the wire is dragged over a little scraper extending over the open month of a pipe. This scrapes the drop off the pendulun, and the drop falls from the scraper into the tube, along which it flows to the surface to be Jubricsted. The number of drops is thus nccurately proportioned to the speed of the engine, and the size of drop cau he variod by using smaller or larger wire for the pendulum.
Table of Corficients of Friction on Cast-Tron Jourmals at Tempsia tuere $70^{\circ} \mathrm{F}$. and V'locity 750 Fect per Minate (from Thurston).

| Same of Oll. | Fressure in B per sq. In, |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 8. | 16. | 32. | 48. |
| Natural Summer Sperm.......... | $\cdot 17$ | -16 | -10 | . 12 |
| " Winter . .......... | $\cdot 25$ | -14 | $\cdot 09$ | -08 |
| Bleached " ....... | -19 | -10 | -12 | -10 |
| Naturat Summer Whale .......... | $\cdot 20$ | -14 | $\cdot 11$ | - 09 |
| Winter Lard ....................... | -24 | -16 | $\cdot 14$ | -10 |
| Exira Neatsfoot | -29 | -16 | -12 | -11 |
| Tallow . | -18 | 15 | . 09 | -12 |
| Offre ................................... | -17 | -16 | $\cdot 17$ | . 09 |
| Refincd Cotton Seed.............. | -21 | -14 | -12 | -11 |
| Rape Sced ........................... | -18 | $\cdot 16$ | $\cdot 12$ | -11 |
| Menhaden ........................... | 0.5 | -12 | -10 | -17 |
| Kerosino ............................. | 23 | $\cdot 17$ | $\cdot 13$ | -17 |
| Paramin ................................ | -26 | -14 | -13 | 28 |

Other mineral oils than the kerosine and parafin givo a smallep coefficient. For mineral oils generally the lowest coefficient appear to occur at from 30 to 40 lo pressure por square inch. The suppls
of oil in the experiments ras intermittent, and must have been insufficient for the best lubrication.
Table of Coefficients of Friction bctreecn Stcel Journals and Bronze Bearings lubricated with Sperm Oil, and runt at different Pressures, Velocities, and Temperatures (from Thurston).

|  | Veloclty ia feet per m!nete. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 30. |  |  |  | 100. |  |  |  | 250. |  | 500. |  | 1200. |  |
|  | Press. to per sq. in. |  |  |  | Press. ib per 8q. in. |  |  |  | Press. It persq. In. |  | $\begin{aligned} & \text { Press. ID } \\ & \text { pirsq.in. } \end{aligned}$ |  | Press, it per sq. in. |  |
|  | 200. | 100. | 50. | 4. | 200. | 100. | 50. | 4. | 200.1 | 100. | 200. | 100. | 200. | 00. |
| 150 | . 050 | . 025 | -012 | -125 | . 014 | -002 | . 003 | . 063 | .005 | -003 | -005 |  | -006 |  |
| 130 110 | . 016 | .005 | -007 | -125 | -009 | -002 | -003 | .063 | .005 | $\begin{array}{r}003 \\ 004 \\ \hline\end{array}$ | -C05 | -004 | 006 007 | -007 |
| 90 | . 005 | -003 | -04 | -094 | -004 | . 002 | -003 | CS3 | . 007 | OCS | - 007 | -006 |  |  |

The journal upon which the abore rczulis reee obtained was 19 inches in diameter and $1 \frac{1}{2}$ inches long. With a larger journal the results would probably not be exactly the same.
(R. H. S. ${ }^{*}$ )

LUCAN. Marcús Anneus Lucanus, the most emineot Roman poet of the silver age, grandson of the rhetorician Seneca and nephew of the philosopher, was born at Corduba, November 3, 39 A.d. His father, Lucius Annæus Mela, had amassed great wealth as imperial procurator for the province. In a memoir by an anonymous grammarian, who may have abridged Suetonius, Lucan is said to have been taken to Rome at the age of eight months, to have displayed remarkable precocity, and to have incurred the displeasure of Nero by overcoming him in a poetical contest. The latter statement seems to be founded upon a misapprehension of a passage in Statius's Genethliacon Lucani; but it is certain that Nero, whether from jealousy, as Tacitus affirms, or on account of the republican spirit of Lacan's poetry, forbade him to recite in public, and that his indignation made him an accomplice in the conspiracy of Piso, 65 A.d. Upon the discovery of the plot he is alleged to have endeavoured to purchase safety by impeaching his own mother ("hoping," says his translator Gorges quaintly, "that this impiety might be a means to procure pardon at the hands of an impious prince"). The statement, however, of Tacitus, that letters were forged in his name to implicate his father, marrants the suspicion that the evidence agaiost his mother may also have been fabricated. Failing to obtain a reprieve, he caused his veins to be opened, and expired with great courage, repeating a passage from his Pharsalia descriptive of the death of a wounded soldier ("Lucan by his death approved," Shelley's Adonais). His father was involved in the proscription, his mother escaped, and his ridow Polla Argentaria survived to receive the homage of Statius under. Domitian.

Besides his principal performance, Lucan's works included juvenile poems on the descent of Orpheus and the ransom. of Hector, an unfinished tragedy on the subject of Medea, and numerous miscellancous pieces. The Carmen ad Pisonem sometimes attributed to him is now more commonly ascribed to Saleius Bassus. His minor works have perisned, but all that the author wrote of the Pharsalia has come down to us. It would probably have concluded with the battle of Philippi, but breaks off sbruptly as Cæsar, beset by foes, is about to plunge into the harbour of Alezandria. This incompleteness should not be left out of account in the estimate of its merita, for, with two capital exceptions, the faults of the Pharsalia are such as revision might have mitigated or removed. No such pains, certainly, could have amended the deficiency of unity of action, or supplied the want of a legitimate protaggnist. The Pharsalia follows history with inevitable sorvility, and is rather a metrical chronicle than a true epic. If it had been completed according to the author's design, Pompey, Cato, and Brutus must have successively cnacled the part of nominal hero, while the real hero is the arch enemy of liherty and Lucan, Cæsar. Yet these defects,
though glaring, are not fatal or peculiar to Lucan. The real hero of Paradise Lost, it has been repeatenly observed, is no other than Satan; and Shakespeare himself succeeded no better than Lucan in preserving unity of action when he wroto his Julius Cæsar. - The false taste, the strained rhetoric, the ostentatious erudition, the tedious harangues and far-fetched or commonplace reflexions so frequent in this singularly unequal poem, are faults much more irritating, but they are also faults capable of amendmeni, and which the writer might not improbably have removed. As pointed out by Dean Merivale, the bombastic style of composition which prevailed under Nero yielded to a more sober taste under the Flavian dynasty; and the lapse of time would have contributed to mellow the poet's immaturity and chasten the ardour of temperament which made him essay great themes "ante annos Culicis Maroniani." Great allowance should also be made for the difficulties the highest genius must encounter when emulating predecessors who have already carried art to its last perfection, and thus necessitated to choose between mere imitation and a conscious effort after originality. Lucan's temper could never have brooked the former course; his versification, no less than his subject, is entirely his own; he avoids all resemblance to his great predecessor with a persistency which can only have resulted from deliberate purpose, while largely influenced by the declamatory school of his grandfather and uncle. Hence his partiality for finished antithesis, contrasting strongly with his generally breathless style and turbid diction. Quintilian sums up both aspects of his genius with pregoant brevity, "Ardens et concitatus eto sententiis clarissimus," adding with equal justice, "Magis oratoribus quam poetia annumerandus." Lucan's oratory, however, frequently rises into the region of poetry, especially where it aets forth ideas essentially sublime, and impressive in the mere statement. Such are the apotheosis of Pompey at the beginning of the ninth book, and the passage in the same book where Cato, in the truest spirit of the Stoic philosophy, refuses to consult the oracle of Jupiter Ammon. The exordium of the poem, and the portraits of Cæsar and Pompey, are examples of oratory blazing up into poetry, as a wheel takes fire by friction. In some cases Lucan'a rhetoric is frigid, hyperbolical, and out of keeping with the character of the speaker, as in Cæsar's eddress to his legions before Pharsalia; in general, however, it may be said that the more he is of an orator or a moralist the more he is of a poet. If this denotes that his genius was not essentially and in the truest sense poetical, the same may be said of Dryden and Pope; and it at least provea him to have been in harmony with the living forces of his age, in which rhetoric was a note of culture and philosophical humanitarianism a growing idea, while poetry, though widely cultivated, was becoming more and more a mere urnamental accomplishment. This is not the case with Lucan; his theme has a genuine hold upon him; in the age of Nero he celebrates the republic as a poet with the same energy with which in the age of Cicero he might have defended it as an orator. But for him it might almost have been said that the Roman republic never inspired a Roman poet.

Lucan never speaks of himself, but his epic speaks for bin. The author of the Pharsalia must have been endowed with no common ambition, induatry, and selfreliance, an enthusiastic though narrow and aristocratic patriotism, and a faculty for appreciating magnanimity in others which is at least some presumption that he possesaed it himself. Ho probably bore a strong family resemblance to his uncle Sonsca; but the only personal trait positively known to us is his conjugal affection, a claracteristic of Sencea also

Lucan, together with Statius, was preferred even to Virgil in the Middle Ages. Se late as 1493 his cemmentator Sulpitius writes:-_"Magnus profecto est Maro, magnus Lucanus; adeoque prope par, ut quis sit major possis ambigere.". Shelley and Southey, in the first transport of admiration, theught Lucan superior to Virgil ; Pope, with more judgment, says that the fire which burns in Virgil with an equable glew breaks forth in Lucan with sudden, brief, and interrupted flashes. In general, notwithstanding the enthusiasm of isolated admirers, Lucan has been unduly neglected, but he has exercised an important influence upon one great department of modern literature by his effect upon Corneille, and through him upon the classical French drama.
The most celebrated editions of Lucan are those by Oudendorp ( 1728 ), Burmann (1740), and Weber (1829). Bentley's emendations are brilliant, but unsafe. The most elaborate criticism is that in Nisard's Etudes sur les Poêtes Latins de la Décadence, stern to the poet's defects and unkind to his deserts. Dean Merivale has some excellent observations in his History of Imperial Rome, chaps. liv. and Lxiv. Brebeur's French version is celebrated. Christepher Marlowe, a kindred spirit, translated the first book of the Pharsalia into English, and there are other old versions by Sir Ferdimand Gorges and Thomas May. The latter's supplement is one of the best exanples of modern Latin versification. Gorges's translation is in octosyllabic verse, and very curious. The standard English persion, by Rowe, is one of the mest auccessful translations in our language. It is somewhat too diffuse, but as a whole reproduces the vehemence and animation of the original with a spirit that leaves little to be desired.
(R. G.)

LUCANIA, in ancient geegraphy, was the name given to a province of Southern Italy, extending from the Tyrrhenian Sea on the west to the Gulf of Tarentum on the east, while to the north it adjeined Campania, Samnium, and Apulia, and to the south wss separated by a comparatively narrow isthmus from the province of Brutium, which ferms the southern extremity of Italy. It thus comprised the modern province of the Basilicata, together with the greater part of the Principato Citeriore and a small pertion of Calabria. The precise limits were the river Silarus on the derth-west, which separated it from Campania, and the Bradanus, which flows into the Gulf of Tarentum, on the north-east; while the two little rivers Lans and Crathis, flowing from the ridge of the Apennines to the sea on the west and east, marked the limits of the province on the side of Bruttium.

Almost the whele of the province thus limited is occupied by the rugged masses of the Apennines, which in this part of Italy can bardly be said to constitute a range of meuntains se much as a group of lefty masses, huddled together in a very irregular manner. The main ridge, however (if it be taken as determined by the watershed), approaches much more nearly to the western sea than to the Gulf of Tarentum, and is continued from the lofty knot of meuntains immediately on the frentiers of Samnium, nearly due south, till it approaches within a few miles of the Gulf of Policastro, and thenceforward is separated from the sea by only. a narrow interval till it enters the prevince of Bruttium. Just within the frontier of Lacania rises the very lefty group of Monte Pollino, the highest summit of which attains to an elevation of abeve 7000 feet, the greatest that is found in the southern Apennines. Towards the east the meuntains descend by a much more gradual slope to the Gulf of Tarentum, constituting long ridges of hills which subside by degrees to the strip of plain that immediately adjeins the shores of the gulf. This narrow strip is somewhat wider from the mouth of the Bradanus to that of the Siris, and again expands to a censiderable extent at the month of the Crathis, but between the twe a group of rugged hills descends quite to the sea, and forms the headland of Roseto. The consequence of this constitution is that while the rivers which flow to the Tyrrhenian Sea are of comparatively little importance, those that
descend towards the Gulf of Tarentun have much lenger courses, and attain to a considerable magnitude. Of these the most important are-the Bradanus (still called Bradano),' which rises near Potentia, and enters the gulf just to the nerth of the ruins of Metapentum; the Casuentus (Basiento), which has a course almust exactly parallel with the preceding; the Aciris or Agri ; and the Siris or Sinno. The Crsthis, which forms at its mouth the seuthern limit of the province, belongs almost wholly to Bruttium, but it receives a tributary, the Sybaris (Coscile), which flows from the mountains of Lucania. The only considerable stream on the western side of Lucania is the Silarus or Sele, which constitates its northern boundary, and bas two impertant tributaries in the Calor or Calore, and the Tanagrus, which joins it from the south, after flowing through one of those trpugh-like upland valleys so characteristic of the Apennines.
The province of Lucania was so called frem the people of that name, by whom it was conquered about the middle of the 5th century B.c. Previous to that period it was included under the general name of CEnotria, which was applied by the Greeks to the whole of the southernmost portion of Italy. The mountainous regions of the interior were occupied by the tribes known as Enotrians and Chenes, while the coasts on both sides were occupied by Greek colonies, which attained to great power and prosperity; and doubtless exercised a kind of protectorate over the interior alse. (See Grecta Magna.) The Lueanians were a Sabellian race, an offsheot of the Samnites of Central Italy, who pressed downwards towards the south until they gradually conquered the whole country (with the exception of the Greek towns on the coast) from the borders of Samnium and Campania to the southern extremity of Italy. Subsequently, however, the inhabitants of the peninsula which forms the extreme south (now known as Calabria) broke out into insurrection, and under the nanie of Bruttians succeeded in establishing their independence, after which the Lucanians became cenfined within the limits already described. After this time we find them engaged in hostilities with the Tarentines, and with Alexander, king of Epirus, who was called in by that people to their assistance, 326 в.c. It was immediately after this that they first entered into relations with Rome, with which they were sometimes in alliance, but more frequently engaged in hostilities, during the long-continued wars of the Romans with the Samnites. On the landing of Pyrrhus in Italy ( 281 B.c.) they were among the first to declare in his favour, and in conscquence found themselves exposed to the full brunt of the resentment of Rome when the departure of Pyrrhus left his allies at the mercy of the victorious Romans. It was not, however, till after several campaigns that they were reduced to complete subjection ( 272 B.c.). Notwithstanding this lesson, the Lucanians again espoused the cause of Hannibal during the Second Punic War ( 216 b.c.), and their territory became the theatre of war during several successive campaigns, and was ravaged in turn by beth contending armies. It is clear that the conntry never recovered the effects of these disasters, and under the Reman government Lucania fell inte a state of complete decay, to which the Social War ( $90-88$ в.c.) appears to have given the finishing stroke. In the time of Strabo the Greek citics on tho coast, once so rich and flourishing, lad fallen into utter insignificance, and the few towns of the interior wore poor places of no importance. A large part of the province was given up to pasture, and the mountains of the interior wore covered with vast forests, which abeunded in wild bosrs, bears, and wolves.
The torns on the enst coast, adjoining the Gulf of Tarentum, were-Metapontun, a few miles south of the Bradanus; Heraclea,
nt the mouth of the Aciris ; and Siris, on the river of the same name. Close" to its sonthern frontier stood Sybaris, which was destroyed in 510 - $E_{0}$, ,bnt subsequently replaced by Thurii, founded within a feym miles of the same site. On the west const stood Posidenia, byown under the Roman governuent as Pastum, imniediately Guth 'bF the Silarns; below that came Elea or Velia, Pyxus, cilled by the Romans Buxentum, and Laus, near the frontier of the province towards Bruttiun. . Of the towns of the interior, none of which ever attained to auy importance, the most considerable was Potentia, still called Potenzi, and now the capital of the Basilicata. To the north, hear the frontier of Apulia, were Acheruntia and Bantia ; while due south from l'otentia was Grumentunn, and still Farther in that direction, were Nerulun and Muranum. In the upland valley of the Tanagrus were Atina, Forum Popilii, and Eonsilhum ; Liburi (Eboli) and Volceii (Bucciuo), though to the north of the Silarus, were also included in Lueania.

For adninistrative purposes under the Roman empire, Lucania was always united with Bruttium. The two togethet constituted the third region of Augustus,
(E. H. B.)

LuCaris, Cyrillus (c. 1572-1638). See Greek Church, vol. xi. p. 158.
LUCAS of Leyden (c. 1494-1533) was born at Leyden, where his father Hugh Jacobsz gave him the first- lessons in art. He then entered the painting-room of Cornelis Engelbrechtszen of Leyden, and soon became known for his capacity in making designs for glass, engraviug copperplates, painting pictures, portraits, and landscapes in oil and distemper. According to Van Mander he was born in 1494, and painted at the age of twelve a Legend of St Hubert, for which as many forins were paid to him as he numbered years. He was only fourtcen when he finished a plate representing Mohammed taking the life of a friar, and at fifteen he produced a series of nine plates for a Passion, a Temptation of St Anthuny, and a Conversion of St Paul. The list of his engravings in 1510, when, according to Van Mander, he was only sixteen, includes a celebrated Ecco Homo, Adam and Eve expelled from Paradise, a herdsman and a milkmaid with three cows, and a little naked girl ruming away from a barking dog. It will be seen to what a variety of tastes the youthful artist was asked to cater. Whateycr may be thought of the tradition embodied in Van Mander's pages as to the true age of Lucas of Leyden, there is no doubt that, as early as 1508 , he was a master of name as a copper-plate engraver; and had launched his boat in the current which in those days led to wealth and to fanie. The period of the great masters of etching, which had not yet come for Holland, was being preceded by the period of the great masters in the use of the graver. It was the time when art readily found its patrons amongst the large public that could ill afford to buy pictures, yet had enough interest in culture to wish to educate itself by means of prints. Lucas of Leyden became the reprosentative man for the great public of Holland as Buirer became the representative man for the great public of Germany; and a rivalry grew up between the two engravers, which came to be so close that on the neutral market of Italy the products of each were all but evenly quoted. Vasari deroted almost equal attention to both, affirming jindeed that Dürer surpassed Lucas as a designer, but that in the use of the graver they were both unsurpassed, a sentence which has not been reversed by the criticism of our day. But the rivalry of the two artists was friendly. About the time when Dürer visited the Netnerlands Lucas came to Antwerp, which then flourished greatty as an international mart for productions of the pencil and the graver, and it is thought, not without reason, tháu ne was the master who took the freedom of the Antwerp guild in 1521 under the name of Lucas the Hullander. = In the diary which Dürer faithfolly kent during his travels in the Low Countries, we find that at Antwerp he met Lucas, who asked him to dinner, and that Dïrer accepted the invitation, and was much surprised at the smallness of the Dutchnan's stature. But he valued
the art of Lucas at its true figure, and exchanged tho Dutchman's prints for eight florins' worth of his own, In' course of time Lucas rose to more than a competence. In 1527 he made a tour of the Netherlands, giving dinners to the painters of the guilds of Middleburg, Ghent, Malines, and Artwerp. He was accompanied during the trip by Mabuse, whom he imitated in his style as well as in his love of rich costume. But festive cheer and banquets disagreed with Lucas. On his return home he fell sick and remained ailing till his death in 1533, and when he died he did so with the firm belief that poison had heen administered to him by some envious comrade.
As an engraver Lueas of Leyden deserves his reputation. He has not the genius, nor had he the tact, of Diirer; and he displays more eleverness of expression than skill in distribution or refinement in details. But his power in handling the graver is very great, andsome of his portraits, especially his own, are equal to anything that was done by the master of Nuremberg. Much that he accomplished as a painter has been lost, becauso he worked a good deal upen cloth in distemper. But some pictures have been preserved which fairly manifest the influences under which lie became productive. In 1522 he painted the Virgin and Child with the Magdalen and a kneeling donor, now preserved in the gallery of Munich. His manner was then very nurch akin to that of Mabuse. . The Last Judgment in the town-hall, wow the town-gallery of Leyden, is com. posed on the traditional lines of Cristus and Memling, furnished with monsters in the style of Jerome Bosch, and figures in the stilted attitudes of the South German school; the scale of colours in yellew, white, and grey is at onee pale and gaudy; the quaintest contrasts are produced by the juxtaposition of alabaster flesh in females and bronzed skin in males, or black hair by the side of yellow, or rose-coloured drapery set sharply against apple-green or black, yet some of the heads are painted with great delicacy, and modelled with exquisite feeling. Dr Waagen gave a most favourable opinion of a triptych now at the Hermitage at St Petersburg, executed, according to Yan Mlander, in 1531, representing the blind Inan of Jericho healcd by Jesus Christ in the presence of the apostles. Here too the great German ciritic observed the union of faulty composition with great finish and warm flesh-tints with a gaudy scale of harmonies. The same defects and qualities will he found in such specimens of the master's art as are still preserved in public collections, amongst which may be mentioned the Card Party at Wilton House, the Penitent St Jerome in the gallery of Berlin: and the hermits laul and Antiony in the Lichtenstein eolleetion at Vienna.

A few days before his death Lucas vau- weyden was informed of the birth of a grandson, firstborn of his only daughter Gretelen! Gretchen's fourth son Jean de Hoey followed the profession of his grandfathel, and became well known at the Parisian courtas painter and chamberlain to the king of France, Henry IV.

LUCCCA, a city of Northern Italy, the chief town of a province, an archiepiscopal see, and the seat of a court of assize, lies 13 miles by rail north-east of Pisa, in $43^{\circ}-50^{4}$ N. lat. and $10^{\circ} 28^{\prime}$ E. long. Situated 50 feet above the level of the sea, in the valley of the Serchio, the city look out for the most part on a horizon of hills and mountains. The fortifications-pierced by four gates -were commenced in 1504 and completed in 1645, and long ranked among the most remarkable in the peninsula. The city has a well-built and substantial appearance, its chief attraction lying in the numerous churches, which belong in the main to a well-marked basilican type, and present richly decorated exteriors, fine apsidal ends, and quadrangular campaniles The cathedral or church of. St Martin was begun in 1063 by, Bishop Anseln ; but the great apse with its tall columnan arcades is probably the only remnant of the early edifice! The west front, "built during the first forty years of the 13th century, consists of a vast portico of three magnificent arches, and above them three ranges of open galleries covered with all the devices of an exuberant fancy.". The ground plan is a Latin cross, the nave being 273 feet in length and 84 feet in width, and the transepts 117 feet in length. In the nare is a little octagonal temple or chape] built (1484) by Matteo Civitali, which serses as a shrine for the most precious of the Lucchese relics, a cedar-woc $\dot{\phi}$ crucifix, carved, according to the legend, by Nicodemus; and miraculoul? convejed to Lucca in is2. The Sacred

Countenance ( Tolto Santo), as it is generally called, because the face of the Saviour is considered a true likeness, is only shown thrice a year. The beautiful tomb of Maria Guinigi is described by Ruskin, Modern Painters, ii. The church of Saint Michael, founded in the 8th century, and built of marble within and withont, bas a lofty and magnificent western façade ( 1188 )-an architectural screen rising much above the roof of the charch. St Frediano or Frigidian dates originally from the 7 th century; the front (of the 13th century) occupies the site of the ancient apse; in one of its chapels is the tomb of Santa Zita, patroness of servants and of Lucca itself. San Giovanni (originally of the 12th century), San Romano (rebuilt in the 17th century, by Vincenzo Buonamici), and Santa Maria Forisportam (of the 13 th contury) also deserve to be mentioned. Among the secular buildings are the old ducal palace, begun in 1578 by Ammanati, and now the residence of the prefect and seat of the provincial officers and the public picture gallery; the Palazzo Pretorio, or former residence of the podesti, now the seat of the civil and correctional courts; the palace, erected in the 15 th century by a member of the great Guinigi family, and now serving as a poorhouse; and the 16th century palace of the Marquis Guidiccioni, now used as a depository for the archives. The principal market-place in the city (Piuzza del Mercato) has taken possession of the arena of the ancient amphitheatre, the arches of which can still be seen in the surrounding buildings. Besides the academy of sciences just mentioned, which dates from 1584, there are several institutions of the same kind-a royal philomathic academy, a royal academy of arts, and a public library of 50,000 volumes. The silk manufacture, which was introduced at Lucca about the close of the 11th century, and in the early part of the 16th became for a time the means of subsistence for 30,000 of its inhabitants, now gives employment (in reeling and throwing) to only about 1500. The buls of the population is engaged in agriculture. In 1871 the city had 21,286 inhabitants. The commune has increased from 61,175 in 1834 to 68,063 in 1881.

Lucca (Latin, Luea) is probably a place of Ligurian origio. First mentioned as the place to which Sempronius retired ( 218 B.C.) before the victorious Hannibal, it passes out of sight again till 177 , when it hecame the seat of a Roman colony. In the time of Julias Cresar it is frequently heard of as a town in his province of Cisalpine Gaul and Liguria, to which he repaired for consultation with bis political associates. By Augustus it was transferred to Etruria. Though pluadered and deprived of part of its territory by Odoacer, Lucea appears as an important city and fortress at the time of Narses, and under the Lombards it was the residence of a duke or marquis and had the privilege of a mint. The dukes gradually extended their power over all Tuscany, but after the death of the famous Matilda the city began to constitute itself an independent community, and in 1160 it obtained from Welf VI., duke of Bavaria and marquis of Tuscany; the lordship of all the country for 5 miles round. Internal discord afforded an opportunity to Uguccione della Faggiola to make bimself master of Lucca in 1314; but the Lucchese expelled him two years afterwards, and handed over their city to Castruccio, under whose masterly tyranny it became "for a moment the leading state of Italy." Occupied by the troops of Louis of Bavaria, sold to a rich Genovese Glerardo Spinola, seized by John, king of Bohemia, pawned to the Rossi of Parma, sold to the Florentínes, surrendered to the Pisans, nominally liberated by the emperor Charles I $V_{i}$, aod governed by his vicar, Lucca was subjectod to endless vicissitudes, but managed, at first as a democracy, and after 1628 as an oligarchy, to maintain "its indenendenco alongsile of Venice and Genoa, and painted the word Libertas ou its bsoner till the French Revolution." In the beginning of the 16 th century one of its leading citizens, Francesco Burlamacchi, made a noble attempt to give political collesion to Italy, but perishcil on the scaffold (1548); his statue by Ulisse Cambi was crected on the Piazza San Michele in 1863. As a principality formed in 1805 by Napoleon in favour of his sister Elisa and her husband Baciocchi, Lucea was for a few years wonderfully prosperous. It was occupied by the Neapolitans in 1814 ; from 1816 to 1847 it was governed as a duchy by Maria Luisa, queen of Etruria, and her son Chorles Lonis ; and it afterwards formed one of the divisions of Tuscany.

The bishops of Lucca, who can be traced back to 347, gradually
acqulred a variety of exceptional marks of distinction, such as the pallium in 1120, and the archiepiscopal cross from Alexander 11. and at length in 1726 Benedict X111. raised their see to the rank of an arcbbishopric, without suffragans.

See Memorie per servir e allu storia del ducato di Lucea, published by tho Lncea Academy i Stazzarosa, Storia di Lucca, Lucca, 1833 : Repetti, Dizionario della oscana, H1orence, 1835 ; ITteman, Histi. and Arch. Shetches, London, 1876.
LUCCA, Baths of (Bagni di Lucca, formerly Pagao a Corsena), a cominume of Italy in the province of Lucca, containing a number of famous watering-places. They are situated in the valley of the Lima, a tributary of the Serchio; and the district is known in the early history of Lucca as the Vicaria di Val di Lima. Ponte Serraglio (16 miles to the north of Lucca) is the principal village; but there are warm springs and baths also at Villa, Docce Bassi, Bagno Caldo, \&c. Bagno a Corsena is mentioned in 1284 by Guidone da Corvaia, a Pisan bistorian (Muratori, vol. xxii.); and by the 1 Gth century the waters had attained great celebrity. Fallopius, who gave them credit for the cure of his own deafness, sounded their praises in 1569 ; and they have been more or less in fashion since. The temperature of the water varies from $96^{\circ}$ to $133^{\circ}$ Falir.; in all cases it gives off carbonic acid gas, and contains limer magnesium, and sodium products. In the village of Bagno Caldo there is a considerable hospital, constructed largely at the expense of Nicholas Demidoff in 1826. The population of the commune was 11,000 in 1881.

LUCENA, a town of Spain, in the province of Cordova, 37 miles south-south-east from that city, and 11 miles by road south-east from the Aguilar station of the CordovaMalaga Railway. It is pleasantly situated on the Cascajar, a minor tributary of the Genil, in a district that produces oil, wine, and cereals in great abundance, and affords excellent pasture. The parish church, which is large but not otherwise remarkable, dates from the beginning of the 16th century. The chief industries are the manufacture of hardware and pottery, bronze lamps being a specialty of Lucena, and also the large earthenware jars (tinajas) used throughout Spain for the storage of oil and wine. There is considerable trade in the produce of the neighbourhood, and the horse mart is famous throughout Andalnsia. The ropulation in 1877 was 19,540. Lucena was taken from the Moors early in the 14 th century ; it was in the attempt to recapture it that King Abu "Abdallah (Boabdil) of Granada was taken prisoner in 1483.

LUCERA, a city of Italy, in the proviace of Foggia, on a hill in the midst of the Apulian plain, lies 10 miles west-north-west. of Foggia. Although a busy and flourishing place, with 14,014 inhabitants in 1871, Lucera is mainly of historical interest. Tho cathedral, erected on the ruins of the magnificent mosque, is a fine Romanesque building with Gothic features ; and the castle, whose in:posing ruins still crown the hill to the north of the town, was formerly the grandest of all the strongholds possessed by the Hohen--staufen emperors to tho south of the Alps.

By a Greek tradition the foundation of Luceria was assigned to Diomede, and the statue in its temple of Minerva passed as the authentic Palladium; but the place would seem to be really of Oscan rather thau Daunian origin. The Romans were marching to tho relief of Luceria when they suffered the defeat at the Caudine Forks; they eflected its capturo in 320 b.c.; and when they recovered it in 314 they slew a great part of the inhabitants, and introduced a powerful body of colonists. During the Second Punic Fiar the city was the headquarters of the Apulian campaigns. It continued to exist as a place of some mark down through the empire, snd is mentioned lyy Illiny as a colony. Destroycd (663 A.D.) by the emperor Constans, who had rocovered it from the Lombards, it was shortly after restored, and in 1227 it was raised to more thon its former prosperity by Frederick 11 ., who settled there a great body of his Saracen followers fron Sicily, and thus increased its population to about 37,000 . The Mohanmedan colony, however, was brought to ruin by the lostility of Charles I. and 11. of Anjou. Irevious to 1806 Lucera was the administrative centre of the two provinces Rasilicata and Molise. Sco W. Lang, in Im Ncuen Reich, Dec. 1877.

LUCERNE (German, Luzern), a canton of Switzerland lying north-west of the central mass of the Swiss Alps, having the canton of Aargan to the north, Bern to the west and south, and the small cantons of Zug, Schwyz, and Unterwalden on the east and south-east sides. Like most of the Swiss cantons its form is very irregular, and it includes, besides a part of the Lake $\boldsymbol{c}_{\mathrm{E}}^{\mathrm{f}}$ Lucerne, the Lakes of Sempach and Baldegg, and several smaller sheets of water. To this circumstance is probably due the discrepancy in the various estimates of the area, which range from 498 to 585 square miles. The greater part of its territory lies in the low hilly region of north-western Switzerland, most of which is under cultivation ; but it has one considerable valley, the Entlcbuch, enclosed by mountains, several of which exceed 5000 feet in height, which is devoted to pasturage. The only considerable mountain in the canton is the Pilatus, a steep jagged ridge with numerous peaks, the highest of which is 7290 feet above the sea, forming the boundary between this and the canton of Unterwalden. The only river is the Reuss, which issues from the lake at the town of Lucerne, but soon turns abruptly to the north-east, and passes the boundary of the canton. Of many smaller streams that water its surface, the most important is the Little Emme, which drains the Entlebuch and its tributary ralleys. The soil is moderately fertile, and produces good crops of cereals, but the vine is grown only in a ferr exceptionally favourable situations. Some of the higher valleys, especially the Entlebuch, are mainly deroted to pasture, and furnish cheese and butter in considerable quantities, of which the surplns is exported. The population in December 1880 was 134,806 , of whom all but 5634 were Roman Catholics. The language is exclusively German, and the people belong to the Teutonic stock. Excepting the inhabitants of the town of Lucerne, they are mainly employed in agriculture. The men of the Entlebuch, leading a pastoral life and little expnsed to intercourse with strangers, have preserved more of the original simplicity of manners and costume than is now often found elsewhere in Switzerland. They are famed for their strength and skill in wrestling and other athletic exercises, as may bo seen at the Schuingfeste, still frequently held in that district.
Like the rest of northern Switzerland, Lucerne was subject to the house of Austria until 1332, when its peophe joined the league of thc furest cantons, Uri, Scluwyz, and Unterwalden, thus forming the fourth in date of the coufederation. They bore their share in the brilliant victory of Sempach, foughlt in 3386 near the village of that nanie, and in 1402 accnired the Entlebnch by purchase from the Austrian duke. The government was until the end of the 18 th century an oligarchy in the hands of a few fanilies, but in 1798 the French invasion substituted democratic institutions. These, with screcal clanges all tending to give more complete power to the prople, lave continued to the present time. The constitution now in force lates firm the 17 th February 1869, and is tased on the principle which prevails thronghout the whole of Switzerland, that the sovercign power is vested exelusively in the people, but may be exerciscd cither directly or throngh delegates elected by universal suffrage. Lavecrue formerly sent a contingent of 1734 men to the feleral army, but accorling to the latest return the number of men helonging to the canton on the rolls (in 1879) was 5176 . In 1846 Lucernc took a leadiug part in the formation of the Sonderbund, a leagne of scereral of the Catholic cantons to oppose forcible resistance to the decree of the federal government for the expulsion of the Jesuits from Switzerlant. In the brief campaign that ensucd in the following year, the forces of the Sonderbund were utterly routed, and after a few days the conflict ceased. Since that date the eanton scenis to hare enjoyel complete internal tranquillity. Lucerne has producel a fnir proportion of men who have distinguished thenselves in science, literature, rhilosophy, and art. Anong many others winse reputation is contiued to their own country, the mames of the naturalists Cappeler and Lange, the historians Etterlin and Balthasar, aud the philosopher Troxler have sequired more permanent reputation.

Lucerne, the chicf town of the Swiss canton of that nanie, stands on both banks of the Reuss, where that river issues from the noth-west end of the chief arm of
the lake of Lucerne. The position of the town is singu-- larly beautiful. Beyond the lower hills, rich with planting and cultivation, which slope towards the shores of the lake and the river, loftier summits of very varied form rise in the background. Most prominent of these is the many-peaked Pilatus, only about 7 miles distant, while the double summit of the Mythen, at the opposite end of the lake, is flanked by other less imposing summits, amongst which the Righi draws attention, owing to the fame' of its panoramic view. The picturesque aspect of the town is much enhanced by the ancient walls, now partly removed, and the circular or octagonal towers which surround it. One of these, called the Wasserthurm, rising from the water's edge, is said to have served as a lighthouse (lucerna), and to have originated the name of the town and canton. The town appears to owe its origin to a Benedictine monastery which stood on the site of the present Hofkirche. The buildings which clustered round gradually increased, until, early in the 14th century, the walls were erected for protection, and bridges were carried across the river. The Rathbaus, which is the seat of the cantonal Government, is an ancient building adorned with wood carving and quaint pictures. In a large hall are preserved the portraits of the chief magistrates (Schultheisscn) from the earliest times to the year 1814. The libraries of Lucerne are said to possess the most complete and important collection of documents connected with the history of Switzerland during the Middle Ages. The town library, now in the museum, contains about 12,000 volunnes, and is especially rich in manuscript chronicles. The cantonal library, reckoned at over 80,000 volumes, with many incunabula, was chiefly formed from the libraries of suppressed monasteries. Other curious books are to be found in the library of the Capuchins at Wesemlin outside the town.

Besides two modern bridges which span the river, there are two wooden causeways, roofed over, and passable only on foot, which anciently served the wants of the inbabitants; a third, the longest of all, was removed in the progress of modern improvements. Of those remaining, the more ancient, called the Müblbrücke, was adorned with illustrations of the "Dance of Death," a farourite subject with German and Swiss mediæval artists; though mach injured by time, they are still visible. The other wooden bridge-the Kapellbrücke-is decorated with numerous paintings representing events in Swiss history and in the lives of Saints Leodegar and Mauritius, the patrons of the city: The principal church, which has little architectural merit, possesses a fine organ. Along with various religions and charitable institutions which seem fully adequate to the wants of the population, a museum has been opened of late years which, among various other objects, contains an interesting archæological collectiou, going back to the prehistoric period, and including relics of historical interest, such as trophies taken on the field of Sempach, formerly preserved in the arsenal. The town contains one object of genuine artistic interest-the colossal lion designed to commemorate the men of the Swiss guard who fell in the defence of the Tuileries in Paris on the 10th August 1792. The idea, which might easily have led an inferior artist into extravagance and rulgarity, was well suited for the simple and manly genius of Thorwaldsen, who supplied the model ; and, although the execution is necessarily somewhat rude, the effect is touching and impressive. In an architectural point of view the most notable part of the town is the wide quay formed on land reclaimed from the lake in 1852, planted on one side with trees, and on the other showing a succession of those grant butels whicb everywhere in Switzerland have been built to accommodate and to tempt the strangers who annuaily resort to the
country. This constant flow of visitors has led to a large increase of population; that of Lucerne, which tweoty years before was little over 10,000 , was 17,850 at the census of 1880 .
(J. B.)

LUCERNE, Lake of, the name given by foreigners to the Vierwaldstättersee, or lake of the four forest cantons of Switzerland. Only a small portion of its shores lie within the canton of Lucerne, but the name has been taken from the most considerable town which it approaches. Lying on the north-west side of the Alps of central Switzerland, this lake has extroordinary interest for the physical geographer, for the lover of natural scenery, a od for all who fcel sympathy with the story of Siviss independence. Like most of the other Alpine lakes, it lies altogether among the Voralpen, or outer ranges of the Alps, but is remarkable for the extreme irregularity of its form, which suggests problems of much difficulty to the orographer. The great majority of the Alpine lakes occupy depressions or excavations in a single line of valley; and, so far as their form is concerned, the facts appear to be equally reconcilable with the views of those geologists who believe the lake basins to have been hollowed out by great glaciers as with those


Plan of Lake of Lucerne.
which refer their origin to disturbances of relative level, and restrict the action of the ancient glaciers to a secondary part in the result. The Lake of Lacerne, however, appears to occupy portions of four different valleys, orographically distinct, and connectedonly by narrow and tortuous channels. Commencing at its eastern extremity, we have the portion called the Bay of Uri, which at its southern end reccives the considerable stream of the Reuss, bearing down the arrainage of the Alps adjoining the pass of St Gotthard. This extends from south to north about 8 miles, with an average breadth of less than 2 miles, eaclosed between steop limestone mountains rising from 4000 to 5000 feet above its surface. At the north end of the Bay of Uri a low tract, only a few miles in width, divides the shore of the lake from the little Lake of Lowerz, and another similar tract divides the latter from the Lake of Zng , so that it seems natural to conclude that if the Bay of Uri had been excavated by ice action it would have retained its original direction and carried the waters of the Reuss to the Lake of Zug. In point of fact the channel of the lake is bent abruptly westward round the promontory of Treib, and extends in the same direction nearly 10 miles, with the local designation of Buochsersee. But this channel is closed at its western end by a low neck of land, and the passage for navigation is through a narrow struit, less than half a mile wide, which connects the Buochsersee, lying south of the Burgenstein and the Vitzaauerstock, with a third basin occunyiag the bottom of the ralley which lics
north of those ridges. Proceeding westward along this latter portion of the lake, we find two deep bays, several miles in length, opening on either hand, while a third extends somewhat north of west to the town of Lucerne. The bay on the left hand, opening towards the south-west, is called the Alpnachersee, whilc that on the opposite or rorth-east side is the Bay of Küssnacht. At the central point where these meet it is secn that they lie in a continuous line of valley extending from the Briinig Pass to the Lake of Zug, as the Bay of Küssnacht is separated from the latter only by a low isthmus. Those who refuse to regard glaciers as the chicf agents in the excavation of lake basins ask how it can be supposed that a glacier from the valley of the Reuss could bave accomplished the hollowing out of the middle portions of the lake, and further inquire whether the glacier from the valley of Sarnen, which is supposed to lave excavated the bays of Alpnach and Küssnaclıt, should not have also cleared away the isthmus between the latter and the Lake of Zug, leading the drainage of the lake in that direction. The question as to the true origin of lake basins in the Alps cannot be satisfactorily discussed until their forms have been determined by numerous and accurate soundings, and this has as yet been done for the Lake of Como alone. The greatest depth hitherto measured in the Lake of Lucerne is 1010 fect, but no connected series of soundings appear to have as yet been made. The mean height of the surface above the sea-level is 1437 feet, or 68 feet higher than the Lake of Zug

The irregularity of its form is the chief cause of the unequalled variety which characterizes the scenery of the Lake of Lucerne, but the geological structure of the mountains that eaclose it much enhances the effect. Its eastern portion lies amid the Secondary limestone rocks which are everywhere in the Alps marked by sharp peaks and ridges and precipitons crags; the middle part is enclosed by great masses of Tertiary conglomerate, called in 'Switzerland Nagelfuhe, which constitutes such mountains as the Righi and the Bürgenstein, showing steep faces with gently sloping summits; while the western extremity is surrounded by swelling hills richly plaated and dotted with bright looking hamlets or solitary farm-houses. The forests which once covered the greater part of this region, and give the local designation to the four original cantons of Switzerlaud, have been extensively thinned, but enough yet remain to add another element to the charms of the scenery. Vineyards with their formal rows of stakes are scarcely seen on the shones of the lake, but orchards surround most of the houses, and the walnut grows to great perfection. Lucerue is the only town on the lake. Altdorf, the chief town of Uri, stands nearly 2 miles from the head of the Bay of Uri, and Schwyz, capital of the canton of that name, is more than 3 miles from tho shore; but since the introduction of steam navigation sereral of the villages on its coast have largely increased in population.
Modern scepticism las thrown doubt upon many of the details in the popular history of the origin of Swiss indenendence; but it is certain that the shores of this lake nurtured the men who commenced the heroie efforts that sccured freedom for their country. Here, at the beginning of the 14 th century, in an age when nearly all Europe was in the hands of feudal oppressors, a handful of mountaineers drove put the local tyrants and levelled their strong. holds, and a few years later, on the fields of Morgarten and Sempach, confronted and put to flight the chivalry of Austria. The man who can visit unmoved the Grutli, the spot, overlooking the Bay of Uri, consecrated by popnlar tradition as the seene of the first meeting of the confederates on tho night of the 7th Octoler 1307. must be devoid of all sense of the sublime in natural scenery and of tho heroic in luman action.
(J. B.)

LUCIA, or Lucy, St, was a noble Christian virgin of Syracuse, who lived in the reiga of Diocletian. Ifcr mother, baving been miraculously cured of an illness at the
sepulchre or St Agatha in Catauia, was persuaded by Lucia to distribute all her wealth to the poor. The youth to whom the daugliter had been betrothed forthwith denounced her to Paschasius the prefect, who ordered that she should be taken away and subjected to shameful outrage. But it was found that no force which could be applied was able to move her from the spot on which she stood;'even boiling oil and burning pitch had no power to hurt her, until at last she was slain with the sword. Such in substance is the narrative of the appropriate lessons given in the Roman Breviary for the festival of St Lucia on December 13 (duplex); a later legend represents her as having plucked out her eyes when they threatened to become a suare to her lover, and as laving had them afterwards restored to' her more beautiful than before. In art she is represented as suffering martyrdom, as bearing her eyes on a salver, or as carrying a flaming lamp in her hand; in the last case she is the type of celestial light or wisdom (comp. Dante, Inf., ii.; Purg., ix.; Par., xxxii.). She is involed in cases of eye-disease, and is also regarded as the patroness of the labouring poor.

LUCLAN, one of the principal essay-writers ( $\lambda$ oyoppá $\phi$ ot) and satirists of the post-Christian era, the silver age of Greek literature, was born at Samosata ou the Euphrates in northera Syria. ${ }^{1}$ Te have no indication of the precise date of his birth, but it is probable that he flourished about or after the middle of the 2d century, as he mentions Marcus Aurelius and his war with the Gernan Marcomanni and Quadi (170-it A.D.) in his Alexander (§ 43). He tells us in the Sommium or Tita Luciani, § 1, that his means being small he was at first apprenticed to his maternal uncle, a statuary, or rather sculptor of the stone pillars called Hermæ. ${ }^{2}$ When a schoolboy he had been in the habit of scraping the wax from his tablets and using it for moulding or modelling little figures of dogs, horses, or men. ${ }^{3}$ Haring made an unlucky beginning by breaking a marble slab, and having been well beaten for it, he absconded and returned home. Here he had a dream or vision of two women, representing Statuary and Literature. Both plead their cause at length, setting forth the advantages and the prospects of their respective professions; but the youth chooses חacoía, and decides to pursue learning. For some time he seems to lave made unoney as a f $\dot{\eta} \tau \omega \rho$, following the example of Demosthenes, on whose merits and patriotism he expatiates in the dialogue Demosthenis Encomium. It is clear from his numerous writings that he was very familiar with the rival schools of philosophy, and he must have well studied their teachings; but he lashes them all alike, the Cynics, perbaps, being the chief object of his derision. ${ }^{4}$ A large number of philosophers, both ancient and contemporary, are mentioned by name, nearly always in ridicule or disparagement. Lucian was not only a sceptic; he was a scoffer and a downight unbeliever. He felt that men's actions and conduct always fall far short of their professions, and therefore he concluded that the professions themselves were worthless, and a mere guise to secure popularity or respect. Of Christianity he shows some knowledge, and it must

[^5]have been somewhat largely professed in Syria at the close of the 2 d century. ${ }^{5}$ In the Philopatris, though the dialogue so called is generally regarded as spurious, there is a statement of the doctrine of the Trinity, ${ }^{6}$ and the "Galilæan who had ascended to the third hearen" (\$12), and "renewed" (áveкаin $\sigma \sigma$ ) by the waters of baptism, may possibly allude to St Paul. The doctrines of tho Aóyos and the "Light of the world," and that God is in bearen making a record of the good and bad octions of men, ${ }^{7}$ seem to have come from the same source, though the notion of a written catalogue of human actions to be used in judgment was familiar to Æschylus and Euripides.

As a satirist and a wit Lucian stands without a rival. In these respects he may be said to occupy in prose litera. ture the unique position which Aristophanes holds in Greek pnetry. But whether be is a mere batirist, who laughs while he lashes, or a misanthrope, who hates while he derides, is not very clear. In favour of the former view it may be said that the two main objects of his ridicule are mythology and the sects of philosophy; in favour of the latter, his bitter exposure of imposture and chicanery in the Alexander, and the very severe attacks he makes on the "humbug" of philosophy, ${ }^{6}$ which he everywhere assails with the most acrimonious and contemptuous epithets.

As a writer Lucian is fluent, easy, and unaffected, and a close follower of the best Attic modela, such as Plato and the orators. His style is simpler than Plutarch's, and some of his compositions, especially the Dialogues of the Gods (pp. 20t-28i) and of the Marine Deities (288-327), and, abore all, the Dialogues of the Dead (329-454), are models of witty, polished, and accurate Greek composition. a Not less clever, though rather lax in morality, are the ítapposo! Stádoyou (pp. 280-325), which remind us somewhat of the letters of Alciphron. The sarcasms on the popular mythology, the conversations of Pluto, Hermes, Charon, and others of the porrers in Hades, shorr a positive disbelief of any future state of existence. The model Lucian followed in these dialogues, as well in the style as in the sparkling and playful repartee, was the Platonic conrersations, founded on the drama, of which the dialogue may be called the prose representative. Aristotle never adopted it, perhaps regarding it as beneath the true dignity of philosophy. The dialogue, in fact, was revired an 1 improved by Lucian, ${ }^{9}$ the old traditions of the loyomocci and $\lambda$ oyoypá ot, and above all, the immense infuence of rhetoric as an art, having thrown some discredit on a styis of composition which, as introduced by Plato, had forned quite a new era in Greek prose composition. For rhetoric loved to talk, expatiate, and declaim, while dialectic strove to refute by the emplogment of question and answer, often in the briefest form.

In his language, as tested by the best classical models, Lucian is at once elegant and correct. But he occasiondlly indulges in idioms slightly solecistic, as in the use of кáv

[^6](kai iv) with a future or even an imperative, $\mu \grave{\eta}$ in place of ou, the particle äv misplaced or wrongly added, and a subjuactive mood instead of an optative. ${ }^{1}$ Nevertheless, he evinces a perfect mastery over a language as wonderful in its inflexiens as in its immense and varied rocabulary; and it is a well-merited praise of the anthor to say that to a good Greek schelar the pages of Lucian are almost as easy and as entertaining as an English or French novel. In this respect they form a contrast with the somewhat "crubbed" style of Ylutarch, many of whose moral treatises are ly no means easy reading.

Oi course Greek, like every other language, is progressive, and the notion of fixing it to any given peried as abselutely the best is quite arbitrary. We slall not be surprised at findiug in Lucian some forms and cempounds which were net in use in the time of Plato. or Demosthenes. Thus,
 participle of the perfect passive of $\pi \dot{\kappa} \mu \pi \omega$ (p. 240), $\mathfrak{\epsilon} \boldsymbol{\varepsilon} \sigma \dot{\in} \sigma \in \epsilon \kappa \epsilon$ the perfect of evacio ( p .705 ), to which a purist would object; and there are occasional tendencies to Latinism which can hardly surprise us. From a writer living under Roman rule we may expect some Latin werds in his vocabulary, as इaќ́ $\rho \delta \omega$ ¢ for Sacerdos, and Roman names like Máqvos, Kè $\quad$ ós, Ké $\lambda \eta \rho$ (Celer), 'Pourı入入iavos, \&ec. In the Lexiphanes a long passage is read from a treatiso composed in words of the strangest and most out-of-the-way form and sound, on hearing which Lucian pretends to be almost driven crazy (p. 342). His own sentimente on the propriety of diction are shown by his reproof to Lexiphanes ( $\$ 24$ ), "if anywhere you have picked up an out-of-the-way word, or coined one which you think good, you labour to adapt the sense of it, and think it a loss if you do not oucceed in dragging it in somewhere, even when it is not really wanted." The free use of such a vocabulary ${ }^{2}$ even in satire shows Lucian's intimate knewledge of the spurious bombast which had begur to corrupt the classic dialect.

Lucian founded his style, or obtained his tuency, from the successful study of rhetoric, by which he appears to Lave made a good income from composing speeches which attracted much attention. ${ }^{\text {s }}$ At a later period in life he seems to have held a lucrative office in Egypt. When he "all but had one foot in Charon's boat" (he says in Apologia, § 1), "he lent his neck to be bound by a golden collar." This office was to regiater the actions and verdicts of the law courts,--he was a kiud of "Master of the Rolls," who had the custody of the state documents, and received his salary directly from the king (ilid., § 12). He speaks of the emoluments as oú $\sigma \mu \iota \kappa \rho o ̊ s \mu \iota \sigma \theta$ òs $\dot{\alpha} \lambda \lambda \grave{\alpha} \pi$ то $\lambda \tau \tau \alpha ́ \lambda a v \tau o s . ~$ We do not know the date of Lacian's death, but he may have lived till about 200 A.D.

The extant works of this writer are so numerous that of some of the principal only a skort sketch can be given. To understand them aright we must remember that the Whole moral code, the entire "duty of man," was included, in the estimation of the pagan Greek, in the various schools of philosophy. As these were generally rivals, and the systems they taught were more or less directly autagonistic, truth presented itself to the inquirer, not as one, but as manifold. The absurdity and the impossibility of this forms the burden of all Lacian's writings. He could only

[^7]form one conclusion, viz, that there is no such a thing as truth.

One of the best written and most amusing treatises of autiquity is Jucian's True History, which forms a rather long narrative in two books. It is composed, he says in a brief introduction, not only as a pastime and a diversion from severer studies, but avowedly as a satire (oik
 have written so many marvellous tales, тo $\lambda \lambda$ à tepáatıa кai $\mu v \theta \dot{\omega} \dot{\eta}$. He names Ctesias and Homer; but Hellanicus and Herodotus, perhaps other גoyonoooi still earlier, appear to have been in his mind. ${ }^{4}$ The only true statement in his IIistory, he wittily says (p. 72), is that it contains nothing but lies from beginning to end.

The main purport of the story is to describe a royage to the moon. He set out, he tells us, with fifty companions, in a well-provisioned ship, from the "Pillars of Hercules," intending to explore the western osean. After eighty days rough sailing they came to an island on which they found a Greek inscription, "This was the limit of the expedition of Heracles and Dionysus"; and the visit of the wine-god seemed attested by some miraculons rines which they found there. After leaving the island they were suddenly carried up, ship and all, by a whirlwind into the air, and on the eighth day came in sight of a great round island shining with a bright light ( p .77 ), and lying a little above the moon. In a short time they are arrested by a troop of gigantic "horse-vultures" (imतóyviot), and brought as captives to the "man in the muon," who proves to be Endymion. He is engaged in a war with the inhabitants of the sun, which is ruled by King Phaethon, the quarrel having arisen from an attempt to colonize the planet Veuus (Lucifer). The voyagers are enlisted as "Moonites," and a long description follows of the monsters and flying dragons engaged in the contest. A fight ensues, in which the slaughter is so great that the rery clouds are tinged with red (p. 84). The long description of the inhabitants of the moon is extremely droll and original, and has often been more or less closely imitated. After descending safely inte the sea, the ship is swallowed by a huge "sea serpent" more than 100 miles long. The adventures during the long confinement in the creature's belly are 'most amusing; but at last they sail out through the chinks between the monster's teeth, and soon find themselves at the "Fortunate Islands." Here they meet with the spirits of heroes and plilosophers of antiquity, on whom the author expatiates at some length. The tale comes to an abrupt end with an allusion to Herodotus in the promise that he "will tell the rest in lhis next books." The story throughout is written in easy and elegant Greek, and shows the most fertile invention.

Another curious and rather long treatise is entitled \ov́кıos $\ddot{\eta}$ oैvos. The authorship is regarded as doubtfur; the style, as it seems to us, does not betray another hand: Parts of the story are coarse enough; the point turns on one Lucius visiting in a Thessalian family, in whech the lady of the hoinse was a serceress. Having seen her clanged into a bird by anointing herself with some potent drug, he resolves to try a similar experiment on himself, but finds that he has become an ass, retainiag, however, his himan senses and memory. The mistake arose from his having filched the wrong ointment; however, he is assured by the attendant, Palæstra, that if he can but procure roses to cht, his natural form will be restored. In the night a party of bandits break into the house and

[^8]earry off the stolen goods into the nooutans on the bacts of the unfortunate donkey, who gets well beaten for stumbling on the rough road. Seeing, as he fancies, some roses in a garden, he goes in quest of them, and again gets beaten as a thief by the gardener ( p .585 ). After many adventures with the bandits, he attempts to run away, but is caught. A council is held, and he is condemned to die along with a captive girl who had essayed to escape on his back. Suddenly, however, soldiers appear, and the bandits are arrcsted ( p .595 ). Again the ass escapes "to the great and populous city of Berce in Macedonia" (p. C03). Here he is sold to a strolling conjucer, aftermards to a marketgardener; and both experiences are alike painful. Again he passes into the possession of a cook, where he gets fat and sleek on food more suited to his concealed humanity than the hard fare he has of late lived upon (p. 614). At last, during an exhibition in the theatre, he sees some roses being carried past, and, making a successful rush to devour them, he recovers his furmer slape. "I ani Lucius," he exclaims to the wondering president of the exbibition, - and my brother's name is Caius. It was a Thessalian witch that changed mo into a donkey." Thus all ends well, and he returns safe to his country. Droll and graphic as many of the adventures are, they but too clearly show the profigate morals of the age.

The treatise On the Syrian Godiless Mylitta, the moongoddess, thic Semitic Venus) is written in the Fonic dialect in imitation perhaps of the strle of Herodotus, though the resemblance is by no means close. The writer professes to be an Assgrian (p. 452), and to describe the wonders in the rarious temples of Palestine and Syria; he descanis on the eunuchs of Syria and the origin of the self-imposed privation of manhood professed and practised by the Galli. The account of the temples, altars, and sacifices is curious, if really authentic; after the manner of Pausanias it is little more than a list, with the reasons in most cases added, or the origin of the custom explained.

De Morte Peregrini is a narrative of one Proteus, a Cynic, who after professing various doctrines, and among them those of Christianity, ended his orn life by fascending a buroing pyre ( $\mathrm{p}, 357$ ). ${ }^{1}$ The founder of the Christian religion is described (p. 334) as "the man who hud been crucified (or fixed to a stake, ávaoколотıo $\theta^{\prime}$ vita) in Palestine," and as one "still worshipped for having introduced a new code of morals into life." The zeal of the early converts is shom by their flocking to the prison when Proteus had been arrested, by the sympathy conveyed from distant cities of Asia (p. 336), by contributions of money for his support, and by their total indifference to life; for "the poor wretches have persuaded themselves that they will live for ever." The founder of the religion, "that first lawgiver of theirs," says Lucian, "made them believe that they are all brothers when once they have abjured the gods of Greece and worshipped the crucified man who is their teacher, and have begun to live according to his laws" (p. 337).

Bis accusatus is a dialogue commencing with a satire on the folly of the popular notion that the gods alone are happy. Zeus is represented as disproving this by enumerating the many and heavy duties that fall to their lot in the government of the world, and Hermes remarks on the vast crowds of philosophers of rival sects, by whose influence the respect and worship formerly paid to the gorls have seriously declined. A trial is supposed to be held under the presidency of the goddess $\Delta$ í $\eta$, between the Acadeny, the Porch, the schools of the Cynics and Epicureans, and Pleasure, Revelry, Virtue, Luxury, \&ca, as variously impugned or defended by them. Then Converea-

[^9]tion and Phetoric come before the court, each having an nction for defamation to bring against Syrus tho essayist, who of course is Lucian himself (p. 823). His defence is heard against the charges of both, and in both cases be in triumphantly acquitted. This essay is brilliant from its clever parodies of Plato and Demosthenes, and the satire on the Socratic method of arguiug by short questions and answers.
The Lover of Lying (Фthoчevions) discusses the reasou why sume persons seem to take pleasure in falsehood for its own sake, and when there is nothing to be gained by it. Under the category of lying all mythology (e.g., that of Homer and Hesiod) is included, ard the question is asiked, why the hearers of such stories are amused by them? Quack remedies, charms, and miraculous cures are included among the most popular kinds of falsehood; witchcraft, spiritualism, exorcism, expulsion of devils, spectres, are discussed in turn, and a grod ghost story is teld in p. 57. An anecdote is given of Democritus, who, to show his disbelief in glosts, had shut himself up in a tonab, and when some young men, dressed up with death's heads, came to frighten him at night, and suddenly appeared to him while he was engnged io writing, he did not even look up, but called ont to them, "Stop your joking" (p. 59). This treatise, a very ioteresting one, concludes with the reflexion that truth and sound reason are the only remedies for vain and superstitious terrors.

The dialogue Navigium serz Vota (IIdoîo $\hat{\eta} \boldsymbol{\eta}$ ciरaî) gives an apparently authentic account of the measurements and fittings of an Egyptian ship which has arrived with a cargo of corn at tho Pireus, driven out of its course to Italy by adverse minds The full length is 180 feet, the breadtli nearly 50 , the depth from deck to the bottom of the hold 43 feet. The "wishes" turn on a party of friends, who have been to see the ship, declaring what they would most desire to possess. One. would have tho ship filled with gold, another a fine house with gold plate ; a third would be a "tyrant" with a large force deroted to his interests; a fourth would liko to make himselt invisible, enter any house that he pleased, and be transported throigh the air to the objects of his affection. After hearing them all; the first spenker, Lycinus (Lucian), says that he is content with the privilege of laughing heartily at the ranity of human wishes, especially when they are those of professed philosophers.
The dialogue between Philo and Lycinus, Convivium sers Lapithx, is a very amusing description of a banquet, at which a party of dignified philosophers quarrelled over their viands at a marriage feast, and came to blows. The style is a good imitation of Fiato, and the scene reminds one of the "clients' dinner" in the fifth satire of Juvenal. One of the party is so irritated by taunts that he flings a goblet half full of wine at the head of another, who retnrts by spittirg in the face of the aggressor (p. 441). Matters come to a climax by the attempt of one of the guests, Zenothemis, to secure for himself a fatter fowl which had been served to his next neighbour Hermon. Each seizes his bird and hits the other with it in the face, at the same time pulling his beard. Then a general fight ensues, and serious wounds are inflicted. The story is, of course, a satire on philosophy, the favourite topic of a writer who believed neither in gods nor in men.
The Piscator, a dialogue bêtrreen Lucian, Socrates, Pythagoras, Empedocles, Plato, and others, commences with a general attack on the author as the enemy of philosoply. Socrates proposes that the culprit should be tried, and that Philosophia should assist in the prosecution. Lucian declares that he does not know where such a person lives, long as he has been looking for her (§ 11). She is found at list, Lut declares Lucian lias never disparaged
her, but only impostors and pretenders under her name (§ 15). He makes a long defence (pp. 598-606), abusing the philosophers in the sort of language in which some sthools of theologians abuse the monks of the Middle Ages (§ 34). The trial is held in the Acropolis of Athens, and the slam philosophers, dreading a verdict against them, throw thenselves from the rock. A Cyaic tings away his scrip in the harry, and on examination it is found to contain, not bonlis or loaves of bread, but golid coins, dice, and fragrant esscnces (\$ 44). Whe title of Fisherman is given to this witty treatise, becnuse at the end Lucian baits his hook with a fig and a gold coin, and catches gluttonous strollers in the city while seated on the wall of the Acropolis.

The Voyage Home (Karándovs) opens with the complaint that Charon's boat is kept waiting for Hermes, who soon appears with his troop of ghosts to be ferried over the infernal river. Anong them is a qúpawos, one Megapenthes, who, as his name is intended to express, mourns greatly over the life he has just left. Armusing appeals are made by other souls for leave to return to life, and even bribes are offered to the presiding goddess of destiny, but Clotho is, of course, inexorable. The moral of the piece is closely like that of the parable of Dires and Lazarus: the rich and prosperous bewail their fate, while the poor and afflicted find rest from their troubles, and have no desire to return to them. The típavos here is the man clothed in parple and fine linen, ond Lacian shows the same bitter dislike of tyrants which Plato and the tragic writers display. The heavy penalty is adjudged to Megapenthes that he may ever remember in the other world the misdeeds dune in life.

The Sale of Lives is an auction held by Zeus to see what price the lives of philosophers of the rival sects will bring. A Pythagorean, who speaks in the Ionic, first undergocs an examination as to what he can teach, and this contains an enumeration of the doctrines usually ascribed to that sect, including metempsychosis. He is valued at 7 s . 6 d ., and is succecded by Diogenes, who avows himself the champion of truth, a cosmopolitan ( $\$ 8$ ), and the enemy of pleasure. Socrates briags two talents, and is purchased by Dion, tyrant of Syracuse (\$ 19). Chrysippus, who gives some specimeas of his clever quibbles, ${ }^{2}$ is bought for fifty pounds, Aristotle for nearly a hoodred, while Pyrrho the sceptic (or one of his school), who professes to "know nothing," briags four pounds, "because he is dull and stupid and has no more sense than a grub" (§ 27). But ther man raises a doubt, "whether or not he has really been bought," and refuses to go with the purchaser till be has fully considered the matter.

Timon is a very amusing and witty dialogue. The misanthrope, once -wealthy, has become a poor farmlibourer, and repronches Zeus for his indiference to the injustice of man. Zens declares that the noisy disputes in Attica have so disgusted him that he has not been there for a long time ( $\$ 9$ ). He tells Hermes to conduct Plutus to visit Timon, and see what can be done to help him. Plutus, who at first refuses to go, is persundel after a long conversation with Hermes, and Timon is found by them digging in his field (§ 31). Poverty is unwilling to resign her votary to wealth; and Timon himself, who has become a thorough misantlirope, objects to be made rich agaia, and is with difficulty persuaded to turn up with his mattock a crock of gold coins. Now that hie has once more become rich, his former flatterers, who had long left

[^10]him, comie cringing with their congratulations and respects, but they are all driven off with broken heads or pelted with stones. Between this dialogne and the Plutus of Aristophanes there arc many close resemblances.
Hermotimus (pp. 730-831) is one of the longer dialogues, Hermotimus, a student of the Stoic philosoply for twenty years (\$2), and Lucian (Lycinus) being the interlocutors. The long time-forty years at the least-required for clinubing up to the temple of virtue and lappiness, and the short span of life, if any, left for the enjoynuent of it, are discussed. That the greatest philosophers do not always attain perfect indifference, the Stoic ultimatum, is slown by the anecdote of one who dragged his pupil into court to make him pay his fee (\$9), and again by a violent quarrel with another at a baqquet (\$11). Virtue is compared to a city with just, and good, and contented inhabitants; but so many offer themselves as guides to the right road to virtuc that the inquirer is bewildered (§26). What is truth, and who are the right teachers of it, still remains andetermined. The question is argued at length, and illustrated by a peculiar custom of watching the pairs of athletcs and setting aside the reserved combatant ( $\pi$ áp $\delta \rho \rho s$ ) at the Olympian games by the marks on the ballots (s $59-43$ ). This, it is argued, cannot be done till all the ballots have been examined; so a man cannot select the right way till he has tried all the ways to virtue. - But to know the doctrines of all the sects is impossible in the term of a life (§ 49). To take a taste of each, like trying a sample of wine, will not do, because the doctrines taught are not, like the crock of wine, the same throughout, but vary or advance day by day (\$54). A suggestion is made ( $\$ 68$ ) that the searcher after truth should begin by taking lessons in the science of discrimination, so as to be a good judge of truth before testing the rival claims. "But who is a good teacher of such a science? (\$ 70). The general conclusion of this well-argued inquiry is that philosophy is not worth the pursuit. "If I ever again," says Hermotimns, "meet a philosopher on the road, I will shun Lim as I mould a mad dog."
The Alexander or False Prophet is a severe exposure of a clever rogue who seems to have incurred the personal enmity of Lucian (pp. 208-265). Burn at Abonoteichus in Bithynia, a town on the southern shore of the Euxiae, lo is denounced as laving filicd all the Soman province of Asia with his villainy and plundering. Handsome, clever, and unprincipled, he liad been instructed in the arts of imposture by one of the disciples of Apollonius of Tyaua. Trusting to the natural credulity of Asiatics (§ 9), he sets up an oracle in his native town, having buried some brazen tablets which pretended that Asculapius would be worshipped in a temple there. A long account is given of the frauds and deceptions of this pretended hierophant, and the narrative ends with his treacherous attempt to drown Lucian of the coast of Amastris by a secret order given to the pilot, - a design . Which was frustrated by the honesty of the man (\$56).
The Anacharsis is a dialogue between 'Solon and the Scythian philosopher, who has come to Athens on purpose to learn the nature of the Greek institutions. Seeing the young men performing athletic cxercises in the Lyceum, he expresses his surpriss at such a waste of energy and the endurance of so much useless pain. This gives Socrates an opportunity of descanting at length on training as a discipline, and emulation as a motive for excelling. Lovo of glory, Solon says, is one of the chief goods in life. The argument is rather ingenious and well pot; the style reminds us of the minur essays of Xenophon.

In all, one hundred and twentr-four extant treatises of Luc (excluding about fifty epigrams and two iambic poems of no gre merit) aro constdered genuinc. We have given it bricf account of
nome of the longest and best, but many others, e.g., Frometheus, Menippus, Life of Dcmonax, Toxssris, Zeus T'rugodus, The Drcan or the Cock, Icaromenippus (an amusing satire on the physical philosophers), are of cousiderable literary value. The excellent edition of C. Jacobitz, in the Teubner scries, which is furnished with a very complete index, places the text in the student's hand in a much more satisfactory state than has yet fallen to the lot of Plutarch in his Opera Moraiia.
(F. A. P.)

LUCIAN, the martyr, was born, like the famous heathen writer of the same name, at Samosata. His parents, who were Christians, died when he was in his twelft: year. Ia his yonth he studied under Macarius of Edessa, and after receiving baptism he adopted a strictly escetic life, and deroted himself with zeal to the continual study of Scriptare. Settling at Antioch, he becanie \& presbyter, and; while supporting himsclf by his skill as a swift writer, became celebrated as a teacher, pupils crowding to him from all quarters, so that he is regarded as the founder of the famous theological school of Antioch. He did not escape suspicion of heresy, and is represented as the connecting link between Paul of Samosata and Arius. Indeed, on the deposition of the former, he was excluded from ecclesiastical fellowship by three successive bishops of Antioch, while the latter seems to have been among bis pupils (Theodoret, H. E., i. 3, 4). He was, however, restored before the outbreak of persecution, and the reputation won by his high character and learning was confirmed by his courageous martyrdom. He was carried to Nicomedia before the cruel Masimin, and persisting in his faith perished 312 A.D., under torture and hunger, which he refused to satisfy with food offered to idols. His remains were conveyed to Drepanum in Bithynia, and under Constantine tho town was founded anerv in his honour with the aame of Helenopolis, and exempted from taxes by the emperor ( 327 A.d., see Chron. Pasch., Bonn ed., p. 527). Here, on the day after Epiphany 387 A.d. (the day on which his martyrdom was commemorated), Chrysostom delivered the panegyrical homily from which, rith notices in Eusehius (H. E., ix. 6), Theodoret (loc. cit.), and the other ecclesiastical bistorians, the life by Jerome (Vir. Ill., cap. 77), bat especially from the account by $S$. Metaphrastes (cited at length in Bernhardy's notes to Suidas, s.v. vo $\theta$ cíct), the facts abore given are derived. See also, for the celebration of his day in the Syriac churches, Wright, Cat. of Syr. MKSS., p. 283.

Jerome says, "Feruntnr eius de Fide libelli et breves ad nonnullos epistore"; but only a abort fragment of one epistle remains (Chron. Pasch., p. 516). The euthorship of a confession of faith ascribed to Lucinn and put forth at the semi-Arian synod of Antioch (341 A.D.) is questioned. Lucian's most important liter. ary labour was his edition of the Septuagint corrected by the Hebrew text, which, according to Jerome (Adv. Ruf., ii. 77), was in current use from Constantinople to Antioch. That the edition of Lucian is represented by the text used by Chrysostom and Theodoret, ss well as by certain extant MSS., such as the Arundelian of the British Museum, was proved by F. Field (Prol. ad Origenis Hexaplc, cap. ix.), who points ont that Lucian filled up laenne of the Septuagint text as compared with the Hebrev from the other Greek translations, that his method was harmonistic, and that he sometimes indulgez in paraphrastic additions and other changes. Before the publication of Field's Hexapla, Lagarde had already directed his attention to the Antiochinn text (as that of Lucian may be called). See his Symmict (ii. 142), and Ankiundigung einer neucn Ausg. d. gr. Ucbersclizung des A. T.' (1s82), in which an edition of this recension is promised, and the means for effecting it described. The accomplishment of this task may be looked to as the first step in the process of tracing backmards the history of the Septusgint.

From a statement of Jerome in his preface to the gospels it seems probable that Lucian had alao a share in fixing tho Syrian recension of the New Testament test, but of this it is impossible to speak with certaints. Compare the introductory volume of Westcott and Hort's Reve Tcstament, p. 138.

LUCIFER, bishop of Cagliari ('zence called Calaritanus or rather Caralitanus), an ardent supporter of the cause of Athanasius, after the unfarourable result of the synod
of Arles in 353 volunteered to go to the court and endeavour to oltain a new nud impartial council; he was accordingly sent by Pope Liberius, along with Pancratius the presbyter and Hilarius the deacon, but did not succeed in preventing the condematicn of Athanasius, which was renewed at Milan in 355. For lis owa persist ent adherence to the orthodox creed he was banished to Germanicia ia Commagene; he afterwards lived at Eleutheropolis in Palestine, and finally in the upper Thebaid. His exile camo to an end with the publication of Julian's cdict in ? ${ }^{2}$. From 363 until his death in 371 he lived at Cagliari in a. state of voluntary separation from ecclesiastical fellorship with his former friends Eusehius of Vercelli, Athanasius, and the rest, on account of their mild decision at the synod of Alexandria in 362 with reference to the treatment of those who had unwillingly Arianized under the persecutions of Constantins. The Luciferian sect thus founded did not continue to subsist long after the death of its leader. It is doubtful whether it ever formulated mny distinctive doctrine ; certainly it developed none of any importance. The memory of Lucifer is still cherished in Sardinia; but, nlthough popularly regarded there as a saint, he has never been canonized.

The controversial writings of Lucifer, dating from his exile, are chicfly remarkable for their passionate zeal and for the boldneasand violence of the langnage addressed to the reigning emperor, whom he did not acruple to call the enemy of God and a sccond Saul, Ahab, and Jeroboam. Their titles, in the most probable chrono* logical order, are De non parcendis in Deum delinquentibus, Do rcgibus apostaticis, Ad Constantium Augustum pro Athanasio libri ii., De non convcniendo cum harcticis, and Moriendum esse pro Filio Dei. Their quotations of Scripture are of cousiderable value to the critical student of the Latin text before Jerome. They wero first collected and edited by Tilius (Paria, 1586), and afterwards rcprinted in the Bibliotheca Palmum (1618); the best edition is that of the brothers Colet (Venice, 1758).

LUCILIUS. Among the early Foman poets, of whose writings only fragments have been preserved, Lucilius was second in importance to Ennius. If he did not, like the epic poet of the republic, touch the imagination of his countrymen, and give expression to their highest ideal of national life, he exactly hit their ordinary mood, and expressed the energetic, critical, and combative temper which they carried into political and social life. He was thus regarded as the most genuine literary representative of the pure Roman spirit. The reputation which he enjoyed in the best ages of Roman literature is proved by the terms in which Cicero and Horace speak of him. Persius, Juvenal, and Quintilian vouch for the admiration with which he was regarded in the first century of the empire. The popularity which be enjoyed in his own time is attested by the fact that at his death in 102 b.c., although he had filled none of the offices of state, he received the honour of a public funeral.

His chief claim to distinction is his literary originality. He alone among Roman writers established a new form of composition. He may be called the inventor of poctical eatire, as he was the first to impress upon the rude inartistic medley, known to the Romans by the name of satura, that character of aggressive and censorious criticism of persons, morals, manners, politics, literature, \&c., which the word satire has ever since denoted. In point of form the satire of Lucilins owed nothing to the Greeks. It was a legitimate development of an indigenous dramatic entertainment, popular among the Romans before the first introduction of the forms of Greek art among them; and it seems largely also to have omployed the form of the familiar cpistle which circumstances had developed among them about the time when Lucilius flourished. But the style, substance, and spirit of his writings were apparently as original as the form. He seems to have commencen his
poetical career by riliculing and parodying the conventional language of epic aud tragic poctry, and to have used in his own writings the langunge commonly employed in the social intercourse of educated men. Even his frequent use of Greek words, phrases, and quotations, reprehended by Horace, was probably taken from the actual practice of men, powerfully stimulated by the new learning, who found their own speech as yet inadequate to give free expression to the new ideas and impressions which they derived from their first centact with Greek philosophy, chetoric, and poetry. Further, he net only created a style of his, own, but, instead of taking the substance of his writings from Greek poetry, or from a remote past, lie trented of the familiar matters of daily life, of the personal interests and peculiarities of himself or his contemporaries, of the politics, the wars, the government of the provinces, the administration of justice, the fachions and tastes, the eating and drinking, the money-making and money-spending, the seandals and viees, the airs and affectations, which made up the public and private life of Rome in the last quarter of the sccond century before our era. This he did in a singularly frank, independent, and courageous spirit, with no private ambition to serve, or party cause te advaice, bnt with an honest desire to expose the iniquity or incompetence of the governing body, the sordid aims of the middle class, and the corruption and venality of the city mob. There was nothing of stoical austerity or of rhetorical indignation in the tone in which he treated the vices and follies of his time. His character and tastes were much more akin to those of Horace than of either Persius or Juvenal. But he was what Horace was not, a thoroughly good hater; and he lived at a time when the utmost freedom of speech and the most unrestrained indulgence of public and private animosity were the characteristics of men who took a prominent part in affairs. Although Lucilius took no aetive part in the public life of his time, he regarded it in the spirit, not of a recluse or a mere student of books, but of a man of the world and of society, as well as a man of, letters. His ideal of public virtue and private worth had been formed by intimate association with the greatest and best of the soldiers and statesmen of an older generation.
The dates assigned by Jerome for his birth and death are 148 and 103 or 102 b.c. But it is impossible to reconcile the first of these dates with other facts recorded of, him. We learn from Velleius that he served under Scipio at the siege of Numantia in the year 134 b.c. We learn from Horace that he lived on the mest intimate ferms of friendship with Scipio and Lælius, and that he celebrated the exploits and virtues of the forner in his satires. F Fragments of those books of his satires which seem to have been first given to the world (books sxvi.-xxix.) clearly indicate that they were written in the lifetime of Scipio. Some of these bring the poet before us as either corresponding with, or engaged in controversial conversation with, his great friend. One line-
"Percrepa pugnam Popilli, facta Corneli cane-"
in which the defoat of M. Popillins Lrenas, in 138 b.C., is contrasted with the subsequent success of Scipio, bears the stamp of laving been written while the news of the eapture of Numantia was still fresh. It is in the highest degrec improbablo that Lucilins served in the arny at the age of fourteen; it is still more unlikely that he could have been admitted into the familiar intimacy of Scipio and Laelins at that age. It seems a moral impossibility that between the age of fifteen and ninetcen-i.e., between 133 в.c. and 129 b.c., the year of Scipio's death-he could have come before the world as the author of an entircly new kind of composition, and one which, to be at all successful, demands especially maturity of judgment and
expericnce. It may further bo said that the well-known words of Horace, in which he characterizes the vivid portraiture of his lifo, character, and thonghts, which Lucilius bequeathed to the world,

> "quo fit ut omnis
> Votiva pateant veluti deseripta tabolla
> Vita seniis,"
lose muel of their foree untess senis is to be taken in its ordinary sense, -which it cannot be if Lucilius died at the age of forty-six. Two explanations have been given of the error. One is that, from a similarity in the names of the consuls for the ycars 180 and 148 B.c., Jerome had confused the one year with the other, and thns that the date of the birth of Lucilius must be thrown back thirty-two years. He would thus have been nearly fifty when he served at Numantia, and when he first began to write satire. But the terms which Horace applies to the intimacy of Lueilins and Scipio, such as "discincti ludere," indicate the relations of an older to a much younger man; and the verve and tone of his satires are those of a man net so far adranced in years as he would have bcen if born in the year 180 b.c. A simpler explanation of the error is supported by Mr Munro, in the Journal of Philolagy, No. xvi. He supposes that Jerome must have written the words "anno xlvi" for "anno lxiv" or "lxvi"; which would make the birth of Lueilius eighteen or twenty years earlier than that nsually assigned. Lucilius would thus have been about thirty three or thirty-five jears of age when he served at Numantia, and two or three years older when he gave his first satires to the world. As he lived for about thirty years longer, and as he seems to have continued the composition of his satires during most of what remained of his life, and as it was his practice to commit to them all his private thoughts, the words of Horace would naturally and truthfully describe the record of his observation and experience between the age of thirty-five and his death. His birthplace was Suessa Aurunca in Campania, from which circumstance Juvenal describes him as "magnus Auruncæ alumnus." Ho belonged to the equestrian order, a fact indicated by Horace's notice of himself as "jnfra Lucili censum." He was granduncle to Pompey, on the mother's side. Though not himself belonging to any of the great senatorian families, he was in a position to asseciate with them on equal terms, and to criticize them with independence. And this circumstance contributed to the boldness, originality, and thoroughly national character of his literary work. Had he been a "semi-Gracns," like Ennius and Pacurins, or of humble origin, like Plautus, Terence, or Accins, he would .scarcely have ventured, at a time when the senatorian power was strongly in the ascendant, to revive the rôle which had proved disastrous to Nevius; nor would he have had the intimate knowledge of the political and social life of his day which fitted him to be its paintor. Another circumstance determining the bent of his nind to satire was the cbaracter of the time in which he bogan the work of his life. Tho origin of Roman political and social satire is to be traced to the same disturbing and disorganiz. ing forces which led to the revolutionary projects and legislation of the Graechi.

The remains of Lucilius extend to about eleven hundred lines. But much the largest number of his fragments are uncouncted lines, preserved by late grammarians, as illustrative of peculias verbal usages. He was, for his time, a voluminous as well os a very discursive writer. Me left behind him thirty books of satires, and there is reasen te believe that each book, like the books of Horace and Juvenal, was composed of different pieces. The order in which they were known to the grammarians was not that in which they were written. The eurliest in order of composition were probably

[^11]those numbered from xxvi. to axix., which were written in the trochaic and iambic metres that had been employed by Ennius aud Pacurius in their Sature. In these he made thase criticiams on the older tragic aad epic poets of which Horace anid other ancieot writers speak. In them too he apeaks of tho Numantine War as recently finished, and of Scipio as still living. Book i., on the other hand, in which the philosopher Carneades, who died in 128 B.C., is spoken of as dead, must have been written after the death of Scipio. With the exceptiva of books $\times x v i .-x x i x .$, a 20 one eatire in which he aeems to have made an experiment in the unfamiliar elegiac metre, all the satires of Lucilius were written in hexameters. So far as an opinion can be formed from a number of unconnected fragments, ho seens to have written the trochaic totrameter with a amoothness, clearness, and oimplicity which he naver attained in hándliog tha hexametor. The longer fragments produce the impression of great discursiveness and carelessness, but at the same time of considcrable force. The words of Horace, "fluere litulentum," seen exactly to express the character of his style. He appears, in the composition of his various pieces, to have followed no settled plan, but to have treated everything that occurred to him in the most desultory fashion, sometimes adopting the form of dialogue, sometimes that of an epistle or an imacinary discourse, and often to have spoken in hisown name, giring ap account of his travels and adventures, or of amusing scenes that he had witnessed, or expressing the results of his private meditations and experiences. Like Horace he largely illustrated his own obscrrations by personal anecdotes and tables. The fragments clearly show hove often Horace has imitated him, not only in expression, but in the form of his satires (see for instance i. 5 and ii. 2), in tho topics fuhich he treats of, and the class of social vices and the types of character which he satirizes. For students of Latio literature, the chief interest of studying the fragments of Lucilius consists in the light which they throw on the aims and mathoda of Horace in the composition of his satires, and, though not to the same extent, of his epistles. But they are important also as materials for linguistic etndy; and they have a considerable bistorical value as throwing light on the feeling, temper, circumstances, and character of a most interesting time, of which there is scarcely any other contemporary record.

The best edition of the Fragncuts is that of L. Muiller (1872). A colloction of them by Lachmann has appeared since his death. The emenclation of these fragments still employs the ingenuity of both German aud Eaglish scholars. Important contributions to the subject have becn mada by Mr. Minnro in the Journal of Philology.
(W. Y. S.)

I,UCIUS, the name of taree,popes,
Lucius $I$, whose pontificate of about eight months (253-54) fell between those of Cornelius and Stephen I., had been one of the presbyters who accompanied Cornelius when he withdrew from Fiome. After his own election also he appears to have lived for some time in exile, but ultimately to have been permitted to return. No facts of his official life have been recorded, but he is referred to in sereral leiters of Cyprian as having been in agreement with his predecessor Cornelius in preferring the milder view on the question as to how the penitent lapsed should be treated. The manner of his death is uncertain; according to some acconnts be was decapitated. In the Calalogus Liberianus and in the Catalogies Corbeiensis ho is said to have been pope for more than three jears; but there can be no doubt of the correctness of the statement of Eusebius, that his pontificate was of less than eight months' duration. Like all the early popes he has been canonized in the Church of Rome ; and he is commer.orated as a martyr on March 4.

Lucius II. (Gherardo de Caccianimici), a Bolngnese, eucceeded Celestine II. on March 4, 1144. Soon after his accession the people of Rome choss a patrician, fo: Whom they claimed the temporal sovereignty; Lucius s.t the lead of the oligarchical party appealed to armu, and perisheu in an attempt to storm the Capitol on Fekruary 25, 1145. He was succeeded by Engenius III.

Lucios III. (Ubaldo Allucingoli), a native of Lucca, was bishop of Ostia and Velletri when he was chosen to succeed Alexander III. on September 1, 1181. For six months he lived at Rome, but in March 1182 ha was driven forth by rebellion, and resumed his abode at Yelletar; ie aterwards divea at Auagni, and finally at

Verona. While at the last-named place he pronounced sentence of excommunication aganst the Cathari, Paterines, Humiliati, Waldensians, and Arnoldists in 1184; but "lcft the papal thunders to their own unaided effects." He died at Verona on November 25, 1185, and was suc. ceeded by Urban III.

LǗCKE, Gottrried Christian Friedrici (17911855), theologian, was born on August 24, 1791, at Egeln near Magdeburg, where his father was a merchant, received his esrly education at the Magdeburg gymnasium, and studied theology at Halle and Göttimgen (1810-13). In 1813 he became repetent at Göttingen, and in 1814 he received the degree of doctor in philosophy from Halle; in 1816 he removed to Berlin, where he became licentiate in theology, and qualified as "privatdocent." He soon became intimate with Schleiermacher and De Wette, and was associated with them in 1818 in the redactiou of the Theologische Zeitschrift. Meanwhile his lectures and publications (among the latter a Grundriss der Neutestamenilichen Hermeneutit, 1816) had bronght him into considerable repute, and he was appointed professor extraordinarius in the new university of Bonn in the spring of 1818 ; in the following autumn he became professor ordinarius. From Bonn, where he had Augusti, Giescler, and Nitzsch for colleagues, he awas called to Gïltingen to succeed Stäudlin in 1827. Here he remained, declining all further calls elsewhere, as to Erlangen; Kiel, Halle, Tübingen, Jena, and Leipsic, until his death, which occurred on February 14, 1855.

Luicke, who was one of the most learned, many-aided, and influential of the so-called "mediation" school of erangelical theologians, is now known chiefly by his priacipal work, an Exposition of the Writings of St John, of which the first edition, in four volumes, appeared in 1820-32; ; has since passed through tro new and imnroved editions (the last volume of the third edition by Bertheau, 1856). He is ono of the nost intelligent maintainers of the Johannine authorship of the Fourth Gospel ; in connexion with this thesis ho was one of the first to argue for the early date aod non-apostolic authorship of the Apocalypse.

LUCKENIVALDE, a busy little town of Pruscia, in the proviace of Brandenburg, district of Potsdam, lies on the river Nuthe and on the Berlin and Anhalt Railway, 30 miles to the south-west of Berlin. Its cloth and wool manufactories are among the most extensive in Prussia; and it also contains cottou-printing works, dye-works, machine shops, and numerous other industrial establishments. The population in 1880 was 14,706 . The site of Luckenwalde was occupied in the 12 th century by a Cistercian monastery, but the village did not spring up till the reign of Frederick the Great. It was made a torn in 1808.

LUCKNOW, a district of Ondh, in the division or commissionership of Lacknow, ${ }^{1}$ under the jurisdiction of the lieutenant-governor of the North-Western Provinces, India, lying between $26^{\circ} 30^{\prime}$ and $27^{\circ} 9^{\prime} 30^{\prime \prime} \mathrm{N}$. lat., and betreen $80^{\circ} 36^{\prime}$ and $S 1^{\circ} 15^{\prime} 30^{\prime \prime}$ E. long., is bounded on the N. by Hardoi and Sitápur districts, on the E. by Bara Bánki, on the S. by Rái Bareli, and on the W. by Unao. The geneial aspect of the country is that of in open champaign, well studded with rillages, finely wooded, and in parts most fertile and highly cultivated. In the vicinity of rivers, however, stretch extensive barren sandy tracts ( $8 h i r$ ), and there are many large sterile wastes of saline efflorescence (us $i r$ ). The country is an almost dead level throughout, the arerage slope, which is from northwest to south-east, being less than a foot-per mile. The principal rivers are the Gumti and the Sai, with their

[^12]tributartes. The former enters the district from the north, and, after passing Lucknow city, turns to the east and enters Bára Bánki. The Sái forms the south-west boundary of the district, running almost parallel with the Gumti.
The census of 1869 returned the population of the district at 970,625 . Recent changes and transfers to and from other distriets have, however, taken place. Allowing for these, Lucknow contains (according to the census of 1869) a population of 789,465 persons ( 416,960 males and 372,505 females), spread over an area of 965 square iniles. Hindus nnmber 614,276; Mohammedans, 167,184; Christiaus, 4982 ; the remainder being made up of unclassified prisonera and jail officials. Four towns contain a population exceeding 5000 iuhabitants, viz., Lucknow city, Amethi ( 7182 ), Kakori (8220), Malihabad (8026). The estimated area under cultivation is returned at 547 square miles. Three harvests are reaped in the yaar, viz.; the rabb in spring, comprising wheat, barloy, gram, peas, gujai (a mixtura of wheat and barley), and birra (a mixture of barley and gram) ; the kharif in the rainy season, comprising rice, millets, sadnuán, nandwind, kidiun, and lndian corn; and the henwat in the autumn, consisting of joar, bdjra, mash, müng, moth, masir, and lobia. In addition, there are valuable crops of tobacco, opium, cotton, spices, and vegetables. Irrigation is carricd on by means of rivers, tanks, and wells. The cultivators are almost all deeply in debt, and under advances of seed grain from their landlords. Wages have remained stationary in the country, but have decreased in the city owing to its diminislied wealth and population since the departure of the Oudh court. The price of food, on the other hand, has materially risen of late years. When not paid in grain, an ordinary agricultural labourer receives about 11d. a day. Artisans, such as smiths and carpenters, receive $4 \frac{1}{d} d$. a day for work in their owa villages, or 6 d. a day if called away from their homes. Famines have occurred in Lucknow in 1769, 1784-86, and 1837, and severe scarcities in 1861, 1865-66, 1869, and 1873-all caused by drought. The district is well provided with communications by road, river, and railway. Three irperial lines of road branch out south, east, and north to Cawnpur, Faizábadd, and Sitápur, metalled and bridged throughout, and comprising, exclusive of the roads in Lucknow city and cantonments, a length of about 500 miles. Thero are also seven principal lotal lines of road. River communication is not much used. The line of railray is comprised in the Oudh and Rohilkhand railway system. The entire length of railway communication is 52 miles. Manufactures are mainly confined to Lucknow city. In the country towns are a few weavers, dyers, bangle-makers, brass-workers, and potters. Cotton weaving has greatly declined siace the introduction of Earopean p:ece-goods. The principal importa are food-stuffs, piece-goods, arms, hardware, glass, crockery, and salt; while muslins, enibroidery, cotton prin:s, brass vessels, lace, tobacco, \&c., are exported. The district is administered by a deputy coummssioner, aided by a magistrate in charge of the city, and a second in the cantonmenta, one or two assistant comuissioners, three extra assistant commissioners, three tahsilddirs, and four honorary magistrates. Besides, there are a civil judge and a small-cause court judge, who have no criminal or revenue powers. The total imperial and local revenue of Lucknow district in 1871-72 amounted to $£ 162,926$, and the expenditure to £ 70,534 ; the Government land revenue was $£ 70,580$. Excluding Lucknow city, the schools consist of one Anglo-vernacular middle class, five vernacular middle class, and seventy-one primary schools. The prevailing endemic diseases are fevers, skin diseases, and botrel complaints. Cholera is seldom absent. Small-pox is also an annual visitant. The average annual $n$ infall is 37.6 incles, and the mean annual temperature $78^{\circ} \cdot 8$ Fahr.

Lucknow, capital of the above district, and of the province of Oudh, in $26^{\circ} 52^{\prime} \mathrm{N}$. lat., $80^{\circ} 58^{\prime} \mathrm{E}$. long., is distant from Cawnpur 42 miles, from Benares 199 miles, and from Calcutta 610 miles, and has an area of I3 square miles. It ranks fourth in size among Indian cities, being only surpassed by the presidency capitals of Calcutta, Madras, and Bombay. . It stands on both banks of the Gumti, mostly on the western side, the river being spanned by four bridges, two of them built by native rulers and two since the British annesation in 1856. Viewed from a distance, the city presents a picture of unusual magnificence and architectural splendour, which fades on nearer view into something more like the ordinary aspect of a crowded Oriental town. From the new bridge across the Gumti, the city seems to be cmbedded in trees. High up the river tho ancient stone bridge of Asaf-ud-daula crosses the stream. 'To its left rise the walls of the Machí Blấwan fort, enclosing the Lachman tilu (Lachsann's hill), the earliest ingabited spot in the city, from
which it derives its nodern name. Close by, the immense Imámbára, or mausoleum of Asaf-ud-daula, towers above the surrounding buildings. Farther in the distance, the lofty minarets of the Jama Masjid or "cathedral mosque" overlook the city; while nearer again, on the same side of the river, the ruincd walls of the residency, with its memorial cross, recall the heroic defence made by the British garrison in 1857. In front, close to the water's edge, the Chattar Manzil palace, a huge and irregular pile of buildings, crowned by gilt umbrellas, glitters gaudily in the sunlight; while to the left, at some little distance, two mausoleums flank the cutrance to the Kaisar Bagh, the Jast of the overgrown palaces built by the exiled dynasty of Oudh. Still mere picturesque panoramas may be obtained from any of the numerous towers and cupolas which abound in every quarter. Bit a nearer examination shows that Lucknow does not correspond in its interior arrangements to its brilliant appearance from a little distance. Nevertheless, many of its streets are broader and finer than those of most Indian towns; and the clearance effected for military purposes after the mutiny has been instrumental in greatly improving both the aspect and the sanitary condition of the city. A glacis half a mile broad surrounds the fort; and three military roads, radiating from this poist as a centre, cut right through the heart of the native quarter, often at an elevation of some 30 feet above the neighbouring streets. Three other main roads also branch out from the same point, one leading across the bridge, and the others along the banks of the Gumti. The residency crowns a picturesque emineuce, the clief ornament of the city, containing, besides many ruined walls, an old mosque and a magnificent banyan tree. An artificial mound rises near at hand, its stdes gay with parterres of flowers, while in the rear, half liidden by the feathery foliage of gigantic bamboos, the graveyard covers the remains of some 2000 Europeans, who perished in 1857. The cantonments lie 3 miles to the south-east of the city.
TYie population of Lucknow, including the cantouments, was returned by the census of 1869 at 284,779 . The native civil population consisted of 273,126 , viz, 161,739 Hindus and 111,387 Mohammedans. There were also 3648 native soldiers, 4222 Europeans, 760 Eurasians, and 3023 rrisoners and jail officials. The traffic of Ondh flows southwards through Lucknow to Cawnpur. Large quantities of grain and timber come in from the trans-Gogra districts to the north, while raw cotton, iron, and imported gooda froun the sonth and east are sent in exchange. In 1869-70 goods to the value of nearly three quarters of a niilion sterling paid taxes at the octroi office. The chief municipal taxable articles are food stuffs, ghi, gür or molasses, sugar, spices, oilseeds, and tobaceo; besides a large quantity of European manufactured articles brought into the town. Of the total municipal revenue in $1870-71(\{20,0 i s)$, $£ 16,230$ was derived from octroi. Lucknow maslins and other textile fabrics have a high reputation. Gold and silver brocade, however, forms the leading manufacture. It is used for the numerous purposes of Indian pomp, and has a consideratle market even in Europe. The gorgeous needlework cmbroidery upon velvet and cotton, with gold thread, thread and coloured silks, furnishes employment to many hands. Luckinow jewcllery, once very famous, has declined since the departure of the native court. Glass work and moulding in clay still maintain their original excellence. A Kashmiri colony has introduced a small manufacture of shawls. The Oudh and Rohilkhand Railway, with its branches, has a central station in Lucknow, and gives direct communication with Benares, Bareilly, and Cawnpur, as well as connecting with the great trumk lines to Calcutta, Bombay, and the Punjab. Before the amalgamation of Oudh with the North-Western Provinces in 1877, Lucknow forned the resillence of the chief commissioner and his statr, and it still ranks as the headquarters of officials whose authority extends over the wholo province. The principal medical institutions are the King's lospital, Balrampur hospitai, Government dispensary and lunatic asylum. The leading cducational cstablishments are the Canning college, Martinière college, Ward's institution, Loretto convent, and a number of schools under the charge of the Church of England and Ancrican missions.
History.- The nost interesting event in the modern history of Lucknow is the siege during the mutiny of 1857-58. Symptoms
of disoffection occurred is early as April 1857, and Sir Henry Lavrence immediately tosk sters to meet the danger hy fortifying the residency and accumblating stores. On the night of the 30th May the expected insurrection broke out; the men of the 71st regiment of native infantry, with a fer from the other regiments, began.to burn the bungalows of their officers, and to murder the inmates, but were dispersed by the European force and fled towards Sitápur. .Though the city thus remained in the bands of the British, the symptoms of disaffection amongst the remaiuing native troops were unmistakable, and on June 11 the military police and native cavalry broke into open revolt, followed on the succeeding morning by the native infantry. On the 20 th news of the fall of Cawnpur arrived; and on the 29th occurred the feilnre of Lawrence's attack upon the advancing enemy, in consequeuce of which the British troops fell back on Lucknow, abandoned the Machi Bhawan, and concentrated all their strength upon the residency. The siege of the enclosure began upon July 1. Three unauccessful assaults wcre made by the mutineers on July 20, Angust 10, and August 18 ; but meanwhile the British within were dwindling away. On September 5 news of the relieving force under Outram and Havelock reached the garrison, and on the 22d the relief arrived at the Alambágh, a walled garden on the Cawnpur road held by the enemy in force. Havelock stormed the Alambágh, and on the 25 th fought his way with continnous opposition through the narrow lanes of the city. On the 26 th he arrived at the gate of the residency enclosure, and was welcomed by the gallant defenders within. The sufferings of the besieged had been very great; but even. after the first relief it became clear that Lucknow could only be temporarily defended till the arrival of further reinforcements should allow the garrison to cut its way out. Night and day the enemy kept up a continual liring against the British position, while Outram, who had reassumed the command which he yielded to Havelock during the relief, retaliated by frequent sorties. Throughout October the garrison continued its gallant defence, and a small party, shut up in the Alambágh, and cut off unexpectedly from the main body, also contrived to hold good its dangerous post. Nieanwhile Sir Colin Campbell's force had advanced from Cawnpur, and arrived at the Alambagh on the 10 th of November. The Alambagh, the Dílkusha palace, sonth-east of the town; the Mlartiniere, and the Sikendra Rágh, the chief rebel stronghold, were successively carried in the course of the six following days, and the second relief was successfully accomplished. Even now, however, it remained imposeible to hold Lucknow, and Sir Colir Campbell determined, before undertaking any further offensive operations, to return to C'awapur with his army, escorting the civilians, ladies, and children rescued from their long imprisonment in the residency, with the view of iorwarding them to Calcutta. On the morning of the 20th Nov. ember the troops received orders to march for the Alambágh; and the residency, the scene of so long and stirring a defence, was abandoned for a while to the rebel army. Outram with 3500 men held the Alamhigh until the commander-in-chief could return to recapture the capital. The rebels in great strength again surrounded the greater lar't of the city, for a circuit of 20 miles, with an external Line of defence. On the 2d of Narch 1858 Sir Colin Campbell found bimself free enough in the rear to merch once more upon Lucknow. He first occupied the Dilkusha, and posted guns to command the Martinière. On the 5th Brigadier Franks arrived with 600C men; Ontram's force then crossed the Gunti, and advanced frors the direction of Faiz:bad, while the mein body attacked from the sontheast. After a week's hard fighting, March 9-15, the rebels were completely defeated, and their posts captured one by one.

LUCRETIUS (T. Locretios Carus), more than any of the great Roman writers, has acquired a new interest in the present day. This result is due, not so much to a truer perception of the force and purity of his style, of the majesty and pathos of bis poetry, or of the great sincerity of his nature, as to the recognition of the relation of his subject to many of the questions on which - speculative curiosity is now engaged. It would be misleading to speak of him, or of the Greek philosophers whose tenets te expounds, as anticipating the more advanced scientific hypotheses of modera times. But it is in his poem that we find the most completo account of the chief effort of the ancient mind to explain the beginning of things, and to understand the conrse of nature and man's relation to it. Physical philosophy in the present day is occupied with the same problems as tuose which are discussed in the first two booke of the De Rerum Natura. The renewed curiosity as to the origin of life, the primitive condition of man, and his progressive adrance to civilization finds an attraction in the treatment of the same subjects in the fifth book. The old war between science
and theology, which bas been revived in the presens generation, is fonght, though with different weapons, yet in the same ardent and uncompromising spirit throughont the whole poem, as it is in the writings of living thinkers. In comparing the controversies of the present day witb those of which we find the record in Lucretius, we are reminded of the poet's own description of the wsi of elements in the world,-
" Denique, tantopere inter ee cum maxima mundi
Pugaent membra; pio nequaquam concita bello.
Nonne vides aliquam longi certaminis ollis
Posse dari finem?" ${ }^{1}$
But this concurreace with the stream of speculation in the present day is really the least of his permanent claims on the attention of the world. His position both among ancient and modern writers is unique. No one else combines in the same degree the contemplative enthusiasm of a philosopher, the earnest purpose of a reformer and moral teacher, and the profound pathos and sense of beauty of a great poet. He stands alone among his countrymen as much in the ardour with which he observes and reasons on the processes of nature as in the elevation of feeling with which he recognizes the majesty of her laws, and the vivid sympathy with which be interprets the manifold variety of her life. It would have been an instructive study to have traced some connexion between his personal circumstances and the intellectual and moral position which he holds. We natnrally ask what influence of teachers in Rome or Athens first attracted him to this study and observation of natural phenomena, what early impressions or experience gave so sombre a colouring to his view of life, how far the delight, so strange in at ancient Roman, which he seems to find in a kind of recluse communion with nature, and the spirit of pathetic or indignant satire in which he treats the more violent phases of passion and the more extravagant modes of luxury, was a recoil from the fascination of pleasures in. which his contemporaries and equals freely iadulged. We should like also to know how far the serene heights which he professed to have attained procured him exemption from or alleviation of the actual sorrows of life. But such questions, suggested by the strong interest which the impress $n \varepsilon$ personal feeling and character stamped on the poem awakens in the reader, can only be raised; there are no ascertained facts by which they can be settled. There is no ancient poet, with the exception of Homer, of whosa history so little is positively known. Unlike Catullus, Horace, Virgil, Cicero, Tacitus, and uearly all the great Roman writers, he is absolutely silent on the subject of his own position and fortunes. Nor is this silence compensated by any personal reference to him in the works of his two eminent contemporaries by whom the social life of their age is so amply illustrated, Cicero and Catulius, although it is certain that each of them read hie poem almost immediately after it was given to the world. The great poets of the following ages were influenced by bis genius, bnt they tell us nothing as to his career. So consistently does he seem to have followed the maxim of his master, "Pass through life onnoticed," and to have realizec, in the midst of the excited political, intellectual, and social life of the last years of the republic, the ideal of those "who do not wish to be known even while living." 8

Onr sole infurmation concerning his life is found in the brief summary of Jerome, written more than four centuries ofter the poet's death. Scholars are now agreed that in these summaries, added to his translation of the Eusebian

[^13]Chronicle, Jerome followed, often carelessly and inaccurately, the accounts contained in the lost work of Suetonius $D e$ Firis Illustribus. But that work was written about two penturies after the death of Iucretius; and, although it is likely that Suetonius used the information transmitted by earlier grammarians, there is nothing to guide us to the original sources from which the tradition concerning the ife of Lucretius was derived. The strange character of the story which bas been transmitted to us, and the want of any eupport to it from exterasl evidence, oblige ns to receive it with a certain reserve.
According to this account the poot was bora iu the year 94 в.c. ; he became mad ("in furorem versus") in consequence of the administration of a love-pbiltre; and after composing several books in his lucid intervals, which were subsequently corrected by Cicero, he died by his own hand in the forty-fourth year of his age. The statement of Donatus in his life of Virgil, a work also based on the lost work of Suetonius, that Lucretius died on the 15 th of October 55 b.c., the same day on which Virgil assumed the roga virilis, is inconsistent either with the date assigned for the poet's birth or with the age at which he ie said to have died. A single mention of the poem (which from the condition in which it has reached us may be assumed to have been published posthumously) in a letter of Cicero's, written early in 54 B.c., is confirmatory of the date given by Donatus as that of the poet's death. Similar errors in chronology are common in the summaries of Jerome; and, where there is an inconsistency between the date assigned for the birth of any author and the age at which he is said to have died (as, for instance, in the case of Catullus), there are grounds for believing that the error lies in the first date. Taking the statements of Donatus and of Jerome togethe:, we may consider it probable that Lucretius died in the October of 55 B.c., in the forty-fourth year of his age, and that he was born either late in the year 99 b.c. or early in the year 98 в.c. Ho would thus be about seven ycars younger than Cicero, a year or two younger than Julius Cæsar, about the same age as Memmius, to whom the poem is dedicated, and about sfteen years older than Catullus and Calvus, the younger poets of his generation, from whom he is widely separated both by bis mode archaic style and rhythm and by the greater seriousness of his art and the more earnest dignity of his character. The other statements of Jerome have been questioned or disbelieved on the ground of their intrinsic improbability. They have been regarded as a fiction invented in a later time by the enemies of Epicureanism, with the view of discrediting the most powerful work ever produced by any disciple of that sect. It is more in conformity with ancient credulity than with modern science to attribute a permanent tendency to derangement to the accidental administration of any drug, however potent. A work characterized by such strength, consistency, and continuity of thought is not likely to have been composed "per intervalla insanix." Donatus, in mentioning the poet's death, gives no hint of the act of suicide. The poets of the Augustan age, who were deeply interested both in his $\mu$ bilosophy and his poetry, are entirely silent about the tragical story of his life. Cicero, by his professed antagonism to the doctrines of Epicurus, by his inadequate appreciation of Lucretius himself, and by the indiference which he shores to other contemporary poets, seems to have been neither fitted for the task of correcting the anfnished work of a writer whose genius was so distinct from his own, nor likely to hare cordially undertaken such a task.
Iet these considerations do not lead to the absolute rejection of the story as a pure invention of a hostile und uncritical age. The ovidence afforderl by the
yoem rathar leads to the conclusion that the tradition contains some germ of fact. We need not attach any importance to the supposed efficacy of the love-philtre in producing mental alienation, nor are we called upcus to think of Lucretius as one liable to recurring fits of insanity, in the ordinary sense of the word. But it is remarkable, as was first observed by Mr Munro, his English editor, that in more than one passage of his poem he writes with extraordinary vividuess of the impression produced bath by treams and by waking visions. It is true that the philosophy of Epicurus put great stress on these, as afforcing the explanation of the origin of eupernatural beliess. But the insistence with which Lucretius returns to th $\rightarrow$ subject, and the horror with which he recalls the effecta of such abnormal phenomena, suggest the inference that he himself may have been lisble to such hallucinations, which are said to be consistent with perfect sanity, though they may be the precursors either of madness or of a state of despair and melancholy which often ends in suicide. ${ }^{3}$ Other passages in his poem, as, for instance, the lines

> "Nos agere hoc auten, et naturam quarere rerum,
where be describes himself as ever engaged, even in his dreams, on his task of inquiry and composition, produce the impression of an unrelieved strain of mind and feeling, which may have ended in some extreme reaction of spirit, or in some failure of intellectual power, from the consciousness of which he may, in accordance with examples which he himself quotes, have taken refuge in suicide. But the strongest confirmation of the existence of some germ of fact in the tradition is found in the unfinished condition in which the pocm has reached us. The subject appears indeed to have been fully treated in accordance with the plan sketched out in the introduction to the first book But that book is the only one which is finished in style and in the arrangement of its matter. In ell the others, and especially in the last three, the continuity of the argument is frequently broken by passages which must have been inserted after the first draft of the arguments was written out. Thus, for instance, in his account of the transition from savage to civilized life, he assumes at 7 . 1011 the discovery of the use of skins, fire, dc., and the first beginning of civil society, and proceeds at 1025 to explain the origin of language, and then agsin returns, from 1090 to 1160 , to speculate upon the first use of fire and the earliest stages of palitical life. These breaks in the continuity of the argument show what might also be inferred from frequent repetitions of lines which hare appeared earlier in the poem, and from the rough wark. manship of pasaages in the later books, that the poem could not have received the final revision of the author, and must have been given to the world by some editor after his death. Nor is there any great difficulty'in believing that that editor was Cicero.. It is not necessary to press the meaning of the word "emendavit" as applied to the task fulfilled by him. Cicero certainly was incapable of "improving" any of the paetry of Lucretius, and the elight mention which he makes of the poem in a letter to his brother ("the poem of Lucretius is, as you describe it, a work not of much genius bit of much art " ${ }^{3}$ ) seems to imply that be was not very capable of nppreciating it. But other motives, besides appreciation of the poet's genius or sympathy with his doctrines, may have induced

[^14]him to undertake a task which has not been rery success. fully performed. It may be remarked further that ecepticism as to statements about their lires is less verranted in the case of the great Roman than of the great Greek writers, from the fact that the nork of criticism went on at Rome contemporaneously with the progress of original creation, and that the line of grammarians and commentators by whom these statements were transmitted continued unbroken almost from the first begiuning of Latin literature.

We find in the instance of nearly all the other Latin poets, cren of the most obscure among them, that their birthplace has been recorded, and it has often been remarked that Latin poetry was an Italian and provincial rather than a purely, Roman product. From the absence of any claim on the part of any other district of Italy to the honour of having given birth to Lucretius it is inferred that he was an exception to the rule, and was of purely Roman origin. No writer certainly is more purely Roman in personal character and in strength of understanding. He seems to speak of Rome as his native state in such expressions as "patriai tempore iniquo," "patrii sermonis egestas," and "patriis chartis." His silence on the subject of Joman greatness and glory as contrasted with the promicence of these subjects in the poetry of men of provincial birth such as Ennius, Virgil, and Horace, nay be explained by the principle that the familiarity of long-inherited traditions had made the subject one of less wonder and novelty to him. The Lucretian gens to which he belonged was one of the oldest of the great Roman houses, nor do we hear of the name, as we do of other great family names, as being diffused orer other parts of Italy, or as designating men of obscure or servile origin. It seems from the evidence of the name, confirmed by the tone in which he writes, as probable as any such inference can be that Lucretius was a member of the Roman aristocracy, belonging either to a senatorian or to one of the great equestrian families, living in easy circumstances, and familiar with the spectacle of luxury and artistic enjoyment which the great houses of Rome and the great country bouses in the most beautiful parts of Italy presented. If the Roman aristocracy of his time had lost much of the virtue and of the governing qualities of their ancestors, they showed in the last years before the establishment of monarchy a taste for intellectual culture which might have made Rome as great in literature as in arms and law, if the republic could have continued. The discussions which Cicero puts in the mouth of Velleius, Cotta, \&c., indicate the nerv taste for philosophy developed among members of the governing class during the jouth of Lucretius; and we hear of eminent Greek teachers of the Epicurean sect being settled at Rome at the same time, and living on terms of intimacy with them. The inference that Lucretius belonged to this class, and shared in the liberal culture which it receired, is confirmed by the tone in which be addresses Memmius, a man of an eminent senatorian family, and of considerable oratorical and poetical accomplishment, to whom the poem is dedicated. His tone to Memmius is quite unlike that in which Virgil or even Horace addresses Mrecenas. He addresses him as an equal; he expresses sympathy with the prominent part his friend played in public life, and admiration for bis rarisd accomplishment, but on his own subject claims to speas to him in the tones of authority.

Although our conception of the poet's life and circumstances is necessarily rague and meagre, $y$ et his personal force is so remarkable and so rividly impressed on his poem, and his language bears so unmistakably the stamp of sincerity, that we seem able to form a consistent
idea of his tastes and habits, his sympathies and convictions, his moral and emotional nature. If we know nothing of the particular experience which deterouined his passionate adherence to the Epicurean creed and his attitude of spiritual and social isolation from the ordinary course of Foman life and belief, we can at least say that the choice of a contcmplative life mas not the result of indifference to the fate of the world, or of any natural coldness or even calmness of temperament. In some of his most powerful poctry, as in the opening lines of the second and of the third books, we can mark the strong recoil of a humane and sensitive spirit from the horrors of the reign of terror which he witnessed in his youth, and from the anarchy and confusion which prevailed at Rome during the later years of his life; while his rivid realization of the pains and disappointments of passion, of the unsatisfying nature of all violent emotion, and of the restlessness and weariness of life which excessive luxury entails, suggest at least the inference that he had not been through his whole career so much estranged from the social life of his day as he seems to have been in his later years. Passages in his poem attest his familiarity with the pomp and lusury of city life, with the attractions of the public games, and with the pageantry of great military spectacles. But much the greater mass of the illustrations of his philosophy scattered through the poem indicate that, while engaged in its composition, and in the studies preparatory to it, he must have lived in the country or by the sea-shore, and that he must have passed much of his time in the open air, exercising at once the keen observation of a naturalist and the contemplative vision of a poet. He shows a fellow feeling with the habits and mouds of the animals associated with human toil and adventure. He seems to have found a pleasure, more congenial to the modern than to the ancient temperament, in ascending mountains or wandering among their solitudes (vi. 469 , iv. 575). References to companionship in these wanderings, and the well-known description of the charm of a rustic meal (ii. 29) enjoyed with comrades amid beautifnI scenery and in fine weather, speak of kindly sociality rather than of any austere separation from his fellors.

Other expressions in his poem (e.g., iii. 10, \&c.) imply that he was an ardent student of books, as well as a sympathetic observer of outward phenomena. Foremost, among these were the writings of his master Epicurus; but he had also an intimate knowledge and appreciation of the philosophical poem of Empedocles, and at least an acquaintance with the works of Democritus, Anaxagoras. Heraclitus, Plato, and the Stoical writers. Of other Greek prose writers he knew Thucydides and Hippocrates; while of the poets he expresses in more than one passage the highest admiration of Homer, whom he las imitated in several places. Nest to Homer Euripides is most frequently reproduced by him. There is an evident struggle between the impulses of his imaginative temperament, prompting him to recognize the supremacy of the great masters in art and poetry, and the influence of tha teaching of Epicurus, in accordance with which the old poets and painters of Greece are condemined as the authors and propagators of false ideas both of nature and the gods. But his poetical sympathy was not limited to the poets of Greece. For his owa countryman Ennius he expresses an affectionate admiration; and he imitates his language, his rhythm, and his manner in many places. The fragments of the old tragedian Pacuvius and of the satirist Lucilius show that Lucretins had made use of their expressions and materials. In his studies be was attracted by the older writers, both Greek and Roman, in whose masculine temperament and understanding he recognized an affinity with his orn. He bad a most enthusiastic admiration for genius, especially when exercised in the investiga
tion and discovery of trutb. His devotion to Epicurus seems at first sight more difficult to explain than his enthusiasm for Empedocles or Ennius. Probably he found in his calmness of temperament, in his natural or acquired indifference to all violent emotion, even in his want of imagination, a sense of rest and of exemption from the disturbing influences of life which the passionate heart of the poet denied himseif; while in his physical philosophy he found both an answer to the questions which perplexed him and an inexhaustible stimulus to his intellectual curiosity. The combative energy, the sense of superiority, the spirit of satire, characteristic of him as a Roman, unite with his loyalty to Epicurus to reader him not only polemical bui intolerant and contemptuous in his tone toward the great antagonists of his system, the Stoics, whom, while constantly referring to them, he does not condescend even to name. With his admiration of the genius of others he combines a strong sense of his own power. He is quite conscious of the great importance and of the difficulty of his task; but he feels his own ability to cope with it. Ho has the keenest capacity for intellectual pleasure, and speake of the constant charm which he found both in the collection of his materials and in the exercise of his art. If his mind was overstrained by the incessant devotion to his task of which he speaks, he allows no expression of fatigue or discouragement to escape from him. The ardour of study, the delight in contemplative thought, the "swreet love of the muses," the "great hope of fame," all combined to bear him buoyantly through all the difficulties and fatigues of his long and lonely adventure.

It is more difficult to infer the moral than the intellectual characteristics of a great writer from the personal impress left by him on his work. Yet it is not too much to say that there is no work in any literature that produces a profounder impression of sincerity. No writer shows a juster scorn of all mere rhetoric and exaggeration. This is cine of the main causes of the spell which the poem exercises over us. By no Stoic even could the doctrine of independence of the world, and of the superiority of simplicity over show and luxury, be more forcibly and consistently inculcated. No one shows truer courage, not marred by irreverence, in confronting the great problems of human destiny, or greater strength in triumphing over human weakness. No one shows a truer humanity and a more tender sympathy with natural sorrow. In reverence for the sanctities of heman affection, Virgil slone is his equal, nor is it an unlikely surmise that it was to the power of this sentiment, and the influence which it had on his relation with others, that he owed the cognomers of "Carus" or the " beloved."

The peculiarity of the poem of Lucretius, that which makes it unique in literature, is that it is a reasoned system of philosophy, written in verse. The subject was chosen and the method of exposition adopted, not primarily with the ides of moving and satisfying the imagination, but of communicating truth. The prosaic title De Rierum Natura, a translation of the Greek $\pi \epsilon \rho \grave{i}$ фírews, implies the subordination of the artistic to a speculative motive. As in the case of nearly all the great works of Roman literary genius, the form of the poem was borrowed from the Greeks. The rise of speculative philosophy in Greece was coincident with the beginaing of prose composition, and many of the earliest philosophers gave their thoughts to the world in the prose of the Ionic dialect; others however, and especially the writers of the Greek colonies in Italy and Sicily, oxpounded their systcms in continunus poems composed in the opic hesamcter. These writcrs
B.C., -the great arrakening time of the intellectua!, imaginative, and artistic faculties of the ancient world. The names most famous in connexion with this kind of poetry are those of Xenophanes and Parmenides, the Eleatics, and that of Empedocles of Agrigentum. The last was less important as a philosopher, but greater than the others both as a poet and a physicist. On both of these grounds he had a greater attraction to Lucretius. The fragments of the poem of Empedocles show that the Roman poet regarded that work as his model. In accordance with this model he has given to bis own poem the form of a personal address, he has developed his argument systematically, and has applied the sustained impetux, of epic poetry to the treatment of some of the driest and abstrusest topics. Many ideas and expressions of the Sicilian have been reproduced by the Roman poet; aud the same tone of impassioned solemnity and melancholy seems to have pervaded both works. But Lucretius, if less original as a thinker, was probably a much greater poet than Empedocles. With the speculative enthusiasm of the Greeks he combines, in a remarkable measure, the Italian susceptibility to the charm of nature, and the greater humanity of feeling which belongs to a more advanced stage of human history. But what chielly distinguishes him from his Greels prototypes is that his purpose is rather ethical than purely speculative. He shares with them the delight in inquiry and discovery; but the zeal of a teacher and reformer is more strong in him than even the intellectual passion of a thinker. His speculative ideas, his moral teaching, and his poetical power are indeed interdependent on one another, and this interdependence is what mainly constitutes their power and interest. But of the three claims which he makes to immortality,-
" Primum quod magnis doceo de rebus, et artis
Religionum animum nodis exsolvere pergo,
Deinde quod obscura de re tam lucida pango.,
Carmina musæo contingens cuncta lepore, ", "n
that which he himself regarded as supreme was the second, -the claim of a liberator of the numan spirit from the cramping bonds of superstition.

This purpose is announced by him over and over again, as for instance at the beginning of the argument in the first, second, third, and sixth books. The main idea of the poem is the irreconcilable opposition between the truth of the laws of nature and the falsehood of the old superstitions. But it is not merely by the intellectual opposition between truth and falsehood that he is moved. The happiness and the dignity of life are regarded by him as absolutely dependent on the acceptance of the true and the rejection of the false doctrine. The ground of his extravagant eulogies of Epicurus is that he recognized in him the first great champion in the war of liberation, and in his system of philosophy he beliered that. he had found the weapons by which this mar cuuld be most effectually waged Following in his footsteps, be sets before himself the aim of finally crushing that fear of the gods and that fear of death resulting from it which he regards as the source of all the human ills. Incidentally he desires also to purify the hesrt from other violent passions which corrupt it and mar its peace. But the source even of these-the passions of ambition and avarice-he finds in the far of death; and that fear he resolves into the fear of eternal punishment after death.

The selection of his subject and the order in which it is treated are determined by this motive. Although the title

[^15]of the poem implies that it is a treatise on the "whole nature of things," the aim of Lucretius is not to treat exhaustively the whole of matural science, recognized in the Epicurean system, but only those hranches of it which are necessary to clear the mind from the fear of the gods and the terrors of a future state. In the two carliest books, accordingly, he lays down and largely illustrates the first principles of being with the view of showing that the world is not governed by capricious agency, but has come into existence, continues in existence, and will ultimately pass away in accordance with the primary conditions of the elemental atoms which, along with empty space, are the only eternal and immutable substances. These atoms are themselves infinite in number but limited in their varieties, and by their ceaseless movement and combinations during infinite time and through infinite space the whole process of creation is maintained. In the third book he applies the principles of the atomic philosophy to explain the nature of the mind aud vital principle, with the view of showing that the soul perishes with the body. In the fourth book he discusses the Epicurean doctrine of the "simulacra," or images, which are cast from all bodies, and which act either on the senses nr immediately on the mind, in dreams or waking visions, as affording the explanation of the belief in the continued existence of the spirits of the departed. " The fifth book, which has the most general interest, professes to explain the process by which the earth, the sea, the sky, the sun, moon, and stars, were formed, the origia of life, and the gradual advance of man from the most savage to the most civilized condition. All these topics are treated witn the view of showing that the world is not itself divine nor directed by divine agency. The sixth book is devoted to the explanation, in accordance with natural causes, of some of the more abnormal phenomena, such as thunderstorms, volcanoes, earthquakes, isc.. which are special causes of supernatural terrors.
It would be impossible, within the limits of this article, to give any detailed account or criticism of an argument which is carried on, with the interruption only of occasional episodes, in which the moral teaching of the peet is enforced, through a poem extending to between six and seven thousand lines. Readers who are especially interested in the science of Lucretius will find the subject clearly treated in chapter $\mathbf{v}$. of Lange's History of Materialism. The consecutive study of the argument produces on most readers a mised feeling of dissatisfaction and admiration. They are repelled by the dryness of much of the matter, the unsuitableness of many of the topics discussed for poetic treatment, the arbitrary assumption of premisses, the entire failure to establish the connexion between the concrete phenomena which the author professes to explain and these assumptions, and the erroneousness of many of the doctrines which are stated with dogmatic confidence. On the other hand they are constantly impressed by his power of reasoning both deductively and inductively, by the subtlety and fertility of invention with which he applies analogies, by the clearness and keenness of his observation, by the fulness of matter with which his mind is stored, and by the consecutive force, the precision, and distinctness of his style, when employed in the processes of scientific exposition. The first two books enable us better than anything else in ancient literature to appreciate the boldness and, on the whole, the reasonableness of the ancient mind in forming hypotheses on great matters that still baffe the investigations of science. The third and fourth books give evidence of acuteness in psychological analysis; the fourth and sixth of the most active and raried observation of natural phenomena; the fifth of original insight and strong common sense in conceiving the origin of society and the progressive
advance of man to civilization. But the chief ralue of Lucretius as a thinker lies in his firm grasp of speculative ideas, and in his application of them to the interpretation of human life and nature. It is in this application that the most powerful interest of his poetry lies. All phenomena, moral as well as material, are contemplated by him in their relation to one great organic whole, which he acknowledges under the name of "Natura dadala rerum," and the most beneficent manifestations of which he seemis to synbolize and almost to deify in the "Alma Venus," Thom, in apparent contradiction to his denial of a divins interference with human affairs, he invokes with prayer in the opeaing lines of the puem. In this conception of nature are united the conceptions of law and order, of ever-changing life and interdependence, of immensity, individuality, and all-pervading subtlety, uuder which the universe is apprehended both by his intelligence and his imagination.

Nothing can be more unlike the religious and moras attitude of Lucretius than the old popular conception of him as az atheist and a preacher of the doctrine of pleasure. It is true that he denies the two bases of all religion, the doctrines of a superuatural government of the world and of a future life. But his arguments agaiust the first are really only valid against the limited and unworthy conceptions of divine agency involved in the ancient religions: his denial of the second is prompted by his vivid realization of all that is meant by the arbitrary infliction of eternal torment after death. His war with the popular beliefs of his time is waged, not in the interests of licence, but in vindication of the sanctity of human feeling. The great and cardinal line of the poem,
" Tantum religio potuit suadere maiorum
is elicited from him as his protest against the wicked and impious sacrifice of Iphigenia by the hand of her father. But in his very denial of a cruel, limited, and capricious agency of the gods, and in his imaginative recognition of an orderly, all-pervading, all-regulating power,-the "Natura dædala rerum," -we ind at least a nearer approach to the ligher conceptions of modern theism than in any of the other imaginative conceptions of ancient poetry and art, unless we include the hymn of Cleanthes among the utterances of poets. But his conception even of the aneieat gods and of their indirect influence on human life is more worthy than the popular one. They are conceived of by him as living a life of eternal peace and exemption from passion, in a world of their own; and the highest ideal of man is, through the exercise of his reason, to realize an image of this life,
" Ut nil impediat dignam dis degere vitam."
Although they are conceived of as unconcerred with the interests of our world, yet influences are supposed to emanate from them which the human heart is capable of receiving and assimilating. The effect of unworthy conceptions of the divine nature is that they render a man incapable of visiting the temples of the gods in a calm spirit, or of receiving the emanations "divinæ nuntia pacis". in peaceful tranquillity
" Nec delubra deum placido cum pectore adibis, Nec de corpore que sancto simulacra feruntur
In mentis hominum divinæ nuntia pacis
Suscipere hæe animi tranquilla pace valebis." ${ }^{3}$
It is in no iconoclastic spirit that he regards even the temples and solemn rites of the gods, except when he finds the acts of worship tainted with "the foul stain of super-

[^16]stition." Thus he describes with a grave solemmity of feeling the procession of the image of Cybele through the cities of men, and acknowledges the beneficent influence of the truths symbolized by that procession. The supposed "athcism" of Lncretins proceeds from a more deeply reverential spirit than that of the majority of professed believers in all times.

His moral attitude is also far removed from that either of ordinary ancient Epicureanism or ordinary modern materialism. Though he acknowledges pleasure to be the law of lifo,-" "dux vite dia voluptas,"-yet he is far from regarding its attainment as the end of life. What man needs is not enjoyment, but "peace and a pure heart"
"At bene non poterat sine puro pectore vivi."
The victory to be won by man is the trium, hover fear, ambition, passion, luxury. With the conquest over these nature berself supplies all that is needed for liappiness. Self-control and renunciation are the lessons which be preaches with as much fervour and as real conviction as any of the preachers of Stoicism. "Great riches consist in diving plainly with a contented spirit"-
"Divitix grandes homini sunt vivere parce Equo animo."
As was meutioned above, it is uncertain whether the short criticism of Cicero ("Lucretii poemata," \&c.) concedes to Lucretius the gifts of genius or the accomplishment of art. Readers of a later time, who could compare his work with the finished works of the Augustan age, would, if they refused his claim to the full possession of the two necessary constituents of the greatest pnets, have certainly disparaged his art rather than his power. But with Cicero it was different. He greatly admired, or professed to admire, the genius of the early Roman poets, while be shows that indifference to the poetical genins of bis younger contomporaries which men who have formed their taste for poetry in youth, and whose own intellectual interests have been practical and political, often do to the new ideas and new modes of feeling which an original poet brings into the world. On the other hand, as ope who had himself written many verses in his jouth, and as one of the greatest masters of stylo who have ever lived, he could not have been insensible to the immense superiority in rhythmical smoothness which the hexameter of Lucretius has over that of Ennius and Lucilius. And no reader of Lucretius can doubt that he attached the greatest importance to artistic execution, and that he took a great pleasure, not only in propelling "the long roll of his hexameter" to its culminating break at the conclusion of some weighty paragraph, but also in producing the effects of alliteration, assonance, \&c., which are so marked a peculiarity in the style of Plautus and the earlier Roman poets. He allows his taste for these tricks of style, which, when used with moderation by writers of a more finished sense of art sucli 'as Virgil and even Terence, have the happiest effect, to degenerate into mannerism. And this is the only drawback to the impression of absolute spontaneity which his style produces: But those who recognize in him one of the most powerful and original poetical forces which have appeared in the world feel, when they compare him with the greatest poets of all times, that he was unfortunate in living before the natural rudeness of Latin art-the "traces of the country," which continued to linger "in rude Latium" down to the time of Horace-had been : successfully grapplod with. His only important precursors in serious poetry were Ennius and Lucilius, and, though he derived from the first of these an impulse to shape the Latin tongue into a fitting vehicle for the expression of elevated emotion and imaginative conception, he could find in neither a guide to follow in the task he set before himself. He had thus, in a great
measure, to discover the way for humself, and to act as the pioneer to thuse who came after him. The difficulty and novelty of his task enbances our sense of his power. His finest passages are thus characterized by a freshness of feeling and enthusiasm of discovery, as of one ascending, alone and for the first time, the "pathless heights of the Muses." ${ }^{1}$ But the result of these conditions and of his own inadequate conception of the proper limits of his art is that more than in the case of any other mork of genius his best poctry is clogged with a great mass of alien matter, which no treatment in the world could have made poetically endurablc. If the distinction suggested by a brilliant living poet and critic between the Titans and the Olympians of literature be a valid one, it is among the former certainly that Lucretius is to be classed.

The genius of Lucretius, as of all the greatest poets, docs not reveal itself as any mere isolated or exceptional faculty, but as the inipassioned and imaginative movement of his whole moral and intellectual being. It is the force through which the sincerity and simplicity, the reverence, the courage, the whole heart of the man have fouod an outlet for themselves. It is also the force from which both his speculative and his observant faculty derive their most potent impulse. His poetical style is as simple, sensuous, and passionate as that of the poets who reproduce only the immediate appearances and impressions of the world of nature aud of human feeling. But it assumes a moro majestic and elevated tone from the recognition of the truth that the beauty of the world, the unceasing life and movement in nature, the destructive as. Well as the beneficent forces of the elements, the whole wonder and pathos of human existence, are themselves manifestations of secret invisible agencies and of eternal and immutable laws.

The fullest account of the MSS. and of the various editions of Lucretius, and of the influence which he excrised on the later poets of Rome, is to be found in the introductions to the critical and explanatory notes of Mr Munro's edition of the poct, a work recognized as the most important contribution to Latin scbolarship made in England during the present century. For scholars that edition contains all that is needed fo: the full understanding of the author. For those who are not classical scholars, the work of C. Martha, Le Poëne de Lucrèce, may be recommended, as containing an interesting and eloquent estimate of the genins of the poet, and of his moral, religicis, and scientific position. Among recent 'English works on the author, an essay, by Professor Veitch, and one by Mr J. A. Symonds, are especially good. The subject is also discussed at length in chaps. xi.-xiv. of the Roman Pbets of the Republic, by Professor Sellar.
(W. Y. S.)

LUCULIJUS. The Luculli appear in Roman history snortly after the close of the second Punic war. They belonged to the Licinian "gens," a plebeian house which became noted for its special ability in amassing wealth. By far the most famous of its members was Lucius Licinius Lacullus, surnamed Ponticus from his victorious campaigns in Asia Micor against ono of the most formidable enemies Rome ever encountered, the great Mithridates, king of Pontus. His father bad held an important military command in Sicily, but on his return to Rome he nias considered to have acquitted himself so discreditably that he was prosecuted on a charge of bribery and corrupt practices, and was coudemned to exile. His mother was Cæcilia, of the family of the Metelli, and was the sister of the distinguished Metellus Numidicus. The career of Lacullus coincides with the first half of the 1st century b.c. It appears that ho was rather senior to Pompey, who was born in 106 b.c. We hear of him when quite a young man as making a determined though unsuccessful attenpt to avenge his father's domnfall on the author of the prosecution, and this won him credit and popularity. Early in lifo he attached himself to the party of Sulla, and to that party

[^17]he remained cunstant to his life's end. Sulla's favourable nutice was secured by good military service in the so-called Sucial War, which fimally completed the subjugation of Rome's Italian allies and in faet of the whole peninsuia. In 88 v.c. came the great Mithridatic war in the Erst: with the direction of whelh Sulla was charged. In that year the young Lucullns went with him as lis quae:tor to Greece and Asia Minor, and, while Sulla was lesieging Athens, he raised a flect and drove Mithridates gut of the Mediterraneau. He won a brilliant rictory off Tenedos, and it scems probable that, had he been as fait'f ful to Rome as he was to Sulla and his parts, he might have ended a perilous war. lint, like nany of his contemporaries, Luculus was too much of a party man to be a genuine patriot.

In 84 b.c. peace was concluded with Mitbridates, and the great king had to cede the Greek islands and a large part of his Asiatic possessions, and was practically reduced to the position of a mere Toman dependant. Sulla returned to Rome, while Lucullus remained in Asia, and by a series of wise and generous financial reforms laid the fonndation of the future wealth and prosperity of the prorince. The result of his policy was that te stood particularly well with the provincials, but unfortunately for himself made a host of enenies among the powerful class which farnied the public revenue. He was in Asia till SO b.c., and then returned to Rome as curule ædile, in which capacity he exhibited together with his collcague, his brother Mareus, ganles which were long remembered by the citizens of Rome for their exceptional magnificence. We may infer that thus early in life he had found the means of acquiring an immense fortune, which throughout his whole career it was his delight lavishly to display. Soon afterwards he was elected pretor, and was next appointed to the proviluce of Africa, where again he won a good name as a just and considerate governor. In the year 74 b.c. he became consul, with Aurelius Cotta as his colleague. An attempt was made at this time by a leader of the democratic party to repeal the legislation of Sulla, and its failure appears to Lave been mainly due to the strenuous cfforts of Lucullus.

The East was now again unsettled, and Bithynia, which Lad becu bequeathed to Rome by its king Nicomedes, was threatened by Mithridates. The new province with the cummand of the fleet fell to Cotta, but Lueullus ras called to lead the arnies of Rome against this dangerous enemy. In 74 3.c. he was in Asia at the head of a force of about 30,000 foot and 2000 horse. The king of Pontus was already on Koman ground in Bithynia, and Cotta was shut up in Chalcedion on the Propontis by a vast host of 150,000 men. The eneruy's fleet had forced its way into the harbour, and liad burnt all the Roman vessels lying at anchor. The advance of Lucullus, however, forced the king to raise the siege and reti.a along the sea-coast, till he balted before the strong city of Cyzictis, the key of Asia, as it was called, built on an island at a little distance from the mainland, with which it was connected by a bridge. All the attempts of Mithridates on the place were foiled by a gallant defence, and it was not long before Lucullus took up a threatening position in the rear of his army, which cut off all his land communications and left him only master of the sea. Bad weather and violent storms and scant supplies soon drove the king from the walls of Cyzicus, and his rast army was dispersed without having had the chance of fighting a single pitched battle. His fleet too, which as yet bad had the command of the Tgean, was soon afterwards destroyed by Lucullus, and thus his whole power for offensive warfare had completely collapsed. He himself withdrew into his own proper territory, and all that the Roman general bad to fear was that he might baffle pursuit by a flight eastward into the
remote wilhs of Armenia. However, in the auturun of 73 B.c., Lucullins pushed into the heart of Pontus far beyond the Halys, the limit of the famous Scipio's advance eastward. and continued his onward march, regardless of the murmurs of his weary suldiery, to Cabeira or Neocessarea (now Jiksar), where the kiog had gone into winter quarters with a vague hope that his son-in-law, Tigranes, the powerful king of Armenia, and possibly even the Parthians, might, for their own sakes, come to his aid agaiust a common foe. It was by a very toilsome march through difficult roads that the Romau army at last reached Cabeira, to find themselves confronted by a greatly superior force. But the troops of Mithridates were no more a mateb for the Roman legionarics than were the Persians for Alexander, and a large detachment of his army was decisively cut up by one of Lucullus's lieutenant-generals. The king decided on instant retreat, but the retreat soon became a disorderly flight, and Lucnllus, seizing the moment for attack, annililated his eneny, Nithridates binself escaping with difficulty orer the mountain range between Poutus and Cappadocia into Lesser Armenia. He found a sort of refuge in the dominions of Tigranes, but he was in fact detained as a prisoner rather than received as an honoured friend and ally.

Pontus thus, with the exception of some of the maritime cities, such as Sinope, Heraclea, and Amisus, which still clung to the king under whom they had enjoyed a free Greek constitution, became Roman territory. Two years were occupied in the siege and captnre of these strongholds, while Lucullus busied himself with a general reform of the administration of the province of Asia. His next step was to demand the surrender of Mithridates and to threaten Tigranes with war in the event of refusal. He had indeed no direct authority from the home goveroment to attempt the conquest of Armenia, but he may well have supposed that in invading the country be would be following out Sulla's policy, and securing lome in the East from a serious danger. Nor was it unnatural that there should be a fascination in the idea of winning renown in the distant and almost unknorn regions beyond the Euphrates. In the spring of the year 69 B.C., at the head of only two legions, which, it appears, by no means liked the hardships of the expedition, he marched through Sophene, the southwestern portion of Armenia, crossed the Tigris, and pushed on to the newly-built royal city. Tigranocerta, situated on one of the affluents of that river. A motley host, made up out of the tribes bordering on the Black Sea and the Caspian, hovered round his small army, but failed to linder lim from laying siege to the town. On this occasion Lucullus showed consummate military capacity, contriving to maintain the siege and at the same time to give battle to the enemy with a force which must have been inferior in the ratio of something like one to trenty. According to his own account he put the Armenians to rout with a loss of five Roman soldiers, leaving 100,000 dead on the field of lattle. The rictory before the walls of Tigranocerta was undoubtedly a very glorious one for the arms of Rome, and it resulted in the dissolution of the Armenian king's extensive empire. There might now have been peace but for the interference of Mithridates, who for his own sake pressed Tigranes to renew the mar and to seek the aid and alliance of Parthia. The Parthian king, however, was disposed to prefer a treaty with Rome to.a treaty with Arnienia, and desired simply to have the Enphrates recngnized as bis western boundary. Mithridates nost appeaied to the national spirit of the peoples of the East generally, and endeavoured to rouse them to a united efficrt against Roman aggression. He hoped to crush his enemy amid the mountains of Armenia, and indeed the position of Lucullus was highly critical. _The home gorernment
firas for recalling him, and aeemed to think little of his splendid successes; and his little army, which one might nave been supposed rould hare been proud of their general, was on the verge of mutiay. One can hardly understand how uader such circumstances Lucullus should have persisted in marching his men uorthwards from Tigranocerta over the high table-land of central Armenia, with the enemy'a cavalry and iannmerable mounted archers hanging on his columns, ln the hope of reaching the distant Artaxata on the Araxes. The vexation of hia troops broke out into an ouea mutiny, which compelled him to recross the Tigris into the Mesopotamian valley. Here, on a dark tempestuous night, he aurprised and stormed Nisibis, the capital of the Armenian district of. Mesopotamia, and in this city, which yielded him a rich bootv, be found satisfactory winter quarters.

Meantime Mithridates was again in Pontus, and the Roman forces which had been left there were soon overwhelmed. In one disastrous eugagement at Ziela the Roman camp was taken and the army slaughtered to a man. Lucullus was still thwarted $\mathrm{E}_{3}$ the mutinous spirit of his troops, and after all his brilliant achievements he was obliged to pursue his ratreat into Asia Minor with the full knowledge that Tigranes and Mithridates were the unresisted masters of Pontns and Cappadocia. The work of eight years of war was undone. Commissioners aent from Rome to settle the affairs of the East had to report to the senate that a large part of Asia Minor was in the enemy'a hands. In the year 66 b.c. Lucnllus was recalled, aad aupersoded in his command by Pompsy.

He had indeed fairly earned by his brilliant victories the honour of a triumph, but he had powerful'enemies at Rome, and charges of maladministration, to which no doubt his immense wealth gave no unreasonable colour, caused it to be deferred for three years. In 63 b.c., however, it wis celebrated with extraordinary magaificence. By this time Lucullus seems to have felt that he had done his work. He had little taste for the increasiagly turbuleat political contests of the time, and, with the exception of occasional appearances in public life, he gave bimself up to elegant luxury, with which, however, he combined a sort of dilettante pursuit of philosophy, literature, and art. Cicero, who was on terms of close intimacy with him, always speaks of him with eathusiasm and in terms of the highest praise. Lucullus is with him a vir fortissimus et clarissimus, and a man tou of the highest and most retined intellectual culture. As a provincial governor, in his humane consideration for the conquered and his statesmanlike discernment of what was best auited to their circumstances, he was a man after Cicero's awn heart. In this respect be reminds us of the jounger Pliny. Very possibly Cicero may have spoken too flatteriagly of him, but we cannot think his praise was altogether undeserved.

As a soldier, considering what be achieved and the victorics he won with but amall forces under pectiliarly unfavourable conditions, he must have been a man of no ordinary capacity. It is true that he does not scem to have had the confideace of his troops to the extent to which a great general ought to possess it, and it is just possible that he may have erred na the side of an excessive aristocratic hautenr, which to his men may have looked like a selfish indifference to their hardships. Butit is also possible that out oi a strict regard to the lives and property of the provincials he may have been too strict a disciplinarian for the taste of the aoldiers. Some of his unpopularity, it is pretty certain, was due to the restraints which he had put on the rapacity of the canitalists, who thought themselves aggrieved if they could not make rapid and enormous fortunes by farming the revenue of the rich proviaces of the East. We can hardly doubt that with very
decided aristocratic feeling aad thorough derotion to his political party Lucullus combined much generous uprightuess and kindliness of heart

His name calls up before the miad visinus of bonndless luxury and magaificence, and among the Komaa nobles who revelled in the newly acquired riches of the East Lucullus, it is certaia, stood pre-eminent. His park and pleasure grounds in the immediate vicinity of the capital were the wonder and admiration of his own and of the succeeding age. Pompey is said to have styled him the Roman Xorxes, in allusion, not only to his aplendour, bnt also to the costly and laborious works to be seen in his parks and villas at Tusculum, near Naples, where rocks and hills had boen pierced at an almost infinite expense. On one of his luxurions entertainments he is said to have spent upwards of $£ 2000$. Far the most pleasing trait in his character is the liberal patronage which he gave more especially to Greek philosophers and men of letters, and the fact that be collected a vast and valuable library, to which such men had free access. On the whole we may take Lucullus to have been a man who in many respects rose above his age, and was a decidedly favoursble specimen of a great Roman noble.

Of his latter years but little is recorded. He had, as we have seen, almost wholly retired from public life. It appears that he cank into a condition of meatal feebleness and imbecility some years before his death, and was obliged to surrender the management of his affairs to his brother Marcus. The usnal funeral panegyric was prononnced on hira in the Forum, and the people would have had him buried by the side of the great Sulla in the Campus Martius, but he was laid at his brother's special request in his aplendid villa at Tusculum.

The best account of Lucullus's campaign in the East is to be found in Momnisen's History of Kome, bk. V. chap. 2. Our knowledge of him is drawn mainly from Plutarch, Appian's Mithridatic War, tho epitomes of the lost books of Livy, and vcry frequent allusions to him in Cicero's works.
(W. J. B.)

LUDDITES, THE, were organized bands of rioters for the destruction of machinery, who made their first appearance in Nottingham and the neighbouring midland districts of England about the end of 1811. The origin of the name is curions, and is given as follows in the Life of Lord Sidmouth (vol. iii. p. S0). In 1779 there lived in a village in Leicestershire a person of reak intellect, called Ned Lud, who was the butt of the boys of the village. On one occasion Lud pursued one of his tormentors into a house where were two of the frames used in the stocking manufacture, and, not being able to catch the boy, vented his anger on the frames. Afterwards, whenever any frames were broken, it became a common saying that Lud had done it. It is curions slso that the leader of the riotous bands took the name of General Lud. The Luddite riots arose out of the severe distress caused by commercial depression and the consequent want of cmployment. They rero specially directed against machinery because of the widespread prejudice that its uso directly operated in producing a scarcity of labour. Apart from the prejudice, it was inevitable that the economic and social revolution implied in the change from manual work to work by machinery should givo rise to great niscry. by upsctting all the old industrial habits and arrangements. The riots began at Nottinglaan, in November 1811, with the destruction of atocking and lace frames, and, coatinu. ing through the winter and following spring, spread iuto Iorkshire and Lancashire. Thsy were met by severe repressive legislation, -a notablo feature in the opposition to it being Lord Byron's speech in the House of Lerds, the first which be delivered there. In 1816 the rioting was resumed, through the fearful depression that foliowed on tho European peace, aggravated by one of the worst of
recorded harvests, when wheat rose from 52s. 6d. to 103 s . a quarter (in Forkshire it was more than a guinea a bushel), wheu the corn was still green in October, and the potato crop was a failure. In that year, though the centre of the riotirg was again in Nottiogham, it extended over almost the whole kingdom, aud took more decidedly the form of a general discontent and seditious restlessness. The rioters were also thoroughly organized, While part of the band with extraordinary quickness and thoroughness destroyed the machinery in the houses, seutinels wore posted to give.maraing of the approach of tho military and police; and all had generally disappeared before the least rish of discovery. Under the influcnce of vigorous repressivo measures, and especially of reviving prosperity, the spirit of rinting ere long died ouț.
See the Annual Register for the years concerned; Life of Lord Sidmouth, by tha Hon. George Pellew, dean of Niorwich, vol. iii.; and Spencer Walpole, History of England, vol. i.

LUDHIANA, a district in the lieutenant-governorship of the Punjab, India, lying between $30^{\circ} 33^{\prime}$ and $31^{\circ} 1^{\prime} N$. lat: and between $75^{\circ} 24^{\prime} 30^{\prime \prime}$ and $76^{\circ} 27^{\prime}$ E. long., is bounded on the N. by the Sutlej river, on the E. by Umballa (Ambála) district, on the S. by Patiala, Nábha, and Maler. Kotla states, and on the W. by Firozpur district. The surface of Ludhiana consists for the most part of a broad plain, without hills or rivers, and stretching northward from the native borders to the ancient bed of the Sutlej. The soil is composed of a rich clay, broken by large patches of shifting sand. On the eastern edge, torards Umballa, the soil improves greatly, the clay being here surmounted by a bed of rich mould, suitable for the cultivation of cotton and sugar-cane. Towards the west the sand occurs in union with the superficial clay, and forms a light friable soil, on which cereals form the most profitable crop. Even here, however, the earth is so retentive of moisture that good harvests are reaped from fields which appear to the ere mere stretches of dry and aandy waste, but are covered, after the autumn rains, by waring sheets of wheat and millet. These sonthern uplands descend to the valley of the Sutlej by an abrupt terrace, which marks the former bed of the river. The principal stream has now shifted to the opposite side of the valley, leaving a broad alluvial strip, 10 miles in vidth, between its ancient and ats modern bed. The Sutlej itself is here only navigable for boats of small burden. A branch of the Sirhind Canal, now in course of construction, will irrigate a large part of the western parganas. At present irrigation is almost entirely confined to mells. The district is singularly bare of trees:

The census of 1863 returned a total population of 583,245 persons ( 319,342 malea and 263,903 females), spread over an area of 1359 square miles, inbabitiog 879 villages and towns, and 151,934 houses. Hindus numbered 219,371; Mohammedans, 206,603; Sikhs, 95,463 ; and "others," $61,8 \dot{j}{ }^{\prime}$. In ethnical classification the Játs rauk first, both in number $(205,304)$ and in agricultural importance ; they form one-third of the total nopulation, a ad nearly tro-thirds of the cultivating class. The Gújara come next with 30,009 persons. Rajputs number 23,961 , and cluster thickly in the fertile strip along the bank of the Sutlej. Though they bold the richest portion of the district, they are but careless and improvident cultivators. Bráhmans number 21,165 , but their social importance is small, and they own but a single village. The mercantile classes are represeuted by 15,251 Kishattriyas and 8174 Banias. There are also 5549 Kashmiris, employed in tearing shawls and moollen goods. Four towns were returned in 1868 as containing upwards of 5000 iuhabitants, viz., Ludhiána, 39,983; Raikot, 9165 ; Jagráon, 7096 ; and Machiwára, 6062 . Lufhiána is a fourishing agricultural district in spite of the general unpromising appearance of its soil, a result mainly attributable to the untiring diligence of its Jat cultivators. Almost all the arailab!a land has been brought under the plough, and in many villages no waste land is left for pasturage, the catte being fed from cultivated produce. Under rabior spring crops there were io 1872-73 195,279 acres of wheat, 30,620 of Lathev, 162,649 of gram , and 576 of poppi. . The kiharif or rain crops comprised 129,589 acres of jodr, 49,047 of Jadian corn, 55,293 of
moth, and 15,894 of cotton. In spite of their iudustrious habits, many of the peasantry are deeply in delit, aad the sate of mutercst is high. Most of the land is held by tenants-at-will. Agricultural labourers are paid in grain ; in the towns, unskilled labour is paid at the rate of from 3d. to 4ld. per diem. Ludhiána is compriaratively free from danger of actual famine, thougb it suffers much from drought. The exports, of which the annual value is estimatcd at £377,120, are chiefly confued to grain, cotton, wool, saltpetre, and indigo ; the principal imports ( $\pm^{*} 365,552$ ) are English goods, spices, and red madder dye. Manufuctures include shawls, pashmemar cloth, stockings, gloves, cotton goods, furniture, carriages, and fire. arns. Eight large silk factories and upwards of four hundred private silk-looma give employment to over three thousand persons. Communication is afforded by the Sind, Punjab, and Delhi Railway, which runs thrangh the centro of the district, aard by several lines of good metalled roads.

The administratire staff of the district comprises a deputy consmissioner, with au assistant and two extra assistants, a sarall-canse court judge; and three tahsilddrs, besides the usual medical and constabulary officers. The total revcoue in 1872-73 was $£ 103,795$, of which $£ 85,215$ was contributed by the land tax. Education in 1873 was afforded by 184 schools, of which 68 were in receipt of Government grants in aid; the total number of enrolled pupils waa 6733 . In the upland portion of the district the atmosphere is dry and healthy; in thi Sutlej valley, however, tha air is extremely noxious after the rainy season floods, and fever prevails often in an epidemic form ; ophthalnia is also common. The mean temperature in 1872 was $87^{\circ} .59$ Falr. in May, $85^{\circ} 67$ in July, and $54^{\circ} \cdot 85$ in December; the maximum being $117^{\circ}$, and the ninimum 31. The arerage annual rainfall ie 28 inches.

History. - Tbough the present town of Ludhiána dates no fartber back than the 15 th certury, other cities in the district cao claim a much greater antiquity. At Sunet, close to the modern station, are ruins of an extensive brick-built town, whose greatness liad already passed aray before the period of Mohammedan invasion; and the old Hindu city of Máchiwára is of still carlier date, heing mentioned in tha Afahabhdrata. During the Mussulnaan eporlh, the history of the district is bound up with that of the Riis of Raikot, a family of converted Rajputs, who received the country as a tiul under the Sayyid dynasty, about the year 1445. The town of Ludhiana was founded in 1480 by two of the Lodi race (then ruling at Delbi), from whom it derives its same, and was built in great part from the prehistoric bricks of Sunet. The Lodis continued in possession until 1620, when it again fell into the hands of the Ráis of Raikot. Thrcughout t'ue palmy days of the Mughal empire the Ráikot family held sway, but the Sikha took adrantage of the troubled period which accompanied the Mughal decadence to estahlish their supremacy aouth of the Sutlej. Several of their chieftains made encroachments on the domains of the Rais, who were only able to bold their own by the aid of George Thomas, the famous adventurer of Hariána. In 1806 Ranjit Siuh crossed the Sutlej and reduced the obstinate Mobammedan family, and distributed their territory amongst his own co-religionists. Sioce the British occupation of the Punjab Ludhiána lias grown in wealth and population, but its history has been uneventful.

Ludhiána, the chief town and headquarters station of Ludhiana district, is situated on the south bank of the old bed of the Sutlej, 8 miles from the present bed of the river, in $30^{\circ} 55^{\prime} 25^{\prime \prime}$ N. lat. and $75^{\circ} 53^{\prime} 30^{\prime \prime}$ E. long. The population in 1868 was 39,983 , viz., Mohammedans, 27,860; Hindus, 10,208; S.lkbs. 45 ; Christians, 79; "others," 1791. The Kashmiris retain their hereditary skill as weavers of shawls and pashmina cloth, the value of the quantity exported in 1871-72 being returned at $£ 13,350$. Shawls of the soft Rámpur wool, cotton cloths, scarfs, turbans, furniture, and carriages also form large items in the thriving trade of the town. Since the opening of the railway Ludhiana has become a great central grain mart, having extensive export transactions both rith the north and south. The American Presbyterian Mission has a church and school, with a small colony of natire Christians. The town bears a bad reputation for unhealthiness.

LUDLOW, a municipal and parliamentary borough and market-tomn of Shropshire, England, is situated at the junction of the Teme and Corve on the borders of Herefordshire, 27 miles south-east from Shrewsbury and 10 rorth from Leominster The old castle, on aj eminence above the Teme, presents an imposing and massive appearark the Norman turiesg and the greater part of the walls being
still complete. The parish church of St Lawrence, a fine cruciform structure in the Gothic style, with a lofty central tower, dates from the reign of Edward III.; it was restored in 1859-60. The grammar school, founded in the reign of John, was incorporated by Edward I. The other principal public buildings are the guild-hall, the town-hall and market-house, and the public rooms, which include the assembly-rooms and a museum of natural history. Tanning and malting are carried on to a small extent, and there are also flour-mills. The population of the municipal borough ( 280 acres) in 1871 was 5087 , end in 1881 5035. The population of the parliamentary borough ( 1371 acres) in the same years was 6203 and 6663.
Ludlow is said to have existed as a British town under the name of Dinan. After the Conquest it was granted to Roger de Montgomery, who is said to havs been the founder of the castle. Eor some time the castle was a royal residence, and from the reign of Heury VIII. to that of William III. it was the seat of the council of the marches. In the reign of Charles I. it was garrisoned for the king, but it surrendered to the parliamentary forces in June 1646. The town had a charter of incorporation at a very early period, which was confirmed by Edward IV.

LUDLOW, Edmund (1620-1693), was born at Maiden Bradley, Wiltshire, in 1620 , of an ancient and honvurable family. He studied at Trinity College, Oxford (where he took his B.A. degree in 1636), and at the Temple.' When the war broke out he engaged as a volunteer in the life guard of Lord Essex, consisting of one hundred gentlemen. His first essay in arms was at Worcester, his next at Edgehill. He was made governor of Wardour Castle in 1643, which place he surrendered on honourable terms after ten months' siege. On being exchanged soon afterwards, he engaged as major of Sir A. Haslerig's regiment of horse, in which capacity he did good service in the western counties. He was present at the second battle of Newbury, October 1644. In 1645 he was elected M.P. for Wilts in the room of his father Sir Heury Ludlow, and attached himself ${ }^{\circ}$ inflexibly to the republican party. In 1648 he was one of a committee of six who arranged the violent action known as Pride's Purge. He was one of the king's judges, and put his hand to the warrant for his execution. In January 1651 Ludlow was sent into Ireland as lieutenant-general of horse, holding also a civil commission. Here he spared neither health nor money in the public•service. Ireton, the deputy of Ireland, died 27 th November 1651, and for six months Ludlow held the chief place, which he then resigned to Fleetwood. Though disapproving of Cromwell's action in dissolving the Long Parliament, he maintained his employment, but when Cromwell was declared Protector he declined to acknowledge his authority, and was soon after recalled to England. He refused the Protector fuce to face when ordered to submit to his government, and in December 1655 retired to his own house in Essex. After Oliver Cromwell's death Ludlow was returned for the borough of Hindon, end took his seat in Richard's parliament in 1659. He sat also in the restored Rump, and was a member of its conncilof state and of the committee of safety efter its second expulsion. •He also held office for a short time in Ircland. After the Restoration, finding that his life was in danger, ho left Eugland, in September 1660, and travelled through France and Geneva, and thence to Vevey, then under the protection of the canton of Bern. Thera he spent the rest of his long life nnmolested, to the great credit of the Government of that canton, which had also extended its protection to ather regicides. He iwas, however, in constant danger from Cavalier assassins. He steadily refused during thirty years of exile to have anything to do with the desperate onterprises of republican plotters. But in 1689 he returned to England, hoping to be cmployed in Irish affairs. .He was, bowever. known ouly as a regicide; and an address from
the House of Commons was presented to William III. by Sir Edward Seymour, requesting the king to issue a proclamation for his arrest. Lndlow escaped again, and returned to Vevey, where he died in 1693, aged seventythree, and where a munument raised to his memory by his widow is still to be seen in the church of St Jartin. Over the door of the house in which he lived was placed the inscription "Omne solum forti patria, quia Patris." His memoirs, extending to the year 1688, were published in 1698-99 at Vevey.
LUDOLF, or Leutholf, Hiob (1624-1704), a learned Orientalist, was born at Erfurt on June 15, 1624. At an early age he manifested a passion for the acquisition of foreign tongues; and after exhausting the imperfect educational resonrces of bis native place he went in 1645 to Leyden, where for upwards of a year be was the pupil of Erpenius, Golius, and other linguists. • Having receiver an appointment as tutor, he afterwards travelled in France (where he became acquainted with Bochart at Caen) and in England, and in 1649 he was commissioned by the Swedish ambassador at the French court to gò to Rome in quest of certain papers which had been lost, and which Queen Cbristina wished to recover. In this mission ho was unsuccessful, but while in Italy he became acquainted with four Abyssinians, from whom he acquired his knowledge (at that time unique) of Ethiopic. In 1652 he entered the diplomatic service of the duke of Saxe-Gotha; in this he continued (acting also for some time as tutor to the young princes) until 1678 , when he Ictired to Frankfort-on-the-Main. At the conferences held there in 1681 and 1682 he beld a commission to act for the dukes of Saxony. In 1683 he visited England to promote a cherished scheme for establishing trade with Abyssinia, but his efforts were unsuccessful, chiefly throngh the bigotry of the authorities of the Coptic Church. Returning to Frankfort in 1684, ha gave himself wholly to literary work, which he continued almost to his death on April 8, 1704. In 1690 he had the honour to be appointed president of the "Collegium Imperiale Historicum."
His works, of which a complete list will be found in Chanffepiés Dictionnaire, include Bistorice Ethiopica (fol. 1681), with Commentarius ad Hist. Eth. (1691), and Appendix (1693); Grammatica Amharicæ Lingus, quæ vernacula est Habessinorum, 1698 ; Lexicon Amharico-Latinum, 1698 ; Lexicon Ethiopico-Latinum, of which the first edition was published in Londou in 1661, but with nany inaccuracies for which Ludolf refused responsibility (a second edition appeared at Frankfort in 1699); Grammatica Lingum Ethiopicx (London, 1661 ; Frankfort, 1702). Ludolf holds a very high place among the older Orientalists, and his works on Ethiopic in particular continned to be the standard text-books till they were superseded by those of Dillmann

LUDWIGSBURG, the second royal residence of Wiirtemberg, is situated 9 miles to the uorth of Stuttgart and $1 \frac{1}{2}$ miles from the Neckar. It was laid out at the beginning of last century by Duke Eberhard Ludwig as a rival to Stuttgart, and was greatly enlarged by Duke Charles, who resided there from 1764 to 1785 . Constructed as the adjunct of a palace, the town bears the impress of its artificial origin, and its straight streets and spacious squares have a dull and lifeless appearance. Its man importance now consists in its being the chief nilite's depôt of Würtemberg, as which it contains extensive barracks, a cennon foundry, on arsenal, and a military academy. The royal palace, one of the largest and finest in Germany, stands in a beautiful park, and contains a portrait-gallery and the burial vault of the sovercigns of Würtomberg. Among the other prominent buildiugs are four churches and several educational and charitablo institutions. Ludwigsburg also carries on manufactures of organs, woollen and linen cloth, jspanned tin-wares, picture frames, and chicory, In 1880 it contained 16,100 inhabitants, about one-fuurth of whom belonged to the
garrison. David Strauss, author of the Life of Jesus, was a native of Ludwigsburg. In the vicinity is the beautiful roysl chateau of Monrepos, connected with the park of Ludrigsburg by a fine avenue of limes.

LUDWIG̛SHAFEN. See Mavnheim.
LUGANO, a town of Switzerland, which divides with Locarno and Bellinzona the first rank in the canton of Tessin (Ticino). It stands on the shore of the lake of the same name, on a narrow strip of Swiss territory which projects into Lombardy and is everywhere close to the Italian frontier. The prosperity of the town is due to its position on the main line of land communication between Milan and the pass of the St Gotthard, and the facility of intercourse by land and water, whether for legitimste or contraband trade, between this outlying fragment of Switzerland and the rich region that surrounds it. The buildings are not remarkable, but the church of Santa Maris degli Angioli contains several important pictures by Luini, a native of the adjoining district. The monastery to which the church formerly belonged is now converted into a large botel. During the struggle of the people of northern Italy to expel the Austrians from Lombardy; between the years 1848 and 1866, Lugano served as beadquarters for Mazzini and his followers. Books and tracts intended for circulation throughout Italy were produced there, and at the neighbouring village of Capolago, on a large scale, and the efforts of the Austrian police to check their circulation were completely powerless. The population is Italian in character and features, and the Italian tongue is exclusively spoken. On the quay is a statue of Tell by Vela, and there are other works by the same eminent sculptor, a native of the canton, in prirate grounds near the town. About 2 miles distant, and nearly due south, a steep hill-called Monte Salvatore-rises more than 2000 feet above the surface of the lake; and commands a fine panoramic view, limited in some directions by the higher mountains on the opposite side of the lake, but extending in one direction to Monte Rosa, and in snother to the cathedral of Milan.

LUGANO, Lake of (sometimes called Lago Ceresio by the Italians, from the Roman name Lacus Ceresius), situated partly in Lumbardy and partly in the Swiss cantoin Tessin or Ticino, takes its ordinary name from the town of Lugano, the only considerable place on its banks. Its form is very irregular, and has been compared to a sickle, a fish-hook, and various other objects. It lies altogether amidst the outer ranges of the Alps that divide the basin of the Ticino from that of the Adda, where the calcareous strata have been disturbed by the intrusion of porphyry snd other igneous rocks. It is not connected with any considerable valley, but is fed by numerous torrents in various directions issuing from short glens in the surrounding mountains, and is drained by the Tresa, an unimportant stream that flows westward into the Lago Maggiore. The surface of the lake is 889 feet above the sea, and the form of its bed scems to be very irregular. In some parts soundings of more than 1000 feet have been taken, while in one place the lake is so shallow that a causersy half a mile in length, supporting the road and the railway, has been carried from shore to shore. The scenery is of a varied character : in great part, and especially in the nortb-east arm exterdiog from Lugano to the Lombard village of Porlezza, the lake is enclosed between mountains that rise steeply to a height of some 2000 feet from the water's edge, while on its southern and western branches it is encompassed by gently swelling hills rich with the luxuriance of Italian vegetation.

LUGANSK, a town of Russia, in the government of Ekaterinoslaff, district of Slavianoserbsk, 300 miles to the eastward of the capital of the province, is connected by a
branch with the railway between Kharkoff and Azoff, as well as with other towas and iron-works of the Douetz coal-mines district. ir stands on the small river Lugan, 10 miles from its junction with the northern Donetz, in the Lugan mine district, of which it is the chief town. This district, which comprises the important coal-mines of Lisitchansk and the anthracite mines of Gorodische, occupies an ares of about 110,000 acres on the bauks of the Donetz river, and has a population of more than 15,000. Although it is mentioned in Russian history as early as the 16 th century, and coal was discovered in it at the time of Peter I., it was not until 1795 that an Englishman, Gascoyne or Gaskoin; established its first iron-work for supplying the Black Sea fleet and the southern fortresses with guns and shot. This proved a failure, owing to the great distance from the sea, and the maoufacture of $\cdot$ supplies for the navy was suspended; but during the Crimesn war the iron-works of Lugan again largely produced shot, shell, and gun-carriages. Since 1864 agricultural implements, steam-engines, and the various machinery required for beetroot sugar-works, distilleries, \&c., have been the chief manufactures. The Lugan works, which employ about 1200 men, are the chief centre for sinelting the ores of the neighbouring iron-mines. The town is the seat of the miniug authorities for the district, and has a first-class metcorological and magnetic observatory. The II,000 inhabitants of Lugansk also carry on a very active trade in cattle, tallow, wools, skins, linseed, wine, corn, and manufactured wares. The weekly fairs are much frequented. There are also in the town many tallowmelting works, and the smith trade is largely carried on.

LUGO, a maritime province of Spain, one of the four into which Galicia has since 1833 been divided, is bounded on the E. by Oviedo and Leon, on the S. by Orense, on the W. by Pontevedra and Cornuna, and on the N. by the Atlantic. Its extreme length from north to south is about 98 miles, its breadth 58 , and the area 3797 square miles. The coast, which extends for about 40 miles from the estuary of Rivadeo to Cape Vares, is extremely rugged and inaccessible, and few of the inlets that exist, except those of Rivadeo and Vivero, admit vessels of any size. The province, espccially in the north and east, is mountainous in its character, being traversed by the great Cantabrian chain and its offshoots; the sierra by which it is separated from Lcon attains in some places a height of 6000 feet. A large part of the area is drained by the Miño, which rises on the western slope of the Sierra de Meira, and follows a southerly direction until it is joiued by the Sil; the latter for a considerable distance forms the southern boundary of the province. Of the rivers of the northern versant the nost important are the Navia (which has its lower course throngh Oviedo), the Eo (for some distance the boundary between the two provinces), the Masma, the Oro, and the Landrobe. The Eume, one of the rivers of Coruña, and the Ulla, which scparates that province from Pontevedra, both have their rise on the western slopes of Lugo. Some of the northern valleys even, in their lower portions, are fertile, and yield not only corn but fruit and wine, but the principal agricnltural wealth is on the Miño and Sil, where rye, maize, wheat, legumes of various kinds, fiax, bemp, and a little silk are produced. The hills are comparatively well wooded. Iron is found at Caurel and Incio, antimony at Castroverde and Cervantes, argentiferous lesd at Riotorto; and there are quarries of granite, marble, and varions kinds of slate and building stone. Linen and woollen cloths are manufactured, but to an insignificant extent, and the trade of the province is unimportant. The internal communications are still very imperfect. There is ouly one railway, that connecting Lugo with Cornna; but connexions with Leon (Brañueras)
and witn Orense are in contemplation. The total population in 1877 was 410,387 , being a decrease of 22,129 since 1860. There are ten towns with a population over 10,000 - Clantada, Fonsagrada, Lugo, Mondoñede, Monforte, Panton, Sarria, Saviñao, Villalba, and Vivero.

Lugo, the capital of the above province, stands ou a small hill near the northern bank of the river Miño, at a height of 1930 feet above the level of the sea, 60 miles sonth-west from Coruña, and 353 north-west from Madrid, on the highway between these two cities. With the former it is continuously connected by rail. The form of the town, which is nearly quadrangular, is defined by a massive Roman wall, from 30 to 40 feet in height and 20 feet thick, with projecting semicircular towers which, prior to the civil war in 1809, were eighty-five in number; it now serves as a promenade, commanding an extensive and delightful prospect. The principal public places are the Plaza de la Constitucion, a spacious areaded square, the Plaza de San Domingo, the Plaza del Hospital, and the busy Plaza del Campo, where fairs and marisets are hold. The most important of the public buildings is the Gothic cathedral on the south side of the town; it dates from the 12th century, but was modernized in the 18th, and possesses no special architectural merit. Other churches are those of the Capuchins and that of San Domingo ; the only other buildiugs of note are the episcopal palace, the secondary school, the hospital, and the prison. The principal industries are tanning, and the manufacture of linen cloth and of cream of tartar; there is some trade in silk wares. About a mile to the south of the tern, "on the left bank of the Miño, are the famous hot sulphur baths of Lugo; the bathing house dates from 1847. The population of the ayuntumiento in 1877 was 18,909.
Lugo (Lucers Augusti) mas made by Augnstns the seat of a conventics juridicus. Its sulphur baths were even then well knewn. It suffered greatly in the 5 th century, during the Moorish wars, aul, mare recently, during the war of independence. The bishopric dates from a very early period, and it is said to have acquired metropolitan rank in the middle of the 6th century; it is now suffragan to Santiago.

LUGOS, a market-tawn of Hungary, capital of the trans-Tisian county of Krasso, is situated on the Temes, and on the railway from Temesvar to Karánsebes, 32 miles east-south-east of the former, in $45^{\circ} 41^{\prime}$ N. lat., $21^{\circ} 533^{\prime}$ E. leng. The two main portions of the town, separated by the river, and named respiectively Német- (German) Lugos and Román- (lioumaniain) Lugos, are connected by a wooden bridge 312 feet in length. Lugos is the seat of a Greek Catholie (Roumanian) bishopric, of royal and circuit courts of law, and of the usual bureaus of a county administration. The public and other buildings include Greek Orthodox, Greek Catholic, Roman Catholic, and Lutheran churches, a synagogue, a royal upper gymnasium (founded in 1823), a Minorite convent, an episeopal palace, the barracks, and the ruins of a castle. The surromang country is mountainous and well-wooded, and produces large quantities of grapes and plums. In 1880 the population was 11,287, of whom $34 i 6$, chiefly Germans, were in Német-Iugos, and 7811, Roumanians, with a few Slaronians and Magyars, in Román-Lugos.
Lugos iwas once a streng fertress anil of greater relative importance than at present. During the 16 th aud 17 th centuries it suffored muck at the hands of the Turks. At the close of the 1 Iungarian revolutionary war (August 1849) it was the list resort of Kossuth and several other leaders of the national cause provious to their estapy to Turkey.

LUINI, Bernardino, the most celebrated master of the Lombard school of painting founded upon the style of Leonardo da Vinci, was bern ant Luino, a village on the Lago Maggiore, towards 1465. He himself wrote his name as "Bernardin Lovino," but the spelling "Luini" is
nuw very generally adopted. Fcw facts are known regard ing the life of this illustrious and delightful painter, nue it is only since a comparatively recent date that he has evea been credited with the production of his uwn woms and with the fame therete appertaining, as many of thum had, in the lapse of years and laxity of attribution, gow assigued to Leonardo. It appears that Luini studicd painting at Vereelli under Giavenone, or perhaps under Lo Scotto. He reached Milan either after the departure of Da Vinei in 1500, or shertly before that event; it is thus left uncertain whether or not the two artists had any persomal acquaintance, but Luini was at any rate in the painting-scheol established in Milau by the great Florentine. In the latter works of Laiui a certain influence from the style of laphael is superadded to that, far more prominent and fundameutal, frem the style of Leonarda; but there is nothing to show that he ever visited Reme. His two sons are the only pupils whe have with confidence been assigned to him; and even this can seareely be true of the younger, who was born in 1530, when Bernardine was well idvanced in years, and was not far from the close of his career. Gaudenzio Ferrari has alsa been termed his disciple. One of the sons, Evangelista, has left little which can now be identilied; the other, Aurelio, was accomplished in perspcetive and landscape work. There vas likewise a brother of Bernardino, named Arubragio, a competent painter. Bernardino, who hardly ever left Lombardy, had some merit as a poet, and is said to have composed a treatise on painting. The precise date of his death is unknown; lie may perhaps have survived till about 1540 . A serene, contented, and happy mind, naturally expressing itself in forms of grace and beauty, seems stamped upon all the works of Luini. The same character is traceable in lis portrait, painted in an upper group in his fresco of Christ Crowned with Thorns in the Ambrosian library in Milan,-a venerable bearded personage. The only anecdote which bas been preserved of him tells a simular tale. It is said that for the single figures of saints in the church at Saronno he received a sum of money equal to 22 franes per day, along with wine, bread, and lodging ; and he was so well satisfied with this remuneration that, in conpleting the commission, he painted a Nativity for notling.

Along with this natural sweetness of charaeter, a dignified suavity is the most marked characteristic of Luini's works. They are constuntly beautiful, with a beauty which depeuds at least as much upen the loring self-withdrawn expression as upon the mere refinement and attractiveness of form. This quality of expression appears in all Luini's productiens, whether secular or sacred, and imbues the latter with a peculiarly religious grace-not ecelesiastical unetion, but the devontness of the heart. His heads, while extremely like thase paiuted by Leonardo, have less sultlety and involution and less rariety of expression, but fully as much amenity. He began indeed with a somewhat dry style, as in the fieta in the clurch of the Passione; but this soon developed into the quality which distinguishes all his most renowned works; although his exccution, especially as regards medelling, was never absolutely on a par with that of Leonardo. Luini's paintings do not exhibit an impetuous style of execution, and certainly not a negligent one; yet it appears that he was in fact a very rapid worker, as his pieture of the Crowning with Thorns, painted for the College del S. Sepolero, and contaiuing a large number of figures, is recorded to have occupied him only thirty-eight days, to which $\begin{array}{r}\text { n } \\ \text { assistant added eleven. His method was simple }\end{array}$ and experlitious, the shadows being painted with the pure colour laid on thick, while the lights aro of the same coluur thinly used, and mixed with a little white. The freseos
exhibit more freedom of hand than the oil pictures; aud they are on the whole less like the work of Da Vinci, having at an early date a certain resemblance to the style of Mantegna, as later on to that of Raphael. Luini's colouring is mostly rick, and his light and shade forcible.
Among his principal works the following are to be mentioned. At Saronno are frescos paiated towards 1525, representing the life of the Madonna-her Marriage, the Presentation of the Infant Saviour io the Templa, the Adoration of the Magi, and other incidents. His own portrait appears in the subject of the youthful Jesus with the Doctors in the Temple. This series-io which some comparatively archaic details, occur, such as gilded nimbuses - was partly repeated from one which Luini had executed towards 1520 in S. Croce. In the Brera Gallery, Milan, are frescos from the suppressed church of La Pace and the Convent della Pelucca,-the former treating subjects from the life of the Virgin, the latter, of a classic kind, more decorative in manner. The subject of girls playing at the game of "hot-ceckles," and that of three angels depositing St Catherine in her sepulchre, are particularly memorable, each of them a mork of perfect charm and grace in its way. In the Casa Silva, Milan, are frescos from Ovid's Metamorphoses. The Monastero Maggiore of Milan (or church of S. Maurizio) is a noble treasure-house of Luini's art, -including a large Crucifixion, with about one hunde - and forty figures ; Christ Boond to the Column, betveen figures of Saints Catherine and Stephen, and the founder of the chapel kneeling before Catherine ; the Martyrdom of this Saint; the Entombment of Christ ; and a large number of other subjects. In the Antbrosian library is the fresco (already mentioned), covering one entire wall of the Sala della S. Corona, of Christ Crowned with Thorns, with two executioners, and on each side six members of a confrateruity; in the aame building the Infant Baptist Playing with a Lamb; iu the Brera, the Virgin Enthroned, with Saints, dated 1521 ; in the Louvre, the Danghter of Herodias receiving the Head of the Baptist ; in the Esterhazy Gallery, Vienna, the Virgin betmeen Saints Catherine and Barbara; in the National Gallery, London, Christ Disputing with the Doctors. Many or most of these gallery pictures used to pass for the handiwork of $\mathrm{Da}_{\mathrm{C}}$ Vinci. The amme is the case with the highly. celebrated Vanity and Modesty in the Scisrra Palace, Rome, Which also may nevertheless in all probatility be assigned to Luini. Another singularly beautiful picture by him, which reems to pass almost entirely unobserved by tourists and by writers, is in the Royal Palace in silan -a large cumposition of Women Bathing. That Luini was also pre-eminent as a decorative artist is shown by bis works in the Certosa of Paria

LUKE, whose name is traditionally attached to the Third Gospel, appears to have been one of the companions of Paul, being mentioued as such in Col. ir. 14, Philem. 24, and 2 Tim. iv. 11 ; even if, as some critics suppose, these epistles were not written by Paul himself, they are at any rate likely to have preserved the local colouring. Assumiug, as is probable, that the same person is intended in all three passages, we gather (1) that Luke was not a born Jew, since in Col iv. 11, "those who are of the circumcision" appear to be separated from those, among whom is Luke, who are meationed afterwards (but there is nothing to determine the question, which bas since been raised, whether he had been a Jewish proselyte or a Gentile), and (2) that he was a physician. There was an early belief, first mentioned by Irearus, that he is spoken of, though not mentioned by name, in 2 Cor. viii. 18, as "the brolher whose praise is in the gospel throughout all the churches"; and the subscription of that epistle in some MSS., and in the Peschito and other versions, embodiea this belief. Of his birth and country nothing is positively known; but it is a possible inference from his name Lucas, which is a coatraction of Lucanus (the full form occurs in some early. MiSS. of the Itala), that he was of Italian (Lucanian) descent.

From the time of Irenæus, whose testimony is soon folloived by that of Clement of Alexsadria, Tertullian, and Origen, this companion of Paul has generally been considered to be the author of the third canonical Gospel and of the Acts of the Apostles; but no other facts are mentioned by early writers as to his persoual history, except such as may bo gathered from the writings which are attributed to him. Tertullian, for example, speaks of
him as "non apnstolus sed apostolicus," a ad as "posterioris apostoli sectator" (Adv. Marcion., 4, 2); and the Muratorian fragment says that he had not seen the Lord in the flesh. The most importact of these biographical inferences are those which were made by Eusebius, who, translating, or mistranslating, $\pi a \rho \eta \kappa \circ \lambda o u \theta \eta \kappa o ́ \tau \iota \pi \hat{a} \sigma \iota$, in the preface to the Gospel, by "having accompanied all," i.e., the " 日yewitnesses aod ministers of the word," infers that Luke was a companion not of Paul oniy but also of the other apustles, and, probably referring to Acts xiii. 1, says that he was "one of those from Antioch." These inferences of Eusebius are further elaborated by Jerome, who adds, without quating any authority, that he wrote the Gospel in Achair or Bœotia (many MSS. have Bithynia), and the Acts at Rome. ${ }^{2}$
Those who accept this tradition of his having been the author of the Acts of the Apostles ususlly infer from the sections of that work in which the pronoun "we" is employed thst he accompanied Paul on part of his second and third missionary journeys, and also on his voyage to Rome. The first of these sections begins with the apostle's determioation to go into Macedonia, and euds when he has left Philippi (Acts xvi. 10-40); the second begins when the appstle returas to Philippi, and ends with his arrival at Jerusalem (Acts $x x .6-\Sigma x i$ 18); the third begins with his sailing from Cæsarea, and ends with his arrival st Rome (Acts xxvii. 1-xxviii. 16). Even some of those who assign the greater part of the book to a much later date think that these sections may be extracts from an original diary of a companion of Paul, and that this companion may have been Luke. Others, however, think it improbable that Luke, without being specially mentioned either in them or elsewhere, should have sccompanied Paul on his voyage to Rome, and assign these sections to Timothy, or Titus, or Silas (some have added the very improbable conjecture that Luke and Silas are the same person).
The other biographical details which are found in patristic literature, and which are not inferences from the New Testament, rest upon no certain eridence, and are frequently at variance not only with one another but also with earlier documents. It is sometimes stated that he was one of the aeventy disciples; this statement is found in Epiphanius ( $H$ æres., lii 11), in pseudo-Origen (De recta in Deum fade, ed. De la Rue, vol. i. p. 806), in Gregory the Great (Aforal. i. 1), and elsewhere ; but it is inconsistent, not only with Tertullian and the Mrratorian fragment, but also with the clear inference from the preface to the Gospel that its author was not himself an eyervitness of what he narrates. It is also stated that he was one of the two disciples who went to Emmaus (S. Greg. Magn., Hforal. i. 1; Paul. Diacon., Homil. 59 in Natali S. Lucx; and others); but this statement is discredited by the same facta as the preceding. Like all the other disciples whose names are mentioned in the New Testament, he is said to have gone forth as a preacher of the gospel ; but statementa vary widely as to the place in which he preached : Gregory of Nazianzus aays Achaia'; Epiphanius saya Dalmatia, Gaul, Italy, and Macedonia; Ecumenius says Africa; later legends mention his having been at Enns in Austria (Hansiz, Germ. Sacra, vol. i. P. 15). And also, like most of the other early disciples, he is said not only to have preached the gospel but also to have suffered death for its sake. Gaudentius of Brescia saya that this occurred at Patra in Achaia, and Nicephorus specifies as the manner of bis martyrdom that he was hung on an olive tree. But elsemhere it is stated or implied that he died an ordinary death, either at Thebes in Bootta (Martyrol. Basil.), or in Bithynia (Paulus Diaconns, Isidore of Serille, and the Afartyrologies of Ado and Usuardi). Most traditions agree in stating that his body was transferred by Constantius to Constantinople ("Chron. Hieron.," ap. Mai, Noo. Script. Coll ; Prosper Aquitanus, Paulus Diaconus, Nicephorns, and othera), but its place of burial seemis to bave been forgotten, and Procopius (De wdif. Justin., i. 4) mentiona that it was discovered in Justinian's time in digging the foundations of a new

[^18]durch ; a subsequent tradition otated that it was afterwords removed to Italy, and in the 15 th century Pius Il. conmissioned Cardinal Bessarion to decido upon a violent controversy betwaen the Minorite monastery of S. Job at Venice and the Benedictine monastery of S. Giustina at Padua, each of which claimed to posscss the perfect relics of the crangelist.

A late tradition represents Luke to have been a painter as well as a physician ; the tradition first appeasa in a doubtfiul fragment of an anthor of doubtful date, Thecdolas Lector (printed in H. Valois's edition of Theodoret, P .618 ), who mentions that the empicss Eadocia sent to Pulcheria, from Jerusalem to Constantimople, a picture of the Virgin painted by Luke. The same story is inentioned in an almost certainly spurious oration of Johin of Damascus (Orat. in Constant. Copron., c. 6., vol. i. p. 618 , ed. Le Quien) ; and the first certain authorities for the tradition are Symeon Metaphrastes and the Bilenologizom of Basil the younger, both of which belong to the 10th century. That the tradition is not of much earlier growth is proved by thie fact that, if it had existed, it could not fail to have been largely used in the iconoclastic controversy.

The martyrologies and calendars for the most part agree in fixing Luke's festival on October 18; hut a doubt is expressed whether that day should be regarded as the anniversary of lis birth or of the translation of his remains to Constantinople.

In Christian art he ia usually symbolized by an ox (witle refejence to Ezekiel i. 10, Revelation iv. 7), on the significance of wbich syinbol various statements were made hy both Eastern and Western writers (some of them will be found quoted by Ciampini, Fct. Monum., vol. i. 192).
(E. HA.)

## LUKE, Gosplil of. See Gospels.

LUKOW, a town of Russian Polard, in the province of Siedlce, 60 miles by rail to the west of Brest-Litovsky. Owing to its situation on the railway and in the centre of $\AA$ rich district, it is rapidly developing. The population is 11,050.

LUKOY\&NOFF, a district town in Russia, in the government of Nijni-Novgorod, 108 miles south-south-east of the chief town of the government, on the highway to Saratoff, at the sources of the Tesha river, tributary of the Oka. It is situated in a district where agriculture is carried on to a large extent, corn being sold to distilleries, and hemp exported, while the extensive forests furnish materials for the production of wouden wares. Wooden spoons, buckets, sledges, carts, implements for linen weaving, are made in large quantities by the peasants of tho neighbouring villages, and exported to the steppe provinces of southern Russia; and there is also considerable trade in timber, felts, fishing nets, nails, \&ic. Population 9600.

LULLY, Giovanni Battista (1633-1687), way boru in Florence, and joined in 165C, as a violinist, the orchestra of the French court. Tho:ch firiendless and in a foreign country, his genius soon opened for him a road to hononrs and wealth. He was appointed director of music to King Louis XIV., and director of the Paris opera. The influence of his music was so great as to produce a radical revolution in the style of the clances of the court itself. Instesd of the slow and stately movements, which had prevailed until then, he introduced lively and rhythmically quick ballets. Having found a coagenial poet in Quinault, Lully composed twenty operas, which met with a most enthusiastic reception from a delighted public. He effected important improvements in the cempesition of the orchestra, inte which he introduced several new instruments. Lully enjoyed the friendship of Moliere, for some of whose best plays he composed illustrative music. His Miserere, written for the funeral of the minister Sequier, is a splendid work of genius; and very remarkable are also his minor sacred compositions. On bis death-bed he wrote Bisogna morire, peccutore. Lully's right to be numbered among the most original and the best musicians is nndoubted. His music is full of the most charming and entbralling forms of Italian melody; and the fact of its being even now performed, after the lapse of so many years, is proof sufficient of its inherent beauty and intrinsic worth.

LULLY, Raymond (1235-1315), the inventor of a fantastic system of logic by which Mohammedans should ise converted to Christianity, was born at Palma, in the islond of Majorca, in 1235. His father had been borr at Barcelona, and belonged to a distinguished Cataionian family; but fur his services in leelping to recover the Balearic islands from the Saracens be was rewarded with a gift of land in the conquered territory, and the paternal estates descended to his enthusiastically-minded son. The younger Lally, however, shored at first but little of the speculative tendencies which he afterwards developed, and his early years were spent in the gaiety and even profligacy of a courtier in the service of James II., of Anagon, who appointed him grand seneschal of the isle. He married, but notwithstanding sought the reputation of a gallant, and was mixed up in more than one intrigue. Something, however, of the nature of a cancer, which attacked one of the objects of his passion, Signora Ambrosia,--such is the way in which we are asked to account for his "conversion,"一affected him so deeply that he abandoned in his thirty-second year his licentious life, and, having distributed the greater portion of his goods to his family and the poor, he withdrew to the retirement of a cell on Mount Panda, the only part of his property which he had reserved for himself. Visions of a crucified Saviour and like phenomena confirmed him in his devotion to the cause of Christ, and in the course of a nine years' retreat In Randa he came to regard himself as commissioned by God to refute the errors of Mohammed.

This missionary call became henceforth the actuating principle in Lully's life. To realize it, he went to Paris in bis fortieth year, to prosecute the stucly of Latin and logic; and, with a view to becoming familiar with the language of the infidels, he engaged the services of an unlettered Arabian, who. findiug that Lully was seeking to demolish the faith of Islam, attempted to assassidute his naster. This need of acquiring a knowledge of the language of the church's adversary became itself now one of Lully's favourite ideas. In 1286 be began a series of visita, which he made to Rome to induce the supreme pontiff to found colleges for the study, of Arabic; but the small success which would attend his efforts in this direction was foreshadowed by the death of Honorius (then pope; before ho could attain an audience of him. Meanwhile Lully had become discontented with the methods of science commonly in use, and had set himself to construct his "great art," a method which, by mechanically presenting all the predicates which could attach to any subject, was adapted to answer any question on any topic, and would (its author inagined) by the cogency of its inferences necessarily convert the heathen. His natural enthusiasm respecting the consequences of this art were strengthened by revelations (as he judged them) of the co-operation of God in bis designs, and be gave himself up, with the fervour of a divinely appointed missionary, to the work of sprcading a knowledge of his "great art" in every country. He expounded it at Paris and Montpellier in 1286, and after a risit to Pope Nicholas, to solicit his help in fouvding linguistic colleges, and a serious illness at Genoa, brought on npparently by an isolated fit of nervous cowardice in face of the dangers he was geing to encounter, he sailed to Tunis, to apply his new ruethod to the errors of Mohammedanism. At Tunis his attacks upon the religion of the country led to his bcing cast iuto prison, and it was only by the mediation of a sheikh, who had been impressed by the earnestness of the Christian preacher, that he managed to escape to sea, not without the rougliest treatment at the hands of the mob, and find his way to Naples.

A new influeuce was brought to bear on Lully's life at

Naples He padz tee seguaintance of the slchernist Araced è Tillenenta, sad sequited, me mas heliere, nos onl? thes still in transmeting metals for mbich Irlly himself becane in pepolar tradtion famons, ou: imbibed eloo stmething of itst spirit which brought domn the cansare of the charsi on Tillezeare for mainsaining that Eeative and charity meat Eore plogsing :o God than relifiors serfices. Fof the next fen rears the sceze of Lully's labvars was costinality ckssyizs. He made en eracresertul sitemyt to it terest Pepe Boniface in the Eissiona? colleges whick te misbed to see establisined, ced similit sppeale :o the Liags of France and Crits met. with 20 more is roteable a respones. From Crifus Lall proseciod (1306) to Burgiah in Alices, sed repreated the erperiezoes he bsa elresdy 2ad et Tunis. Bint, though Mabam=alucism showed little disposition to meloume the Frest an san ive suthor, the Euronesp morld Lad mean-
 Lall re prejects Is $1299^{-1}$ Le bad receivei at Montpellier, from :he ceneral of the Frazciscans, letars recommending bim :o the reparicr of all Fracciscon horses : suid in 1309 Lis "ast " yiss publicir approred by a cecree of the exiremity of Paris. Eniboldened. perhaps he such recogeition te appessed before the cotanil of tience in socthern Fraoce in 1311, and petitiozed the sssembled fathers to
 to cre grat order serving simply under Carist, and to まoer Mo:ammedunim strod and Arerroism at home br tonnitiz colleges for the sady of Arabic Nothing Tonle seem to leste come cirectif of these petitions, but The =er porbsps trase their vesult in some chairs of Syriac anz fratic witich Clement Y. instituted at Fome, sod in a college for training Foranisesms in Oriectal languages whioh Jemes of Aragon sstablished ia Majorcen Ially Thas now nesri? eighty years of age, but tis zest in comibasting the foes of Carisiasity did not ebote. He sailed aEnin for Africz, end receivel the mstrre's crown, which woald seen to kare berome the ambition of his life. At Bougiah ha again procleimed the doctrines cf the chureh, and Lis presching raised such a trmalicous sitact that
 sue:umbei caring the ropace to the injuries he hed reseivei, and died in sizho of bis natite comy of Palou (131こ)










 Scourdid Insmitions. -48 Inveriendi Pamicularia in Cnipersaitbus,




 ADA ETta wise Lait is exered

 ther











What will seasca sit ouly from effect to casse, or from cause to effect botper squiparantiann, and slow that contruy attributes can coerist tagether in ore subject. This method, howeter, mast his real, not merel formal and sahjectire; it must deal not onlr with The second intevions, brit rather with the frst intentions, ihat is, the things themselres. The great art in fact goes beroad losic and metar hrsic: 35 a unitersal iopic it prorides a unirersal art of discovery, and contains the formulx to mhich every demonstration in ereji science can be redeced. This ars investigandi, bowerer, turas out to he =ot so wuch a ker to all possible knowledge as a tabulation of the different points cis riew from which propositions mar be framed ahout rarions objects-a mechanical contrivance for foding ont the diferent wars in which categories apply to things Jusi, foll y thought, is by kiowing the Jif ical terminations oi cases and terses we conld infec: and conjucate any werd whaterer, so hy a knowledge of ibe diferen: trpes of existence and their possible combinations ss poritared hr ijs meihod we should possess implicity a hoowledge of the whale of nature.

The gratt at eccordingls besins br laring dorn an alphavet 2ccording to wich the rine letters from $B$ to K stand for the different kirds of sabstances and stuributes. Thus, in the senes of substances, B stands for $\mathrm{Gol}, \mathrm{C}$ aigel, D hearez, E man, and so cD ; in the series of absolute attrikates, $\mathbf{B}$ represents goodness, $C$ grea:ress, I duration; or segain, in ibe niDe questions, B stands for lirum, $C$ fer fund, $D$ for De grato. The mamipulating of these letters in such a way as will show ihe relaticinship between diferent satjects and Fnedicates consitates sccondingl the pecaliarity of the "new ert" this manirciatioa being efected br the help of certain so-cqlled "fygues" The coastraction of these faures vames scmemhat in difereat paits of Lullria mritugs, but Iheir geaeral character is alwars the ssme. Circles and ciler mathematical figures dirided into sections and marked br Lull? Ermbohical Jetters are so arganged, sometimes mith the help of difienent colcors, as to show :he possible combinstions of which the letters we capable. Thns for exsmple one firre exhibits the rossible combination of the atiribates of Goj, santher the possitle conditions of the soul, and so on. These figures are fenced about ir rarious definitions and rales, aṅ iheis. cse is further specified hr various "eracuaticas" and "maltiplications" ri,ich show us bow to exberast and dram ont ault the possible combinations and sets of questions which the ierms zoder cossideration cara aimit. When so "multiplied," the forth figure is, Lall timself says, that by which other sciences can be IDost eqsily and rafidly acquired; and it puer accordingly be taken es no rifair sperimen of Lollt's method. This forth figure then is simplr ei arangement of itree concentric circles (made of tin or Pasteboerd) each dirided into nine sections B, C, D, \&c., and so conetracted thet mblle the upper and smaller circle remains fixed, the two lower and orier revolve rcuad it Taking then the letters in. the sense of the series which seems mast fitted for the suhject under discussicn, we are caabled br making the onter circles revolve to find cut the frossible relationshirs botween different conceptions and elucidate the agreement or disagreement which suhsists between them, while, at the seme time, Tre discorex the intermediate terms (in the mialle circle) by which they are to be connected or disconDerted

The realress of Loult sart 25 ine Tres.ness of every system which pretends as Fincon" s also did, to eqcalize all intellects, ond proride a methoil which will proibe discoret as surel as compasses witl conseract a ciscle. BL: it would be unfair to say that Lully supfosed that thinking and ressoning coull be reduced to a mere foration of pasieluard circles. The real ralue of his art lies not ia being an a priori compendium of knowledge bat a methed of in-resigzion-a iabolatiou of the diferent sides from which a question mant he frgarked, and in embodying the ideal which science Ints hefore bersif of Sall bringing all conceptions into nnify and comslation. Is is essy, with the Port-Poyal logic, to sreerk of In"T"s art as merely ejabling us "to talt withont jodgment of
 me:hod as zendiog to the glory ef God and the good of man, in his दeprerture from the s:tool logic and his mish for a real interpre:stuon of naturn, is his conceprica of a onirersal method and his af ilication of ihe rerpacclar langaages to-philosorns, beappears as a precuiser of Bacoa binsslf and in his assertion of the place of reason in religoon, in Eis demamithat a sudional Chistianity slonld be Freser: 3 :o heazbes 10 mm , in his roissionary zeal and his project of linguitic colleges, Lully, with all his quisotic character, soes faz bepond ite idees and ibe aspirations of the centur in $\pi$ bich be lived
 Fine Snl









LCMBAGO，a tsem in medmine applised to a pairsul ailmen：afecting the mascies o．the lower gert of tie dect

 in otber parti ot the body at the sime It cenci．t comes on br a seizure，viten suder，of pain in one oe buch sides of ite small oi the teek，of a setete cating ci stabtirg

 cnd $2^{1} \equiv 0^{\circ}$ in tev acis cui drawing a cisep besath，cousking，

 neizhooaring in：eral orguns，zuch as tLe kidetre howels， de，but the absetce $0_{2}^{2}$ the srmptoms aptcislly charasts－ istic of thess late：complaitst，of ct ant great cosatitu－
 a matter of no creat difierltr．Inmbago seems io te broazk：on by exposnre io cold and damp，and ty the other excitiog csesso of rieumstisn．Sometimes is źolloms a strain of the mpeetes of the loizs．The atsect is in genesh oi shot：auration，bu：ocsasionslly it contivees ice a long time，not in anch an ecute torm as at irst，bat rather as a feoling of soresess exz stifness ca moremeri． The trestmer：includes thet foz ：termatic efections in gensral（see REstuatizes）and the application of local remsdies io allar tile sersee prio Ot these the tess ane

 birg in，it this can te betze，cf stimuleting lirimerta，such as those oi opitm，hellecoers，cilcoosom，aconite，the The old ard homel？plen of coenterinitation br applriz？
 interposed is otten beneAcial in cbrocic ceses，as is sliso，on similar principles，Corrigaris tetion canter．The sat－
 Then the atack is rity sircee and yrevate sleep．

 small family（Disubsh）closely allied to the Gotise（ses Gobr）．Libe wany Aikes of the letet tamity the l－mp－ sublers hare ity rentral Ens trited irto a cinsulor concere disち，$\pi$ bich，acting 2 a a seires Amply to ress or stores The boir of the lump

 of thich are arrarged in four series alone each side of the


 Atlatio ；is is not rire on ide British arsts，tu：cecomes more common ixtier rerik I：is so slegeish in its habits ins：indiniauts bse been cangt with see－wed growing on ijeir backs．It the spritg twe Eth sypraches the shotes to spsma，clearize cre 3 hollow on a story botucm in Which it depasits av．immerse quadity of pirs－colocred ora．Fishermin essert that the male we：ches the spewn natil the yourg are bethed，a statemert whilu receires contrmation irom the ias：that the elliel gobise co at lass
 remacular mate，＂cosis sca bee pedalen giren io the lemp－fish on scme pars of the coset，is probatir exprestre


 brizk：blue colosstion，with sud on ：be luwer parts Th：

 co the mole as a deliacacr．${ }^{1}$ Ters pection is the structure






 It is chishy rexstrekle fee ite unireritr te seoved in


 100，000 ro：cmes and 2000 MSE，acd tbee zer raiasle






 tndet the trursegt and chcir is cze ct ：be leatest in ihe

 bouse in mbich be lived ircu 1 E13 io 1 过 is inciosted













































 ，边





## Hi＝…

[^19]
## L U N - L U P

LUNETILLE, the chief place of an arrondissement in the department of Meurthe and Moselle, France, 240 miles east of Paris by rail on the line to Strasburg, stands in the midst of meadows between the Meurthe aind the Vezouze a little above their confluence. It is a handsome town regularly built. The chateau, designed early in the 18 th century by the royal architect Boffrand, was the favourite resideace of Duke Leopold of Lorraine, where he gathered round him the academy composed of eminent men of the district. It is now a cavalry barrack. Lunéville has always been an important cavalry station, and has a riding school where two hundred horsemen can exercise at the same time. The church of St Jacques, with its two towers, dates fromi the same period as the chatean. The church of St Maur, in the Byzantine style, is but thirty years old. The district round Lunéville is mainly agricultural, and the town has a fine corn exchange. The manufactures include pottery, embroideries, gloves, cetton cloth, and cooking stores. There are starch works and gypsum kilns, and a considerable trade in grain, flour, hops, and other agricultural produce. The population in 1876 was 16,041 .
The name of Lunóville is derived from an ancient cnlt of Diana. A sacred fountain and medals with the effigy of this goddess have been found at Leormont, some 2 miles east of the town. Lanéville formed part of Austrasia, and after various changes fell to the crown of Lorraine. A walled town in the Middle Ages, it suffered in the 'Thirty Years' War and in the campaigns of Louis XIV. from war and its consequences-plague and famine. The torn flourished again under Dukes Leopold and Stanislas, on the death of the latter of whom, which took place at Lunéville, Lorraine was united to France (1766). The treaty of Lunéville between France and Anstria (1801) confirmed the former power in the possession of the left bank of the Rhine. The town was the birthplace of the emperor Francis, husband of Maria Theresa, and of the painter Jean Girardet.

LUPERCALIA, one of the most remarkable and interesting Roman festivals. Its origin is attributed to Evander, or to Romalus before he founded the city, and its ceremonial is in muny respects unique in Roman ritual. In front of the Porta Romane, on the western side of the Palatine hill, close to the Ficus Ruminalis and the Casa Romuli, was the cave of Lupercus; in it, according to the legend, the she-wolf had suckled the twins, and the bronze wolf which is still preserved in the Capitol was placed in it in 296 в.c. But the festival itself, which was held on February 15 th under the direction of the flamen dialis, contains no reference to the Romulus legend, which is probably later in origin (see Mommsen in Hermes, 1881). The celebrants, who were called Luperci, offered in sacrifice goats and a dog; the flamen dialis himself was forbidden to touch either kind of animal, and ịt can hardly be doubted that the Lupercal sacrifice is older than the prohibition. After the sacrifice two of the Luperci were led to the altar, their foreheads were tonched with a bloody sword, and the blood wiped off with wool dipped in milk; then the ritual required that the two young men should laugh. The sacrificial feast followed, after which the Luperci cut thongs from the skins of the rictims and ran in two bands round fhe walls of the old Palatine city, striking the people who crowded near. A blow from the thong prevented sterility in women. 'These thongs were called Februa, the festival Februatio, and the day Dies Februetus; hence arose the name of the month February, the last of the old Roman year. The nearest analogy in the Roman religion to the Lupercalia is the occasional Amburbium, in which the victims were led round the walls of Rome and then sacrificed. The Lupercalia was associated with the circuit of the Palatine city, which had been a city long before the seven-hilled Rome, and the line of the old Palatine walls was marked with stones for the Luperci to run round. Unger has proved that the festival was originally a rite peculiar to the tribe of the Ramnes, the old dwellers on
the Palatine, and that it was in the 3 d century B.c. widened to a festival of the whole city. It is probable that then the whole ceremonial was modified ; the Luperci, who were originally chosen from the Ramnes alone, were chosen from the whole body of the Equites, the people assembled reund the hill, and the ceremony of scourging to avert sterility was added. Originally therefore the Luperci simply encompassed the walls as the victims did at the Amburbium, and the ceremonial connected with the two young men has generally been taken as a proof that they were at one time actually sacrificed after being led round the walls, and that a vicarious sacrifice was aftertards substituted for the ancient human offering. The Lupercalia was therefore a ceremony of purification performed for the walls and for the whole of the old Palatine city, from which it follows that it was dedicated to the peculiar god of that city. In early time the name of the god was kept strictly secret, as it was unsafe that an enemy should know it and be able to invoke him. Hence arise many conflicting statements as to the name. In later times, when the bonds of early religion were relaxed, the name became known. The god was, as Livy relates, Inuus, an old Italian deity known chielly in southern Etrnia, where there existed two towns named Castrum Inui. He was a form of the supreme heaven-god, very like Nars in character, and the rites with which his anger was averted:may be compared with those of Zeus on Mount Pelion or with the Maimacteria in Athens. The Luperci were divided into two collegia called Quintiliani or Quinetiales (the ferm is donbtful, see Mommsen, Röm. Forsch., i. 17) and Fabiaui ; at the head of each was a magister. In 44 B.C. a third collegium, Juliani, was instituted in honour of Julius Cæsar, the first magister of which was M. Antony.
This account follows in almost every particular that of Unger (nhein. Mus., 1881). He derives Lupercus from lua and parco in the old sense of restrain, and Inuus from a root seen in avis inubra or inebra, avaivoual, ac., meaning to avert or prohibit, and sees in the festival a national ceremony of the Palatine city, not with Marquardt (Röm. Staatstcrw., iii. 421) a widened gentile cultus of the Fabri and Quinctii or Quintilii.
LUPINE, Lupinus, L., a genns, of orer eighty species, of the tribe Genistex of the order Leguminosa. Species with digitate leaves range along the west side of America from British Columbia to Bolivia, while a few occur in the Mediterranean regions. A few others with entire leares are found in South Carolina, the Cape, and CochinChina (DC., Prod., ii. p. 406 ; Benth. and Hook., Gen. Pl., i. 480). The leaves are remarkable for "sleep. ing" in three different ways. From being in the form of a horizontal star by day, the leaflets either fall and furm a hollow cone with their bases upwards (L. pilosus), or rise and the cone is inverted ( $L$. luteus), or else the sherter leaflets fall and the longer rise, and so together form a vertical star (many sp.); the object in erery case being to protect the surfaces of the leaflets from radiation (Darwin, Movements of Pl., p. 340). The flowers are of the nsual "papilionaceous"" or pea-like form, blue, white, purple, or yellow, in long terminal spikes. The stamens are monadelphous and bcar dimorphic anthers. The species of which earliest mention is made is probably L. Termis,
 (Il., xiii. 589). It is no longer found in Greece, but is extensively cultivated in Egypt. Its seeds are eaten by the poor after being steeped in water to remove their bitterness; the stems furnish fuel and the best charcoal for gunpowder (Pick., Chron. Hist. of Pl., 183). Two other species appear to have been cultivated by the ancients, L. sativus (albus, L.) alkied to L. Termis, and L. hirsutus, L., this latter only about Sparta (Pick., l.c., p. 202); L. angustifoliue, L., was a corn-field weed, the $\theta$ tep $\rho$ os á $\gamma \rho$ os
 the effects of drink (Athen., $\grave{5}, \mathrm{C}$.). The seeds were used as money on the stage (Plaut., Poen., 3, 2, 20 ; Hor., Ep., i. T, 23). L. albus, L., was also cultivated as a field lupine, the L. sativus of the Romans, referred to by Cato, R. R., 34, 2 ; Virgil, Georg., i. 75 ; Pliny, xviii. 36 ; \& \&c. In 1597 Gerard (Herball, p. 1042) writes :-"There be diuers sortes of the flat Beane called Lupine, some of the garden, and ethers wild"; and he figures three species, $L$. sativus (now L. albus, L.), L. luters, L., and L. varius, L. Few species are in cultivation now, but the varieties are very zumerous (see Paxton's Bot. Dict., p. 345 ; Hemsley's Hand. of Hardy Trees, dec., p. 115). Of species now grown, $L$. albus, L., is still extensively cultivated in Italy, Sieily, and other Mediterranean.countries for forage, for ploughing in to enrich the land, and for its reund flat seeds, which form an article of food. This, as well as the other two mentioned by Gerard, have been superseded as garden flowers by the American spiecies, e.g., L. arboreus, Sims, and L. polyphyllus, from California; L. versicolor and $L$. tomentosus, from Peru.

LURAY CAVERN, in Page county, Virginia, United States, $39^{\circ} 35^{\prime} \mathrm{N}$. lat. and $78^{\circ} 17^{\prime} \mathrm{W}$. long., is 1 mile west of the village of Luray, on the Shenandoab Valley Railroad. The valley, bere 10 miles wide, extends from the Blue Ridge to the Massanutten mountain, and dispiays remarkably fine scenery. These ridges lie in vast folds and wrinkles; and elevations in the valley are often found to be pierced by erosion. Cave Hill, 300 feet above the water-level, had long been an object of local interest on account of its pits and oval hollows, or sink-holes, through one of which, August 13, 1878, Mr Andrew J. Campbell and others entered, thus discovering the extensive and beantiful cavern now described.

Geologically considered, the Luray cavern does not date beyond the Tertiary friod, though carved from the Silurian linestone. At some period long subsequent to its original excavation, and after many large stalactites hạd grown, it was completely filled with glacial mud charged with acid, whereby the dripstone was eroded into singularly grotesque shapes. After the mud had been mostly removed by flowing water, these eroded forms remained amid the new growths. To this contrast may be aseribed some of the most striking seenes in the cave. The many and extraordinary monuments of aqueous energy include massive columns wrenched from their place in the ceiling and prostrate on the floor; the hellow celumn 40 feet high and 30 féet in diameter, standing ereet, but pierced by a tubular passage from top to battom; the leaning column, nearly as large, undermined and tilting like the campanile of Pisa; the organ, a cluster of stalactites dropped points downward and standing thus in the room known as the cathedral; besides a vast bed of disintegrated carbonates left by the whirling flood in its retreat through the great space called the Elfin Ramble.

The stalactitic display exeeeds that of any other cavern known, and there is hardly a square yard on the walls or ceiling that is not thus ornamented. The old material is yellow, brown, or red; and its wavy surface often shows layers like the gnarled grain of costly woods. The new stalactites growing from the old, and made of hard carbonates that had already once been used, are usually white as snow, though often pink, blue, or amber-coloured. The size attained by single specimens is surprising. The Empress Column is a stalagmite 35 feet high, rese-coloured, and elaborately draped. The double column, named from Professors Heury and Baird, is made of two fluted pillars side by side, the one 25 and the other 60 feet high, a mass of snowy alabaster. Several stalactites in the Giant Hall exceed 50 fect in length. The smaller pendents are in-
numerable ; in the canopy above the Imperial Spring it is estimated that 40,000 are visible at once.
The "caseades" pointed out are wonderful formations like foaming cataracts caught in mid-air and transformed into milk-white or amber alabaster. The Chalcedony Cascade displays a variety of celours. Brand's Cascade, which is the finest of all, being 40 feet, high and 30 feet wide, is unsullied and wax-like white, each ripple and braided rill seeming to have been polished.

The Swerds of the Titans are menstrous blades, eight in number, 50 feet long, 3 to 8 feet wide, hellow, 1 to 2 feet thick, but drawn down to an extremely thin edge, and filling the cavern with tones like tolling bells when struck heavily by the hand. Their origin and also that of certain sa-called searfs and blankets exhibited is from carbonates deposited by water trickling down a sloping and corrugated


Lu.e.h. Luray Cavern. Scale 290 feet to the $u \mathrm{ch}$.

1. The Vestibule. 13. Saracen's Tent.
2. Washington's Pllar.
3. Flower Garilen.
4. Amphitheatre.
5. Natural Bridge.
6. Fhh Market.
7. Crystal Sprlng.
8. The Spectral Column.
9. The Spectral Column.
10. Hovey's Baleony.
11. Hovey's Baleony,
12. Obevon's Grot.
13. Titania's Veil.
$\begin{array}{ll}\text { 12. Titanla's Veil } & \text { 23. Sculy Column. }\end{array}$
surface. Sixteen of these alabaster searfs bang side by side in Hovey's Balcony three white and fine as crape shawls, thirteen striated like agate with every shade of bromn, and all perfectly translucent. Down the edge of each a tuny rill glistens like silver, and this is the ever-plying shuttle that weaves the fairy fabric.
Streams and true springs are absent, but there are bundreds of basins, varying from 1 to 50 feet in diameter, and from 6 inches to 15 feet in depth. The water in them is exquisitely pure, except as it is impregnated by the carbonate of lime, which often forms concretions, called, according to their size, pearls, eggs, and snowballs. A large one is known as the cannon ball. On fracture these spherical growths are found to be radiated in structure.

Calcite crystals, drusy, feathery, or fern-like, line the sides and bottom of every water-filled carity, and indeed censtitute the substance of which they are made. Variations of level at different periads are marked by rings, ridges, and ruffed margins. These are strongly marked about Broaddus Lake, and the curved ramparts of the Castles on the Fhine. Here also are polished stalag. mites, a rich buff shashed with white, and others, like
huge mushrooms, with a velvety coat of red, purple, or olive-tinted crystals. In some of the smaller basins it sometimes happens that when the excess of carbonic acid escapes rapidly there is formed, besides the crystal bed below, a film above, shot like a sheet of ice across the surface. One pool 12 feet wide is thus covered so as to show but a third of its surface. The quantity of water in the cavern varies greatly at differeut seasons. Hence some stalactites have their tips under water long enough to allow tassels of crystals to grow on them, which, in a drier season, are a aain coated over with stalactitic matter; and thus singular distortions are occasioned. Contiguous stalactites are often inwrapped thus till they assume an almost globular form, through which, by making a section, the primary tubes appear. Twig-like projections, lateral outgrowths, to which the term helictite has been applied, are met with in certain portions of the cave, and are interesting by their strange and uncouth contortions. Their presence is partly due to the existence of a diminutive fungus peculiar to the locality, and designated from its habitat Mfucor stalactitis. The Toy-Shop is an amusing collection of these freaks of nature.

The dimensions of the various chambers included in Luray Cavern cannot easily be stated, on account of the great irregularity of their outlines. Their size may be seen from =he diagram on $\mathrm{p} .6 \%$. But it should be understood that there are several tiers of galleries, and the vertical depth from the highest to the lowest is 260 feet. The tract of 100 acres owned by the Luray Cave Company covers all possible modes of entrance; and the explored ares is much less than that.

The waters of this cavern appear to be entirely destitute of life; and the existing fauna is quite meagre, comprising only a few bats, rats, mice, spiders, flies, and small centipedes. When the cave was first entered, the floor was covered with thousands of tracks of raccoons, wolves, and bears,-most of them probably made long ago, as impressions made in the teracious clay that composes most of the cavern floor would remain unchanged for centuries. Layers of excrementitious matter appear, and also many small bones, aloug with a few large ones, ull of existing species. The traces of human occupation as yet discovered are pieces of charcoal, flints, moccasin tracks, and a single skeleton imbedded in stalagmite in one of the chasms, estimated to have lain where found for not morethan fivehundred years, julging from the present rate of stalagmitic growth.
The temperature is uniformly $54^{\circ}$ Fahr., coinciding with that of the Mammoth Cave, Kentucky. The air is very pure, and the avenues are not uncomfortably damp.
The portions open to the public are now lighted by electric lamps. The registered number of visiters in 1881 was 12,000 .
(I. с. н.)

LURGAN, a market-town in the county of Armagh and province of Ulster, Ireland, is situated a few miles south of Lough Neagh, and 20 miles south-west of Belfast by rail. It consists principally of one spacious and well-built street. The parish church of Shankill has a finely proportioned tower. The other principal public buildings are the town-hall, the mechanics' institute, the model school, and the linen-hall. Contiguous to the town is Brownlow House, a fine Elizabethan structure, the seat of Lord Lurgan. Of late years the linen trade of the town has much increased, and there are also tobacco factories and coach factories. From 7774 in 1861 the population increased in 1871 to 10,632 , but in 1881 it was only 10,181 .
Lurgan mas built hy William Brownlow, to whom a grant of the town was made by James 1 . In 1612 it consisted of forty-tro honses, all inlhabited by English settlers. It was burned by the insurgents in 1641, and again by the troops of James Il. After its restoration ip 1690 a patent for a market aud fair was obtained.

LURISTAN, or Lúrist N , a province of western Persia, with ill-defined linits, but lying mainly betweer $31^{\circ}$ and $33^{\circ} \mathrm{N}$. lat. and between $47^{\circ}$ and $52^{\circ}$ E. long., and bonnded N. and E. by Irak-Adjemi, S. by Farsistan, W. by Khuzistan and the Turkish vilayet of Baghdad. It thus stretches north-west and south-east some 260 miles, with a meau breadth of 70 miles and an area of rather less than 20,000 square miles. The surface is. mcstly mountainous, being occupied in the west by-the Pusht-i-koh range, which forms the frontier line towards 'Turkey, in the east by the Bakhtiari (Zagros) range, which runs norttwest and south-east, thus connecting the Kurdistan with the Kuh-Dinar or Farsistan highland systems. Between the parallel Pusht-i-koh and Bakhtiari chains there stretch some naturally fertile plains and low hilly districts, which, however, ore little cultivated, although well-watered by the Karun, Dizful, and Kerkhah, the three chief rivers of the province. There are two main divisionsLuri Buzurg, or "Great Luristan," comprising the Bakhtiari highlands westwards to river Dizful, and Luri Kuchak, or "Little Luristan," stretching thence to Khuzistan and Turkey. The latter is again divided into the Pesh-koh and Pusht-i-koh districts ("before" and "behind" the mountains), and notwithstanding its name is by far the most populous and productive of the two. From the 12 th to the 17 th century it formed an independent principality under hereditary rulers with the title of "atabeg," tù last of whom nas deposed by Shah Abbas, and the government transferred to Husen Khan, chief of the Faili tribe, with the title of "vali." His descendants are still at the head of the administration; but the power of the valis has been much reduced since the transfer of the Pesh-koh district to Kirmanshah.
Lúristán takes its na :e from the Luri; ${ }^{1}$ a semi-nomad people of Iranian stock and speech, who still form the vast majority of the population. Great uncertainty bas hitherto prevailed regarding the nomenclature, the main divisions and the true affinity of the Luri to the other branches of the Iranian family. Thus, from the name of the present ruling clan all the trihes of Luri Kuchak are coramonly spoken of as "Faili," a term which is now rejected by the Pesh-koh tribes, and which, if used at all as a general etṫnical expression, ought to be restricted to those of Pusht-i-koh, still under the rule of the vali. The classifications of Layard, Rawlinson, and A. H. Schindler differ materially, while contradictory statenuents are made by well-informed writers regarding the physical and linguistic relations of the Luri to the neeighbouring Kurds and Persians. From a careful , consideration of the available evidence it would appear that the Luri are the true aborigines of their present domain, where they occuly an intermediate position hetween the Eurds and Persians, but resembling the former much more than the latter in speech, temperament, social labits, and physical appearance. Although they themselves reject the name of Kurd, the two languages are essentially one, so that the natives of Kirmanshah and Dizfiul have littlo difficulty in conversing together. Like the Kurds, they are also of a restless and unruly disposition, averse from a settled life, still dwellers in tents, mostly owners of flocks and herds, holding agriculture in contempt, and of predatory habits. "In appearance the Bakhtiari look rather fierce, owing probably to the mode of life they lead; the features of their face are cast in a rough mould, but although coarse they are in gencral regular. Their black eyes look wild and expressive, and the two black tufts of hair behind their ears give them, if possible, a still darker appearance. They are muscular built, and are chiefly of a middle stature" (E. Balfour). In a word, the Luri must be classed anthropologically in the same group as the Kurds. They are excellent stock breeders, and their horses and mules are regarded as the very best in Persia. Of the mules, aboat a thousand are annually exported to the surrounding proviaces. Most of the hard wolk is left to the women, who tend the flocks, till the little land under cultivation, tread out tbe corn, and weave the carpets, black goat-hair tents, and horse clotbs for which Luristan is famous. The men put their hands to no useful work, go about armed, and are always ready for a foray. Their constant intertribal feuds render the country unsafe for trade and travel, while their revolts against the central government often cause a total interruption of communi-
${ }^{1}$ Not to be confounded with the Luri or Lori of Baluchiston ana Sind, tinkers, bards, strolling minstrels, \&e., betraying a " maaiked atiuity to the Gipsics of Europe " (Potinger),
cation befreen the several districts. This evil, however, has somewhat abated since the tribal chiefs have bcen compelled to give hostages as security for their good behaviour.

Outwardly Mohammedans of the Shiah sect, the Lúri show little vencration either for the Prophet or the Koran. Their religion seems to be a curions mixture of Ali-Ihahism, involving a belief in successive incarnations and the worship of the national saint, Baba Buzurg, combined with many mysterious rites, sacrifices, and secret mectings certainly anterior to lslam, and possibly traceable to tho aucient rites of Mithras and Anaitis.

The chiefs enjoy almost unlimited authority over their subjects, and the tribal organization is strongly marked by the feudal spirit.
The total population of Luristan is about 320,000 , and the average revenue nearly $£ 40,000$ sterling.

LUSATIA (German, Lausitz) is a common name applied to two neighbouring districts in Germany, Lusatia Superior and Lusatia Inferior (Oberlausitz and Niederlausitz), belonging in part to Prussia and in part to Saxony. . The country now known as Upper Lusatia was occupied in the Tith century by the Milcieni, a Slavonic tribe. In the 10th century it was annexed to the German kingdom by the margraves of Meissen, and from this time for several centuries it was called Budissin (Bautzen), from the name of the principal fortress. In the 11 th and 12 th centuries Budissin changed hands several times, being connected at different periods with Meissen, Poland, and Bohemia. The emperor Frederick I. granted it in 1158 to King Ladislaus of Bohemia, and under him and his immediate successors it was largely colonized by German immigrants. Between 1253 and 1319 it belonged to Brandenburg, to the margrave of which it was given in pledge by King Ottocar II. of Bohemia; and in 1268 it was divided into an eastern and a western part-Budissin proper and Görlitz. In 1319 Budissin proper was restored to Bohemia, which also recovered Görlitz in I346. It was during this period that the fortunes of Budissin were associated with those of the country afterwards called Lower Lusatia, but originally. Lusatia. It was inhabited by a Slavonic tribe, the Lusici, and reached in the earliest times from the Black Elster to the Spree. The Lusici were conquered by Margrave Gero in 963, and their land was soon formed into a separate march, sometimes attached to, sometimes independent of, the march of Meissen. In 1303 it passed, as Budissin had done, to Brandenburg, and in 1373, after several changes, it fell into the hands of the emperor Clarles IV. as king of Bohemia. During the Hussite wars the people of Lusatia and Budissin remained loyal to the Roman Catholic Church, and in 1467. they recognized as their sovereign King Matthias of Hungary. Twenty-three years later they were again united to Bohemia, but in the meantime they had received from the Hungarian Government the names which they lave since retained. In the I6th century the Reformation made way rapidly in Upper Lusatia, and the majority of the people became Protestants. The two countries were conquered in 1620, with the sanction of Ferdinand IL., by the Saxon elector, John George I., to whom they were ceded in 1635, the emperor as king of Behemia retaining a certain supremacy for the purpose of guarding the rights and privileges of the Roman Catholic Cuurch. In 1815 the whole of Lower Lusatia and the half of Upper Lusatia were transferred from Saxony to Prnssia. Lower Lusatia has 395,800 irhabitants, of whom 50,000 are Wends; the portion of Upper Lusatia belonging to Prussia has 243,500 inluabitants, of whom 32,000 are Wends. There are 300,000 inhabitants, including 50,000 Wends, in Saxon Upper Lusatia. Laws relating to Upper Lusatia, which are passed by the Saxon Parliament, must still be submitted to the Lusatian diet at Bautzen.

IUSHAI or KUKI HILLS, a wild and imperfectly known tract of country on the north-eastern frentier of India. extending along the southern border of the Assam
district of Cáchár and the eastern border of the Eengal district of Chittagung. On the east, the Lushái Hills stretch away into the unexplored mountains of 1ndependent Burmah. This extensive region is occupied by a numerous family of tribes known to us indifferently as Lnsháis or Kukis. All these tribes are nomadic in their habits, and subject to successive waves of migration. It is said that at the present time the entire race of the Lushais is being forced southwards into British territory under pressuro from the Soktis, a tribe advancing upon them from Independent Burmah. The principal characteristic common to all the Lusháis, and in which they markedly differ from the other tribes on the Assam frontier, is their feudal organization under hereditary chiefs. Each village is under the military command of a chief, who must come of a certain royal stock. The chief exercises absolute power in the village ; and his diguity and wealth are maintained by a large number of slaves and by fixed contributions of labour from his free subjects. Cultivation is carried on according to the nomadic system of tillage on temporary clearings in the jungle; but the main occupation of the people is hunting and warfare

From the earliest times the Lushais have been notorious for their sanguinary raids into British territory, which are said to be instigated by their desiro to obtain human heads for use at their funcral ceremonies. The first of which we have record was in 1777. In 1849 a colony of Lusháis settled within Cáchár, was attacked by their independent kinsmen, and forced to migrate northrards across the Barák river, where they now live as peaceable British subjects, and are known as "Old Kukis." In 1860 a raid was made upon Tipperah district, in which 186 Bengálí villagers were massacred and 100 carried away into captivity. Retributive expeditions, consisting of small forces of sepoys, were repeatedly sent to punish these raids, but, owing to the difficult nature of the country and the fugitive tactics of the enemy, no permanent advantage was gained. At last the disturod state of the frontier attracted the attention of the supreme government. A military demonstration in 1869 had entirely failed in its object. Relying. upon their belief in the impracticable character of their native country, the Lushais made a series of simultaneous attacks is. January 1871 upon British villages in Cáchár, Sylhet, and Tipperah as well as on the independent state of Manipur. The outpost of Monierkhál repelled a number of attacks, lasting through two days, made by a second body of Lusháis from the eastern tribes, who finally retired with a large amount of plunder, including many coolies and guns. Lord Mayo, the riceroy, resolved to make a vigorons effort to stop those inroads, once and for all. A punitive expedition was organized, composed of two Gúrkha battalions, two Punjab and two Bengal native infantry regiments, two compariea of sappers and miners, and a detachment of the Pesháwar mountain battery: This little army was divided into two columns, one advancing from Cáchár and the other from the Chitfagong side. Both columns were completely successful. The resistance of the Lushdis, thongh obstinate in parts, was completely overcome, and the chiefs made their personal submission and accepted the terms offered them. Upwards of one hundred British subjects were liberated from.captivity. The actual British loss in fighting was very small, but a large number of soldiers and camp-followers died from cholera. Since this expedition, the Lushais have remained quiet along the entire frontier, and active measures have been Laken to open commercial intercourse between them and the peoplo of the plains. Many bazars have been established for this purpese, and trade by barter is now frcely carried on.

LUSTRATION is a term that includes all the methods purification and expiation among the Greeks and liomans. Among the Grecks there are two ideas clearly distinguishable-that human nature must purify itself from guilt before it is fit to enter into communion with God or even 10 associate with men ( $\kappa \alpha \theta a i p \omega, \kappa \dot{\theta} \theta a \rho \sigma t s$ ), and that guilt must be expiated voluntarily by certain processes which God has revealed in order to nvoid the punishment that must otherwise overtake it (ida $\quad$ 品s). It is not possible to make such a distinction among the Latin terms lustratio, piacula, piamenta, carimonix, and even among the Creeks it is not consistently observed. The conception of sin newer reached a high moral standard, and tho wathods of lustration are purely ritualistic, Guilt and
impurity arose in varions ways; among the Greeks, besides the general idea that man is always in need of. purification, the species of guilt most insisted on by religion are incurred by murder, by touching a dead body, by sexual intercourse, and by seeing a prodigy or sign of the diviue will. The last three of these spring from the idea that man bad been without preparation and in an improper manner brought into communication with God, and was therefore guilty. The first, which involves a really moral idea of guilt, is far more important than the others in Hellenic reigion. Among the Romans we hear mure of the last species of impurity; in general the idea takes the form that after some great disaster the people become couvinced that sone guilt has been incurred somewhere and must be expiated. The methods of purication cousist in ceremuaies performed with water, fire, air, or earth, or with a hranch of a sacred tree, especially of the laurel, and also in sacrifice and other ceremonial. Before entering a temple the worshipper dipped his hand in the vase of holy water ( $\pi \epsilon \rho(\dot{\rho} \dot{\rho} \dot{\rho}$ vońpoov, aqua lustralis) which stood at the door; before a sacrifice bathing was a common kind of purification; salt-water was more efficacious than fresh, and the celebrants of the Eleusinian mysieries bathed in the sea ( $\tilde{\lambda} \lambda a \delta \epsilon \mu \dot{\prime} \sigma \tau a l)$; the water was more efficacions if a firebrand from the altar were plunged in it. The torch, fire, and sulphur ( $\tau$ ò $\theta$ eiov) were also powerful purifying agents. Purification by air wंas most frequent in the Dionysiac mysteries; puppets suspended and swinging in the air (oscilla) formed one way of using the lustrative porer of the air. Rubbing with sand and salt was another excellent method. The sacrifice chiefly used for puriñcation by the Greeks was a pig; among the Romans it was always, except in the Lupercalia, a pig, a sheep, and a bull (suovetaurilia). In Athens a purificatory sacritice and prayer was held before every public meeting; the Maimacteria in honour of Zens Meilichios was ar annual festival of purification, and several other feasts had the same character. - On extraordinary occasions lustrations were performed for a whole city. So Athens was purified by Epimenides after the Cylonian massacre, and Delos in the Peloponnesian War. In Rome, besides such annual ceremonies. as the Ambarvalia, Lupercalia, Cerealia, Paganalia, \&c., there was a lustration of the fleet before it sailed, and of the army before it marched. Yart of the ceremonial always consisted in leading or carrying the victins round the impure persons or things. After any disaster the lustratio classizm or exercitus was often again performed, so as to make certain that the gods got all their due. The Amburbium was a similar ceremonial performed for the whole city on occasions of great danger or calamity. Ambilustrium was the purificatory ceremony, consisting in sacrifice and prayer, performed after the regular quinquennial census of the Moman people.

LU'TE. The European lute is derived in form and name from the Arabic "el "dd," "the wood," the consunant of the article "el" having beer retained in the European languages for the initial of the name (French, luth; Ital., liuto; Span., laud; German, Laute; Dutch, luit). The Arab instrument, with convex scund-body, pointing to the resonance board or membrane having been originally placed upon a gourd, was strung with silk and played with a plectrum of shell or quill. It was adopted by the Arabs from Persia, the typical instrument being the twor-stringed "tanbur," and ultimately found its way to the West at the time of the cresades. The modern Egyptian "tud" is the direct descendant of the Arabic lute, and, according to Lane, is strung with seven pairs of catgut strings played br a plectrum. A specimen at Sonth Kensington, given ky the I hedive, bas four pairs only, which appears to havo been the old stringing of the instrument. When frets ara
employed they are of catgut disposed according to the Arabic scale of seventeen intervals in the octave, consisting of twelve linumas, an interval rather less than our equal senitone, and five commas, which are very small but quite recognizable differences of pitch.

The lute family is separated from the guitars, also of Eastern origin, by the formation of the sound body, which is in all lutes jear-shaped, without the sides or ribs necessary to the structure of the Hat-backed guitar and cither. Observing this distinction, we include with the lute the little Neapolitan mandoline of 2 feet long, and the large doublenecked Roman .chitarrone, which not unfrequently attains to a length of 6 feet. Mandolines are partly strung with wire, and are played with a plectrum, indispensable for metal or short strings. Perhaps the earliest lutes were so played, but the large lutes and theorbos strung with catgut have been invariably touched by the fingers only, the length permitting this more sympathetic meaus of producing the tone.

The Neapolitan is the best known mandoline; it was indicated by Mozart in the score of Don Giovanni, to accompany the famous serenade. The four pairs of strings are tuned like the violin, in fifths:-


The Milanese is larger, and has five and six pairs :-

or, as iu a specimen at South Kensington,


The mandola or mandore is larger than either, with eight pairs of strings. This name has been derived from the Italian rord, similarly spelled but differentıy accented, signafying almond, which the mandola is supposed to resemble in şhape, but ban, man, pan, and tan are first syllables of lute and guitar instruments met with all over the world, the oldest form of which is the bnrrowed Greek " $\pi a v \delta o \hat{\imath} p a, "$ an Asiatic word, which the Arabs changed to "tanbur." Prætorius (Organographia, Wolfenbïttel, 1619, a scarce work, of which the only copy in Great Britain is iu the Advocates' Library, Edinburgh), writing when the lute was in universal favour, mentions seven varieties distinguished by size and cuniag. The smallest wouid be larger tharr a mandoline, and the melody string, the "chanterelle," often a single string, lower in pitch. Pretorius calls this an octave lute, with the chanterelle C or D . The two discant lutes have respectively. $B$ and $A$, the alto $C$, the tenor E , the bass D , and the great octave bass G , an octave below the alto lute which may be taken as the model lute cultivated by the amateurs of the time. The bass lutes were most likely theorbos, that is, double-necked lutes, as described below. The accordance of an alto lute was

founded upon that of the original elght-stringed Europeac lute, to which the highest and lowest notes had, in course
of time, been added. A later addition was the
 also on the finger-hoard, ana dass strings, double orsingle,
known as dinpasons, which, descending to the deep C of the violoncello, were not stapped with the fingers. The diapasons were tuned as the key of the piece of music required. The illustration represents an Italian iustrument made by one of the most celebrated lute makers, Venere of Padua, in 1600; it is 3 feet 6 inches high, and has six pairs of unisons and eight single diapasons. The fingerboart, divided into approximately equal half tones by the frets, as a rule eight in number, was often further divided on the higher notes, for ten, eleven, or, as in the woodsut, even twelve, semitones. The head, bearing the tuning pegs, was placed at an obtuse or a right angle to the. weck, to increase the bearing of the strings upon the nut, and be convenient for sudden requirements of tuning during performance, the trouble bf keeping a lute in tune being proverbial.
The lute was in general use
 Late, by Venere of Padua. during the 16 th and 17 th centuries. In the 18th it declined; still the great J. S. Bach wrote a "partita" for it, which remains in manuscript. The latest date we have met with of an engraved publication for the lute is 1760 .

The large double-necked lute, with two sets of tuning pegs, the lower for the finger-board, the higher for the diapason strings, was known as the theorbo; also, and especially in England, as the archlute; and, in a special form, the neck being then very long, as the chitarrone. Theorbo and chitarrone appear together at the close of the 16 th century, and their introduction was synchronous with the rise of accompanied monody in music, that is, of the oraturio and the opera. Peri, Caccini, and Monteverde used theorbos to accompany their newly-devised recitative, the invention of which in Flotence, from the impulse of the Renaissance, is well known. The height of a theorbo varied from 3 feet 6 inches to 5 feet, the Paduan being always the largest, excepting the Roman 6 -feet long chitarrone These large lutes had very deep notes, and doubtless great liberties were allowed in tuning, but the strings on the finger-board followed the lute accordance already given, or another quoted by Baron (Untersuchung des Instruments der Lauten, Nuremberg, 1727) as the old theorbo or "violway" (see Mace, Musick's Monument, London, 1676):-


We find again both these accordances varied and transposed a tone higher, perbaps with thinner strings, or to accommodate local differences of pitch; Prætorius recommends the chanterelles of theorbos being tuned an octave lower on account of the great strain. By such a cliange, another authority, the Englishman Thomas Mace, says, the life and spruceness of airy lessons were quite lost. The theorbo or archlute had at last to give way to the violoncello and double bass, which are still used to accompany the "recitativo secco" in oratorios and operas. Handel wrote a part for a theorbo in Esther (1720); after that date it appears no more in orchestral scures, but remained iu private use until nearly the end of the century.

We cannot refrain from admiring the beauty of decoration of ivory, mother of pearl, and turtoiseshell, the characteristic patterning of the "knots" or "roses" in the soundboards, all of which was so well allied with the estremely artistic forms of the different lutes, rendering them, now their musical use is past, objects of research for collections and museums. The present dircction of musical taste and composition is adverse to the cultivation of such terderly sensitive timbre as the lute possessed. The lute and the organ share the distinction of being the first inatruments for which the oldest iustrumental compositions-Tve pussess were written. It was not for the lute, howevers in our presen ${ }^{\dagger}$ notation, but in tablature, "lyrawise," a system by which as many lines were drawn horizontally as there were pairs of strings on the finger-board, the frets being distingorished by the letters of the alphabet, repeated from $A$ for each line. This was the English manner; the Italian was by numbers instead of letters. The signs of time were placed over the stave, and were not repeated unless the mensural values changed.
Consult Grove's Dictionary of Music, arts, "Lute," "Frets" Stainer and Barrett's Dictionary of Ahusic, "Tablature"; and the admirable museum catalogues of Carl Engel (South Kensington), G. Chouquet (Paris), and Vietor Mahillon (Brussels). (A. J. H.)

LUTHER (1483-154C). First Period (1483-1517) - Martin Luther (Lyder, Lïder, Ludher-from Lothar, some say) was born at Eisleben in the county of Mansfeld, in Thuringia, on the 10th of November 1483. His father Hans Luther, a slate-cutter by trade, belonged to a family of free peasants. His mother was Margaret Lindeburn. Hans Luther had left Möra, his native village, and had come to Eisleben to work as a miner. When Martin was six months old he went to Mansfeld and set up a forge, the small profits of which enabled him to send his son to the Latin school of the place. There the boy so distinguished himself that his father determined to make him a lawyer, and sent him fu-a year to a Franciscan school at Magdeburg, and then to Eisenach near Möhra. There Luther, with other poor scholars, sang for alms in the streets, and his fine tenor voice and gentle manners attracted the attention and gained for him the motherly care of Ursula Cotta, the wife of the burgomaster of Eisenach. From Eisenach he went in his eightecnth year to the high school of Erfurt, where his favourite master was the humanist Trutwetter, who taught him classics and philosophy. He took his bachelor's degree in 1502, and his master's in 1505. At Eriurt thepreaching of the town's pastor Weisemann made a deep impression on his mind, as did the preacher's frequent exhortations to study the Scripture. Lather tells us that he sought in vain for a whole Bible, and that he could only get pertions to read. A dangerous illness, the death of a near friend, together with other circumstances, so wrought ou his pious, sensitive nature that in spite of father and fanily he resolved to give up all his prospects and become a monk. He entered the Augustinian convent at Erfurt in June 1505, taking with him Plautus and Virgil, the solitary mementos of the pife he had abandoned. His first ycars of monastic life were spent in fierce mental struggle. He had found a whole Bible and read it diligently, but it did not bring hime peace The feeling of universal human sinfulness, and of his own, was burnt into him both by his dogmatic studies and by his reading of the Scripture. He lived a life of the severesi mortification, and invented continually new forms of penance, aud all the while heart and head alike told him that outward acts could never banish sin. "I tormented myself to death," Le said, "to make my peace with God, but I was in darkness and found it not." The ricargeneral of his order, Staupitz, who had passed through somerwat similar experienccs, helped him greatly. "There
is ṇo true repentance," he said, "but that which begins with the love of righteousness and of God. Love Hin then who has first loved thee." Stanpitz had been tanght heart religion by the mystics, and he sent Luther to the sermons of Tauler and to the Theologit Gernanica.

When Luther regained his mental health, he took courage to be ordained priest io 11 y 1507, and next year, on the recommendation of Stanpitz, the elector of Saxony appointed him professor in the university of Wittenberg, which had been founded in 1502. While in the monastery Luther had assiduously pursued his studies, and his severe mortifications and penances had never interruptcd his theological work. He read all the great scholastic theologians, but Augustine was his master in theology, while Erfurt stadies under Trutwetter doubtless made hin pore over Occam ("mein licber Meister," as he afterwards fondly called him) till he got his bulky folios by heart. He began by lecturing on Aristotle; and in 1509 he gave Biblical lectures, which from the very first were a power in the university. His class-room was thronged; his fellow-professors were students. Staupitz forced him also to preach; and his marvellous eloquence, felt to be from the heart, attracted great crowds of hearers. The year 1511 brought an apparent interruption, but iu fact only a new development, of Luther's character and knowledge of the morld. He went to Rome, probably in fulfilment of an old vow, and the journey was a marked event in his life. He went up in true pilgrim spirit, a medireval Christian, and he came back a Protestant. The pious German was horrified with what he saw in Rome, and he afterwards marle telling use of what he had seen in various tracts, and notably in his address to the German nobles. He tells us that at Wittenberg he had pondered over the text, "The just shall live by faith," that while in Rome the words came back to him, and that on his return journey to Germany the evangelical meaning of the phrase rushed into his mind. On his return to the university he was promoted to the degree of doctor of divinity, in October 1512. The oath he had to take on the occasion "to devote his whole life to study, and faithfully to expound and defeud the holy Scripture," was to him the seal of his mission. He began his work with lectures on the Psalnis, and then proceeded to comment on the epistles of Paul to the Romans and Galatians, enforcing especially his peculiar views of the relations between law and gospel. His lectures and his sermons were attended by great audiences, and disciples gathered round hin. As early as 1516 his special principles twere publicly defender at academical disputations. Staupitz made him district-vicar of his order for Meissen and Thuringia. He made short preaching tours, and his influence was felt far beyond Wittenberg. When the plague came to that university town he remained at his post when others fled. Then came 1517, the year of the Reformation. The new pope, Leo X., had sent agents through Germany to sell indulyences, and had chosen John Tetzel, a Dominican monk, for Saxnny. Luther, who had passed through deep sonl-struggles ere he won parion, knew that God's forgiveness could not be purchased for money, and thundered against Tetzel and his indulgences from Wittenberg pulpit. He wrote anxionsly to the princes and bishops to refuse the pardon-seller a passage through their lands. When Tetzel got to Jiiterbogk near Wittenberg, Luther could stand it no longer. "He wrote out ninety-fiye propositions or theses dencuncing indulgences, and on the eve, of All Saints, Octnber 31, nailed the paper to the door of the Castle church. In a short time àll Germany was abluze.
These ninety five theses are one continuous hàrangue against the doctrine and practice of pardon-selling, but they do not openly denounce indulgence in every form.

They make plain these three things:-(1) there may be some good in indulgence if it be recloned one of the many ways in which God's forgiveness of sin can be proclaimed; (2) the external signs of sorrow are not the rcal inward repentance, uor are they as important as that is, and no permissiun to neglect the outward expression can permit the neglect of true repentance ; (3) every Christian who feels true sorrow for sin is there and then pardoned by God for Christ's sake without any indulgence ticket or other human contrivance. And in his sermons on indulgence Lather declared that repentance consisted in contrition, confession, and absolution, and that contrition was the most important, and in fact the occasion of the other two. If the sorrow be true and heartfelt, confession and pardon will follow. The inward and spiritual fact of sorrow for sin, he thought, was the great matter; the outward sigos of sorrow were good also, but God, who alone can pardon, looks to the inward state. These theses, with the sermons explaining them, brought Gernany face to face with the reality of blasphemy in the indulgences. Lather's public life had opened ; the Reformation had begun.

Second Period (1517-1524).--Pilgrims who had come Luther to. Wittenberg to buy indulgences returned with the theses preachof Luther in their hands, and with the impression of his ing. powerful evangelical teaching io their hearts. The national mind of Germany took up the matter with a moral earnestness which made an impression, not only upon the princes,' but even upon bishops and monks. At first it seemed as if all Germany was going to support Luther. The traffic in indulgences had been so shameless that all good people and all patriotic Germans had been scandalized. But Luther had struck a blow at more than indulgences, although he scarcely knew it at the time. In his theses? and explanatory sermons he had declared that the inward spiritual facts of man's religious experience were of infinitely more value than their expression in stereotyped forms recognized by the church, and he had made it plain too that in such a solemn thing as forgiveness of $\sin$ man could go to God directly without human mediation. Pious Christians since the day of Pentecost had thought and felt the same, and all through the Middle Ages men and women had humbly gone to God for pardon trusting in Christ. They had found the pardon they sought, and their simple Christian experience had been sung in the.hymns of the mediæval church, had found expression in its prayers, had formed the heart of the evangelical preaching of the church, and had stirred the masses of people in the many revivals of the Middle Ages. But those pious peofle; hymn-writers, and preachers had not seen that this inward experience of theirs was really opposed to a great part of the ecclesiastical system of their day. The church had set such small store by that inward religious experience that the common speech of the times had changed the plain meanings of the words "spiritual," "sacred," "holy." A man' Was "spiritual" if he had been ordained to office in the church; money was "spiritual" if it had been given to the church; an estate, with its roads, woodlands, fields, was "spiritual" or "holy" if it belonged to a bishopric or abhey. And the church that had so degraded the meaniog of "spiritual" had thrnst itself and its external machinery in between God and the worshipper, and had proclaimed that no man could draw near to God save through its appointed ways of approach. Confession was to be made to God through the priest; God spoke pardon only in the priest's absolution. When Luther attacked indulgences in the way he did be struck at this whole system.

Compelled to examine the ancient history of the cancch, he soon discovered the whole tissue of fraud and imposture by which the canon law had from the 9th century downe
wards been foisted upon the Christian world. There is scarcely any essential point in ancient ecclesiastical history learing upon the question of the invocation of saints, of cierical priesthood, of episcopal and metropolitan preteneions, which his genius did not discern in its true light. Whatever Lather denounced as fraud or abuse, from its contradiction to spiritual worship, many be said to lave been openly or tacitly admitted to be such. But what produced the greatest effect at the time were his short popular treatises, exegetical and practical-his Interpretation of the Magnificat or the Canticle of the Virgin Mary, his Exposition of the Ten Commandments, and of the Lord's Prayer. The latter soon found its way finto Italy, although without Luther's name, and has never been surpassed cither in genuine Christian thought or in style. He resolved also to preach throughout Germany, and in 1518 appeared at a general meeting of his order at Heidelberg. There he held a public disputation on certain theses called by him paraduxes, in which he strove to make apparent the contrast between the external view of religion taught by the schoolmeu and the spiritual view of gospel truth based upon justifying faith. He mado many disciples on this occasion, of whom perhaps the most notable was Martin Bucer. On his return to Wittenberg in May 1518, Luther wrote and published an able and moderate exposition of the theses, and sent it to some of the German bishops. He proclaimed the need for

- $\Omega$. thorough reformation of the church, which be thought could only be effected, with the aid of God, by an earnest co-operation of the whole of Christexdom. This energy arrakened opponents. Conrad Wimpina at Frankfort, Hoogstraten at Cologne, Sylvester Trierias at Rome, and above all John Eck, an old fellow student, at Ingolstadt, attacked his theses, and discovered beresy in them. The result was that Luther was summoned to appear bofore the pope at Rome, but the elector of Saxony intervened, and got the matter so arranged that Luther was cited to appear beforo tho pope's legate at Augsburg.

The pope was unwilling to quarrel with Germany, where the whole people seemed to be supporting Luther, and the cardinal legate James de Vio of Gaeta, commonly called Cajetan, was told to be conciliatory. Luther went to Augsburg on foot, and presented himself before the legate, but the interview was not a successful one. The cardinal began by brow-beating the monk, and ended by being conewhat afraid of him. "I can dispute no longer with this beast," he said; "it las two wicked eyes and marvellous thoughts in its head." Luther could not respect either the learning or the judgment of Cajetan. Tie left Augsburg by stealth, afreid of capture, condemned, but i-rrealing "from the pope ili-ininrnied to the popo to-be-better-ivformed." Ou his return to Wittenberg he found tho clector in great anxiety of mind, in consequence of an imporious letter from the cardinal, and offered to leave Saxony for France. The elector, however, allowed him to remain, and the pope sent another legate to settle the affairs of Germany. This was Carl von Miltitz, a native of Saxnny, a man of the world, and no great theologian. He resolved to meet Luther privately, and did 30 in this house of Spalatin, court preacher to the elcetor of Saxony. In his interview with Cajetan Luther had refused to retract two propositions-that the treasury of indulgences is not filled with the merits of Christ, and that he who reccives tho sacrament must lave faith in the grace offered to him. Miltitz made no such demands. He apparently gave up Tetzel and the indulgences, agreed with much of Luther's theology, but insisted that he had not been respectfal to the pope, and that such conduct weakened the authority which rightly belonged to the church. He wished Lather to write to the pope and
apologize. Luther consented. It was further arranged that both parties were to cease from writing or preaching on the controverted matters, and that the pupe mas to commission a body of learned theologians to investigate. Luther accordingly wrote to the pope, telling him that he "freely confessed that the authority of the church was superior to everything, and that nothing in heaven or on carth can be preferred before it save only Jesus Christ, who is Lord over all." This was in March 1519. Meanwhile Luther had appealed from the pope to a general council to be held in Germany. In the end of 1518 a papal bull concerning indulgences had oppeared, confirming the old doctrine, without any reference to the late dispute.

The years $1519,1520,1521$ were a time of ferce but triumphant struggle with the hitherto irresistible Cburch of Rome, soon openly supported by the empire. The first of these years passed in public conferences and disputations. Luther had promised Miltitz to refrain from controversy, on the understanding that his adversaries did not attack him, and he kept his word. But his old antagonist John Eck published thirteen theses attacking Luther, and challenged Andrew Bodenstein of Carlstadt, a friend and colleague of Luther, to a public disputation. Luther instantly replied to Eck's theses, and the disputation between Carlstadt and Eck was immediately followed by one between Eck and Luther. In this famous Leipsic disputation the contropersy took a new shape. It was no longer a theological dispute; it became a conflict between two opposing sets of principles affecting the whole round of church life. Luther and Eck began about indulgences and penance, but the debate soon turned on the authority of the Roman Church and of the pope. Eck maintained the superiority of the Roman Churcli and of the pope as successor of St Peter and vicar-general of Christ. "His argument was "no pope no church." Luther denied the superiority of the Roman Church, and supported his denial by the testimony of eleven ccuturies, by the decrees of Nicea, by the Holy Scriptures. He maintained that the Greek Church was part of the church of Christ, else Atlanasius, Basil, and the Gregories were outside Christiauity. The pope has more need of the church, he said, than the church has of the pope. Eck retorted that these had boen the arguments of Wicklife and of Huss, and that they had been condemned at the council of Constance. Luther refused to admit that the condemnation was right; Eck refused to debate with'an opponent who would not abide by the decision of œecumenical councils; and so the disputation ended. But Luther immediately afterwarls completed his argument and published it. He asserted that he did not mean to deny the bishop of liome's primacy, provided the pope kept his own place as scrvant of the church, but that he did mican to deny that there could be no church apart from tho pope. The cburch, ho said, is the communion of the faithful, and consists of the elect, and so never can lack the presence of the Holy Spirit, who is not always with popes and councils. This clurch, he declared, is invisible, but real, and every layman who is in it and has Holy Scripture and holds by it is more to be believed than popes or councils, who do not. This Leipsic disputation had very important consequences. On the one hand, Eck and his associates felt that Luther must now be put.down by furce, and pressed for a papal bull to condennn hins; and Luther hiniself, on tise other band, felt fur the first time what great consequences lay in his opposition to the indulgences. He saw that his Augustinian theology, with its recognition of the heinousness of sin, and of the need of the sovercign graco of God, was incompatible with the whole round of medieval cerenonial life, proved it to be impossiblo for men to live perfectly boly lives, aud so made saints aud saint worship and relics and pilgrimages

## L U T H E R

impossible things. He saw the uselessness of the monastic life, with its vigils and fasts and scourgings. These things wero not helps, he saw, but hindrances to the true religions life. The Leipsic disputation mado Luther feel that be had finally broken with Rome, and it made all Germany see it too, and raised the popular enthusiasm to a whito heat. The people of the towns declared their sympathy with the bold monk. Ulrich von Hutten and the German humanists saw that this was more than a monkish quarrel, aud recognized Lutber as their leader. Franz von Sickingen and the free knights hailed him as a uscful ally. Even the poor down-trodden peasants hoped that he might be a luckier leader than Joss Fritz, and snat he might help them to free themselves from the rabearable miseries of their lot. Luther became the leacer of the German nation after the Leipsic disputatioci.
During 1520 the first great political crisis occurred, on the occasion of the death of Braximilian, and ended fatally, in consequeuce of the wani of patriotic and political wisdom among the German princes. Ranke has pointed out the political elements which then existed for creating a Germany as free and independent as France or England; and Justus 3öser of Osnabruck had long before truly declared, "If the emperor at that time had destroyed the feudal system, the deed would have been, according to the spiriv in which it was done, the girandest or the blackest if the history of the world." Möser means that if the emperor had embraced the Reformed faith, and placed himself at the head of the lower nobility and cities, united in one body as the lower house of a German parliament; this act would have saved Germany. Probably some such idea was in the mind of the archbishop of Treves when he proposed that Frederick, the elector of Saxnny, should bo chosen emperor. Frederick might have carried out this policy, -just because, if elected, he had nothing to rely upon except the German nation, then more numerous and powerful than it has been since; but he bad not the courage to accept a dignity which he supposed to require for its support a more powerful house than his own. Charles, the son of Maximilian, was elected emperor, and that election meant the continuation of a mediæval policy in Germany.

Meanwhile Luther was at Wittenberg continuing his course of preaching, lecturing, and writing. The number of matriculated students had increased from 232 in 1517 to 458 in 1519, and to 579 in 1520 ; but large numbers besides these came to hear Luther. The study of Greek and Hebrem was diligently carried on, and the university was in a mnst flourishing state. Some of the finest produc: tions of Luther's pen belong to this period,-his Sermons on the sacraments, on excommunication, on the priesthood, on good works, his Address to the Christian Nobility of the German Nation on the Reformation of Christendom, and The Babylonian Captivity of the Church. The address to the German nobles, published on June 26, 1520, created a great deal of excitement not only in Germany but beyond it. $1 t$ was this appeal which first made $Z$ wingli feel in sympathy with Lather, who showed in this little book that the Romish doctrine of two estates, one secular and the other spiritual, was simply a wall raised round the church to prevent reform. All Christians are spiritual, he said, and there is no difference among them. The secular power is of God as well as the spiritual, and has rule orer all Christians without exception,-pope, bishops, monks, and nuns. He also appealed to the people to prevent so much money going out of the kingdom to Italy. "Why," he said, "should 300,000 florins be sent every year from Germany to Rome?" His address raised the cry of Germany for the Germans, ciril government uncontrolled by ecclesiastics, a married clerg5, while he called for a
national system of education as the foundation of a better order of things. The most important work of the time, however, was the Babylonian Captivity of the Church of God (October 1520), in which he boldy attacked the papacy in its principles. The main.thought in the book is expressed in the title. The catholic church had been taken into bondage by the papacy, as the Jewish people were taken to Babylon, and ought to be brought back into frecdom. Luther described the sacraments, real and protended, and showed how each had been carried into captivity and ought to be delivered. He concluded in a very characteristic fashion. "I hear that bulls and other papistical things bave been prepared, in which I am urged to recant or be proclaimed a heretic. If that be true, I mish this little book to be part of my future recantation." The printing press sent thousauds of these books through Germany, and the people a waited the bull, aroied beforehand against its argunvents. The bull was published at Rome on July 15, i520. It accused Luther of holding the opinions of Huss, and condemned him. Eck brought it to Leipsic, and published it there in October. It was posted up in various German towns, and usually the citizens and the students tore it domn. At last it reached Luther. He answered it in a pamphlet, in which he calle it the execrable bull of Autichrist, and at last he proclaimed at Wittenberg that he would publicly burn it. On December He 10,1520 , at the head of a procession of professors and burns students, Luther passed out of the university gates to the markett-place, where a bonfire had been laid. One of the professors lighted the fuel, and Luther threw the bull on the flames; a companion fluag after it a copy of the canon law. Germany was henceforth to be ruled by the law of the land, and not by the law of Rome. The news flashed over all Germany, kindling stern joy. Rome had shot ita last bolt; if Luther was to be crushed, ooly the emperor could do it. On December 17 th Luther drew up before a notary and five witnesses a solemn protest, in which he appealed from the pope to a general council. This protest, especially when we take it along with other future acts of Luther, meant a great deal more than many historians liave discerned. It was the declaration that the Christian community is wider than the Roman Church, and was an appeal from later medieval to earlier medireval ideas of catholicity. In the times immediately preceding the Refo:mation, the common description of Christian society was social life in communion with the bishop of Rome, but in the earlier Middle Ages Christian society had also been defined to be social life within the holy Roman empire. For the Roman empire had imposed on all its subjects a creed, and to that extent had made.itself a Christian community. The œcumenical council was the ecclesiastical assembly and final court of appeal for this society, whose limits were determined by the boundaries of the medieval empire, and Luther by this appeal not only declared that he could be a catholic Christian without being in communion with Rome, but secured an ecclesiastical standing ground for himself and his followers which the law could not help recogaizing. It was an appeal from the catholic church defined ecclesiastically to the catholic church defined politically, and foreshadowed the future political relations of the Lutheran Church.

The pope had appealed to the emperor to crush heresy in Germany, and Charles $\overline{\mathrm{V}}$., with his Spanish training and his dreams of a restored mediæval empire, where he might reign as vicar of God circe civilia, had promised his aid. He had declared, howerer, that he must pay some regard to the vier's of Frederick of Saxony, fron: whom he had received the imperial cromn, nnd had in the end resolved to summon Luther before the diet to be held at Worms. The diet was opened by Charles in January 1521, anc the
papal auncio Hieronymus Alexander (afterwards archbishop) of Brindisi and cardiaal) urged first privately and then publicly in the diet that Luther should be condemned unheard, as one already tried and convicted by the papal bull. He threntened the Germans with extermination, it is said, in case of their refusal to accede to his requests, -"We shall excite the one to fight against the other, that all may perish in their orn blood,"-a threat to which the whole subsequent bistory of Germany offers the commen-
$\checkmark$ tary. But the princes had their own quarrel with Rome, and urged besides that it would be unfair to condemn a man unheard and untried. A committee appointed by the diet presented a list of one handred grievances of the German nation ngainst Rome. This startled the emperor, who, instead of ordering Luther's books to be burned, issued only a provisional order that they should be delivered to the magistrate. He then sent to summon Lutber before him, and granted him a safe conduct to and from the diet. In April Lather set out for Worms. Before leaviog Wittenberg he had devised with his friend Lucas Cranach the artist what he called "a good book for the laity," a series of woodcuts depicting contrasts. between Christ and the pope, with explanations in pithy German:Chist washing the disciples' feet on one page, the pope holding out his toe to be kissed, on the other; Christ bearing his cross, the pope carried in state through Rome on mens shoulders; Christ driving money-changers out of the temple, the pope selling indulgences, with piles of money before him; and so on. Luther went to Worms, believing that he was going to his death. Everywhere on the road he saw the imperial edict against his books posted up, yet his journey was in some sort a triumphal progress; the people came out in crowds to meet him, and at Erfurt the herald gave way to the universal request, and, against his instructions, permitted Luther to preach. On the l6th Luther entered the imperial city amidst an immense concourse of people. Next day he was brought before the diet. When the hour approached he fell on his knees, and ottered in great agony a prayer such as can only be pronounced by a man filled with the spirit of Him who prayed in Gethsemane. When be appeared before the diet he was asked by John Eck, an official of the archbishop of Treves (to be distinguished from Eck the theologian), whether the books piled on a table were his, and whether he mould retract what was written in them. Luther acknowledged his writings, and requested that as the matter written concerned the highest of all subjects, the word of God and the welfare of souls, he might lave time for consideration before he answered the second question. His request was granted, and he retired. Luther's resolution had been taken before be appeared at the diet; he only desired to convince friends as well as foes that he did not act with precipitation at so decisive a moment. The next day ho employed in prayer and meditation, making a solemn vow upon a volume of Scripture to remain faithful to the gospel, should he have to seal his confession with his blood. When he was again brought before the diet, he answered at great leagth, dividing his writings into three kinds:(1) those in which he had written about faith and morals in such fashion that even his opponents admitted that what he had said was worth reading: ho could not retract these; (2) thoso in which ho had condemned tho papacy and popish doings, which had ruined Christendom hody and soul: to retract these rould bo mean and wicked, and ho would not; (3) those in which ho had attacked prisate persons with perhaps more vehemence than was right: bo would not retract, but would readily listen to any one who pointed out errors. Ho spoke in German with carnestness and foree, but the emperor and his followers scarcely anderstood him, and he was asked to repeat bis answer in

Latin. He did so, and the papal party mere irritated; the official declared that they were not there to make distinctions or to discuss things which had been long "ago settled by councils; let the accused say whether he recanted or not. Luther answered, "Well then, if your imperial majesty and your graces require a plain answer, I will gire you one of that kind without horns and teeth. It is this, I must be convinced either by the ritness of Scripture or by clear arguments, for I do not trust either pope or conncils by themselves, sinee it is manifest that they lare often erred and contradicted themselves-for I am bound by the Holy Scriptures which I have quoted, and my conscience is held by the word of God. I cannot and will not retract anything, for to act against conscience is utusafe and unholy. So help me God. Amen." Eck asked him whether be actually meant to say that general cuuncils lad erred. He answered that he declared, and that openly, that councils had erred several times, that the council of Constance had erred. Eck replied that he surely didnot mean to say that general councils had erred. Luther persisted that he could prove that they bad erred in many places. The emperor made a sign to end the matter, and Luther said, "I can do nought else. Here stand I. God help me. Amen." He went back to lis lodgings in deep depression of spirit, but was comforted on learning that the elector had told Spalatin, "Doctor Martin has spoken well in Latin and in Germin before the emperor and nll the princes and estates of the empire; only he is too keen for me." Luther's answer created very varions feelings among those who heard him. The Italians and Spaniards wished the safe conduct revoked, and Luther barnt at once. Most of the Germans resolved to protect him at all hazards. The emperor deliberated for a day, and then declared that he meant to permit Luther to return safely from the council, but that his opinions were to be condemned, and all who clung to them punished for the future. But the proposal to cancel the safe conduct had roused the people. There were threatenings of insurrections of the peasants, and of Sickingen and the knights; and the emperor, to allay the fecling, resolved that three days should be given to Luther to reconsider what he had said. Theologians came to argue with him. and to ioduce him to make some recantation, but in vain. At last the edict of the diet was pronounced, in which Luther mas condemned in the severest terms, and placed under the ban of the empire. This meant that when his safe conduct expired be was an outlaw, and that all people were forbidden to give him food or fire or shelter. His books were to be burnt, his goods confiscated, and his adherents punished. Whoever disobeyed the cdict incurred the ban of the empire.

Frederick the elector of Suxony thought that Luther's life was no longer safe, as in twentrone days his safo conduct would expire. Luther was hurried away from Worms, and as be travelled back to Wittenberg be was stopped near Eisenach by a band of armed knights, and carried to the fortified castle of the Wartburg above Eisenach by Frederick's orders. Tho elector's fears, as matters turned out, were exaggerated. Germany was in no mood to give Luther up, and there were threatenings of risings when he disappeared, only appeased when it was whispered about that ho was in friendly keeping. Luther remained at the Wartburg, dressed as a knight, ordered to let his beard grow, and bearing the name Junker George, for ten months, and mado uso of his enforeed leisure to begin what was perhaps his greatest literary wor's, his translation of tho Scriptures from the original texls The New Tostament was alnost entirely his own work. He used for the text Erasmus's fourth edition, and took incredible fring with his work. Some of his MS. Etill
survives, and shoms that he corrected and recorrected with great pains. Sume passages were altered at le.st fifteen times. He often felt at a loss for want of technical knowledge, and laid all his friends under contribution. Thus, when in difficulty about the translation of Rev. xxi. he wrote to Spalatin to ask for names and descriptions of all the precious stones mentioned. When engaged in the translation of the descriptions of the slaughter of beasts for sacrifice, he got a butcher to kill some shecp for him, that he might learn what every part of a sheep was called. His aim was to reproduce the tone and spirit of the original as far as he possibly could. No fine courtly words, he said to Spalatin; this book can only be explained in a simple popular style. It must be understood by the mother in the house, hy the children in the streets, and by the "common man in the market." The translation of the New Testament was first published on September 21, 1522, and a second edition appeared in October. By choosing the Franconian dialect in use in the imperial chancery, Luther made himself intelligible to those whose vernacular dialect was High German or Low German, and his Bible is still the standard of the Geroman tongue, and has preserved unity of language, literature, and thought to the German nation during its political disintegration. The translation of the Old Testament, begun in the same year, wiss a much more tedious task, and . Luther was assisted in it by what Matthesius calls a private Sanhedrim. The friends met once a week, several hours before supper, in the old Augustinian monastery at Wittenberg, which had becone Luther's house. , Bugenhagen, Justus Jonas, Melanchthon, Aurogallus, Roser, and several Jewish rabbis made the "Sanhedrim." Luther thus describes the rork: "We are labouring lard to bring out the prophets in the mothertongue. Ach Gott! what a great and difficult work it is to make the Hebrew writers speak German! They resist it so, and are unwilling to give up their Hebrew existence and become like Germans." At the Wartburg Luther was ill in health and somewhat troubled in mind. He had been ill before he was summoned to Worms, and his long jonrney in the waggon with its cloth tent, the excitement at Worms, and the solitude at the Wartburg had enfeebled him; but his literary activity was untiring. He mrote short commentaries, on the G8th Psalna and on other portions of Scripture, and a set of hemilies intended to guide erangelical preachers, the Kirchen-postille. . He also wrote one or two short treatises on worship, on the mass, on confession, and on monkish vows, intended to guide the reformed churches in the rejection of superstitious usages. Up to this time there had been no change in the church services. The true doctrine of the gospel had been preached in Germany, and Romish rites and ceremonies had been exhibited as abuses, but not a single word or portion of these ceremonies had been changed, and Luther felt that the time had come to briag the preaching and the usages inte harmeny with each other. In the midst of these labours news came to him that Germany was threatened with a new sale of indulgences. The cardinal archbishop of Mainz, Albert of. Brandenburg, nnable to pay the 26,000 ducats due to Rome for his pallium, had resolved to raise the money by indulgences. Luther wrote a fierce tractate Against the Nero Idol at Halle. The archbishop getting word of this, sent to Frederick asking him to restrain Luther from attacking a brother-elector, and Frederick wished Luther to desist. He was indignant, but at the request of Melanchthon he agreed to lay the treatise aside until he had written to the archbishop. "Put down the idol within a fortoight, or I shall attack you publicly,". he wrote; and the archbishop in reply thanked Iuther for his Christian brotherly reproof, and
promised, "with the ielp of God, to live benceforth as a pious bishop and Christian prince."

Luther's absence from his congregation, his students, and his friends and books at Wittenberg weighed heavily upon him, and he began to bear disquieting rumours. Caristadt and other friends at Wittenberg were urging on the Reformation at too rapid a rate. Their idea was that eversthing in worship not expressly enjoined in the Lible should at once be abolished. The churches were to be stripped of cruciaxes, images of saints, and the ritual of the mass; the festivals of the Christian year were to be neglected, the monastic life put down by foree; and some evea wished it ordained that all elergymen should be marricd. To Lather all this seemed dangerous, ond sure to provoke a reaction; the changes insisted upon were to him matters of indifference, which might be left to the individual to do or leave undone as be pleased. Auricular confession, the reception of the Lord's Supper under both forms, pictures in churches, the observance of festivals and fasts, and the monastic life were adiaphiora. He wrote carnestly warning his friends against rashness and violence, and he was auxions and distressed. Still he held out patiently till events occurred which called for his presence. Certain men claiming to be prophets, Nicolaus Storch, a weaver, and his disciple Thomas Miunzer, belonging to the village of Zwickau, near the Erzgehirge on the borders of Bohemia, preached wildly a thoroughgoing reformation in the church and the banishment of priests and Bibles. All believers were priests, they said, and all the faithful had the Holy Spirit within them, and did not need any such external rule as Holy Scripture. They were banished from Zwickau, and came to Wittenberg, where Carlstadt joined them. Fired by their preaching, the people tore down the images in the churches and indulged in varions kinds of rioting. Luther felt he could remain no longer in hiding. Ho wrote to the elector telling him that he must quit the Wartburg, and at the same time declaring that he left at his own peril. "You wish to know what to do in the present troublesome circumstances," he said. "Do nothing. As for myself, let the command of the emperor be executed in town or country. Do not resist if they come to seize and kill me; only let the doors remain open fur the preaching of the word of God." He was warned that Duke George of Saxony, a violent enemy of the Reformation, was waitiog to execute the sentence of the ban. "If things were at Leipsic as they are at Wittenberg," he said, "I would go there, if it rained Dnke Georges for nine days running, and every one of them nine times as fierce as hé." He left the Wartburg, suddenly appearing in Wittenberg on March 3,1522, and plunged at once into the midst of struggles very different from those which he had hitherto so victoriously overcome. He found things in a worse state than he had feared; even Melanchthon had been carried away. Luther preached almost daily for eight consecutive days against Carlstadt and the fanatics from $Z$ wickau, and in the end he prevailed and the danger was averted. His theme was that violence does no good to God's word; there are in religion matters of indifference. "The Word created heaven and earth and all things; the same Word must also now create, and not we poor sinners. Summi summarum, I will preach it, I will talk of it, I will write about it, but I will not use force or compulsion mith any one." "In this life every one must not do what he has a right to do, but must forego his rights, and consider what is useful to his brother. Do not make a 'must be' out of a 'may be,' as you have now been doing, that you may not have to answer for those whom you have misled by your uncharitable liberty." Storch and Münzer, sincere though misguided men, sought an interview with him. Thep laid
their claims for support before him; they said that they were inspired and could prove it , for they would tell him what then passed through' his mind. Luther challenged them to the proof. "You think in your own heart that my doctrine is true," said ono of them impressively. "Get thee behind me, Satan," exclaimed Luther, and dismissed them. "They were quite right," he said to bis friends afterwards ; "that thought crossed my mind about some of their assertions. A spirit evidently was in them; but what could it be but the evil one?"

When Charles V. had laid Lather under the ban of the empire, he had undoubtedly been greatly influenced by 1olitical considerations. Francis I. of France and Charles of Spain were rivals, and the whole of the European policy of the time turns on this rivalry. The opponents schemed to attract to themselves and to divert from their neighbour the two ontside powers of England and the papacy, and in 1521 it was the policy of Charles to win alliance with the pope. The Germans saw that they were being sacrificed in this game of statecraft, and there was no great willingness even among Roman Catholies to put the edict of Worms in force. Luther at the Wartburg and at Wittenberg was protecterl by the national feeling of Germany from attack. The diet of the empire met in 1522 at Nuremberg, and the new imperial council, which ruled in the emperor's absence, and very fairly represented the popular feeling in Germany, was in no mood to yield to the pajacy. Leo X. had died, and his successor Adrian VI., an orthodox Dominican and an advocate for reiturmation in the cloisters and in the lives of the clergy, proposed to begin reformation by crushing the German heresy. Iie instructed his nuncio to the diet to demand the execution of the edict of Worms. The imperial council refused until the grievances of Germany were beard and redressed. They spoke of concordats broken and papal pledges unfulfilled, and finally they demanded a free cecumenical council to be held in Germany within a year, which should settle abuses, and until it met they wished the creed to bo an open question. The nuncio found that the pulpits of the free imperial city were filled with preachers, mostly monks, who were making the city resound with gospel preaching. He asked the diet at least to arrest the preachers; the diet plended incompetence. He proposed to seize them himself in the pope's name ; the magistrates threatened to release them by force, and the nuncio had to desist. The diet then presented a hundred gravamina or subjects of complaint which the German nation had against the papacy, incluling in the list indulgences, dispensations bought for money, absentee bishops and other ecclesiastics, the use of bans and interdicts, pilgrimages, excessive demands for money, and the decisions of matrimonial cases in ecclesiastical courts. The complaint was an expansion of Luther's nddress to the German nobles. The nuncio conld do nothing, and was forced to accept by way of compromise a decision from the diet that only tho verum, merzem, sincerum, el s:netum evangelium was to be preached in Gcrmany. Nuremberg reversed the edict of Worms. Next year the diet met again at Nuremberg, nnd the new pope, Clement VII., sent the celebrated cardinal-legate Lorenzo Campeggio to demand the execiution of the edict of Worms. The diet asked in return what had become of the hundred grievances of the German nation, to which Rome had never deigned to return an answer. Campeggio declared that at Rome the doenment had been considered merely as a private pamphlet; on which the diet, in great indignation, insisted on the necessity of an acumenical council, and proceeded to annul the cdict of Worms,declaring, however, in their communication to tho pope, that it should be conformed to as much as prossible, whieh with respect to many cities and princes meant not at all.

Finally it was resolved that a diet to be held at Spires was to decide upun tho religious differences. But between Nuremberg and Spires an event occurred, the revolt of Sickingen and the knights, which was destined to work harm to the Reformation. The diet of Spires met, and, many of the members being inclined to connect Sickingen and Luther, there was a strong feeling against tho Reformation, but the feeling was not strong enough to induce the diet to comply with the demands of the legato Campeggio and revoke the decisions of Nuremberg, and it refused to execute the edict of Worms. Campeggio, however, was able to separate Germany into two parties, and this scparation beeame apparent at the convention of Ratisbon, where Bavaria, Austria, and other South-German states resolved to come to separate terms with the papacy. The curia promised to stop a number of ecelesiastical extortions and indulgences, to make better appointments to benefices, and to hand over some of the ecclesiastical estates to the Austrian and Bavarian princes; while the states promised to set aside the gravamina, and to permit no toleration of the new doctrines. On the other hand, many states which had kept aloof from the Reformation now joined it, and declared against the seren sacraments. the abuses of the mass, the worship of saints, and the supremacy of the pope. The emperor's brother and successor Ferdinand was a bitter foe to the Reformation, and urged persecution. Fuur Augustinian monks at Antwerp were the first martyrs; they were burnt on 1st July 1523. Ferdinand began the bloody work of persecution in the hereditary states of Austria immediately after the convention of Ratisbon. At Passau in Bavaria, and at Buda in Hungary, the faggots were lighted. The dukes of Bavaria followed the sume impulse.

Luther's literary activity during these years was unparal- Luther' leled. In 1522 he published, it is said, one hundred and writing, thirty treatises, and eighty-three in the following year, among duriug them the famous Contra IIenricum regem Anglix, in which, after having dealt mercilessly with the rayal controversialist, he exclaims, "I cry 'Gospel! Gospel I Clirist! Christ I' and they ceasenot to answer 'Usages! Usages! Ordinances ! Ordinances! Fathers! Fathers!' The apostle St Paul annihilates with a thunderstorm from heaven all these fooleries of Henry." His principal work, however, during these years was the publication of certain short traets upen worship and its reform, followed by various directories for public worship, which afterwards served as a model for the numerons Lutheran Church ordinances. In 1522, while Luther was still in the Wartburg, Carlstadt had published for the church at Wittenberg an ordinance for directing the government and worship of tho church. It was very bricf, but very revelutionary (cf. Richter's Evengel, Kirchenordnengen, vol. ii. p. 484). This was withdrawn after Luther's retura; but the Reformer felt that the time Lad come for a definite reform of public worship and for publishing his views upon tho subject. Accordingls, after a series of tracts in 1523 upon religions and monastic nows, the abolition of privato masses, the Lord's Supper under both forms, saint worship, the so-called spiritnal estate, and the married life, he published in 1523 the Order of the Horship of God. He was, as usual, conscrvative, and made as few changes ns possible in the form of service, caring only to give full place to prayer and the reading and preaching of the word. The order of worship was followed by the Formula Misse, published in Latin, but at onco translated into German by Paul Speratus, in which the ancient form was as much preserved as is consistent with cvangelical doctrine. Luther was of opinion that the moro difticult introits should bo removed from the order of the Euctarist, and simpler hymns put in their place, and he also wne strongly in favour of the siuging of bymen in tho
common worship. This led to the publication in 1524 of a small collection of church hymns, which was Luther's first German C'kurch Hymn-book, and which was the beginning of the wonderfully rich German Protestant hymnology. In the sume year Luther translated the order of baptism, and published it nuder the title of Das TaufBüchlein. He also drew up a directory for public worsbip for Leisaig (cf. Richter, op. cit., vol. i.). The hyma-book was followed by a prayer-book, and by the publication of a short summary of the heads of Christian truth fitted for the instruction of the "ruda common man." Luther's catechism for children completed this series of works, intended to aid worship, public and private. Notwithstanding this immense amount of literary work, Luther found time to make preachiug tours, and visited in this way Altenburg, Zwickan, Eilenburg, Erfurt, Weimar, and many other places, and was cheered by the progress of the Reformation throughout North Germany. About this time also he sent a powerful address to the municipal councils of the German towns, exhorting them to establish everymhere Christian schools, both elementary and secondary. "Oir my dear Germans," he exclaimed, "the divine word is now in abundance offered to you, God knocks at your door; open it to Him ! Forget not the poor youth. . . . The strength of a towa does not consist in its towers and buildings, but in counting a great number of learaed, serious, honest, and welleducated citizens." He tried to impress upon them the necessity for the highest education, the knowledge of Greek and Hebrew, by showing how serviceable sach learning had been to lim in his attack upon the abuses of Rome. He also appealed to the priaces and cities to help the gospel and the Reformed churches; but church rule and church maiateaance could not be fixed on a legal basis until much later

Here we conclude this first glorious period of Luther's life. The problem to be solved was not to be solved by Luther and by Germany ; the progressive vital element of reformation passed from Germany to Switzerland, and through Switzerland to France, Holland, England, and Scotland. Before he descended into the grave, and Germany into thraldom, Lather saved, as much as was in him, his country and the world, by maintaining the fundamental priaciples of the Reformation against JIclanchthon's pusillanimity; but three Protestant princes and the free cities were the leaders. The confession was the work of Melanchthon; but the deed was done by the laity of the nation. The German Reformation was made by a scholastically trained monk, seconded by professofrs; the Swiss Refurmation was the work of a free citizen, an honest Christian, trained by the classics of antiquity, and nursed in true hard-won civil liberty. Luther's work was continued, preserved, and adranced by the work of the Swiss and French Reformers. The monk began ; the citizen finished. If the one destrojed Judaism, the other converted paganism, then most powerful, both as idolatry and as irreligious learning. But as long as Luther lived he did not lose his supremacy, and he deserved to keep it. His mind was universal, and therefore catholic in the proper sease of the word.

Thires Period (1525-1546). In this third period the epic of Luther's life was changed into tragedy; the revolt of the knights under Sickingen, the Anabaptist tumults, and the peasants' war in the Black Forest alienated the sympathies of many from the Reformation, and resulted in a divided Germany (see rol. x. p. 498, rol. i. p. 786). From Sickingen's rising Luther sedulously kept himself aloof, but the insurgent had more than once procluimed himself on Luther's side, and that was enough to make many of the priaces resolve to have nothiag to do with reform. The convention of Ratisbon was the result of Sickingen's abortire revolt. The Anabaptists have to
do with Luther's history mainly in so far as his contact with them nodified and gave final shape to his doctrine of baptism. In his tract on the Sacrament of Baptism, 1519, Luther distinguishes carefully betreen the sign and the thing signified. The ordinance is just the sign, the thing signified is the death to sin, the new birth, and a new life in Christ. This dew life goes on bere on earth, so does the death to sin. Believers die daily to sin, not once for all in baptism, and their life in Cbrist is not a full life whilst earth's life lasts; and so baptism is merely a sign of what is never really accomplished till after death. In the Babyloniun Captivity of the Church of God, 1520, Luther adopted a view not nulike Calrin's. He said that God's word was always more than a statement, it was also a promise. Baptism was therefore a seal or pledge, a promise that what was signified by the ordinance would be bestowed. Only unbelief can rob the baptized of the benefits of their baptism and make the ordinancs of none effect. But after Luther came in contact with the Anabaptists be departed from this simple theory, for he thought that he could not justify infant baptism upon it, and so in his Sermon on Baptism, 1535, he introduced a third theory, which approached much nearer to medieval views. He explained that in the ordinance of baptism God through His word so works on the water in the sacrament that it is no longer mere water, but has tho porver of the blood of Christ in somo mysterious fashion. Luther then asked if faith was required for the worthy partaking of the sacrament, and he felt obliged to confess that the faith of the recipient was not needed. This sermon marks Luther's reaction towards ideas he had abandoned in 1519-20.
More important was the connexion between the Lutheran movement and the peasant revolt. The first coalitions of the peasants against the intoleratse rapacity and cruelty of the feudal aristocracy had begun before the close of the 15th century. But all the oppressed inclined towards Luther, and the oppressors, most of whom were sovcreigns, bishops, and abbots, towards the pope. The struggle in the peasants' war was really between the reforming and the papist party, and it could easily be foreseen that Luther would be dragged into it. As early as January 1525 the revolutionary noovement bad extended from the Black Forest into Thuringia and Saxony, and the peasants were eagerly looking to Luther for help. The more moderate party published their programme in twelve articles, with a very remarkable preface, in which they stated that they did not wish for war, and asked nothing that was not in accordance with the gospcl. These articles were the following:(1) the whole congregation to have power to elect their minister, and if he was found unworthy to dismiss him; (2) the great tithe, i.e., the legal tithe of corn, to be stilt payable for the maintenance of the pastor, and what is over to go to support the poor; the small tithes to be no longer payable ; (3) serfdom abolished, since Christ has redeenied us all by His precious blood ; (t) game, fish, and fowl to be free as God created them ; (5) the rich bave appropriater the forests, this to be rearranged; (6) compulsory service to be abolished-wages for work; (i) peasant service to be limited by contract, and work done above contract to be paid for; (8) fair rents; (9) arbitrary punishments abolished; (10) the commons restored; (11) the right of heriot, i.e., the right of the lord to take the rassal's best chattel, to be abolished; (12) all these propositions to be tested by Scripture, and what cannot stand the test to bo rejected. Most impartial historians have declared that their demands were on the whole just, and must of them have become law in Germany. The wards of Scripture brought formard by the peasants prove clearly that Luther's preaching of the gospel had acted, not as an incentive, but
as a corrective. The peasants declared their desire to uphold the injunctions of the gospel, peace, patience, and union. Like the Puritans in the following century, the peasants say that they raise their voice to God who saved the people of Israel; and they believe that God can save them from their powerful oppressors, as he did the Israclites from the hand of Pharaoh. Lutier evidently felt himself appealed to. The crisis was difficu¹t, and, in spite of what has been said in his defence, he failed, as he failed afterwards in the confereace with the Swiss deputies nt Marburg. Had Luther thrown the weight of his inHuence into the peasants' scale, and brought the middle c'asses, who would certainly have followed him, to the side of the peasants, a peaceful solution would in all probability have been arrived at, and the horrors of massacre averted. But Luther, bold enough against the pope or the emperor, never had courage to withstand that authority to which he was constantly accustomed, the German prince. He began by speaking for the peasants in his address to the lords, and had courage enough to tell them some plain truths, as when he said that some of the twelvo articles of the peasants are so equitable as to dishonour the lords before Gud and the world, when he told them that they must not refuse the peasants' demands to choose pastors who would preach the gospel, and when he said that the social domands of the peasants were just, and that good government was not established for its own interest nor to make the people subservicat to caprice and cvil passion, but for the interest of the people. "Iour exactions are intolerable," he said, "yon take array from the peasant the fruit of his labour in order to spend his labour upon your fiuery and luxury." He was courageous enough also in nsking the peasants to refrain from violence, and in telling them that they would put themselves in the wrong by rebellion. But what Luther did not see was that the time for good advice had gone by, and that he had to take his stand on one side or the other. He trusted too much in fine language. His advice that arbiters should be chosen, some from the nobility and some from towns, that both parties should give up something, and that the matter should be amicably settled by human las, came ten months too late. The bloody struggle came; the stream of rebellion and destruction rolled on to Thuringia and Saxony, and Luther apparently lost his head, and actually encouraged the nobles in their sanguinary suppression of the revolt, in his pamphlet entitled Against the Murdering, Robbing Rats of Peasants, where he hounds on the authorities to "stab, kill, and strangle." The princes leagued together, and the peasants were routed everywhere. Oue army, with neither military arms nor leaders, was utterly routed at Frankenhausen, another in Würtemberg. Fifty thousand were slain or butchered by wholesale executions. Among this number many of the quietest and most moderate people were made victims in the general slaughter, because they were known or suspected to be friends of the Reformation and of Luther, which indeed all the citizens and peasants of Germany were at that time. None fclt more deeply, when it was too late, this miscry, and what it involved in its effects on the canse of the gospel in Germany, than Luther; and he never recovered the shock. He thus unburdens his seul at the close of this fatal year, which crushed for centuries the rights and hopes of the peasants ard labourers, and weakened the towns and cities, the seats of all that was best in the national life, "Tho spirit of these tyrants is powerless, cowardly, estranged from every honest thought. They deserve to be the slaves of the people;" and in the next ycar-"I fear Germany is lost ; it cannot be otherwise, for they will cmploy nothing but the sword."

The prospect was dark enough for tho Reformer.

Ferdiand of Austria and the duko of Bavaria were imprisoning and slaying Christians on account of the gospel. The emperor, fresh from his victory at Pavia, and the pope were combining to crush the Reformation, and it was rumoured that the kivgs of France and England were to lend their aid. The convention of Ratisbon had resulted in a lioman Catholic league in which Duke George of Saxony, Albert elector-archbishop of Mainz, and the duke of Brunswick were the leaders, Luther also found that the war had demoralized the Protestant congregations, and that they were becoming ignorant and sarage. And in May 1525 the elector Frederick died.

It vas under such auspices that Luther decided at last to take a wife, as he had long advised his friends among the priests and monks to do. He married Catherine von Bora, a lady twenty-four years of age, of a noble Saxon family, who had left her convent together with eight other sisters in order to worship Christ without the oppression of endless ceremonies, which gave neither light to the mind nor peace to the soul. The sisters had lived together in retirement, protected by pious citizens of Torgau. Luther married her on June 11, 1525, in the presence of Lucas Cranach and of another friend as mitnesses. Catherine von Bora had no dowry, and Luther lived on his appointment as professor; he would never take any money for his books. His marriage was a happy one, and was blessed with six children. He was a tender husband, and the most loving of fathers. In the close of the ycar 1525 Luther was engaged in controversy with Erasmus on the freedom of the will.

The princes who were friendly to the Reformation Proctess gradually gained more courage. The elector John of of the Saxony established the principle in his state that all rites Reforms should be abrogated which were contrary to the Scriptures, and that the masses for the dead be abolished at ouce. The young landgrave Philip of Hesse gained over the son of the furious Duke George to the cause of the Reformation. Albert, duke of Prussia, had established it at Künigsberg, as hereditary duke, abolishiag the vows of the order whose master he had been, saying:-"There is only one order, and that is Christendom." At the request of the pope, Charles placed Albert under interdict as an apostate monk. The evangelical princes found in all these circumstances a still stronger motive to act at Augsburg as allies in the cause of the evangelical party; and when the diet opened in December 1525 they spoke out boldly:-" It is violence which brought on the war of the peasants. If you will by violence tear the truth of God out of the hearts of those who believe, you will draw grater dangers and evils upon you." The Ronauist party was startled. "The cause of the holy faith" was adjourned to the next diet at Spires. The landgrave and the elector made a formal alliance in February 1526 at Torgau.

Luther, being consulted as to his opinion, felt helpless. "You have no faith; you put not your trust in God; leave all to Him." The landgrave, the real head of tho evangelical alliance, perceived that Luther's advice was not practical-that Luther forsook the duty of self-defence and the obligation to do one's duty according to the dictates of reason, in religious matters as well as in other political questions. But the alliance found no new friendsGermany showed all her miscry by the meanness of her princes and the absence of any great national body to oppose the leaguc formed by the pope, the emperor, and the Romanists throughont Europe. Tho archbishop of Treves preferred a pension from Charles to the defence of the national cause. Tho evangelically-disposed clector of the palatinate desired to avoid getting into trouble The imperial city of Framkfort, surrounded by peu
enemies ana timid fricuds, declined to accede to the alliance. There was more national feeling and courage in the Anglo-Saxen nerth of Cermaoy. The princes of Jrunswick, Luxemburg, Mecklenburg, Anhalt, and Mansfeld assembled at Magdchurg, and made a solema and heroic declaration of their resolution "to pledge their estates, lives, states, and subjects for the maintenance of the holy word of Ged, relying on Almighty God, is whose instruments they would act." The town of Magdeburg (which then had about three times as many inhabitants as now) and Duke Albert of Prussia adiered to the alliance. The league doubled its efforts. Charles, strong anl rendered safe by the peace of Madrid concluded wit 1 Francis, sent rord from Seville in March 1526, thronerly the Romish Duke Henry of Brunswick, that he would soon come himself to crush the heresy. Luther saw the dangers crowding around him; his advice was,-"We are threatened with war; let us force our enemies to keep the peace, conquered by the Spirit of God, before whose throne we must now combat with the arms of praver ; that is the first work to be done."

The emperor commissinned his brother Ferdinand to preside at the dict of Spires and carry out his wishes. But before the diet met Francis and the pope had formed a league against him, and Charles had commissioned Count Frundsberg to levy an army of Germans to fight against the pope, while. Ferdinand was called to Hungary to maintain against the Turks and others the kingdoms of Hungary and Bohemia, bequeathed to him by King Louis after the battle of Mohacz. Wheu the diet at Spires met (June 1526), after some deliberation a proposition presented by the free cities was accepted that until a gencral council met "every state shall lise, rule, and bear itself as it shall be ready to answer for to God and his imperial majesty,"-a decision which foreshadowed the famous Augsburg formula cujus regio ejus religio, the principle on which the German Protestant church was afterwards legally based. The Reformation had thus the three years, 1526-1529, to organize and consolidate itself. The man of Germany at that time among the princes was Philip, landgrare of Hesse, and he was taught what to do by a citizen James Sturm, the deputy of Strasburg at Spires. Sturm had convinced Pbilip that the basis of the true evangelical cburch was the acknowledgment of the self-government of the church by synods composed of the representatives of the whole Christian people; and this was cmbodied in the first Protestant constitution, the Reformalio ecclesiarum Hassie juxta certissimam sermonum Dei regulan ordinata. ${ }^{1}$ The constitution acknowledged the episcopal element, but not cpiscopal rule; the jus episcopale was invested in the Cluristian community, and the flock of Christ were to hear oaly the voice of their shephord Christ. Bishops and deacons were to be elected by the Christian people: bishops were to be consccrated by imposition of the hands of three bishops, and deacons instituted by the imposition of the hands of elders; while elders were associated with the pastors in the pastoral care of the congregation. A general or land synod was to be held anuually, consisting of the pastor of each parish and of pions men elected from the various congregations, and there were provisions made for prorincial and congregational synods. Three men were to be elected annually to excrcise the right of visitation, This was afterwards found to be inconvenient, and six and then thirteen superintendents for life were substituted. This board of supcrintendents became afterwards an oligarchy, and at last a mere instrument of state, overriding the original democratic constitutions of the

[^20]church, a consequence of the disruption of Cermany and of the paralysis of all national iustitutions. Luther had in 1523 and 1524 professed principles almost identical with those established in 1526 in Hesse. His action ceased there; after the peasants' war be abandoned his more liberal ideas, and insisted on learing everything to the princes, and what could a people do cut up into four hundred sovereignties? Luther never acknowledged Cæsaropapism or Erastianism as a principle eand as a right. He considered the rights of the Christian people as a sacred trust provisionally deposited in the hands of the princes their representatives. "Where," he asked, "aro the people to form the synods? I cannot find them." It was Melanchthon's influence that facilitated the despotic system and hampered the therough reform of the forms of worship. Luther withdrew from a sphere which be felt was not his. He bnsied himself during these years with plans to improve and simplify the church services at Wit. tenberg. Some portions of the music in the communion service were too difficult for the people. Luther induced the elector to provide music teachers, and also to permit a simpler serrice. This led to the German Mass and Order of Norslip for Wittenberg. The churches too throughout electoral Saxony were becoming better attended, and Luther had to consider and devise plans for church extension and superrision. His letters to Philip of Hesse, disapproving of the new constitution of the church there, show how jealons he had become of the entrance of democratic ideas. He asked the elector of Saxony to take charge of the church within his domiaions, and Melanchthou's articles for the visitation of the churches in Saxony, which foreshadowed the Lutheran consistorial organization, show that. Luther distinctly contemplates the transfer of the jus episcopale to the princes and magistrates. It is true that he called these magistrates Nothebischöfe, but be could not see any other solution of the difficulty, and undoubtedly from the legal point of view it mas easy to transfer the right of suporvision from one external authority to another, and difficult to hand it over from the bishops to the congregation. The new ecclesiastical organization adopted in Hesse and electeral. Sarony had the effect of making the arcbbishop of Mainz renounce in 1528 the spiritual jurisdiction he had hitherto exercised orer these two districts.

Meanwhile tbe emperor had been again successful in his political schemes. His German army under the Coustalle Bourbon and General Frundsberg had seized upon Italy and had sacked Rome, and again be had brought the pope and Francis to terms. It only remained to subdue tho Reformation, and the medixval cmpire might be restored. He first sent a dispatch saying that the edict of Worms wus to be leld as in force. When the diet met at Spires in 1529 , the imperial commissioners forbade the celebration of worship accordiog to the reformed usage in churches, and afterwards in the houses of the elector and of the landgrave. The Act of Toleration of 1526 was to be abrogated. The diet appeared to be hopelessly dirided, a majority with the emperor and a minority with the elector and the landgrave, and the majority passed an edict which amounted to this that where the edict of Worms could not be executed without fear of revolution no further reforms were to be allowed. The minority prepared a protest. "The diet has overstepped its authority," they sand; "our acquired right is that the decreo of 1526 , unanimously adopted, remains in force until a council can be convened. Up to this time the decrec has maintained the peace, and we protest against its abrogation." Ferdinand, who represented his brother, assured the priaces that nothing remained for them but to submit; he threatened the free cities with the loss of their privileges
and with an interdict, and he left the diet while the evangelical members were deliberatiug. In spite of these threats the protest was signed by John of Saxony, Ceorge of Brandenburg, Ernest of Lüneburg, Philip of Hesse, and Wolfgang of Anhalt among the princes, and by the representatives of the free cities of Strasburg, Nuremberg, Ulm, Costnitz (Constance), Lindau, Memmingen, Kempten, Nördliagen, Heilbronn, Keutlingen, Isny, St Gall, Weissenburg, and Windsheim. This celebrated protest of April 15, 1529 , from which comes the name Protestant, is one of the noblest documents of Christian history. The protesting princes and cities claimed as their right as Germans the sacred duty freely to preach the word of God and the message of salvation, that all who would hear it might join the community of believers. It was also an earnest of true evangelical union; for it wes well known that most of the cities were more inclined towards Zwingli's than towards Luther's view of the sacrament.

If this great act be considered impartially, it is impossible not to see that neither Luther nor Melanchthon was the real leader of the time. Lutber had no real comprehensior of what had to be done in Germany to preserve the gospel from destruction. He had shown little sympathy with the first attempt made in Hesse at the selfgovernment of the church; still less did he see the importance of the protest at Spires, and of the unity it gave to the evangelical ceuse. It was evident that nothing but the inroad of the Turks had saved the Protestant princes after the diet, and that Charles was so far master of Germany as to make it impossible for Germany to become a Protestant nation. The Protestants were lost uuless they strengthened the alliance which they had just founded at Spires. But Luther disliked such alliances; he dissuaded the elector from sending deputies to the meeting agreed to be held at Smalkald, and when the Sazon deputies prevented any business being done he was proud of the result. This apparent blindness and perversion of mind requires explanatiou. Luther lived under the shadow of the Middle Ages, snd had been trained in scholastic law as well as in scholastic theology. To the mediæval jurist the emperor was the impersonation of all social order and moral law ; he was the vicar of God. In the later Middle Ages the jurists had exaggerated this sacredness of the emperor, and had done so quite naturally in order to protect civil law from canon law, and to uphold the state against the church. Luther could throw off scholastic theology, but be could not throw off that scholastic jurisprudence that all his medixval heroes, Occam, Wickliffe, and Huss had found so useful in their attacks on the papacy, and that Luther bimself had found so scrviceable when he appealed from the church defined by the pope to the clurch defiaed by the cmpire. He could not bear to think of an alliance against the holy Roman empire. Luther too had been trained in the scheol of Tauler and the Theologia Germanica, and partook greatly of their quietism. "Suffer God to do His work in you and about you " was their motto. There was a theological scruple also at the bottom of Luther's opposition to a vigorous Protestant alliance and a national attitude. This betrayed itself, first, in an uncasiness about Z wiugli's rising influence in Germany, and, secondly, as a doctrinal idiosyncrasy respecting the sacra. ment of the Eucharist. Philip of Hesse saw through this instantly, and said, "I see they are against the alliance on account of these Zwinglians; well, let us see whother we cannot make these theological differences disappear."

When Luther was raised above limself by the great problem beforo him in that glorious period of action from 1518 to 1524 , ho had considered the sacrament as a part of the serviccs of the church, and a secondsry matter compared with the right view of faith or the inward Cbristianity
which implies necessarily an unselfish believing and thankful mind. He was convinced that there was no virtue inherent in the elements apart from the communion, and it was a matter indifferent how the spirituality of the action and the real presence, even the transubstantiation, might be reconciled with faith. But the peasants' war and Carlstadt's mystical enthusiasm alarmed him. Where was this to lead to, he asked, and he seems to have settled down into a great resolve to abide by the tradition of the church, and alter as little as possible provided room was found for the exercise of living faith. So when he felt called upen to form a theory of the doctrine of the sacrament of the Eucharist he weat back to his schelasticism to find there some theory which should be traditional and yet afford room for the spiritual priesthood of all believers, snd fer the exercise of faith on the promises of God. He found it in the writings of that schoelman whom he more than once calls "his dear master," the daring Englishman Willism of Occam. Transubstantiation, the Romish doctrine, offended Luther in his two essential requirements: it demanded a miracle which could be performed by a priest only, and this miraculous power so separated clergy from laity that it denied the spiritual priesthood of all believers; and, when the elements had been made by the priest's creating word the body and blood of the Lord, their superuatural efficacy, apart from the faith of the communicant, imparted grace. Occam had championed a theory which in some form or other had been in the church since the 10th century at least, and which openly rejected one of these stumbling blocks, and, as Luther saw, really did away with the other also. According to Occam's scholastic distinctions, matter can be present in two ways-(1) when it occupies a distinct place by itself, excluding every other body, e.g., two stones mutually exclude each other, and (2) wheu it occupies the same space as another body at the same time. Everything which is omnipresent or ubiquitous must be able to occupy the same space as other things, else it could not be ubiquitous. Christ's resurrection body, said Ocesm, had this power when our Lord appeared among His disciples while they were in a room with the doors shut; st a certain moment of time it and a portion of door or wall must have been in the same place at the same time; and besides Christ's body is ubiquitous. It is therefore in the clements bread and wine, in, with, and under them. Luther took over this doctrine from Occam without slteration. The very illustrations he uses in his Bekenntniss vom Abendmahl are taken almost verbatim from Occam, De Altaris Sacramento. From this it followed thst consubstantiation involved no miracle. Clurist's lody was not brought into the elements by the priest; it was there naturally. But its presence in theso clements on sacramental occasions brought with it a blessing, and imparted grace, not because of the presence, but because God had promised that this particular presence of the everywhere present body of Chist would bring blessings to the faithful partaker. Occam's theory of consubstantiation fulfilled sll Luther's wants, and above all it involved no explaining amay of the plain meaning of the sentence, "This is my body," such as liad offended him in Carlstadt. It is easy to see therefore how Luther was alarmed at Zwiugli. The Swiss Reformer seemed to attack everything that Luther prized. He did net care for tradition or church usage; he seemed enggged in a rationalistic attack on the presence of Christ in the church, and on the word of God, and so he was guilty, in Luther's cstimation, both of self-confidence and of a rationalism. Ou the other hand, Zwingli could not understand what Luther ineant; and yet he was anxious to unite with him, and was willing to lcave this ono difficulty an open question. It was in these circumstances-suspiciou on the part of Lutber, blank amazement on the part of

Zwingli-that Philip of Hesse induced the Swiss and the German theologians to meet at Marburg. Luther was gloamy and suspicious, "as he had never been seen before," a friend said. The frank declarations of the Swiss Reformers soon cleared away all shadows of difference and dissent on all points but one, and fourteen articles defining the chief heads of Christian ductrine were adopted by both partics. Then cane the discussion un the fifteeath, the doctrine of the Encharist. Luther took a piece of chalk and wrote upon the table Hoc est corpus merm, and when worsted in argument, as he usually was, appealed to the eentence. The diseussion, which lasted four days, however, resulted in the parties recagnizing exactly where the point of difference lay, and in reducing it to its smallest dimensions. Both deelared that they agreed in recognizing the Eucharist to be a saerament of the true body and blood oi Christ, and that a spiritual partaking of this body was a means of grace. They differed whether the true hody and blood of Christ were corporeally in the sacrament. It was boped that time would briug about alliance if not agreement, but Luther was obstinate. "Subnit yourselves, believe as we do, or you cannot be acknowledged as Christians." He refused Zwingli's band; "You lave another spirit frum us," be said, meaning that there was no objective basis of faith between them owing to what he thought to be Zwingli's rationalism. The result was a sad one, but Zwingli was to some estent a gainer; his view became naturalized in Germany, where Swabia adopted it, as did many of the imperial cities, and Philip of Hesse indicated that he preferred it.

The Marburg conference was a sad prelude to the decisive diet to be held at Augsburg in 1530. The new diet was anxiously awaited. Charles had made known his intention to be present, and that he intended to enforce obedience to the edict of Worms. He entered Augshurg with great magnificence, and was in fact at the zenith of his power. He had bruken the might of France, humbled the papacy, been crowned at Bologna, reorganized Italy, and driven back the Turk. His only remaining task, and it seemed easy, was to crush the Reformation. He first summoned before him the protesting princes and asked them to withdraw the protest. This they refused to do; they had a clear constitutional right, founding on the decision of Spires, to resist the emperor, and they resolved to exercise it. Divine service after Lutheran fashion was held at their quarters, and they refused to join in the procession of the host at the festival of Corpus Cluristi. Meanwhile Luther, Melanehthon with him, was at Coburg, near enough at hand for consultation and yet beyond the emperor's reach. Melanchthon was preparing a confession with a defence, the so-ealled Apology, in case the emperor should require a statement of their doctrines. Luther was writing commentaries on the Psalms and the prophets, and was also preparing a popular edition of Esop's Falles. Ho also wrote comforting letters to the elector, and addressed one of his most powerful writings to the Roman Catholic clergy assembled in the diet at Augshurg. Melanelthon was sent for to consult about the confession which the emperor had asked for, and Luther remained alone at Coburg full of anxiety, for he knew his friend's belplessness in the actual bustle of life. When Melanchthon got to Augsburg he really became a source of weakness. He induced the elector for the sake of peace to give up the services in the Franciscan church, and the Protestant preachers left the towa in despair. Luther all the white had been quiet, waitin- in patience; but this was too much for him, and he wrote to encourage the elector to resist. At length the Protestants were asked to present their confession. The empersererdered it to be read in Jativ, "No,"
said the elector, "we are Germans and on German ground. I bope therefore your majesty will allow us to speak German." When the rice-chancellor of the elector, Dr Christian Baier, had read the first part of the confession, which expounds the principles of the Reformation, and in particula: the doctrine of justification by faith, "that faith which is not the mere lnoriledge of an historical fact, but that which belieres, not only the history, but also the effect of that history upon the mind," it is said that an indescribable effect was produced upon the assembly. The opponents felt that there was a reality before then which they lad never imagined ; and others said that such a profession of faith by such princes was a moro effectual preaching than that which had been stopped. "Clurist," said Jonas, " is in the diet, and be does not teep silence ; the word of God is indeed not to be bound." The Iioman Catholic theologians present answered the confession, and then the emperur engaged Protcstant and Roman Catholic theologians in negotiations in which Melanchthon soon showed bis yielding character, evel2 granting that the Protestants might ackoowledge the jurisdiction of the bishops and the supremacy of the pope. At this critical moment Luther's indignation found vent. "I understand," he wrote to Melanchthon, "that you Lave begun a marvellous worb, to make Luther and thie pope agree together, but the popo will say that he will not, and Luther begs to be excuscd. Shonld you, however, after all succeed in your affair, I will follow your exumple and make an agreement between Curist and Belial. Take care that you give not up justifeation by faith; that is the heel of the seed of the woman to crush the serpent's head. Take care not to acknowledge the jurisdietion of the bishops; they will soon take all. In short, your negotiations have no ehance of suceess unless the pone will renounce papacy." The Romanists fortunately demanded too much. Not even Melanchthon could yield the acknowledgment of private masses, of auricular confession, and of the meritorious character of good works; and the negotiations ceased. While they were in progress the emperor tried to intimidate the priaces by calling the imperial troops into the free city of Augshurg and closing the gates. The landgrave escaped, and this frightened the Catholics. Unfortunately the Protestants had confessed their want of union by presenting three confessions of faith:- the Lutherans had presented the Augsburg confession; Strasburg, Constance, Memmingen, and Lindau, which sympathized to some extent with Zwingli, presented the Confessio Tetrapolitana; and Zwingli had sent a confession which was not, however, laid before the diet. The diet broke up with the final decision that the Protestants should have till next spring to consider whether they would voluntarily return to the church, and that, if they prosed obstinate, then measures would be taken for their estermination.
To the student of Luther's life the diet of Augsburg is noteworthy chiefly because it was the occasion of the cumposition of the Augshurg confession, or Augustana, which afterwards beeame the symbol or confession of faith for the Lutheran Church. It was prepared by Melanchthon, founding on the fifteen articles of the Marburg conference, on the seventeen articles of Schwabach, and on the articles of Torgau. These various sets of articles had been written by Luther, and therefore the Augsburg confession was strictly Luther's own, It consists of two parts-one dogmatic, in twenty-one articles, which states the prineipal doctrines of the evangelical church, beginning with the Trinity and ending with the worship of saints; and the other in seven articles, rejecting the celibacy of the elergy, the sacrifice of the mass, auricular confession, ceremonial feasts and fasts, monastic vows, and the secular jurisdiction of bishops. It was signed at $\Delta u g s b u r g$ by Jolus of

Saxony, George of Brandenburg, Ernest of Lüneburg, Philip of Hesse, and Wolfgang of Anhalt, and by the represeatatives of the towns of Nuremberg and Reutlingen, and during the aitting of the diet by the representatives of Kempten, Heilbronn, Wiadsheim, and Weissenburg.

The edict of the diet was published on November 19, and the Protestant princes, after having overcome the resistance of Luther, met for confereace at Smalkald on Christmas 1530, and formed an armed league for mutual defence. It had been declared that the edict would be put into execution in the spring of 1531, but when the fime came the emperor had other work on hand: France had become troublesome, and the Turks rere again moving. He found also that he could not count on the support of the Roman Catholic prinees in the suppression of the Protestants. In presence of danger the Zwinglians and Lutherans showed a united front, and the Smalkald league grew to be a formidable power. The emperor resolved to come to terms with his Protestant subjects, and the result was the religious peace or rather truce of Nuremberg, which left things as they were until a general council should rettle matters. The years following this peace of Nuremberg were comparatively prosperous to the Reformation. The Smalkald league was the only organized power in Germany, and very effectually prevented the oppression of Protestants by Roman Catholics. Year by year their numbers increased, and Luther saw the evangelical cause prospering. First Wiirtemberg was won back for young Duke Christopber, who had become a Protestant, and found on his entry to his dukedom that his people were already secret Protestants. In northern and central Germany whole districts embraced the evangelical doctrines. Electoral Brandenburg and ducal Saxoay had received Protestant rulers, who found their people more than willing to accept the creed of their new sovereigns. At last the only large states that were able to maintain a firm front against the Latheran doctrines wero Austria, Bavaria, the Falatinate, and the great ecclesiastical proviuces on the Rhine, and eveu in these regions visitations of the churches had shown that the people were forsaking the old faith. It appeared that a more serious defection han any might at any moment be made. The electorarchbishop of Cologne showed sigus of abandoning the Roman Catholic faith and secularizing his vast episcopal territories, and this threatened defection made Charles bestir bimself. If the elector became a Protestant the Lutherans would be in a majority in the electoral college, and a Protestant emperor might he elected.

During all these years Luther was quietly at work at Wittenberg, lecturing, preaching, and writing. At first Le felt anxious lest civil war should break out and he had scruples about many of the doings, and even about the rery existence, of that league which was really giving the land peace. Under Philip of Hesse the Reformation mas assuming a national and political shape which alarmed Luther, who was more than ever content to keep out of public life and keep himself to his books. He began publishing his lectures on various portions of Scripture, on the Epistle to the Galatians and on the Psalms of Degrees. He wrote one or two controversial tracts, mainly to show how the heformed could not accept the conditions offered by the Roman Catholics at Augsburg. In 1534, to his great joy, the first complete translation of the whole Bible was published, and next year appeared a new cdition of the Wittenberg hymn-book, containing several new hymns. Philip of Hesse, notwithstanding the failure of the conference at Marburg, still thought that something might be done to remove the theologicil differences between Switzerland and Sazony, or at least between Swabia, .Strasburg, and Wittenberg. The divines of Switzerland
and of Soutb Germany had by their publications made this 8omerhat easier. The confession of Basel, draftel by Ecolampadius ( 1531 ), revised by Myconius, and published by the magistracy of Basel, lad declared that in the Lord's Supper Christ is the food of the soul to everlasting life, and Bucer and the other South-German divines were anxious for a union. Philip of Hesse, Bucer, and Melanchthon met in conference at Cassel to arrange preliminaries, not without suspicion on Luther's part, for Lre could not trust Melanchthou at a conference, and, as he remarked to Justus Jonas, he hated trimmers above all men on the earth's round. The result, however, was better than he had hoped for. Bucer drew up a short confession which was to be submitted to the Wittenberg theologians, and was favourably received by them, and the South German theologians were iavited to a further confercnce at Wittenberg. The meeting very fairly represented al: the German states, and the result was the document knowr. as the Wittenberg Concordia. This document, mainly drawn up by Bucer and Melanchthon, contains a statemen: of the doctrine of the sacrament of the supper expressed according to the Lutheran formula, with the declaration that unworthy or faithless partakers really do not participate in the sacrament. Melanchthon and Bucer had used too much diplomatic skill in drawing up the formula, for the essential differences between the Wittenberg and the Strasburg school were not really faced and explained; they were covered over with ambiguous language. Nor could the document be accepted by the Swiss; but for a time it seemed as if a satisfactory basis of peace had been established. The general aatisfaction was increased by the publication of the First Helretic Confession, which, while stating the doctrine of the sacrament of the supper in a manner essentially Zwinglian, laid special emphasis on the real spiritual presence of Christ in the elements. Luther in a letter to Meyer, burgomaster of Basel, and also in his answer to the Reformed cantons, acknowledged the earnest Christianity of the confession, and promised to do his best to promote union with the Swiss. It is sad to think that only three years later his old animosity to Zwingli and his countrymen broke out again in his book against the Turks, and that he renewed the sacramental controversy with even more than the old fury in his Short Confession of the IIoly Sacrament, published in 1544. This first Helvetic confession was drawn up, however, for another purpose than to appeese the Wittenberg theologians. Charles $V$. was urging the pope to call a general council to end the disputes within the Christian church, and it seemed so probable that a conncil rould meet that the Protestants were cverywhere preparing themselves by doctrinal statements for taking their slare in its work. The German princes and their theologians were also greatly exereised about this council, and the thought of it and how Protestants should bear themsel res in its presence was filling Luther's mind. He wrote several short papers on the aubject in the years $1534-39$, beginning with the Convocatio Concilii liberi and ending with Fon den Concliis und Firchen. The pope, Paul III., yielding to the pressure of the emperor and of such liberal Roman Catholics as Vergerius, his legate in Germany, called a council to meet in May 1537 at Mantua, and invited the Lutherans to be present. The Latheran princes and theologians felt compelled to face the question whether they could or could not accept the invitation, and Lather, at the request of the clector of Saxony, prepared a creed to be used as a basis of negotiations. This was subnitted to the princes and theologians assembled at Smalkald, and was in substance adopted by them. It is called the Smalkald Articles, and is important because in its statement of the doctrine of the sacrament of the supper it
repudiates the Wittenberg Concord. The princes decided that they would hare nothing to do with a council which did not meet on German soil. The emperor, alarmed at the progress of Protestantism, and at the united front shown by German Protestants, and troubled by the refusal of the pope to consent to a council to be held out of Italy, strove to bring Protestants and Roman Catholics together by means of religious conferences. The first of these, held at Hagenau, came to nothing. Next year (1541) the conference was renewed at Worms, when the Roman Catholic party promised reforms on condition that the Protestants first submitted to the pope. This condition could not be accepted. Representatives met the same year at Ratisbon, and here the conference was wrecked on the doctrine of transubstantiation, but the diet renewed the terms of the edict of Nuremberg of 1532-the Ratisbon Interim. It was felt by all parties that this provisional state of matters must come to an end some time, and that the Protestants must either be allowed to have their own way or win it by fighting. The emperor was not ready for war, and at the diet at Spires in 1544 it was agreed that the Protestants were to maintain their rights until a general council met. Whatever hopes they might have from such a council were soon dissipated. The council of Trent was opened that year, and its earliest acts were to refuse to pass the coaciliatory measures proposed by some of the liberal Roman Catholics. The emperor still temporized and proaised reforms, if not by a council then by a national assembily, and many of the Protestants, Luther among then, still hoped that matters might settle themselves without civil war. This hope inspired what was called the Hittenberg Reformation, a document setting forth how near the evangelical churcl: might approach the Roman Catholic and still retain the truths it had upheld. The year 1546 began, however, with unmistakable indications that Charles was now ready to strike a decisive blow.

Luther had been suffering much during the last few years, and lie felt his end to bo near. In the month of January 1546 he undertook a journey to Eisleben in very inclement weather, in order to restore peace in the family of the counts of Mansfeld; he caught 2 violent cold, but preached four times, and took all the time an active part in the work of conciliation. On the 17 th of February he felt that his release was at hand; and at Eisleben, where he was born, he died, in faith and prayer, on the following day. Nothing can be more edifyiug than the scene presented by the last days of Luther, of which we have the most authentic and detailcd accounts. When dying, he collected his last strength and offered up the following prayer :-"Heavenly Father, eternal, merciful God, thou hast revealed to me Thy dear Son, our Lord Jesus Christ. Him I have taught, Him I lave confessed, Him I love as my Saviour and Redeemer, whom the wicked persecute, dishonour, and reprove. Take my poor soul up to Thee!" Then two of his frlends put to him the solemn question,-"Reverend Father, do you die in Christ and in the doctrine you have constantly preached?" He answered by an audible and joyful "Yes"; aad, repeating the verse, "Father, into thy hands I commend my spirit," he expired peacefully, without a struggle, on the 18 th of February 1546 , at four o'clock in the afternoon.
The books on the life and work of Lather are so very numerons that it is impossible to do more than nention one or two. The best editions of Luther's works aro (1) the Wittenberg, 1539-58, 19 vols. folio ( 7 in Latin and 12 in German; Melanchthon wrote the prefaces, and inserted a life of Luther in the beginning of the 2 d vol.) ; (2) Waleh'e edition, 24 vols. 4 to, $1740-53$; (3) the Erlangen edition, 65 vols. and 2 vols. of indices, in all 67 rols., in Gcrman, adid 33 vols, in Latin, and not yet coupplete, 1826-73; (4) the last
edition is from Frankfort-on-the-Main, puhlishing at the expense of the Prussian Government.
Luther's letters have been collected and edited by (1) Do Wette and Seidemann, L. Bricfe, 6 vols., 1825-56; (2) this emendated by Burlkhardt, Luther's Bricfuceehsel, 1866 ; (3) Seidemann, Luuherbriefe, 1859.
Tho Table Talk was translated (I) by William Ilazlitt, 1848, and (2) by Bindseil, Colloquia, kc., 3 vols., last published 1866. Lives of Luther.-(1) J. Mathesius, Historic von D. M. Luther's, \&c., Nuremberg, 1566; (2) Cochlæus, Acta et Seripta Lutheri, Paris, 1565 (Roman Catholic' and abusive); (3) Merle d'Aubigné, H'sist of the Ref., vols. i.-iii., 1838, \&c. ; (1) Michelet, Life of Luither (his statoments about hiniself collected), translated by llazlitt, 1846 and 1862; (5) Croly, Life of Luther, 1857; (6) Julius Köstlin, Martin Inther, sciu Leben, dec., 2 vols., 1875. The last is the best; it has been summarized for popular reading in ono volume, with intcresting illustrations, 1882 .

The I'imes of Luther. - (1) Ranke, Deutsche Gcsehichte im Zeitalks d. Ref., 6 vols., 1st cd. 1839-47, reached a 6 th ed., Enc. transl. by Sural. Anstin, 1845-47; (2) Löscher, Reforntations Ahta, Leipsic, 1720 ; (3) Hausser, The Period of the Reformation, 2 vols., 1873 ; (4) Scebohm, Era of the Protestant Revolution, 1877 (a very short but good and clear summary of events).
(T, M. L.)
LUTHERANS are that body of Christians who adopted the principles of Martin Lather in his opposition to the Roman Church, to the Swiss theologians, and to the sectaries of Reformation times. They called thenselves "Evangelical" in distinction from the "Reformed" or followers of Calvin, and formed one of the two great divisions of the Reformation Church. In the early days of controversy the stricter Lutherans held it to be their peculiar function to preserve the slatus religionis in Germania per Lulherum instauratus and to watch orer the depositum? Jesu Christi which Luther had left in their charge. Luthor himsclf was much moro fitted to be a reformer and preacher than an exponent of a scheme of theology or the organizer of an ecclesiastical system. His wonderfully sympathetic nature was easily moved, and his own liking and disliking ruled him too strongly to make him able to expound in calm fashion the whole ronnd of theology, giviag to each doctrine its proper place in the system. His nominalist training, his quietisn got from the mystics of the 14 th and 15 th centuries, his occasional fits of morbid melaacholy, all kept lim from looking at the whole system of Christian doctrine, and made him intensify the value and importance of special aspects of truth. The early Lutheran theology refiected the character of its founder. It lacked systernatic completeness, more especially in its failure to construct a comprehensive doctrine of the work of the Holy Spirit, and itswayed from side to side in violent controversies, until at length out of the conflicts emerged the Form of Concorl, which, it was hoped, would succeed in pacifying the church. The dogmatic symbols of the Lutheran Church are usually said to include nine separate creeds, three of which are taken from the carly Christian Church while six are the production of the 16 th century. They are the Apostles' Creed, the Niceo Constantinopolitan Creed in its Western form (i.e., with the filioque), the so-called Athanasian Creed, the Augsburg Confession or Confessio Augustana, the Apology for the Augsburg Confession, the Smalkald Articles, Luther's two Catechisms, and the Form of Concord. These nine confessions together make up the Liber Concordix of the Lutheran Church; but only the threes pre-Reformation creeds and the Augsburg confession are recognized by all Lutherans. Luther's catechisms, especially the shorter of the two, have been almost universally accepted, but the Form of Concord was expressly rejected by many Lutheran churches. The Augsburg Confession and Luther's Shorter Catechism may be said to contain the distinctive principles of Lutheranism which all Lutherans unite to maintain, but, as the principal controversies of the Lutheran Church all arose after the publication of the Augsburg Confession, and were fought out between men who united ia acceptiag that symbol, it does not contains
all that is distinctirely Lutherau. The Augeburg Confession itself perhaps owed its universal recognition to the fact that it existed in two forms which vary slightly in the way in which they state the doctrine of the sacrament of the supper, the variata and the invariata; and this also bear's witness to the lack of dognatic coherence which is a characteristic of Lutheravism. Melanchthon's Hypotyposes or Theological Commonplaces (first published in 1521) may also rank along with these creeds as an authoritative exposition of Lutheran theology ; and the changes it underwent in its successive editions show the incompleteness of the system.

The eanlicst controversy which divided the Lntheran Clurch arnse in Luther's lifetime and lasted till 1560 (1537-60). It sprang out of differences of opinion about the precise meaning to be attached to the term law in Luther's famous distinction between lave and gospel. According to Luther, and the distinction runs through all Lutheranism, law and gospel aro the two factors which bring home to the individual experience the knowledge of salvation. Law is the rule of life given by God and accompanied by threatening and promise, which counts on fulfilment from aelfish motives, tlireatens, terrifies, end so produces contrition; while the gospel, which is the message of salvation, comes after the law has done its work, and soothes. In this description the term law has a distinct and defnite meaning; it significs legal injunction or command ; and Luther and his lollowers were accustomed to say, using law in this definite way, that Christ was not under the dominion of the law, and that Christ's people are also free from its restraints. They said that believers ascend to the Christian life only when they bave transcended a rule of life which counts on selfish motives for obedience. Tha word lav manifestly means more than luther put into this definition, and certain Lutherans who accepted Luther's distinction betwcen law and gospel cuid not understand bis limitation of the term law, and taught that believers were not bound by the moral law. These antinomians, of whom Agricola was chief, toak Luther'в statements about law in the sense of legal injunction, and applied then to law in the sense of ethical rule. The confosion perplexed the Lutheran Church for more than twenty years.
The debates which harassed the Reformed Church in the Arminian controversy, and the Roman Catholic Church in the Jansenist controversy, appeared in the Lutheran Church in three separate disputes lasting from about 1550 to 1580 . In these discussions the stricter Lutherans were on the one side and Melanchithon with his followers on the other. The first dispute was about the relation of good works to conversion. George Major, founding on an expression in Melanchthon's Commonplaces (ed. 1543), sid that good works wera both necessary and useful to holiness. He was attacked by Mat. Flacius and Nic. Amsdorf, and after a long and tedious discussion, in the course of which it was made plain that both sides were sadly in want of general principles to guide them, and that important words were used anbiguonsly, George Major's proposition was condemned because it savoured of Pelagianisul. The problem took a new form in the Synergist controversy, which discussed the mature of the first impulse in conversion, and in the controversy about origiual sin which followed. Pfeffinger taught that the first impulse in conversion came from grace and was due to the Holy Squirit, but le said that this impulse and its effect might be compared with the reviving of a man apparently dead. According to the strict Lutherans the sinner was not apparently but actnally dead, and grace was not merely the occasion, it was also the ectual ause, of the new life. Flacius, who had made this last assertion, which seemed to be generally approved of, started a fresh controversy ly his assertion that sin was part of the substance of man in his present natural condition, and that man was no more able to cooperate with grace in conversion than was a stick or a stone. This was contradicted by Stricgel, a follower of Melanchthon, who asserted that sin had not totally destroyed man's ethical nature, bat that grace by its action changed what was morally insensiblo into what was morally living and sensible, so that there could be an actual synergy or co-operation between God's grace and man's will..
The controversy raised by Andrew Osiander was much more impurtant, and revealed the lack in Lutheranism of a systematio ductrine of the work of tho Holy spirit. Osiander felt that Latheran dogmatic had omitted to make adequate answer to a most important practical question in theology, how Christ's death on the closs could bo so brought into connexion with each individual believer as to bo the ground of his actual justification. The medixval charch had spanned the centuries by their dactrinc of the prolongation of Clirist's dcath throughout time in the sacrifice of the mass, but ho could not ace any such real connexion of timo in Luther's thoology. He proposed to get rid of the difficulty by saying that justification is a real work in the believer done by that same Christ who had died so many conturics beforo. Ho distinguished between
redemption, which he said mas the result of the historical work of Chist upon the cross, and justification, which was another work of the same Redeemer within the individual, and was the influence renewed daily of the Saviour upon each believer. The controversy which followed was full of amliguitics and misunderstandings, bnt out of it rose two distinct theorics, one of which was gencrally adopted by the Lutherans, while the other has become a characteristic of Reformed or Calvinist thicology. Striegel declared that the principal effect of the work of Christ upon the cross was to change the attitude of God towards tho whole luman race, and that in consequence whenever men come into being and have faith they can take advantage of that change of attitude, the ground of their assurance being. that becauso of what Christ did God regarda ail men benevolently. Calvioist divincs, on the other hand, found in Osiander's criticism the startiog point of that close connexion between Christ's work and His redeemed which is expressed in the dactrine of the limited reference in the atonement.
These controversies all implied more or less vagueness in the earlier dogmatic teaching of Lither. Others, however, arose from what may be called the distinctive teaching of Luther uron the bacrament of the Lord's Supper snd what was implied therein. In the article Lurner it is stated that Luther, at least after the peasants ${ }^{\circ}$ war, held strongly a theory of the connexion between tha elements (the bread and wine) and the body and blood of Christ in the sacrament of the aupper which has been called consubstantiation, and that this theory depended not merely on certain scholastic defiuitions of bodily presence but also on the supposition that the attribute of ubiquity belonged to the glarfied body of Christ. A large number of Lutherans, followers of Melanchthon, were inclined to depart from these views and approach the more reasonable opidions of Calvin, and this oecasioned controversies about Crypto-Calvinism and about Christology. The university of Jena was the theological headquarters of the stricter Lutherans, while Witteuberg was the centre of the Philippists or Crypto-Calvinists, as the followers of Melanchthon were called. At first the controversy mainly gatbered round the questions of the corporeal presence, the oral manducation, and the literal eating of Christ's body by unbelievers as well as by the truly faithful, but it soou included discussions on the persou of Christ, and into these discussions Reformed theologians were brought. The result was various conferences at Maulbronn (1564), which only confirmed both parties in their peculiar opinions ; at Dresden (1571), where the Lutheran theologians of Wittenberg and Leipsic renounced the dactrine of the ubiquity at Christ's borly and agreed with the Calvinists; and elscivhere. It seemed os if the Lutheran Church was about to fall in picces.

Out of these disputes came the Form of Concord, due principally to Jacab Andrex of Tübingen, to Martin Chemnitz of Brunswick, anu to Nicolas Selnecker of Leipsic. Various theological cosferences wero held, and various articles of agreement inore or less successful were frimed, of which the most notable was the Torgaut Book of 1576 ; and at last in 1577 the Form of Concord was published, and after much discussion and negotiation was adopted by most of the Lutherans in Germany. Its recognition wias mainly due to the exertions of Augustus, elector of Saxony it was also adopted by the Lutheran churches of Sweden in 1593, and of Hungary in 1597. It was rejected by the Lutheran Church of Denmark and by the churches of Hesse, of Anhalt, of Pomerania, and of several imperial cities. It was at first adopted and afterwards rejected by Brunswick, by the Palatinate, and by Brandenburg.' The German churches which refused to adopt ir became for the most part Reformed or Calvinist ; and the Form of Concord, which ended the more violent theological controversies among the Lutherans, grcatly decreased their mumbers and territorial extent.

The divided state of Germany in the 16 th century, aided by the nexim of the peace of Augsburg which gave Protestantism a legal standing, and by the consistorial system of ecelesiastical rule which followed in consequence, divided the Lutherane in Germany into a number of separate churches as numerous as the principalities. At the peace of Angsburg the sdherents to the Augsburg Confession were recognized legally as having a right to exist within the German cmpire, and the power of determining whether the Roman Catholic or Lutheran confessions should be the recognizel creed of the stato was left, with some reservation, in the lands of the suprome civil anthority in each separate principality (cujus regio ejus religio). This virtually gave the direction of the church of cach Gcrman state into the hands of the supreme civil power thercin; it belonged to the princes in the various priucipalities and to the muvicipal councils in the foee imperial cities. This legal rccognition of the supreme authority of the civil power in ecclesi astical atlairs was intensificd by the adoption in the Lutheran Church of the consistorial system of church goverument, which was the distinctive mark of the Lutheran as opposed to the Reformel Church. The consistorial system took a great variety of forms, but it had one common characteristic: it simply transferred the jus episcopale from tho bishops to the civil authoritios, and, as the bishoris raled their dioceses in ecolesinstical and other: matters by means of councils or consintories aldointed by thenselves, so in the

Lutheran Church these old episcopal consistories were transformed into councila whose members werc appointed by the civil rulers. Thus each petty German state had its own church with its special organization and peculiar regralations. Richter in his Evangcliscie Ǩirchenordnungendes 16 ten Jahrhunderts ( 2 vols, 1846) hascollected more than onc hundred and cighty separate constitutions of churches qdhering to the Augsburg Confession. This minnte subdivision makes it almost impossible to recognize any unity in the Lutheran Church save what comes from the profession of a common creed.
The puthication of the Form of Concord drew the strict Lutherans, race together, and set over against them in Germany a Calvinist Church, and the divided state of Protestantisin grently weakened its strength in the religious wars of the 17 th century. As the smaller German states came togcther iu larger principalities the swkwardness of the separate Protestant churches was more keenly fe?t. Many attempts were made hy conferences, as at Leipsic (1ष31), Thorn ( $16 \div 5$ ), Casscl (1661), to unite Lutherans and Reformed, though without success. At length the union of the two churches was effected mainly by the force of the civil authority in Nassan (1817), in Prussia (1817), in Hesse (1823), in Anhalt Dessau (1827). These unions for the most part aimed, not at incorporating the two churches in doctrine and worship, but at bringing under one government the two confessions, and permitting every congregation to use at pleasure either the Lutheran or the Heidelberg Catechism. They were sometimes accompanied, as in Prussia, by a separation of the stricter Lutherans, who formed theraselves into diasenting churches. The separation in Prussia was caused mainly by a new liturgy which Frederick William 111. forced on the church, and which the dissenters or Old Lutherans refused to use. The divisions caused in this way wero at first repressed hut were afterwards tolerated, and have reproduced themselves in the flourishing Lutheran Church of the United States.
See Ritschl, "Die Entstehnng der Lutherischen Kirche" (Zeitsch. für Kirchengeschichte, i. 1); Hundeshagen, Beiträge zur Kirchenverfassungs Geschichte, \&c., 1864; Dorner's History of Protestant Thoology; Hering, Geschichle der kirchlichen Unionsvcrsuche seit Iic Reformation, 1836-38; Sack, Die Evangclische Kirche und dis Union, 1861.
(T. M. L.)

LUTON, a market-town and municipal borough of Bedfordshire, England, is situated in a fine valley near the source of the Lea, 31 miles north-west of London. The parish church of St Mary, àating from the $14 H^{2}$ century, a very fine building in the Lecorated Norman and Later English styles, contains a large number of old monuments and brasses. Its entire length is 182 feet, the width of nave and aisles 57 feet, and the width of the transepts from north to south 101 feet. On the process of restoration, begun in $1865, £ 6000$ has been expended. The other principai public buildings are the town-hall, the corn exchange, the court-house, and the plait hall. Luton is the principal seat of the straw-plait manufacture in England. The industry originated in the colony of straw-plaiters transplanted by James I from Scotland, whither they had been brought from Lorraine by Queen Mary. Though the town is very ancient, it was first incorporated in February 1876. The population, which in 1871 was 17,317 , was 23,959 in 1881.

LUTZK, a district town of Russia, in the government of Volhynia, on the Styr, 162 miles west-north-west of Szitomir, and 5 miles from the Kivertzy station of the railway between Kieff and Brest-Lituvsky. It is a very old town, supposed to have been founded in the 7th century; in the 11th century it was known under the name of Luchesk, and was the chief town of an independent principality. In the 15 th century it. was the seat of a bishop, and becania a wealthy town, but during the wars between Russia and Poland in the second half of the 16 th century, and especially after the extermination of its 40,000 inhabitants, it lost its importance. In 1791 it was taken by Russia. It is now a rather poor town, situated in an unfertile district, and its 11,500 inhabitants, many of them Jerss, live mainly by shipping goods on the Styr:
lunembourg, Frangois Henri de MonthorencyBóutterille, Duc de (1628-1695), marshal of France, the comrade and successor of the great Condé, was born at Paris on Janaiary 8, 1628. His father, the Comte de Montmorency-Boutteville, had been executed six months
before his birth for killing the Marquis de Bearron ia a duel, but his aunt, the Princesse de Condé, recognizing in him the last nale heir of her great family De Montmorency, took charge of him, and educated him with her son, the Duc d'Enghien. - The young Montmorency attached himself enthusiastically to his cousin, and shared his successes and reverses throughout the troubles of the Fronde. He returned to France in 1659 and was pardoned, and Condé, who was then much aitached to the Duchesse de Chatillon, Montmorency's sister, contrived the marriage of his adherent and cousin to the greatest heiress in France, the Princesse de Tingry, after which he was created Duc de Luxembourg and peer of France. At the opening of the war of the devolution, 1667-68, Cundé, and consequently Luxembourg, had no command, but in the second campaign he served as one of Conde's lieutenants in the conquest of Franche Comté. During the four years of peace which followed the peace of Ais-la-Chapelle, Luxembonrg diligently cultivated the favour of Louvois, and in 1672 received orders to commence hostilities with the Datch. He defeated the prince of Orange, whom he was to beat again and again, at Woerden, and ravaged Holland, and in 1673 mads his famous retreat from Utrecht with only 20,000 men in face of 70,000 , an exploit which placed him in the first rank of geuerals. Iu 1674 he was made captain of the gardes du corps, and in 1675 was made marshal of France. In 1.676 he was placed at the head of the army of the Rhine, but failed to keep the duke of Lorraine out of Philipsburg; in $167 \pi$ he stormed Valenciennes; and in 167 S he defeated the prince of Orange, who attacked him at St Denis after the signature of the peace of Nimeguen. His reputation was now at a great height, and it is commonly reputed that he quarrelied with Lonvois, who managed to mir Lim up in the confessions of the poisoners, and get him sent to the Bastille. Mousset in his Histoire de Lourois has, howerer, shown that this quarrel is probably apocryphal. There is no doubt that Luxembonrg spent some months of 1680 in the Bastille, but on his release took up his post at court ns capitaine des jarles, and was in no way disgraced. When the war of 1690 broke out, the king and Louvois also recognized that Luxembourg was the only general they had fit to cope with the prince of Orange, and accordingly he was put in command of the army of Flanders. On July 1, 1690, he defeated the prince of Waldeck at Fleurus with the loss of 14,000 men and 49 pieces of cannon. In the following year he commanded the army which covered the king, who wàs besieging Mons, and defeated William IIL of England at Leuze on September 18, 1691. Again in the next campaign he corered the king's siege of Namur, and utterly defeated William at Steenkerk on June 5, 1692; and on July 29, 1693, be won his greatest rictory over his old adversary at Neerwinden, in which he took 76 picces of cannon and 80 flags. No wonder he was received with enthusiasm at Paris by all but the king, who looked coldly on à relative and adherent of the Condés. He conceived himself strong enough to undertake an enterprise which St Simon describes at length in the first volume of his Memoirs : instead of ranking as eighteentli peer of France according to his patent of 1661, he claimed throngh his wife to be Duc de Piney of an old creation of 1571 , which would place him second on the roll. The whole affair is described with St Simon's usual keen interest in all that concerned the peerage, and was chiefly checked through his assiduity. In the campaign of 1694 , possibly owing to this check, Luxembourg did but little in Flanders, except his well-known march from Vignamont to Tournay in face of the eneny. On his return to Versailles for the winter he fell ill, and died on January 4, 1695. In his
last moments lhe was attended by the famous Jesuit priest Bourdaloue, who said on his death, "I bave not lived his life, but I would wish to die his death." The holy father certainly had not lived. like Luxembourg, whose morals were conspicnously bad even in those times, and whose life had shown very slight eigns of religions conviction. But ns a general he was Condé's grandest pupil. Utterly slothful, like Condé, in the managemeat of a campaign, and therein difering from Turenne, at the moment of battle he seemed seized with happy inspirations, against which no ardour of Willian's and no steadiness of Dutch or English soldiers could stand. Ifis death and Catiaat's disgrace close the second period of the military history of the reign of Lcais XIV., and Catinat and Luxembourg, though inferior to Condé and Turenne, were very far superior to Tallard and Villeroi. He was distinguished for a pungeut wit. One of his best retorts referred to his deformity. "I pever can beat that cursed humpback," Willianu was reputed to have said of him. "How does he know I have a hump $\hat{\wedge}$ " retorted Luxembourg, "he has never seen my back.", He left four sons, the youngest of whom was a marshal of France as Maréchal de JIontmorency.

See the various memoirs and histories of the time. There are some interesting facts in Desormeaux's. Histoire de la Mecison do Hontmorency. Camille Rousset's Lorvois should also be studied.

LUXEMBURG, a grand-duchy of Europe, governed under a special constitution by.the King of the Netherlands, is beunded on the N. and E. by Rhenislı Prussia, S. by Lorraine and the French department Meurthe-et-Moselle, and W. by Belgian Liuxemburg. It measures 32 miles from Hartelingen to Rosport, both on the Sure, and 50 miles from lumelange in the sonth to Weiler in the north. The surface contains 639,000 acres ( 998 square miles), of which 293,554 acres are arable, 61,033 meadowland, 143,812 woodlena 54,135 coppice, and 640 vineyards. The hills in tho south of the duchy are a continuation of the Lorraine plateau; and the northern districts are crossel in all directions by outrunners from the Arderies. With the exception of the Chiers, which flows into the Meuse near Sedan after a coutse of 50 miles, the streams all drain into the Moselle, which forms the boundary between Luxemburg and the Rhine province for about 20 miles. The Sure or Sauer, the most important stream in the duchy, rises at Vaux-les-Rosières in Belgian Lnxemburg, crosses the duchy, and forms the eustern houndary from the confuence of the Our till it joins the Moselle after a course of 50 miles, during which it receives the Wiltz, the Woltz, the Alzet, dec. At Mondorf there are miveral wells and a bathing establishment. The soil of Luxemburg is generally good; the southern districts are on the whole the most fertile as well as the most populous. Building materials of all sorts are obtained throughout the duchy, and in the sonth there is iron ore of fair qualitythe mining area at preseut occupying from 8000 to 10,000 zeres. Galena is worked on the frontier between Obercampach and Longville, and antimony at Gösdorf near Wiltz. Since 1842 Luxemburg has been included in the Zollverein, and its principal dealings are, consequently, with Germany. Besides the iron furnaces,-sitnated all of them in the south near the Lorraine plateau,--the industrial establishments of tho country comprise a large number of tanneries, a dozen weaving factories, an important glove-making factory, a pottery, paper-mills for all sorts of paper, br weries and distilleries, and two sugar refineries. $\Lambda$ German patois mixed with French words is spoken throughout the country ; but French, which is universatiy employed by the commercial comculunity, is also the common speech of all classes on the Freneh and Delgina frontiers. Though perfect liberty
of worship prevails, Roman Catholicism is almost the sole form of religion in the duchy, the only dissenters worthy of note being the Protestant Prussian employés and about three lundred Jewish familics. The goverument is in the hands of the grand-duke, who sanctions and promulgates the laws. Between 1850 and 1879 the king of the Netherlands was represented in his grand-ducal fuuctions by his brother Prince Itenry ; but siuce the prince's death he has resumed the personal direction of affairs. The grand-duchy is a neutral and independent state, and its crown hereditary in the Nassan family (Treaty of London, March 11, 1867). A house of representatives and a council of state, named by the grand-duke, compose the administrative body. The representatives, to the number of forty-four, are closen by the people in the proportion of one for from 4000 to 5500 inlubitants. No law can be passed withuat the consent of the house of representatives. Bills are introduced by the grand-duke, but the house has also the right of initiative. A single battalion (150) of Luxemburg chasseurs composes the grand-ducal army,-all voluntary recruits. The gendarmerie also consists of about 150 men . There are two courts of first instancs in the duchy,-one at Lusemburg, the other at Diekirch,-and a high court and a court of appeal, both at Luxemburg. Criminals appear before the court of assize at Luxemburg. By grand-ducal deeree the order of the Crown of Oak was instituted for the duchy, December 29, 1841, and that of the Golden Lion, February 5,1858 . The communal councils are under the supervision of the distriet commissioners, who are subject in turn to the minister of the interior. The administration of the town of Luxemburg depends iamediately on the Government. Education is in a flotrisiing state: there are 642 primary schools attended by 31,000 pupils; Luxemburg has a normal school and ari athenæum ; Diekirch and Echternach have each a gymnasium. The bishopric of Luxemburg, containing 13 diaconatcs, subdivided into 253 parishes, holds its authority directly from the Holy See. From $6,000,000$ to $7,000,000$ francs is the annual amount of the state budget, and the public debt was $12,000,000$ francs in 1863 . Siane $185{ }^{\circ}$ t there has been a grand-ducal bronze coin2ริe.
The following talle shows the administrative dirisions and the population (total, 205,158) aecording to the census of 1875.


Next to the capital come Echternach with 3920, and Diekireh with 3130 inhabitants, - both worthy of note for their llast fornaces. At Echternach an annual procession is held in honour of St Willibrord, dating from 1374. Grevenmacher is the centre of a great wine district.
The Luxemburg territory as reell as the country of Ardenne was included in Belgica Prima at the first division of Gaul by Angustusin 27 B.C. ; during the Frankish period io formed part first of Austrasia, then of Lorraino, and then of Lower Lorraine. On tho dismemberment of ancient Austrasia the countship of Ardenne fell to Ricuin ; and, when aftor Ricuin's dea\& his children divided his possessions, Ardenue proper was obtained by Count Sigfried (Sigefroi). The county of Luxemburg, as Ardenno came lo bo called after the elhief town, was raised to be a duchy in 1354, and existed as an independent state till 1451, when it was seized by Philip, duke of Burgundy. The dynasty which he displaeed liant been ambitious and active, and had, in the person of llenry Vll., attained the imperial dignity, and in that of Jolin ascendol the throde of Buhemia. As a Burgundian possession Luxembuig
camó to the honse of Austria, and, after formiug part of the arch. dacluy governed by Albert and Issbella, 1598-1632, followed the fate of the Spanish Netherlands till it was ceded ly the treaty of Utrecht to the house of Mapsbarg. It was deprived of Thionville, Moutmedy, Damvilliers, I voix, and Marville by the treaty of the Pyrenees (1659) in fisvonr of Frsnce ; and Louis XIV. ocenplied the town and great part of the provinco from 1684 till the treaty of Ryswick (1697). Seized ly tho French in 1793, it went if the main to form the department of Forêts, On tho 16 th March 1815 Willism I. declsred himself king of the Netherlonds and duke of Luxemburg, and his claims were sanctioned by the treaty of Fienna, - Luxemburg being considered compensation for the loss of the amall principalitics of Hadanar, Siegen, Dietz, and NassanDillemburg, the surrender of which to Prussia had deprived William of his place in the Germanic confederation. The fortress was assigned to the confederation itself, and was garrisoned by six thonsand men, of whom one-fourth belonged to the grand-duke and three-fourths to the confederation. From the recognition of Belgian independence in 1830 to the treaty of London in 1839, matters were still more complicated; there were two goveraments in Luxemburg-one at Luxemburg, acting for the grand-duke, and the other at Atlon, acting for Belgium. By the treaty of London about 1218 square miles of the duchy with 149,571 inhabitants were transferred to Belgium, the German confederation and King Willians belng compensated with parts of Limlurg. On the dissolution of the confederation the duchy became free from its connexion. with Germany, but the fortress remained in the hands of Prussia. A diplomatic contest for possession of the duchy took place between France and Prussia ; and the matter became the object of a special confercnce of the plenipotentiaries of the great powers; Holland, Belginm, and Italy, in 1867. The result was that the neutrality of Luxemburg was gaaranteed and the military importance of the town destroyed. The actnal demolition of the fortifications evachated by tho Prussians in September 1867 did not take place till 1872.
See Bertholet, Hlst. du duche de Luxeinbourg, Lrxemburg, $1741-43$; Vandermaelen, Dict. géogr. du Lurembourg, Brussels, 1 si8s; Schütter, hí it. Erörterungen aber die firih. Gesch. der Grafschaft Luxenburg, Laxemburg, 1859; Grövig, Lusemburg, Land und Volk, Laxemburg, 1867.

Luxemburg, the capital of the grand-duchy, lies 34 miles north of Metz and 25 south-west of Treves, in a position as remarkable for natural beauty as for military strength. The main part of the town is built on a rocky table-land terminatiug precipitously towards the north-east and south ;


Plan of Luxemburg.
the modern portions, known as Pfaffenthal, Clausen, and Grund, lie 200 feet below, in the valley of the Alzette. Till their demolition in terms of the treaty of 1867 the fortifications, on which the engineers of threo centuries had expended their skill, were the great feature of the place; in point of strength they ranked, according to Carnot, second only to those of Gibraltar, and like them they were to a great extent bewn out of the solid rock. The site is now occupied partly by a fine public park, partly by new districts of handsome houses, which give
the city more of the outrard nppearance of a capital. Among the buildings of bistorical interest are the cathedral of Notre Drme, erected by the Jesuits in 1613 ; the charch of Si Michel, dating from 1320; the Government-house, built in 1443, and still regularly occupied by the legislative assemblies; the tomn-house, built in 1830 ; the law conrts, dating from 1565 , but serving till 1795 as the residence of the governor of Luxemburg; and the athenæum, built in 1594 , and now ( 1882 ) attended by 500 to 600 pupils. The population of the city and suburbs, which was 15,930 in 1875 , is now estimated at 19,000 .
Luxemburg (formerly called Liitcelburg) appears in 738 as a castle presented to the abbey at Treves by Charles Martel. The town grew up in tho course of the 10th centary, and soon began to suround itself with walls; lut it was not till 1503 that a regular system of fortifications was commeuced, and the principal features of the modern fortress were due to Vauban, who accompanicd Créfui in his capture of the place in 1664. Extensive aulditions were mado to the works iu 1723-34.
Sce Custur, Gcsch. cler Feslung Luxemburg, Luxemburg, 1869.
LUXEMBURG, a province of the kingdon of Belgium, lying at the scuth-eastern extremity of the country, and bounded N. and W. by the provinces of Liége and Namur, S. by France, and E. by Prussia and by the grand-duchy of Luxemburg, from which it was separated in 1839. It is the largest and most thinly populated of the Belgian provinces, -75 miles in length, 30 in breadth; the population is 204,000 . The ground is high, averaging 1200 feet above sea-level, and rising in parts over 2000. The soil is dry and slaty, with occasional sand and limestone. The aspect of the conntry is a succession of broad tracts of table-land or plateaus covered with wood or beather, and intersected by wide and deep valless; these contain streams, half-dry during the summer, but quickly changed to sweeping torrents by rain or melting snow. Peat is found on the hills, and occasional morasses, known by the name of "hautes fanges," are to be met with on the tops of the highest mountains. The whole district is comprised within the region of Ardennes. The agricultural produce is poor; the various breeds of horses, cattle, sheep, dc., are remerkably small, though they all possess individual qualities of endurance or their flesh of flavnur; the hams are renowned. The forests abound in game of all kinds; red deer are plentiful, and wild boars have of late become so abundant as to be a serious nuisance. The mineral productions are worthy of note. Iron is fonnd in the valley of the Ourthe, and also farther south Hear Arlon; lead is extracted at Longwills, manganese at Biham, zinc at Longwilly and Bleid. Building stone is to be had throughout the province, and is generally employed, brick houses being the exception. There are quarries of grey and rose-coloured marble at Wellin, and extensive slate quarries on the banks of the Semois, the Sure, and the Salm. The trade in wood and bark is considerable, and there are some important tanneries, as well as iron-works, paper-mills, and limekilns. The principal rivers are the Semois, the Lesse, and the Ourthe, affluents of the Meuse, and the Sure, which floms into the Rbine; of these the Ourths alone is navigable for a few miles down from Barvaux. There are no canals in the province, so that Luxemburg is entirely dependent on railways for its traffie. The Brussels and Basel line runs through the whole province, with a station at Arlon, the capital ; and branch lines hare been established to connect the principal markets, Marche, Durbuy, Bastogne, Virton, \&c., with the main artery. The language spoken by the inhabitants is French, with an admixture of Walloon dialect and an inferior kind of German on the borders of the grand-duchy. The king of the Belgians and his brother the count of Flanders possess summer residences, with extensive forest lands, in the province of Lusemburg.

LUXOR，more properly El $A$ ksur，＂The Castles＂（pher． parc．of kaṣr），a village on the Nile， 4.50 niles above Cairo， occupies part of the site of the ancient Thebes，and has its name from the ruins deseribed in vol．vii．p．777．The village is also called Abu＇l Hajjikj frou the patron saint whose tomb is mentioned by Ibn Batuta，i．107，ii． 253. See also Yalkit，i．338．Luxor is the centre for visitors to the ruins of and about Thebes，and is increasingly frequented by travellers and invalids in the winter season，being the only place above Osyaṭ（Sayat）provided with hotel accommodation suitable for Eurgpeans．The district is the seat of an extensive manufacture of forged antiques，often very skilfully mado．

## LuZon，or Luçon．Sce Phlippine Islands．

LICANTHROPY is a term used comprehensively to indicato a belief，firmly rooted among all savages，and liugering in the form of traditional superstition among peoples comparatively civilized，that men are in certain circumstances transformed temporarily or permanently into wolves and otter inferior animals．In the European history of this singular belief，wolf transformations appear as by far the most prominent and most frequently recurring instances of alleged metamorphosis，and consequently in most Enropean languages the terms expressive of the general doctrine have a special reference to the wolf． Examples of this are found in the Greek $\lambda u \kappa \alpha ́ v \theta \rho \omega \pi=s$ ， Russian volkodlâk，English vere－zoolf，German wü̈hrwolf， French loup－garou．And yet general terms（e．g．，Latio， repsipellis；Russian，óboroten；Scandinavian，hamranmer； Eaglish，turnskin，turncoat）are sufficiently numerous to furnish some evidence that the class of animals into which metamorphosis was possible was not viewed as a restricted ove．It is simply becanse the old English general terms have been lorg diverted from their original signification that the word＂lycanthropy＂has recently been adopted in our language in the enlarged sense in which it has beed defined above．

There are two unfailing characteristics of lycanthropous belief：－（1）there can nowhere be a living belief in con－ temporary metamorphosis into any animal which has ceased to exist in the particular locality；（2）belief in metamor－ phosis into the animal most prominent in any locality itself acquires a special prominence．These elaracteristics apart，the phenomena of lycanthropy exhibit a very con－ siderable diversity in their nature．

Throughont the greater part of Europe the were－wolf is proferred on the principles just noted．There are old traditions of his existence in England，in Wales，and in Ireland．In sontheru France，the Netherlands，Germany，Lithuania，- Bulgaria，Servia， Bohemia．Poland，and Russia he can hardly be pronounced extinct now．In Denmark，Sweden，Norway，and Iceland the bear com－ putes with the wolf for prre－eminonce．In Persia the bear is supreme，in Japan the fox ；in India the serpent vies with the tiger， in Abyssinia and Bornou the hyena with the lion，in eastern Africa the lion with the alligator ；in western Afrien the leopard is per－ haps most frequently the form assumed by man，among tho Abilones the tigcr，among tho Arawaks the jaguar，and so on． In none of these cascs，however，is the power of transformation limited exclusively to the prominent and dominant auimal．

The most familiar phase of the superstition is also the latest and most sophisticated．It was no belicf in mere transformation；the transformation here was accomplished by Satanic agency voluntarily submitted to，and that for the inost toathsome ends，in particular for the gratification of a craving for human flesh．＂The were－wolves，＂writes Richard Verstegan（Restitution of Decayed Intelligence， 1628），＂are certayne soccerers，who having annoynted their bodies with an oyntment which they make by the instinct of the devill，and putting on a certayne inchauntel girdle，doe not onely unto the view of others seeme as wolves，but to their owne thinking have both tho shape udd nature of wolves，so long as they weare the saill girdle．

And they do dispose themselves as very wolves，in wouriy－ ing and killing，and most of humane creatures．＂Such were the views about lyeanthropy current throughout dis continent of Europe when Verstegan wrote．France in particular seens to have been infested with were－wolves during the 16 th century，and the consequent trials wers very numerous．In some of the eases，－e．g．，those of the Gandillon family in the Jura，the tailor of Chilons， and Roulet in Angers，all occurring in the year 1598， －there was clear evideuce against the aceused of murder and canoibalism，but none of association with wolves；in other cases，as that of Gilles Garnier in Dôle in 1573，there was elear eridence against some wolf，but none against the accused；in all the cases，with liardly an exception，there was that extraordinary readiness iu the acensed to confess and even to give circumstantial details of the metamor－ phosis，which is one of the most inexplicable concomitauts of mediæval witcheraft．Yet，while this lyeanthropy fever， both of suspectors and of suspected，was at its height，it was decided in the case of Jean Grenier at Bordeaux，in 16C3，that lycanthropy was nothing more than an insane delusion．From this time the loup）－garou grablually ceased to be regarded as a dangerous heretic，：and fell back into his pre－Christianic position of being．simply a＂man－wolf－ fiend，＂as which be still survives among the French peasantry．In Prussia，Livonia，and Lithuania，according to the bishops Olaus Magnus and Majolus，the were－wolves were in the 16 th century far more destructive than＂true and natural wolves，＂and their heterodoxy appears from the assertion that they formed＂an accursed college＂of those＂desirous of innovations contrary to the divine law．＂ In England，however，where at the beginuing of the 17th century the punishment of witchcraft was still zealously prosecuted by James I．，the wolf had been so long extinct that that pious monarch was himself able（Demo－ nologie，lib．iii．）to regard＂warwoolfes＂as victims of delusion induced by＂a naturall superabundance of melancholie．＂Only small creatures，such as the cat，the hare，and the weasel，remained for the malignant sorcerer to transform himself into；but he was firmly believed to avail himself of these agencies．Belief in witch－animals still survives among the uneducated classes in parts of the United Kingdom．
The were－wolves of the Christian dispensation were not， however，all heretics，all viciously disposed towards mankind．＂According to Baronius，in the year 617，a number of wolves presented themselves at a monastery， and tore in pieces several friars who eotertained heretical opinions．The wolvés sent by God tore the sacrilegious thieves of the army of Francesco Naria，duke of Urbino， who liad come to sack the treasure of the holy house of Loreto．A wolf guarded and defended from the wild beasts the head of St Edmund the martyr，king of England． St Oddo，abbot of Cluny，assailed in a pilgrimage by foxes， was delivered and escorted by a wolf．＂M Many of the were－wolves were most innocent and God－fearing persons， who suffered through the witcheraft of others，or simply from an unhappy fate，and who as wolves behaved in a truly touching fashion，fawning upon and protecting their benefactors．Of this sort were the＂Bisclaveret＂in Marie de France＇s poem（c．1200），the hero of＂William and the Were－wolf＂（translated from French into English about 1350），and the numerous princes and princesses，knights and ladies，who appear temporarily in beast form in the Mührchen of the Aryan nations generally．Nay the power of transforming others into wild beasts was attributod not only to malignant sorcerers，but also to Christian saints． ＂Omnes angeli，boni et mali，ex virtute naturali babent

[^21]potestatem transmutandi corpora nostra," was the dictum of St Thomas Aquinas. A Iussian story tells how the apostles Peter and Paul turned an impious husband and wife into bears; St Patrick transformed Vereticus, king of Wales, into a wolf; and St Natalis cursed an illustrious Irish family, with the result that each member of it was doomed to bo a wolf for seven years. In other tales the divine agency is still more diroct, while in Russia, again, men are supposed to become were-wolves through incurring the wrath of the devil.
There is thus an orthodox as well as a heterodor werewolf ; and, if a survey be taken of the lycanthropous beliefs of nou-Christian peoples, this distinction among shaperbangers will be equally obvious. The gods of ancient mythology, Hindu, Persian, Greek, and Telitonic, had an apparently unlimited power of assuming animal forms. These gods, morcover, constautly employed themselves in changing men and women into beasts, sometimes in punistment of crime, sometimes out of compassion, and sometimes from pure voluptuousness. Thus Kabandla was changed by Indra into a monster, Trisanku by the sons of Vasishtha into a bear, Lycaon by Zeus ioto a wolf, Callisto into a bear, Io into a heifer; the enemies of Odin became boars, and so on. It is admittedly difficult to trace the original meaning of these legends, but the alleged metamoryhosis of a god is at times clearly associated with his worship under the form of the animal he turned into in the region where the metamorphosis was said to have occurred. Indra in the form of a bull encountered the monster $\nabla_{\text {ritra, and }}$ released the cows he had stolen; Indra was invoked as a bull, and to him the bull and the cow were sacred among the Hindus. Derketo became a fish near Ascalon; a fish-goddess identified with her was worshipped in Syria, and the fish sacred to her were not eaten. Poseidon, the inventor of horses, was, as a horse, the father of the steeds Arion and Pegasus, and the horse was sacred to him. Jupiter Ammon appeared as a ram in the deserts of Libya; in Libya be had au oracle where the ram was sacred to him, and his image wore ram's horns. So too metamorybosis by gods is in some cases connected with local traditions. The Arcadians, or beartribe, sprang from the were-bear Callisto; the Lycians, or wolf-tribe, were wolves when they conducted to the river Xanthus the were-wglf Leto, mother of the Lycian Apodlo. Turaing from the gods to the heroes of classical romance, we find traditions more interesting and more instructive, becanse they must have zome real historical foundation. Yet they also aboqnd in episodes of beast mothers and beast fathers, and also of lycenthropy proper. Cyrus mas suckled by a bitch, the Servian hero Milosh Kobilitch by a mare, the Norse Sigurd by a hind, the German Dietericb and the Latin Romulus by wolves ; the progenitor of the Merovingian kings was a bull, of the Danish rogal race a bear ; Sigmund and Sinfiotli in the Tolsunga Saga become wolves, Nagli in the Eyrbyggia Saga a boar. The Berserkir of Iceland wsserted their ability to become bears and wolves, and dressed themsolves in the skins of these animals; their existence, their garb, and their pretensions are historical facts. In the Sanskrite epic, the Mahablarata, the hero Puloman becomes a wild boar to carry off the wife of Bhrigu; the house of Brabant traced its origiu to a transformed swau. Beast-form is, however, in mythology proper far oftener assumed for maliganat than for benigpant ends; indeed the heroes and anthropomorphic gods of the great religious systems are principaily distinguished for their victories over the semi-human semibestial demons. The bull Indra fights the demon serpent Tritra, and so forth; the Theban Cadmus, the Russian Ivan, the Norse Sigard, all encounter dragons or serpents, which possess human characteristics. In most of such
cases iudced the human as well as rac beast form is distinctly altributed to the demon.

It is because they may after all be properly associated with the undoubted phenomena of modern sarage life that these facts of ancient mythology are here alluded to. Among savages there is the most confident belief in metamorphosis,-metamorphosis effected for the most salutary and for the most baneful ends. In the neighbourhood of Tette on the Zambesi every chief is credited with the power of assuming lion shape; every lion is respected as being a transformed chief or the spirit of a chief departed. Noreover, there is a special class of "doctors" or medicino-men, krown as "pondoros," scattered through the villages, who pretend to powers of metamorphosis, and thus are regarded with both respect and dread ; their kindly disposition they display by hunting for the community in lion shape, and then bringing home the game. Among the Arawaks of Guiana, the Kaudhs of Orissa, and the Jalsuns of the Maiay peninsula, beast form is said to be assumed by those desiring to avenge themselves justly on enemies. Beast-parents and cases of women alleged to have borne beast children are also familiar to savages. But this is only one side of the picture. The "kanaimatiger" (i.e., man-jaguar) of Arawak may be posscssed by the spirit of a man devoted to bloodshed and cannibalism; "there is," writes the Rer. Mr Brett, "no superstition more prevalent among the Indians than this, and none which causes more terror." In Ashango-land, where there are distinct traces of animal worship, a were-leopard was at the time of Du Chaillu's visit charged with murder and metamorphosis, and, confessing both, was slowly burnt to death, quite in the style of mediæval Europe. Similar occurrences have been known among the Kols (of ChútíaNágpúr) and among the Arabs.

The expedients supposed to be adopted for effecting change of shape may here he noticed. One of the simplest apparently was the removal of clothing, and in particular of a girdle of human skin, or the putting on of such a girdle,-more comznonly the putting on of a girdle of the skin of the auimal whose form was to be assumed. This last device is doubtless a substitute for the assumption of an entire animal skin, which also is frequently found. In other cases the body is rubbed with a magic salve. To drink water out of the footprint of the animal in question, to partake of its brains, to drink of certain enchanted streams, were also considered effectual modes of eccomplishing metamorphosis. Olaus. Magnus says that the Livonian were-wolves were initiated by draining a cup of beer specially frepared, and repeating a set formula Mr Ralston in bis Songs of the Russian People gives the form of incantation atill familiar in Russia. Various expedients also existed for removing the beast-shape. The simplest was the act of the enchanter (operating either on himself or on a rictim) ; another was the removal of the animal girdle. To kneel in one spot for a hundred yeare, to be reproached with being a were-wolf, to he saluted with the sign of the cross, or addressed thrice by baptismal name, to be struck throe blows on the forehead with a knife, or to have at least three drops of blood drawn were also effectual cures. The last-mentioned was quite essential to the subsistence of the superstition. Its absurdity would have much sooner appeared, but for the thcory that, directly the werc- wolf was wounded, he resumed his human shape; in evcry case where one accused of heing a were-wolf was taken, he was certain to be wounded, and thus the difficulty of his not being found in beast form was satisfactorily disposed of.

The foregoing typer of lycanthropy, in which the divine or diabolical agency is always emphasized, are presumably less primitive than those cases in which super. human agency is not so prominent. The following cases, therefore, seem to be more intimately connected with the origin of the belicf. (1) The Kandhs believe "natursl tigers to kill game only to benefit men, who generally find it but partially devoured and share it; while the tigers which kill men are either Tari (a goddess), who has assumed the form of a tiger for purposes of wrath, or men who, by the aid of a god, have assumed the form of tigers, and are called 'mleepa tigers.'" A distinction was previously drawn between friendly and hostile lycanthro
pists; here a distinction is drawn between friendly and hostile tigers, and lycanthropy is introduced to explain the cases of hostility. Again (2) in the native literature of modern savages there constantly occur stories of the "Deauty and the Beast" type, so distinctly resembling those of the Aryan Mïhrchen as to iadicate identity of urigin; but, while in the Aryan story the beast-form of the hero or heroino is generally at last removed, in the savage story the incongruity of the benst-form is scarcely realized, and the Indian lover lives happily with his beaver bride, the Zulu maiden with her frog husband. And (3) in many instances the power or necessity of transformation is ascribed, not to individuals, but to clans or nations. Thus the aboriginal Naga tribes of India seemed to the Aryans to take the form of serpents; the Neuri seemed to the Scythians, and the Hirpini to the Romans, to become wolves, as also did the native Irish of Ossory to the early Christian priests ; the Abyssimians credit the Buda caste (blacksmittls and potters of alien stock) with ability to become hyæraas at pleasure; the Berserkr-rage of Iceland is perpetuated in the modern Scandinavian belicf that Layps ind Finns can take the form of bears. In medieval times Blois had a special celebrity for were-wolves, and persons named Garnier or Grenier were generally assumed to be lycantbropists.

When we find that these three distinct classes of primitive facts regarding lycanthropy are all referable to a common origin, there seems good reason for regarding that as being in truth the origin of lycanthropous belief. And thus we are led to refer lycanthropy to the more general facts of primitive Totemiss (q.v.), for the facts recited are as undoubtedly characteristic of the latter as of the former. Where the totem is an animal, it is regarded as the ancestior of the tribe; all animals of its sneries ate revered, and are never willingly killed; however dangerous to life, they are feigned by the tribe to be friendly to them, and hostile only to their enemies. Applying these facts to the foregoing lycanthropous phenomeua iu order, wo observe (1) that the tiger is a totem god among the Kandlhs ; consequently be reserves his wrath for their enenies. ${ }^{1}$ Individual enemies would, however, be created whenever an individual Kandh had the bloodfeud against another, for then his totem was bound to aid him. Sucla we saw was in fact the Kandh explanation of the wrath of the totem. The development of sorcery would naturally lead to the utilization of the totem as assistant in it also. The Arawak "kanaima" is both lawful avenger and cruel sorcerer; and from a similar reason probably did the wolf or were-wolf in Europe lecome a synonym for outlaw. The outlaw was at first simply the peacelcss man-the man who preferred vendetta to money composition for injuries, -as he was originally fround to do, subsequently entitled to do, and finally frolibited from doing. (2) The beast-hero of savago : f ory ccases to be strange when we learn that "a beaver," "a dog," "a grizzly bear," mean respectively a person of 0. tribe having the animal in question for totem. And so too (3) with the third class of phenomena which contemplates tribcs turned into beasts. The Nagas had the ascpent for totem; apparently the Hirpini, and tho nativo hish in many districts, had the wolf; they certainly renerated and worshipped that animal. The Lapps aro hnown to worship the bear. Blois means the "city of volves." Doubtless all cases of this sort admit of similar oxplanation.
The doctrino of lycanthropy or metanorphosis of living men
 re:tycation of gouls. It no ilonbt was usual to conclucte that the

The $W_{2 t u s i}$ of East Afriea distinctly describe all wild beasto save Weir own totem-abimals as fremy-sconts.
souls of cataleptic and epileptic patients sojourned temporarily in mimals, while the patients were unconscious ; but this phase of lycanthropy is too rare and too abnormal to be associated with the origin of the superstition. Transmigration after death, involving the belief in a futuro state, raises questions as puzzling as does lycanthrony itself, and questions quito of a different kind, because in normal lycanthropy the change effected is an actual corporal one. Mr Tylor therefore throws little light on the origin of fycan. thropy when be connects it with metempsychosis. In the form familiar to us it doubtless involves the doctrine of "animism"- the doctrine that animals, plants, and things are prompted to action by spirits similar to those possessed by men; but, whether lycantlarony is simply a special application of a general doctrine of animism, and is not rather one of the earliest advances from a blind totemism to a general animistic theory, may fairly be questioned. This at least aeeros plain: animism, apart from totemism, is not itself sufficinnt to explain lycanthropy, for even animistic beliefs are not devel jal abnormally, but along lines predetermined by circumstances. Mr Tylor's views are, however, 80 cautionsly and so suggestively expressed as to deserve close study. Hardly so satisfactury are the other theories on tho aubject, whieh, passing over varia. tions in detail, fall into two classes-the mythologival and the rationalistic. On the forrner view, now upleld by a large scho 1 of inquirers, the ancicut Aryan myths, and their modern representatives the Mähechen, are regarded as imaginative descriptions (principally due to the use of metaphorica! language) of the greas elemental powers and changes of nature. An such a view the occurrence of shape-changing gods and heroes is simple and nat:ral, so long as the persons are purely mythical, because thas far nothing need be deemed atrange or unnatural. But the theory breaks down when it ventures on elucidation of historical facts. It seems vain to contend, -although it is contended,-that "the termble delusion of lycanthropy arose from the mere use of an equivecal we"d " $\lambda$ úкos, "wolf," for $\lambda \in u r \delta s$, "shining "). Attempt to substantiate in detail this explaration of history is absolutely fatal. "Whence," it is asked, "came the notions that men were changed into wolves, bears, and birds, and not intalions, fishes, or reptiles?" and the triumplant reply is that the first-named animals were selected for glossiness or luminosity of coat. ${ }^{2}$. Consequently, if transformation into the other animals was also believed in, the theory stands self-refutel. Now Hippomenes and Atalanta were for impiety turned into lion and lioness, Cadmus and Marmonia into serpents ; and these cases of 'transformation have almost as intimate an association with the historical belief in men-lions and mer-serpents as the case of Lycaon (mythologically = tho shiner, the sun) has witly lycanthropy. Cognate to the mythological doctrine is the doctrine of the personification as demons of all obstacles which men have eucountered in the long struggle for existence, -among these the wilder and more savage animals. This is just a one-sided nnimism; it is inadequate to explain how the savage beasta so often became mild and gentle men. The rationalistic theories are open to the same objections : to account for divine and benigmant lycanthropists they hare to be supplemented by the mythological theories; they themselves deal exclusively with the more repulsive characteristics. Tho mi. recent exponent of the rationalistic theory is Mr Baring Gould, win rests his case on a proof of the facts that there is "an imnate cravi:: for blood implanted in certain natures, restrained under ordirary circurastances, but breaking forth occasionally, accompanied uil Fallucination, leading in most cases to camibalism." That can nibalism and craving for blood had a naturnl (though not a acees sary) connexion witl lycanthropy, if it originated among savages, need not be disputed; hut Mr Baring Goulld's instances, drawn from mediæpal European history, are undoubtedly excentional. Hallucination, however, has beon accepted as sufficient exnlanation of lycanthropy by many ominent authorities, besides Mr Gould, and raises a graver question. Belief in transformation into beasts has been acknowledged as a distinct type of monomenin by medical men since the days of Paulus Egineta (7th century) at least; but even in madness there is muthod, and insanu delusions must reflect tho usages nnd beliefs of centemporancons socicty. Here the reakness of the caso appears. Mr Gonlld, for instance, morely states that the victuns were rustics, and wolves the chief terror of their homesteads, an explanation valid only on the assumption that the idea of metamorplosis wns already fomili ur, -an assumption, that is, of tho whole matter at issue. Besides, it is the popular, not the individual, belief in transformation that is strange ; to trace its origin to insaue delusion makes it stran er still, for saue men nre particularly seeptical regarding the reality of the impressions of the insane. Sane men, moreover, blieved in trangformation, not only into malignant wolves, but also into harmless cats and lures, which in consequence became malignant and dangerons. How can thed rationalistic theory accomnt for a phonumenon like this? On the whole, there seems litule doubt 11.1 whether the origin of lycanthropy rests in tutunisu or not, , In

Tylor is rimht in refercing lycanthropous insane delusions to an antecedent belief in lycanthropy, instead of ascribing lycanthropy to insane delusions.

Literature. - In the mumerous mediceval works difeeted to the stuly of
 minent phice. 1 it ullition to the authors whin have heen alreaty menthened. the following may be named as kiving siccul attention to this sulject:-Wier, be Prax.ligits Dxmonum. Ansterdam. Lsti3; Bodin, themonnmanice des Sorciers, Paris, 15s0; Boguct, Discours des Sorevers, Lyons, 21 ell. 1608 ; Lancre, Tubleur
 Paris, 1615; sco alsn Gianvil, Sadducismus Triumphatus, for tho English equivalents of lycanthropy. Treitises solely confined to lycanthopy aro rare hoth In medieval and in modern tines; but a few are well known, as, for instance, thoso of Bourquelot and Niynauld. De la Lycanthropie. Paris, 1615 ; Hartz, De Hercolf, stutgart, 1s62; Baring Gould, The Boak of Were-wolves, London, 1865. Incidertaily, however, lycantiropy has engaged the attention of a lurge number of writers, most of wham theorize regarding its orlgin. An exhaustive enumeration of theso cannot bo here attempted ; but the following warks wall be found particularly instructive: -Crimm , Deutsche Myphologic, vols. hi. and iii., 4th ed., Lerlin, 1878 ; Weleker. Eleine Sehriffen, vol. iil., Bonn, 1850: Waitz, Anthropologic, vol. il., Leipsic, 1 S 60 ; Dasent, Popular Tules from fie Sorse (Int rorluction), Ellinburgh, 18.59 ; Afanasict, Poeficheskiya Voseryeniya Slaryan na Prirodu, vol. Lil., Muscow, 1869; Tylor, Primilive C'ulture, vol. i., London, 18i1, and Anthropologn,

 ehaps. 刃i. and xii.), London, 1s72; Ralst(1n, Songs of the Russian F'eople, Londorr, 1875 ; Conway, Demonology and Devil Lore, vol. i., London, $\mathbf{J} \times 7$. For For the mellical 18is; Conwuy, Dennonology and Devil Lore, vol. i., London, $1 \times 7$. For the metical aspects of lycanthropy, consult tho Asylum Journal of Hental Science, vol iii
p. 100 (Dr D. II. Tuke), and authorities there cited.
(J. F. M'L.)

LICdON, son of Pelasgus or of Aizeus, was the mythical first king of Arcadia, who founded the first city Lycnsoura and the worship of Zeus on Mount Lycæus. He, or his fifty impions sons, entertained Zeus and set before him a dish of human flesh; the god pushed away the dish in disgust and overturned the table at a place called Trapezus. In punishment either lightning slew the king and his sons, or they were turned into wolves. Pausanias (viii. 2) says that Lycaon sacrificed a child to Zeus, and was during the sacrifice turned into a wolf. Henceforth the story ran-a man was turned into a wolf at each annual sacrifice to Zeus Lyceus, recorering his human form after ten years if he had not during that time eaten human flesh. Lycion is evidently the Lycean forn of a very common conception, viz., the divine first man, whose life is the beavenly fire, who comes to earth and returns to heaven as the lightning. The oldest city, the oldest cultus, and the first civilization of Arcadia are attributed to him. The mysterious cultus and the human sacrifices, which continued apparently through the listorical pcriod (Paus., viii. 38), of Zeus Lycæus have moulded the legends of the Lyciean first man and first king. Moreover his name, which is connected with that of the mountain, suggested a derivation from $\lambda$ v́ros, wolf; and legends analogous to those of the Teutonic were-wulf (see Lycanthropy) naturally grew round him.

LYCAONIA, in ancient geugraphy, was the name given to a province in the interior of Asia Minor, north of Mount 'Taurus. It was bounded on the E. by Cappadocia, on the N. by Galatia, on the W. by Plerygia and Pisidia, while to the $S$. it extended to the clain of Mount Taurus, from which it was, however, in part separated by Isauria, though some writers included that district in Lycaonia. Its boundaries apiear indeed to have varied at different tinies, as was the case with all the nations of Asia Minor. The name is not found in Herodotus, but Lycaunia is mentioned by Xenophon as traversed by Cyrus the younger on his march through Asia. That author, however, de${ }^{\text {scribes }}$ Iconium, one of the principal cities of Lycaonia, as included in Phrygia. But in Strabo's time the limits of the province were more clearly recognized, though Isauria was by sume authors cunsidered as a part of Lycaonia, by others as a distinct province. Ptolemy, on the other hand, includes Lycaonia as a part of Cappadocia, with which it may have been associated by the Romans for administrative purposes; but the two countries are clearly distinguished both by Strabo and Xenoplion.

Lycaonia is well described by Strabo as a cold region of elevated plains, affording pasture to wild asses and to sheep. It in fact forns a part of the great table-land which constitutes the whole interior of Asia Minor, and liae through-
ont its whole extent an elevation of more than 3000 feet above the sca. It suffers, moreaver, severely from the want of water, aggravated by the abundance of salt in the soil, so that the whole northern portion of the province, extending from near Iconium to the salt lako of Tatta, ard the frontiers of Galatia, was almost wholly barren. Othar portions of the country, however, notwithstanding the deficiency of water, were well adapted fur feeding sheep, so that Amyntas, king of Galatia, to whon the district was for a time subject, naintained there not less than thref hundred flocks, which brought him in a large revenue.

Though the greater part of Lycaonia is a broad open plain, extending as far as the underfalls of the Taurus, ite monotonous character is interrupted by some minor ranges, or rather groups of mountains, of voleanic character, os which the Kara Dagh in the suuthern portion of the district, a few miles north of liaraman, rises to a height of above 8000 feet, while the Karadja Dagh, to the north-east at the precediug, though of very inferior elevation, presents a striking range of volcanic cones. The mountains in the north-west of the province, near Iconium and Laodicea, ow the other hand, are the tcrmination of the great range of the Sultan Dagh, which traverses a large part of Phrygin

The Lycaoniaus appear to have been in early times to a great extent independent of the Persian empire, and were like their neighbours the Isaurians a wild and lawless race of freebooters ; but their country was traversed by one of the great natural lines of high road through Asia Minor from Sardis and Epbesus to the Cilician gates, and a few considerable towns would naturally grow up along this line of ronte. The most important of these was Iconium, in the most fertile spot in the province, of which it has always continued to be the capital. It is still called Konieh. A little farther north, immediately on the frontier of Phrygia, stood Laodicea (Ladik), called Combusta, to distinguish it from the Pbrysian city of that name; and in the south near the foot of DIount Taurus, was Laranda, now called Karaman, which has given name to the province of Karamania. Derbe and Lystra, which afpoar from the Acts of the Apostles to have been considerable towns, were apparently situated in the same part of the dietrict, bal their sites have not been identified. The other towns mentioned by ancient writers were insignificait jhares.
The Lycaonians arpear to heve still retained a distinct nationality in the time of Strabo, but we are wholly in the dark as to their ethnical afinities, or reiations to the tribes by which they were smrovarded. The mention of the Lycaunian language in the Acts of the Apostles (xiv. 11) is evidently ooly intended to designate the vernacular tongue, as opposed to Greek, and canrot be regarded as any pronf that they spoke a different language from their neighbours the Phrygians or Cappaducians.
LYCIA, in ancient geography, was the nane given to a district in the south-west of Asia Minor, occupying the portion of the cuast between Caria and Pamphylia, and extending inland as far as the ridge of Nount Taurus. Tlu region thus designated is one strongly marked by nature as constituting a kind of peninsula or promantory projecting towards the south from the great mountain masses of the interior. It was also inhabited from a very early period by a distinct people, known to the Greeks as Lycians, but whose native name, according to Herodotus, was Termile, or (as it is written by Hecatæus) Tremilæ, and this is confirmed by native iuscriptions, in which the name is written Tranile. Herodotus tells us also that they were not the original inhabitants of the country, which was previously occupied by the Milyans, and this is rendered probabie by the fact that a people of that name was still found in the rugged mountainous district in the north-east, who appeat to have aiways continued distinct from the Lycians. Bad


JIA, LYDIA, \&c.

the statement of the same histcrian that they originally cume from Crete is in the highest degree improbable; and the attempts to connect them with the Greek legendary history through Sarpedon and Lycus, a son of Pandion, may be safely rejected as mere fictiona.

The Lycians alone among the natious in the west of Asia Minor preserved their indejendence against the kings of Lydia; but after the fall of the Lydian monarchy (in 546 b.c.) they were subdued by Harpagus, the general of Cyrus, though not till after ae obstinate resistance ic which Xanthns, their chief city, was utterly destroyed. But, though they were from this time nominally subject to Persia, they appear to have enjoyed a considerable amount of independence, which they afterwards maintained by joining the Athenian maritime lcague. They were conquered almost without resistance by Alexander, and thus passed under the Macedonian dominion, sometimes of the Ptolemies, sometimes of the Seieucidans. But through all these vicissitudes, as well as after their ultimate submission to the Roalan power, they continued to preserve their federal institutions, which remained unimpaired, in form at least, as late as the time of Augustur. Strabo, who has preserved to us an account of their constitution, which he regards as the wisest form of federal government with which he was acquainted (a judgment confirmed by the high authority of Montesquieu), tells us that the league consisted of twenty-three cities in all, of which the six principal were Xanthus, Patara, Pinara, Olympus, Myra, and Tlos. These six had each three votes in the general assembly; of the remaining cities the more considerable had each two votes, and the rest only one. The payment of taxes and other public burthens were apportioned in the same manner, and the choice of the supreme magistrate, who was styled Lyciarch, and the other magistrates of the league rested with the federal assembly. At the same time the internal affairs of each city were managed by a senate or council (Boule), and a general assembly of the people (Demos),'in the same manner as was usual with Greek cities. This system of goverament continued to subsist under the Roman empire, though of course subject to the coatrol as well as protection of the sovereign power; but in the time of Claudius dissensions among the separate cities afforded a pretext for the intervention of Rome, and Lycia became formally annexed to the Roman empire. It was at first united in the same province with Pamphylia; but in the reign of Theodosius it was constituted a separate proviace.

Almost the whole of Lycia is a rugged mountainons country, traversed by offshoots and branches of the grcat range of Mount Taurus, which occupies the whole interior or northern part of the district, and sends down to the sea great arms or brauches, constituting lofty promontories. The consequeace is that the coast, though less broken and irregular than that of Caria, is indented by a succossion of baya, -the most marked of which is that called in ancient times the Glaucus Sinus, now the Gulf of Macri, in the oxtreme west of the province, and separating Lycia from Caria A number of smaller bays, and broken rocky headlands, with a few small islcts lying off them, constitute the coast-line from thence to the south-eastern promontory of Lycia, formed by a long narrow tongue of rocky hill, known in ancient times as the Sacred Promoutory, with three amall adjacent islets, called the Chelidonian islands, which was regarded by some ancient geographers as the commencement of Mount Taurus-an opinion justly controverted by Strabo. But it really forms an important point in the geography of Asia Minor, where the ceast trends abruptly to the north till it reaches the coufincs of Pamplylia. It was believed by Strabo to be directly opposite to Canopus in Egypt, and to be the point where tho indel fa' lat veen the two continenis was ihe shorkesí

THough the mountain ranges of Lycia may all be considered as in reality olfshoots of Mount Taurus, several of them in ancient times were distinguished by separate names. Such were Mount Dxdala ia the west, adjuining the Gulf of Macri, Mount Cragus on the sea-coast, west of the valley of the Xanthus, and Mount Massicytus nearly in the centre of the region, risigg to a height of 10,000 feet, while MIount Solyma ia the extreme cast, above Phaselis, rises abruptly from the sea to an elevation of 7800 feet. The steep and rugged pass betweee this mountain and the sca, called the Climas, or Ladder, was the only direct communication between Lycia and Pamphyliz.

The only two considarable rivers in Lycia are (1) the Xanthus, which descends from the central mass of Alount Taurus, aud flows through a narrow valley till it reaches the city of the same name, below which it forms a plaiu of some extent before reaching the sea, and (2) the Limyrus, which enters the sea near Limyra. The Arycandus and the Andriacus, which are intermediate between the two, are much less considerable streams, and do not flow from the central chais. The small alluvial plains at the mouths of these rivers are the only level ground in Lycia; but the slopes of the hills that rise from thence towards the mountains are covered with a rich arborescent vegetation of the most beautiful character. (See the description of it by Forbes, quoted in Asia Minor, vol. ii. p. 709.) The upper valleys and mountaia sides afford good pasture for sheep, and the main range of Nount Taurus encloses several extensive yailahs or upland basin-shaped valleys of the peculiar kind so characteristic ct that range throughout its extent (see Asia Minor, p. 704).

It is very difficult to determine the limits of Lycia towards the interior; and the boundary seems to lave varied repeatedly at different times. The high and cold upland tract to the north-east, called Milyas (which was supposed to retain sowe remains of the aborigiaal population of Lycia), was by some writers included in that province, though it is naturally more connected with Pisidia. A similar tract to the west of this, and also situated to the north of the watershed of Mount Taurus, was teraed Cabalia; but this had no natural connexion with Lycia, nor was in early times ever politically united with it, the four cities that were situated in this region-Cibyra, with its dependent towns of Enoanda, Balbura, and Bubouhaving always formed a separate league or Tetrapolis, which had no connesion with the Lycian leagne. It was not till after their anoexation to Rome that Cibyra, with the district adjoining it, termed the Cibyratis, was united to Phrygia, while the three other towns above enumerated were annexed to Lycia
According to Artemidorus (whose authority is followed by Strabo), the tewns that formed the Lycian lcague in the days of its integrity were twenty-three iu number; but Pliny tells us that Lycia once possessed seventy torns, of which only iwenty-six remained in his day. Recont reseatches have fully confirmed the fact that, notwithstaeding its rugged character, the sea-const and tho valleys that ran up into the interior were thickly studded with towns, which in many cases are proved by existing remains to have beeu places of considerable importance. The names have been for the most part identificd by means of inscriptions, and we are thus enabled to fix the position of the greater part of the cities that are mentioned in ancient authors. On the Gulf of Glaucus, near the fronticrs of Caria, stoed Telmessus, an impertant place, while a short distance from it in the interior were the small towas of Dadala and Cadyanda. At the entrance of tho vallcy of the Xanthus were Patara, Xanthus itself, and, a little higher up, Pinar.a on the west and Tlos on the cast side of the valley, while Araxa stood at the bead of the valley, just at thic foot of
the pass leading into the interior. Sidyma, on the slope of Dlount Cragus, seems also to have borue the name of the mountain, as was also the case with Massicytus, if there was really a city of the name at all. Myra, one of the most important cities of Lycia, occupied the entrance of the valley of the Andriacus; on the coast between this and the mouth of the Xanthus stood Antiphellus, while in the interior, at a short distance, were found Pbellus, Cyaner, and Caudyba. In the alluvial plain formed by the outlets of the rivers Arycandus and Limyrus stood Limyra, and eucircling the same bay the three small towns of Rhodiapolis, Corydalla, and Gage. Arycanda commanded the upper valley of the river of the same name. On the east coast stood Olympus, one of the cities of the league, though it could never have been more than a small town, while Plaselis, a little farther north, which was a much more impoitant place, never bclonged to the Lycian leaguc, and appears to bave always maintained an independent position. We lave thus in all tiventy-oue towns of which the sites have been ascertained, but the occurrence of other considerable ruins, to which no names can beattached with any certainty, confirms the statement of Pliny as to the great number of the Lycian towns.

The cold upland district of the Milyas appears never to have contained any town of importance. Podalia seems to have been its chief place. Between the Milyas and tho Pamphylian Gulf was the lofty mountain range of Solyma, which was supposed to derive its name from the Solymi, a people mentioned by Homer in connexion with the Lycians and the story of Bellerophon. No such name was known in historical times as an cthuic appellation, but they were supposed by some writers to be tue same people with the Milyans, while others regard them as a distinct people of Semitic origin. It was in the flank of this mountain, near a place called Deliktash, that the celebrated fiery source called the Chimæra, which gave rise in ancient times to so many fables, was found. It has been visited in modern times by Captain Beaufort, Messrs Spratt and Forbes, and other travellers, but is merely a stream of inflammable gas issuing from crevices in the rocks, such as are fuund in several places in the Apennines. No traces of recent volcanic action exist in Lycia.
Few parts of Asia Miner were less knotry in modern times than Lycia nutil a very recent period. Captain Beaufert was the first to visit several places on the sea-coast, and the remarkable rockherrn tombs of Telmessus had been already described by Dr Clarke, bnt it was Sir Charles Fellows who first discovered and drew attentien to the extraordinary richness of the district in ancient remains, especially of a sepulchral character. His two visits to the country, in 1833 and 1840, were followed by a more regular expedition sent ent by the British Government in 1812 for the parpose of transporting to England the valuable monuments now in the British MInsenm, wbile Lieutenant (now Admiral) Spratt and Professor Edward Forbes explored the interior of the district, and laid down its physical features on an excellent map. The monuments thus hrought to light are certainly among the most interesting of any that have been discorered in Asia Minor, and, while showing the strong influence of Greek art, beth in their architecture and seulpture, preve alse the existence of a native architecture of wholly distinet nrigin, especially in the rock-cnt tombs, seme of which present a strange resemblance to our English Elizabethan style, while others distinctly evince their derivation from the simple construction of the muse and timber built cottages of the natives. But the theatres that are found in almost every town, some of them of very large size, are alone sufficient to attest the pervading infuence of Greek civilization; and this is confirned ty the sculptures, which are for the most part wholly Greek. None of theni, indeed, cin he aseribed to a very early period, and hardly any trace can ia found of the influence of Assyrian or other Oriental art.

Oue of the most interesting results of these recent researches has been the discovery of numerens inscriptions in the native language of the country, and mitten in a character, or at least an alphabet, befoee nuknown, and which appears to have been peculiar to Lycia. A fevv of these inscriptions are fortunately bilingual, in Greek and lycian, which has allerded a clue to their partial interpretation, and
the investigations of Mr Daniel Sharpe in the first instance, followed by the mere mature essays of Dloritz Schmidt and Snvelsberg, have established the fart that the Lycian language belonged to the great Aryan family, and hal clese allinities with the Zend. The alphrbet in which the inscriptions are tritten is obvionsly derived frozu the Greek, no less than twenty-four of the letters being identical, while most of the additional letters appear to have been invented in order to express vewel sounds which were not distinguisheel iu Greck. Noue of the Lycian inscriptions, however, any more than the sculptures, can lay claim to a ligigh autiquity. It is remarkablo that the Greek alphabet upon which it was founded appears not to have been the lenic alpliabet which was in general use in Asia 3linor, but was more akin to the Doric alphabet in use in the Peloponnese.
For theso modern researcbes see A Journal writhen during an Excursion in Asia Minor, London, 183?, by Sir Charles Fetlows; An Account of Discoreries in Lycia, by the same author, London, 1841. Travels in Lycia, Hilyas, and the Cibyratis, by Lletuenant Spiatt and Professor Edward Forbes, 2 vols, Londru, zur Enfaiferung der Lykischen Sprachdenkmater, Bonn, 187t. (E. 11. 1.)

LYCOPHRON was a Greek poet who flourished at Alexandria in the time of Ptolemy Philadelphus (285-4i b.c.). He was born at Chalcis in Eubcea, aud was the snn of Lycus. He wrote a number of tragedies, forty-six of sixty-four, and Suidas gives the title of twenty of them. Only a fer lines are preserved of these works, which gained him a place in the Pleiad of Alexaudrian tragedians. He was entrusted by Ptolemy with the task of arrauging the comedies in the Alexandrian library, aud out of this work grem his treatise $\pi \epsilon \rho \grave{\imath} \kappa \omega \mu \omega \delta i u s$, in at least eleven books. It seems to have treated of the history of comedy, of the lives of the comic poets, and of various tupics subsidiary to the proper understanding of their poemis, but nothing has been preserved of the work. One of his poems called Cassandra, containing 1474 lines of iambic, has been pre. served ontire. It is in the form of a prophecy uttered by Cassandra, and relates the later fortunes of Troy and of the Greek and Trojan heroes. References to various events of mythic and of later time are introduced, aud the poem ends with a reference to Alexander the Great, who was to unite Asia and Europe in his world-wide empire. The style, as befits a prophecy, is so enigmatical as to bave procured for Lycophron, even among the ancients, the title of the "obscure" ( $\delta \sigma$ кoтetvós). The poem is evidently intended to display the writer's knowledge of obscure names and uncommon myths; it is full of unusual words of doubtful meaning gathered from the older poets, along with many long-winded compounds coined by the author. It has none of the qualities of poetry, and wias probably written not for the enjoyment of the public but as a show. piece for the Alexandrian school. It was very popular in the Byzantino period, and was read and commented on very frequently; the collection of scholia by I. and J. Tzetzes is very valuable, and the MISS. of the Cassandri are numerous. A few neat and well-turned lines which have been preserved from Lycophron's tragedies show a much better style; they are said to have been much admired by Menedemus of Eretria, although the poet lad ridiculed him in a satyric drama. Lycophron is also said to have been a skilful writer of anagrams, a reputation which does not speak highly for his poetical character.
Two passages of the Cassantra, 1446-50 and 1226-82, in which the career of the Foman people and their universal empire aro spoken of, could evidently not have been written by an Alexandrian poet of 250 B.c. Hence it has been maintained by Niebuhr and ethers that the poem was written by a later peet mentioned by Tzetzes, but the opinion of Welcker is generally counted mor probable, that these paragraphs are a later interpolation: a prophetic poem is peculiarly liable to have additions inserted, and the Roman rule was the mest natural subject to add.
See Welcker, Griech. Trag.; Konze, Dc Lyconhronis Diclione; and Bernlardy's and other histories of Greek literature.
LYCOPODIUM. This and Seláginella are the two chief genera of the order Lycopodiacex or club mosses. They are flowerless herbs, and mostly creeping; but during the period of the develonment of coul plants members of this
order attained to the dimensions of lufty trees. A remarkablo bed of Scoteh coal called the "better bed "was found on microscopical examination to be almost entirely composed of the spores and sporanges of some "lycopod." There are one hundred species, which occur iu all climates, five being British. The leaves of lycopodium are for the most part small, and thickly cover the stem and branches. The "fertile" leaves are arranged in cones, and bear sporanges in their axils, containing spores of one kincl only (of two kinds in Selaginella). The prothallinm developed from the spore is a subterranean mass of tissue of considerable size, and bears the male and female struetures (antheridia and archegonica). See Microopraphic Dict.; Le Maout and Decaisne's Desc. and Anal. Bot., Eng. ed., p. 911 ; and Saeh's Text-book of Bot., Eng. ed., p. 400 sq. Gerard, in 1597, described two kinds of lycopodium (IIerbell, p. 1373) under the names Muscus denticulutus and IFuscus cluratus (L. clavatum, L.) as "Club Mosse or Woolfes Clawe Mosse," the names being in Low Dutch, "Wolfs Clauwen," from the resemblance of the club-like or claw-skaped shouts to the tues of a wolf, "whereupon we first named it Lycopodion." Gerard also speaks of its emetic and many other supposed virtues. L. Selayo, L., and L. catharticum, Hook., of Sonth America, have been said to be, at least when fresh, cathartic ; but, with the exception of the spores ("lycopodium powder "), lycopodium as a drug las fallen into disuse. The powder is used for rolling pills in, as a dusting powder for infants' sores, \&c. It is highly inGammable, and is used in pyrotechny and for artificial lightning on the stage. If the hand be covered with the puwder it cannot be wetted on being plunged into water. Another use of lycopodium is for dyeing; woollen cluth boiled with species of lycopodium, as L. clavatum, becomes blue when dipped in a bath of Brazil wood.
LYCURGUS, a famons Spartan lawgiver. As even the ancients themselves differed so widely in their accounts of Lycurgus that Plutarch could begin his life by saying that he could assert absolutely nothing about him which was not controverted, it is not surprising that modern nistorical criticism has been disposed to relegate him wholly into the region of pure myth. One tradition would put him as far back as the age of Troy; another would zonnect hin with Homer; while Herodotus implies that de lived in the 10th century B.c. It is now usual, on the strength of a passage in Thueydides (bk. i. chap. 18), which cepresents Sparta as having enjoyed a well-established political constitution for as mueh as four hundred years before the Peloponnesian war, to assign him to the 9th century b.c., and to accept him as a real historical person. But as to the charaeter and result of his legislative work there still remain very eonllicting opinions, due to the circunstance that suel data as we possess are susceptible of exceedingly diverse inferences and interpretations. Plutarch's lifo, which is the fullest and most detailed account we have of him, is not merely the compilation at second hand of a late age (2d century), but also abounds iu statements which any one with any knowledge of the carly growth of political societies feels to be inherently improbable. Grote prefers on the whole to be guided by what may be fairly inferred from the allusions to his legislation in Aristotle, as being one of our earliest sources of iuformation and certainly the most philosophical estinats of his work. With Thirlwall he takes him to havo becn a real person, and assumes that ho was the instrunuent of establishing good order among the Spartans, hitherto, acoording to Herodotus, the most larless of maukind, and of thus laying the foundations of Spartan strength and greatness.

The traditional story was that when aeting as guardian
to his nephew, Labotas, king of the Spartans, he imported his new institutions from Crete, iu wbich a branch of the Dorian race had for a considerable period settled themselves. It was said that he had travelled widely; and gathered political wisdum and experience in Egypt and even in India. With the support of the Delphic oracle, which was specially revercuced by Dorians, he was able to accomplish his work and to regulate, down to the smallest details, the entire life of Sparta. He lived to see the fruit of his labour, and, having bound his fellow countrymen to change nothing in his laws till his returo, he left then for Delphi, and was never seen by them aghin. The oracle declared that Sparta would Irosper as long as she held fast by his legislation, and upon this a temple was bnilt to his honour, and lie was worshipped as a god.

It was the fashion with writers like Plutareh, from whom our notions of Lycurgus have been mainly derived, tc represent the Spartan lawgiver as the author of a wholly new set of laws and institutions. It need hardly be said that any such view has long been abandoned, and that Lycurgus's work, great as it no doubt was, did not go beyond formulating what already esisted in germ, and was iu fact the peeuliar heritage of the Spartans as members of the Dorian race. It has been contended that the laws of Sparta were the typical Dorian laws, and that Sparta herself was the special representative, politically a ad socially, of the Dorian race. It appears, however, to have been the general view of the Greeks themselves that many of her most important institutions, more especially the severity of her military training and of ber bomediscipline, were peculiar to Sparta, and were by no means shared by such states as Corinth, Argos, Megara, all of Dorian origin. Grote lays great stress on this point (IIistory of Greece, chap. vi.), and maintains that it was the singnlarity of the Spartan laws which made such a deep impression on the Greek mind. The truth indeed seems to be that Sparta's political organization in its main lines was of the Dorian type, and resembles the pictures given ns in the Homeric poens, but that much in her social life and military arrangements was absolutely unique. It is here that in all probability may be traced the genius and fore. sight of Lycurgus, and he may thus well deserve the credit of having started Sparta on a new career.
The conncil of elders (gcrousic, or seuate), a distinctive feature of the Hellenic states generally, must have existed at Sparta long before Lycurgus, nor is it at all certain that he fixed its number at twenty-eight, the tro kings who sat and voted in it making it up to thirty members. It was clected from the people from candidates who had reached the age of sixty, and a senator once elected iwas a senator for life. It united the functions of a deliberative assembls and of a court of justice, and it prepared measures which were from time to timo submitted to periodical assenblic; of the people, which, horever, had simply to accept o! reject, without any power of amendment or criticism. Sq far the constitution of Sparta was distinctly oligarchical, The two kings, whose office was hereditary; and whose de scent was from the famous family of the Heraclids, had but very linited political powers, nod, with some few excep, tions, oven little more than ordimary senators. They owed their position and prerogatives to the religious sentiment of the people, which reverenced their noble and quasidivine origin, and accepted them as legitimately the higk: priests of the nation, and as specially quulified in great ourergencies to consult the Delphic ofacle and receive it: answers. An ample royal domain was assigned to then. and some rather delicate legal matters, such as the bestow ment of the hand oi an orphan heiress, were entrusted tc their discretion. $13 y$ far the most inpportant of rheir duties was the comnand of tho urmy on a foreigu experti.
tion, with, however, the assistanco of $n$ council of war. In fact they eloscly resembled at all points the kings of the hervic age, and the honour and reverence in which they were held was far greater than their actual power, which really was curtailed within süch narrow limits that it was not possible for them to establish anything like a tyranny or despotism.

Oue great ebeck on the kings was a board of magistrates, annually elected by the people, termed ephors, a name not confined to Sparta, wheuce we may fairly infer that this institution also by no means owed its origin to Lycurgus. A comparison has been suggested between the Spartan ephors and the tribunes at Rume. Both were certainly popular magistrates, and as it was at Rome, so too at Sparta, at any rate in her later days, these magistrates made themselves the great power in the state. There was a form of ancient oaths between the king and the ephors, the king swearing that he would respect the established laws, and the ephors swearing that on that condition he should retain his authority and prerogatives. The unauimous view of antiquity was that it was the special business of the ephors "to protect the people and restrain the kings." We gather from passages in Thucydides that they liad in his time great political intluence, and in the time of Aristotle they had attained such a pasition that he says they did not choose to conform themselves to the strict discipline prescribed to Spartan citizens. Although the king took the command in war, it was for the ephors to say when war should be made, and on what terms peace should be concluded. Any pablic magistrate, the kings not excepted, was liable to be called to account by them, while they themselves seem to have been irresponsible. Of course the fact that they were annually elected necessitated a general conformity in their policy to the popular will. But so great and arbitrary were their powers that Plato lints that the Spartan constitution might be almost described as a tyranny. Indeed they were to Sparta what the House of Commons is to England, "the moving spring," as Arnold says (Thucy., App. II.), of the whole Spartan government.

Of the institutions we bave described, not one, as we have seen, was peculiar to Sparta, or, it may be inferred, diue to Lycurgas. They were indeed all connected by tradition with his name, and we may believe that be did his best to put them on a sound basis, though, as to the ephors, there is reason to think that they furmed no part of the original Spartan constitution. One thing is certain that there was a permanence about Lycurgus's work, whatever it may have been, to which Sparta's long freedom from revolution was unanimously attributed. She owed this no doubt mainly to her peculiar social customs and usages, and it is here that in the opinion of both Grote and Thirlwall we must specially look for the reforming land of Lycurgus.

It was of the first importance that the Spartan should be an efficient soldier. He was a conqueror in the midst of a subject population, to which he stood in the same relation in which the Norman for a time at least stood to the Saxon. This subject population was made up of two classes, the Perireci (dwellers round the city) and the Helots, the first being freemen and proprietors scattered throughout the tuwnships and villages of Laconia, with some powers of local self-government, hut with no voice in the affairs of the state, while the latter were simply serfs, attached to the soil which they cultivated, like the villein of the feudal period, for Spartan proprietors, to whom they paid a rent equivalent, it is said, to half of the entire produce. Their condition, though a humble and in some respects a degraded oue, was at least free from the worst incidents of slavery, as they lived with their wives and families, and could not be sold out of the country. Thus
they must have folt themselves an integral part of the state. which employed them in military service, nad rewarded them from time to time with the gift of freedom. Still, as an oppressed class, they often gare uneasiness to Sparta, and ou one memorable occasion, recorded by Thucydides (iv. 80), as many as two thousand of them were treacherously and secretly massacred for reasons of state expediency. There was even a regular and legalized system of thinning their numbers by stealthy assassination, known as the "cryptera," and carried into effect by young Spartans who were annually commissioned to range the country with daggers for this horrible purpose. If under ordinary circumstances the frugal and industrious Helot might exist in tolerable comfort and eren hope for freedom, he must have been made to feel that it was exceedingly dangerous to be too aspiring, and the inferiority of his condition was clearly marked by a distinctive dress which be dared not lay aside, any more than he might presume to sing any of the national songs of Sparta.

It was by the toil of the Helots that the Spartan was enabled to live, as we should say, the life of a gentlenian, devoting himself to bunting and military exercises along with some slight admixture of mental culture, based mainly on music and poetry. It was not, howerer, a life of ease and enjoyment. His physical training was proverbially severe. From the age of seven he was put under a rigorous state discipline which inured him to the patient endurance of the most extreme bardships. The ideal at which he was specially taught to aim was a calm passive fortitude, which implied that he lived snlely for the state. - Spartan youths would compete with each other in submitting themselves to the lash before the altar of the goddess Artemis, and would, it is said, sometimes suffer even to death without any visible emotion. The story that they were habitually trained to theft means that they had licence to roam the country and forage for food, which they were expected to carry off without detection. In every way they were trained to feel themselves at home amid peril and hardship.
The Spartan woman, whose business it was to be the mother of brave and robust children, was naturally held in great honour, and according to Aristotle had at least in his time great influence on public affairs. The maiden was trained in much the same fashion as the youth, and was exercised in running, wrestling, and boxing, and thus at Sparta.there was a much freer intermingling of the sexes than in any other Greek state. In this respect Spartan fashions of life seem to have been altogether peculiar, to Spartans. The effect of such a training on the women would as a matter of course be to give them masculine sentiments and aspirations, and we can well understand what regard would be paid to their praise or censure. The position of women in Sparta takes us back to the old heroic ages, and reminds us of many passages in the poems of Homer.

One of the features of Spartan life, in thorough harmony with its general purpose and tenor, was the public mess, the "syssitia," according to the Greek phrase. Every citizen was bound to be a member of the mess, which was arranged in a number of joint tables, each providing from his allotment of land a prescribed quota of provisions, with wine and game from the public forests, and the guests being distributed into parties of fifteen persons, and chosen by ballot. Attendance at the mess was strictly enforced, and even the kings were not permitted to excuse themselves. The claims of the state on ber citizens, and the duty of obedience to state discipline, were thus kept perpetually present to the Spartan's mind.

With trade and industrial occupations, even agriculture, the Spartan had nothing to do, all this being left to the Perioci and Helots. We might have anticipated that sacb
frould be the case with a military aristocracy. The story that Lycurgus restricted Sparta to an iron coinage cannot well be reconciled with the fact that silver money was not in use among the Greeks till a century after his time.
The organization of the Spartan army was always greatly admired by the ancients. Xenophon praises its system of tactics for " an admirable simplicity in the midst of secming iutricacy," and in Thucydides (r. 66) we have it described as based on an elaborate graduation of authority, by means of which the general's orders were transmitted to the rank and file with the utmost promptitude and accuracy. The sirength of the army consisted mainly in infantry, every Spartan being a heavy-armed soldier, and the light troops bsing made up out of the Perieci and Helots. The Spartan envalry never bad much repute, and it was always regarded a: a decidedly inferior branch of the service. Nor did they seriously apply themselves to" sieges or to sea warfare. Though a brave, they were a very cautious and wary people, and all their military operations were conducted with extreme secrecy. It was a fixed priociple with them not to engage the same enemy with needless frequency, and not to carry a pursuit furtber than victory really required. Aoything like cowardice was a disgrace which reduced a citizen to the condition of an outcast. "With it or on it" were the words with which the Spartan mother would bid her son return when he left home with his bield to fight for Sparta.
Lycurgus is fairly described by Grote (Hist. of Greece, chap. 6) as "the founder of a warlike brotherhood rather than the lawgiver of a political community." The Spartan was to be almost wholly estranged from home ties, and to live only for the state. His training, though admired both by Plato and Aristotle as directed towards a noble ideal, was felt by them to be very imperfect, inasmuch as it cultivated oniy one side of human virtue and contemplated the circumstances of a camp or a garrison rather than of a state organized on a really perfect basis.

With the reforms of Lycurgus Plutarch connects a sweeping readjustment of the eatire system of ianded property, whereby Laconia was parcelled out into 39,000 equal lots, 9000 being assigned to Spartan, citizens, and the remainder to their free subjects, the Perioci. It was the fashion with certain aocient writers to assume some such measure in the case of every early. legislator or reformer. But it is to be noted that we have no hint of any such repartition of land by Lycurgus till we come to Plutarch, and this fact so much impressed Grote that he utterly rejects the story. All historical evidence, he maintains, points to great inequalities of property among the Spartans from the earliest times, and is therefore irrecoacilable with any such belief. Here indeed be seems to be on sure ground, but it may be quite possible that even with cqual lots of land there were decided inequalities in wealth. There may have been citizens rich in flocks and herds pastured on common ground, of which, we have reason to believe, there was considerable extent. Plutarch's account is favoured by the fact tbat equal distributions of land were often made in early daye by conquering peoples. The question is one on which it seems impossible to arrive at a certain and definite conclusion. Possibly, as has been suggested by M. Laveleye, some old tradition of an equality of landed property may lave been the origin of the belief that a redivision iato equal portions was a part of the system of Lycurgus.

There was, however, an equality which he ccrtainly did attempt to establish. Every Spartan, rich or poor, had to submit to the same hard discipline and to aim at the tsame ideal. The attempt was not altogether nusuccessful, though the subsequent history of Sparta shows that several
of her citizens fell so far short of it as to disgrace themselves by actual dishonesty in the public service. But we may fairly credit Lycurgus with a work which laid deep the foundations of a very remarkable and at times a truly noble patriotism both in the men and women of Sparta.
The best aceounts of Lycurgus and his legislation will be found in Grote's and Thirlwall's histories, and in Müller's Dorians. The clicf original sources from which our knowledge of the subjeet is derired are the writings of Plutarch and Xenophon, and Aristotle's
Politics. Politics.
(W. J. B.)

LYCURGUS, one of the ten great Attic orators, was born about $396-93$ в. . His father was named Lycophron, and he belonged to the old Attic family of the Eteobutada. He is said to have been a pupil both of Plato and of Isocrates. His early career is quite unknown, but after the real character of the great struggle with Philip of Macedon was becoming manifest he was recognized along with Demosthenes and Hyperides as one of the chiefs of the national party. He left the care of external relations to his colleagues, and devoted himself to the internal organization and the financial administration of the state. He managed the finances of Athens for twelve successive years, being chosen тapias т $\hat{\eta}$ к кouns $\pi \rho \circ \sigma$ ódov, probably in 341 b.c., for a term of four years, and in the two succeeding terms, when the actual office was forbidden him by law, directing it through a nominal official chosen from his party. Part of one of the deeds in which he rendered account of bis term of offce is still preserved in an inscription (Corp. Inscr. Gr., i. No. 247 ; Corp. Inscr. Att, ii. pt. 2, No. 289). During this time 18,900 talents passed through his hands, and he raised the public income to 1200 talents yearly. His integrity and his skilful management were bighly appreciated by the people, who refused to deliver him up when Alexander the Great demanded his surrender ; many private persons deposited money under his cliarge. He was also appointed to various other offices connected with the preservation and improvement of the city. He was very strict in his superintendence of the public morals, and passed a sumptuary law to restrain extravagance. On the other hand he shorred a noble and liberal spirit in all that roncerned public expenditure; he did much to beautify and improve the city by fine buildings; and he passed a famous law ordering that statues of the three great tragedians should be crected, and that a careful edition of their tragedies should be made and preserved among the state archives.
Lyeurgus was a man of action and not of words: his orations, of which fifteen were pullished, are criticized by the ancients for their awk ward arrangement of matter, harshness of style, and the ten. deney to digressions about mythology and past history, while the nolile spirit and the lofty morality that breathe through them are lighly praised. Only one of the orations, that against Socrates, has been preserved, and fully hears out the criticism of the ancients. IIe was evidently one of the last examples of the finest Athenian type-full of religious fecling, as becamo one of the Eteobutadæ, the family in which the priesthood of Athene Polias was hereditary, proud of the history and the religion of his comntr; and resolred to aet wortlily of it and to mako others do the same, sovere and stern in his treatment of offenders and frequeutly prosecuting them in the public courts, but generous and liberal in all that concerned the glory of Athens.
LIDGATE, Joñ, a monk of Bury St Edmunds, was the most famons English poet of the 15 thl century. He is a standing refutation of a popular-notion that the extraordinary collapse of English poctry after Chaucer disappenred from the stage was due to the unsettled state of public affairs. The exact dates of his birth and death are not ascertained, but he began his occupation as, a versemaker before Chaucer's death, and probably, ended it several years before the Wars of the Roses broke out. Public affairs were not more unsettled during his lifetime than during tho lifetime of Chaucer. Like Chaucer,

Lydgate enjoyed the patronage of the royal family. He was the "poet laureate" of his generation. He translated Bonoît de St Maure's Histo"y of I'roy "at the commandsuent" of Henry V.; he wrote a pocos on the battle of Agincourt; the coronation of Henry VII. furnished him with anotier thene; the "Good Duka Humphrey" .of Ciloucester "commanded" his trauslation of Bochas upon the Full of Princes. Tho monk of Bury was in short a professional poet. According to Warton he opened a school in hes monastery for teaching the sons of the nobility the arts of versification and the elegancies of composition, and it would seem from the character and tho variety of the pieces attributed to him-"disguisings," "mummings," lives of saints, translations of standard works, devotional pieces in metre, metrical paraphrases of proverbs-that he was ready to write to order on any theme submitted to him. Lydgate attracted a good deal of attention from our early printers and antiquaries, his Full of Princes being reprinted four times before the accession of Elizabeth. The fact that it was the largest poom in English of a tragic cast may have had something to do with the popularity of this work. The Story of Thebes, based on Statius and Boccaccio, is generally supposed to have been one of his first essays. It is told as one of the Canterbury tales, the poct in his prologue feigning himself to hare joined Chaucer's pilgrims at Canterbury, and recited this tale at the host's pommand as they rode back. Possibly more than one of two huudred and fifty-one separate poems, most. of them short, ascribed to Lydgate by Ritson, Lave been ascribed to him on rery slender authority. But the works undonbtedly his are so commonplace in thought and sentiment, and so clumsy in execution,-with all allowance for transcribers' errors and imperfect editing, that no injustice can have been done to his reputatiou by attributing any doggerel to his facile pen. He was evidently a great reader of poetry, a scholar accomplished in amount, had probably a large indiscriminato enjoyment of poetry, and probably also a boisterous enjoyment of his own facility in building up stanzas. His own mental life was probably the reverse of dull. But, like many another self-satisfied versifier, he is the canse of dulness in others. In reading him with his own contented spirit, one catches some faint refiexion of the gleeful happiness with which he seems to hare poured out his abundant store of thricerepeated phrases and images. Of artistic sensibility he was entirely destitute. He claims our sympathy by bis warm admiration for Chancer, but admiration gave him no share of Chaucer'a economy of touch, rapid vizacious morement, and subtle wit. His lines are eked out by tantologous and feeble epithets, and garrulous repetitions"as clerkes can you tell," "in bookes as I rede," "the story saith certain," "the story can derise," "the story can rehcrse," "the story specifies," "the story maketh mind." Something is expressed in learned terms, and then the same thiug is repeated "in plain English." Ljagate is seen at his best in his illustrations of proverbs and maxims of homely morality, and by far his most stuccessful metre is a stare of cight four-beat lines with a rhyme from the first half recurriog in the second. A Sativical Balad on the I'mes, with the refrain "So as tie crab gothe forwarde"; A Satirical Description of his Lady, with the refrain "When she hath on hire hood of green" ; A Lover's Complaint; Thonke God of Alle; and Make Amendes-all in this metre-are arwong the most farourable specimens of his powers. A line of five accents seems always to have driven him into prolixity. The London Lackpenny, to the refrain of "Bnt for lack of money I might not speed," the best knoma of his humorous poems, is also in four-beat lines, though there are seven liaes in the stanza Lydgatc's copiousness of detail in describing customs,
dresses, architecture, as well as in making literary com. parisons, render his verses useful as materials for the historian; but in artistic skill he is a sad falling off from Chaucer. Personally he seems to have been a lively monk enough. In his Testament he makes confession to having been a terrible boy, "disposed to many unbridled passions." He fought with his schoolfellows, and scoffed and made mouths at them " like a wanton ape"; he played truant, and "forged leesings" in excuse ; beither hedge nor wall could keep him out of orchards; he "told clerry-stones" when he ought to hare been at church, and threw his paternoster and his creed at the cock. Highly decorous respectable old men of ten take a pleasure in looking back; as Justice Shallow did, to the follics of their youth, and perhaps exaggerating them, but there is nothing. iu Lydgate's confession incousistent with his peetry. A dull writer is gencrally a person of high animal spirits; only that could sustain him through platitudes which other people find so dreary.
(w. M.)

LYDIA. It is difficult to fix the boundaries of Lydia very exactly, partly because they varied at different times, partly becausc we are still but iupperfectly acquainted with the geography of western Asia Minor. The name is first found, under the form of Luddi, in the inscriptions of the Assyrian king Assur-bani-pal, who receired tribate from Gyges about 660 в.c. In Homer we read only of Mronians (Il., ii. 805, v. 43, x. 431), and the place of the Lydian capital Sardes is taken by Hyde (II., xx. 385), unless this was the name of the district in which Sardes stood (see Strabo, xiii. p. 626). ${ }^{1}$ The earliest Greek writer who mentions the name is Mimnermus of Colophon, in the 37 th Olympiad. According to Herodotus (i. 7), the Jeiones (called Mrones by other writers) were named Lydians after Lydus, the son of Attys, in the mythical epoch which preceded the risc of the Heraclid dyoasty. In historical times, however, the Mrones were a tribe inhabiting the district of the Upper Hermus, where a town called Mronia (now Mennen) existed (Pliuy, V. H., v. 30 ; Hierocles, p. 670). The Lydians must originally have been an allied tribe which bordered upon them to the north-mest, and occupied the plain of Sardes or Magnesia at the foot of. Tmolus and Sipylus. They were cut ofl from the sea by the Greeks, who were in possession, uot unly of the Bay of Smyrna, but also of the country north of Sipylus as far as Temnus, in the Boghaz, or pass, through which the Hermu's forces its way from the plain of Magnesis into its lomer valleg." In on Homeric epigram the ridge north of the Hermus, on which the ruins of Temnus lic, is called Sardene. Northward the Lydiaas extended at least as far as the Gyganan Lake (Lake Culoe, now $J$ [ermereh), and the Sardene range. (now Dumanly Dagh). The plateau of the Bin Bir Tepé, on the southern shore of the Gygæan Lake, was the chief barialplace of the inhabitants of Sardes, and is still thickly studded with tumuli, among which the "t tomb of Alyattes" towers to a height of 260 feet. Next to Sardes, Maguesia ad Sipylum was tho chief city of the country, having taken the place of the ancient Sipylus, now probably represented by an almost inaccessible acropolis discovered by Mr Humann not far from Magnesia on the northern cliff of Mount Sipylus. In its neighhourhood is the famous seated figure of "Niobe" (Il., xxiv. 611-17), cat out of the rock, aud jrobably inteaded to represent the goddess Cybele, to which the Greeks attached their legend of Niobe. According to Pliny (v. 31); Tantalis, afterwards swallowed up by earthquake in the pool Sale or Saloo, was the ancient name of Sipylus and "the capital of Mæonia" (Paus., vii. 24; Strabo, xii. p. 579).

[^22]Under the Heraclid dyoasty the limits of Lydia must have been already extended, since according to Strabo (xiii. p. 590), the authority of Gyges reached as far as the Troad, and we learn from the Assyrian inscriptions that the same king sent tribute to Assur-bani-pal, whose dominions were bounded on the west by the Halys. But nader the Mermaads Lydia became a maritime as well as an inland power. The Greek citics were conquered, and the coast of Ionia included within the Lydian kingdom. The successes of Cresus finally changed the Lydian kiogdom into a Lydian empire, and all Asia Minor westward of the Halys, with the exception of Lycia, owned the supremacy of Sardes. Lydia never again shrank back into its original dimensions. After the Persian conquest the Mæander was regarded as its southern boundary, and in the Roman period it comprised the conntry between Mrysis and Caria on the one side and Phrygia and the 庣gean on the other.
Lydia proper was exceedingly fertile. The bill-sides were clothed with vine end fir, and the rich broad plain of Hermus produced large quantities of corn and saffon. 'The climate of the plain was soft but healthy, though the country was subject to frequent earthquakes. The Pactolus, which flowed from the fountain of Tarne in the Tmolua moantains, through the centre of Sardes, into the Hermus, was believed to be full of golden sand ; and gold mines were worked in Tmolus itself, though by the time of Strabo the proceeds bad become so small as hardly to pay for the expense of working them (Strabo, ziii. 591). Mronia on the enst contained the curious barren plateau known to the Greeks as the Catacecaumene or Burnt country, once a centre of volcanic disturbance The Gygæan lake (where remains of pile dwelings lave been found) still abounds with carp, which frequently grow to a vary large size.
Herodotus (i. 171) tells us that Lydua was a brother of Mysus and Car. The statement is on the whole borne out by the fer Lydian, Mysian, and Carian words that havo been preserved, as well as by the general character of the civilization prevailing among the three nations. The language, so fer as can be judged from its scanty remains, was Indo-European, and more closely related to the western than to the eastern branch of the family. The race was probably a mized one, consisting of aiorigines and Aryan immigrants. It was oharacterized by industry and a commercial spirit, and, before the Persian conquest, by bravery as well.
The religion of the Lydians resembled that of the other civilized nations of Asia Minor. It was a nature-worship, which at times became wild and sensuous. By the side of the supreme god Medeus stood the sun-god Attys, as in Phrygia the chief object of the popular cult. Ho was at once the son and bridegroom of Cybele or Cybebe, the mother of the gods, whose inage carved by Broteas, bon of Tantalus, was adored on the clift's of Sipylus (Paus., iii. 22). Like the Semitic Tammuz or Adonis, he was the beantiful yonth who had mutilated limself in a moment of frenzy or despair, and whose temples mere served by cunuch priests. Or again he was the dying sun-god, slain by the winter, and moarned by Cybele, as Aclonis was by Aphrodite in the old myth which the Greeks had borrowed from Phonicia. This worship of Attys was in great measure due to foreign influence. Doubtless thero had been an ancient native god of the name, but the associated myths and rites came almost wholly from abroad. The Hittites in their stronghold of Carchemish on the Euphrates had adopted the Babylonian cult of Istar (Ashtoreth) and Tammuz-Adonis, and bad handed it on to the tribea of Aaia Miner. The close resemblance between the story of Attys and that of Adonis was the result of a common
origin. The old legends of the Semitic East had come to the West through two clannaels. The Phenicians brought them by ser and the Hittites by land. Mut though the worship of Makar or Melkarth on Lesbos ( $11 .$, xxis. 544) shows that the Phoenician faith lad found a home on this part of the coast of Asia Minor, it could have bad no influence upon Lydia, which, as we have seen, was cut off from the sea before the rise of the Mermnads. It was rather to the Hittites that Lydia, like Phrygia and Cappadocia, orred its faith in Attys and Cybele. The latter became "the mother of Asia," and at Ephesus, where she was adored under the form of a meteoric stone, was identificd with the Greek Artemis. Her mural crown is first seed in the Hittite sculptures of Boghaz Keui on the Halss, and the bee was sacred to her. A gem found near Aleppo represento her Hittite counterpart standing on this insect. The priestesses by whom she was served are depicted in early art as armed with the double-headed axe, and tho dances they performed in her bonour with shield and bow gave rise to the mytha which saw in them the Amazons, a nation of woman-warriors. The pre-Hellenic cities of the coast-Smyrna, Samorna (Ephesus), Myrina, Cyme, Priene, and Pitane-were all of dmazonian origin, and the first three of them have the same name as the Amazon Myrina, whose tomb was pointed ont in the Troad. The prostitution whereby the Lydian girls gained their dowries (Herod., i. 93) was a religious exercise, as among the Semites, which marked their devotion to the goddess Cybele. In the legend of Hercules, Omphale takea the place of Cybele, and was perhaps her Lydian title. Hercules is here the sun-god Attys in a new form; his Lydian name is unknown, since E. Meyer has shown (Z.D. M. G., $x \times x i, 4)$ that Sandon belongs not to Lydia but to Cilicia. By the side of Attys stond the moon-god Manes or Men.

According to the native nistoman Jauthus ( 460 b.c.) three dynasties ruled in succession over Lydia. The first, that of the Attyads, is wholly mythical. It was headed by a god, and included geographical personages like Lydus, Asies, and Meles, or such heroes of folk-lore as Cambletes, who devoured his wife. To this mythical age belongs the colony which, according to Herodotus (i. 94), Tyrsenus, the son of Attys, led to Etruria. Nanthus, however, puts Torrhebus in the place of Tyrsenus, and makes him the eponym of a district in Lydia. There was no connexion between the Etrurians and Lydians in either language or zace, and the story in Herodotus rests solety on the supposed resemblance of Tyrrhenus and Torrlebus. It is donbtful whether Xantbus recognized the Greek legends which brought Pelops from Lydia, or rather Mroonia, and made him the son of Tantalus. The legends must have grown up after the Greek colonization of Eolis and Ionia, though Dr Schliemann's discoreries at MJceno have shown a certain likeness between the art of early? Greece and that of Asia Minor, while the gold found therc in such abundance may liave been derived from the mines of Tmolus. The second dynasty was also of divine origin, but the names which head it prove its cormexion with the distant East. Its founder, a descendant of Hercules and Onplale, was, Herodotus tells us (i. ĩ), a son of Ninus and grandson of Belus. The Assyrian inscriptions have shown that the Assyrians had never crossed the Halys, much less known the name of Lydia, before the age of Assur-bani-pal, and consequently the old theory which brought the Heraclids from Ninevels must bo given up. But we now know that the case wae otherwise with another Oriental people, which was deeply imbued with the elements of Babylonian oulture. The Hittites had overrun Asia Minor and eatablished themselves on the shores of the Wgean before the reign of the Egyptian king Ramses $\Pi$ I

The subject allies who then fight under their banners include the Masu or Mysians and the Dardani of the Troad from Iluna or Ilion and Pidasa (Pedasus); and, it re follow Brugsch, Iluna shonld be read Mauna and identified with Mronia At the same time the Hittites left memorials of themselves in. Lydia. Mr G. Dennis has discosered an inscription in Hittite hieroglyphics attached to the figure of "Niobe" on Sipylus, and a similar inscription accompanies the figure (in which Herodotus [ii. 106] wished to sce Sesostris or Ramses IL.) carved on the clitt of Karabel, tha pass which leads from the plain of Sardes to that of Ephesus. We learn from Eusebius that Sardes was first captured by the Cimmerians 1078 B.C.; and, since it was four centuries later before the real Cimmerians appeared on the horizon of history, we may perhaps find in the statement a tradition of the Hititite conquest. Possibly the Ninus of Herodotus points to the fact that Carchemish was called "the old N"inus" (Amm. Marc., xiv. 8), while the mention of Belus may indicate that Hittite civilization came from the land of Bel (seo Sayce, Trans. Soc. Biblical Arch., rii. 2). At all events it was when the authority of the Hittite satraps at Sardes began to decay that the Heraclid dynasty arose. According to Xanthus, Sadyattes and Lixus were the successors of Tylon the son of Omphale. After lasting five hundred and five years, the dynasty came to an end in the person of Sadyattes, as he is called by Nicolas of Damascus, whose account is doubtless derived from Xanthus. The name Candaules given him by Herodotus meant "dog-strangler," and was a title of the LydianHermes. Gyges, termed Gugu in the Assyrian inscriptions, Gog in the Old Testament, put him to death and established the dynasty of the Mermnads 690 b.c. (Euseb., 698 b.c.). Gyges initiated a new policy, that of making Lydia a maritime porrer; but his attempt to capture Old Smyrna was unsuccessful. Towards the middle of his reign the kingdom ras overrun by the Cimmerians, called Gimirra in the Assyrian texts, Gomer in the Old Testament, who had been driven from their old seats on the Sea of Azoff by an invasion of Scythians, and thrown upon Asia Minor by the defeat they had suffered at the hands of Esar-haddon. The lorrer town of Sardes was taken by them, and Gyges turned to Assyria for aid, consenting to become the tributary of Assur-bani-pal or Sardanapalus, and sending him among other presents two Cimmerian chieftains he had bimself captured in battle (about 660 в.c.). At first no one could be found in Nineveh who understood the language of the nmbassadors. A ferr years later, Gyges joined in the revolt against Assyria, which was headed by the viceroy of Babylonia, Assur-bani-pal's own brother. The Ionic and Carian mercenaries he despatched to Egypt enabled Psammetichus to make himself independent. Assyria, however, was soon avenged. The Cimmerian hordes returned, Gyges was slain in battle after a reign of thirtyeight years, and Ardys bis son and successor retarned to his allegiance to Ninereh. The second capture of Sardes on this occasion ras alluded to by Callisthenes (Strabo, xiii. p. 627). Alyattes the grandson of Ardys finally socceeded in extirpating the Cimmerians, as well as in taking Smyrna, and thas providing his kingdom with a port. The trade and wealth of Lydia rapidly increased, and the Greek towns fell one after the other before the attacks of the Lydian kings. Alyattes's long reign of fifty-seven years saw the foundation of the Lydian empire. All Asia Minor west of the Halys owned his sway, and the six jears' contest he oarried on with the Medes was closed by the marriage of his daughter Aryenis to Astyages, and an intimate alliance between the two empires. The Greek cities were allowed to retain their own institutions and government on condition of paying taxes and dues to the Lydian monarch, and the proceeds of their commerce thus
flowed into the imperial exchequer. The result was that tho king of Lydia became the richest prince of his age. Alyattes was succeeded by Crœesus, who had probably already for somo years shared the rogal power with his father, or perhaps grandfather, as Floigl thinks (Geschichte des semitischen Alterthums, p. 20). Ho reigned alone only fifteen years, Cyrus the Persian, after an indccisive battle on the bauks of the Halys, warching unon Sardes, and captaring both acropolis and munarcb before his allies could come to his help (Euseb., 5.46 B.c.). The place whero the acropolis was entered was believed to have been overlooked by the mythical Mcles when he carried the lion round bis fortress which made it invulnerable; it was really a path opened by one of the landslips which have reduced the sandstone cliff of the Acropolis to a mere shell, and threaten in a few years to carry it altogether into the ylain below. The overthrow of Crœsus gave rise to many legends among both Lydians and Greeks, and he mas held to have escaped death at the conqueror's hands through the interrention of the gods. The revolt of the Lydians under Pactyas, whom Cyrus had appointed to collect the taxes, caused the Persian king to disarm them, thougb we can hardly credit the statement that by this measure their former warlike spirit was crushed. Sardes now became the western capital of the Persian empire, and its burning by the Athenians was the indirect cause of the Persian War. After Alexander's death, Lydia passed to Antigonus; then Achrus made himself king at Sardes, but was defeated and put to death by Antiochns. The country was presented by the Romans to Eumenes, and subsequently formed part of the proconsular province of Asia. By the time of Strabo (xiii. p. 631) its old language was entirely supplanted by Greek.
The Lydian empire may be described as the industrial power of the ancient world. The Lydians were crediter with bciug tha inventors, not only of games such as dice, huckle-bones, and ball (Herod., i. 94), but also of coined money. The oldest known coins aro the electrum coins of the earlier Merninads (Madden, Coins of the Jcres, pp. 19-21), stamped on one side with a lion's head or the figure of a king with bow and quiver ; these were replaced by Croesus with a coinage of pure gold and silver. To the latter monarch were probably due the earhest gold coins of E.phesus (Head, Coinage of Ephcsus, p. 16j. Mr Head has shown that the electrum coiss of Ljdia were of tro kinds, one weighing $168^{\circ} 4$ grains for the inland trade, and anotbcr of 224 grains for the trade mith Conia The standard was the silver "mina of Carchemish," as the Assyrians called it, which contained $86 \overline{5} 6$ grains. Origin. ally derived by the Hittites from Babylouia, but modificd by themselves, this standard was passed on to the nations of Asia Minor during the period of Hittite conqnest, but was eventually superseded by the Phcenician mina of 11,225 mains, and contivued to sursive only in Cypras and Cilicia The inns, which the Iydians were said to have been the first to establish (Herod., i. 94), were connected with their attention to commercial pursuits. Their literature has wholly perished, and the only specinnen of their writing we possess is ou a marble base found by Mr Wood at Ephesus (Schliemann, Ilios, p. 698). They were celebrated for thcir musio and gymanastic exercises, and their art formed a link between that of Asia Minor and that of Grecee. A marble lion at Achmetly representa in a modified forn the Assyrian type, and the cngraved gems found in the neighbourhood of Sardes and Old Smyrna resemble the rude imitations of Assyrian vorkmanship met with in Cyprus and on the coasts of Asia Minor. For a description of a pectoral of white gold, ornamented with the heads of aniosals, human faccs, and the figure of a goddess, discovered in a tomb on 'tmolus, see Acudemy, Jsnuary 15, 1SS1, F. 45. Lydian sculpture was probably similar to that of the Phrygians as displayed at Doghanly, Kumbet, and Ayazin, a necropolis lately discovered by MIr Ramsay. Phallic emblems, for averting evil, घere plentiful; even the summit of the tomb of Alyattes is cromned with an exormons one of stone, about 9 feet in diameter. The tumulus itself is 281 yards in diameter and about half a mile in circumference. It bas been partially excavated by Spiegeltbal and Dennis, and a sepulchral chamber discovered in the middle, composed of large rell-cut ond highly polished blocks of marble, the chamber being 11 feet long, nearly 8 feet broad, and 7 feet high. Nothing was found in it except a few ashes and a broken vaso of Egyptian alabaster. The stone basement which, according to Herodotos, formerly surrounded the nnound has now disappearcd.
(A. H. S.)

LYELL, Slr Charles ( $1797-1875$ ), one of the greatest of geelogical thinkers, was the eldest son of Charles Lyell of Kiunordy, Forfarshire, and was burn November 14, 1797, on the fanily estate in Scotland. His father was a man of literary and scientific tastes, known both as a botanist and as the translator of the Vita Nuova and the Convito of Dante. From his boybood Lyell had a strong inclination for natural history, especially entomology, a taste which he was able to cultivate in the New Forest, to which his family had removed soon after his birth. He was educated chiefly at Midhurst, and then at Exeter College, Oxford, where the lectures of Dr Buckland first opened out to him that field of geological study which became the passion of his life. After taking his degree in 1821, he eutered Lincoln's Inn, and in 1825, after a delay caused by chronic weakness of the eyes, he was called to the bar, and weat on the western circuit for two years. During the whole of this time, though not neglecting his profession, he was slowly gravitating towards the life of a student of science. In 1819 he had been elected a member. of the Linnean and Geological Societies, communicating his first paper, "On the Marls of Forfarshire," to the latter society in 1822, and acting as one of the honorary secretaries in 1823. In that year he went to France, with introductions to Cuvier, Humboldt, and other men of science, and in 1824 made a geolugical tour in Scotland in company with Dr Buckland. In 1826 he was clected a fellow of the Foyal Society, from which in later years he received both the' Copley and Royal medals; and in 1827 he finally abandoned the legal profession, and deroted himself to geology.

Long prior to this, however, he bad already begun the sketch of his principal work, The Principles of Geology. The subsidiary title, "An Attempt to Explain the Former Changes of the Earth's Surface by Reference to Causes now in Operation," gives the keynote of the task to which Lyell devoted his life, and in pursuance of which he made geological tours over large portions of the Continent, and in later years to Madeira and to the United States and Canad. The journey undertaken with Murchison in 1828 was especially fruitful in results, for not only did it give rise to two joint papers on the volcanic district of Auvergne and the Tertiary formations of Aix-en-Provence, but it was apparently while examining Signor Bonelli's collection of Tertiary shells at Turia, and subsequently when (after parting with Murchison) he studied the marine remains of the Tertiary rocks of Iscliia and Sicily, that Lyell conceived the idea of dividing the Tertiaries into three or four principal groups, characterized by the proportion of recent to extinct species of shells. To these groups, after consulting Dr Whewell as to the best nomenclature, he gave the names now universally adopted-Eoceue (daron of recent), Miocene (less of recent), and Plioceue (more of recent) Upper and Lower ; and with the assistance of M. Deshayes, who had arrived by independent researches at very similar views, he drem up a table of shells in illustration of this classification. The first volume of the Principles of Geology appeared in 1830, and the sccond in January 1832. Received at first with considerable opposition, at least so far as its leading theory was concerned, the work had ultimatcly a great success, and it had already reached a second edition in 1833 when the third volume, dealing with the successive formations of the earth's crust, was added. ${ }^{1}$

In August 1838 Lycll published the Elements of Geology, which, from being originally an expansion of the

[^23]fourth book of the Principles, became a standard work of reference ia stratigraphical and palxontulogical grology. This book went through six editions in Lyell lifetime (some intermediate ones being styled Mranual of Elementary Geology:, and in 1871 a smaller work, the Student's Elements of Geology; was based upon it. His third great work, The Antiquity of Man, appeared in 1863, and ran through three editions in one year. In this he laid befere the world a general survey of the arguments for man's early appearance on the carth, derived from the discoveries of worked flint implements in Post-Pliocene strata in the Somme valley and elsewhere, and in it also he first gave in his adhesion to Darwin's theery of the origin o? species. A fourth edition appeared in 1873.

While thus occupied with his writings, Lyell lost no opportunity of carrying out original investigations, and whenever absent from his literary work in London was always to be heard of in the field either in England or on the Continent. In 1831 he held for a short time the post of professor of geology at King's College, London, and delivered while thero a highly appreciated course of lectures, which became the foundation of the Elements of Geology. In 1832 he married Mary, eldest daughter of Leonard Horner, who became thenceforward associated with him in all his literary and scientific labours, aiding him substantially with ber ready intellect, and by her pre-eminent social qualities making his home a centre of attraction to all men of talent. In 1834 he made an excursion to.Denmark and Sweden, the result of which was his celebrated paper to the Royal Society, "On the Froofs of the Gradual Rising of Land in Certain Parts of Sweden," and another to the Geological Society, "On the Cretaceous and Tertiary Strata of Sceland and Möen." In 1837 he was again in Norway and Denmark, and in 1841 he spent a year in travelling through the United States, Canada, and Nave Scotia. This last journey, together with a second one to America in 1845, when he visited Boston, Philadelphia, New Orleans, and the alluvial plain of the Mississippi, gave rise, not only to numerous origiual papers, but also to the publication of two works not exclusively geologienl, Travels in North America (1845) and A Second Visit to the United States (1849). In the second work especially he did much to promote good feeliag betweeu England and America, by showing a just appreciation of American socicty and institutions. It was in the course of these journeys that he estimated the rate of recession of the falls of Niagara, and of tho annual average accumnlation of alluvial matter in the delta of the Mississippi, and studied those vegetable accumulations in the "Great Dismal Swamp "of Virginia, which he afterwards used in illustrating the formation of beds of coal. He also stndied with great care the coal-formations in Nova Scotia, and discovercd in company with Dr Dawson of Montreal the enrliest known land shell, Pupa vetusta, in the hollow stcm of a Sigillaria. But it was chiefly in bringing a thorough knowledge of European geology to bear upon the more widely extcuded and massive formations of the North American continent that Lycll rendered inmense service to gcologists on both sides of the Atlantic.

Besides these Transatlantic journeys Lycll undertook geological cxcursions at different times to all parts of the British Isles, to Belgium, Switzerland, Germany, Spain, Madeira, and Teneritte, in which latter islands, which be visited in company with G. Hartung, he accumulated much valuable evidence on the age and deposition of lava-beds and the formation of volcanic concs. He also revisited Sicily in 1858 , when he marle such observations upon the structure of litna as cntirely refuted the theory of "craters of clevation" uphcid by Von Buch and Elie de Beaumont (sce Roy. Soc. Proc., 1859).

Lyell recsired tho honour of linighthood in 1848, and eas created a baronet in 1364, in which year ho was president of the British Association, meeting at Bath. His services to the science of geology were now unirersally recognized both at home and abroad, and be mas a member of almost every Continental and American Society. He was elected corresponding member of tho French Institute and of the Rayal Academy of Sciences at Berlin, and was crested a knight of the Prussian Order of Merit.

During tne iatter years of his life his sight, always weak, failed him altogether, nnd he becamo very feebie. Ho dicd on February 22, 1875, in his seventy-eighth year, and was buried in Westminster Abbey. His funeral was attended by an immense concourse of public men, all his personal friends; for by young and old the veteran master of geology ras decply loved and revered. His gentle nature, bis intense love of truth, his anxiety to help and encourage those who cultivated his favourite science, endeared him to all who approached him; while the extreme freshness of his mind kept him free from that dogmatism which is so often the accompaniment of old age, aud enabled him to necept and nppreciate heartily the work of jounger men.
In order to uppreciato justly the influence of Lyell's works upon the geology of the 19 th century, it is necessary to bear in mind what was the state of knorledge upon this subject at the time when he entered the field in 1822. The rival scheols of Werner and Hutton were than at the height of their famous contest, and, while the rehement dícussions between the Neptunists and Vulcanists gare an impetus to the study of rock-masses, the one true principle upon which Hutton limself had so strongly insisted had dropped into oblirion, namely, that " in examining things present we have data from which to reason mith regard to "hat has been," and that therefere we hare ne need to inargine other causes than those mow in action to account for tho past. Meanwhile a reaction against the speculative discussions which had se leng occupied the world inclined many of the leaders of geelogical study to confine themselves to the collaction of facts, and the science becamo for a time a mere branch of mineralogy, which, theugh most valuable in laying a true foundation, was quite inadequate to deal with the earth's history, since it took little or no account of organic remaies, aud their real significance was not in the least uaderstood. Both iu Eugland and France, however, materials were beiag accumulated which prepared the way for a wider basis. In 1799 William Smith, travelling orer England, first grouped the formations accerding to the fossils coutaised in them, and in 1815 he published his geological map of England, thus making the first step in stratigraphical geolegy ; and almost simultaneously, in 1812, Cuvier's restorations of the extinct mammalia of the Paris basin, and Lamarck's classification of recent and fessil shells, gave the first impulse to paleontelogy. But the older schools of geologists, bampered by preconceired theories, were not prepared to make full use of the ner facts. Curier himself, while insisting on the value of fossits in the chronology of the earth, yet retained all the old notions of saddea and vielent convulsions, attribating the destruction of the fauna of the Paris basin to the deluge, or to the bursting of lakes caused by a sudden revolution of the globe; and in like manaer Brckland, Sedgwick, and their compeers still explaioed ererything by the diluvial theery, attributing the erratic blocks stremn over the Continent to the universal deluge, and acceptiog as demonstrated Elie de Beaumont's theory of the sudden elaration of mountain chains. Sedgwick ia his address to the Geological Society in 1834 eved spoke confidently of the extinct forms in geologieal strata as ". indications of change and of an adjusting porver altogether different from irbat we commonly understand by the laws of pature."
To shake of the influence of preconceired opinions such as theso ;here was needed a fresh impartial mind capable of appreciatiag the zridcnce which had been accnmulating during the past thirty fears, and especially alive to the discoreries of palmontelogy. These requisites mere found in Lyell. His carly study of natural history弓are him adipantages possessed by few of his centemporaries, while the clear insight and calm jindgment fer which he was thus early eemarkable led him alone ef the younger school of geolegists to grasp the truth enunciated by Hitton of the power of gradual changes to produce great results if only time enoagh be allowed. This trath he illustrated rith such a wealth of facts, derived from bis own observation and that of others, that in the first edition of tho Principlcs we find sketched in broad outline, and demenstrated by actoal cxamples, nearly all these fundamental truths which, though often vehemently orposed nt the time, bave now become so mucti
the accepted hasis of geology that it is diffieult to realize how nowed they wero ia 1830.
Even the opening historical chapters cut boidly at the root of catastrephic geolegy by showing hew the prejudices concerning the short duratien of past time on the glabe had led men to the mistaken conclusion that "centuries wore implied where the characters imported theousands, and thousands whero the language of naturo signified millions"; and the arguments for the यniform action of nature followed with overwhelming force, as Ljell procooded to lay under contribution all countries of the world to show how the face of the earth is now being altered ly rivers, torrents, springs, currents and tides, velcanoes and carthquakes.
In the second velume the changes in tho organic world wero used to tcach the samo lessou. The proofs of extinction of specifiz forms in historical times mcre accunnulated to explain that the presence of extinct forms ia geolegical formations was the effert of gradual causes and not of sudden and vielent catastrophres, whilo the tranquil imbedding of organic remains now in progress was used to strengthen the provious argument derived from inorganic causes for the slow and gradual accumulation of fossiliferous strata. It was in this velume that Lyell made in 1830 his celebrated attack upon Lamarck's theory of the traasmutation of species, and, though this has often been held ns a want ef appreciation on his part of the arguments of the great naturalist, yct, as we shall see presently, it was really a curious illustration of the impsrtiality of Lyell's mind (though acting under what the limself weuld havo called the influesee of "inherited belice") that thie theory, so eminently calculated to harmonize with lis own views of the polver of minute causes to work appreciable change, was rejected hy him because it rested upon an assumption of a law of innate progrssive development, which could not be showa ta be in accordeace witb natural facts.
The third volume of the Principles, which did not appear till two years later, cempleted the task which Lycll had set himself, by interpretiog the fragmentary reeord which remains to us of the successive geelogical formations of the earth's crust with their imbedded remains and the associated volcanic roeks, and thus restoring as far as possible the past history of the earth. Thirough all its successive editions this volume lias remained the standard text-book of geological history, as its two predecessors have of the philesphtical principles of the scieace.
So immediate was the effect of this remarkable work that from the time of its puhlication the earlicr cosmogonies disappeared from the field, and cren Cuvier's Theory of the Earth never reacheo another cdition. Yet, altheugh geelogists bcgan insensibly to follow the lines which Lyed had marked out, they were long in recciving the principles upon which these were founded. Sedgrick, in thic adiress already quoted, mhile pronouncing a enlogy on the book as a whole, regretted that "irom the yery title-pnge of his work Mr Ly"dl seems to stand ferward as the champion of a great leading doctrive of the Huttonian hypothesis," i.e., thic explanation of iormer clangłs by reference to causes now in operation; and Lyell's oldest friead and fellow-labourer Murchison reniained to the last the exponent of the converse thuth, that we have no cvidence forbidding the possibility of a greater intensity of the forces in action during past period. 3 . This form of catastrephic geelosy has indeed alirays prerailed upon the Continent, and still does so in a great degree. There is, howerer, nothlog neccssarily antagonistic in the two theeries; ant, if Lyell in his earlier years accentuated perhaps somerrhat to strengly the necessity for making unlimited drafts upen the "la:ik of time," as he often called it, to the exclusion of intensified velcanic or aqueeus actien, it was because he had to combat the opposite and deeply ronted crror.
Bet ween the yenr 1853 , when the 9 th edition of the Principlec was published, and 1863 , when he "read his recantation," as he hinself would sometimes express it, in the Anciquity of Man, the discervery of the fint implements associated with bones of extinct mamaatia at Abberille, and subsequeatly in the valley of the Thames and elscwhere, throw an entirely nevv light upon the data of human existence upen the earth, alleming far more time for the development of the numerous varieties of mankind than had hitherto been supposed possible. In conjunction with these discoverics came also the evidence adduced ly Darwin and WVallace of the action of ne tural causes in producing modifications in living forms, 一thus anplying the rery same principle to orgzonic life which Hutton and Lyell had used te explain the gradual modification of the earth's surface. Then it was that I.jell, who had rejected Lamarck's theory because it rested on a purely imaginary law of inmate progressi re development, at ouce accepted "natural selection" as a vera causa helping to explain these eridences of the gradual change in organic forms presented in successive geological fermations. By recognizing the valne of the new priseiple, and incorperating its results in his Principles, Lyell comploted in 1872 in a fuller sense than he had contemplated in 1850 the task of "explaining former changes of the eartb"s surface (including the history of its living inhabitants). by referenco to causes now in actien "; while at the same time he gave to his original conception that clement of expansion and rlisilility sphicb
fras alone needed to ensure its continued influcuce and tho permanent celebrity of its author.
Besldes his books, Lyell contributed seventy-six geclogical papers to various socictien. The only nuthoritles yct publlshed for his $11 f 0$ are Life and letlers of Sir Charles Lyell, I8si, edited by Mis Iycll, and the obituary yollces in 1875 at the Royal and other Socictics.

LYLY, or Lilly, or Lylfe, Joun (1553-1606), the famous anthor of Euyplues, was born in Kent in 1553 or 1554. At the age of sixteen, àccording to Wood, he bccame a student of Magdalen College, Oxford, where io due time be proceeded to his bachelor's and master's degres ( 1573 and 1575 ), aad from whenee we find him in 1574 applying to Lord Burghley "for the queen's letters to Magdalen College to admit him fellow," The fellowthip, however, was not granted, and Lyly shortly after left the university. He complains of what seems to have been a sentence of rustication passed upon him nt some period in his aeademical career, in his address to the gentlemen scholars of Oxfurd affixed to the second edition of the first part of Euphues, but in the absence of any further evidence it is impossible to fix either its date or its canse. If we are to bclieve Wood, he never took kindly to the proper studies of the university. "F'or so it wns that his genius being naturally bent to the pleasant paths of poetry (as if Apollo had given to him a wreath of his own bays without snatching or struggling) did in a manner neglect academical studies, yet not so much but that le took the degrees in arts, that of master being compleated 1575." After he left Oxford, where he had already the reputation of " n noted wit," Lyly seems to hare attached himself to Lord Burghley. "This noble man," he writes in the "Classe for Europe," in the second part of Euphues (1580), "I found so ready being but n straunger to do me good, that neyther I ought to forget him, neyther cease to pray for him, that as he hath the wisdom of Nestor, so he may lave the age, that having the policies of Ulysses he may have his honor, worthy to lyve long, by whom so many lyve in quiet, and not unworthy to be advaunced by whose care so many have been preferred." Two years later we possess a letter of Lyly to the treasurer, dated July 1582, in which the writer protestsagainstsome nndefined aceusation whicl had brought him into trouble with his patron, and demands a personal interview for the purpose of clearing his character. What the further relations between them were we lave no means of knowwing, but it is clear that neither from Burghley nor from the queen did Lyly ever receive any substantial patronage. In 1578 he began his literary career by the composition of Eupplues, or the Anatomy of Wit, which was licensed to Gabricl Cawood on December 2, 1578, and published in the spring of 1579 . In the same year the author was ineorporated M.A. at Cambridge, and possibly saw his hopes of court ndvancement dashed by the appoiotment in July of Edmund Tyiney to the office of master of the revels, a post at which, as he reminds the queen some years later, he had all along been encouraged to "aim his courses." Eupphes and his England appeared in 1580 , and, like the first part of tho book, won immediate popularity. For a time Lyly was the most successful and fashionablo of English writers. Ho was hailed ns the author of " a new English," as a "raffineur de l'Anglois;" and, as Edmund Blount, the editor of his plays, tells ns in 1632, "that beautie in court which could not parley Euphnism was ns little regarded as she which nowe there speakes not French." ARer the publication of Euphues, however, Lyly seems to have entirely desorted the novel form liimself, which passed into the hands of his imitators, and to have thrown himself almost exclusively into play-writing, probsbly with a view to the mastership of revels whenever a vacancy should ocenr. Eight plays by him wero probably acted before the queen by the children of the Chapel Royal and the olluldeen of St Paul's between the years 1584 and 1589, one or two of them being releated beforo a popalar
audieuce at the Blackfriars Theatre. Their brisk livcly dialogue, classical colour, and frequent allusions to persons and events of the day maintained that popularity with the court which Eupluees had won. In 1589 Lyly published a tract in the Martin Marprelate controversy, called Pappe with an hatchet, alias a figge for my Godsonne; Or Crack me this uut; Or. a Countrie Coffe, dec. ${ }^{1}$ About the same time we may probably date his first petition to Queen Elizabeth. The two petitions, transcripts of which are extant among the Harlcian MSS., are undated, but in the first of them he speaks of laring been ten years langing about the court in hope of preferment, and in the second le extends the period to thirteen ycars. It may be conjectured with great probability that the ten years dato from 1579, when Edmund Tylney was appointed master of the revels with a tacit understanding that Lyly was to have the next reversion of the post. "I was entertained your Majestie's servaunt by your own gratious faror," he says, "strengthened with condicioss that I should ayme all my courses at the Revells (I dare not say with a promisc, but with a hopeful Item to the Revercion) for which these ten yeres I have attended with an unwearyed patience." But in 1589 or 1590 the mastership of the revels was as far off as ever, -Tylney in fact held the post for thirty-one years,-and that Lyly's petition brought him no compensation in other directions may be inferred from the second petition of 1503. "Thirteen yeres your highnes servant but yet nothing. Trenty freinds that though they saye they will be sure, I finde them sure to be slowe. A thousand hopes, but all nothing; a hundred promises but yet nothing. Thus casting up the inrentory of my friends, hopes, promises, and tymes, the summa lotalis amounteth to just nothing." What may have been Lyly's subsequent fortunes at court we do not know. Edmund Blount sass vaguely that Elizabeth "graced and rewarded" him, but of this there is no other evidence. After 1590 his works steadily declined in influence and reputation; other stars were in possession of the horizon; and so far as we know he died poor and neglected in the early part of James I.'s reign. He was buried in London at S't Bartholomew the Less on November 20, 1606. He mas married, and we hear of two sons and a daughter.

Comedics. - In 1632 Idmund Blount publishod "Six Court Comedies," including Endymion, Sappho and Phao, Alexander and Campaspe, Midas, IFother BBombie, and Gallathea. To these slould be added tho Woman in the Moone (Lyly's earliest play, to judge from a passage in the prologue aud therefore carlier than 1584, the date of Alcxander and Campesyen, and Lore's Metamorphosis, first printed in 1601. Of theso, all but the last are in prose. A Warning for Faire IV omen (1599) and The alfaid's MFetamorphusis ( 160 ü) havo been attribnted to Lyly, but on altogether insuffcient grounds. The first editions of all these play's were issued between 1584 and 1601, and the majority of them between 1584 and 1592, in what were Lyly's most successful and popular years. His importance as a dramatist has been very dilferent.y estimated. Prof. Minto deuies lim any appreciable influence upon our literature, while Professor $\Lambda$. Ward, on the other land, rightly believes bis work to have had a great effoct upon the developurent of dramatic dialogue, and the prose drama in general. Lyly's dialoguo is stild a long way removed from the dialogno of Shakespeare. But at the same timo it is a great advance iu rapidity aud resource upon anything which had gone befors it; it ropresents an importnat step in English dramatic art. His nimbleness, and the wit which struggles with his pedantry, found their full developmeat in the dialogue of Twelfth Night and Jruch Adlo alout Nothing, just as "Marlowe'a mighty lino" led up to aud was eclipsed by the majesty and musie of Shakespearian passion. One or two of the songs introluced into his plays are justly fannons, and slow a real lyrical gitt. Nor in estimating his dramatic position and his effect upor his time must it be forgotten that bis classical aud mythological plots, flavourless

1 Tho eviclence for hia authorship mas be found in Gebricl Harvey's Pierce's Supercrogation (written November 1559, published 1593), in Nash's Have with you to Sifron Walden (1596), and in varions allusions in Lyly's orin plays Ece Fairbult's Diamatic W'erks of Jo.hn Lilly, vol. i. p. 20
and dull as they would be to a modern audience, were charged with iaterest to those courtly bearers who saw in Midas Philip 1I., Elizabeth in Cynthia, and perbaps Leicester'e unvelcome marriage with Lady Sheifield in the love affair between Endymion and Tcllus which brings the former under Cynthia's displeasure. As a matter. of fact his reputation and papularity as a play-writer wero considerable. Gabriel Harvey dreaded lest Lyly should makz a play upon their quarrel ; Meres, as is well known, places him among "the best for comody;" and Bon Jonson names him among those foremost rivals who were " outshone" and outsung by Shakespeare.
Euphues.-It was not, however, as a draruatist, but as the author of Euphues, that Lyly made most mark upen the Elizabethan world. His plays amused the court circle, hat thie "rew English" of his novel threatened to permanently change the course of English style. The plot of Euphues is extremelysimple. The hero, whose namemay very possibly have been suggested by a passage in Ascham's Schoolmaster, is introduced to us as still in bondage to the follies of youth, "preferring fancy before friends, and this present humour before honour to come." His travels bring him to Naples, where he falls in love with Lucilla, the governor's light-minded daughter. Lucilla is already pledged to Euphues's friend Philautus, but Euphues's passion betrays his Iriendship, and the old lover finds himsclf thrown over by both friend and mistress. Euphues himself, however, is very goon forsaken for a more attractive suitor. He and Phikntus mako np their quarrel, and Euphues writes his fricnd "a cooling card," to be "applied to all lovers," which is so severe upon the fair eex that Lyly feels it necessary to balance it by a sort of apology addressed "to the grave matrons and honest maidens of Italy." Euphnes then leaves Naples for his native Athens, where he gives himself up to study, of which the first fruits are two long treatisesthe first, "Euphues and his Ephoebus," a disquisition on the art of education addressed to parents, and the second, "Euphues and Atheos," a discussion of the first principles of religion. The remainder of the book is filled up with correspondence betireen Euphues and his friends. We have letters from Euphues to Philautus on the death of Lucilla, to another friend on the death of his daughter, to one Botenie "to take his exile patiently," and to the youth Alcius, remonstrating with' him on his bad behaviour at the nniversity. Finally a pair of letters, the first from Livia "at the emperour's court to Euphues at Athens," anstrered by "Euphues to Livia," wind up the first part, and annonnce to us Euphues's intention of visiting England. An address from' Lyly to Lord Delawarr is affixed, to which was added in the second edition "An Address to the Gentlemen-Schelars of England."
Euphues and his Eingland is rather longer than the first part. Euphues and Philautus travel from Naples to England. They arrive at Dover, halt for the night at Fidus's house at Canterbury, and then proceed to London, where they make acquaintance with Surius, a young English gentleman of great birth and noblo blood; Psellus, an Italian nobleman reputed "great in magick"; Martius, an elderly Englishman; Camilla, a beautiful English girl of insignificant family; Lady Flavia and ber niece Fraunces. Aiter endless correspendence and conversation on all kinds of topics, Euphues is recalled to Athens, and from there corresponds with his friends. "Euphues" Glasse for Europe" is a flattcring description of EngIand sent to Livia at Naples. It is the most interesting portion of the book, and throws light upon one or two points of Lyly's own liography. The author naturally seized the opportunity for paying his inevitable tribute to the queen, and pays it in his most exalted style. "O fortnnate England that bath such a queene, ungratefull if thou praye not for hir, wicked if thou do not love hir, niserable if thou lose hir!"-and so on. The book ends with Philantus's announcement of his marriage to Fraunces, upon which Euphues seads characteristic cengratulations and retires, "torniented in body and grieved in mind," to the Mount of Silexcdra, "whero I leave him to his musing or Muses."
Such is a brief outline of the book which for a time set the fashion for English prose. Two editions of each part appeared within the first year after publication, and thirteen editions of both ars enumerated by Mr Arber up to 1636, after which, with the exception of a morlernized version in 1718, Euphues was never -eprinted until 1868, when Mr Arber took it in hand. The Jeasons for its pepularity are not fur to seek. As far as matter was concerned it fell in with all the prevailing literary fashions. Its long disquisitions on love, religion, cxile, nomen, or education, on court life and country pleasures, handled all the mest favourite topics in the secularized speculation of the time ; its foreign background and sravel talk pleased a bociety of which Lyly himself said "trafic and travel hath woven the nature of all nations into ours and made this land like arras full of device trich was broadeloth full of workinanship; " and, although Lyly stegred clear in it of the worst classical pedantries of the day, the book was more than sufficiently ateeped io classical learning, and based upon classical material, to attract a literary circle which was nothing if not humanist. A large proportion of its matter indeed was dramn from classical sourcee. The general tone of sententious moralizing may be traced to Plutarch, from whom the treatise on cducation, "Euphues and his Ephoelus,"
and that on exile, "Letter to Botonio to take his exile patiently," are literally translated, as well as a number of other shorter passagcs either taken direct from the Latin versions or from some of the numerons English translations of Plutarch then current. The innomerable illustrations based upon a kind of pscudo natural history are largely taken from Pliny, while the mythelogy is that of Virgil and Ovid.
It was not the matter of Euphucs, horrever, so much as the style which made it famous. The sources of Lyly's peculiar style have only recently been aatisfactorily traced by a German scholar, Dr Landmann, whose interesting and rell arranged pamphlet vs need do little more than summarize (Landmann, Der Euphuismus, sein Wasen, seine Quelle, scine Gcsehichte, \&c., Gicssen, 1881). What, asks Dr Landmann, is Euphuism, properly so called? Th. term till now has been generally used as if it included all the affected modes of speaking and vriting in vogue in England during the 16 th century. It has even been made to cover all the corruption of Eaglish taste from Surrey to Dryden ; and the comman mode of explaining it has been to say that it was a mere " exaggiration of the Italianating taste which had begun with the revival of onr poetical literature" under Henry VIII. In reality, however, Euphues has very little to do with the other affcctations of the time. Its chief characteristics, to quete Dr Landmann, are "a peculiar combination of antithesis with alliteration, assonance, shyme, aud play upon words, a love for the conformity and correspondence of parallel sentences, and a tendency to accumulate rhetorical figures, such as climax, the rheterical question, aljections and refutatione, the repetition of the same thought in other forms, \&c." T'o this may be added constant references to antiquity and a great forciness for comparisons dramn from a sort of fabulous natural history. On the other hand the style is free from what Puttenham calls "mingle mangle," that is to say, from the pedantic and indiseriminate use of foreign or Latinized words, and also from the hyperbolical extravagances of the Petrurchians. Lyly'a peculiarities, a:s those of syntax and construction rather than of phraseology. Compared to that of the Surrey school, his diction is simple and direct, and he himself declares that he does not pretend to Illease those "Englishmen who desire to heare finer speech than the language will allowe," that is to say, the lovers of the Italianate circumlecutions which ruled English poetry from Surrey to Spenser. His work then is not simply to be regarded as the outcome of the classical and Italian influence at work in England since the beginning of the century. It has individual features which have to be accounted for, and which have now been traced with certainty by Dr Landmany to the influence of one foreiga author-Don Antonio de Guevara (q.v.). Guevara's chief work was El-Libro Aurco de Marco Aurelio (1529), - a sort of historical romance based upon Plutarch and upon Marcus Aurelius's Mcditations, the alject of which was to produce a " mirror for princes," of the kind so popular throughout the Ienaissance. Within the year of its publication Guevara issued an enlarged edition of his book, calling it Libro del Emperador Marco Aurelio con rclox de Principes; and a number of fresh editions and of translations into almost cvery European language follared. The baok hecime almost immediately popular in England. The first edition, or rather a French version of it, was translated into English by Lerd Berners in 1531, and publisheri in 1534. Before 1560 twelve editions of Lord Bcrners's translation had been printel, and hefore 1578 six different translators of this and later works of Gucvara had appeared. The translation, however, which lad most influence upon English literature was that by Nortb, the well-known translator af Plutarch, in 1568, called The Dial for Princes, Compiled by the Reverend Father in God Don Antony of Guevara, Byshop of Guadix, de., Englished out of the Frenche by Th. North. It was from this book, and from certain otler translations from Guevara, of which a full account will bo found in Dr Landmann's pamphlet, that Lyly borrowed his peculiar style, and even a certain small proportion of his material. The sententious and antithetical style of the Dial for Princes is substantially that of Eicphucs, though Guevara on the whole handles it hetter than lis imitator, and has many passages of real force and dignity. The general plan of the two books is also much the same. In both the biography is mercly a peg on which to hang moral disquisitions and treatises. The use made of letters is the same in both. Even the names of some of the characters are similar. Thus Guevara's Lucilla is the flighty daughter of Marcus Aurelius. Lyly's Lucilla is the flighty daughter of Ferardo, gevernor of Naples: Guevara's Livia is a lady at the court of Narcus Aurelius, Lyly's Livia is a lady at the court "of tho emperor," of whom no further description is given. The 9th, 10th, 11th, and 12th chapters of the Dial for Prinecs suggested the discussion betreen Euphues and Atheos. The letter from Euphues to Alcius is substantially the same in subject and treatment as that from Marcus Aurelius to his nephew Epesipo. Both Guevara and Lyly translated Plutarch's work De Educations Liberorum, Lyly, however, kecping closer than the Spanish author to the original. The use made by Lyly of the university of Atbens was an anachronism in a novel intended to describe his own time. He borrowed it, lowever, from Guevara, in whose book a uniy̧ersity
of Atheus was of course entirely in place. The "cooling card for all fond lovers" and the address to the ladies and gentlemen of Italy have thoir counterparts among tbe miscellaneous letters by Onevara affixed ly North to tho Dial for Princes; and other instances of Lyly'a use of thesc letters, and of tro other treatises hy Gucvara on court and country life, could be pointed out.
Lyly was not the first to appropriate and develop the Guevaristic style. The earliest book in which it was fully arlopterl was A pelite Pellace of Pollio his Plcasure, by Genrge Pettic, which appeared in 1576, a productiou so closely akin to Euphhues in tone and style that it is difficult to believe it was not by Lyly. Lyly, however, carried the style to its lighest point, and made it the however, carried the style to its highest point, literary fashion. His principal followers in it were Greene, Lodge, and Nash, his principal opponent Sir Philip Sidner; the Arcaulia in fact supplanted Euphoes, and the Euphuistic taste jroper may be said to have died ont about 1590 after a reign of sone twelve years. According to Drayton it was Sidaey's chief merit that-
"Ite did frat reduco
Our tongue fron Lillie's writing then in ase, Talking or Siones, Stars, Plants, of Fishes, Filyes, Playing wlth words and 'die aimilies,
As thr "English A pes and very Zanics b.
of everything that they due heare amd see,
So inituting his rediculous tricks
So inituting his rediculous tricks They spake and writ all liko meere lunatiques."
Shakespeare, Dr Landmann maintains, cannot strictly speaking be said to have ridiculed Euphuism. Love's Laboner Lost is a caricature of the Italianate and pedantic fashions of the day, not of the peculiar style of Euithucs. The only certain allusion in Shakespeare to the characteristics of Lyly's famous book is to be found in Heary IV., where Falstaff, playing the part of the king, says to Prince Hal, "Harry, I do not only marvel where thou spendest thy time, but also how thou art accomnanied; for, though the camomile the more it is trodden on the faster it grows, yet youth the more it is wasted the sooner it wears." Here the pompous antithesis is evilently meant to caricatnre the peculiar Euphuistic sentence of court parlance. That Shakespeare indeed was well acquaintel with what was the court manual of his youth, and at times reproduces both ileas and phrases from it, has been amply proved by Mr Rusliton, the German critic Hense, and others, but there is no evidence of antagonism between the two writers. It might have bcen otherwise had Lyly's Euphuism affected his jliays. But these show little or no trace of Guevara's influence; their faults are the common fanlts of Elizabethan writing, from many of which Shakespeare himself was not free.

See Euphucs, from early elitions, by Elward Arber, 1868 ; Professor Ad. Ward's English Dramatic Lilcrature, i. 151; Collier's IIstory of Dramatic Poetry, iii. 172 ; John Lilly and Shakciperare, by C. C. Hense in the Jahrbuch der deutschen Shakesp). Gescllsehaft, vols. vii. and viii. (1872, 1873); F. W. Fairholt's Dramatic Worths of Johnt Lilly, 2 vols., 1858 ; Shakespeare's Eunhuisun, by W. L. Rusliton; "Euphuism" in the Qucuterly Revicw, 1861. (Ni. A. W.) LYMINGTON, a municipa! and parliamentary borough and seaport town of Hampshire, England, is situated on the Lym at its entrance to the Solent opposite the Isle of Wight, 94 miles south-west of London and 15 south of Suuthampton. The parish church, dedicated to St Thomas a Becket, is an irregular structure, dating from the reign. of Henry VI., but frequently restored. There are two grammar schools and several charities. The manufacture of salt and of Epsom salts has been declining for some years. A building yard bere has turned out some of the most famous racing yachts. In summer tho town is much frequented for sea-bathing. Lymington in Domesday is called Lentune, changed afterwards to Limentum. It was a borough by prescription, and received a grant of incorporation from James L. From the 27th of Elizabeth till 1867 it returned two members to parliament, and it still returns one. The population of the municipal borough (341 aeres) was 2431 in 1881, and that of the parliameutary berough (4769 acres) 5462 .

LYNCIIBURG, a city in Campbell county, Virginia, U.S., is fincly situated on the rising ground to the south of tho James river 144 miles by rail, west by sonth of IRichmond. Having excellent facilities of communication by the Richmond and Allegheny, the Norfolk and Western, and the Virginia Midland lailways, together with the James River canal, and possessing abnodant water-power and inmediate access to coal and iron, Lynchburg has becomo the seat of no small commercial and industrial
activity. The robacco trade, which formerly rendered it the wealthiest city of its size in the United States, except New Bedford, Mass., is still.the staple; there are about eighty factories in the town, and the amount of tobacco sold in 1870-71 was $17,425,439 \mathrm{1b}$, while in $1850-81$ it was $26,000,000 \mathrm{fb}$. Nost of the operatives are negroesmen, women, and children all being employed. The local iron-works and flour-mills are of some importance, and large machine-shops are maintnined at Lynchburg by the Norfolk and Western Railway. Two reservoirs, constructed in 1828 and 1878 , supply the town with water. Tho populntion was 8067 in 1850,6853 in 1860, 6825 (3353 coloured) in 1870, and 15,959 in 1880.
The town dates from 1786, and dexives its name from a $\mathrm{Mr}_{r}$ Lynch who served in the war of iudependence and is erroneously creditad by some with the origination of the term Lynch law. It was incorporated as a city in 1805. During the civil war it was a point of great importance to the Confederates as a lase of supplies.

LINCH LAW, a term used in the United States to characterize the action of private individunls, organized bodies of men, or disorderly mobs, who, without legal authority, proceed to punish by hanging or otherwise real or suspected criminals, without a trial according to the ordinary forms of law. The origin of the term is doubtful. American lexicographers generally refer it to the practice of a Virginia farmer of the 17 th century, named Lynch, who, when he caught a wrongduer, was wont to tie lim to a tree and flog him, without waiting to summon the officers of the law. He is also said to have acted, by request of his neighbours, though without any legal authority, as a judge in the summary trial of persons accused of crime. Others trace the origin of the name to the act of James Fitzstephen Lynch, mayor and warden of Galway, Ireland, in 1493, who is said to have "hanged his own snn out of the window for defrauding and killing strangers, without martial or common law, to show a good example to posterity." Others trace it still further to the old Anglo-Saxon verb linch, meaning to beat with a club, to chastise, de., which they assert has survived in this cognate meaning in America, as have many other words and expressions long obselete in Grat Britain. Whilo lynch law does net prevail in the old and well-settled States of the Union, and is almost universally deprecated, it is sometimes resorted to even in these States, in times of great pppular excitement, or when the legal penalty seems disproportioned to the enermity of the offence. For example, the practice of lynchirf is said to have increased in Wisconsin since the abolition of the death penalty by law. Lynch law prevailed to a large exteot in the early history of California, Oregon, Nevada, Kansas, Colorado, and other western States and Territories, and daring the border troubles attending the outbreak of the civil war. Bodies of citizens, organized secretly or openly under tho well-known names of "vigilance committces," "vigilantes," "regulators," "law-and-order-men," \&c., punished with summary severity, and generally with wiso discretion, horse thieves, highway robbers, burglars and swindlers, as well as murderers. Certain rude forms of trial were generally observed, but acquittals wero rare, and the punishment was usually death by hanging. The practice, bowever barbarous under the conditions of well-settled government and secicty, has its justification in necessity in the nerily-settled districts, fronticr towns, and mining eamps, where a rapid and extraordinary influx of population has preceded the establishment of civil government, or where the assembling of $n$ large number of bold and hardened desperadoes las enabled them to defy the legally constituted authorities, and to commit crime at will, until suppressed by tho voluntary and concerted action of the order-loving portion of the community.
lyndhurst, Joen Singleton Copley, Baron \{1772-1863), four times lord chancellor of England, was born at Boston, New Eagland, in 1772 . His father, son of an Englishman, but also a nativo of Beston, was a painter of very considerable note, who settled in London just before the commencement of the war of American independence. The son studied at Cambridge, where he was second wrangler and fellow of Trinity. Called to the bar in 1804, he gained a considerable practice; but it was not till 1817 that he began to come to the front. In thes year he was one of the counsel for Dr Watson, tried for his share in the Spa Fields riot. On this occasion Copley so distinguished limself as to attract the attention of Castlereagh and other Tory leaders, under whose patronage he entered parliament, aod was advanced to the highest legal positions, becoming selicitor-general in 1819 , attorneygeneral in 1824, and lord chancellor is 1827, with the title of Lord Lyndhurst. Before being thus taken up by the Tories, Copley was a man of the most advanced views, a republican and Jacubin; and his accession to the Tories naturally excited a good deal of comment, which he bore with the greatest good humour. He gave a brilliant snd eioquent bat by no means rancorous suppert to all the reactionary measures of his chief. The oame year that he became-solicitor-general he married a fashionable wife, and began to take a conspreuous place ia society, in which his noble figure, his ready wit, and his never-failing bonhomie mado him a distinguished favourite.

As solicitor-general he took a prominent part in the trial of Queen Caroline. To the great Libcral measures which marked ihe end of the reign of George IV. and the beginning of that of William IV. be gave a vigorous opposition. During the Melbourne administration from 1835 to 1841 he figured conspicuously as an obstructionist from his seat in the House of Lords. In these years it was a frequent practice with him, before esch prorogation of parliament, to entertain the Honse with a "review of the session," in which he mercilessly attacked the Whig Government. His former adversary Lord Brougham, now ineffably disgnsted at his treatment by the Whig leaders, soon became his most powerful ally in opposition ; and the troo dominated the House of L.ords. Throughout all the Tory Governments from 1827 I -sndhurst held the chancellorship; and in the Peel administration (1841-46) he resumed that office for the fourth and last time. As Peel never had much confidence in Lyndhurst, the latter did not esert so great an influence in the cabinet as his position and experience entitled hin to do. But he continued a loyal member of the party. As in regard to Catholic emancipation, so in the agitation against the corn laws, he opposed reforas till his chief gave the signal for concession; snd theu he cheerfully obeyed. After 1846 and the disintegration of the Tory party consequont on Peel's adoption of free trade, Lord Lyndhurst was not so assiduons in his attendance ia parliamcut. Yet he continued to an extreme old age to take a lively interest in public affairs, and occasionally to astonish the country by the power and brillisncy of his speeches. That which he made in 1853, in denunciation of the aggressive policy of the Russian emperor Nicholas, made a sensation in Europe; throughout the Russian war he was a strong advocate of the energetic prosecution of hostilities. In 1859 he denounced with his old energy the restless smbition of Napoleon III. When he was released from the trammels of an official position, he came forward somewhat as the sdrocate of liberal measures. He strenuously supported the admission of Jerrs into parliament; his second wife was \& Jowess. Under the influence of Mrs Norton he appeared also as the advocate of women's rights in juestions of divorce. At the age of eighty-four he passed
the autuan at Dieppe, "helping to fly paper kites, and amusing himself by turns with the writings of the Greek and Latin fathers on divorce, snd the amorous novele of Eugene Suc." His iast speech, marked by "his wonted brilliancy and vigour," was delivered in the House of Lords at the age of eighty-nine. He died in 1863, in his ninety-second year. The impression we have of Lyndhurst from Lord Campbell's memoir is that of a man with rather an easy conscicace in political life, not too scrupulous in his attention to judicial duties, but possessed of a fine and noble presence, a ready wit, an unfailing sweetness of temper, and a real kindness and charm of manner that won the hearts of men.
See Lives of the Lord Chancellors of England, vol. yiii. (Lords Lyndhurst and Brougham), by Lord Campbell, 1869. Campbell was a personal friend, but a political opponent.

LXNDSAY, Sir David (c. 1490-1555), for about two centuries and a half perhaps the most popular poet of Scotland, was born about 1490 , probably either at the family estate of The Mount, in the parish of Monimail, near Cupar in Fife, or at Garleton near Haddington in East Lothian, where the ruins of as old mansion house of the Lyndsays still remain. Little is known of his boyhood, but he is understood to have entered the university of St Andrews about 1505, and he became one of the incorporati of St Salvator's Colloge in 1508 or 1509 . After.' leaving college there is reason to think that herent abroad fora year or two, visiting, it is supposed, both France end Italy; but of this there is no certain information. In 1511 he must have been attached in some way to the court of James IV., as in the October of that year an entry appears in the royal treasurer's accounts for the sum of $£ 3,4$ s. for " blue and yellow taffities to be a play coat to David Lyndsay for the play playit in the king aud queen's presence in the Abbeg of Holyrood,"- 80 that even at thet early period Liyndsay would seem to have developed his taste for masques and mummeries, play-actiug and talo-telling. After this his name occurs in the treasurer's accounts for a regular salary of $£ 40$ a year; and on the birth of Jemes V. in 151,2 he was appointed to be the personal attendant of the young prince, in which situation he remained till James had attained his twelfth year in 1524-sometimes under the title of "keeper of the kingis grace," sometimes as the "kingis maister usher," and sometimes as "the kingis maister of honshald," but throughout with the yearly salary of £40. Lyndsay's close cornesion with the court led to his being present at the remarkable scene just before Flodden, in the churck of Linlithgow, when the so-called apparition came in "calling loudly for the king," snd, after warning him sgainst proceeding on his ill-judged expedition agsinst England, vanishing away "as it had been a blink of the sun or ane whiss of the whirlwind." The incident is related both by Pitscottio and by Buchanan, expressly on the authority of Sir David; and Tytler shrewdly remarks that possibly Lyndsay knew more of the affair than he cared to confess, a conjecture which both Lyndsay's well-known prudence and segacity in political sffairs and his skill is arranging masques and stage plays renders exceedingly probable. In 1522 Sir David married Janet Douglas, of whom we know nothing except that she also was attached to the king's court, and was employed as sempstress to "his grace,"-various payments to her being entered in the accounts for her diligence in the humblê office of "sewing the kingis sarkis." It is evident from many passages in Lyndsay's poems that his good sense and sweet temper, his varied accomplishments, and his skill in mingling amusoment with instruction had greatly endeared him to the young king, and it would have been well for James if he had never listened to other and worse counsels than, those of his wise snd affectionate "maister usher."

It is to the credit of the king, however, and characteristic of the generous disposition of the earlier Stuarts, that he never forgot or forsook the friend of his infant and boyish years. For when he fell under the power of the Donglases io 1524, and when Lyndsay had to take his dismissal from court, James took care that his salary should continue to be paid him; and no sooner did he escape from their domination than Lyndsay was at once recalled, and the appointment of lyon-king conferred upon him. This was in 1529 , and it is a remarkable proof of the reputation which Lyndsay had by this time acquired for prudence and sterling practical ability that he was at various times sent abraad ic connexion with cmbassics from Scotland. In 1531 ho went to the Netherlands to remew the conmercial treaty with that conntry. On this occasion the embassy had a personal interview with the emperor Charles V., and the mission was perfectly successful. A few years afterwards (in 1536) he formed one of the envoys sent to France to conclude a treaty of marriage between the Scottish liog and Mario de Kourban, danghter of the Due de Vendôme. It is ovident therefore that Lyndsay's prosition and employments must have emalled him to gather much experience of life, and to obtain a somewhat varied knowledge both of men and things. His last sad office to his beloved sovereign was to atteud at his bedside when the poor king was dying of a broken heart at Falkland, in December 1543. Lyndsay survived the king about thirteen year3. At the time of Cardinal Reaton's assassination he held a seat in parliament as commissioner for the bargh of Cupar. In 1548 he was despatched to Deumark to negotiaie a free trade, particularly in graiu, for the Scottish merchants, which was readily granted. Mr Laing, on the authority of an entry in the Privy Seal Register, states that his death must bave taken place early in 1555 .

When Lyndsay was drisen from the court by the advent of the Douglases to power, he no doubt' felt it as a bitter anisfortune and a disappointment of all his highest hopes. But we are greatly mistaken if he did not ere long come to regard it in a very different light. Like most men of genius, he had evidently tro sides to his claracter. On the one side he lad a taste for pleasure, sociality, pageantry, and frivolous amusements; and a ferv years more of these might have deadened Lis natnre to everything else, and zonverted him into a mere dangler after royalty. But he had also clements of a better kind. He was well educated and accomplished; he had read somewhat extensively, and was naster of most of the knowledge to be had in books It that time. He had seen not a little of the world, both in Scotland and in foreign conntries; he was an acute diszerner of character, and had both knowledge of and skiif in affairs. Now then was just the time for a man like him, arrived at the full maturity of his intellect, to turn all these varied acquisitions to account. Lyndsay therefore, we may iufer, reticed to his country seat, either at The Mount, or as we fancy more likely to Garleton (that he might be more within call should a change take place in the political situation at Edinburgh), and there, after the first dull pang of disappointment was over, he doubtless found that thore was no lack of subjeets to engage his best thoughts. One of the great crises in the history of Earope and in the progress of human thought had just arisen. The trumpet of the Reformation had been sonnded in Qcrmany, and its reverberation had already been heard in Scotland, where both political and ecclosiastical disorder had nearly reached their worst, and were becoming the source of decp ansiety and desire for redress to all good men. For Lyndsay, therefore, there was something clse to do than to brood moodily over his own private griefs. He had to make up his mind on a variety of great public questions, as well perbaps as to settlo the great persomal question of his own
religious faith; and in his earliest work, The Dreme, which scems to have been composed at this time, we have a somewhat vivid picture of the turn his thoughts took.

He represents himself as having spent the long winter night with out sleep, "thooigh heavy thought, rememberiug of divers thingis gono." On getting up and walking out, he finds the dull wioter season, with its bitter blasts and sharp sleety showers, but ill-fitted to console him, and only too much in barmony with his own melan. chely. He goes down to the sea-shore, but thimgs are no better there; for the "weltering of the waves" at once associates itself in his miud with "this falso warld's instability." Thus far, theu, his ruditations seem to have had a mezely personal reference. But by and by, on retiring in to a cave near the shore, he falls into a trance iu which his thoughts take a wider range. The miscrable state of his comntry, from misgoverument on the part of its rulers and the vices of both clergy and laity, fills his mind, and, reflecting on the ultimate fate of such men, he finds himself in the twinkling of ant eye in hell, where he sees wieked popes, kings, cenquerors, ןrinces, and lords temporal, with no end of churehroen, "mansworn merchants," "unleil laboraris," eraftsmen "ont of number," "hurdaris of gold and common occararis," all "tormentit with pains intolerable." Then, leaving this "dolorons dongeon," ho thas a passing sight of purcratory, thongh apparently with some misgiving as to its reality, his significant remark being-

> " Sic things to be great clerkis does conctude,

Howbeit my hope stands most in Christis blood."
Proceeding then to the realms of bliss, he sees something of the rewards of goou and just rulers and righteons men; and by and by returning to the earth, and at length lookiug down apon Scotlana, he sees a region both, good and fair, its seas abounding in fish, its mountains covercd with pasture, the valleys fit for coro, the forests full of game, mines with gold and silver, the people fair, intelligeut, strong, and noble-minded,-and yet with all this, the country poor and the inbabitants miserable. What could be the cause? and the answer given is that the realm wants good gorernment, impartial administration of justice, and freedom from war ani aiscish Yiew. ing the country all over-on the borders

> "Betwist the Merse and Lochmaben,
> ITe eould not kraw a leil man from a thitf.
> To show their ieif, theft, murther and mischieg
> And vicions works, it would infest the arr.".

In the Highlands it was no better:-
"Unthifit, sweimess, falset, poreriy, and strifo Put pollcy in danger of her life."
And even in the Lowlands, where better things might be expected, it was impossible for a poor man to live by his iudustry. If he settled in the tornas, "singular profet" (by which we understand him to mean the system of monopolies and of close trade corporations, which everywhere prevailed) "gart him soon dislodge." And if he attempted to get redress to his wrongs there was no help for him anywhere. The syritual state, plunged in simony, coretonsmess, pride, ambition, sensuality, and the love of pomp and leasure, "held him at disdain"; and among the mobility aud gentry " liberality and luwté both are list," kniglutly courage is "turnit in brag and boast," and disorder and civil war have produced a state of thiugs in which "there is nocht else bot ilk man for himself." The moral of the whole is-" Woe to the land that has ouer young ane king!"- "there sall ma Scot have conforting till that I see the country gaided by wisdom of aue gude auld prudent king." The poet is then awakened by the sound of cannon from a ship of war approaching the coast,-the sugerestion, as we imagine, being that the existing state of things cau only end in violence and upraar, in tumult and rebellion, most probahly in foreign invasion and revolution.
On the whole The Dreme appears the most finished and artistie of Lyndsay's works. It has a tone of greater seriousness, bears the marks of more oure and claboration in the composition; nud, though it has a good deal of the crudeness of a first nttempt, we think wo can discuver an effort at least at a finer proportion and harniony of parto than in any of his subsequent poems. In its subjectmatter it strikes tho keynote of almost all that he after. wards wrote. The evils, the wrougs, the misgorernment of his country eridently filled his whole soul with grief, indignation, and tho desire for reform; and we almost doubt if there is to be found anywhere oxcept in the old Hebrow proplets a purer or more earnest breathing of the patrietic spirit. Indeed if we may judge from the mottc prefixed to his Drene we should almost fancy that he had made then his model :-Prophetias nolite spernere. Onmin autem probate: quod bonum est fenete. Lyndsay accordingls is to lie judged of less as a poet than as a great politions
and ecclesiastical reformer. That his werks are written in verse is morely incidental. Though not destitute of poetical genius, this was scarcely the special characteristic of his mind. His greatest work, and the only one to which it is necessary hers to make further allusion, was his Satire of the Three Estates. It is a drama, and may be said to be in some respects one of the most remarkable that ever was written. The dramatis personx are chiefly allegorical, and under the names of Rex Humanitas, Wantenness, the Vices (Flattery, Falset, and Deceit) in the habit of friars, Kiug Correction, Good Counsel, Temporality, Sensuality, Chastity, Verity, Juhn the Commonweal, dec., the mast bitter and unsparing expasure is made of the wickedness and corruption of all classes of the community. King, clergy, lords, merchants, craftsnuen $\rightarrow$ no one escapes the severest censure and the most unmitigated ridicule. And yet this extraordinary production was acted on the berough muir of Edinburgh before the king himself, many of the highest nobility and clergy, and an immense crowd of all classes of the people. How the author escaped being tern in pieces by the mob or burnt at the stake by the ruling pewers it is difficult to understand. Perhaps the explanation is that each class saw every other broaght under the lash equally with itself, and felt consoled for its own shame by enjoying the iofliction visited on its neighbours. Very likely too the gretesque wit and the fun with which the serious matter of the play was so largely spiced charmed the audience into good humour, and left them unable to think of vengeance. It nuay be somewhat confidently inferred too that the dramatist so exactly expressed the public feeling of the time as to the evils and corruption under which the state was rapidly going to destruction that, eren when his stinging reproaches most nearly touched themselves, their consciences were smitten and they were compelled to assent to the perfect truth and justness of his rebukes. But be this as it may, there can hardly be a doubt that this most singular drama formed one of the chief means by which the way was paved for the Reformation afterwards carried out by Knos and his coadjutars. ${ }^{1}$ One thing is especially remarkable in Lyndsay's politics both civil and ecclesiastical, that, hopeless and depressing as the conidition of the country must have been to a man like him, his opinions never end in mere negations, but are throughout constructive in their character. And yet more thoroughgoing radicalism it would be difficult elsewhere to find. He does not for example scruple to declare that kings who govern ill should be deposed. This, however, was merely a speculative opinion, and it is of mere interest to ascertain what his practical suggestions were. Among them we find the following:--that the king should on no account attempts to do anything without the advice of his council ard parliament; that John the Commonweal should have a greater voice in parliament, i.e., iu our modern phrase, that there should be a considerable extension of the franchise; that (as already mentioned) all clese corporations and monopolies should be abolished; that temporal iands should be set in feu to the tenants on condition of their duly rendering the prescribed services to tho state, a measure not very dissimilar in principle (if we understand it aright) to that lately introduced into Ireland ; that lords should be responsible for thieves who fud refuge on their lands, and make restitution to the poor who have been plundered by them ; that courts of justice should be established in the remoter parts of the country, nuch as Elgin and Inveruess, in order to avoia the expense attendant on the transfereace of pleas to the metropolis, and, to provide for their maintenance, the numneries in that quarter to

[^24]be abolishod and their erenues sequestrated, the reason given being-
"Thir wanton nuns are na ray nccessamr Till common-weill, nor yet to the glorie Of Christis kirk, thoclit they bo fat and fair, And als that fractile order feminine Will nocht be missit in Clurist's religion."
No less stringent and sweeping are his propoals for the reform of the church. The religion of Clirist must be purged of all deceit and hypecrisy. The consistorial courts are to have no jurisdiction in matters temporal. No clergyman is to be admitted to office unless duly qualified in learning and piety. Celibacy is to be abolished. Bishops and priests must be compelled to preach regularly and "take better tent to souls under their dominion." Beacices are not to be purchased either from prince or pope, nor is money to be permitted to go to Rome for bulls and pleas. Pluralities and patronage are to be abolished, residence is to be enforced, and the people are to have a veice in the choice of their spiritual guides. Iu fact many of Lyndsay's proposals of reform liave quite a modern look, and this perbaps explains in some degree the long-continued popularity of his works among bis countrymen, which otherwise it is rather difficult to account for. They bave oone of the chivalric spirit-stirring power of many of our ancient songs and ballads, none of the tender love and melancholy which form the charm of Burns's lyries, none of the jeyous abandun of convivial or amorous ditties, and none of the fascination which springs from well-constructed tales or narrative poems, like tlose of Chaucer or Scott. It is difficult to suppose that even the humour which perrades them, seldom of the most refined kind and often very much the reverse, can have been in any great degree pleasing to readers of a later age than the author's own. The only explanation, we suspect, is that Lyndsay's intense and uncompromising love of liberty, his struag sympathy with the poor, his love of justice, his keen hatred of tyranny, wrong, and oppression, and his shrewd common sense easily found a responsive chord in Scottish bosoms. Nor was the interest which his works so long retained among the Scottish peasantry merely of a sentimental kind. For many of the evils against which he directed his serercst invectives continued long afterwards to aflict his country, and even when somewhat changed in their aspect still reappeared in analogous forms or character. Prelatic usurpation and cruelty were as rife as ever in the century which succeeded that in which Lyndsay wrote ; aristocratic venality and heartlessness have perbaps even yet lardly ceased out of the land ; churcll patronage, always hateful to religiens-minded Scotsmen, was hardly abolished before it was reimposed. And then such incidents as the massacre of Glencue, the uniou with England, a measure intensely disliked by the great mass of the Scoitish people, the infamous treatment of the Darien coluuization scheme, the barbarities which followed the two Jacobite rebellions, the deprivation up to 1832 of any true parliamentary representation, and the continuance of close municipal and trade corporations, all tended to keep up a bitter sense of wrong to which Lyrdsay's satires gavo point and expression.

The best accessible editions of Lyndsay's works are those of Georne Chalmers, in 3 vols., London, 1806 , and of David Laing, also in 3 vols., Elinburgh, 1879. These, with the Early English Text Society's edition, leavo little to be desired for the establishment of a correct text, and for purely autiquarian illustration. In Wartou's History of English Poct y , and in Irvincr's History of Scottisin Poetry, grood critical estimatcs will be found of Lyndsay's place as a poet. It is possible, however, that sometbing yet remains to be dono in order to determine his exact position as a great political and religious reformer, and to illustrate the effect which his works have had in directing lopular feeling and opinion in Scotland.
(J. T. BR)

LYNN, a city in Essex county, Massachusetts, U.S., situated near the north end of Massachusetts Bay, on a harbour formed by the peninsula of Nahant, 10 miles north-east of Boston, with which it is connected by differeat lines of railway. The bulk of Lynn is built on the low grounds near the sea; but in the north-east the elevation is greater, and behind the city proper there is a range of porphyritic hills dotted with villas. Most of the houses are of wood, thosa of the main thorough fare-Market Street-of brick. The city hall, a substantial erection of brick and brown stene, is considered one of the finest buildings of its class in New England. It contains the free public library, founded in 1862, and numberiug 29,126 volumes in 1880 . It was at Lynn that the first smelting-works in this part of the country were established, in 1643; hut the place has long been famous rather for the making of boots and shoes, a department, indeed, in which it has hardly a rival in the world. This trade was introduced in 1750 by a Welshman, John Adam Dagyr ; in 1 T 67 the output was 80,000 pairs ; in 1810 , 1,000,000 pairs ; in 1865, $5,360,000$; in 1868 upwards of $10,000,000$; and in 1830, 16,276,380, 一the greater proportion being cheap shoes for women and children. About twelve thousand hands are employed, though labour-saving machinery is freely introduced. Another industry of great local importance is the tanning and dressing of sheep and goat skins, and the making of morocco leather. The population was 6138 in 1830, 14,257 in 1850, 28,233 in 1870, and 38,284 in 1880.

The foundation of the town belongs to 1629 ; and the name was given in memory of Lynn Regis iu England, the home of its first pastor. It obtained incorporation as a city in 1850 ; Swampscott and Nahant, which it then included, were rendered independent in 1852 and 1853 respectively.

LYNN REGIS, King's Lynn, or Lyns, a parliamentary and municipal borough and seaport of Norfolk, England, is situated on the Great Ouse, about 2 miles from the Wash, and on several railway lines, 100 miles north of London and 48 west-north-west of Norwich. On the land side the town was formerly defonded by a fosse, and there are still considerable remains of the old wall, including a handsome Gothic structure, known as the "South Gates." The streets are generally narrow and winding; some of the dwelling-houses are very ancient. The public walks form a fine promenade, and in the centre of them stands a quaint octagonal chapel called the Red Mount, at one time much frequented by pilgrims. The church of St Margaret's, formerly the priory church, is a fine Gothio building with two towers at the west end, one of which was formerly surmounted by a spire blown down in 1741 . St Nicholas chapel, at the north end of the town, is also of medirval date, and contains many interesting memorials of the past. All Saints church is a beantiful snd ancient cruciform structure. At the grammar school, founded in the reign of Henry VIII., Eugene Aram was st one time usher. There are also national achools, a British school, and several charities. Among the other public buildings are the guildhall, with Renaissince porch, the corn exchange, the custom-house, and the athenæum. The shipping trade is steadily progressing, and thers is now regular steam communication with Hamburg. The principal exports are corn, wool, and oilcake, and the principal imports, coal, timber, linseed, and manufactured goods. The total value of the exports in 1880 was $£ 1,152,456$, the average for the four years $1876-79$ being $£ 967,958$, and for four years $1872-75 \propto 519,479$. The value of the exports in 1880 was $£ 366,649$, the avarage value for 1876-79 being £251,491, and for 1872-75 £140,974. The Alexandra dock, opencd in 1869, has a water arca of $6 \frac{3}{3}$ acres, with an average depth of 31 feet. The fishcrics of the town are important, and there are also breweries
corn-mills, iron and brass foundries, agricultural implement manufactories, shipbuilding yards, rope and sail works, and tobacco manufactories. The population of the borongh in 1871 was 16,562 , and in 1881 it was $18,475$.

Lynn is supposed to have been a British town, and was known as a port befora the Norman invasion, after which it becanue the possession of the bishops of Norwich, and was known as Lynn Episcopi. After the suppression of the monasteries il cance into the hands of Henry VIII., and its name was changed to Lynn Regis or King's Lynn. The town was taken by the parliamentary forces in 1643. It received its first charter from King John, but its first governing charter from Henry VIII. Since the 23d of Edward I. it has returned two members to parliament.

LYNX, a dame now appropristed to several animals forming a small section of the cats or genus Felis. It is not quite certain to which of these, if to any of them, the Greek name $\lambda i ́ \gamma \xi$ was especially applied, though it was mere probably the caracal than any of the northern species. The so-called lynzes of Bacchus were generally represented as resembling panthere rather than sny of the species now known by the name. Various fabulous properties were attributed to the animal, whatever it was, by the sncients, that of extraordinary powers of vision, including ability to see through opaque substances, being one; whence the epithet "lynx-eyed," which has survived to the present day, although having no foundation in fact.

There are two forms of cats which are now called lynxes.

1. The caracal or Persian lynx, Felis caracal, an animal about the size of a fox, is of slender build, with a moderately long tail, reaching down to the heels. It is of a uniform vinous or bright fulvous brown colour above, and is paler, semetimes almost white, beneath. It is quite or almost entirely unspotted. The tail has a black tip, and the ears are black externally, long and upright, pointed, and surmounted by a pencil of fine black hairs, It inhabits Central and North-West India, Pérsia, Arabia, Syria, and the greater part of Africa.
2. The name lynx is given to various species or varieties of animals found in the northern and temperate regions of both the Old and New World, all of moderate size, that is, smaller than the lions, tigers, and leopards, and larger than the true cats, with long limbs, short stumpy tail, ears tufted at the tip, and pupil of the eye linear when contracted. Their fur is generally long and soft, varying, however, according to season and locality, and always longish upon the cheeks. Their colour is alwass light brown or grey, and generally more or less spotted with a darker shade. The naked pads of the feet are more or less covered by the hair that grows between them. The skull and skeleton does not differ markedly from those of the other cats, but the smsll anterior upper premolar tooth found in many other species is usually wsnting. Their habits are 'exactly those of the other wild cats; they sre excelled by none in the untamesble ssrageness of their disposition. They capture their prey in the same manner, either lying in wait, or noiselessly stealing within reach, and then making a sudden rush or spring upon it. Their food consists of any mammals or birds which they can overpower.
In inhabited countries they commit extensive rarages upon sheep, lambs, and poultry. They generally frequent rocky places and forests, being active climbers, and passing much of their time among the branches of the trees. Theirskins are of considerable commercial value in the fur trade.

Zoologists are by no means agreed st present as to the speeific distinctions, if any really exist, between the varions modifications of this group. As many as eight species are sometimes recognized, four belonging to the Old and four to the New World. Tle former are Felis lymx, of Scandinavia, Russia, norihern Asia, and till lately the forest regions of central Europe (it has not inhabited Britain during the historic period, but its remsins have been found
in cavo deposits of Pleistocene age); $F$. cervaria, Siberia; F. pardiun, Turkey, Greece, Sicily, Sardinia, and Spain; and $F$. iscbellina, Tibet. The American varieties are $F$. cuncudensis, the most northern species, and $F$. ruffe, the


European Lyrux. From a Drawing by Wolf in Elliot's Monograph of the liclida.
Americau wild cat or bay Iynx, extensively distributed from the Atlantic to the Pacific throughout nearly the whole latitude of the United States, but replaced in Texas and sonthern Califoroia by F. maculata, and in northern Oregon and Washington territory by $F$. fasciata.
In both cases, as might be supposed, specimens obtained from the more southern climates are shorter in their fur, more brigltly coloured, and mote distinctly spotted than those from colder regions. When only a few individuals of each most markedly different form are exanined the distinctions are sufficiently evident. The occurrence, howerer, of transitional or intermediate forms makes it extremely difficult to draw the line between the different varieties or species, or to assign defnite characters by which they can be separated. Wherefore it is best at present to accept the so-called species as only provisional, and wait until more abundant materials, with fuller knowledge of the localities from which they are derived, and of the variations due to age, sex, season, and climate, have been more carefully studied. We shall then probably come to the conclusion that all the existing forms of northern lynees, whether American or Eurasian, belong to what may fairly be called a species, which is becoming by degrees difiereutiated into several more or less strongly marked local varietics.
(W. H. F.)

LYONS (French, Lyon), in political, commercial, industrial, and military importance, as well as in point of size, the second city of France, formerly the capital of Lyonnais, and now the chief town of the department of Rhone, seat of a court of apneal and of a military government, and a fortified place, is situated at the confluence of the Rhone and the Saône, in $45^{\circ} 46^{\prime} \mathrm{N}$. lat. and $4^{\circ} 49^{\prime} 19^{\prime \prime}$ E. long., at an altitude abore the sea varying from 540 to rather more than 1000 feet. The population of the city and liberties in 1876 was 342,815 . The rivers, both flowing south, are separated by the hill of Croix-Ronsse. On the right the Saône is bordered by the scarped heights of Fourvières, St Irénće, and Ste Foy, leaving room only for the quays and one or two narrow streets; this is the oldest part of the city. Where it enters Lyons the Saône has on its right the faubourg of Vaise and on its left that of

Serin, whence the ascent is made to the top of the hill of Croix-liousse. The river next takes a semicircular sweep around the hill of Fourvicres ( 410 fect above it), which is fnlly occupied by convents, lospitals, and seminaries, and lias at its summit the famous church, the resort of $1,500,000$ pilgrims annually. From this point the best view of the entire city is obtained. First the busy Saône is seen with its thirteen bridges and animated quays. Nest, on the peninsula betwcen the tro rivers at the foof of tho hill of Croix-liousse, come the priucipal quarters of


1. Pone St Clolr.
2. Pint Jlorand.
3. Pout du College.
4. Pont Lufayctic.
5. Port de l'Huteĺ Dien. f. Pont de la Guilloliere
7.) Ponts Napolion.
6. Pont du Mulaticire.
7. Pollt $\mathrm{a}^{\prime}$ Ainns.
8. Pust St Gcorges
9. Punt Tilste.
10. Pont du Palais Justice.
11. Port Nemours. 18. Pont de Serin. 16. I'ont dy Port Jooton. 17. Pont de la Gare. 18. Jaruin des Plantes. 19. St I'ulycarןe. 20. Condirion dics Soles. 21. In Murtiniele. 22. Opera House. 23. Hütel de Ville. 24. Palals des Arts. 25. Lyeéc. 20. Bourse. 27. Protestant Church.
12. Notre Dome de Four. vieres.
13. Polais re Justice.
14. St John's Clurch.
15. Hosplce da l'Ans qnallte. 32. Jewish Synagogoe. 33. Iloltel Vieu. 34. Hospice de la Clarile 35. Église d'Alnay. 36. Great Seminary. 37. St Just. 38. St Irénée 38. St Irenée
16. Arscaal.
the town: the Terreaux, containing the hôtel de ville, the prefecture, and the chief comonercial establishments; Bellecour with its large open square, one of the finest in Europe ; and the aristocratic Quartier de Perrache. The Rhone and Saône furmerly met here, till, a hundred years ago, the sculptor Perrache reclaimed from the rivers the quarter which bears his name; on the peninsula thus formed stands the principal railway station. Here too are the docke of the Saûne, factories, the arsenal, gas-works, prisons, and the slaughter house.

The Rhone, less confincd thau the Sâ̂ne, lloris swiftly in a wide channcl, broken when the water is low in spring by pebbly islets. On the right liand it skirts first St Clair, sloping upwards to Croix-Rousse, and then the districts of Terreaux, Bellecour, and Perrache; on the left it has a low-lying plain, subject to disastrous inundations, occupied by the Parc de la Têto d'Or and the quarters of Brotteaux and Guillotiere. The park, defended by the Grand Camp embankment, comprises 282 acres, and contaias a zoological collection, botanical and pharmaceutical gardens, and the finest greenhouses in France, with unique collections of orchids, palm-trees, and Cycadacex. Brotteaux is a modern town with bonlevards and regular streets, and in this direction Lyons is extending every year. In the old districts there is no room for growth; they are crowded with old buildings of eight or ten stories, or eren more, and it has been the task of the last thitty years to open them up by means of thoroughfares. Guillotiere, to the south, is a workmen's quarter of wretched houses.
t'he Rhone is lincd with broad quays, and crossed by ten fine bridges, two of them for railway traffic. On the right bank stand the lycée and the public library, the Hötel Dieu, the military hospital, and the Hospice de la Charité; on the left bank is the long range occupicd by the medical faculty. In the east of Guillotière the Geneva railway skirts the artillery barracks.

Northward from Fourvières appear the green slopes of Mont d'Or, descending towards the Saône by pleasant glades sprinkled with villas; to the east, beyond the somewhat monotonous plain, stretch the mountains of Savoy and Dauphine ; to the south, below the confluence of the Rhoje and the Saône, the river traverses a rich landscape to pass out of sight at the foot of Mont Pilat ; and to the west the horizon is bounded by the Forez hills.

Since 1852 the communes of Crois-Rousse and Guillotiere have been united with Lyons. The Rhone and the old fortifications, which, on the right bank of the Shôoe, stretched in an unbroken line from the rock of. Pierre Scize below Vaise to the bridge of Ainay, continued by those now replaced by the Croix-Tousse boylevard, marked the boundaries of the ancient city. The line of Croix-Rousse has now been thrown forward to the north, and further strengthened by Forts Caluire and Montessuy. On the left bank of the Rbone stand Forts Tête d'Or, Charpennes, Brotteaux and Part-Dieu, Villeurbanne, Lamotte, Colombier, and Vitriolerie. On the right bank of the Saône Forts Sie Foy, St Irénée, Loyasse, Vaise, and Duchere completed the defensive system of Lyons previous to 1870 ; but since that date the dominant points of the neighbourhood have begun to be crowned with batteries and redoubts; but only Forts Brou and Feyzin on the left bank of the Rhone, St Genis on the right bank. Mont Verdun on Mont d'Or, and Vencia are finished.

Of the ancient buildings in Lyoos, Fourvieres is the one which attracts most visitors. It derives its name from the ancient forum (Forum vetus), whose site it occupies. The first chapel, dedicated to the Virgin, was erected in the end of the 9th century. Consecrated afterwards to St Thomas bf Canterbury, and then made a collegiate church, Notre Dame de Fourvieres was created superior of twenty-five cillages by Louis XI, on occasion of his visit in $14 \% \mathrm{G}$. Laid waste by the Protestants, plundered at the Revolution, it began to be visited again in 1804, and in 1805 Pope Pius VII., returning from the coronation of Napoleon, ascended thither to give his benediction to the city-a ceromony renewed from year to year with great pomp. The church tower, 172 feet high, is surmounted by a status of the Virgin in gilded broaze, 18 feet high, turned towards the town ; on the pedestal are bronze plates with inscriptions assigning to the Virgin the credit of ending tho
plague of 1643 , and of preserving the town during the cholera epidemics of 1832,1835 , and 1850 . The first stone of a magnificent new church was laid in 18i2. The crypt, 219 feet by 62 , is as yet the only portion fisished. At the foot of Fourvieres, on the right bank of the Saone lies the metropolitan church of St John (the archbishop of Lyons is prinate of all Gaul). The choir belongs to the carly years, the transept to the close of the 12 th century the building of the nave, carried on during the next three hurlired years, was completed only iu 1480 . In one of the two towers there is a bell weighing nearly 10 tons. To the right and left of the altar stand two crosses preserved since the council of 1274 as a symbol of the union then agreed upon between the Greek and Latin Churches. St Martin d'Ainay, in the Perrache quarter, is the oldest church in Lyons, dating from the beginning of the 6th century; the chapels of the apse aro adorned by paintings by Flandrin. St Nizier, in the heart of the city, was the first cathedral of Lyons; and the crypt in which St Pothious officiated still exists. The present church is a Gothic edifice of the 15 th century, with the excention of the porch, constricted by Philibert Delorme. In the crypt of the church of St Irenæus are the tomb of that saint and a rast quantity of boncs, alleged to he those of 19,000 martyrs put to death in the persecution of Severus. The Place Bellecour is adorned west and east by twe monumental façades originally erected after plans by Mansard, but destroyed in 1793, and rebuiit under the consulate in a somerhat modified style. In the middle stands an equestrian statue of Louis XIV. by Lemot. The Ruc de l'Hôtel de Ville, connecting the Place Bellecour and the Place des Terreaus, and the Rue de la Sepublique running parallel with it are among the finest strects of the modern city. The east side of the Place des Terreaux (so called from the "terreaux" now occupying the place of the canal which formerly connected the Rhone and the Saône) is formed by the hôtel de ville, which, however, turns a better front in the opposite direction towards the theatre; the south is occupied by the Palais St Pierre (formerly a convent), which gives accommodation to the faculties of science and litcrature ${ }_{3}$ and to the school of fine arts, the picture gallery, the museums of sculpture, archæolory and natural history, and the art library. In the Rue de la Republique, betweer. Place de la Bourse and Place des Cordeliers, each of whict contains one of its highly ornamented fronts, stands the building occupied by the exchange and the commercia? court. The former has its offices on the ground floor round the central glass-rooied hall ; besides the court, the uppes stories accommodate the conacil of 'prud'hommes, the chamber of commerce, and the industrial museum. The palais de justice, a fine building with a Corinthian colonnade, on the right bank of the SaGne, occupies the site of the palace of the counts of Forcz. A statue of Jacquart the inventor stands in Place Sathonay, and ono of Marsha* Suchet in Place Tholozan.

The Academy of Lyons bas the five faculties of Catholif theology, science, literature, medicine and pharnacy, anc law, with two lyceums, and a number of schools; and the Catholic institute has threo faculties-law, science, and theology. The school of fine arts was founded in the 18 th century to train competent designers for the textile manu factures, but has also done much for painting and sculpture. The reterinary school of Lyons, instituted in 1761, was tho first of its kind in Europe ; its laboratory for the study of conparative physiology is admirably equipped. ' L'Ecole la Martinière (founded by the legacy of Claude Martin), furnishes gratuitous teaching of the sciences and industria? arta. The school of commerce and the Lyons central school completo the list of instituticos for industrial education.

Besides the Académie des Sciences, Belles Leettres, ct Arts (fornded in 1700), Lyons possesses societies of agriculture, natural listory, useful arts and sciences, geography, and horticulture.

The Hôtel Dren, anstituted in the beginning of the 6th century by King Childebert, is still one of the chief establishments of its kind in the city, and contains 929 beds. Its façade, fronting the Quai du Phone for 1060 feet, was commenced according to the designs of Soufflot, architect of the Pantheon at Paris. The Hospice de la Charité and the military hospital are a little larger than the Hôtel Dieu. The Hospice de l'Antiquaille, at Fourvieres ( 2000 beds), occupies the site of the ancient palace of the pretorian prefects, in which Germanicus, Claudins, and Caracalla were born. Lyons has many other benevolent institutions, and is also the centre of the operations of the Propagation de la Foi.

The museum is one of the best provincial collections in France, alike in its ancient, mediæval, and modern departments. Among the Gallo-Roman inscriptions, in which it is particularly rich, are the bronze tables discovered at lyons in 1528, which contain the speech of the emperor Clandius in regard to the admission of the citizens of Gallia Comata into the Roman senate. The numismatic collection ( 30,000 pieces) includes a series of the coins struck ot Lyons from 43 b.c. to 1857. There is a special gallery of works of Lyonese painters; and the Bernard collection of about 300 pictures is kept entire.

The museum of natural history (for which a new building is to be erected in the Parc de la Tête d'Or) contains a zoological department ranking next to that of Paris, and mineralogical, geological, and anthropoldgical sectionsthe last enriched with specimens from the classic site of Solutré (Saône and Loire). The museum of art and industries, founded in 1864 by the chamber of commerce, is divided into three sections, the first intended to illustrate the various conceptions of the beautiful formed by different peoples, the second to show the whole method of the textile industry, and the third to give an historical conspectus of woven textures. The Guimet Museum, in a special building in the Tête d'Or, consists of objects brought from the extreme East (mainly by M. Emile Guimet) and designed to facilitate the comparative study of religions, especially those of the Eastern world. Since 1880 the institution has published its Annales, consisting of original essays or translations of foreign werks.

The library of the school of arts contains 65,000 volumes and 22,000 engravings, and the town library 108,000 volumes and 1300 manuscripts,-about 600 of the printed works being iucunabula, and 25 of the MSS. belonging to the Carlevingian period. In the latter institution is the great terrestrial globe made at Lyons in 1701, indicating the great African lakes, the rediscovery of which has been one of the events of the present century.

Under the Romans Lyons vas admirably provided with water. Three ancient aqueducts on the Fourvieres level, from Montroman, Mont d'Or, and Mont Pilat, can still be traced; and the last was no less than 52 miles long, aod capable of supplyiog $11,000,000$ gallons per day. Magnificent remains of this work may be seen at St Iréné and Chaponost. Traces also exist along the Rhone of a subterranean canal conveying the water of the river to a naumachia. At present the water supply of Lyons is obtained from the Rhone by powerful hydranlic cogines situated above the town, which raise the water to the Montessay and the Fourvières plateaus, 458 feet above the low level of the river. The reservoirs are capable of supplying $1,765,829$ cubic feet of water fer day.
Agrippa made Lyons the starting-point of the principal Roman roads throughout Gaul; and it atill remaias an
important centre in the general system of communication The Saône above the town and the Rhone below have large barge and steamboat traffic; and the latter river above the town may be used by steamboats during summer as far as Aix in Savay. Navigation, however, is often interrupted, ereu below the town, by the lowness of the water, and a canal is projected to remedy this defect. The current of the Saône is less rapid than that of the Rhone, and is controlled by weirs.

The railway from Paris to Marseilles has two stations (Vaise and Perrache) in Lyons; and the line from Lyons to Geneva two (Brotteaux and St Clair). The Montbrison line starts from St Paul, on the right of the Saône. The terminus of Part-Dieu for the newly-opened East of Lyons line is between Perrache and Brotteanx. Within the town there are two rope railways, -the first mounting to Fourvieres, and the second, popularly called the ficelle, from Ine Terme to Croix-Rousse.

In a city of such importance as Lyons the number of industries is naturally large, but by far the most extensive of them all is the silk manufacture. Derived from Italy, this industry rapidly developed under the patronage of Erancis I., Henry II., and Henry IV.; and from time to time new kinds of fabrics were invented-silk stuffs woofed with wool or with gold and silver threads, slawls, watered silks, poplins, velvets, satinades, moircs, \&c. In the beginning of the present centary Jacquart introduced his famous loom by which a single warkman was enabled to produce elaborate fabrics as easily as the plainest web, and by changing the "cartoons" to make the most different textures on the same looms. In the 17 th century the silk manufacture employed at Lyons 9000 to 12,000 looms. After the revocation of the edict of Nantes the number sauk to 3000 or 4000 ; but after the Reign of Terror was past it rose again about 1801 to 12,000 . At present there are about 70,000 in operation when no great commercial crisis comes to diminish production, giving emplayment to about 140,000 weavers. There are also a large nutrber of persons engaged in the silk-worm hatcheries established in I'rance. The workmen live for the most part in the Croix-Rousse quarter, but many of them inkabit the outskirts. The mean anoual value of the silk goods mannfactured is estimated at $375,000,000$ francs ( $£ 15,000,000$ ) , - $250,000,000$ representing the value of the raw material and $125,000,000$ the value of the labour. Including the purchase of raw materials and the sale of the manufactured goods, the silk trade gires a total turnover of 1000 million francs ( $£ 40,000,000$ ). A special office (known as La Condition des Soies) determines the weight and nature of the silk. Extensive dye-works, chemical works, brewories, pork factories, engineering works, printing establishments, and hat factories represent the secandary industries of the place. A large trade is carried on in chestnuts brought from tho neighbouring departments, and known as marrons de Lyon.
The carliest Gallic occupants of the territory at the confluence of the Rhone and the Saône were the Segusians. In 590 B.c., some Greek refugees from the banks of the Hérault, having obtained permission of the natives to establish themselves beside the Croix. Rousse, called their new town by the Gallic name Lagdunum; and in 43 B.c. Munatius Plancus brcught a Foman colony to Fourviéres from Vienne. This settlement soon acquired importance, and was, made by Agrippa the starting point of four great roads. Augustus, besides building aqueducts, temples, and a theatre, gave it a ${ }^{\prime}$ senate and made it the sent of an annual assemhly of deputies from the sixty cities of Gallia Comata. Under the emperors the colony, of Forum Vetns and the municipium of Lugdanum were united, receiving the jus senatus. The town was burnt by Nero in 59 A.D., and afterwards rebuilt by him in a much finer style ; it was also adorned by Trajan, Adrian, and Antoninus. The martyrdom of Pothinus and Blandina occurred under Marcus Aarelius ( 177 A.D. 2 。 and in 197 a still more savago persecution of the Christians took place under Septimitus Severus, in which Irenens, according ta'
some authors, perished. After having been ravaged by the harbarians and abandoned by the empire, Lyous in 478 became capital of the kingdom of the Burgundians. It afterwards fell into the hands of the Franks, and suffered severely from the Saracens, but revived under Charlemagne, and after the death of Charles the Bald was made the capital of the kingdom of Provence. From 1024 it was a fief of the emperor of Gemuauy. Subscquently the superiority over the town was a subject of dispute between the archbishops of Lyous and the counts of Forez; but the royal supremacy was finally established under Louis IX. and Philip the Handsome. The citizens were constituted into a comanno ruled by freely elected coinsuls (1320). In the 13 th century two ecclesiastical councils were held at Lyons-one in 1245, presided over by Innocent IV., at which the emperor Frellerick Il. was deposed; the secoud, the cecumeuical, under the presidency of Gregory X., in 1274, at which five hundred bishops met. Pope Clement V. was crowned here in 1305, and his snccessor John XXII. elected in 1316. The Protestants obtainell possession of the place in 1562 ; their acts of violence were fiercely avenged in 1572 after the St Bartholomew massacre. Under Henry 111. Lyonssided with the League; but it pronounced in favour of Henry IV. In 1793 it rose against the Convention, but wan compelled to yield to the army of the republic after enduring a siege of seven weeks (October 10). Terrible chastisement ensued: the name of Lyons was m.qnged to that of Ville-affranchie; the demolition of its buildings was set about on a wholesale acale; and vast numbers of the proscribed, whom the scaffold had spared, were butchered with grape shot. Prie town resumed its old nanie after the fall of Robespietre, and the terrorists in their turn were drowned in large numbers in the Rhone. Napoleon rebuilt the Place Bellecour, reopened the churches, and made the bridge of Tilsitt over the Saône between Belleconr and the cathedral. In 1814-15 Lyons was occupied hy the Austrians, under the government of Louis Philippe, and in 1870-71 there were several bloody émeutes; in 1856 a disastrous flood laid waste the Brotteaux and rendered 20,000 persous homeless. An internatioual exhibition was held here in 1872. Among the many distinguished natives of Lyons nay be mentioned Germanicus and the emperors Clandius, Marcus Aurelius, and Caracalla; Ampere the physieist; Richerand, Ré. canier, and Bonnet; De Jussieu the naturalist, J. B. Say the economist, Bareme the mathematician, Suchet the marshal, Roland the Girondin, and Jacruard the inventor.
(G. ME.)

LYONS, Edmund Lyons, Lord (1790-1858), British admiral, was descended from a fanily connected with Ạ̣tigua, and previously with Cork, and was born at Burton near Christchurch, Hampshire, 21st November 1790. He entered the navy at an early age, and served in the Mediterranean, and afterwards in the East Indies, where in 1810 he won promotion by distinguished bravery. He became post-captain in 1814 ,and in 1828 commanded the "Blonde " frigate at the blockade of Navarino. He took part with the French in the capture of the castle of Morea, receiving for his conduct the orders of St Levis, of France and of the Redeener of Greece. Shortly before his ship was paid off in 1835 be was knighted. From 1840 till the outbreak of hostilities with Russia Lyens was employed on the diplomatic service, being minister plenipotentiary to the court of Greece until 1849 , then until 1851 ambassador to the Swiss cantens, whence he was transferred to a similar position at Stockholm. On the outbreak of the war with Russia he was appointed second in command of the British fleet in the Black Sas under Admiral Dundas, whom he succeeded in the chief command in 1854. As admiral of the inshere squadron he had the direction of the landing of the treops in the Crimea, which he conducted with marvellous energy and despatch. According to Kinglake, Lyons shared the "intimate counsels" of Lord Raglan in regard to the most momenturs questions of the war, and throughout the Crimean campaign he toiled, with a "painful consur ::'g passion," to guard against disaster, to clear away overpoovering difficulties and obstacles, and to win the final purpose of the expedition. His actual achievements in battle were principally two-the support he rendered with his guns to the French at the Alma in attacking the left flank of the Russians, and the bold and brilliant part he took with his ship the "Agamemnon" in the first bembardment of the forts of Sebastopol ; but his constant vigilance; bis multifarious activity, and his suggestions sad counsels wero muck more advantageous to the allicd
cause than his spccific exploits. In 1855 be was created vice-admiral, and at the conclusion of the war he was, in June 1856, raised to the peerage with the title of Lord Lyons of Christchurch. He died November 23, 1858.

LyRa, Nicolaus pe (c. 1270-1340), a well-known medixval commentator, was a native of Lyre, near Erreux, Normandy, and was bern nost probably about 1270; at least he was still young when in 1291 be entered the Franciscan order at Verneuil. He afterwards studied at Paris, and became doctor of theology and a auccessful teacher there. In 1325 he became provincial of his order for Burgundy; and on October 23, 1340, he died at Paris.
Lyra (Lyranus) was the author of a coutroversial treatise against the Jews, entitled Dc Messia, ejusque adventu prexcrito, and of a Tractalus de idonco ministraute ct suscipientc sancti allaris sacranen. tum, but by far his most important work is the Tostille perpectuæ, sivc brevia commentaria in unierysa Biblia, frst printed at Rome ( 5 vols. fol., $1471-72$ ), and often subscquently. It may bos said to mark the firat beginnings of a sclool of natural exegesis; for, though recognizing the old doctrine of a fourfold acnse-
"Litera gesta docet, quid credas allegoris,
Moralls quid agas, quo tendas enagogia"
Lyra explicitly maintained aud songht to give effect to the principle that the foundatiou of every mystical exposition must first be firmly laid by ascertainiug the literal meaning. His qualities as an intcrpreter of Scripture included, besides comparative freedom from doginatic prepossession, a good knowledgo of Hebrew and a fair acquaintance with Greek. Luther was acquainted with his commentaries, and it is through the influence of Rashi upon Lyra that so many traces of the exegesis of that rabbi are found in Luther's writings ; hence the oft.quoted sayiug, "Si Lyra noo lyrasset, Lutherus non saltasset." See vol. xi. p. 601.
LYRE. Of all musical instruments the lyre has been the most associated with poetry, the recitations of Greeks having been accompanied by it. Yet the lyre was not of Greek origin; no roet in the language has been discovered for $\lambda$ v́pa, altheugh the special names bestowed upon varieties of the instrument are Hellenic. We have to seek in Asia the birthplace of the genus, and to infer its introduction into Greece through Thrace or Lydia. The histeric heroes and improvers of the lyre were of the Eolian or Ioman colonies, or the adjacent coast bordering on the Lydian empire, while the mythic masters, Orpheus, Musæus, and Thamyris, were Thracians. Notwithstanding the Hermes tradition of the invention of the lyre in Egypt, the Egyptians seen to have adopted it themselves from Assyria or Babylonia.
To define the lyre, it is necessary clearly to separate it from the allied harp and guitar, both, as far as we have record, instruments - as great antiquity. In its primal form the lyre differs rom the harp, of which the earliest, simplest notion is found in the bow and bowstring; while the guitar (and lute) can be traced back to the typical "nefer" of the fourth Egyptian dynasty, the fretted finger-board of which, permitting the production of different notes by the shortening of the string, is as different in conception from the lyre and harp as the flute with holes to shorten the celumn of air is frem the syrinx or Pandean pipes. The frame of a lyre consists of a hellow body or gound-hest ( $\bar{j} x \in \boldsymbol{\epsilon} \boldsymbol{y}^{\prime \prime}$. From this sound-chest are raised twe arms ( $\pi \dot{\eta} \chi \in \epsilon 5$ ), , ;bich are sometines hollow, and are bent both outward and forward. They are bound near
 baving once becn a reed, кádapos). Another crossbar ( $\mu$ 'yas, ímodipıov), fixed on the sound-chest, forma the bridge which transmits the vibrations of the strings. The dcepest note was the farthest from the player ; but, as the stringa did not differ much in length, more weight may have been gai : d for tho deeper notes by thicker st $\cdot \mathrm{ngs}$, as in the violin and similar modern instruments, .ey were tuned with slacker tension. The strings were never of wire, the drawing of which was unknown to the mations of antiquity, but of gut ( $\chi$ oo $\delta \dot{\eta}$, whence chord). They were
stretched between the yoke and bridge, or to a tailpicee below the bridgc. There were two ways of tuning: one was to fasten the strings to pegs which might be turned (ко́d>aßot, ко́d入oтes) ; the other was to change the place of the striug upon the crossbar; probably both expedients were simultancously employed. It is doubtful whether 7 Xnpסotoras meant the tuaing key or tho part of the inst-unent whero the pegs were inserted. The extensions of the arms above tho yoke were known as кє́pata, homs.

The number of strings varied at different epochs, sad poszibly in different localitics,-four, soven, and ten laviny beeu favourite numbers. They mere, as already said, used ivithout a finger-board, no Greek description or representation laving ever boen met with that can be construed as referring to one. Nor was a bow possible, the flat soundboard being an insuperable impediment. The plectrum, however ( $\pi \lambda \hat{\eta} \kappa \tau \rho o v$ ), was in constant use at all times. It was held in the right band to set the upper strings in
 liung from the lyre by a ribbon. The fingers of the left gaud touched the lower strings ( $\psi a ́ \lambda \lambda_{\epsilon}$

With Greck authors the lyre has several distinct names; but we are unable to connect these mith anything like sertainty to the varieties of the instrument. Chelys (xédus, "tortoise") may mean the smallest lyre, which, borne by one arm or supported by the knees, offered in the sound-chest a decided resemblance to that familiar animal. That there. was a difference between lyre and cithara (кı笈a) is certain, Plato and uther writers séparating them. Hermes and Apollo had an altar at Olympia in common becanse the former had invented the lyre and the latter tho cithara. Perliaps the lyre and chelys on the one hand, and the cithara and phorminx on the other, were similar or nearly identical. Apollo is said to have carried a golden phorminx. But lyre has always been accepted as the generic name of the family, and under-


Fio. 1.-Chelys, lrom a vase in the British Museum, where also are fragments of such an instrument, tho back of which is of shell. stood to include all varieties. The large lyre was supported by a strong ribbon slung over the player's shoulder, passing through holes beneath the yoke in the arms of the instrument, and canght by the player's left hand, the ends hanging in a sasid-like fashion. This cithara, or, it may be, phorminx
 able lyre"), is frequantly, by the vase painters, de. lineated as so held, -the plectruma, attached by another ribbon, being represented, when not in $\mathrm{use}_{2}{ }^{\text {a }}$ as
 pendent, or as in-Fro. 2.-Cithgra or Pharminx, from a vase in terleced between the British Museum Best perintaf Freek the stringe art.
Passing by une story of tne discovery of the lyre trum. librating fortoiso-shell by Hermes, wo will glance at tho
real lyres of Egypt and Semitic Asia. The Egyptian Iyre is unmistakably Semitic. The oldest representaion that has been discovered is in one of the tombs of Beni IIassau, the date of the painting being in the 12th dynasty, that is, shortly before the invasion of the shepherd kings. In this painting, which both Rosellini and Lepsius have reproduced, an undoubted Scmite carries a seven or eight stringed lyre of fan-shaped form. The instrument lias a four-cornered body and an irregular four-corneted frame abore it, and the player carries it horizontally from his breast, just as a modern Nubion would his kissar. Ho plays as he walks, using both lands, a plectrum being in the righto This ancient lyre, dating 2000 B.C., exists to this day in a remarkable specimen preserved in the Berlin Muscum (fig. 3), and is found again in form as well as in manner of holding in the Assyrian lyre of Khorsabad. During the rule of the shepherds the lyre became naturalized in Egypt, and in the 18 in dynasty it is frequently depigted, and with finer grace of form. In the 19th and 20th dynasties thelyre
 is sometimes still more slender, or Fig. 3.-Egyptian Lyre naw at Berlia. Draw is quite unsymby permission of Director-General Schöne." metrical and very strong, tho horns surmointed by heads of animals as in the Berlin one, which has horses' heads at those extromities. Prokesch copied one in the ruins of Wadi Halfa, splendid iu blue and gold, with a serpent ronnd ronnd it. . The Egyptians always strung their lyres fan-shaped, like the modern Nubian kissar. Their paintings shers three to eight or nine strings, but the painters' accuracy may not be unimpeachable; the Berlin instrument had fifteen. The threestringed lyre typified the three seasons of the Egyptian year-the water, the green, and the harvest; the seven, the planetary system from the moon to Saturn. The Greeks had the same notion of the harmony of the spheres. !

There is no evidence as to what the stringing of the Greck lyre was in the heroic age. Plutarch says that Olympus and Terpander used but three strings to accompany their recitation. As the four strings led to seven and eight by doubling the tetrachord, so the trichord is connected with ithe hexachord or six-stringed lyro depicted on so many archaic Greek vascs. We cannot insist on the accuracy of this representation, the vase painters being so little mindful of the complete expression of details; yet we may suppose their tendency would be rather to imitate than to invent a number. It was their constant practice to represent the strings as being damped by the fingers of the left hand of the player, after having been struck by the plectrum which he held in the right liand. Before the Greek civilization had assumed its historic form, there was likely to be great frcedom and independence of different localities in the matter of lyre stringing, which is corroborated by the antique use of the chromatic (half-tone) and enharmonic (quartertone) tunings, pointing to an early exuberance, as in languace when nations are young and isolated, and perhaps also to an Asiatic bias towards refinements of intonation, from which came the xpóa, the bues of tuning, old Greek modifications of tetrachords entirely disused in the classic period. The common scale of Olympus

remained, a double trichord which had served as the seaffolding for the enharmonic varieties.

We may regarl the Dlympus scale, however, as consisting of two tetrachords, clidiug oue interval in each, for the tetrachord, or
series of four notes, mas rery ently adopted as the [umbamenta] principle of Greck music, and its oricrin in the lyre itself apuars sure. The bisis of the tetradiond is the cmployment of the thimb and first three fingers of the left land to twang as many strings, the little finger not being nsed on account of natiral weakiness. Is a succession of there whole tones would form the disnemecable and Butunable interral of a tritomas, two wholo tones and a half-tom? were tunch, fixing the tetrachond in the consonant interval of thi perfect fourtl. This succession of fon notes being in the grasp of the lanu! was called oundaßy, just as in language a group of lettens incapable of further reduction is callen syllable. In the combination of two syllables or tetrachords the madern diatome scales resemble the Greek so-called disjunct seale, but the Greeks linew nothing of onr categorical distinctions of major and minor. We might call the octave Crreck scale minor, accowling to nur descent. ing minor form, were not the kegnote in the nisllle the thmo note of the decper tetrachord. The wiaper tetracliond, whether starting from the keynate (conjunct) or from the note above (disjunct), was of exactly the same form as the lower, the position of the semitones being identical. The scmitone was a linma ( $\lambda \in \hat{i} \mu \mu \alpha)$, mother less than the senitone of our modern equal temprerament, the Greeks tuning both the whole tones in the tetrachord by the same ratio of $\mathcal{E}: 9$, which marle the major third a dissomance, or yather wonld have done so had they combined then in what we call harmony. In melodions sergeuce the Greek tetrachord is deciledly more agrecable to the ear than the correspondiag scries of onr equal temnerament. And although our scales are derived from combined 'rachords, in any system of tuning that we employ, be it just, mean-tone, or equal, they are less logical than the conjunct or disjunct systems accepted by the Greeks. But modern harmony is not compatible with them, and could not have arisen on the Greek melodic lines.

The conjunct scale of seven notes

attributed to Terpander, was long the norm for stringing and tuning the lyre. When tbe disjumet scale

the octave scalc attributed to Pythagoras, was admitted, to preserve the time-honoured seven strings one note had to be omitted; it was therefore enstomary to omit the C , which in Greek practice was a dissonance. The Greck names for the strings of seven aud eight stringed lyres, the first note being highest in pitch and nearest the player, were as follows:-Ncte, Paranete, Paramese; Mcse, Lichanos, Parhypate, Iypate ; or Nete, Parancte, Trite, Paramesc; AIcse, Lichanos, Parhypate, Hypate, -the last four from Mese to Hypate being the finger tetrachord, the others touched with the plectrum. The highest string in pitch was called the last, $\nu \in$ átn ; the lowest in pitch was called the highest, inár $\eta$, lecause it was, in theory at least, the longest string. The keynote and thumb string was $\mu$ é $\sigma \eta$, middle ; the acxt lower was dixavos, the first finger or lickfinger string; $\tau \rho / \tau \eta$, the third, being in the plectrmm division, was also known as $\dot{\delta \xi \in i a}$, sharp, perhaps from the dissonant quality which we lave referred to as the causo of its omission. The plectrum anil finger tetrachords together were $\delta, a \pi \alpha \sigma \bar{\omega} \nu$, through all ; in the disjunct scale, an octave.

In transcribing the Greck notes into our notation, the absolute pitch cannot be represented; the relative positions of the semitones are alone determined. We have already quoted tho scalc of Pytlagoras, the Dorian or true Grecis succession :-


Shifting the semitono one degree upwards in each tetrachord, wo have the Phrygian


Another degrec gives tho Lydian

which would bo our major scalc of $E$ were not the keryote $A$. The names imply an Asiatic origin. We will not pursuo further the much debated question of Greek scales and their derivation; it will suffice here to remark that the outside notes of tho tetrachords were fixel in their tuning as perfect fourths,--tho inner strings being, as stated, in diatonic sequence, or when claromatic two half.
tones were tumed, when enharmonic two quarter-tnes, $i$ avis. respectively the wile intervals of a minor and major thime al h hode impure, to complete the tutrachomd.
(.1. J. II.)

LYRE-BITD, the name Ly which one of the ninss remarkable feathered inhabitants of $\Lambda$ ustralia is cummonly known, the Menure superbu or 1 . nona-hollundiat of ornitholugists. First discovered, January 24, 179s, on the other side of the river Nepean in New South W!ales by an exploring party from Paramatta, under the leidership of one Wilson, a single cxample was brought into the suttlement a fow days after, and though called by its findere a "I'Leasant"-from its long tail-the more learned of the colony secm to have regarded it as a Bird-of-Paradise. ${ }^{1}$ A spccimen laving reached England in the following year, it was described by General Davies as forning a new genus of birds, in a paper read Lefore the Linncan Fociety of Londun, Novenıer 4, 1800, and subsequently published in that Society's Trunstations (vi, p. 207, pl. xxii.), no attempt, however, being made to fix its systomatic place. Other examples were soon after reccired, hnt Latham, who considered it a Gallinaceous bird, in 1S01 knew of only five having arrived. The temporary cessation of hostilitics in 1802 permitted Fieillot to vecome acquainted with this form, though not apparently with any published notice of it, and he figtred and described it in a supplement to bis Oisecucx Dorés as a Bird of Paradise (ii. pp. 30 sr,; pls 14-16), from drawings by Sydenham Edwards, sent bime by Parkinson, the manager of the Leverian Museum. ${ }^{2}$

It would be needless here to enter at any length on the various positions which have been assigued to this singulaz form by different systematizers-who had to judge merely from its superficial characters. The first to describe any portion of its anatomy was Eyton, who in 1811 (Ann. Nat. ITistory, vii. pp. 49-53) perceived that it was truly a member of the Order then called Insessores, and that it presented some points of affinity to the South Americars genus Pteroptoclus; ${ }^{3}$ but still there mere many who could not take advantage of this step in the right direction. In 1867 Professor Huxley stated that he mas disposed to divide lis very natural assemblage the Coracomorphx (essentially identical with Eyton's Insessores) into two groups, "one containing Memura, and the other all the other genera which have yet been examined" (Proc. Zool. Soc., 1867, p. 472 ) - a still further step in adrance. 4 . In 1875 the present writer put forth the opinion in this mork. (Breds, vol. iii. p. 47I) that Memzra had in ally in another Australian form, Atrichia (sec Screb-Brnd), which be had found to present peculiarities hitherto unsuspected, anc accordingly regarded them as standiug by themselves though each constituting a distinct lamily. This opinior was partially adopted in the followins year by Carrod, who (Proc. Zool. Society, 1876, p. 5IS) formally ulaced these

## ${ }^{1}$ Collias, Account of New South Hales, ii. pp. S7-92 (Loudon,

 1502)."Vieillot called the bird "Le Par",jason" ! und heoce Bechstcin, whe seems to have been equally ignorant of rebat had hees publisbed its England concerning it, in 1811 (fiurze Telersicht, \&c., p. 134), designated it Parkinsoniles mirabilis!! Shaw also, prior to 1813, figured it (tVab, Ariscellany, xiv. p. 577) unter the mame of Paradisen parkinsoniana. The name "Jentera lyra, Shaw," was quoted by Lesson is 1831 (Tr. a'Omithologic, p. 473 ), and has been repeated by mant copyists of syaonymy, but the present vritut cannot finat that such i name was ever applial hy Staw. Vieillot's principal figure (ut supra Which hats a common origin wi'? that givea by Collins, has been exten sively copied, in spite of its ioartistic not to say inaccurate drawing. It is deciledly inferior to that of Davies (ut supru), tho original describer and delineator.
${ }^{3}$ He subsequently (Osteol. Avium, 1p. 97, 9S, pl, 3, F and I.l, 14 described and figurel the skeleton.

S Owing to the imperfection of the specimen at his dispoval, Professar Huxley's brief description of the bones of tho lread in lfenure ia not absolutcly correct. A full description of them, with elaborate figures, is given ly Professor l'arker in the same Society's Transactions (ix fl. 306-308, pl. lvi, figs. 1-5).
two genera together in his group of Abnormal Acromyodian Oscines under the name of Menurinx; but the author sees no reason to change his mind, and herein he is corroboratcd by Mr Sclater, who has recently (Ibis, 1880, p. 345) recognized at once the alliance and distinctness of the Families Menuride and Atrichiidx, forming of them a group which he calls Pseudoscines.

Since the appearance in 1865 of Gould's Mandbook to the Birds of Australia, little if any fresh information has been published concerning the habits of this form, and the account therein given must be drawn upon for what here follows. Of all birds, says that author, the Menura is the most shy and hard to procure. He has been among the rocky and thick "brushes"-its usual haunts-hearing its loud and liquid call-notes for days together without getting sight of one. Those who wish to see it must advance only while it is occupied in singing or scratching up the earth and leaves; and to watch its actions they must keep perfectly still-though where roads have been made through the bush it may be more often observed and even approached on horseback. The best way of procuring an example seems to be by hunting it with dogs, when it will spring upon a branch to the height of 10 feet and afford an easy shot ero it has time to ascend further or escape as it does by leaps. Another method of stealing upon it is said to be practised by the natives, and is attained by the hunter fixing on his head the erected tail of a cock-bird, which alone is allowed to be seen above the brushwood. The greater part of its time is said to be passed upon the grouad, and seldom are more than a pair to be found in company. One of the habits of the cock is to form small ronnd hillocks, which he constantly visits during the day, mounting upon them and displaying his tail by erecting it over his head, drooping his wings, scratching and pecking at the soil, and uttering various cries-some his own natural notes, others an imitation of those of other animals. The wonderful tail, his most characteristic feature, only attains perfection in the bird's third or fourth year, and then not until the month of June, remaining until October, when the feathers are shed to be renewed the following season. The food consists of insects, especially beetles and myriapods, as well as snails. The nest is always placed near to or on the ground, at the base of a rock or foot of a tree, and is closely woven of fine but strong roots or other fibres, and lined with feathers, around all which is heaped a mass, in shape of an oven, of sticks, grass, moss, and leaves, so as to project over and shelter the interior structure, while an opening in the side affords entrance and exit. Only one egg is laid, and this of rather large size in proportion to the bird, of a purplish-grey colour, suffused and blotched with dark purplish-brown. ${ }^{1}$

Incubation is believed to begin in July or August, and the young is hatched about a month later. It is at frst covered with white down, and appears to remain for some weeks in the nest. How much more is needed to be known for a biography of this peculiar and beautiful creature may be inferred by those who are aware of the diligence with which the babits of the much more easily observed birds of the northern hemisphere have been recorded, and of the many interesting points which they preseat. It is greatly to be hoped that so remarkable a form as the Lyre-bird, the nearly sole survivor apparently of a very ancient race of beings, will not be allowed to become extinct-its almost certain fate so far as can be judged-without many nore observations of its manners

[^25]being made and fuller details of them placed on record. The zoologists of Australia alone can do this, and the zoologists of other countries expect that they will.

Several examples of Menura have been brought alive to Europe, but none have long survived in captivity. Indeed a bird of such active labits, and requiring doubtless facilities for taking riolent exercise, could not possibly be kept long in confinement until the method of menageries is vastly improved, as doubtless will be the case some day, and, we may hore, before the disappearance from the face of the earth of forms of vertebrate life most instructive to the zoologist.

Three species of Menura have been iudicated-the old M. superba, the Lyrc-bird proper, now kuown for more than eighty years, which inhabits New South Wales, the southern part of Queensland, and perhaps some parts of the colony of Victoria; $M$. victorix, separated from the former by Gould (Proc. Zool. Soc., 1862, p. 23), and said to take its place near Melbourne; and MF. alberti, first described by C. L. Bonaparte (Consp. Avium, i. p. 215) on Gould's authority, and, though discovered on the Richmond river ia New South Wales, having apparently a more northern range than the other two. All those have the apparent bulk of a hen Pheasant, bat are really muob smaller, and their general plumage is of a sooty brown, relieved by rufous on the chin, throat, some of the wing-feathers, and the tailcoverts. The wings, coasisting of twenty-one remiges, are rather short and rounded; the legs $^{2}$ and feet very strong, with long, nearly straight claws. In the immature and female the tail is somewhat long, though affording no very remarkable character, except the possession of sisteen rectrices; but in the fully-plumaged male of M. superba and Mr. victoria it is developed in the extraordinary fashion that gives the bird its common English name. The two exterior feathers (fig. l, $a, b$ ) have the outer web very narrow, the inner very broad, and they curve


Fig. 1. at first outwards, then somewhat inwards, and near the tip outwards again, bending round forwards so as to present o lyre-like form. But this is not all; their broad ianer web,


Fig. 2.


Fig. 3.
which is of a lively chestnut colour, is apparently notched at regular intervals by spaces that, according to the angle at which they are viewed, seem either black or transparent; and this effect is, on examination, found to be due to the barbs

[^26]at those spaces being destitute of barbules. The middle pair of feathers (fig. 2, $a, b$ ) is nearly as abnormal. These have no outer web, and the inner web tery narrow; near their base they cross each other, and then diverge, bending round forwards near their tip. The remaining twelve feathers (fig. 3) except near the base are very thinly furnished with barks, about a quarter of an inch apart, and those they possess, on their greater part, though long and flowing, bear no barbules, and hence have a hair-like appearance. The shafts of all are exceedingly strong. In the male of $M$. alberti the tail is not only not lyriform, but the exterior rectrices are shorter than the rest. (A. N.)

LYSANDER was the leading spirit of Lacedæmonian policy at the end of the Peloponiesian War. He is said by Ælian and Athenæus to have been of servile origia, and by Plutarch to have belonged to a Heraclid family. His father was named Aristoclitus or Aristocritus. He first appears in history when sent to command the fleet on the Ionian coast in 407 b.c. The story of his skilful diplomacy, of his influence with Cyrus the younger, of his naval victory at Notium, of his quarrel with his successor Callicratidas in 406 , of his reappointment in 405 , of the decisive victory at Egospotami, and of the capitulatiou of Athens in 404, belongs to the history of Greece. After his return to Sparta his pride and vanity became beundless; he was celebrated by poets, and even worshipped in seme places as a god. The restraint of life in Sparta, and the enemies whom he had there, were irksome to him, and he soon went to Asia Mivor. He had established in all the Greek cities associations which maintained an oligarehical government, and his power over them was so great as to increase the jealeusy felt for him at home. He was recalled to Sparta, and the machinations of the Persian satrap Pharnabazus bronght him into danger. He had soon after the triumph of being sent with an arny to support the oligarchy in Athens; but the king (Pausanias) was sent after him with a second army, and made terms with the restored Athenian democracy. When King Agis died in 398, Lysander worked to secure the succession for Agesilans, but after two years he found that he had helped his most dangerons enemy. He began to concert revolutionary schemes, but had not proceeded to any overt act when he was sent with an army inte Boeotia. He did not wait the arrival of Pausanias with an auxiliary army, but attacked Haliartus, and was slain in the battle, 395 B.o. He was buried on the road from Delphi to Chæronea, and a monument was erected on his tomb. It is to his credit that, after the power and opportunities he had enjoyed, he died a poor man.

LISIAS, whose name follows those of Antiphon and Andocides on the list of the ten Attic orators, marks an important stage in the development of Greek literary prose, and is, in his own province, one of its most perfect masters. He never acquired the Athenian citizenship, but nost of his years were passed at Athens; and his life has the interest of close personal association with the most eritical period in the history of the Athenian democracy.
His extant work belongs to the space from 403 to 380 B.C., but the date of his birth is uneertain. Dionysius of Halicarnassus, and the author of the life ascribed to Plutareh, give 459 b.c. This date was evidently obtaincd by reckoning back from the fonadation of Thurii ( 444 b.c.), since there was a tradition that Lysias had gone thither at the age of fifteen. Modern critics would place his birth later,-between 444 and 436 в.c.,-because, in Plato's Repallic, of which the seene is laid about 430 b.c., Cephalus, the father of Lysias, is among the drematis personx, and the emigration of Lysias to Thurii was said to have followed his father's death. The latter statemont, kowever, rests only on the Plutarehic lifo : nor can Plate's
dialogue be safely urged as a minutely aecurate authority for a biographical detail. We must be content to say that, while the modern view avoids some difficulties, the higher date assigned by the ancient writers is not inconsistent with any ascertained fact, while it agrees better with the tradition that Lysias reached, or passed, the age of eighty. On the other view, all traces of his industry, previously unremitting, would cease abruptly at the age of sixty-six
Cephalus, the father of Lysias, was a native of Syracuse. On the invitation of Pericles he had settled at Athens as a "resident"alien" ( $\mu$ érocoos). The openigg scene of Plato's Republic is laid at the house of his eldest soa, Polemarchus, in the Peirens. Cephalus complains that the visits of Socrates have been rare of late, and expresses the hope that he will come oftener, and without ceremony, as to intimate friends. The tone of the picture warrants the inference that the Sicilian family were well known to Plato, and that their houses must often have been hospitable to such gatherings as the Republic supposes. Thus we hare an indirect, but very interesting, confirmation of the phrase used by Dionysius in regard to Lysias-" he grew up in the society of the most distinguished Athenians."

At the age of fifteen-when Cephalus, according to the Plutarehic life, was now dead-Lysias remored frum Athens to Thurii, the Athenian colony newly planted on the Tarentine Gulf, near the site of the ancient Sybaris. There the boy may have seen the historian Herodotus, another of Thurii's early residents,-now a man in middle life; and it pleases the imagination to think that, in their new Italian home, a friendship may have grown up between these two, neither of them an Athenian by birth, yet alike in a simple grace which Athens loved, and alike also in the love which they bore to Athens. At Thurii Lysias is said to have commenced his studies in rhetoric,--doubtless nnder a master of the Sicilian school,-possibly, as tradition said, under Tisias, the pupil of Corax, whose name is associated with the first attempt to formulate rhetoric a3 an art. In 413 b.c. the Atheniad armament in Sicily suffered that crushing disaster which at the moment seemed to imperil the existence of Athens itself. The desire to link famous names is euriously illustrated by the ancient ascription to Lysias of a rhetorical exereise purporting to be a speech in which the captive gencral Nicias appealed for merey to the Sicilians. The terrible blow to Athens quickened the energies of an anti-Athenian faction at Thurii. Lysias and his elder brother Polemareluns, with three hundred other persons, were "accused of Atticizing"
 circumstances, implies an bonourable loyalty. They were driven from Thurii.
Lysias and Polemarehus now settled at Athens ( 412 b.c.). They were rich men, having inherited property from their father, Cephalus; and Lysias claims that, thongh merely resident aliens, they discharged public services with a liberality which shamed many of those who enjoyed the franchise
 In Eratosth., § 20). The fact that they owned house property shows that they were classed as igotedeis, i.e., foreigners who paid only the same tax as citizens, being exempt from the special tax ( $\mu$ стоіккоу) on resident aliens Polemarchus occupied a house in Athens itself, Lysias another in the Peireus, near which was their shield manufactory, employing a hundred and twenty skilled slaves. This life of comparative peace and prosperity was broken up by the defeat of Athens at Egrospotami ( 405 ' b.c.). In the next spring Athens surrendered to Lysander. Theé Thirty Tyrants were established at Athens under the protection of a Spartan garrison. Onc of their earliest measures was an attack upon the resident aliens, who were represented as disaffected to the new government. As fereign residents
successful in commerce, the Attic metnilioi were exposed at rach a time to perils like those of the Jews in a medixval sity, or in modern Russia. Lysias and Poleanarchus were pn a list of ten siagled out to be the first victims. Polemarchus was arrested, and received "the usual
 ${ }^{6}$ to drink the hemlock." Ljsias had a narrow escape, with the help of a large bribe aad a lucky accident. He slipped by a back-door out of the houso in which he was a prisoner, and took boat to Megara.

After the expulsion of the Thirty Tyrants, the demecracy sas formally restored ia the autumn of 403 e.c. Lysias appears to lave readered valuable services to the exiles during the reign of the tyrants, both by his own liberality and by procuring aid from other quarters. Thrasybulus 3ow proposed that theso services should be recognized by the bestornal of the citizenship. The propasal happened to be informal in one particular. The senate of five hunHred had not yet been reconstituted, and hence the measure sould not be introduced to the ecclesia by the requisite "preliminary resolution" ( $\pi \rho \circ \beta$ oúdev $\mu a$ ) of the senate. On this ground it was snccessfully opposed; and Lysias missed the reward which he had so well earned. That passage of Lis 'Oגvдтtaкós (§ 3) iu which le claims to give advice as a good citizen seems to breathe the feeling that, if he was still but an alien at Athens, he was at least a true zrolín $n$ s of Greece.

The last chapter of his life now opens. He is no loncrer the wealthy merchant, superintendiag his shield manufactory in the Peiræus. The pillage by the tyrants, and bis own generosity to the Athenian exiles, had probably left him poor. He now appears as a hard-working member of a new profession, - that of writing speeches, to be lelivered in the law-courts. The thirty-four compositions extant under his name are but a small fraction of those which the ancient world posse§sed. From 403 to about 380 b.c. lis industry must have been great and incessant. The notices of his personal life in these jears are scanty. In 403 he came forward as the accuser of Eratosthenes, one of the Thirty Tyrants, and delivered the splendid.oration which we possess. This was his only direct contact with Athenian politics. The story that Lysias wrote a defeuce for Soerates, which the latter decliued to use, probably arose from a confusion. Several years after the death of Socrates the sophist Polycrates composed a declamation against him; and to this Lysias replied with a defence of the philosopher. A more authentic tradition represents Lysias as having spoken his own "Olympiacus" at the Dlympic festival of 388 b.c. The occasion was one of peculiar interest. Dionysius I., tyrant of Syracuse, had scat to the festival a magnificent, embassy. Tents embroidered with gold were pitched within the sacred enclosure ; and the wealth of Dionysius was vividly brought before the minds of the Panhellenic concourse by the number of chariats which be had entered for the most castly and brilliant of the Olympic contests. This was che momeat at which Lysias lifted up his voice to denounce Dionysius as, next to Artaxerxes, the worst enemy of Hellas, and to impress upon the assembled Greeks that one of their furemost duties was to deliver Sicily from a hateful oppression. The latest work of Lysias which we can date (is fragment of a speech "For Pherenicus") belongs to 381 or 380 b.c. He probably died in or seon after 350 b.c.

The qualities of the man are expressed in his work; indeed, it is through this, rather than through the recorded facts of his biography, that be becomes a living persen to ans. It is a kindly and genial nature which we see reflected there, -warm in friendship, 1oyai to country, --win a keen perception of character, and a fine, though strictly consrolled. sense of humour. The literary tact which is so
remarkable in the extant speeches is that of a singularly flexible intelligence, always obedrent to an instinct of gracefulness. Among the earlier artists of Greek prose Lysias orves his distinctive place to the power of concenling his art. The clieuts of the professiounl "speceh-writer," like those of the modern adrocate, might be of all sorts and conditions. The mudern alvocate, howewer, speaks in his own person. The Athenian "logugrapher" mercly wrote the speech which his client delivercd. It was obviously desirable that such a speech should be suitable to the age, rtation, and circuanstances of the person into Whose mouth it was put. Lysias was the first disciple of Greek rbetoric who succeeded in making this adaptation really artistic. He aimed, not merely at impressive effect in eloquence, pathos, or argument, but at dramatic juropriety. Hence it. was alsolutely essential for him to abandon the stiff and monotonous sulendour of the earlier and cruder rhetoric. He could not achieve his purposeunless he brought his art into bermony with the ordinary idion of everyday life. His client must appear to be speaking as the citizen, who was not a professed rletorician, might conceivably speak. Lysias achieved this reconciliation witlı a skill which can be best appreciated if we turn from the easy flow of his graceful languago to the majestic emphasis of his predecessor Antiphon, or to the self-revealing art of his successor Isreus. Translated into terms of ancient criticism, the achievement of Lysias is described by saying that he became the model of the
 genus tenuce or subtile). From the latter part of the $4!4$ century b.c. onwards, Greek, and then Roman, critics distinguished three styles of rhetorical compesition-the "grand" (or "olakorate"), the "plaia," and the "middle." These epithets were relative to the language of daily life,-the "plain" being nearest to this, and the "grand" furthest from it. Greek rhetoric began in the "grand" style; then Lysias set an exquisite pattern of the "plain"; and Demosthenes might be cousidcred as Laving effected au almost ideal compromise. We moderrs perhaps camot fully seize that nameless and undefinable grace (xa.pıs) of Lysias which the Greek critic of the Augustan age indicates in such strikiag mords :-
"Then I am puzzled about one of the speeehes ascribed to him," says Dionssius, "and when it is hard for me to find the truth by other marks, I lave recourse to this excellence, as to the last piece on the board. Then, if the graces of speeeli seem to me to mako the writing fair, I count it to be of the sonl of Ihysias; and I care not to probe the question further:. But if the stamp of the language has $n 0$ winningness, no loveliness, $I$ an chagrined, and suspect that, after all, the sleeelh is not by Lysias; and 1 do no more
 thongh in all else the speech seems to me clever and well finished,believiug that to write well, in special styles other than this, is given to many men, but that to write winuingly, gracefully, with loveliness, is the gift of Lysias" (Dionys., Dc Lys., ii.).

The more salient traits of the Lysian style can be' recognized by all. The vocabulary is pure and simple: Most of the rhetorical "figures" are spariagly used, except such as consist in the parallelism or opposition of clauses. The taste of the day, -not yet emancipated from the influeace of the Sicilian rhetoric, - probably demanded a large use of antithesis as an essential condition of impressive speaking. Lysias excels in vivid description; he has also a happy knack of marking the speaker's character by light touches. The structure of his senteaces varies a good deal according to the dignity of the subject. He has equal command over the "periodic" style
 (єiроцє́v, Sta $\lambda \in \lambda \nu \mu$ '́ $\eta$ ) -using now one now the other, or bleading them, according to circumstances. His disposition of his subject-matter is always simple. The specell has usually four parts, - introdnction ( $\pi \rho o o i \mu t o v$ ), barrati:"*
 axternal, as from wituesses, or interual, derived from argument on the faets, and, lastly, conclusion (éridoyos). It is in the introduction and the narrative that Lysias is seen at his best. In his greatest extant specel-that "Against Eratosthenes"-and also in the fragmentary "Olympiacus," he has pathos and fire; but theso were not characteristic qualities of bis work. In Cicero's judg. ment, Demosthenes was peculiarly distinguished by force (vis), Æischines by resonnace (sonitus), Hyperides by acuteness (acrmen), Isoerates by sweetncss (surbritas); the distinction which he assigus to Lysias is sublilitas, an Attic refinement, -which, as lee elsewhere says, is often joined to an admirable vigour (lacerti), (Cic., De Or., iii. 7, § 28 ; Brutus, § 6t). The judgment is interesting as showing how a Roman critic of unquestionable compctence recegnized the peculiar place of Lysias in the development of Greek oratury. Nor was it oratory alone to which Lysias rendered service ; his work had an important effect on all subsequent Greek prose, by showing how perfect elegance could be joined to plainness. Here, in lis artistic use of familiar idiom, he might fairly be called the Juripides of Attie prose. And his style has an additional charm for modern realcrs, becauso it is employed in describing scenes from the everyday life of Athens. ${ }^{1}$

Thinty-four specelies (of which tluee are frachnentary) have come down under the name of Lysias ; no lewer than one hundred and twenty-seven more, now lost, are known from smaller fragments or from titles. In the Augustan age four hundred and twenty-five works bore his name, of which more than two buadred were allowed as genuine by the erities. The enornous number of ascriptions indicates that Lysias was reputed to have been a fertile writer: Our thirty-four works may be classified as follows :-
A. Eprpeictrc.-1. Olympiacus, xxxiii., 388 r.e.; 2. Epitaphius, ii. (purporting to have been spolen during the Corinthian War; certainly spuious), perhaps composed about $350-340$ d.c.
B. Deliberative.- Pea for the Constitution, xxxiv., $403 \mathrm{~B} . \mathrm{C}$.
C. Foreasic, in Public Calses.-1. Riclating to Openecs
 ticreson, malversation in office, cmbczalement of mublic moneys. 1. For Polystintus, xx., 407 b.c.; 2. Defence on a Charge of Taking Brihes, xxi., 402 b.c.; 3. Against Ergocles, xxvii., 389 B.c.; 4. Against Epicrates, xxvii, 389 B.c.; 5. Against N゙icomaclms, xxx., 399 d.c.; 6. Against the Corndealers, xxii., 386 в.c. (?) I1. Cause relating to Unconstitutional Proccdurc ( $\gamma$ рaф̀ лараvúpwv). On the Property of the Brother of Nicias, xviii., $395 \mathrm{~B} . \mathrm{C}$. 1 II . C'rascs rolating to Clains for Money withlucld from the Stric (a $\pi$ (oypaфal). 1. For the Soldier, ix. (probably not by Lysias, but by an imitator, writing for a real cause), 394 b.c. (?) ; 2. On the Property of AristoJlanes, xix., 387 B.c.; 3. Against Philocrates, xxix., 389 д.c. IV.
 by the Sciette, of Oficials Desigizalc. 1. Against Evandrus, xivi., 382 b.c.; 2. For Mantithens, xvi., 392 b.c.; 3. Against Philon, xxxi., betwenn 404 and 395 B.c.; 4. Defence on a Cliarge of Sceking to Abolish the Demneracy, xxv., 401 n.c.; 5. For the lnvalid, xaiv., 402 b.c. (?) V. Cruses relaling to Mililary Offcuces (rpapai 入ıtoтa$\xi$ (ou, ḋбтpartias). 1. Against Alcibiades, I. and Il. (xiv., xv.), 395 v.e. V1. Cenescs relating to Murder or Intent to Murder
 xii., 403 в.c.; 2. Against Agoratus, xiii.; 399 в.C.; 3. On the Murder of Lratostlenes, i. (clate uncertain) ; 4. Against Simon, iii., 393 B.c.; 5. On Wounding with Intent, iv. (date uncentain). Vl. Canses relating to Impicty ( $\gamma p a \varphi a l$ dacßeías). 1. Against Andociles, vi. (certainly spurious, but uerlaps contemporary) ; 2. For Callias, v. (date uncertain); 3. On the Sacred Olive, vii., not loefore 395 n.c.
D. Fonensic, in Phivate Cabser. - I. Aclion for Jibel (Sikr, какทroplas). Ag̣ainst Tleomuestus, X . $384-3$ n.o. (the so-callen] seconlil specch, xi., is merely an epitome of the first). 11. Aefion by a Warl ryainsl a Guardian (oíkn ETırponîs). Against Jiognton,
 On the Preperty of Eraton, xvii., $39{ }^{-1}$ b.e. IV. Ausuce lo a Special Plea (rрds rapaypaфíy). Against l'ancleon, xxiii. (dato nucertain).

Fi. Miscellaveuus,-1. I'o his Compnaions, a Complaint of slameters, viii. (certainly spurious); ?: The epworkos in Plato's Phactures, 1p. 230 E. 234 . This has srenually been

[^27]regarded as Plato's own work; bat the cerranuty of this conclusion will be doubted by those who observe (l) tho elaborate preparations mate in the dialogue for a recital of the Epwrikós which shall be rerbelly cxacl, and (2) the closeness of the criticism made upon it. If the satirist wero merely analysing his own composition, sueh criticism would have little point. Lj'sias is the earliest writer who is known to bave composed 'ewrakof; it is as representing both Ihetoric and a fulse épos that he is the object of attack in the Plexdrus.
F. Fragsiexts.-Three hundred and fifty-five of these are collected by Sallpe, Oratores Allici, ii. 170-216. Two bundred and fifty-two of them represent one Iundred and twenty-seven speeches of known title ; and of six the framnents are comparatively liuge. Of these, the fragmentary speech "For I'lerenicus" belongs to 381 or 380 n.r., and is thus the latest known work of Lysias.

In literary and listorical interest, the first place among the extiut sjecches of Lysias belongs to that "Agrainst Eratosthenes" ( 403 B.C.), one of the Thirty Tyrants, whom Lysias arraigns as the murderer of his brother Polemarchus. The speech is an eloquent and vivid picture of the reign of terror which the thirty established at Athens; the coucluding appeal, to both parties among the citizens, is especially joweriul. Next in importance is the speech "Against Agoratus" (399 B.C.), one of our chief anthorities for the internal history of Athens during the months which inmediately followed the defeat at Egospotami. The "Olympiacus" (388 B.e.) is a brillianl fragnent, expressing the spirit of the festival at Olym1ia, and exhorting Greeks to unite argainst their common focs. The "Plea for the Constitution " ( $403 \mathrm{~B}, \mathrm{C}$.) is interesting for the manner in which it argnes that the wellbeing of Athens-now stripped of empire-is homd nj) with the maintenance of democratic principles. The speech "For Mantitheus" (392 B. O.) is a graceful and animated portrait of a young Athenian im $\pi \in$ ós, making a spirited defence of $^{\text {a }}$ lis lionom' against the clange of disloyalty. The defence "For the Invalid " is a humorous character-sketch. The speech "Against Pancleon" illustrates the intimate relations between Athens and Platrea, while it gives ns some picturesque glimpses of A thenian town life. Thedefence of the person who bad been charged with destroy. ing a moria, or sacred olive, places us amidst the country life of Attica. And the spreech "Against Theomnestus" deserves attention for its curions evidence of the way in wbich the ordinary rocabulary. of Athens had changed between 600 and $400 \mathrm{~B} . \mathrm{C}$.
All IISS. of Lyslas yet collated have been derived, as H. Sauppe first showed, from the Cortex Palatinus $X$ (Heidelberg). The next most veluable MS. is the Laurcnianus C (15th century), which 1. Bekser chicfly followed. Speaking pencl rally, we may say that these two MSS, are the only two which earny much weight where the text is seriously corrupt. In orall. i.-lx. Beklser occusionally consulted cleven other MSS.. most of which contain only these nino speecles: viz., Marciant F, G, I, $K$ (Venice); Laurentianl D, E (Florence); Vaticani $\mathrm{MI}_{1} \mathrm{~N}_{\text {; }}$ 1'aisini U, Y ; U'lunas O.
Lyslis in Oratores Altici, ed. I. Bekker, 1823; ed. G. S Dobson, with varlorum notcs, 1S:8; ed. J. G. Bajtel and Jemman Sauppe, 185n. In Teubner'a serics, ch. Carl Scheive, 1.st ed. 1832, 2d ed. (based on C. L. Kayser' collation of X), 1876. Text, cd. Couct, 1863. Selections from Lysias and Eschines, ed. Brem, 1826. Selections from Lysias, ed. lauchenstein, $1864 ;$ cd. Frohberger, 1869 ; ect. Jeut, in Sclections from the Allic Orators, 1850. German translation, with notes, by Baur (1869); and of selcctions, by W'estermaan (1869). (R. C. J.)
LYSLMACHUS, son of Agathoeles, a Thessalian in the service of Philip of Macedon, was burn about 361 i.v. During Alexander's campaigns he was one of his immediate bodyguard; he distinguished himself in India, and was appointed a trierarch when Alexander constructed his fleet on the Hydaspes. After the death of Alezander, Lysimachus was appointed to the government of Thraca and the district about the Chersonese. For a long time the Odrysians under their king Seuthes caused him so much tronble that he could tako very little part in the struggles of the rival satraps; bnt in 316 he joined the alliance which Cassander, Ptolemy, and Selcucus made against Antigonus. In 309 ho founded Lysimachia in a commanding situation on tho neck connecting tho Chersonese with the mainland. He followed the examplo of Antigonus in takiug the title of king. When in 302 the second allianco between Cassander, Ptolemy, and Seleucus was made, Lysimaclus, reinforced by troops from Cassander, entered Asia Minor, wherc he met with littlo resistance. On the approach of Antigonus he retired into winter quarters near IIcracica, marrying its wiôored queen A mastris, a Persian princess. Scleucus joived him in 301, and the decisive battlo was fought in tho plain of Ipsus ; Antigous was slain, and his dominions divided among the vietors, Lysimachus receiving tho greater part of Asia Minor. Feeling that Sclencus was becoming daugerously great, ho now allied himself with Ptolemy, marrying his
daughter Arsinoc. Anastris returned to Heraclea. During the absence of Antigonus's son Demetrius in Grecce, Lysimachus seized his torns in Asia Ninor and rebuilt Ephesus, calling it Arsinoe. He tried to carry bis power beyond the Danube, but was defeated and taken prisoner by the Getæ, who, however, sct him free on amicable terms. After Denietrius had entered Nacedon to help. Alexander against his brother Antipater, and by murdering the former had gained possession of the whole country, he invaded Thrace, but had to retire in consequence of a rising in Bcootia, and an attack from Pyrrhus of Epirus. In 287 Lysimachus and Pyrrhus invaded Macedon. Demetrius marched against Pyrrhus, tlinking the Macedonians would not fight against Lysimachns, one of Alexander's companions in arms; but his army went over to Pyrrhus, and he was obliged to fly. Lysimachus claimed a share of the kingdom and received it. Demetrius, crossing into Asia Minor, seized Caria and Lydia, but Agathocles, the son of Lysimachus by an Odrysian princess, was sent against him, and forced him to retreat into the territory of Selcucus, who obliged him to surrender. Lysimachus attacked Pyrrhus and Demetrius's soll Antigonus, now his ally, and forced Pyrrhus to give up part of Thessaly and the whole of Macedon. Anastris had been murdered by her two sons, and Lysimachus resolved to avenge her ; he got them into his hands on pretence of friendship and put them to death. On his return Arsinoc asked the gift of Iteraclea, and he granted her request, though he lad promised to free the city. In 284 Arsinoe, desirous of gaiuing the succession for her sons in preference to Agathocles, intrigued against him with the help of her brother Ptoleniy Ceraunus ; they accused him of conspiring with Selencus to seize the throne, and he was put to death. To remeve the disquietude of the Egyptian court, Agathucles being the husband of Ptolemy's daughter Lysandra, Lysinachus married his daughter Arsinoo to the young Ptolemy Philadelphus. The widow of Agathocles fled to Selencus, and war between the latter and Lysimachus soon followed. In 281 the decisive battle took place at the plain of Corns, the exact situation of which is doubtful; Lysimachus was killed; after some days his body was found on the field watched by a faithful dog.
lysimaclus was a man of distiuguished bravery and great personal streingtle ; ou onc occasion he lad killed a lion single-landeil, though at the cost of fearful wounds. He dill not rise to politieal importance till after the battle of 1 psus. Telacions and insatiate, lef framell schemes of aggranclisenent till his ileath, and in pussuit of the schemes his craft suggested he was rcady to sacrifice even lis own fauily.
LYSIPPUS, a Greek sculptor whose professional activity falls between the years 372 and 316 b.c. In addition to the sketch with accompanying illustrations of his style given under Archeolony (vol. ii. p. 361, figs. 9 and 11), it may here be stated that the head of Alexander the Great (fig. 11 just referred to) is now admitted to be the best existing representation of the style of Lysippus in portrait sculpture. When we read of successful portraits by him pf Socrates and Esop, as well as of Alexander, we are driven to believe that one of the forces of which he was conscions within himself was that of seizing the spiritual expression and making it illumine faces and forms which under other cunditions would be more or less repulsive. This in fact is confirmed by the head of Alexander in the British Museum (fig: 11 sumpt). But with the possession of this force it is difficult to reconcilc the tradition of his having taken as his model the Doryphorus of Polycletus, the style of which may be seen in the brunze statuette fig. 6 in the article drcheolcey, and, to a less extent, in tig. $T$ of the same article. There everything turns on the refinements of plysical form. It is adnitted that Lysippus introduced great changes in the accepted rules for the proportions of
the human figure, and from a number of sculptures traceable to his time, or shortly after his time, it is not only obvious but strikingly in contrast with earlier works that the legs are made long and massive while the body is proportionately shortened, though still retaining a very powerful rendering of the forms. Among the best examples of this are two bronze statuettes of Neptune and Jupiter in the British Museum found at Paramythia in Epirus, or, less satisfactory, the larger bronze of Hercules from Byblus, also in the British Nuseum. In these cases the limbs and various parts of the figure are studied with extreme skill worthy of the best time. Yet the combined effect is such as to do away with the impassive beauty which is ascribed to Polycletus, and to replace it with a beanty of expression so far as was consistent with powerful physical form. One of his works famed in antiquity was a bronze statuette of Hercules, called Epitrapezius, because, as the story goes, Alexander the Great carried it with him to be placed always on his table. A copy of this, in stone, enlarged somewhat from the original, was obtained by the British Nuseum from Babylonia in 1881. It is signed with the name of an artist, Diogenes, apparently otherwise unknown, and it bears clearly the evidence of having been copied from a work in bronze. But except in the face, which is carefully executed ("argutiæ operum custoditæ in minimis quoque rebus" is said of Lysippus by Pliny, Nat. Hist., xexiv. 65), the sculpture is poor and could not be quoted as illustrating any particular style of art, though not incoussistent with the characteristics of Lysippns. With reference to the marble statue of Alexander the Great in Munich, standing with one foot raised on a helmet, it is clear that this affected attitude, which occurs in several other existing statues, such as the so-called Jason in Lansdowne House, cannot fairly be traced to the invention of Lysippus, since it is to be found twice on the fricze of the Parthenou. At the same time the merit may belong to him, as las recently been claimed, of having first applied this attitude in producing a nere type of the god Neptune for his temple on the isthmus of Corinth. It was a bolder step to apply this attitude to a draped female figure as in the existing statues of the Muse Melpomene standing with one foet raised on a rock, and if this was really introduced inte art by Lysippus it would confirm to some extent his reputation for novelties of representation. But at present we cannot do more than say that he is known to have made a group of the Muses for the town of Megara; and that several statues still exist representing a Muse in an attitude corresponding with that of the Alexander in Munich, which is reasonably inferred to be a copy from a work of Lysippus. If it could be proved that in these cases Lysippus had worked upon Athenian types, we should then understand how it happens that in some respects he was in ancient times classed with the Athenian Praxiteles (Quintilian, xii. 10, 9, "ad veritatem Lysippum ac Praxitelem accessisse optime affirnant"), and is still compared with him so far as the remaining works of both, or copiea therefrom, enable a comparison to be made.
Sce Kekulé, Ueber den Kopp des Praxitclischen Hermes, Stuttgart, 1881 ; Lange, Dus Motiv des aufgcstitzter Fusses, Leipsic, 1879.

Lyte, Henry Francis (1793-1847), a well-knowa hynun-writer, was born at Kelso, June 1, 1793, received his early education in Ireland, and entered Trinity College, Dublin, in 1812, becoming a scholar of that college in the following year: Having entered deacon's orders in 1815, he for some time held a curacy near Wexford. He did not long remain in Ireland, however, chiefly because of infirm health; and, coming to England, after several clauges he finally, in 1823 , settled in the parish of Brixhan, where he laboured until fatal iilness interrupted his work. In 1844 his health, never robust,
gave way; and he died at Nice on the 20th Noveinber, 1847.

Lyte's first work was Talcs in Ferse illustrative of screral of the Petitions in the Lord's Prayer, which was completed during a period of rest at Lymington, but was not published till the year $18: 6$; it drev a word of warm commendation from a competent critic in the Noctes Ambrosiane. He next published a volime of Pocms, chicfly Religions, in 1833, and in the following year a little collection of psalms and hymus entitled The Spirit of the Psalms. These productions were drawn from various sources, but many were his own; and the ide of the book was to express, in language specially accordant with Christian experience, the leading thoughts contained in the Psalter. Probably one of the best productions of Lyte"e pen was a finely appreciative memoir of Henry Vaughan, the "Silurist," which lie prefixed to an cdition of his works. After his deatli, a volume of Remains with a menoir was published, and the poems contained in this, with those in Poems, chiefly Religious, were afterwards issued in ono volumo. In the region of pure poetry Lyte cannot bo said to have taken any special rank; refinement and pathos, rather than great imaginative power, were the chief marks of his work. As a divine ho was ove.ogelical in doctrine, but his ecelesiastical sympathies were with the Oxford school; as a preacher he was aimple, earnest, and graceful in style; but his chief claim to remembrance lies in the beauty and spiritual elevation of his hymns, some of which may be said to have become classical. The best known are "Abide with me! fast falls the eventide"; "Jesus, 1 my eross have taken"; "Praise, my soul, the King of Heaven"; and " Pleasant ars thy courts above."

LYTTELTON, George, Lord ( $1700-1773$ ), statesman and man of letters, born at Hagley, Worcestershire, in 1709, was a descendant of the great Thomas de Littleton ( $q . v$. ), and the eldest son of Sir Thomas Lyttelton, Bart., who at the Revolution of 1688 and during the following reign was one of the ablest Whig debaters of the House of Commons. Lyttelton was educated at Eton and Oxford, and in 1728 set out on the grand tour, spending considerable periods at Paris and Rome. On his return to England he sat for Okehampton, Devonshire, begianing public life in the same year with Pitt; and from 1744 to 1754 he held the office of a lord commissioner of the treasury. In 1755 he succeeded Legge as chancellor of the exchequer, but in the following year he quitted office, on which occasion he was saised to the peerage as Lord Lyttelton, baron of Frankley, in the county of Worcester. In the political crisis of 1765, before the formation of the Rockingham administration, it was at one time suggested that he might be placed at the head of the treasury, but he firmly declined to take part in any such scheme. The closing years of his life were devoted chiefly to literary pursuits. He died on August 22, 1773 .

Lyttelton's earliest publication (1735), Lellers from a Pirsian in England to his Friend at Ispahan, appdared anonymously. Much greater celebrity was achieved by his Observations on the Covversion and Apostlcshin of St Paul, also anonymous, published in 1747. It takes tlio form of a letter to Gilhert West, and is designed to show that St Paul's conversion is of itself a sufficient demonstration of tho divine character of Christianity. The drift of the argument is that it is equally inconecivable that the apostle could liave been the victim or the originator of a eleat, and that therefore he must have been divinely inspired. It is interesting to know that Dr Johnson regarded the work as one "to which infidelity has nover been able to fabricate a specious answer.' Lord Lyttelton's Dialogues of the Dead, a ereditablo performance, thongh hardly rivalling either Lncian or Landor, appeared in 1760. His History of Henry II. (1764-67), tho fruit of twenty ycars labour, is not now cited as an authority, but is painstaking and fair. Lyttelton was also a writer of rerse; his Monody on his wife'g death has been praiscd by Gray for its elegiae tonderness, and हis Prologue to the Coriolauns of his friend Thomson shows genuine feeling. Ho ray also tho autlior of the well-known atapza in the Castle of Indolenee, in which tho poet himself is sescribed. A completo collection of tho If orks of Lord Lyttelton was nublished after lis death by his nephew, G. E. Ayscongli. See M/cmoirs and Correspondence of Lord Lyllelton, 1734-1773 (2 vols., 1845)

LytTon, Edward George Earle Lytton Bulwer Lytron, baron (180:3-187:3), nowelist, (lramatis1, poet, politician, miseellaneons essayist, the most wratile writer and one of the most activerad widely disentsibe thenrizers of his generation: wan hom May 25, 1803, the youngent of
the three sons of u'eneral Bulwery of Heydon Hall and Wood Dalling, Norfolk. He was nineterin munths older than Benjamin Disraeli ; the two lives acted not a little one on the other, and offer many curious points of likeness and contrast. Bulwer's father died when he was four years old; the care of the boy devolved on his mother, one of the Lyttons of Knebworth, Hertfordshire, whose name he afterwards assumed. To this devoted and accomplished mother he always expressed the warmest gratitude for his carly training. He was not sent to a public school; he was educated privately.

In his novels and essays he often discusses the advantages and disadvantages of public schools. One thing is tolerably certain-that if he had been sent to a public school he would not have published at the age of seventeena volume of poems (Ismitel, anOriental'lale, nith other Poems, 1820). Generous sentiment and eager love of fane are more conspicuous in these juvenile productions than metrical faculty. One of the poems dwells warmly on the ancient glories of the bouse of Lytton; the volume as a whole is dedicated to "the British public-tbat generous public who have always been the fosterers of industry en genius, who have always looked forward from the imperfections of youth to the fruits of maturity." The yonthitu poet criticizes Byron from the point of view of a respectable household; but, though he seems to have been tanght to make Pope, Gray, and Collins his models, the Byronic influence is very apparent both in phrase and in sentiment. In the local colouring of the "Oriental Tale" ho gives promise, afterwards amply fulfilled, of painstaking study of his materials; and "Geraldine, or the Fatal Boon," gives a good foretasit of his fertility in the invention of romantic incident.

At Cambridge, in 1825, Bulwer won the chatcellor's medal with a poem on "Sculpture." In 1826 he printed for private circulation Weeds and Wild Flowers. In 1827 he published $O^{\prime}$ Neill, or the Retel, a romance, in heroic couplets, of patriotic struggle in Ireland, dedicated to Lady Blessington. These juvenilia, and also a metrical satire, The Siamese Trins, issued in 1831, he afterwards ignored, describing The New Timon as his first publication in verse, with the exception of his dramas and translations from Schiller.
Bulwer's first romance, Falkland, published anonymously in 1827, was in the vein of fantastic German romance popular at the beginning of the century, and did not briag him the fame that be coveted so ardently. It was otherwise with Pelham, published in the following year. In this he went with the native stream of fiction, and at oace made himself felt as a power. For troo or three years before he wrute Pelham, the books of the season had been novels of remarkable freshness and brilliancy dealing with fashionable life-Plumer Ward's now forgotten but then much-talked-of Tremaine, Theodore Hook's Sayings and Doings, Lister's Granty, Disraeli's Jivian Grey. With these brilliant celebrities Bulwer, always a chivalrous emulator of whatever was famous, entered into direct competition, and at onee became at least their equal in popular favour. If wo compare this his first hovel with any of bis last productions, he strikes us as haring attained at a bound to the full measure of his powen. That he wrote Pelham at twenty-four is a manh more remarkable fact than that he wrote ballarls at seren. The plot is not perhapsso closely woven together as in The Parisians, but the variety of character introduced from high life, low life, and middle life is quite as great. Ho had evidently been fascinated by $\mathrm{I}^{\text {tilhelm }}$ Meister, and the central purposs of his story is to run the hero through an appreaticeship liko Wilhelm's All kiads of human beings and all their works are interesting to Pellam, the man of fashion, the bustling statesman,
the selfish epicure, tho retiriog scholar, the reckless rogue and ragabond, the melodramatic Byronic man of mystery ; and his adventures are so contrived as to bring him in contact with many different types. The novel might have been called The Londoners; most of the criticisuns of life and books in England and the English, published in 1833, may be fonnd in P'elham, delivered through the mouths of various charactors. These characters aro great talkers ; no subject, from a rare dish or a nicety of cestume to a painting or a philosophical treatise, is strange to them. And, crriously enough, the judgments of the youth of twenty-four are as mature, as hate, catholic, generous, widely sympathetic, as these oi the sage of sixty-eight, and his knowledge of men and books hardly less extensive. Pelham displayed-in the literal sense of the wordextraordinary vivacity of intellect and range of interest. The author was yet to prove that with his wonderful powers of reading, observing, and reflecting was combined a faculty rarely found in union with such gifts, untiring rapidity of production. In the preface to his juvenile "Ismael," he speaks of a habit of his never to leave anything unfinished, and during his long life he began and finished many werks in many different veins. Pelham was followed in quick succession by The Disowned (1828), Devereux (1829), Paul Clifford (1830), Eugene Aram and Godolphin (1833). Bulwer was deeply impressed with German theories of art ; all these novels were novels with a purpose, meral purpose, psychological purpose, historical purpose. To embody the leading features of a period, of a phase of civilization, to trace the influence of circumstance on character, to show how the criminal may be :cformed by the development of his better nature, and how men of fine nature may be led stage by stage into crime, to explain the secrets of success and failure in life--thesa, spart from the purely dramatic object of exhibiting inward struggles between the first conceptions of desires and their fulfilment, and between triumph and retribution, were his avorred aims as a novelist. He did not leave his purposes to tho iaterpreter; he was a critic as well as a creator, and à criticized his own works frankly, and laboured to admit other critics to a fair point of view. It was perhaps a tribute to the intrinsic interest of his plets, characters, and descriptions that he was under the necessity of begging attention to these higher aims. In The Pilgrims of the Rhine (1834), a work of graceful fantasy, in which some of his most acute observations on human life are incorporated with the sayings and doings of elves and fairies, an ambitious author is made to complain that "the subtle aims that had inspired him were not perceived," and that he was often approved for what he condemned himself. The Pilgrims, charmingly written in many passages, was too German in its combination of serieus thought and mundane personages with fairies to be heartily welcomed by the English public. Bulwer was more successful in another attempt to break new ground in The Last Days of Pompeii (1834) and Rienzi (1835). No historical romances dealing with times and scenes so remote were ever more widely popular in England, and in aiming at popularity the author laboured hard to secure historical pocuracy. In Athens, its Rise and Fall (1836), see received in the form of historical essays what had probably been acquired industrieusly as materials for romance. Two romances from Spanish histors, Leila and Calderon, published in 1838, ainied at a less realistic treatment, and, with all their purely literary excellences, were not 80 popular. In Ernest Maltravers (1837) and its sequel Alice, or The 'Irysteries (1838), the novelist returned to English ground and psychelegical and social problems-"the nffiction of the good, the triumph of the unprncipled." Critics to whon he failed to make the full purpose of
these works apparent in the execution counplained of the lew tone of their merality, a fair complaint concerning mest exhibitiona of vice as a warniug.

To his other literary labours Bulwer superadded for somen time the editorship of a magazine. He succecded Campbell as editor of The Nero Monthly in 1833. In 1838 he projected a magazine called The Monthly Chronicle, and centributed to it as a serial story the fantastic romance "Zicci" The magaziae expired before the story was completed, and it was afterwards developed into Zanoni, a remance of which he was himself especially proud, and which suffered in public estimation from being tried by realistic standards.

During the most productive period of his literary life Bulwer was an emincnt member of parliament. Ho was returned for St Ives in 1831, and sat for Lincolu from 1832 to 1841. He spoke iu favour of the Reform Dilh, and took the leading part in obtaining the reduction, after vainly trying to procure the repeal, of the newspaper stamp duties. His suppert of the Whigs in parliament, and by a pamphlet on "the crisis" when they were dismissed from oftice in 1834, was considered 80 valuable that Lord Melbourne offered him a place in the administration. His intimacy with Radicsl leaders at this period exposed hinn to an undeserved charge of tergiversation when later in life he was a member of a. Conservative Government. Charles Buller and Charles Villiers were among his friends at Cambridge; he was an admiring student of Bentham; Mill's Essay on Government was the text-boek on which was founded "Pelham's" instru"ction by his uncle in the principles of politics; J. S. Mill contributed the substance of the appendices to England and the English, on Bentham and Mill; Godwin suggested to lum the subject and soms part of the plot of Eugene Aram; he even succeeded in winning the good opinion of Miss Martineau ; but we have only to read his speech in faveur of the Reform Bill to see that it was the situation that had changed and not the man when he assailed the repeal of the cern laws, and took office under Lord Derby. Bulwer's leading political aim, like his leading artistic aims, was early frrmulated, and the fermula governed ull his political reasoning: it was to "aristocratize the community," "te elevate the masses in character and feeling to the standard which conservatism works in aristocracy," a standard not of wealth or pedigree but of "superior education, courteous manners, and high honour." Hence it was "social reforms" from first to last that enfisted his interest, and he sought the motive power for these reforms in the public spirit of the classes enfranchised by the Reform Act of 1832.
There was a slight break in Bulwer's career as a novelist between 1838 and 1847. During this interval he applied himself enthusiastically to play writing,-Macready's mavagement of Corent Garden having inspired men of letters with the hope of reconciling peetry with the stage. In 1836 he had produced The Duchess of La Vallière. It was a failure. But in 1838 and the two following years he produced three plays which hare kept the stage ever since-The Lady of Lyons, Richelieu, and Moncy. In his plays as in his novels definite theory preceded execution. Thy principles on which he wrote his plays wers laid down in his chapter on the drama in England and the English. For many of the detaila of stagecraft, all-important to success under any principles, he is said to have been indebted to Macready. No Englishman not himself an actor has written so many permanently successful plays as Bulwer Lytten, and this is another instance of his extraordinary plasticity of mind and practical insight. Thirty years afterwards, in 1869, he turned his thoughts again to writing for the stage, recast an old fallure with a
new title The Rightful Heir, and produced a new comeds, Walpole. Neither was a suecess.
From 1841 to 1852 Bulwer (he assumed his mether'b name of Lytton ou succeeding to her estates in 1843) had no seat in parliament. But the issue of novels and romances was not so rapid as it had been in the full energy of his youth. Before 1849, when he opened a new veia with The Caxtons, he produced five works in his familiar vein :-Night and Morning (1841, in which the influence of Dickens is traceable), Zanoni (1842), The Last of the Barons ( 1843 , the most bisterically solid, and perlaps the most effective of his romences), Lucretia, or the Children of the Night (1847; moral purpose-to exbibit the horrors caused by the worship of money; popular effect-disgust at these herrors, and indignation at the author's sentiment as morbid), Harold, The Last of the Saxon Kings (1848).

The cause of the comparative infertility of this period in prose fiction probably was that Lytton was now meking a detormined effort to win high rank as a poet. Ho published a volume of poems in 1842, a volume of translations from Schiller iu 1844, The Nero Timon, a satire, in 1845. ${ }^{\text {. }}$ Then came the work on which mainly Lytton rested his pretensions, King Arthurr, a romantic epic. "I am unalterably convioced," he said, "that on this foundation I rest the least perishable monument of those thoughts and those labours which have mede the life of my life." But King Arthur fell flat. The verse, the six-lined stave of elegiac quatrain and couplet, lacks charm and variety; the incidents are monotonous, the personages uniuteresting, the plot unexciting, and the allegory obscure. St Stephen's, a gallery of parliamentary portraits from the time of Queen Anne, was a kind of metrical composition that lay more within his powers. In this the satire is keen-edged, the admiration jnst and generous. It was published in 1860. The Last Tales of Mitetus (1866) and a translation of Horace's Odes (1869) were Lytton's last essays in verse.

In the skill with whieh he sustained a new style in The Caxtons (1848) Lytton gave a nore convincing proof of bis versatility. This imitation of Sterne (by no means a servile imitation, rather an adaptation of Sterne's style and characters to the circumstances of the 19th century) appeared anonymously in Blackevood's Magazine, and made a reputation before the authorship was suspected. My Novel (1853) and What will He Do with It? (1858) continued in the same strain. The sub-titlo of My Novel, "Varieties of Euglish life," shows still operative the same purpose that we find in Pelham, but the critieism of the "Varieties" is more polemical in spirit. There is mere than a ehade of defiance in his praise of the virtues of a territorial aristocracy, and a strong spice of hostility to the vulgarities of the manufacturers who threatened to push them from their stools. There is a blindness to defects in the one case and to merits in the other quite foreign to the broad sympathies of the dandy Pelham; Caxton paints the ideal best of the one class and the ideal worst of the other. Iu these, as in all Lytton's novels, the characters are plaved on the stago and described ; they aro not left to reveal themselves gradually in action.

Lytten returned to parliament in 1852 as member for Hertfordshire, and ant on the Conservative side. Early in life he had decided in his mind against the reduetion of the corn duties, and, unehanged in 1851, he addressed a "Letter to John Bull," enlarging on the dangers of their repeal. Incapable of failure in any intellectual exareise that ho set his mind to, he was an effective speeker; but the effort was against nature: he could speak only under extreme excitement or after laborious preparation, and ho

[^28]never took a high place among parliamentary orators. He was colonial secretary in Lord Derby's Government frome 1858 to 1850 , and threw himself industriously into the duties of his office. He was raised to the peerage as Baron Lytton in 1860.
That he had not forgotten his power of moving the sense of melodramatic and romantic mystery when he adopted the more subdued style of The Caxtons, Lytton proved by A Strange Story, contributed to All the Year Round in 1862. A eerial story of the kind made a new call on his resourees, but he was equal to it, and fairly rivalled the school of Diokens in the art of sustaining thrilling intcrest to the close.

When he died, Jannary 1s, 1878 , after a short paimin illness, two works of high sepute, The Coming Race and The Parisians, were not aeknowledged, and were only veguely sugpeeted to be his. They had freshness enough to be the work of youth, and power eaongh to shame. no veteran. These two books, the fable and the novel, are classed 1 rey latton's rom and surcessor in the tithe with the romauee of Kenelm Chillingly, left completed at his death, as forming a trilogy, ayimated by a common purpose, to exbibit the intluenee of "modern ideas" upon character and conduct. The moulding force whose operation is traced in The Parisians is the eociety of imperial and democratic France, in Chillingly the society of England io relation to its representative institations. The leading purpose is kept well in view throughout both works, and the tendencies to corruption analysed and presented with admirable skill; but the theorist has omitted from his problem certain important regenerating and eafeguarding factors in the large world outside the pale of beciety. Problems and theories apart, these last works show no falling off of power; he is as vivid as ever in description, as fertile as over in the invention of humorous and melodramatie sitnation. If he had been content to abanden his purpose in Chillingly, and end with the first volume by seme suck commonplace contrivance as giving "motive power" to his herv in the love of Cecilia Travers, it would have been the most perfect of his works in unity of humorous sentiment. The veteran author died in harness,-two novels all but completed; another, an historical romance, Pausanius the Spartan, outlined and partly written.

The fact that is the fiftieth year of his euthorship, after publishing at least fifty beparate works, most of them pepular, Lord Lytton hed still vigour and freshness onough to make a new anonymous reputation with The Coming Race would seem to indicate that critics bad not fairly gauged his versatility, and also that an crroneous fixed idea had been formed of his style. The explanation probably is that even after the publication of The Caxtores he was thought of in coneexion with that schoel of meledramatic romance of which be was indisputably the leader, if not the founder, and that heavily londed rhetorical style which was made ridiculous by his imitators. "Every great genius," one of his characters is made to say, "must deem himself alone in his conceptions. It is not enough for him that these conceptiens should be approved as good, unless they are admitted as inventive." Invention and originality ore matters of degree, and, though no one can deny that Lytton pessessed great inventive powere, he did. not put that individual stamp on his work without whick no writer is entitled to a pleco iu the foremost rank. He was not self-centred enough; he was too generally emulous to win the bighest individual distinction. . But his freskness of thought, brilliancy of invention, breadth and variety of pertraiture, gave him a just title to his popularity, ana, with all allowance for superficial affectations, his genernas nobility of sentiment made his iufluence as wholesorie as it was widespread.
(w. M.)

MTHE letter M denotes a nasa sound, which varies little, if at all, in different languages.
Nasal souvds are produced as follows. The breathturned into voice at its passage through the glottis-does not pass out wholly through the month. Part of it is diverted behind the soft palate, and so through the nostrils ; the remainder passcs through the mouth-cavity, and is there completely checked at some peint of its course. When that check is taken away, we hear, not the sonant which would have been produced if all the breath hacl passed through the mouth, but a nasal varying in nature according to the part of the cavity where the check of the tongue or the lips has been applied. There may bo as many'definite nasal sounds in any language as there are recognized classes of consonants, as gnttural, palatal, dental, labial. In Sanskrit there were even five nasal sounds so clearly differcntiated that each had a special symbul to denote it ; the cerebral class of sounds (produced by turning the tip of the tongue slightly back against the middle of the palate) had its nasal as well as each of the other four classes above mentioned. In Euglish we have three sounds, but only two simple symbols, $m$ and $n$; for the guttural nasal heard in sing, sco., we employ the digraph $n g$. Spanish has a palatal nasal.

The nasal sound denoted by MI is the labial nasal. It corresponds to the sonant $b$-sound; for each of them the lips are completely closed, and if no voice were diverted through the nostrils a $b$-sound only would be heard when the lips are opened; all the organs of the mouth are in exactly the same position for one sound as for the other, but, the soft palate being lowered, the voice is divided in its egress. Hence we see why a man who has a cold pronounces $m$ as $b$; the voice cannot get throngh the nostrils, which are blocked up; it must therefore escape mainly or entirely through the lips, and so produce a $b$-sonnd. Therefore, instead of "talking through his nose," as the phrase gocs, such a person tries to talk through bis nose, but cannot.
The symbol $M$ etands in numeration for 1000. See Alphabet.
maAS. See Meuse.
MABLLLON, Jean (1632-1707), the learned and discriminating historian of the Benedictine order, was born at the village of Saint Yierremont, Champagne (now in the department of Ardennes), on November 23, 1632. He received his early.education from an uncle who held the post of rillage curé ia the neighbourhood, and afterwards he went to Rheime, where, in 1653, he entered upon his noviciate in the Benedictine Abbey of Saint Remy, taking the vows in the following year. The following four years were spent at various houses of the order, to which he was sent on account of his health, impaired by excessive study. From 1658 to 1663 he was at Corbie, and in 1664 he assisted Chantelon at Saiat Denis in the preparation of a new edition of the works of St Bernard. Shortly afterwards he was removed-to Saint-Germain-des-Prés, and charged with the task of editing materials which had already been amassed for a general history of the Benedictine order. While engaged on this mork (Acta Sanctorum ordinis S. Benedicti in saculorum classes distributa), the publication of which, in 9 vols. folio, extended from 1668 to 1701, he made several journeys, for literary research, inta Germany and Italy, as well as into the proviaces of France; amongst the more important of the numerous monographs to which his investigations gave rise, the work

De Re Diplomatica, which appeared in 1681, deserves special mention (sce Liplomatics). Mabillon died at Saint-Germain-des-Prés, on December 27, 1707.
For a complete list of his works reference may be marle to Baylo's Dictionnaire, or to the Bicyraphie Genterale. They include, besides these mentioned above, Vetera Analecta, 1675-85 (a work similar in character to the Miscellanca of Baluze); Animadversiones in Vindicias Kcmpenses, 1677 (in which he claims the Imitatio for Gersen); De Liturgia Gallicana, 1685; Mruseum Italicum, 1687-89; and Annales Ordinis S. Benedieli, 6 vols. fol., 1703-39. .
mabinogion. See Celtic Literature, vol. v. p 321.

MABUSE. See Gossart.
MACAO (A-Ma-ngao, "Harbour of the goddess A-Ma"; Portuguese, Macar), a Portnguese settlement on the coast of China, in $22^{\circ} \mathrm{N}$. lat. and $132^{\circ} \mathrm{E}$. long., consists of a tongue of land $\frac{1}{2}$ square miles in extent, running south-south-west from the island of Hiang Shang (Portuguese, Ançam) on the western side of the estuary of the Canton river. Bold and rucky hills abont 300 feet in height occupy both extremities of the peninsula, the picturesque-looking city, with its flat-roofed houses painted blne, greea, and red, lying in the far from level stretch of ground between. The forts are effective additions to the general view, but do not add much to the real strength of the place. Along the east side of the peninsnla -runs the Praya Grande, or Great Quay, the chief promenade in Macao, on which stand the governor's palace, the administrative offices, the consulates, and the leading commercial establishments. The church of St Paul, erected between 1594 and 1602, the seat of the Jesuit college in the 17 th century, was destroyed by fire in 1835. The Hospital da Nisericordia (1569) was rebuilt in 1640. The Camoens grotto-where the exiled poet found leisure to celebrate the achievenents of his ungrateful country-lies in a secluded spot to the north of the town, which has been partly left in its native wildness strewn with huge granite boulders and partly transformed into a fine botanical garden. In 1871 there were in Macao 5375 persons of European birth or extraction, 53,761 Chinese living on land and 10,268 in boats. Half-castes are very numerous. Though most of the land is under garden cultivation, the mass of the people is dependent more or less directly on mercantile pursuits ; for, while the exclusive policy both of Chinese and Portuguese which prevented Мacao becoming a free port till 1845-46 allowed what was once the great emporium of European commerce in eastern Asia to be ontstripred by its younger and more liberal rivals, the trade of the place is still of very considerable extent. Since the middle of the century indeed much of it las.run in the most questionable channels: the nefarious coolie traffic gradually increased in extent and in cruelty from about 1848 -till it was prohibited in 1874, and much of the actual trade is more or less of the nature of smaggling. The total value of exports and imports was in 1876-77 uprards of $£ 1,536,000$. Commercial intercourse is most intinate with Hong-Kong, Canton, Batavia, and Goa. The proparation and packing of tea is the principal industry in the town. The colonial revenue, which is largely recruited by a tax on the notorious gambling tables, increased from 104,643 dollars in 1856-57 to 380,012 in 1872-73, while the expenditure rose from 69,757 to 266,344 .
In 1557 the Portuguese were permitted to erect factories on the peninsula, and in 1573 the Chinese built the wall across the isthmus wbich still cuts off the barbarian from the rest of the island. Jesuit missionaries established themselves on the spot, and in 1580 Gregory XIII. constituted a bishopric of Nacao. A senate was

FFginized in 1553, and in 1623 Jeronimo de Sitveira became first royal governor of Maca. Still the Portugncse remained hargely under the coutrol of the Cliuese, who had never surrendered their territorial rights and maiutained their authority by mcans of mandarius,-these insisting that even European criminals should be placed in their hands. Ferreira do Amaral, the Portuguese governor, put an end to this state of thiugs in 1849, and left the Chiuse officials no more anthority in the peninsula than the representatives of other foreign nations; and, though his motagonists procured liis assassination (August 22d), his successors have succeeded in carrying out his policy. The Chinese Government has hitherto refused (uotably in 1562) to recognize the territorial claims of the Portuguese ; but the European powers treat Macao as de fucto a colouial possession, and not only the gorernor, the president of the courts, and other Portuguese otilicills, but even the Chinese magistratcs, are directly arpointed by the king of Portugal. For a short time in 1802, and again in 1803, Macao was occupied by the English as a precaution against seizure by the French,

See De neanvolr, loyaye Round the Ilordd, 1870; Wisellns, H Jacansche toestanden," In Tjids. ron hrt Aardr. Gen., 1377 ; Relatorio e documentos sobre a aboli̧áo da emigra̧ão de Chinas contratados em Macuu, Lisuon, 1sit; Enkilish parliamentary papers on lle coolie brade, 1874 ; Bikcr, Bfem. sobre o estabetectpurliamentary papers on 1579.
mento de Macau, Lisbon, 1579.
MACARONI (from dialectic Italian maccare, "to bruise or crush ") is a preparation of wheat originally peculiar to Italy, in which country it is an article of food of national importance. The same substance iu different forms is also known as vermicelli, pasta or Italiau pastes, taglioni, fanti, \&c. These substances are prepared from the hard semi tranalucent varieties of wheat which are largely cultivated in the south of Europe, Algeria, and other warm regions, and which are distinguished by the Italians as grano duro or grano da 'semolino. Hard wheats are much richer in glutes and other nitrogenous compounds than the soft or tender wheats, and their preparationa are more easily preserved, to which conditions their suitability for the manufacture of Italian pastes are mainly due. The various preparations are met with in the form of fine thin threads which constitute:vermicelli, so called from its thread-worm like appearance, thin sticks and pipes '(mracaroui), amall lozenges, stars, disks, ellipses, \&c. (pastes), and ribbons, tubes, and other fanciful forms. These various forms are prepared in a uniform manner from a granular meal of hard wheat which itself, under the name of semolina or semola, is a commercial article. The aemolina is thoroughly mised and incorporated into a stiff paste or dough with boiling water, and in the hat condition it is placed in a strong metallic cylinder, the end of which is closed with a thick disk pierced with openings which correspond with the diameter or section of the article to be made. Into this cylinder an accurately fitting plunger or piston is introduced, añd by very powerful pressure it causes the stiff dough to squeeze out through the openings in the disk in continuous threada, sticks, or pipea, as the case may be. When pipe or tube macaroni is being made, the openings in the disk are widened internally, and mandrels, the gange of the tubes to be made, are centred in them. In making pastes the cylinder is laid horizontally, the end is closed with a disk pierced with holes baving the sectional form of the pastes, and a set of knives revolves close against the external surface of the disk, cutting of the paste in thin sections as it exudes from cach opening. Macaroni is dried rapidly by hauging it in long sticks or tubes over wooden roda in storea or heated apartments through which currents of air are driven. It is only genuine macaroni, rich in gluten, which can be dried in this manner; spurious fabrications made with common flour and coloured to imitate the true material will not bear their own weiglt. Imitations must therefore be laid out flat and dried slowly, during which they very readily split aud break up, while io other cases they becone mouldy on the inside of the tubea. True macaroni can be distinguished by observing the flattened mark of the rod over which it lias been dried within the bead of the subes:
it has a soft yellowish colonr, is rough in testure, elastic, and hard, and breaks with a smooth glassy fracture. In boiling it swells up to double its original size without becoming pasty or adhesive, maintaining always its original tubular forn without either rupture or collapse. ~ It can be kept any length of time without alteration or deterioration, and it is on that account, in many circumstances, a most cunvenient as well is a highly nutritious and bealthful article of food. In its various forms it is principally used as an ingredient in soups, and for the preparation of puddings, with cheese, dc. Many of the good qualities of genuine nacaroni may be obtained by enriching the flour of common soft wheat with gluten obtained iu the preparation of wheaten starch, and proceeding as in the case of semolina. Such imitations, and others of inferior quality. are extensively made both in France and Germany. =o

Macartney, Georie Macartney, Eakl of (173i1806), was descended from an old Scotch family, the Macartness of. Auchinlock, who had settled in 1649 at Lissanoure, Antrim, Ireland, where he was born May 13, 1737. After graduating at Trinity College, Dublin, in 1759, he became a student of the Inner Temple, London. Appointed envoy-extraurdinary to Russia in 1764, he succeeded in negotiating an alliance between England and that couutry. After for some time occupying a seat in the English parliament, he was in 1769 returned for Armagh in the Irish parliament, in order to discharge the duties of chief secretary for Irelard. On resigning this office he received the honour of knighthood. . In 1775 be became gurernor of Granada, in 1780 governor of Madras, and in 1785 he was appointed governor general of Bengal, but, his health demanding his return to England, he declined to accept office. After being created earl of Macartney in the Irish peerage, he was appointed in 1792 the first envoy of Britain to China On his return from a confidential mission to Italy he was raised to the English peerage in 1796, and in the end of the same year was appointed governor of the newly acquired territory of the Cape of Good Hope, where le remained till ill health compelled bim to resign in November 1798. . He died at Chiswick, Surrey, 31st March 1806.
An account of Macartney's embassy to China; by Sir George Staunton, was publisbed in 1797, and has been frequently reprinted. See also Life and Writings of Lord. Nagartncy, by Barraw, 2 vols., Loadon, 1807.

## MACASSAR. See Celebes, vol. y. p. $28^{\circ}$.

macaulay, Thomas babingtos Macaulay, Lord (1800-1859), was born at Rothley Temple, Leicestershire, on the 25 th of October 1800. His father, Zachary Macanlay, had been governor of Sierra Leone, and waa in -1800 secretary to the chartered company who had founded that colony. Happy in his home, the boy at a very early age gave proof of a determined bent towarda literature. Before he was eight years of age he had written a Compendium of Cniversal IIistory, which gave a tolerably connected view of the leading events from the creation to 1800 , and a romance in the style of Scott, in three cantos, called the Battle of Cheviot. At e little later time the child composed a long puem on the history of Olaus Magnna, and a vast pile of blank verse entitled Fingal, a Poem in Twelve Books.
The question between a prisate and a public school was anxiously debated by his parents, and decided in favour of the former. The choice of school, though dictated by theological consideratious, was a fortunate one. Mr Preston of Litile Shelford enjoyed the confidence of Mr Simenn, but was himself a judicious tutor; and at hia table, where master and pupil dined in common, not only the latost Cambridge tupica were mooted, but university ambitions and ways of thought. wern brought home to the boys.

In October 1818 young Jacnulay went sato residence ht Trinity College, Cambridge. Here he revelled in the possession of leisure and liberty, which he could not forego for the sake of those uxirersity honours which at that day swere only to be obtained by a severely exclusive course of mothematieal study. But he succeeded in obtaining the prize which in his ojes was the most desirable that Cambridgo had to give, viz, a fellowshifo at Trinity. A trilling collego prize for an essay on the character of William III was awarded to an essay by young Macaulay, which may be regarded as the first suggestion and the earnest of bis future History.

In 1826 Macaulay was called to the bar and joined the northern circuit. Butafter the first year or two, during which he got no business worth mention, he gave up even the pretence of reading lam, and spent many more hours under the gallery of the House of Conmons than in the court. His first attempt at a public specch, mado at an anti-slavery meeting in 1824, was described by the Edindurgh Review as "a display of eloquence of rare and matured excellence." His first considerable appearance in print was in No. 1 of Kightt's Quarterly Magazine, a periodical which enjojed a short but brilliant existence, and which was Iargely supported by Eton and Cambridge. In Angust 1825 began Macaulay's connexion with the periodical which was to prove the field ne his literary reputation. The Edinburgh Ferieno was it this time at its height of power, not only as an organ of the growing opinion which leant towards reform, but as a literary sribunal from which there was no appeal. The eseay ou Milten, though so crude that the author said of it that "it contained scarcely a paragraph such as his matured judgment npprored," created for him at once a literary reputation which suffered no diminution to the last, a repntation whick he established and confirmed, but which it would have been hardly possible to make more conspicuous. Murray declared that it would be worth the copyright of Childe Harold to have Macaulay on the staff of the Quarterly Reriet. Robert Hall, writhing with pain, and well-nigh worn out with disense, was discovered lying on the floor emplosed in learning by aid of grammar and dictionary enough Italian to enable binn to rerify the paraliel batreen Milton and Dante. The family Lreakfast table was covered with cards of invitation to dinner from erery quarter of London.
The sudden blaze of popalarity kindled by a single essay, auch as are now produced every month without attracting any notice, is partly to be explained by the dearth of literary criticism in England at that epoch. For, though a higher note had already been sounded by Hazlitt and Coleridge, it had not yet taken hold of the public mind, which was still satisfied with the feeble appreciations of the Retrospective, or the dashing and damnatory improrisation of Wilson in Blackroood or Jeffrey in the Edinburgh. Still, after allowance made for the barbarous partisanship of the established critical tribunals of the Weriod, it seems surprising that a social success so signal should have been the consequence of a single article. The explanation is to be found in the fact that it had been discovered at the same time that the writer of the article on Milton was, unlike most authors, also a brilliant converser. There has nerer been a period when an amusing talker has not been in great demand at London tables; bat at the date at which Macaulay made his début witty conversarion was studied and cultirated as it has ceased to be in the more busy age which las succeeded. At the university Macaulay had been recognized as pre-eminent for talk and companionship among a circle of young men of talents so brilliant as were Charles Austin, Pcmilly, Praed, Villiers, and others. He now displayed these gifts on a wider
theatre. Crabb Robinson's diary, under date 1826, records the judgment of one who had been in the constant habit of heariug the best talk of the London of his day. Suck as he was in 1526 Macaulay continued to be to the end. In Lord Carlisle's journal, under date 27th June 1843, wa read-"Breakfasted with Hallam, John Russell, Macaulay, Everett, Van de Weycr, Hnmiltou, Mahon. Never wero such torrents of good talk as burst and sputtered over from Jiacaulay and Hallam." Again, 11th October 1849, "the evening went off very pleasantly, as must almost always happen with Macaulay. He was rather paradoxical, as is apt to be his manner, and almost his only social fault. The greatest marvel about lim is the quautity of thash he remembers." In March 1850 Lord Carlisla records-" Macaulay's flow never ceased once during the four hours, but it is never overbearing."
Thus launched ( 1825 ) on the best that London had to give in the way of society, Macalalay accepted and enjuyed with all the zest of youth and a vigorous nature the opportunities opened for him. He was courted and admired by the most distnnguished personages of the day. He was admitted at Holland House, where Lady Holland listened to him with deference, and scolded hiro with a circumspectiou which was in itself a compliment. Rogers spnke of him. with friendliness, and to him with affection, and ended by assing him to name the morning for a breakfast party. He was treated with almost fatherly kindness by "Conversation" Slarp.
Thus distinguished, and justifably conscious of his great porwers, it was not unnatural that Macaulay's thoughts should take the direction of politics, and his ambition aspire to a political career. But the shadow of pecuniary trouble early began to fall upon his path. When he went to college his father beliesed himself to be worth $£ 100,000$, and declared his iftention of making him, in a modest way, an eldest son. But commercial disaster overtook the honse of Babington and Jacaulay, and the soll now saw himself compelled to work for his livelahood. His Trinity fellowship of $£ 300$ a year became of great consequence to him, but it expired in 1831; he could make at most £200 a year by writing; and a commissionership of bankruptey, which was given him by Lord Lyndlurst in 1828, and which brought him in about $£ 400$ a year, was swept away, without compensation, by the munistry which came into power in 1830. Macaulay now found himself a poor man, and was reduced to such straits that he had to sell his Cambridge gold mednl.
In February 1830 the doors of the House of Commons were opened to him in the only way in which a man without fortune could enter them, through what was then called a "pocket borough." Lord Lansdowne, who had been struck by two articles on MEill (James) and the Utilitarians, which appeared in the Edinburgh Review in 1829, offered the author the seat at Calue. The offer was accompanied by the express assurance that the noble patron had no wish to interfere with his freedom of roting. He thas entered parliament at one of the most exciting moments of English domestic kistory, when the compact phalans of reactionary administration which for nearly fifty fears had commanded a crushing majority in the Commons was on the point of being broken by the grow. ing strength of the party of reform. Nacaulsy made his maiden speech on 5 th April 1830, on the second reading of the bill for the remoral of Jewish dianzilities. In July the king died and parliament was dissolved; the revolution took place in Paris. Macnulny, who was again returned for Calne, visited Paris, eagerly enjoying a first taste of Continental travel. On 1st March 1831 the Reform Bill was introduced, and on the second night of the debate Macaulay made the first of his reform speeches. If was o
signal success. Sir Fobert Peel said of it that "portions were as beautiful as anything I have ever heard or read."
Encouraged by this first success, Macaulay now threw himself with ardour intothe life of the Itonse of Commons, while at the same time ho continued to enjoy to the full the social opportunities which his literary and political celebrity had placed within his reach. For these reasons he dined out almost nightly, and spent many of his Sundays at the suburban villns of the Whig leaders, while he continned to supply the Edinbargh Reviens with a steady series of his most elaborate articles. On the triumph of Earl Grey's cabinet, and the passing of the Reform Act in June 183:2, Macaulay, whose eloquence bad signalized every stage of the conflict, became one of tho commissioners of the Board of Control, and applied hinself to the study of Indian affairs. His industry was uutiring, and the amount of intellectual product which he threw off very great. Civing his days to India and his nights to the Honse of Commons, he could only devote a few hours to literary composition by rising at five when the business of the House had allowed of his getting to bed in time on the previous evening. Between September 1831 and December 1833 he furnished the Reviero with the following articles:-"Boswell's Life of Johason"; "Lorl Nugent's Hampden"; "Burleigh and his Times"; "Mirabeau"; "Horace Walpole"; "Lord Chatham"; hewide" writing his hallath on the Amada for oue of the Albums, anmual publieation of miserllanise ther in fashion.
In the first reform parliament, lamary 1833, Nacanar took his seat as one of the two first members for Lemde, which up to that date had been murepresented in the Honse of Commons. De erplied to ofonnell in the debate on tue address, meeting the great agritator face to face, with high, but not intemperate, defiance. In July he defended the Government India Bill in a speech of great power, and to his aid was greatly due the getting the bill through committee without unnecessary friction. When the abolition of slavery came befpre the Honse as a practical guestion, Macaulay had the prospect of being Hlaced in the dilemma of Laving to surrender office or to vote for a modified abolition, viz., twelve years' apprenticeship, which was proposed by the ministry, but condemmed by the abolitionists. Ho was prepared to make the sacrifico of place rather than be unfuithful to the cause to which his father had devoted his life. He placed his resignation in Lord Althorp's liands, and spoke against the ministeria! proposal. Put the sense of the House was so strongly expressed as uufavourable that, finding they would be beaten if they persisted, the ministry gave way, and reduced apprenticesthip to seven years, a compromiso which the abolition party accepted; and Macaulay remained at the Board of Control.

While he was thus growing in reputation, and advancing his public credit, the fortuncs of the fanily were sinking, and it became evident that his sisters would have no provision except such as their brother might be enabled to make for them. Macanlay had but two sources of income, hoth of them precarious-office and his pen. As to office, tho Whigs could not have expected at that time to retain power for a whole generation; and, even while they did so, Jacaulay's resolution that he would always give an independent vote made it possible that ho might at any moment find himself in disagreement with his colleagues, and have to quit his place. As to literature, be wroto himself to Lord Lansdowno (1833), "it has been hitherto merely my relaxation; I have uerer considered it as the means of support. I have chosen nly own topics, taken my own time, and dictated my own terns. The thought of becoming a bookseller's hack, of spurring a jaded fancy to reluctant exertion, of filling sieets with trash merely
that sheets may be filled, of bearing from puhbishers and editors what Dryden Lere from Tonson anit what Mackintosi bore from Lardner, is burrible to me." Though promiluss. Macaulay could never be accused of playing the gane of politics from selfish considerations. But it was impossible that, circumstanced as he was, he shunld not louk with anxiety upon his own future and that of his sisters,sisters who bad been, and who had deserved to be, the intinuate confidants of all his thoughts and iloings, and to whom he was attached by tho tenderest affection. He was therefore prepared to accept the offer which was nade him of a seat in the supreme council of India, a body which had been created by the India Act he had himself been instrumental in passing. The salary of the oflice was fixech at $£ 10,000$, au incone out of which he calculated to be able to save in five years a cnpital of $£ 30,000$. His sister Hannah accepted his proposal to accompany hin, and in Fobruary 1834 the brother and sister sailed for Calcutta.
. Macaulay's appointment to India occurred at the critical moment when the governnent of tho company was being supersedel by govermment by the crown. . His knowledge of Imlia was, when be landed, but superficial. Rut at this juncture there was more need of statesmanship directed by general liberal principles than of a practical knowledge of the details of Indian administration. Macaulay's presence in the council was of great value; his minutes are models of good judgment and practical sagacity. The part he took in India bas been described as "the application of sound liberal principles to a government which had till then been jealons, close, and repressive." He vindicated the liberty of the press; be maintained the equality of Europeans and natives before the law ; and as president of the committee of public instruction he inaugurated that system of national education which has since spread over the whole of the Indian peninsula.

A clause in the Indian Act of 1833 occasioned the appointment of a commission to inquire into the jurisprudence of our Eastern empire. Macaulay was appointed president of that conimission. The draft of a peval code which he submitted became, after a revision of many yeare, and by the labour of many experienced lawyers, that criminal code under which law is now administererl throughont the empire. Of this code Sir James Stephen says that "it reproduces in a concise and even beautiful form the spirit of the law of England, in a conpass which by. comparison with the origiual may be regarded as alnost absurdly snall. The Indian penal code is to the English criminal law what a manufactured article really for use is to the materials nut of which it is made. It is to tho Freuch Code Pénal, and to the German code of 1871, what a finisher picture is to a sketch. It is simpler and better expressed than Liviugston's codo for Louisiana; and its practical success has been complete."

As might be expected, Macaulay's enlightened views and measures drew down on lim the abuse and ill-will of Anglo-Indian society in Calcutta and the Mofussil. Fortunately for himself he was enabled to maintain a tranquil indifference to political detraction by withdrawing his thoughts into a sphere remote from the opposition and enmity by which he was surrounded. Even amid the excitement of bis carly parliamentary snccesses literature had balanced politics in his thoughts and interests. Now in Lis exile, for such he felt it to be, he began to fcel more strongly each jear the attraction of European Ietters and European history. He writes to his friend Elli,, "I havs gone back to Grcek literature with a passion astonishir, to myself. I have never felt anything like it. I tras enraptured with Italian during the six months which gave up to it ; and I was little less pleased with Spanisl). But when I went back to the Greek I felt as if I had nevel
known netore what intellectual enjoynent was." In thirteen mouths he read through, some of them twice, a large part of the Greek and Latin classics. The attention with which he read is proved by the pencil marks and corrections of press crrors which he left on the margin of the volumes he used.

The fascination of these studies produced their nevitable effect upon his view of political life. He began to wonder what strange infatuation leads men who can do something better to squander their intellect, their health, and energy on such subjects as those which most statesmen are engaged in' pursuing. He was already, he says;" "more than half determined to abandon pelitics and give myself wholly to fetters, to undertake some great historical work, which may be at once the busimess and the amusement of my life, find to leare the pleasures of pestiferous rooms, slecpless nights, and diseased stomachs to Roebnck and to Praed."

In 1838 Macaulay and his sister Hannah, who had now become Lady.'Trevelyan, returned to England. He at once entered parliament as member for Edinhurgh. In 1839 he becarme secretary at war, with a seat in the cabinet in Lord Melbourne's ministry. His acceptance of office diverted him for a time from prosecuting the plan he lad already formed of a great historical work. But only for a time. In less than two years the Melbourne ministry fell, and Macaulay was liberated from having to support a Government wretchedly weak, and maintaining its struggle for bare existence.

He returned to office in 1816, in Lord John Russell's administration. But it mas in an office which gave him leisure and quiet rather than salary and power-that of paymaster-general. His duties were very light, and the contact with official life and the obligations of parliamentary attendance were even of benefit to him while he was engaged upon his History. In the sessions of 1846-47 he spoke only five times, and at the general election of July 1847 he lost his seat for Edinburgh upon issues which did not reflect credit upon that constituency. Over and above any political disagreement with the constituency, there was the fact that the balance of Macaulay's faculties bad now passed to the side of literature. Lord Cockburn wrote in 1846, "the truth is, Macaulay, with all his knowledge, talent, eloquence, and worth, is not popular: He cares more for his History than for the jobs of constituents, and answers letters irregularly and with a brevity deemed contemptuous." At an earlier date he had relished crowds and the excitement of ever new faces; as years went forward and absorption in the work of composition took off the edge of his spirits, he recoiled from publicity: He began to regard the prospect of business as worry, nud Lad no longer the nerve to brace himself to the social efforts required of one who represents a large constituency.

Macaulay retired into private life, not only withont regret, but with a sense of relief. He gradually withdrew from general society, feeling the bore of big dinners, and comntryhouse visits, but he still enjoyed close and constant intercourse with a circle of the most eminent men that London then contained. At that time social breakfasts were in vogue. Macanlay himself preferred this to any other form of entertainment. Of these brilliant reunions nothing has been preserved beyond the names of the men who formed them,-Rogers, Hallam, Sydoey Smith, Lord Carlisle, Lord Stanhope, Nassau Senior, Charles Greville, Milman, Panizzi, Lewis, Van de Weyer. His biographer thus describes Macaulay's appearance and bearing in conversation: "Sitting bolt upright, his hands resting on the arms of his chair, or folded over the bandle of his walking-stick, knitting his eyebrows if the sulject was one which lad to be thought out he went along, or brightening from the
forelead downwards when a burst of humour was comunga his massive fcatures aud honest glance suited well with tha mauly sagacious sentiments which he set forth in his sonorous voice and in his racy and intelligible languago, To get at his menuing poople had never the need to think twice, and they certainly had seldom the time."

But, great as was his enjoyment of literary society and books, they only formed his recreation. Ju these years he was working with unflagging industry at the composition of his Mistory, His composition was slow, his corrcctious both of matter and style endless; he spared no researcls to ascertain the facts. He sacriticed to the prosecution of his task a political career, House of Commons fame, the allurenents of society. The first two volumes of the 'History of Singland appeared in Decomber 1848. Tha success was in every way complete beyond expectation. The sale of edition after edition, both in England and the United States, was enormous.
In 1852, when his party returned to olfice, ho refused a seat in the cabinet, but he could not bring himself to decline accepting the complinent of a voluntary annende which the city of Edinburgh paid him in returuiug him at the head of the poll at the general election in July of that year. He had hardly accepted the summens to return to parliamentary life befure he was struck down by the malady which in the end proved futal. This first betrayed itself in deranged action of the heatt; from this time forward till his death his strength continued steadily to sink. The process carried with it dejection of spirits as its inevitable attendant. The thought oppressed him that the great work to which he bad devoted himself would remain a fragment. Once again, in June 1853, he spoke in parlizment, and with eflect, against the exclusion of the Saster of the Rolls from the House of Commons, and at a later date in defence of competition for the Indian civil scrvice. But he was aware that it was a.grievous waste of his small stock of force, and that be made these eforts at the cost of more valuable work.
In November 1855 vols iii. and iv. of the History appeared. No work, not being one of amusement, has in our day reached a circulation so vast. During the nine years ending with the 25th June 1857 the publishers (Lengmans) sent out more than 30,000 copies of ?ol. i.; in the next nine years more than 50,000 copies of the same volume; and in the nine years ending with June 1875 more than 52,000 copies. Within a generation of its first appearance upwards of 140,000 copies of the History will have been printed and sold in the United Kingdona alone. In the United States no book except the Bible ever had such a sale. On the Continent of Europe, the sale of Tauchnitz editions was very large, a sale which did not prevent six rival translations in German. The IIistory has been published iu the Polish, Danish, Swedish, Hungarian, Russian, Bohemiau, Italian, French, Dutch, Spanish languages. Flattering marks of respect were heaped upon the author by the foreign Academies. His pecuniary profits were on a scale commensurate with the reputation of the book: the cheque for $£ 20,000$ has become a landmark in literary history.

In May 1856 he quitted the Albany, in which he had passed fifteen happy years, and went to live at Holly Lodge, then, before it was onlarged, a tiny bachelor's dwelling, but with a lawn whose unbroken slope of verdure gave it the air of a considerable conntry house. In the following year (1857) he was raisel to the peerage by the title of Baron Macaulay of Rothley: - "It was," says Lady Trevelyan, "one of the fer things that everybody approved; he enjoyed it himself, as he did everything, simply and cordially." It was a novelty in English life to see eminence which was neither that of territorial opulence nor of aolitical or mili-'
tary services recognizerl and rewarded by clevation to the pcerarge.

The distinction came just not too late. Macaulay's health, which had begun to give way in 1S52, was every year visibly failing; in May 185 S he went to Cambridge for the purpose of being sworn in as high steward of the burungh, to which oftice he had been elected on the death of Earl Fitzwilliam. When his health was given at a public breakfast in the town-hall, he was obliged to cxcuse himself from speaking on the grouud of inability. His nopherw, who was in attendance upon him on the occasion, records that "it was already apparent that a journey across Clare Lrilge and along the edge of the great lawn at King's, performed at the rate of $\frac{1}{2}$ mile in the hour, was aus exertion too severe for his feeble frame." In the Uppor House he never spoke. Absorbed in the prosecution of his historical work, he had grown indifferent to the party politics of his own day. Gradually he had to acquiesce in the conviction that, thongh his intellectual powers remaiued to him unimpaired, his physical energies would not carry him through the reign ol Anne; and, though ho brought down the narrative to the death of Willian III., the last half volume wauts the finish and completeness of the carlier portions.

The winter of 1859 was very severe, and hastened the cud. He died on 28 th December, and on 9th Jannary 1860 was buried in Westminster Abbey, in Poet's Corner, near the statue of Addison.

Lord Macaulay was never married. A man of warm domestic affections, he found their satisfaction in the attachment and close sympathy of his sister Hannah, the wife of Sir Charles Trevelyan. Her children were to him as his own. Macoulay was a steadfast friend, and a generous enemy. No act inconsistent with the strictest honour and integrity has ever been imputed to him. When a poor man, and when salary was of consequence to him, he twice resigned office rather than make compliances for making which he would not have been severely blamed. In 1847, when his seat in parlianent was at stake, he would not be persuaded to humour, to temporize, even to conciliate. He took a lofty tone, and haughtily rebuked the Edinburgh constituency for their bigotry. He had a keen relish for the good things of life, and desired fortune as the means of obtaining them; but there was nothing mercenary or seltish in his nature. When he had raised himself to opulence, he gave away with an open hand, not seldom rashly. His very last act was to write a letter to a poor curate, enclosing a cheque for $\mathfrak{L}^{2} 25$. The purity of his morals was not associated, as it not unfrequently is; with a tendency to cant, or parade of religions phrases.

The lives of men of letters are often records of sorrow or suffering. The life of Macaulay was eminently happy. Till the closing years 1857-59, when his malady had begun to tell unon his strength, he enjoyed hife with the full zest of healthy faculty, happy in social iutercourse, lappy in the solitude of his study, and equally divided between the two. For the last fifteen years of his life he lived for literatme, as none of our eminent men since Gibbon have done. His writings were remunerative to him far beyond the ordinary measure, yet he never wrote as the professional author writes. He lived in his historical researches; his whole heart and interest were unrescrvedly given to the men and the times of whom heread and wrote. His command of literature was iuperial. Beginning with a good classical foundation, he made himself lamiliar with the imagiuative, and then with the historical, remains of Greece and Rome. He went on to add tho literature of his own country, of France, of Italy, of Spain. IIe learnt Dutch enough for the purposes of his listory. IIe read Gcrman, but for the literature of the northern nations he had no tasto, and of the erudite labours of tho Germans he bad little knowledge and formed an inadequate estimate. The range of his survey of human things had other limitations more considersble still. All philosophical speculation was alien to his mind; nor does be secm aware of the degree in which such epeculation has influenced the progress of humanity. A large -the largest-part of ecclesiastical history lay outsido his historical view. Of art he confessed himsclf ignoraut, and eren refuscd a
request which liad been made him to furnish a critique on Swift's loctry to the Edinburyh Revicu: Lessing's Laccoon, or Goethe's criticism on Hamlet, "filled" him "with wonder and despair."

Of the marvellous discoveries of science which were succeedirg each other day ly day he took no note; lis pages contain no Ieference to them. It has been told already how he recoiled from the mathenatical studies of his university. These doductions made, the circuit of his knowledge still remains very wide,-as extensive perhaps ss any human brain is competent to embrace. His literary outfit ras as complete as has ever been pessessed by say English writer ; and, if it wants the illumination of philosophy, it has sn equiralent reseurce in a practical scquaintance with affairs, with administration, with the interiar of cabinets, and the humour of popular assemblies. Nor was the knowledge merely stored in his memery; it was almays at his command. Whatever his subject, he pours orer it his stream of illustration, drawn from the records of all ages and countrics. "Figures from history, aucient and modern, sacred and secular ; characters from plays and novels, from Plautus down to Walter Scott and Jane Austen; images snd similes from poets of every age and every nation; shrewd thrusts from satirists, wise saws from sages, pleasantries caustic or pathetic from humorists, -all these fill Macaulay's pases with the bustle and variety of some glittering masque and cosmoramic revel of great books and heroical men. "His style is before all else the style of great literary knowledge." His Essays are not merely instructive as histery; they are, like Milton's blank verse, freighted with the spoils of all the ages. They are literature as well as history. In their diversified contents the Esscays are a library by themselves; for those who, having little time for study, want one book which may be a substitute for many, we should recommend the Essays in preference to anything else.

As an historian Macaulay has not escaped the charge of partisanslip. He was a Whig ; and in rriting the history of the rise and triumpl of Whig priuciples in the latter half of the 17 th century he identified himself with the cause. But the charge of partiality, as urged against Macaulay, means more than that he wrote the history of the Whig revolution from the point of view of those who made it. When he is describing the merits of friends and the faults of enemies, his pen knows no moderation. He has a constant tendency to glaring colours to strong effects, and will slways be striking violent blows. He is not nerely exuberant, but excessive. There is an overveening confidence about his tone; he expresses himself in trenchant phrases, which are like challenges to an opponent to stand up and deny them. His propositions have no qualifications. Uninstructed readers like this assurauce, as they liko a plyysician who has no doubt about their case.' But a sense of distrust grows upon the more circumspect reader as he follows page after nage of Macaulay's categorical affirmations about matters which our own experience of life teaches us to be of a contingent mature. We inevitably think of a saying sttributed to Lord Melbourne, "I wish I were as cock-sure of sny one thing as Maoaulay is of every'thing." Macaulay's was the mind of the advocate, not of the philosopher; it was the mind of Bossuet, which admits no doubts or reserves itself and tolerates none in others, snd as such was disqualified from that equitable balancing of evidence which is the primary function of the historian. It was a fertunate circumstance that rhetoric so powerful was enlisted in the constitutioual cause,-that Macanlay was, as he himself has said of Bishop Burnet, "a strong party man ou the right side."

Macaulay, the historian no less than the politician, is always on the side of justice, fairness for the weak against the strong, the oppressed against the oppressor. But though a Liberal in practical politics, he had not the reformer's temperament. The world as it is was good eneagh for him. The glories of wealth, rauk, bonours, literary fame, the elements of a vulgar happiness, made up his ideal of life. A successful man himself, every personage and cvery cause is judged by its success. "The brilliant Macaulay," says Einerson, "who expresses the tone of the English grverning classes of the day, explicitly teaches that 'good' means geod to cat, good to wear, material commodity." Macaulay is in sccord witl the average sentiment of orthodox and stereotyped humanity on the relative values of the objects and motives of human endearour. And this commonplaco materialism is one of the secrets of his popularity, anul one of the qualitics which guarantee that that popularity will be enduring.

Macaulay's whole morks have becu collectel by his sister, Lady Charles Trevelyan, in eight volumes. The first four volumes are occupied by the History; the next three contain the Essays, and the Lives which ho contributed to the Eneyclopedia Britannica. In vol. viii. are collected his Specches, the Lays of Ancient Rome and somo miscellaneells nicces. His life has been written by his ne , hew, George Otto Trevelyan (2 vols., London, 1878), and is one of the best biographles in the language. Ilis diary remains in MS. in the hands of his farmily. It is to ho hoped that ucasures will he taken to securo this valuable record from the fate that has overtaken ao many privatediaries, aud trus impoverished the sources of Enylish history.

MACAlV, or, as foruncily spelt, Maccalr, ${ }^{1}$ the name given to sume fifteen or more species of large, long-tailed lirds of the Parrot Family, natives of the Neotropical Biecion, and furming a very well-known and easily-recognized group to which the generic designation Are is usually applied by ornithologists, though some prefer for it Mrectocereus or Sittucc. Most of the Macaws are remarkable for their gaudy plumage, which exhibits the brightest scurlet, yellow, blue, and green in varying proportion and wften in violent contrast, while a white visage often adds a very peeuliar and expressive character. ${ }^{2}$ With one execpition the knomn species of Are inbabit the maiuland of America from Paraguay to Mexieo, being especially abundant in Bolivia, where no fewer than seren of them (or nearly one half) lave been found (Proc. Zoul. Soc., 1879, p. 634). The single extra-continental species, $A$. tricolor, is one of the most brilliantly coloured, and is neculiar to Cuba, where, according to Dr Gundlach (Omitologice Cubena, 1. 126), its numbers are rapidly decreasing, so that there is every chance of its becoming extinct. ${ }^{3}$

It will perhaps be enough here to dwell on the best Luown species of the group, and first the Blue-and-yellow Nacaw, A. araranna, which has an extensive rauge in South America from Guiana in the east to Culonbia in the west, and southwards to Paraguay. Of large size, it is a bird to be seen in almost erery zoological garden, and is very frequeutly kept alive in private houses, for its temper is pretty good, and it will become strongly attached to those who tend it. Its richly-coloured plumage, sufficiently indicated by its common English name, has the additional recommendation of supplying feathers which are eazerly sought by salmun-fishers for the making of artificial fies. Nest may be mentioned the Red-and-blue Macar, A. macto, which is cven larger and more gorgeously clothed, for, besides the colours expressed in its ordinary appellation, yellow and green enter into its adornment. It inhabits Central as well as South America as far as Bolivia, and is also a common bird in captivity, though perhaps less often seen than thie foregoing. The Red-and-yellow species, $A$. chloropterce, ranging from Panama to Brazil, is smaller, or at least luas a shorter tail, and is not quite so usually met with in menageries. The Red-and-green, A. militaris, stnaller again than the last, is not unfrequent in confincment, and presents the colours of the name it bears. This has the most northerly extension of habitat, occurring in Mexico and thence southwards to Bolivia. All the other

[^29]species are comparatively rare in a reclaimed condition. Four of thens, A. lygucinthines, A. leari, A. glanca, and A. s)ixix, are almost entirely blue, while in 4 . manilata and $A$. rotilis the prevailing colour is greeu, and $A$. severa is green and blue.

As is the caso with most Neatropical birds, very little is known of the life bistory of Macaws in a state of nature. They are said to possess considerable power of flight, rising high in the air and travelling long distances in seareh of their food, which consists of various kinds of fruits; but of any special differences of habit we are wholly ignozant. The sexes appear in all cases to be alike in colouring, and the birds, thougly constantly paired, are said to live in companies. As with others of the Order Psittaci, the nest is made in a bullow tree, and.the eggs, asserted to bo two in number, are white without any lustre. Of the habits of these birds in confinement it is needless to speak, as they are so extremely well known. If caged, their long tailfeatluers are sure to suffer, but chained by the ler to a perch, Macaws seem to enjoy themselves as well as any captive can, and will live for many years.

In our present state of iguorauce as to the best mode of classifying Parrots, it would be premature to hazard any guess as to the place occupied in the Order by the genus Arc.
(A. N.)

MaCbeth, Macbethad, or Macbeda, son of Finnlacch, was king of Scotland from 1040 to 1057. Ho had previonsly been "mormaer" of Moravia or Moray; and his predecessor on the throne was Duncan, son of Crinan, and grandsun of líalcoln, whom he slew (according to some accounts at "Botbgowan," said to bave been near Elgin). Macbeth's wife ras Gruoch, a descendant of the royal house. Of the events of his reign almost nothing is known. The ecclesiastical records of St Andrews bear that he and hiswife, "rex et regina Scotorum," mado over certain lands to the Culdees of Lochleven; and in 1050 he appears to have visited Rome, perhaps to obtain absolution for the murder of Duncan. The sons of Duncan, who had taken refuge with their uncle Siward, carl of Northomberland, brought about as invasion of Scotland in $105 \frac{1}{2}$; a battle was fought at Dunsinnane with indecisive results, but three ycars afterwards Macbeth fell at Lumphauan in Aberdeenshire (August 15, 1057). The war was continued for some time in the interests of a certain Lulach, the son of Queen Gruocls by a former marriage; but he ton was slain in Strathbogic in March 1058 , and Malcolm, the son of Duncan, ascended the throue.

See Skene, Ccllic Scolland, vol. i clap. 8 ; and comparo Burton (IIistory of Scolland, vol. i, chap. I0 ad fin.), who gives special prominence to the cireumstance that when the genealogy of the Scottish kings is traced upwards the first break in the laceditary succession occurs when Macbeth is reached; the break of contimuity at this proint becomes all the more prominent when it is found that the father of Macbeth's successor had occupied the throne. "This liad to be accounted for, and the easiest way was by treating the intruder as a 'nsurper.' The loyal monks of the I5th century looked on a usurper with horror. Being so placed in the seat of political infamy, we have perlaps the reason why so many events, hatural and supermatural, eame to cluster jound the carcer of Dlacbeth." It is most probable that Shakespeare's ouly source for the tragedy of Mactucll was the Chronicles of Ilolinshed (derived from John of Fordun and Hector Boece).

MACCABEES. The name Maccabee (Маккаßâos) is properly and originally the distinguishing surname of Judas, son of Mattathias, the first great hero of the Jewish revolt against Antiochus Epiphancs. The source of the name is uncertain, but it is most natural to connect it
 with $p$ not 2 . Ewald (Geech., iv. 403) is doubtless right in argaing from 1 Mac. vi. 43 , de., that the surnames of the sons of Mattathias mere simply distinguishing epithets which tbey bore in ordinary life, and in this light
＂hammerman＂appears as a natural surname enough，the occasion of which it would be vain to inquire into．${ }^{2}$ From Judas the name was in later times estended to the whole family，or to the party it represented，or even，as in the title of 3 Naccabees，to other contenders or sufferers for the faith of Israel in the Greek period．The nore cor－ reet name of the family was Hasmoncans，＇Ao［ $\sigma]$ a $\mu$ oriaiot， בית תישמונאי（Tgm．Jon．on 1 Sam．ii．4）．According to Josephus，Ant．，xii．6，§ 1，this name is taken from Asamonæus，the grandfather of Mattathias．Modern writers have suggested a connexion with the town Heshmon（Josh． sv．27）or with D＇，magnates，in Psalm 1xviii． 31 ［32］．The history of the Hasmoneans is given in Israel （vol．xiii．p． 421 sq．）；in the appended genealogical tables （after Schürer）the dates are those of the death of each individual in years e．c．


The chief authorities are 1 and 2 Maccabees （see next article）and Josephus．For details as to other sources seo Schiirer＇s Neutestct－ mentliche Zeitgeschichte，which gives also a good summary of the history．Of other works subsequent to Liwald＇s Geschichte，vol．iv．， it is enough to name Derenbonrg，Histoire de la Palestine（1867），and Wellhausen＇e Pharisïer and Sadducäcr（1874）．For the coins of the Hasmoneans see Madden，Coins of the Jews， 1881.

MACCABEES，Books of．Two books of this name are included among the Apocrypha of the English Bible，os they had formerly been in the Vulgate，and were accepted as eanonical by the council of Trent．A third book is usually included in editions of the Septuagint，and is found in common with books iv．and $v$ ．in the Syriac，but never took a place in Latin Bibles；a fourth is found in some MSS．of the Septuagint（ineluding the Simaitic and Alexandrian－the Vatican does not centain the Naceabee books）and also in MSS．of Josephus，and has been printed in both connexions．

1 Maccabees was originally written in Hebrew，as ap－ pears，net only from the testimony of Jerome（Prol．Gal．）， who had seen the Hebrew text，but from internal evi－ dence．Josephus，however，already used the Greek，${ }^{2}$ and no trace of the Semitic－original survives except the proble－ matical title recorded by Origen（ap．Eus，H．E．，vi．25），s ${ }_{\text {s }}$

[^30]The book gires the history of the national morement in Judra from the accession of Antiochus Ephinanes（ 175 B．C．）to the murder of Simon（ 135 b．c．），in a plain and honest style，and eridently from good information．When the book was written there already existed a history of the reign or high priesthood of John Hyreanus，to which the author refers for the continuation of his narrative．On the other hand，the friendly tone in which he always speaks of the Romans seems to justify the inference that he wrote before 63 в．с．${ }^{4}$

2 Maccecbes，covering the history from 176 B．c．to the vietory over Nieanor（ 100 b．c．），is mnch inferior in value． It begins with two epistles which are certainly forgeries， and then proceeds to the task of summarizing in one book the fire books of a certain Jason of Cyrene on the war of liberation against Antiochus Epiphanes．The narrative is a useful supplement to that in the first book，but is not nearly so trustworthy，and can never claim the preference where the tro are in contlict．Geiger has shown that in 2 Jaccabees the history is coloured and distorted by sym－ pathy with the Pharisees，who beeame the bitter enemies of the Hasmoneans（Urschrift und Uebers．，book i．§4）．

3 Maccabees records a persecution of the Alexandrian Jews by Ptolemy IV．Philopator，with the ultimate re－ pentance of the tyrant．It is quite unhistorical，and the local feast of the Alexandrian Jews，of which it professes to explain the origin（vi．36），is comneted by Josephus （Cont．Ap，ii．5）with an event that took place under Ptolemy Physcon．Errald＇s conjecture that the story con－ tains a birden reference to the emperor Caius（Gesch．，iv． 611 sq ）has found considerable favour．It seems strange that this book should ever have found entrance in Christian circles．It had，however，considerable accept． ance in the Eastern Church．

4．Maccabees，also known by the title $\pi$ ，${ }^{2}$ i airoкрátopos doyíruov，＂on the sovercignty of reason，＂was ascribed to Josephus by Eusebius and Jerome．This opinion is now given up，and nothing certain cau be said of its origin It is a not uninteresting specimen of a Jewish philosophical theme composed under Stoic influence．The author illus－ trates the sorereignty of pious reason orer the passions by historical examples，and is thus led to give ancedotes from the time of the Naccabees．

Fritzsche＇s edition of the Apocrypla（1Sti）is the best，and con－ tains the four books of Maecalees．Grimm＇s commentary on 1 Mac．appeared in 1853，on the other three books in 1857．Theme is also a comonentary on 1 Mae．liy Reill 1885．On 4 Mae．there is an elaborate study hy Frendenthal，Die Fl．Joscrhus beigelecote Schrije Ueber dic Hervschajit der Vernunyt，Dreslan，1869．For further literature see Scluirer，NTYiehc Zcilycschichthe（1574），1p．19， 650 sq．，and his exeellent artiele＂Apokitpphen＂＂，in Herzoog－Pitt，IF．E．， vol． i ．An Arabic＂Book of Maccabees，＂giving a compend of Jewishl history from the affair of Heliodorus to the last part of Horod＇s reign，is srintal in the Paris and London Poly ylotts．$A$ so－ called＂Fifth Book of Maceabees＂is also contained in the great Ambrosian Peshito．It is in fact the sixth book of Josephus De Bcllo Judaico．

MACCLESFIELD，a municinal and parliamentary borough and market－town of Cheshiire，England，is situnted on a declivity near the borders of what is still known as the Macelesfield Forest， 17 miles south－south－east of Manchester，and 37 east－north－east of Chester．It consists authority，and in the Nitrinn MS．usei by Lagarde for Lis cdition of the Syriae Apocrypha（ef．Wright＇s Cat．，i．38），the title runs ．This scems to conffrum Meinichen＇s reading（y and a leing easily inter－ changed in Syrina MSS．）．＂Tho seuse nayy be＂the prinee of the house which God hath huilt upr．＂

Ewald（Gesch．iv，436）and beforo him Whistoo conjectureel that Josephlus dhd not poossess the last part of the liook．Destinon（ut supra，r． 80 sq．）develops this conjecture，and betieves that the book originally ended with the liberation if Jullas under Simod，nnd that the interval between this book aud the aunils of Hyrranus was filled nis later．
of four principal streets, which meet in the market-place, and within the last twenty years has undergone great improvements. The old churcle of St Michael, on the brow of the hill, was founded by Eleanor, queen of Edward I., in 1278, and in 1740 was pirtly rebuilt and greatly enlarged. The lofty steeple by which ito massive torer was formerly surmounted was battered down by the parliamentary forces during the civil war. Connected with the church there are two chapels, one of which, Rivers Chapel, belonged to a college of secular priests founded in 1501 by Thomas Savage, afterwards archbishop of York. Both the church and chapels contain several ancient monuments. For the free grammar school, originally fouaded in 1502 by Sir John Percival, and refounded in 1552 by Edward VI., a new building was erected in 1856 at a cost of $£ 3000$. A commercial school was erected in 1840 out of the funds of the grammar school. Among the other public buildings are the town-hall in the Grecian style (1823-24), with a new frontage (1869-70), the union workhouse (1843-44), the county lunatic asylum (1868-71), and the infirmary (1872). The neighbouring castle of the duke of Buckingham was the residence of Duke Humphrey in the $15 t_{1}$ century. Originally the trade of Macclesfield was principally in twist and silk buttons, but this has been completely superseded by the manufacture of all kinds of silk. The first mill for silk-throwing was opened in 1756, and the manufacture of broad silks was introduced in 1790. Besides this staplo trade, there are various textile manufactures and extensive breweries. The population of the municipal borough ( 3235 acres) in 1871 was 35,540 , and of the parliamentary borough ( 3272 acres) 35,570 . In 1881 the numbers were 37,514 and 37,620 .
Previous to the Conquest, Mracclesfield constituted a portiou of the royal demesne of the earls of Mercia. At Domesday it wras included in the earldom of Chester, and after the abolition of that jurisdiction it relapsed to the crown. $\propto$ In 1261 it was made a borough, and in 1678 it obtained incorporation from Charles II. It has returned two members to parliament since the first Reforn Act, and its boundary was enlarged in 1868.

M'Clure, Sir ${ }^{\text {hobert John }}$ Le Mesurier, the discoverer of the North-West Passage, was burn at Wexford, January 28, 1807, and died in London, Octoher 17, 1873. He was the posthumons son of one of Abercrombis's captains, and spent his childhood under the care of his godfather, Geaeral Le Mesurier, hereditary governor of Alderney. Schooled in Arctic exploration by his service under Captain Back on board the "Terror," be was first lieutenaut of the "Enterprise" during the Franklin search expedition (1848-49), and in 1850 was placed in command of the expedition which, battling with the frozen sea for four years, succeeded in passing from ocean to ocean to the north of the American continent. M'Clure was knighted on his return, and received gold medals from the Euglish and the French geographical societies. During the Canadian iasurrections of 1836-38 he had performed some gallant exploits on the lakes,-on one occasion, in the eagerness of pursuit, infringing the territory of the United States; and between 1856 and 1861 he rendered good service in the Chinese war at the storming of Canton, dc. His latter jears were spent in a quiet country life. He was appointed Commander of the Bath in 1859, and had attained the rank of vice-admiral on the retired list. See Admiral Sherard Osborn, The Discovery of a North-West Passage.
M'CRIE, Thomas (1772-1835), was born at Dunse or Duns in Berwickshire, Scotland, November 1772. He btudied in Ediaburgh University, and thereafter in the divinity hall at Whitburn. . In 1796 he was ordained minister of the Second Associate Congregatioa, Edinburgh, the place of worship being in the Potterrow.

At an early period in its history the Secession Church in Scotland had been divided by a controversy aboat the burgess oath into Burghers and Antiburglers; but towards the close of the century the Antiburglier Synod, to which 1 I'Crie belonged, showed symptoms of a disposition to qualify adherence to the subordinate standards of the Church of Scotland on such points as the magistrate's, power circt sucted and national covenanting, and a new historical manifesto was preparcd cailed The Firmertice cund Testimony, which was adopted as a term ef communion by the general synod in 1804 . I'Crie was one of those Who protested against this departure, as they deemed it from Secession principles, and, declining to acknowledge the jurisdiction of the synod, constituted themselves into a presbytery under the nanie of "The Constitutional Associate Presbytery." M'Crie was in consequence deposed by the Associate Synod, and his congregation withdrew with him to a place of worship in the south side of the town, in which he officiated to the close of his life.

From the time of his settlement in Edinburgh, M'Crie devoted himself to historical investigations into the history, censtitution, and polity of the churches of the Reformation ; and the first ripe fruts of his study were given to the public in November 1811 in the form of The Life of John Iinox, containing illustrations of the History of the Rieformation in S'cotland, which procured for the anthor the degree of D.D. from his alma mater, an honour conferred then for the first time upon a Scottish dissenting minister. At the solicitation of his friend Andrew Thomson, II'Crie became a contributor to The E'dinburiyh C'hristich Instructor, and in three successive numbers for 1817 he subjected Sir W. Scott's Tales of my Landlorel to a criticism which took the form of a lindication of the Covenanters. Preserving the continnity of his historical studies, he followed up his first work with The Life of Andrew Melville, 1819. Negotiations for union between the Burghers and Antiburghers resulted, in 1820, in the formation of the United Secession Synod, and called forth from Dr M'Crie Two Discoirses on the Uxity of the Church, her Divisions, and their Removal, in which what be considered to be the fallacious and unscriptural character of the plan for union adopted by the United Synod is pointed out. Several of his former brethren among the Antiburghers, dissatisfied with the union of 1820, had formed themselves into a separate synod, and between these and the Constitutional Presbytery a union was formed in 1827, the uniting bodies assuming the name of the Associate Synod of Original Seceders, of which branch of the Secession in Scotland M'Crie continued through the rest of his life tho best known representative. In 1827 be published a History of the Progress and Suppression of the Reformation in Italy in the 16th century, and in 1829 a similar History of the Reformation in Spain.

Great as was his absorption in historical research, it did not prevent his taking a lively interest in the leading questions of the day; in pamphlets and on the platform he maintained his convictions, not always popular, on such matters as Greek independence, Catholic emancipation, the "Marrow" and "Voluntary" controversies, Irish education, and church patronage. His evidence on the last-nameù matter before a committee of the House of Commons is contaiaed in the parliamentary publications of 1834.

The latest literary undertaking of M'Crie was a life of John Calvin. Although he bad been gathering material for this project for screral years, it was not till a late period of his life that, stimulated by the assistance of his son John, then in Geneva, he seriously addressed himself to the task. Only three chapters of the work were completed when the writer was struck down by apoplexy. : He diekl on the 5th of Angust 1835.

In addition to the works the titles of which have been alrealy given, Dr M'Crie pullishled the following:-(1) The Duty of Chrislian Socictits toverurts exach other, a Scrinon, 1797 (afterwards suppressed by the anthor, now extrenely scarce); (2) Statentent of the Differcnce betwecenthe Profession of the Ficformed Church of Scotlened and the Profcssion containced in the Ncw Testimony adopted by the General Associate Synod, 1807; (3) Frec Thoughts on the lute Religious Celebration of tho Funcral of the Pevincess Charrotte, 1817; (4) Memoirs of Veitch cunc Brysson, 1825; (5) What Ought the General Assembly to clo at the I'resent Crinis 1833 . The posthumonors publications are-(1) Sermons, 1836; (2) Lectures on the Book of Esther, 1838 ; (3) Miscellanicoors Writings, 1841 ; (4) Thc Early Years of John Calvin, a Fragment, 1880.

An estimate of the services and a graphic description of the personal appearance of Dr M' Crie are to be found in The Headship of Christ (pp. 77-129), and in $A F y$ Schoois and Schoolmastcrs (chap. xri.), both by Hugh Ailler.
MACCULLAGH, James (1809-1846), one of the most elegant geometers of modern times, was born in 1809, near Strabane, Ireland. After an exceptionally brilliant undergniluate career in Trinity College, Dublin, he was elected fello,r in 1832. From 1832 to 1843 he held the chair of mathe, atics ; and during his tenure of this post, for which he was specially fittel, he improved in a most marked manner the position of his university as a mathematical centre. In 1843 he was transferred to the clair of natural philosophy. for which he was not nearly so well qualifed. Overwaik, mainly on subjects beyond the natural range of his powers, induced mental disease; and be died by his orn hand in 1816. His Work have been published in a collected form (Dublin University Press Series, 1880). Their distinguishing feature is the geometry, -which has rarely been applied either to pure space problems or to known physical questions such as the rotation of a rigid solid or the properties of Fresnel's wave-surface with sueh singular elegance. In this respect his work takes rank with that of Poinsot. No higher praise could be given. One specially remarkable geometrical discovery of Maccullagh's is that of the "modular generation of surfaces of the second degree"; and a noteyvorthy contribution to plysical optics is his "theorem of the polar plane." But his methods, which, in less known subjects, were almost entircly tentative, were altogether inadequate to the solution of the more profound physieal problems to which his attention was mainly devoted, such as the theories of double refraction, of erystalline reflexion, \&c. Here not only are the utmnst powers of analysis required, but also the high. est physical knowledge ; and in consequence Maccullagh's work was entirely overshadowed by that of contemporaries, such as Cauchy and Green. See, on this point, Stokes's "Repart on Double Refraction" (B. A. Report, 1862). The story of his later days painfully suggests the comparison of a high-bred but slight racer tearing itself to pieces in the vain endeavour to move a huge load, which a tractionengine could draw with ease and promptitude. He wasted, on problens altogether beyond his-strengtle, powers of no common order, which, had they only been suitably directed, might have immensely extended our knowledge. Sueh, at lenst, is the estimate which we eannot avoid forming from a perusal of his published works. He had "conical refruction" in his hand for years withont knowing its value. The reader who wishos to see the other side of the question (Maccullagh represented as standing to Fresnel in the same relative pesition as Newton to Kepler) is referred to the Proceedings of the Royal Society, vol. v. p. 712 (1847).
macculloch, Horatio (1805-1867), Scoteh landseape painter, was born in Glasgow in 1805. An early frieudship with Sir Daniel Naenee, and William Leitch, the water-colourist, was the, means of turcing the lad's attention to art, which he studied for a year under John Knox, a Glasgor landenpist of some repute, with whom Macnee was apprenticed at the time. After leaving the studio of Khus, we lind him engaged at Cumock, paint-
ing the ornamental lids of snuff boxes in ine manufactory of the Messrs Smith, and afterwards he was employed in Edinburgh by Lizars, the engraver, to coluur the illustrations in Selby's Britisti Birds and similar works. Meanwhile he was diligently prosecuting his studies in higher walks of art, and working unweariedly from nature, greatly influenced in his early practice by the watercolours of H. W. Williams, -"Grecian Williams" as he was called,-whose works had a charm for the young painter after the drier and more elaborate nethod of his Erst master. Returning to Glasgow in some four or five years, he was eniployed by Mr Lumsden, the lord provost, on several large pictures for the decoration of a public hall which he had erected in St George's Place, and be did a little as a theatrical scene-painter in Kilmarnoek and other provincial towns. About this time he was greatly impressed with a picture by Thomson of Duddingston, and npon the works of this artist, the greatest Scottish landscapist that had yet appeared, the art of Macculloch may be said to have been founded. Gradually he asserted his incividuality, and formed his own style on a closer study of nature than had been possible to his predecessor, and his works form an interesting link of connexion between the old world of Scottish landscape and the ner. By its love of elaborate and balanced compositions, by its choice of noble and exceptional scenes, his art connects itself with that of sixty years ago ; by its brilliant and varied colouring, by its care for detail, it differentiates itself from the quietude and the stately abstraction of the older landscape. In 1829 Macculloch first figured in the Royal Scottisi Acadeny's exLibition, with a View of the Clyde, and, year by year, till his death on the 24th of June 1867, he was a liberal contributer to its displays. In 1838 he was elected a nember of the Scottish Academy, and came to reside in Edinburgh, where his genial manners gathered round him a large and appreciative circle of the artists and litterateurs of the city.

Among the more important of the lone series of landscapes which he produced, subjects almost excilusively from Scottish scenery, may be mentioned-Moonlight Deer Startled, 1840; Moor Scene, Sunset, 1841; A Dream of the Highlands, 1844; Inversnaid Ferry, Loch Lomond, 1847 ; A Highland Deer Forcst, 1856 ; Ben Venne from Silver Strand, 1862 ; and Bothwell Castle, 1863. Several works by Macculloch were engraved by William Miller and William Forrest, and a volume of photograplis from his landscapes, with an excellent biographical notice of the artist by Alexander Fraser, R.S.A., was published in Edimburgh in 1872
MACCULLOCH, Joun (1773-1835), one of the most eminent geologists of his time, descended from the Maccullochs of Nether Ardwell in Gallorway, was born in Guerusey, 6th Oetober 1773, his mother being a native of that island. Haring displayed remarkable powers as a boy, he was sent to study medicine in the university of Edinburgh, took his diploma there, and entered the army as assistant surgeon. Attaching himself to the artillery, he became chemist to the Board of Ordnance (1803), and thus began relations with the Government which materially afficted his future carcer. He still continued, however, to practise for a time as a plysiciun, and then resided at Blackieath. In the year 1811 he communicated his first papers to tho Geologieal Society. They were devoted to an elucidation o: the geological strueture of Guernsey, of the Chaunel Islands, and of Heligoland. The evidence they affordel of his capacity, and the fact that ho already had received a scientific appointment, probably led to his being selected by Government to make some geological and mineralogieal investigations in Scotland. He was asked to report upon stones adapted for use in powder-mills, upon the suitability of the chiof Scottish mountains for a repetition of the pendulum experiments previously conducted by Daskelyne and Playfair at Schiehallion, and on
the deviation of the plumb-liae along the meridian of the Trigonometrical Survey. In the course of the explorations necessary for the purposes of these reports ho made axtensive ubsarvations on the geology and mincralogy of Scotland. He formed also a cellection of the mineral productions and rocks of that country, which he presented to the Geological Society in 1814. At that time comparatively little had beru done in the investigation of Scottish goology. Finding the field so entirely his own, and so full of promise, he devoted himself to its cuitivation with great ardour. One of his carliest and most inimortant labours was the examination of the whole range of islands along the west of Scotland, at that time not easily risited, and presenting many obstacles to a scientific explorer. The results of this survey appeared (1819) in the form of his Description of the Western Islands of Scotland, including the Isle of Man ( 2 vols. 8vo, with an atlas of plates in 4to), which forms one of the classical treatises an British geology. He continued to write papers, chiefly on the racks and minerals of Scotland, and had at last gathered 80 large an amount of information that the Government was prevailed upan in the jear 1826 to employ him in the preparation of a geological map of Scotland. From that date up to the time of his death he returned each summer to Scotland and traversed every district of the kingdom, inserting the geological features upon Arrowsmith's map, which was the only one then available for his purpose. He lived to complete this great labour, and to prepare also a small volume explanatory of the map, but he died before these were published in 1836. Among his other works the follorving may be mentioned :-A Geological Classification of Rocks, with Descriptive Synopses, comprising the Elements of Geology, 1 vol 8vo, 1821 ; The Highlands and Western Islands of Scoiland, in a series of letters to Sir Walter Scott, 4 vols. 8vo, 1824; A System of Geology, with a Theory of the Earth and an excmination of its Connexion with the Sacred Records, 2 vols. 8vo, i831. His versatility of acquirement was shown by the publication also of works on malaria, remittent and intermittent diseases, the art of making wines, natural and revealed religion, besides numerous memoirs in various departments of natural history and antiquities. During a visit to Cornwall he was killed by being dragged along in the wheel of his carriage, 21st August 1835.

Dr Macculloch's name will ever be regarded with honour as one of the pioneers of geology in Britain. Essentially a mineralogist and petrographer, be was the first to trace out with some approachto truth the general distribution of the rarions rock-formations of Scotland. His temperament nnhappily led him to look with jealousy and mistrust upon the labours of some of his more illustrious contemporaries, and even to ignore them in his published writings. In particular he appears to have been irritated by the rapid advances made by palrontological geology, and the increas. ingly large placc given to that department of the science, while his own farourite domain of minerals and rocks . Was proportionately neglected. His feelings of dissent were strongly expressed in the posthumous memoir to accompany his map of Scotland; but their bitterness may in part be attribnted to the influence of failing health. Much hostile criticism was expended on his description of the manners and customs of the Highlanders, which were certainly amusing and picturesque, though sometimes his love of an effective period seems to hare led bim to exaggeration. The way in which he was appointed to conduct a geological survey of Scotland, unknown to the public bedies of that country, also led to considerable opposition. But the solid serviees rendered by Macculloch to the progress of geology must be regarded as far outweighing any objectinns that have been made to his literary work or peculiarities of character.

M'CULLOCH, Jomn Ramsay (1779-1864), a distinguished writer on political economy and statistics, was born on 1st Marcl 1779, at Whithorn in Wigtownshire. His family belonged to the class of "statesmen," or small landed proprietors. Having received his early edncation from bis maternal grandfather, a Scotch clergyman, he came to Edinburgh, and was for some time employed there as a clerk
in tho affice of a writer to the signet. But, the Scotsmar nerrspaper having been established $\because t$ the beginning of 1817 , M'Culloch sent a contribution to the fourth number, the merit of which was at once reongnized; he soon became connected with the management of the paper, and during 1818 and 1819 acted as editor. Most of his articles in the Scotsman related to questions of political economy, and be delivered lectures in Edinburgh on that science. He now nlso began to write on subjects of the saine class in the Ledinburgh Reviero, his first contribution to that periodical being an article on Ricardo's Principles of Political Economy in 1S18. Within the next few years he gave both public lectures and private instruction in London on political economy, and had amongst his hearers or pupils many persons of high social position, and some who were important in the political world. In 1823 he was chosen to fill the lectureship established by subscription in honour of the menory of Ricardo. A movement was set on foot in 1825 by Jeffrey and others to induce the Government to found in the university of Edinburgh a chair of political economy, separate from that of moral philosophy, the intention being to obtain the appointment for M'Culloch. This project fell to the ground; but in 1828 he was made professor of political economy in the London University. He then fised his residence permanently in London, where he continued his literary work, being now one of the regular writers in the Edinburgh Revieu. Indeed it appears from a letter of his to Macvey Napier in 1830 that he regarded himself, though Napier did not admit the justice of the claim, as entitled to be the sole contributor of economical articles to the Rcview. In 1838 he was appointed comptroller of Her Majesty's Stationery Office; the duties of this position, which he held till his death, he discharged with conscientious fidelity, and introduced important reforms in the management of the department. Sir Robert Peel, in recognition of the services he had rendered to political science, conferred on him a literary pension of $£ 200$ per annum. He was elected a forcign associate of the Institute of France (Academy of Moral and Politicsl Sciences). He died, nfter a shart illness, on 11 th November 1864, in the seventy-sixth year of his age. To his personal character and social qualities very favourable testimony is barne by those who knew him best. In general politics he always remained in Whig pure and simple; though he was in intimate relations with James Miii and his circle, he never shared the Radical opinions of that group.

M'Culloch cannot be regarded as an original thinker on political economy. He did not contribute any new ideas to that science, or introduce any noteworthy correction of the views, either as to method or doctrine, generally accepted by the dominant school of his day: But the work he did must be pronounced, in rolation to the wants of his time, \& very valuable one. It was at an important crisis that hepappeared in the field of economical discussion. The principles of free trado had been-powerfully asserted before the public in the celebrated petition of the merchants of London, dramn up by Mr Tooko and presented to parliament by Mr Alexander Paring in 1820. Political economy, to which the bullion controversy had presiously attracted macli attention, was more aod more engaging the minds of political writers and of statesmen. But the new viers lad to encounter ficree and sometimes unscrupulous opposition. The Edinburgh Revicwo was the principal organ of the reformers, and was maintaining, when M'Culloch became a writer in it, an energetic warfare against tho pelicy founded on the mercantile theory of wealth. Naturally endowed with stroug sense and sagacity, and possessing a rare capacity for arduous and prolonged mental exertion, he threw himself, with the ardour of conviction, into the great struggle. There can be no doubt that his labours on the rhole contributed lavgely to the diffusion of just ideas on the economic questions then under debate, and to the right direction of the national legislation with respect to them. It must it the samo time be admitted that his treatment of the suljects with which he dealt is not marked by any special breadth or clevation. He adopted too hastily the theorctic exaggerations of some of Smith's successors, aud exhibited in full measure their habitual deadness, in the study of social questiones
to all but material consiclerations. In his evidence before the parliamentary committco on the state of Ifeland in 1825 lie statel opinions, afterwards more fully asserted in the Erdinburgh liericur, an the subject of Irish obsentecisin, which tended to disgust persons of inteligence and right fecling witle a science which, ns interperetel by lim, seemed to lead to practical absurdities, and in other quarters had. it is to be feared, the effect of supplying in platusible cxcuse for carclessness on the part of the riel and great with respect to the inferior classes of society. These opinions could not be justified even on strictly economic crounds, as has since been shown by Longfield and Senior. M'Calloch liad in lim an clement of intellectual wilfulness or perverse selfonssertion, compared by his friends and admirers to the lespotic dogmatism of Joluson, which both in conversation and in lis writines led him into the enunciation and defence of paratoxes; anotable example of this is furnished by the obstinacy with which to the last, 1 m the tectlo of evidence, ho clung to the doctrinc of the impolicy of clieap postage. M'Cullocli was deficient in literary taste, and never attained any high degree of excellence in style. His expression is often sliphod, nad a certain coarseness in liis images sometimes thows an a:- of valgarity over his pares. His rame will probably be less permanently associated with anytling he has written on conomie science, strictly so called, tlan with his great statistica! amb other compilations. His Diclionary of Commerce aut Commerceed Narigation and his Statistical Account of the British Empine-however they may be expanterl and altered, as they have already been, in successive editions-will loug remain imposim, monuments of his cxtensive and varied knowledge and his indefatigable industry. Another useful work of reference, also the fruit of wide crudition and much labour, is his Litcruture of Potitical Eionomy. Thongh weak on the side of the foreign literature of the scicuce, it is very valuable as a guide to British writers, and, in relation to its entire ficld, has not yet been superseded by any English book
Tho following is as complete a list of hls publications as it has been found possible to form:-An Eisint on the Rechuction of the Smerest on the Nationat Deft, 1816 ; An Essay On thic quevtion of Reducing the Juteres! on the Nationat Debr, 1816; A Discourse on the Rise, Progress, Peculiar Ubjects, and Importance of Potitical Eronomy, 1824 ; the niticle Political Ecovomy In the supplement to the Gth edition of the Encyclopredia Bratannica, afterwirds enlarged into The Principles of Political Economy, \&ath a sietch of the Rise and Progress of the Srience, 1830, and again 1813, 1819 (translated into Fiench by Angustin Planche, 1851); Dictionarm, Practical, Throretical, and Ilisturtcal, of Conmerce and Com-
mercial Yautgation, 1832 ; Statistical, Account of ehe British Empire, 1S37; Mercial Nartgation, 1832; Statistical Account of ehe Brifish Empire, 1537 ; Dictionary, Geographical, Statistical: and Mistorical, of the warious Countries, Places, and Natural odjects in the firta, 1811 the (several editions of the lust three have since appeared, and the first two of them have been lepriared in the the Policy and probable Consaguences of the pioposed hepeat of the eristing CornLates and the Inmposition in their steat of a moterate Fixed Duty on Foreign Corn, 1841: Jfcmorandums on the proposed Lanyortation of Furrign Bery and Live Sloch, 1S42: A Treatise on the Principles and Practical Influence of Taxation and tlie Funding Systen, 1845; The Lileruture of Political Eionomy, 1915 ; 4 Treatise on the Succession to Property Vacane by Death, 1818; Theatise on the Circamstances which delermine the Rate of Dages and the Condition of the Laboaring Classcs, 1hil (an carlier edition hat appeared anonymonsly in 1826) ; Considerations on Parinership uth Linited Liabiltu, 1856 ; perfaces and notes to a select collection, in + vols. of searce and valuable ceonomicnl tracts, reprinted at Lord Orerstonc's expense, 185if-39. He united in one volume ( 2 d ed, 1859 ) a number of lis minor Treatises and Essays on subjects connected wilh Ecouomic Pollcy, many of which had pppeared as articles in the Encyclopadia Dritannica, He also puinted, for private distribution amongst this friends, a cataloguo of hiss library. - which contained a fine collection of books on his orn special subiects, -adding critieal nad bioaraphlal notices. He had edited in 1829 Smith's Wealth of Natoons, with a life of the author, an introductory discourse, notes, and supplemental dissertations; of the authot, an work he greatly endarged and tmproved in the eflitions of 1.938 and 1850 . In $18 f 6$ he cuited Ricardo's works, with of notice of the life und watines of the author.
(J. K. I.)
maCDONALD, Étienne-Jacques Joseph-Alexaiddee (1765-1840), duke of Taranto, and marshal of France, was born at Sancerre on November 17, 1765. His father came of an old Jacobite family, which had followed James 11. to France, and was a near relative of the celebrated Flom Macdonald (1722-1790), the heroino whose conrace and fidelity were at one critical period the sole means by which Prince Charles Edward was enabled to elude his enemies after the defeat of Culloden in $\mathbf{1 7} 16$. In 1784 Macdonald joined the legion raised by the second Marsbal Maillebois to support the revolutionary party in Holland against the Prussians, and after it was disbanded lo received a commission in the regiment of Dillon. On the breaking out of the Revolution, the regiment of Dillon renained emineatly loyal, nearly all its officers emigrating with the princes, with the exception of Macdonald, who was in love with a Mademoiselle Jacob, whose father was entliusiastic for the doctrines of the Revolution. His love was successful, and directly after his marriage bo was appointer aile-de-camp to General Dunouriez He also distinguished limself at Jemmapes, and was promoted culonel in 1794. Ho refused to desnrt to the Austrians with Dumouriez,
and as a reward was wade general of brigade, and appointed to command the leading brigade in Pichegru'a invasion of Hollard. His knowledge of the country proved must nseful, and he was instrumental in the capture of the Dutch fleet by the French hussars. In 1797 he was made general of division, and transferred first to the army of the lihine and then to that of Italy, Whea he reached Italy The peace of Campo Formio had been signed, and Generat Bonaparte had returned to France ; but, under the directior of Berthier, Macdonald first occupied Rome, of which he was made governor, and then in conjunction with Championnet he defeated General Mack, and revolutionized the kingdom of Naples under the title of the Parthenopæars Republic. When Suwaroff invaded northern Italy, and was minning back the conquests of Bonaparte, Gieneral Macdonald collected all the troops in the peninsula and moved northwards. With but 30,000 men he attacked, af the Trebbia, Suwaroff with 50,000 , and after three days fighting, during which he held the Russians at bay, and gave time for Moreau to come up, he retired in good ordes to Genoa. After this gallant behaviour be was made governor of Versailles, and acquiesced in, if he did not co-operate in, the erents of the 18 sth Brumaire. In 1800 he received the command of the army in Switzerland which was to maintain the conmunications between the armies of Cermany and of Italy. He carried out his orders to the letter, and at last, in the winter of $1800-1$, he was ordered to march over the Spliigen Pass. This achievement is fully described by Mathien Dumas, who was chiet of his staft, and is at least as noteworthy as Bonaparte's famous passage of the Saint Beraard before Marengo though followed by no such successful battle. On his return to Paris he married the widow of General Jouberts, and was appointed French plenipotentiary in Denmark. Returning in 1805 he associated himself with Morear, and incurred the dislike of Napoleon, who did not include him in his first creation of marshals. Till 1809 bo rev mained without employment, but in that year Napoleon, hard pressed at Asperu, gave Macdoaald the command of a division in the army of the riceroy of Italy which was to march from Italy to his help. He led the army from Italy till its junction with Napoleon, and at Wagrans commanded the attack on the Austrian centre whicls won the victory. Napoleon made him marshal of France on the field of battle, and presently created him duke of Taranto. In 1810 be served in Spain, and in 1812 be commanded the left wing of the grand army for the invasion of Russia. After sharing in the battles of Liitzen and Bautzen, he was ordered to invade Silesia, where Blucher defeated him with great loss at the Katzbach. After the terrible battle of Leipsic he was ordered with Prince Poniatuwski to cover the evacuation of Leipsic, and after the blowing up of the bridge, he managed to swin the Elster, while Poniatowski was drowned. Duriug the defensive campaign of 1814 Macdouald again distinguished himself, and was one of the marshals sent by Napuleon to take his abdication in favour of his son to I'aris. When all were deserting their old masler, Macdonald remained failhful to him. Macdonald was directed by Napoleon to give in his adherence to the new régine, and was presented by him with the sabre of Murad Bey for his fidelity. He was made a peer of $F$. unce at the liestoration, and, having once passed his word to the new order of things, remained faithful during the Hundred Days. In 1816 he became chancellot of the Legion of Honour, a post he beld till 1831, and took a great part in the discussions in the House of PeceIn 1823 he married Mademoiselle do Bourgony; and \& lust had a son: Alexander, who succeeded on his death ir 1840 as duke of Taranto. From 1830 his life was spent in retirement at his country placo Courcelles

Macdouald had uone of that military genius which distinguished Davoust, Massena, and especially Ney, uor of that military scicuco conspicuous in Marmont and St. Cyr, but nevertheless his campaign in Switzerland gives him a rank far superior to sufh mere geuerals of division as Oudinot and Dupont. This capacity for independent command made Napolcon, in spite of bis defeats at the Trebbia and the Katzbach, trust him with large corps d'armeo till the end of his carcer. As a man, his character canuot be spoken of too highly ; no stain of cruelty or faithlessness rests on him. He retained always the frauk honour of a soldier of fortune ; but he gever forgot that lie was a gentleman, or disgraced tho new nobility of Napoteon ly ridiculous pretensions.

Macdonald ruas especially fortunate in the accounts of his military exploits, Mathicu Dumas anct Sigur haring becu on his staff in Switzerland. See Dumas, Evénements Militaircs; and Sézur's rare tract, Lellre sur la campagne du Général Macionald dans les Grisons en 1800 el 1801 (1802). Also consult Pelet's excellent Compagne de 1809, and Ségur's Eloge (1842).

MaCDONALD, Lawrence (1798-1878), sculptor, was born at Gask, Perthshire, Scotland, in 1798, and in early life served as a mason's apprentice. Having shown an aptitude for stone earring, he went while still a youth to Edinburgh as an art student at the Trustces' Academy, fiading at the same time a good deal of oceasional employment in earving coats of arms and other ornamental figures on the gatewass or walls of country houses. By the help of friends he was enabled to visit Rome, whence, after a stay of two or three gears, he returned to Edinburgh in 1826. During the nest few years he executed a considerable number of commissions for busts, and also deroted a good deal of time to the designing of ideal subjects, in which branch of his art, however, the publie interest mas comparatively slight. From 1832 until his death on Mareh 4, 1878, his home was in Rome; during the long period of forty-sis years his chisel never rested, and the number of works that issued from his studio, cliefly in the department of portrait sculpture, was very great. Among his ideal works may be mentioned Ulysses and his Dog Argos, Andromeda chained to the Rock, Eurydice, Hyacinth, a Siren, aud a Bacchaute. His busts, while excellent as likeaesses, are remarkable for purity and dignity of style: and the ideal works aro at once full of grace and earefully correct in form, design, and treatment.

MACEDONIA, wheu that nume is takea in its widest signification, is the country between Thrace on the east and Illyria on the west, bounded on the S. by Thessaly and the Egean Sea, and on the N. by the lands whirch belong to the basin of the Danube. The nost definite limit in its physieal geography is that towards Illyria, where the Scardus range, which still bears the name of Schar, forms a continuous barrier between the two countries; on the eide of Thessaly also, Mount Olympus and the Cambunian mountains constitute a well-marked frontier. In the other two directions its natural limits are less clearly defined. Tomards the enst, during the greater part of its history, the river Strymon was regarded as its proper boundary; but after the foundation of the city of Philippi it encroached on Thrace, and extended as far as the river Nestus, or even Mount Rhodope. With regard to the features of the country immediately to the north of Macedonia a misconception long prevailed, whieh has only of late jears been dispelled by geographical researel. Owing to a misinterpretation of a passage in Strabo (vii. fragm. 10; $f$. vii 5,1 ), it was long believed that the country between the Danube and the Egeaa was divided in the middle by a lofty range of mountaius, which formed a continuation of the main chain of the Alps as far as the Euxine ; and this mistake is perpetuated in many of our maps at the present day. But since this district bas been explored, first by Grisebaeh, and afterwards by Von Haln, it has been known that along one important portion of this supposed line, directly to the north of Macedonia and southeast of the modern principality oi Servia, the hills
do not rise to any considerable elevation, and that affluents of the Margus (IIorava), which Hows into the Danube, and of the Axius (Vardar), which runs to the Ejgean, rise cluse together in the upland plain of Kossora, the seene of the great battle in which the Serrinu monarchy was overthrown by Sultan Amurath 1. in 1389. This ratershed may be regarded as the northern boundary of Jacedonia. But the extended limits mhich have here been given did not belong to the district that bore that name in early times. The origimal Macedonia was confined to the inland region west of the Axius, between that river and the Seardus mountains, and did not include the northern portion, which was known as Pieonia, or the cosst-land which, together with the eastern districts, was inhabited by Thracian tribes, and was regarded by the Greeks at tho time of the Peloponnesian war as part of Thrace. The people of this country were not Helleaic, though its rulers ultinately succeeded in claiming that title for themselves, at the time when Alexander I. was admitted as a cumpetitor at the Olympie games. The same thing may be said of the land itself, the appearance of which presents many points of contrast to that of Greece proper. Instead of the delicate, bright, and varied scenery of that country, with its clear atmosplere and sharp outlines, we find io Macedonia broad masses of mountains, extensive sweeps of lowland, and uniformity of colour. The climate of the inland regions also is severe, so that the eypress and other trees which flourish in Greece will not grow there.

The river Axius divides Nacedonia into two parts, the eastern of which resembles the neighbouring country of Thrace in the irregularity of its surface; but in the western part there is a suceession of valley-plains, generally ele rated themselves, though deeply sunk among the rocky walls that surround them. These lie under the flanks of Mount Scardus, and difier in a still more striking minaner from the country of $1 l l y r i a$ on the further side of that chain, which is made up of a number of irregular, and usually narrow, river-valleys, separated from one auother by rugged mountains. The characteristics of these valley plains are the well-defined basins in which they lie, their rich allurial soil, and the river whieh waters each of thear respectively, and in each case makes its exit through a narrow passage, which is its only means of eseape. The northernmost and smallest of theso is now called the Tettoro, and from it the main stream of the Axins issues. At the southern extrenity of this a branch detaeles itself from the Scardus, and bending sonthward forms an inportant secondary chain, which is continued until, under the nime of Beraius, it approaches Mount Olympus. This bratel, in the upper part of its range, furms the eastern boundary of the second and most important valley-plitin, that of Pelagonia (now the plain of Monastir), from whichs the Erigon (Czerna) forces its way to join the Axius. This plain, which is 40 miles in length by 10 in breadth, and 1500 fect abovo the sea, was one of the primitive seats of the Macedonian race, and was suited for developing a hardy yet thriving population which.might afterwards become a great people. Here is laid the seene of the story of the foundation of the Macedonian mooarchy, which Herodotus has related (viii. 137, 138). According to this, three brothers of the family of the Temenidæ of Argos, having entered the serrice of the king of the country, und having been defrauded by him of their wages, made their escape ia a romantic manner, the narrative of which contains numerous fabulous ineidents, and ultimately conquered all Macedouia. The southern part of this phain was called Lyncestis, and was the seene of the encounter between Brasidas and the Illyrians, which Thucydides Las deseribed (iv. 12t-28); the famous retreat of that generai was made by the pass at its south castern extrewity

$$
a
$$

VO1. XV


Between Lyncestis nnd the lowlands, near the coast, is a lake district of somewhat inferior elevation, which bere the name of Eordæa. Agaid, to the southward of Pelagonia is another extensive plain, frem which the Haliacmon (Vistritza) draws its waters; that river ultimately breaks through the Bermian range behind Berrhcea (Verria), and flows into the Thermaic Gulf. The coast district between the Haliacmon and Olympus, as well as the sea-slopes of that mountain, formed Pieria, the original home of the Muses. The chief citics of Picria were Pydna, where Perseus, the last king of Macerlon, was defeated by the Romans, and Dium. From this neighbourhood to the liead of the Thermaic Gulf a vast maritime plain estended, which was intersected by the Lyclias and the Arius, ns well as the Haliacmon.

The Scardus clain, which has been spoken of as separating Macedonia from Illyria, is the northern continuation of Pindus, and the two together form a well-defincd backbone, whieh may be compared to the spina of an ancient circus. At its northern extremity, where it rises from the plain of Kussova, stands a lofty peak, which, to carry out the comparison, may be cailed the meta or goal of the circus. This summit, which reaches a height of between 7000 and 8000 feet, had no name in antiquity, but is now known by the Slavonic appellation of Linbatrin, or the "Lorely Thorn." The mountain wall which starts from it presents a most imposing appearance from every point of view, and is broken through at only one point, where the river now called Devol, rising on its eastern side, divides it to its base as it flows to the Adriatie. Here the chain of Scardus ends, and that of Pindus commenees. Northward of this it is crossed by two passes,-one near the headwaters of the Axius, between the modern towns of Prisrend and Calcandele ; the other farther to the south, leading from the head of the Lacus Lychnitis (Lake of Ochrida) into the Pelagonian plain. At the southern end of this plain another chain diverges from Scardus, and takes an ensterly direction through Macedonia; in the region between the Strymon and Nestus this was called Orbelus, and between it and the sea lies Mount Pangæus, which was famed for its gold and silver mines.

The rivers of this country, notwithstanding that they are larger than any that are found in Greece proper, can hardly be called navigable, though barges are floated down them at the present day. The Axius, which is the most important, is celebrated by Homer, on acconnt of its fertilizing water, as "the fairest stream that flows in all the earth" (IL., ii. 850), and the valley in which it runs must always have formed a line of communication between the barbarons districts of the interier and the sea. The point of demarcation between the uplands and the lowlands is marked by the Stena, or, as it is now called, the Iron Gate (Demir Kapu) of the Vardar. Here the river cuts through at right angles the mountains that join the Scardus and Orbelus ranges, and fornis a deep ravine, through which it rushes in rapids for the distance of a quarter of a mile, beneath steep cliffs that rise to the height of 600 or 700 feet above ; and traces of groorings in the rocks are visible, where a passage has been made in ancient times. At the point in its upper course where it receives its northern tributaries, and begins to bend towards the south, etood the town of Scupi, the name of which was changed by the Byzantines into Scopia, or "the look-out place," and has now been corrupted into Uskiub. The importance of this consisted in its neighbourbood to the pass over the Seardus, by which the barbarian tribes to the west used to descend into the more lcvel and fertile country, and in its commanding the principal line of traflic. Between Seupi and the Sters.e at the confluence of the Axius and the
trigon, was Stont, the ruins of which Liave recently been discovered by M1. Heuzey, of the French "Mission do Macéloine." This town was in Roman times the meetingboint of four great roads-one from the Danube by Scupi; anuther from Sardica, near the modern Sophia, to the north-east; a third from Heraclea (Monastir) to the south-west; and a fourth from Thessalonica. The Strymon (Struma) follows a direction nearly parallel to the Axius in eastern Macodonia, and, after passing through the chain of Orbelus, enters the rich plain of Serrhe (Seres), and flows into the Lake of Prasias or Cercinitis, shortly after emerging from which it reaches the sca. On the sheres of the Lake Prasias were a number of lacustrina habitations which Herodotus has described, corresponding in their gencral features to those of which so considerable remains have recently been discovered in Switzerland and elsewhere. At the point where the Strymon leaves the lake was built the important town of Anp,hipolis, which was surrounded on three sides by the river, thus occupying a rery strong position. It was founded by the Athenians in 437 b.c., and was valuable on account of its neighbourhood to the mines of Pangreus, and as furnishing a large supply of timber. Its port, at the mouth of the Strymon, was called Eion. The ancient capital of Macedonia, Age or Edessa (Vodena), stood at the point where the passes from Lyncestis and Eordæa emerge into the lower country. Its situation seems to suggest dominion; for, while it has at its back all the resources of the richest districts, the view from it embraces the wide maritime plain, the mighty mass of Olympus, and a portion of the Thermaic Gulf. The site, which resembles that of Tivoli, is one of extreme beauty, for below the level table of land on which the city is built the rock falls some 200 feet in steep precipices, and the river which passes through it, a tributary of the Lydias, divides into a number of smaller streams, which plunge at various points in cascades down the eliffs. When Philip of Macedon transferred the seat of government to Pella, Edessa continued to be the national hearth of the race, and the burial-place of their kings. Pella, the later capital, occupied a much inferior position, being on low hills at the edge of an extensive marsh in the middle of the maritime plain. This was naturally an unhealthy site, and its only strength lay in its swampy surroundings; so that its nearness to the sea must have been its chief recommendation. The place is now deserted, but the namo of Pel is still attached to ita vicinity. In Roman times Thessalonica became the chief centre of these, parts, which at all times it deserves to be, for it is admirably placed for purposes of communication and trade, as it lies on the innermost bay of the Thermaic Gulf, and forms the natural puint of transit for exports and imports. Its appearance recalls that of Genon, from the way in which the houscs rise from the rater's edge, and ascend the hill-sides belind. This city was the terminus of the Via Egnatia, the great Roman raad which joined the Adriatic and the Egean, and formed the main line of communication between the West and the East. Starting from Dyrrhachium, it threaded the defiles of Illyria, and, passing the Lacus Lychnitis, crossed the Scardus by the sonthernmost of its two passes, which descends on Heraclea; thence it traverscl Lyncestis and Eordæa, till it rouched Edessa, and finally crossed the plain to Thessalonien.

It remains to speak of the maritime district of Macedouia, called Chalcidice, which projects like a trident into the north of the Egean betwoen the Thermaic and Strymonic Culfs. When scen on the map, it strikingly resembles the I'eloponuese in miniture, from its three southern pronontories, with deep intervening bays, aud the massire breadth of ground from which these spring. This resemblance is still further borue out in the form of
the mountains and their regetation; und in most respects it correspands so well to what the Greeks desired for their settlements that we cannot be surprised at finding its shores fringed with Hellenic colonies. Several of these were founded from Chalcis in Euboe, which city gare its name to the district; but the important torn of Potidæa was a Corinthian cuony. The most eastern of the three peninsulas, that of Acte, is far the highest, and rises from its isthmus until it forms a steep central ridge, which gradually attains the beight of 4000 feet, and finally throws up the vast conical peak of Mount Athos ( 6400 feet). The asthmus, which is about a mile and a half broad, still shows traces of the canal made by Xerxes for the passage of his fleet, in order to avoid the dangers of shipwreck on the rocks of Athos, which had destroyed the expedition of Mardonius. On the land side of the isthmus stood the city of Acanthus. Separated from Acte by the Singitic Gulf was the promontory of Sithonia, with the town of Torone; and still farther to the west, beyond the Toronaic Gulf, was that of Pallene. The former of these, though of lower elevation than Acte, is intersected by a rell-marked ridge; but the latter is almost level, and from the traces of volcanic actiou that are found there was called by the Greeks Phlegra, and was said to have been the scene of the conflict between the giants and the gods. On the soathern side of Pailene were the towns of Meade and Scione, und its isthmus was occupied by Potidæa, near which, at the head of the Toronaic Gulf, stood Olynthas. The Greek cities on this coast wero a continual thorn in the side of the Macedonian monarcles, and caused them to zake part against Athens during the Peloponnesian War. The northern part of Chalcidico is mountainons, and beyond these mountains is a considerable depression, in which lies the Lake of Bolbe.

Dacedonia first comes into notice in history in the reign of Amyntas (about 500 B.c.) and in that of his son Alexander, who was king at the time of Xerxes's invasion of Greece. But whatever historical interest attaches to it is due rather to the great empire which sprang from it than to the importanco of the country itself. During the Peloponnesian War we notice it chiefly as it affects the principal contending parties, but in the time of Demosthenes it attracts our attention as furnishing the keynote of the policy of that statesman, and being the proximate cause of the overthrow of Greck liberty. After the Macedonian Empire (q.v.) was subjugated by the Romans in 168 b.c., the country was left with a nominal autonomy, bot lost its national unity by being divided into four districts, which were separated from one another by rigid political and social limitations. Before long it was reduced to the form of a province, and this, at the dirision of the prorinces in the time of Augustus, was assighed to the senate. Thenceforward it followed the fortunes of the Roman empire, and, after the partition of that dominion, of the eastern branch of it. In the time of Alaric it was frequently plundered by the Goths, and in the interval which elapsed between Justinian I. and Heraclius a considerable part of it was colonized by Slavonians. During the prosperous period of the great Bulgarian monarchy in the 10th century a large portion of Macedonia was included in that kingdem. After that age extensive depopulation must have ensued, for in the 11th aud 12th centuries colonies of warious tribes of Asiatic origin-Uzes, Turks, and Patzinaks-were established there by the emperors of Constantinople. In the partition of the Eastern empire, which followred the capture of that city by the Lating at the time of the fourth crusade, in 1204, Macedonia was assigned to Boniface, marquis of Monferrat, who assumed the title of king of Saloniki. This kingdom in turn was brought to an end in 1224 by the Greek despot of Epirus, Theodore I., and by him a Greek empire of Thessalonica was founded, which for a sime seemed likely to become the heir of the Byzantine power, but afterwards was merged in that of Nicea, and on the recapture of Constantioople by Michael Palæologus once more formed part of a noited Greek empire. In the latter half of the 14th century the greater part of Macedonia was in the possession of the Servians, whose kingdom was now at the height of its power; bnt before the middle of the 15 th it bad passed into the hands of the Ottoman Turks, by whom it has been beld ever since. At the present day the population of the inland part of the country is mainly composed af Bulgarian Christians, mixed with Turks, while the Greeks secupy the coasts, the whole of Chalcidice, the plain of Seres, and anme ather districts.
(I. F. T.)

MACEDONIAN EMI-fRE, The. The attention of the Greeks was drawn at an early time to the danger that the zorthern tribes might combine to invade the south. Sitalces, king of Thrace, spread great alarm by an inroad during the Peloponnesian War, but the real peril ras from Macedonia rather than from Thrace. The Mlacedouians had been gradually pushing their way down torsards the coast, and, though Alcxander I. was a vassal of Xerxes, the retreat of the Persians, $478 \mathrm{~B} . \mathrm{C}$., left these hardy tribes free. They were still in a primitive state, mountain shepherds, ill clothed and ill housed, many of them clad anly in skins. They wore the kausia or broad-brimmed hat; they ate and drank from wooden platters and cups; they differed little from what they had been when the first Perdiceas came to the country, when the king's wife baked cakes with her own hand on the hearth. But the peasants were freemen, not serfs like the Penestro of Thessaly. It was still neces sary for the joung warrior to slay a foe before he could take his place in the tribe; and Cassander had to sit instead of reclining at the banquet of his father Antipater, because he had not yct killed a wild boar. The druakeu bouts at these banquets led to some of the deeds which are a blot on the fame of both Philip and Alexander. The king held large domains, and had a choice body of "companions" around him, lut the warriors used much freedom of speech towards him, and. the chiefs could ouly be condemned by the assembled host. When, however, any one was thus convicted of treason, his kindred were also put to death. If any blood guilt was incurred, a dog Jas cut in two and the soldiers passed between the balves laid out in the open air, that so they might be purified. There were still but ferr towus, or even strongholds, to which the people could fy when the Illyrians camo in over Mount Bermius from the west, or the Thracians across the Strymon from the east, or the Preonians down the river Axius from the north. The western tribes too were at this time being pusbed onward into Macedonia by a migration of the Gauls. Archelaus, son of Perdiccas II., however, builk forts, cut straight roads, and collected horses and arms The cavalry of the richer landowners was good; but the foot soldiers were armed only with wicker shields and rusty swords. Archelaus also courted the friendship of leading. Atheuian statesmen, philosophers, and poets; nnd later on the Athenian general Iphicrates dia essential service to tbe royal house.

But the ndrance made by Archelaus, who dicd 399 b.c., was almost all lost before Philip II. came to the throne and the kingdom was reduced to a narrow district round Edessa, shat out from the sea by Greek cities. Olynthus the chief of thesc cities, had in the reign of Philip's fathers Amyntas II., induced many places to make themselves in dependent of the king, but the jealousy of Sparta proved
fatal to the Olynthian confederacy, and destroyed what would have been a bulwark against the barbarians of the north (379).

Philip himself had the best of all trainings, that of adversity. During the reign of his eldest brother Alexander II., Pelopidas took hostages for the fidelity of Macedonia, and among them was Philip, then about fifteen years old. He remained tro or three years at Thebes, profiting by literary training, and above all by the living example of Epaminondas, the ablest organfzer and most scientific tactician of the age, who had trained the scldiers that broke througlı the Spartan line at Leuctra. When Philip returned home, his brother Perdiccas III. entrusted him with the government of a district, where he organized a force on the Theban model. On the death of Perdiccas, though he left au infant son Amyntas, Philip was called to the throne (359), for the reign of a child in an early state of society means anarchy Philip's energy soon made itself
felt. He fortified a new capital, Pella, safe amidst its lake-like marshes, from which be could act against the coast. Greece was at the moment completely disorganized. Sparta had lost, not only her supremacy ovor the other Greek states, but the control over Messenia and Arcadia, which leant on Thebes for defeuce against her revenge. Thebes had ineurred odiam from her conduct towards the free cities of Bueotia, was at feud with Athens, and had but a precarious holl over Phocis and Thessaly; whilo. Thessaly itself, after the fall of the tyrants of Phere, was a prey to internal feuds. Athens was the first to come into collision with Philip, owing to her holding possessions on the coast of Macedonia and Thrace, whence she procured ship timber and naval stores. Philip had conciliated ber for the time by withdrawing his troops frem $\Lambda$ mphipolis, her old colony in the hend of the river Strymon, while ho was driving off the Illyrians and reducing the tribes to the west as far as the Lake Lychnitis. But Athens was at this monent threatened by tho revolt of her allies which lod to the Social War, and se lost the chance of reocenpying Amphipolis while Philip was busied in the interior. The moment his hands were free, he retook the place, which was all-important to him, as it was not only tho most convenient maritime station in Thrace, but also .threw open to him all the conntry east of the Strymon, and especially the gold region near Mount Pangreus, the productive country facing the island of Thasos ; and to secure his conquests he founded a new city in the interior called Philippi. His gold coins, struck on the Attie standard, soon became well known, and even the early gold coins of distant Britain copied the types of the Macedonian money. He also took Pydna and Potidæa, thus depriving Athens of her hold on the Thermaic Gulf, while the occupation of Methono opened the way into Thessaly. Moreover, the Social War had not, yet ended when the disastrons Sacred War bogan, which added religious to political enmity, and benefited only the aggressor from the north. The Amphictyonic League was called into netivity to crush the Phocians, who in their despair seized Delpbi, and by the use of its treasures collceted troops enough to hold Thebes in check for some jears. It was the misfortune of Greece that there had arisen mercenary bands, like the condottieri of modixval Italy, who hired themselves out to any one that would employ them. The citizens becamo more averse to service as civilization increased, and the work of war was now done by alien lands. Only a standing army conld face the standing army of Macedonia, but the industrious and refined citizens naturally disliked continnous service, and it was long before even Demosthenes could arouse Athens to the necessity of the etruggle. He was opposed by the old statesmen, by heuest men such as Phocion (whese peace policy, however expedient after Chæronea, was impolitic during most of Philip's reign), and by others whon Pluilip had bribed-for he loved to "plough with a silver ploughHare." The Sacred War gave Philip a pretence for interfering on behalf of tho Delphic god. Ho drove the Phocian mereenaries fiom. Thessely, incorporated tho excellent Thessalian cavalry in his army, and gained a good naval position on the Gulf of Pagasa (VOlo), the great iulet and ontlet for the trado of the country. This also epence the way to Enboen, for the possession of which, however, Athens struggled hard. It was on the Ciulf of Pagasa: that Demetrias was afterrwards founded, which, with Chalcis nud Corinth, beeame the "fetters of Greece," Philip also laid a strong hand on Epirus, oceupied Acarnania, won over the Etolians by the gift of Naupactus, and thus hemmed in Atuens on the land side. It is true that, when he marehed on Thernopylæ, B.C. 352, a sudden eflort of the Athenians enabled theur to reach tho pros in
time to arrest his progress, and save the Thocians for a while; but Philip had now a large seaboard, and hs proceeded to increase his flect, to extend lis dominion in Thrace on both sides of the 1Februs, and seenre it by the foundation of Philippopolis, Calybe, Berea, and Alexandropolis, while the Greek colonies along the Euxine up to Odessus sought his allianco. There was worse to come, for Philip by the year 34.7 had destroyed Olynthus and thirty-one other free cities in Chalcidice, and sold their inhabitants as slaves, a calamity such as had not happeucd since the invasion of Xerzes. This struck terror into all the south country, and we find Isocrates, once the ehampion of Panhellenic freedom, proclaiming Philip the arbiter of Greeee, and advising him to use his power for the parpose of conquering Persia He found himself bitterly deceived, and "that dishonest victory at Cliseronea, fatal to liberty, killed with report that old man eloquent." The Thebans were still unwilling to combine with Athens, and even called in Philip to end the Sacred War. This gave him the commnnd of Thermopylx, and the means of marching into Beotia and Attica, while the destruction of the Phocians spread the terror still more widely. Philip now became the recognized religious leader of the Amphictyonic Leagne, and began to interfere authoritatively in the Peloponuese. He was also preparing to master the Bosphorus and the Hellespont, the outlets from the Euxine into the 玉gean, through which the main supplies of corn came from the country north of the Euxine to Athens, which therefore laid great stress on the possession of the Chersonese. Once again Athens gained a succoss when she sent Phocion to relieve Byzantium from his attack (339). The Greek cities began again to lean on her, and her trade increased owing to the destruction of Olynthus by Philip, and of Sidon by the Persian king Ochus. The Greeks too began to see that Philip's allies were being swallowed up one by one. Philip himself, when returning through the passes of Hxmus from an attack on the Scytbian king, who ruled between the mountains and the Danube, suffered heavily from a. surprise by the Triballi. But a second Sacred War against the Locrians of Amphissa, caused by Wschines's troublesome activity, again brought Philip into the heart of Greece. He fortified Elatea in Phocis, and demanded a passage through Bootia to attack Athens. On this Demosthenes won his greatest triumph, when be induced Thebes to jum th the struggle for freedom and independence; and, though the patriots were defeated at Charonea, 338 r.c., yet their blood was not shed in vain; their example has told on all future time. Philip used his victory moderately, foi he wished to leave Greece quiet behind him when he crossed into Asia to assail the great king. He garrisoned the citadel of Thebes, and demanded from Athens an acknowledgment of his leadership in tho national war against Darius ; and a congress at Corinth recognized him as its ehief, and arranged what centingents were to be sent from each state. His assassination in 336, at the early age of forty-sevell, hardly delayed the esecution of tho plan, for he was succeeded by Alesander, who combined the qualities of a king of the heroic ages with all that Greek training could give. Though the Macedonians had a dialect of their own, jet they had neither language for communicating with others nor any literature except what they derived from Greeks, and lhilip had taken caro to give his son even a better training than he lad received himself Aleasader was also as prompt and cruel as his father. Ho at onee rid himself of his cousin and brother-in-law Ampatas and other kinsmen and possible competitors for the throne, or persons otherwisc dangerous. Then he dealt somo heary blows ngainst the barbarians east, north, and west, some of whose rhiefs he took ior further security wiol lim into $\Lambda$ sia Ue was just south
of Lake Lychnitis, on tue western side of the range of Scardus or Pindus, when the news reached him that the exiles had roused Thebes to arms, and were bcsieging his garrison in the Cadmeia or citadel. Striking throngh a cleft in the main range of mountains, throngh which the Devol flows, and marching south along the Haliacmon and over the Cambunian ridge, which joins Pindus to Olympus, Le reached Bœotia in less than a fortnight, stormed Thebes, sold the citizens as slares, and destroyed the place. The citadel alone remained as a Macedonian fortress, until Cassander rebuilt the city. Amidst the general terror, Alezander thought it wisest to follow his father's policy oere also, rnd be content with his election as captaingeneral by the congress of Corinth.
He left Antipater as regent, and at once crossed the Rellespont to Sestus in the spring of 334, before the Persian fleet was ready to intercept him, or the main Persian army had been embodied. What information had he as to the regions beyond the Taurus and beyond the Tigris, and still more as to the great table-land of Asia extending from Persia to the Indus? He had the Anabasis of Xenophon, and perhaps the Persian history of Ctesias, but he must have relied mainly on information derived from Greeks who had been in the Persian service, or who had traded in the interior. But lie knew one thing for certain, that no force in Asia could resist Philip's veteran arny. Philip had formed the local battalions of militia into the phalanx, arrayed sixteen deep, and armed with long tro-handed pikes (sarissa); and this steady body of pikemen, with the veterans in the front ranks, had borne domn on the open plain of Chæronea the resistance of the Greek hoplites, who werc only armed with a much shorter spear. The phalanx was supported on the flauks by the light infantry of the guard (hypaspists), by targeteers (peltasts) trained after the plan of Iphicrates, by light lancers, and by a strong body of heavy cavalry, headed by tine king's companions, and fightiug with the short thrusting pike. It was the charge of the carairy led by Alexandcr in person, at the head of the "agema" or royal squadron, that decided all his battles. It seems strange, however, to us to hear that the men had neither saddles nor stirrups, nor were the horses shod. The fine natire army was largely reinforced by barbarian archers, darters, and siingers, and by regiments of Greek mercenaries; and this systematic combination of different arms and kinds of troops was supported by field and siege artillery of an lruproved type. Later on, when the main Persian army was broken up, Alesander added to the number of light troops, and made the regiments smaller and more flexible. Fhilip had moulded his country into a military monarchy, and turned the nobles into a caste of officers. All its strength was devoted to the one object of war, and it became for the time an overmatcl for all its neighbours. On the other hand, Persia had deprived the subject peoples of national life and spirit; the retreat of the Ten Thousand bad shown how useless her native levies were, and now her defence rested almost entirely on a force of Greek troops under the able Rhodian general Memnon. The Orientals fought mainly with missiles, and wero little suited for slose combat hand to hand. The Persian satraps, however, bad around them some cboice horsemen, armed with missile javelins and with scimitars; and they insisted, - $\quad$ aiinst Memnon's advice, on figlting at the Granicus, which Gows northward from Ida into the Propontis, but is everywhere fordable. A sharp cavalry action at the passage of the river ( 334 B. ..). gave Alexander all Asia Ninor, and the completeness of his victory might seem to justify Livy's aaying that he "did but dare to despise an empty show," and the words attributed to his uncle, Alexander of Epirus, that ha bimself haid found the men's ebamber iu Italy while
his nepherw had found the romen's in Asia. The Grecks had long been conscious of their sulueriority. "They might," said Aristotle, "govern the world, could they but combino in one political society." Agesilius of Sparta and Jason of l'hera lad already planned the attack on l'crsia, and the liberation of the Asiatic Grecks; and Alexander acted in the full consciousness that he was exteuding (ireek rulo aud civilization over the East. At the news of the battle on the Granicus, Sardis surrendered. It was the centre to which all the routes converged, but Alezander did not (liko Cyrus the younger) at ouce push on into the heart of the enpire along the great road that led from Sardis to Susa. His object was to secure a firm base of operations, by occupying the line of coast round the Egean, and forcing the Phocniciau fleet in the Persian service to retire. The Greek colonization of Asia Minor had prepared ine way for him; the Greek cities along the westeru and soulnern canst threw. open their gates, and Alexander restored their popular constitutions. He even recognized the Lycian confederation. Memnon was only able to organize a resistance at Miletus and Halicarnassus. But his real plan was to put troops on board his ships and raise Greece against the Macedonian yoke, especially as the Athenian flect was still more than a match for that of Alexauder. But when Memnon dicd there was no one left to carry out this able plan, and Darius threw away his best chance by recalling the troops. Then Alexander marched up northwards from Lycia throagh Pisidia aad Plrygia to Gordion on the Saugarius, whence the main road led east across the Halys and through Cappadocia to Cilicia, between the passes of Mount Taurus and those of Mount Amanus. Herc Darius tried to throw his army across the Greek line of communication with their supplies, but his host, crowded together in the narrow ground on the river Pinarus near Issns, wae hopelessly defeated. The modern name of the Gulf of Issus, "Iskenderun," still preserves the memory of Alexander. Theu Tarmenio, Alcxander's secoud in command, puslicd on and took Darius's treasures and stores at Damascus. Again, however, Alexander deferred his march inland till he had mastered Phocnicia and Egypt, and so gained the command of the sea in the eastera basin of the Sediterranean. Only the brave freemen of two fortifited citics, Tyre and Gaza, held out; and when the Phomician and Cgprian fleet transferred its allegiance to the invader their only effective weapon was wrested froa the liands of the Persians. The occupation of Cyprus and Egypt had been one of the boldest conceptions of the age of Pericles and Cimon, and its success would have sccured tho supremacy of Greek commerce. As the Persians bad persecuted the Egyptians for their worship of animals, Egypt relcomed the deliverer, and recognized him as tho son of Anmon; while the Greek colonies of Cyrcne and its Pentapolis sent to teni $\because$ submission. Alexandria was founded ou the seaboard as a new centre of commerce, from which it was easy to communicate with the Government and with all parts of the empire. The protecting island of Plaros gave the means of forming two good harbeurs on a coast elsewhere harbourless ; while Lake Mareotis, communicating by canals with the Nile, enabled produce to be easily brought down from the interior.
At last the time was come for delivering the final blow to Persia. Alexander passed the Euphrates at.Thajsacus ("the passage"), and then marched north-east through the hilly eountry by Nisibis, to aroid the hot desert of Mesopotamia. He crossed the Tigris unopposed, and defeated Darius's hosts at Gaugamela. The long struggle of two hundred years between Greece and Persia was at an end. The victory converted Alexander into the great lsirg, and Darius into a fugitive pretender; and Labylon and Susa submitted. At Babylon Alexauder sacrificed
to the native gods, as he had done elserhere, and this admixture of the religions of all countries largely influenced tho later phases of heathenism. The pricsts recognized the Greek kiugs, and the later cuneiform inscriptions commemorato Seleucus and Antiochus. When Euemerus's view sprcad, that the gods were only deified men, a fusion of religions became still casier. The worship of the Sungod and of Osiris, the god of the dead (especially under his Grecized form at Sinope as Serapis), extended far and wide. In administering thesc countries, Alexand $\epsilon_{i}$ separated the civil, military, and finencial functions, and, where natives were left in office, entrusted taxation and military command to Macedonians. The great power of the satraps had weakeued the central government of Persia, and Alexander adopted a wiser plan, but his generals restored the old system after his death. The Persian treasures, dispersed by the conquest, gave a fresh stimulus to commerce, especially as Persia was rich in gcld, which was scarce in the West. Alexander had already prepared the way for a universal currency by coining silver didrachms and tetradrachms after the Attic standard, which became current coinage over most of the East; the Ptolemies, however, adopted the Phœenician standard for Egypt. Up to this point the countries conquered admitted of being more or less assimilated and Hellenized; but, when Alexander penetrated through the passes that led up to Persepolis in Persia, and thence to Ecbatana in Media, and again north to secure the defiles that led down to the Caspian, and so skirting the southern flank of the range of Elburz to Hecatompylus in Parthia, the centre of the roads leading to Hyrcania (at the south-east of the Caspian), to Bactria, and to Ariana, and then from Kandahar northwards to Cabul, and through the mighty range of the HinduKush to Bactria (BalkK) southi of the Oxus, and Sogdiana (Bokhara) between that river and the Jaxartes, and at last as far as the Indus and the Punjab, his route lay through tribes that still possessed their native strength and power of resistance to foreign influence, though for the moment overborne by the superiority of the Western arms. Alexander saw the danger, and met it by settling Greck colonists in new cities which were to serve as military posts, depôts of commerce, and centres from which to Hellenize the country districts; and many of them are still important points in the East, though the clescrt has spread, and robber hordes have stopped some of the old caravan routés. Such places are Merv, Herat, Kandahar, Cabul, Samarkand, Klojend. Bactria and Sogdiana were to serve as a frontier against the wild hordes of the north, and thus Alcsander's measures determined the fortune of Transoxiana for centuries. Some native rulers also were left to form a sort of barrier in front of the empire to the north and east. Alexander laid the main stress on securing the great rivers, the Euphrates and the Tigris, the Oxus and Jaxartes, the Indus and IIydaspes. In Greece itself tho Macedonian kings upheld tyrants or oligarchics, but here freer municipal constitutions wero allowed to attract colonists. Alexander further planned to fuse the noble Persian race with the Grocks by intermarriage, and by giving the Persians equal rights in the army and the administration. Common service in these was the best means for Hellenizing the natives. This was a more generous plan than Aristotle's advico as to the way of ruling barbarians would havo led to; but Alexander saw that the Eastern peoples were not barbarians like the Illyrians. The culture of Egypt reached far back; the astronomy and art of Babylom could not be despised; the religions of Persia and India afforded matter of interest to Greek inquiry. These lands of ancient civilization might teach as well as learn something from Grecce. The Eastern nations responded to the couch, and Persian legend to this day preserves the name
of Iskancer among the names of tlicir national heroes. Alexander's conquests were to be justified by the result, by the uniun of East and West, und the diffusion of Western civilizatiun over Asia. Even Iudia should feel something of the new influence. Alexander would have made the nations into onc. An old writer says, "The elements of the nations' lives were mixed together as in a love cup, and the nations drank of the same cup, and forgot their old enmity and their own weakness " (Plut., De Fort. Alex., i. 6). There is, it is true, a reverse to the picturo The oppressive conduct of many of the Macedonians thus suddenly put into power was an evil omen of what might bappen if their chief was removed; and, if the East was becoming Hellenized, yet Alexander became in turu Orientalized. Could he remain a Western king and also an Oriental despot 3 a Greek and a Persian? It might bo good policy, but Philip's old generals could not help showing their disgust, and Clitus and others paid for it with thei lives. The Greek states also felt the difference. Just before his death Alexander required them to worship him as a god, and, without any regard to the rules agreed on at the congress of Corinth, forbade the federal meetings of the Achæans and Arcadians, and issued a decrec restoring all exiles to the various states. Greece became practically a province of the Eastern empire, and the patriots who had maintained the fight for freedom were more than justified by the ruin that came on Greece through Alexander's successors. Even if he himself had not been spoilt by success and absolute power, yet he was but a lucky accident. And, though the Fellenizing influence spread over much of the East in a way to which there has been but one parallel, the mixture of German and Roman elements when the barbarians invaded the empire, yet Alexander's conquests, while they Hellenized Asia, tended to Asiatize Hellas; they put an end to the genuine Hellenic spirit, to its productivo genius and consummate literary and artistic excellence, as well as to its political freedom. The New Comedy shows how national life and public interests had died out ; with all its fine psychological analysis it does but dwell on the characters and situations of daily life and purely domestic feclings. Bnt the braggart soldier is now a common character in the play, and slavery plays a greater part than ever. Last of all, Alezander marched along the Cabul river, and through the pass of Jellalabad to the passage of the Indus by Attock; but when he reached the Hyphasis (Sutlej) the weary troops refused to cross it and press on to the Ganges. He then sent Nearchus down the Indus, to sail round to the mouth of the Euphrates, and explore a route for traffic aeross the Indian Ocean. Nearchus profited by the monsoous, which thus became known to the Greek sailors. The king himself went down the river to see the great southern ocean with its strange tides, and he planned that an Alexandria on the Indus should communicate with the Alexandria of the Nile valley by an intermediate harbour on the Euphrates. He further planned the circumnavigation of Arabia, if not of Africa also, and a voyage to the north of the Caspian. At the same time Pytheas of Marseilles was exploring the British and Baltic seas. This cnlarged and systematic exploration of tho earth, combined with increased means of communication among its inhabitants, was beneficial to civilization, if we may define growth in cirilization as growth in the amount of services rendered to each other in civil society. The record kept by Alexander's quartermasters (bematistx) of the length of his marches gavo succeeding geographers important information; and it was more useful to Eratosthenes than the vague descriptions in the historians, who were striving after literary cffect, and some of whose accounts werc very legendary, for legends soon clustered round the namo of ite great con-
queror. Alexander seems also to have had a deseription (ane(tyruphe) of the empire drawu out. After his return through the desert of Baluchistan, along the Iudian Ocenn, he devoted himself to consolidating the internal ailministration anl checking tho oppression exereised by his otlicers; but ho was planning new conquests in the West, from all parts of which he had received ambassadors, when he died of narsh fever at Dabylon ( 323 I.c.), at the early ago of thisty-two.

All attempts to keep his empire together ineritably failed, but his work was done, since, whether for good or evil, the Hellenizins of the East determined the wholo course of history: The army resolved that his child (not yet bern) by his Taetrian wife Roxane, and lis imbecile half-wother, Philip Arideus, slould bear rule jointly. First Perdiceas was nanied regeut, but the generals began to combine against hinn, and he perished in trying to reduco to obedience Ptolemy, the satrap of Egypt, the man who saw most clearly and carliest the tendency of events. Then Antipater, who had with difficulty defeated the gallant attempt of the Greeks under the leadership of Athens to regain tleir freedom in the Lamian War, was made regent. On his deathbed he transferred the office to Polysperchon, who soon proved unequal to his task, and oven gave up Phocion, the leader of the Macedonian party nt Athens, to death. Autigoms, the commander-in-chief in Asia, destroyed Eumenes, who was faithful to the royal bouse but was a Greek from Cardia and not a Macedonian. He then tried to reunite the satrapies; but Ptolemy of Egypt, Lysimachus of Thrace, and Seleucus of Eabylon combined witl Cassander of Nacedon against him, and he fell (301 b.c.) at the battle of Ipsus in Phrygia. This decided the final break up of the empire. Several native princes retained their dominions and formed a kind of neutral zone between the new kingdoms, and the Getre on the Danube maiotained themselves agaiost Lysimaehus. The eustomary fends in the royal bouse, and its intrignes with the generals, soon led it to destruction. Tioxane, the mother of the child Alexander, began by murdering Alesander's other wife Statira, the daughter of Darius. Alexaader's Epirote mother Olympias killed Philip Aridæus and liis wife Eurydice, and Cassander killed Olympias herself, and afterwards Rosane with her son. There were similar feuds and murders in the houses of all Alezander's successors, except the early Antigonids. Their marriages, like those of Philip and Alexander, were of a very Oriental character; and "in these families," says Plutarch, "murders of sons, mothers, and wires were frequent, murders of brothers were even common as a necessary precaution for safety:" The generals assumed the title of king after Demetrius's defeat of Ptolemy of Cyprus ( 307 b.c.), and their example was followed by Agathocles at Syracuse, and Dionysius at Heraclea on the Euxine. Demetrius, after his father's death at Ipsus, fled to Greece, and oceupied much of the country. His riceroy in Beotia was the historian Hieronymus of Cardia, the friend and fellow-citizen of Eumenes. Demetrius for a time even gained Macedonia, but his Oriental rule disgusted the people, and he had to fly to Seleucus, who married his dauglater Stratonice. Seleucus detained him under honourable guard till his death, perhaps with some idea of using his help if the balance of power should again be threatened. Then an empire breaks up, old geographical relations make themselves felt, the great masses and divisions of the land exert their influence and affinities of race begin to show their old power, the natural boundaries of mountain and river tend to reappear ; and so it proved inow. After Cassander's death, and the defeat of Lysimachus by Seleucus, Seleucus reorganized Asia by breaking up the twelve large satrapies into more than soventy districts of a
more managcable size. Te then crossed to Europe to reunite Macedonia to Asia, but was murlered by Ptuleny Ceraunus, cluest sun of Ptolemy of Egypt-who had closen his second son Fhiladelphus as his lieir iustead of tho wild Ceraunus, Scleucus's death ended the generation of Alexander's generals. A nem state of things followed. Cerauns fell in battle against the invading Ciauls, whose migrations gave a final blow to the old system. Part of the Cauls passed on into Grecec, where the free states destroyerl then, while others crossed into $\triangle$ sia and occupied the conntry mamed from them Galatia, 276 b.c. Lastly, after Pyrrhus of Epirus, whose sister Dcidamia married Demetrins, had more than once nearly gained possession of Jacedonia, Autigonus Gonatas, the son of Demetrins, finally secured the succession, and restored the wasted realm to the position of ono of the great kingdoms by the side of Ezypt and Syria. The last strugglo of Athens against him in the mar of Chremonides (a pupil of Zeno of Citium) proved fruitloss. He also regained the Macedonian frentier on the side of Epirus as it had been in Philip's time, and the Aous became the boundary towards the Dardanians on the north-west. Of the kingdom thus restored his family retained possession till Perseus was overthrorrn by the liomans at the battle of Pydna (168 B.C.), but the later kings wasted their strength in useless wars instead of doing what might have been done, conquering and Hellenizing the country up to the Danube. The Epirote kings Alexander and l'yrrlus had striven to found a nem military empire in Italy, but in vain. The Apennines can be seen from the coast of Epirus, and these kings wero always stretehing eager hands over the sea to the new lands in the West, but their power proved unequal to the task, and Pyrrhus's position in history is mainly important because his expedition brought Greece and Italy into close connexion. His geniality of character impressed his conteniporaries, and Las left its impress on Roman and Greek legend.

In Asia Selencus had in vain tried to preserve the most easterly provinces, for the Eastern uature had at onco bogun to react against the Macedonian conquest, and the Seleucid kiugdom had no true centre or natural linits. Sandracottus, a aative chief, founded a great kingdom in India with Indian and " Javanic" (Ionian, i.e., Greek) support; and Selencus, after one campaiga, gave up the eastern districts as far as the Paropamisadæ west of Cabul. Sandracottue was perhaps supported by the Erahmans whon Alexander had opposed, but the Punjab has witnessed more than one revolt against the system of caste, which had its stroughold in the valley of the Ganges; and Buddhism soon becanie predominant in the nevv kingdom. The edicts of Asoka, the second successor of Sandracottus, which made Buddhism the state religion (though Brahmanism was tolerated), mention Antiochus Ptolemy and Antigonus (see India, val. xii. p. 787, for a full aeeount); and Buddhist missionaries began to spread the faith westwards as well as to the south, and some knowledge of the cyele of Eastern story and fable was communicated to the Greeks. Ent we have not the materials for estimating the influence exereised in Asia by the Greeks on the ner kingdom. Similarly a GreeoBactrian kingdom, which. was made independent by Theodotus or Diodotus about 256 B.c., lasted for two centuries. Many of its coins have been found rith legends at first parely Greek, but becoming gradually barbarized. Some of the early ones resemble the gold coins of Antiochus II. of Syria, who ruled just before Diodotus made tho new state independent. Aiter the first five kings, however, the legends are in Prakrit as well as ia Greek. The caravan routes were long kept open, and in this way trade with Clina was maintained, and silk and other Chinese commodities reached Europe. Farther west
astive Persian chiefs became practically independent, such as Atropates in the Median district, called from him Atropatene, and elsewhere; for the clan system was suited to these districts, and they preserved the systent of \%oroaster till Artaxerxes (Ardshir) restored the l'ersian monareliy, 226 A.D. (see I'ersia). Dat cren bere Greck influence lasted on; nor when Arsaces, about 250 B.c., had set up the kingdom of Parthia and mado Ifecatompylus his capital, did that influence die out in Parthia. Even the new cities founded by tho Parthian kings, such as Dara, were on the Greek model, and largely inhabited by Grecks; and some of the chief cities retained Greek municipal constitutions, such as Ctesiphon, which took the place of Seleucia on the Tigris as Selcucia had taken the place of the old capital Babylon-
"Of later fame,
Built by Emathian or by L'artlian hands, The great Soloucia, Nisibis, and there Artaxata, Teredoni, Ctesiphon."

So again in Asia Minor native chiefs began to rule in Armenia, Bithynia, Capradocia, Paphlagonia, and Pontus; and some of them, such as the Cappadocian princes of the Mithridatic family, who afterwards ruled at Amasia, claimed descent from the royal Achæmenid house of Persia, or from leading Persian houses. They, as well as tho princes of Pontus, intermarried with tha house of Seleacas, to which their help was importanto Bithynia aad Pontus had an era of independence, from which they reckoned their dates just as the Syrian kings did from the return of Seleucus to Babylon. The independence of Judæa under the 1 Iaccereer was established at a later time (see Israed). All Lese $v$ ere subject to the Hellenizing influence of tho Qreek towns; and the Greek languago spread everywhere, even among the Galatians, as we see by the inscriptions. Nicomedes of Bithynia founded Nicomedea in 264 B.C., as a Greek town; it soon rivalled Nicas in importance, and we owe to it $\Delta r r i a n$, the historian of Alexander. The barbaric princes often took wives, ministers, officers, engincers, literati, artists, actors, and intermediate agents of nil kinds from some neimhbouring Greek city, a custora which had begun before the time of Alexander, as we see in the case of Mausolus of Caria. In Pergamon, about 238 B.C., Philetrerus, by the help of the royal treasure, made himself independent, and under Eumenes and $\Lambda$ ttalus the little state showed much political skill in trimming the balance of power between the neighbouring dynasties. Attalus took the titlo of king after a victory over tho Galatians on the Caicus, and this victory was commemorated by the Gigantomachia around the famous altar lately discovered at Pergamun (see Conze, Beschreibung der Pergamenischen Bildwerke; Overbeck, Geschichte der Griechischen Plastik, $3 d$ ed.). He also sent commomorative statues to Athens ; one of which, long celebrated as tho Dying Gladiator, is now seen to be the portraituro of a dying Gaulish chief. Greck art, transplanted from Athens and the Poloponness to Pergamon and Rhodes, though it had acquired a somewhat florid tingo, was yet not unworthy of its descent from the schools of Phidias and Lysippus, nend owing to the close alliance of these two citics with Rome, as against Macedon and Syria, this reviverl Greek art found its way to Italy. Pergamon also became a centre of Greek Joarning only second to Alexandria; and, when Ptolemy cut off tho supply of papyrus from Egypt, Crates of Mallus in Cilicia (whose namo was only second to that of Aristarchus) is said to have revived the old $A$ siatic use of "parchment"-a namo whicl itself preserves the nuemory of Pergamon. Pupyrus, it is trae, remained the usual material for books till about tho 4 th century, when the Christian Church finally adopted the now material duo to the invention of Crates (seo Birt, Das antite Buchwcsen).

All along the coast also a number of Greek cities acquired practical indepondence owing to the divisiun of powes among the priaces, Greek as well as native, who werfurther kept in check ly the invading Ciauls. Such were the cities of Byzantium, Cyzicus, J leraclea, Sinope, and Olbia on the north-west of the Black Sca, and Panticapaunu or Bosporus between that sea and the l'alus Mieotis. The true Greek spirit survived above all in Rloodes, as it did also at Massalia in the West. All the moro did the Syrian Kings strive to maintain their power by founding cities under their own rule, which were made attractive to new colonists by something of municipal independence, with tho right to bear arms, to coin money, and to manage thoir own judicial affairs. Each city had its demus, senatel archons, and geaerals. There were four of these great cities in Syria itself:-two inland, Antioch on the Orontes, the greatest commercial entrepút in the East, and Apamea the military centre of the Eingdom; two on the coast, Seleucia, with its rock fortress to serve as a refuge in time of trouble, and farther south Laodicea on the sea, among its rich vineyards. They were all named after the royal family. Other towns were named from places in Greece or Macedonia, such as Achaia, Amphipolis, Apollonia, Arethusa, Astacus, Berœa, Callipolis, Chalcis, Edessa, Herwa, Larissa, Maronea, Oropus, Mella, Perinthus, Tegea for the oppressed Greeks of Grecce itself and of Magna Grocia here found an outlet for their energy. Some military colonies were planted on the west and south of Galntia, to keep the Gauls in cheek, and guard the roads leading from Phrygia, the centre of the commerce of Asia Minor, to the towns on the coast; such were Autioch ins Pisidia, Apamea Cibotus, Synnada, and Thyatira. Evers Palestine, notwithstanding the temporary success of ther Maceabees, was full of Greek towns like the later Cæsarea, and the manufacturing population used the Greet language Wo hare somotraces of the state of things in the Economics, a work of this period, though falsely attributed to Aristotle; and the later political literature ohows that men had a clear idea of the aims and means of the polities of the day, and that diplomacy and international law had considerably developed. Thus a large influx of now Hellenic blood was poured into the lands on this side of the 'Cigris, into Asias Minor, Mesopotamia, and Syria; during the contury after Alexander's death aearly two bundred cities were founded. and the Greek race became predominant in western Asia, though of course it was differentiated by tho rarious peoples which it undertook to assimilate, and by which it could not but be infuenced in turn, especially as the princes found it necessary to conciliato them. The historians of the time are mostly lost; but many inseriptions survive which show what a blending of populations took place Ono gives us a rescript of Antigonus on incorporating the people of Lebedus with the Teians. Another shows that Magnesia becamo absorbed in Snigrna, now restored after it had long lain waste. Others tell us that places like Erythre and Iasus recovered something liko independence owing to tho needs of the Syrian kings. Amidst the feuds of the great powers the Ionian states recovered their freedom, and were ablo to form a kind of federal union. Similarly wo hear of the comnunity (kowov) of Dithynia, of Asia, and the liko. A new life of a somewhat different kind from the old Greck life in politics, religion, and science dates from the revolution effected by Alexander's conquests, though in the lower stmata of the country population old beliefs still had somo hold, as is orident by what Pausanias found existiug even in his day in Greece itself. But old distinctions tended to vanish away, only that betreen poor and rich acquired still greater forco, material interests became predominant ifo see also that in the manufacturiag towas tho workmen lad formed ionefit societice,
and secret or public associations of rarious kinds. And it was in these conmercial centres, with their somewhat cosmopolite character, free from old projudices and ideas, that Christianity found an early home. Greek freedom made a great impression in the East. The Greeks had no system of castes, no close priesthood, no sacrod books liko those of India to limit their development ; their views may almost be called cosmopolitan, and the distinction between "Greek" and" barbarian" already teuded to disappear, as Alexander perbaps had wished. Attic speech became the basis of the new written language, and, with Attic customs, prevailed at the courts of Alexandria and Babylon, of Bactra and Pergamon. Attic plays were acted at Ctesiphon down to Roman times; and the later rbetoricians and sophists imitated the masters of Attic oratory. The Greek view as to Philip and Alexander was thus enabled to hold its own against the prevailing Macedonian tone on these matters, especially when Macedonia lost its leading position, for that country produced only soldiers-with the exception of Marsyas of Pella, and of King Ptolemy, who wrote with true military brevity an account of Alezander's campaigns, which Arrisn wisely preferred to the more romantic account of Clitarchus. But, though the towns became Hellenized, yet the Hellenistic populations did not possess the highest qualities of the Greek mind, as the surrounding elements and the climate naturally wrought some alteration. Polybius looked with surprise at the Greeks settled in Alexandria. The living forces of Greece -its productive genius, self-organizing power, and active spirit of political life-were weakened and gradually lost their energy. The Attic language became the Hellenistic, Attic eloquence received a florid Asiatic tinge (though Eschines himself taught at Rhodes), but true eloquence can only flourish, as Tacitus points out, in a free state. Literature and art lost their connexion with a true national life. Architecture took another character, and the plastic art of Pergamon, though derived from Athens, and that of Rhodes, though derived from the Sicfonian school, through Chares of Lindus (who modelled the Sun-god, known as the "Colossus"), had lost the self-restraint and dignity of the highest Greek art. But the suppression of political freedom turned the force of the Greek mind all the more strongly inte other channels, and science and criticism, and speculation and literary history, made a great adrance. Considerable schools were opened at Tarsus and other centres of commerce. As the free state lost its porer over the mind, men bad recourse to philosophy, and regained in mental fortitude aud independence the outward freedom they had lost. Then this feeling reacted on politics, and a generation of patriots like Philopcemen arose, worthy to represent Greeco in these her last days. The new teaching of freedom came forth, as was right, from Athens; it was the followers of Arcesilaus, the founder of the new Academy, who freed Megalopolis from its tyrant. The later derelopments of philosophy were mainly due to Zeno of Citium in Cypras, and to Epicurus, who finally taught at Mytilene and Lampsacus; but Athens was still the chief home of their teaching. The writings of the great philosophers of this age, however, are mustly lost to us, as well as those of the histerians, and after Aristotle there is a strange gap in the tradition up to the Christian era. The Greeks now wished to know the early history of the East, and the Eastern peoples wished to make their history known to the great literary nation. Hence Berosus wrote the history of Babylon for Antiochus II., from the archives in the temple of Belus, Manetho that of Egypt for Ptolemy Philadelphus, Menander of Tyre that of Phenicia, and Jewish writers the history of their race and religious views, which are finally summed up for us by Philo and Josephus. The sacred books of Egypt, Palestine, and

Persia were to be found in the Alexandrian library, and the religions syncrotism that resulted from the misture of races prepared the way for monotheism and for Christianity. The astrolegs, however, and divination of the East in turn made their way among the Greeks, and led to curious superstitions, and a whole literature of Sibylline books and siunilar forgeries sprang up. Christianity itself spread chiefly in the Hellenized towns; the country districts were much longer in fecling the new influence.

It was in Egypt, however, that Hellenisnu was perbaps most highly developed. The Ptolemies gained Cyrene and Cyprus, and struggled hard with the Syriau kings for the possession of Phoenicia ; Palcstine was as of old the battlefield for the king of the north and the ling of the south. The Ptolemies even held Seleucia at the mouth of the Orontes for some time. The history of these times is lost in its detail ; the only thing certain is the spread of the Hellenistic spirit in the East. Many Jews were transllanted to Alexandria and Cyrene, occupied large quarters of those citics, and had full civil rights. The Ptelemies also pushed south into Ethiopia, and the African elephants which they trained for war enabled them to oppose the Syrian army with its Indian elephsnts. A Greek.inscription at Adulis, though of later origin, commemorates the conquests of the third king of this line. These kings also secured the route down the Red Sea, reopened the old canal of Necko leading from the Nile into that sea, founded Arsinoe and other important towns, and made discoveries on the route to India. The new information thus gained was recorded in the geographical works of Agatharcides of Cnidus and Artemidorus of Ephesus. The old trade of Egypt had chiefly consisted in the expott of corn; now the wares of Arabia, South Africa, and India came through Egypt to Europe, and ships of Alexandria became frequent visitors to the western waters. Even in Asia Minor Egypt won influence as Syria lost it, and a court poet (perhaps Theocritus) was justified in praising the Egyptian king who was master of the sea. The carrying trade had fallen largely into the hands of Egypt from the time when the war between Seleucus and Antigonus stopped the trade of the caravans by land, and the import and export duties forned a large part of the Egyptian revenues. After the return of Pyrrhus from Italy, Pliladelphus even made a treaty with Rome. The Sicilian Greeks might be rivals in trade, but the Italians were good customers, and produced the excellent wool which was invaluable for the Egyptian manufactures, as the cultivation of cotton in Egypt had but bogun. Puteoli, the first really good port to the south of Rome, was the chief centre of the trade even at this early time. The Egyptian trade mas concentrated in Alexandria, which thus became one of the greatest cities on the earth. Science flourished there, and men like Archimedes came thither to study. Much of what was done was done for ever. No mathematician has to redemonstrato the problems of Euclid. Geography was founded by Eratosthenes of Cyrene on a mathematical and astronomical basis; he first calculated the magnitude of the earth by measuring an arc of the meridian, the process employed at the present day. Modern astronomy too is the natural development of the work of Hipparchus and Ptolemy. Erasistratus and Herophilus investigated the structure and functions of the valves of the beart, and the nerves of sensation and motion, and a close connexion was thus formed between anatomy and medicine. The Museum, a sort of college, numbered Eratosthenes, Callimachus; Aristophanes, and Aristarchus among its members. They fixed the text of the classical writers on critical principles; and grammar assumed the form itkept for centuries. Poetry itself had a kind of second summer with Csllimachus and Apollonius Rhodius, and, under Sicilian influences, with

Theocritus, Bion, and Moschus. All the knowledge of the past was treasured up for transmission to a future age.

There was no more unity among the Mucedonian monarchies than there had been among the free cities of Greece, and the kings were even less able to combine against Rome than the republics agaiest Philip. When Philip V. tried to keep the Romans out of Greece, he met with no support from Antiochus the Great, and was defeated by Flamininus at Cynosccphalæ, 197 b.c. Antiochus in turn had no help front Philip when Scipio crossed into Asia and defoated tho Syriau army at Magnesia, 190 b.c. Last of all, Perseus was overthrown at Pydna (168. b.c.), while Antiochus Epiphanes was trying to plunder Egypt; and Macedonia was divided into four districts, like those out of which the kingdom had been originally formedAmphipolis, T"essalonica, Pella, Pelagonia. The Romans in many respects carried on the work of spreading Greek culture. They gave the Greek cities of Asia a freer scope for their action an the country; they united the whole Grebk race, oast and west, under one rule, and opened out the world to their enterprise. We meet with many great names in this later age, such as Posidonius at Rhodes, Galen at Pergamon, Strabo at Amasla. Epictetus was a Greek slave from Phrygia. Cappadocia became so thoroughly Greek that the church itself owed to it sach men as Basil and Gregory. The Greek intuence even spread to Palmyra in the desert, and its ruin in the third century marks the first great check sustained by Hellenism. But under the rule of Rome it may almost be said that the primitive unity of the Greco-Italian race was restered, and the work of the Macedonian conqueror completed in western Asia.
This article is mainly based on Grote's Grecece, and Droysen's Hellcrismus, 2 d cd., 1877. For more detailed accounts and for the personal history see Alexanpen, Anticonus, Antroohus, A NTIPATER, \&C. The original authorities are collected iu. Didot's Historici Grseci, and his Arrianus, 1877.
(C. W. Bo.)

MACEDONIUS, a deacon, was raised to the patriarchate of Constantinople as successor of Eusebus of Nicomedia by the Arian bishops in 341 A.D., while the orthodox party elected Paul, whom Eusebins had superseded. The partisans of the two rivals involved the city in a tumultuons broil, murdered Hermogenes, the gencral whom Constantius IL., during his own absence, had empowered to preservo order, and were not quelled until the emperor himself returned to the city and banished Paul: Macedonius was recognized as patriarch in 342 . In that year Paul again returned, and was again banished, and Macedonins, amid much tumult and bloodshed, was forcibly installed in his see by the imperial troops. Compelled by the intervention of Constans ia 348 to confine his authority again to one church, and to resign the patriarchate in favour of his former opponent, he was reinstalled ia 350 . He then took vengeance on his opponents by a gencral persecution of the adherents of the Nicene creed. In 356 be occasioned a disastrous and bloody tumult in Constantinople by causing the ashes of Constantine the Great to be removed from the dilapidated church of.the Apostles to that of St Acacius. In 359, on the division of the Arian party into Acacians (or [rise Arians) and semi-Arians, Macedouius adhered to the latter, and in consequence was expelled from his see by the council of Constantinople in 360 . He now became arowed leader of the sect of Pueumatomachi, Macedonians, or Marathonians, whose distinctive tenct was that the Holy Spirit is but a divino iufluence pervading the universe and ant a person distinct from the Father and tho Son. Flo did not long survive his depositioc.

MACEIO, or MACAYO, a city of Brazil, the chief town of the province of Alageas, and one of the ports open to foreign trade, is situnted about 150 miles south of Pcrnambuco, in $9^{\circ} 39^{\prime}$ S. lat., on an eminence abont a milo from the shore,
ia the midst of lusuriant regetation. It possesses a fino cathedral and an elegant house of assembly, as well as a cotton inspection office and a custon-house. As its harbour at Jagudra on the coast is but slightly protected by reefo aud a small peninsula, and the water deepens slowly from the sandy beach, vessels canuot approach the piers (of which there are several), and have to be discharged and loaded by lighters. Trade, however, is on the increase, and will develop largely on the completion of the railway to the interior. In 188044 British and 35 foreign ressels entered, with a burden respectively of 17,624 and 10,482 toas; and cotton and sugar were exported to the anount of 4181 and 27,810 tons. In 1839 the town became tho provincial capital instead of Alagoas. The population is about 20,000 .

MACERATA, a city of Italy, the chief town of a province, a bishop's see, and the seat of a court of appeal, lies 22 miles south of Ancona, and 17 miles by road west of Civita Nora, the nearest station on the East Coast Railway. Crowniug the top of a hill about 1300 feet in height with a picturesque mass of buildings enclosed by walls and towers, Macerata looks out over the Adriatic and the valleys of the Potenza and the Chieuti. The cathedral is a modern structure of but little interest; but some of the churches, and especially some of the palaces, -Palazzo dei Torri, Palazzo Bonaccorsi, \&c.,-are fine pieces of architecture; aud at a short distance from the town stands the beautiful S. Maria delle Vergini, designed by Galasso da Carpi, but often attributed to Bramante. Besides the university, Macerata cuntains a communal library founded by Leo XII., and, in the municipal buildinga, a collection of antiquities from Helvia Ricina. Its infant schools were the first established in the papal states. Glass and pottery are among the manufactures, and three fairs are held yearly. The population of the commune has increased from 19,283 in 1861 to 20,219 in 1881 ; that of the town was 10,065 at the former date.
Macerata, as well as Recanati, was founded by the inhabitants of Ricina after the destruction of their city by Alaric in 408. During the Lomhard period it was a flourishing town; but it was from comparative insignificance that it was raised hy Nicholas IV. to be the seatof the governors of the March. By the viceroy of Frederick II. it was enclosed in the 13th century by a uew line of walls more than $2 \frac{1}{3}$ miles in circuits; and is the troubles of the next two hundred years it had frequent occasion to learn their value. For the most part it remaiued faithful to the popes, and in return it was rewarded by a multitude of privileges.. Though in 1797 the inhabitants opened their gates to Lhe French, two years afterwards, when the country pcople took refuge within the malls, the city was takeu by storm and delivered to pillage. The bishopric of Macerata dates from the suppression of the see of Recanati (1320). Crescimbeni, the poet of the 13th century, his namesake the founder of the Arcadian Academy at Rome, and Matteo Ricci, the Chineso missionary and scholar, were natives of the city.
MACGILLIVRAY, Whlram (1796-1852), a writer ob several branches of natural science, but best kuowa as au ornithologist, was born in 1796. He studied as un arts student in King's College, Aberdeen, graduatiog M.A. in 1815, and also studied medicine, but did not complete the latter course. In 1823 he bccamo assistant to the professor of natural history in Edinburgh University ; and in 1831 he was appointed curator of the museum of the Royal College of Surgeons in Edinburgh. In 1841 he became professor of natural history and lecturer on botany in Marischal Collegc, Aberdeen. Ho died in 1852. He possessed as wide and comprehensive knowlclgo of natural science in its various departments, gained no less from personal observations in the courso of frequent excursions through different parts of Scotland than from a study of the collections under his chargo in Edinburgh and of books. His iadustry and extensive knowledge aro amply shown in his published works. He contributed numerous articles on tho zoology, botauy, and geology of Scotland to the scicutific jourcals
in Ediaburgh, to the N/ayzize of Botany and Zoology, and to the Transactions of the British Associution. He also assisted Audubon in his classical works on the Birds of America; and he edited Withering's British Botany.
His larger works are numerous, and include biographics (of Humboldt, and of zoologists from Aristotle to Linnæus), Text-books of Botany, of Geoloyy, and of Conchology, a History of British Quadrupeds, a History of the Molluscra of Aberdeen, Banff, and Fincardine, a Mfanual of British Ornithology, and a IIistory of British Birds, in 5 vols., 1837-52. The last work holds a high rank from the excellent descriptions of the structure, habits, and haunts of birds, and from the use in classification of characters afforded by their internal organs. In 1850 he spent some time in the Highlands of Aberdeenshire. The results are embodied in the Natural History of Deeside, published after his death by command of the queen.

He made considerable collections, alike for the instruction of his students and to illustrate the zoology, botany, and gcology of the parts of Scotland examined by him, especially around Aberdeen. His success in enlisting the interest and co-operation of his students is shown by the assistance acknowledged by him in his work on the mollusca of that district. His devotion to his favourite sciences made him apt to be careless of risk to health, and seems to have led to the illness that proved fatal. Though his repatation rests chiefly on his works on birds and on mollusca bis other writings are also of interest and value. In some respects he was in advance of most of his contemporaries, e.g., in the opinions in regard to species published in his $T^{\prime}$ c.tt-book of Botany (pp. 210, 211) in 1840.

His reputation might have been greater as a specialist had he restricted his investigations within varrower limits, but this he was prevented from doing as much by the wide range of subjects that he had to teach as by his natural inclination. Ho had to cncounter great difficulties in ascertaining what had been already nccomplisled by naturabists elsewhere from the want of a good libt. rary and of named collections for reference. To this fact may be traced a tendency to regard as undeseribed and to nane whatever animals he mas unable to identify from books within his reach, as well as occasional apparent neglect of work dune by others and iome peculiar views on nomenclature and classification.
Throughout his lifo pecuniary difficulties, in part arising from the publication of his books, pressed on him; and to this it was probably due, at least in part, that, despite an amiable nature, he it times expressed himself in controversy in a way that made him keen 9 pponents. His books show that from all troubles he found elief in tracing the proofs of wislom and of goodness in nature. Throughout his was a laborious life, and just before lis death he !ompleted his History of British Firds, an enduring and worthy nemorial of an earnest aud true-hearted naturalist.
His family inherited a taste for similar pursnits. One son, John, Sontributed several articles to magazines on the natural history of leotland, and published an account of the voyage round the world if H.M.S. "Rattlesnake," on board which he mas naturalist. Lnother son, Panl, published an Aberdeen Flora in $18 J 3$.
MACHIAVELLI, Niccold (1469-1527), was bore at florence on the 3d of May 1469. His ancestry claimed lood relationship with the lords of Montespertoli, a fief ituated between Val di Pesa and Val d'Elsa, at no great listance from ihe city. In $1393^{\circ}$ the castlo of Montespertoli lecame the property of Niccolo's great-grandfather. At bis date the Machiavelli, like other uobles of the Florentine ontado, had been absorbed into the body of the burghers, Ind had begun to seek distinction as officers of the republic. They couused numerous priors and gonfaloniers of justice in the generations which preceded the illastrious secretary. Wiccolo's father, Bernardo, who was born in 1423, followed dhe profession of a jurist. He held landed property, hiefly near the village of San Casciano, which was worth, iccording to a recent calculation, something like £250 a year of our money. His son, though not wealthy, was aever wholly dependent upon official income.

Of Niccolo's early years and education little is knome. He is said to have studied under the grammarian Marcellce Virgilio Adriani ; and lis works show wide reading in the Latin and Italian classics. But it is almost certain that he had not mastered the Greek language. In that age of bumanistic erudition, it is noticeable that the three most eminent writers of the Renaissance-Machiavelli, Ariostu, and Guicciardini-orved their training to the literature of their own nation. To the defects of Machiavelli's educa tion, as it appeared to men of Giovio's stamp, we may, in part at least, ascribe the peculiar vigour of his style and his speculative originality. He is free from the scholastic trifling and leamed frivolity which tainted the rhetorical culture of his century. He made the world of men and things his study, learned to write his mothertongue with idiomatic conciseaess, and nourished his imagination on the masterpieces of the Romans. Nachiavelli shared the enthusiasm of his race and period for antiquity; but the antiquity he worshipped was confined to the commonwealth of Rome. Not the arts, the letters, and the philosophy of the Greeks, but the Latin histories in which the statecraft and organization of the Romans are described, arrested his attention. His habit of thought is marked throughout by a strong Latin bias.

The year 1494, the year of Charles VIII.'s invasion and of the Medici's expulsion from Florence, saw Machiavelli's first entrance into public life. He was appointed clerk in the second chancery of the commune under lis old master Marcello Virgilio Adriani. Early in 1498 Adriani became chancellor of the republic, and Machiavelli received bis vacated office with the rank of second chancellor and secretary. This post he retained till the year 1512. The masters he had to serve were the Dieci di Liberta e Pace, who, though subordinate to the signoria, exercised a separate control over the departments of war and the interior. They sent their own ambassadors to foreiga powers, transacted business with the citics of the Florentine domain, and controlled the military establishment of the commonwealth. The next fourteen years of Machiavelli's life mere fully accupied in the voluminous correspondence of bis bureau, in diplomatic missions of varying importance, and in the organization of a Florentine militia. It would be tedious and uninstructive to follow him through all his embassies to petty courts of Italy, the first of which took place in 1499, when he was sent to negotiate the continuance of a loan to Catherinu Sforza, countess of Forli and Imola. A more inportaut mission followed in 1500 , when Machiavelli travelled into France, to deal with Louis XII. about the affairs of Pisa. It is enough to say in general that these embassies were the school in which Machiavelli formed his political opinions, and gathered views regarding the state of Europs and the relative strength of nations. They not only introduced him to the subtleties of Italian diplomacy, but also extended his observation over races very different from the Italiaus in their social and constitutional development. He thus, in the course of his official business, gradually acquired principles and settled ways of thinking which he afterwards expressed in writing. He was at no time a philosopher or man of letters by profession, and when he came to write he gave to the world the condeased result of practical experience, combined with meditations on the Latin historians, rather than a methodical system.

His office obliged him from time to time to draw up proposals and memorials on questions of the day, which he presented to the Dieci. One of these, on the affairs of Pisa, belongs to 1499; a second, on the condition of Pistoia, to 1501 ; a third, of more general importance, on the right way of dealing with the rebels of Valdichiana, to 1502. In this last-named ducument some of the points of.
view which stamp his later works with a distinetive character emerge into prominence. We find him seeking parallels and precepts in Romaa bistory, laying down the axiom that human nature is identical throughout the ages, cxposing the futility of half measures, and finally appealing to Cesare Borgia as a model of political sagacity. It is clear from this brief and early composition that Machiavelli had already formed the habits of thought which distinguish him. IIo bas begun to idealizo Lorgia's policy. Ite interweaves historical reflexions with contemporary analysis, using the past to illustrate the present, and expounding praetical doctrine from texts derived from Livy. There is also noticeable the uneompromising spirit of the man, who was destiued afterwards in the Principe to subordinate all minor considerations of morality and conduct to the ono object of politieal attainment.

In the year 1502 Machiavelli married Marictta Corsini, the wife who bere hin several children, with wbom, ia spite of his ow'n infidelities, he lived on good terms, and who survived him twenty-six years. In the same year Piero Soderini was chosen gonfalonier for life, in aceordance with certain changes in the constitution of the state, which were intended to bring Florence closer to the Venetian type of government. This was an important event in Nachiavelli's carcer, for he now became intirnately connected with Soderini, assisted him in carrying out his poliey, suggested important measures of military reform which Suderini adopted, and finally was involved in ruin by his fall. Machiavelli, it may be said in passing, had the qualities of a good servant and a practical official. He remained faithful to Soderini through the difficulties of his later years of power, and spoke well of him subsequently. Yet he was a severe critie, blaming the gonfalonier for weakaess of administration and half neasares; and, when he ilied, he indulged in a sarcastic epigrann on his old master which does less honour to his loyalty than to his wit.
? The year 1502 was marked by yet another decisive incident in Machinvelli's life. In October he was sent, much against his will, as envoy to the camp of Cesare Borgia, or cluke of Valentino, as he was now called. The duke was then in Comagna, and it was Machinrelli's duty to wait upon and watch him. He was able now to observe those intricste intrigues whieh colminated in Cesare's seizure of Sinigaglia and the treacherous murder of his disalfeeted captains. From what remains of Machiavelli's letters to the Dieci during this period, and from his tract upon the Nodo tenuto dal Duca Valentino nell' ammazaare Vitellozzo V'itelli, we are able to appreciate the actual relations which existed between the two men, and the growth in Machiavelli's mind of a political ideal based upon his study of the duke's character. Machiavelli was a inere spectator and critic, by no means an adviser of the duke. Ho seems to havo been even weary and uneasy in tho network of hypoerisy and crime in which ho found himself,-refreshing his spirits with jocular letters to his private friends, and with tho study of a Plutarch which they sent him. Ife was also able to stigmatize tho Borgia's conduct from a conventional point of view, as is proved by his calling him a "basilisk" and "hydra" in his Decennali. Yet ho conceived the strongest admiration for his combination of andacity with diplomatic pradence, for his adroit use of cruelty and fraud, for his self-reliance, avoidanee of half measures, employment of native troops, and firm administration in conquerel provinces. Mero than once, in letters to his friend Vettori, no less than in the pages of the Princine, be afterwards expressed his belief that Cesare Borgia's behaviour in the conquest of provinces, the cementing of a new state out of scattered elements, und tho dealing with false fricads or doubtful allies, was worthy of all conmendation and of
scrupurous imitation. Hydra and basilisk were terms, not of reproach, but of panegyric, on the lips of the writer who warned his prince to acquire the nature of the fox and of the lion, who spoke familiarly of frodi onorevoli, scellerateze gloriose, and whose conception of Virtue was self-rcliant ability. As he watched C'sare Borgia at this, the most brilliant period of lis adventurous carecr, the man became idealized in his refleetive but imaginative mind. Round him, as a bero, he allowed his own conceptions of the perfect prince to cluster. There was so much in the conduct of the duke which exactly fitted with those conceptions, so nuch of that ideal had conversely been derived at first hand from the duke himself, that the here and the adventurer were, as it were, confounded. That Machiavelli separated the actual Cesare Borgia, whom he afterwards saw, ruined and contemptible, at Rome, from this radiant creature of his pelitical fancy, is probable. That tho Cesaro of bistory does not cxactly mateh the Duea Valentino of Machiavelli's writings is certain. Still the fact remains that heneeforth Maehiavelli cherished the ideal image of the statesman which he had modelled apon Cesare, and called this by the name of Vslentino.

On his return to Florenco early in Janusry 1503, Machiavelli began to occupy himself with a project he had long since formed, and which his recent attendance upon Cesare Borgia bad strengthened in Lis mind. The duties of his office obliged him to study the conditions of military service as they then existed in Italy. He was familiar with the disadvantages under whieh republics laboured when they engaged professional captains of adventure and levied mercenary troops. The bad faith of the condottiere Paolo Vitelli (beheaded at Florence in 1499) had deeply impressed him. In the war with Pisa he bad obsersed the iasubordination and untrustworthiaess of soldiers gathered from the dregs of different districts, serving under egotistical and irrespensiblo commanders. His reading in Livy taught hin to admire the Roman system of enploying armies raised from tho body of the citizens; and Cesare Borgia's method of gradually substitasing the troops of his own duchy for aliens and mercenaries showed him that this plan might be adopted with success by the Italians. IIe was now determined, if possible, to furnish Florence with a national militia. The goufalonicr Soderini eatered into his views. But obstacles of no samall magnitude arose. First came the fimancial difficulties in which the Government was then involved. The suspicion and jealonsy of the Florentines had also to be cncountered. Some of them feared lest Soderini, if bearmed the commonwealth, would aspire to tyranay. All alike were adrerse to arming tho population of subject cities like Arezzo and Cortona; for it must be remembered that an Italian republic ruled its province with the despotism of an autoerat, and the towns bencath its sway were always panting for independence. The question of money was iamediately pressing. Early in 1505 Nachinvelli drew up for Solerini a speeeh, Discorso sulla prorisione del Danaro, in which the duty and pecessity of liberal expeuditure for the protection of the state were expounded upon principles of sound politienl philosophy. Between this dato and the hast monthi of 1506 Maeliavelli laboured at his favourite scheme, working out memorials on the subject for his office, and sugyesting the outlines of a new military organizatiun. On the 6th of Deceniber 1506 his plan was approved by the siguory, and a special ministry, called the Nove di Ordinanse c Milizia, wns appointed. Machiavelli immediately became their secretary. The country districts of the Florentino dominion were now divided into departments, and levies of foot soldiers were made in order to secure a standing nilitia. $\Lambda$ commander-in-chicf had to be chosen for the new troops, \& Italian
jeatousy shrank from conferring this important office on a Florentine, lest one member of the state should acquire a power dangerous to the whole. The choice of Soderini and Machiavelli fell, at this juncture, unon an extremely iaeligible person, none other than Don Micheletto, Cesare Borgia's cut-throat and assassid. It is necessary to insist ujoon this point, sioce it serves to illustrate a radical infirmity in Machiavelli's genius. While forning and promoting his scheme, he was actuated by principles of political wisdom and by the purest patriotism. But he failed to perceive that such a ruffian as Micheletto could not inspire the troops of Florence with that devotion to their country and that healthy moral tone which shonld distinguish a patriot army. Here, as elsewhere, he revealed his insensibility to the ethical element in human nature. Knowing that Don Micheletto had worked well for Cesare Borgin, accustomed to disregard private morality as insignificant in public conduct, he was satisfied to entrust the discipline and education of his raw militia to a notorious villain. His indifference to personal ethics led him now into a practical blunder, as it afterwards vitinted his political writings with a philosophical error.
Meanwhile Italy had been the scene of memorable events, in most of which Machiavelli took some part. alezander VI. had died suddenly of fever. Julius II. had ascended the papal chair. The duke Valentino had been checked in mid-career of conquest. Machiavelli was sent to Rome during the conclave, when he renewed his intercourse with Cesare Borgia. On this occasion he seems to have felt nothing but contempt for the hero of his dreams, who had sunk into insignificance and almost abject Eubmission. The collapse of the Borgias threw Central Italy into confusion; and Machiavelli had, in 1505, to risit the Baglioni at Perugia and the Petrucci at Siena. In the following year he accompanied Julius upon his march through Perugia into the prorince of Emilia, where the fiery pope subdued in person the rebellious citics of the church. Unon these embassies Machiavelli represented the Florentine Dieci in quality of envoy. It was his duty to keep the ministry informed by means of frequent despatches and reperts. All this while the war for the recovery of Pisa mas slowly dragging on, with no success or honour to the Florentines. Macliavelli had to attend the camp aod provide for levies amid his many other occupations. And jet he found time for private literary work. In the autumn of 1504 he began his Decennali, or Annals of Italy, a poem composed in rough terza rima, and now remembered only for ons line describing the courage of Piero Capponi, when ae defied Charles VIII. to his face in 1495 :-
> ' La strepito dell' armi e de' cavalli, Non potè far che non fosse sentita La voce d'un Cappon fra cento Galli."

About the same time he composed a comedy on the model of Aristophanes, which is unfortunately lost. It seems to have been called Le Maschere. Giuliano de' Ricci tells us it was marked by stringent satire upon great ecclesiastics and statesmen, no less than by a tendency to "ascribe all human things to natural causes or to fortune." That phrase accurately describes the prevalent bias of its suthor's mind.

The greater part of 1506 and 1507 was spent in organizing the new militia, corresponding on the subject, and scouring the country on enlistment service. But at the end of the latter fear Europena affairs of no small moment diverted Machiavelli from these humbler duties. Maximilian was planning a journey into Italy in order to be cromned emperor at Rome, and ras lerying subsidies from the imperial burghs for his expenses. The Florentines thought his demands excessive. Though they already
lad Francesco Vettori at his court, Soderini judged it adrisable to send Machiavelli thither in December. He travelled by Geneva, all through Switzerland, to Botzeu, where he found the emperor.
This journey was an important moment in his life. It enalled him to study the Swiss and the Germans in their homes; and the report whicll he wrote on Lis return, Rapporto di Cose della Mugna, reckons among his most effective political studies. Instcul of confining lis attention to the analysis of parties or the portraits of eminent persons in the countries he had traversed, Nachiarelli strove to cstimate the esseutial elementr of national success or failure. The antique sobriety of the Siwiss, their sbsolute equality and independence, their officient nstional militia, inspired him with such admiration that henceforth the Swiss appeared to lim the model of modern nations and the most formidable among the neiglibours of the Italiaus. He pointed out that the streugth of Germany lay in the free cities, while the emperor was reakened, not only by his own indecisive character and want of funds, but by the jealousy of ths feudal princes. The German priuces, the burghs, and the empire being ill-accorded, and the Swiss being hostile to all alike, this vast nation lacked the force which its excellent morality, sobct living, and vigorous military organization ought to have secured it. What is most remarkable in Machiavelli's report is his concentrated effort to realize the exsct political weight of the German nation, and to penetrate the causes of its strength and weakness. He attempts to grasp the national character as a mhole, and thence to deduce practical conclusions. Certain mistakes he undoubtedly made. He treated the Swiss, for example, too much as though they were a part of Germany. He exaggerated the simplicity and sobriety of the race at large, seemingly inspired by Tacitas, and inflamed in his omn imagination hy sympathy with a people who realized his cherished dreams of national health. His indifference to ecclesiastical questions prevented him from discerning the crisis of the Reformation, which was on the verge of precipitating Germany into the discord of religious wars. Yet, allowing for these draybacks, re are astonished by the insight into details and the co-ordinating faenlty which enabled this 1talian to draw so discriminating and animated a portrait of the Germans for the beneft of his republic.
'The same great qualities are noticeable in his Ritratti delle Cose di Francia, which he drem up after an embassy to Lonis XIl. at Blois in 1510. These notes upon the French race are more scattered than the report on German affirs. But they reveal no less acumen combined with imaginative penetration into the very essence of national existence. He points out that the special strength of France lies in her centralization. The monarch is surrounded by obedient feudal vassals, the most powerful of whom are of the royal blood. 'They in their turn draw their wealth fion the people. Feudalism, an element of discord in Germany, has been converted into monarchy, and become the cohesive bond of society in France. On the other hand, this centralization contains a grave element of danger. for the future of France. The people are ground down and have no liberty. Mschiavelli paiuts out how, iu these circumstances, the pith of the French army is its chivalry, and why the king is alrays obliged to hire German and Swiss infsntry for his wars. The Ritratit abound in pointed observations upon the French charscter which is well contrasted with that of the Spaniards. But what constitutes the originality of this tract is Machiarclli's determination to realize to himsclf and to his readers the political value of the French people as a whole, and thus to form a solid basis for judging of its probable bebariour in the future. In this case, as in the case of Germany, he attempts to estimate the physical, moral, and intellectual capacity of an antagonist with whiom his country has to grapple. It may be aaid that, with France as with Germany, he wholly omits the possibilities of religious perturbation.
While engaged npon this topic, it-may be mell to mention that Machiarelli displayed exactly the same force of analysis in laying bare the central causes of weakness in Italy itself. The disarmament of the population by selfish despots and indolent republics; tha consequent gromth of a vicious mercensry aystem; the dismemberment of the nation into petty, mutually jealons parcels, due for the most part to the selfishness of Rome; the loss of antique sobriety in manners, and the almost total corruption of the peopite, fostered and encouraged by their debauched spiritual leaders, - these, he says, are the causes which have made Italy "more enslaved than the Hebrems, more dorntrodden than the Persians, more disunited than the Athenians." This is not the pisce to discuss his policy for the Italians. Suffice it to say that thic same method which he applied to Germany and France supplied him with general conclusions about Italy, and enabled him to rier with a truly terrible clairroyance that desperate disease of his country for which he afterwards invented remedies as desperste.
Machiavelli returned from Germany in June 1508. The rest of that Jeas and a large part of 1509 were spent in the affairs of the militia and the war of Pisa Chiefly
through his excrtions the war was terninated by the surrender of Pisa in June 1509. Meanwhile the league of Cambray had disturbed the peace of Italy, and Florence found herself in a perilous position between Spain and France. Soderini's Government grew weaker. The Medicean party lifted up its head. To the league of C!ambray succeeded the Lega Santa. The battle of havenna was fought, and the French retired from Italy. The Florentines had been spectators rather than actors in these great events. But they were now destined to feel the full effects of them. The cardinal Gievanni de' Mcdici, who was present at the battle of Ravenna, brought a Spanish army iuto Tuscany. Prato was sacked in the August of 1512. Florence, in extreme terror, deposed the gonfalonier, and opened her gates to the princes of the honse of Medic.

The Government on which Machiavelli depended had fallen, never to rise again. The national militia in which he placed unbounded confidence had proved inefficient to protect Florence in the hour of need. He was surrounded by political and personal enemies, who regarded him with jealousy as the ex-gonfalonier's right hand man. Tet at first it appears that he still hoped to retain his eftice. Ho showed no repugnance to a change of masters, and began to make overtures to the Medici. The Nove delia Milizia were, however, dissolved; and on November 7, 1512, Machiavelli was deprived of his appuintments. He was exiled from Florence and confined to the dominion for one year, and on November 17 was further prohibited from setting foot in the Palazzo Publico. Fuin stared him in the face; and, to make matters worse, he was implicated in the conspiracy of Pier Paolo Boscoli in February 1513. Macliavelli had taken no share in that feeble attempt agairst the Medici, but his name was found upon a memorandum dropped by Boscoli. This mas enough to ensure his imprisonnent. He was racked, and only released upon Gievanni de' Medici's election to the papacy in Marek 1513. When he left his dungeon, he retired to a farm near San Casciane, and faced the fact that his political career was at an end.

Machiavelli now entered upon a period of life to which we owe the great works that have rendered his name immortal. But it was one of prolonged disappointment and annoyance. He had not accustomed himself to economical living; and, when the emoluments of his office were withdrawn, he had but barely enough to suppert his family. The previous years of his manhood had been spent in continual activity. Much as he enjoyed the study of the Latin and Italian classics, literature was not his business; nor had he looked on writing as more than an occasional amusement. He was now driven in upon his boaks for the employment of a restless tenperament; and to this irksoneness of enforced leisure may be ascribed the lraduction of the Principe, the Discorsi, the Arte della Guerra, the comedies, and the Storia Fiorentina. The uneasiness of Machiavelli's mind in the first years of this retirement is brought before us by his private correspondence. The letters with Vettori paint a man of vigorous intellect and feverish activity, dividing his time between studies and vulgar dissipations, seeking at one time distraction in low intrigues and wanton company, at another turning to the great minds of antiquity for solace. It is not easy for a modern gentleman to understand the spirit in which the anthor of the Principe sat down to exchange obscenities with the author of the Sommario della Storia d'Italia. Nor can it be urged that Machiavelli plunged into dissipation at this crisis to escape from care, or that he penned filth because lie had no other occupation for his thoughts. From the camp of Borgia in 1502, when his mind was on the stretcll, and he was watching history in the making, he had written
similar trash to his acquaintances at home. At the same time this coarseness of taste did not blunt his intellectual sagacity. His letters on pullic affairs in Italy and Europe, especially those which he meant Vettori to communicate te the Dedici at Rome, are marked by extraordinary fineness of perception, combined, as usual in his case, with philosophical breadth. In retirement at his villa near Percussina, a hamlet of San ${ }^{\circ}$ Casciano, Machiavelli completed the Principe before tho end of 1513 . This famous book is an analysis of the methods whereby an ambitions man may rise to sovereign power. It appears to have grown out of another scarcely less celebrated work, upon which Machiavelli had been engaged before he took the Principe in hand, and which he did not finish until some time afterwards. This second treatise is the Discorsi sal prino libro delle Deche di T'ito Livio, which will henceforth be mentioned in this article as the Discorsi.
Cast in the form of comments on the history of Livy, the Discorsi are really an inquiry into the genesis and maintenanco cef states,how states come into being, prosper, and dechine-ing whist forms they can be modelled and maintained. The Principe ?s in offshoot from the main theme of the Discorsi, setting forth Machavelli's views at large and in detail upon the nature of principalities, the method of cementing them, and the qualities of a successful autocrat. Being more limited in sulject and more independent as a work of literary art, this essay detaches itself from the main body of the Discorsi, and has attracted far more attention. We feel that the Principe is inspired with greater fervency, as though its author had more than a speculative aim in view, and brought it forth to scrye a special crisis. The moment of its composition was indeed decisive. Machiavelli judged the case of Italy so desperate that salvation could only be expected from the intervention of a powerful despot. The rinification of Italy in a state protected by a national army was the clerished dream of his life; and the peroration of the Principe shows that he meant this treatise to have a direct bearing on tho preblem. We must be careful, however, not to fall into the error of supposing that he wrote it with the sole object of meeting an occasional emergency. Together with the Discorsi, the Principe contains the speculative fruits of his experience and observation connbined with his deductions from Roman history. The two rorks form one coherent boly of opinion, not systematically expressed, it is truc, but based on the same principles, involving the same conclusions, and directed to the same philosaphical end. That end is the analysis of the conception of the state, studied under twe main types, republican and monarehical. Up to the date of Machiavelli, modern political philosophy had always presupposed an ideal. Medieral speculation took the church and the empire for granted, as divinely appointed institutions, under which the nations of the earth must fiourish for the space of man's probation on this planct. Thiukers differed only as Guelfs and Ghibellines, as leaning on the one side to papal out the other to imperial supremacy. In the revival of learning, scholarship supplanted scholasticism, and the old ways of medioval thinking were forgotteu. But no substantial philosophy of any kind cmerged from humanism; the political lucubrations of the scholars were, like their ethical treatises, for the most part rhetorical. Still the humanists effected a delivery of the intellect from what had become the bondage of obsolcte ideas, and created a new medium for the speculative faculty. Society in Europe had outgrown the conditions of the Middle Ages, and this new lumanistic atmosphere corresponded to the new phasc upon which the modern nations wero entering. Simultaneously with the revival, Italy had passed into that stage of her existenco which has been called the age of despots. The yoke of the empire had been shaken off. The church lad taken rank among Italian tyrannies. The peninsula was, roughly speaking, divided into principalities and sovereign cities, cach of which claimed autocratic jurisdiction. These separate despotisms owned no cemmon social tie, were founded on no common jus or right, but were connceted in a network of conflicting interests and changeful diplomatic combinations. A keen nud positive political intelligeuce emerged in the Italian race. The reports of Venetian and Florentine ambassadors at this epoch contain the first germs of an attempt to study politics from the point of view of science. At this monent Machiavelli intervenes. He was conscious of the chango which had come over ltaly and. Eurone. Ho was aware that the old strongholds of medireval thought must be abandoned, and that the decaying ruins of medieval institutions furnished no basis for the crection of solid political cdifices. Mc felt the corraption of his country, and souglat to bring the werld back to a livcly sense of the necessity for reformation. His originality consists in having cxtended the positive intelligence of his ceutury from the sphere of contemporary politics and special interests to
man at large regarded as a nolitical being. He founded the science of politics for the modern world, by concentrating thought upon its fundemental principles. Much that is unnatural in the forced severance of politics from ethics, much that we know now to be untrue in the conception of national development, much that offeads our moral sense in the justification of iniquity for public ends, much that the experience of the last three centuries has shown to le mistsken in the theory of the state considercd as a work of plastic art, much that beloogs to the Renaissance, and has perished with that period of transition, much that is wrongly stpplied from tho experience of Italian diplomacy to politics in geoeral, can bo noted by the studeats of Machiavelli. We feel the want in him of a thorongh philosophical education, the contioual oscillation between speculative sod practical points of view, the lack of system and the aegligence of striagent definition. We surmise that, had he studied Plato's Rcpublic or the first chapters of Aristotle's Politics and Ethics, he might perhaps have avoided what has heen the stumbling-block to generous readers-his iadifereace to moral righteoasness as indispensable to states no less than individuals. We regret his uaqualificd inculcation of the doctrine that means are justified by ends, - a dactrine readered odious by Jesuitry to the modern mind, and incompatible with aay sound scieace of humanity. We know that ethics cannot be sercred, as he severed them, from politics; that, though uational differs from private duty, beth are based upon the same immutable principles; that the former tends, with the growth of the race, to approach ever more nearly to the former; and that it is the fuaction of the political philosopher to keep this steadily in viets. We have learned to regard nations, not merely as materials to be moulded by a lawgiver, but ss total organisms, which, however modified by men of genins, obey their arm laws of evolution. We hare outgramn his admiration of snfiquity, and do not believe that modern states should seek to model themselves upan the type of Rome. We perceire that his ideal of a priace, working by force, fraud, cruelty, dissimulation to a certain end, was the creature of circumstances, which caused him to adrocate the opposition of violence to anarchy as the only possible resort. These are deductious to be made from Machiarelli's teachiag, regarded as finel, or as instructive for the times in which we live. But, whea te hare made these deductions, there remains the fact of his achievement. He began to study shen, not according to some prcconception, but as he fonnd them, mea, not in the isolation of oae century, but es a whole in history. He drew his conclusions from the gature of mankind itself, "ascribing all things to natural causes or to fortnne." In this way be restored the right method of study, a method which had been neglected siace the days of Aristotle. He formed a coaception of the modern state, which marked the close of the Diddle Ages, and anticipated the next phase of European development. His prince, abating those poiats which are purely Italian or stiongly tinctured with the author's personal peculisrities, prefigured the monarchs of the 16th and 17th centuries, the moarchs whose motto was L'elat c'est moi / His doctrice of a national militia foreshadowed the system which has giren etrength in arms to France and Germany. His iasight iato the causes of Italian decadence was complete; and the remedies which he suggested, in the perorations of the Principe and the Artc della Guerra, have siace beea applied in the unification of Italy. Lastly, when we oace have freed? anrselves from the antipathy engendered by his severanse of ethics from the field of politics, when we have once made proper allomance for his peculiar use of phrases liks "fradi anorevoli" or "scelleratezze gloriose," nothiag is left but admiration for his mental stticude. That is the attitude of a patriot, who sam with open eyes the ruin of his country, who buraed above all things to save Italy and set her in her place among the powerful nations, who held the duty of self-sacrifice in the most absolute sense, whose rery limitations and mistakes were due to an absorbing passion for the state he dreamed might be reconstituted. It was Machiavelli's intense preoccupation with this problem-what a state is and how to found oae in existiog circumstaaces - Which caused the many riddles of his speculative writings. Dazzled, as it were, with the brilliancy of his own discovery, concentrated in attention on the one recessity for organiziog a parverful cohereat nation, he forgot that men ere more than political beings. He neglected religion, or regarded it as part of the state machinery. He was by no meana indifferent to pricate virtae, which indeed he judged the basis of all healthy national existence ; but in the realm of politics he postponcd morals to political expediency. He held thet the people, as distinguished from the nobles ead the clergy, were the pith ead fibre of nations; jet this same people had to become wax in the hands of the politi-cian,-their commercefand their comforts, the arts which give a digoity to life and the pleasures which make life liveable, neglected,-their very liberty subordinated to the one tyrannical conception. To this poiat the segregation of politics from every other factor which goes to constitute humsoity had bronght him ; and this it is which makes us feel his world a wilderness, devoid of atmosplere and regetation. Tet some such iso'stion of the subject-matter of this scieoce was demanded at the moment of
its birth, just as political economy, when first started, had to make a rigid severance of wealth from other units. It is only by a gradusl process that social science in its whole complexity can bo evolved. We have hardly jet discorered that political economy bas unaroidable points of contact with ethics.
Front the furegoing criticism it will be perceived that ant the questions whether Mschiavelli meant to corrupt or to instruct the world, to fortify the hads of tyrants or to lead them to their ruin, are now obsolete. He was a man of science-one whe by the vigoraus study of his subject-matter sought from that subjectmatter itself to deduce lars. The difficulty which remains iu judging him is a difficulty of statement, valuation, allowance. How nuch shall we allow for his position in Renaissunce ltaly; for the corruption in the midst of which ho lived, for his own personal tcuperament? How shall we state his point of departure from the Middle Ages, his sympathy with prevalent classical entlusiasms, his diviaation of a new period? How shall we estimate the permaneat worth of his method, the residuum of value in his naxims?

After finisnng the Principe, Mnchiavelli thought of dedicating it to one of the Medicean princes, with tho avored hope that he might thereby regain their favour and find public employment. He wrote to Vettori on the subject, and Giuliano de' Medici, duke of Nemours, scemed to him the proper pcrson. The choice was reasonable. No sooner had Leo been made pope than he formed schemes for the aggrandizement of his family. Giuliano was offered and refused the duchy of Urbino. Later on, Leo desigued for him a duchy in Emilia, to be cemented out of Parma, Tiacenza, Reggio, and Modena. Supported by the porwer of the papacy, with the goodwill of F'lorence to back him, Giuliano would bave found himself in a position somewhat better than that of Cesare Borgia ; and the Borgia's creation of the duchy of Romagna might have served as his model. Machiarelli therefore mas justified in feeling that bere was an opportunity for putting bis clerished schemes in practice, and that a prince with such alliances might even adrance to the grand end of the unification of Italy. Giuliano, however, died in 1506. Then Machiavelli turned his thoughts towards Lorenzo, duke of Urbino. The choice of this man as a possible Italian liberator reminds us of the choice of Don Nicheletto as general of the Florentine militia. To Lorenzo the Principe mas dedicated, but without result. The Medici, as jet at all events, could not employ Machiavelli, and had not in themselves the sturut to found Italian kingdums.

Machiavalli, meanwhile, was reading bis Discorsi to a select audience in the Rucellai gardens, fanning that republican enthusiasm which never lay long dormant among the Florentines. Towards the year $1519{ }^{\circ}$ both Leo X. and his cousin the cardinal Giulio de' Medici were much perplexed about the management of the republic. It seemed necessary, if possible, in the gradual extinction of their family, to give the city at least a semblance of self-government. They applied to several celebrated politicians, among others to Machiavelli, for adrice in the emergency. The result was his Discorso sopra il Riformar lo Stato di Firenze, a treatise in which he deduces practical conclusions from the past history and present temper of the city, blending these with his favnurite principles of government in general, He earnestly admonishes Leo, for his own sake and for Florence, to found a permanent and free state system for the republic, reminding hires in terms of noble eloquence how splendid is the glory of the man who shall confer such benefits upon a people. The year 1520 saw the composition of $I$ sette Libri dell' Arte di Guerra, and of the Fita di Castruccio.

The first of these is a methodical treatise, setting forth Machiavelli's views on military matters, digesting his theories respectiag the superierity of national troops, the inefficiency of fortresses, the necessity of relying upon infantry in war, and the comparative insignificance of artillery. It is strongly coloured with his enthusiasm for aacient Fome; and specially upon the topic of artillery it displays a want of insight into the actualities of modern warfare. We may regard it as a supplement or appendix to the

Erincipe aml the Discorsi, since Machiavelli hell it for a fundamental axion that states are poweriess unless completely armed in permanence. The peroration contains a noble appeal to the Italian liberator of his dreams, and a parallel from Macedonian history, a hich, read bv the light of this century, sounds like a prophecy of Piedmont.

The Vita di Castruscio was composed at Lucca, whither: Machiavelli had been sent on a mission. This so-called biography' of the medieval adventurer who raised himself by personal a bility and military skill to the tyranny of sereral Thsean cities must be regarded in the light of an historical romance. Dealing freely with thic outline of Castruccio's career, as he had preyiously dealt with C'esare Borgia, he sketched his own ideal of the successful prince. Cesare Borgia lad entered into the Princinc as a representative figure rather than an actual personage; su now conversely the theories of the Principe assumed the outward form and semblance of Casiruccio. In cach case history is blent with speculation in searly the same propartions. But Castruccio, beicig father from the writer's own experience, bears weaker traits of parsonality.

In the same year, 1520, Machiarcili, at the instauce of the cardinal Giulio do' Medici, received commission frem the oflicers of the Studio P'ubblico to write a history of Florence. They agreed to pay him an anutal allowance of 100 florins while engaged upon the work. The neat six years were partly employed in its composition, and lie left a portion of it finishod, with a dedication co Clement VII., when he died in 1527. In the Istoric Fiorentine Machiavelli quitted the field of nolitical speculation for that of history. But, havirg alrcaly written the Discorsi and the Principe, he carried with him to this new task of historiography the habit of mind proper to political philosophy. In his hands the history of Florence became a text on which at fitting seasons to deliver lessons in the seience he initiated. This gives the work its sprcial character. It is not so much a elronicle of Florentine aflairs, trom the commencement of modern history to the death of Lorenzo 'le' Medici in 1492, as a critique of that chronicle from the point of vew adopted by Nachiavelli in his former writings. Having condensed his doctrines in the Principe and the Discorsi, he applies their abstract principles to the example of the Florentine republic. II:s favourite topics reappear-the dismemberinent of Italy by the papacy (bk i. 9, 23); the ruin of her national militia (bk. i. 34, 38 ; bk. V .1 1; bk. vi. 1); the encrvation of licr commonwealths by commerce (bk. i. 39; 3k. ii. 42) ; her corrupt morality (bl. iii. 1) ; the creference of Italian circumstances to liomat precedents (bk. iii. 1); the theery of the intervenient "nomothetes" in states (bk. iv. I); and the theory of human vicissitudes (bk. v. 1). This gives to his history a deductive and illustrative quality which men of Iess imaginative mind, like Guicciardini, or the exact students of our own days may eriticize. But the History of Florence is not a mero political manphlet. It is tha first example in Italian literature of a national biography, the first attempt in any literature to trace the ricissitudes of a people's life in their logical sequence, deducing each successive phase from passions or necessities inherent in preceding circumstanees, reasoning upon them from general principles, and inferring corollaries for tho conduct of the future. In his procmium Machiavelli taxes Yoggio and Lionardo Bruni with having neglected civic affairs for the rccord of wars and alliances. It is to the analysis of the republic's inner life that he directs attention, showing how her acts were the phenomena of this organie force. At the same time he cines not omit the narrative of extermal events, but places the portrait of Flarence in the centre of an animated group of pictures drewn from Italian history. Approach. ing his own times, he enlarges on the part played by tho Mcelici; for it was one of the conditions of the task imposed on him that he shonld cele brate tho aucestors of Giulio. This portion of the work is excented in no scrvile spirit, and the subsequent destiny of Florence fully justified the prominence hero given to the elder Cosimo and Lorenzo. In point of form the Florcutinc History is modelled upon Livy. In contains speeches in the antique manner, which may be taken as partly embolying the author's commentary upon situations of importance, partly as expressing what he thouglit Iramatically appropriate to prominent persanages. The style of the whole book is nervous, vivid, free from artifice and rletoric, obeying tho writer's thouglat with alsolute plasticity. Dachiarelli had formed for himself a prose style, equalled by no nue but by Guicciardini in lis minor works, which was far removed from the empliness of the Latinizing humanists and the trivialities of the Italian purists. Words in his hands have tho substance, the selfevidence of things. It is an athlete's style, all bene and sinew, nude, without superfluens flesh or ornament.

It would scem that from the date of Machiavelli's discourse to Leo on the goverument of Flerence the Medici had taken him into consideration. Writing to Vettori in 1513, he had expressed his eager wish to "roll stones" in their service; and this desire was now gratificd. In 1521 so was sent to Carpi to transact a petty matter with the
chapter of the Franciscans, the chief known result of tho embassy being a burlesque correspoudence with Francesco Guiceiardini. Four years later, in 1525 , he received a rather more important mission to Venice. But Machiavelli's public career was virtually closed; and the interest of his biography still centres in his literary work. We have seen that already, in 1504, he had been engaged upon a comedy in tho manner of Aristoplanes, which is now unfortunately lost. A translation of the Andria, and three original comedies from his pen are extant, the precise dates of which are uncertain, though the greatest of them was first printed at Rome in 1524. This is the Mandragola, which may bo justly called the ripest and most powerful single play in the Italian language.

The plot is both improbable and unpleasing. But, having granted this, literary eriticism is merged in admiration of the wit, the humour, the vivacity, the satire of a piceo which brings before us the old life of Florence in a succession of lrilliant scenes. If Machiavelli had any moral object when he composed thd Arandragola, it was to paint in glaring colours the corruption of Italian society. It shows how a bold and plansible adventurer aided by the profligacy of a masate, the avarice and lypocrisy of a confessor, and a mother's complaisant familiarity with vice, achicves the trinmph of making a gulled husband bring his own unwilling but too yielding wife to shame. The whole comedy is a study of stupidity and basencss acted on by roguery. About the power with which this picture of domestic immorality is presented there can be no question. But the perusal of the piece obliges us to ask ourselves whether the author's radical conception of human nature was not false. The same suspicion is forced upon us by the Principe. Did not Machiavelli leare good habit, as an essential ingredient of charactcr; out of account? Men are not sucl absoluto fools as Nicia, nor such compliant catspaws as Ligurio and Timatee ; women are not such weak instruments as Sostrata and Lucrezia. Somewhere, in actual life, the stress of craft and conrage acting on the springs of human vice and weakness fails, unless the hero of the comedy or tragedy, Callimaco or Cesare, allews for tho revalt of bcalthier instincts. Machiavelli docs not seem to haro calculated the force of this recoil. Ho speculates a vorld in which Virtic, unscrupulous strength of elaracter, shall deal successfully with frailty. This, we submit, was a deep-seated error in his theory of life, an errer to which may be ascribed the numerous stumblingblacks and rocks of offence in his more serious writings.
Some time after the Mrendragola, be composed a sccond comedy, entitled Clizia, a portion of the plot of which is borrowed from tho Casina. Though modelled on the art of Plautus, the Clizia is even homelier and closer to the life of Florence than its predecessor. It contains incomparable studics of the Florentine houscwife and lier busband, a grave business-like citizen, tro falls into tho senile folly of a base intriguc. The device by which Nicomaco is bronght back to a sense of duty is presented in scenes of solid humour which recall the manner of Ben Jonson. On the whote, the Clizia is a pleasanter and wholesomer play than the Mrnadragole. It served as model to a school of later playwrights. Thero remains a short picce without title, the Commedia in Irosa, which, if it be Machiavelli's, as internal evidence of style sufficiently argues, might be accepted as a study for beth the Clixia and the Bandragola. It scems written to oxpose the corruption of domestic life in Florence, and esprecially to satirize the friars in their familiar part of go-betweens, tame cats, confessors, and adulterers. The Fra Alberigo of this comedy is a vigorous piece of realistic portrature, anticipating, if not surpassing, the Fra Timotco of the Mfendragola.
of Machiavelli's minor peoms, sonnets, capitoli, and camiral songs, there is not much to say. Powerful as a comic playwright, he was not a poet in the proper sense of the term. The little novel of Belfagor claims a passing word, if only because of its cclelnity; It is a good-humoured satire upon marriage, the devil being forcel to admit that hell itself is preterable to his wife's company. That Machiarelli invented it to cxpress the irritation of his own domestic life is a myth without foundation. The story has a medixeval origin, and it was almast simultaneously treated in Italian by Dachiavelli, Straparola, aul Giovanni Brevio.

In the spring of 1526 Machiavelli was employed by Clement VII, to inspect the fortifications of Florence. Ho presented a report unon the subject, and in tho summer of the sanie year received orders to attencl Francesen Culieciardini, the pone's commissary of war in Lombardy. Guieciardini sent him in August to Cremona, to transact busincss with tho Venctian provveditori. Later on in the autumn we find him once more with Cuicciardini at Dologna. Thus the two great Italian historians of tho

16 th century, who had been friends for several years, were brought into relations of close intimacy. It would be iuteresting to know the topics of their conversation, aud to possess some fragments of the debates they undoubtedly held upon the grave affairs of Italy at this decisive juncture. In the nest year Rome was destined to be sacked by an imperial army. Florence was to rise in rebellion against the Medici. Four years later Cbarles V. was to lay the iron hand of Spain upon the remuants of Italian liberty. But nothing sursives of Machiavelli's and Guicciardini's discourse. We can only form an opinion of what it must have been from the commentaries written by the latter on the political philosophy of Machiavelli-commentaries which sufficiently explain the diferent methods of the two great thinkers. Gnicciardini, more positive even than Machiavelli in his criticism, averse to theory, satisfied with a policy of public temporizing and expedieucy, aeceptiug Italian decadeuce sith the tranquillity of egotism, looked on Machiarelli as a dreamer. "Nothing," he says, "can cure the diseases of our century but the knife of Ljeurgus, and the knife of Lycurgus may not be expected." Machiavelli was always hoping against hope that this knifo in the hands of some superior Cesare might still be used. Guicciardini, as events proved, had taken a sounder view of the situation; or rather it was men like Guicciardini who made the situation. Machiavelli to the last remained r. patriot, with darkly bright impracticable visions in his brain.
After another visit to Guicciardini in the spring of 1527 , Machiavelli was sent by hin to Civita Vecchia. It seemed that he was destined to be associated in the papal service with Clement's riceroy, and that a nicw period of diplomatie employment was opening for him. But soon after his return to Florence he fell ill. His son Piero said that he twok medicine on the 20th of June which disagreed with himp; and on the 22d he died, having received the last offices of the church. There is no foundation for the legend that he expired with profane sarcasms upon his lips. Yet rre need not run into the opposite estreme, and try to fancy that Machiavelli, who had professed paganism in his life, prosed himself a believing Christian on his death-bed. That he left an unfavourable opinion among his fellowcitizens is very decidedly recorded by the historian Varchi. The Principe, it seems, had already begun to prejudice the morld against him; and we can readily believe what Yarchi sententiously observes, that "it would have been letter for him if nature lad given him either a less porwerful intellect or a mind of a more genial temper." There is in truth a something crude, unsympathetic, cynical in lis mental attitude toward human nature, for which, eren after the lapse of more than three centuries, we find it difficult to make allorance. The force of his intellect renders this want of geniality repulsive. We cannot help objecting that one who was so powerful could have been kindlier and sounder if he willed. We therefore do him the injustice of mistaking his infirmity for perversity. He was colour-blind to commonplace morality; and we are angry with him because he merged the hues of ethics in one giey monotore of politics. In person Machiavelli was of middle height, black-haired, with rather a small head, very bright eyes, and slightly aquiline nose. His thin close lips often broke into a smile of sarcasm. His activity was almost feverish. When unemplojed in work or study, lie was not averse to the society of boon compenions, gave himself readily to transient amours, and corresponded in a tone of cynical bad taste. At the same time he lived on terms of intimacy with worthy men. Varchi says of him that "in his conversation he ras pleasant, obliging to his intimates, the friend of virtuous persons." Those who care to understand the contradictions of which such a
elaracter mas capable should study his correspondence with Vettori. It would be unfair to charge what is repulsive in their letters wholly on the habits of the times; for wide familiarity with the published correspondence of similar men at the snme epoch brings one acquainted witle little that is so disagreeable.
For complete editions of Machiavelil's morks, that of Italin, $\delta$ vols., 1813, and the more comprehensive by Usigli, Florence, 1853 , may bo cited. The best biography is by Professor Pasqualo Villuri, 3 vols., Florence, 1877-82. Tlis work couttains a copious critique of all the most important stulies which have been made of Naclinvelli's works. An English translation of this life, finished by Madame Villari under the guidance of Professor Villari, is being published.
(J. A. S.)

MACHINE TOOLS. The very small degree of antiquity to which machine tools can lay claim appears forcibly in the sparse records of the state of the meehanical crafts a century ago. A few tools of a rude kind, such as tilthammers, and a few special ones whicls aimed at accuracy, but were of very limited application, such as "mills" for boring cannon, or "engines" for cutting the teeth of clock whecls, were almost their only representatives. Machine tools of the modern type indeed would not then have been likely to have found much favour even if they had been invented, owing to the difficulty of providing sufficient power for driving them, except in the comparatively ferr positions where water-power was availalle. The transmission of power was unthought of, except for the very limited distances which were possible with the ill-fitted "gudgcons" and "lanteras and trundles" of the old millwrights.

The steam-engine, however, changed nll this. On the one hand the hitherto unheard-of accuracy of fit required by its working parts created a demand for tools of increased power and precision, and on the other it rendered the use of such tools possible in almost any situation. Thus, acting and reactivg on each other, machine tools and steam-engines have grown side by side, till our morkshops have become peopled with a race of giants, capable of uncomplainingly performing tasks altogether beyond the powers of the easily wearied hands which lave brought them into existence. But the first steps in the process were costly and difficult to a degree which it is net now easy to realize. James Watt, ior instance, in 1760, was fain to be content with a cylinder for his "firc-engine " of which, though it was but IS inches in the hore, the diameter in one place exceeded that at auother by about $\frac{3}{8}(375)$ of an inch; its piston was not unnaturally leaky, though he packed it with "paper, cork, putty, pasteboard, ood. nld hat." In the bore of a cylinder of 120 inches there would not now be admitted an error of $\frac{1}{100}$ of an iach, and the leakage past the piston is practically $n i \%$. Even this must by no means be takea to represent the extreme limit attainable in respect of size and accuracy.
Machine tools present so many points of difference that no classification of them will be attempted beyond a broad division into general and special tools,-those included under the latter head being such as are intended to perform repeatedly one single operation (or one of a small number of varieties of that operation), or are mainly emplosed in particular processes or manufactures.

As an instance of special tools working successively in a series,-which is ${ }^{2}$ i frequent arrangement with special tools,-the Ulock machinery, for making ships' blocks at Portsmouth dockyard, may be mentioned. Erected in 1807 by Mr H. Maudslay from designs by Mr (afterwards Sir Mare) Brunel, on the recommendation of Sir S. Bentham, it enabled ten men to do in a superior manner work which previously required one hundred and ten, and effected in the annual expenditure of the nation a saving of ahout $£ 24,000$. Into the particulars of the beautifully

## MACHINE TOOLS

arranged sawing, mortising, shaping, and other machines by which this was accomplished we cannot enter, but they ane of groat interest, not only from their intrinsic merits, but also as being, if not the very first, certainly superior to any: which had previously been uscd. Our limited space, however, will be more profitably devoted to giving a few examples of the general tools used in engineers' workBhops. (
The Stean-IIammer, which in some respects may be regarded as the most important of machine tools, has already been noticed (see Hammer, vol. xi. p. 425). Second only to it in importance, and long anterior to it in date, stands the lathe. At what exact point of its development from the simple foot lathe it first became entitled to rank as a machine tool we will not stop to inquire, for the origin of this, as of most of the mochanical legacies which have been handed down to us by successive inventors and impruvers, is involved in much obscurity. But as far as tools laying any clain to precision are concerned it appears certainly to have been the first to come into existence. On the Continent, mechanism to be used in conjnnction with it for oval turning, and for producing monldings oblique to the axis of the work, had been devised as early as 1569, in which year one Jacques Besson published drawings of two lathes so arranged. Whether much additional beanty was obtained by thus departing from the circular sections producible with the simple lathe, aud converting them into distorted oues, such as that sketched in fig. 1 (reduced from Desson), may porhaps be questioned, but the taste for this


Fig. 1.-Swash Work. "swash" work, as it is called, ere loug extended also to England. Moson, the first English writer on the subject, gives a drawing of a very similar lathe, and be mentions the name of an established London maker whose oval engines and swash engines, and all other engines, were "excellently well made," so they were apparently in some demand at the time of his writing (1680).

Screw cutting in the lathe was another problem-and a more worthy one-which occupied the attention of inventors at the same early period. A curions but mechanically very imperfect arrangement for accomplishing it (with which, however, threads either right ov left handed conld be cut on tapered and oval as well as on cylindrical work) is given in another of Besson's engravings. In this the tool is entirely supported and its movements are controlled by the machine instead of being held in the hand,-an arrangement of which the great advantage appears to have becn but tardily appreciated, thongh it contains the germ of the principle which, applied first in the slide-rest of the lathe, and subsequently in machine tools of almost every type, has enabled tasks of constantly increasing severity to be successfully dealt with.

Nearly two centuries seem to lave elapsed before what wee now know as the slide-rest became a recognized adjunct to the turning lathe, though in the meantime arrangements had been devised for controlling the motion of the tool by attaching it to some portion of the mechanism in some special cases,-as in that of two carious lathes for turning hyperbolic, spherical, or plane mirrors for optical parposes, of which engravings were published at Rome in 1648 . Its first definite appearance in print occurs in the great Frencl Encyclopédic, published in 1772. Detail drawings of an adnirablo slide-rest are given in one, and evidence of its being then in regular use occors in several of tho very interesting engravings of that ponderous work, which gives so clear an insight into tho methods then employed
in France in the various crafts. The description, howerer, by no means settles the question of its origin.
It is pretty certain that the slide-rest was reinvented in England by the ingenious Henry Mandslay, when he was employed in Mr Bramah's workshop in London, where "Mandslay's go-cart" (as it was at one time derisively called) was first set to work in 1794. That he had not proviously seen the drawings just mentioned cannot of course be proved, but the high price at which the Encyclopédie was published makes it very probable that no copy of it had at that time come under the notice of a hardworking English mechanic. The intrinsic differences of the two slide-rests tend towards a similar conclusion. Whoever may have been its first inventor, the slide-rest has certaiuly proved itself to be the most invaluable of all the additions made to the turning lathe. Its indispensability to the modern power-lathe will be readily appreciated from the following examples.

An engraving of a simple slide-rest for use with a foot lathe has already been given (see Lathe), and its effect.iu reducing the labour of the turner was then pointed ont. The self-acting slide-rest (fig. 2) carries this reduction still farther; and, by deriving from the latho itself the small "feed" movement necessary for bringing the tool to bear on successive portions of the work, it dispenses. wholly with the need for physical exertion on the part of the workman, and does not even demand his continnous supervision. One result of this is
 that the slide lathe (for so complete is the union betwoen the slide-rest and the lathe that they must now be regarded as one machine) affords a complete solution of the screw-cutting problem, since, by varying the extent to which the rest traverses the lathe bed during each revolution of the mandrel, a screw thread of any desired pitch can be cut with a single tool.
In fig. 3 , which shows a self-acting screer-cutting lathe with doublc-geared headstock, of a type now well cotalblished, the arrangements for obtaining and varyms this traversing metion may be observed. A steel lcaden, screte


F1G. 3.-Self-scting Screw-Cutting Lathe.
runs along the front of the lathe bed, and with it the slide rest can be connected at pleasure. Two or more change wheels, properly proportioned as to the number of thei teeth, connect the head of the screw with the hinder_end of the mandrol.
Although a leading screw is not the only nor in all cases the best modo of rendering a lathe self-acting, ordinary scrow-cutting lathes are very largely used for other purposes than that implied by their name. The advantage of perfoct regularity in the feed is very great even for plaic turning, and this can only be secured when it is inde pondent of human vigilance. The feed in a direction
transrerse to the bed is also rery commenly rendered automatic by means into which we cannot here enter, lathes so provided being distinguished as self-acting surfacing lathes. In this case, however, the varying diameter of the successive cuts introduces serious objections to a uniform rate of feed. These were remedied as long ago as 1827 by that excellent mechanician Joseph Clement, -whe was one of the greatest improvers of the power lathe; but his arrangement has never come into geberal use.

To cnable a comparatively small lathe to be used for surfacing work of larger diameter than it would naturally sdmit, a portion of the bed is frequently made remorable so as to leave a "gop" close to the fised beadstock. An e-inch gap lithe, for instance, such as fig. 3 , can thus admit an a:ticle of 26 inches diameter instead of 16 inehes only:

Break lathes, such as fig. 4, carry the same principle still farther, so that they can take in work of considerable lengtheas well as of large diameter, -the treble-geared beadstock and all other parts being in their case made of sufficient strength to bear the heavy strains which result from the increased size and weight of the work, a auality


Fio. 4. -Self-Actiug Break Lathe.
in which gap lathes are not unfrequently deficient. Lathes of this kind were made by Mr (now Sir Joseph) Whitworth as long ago as 1840 , and the type is still the accepted one for geueral heavy turning. The face plates on which large roork is chucked in these lathes are sometimes as much as 15 feet in diameter.

Face lathes, of which the main duty is surfacing articles whercof the diameter is great but the length small, are rery similar to the foregoing minus the entire right-hand portion of the bed and all that it carries. They have occasionally been made for work of very large diameter, such as turning the roller paths of 40 feet railway turntables, 一though it is now found preferable to turn such things in a horizontal position, in lathes of which the mandrels are vertical.

Dut the point to which the growth of power-lathes has now attained will be best illustrated by the following interesting particnlars of two which have been quite recently designed and made in the Royal Gun Factories at Woolwich. Each of these can take in a piece of work laving a maximum diameter of 12 feet and a total length of 36 Teet,-which represents a truly appalling weight of metal to have to deal with,--their main dimensions, \&c., being

$$
\begin{aligned}
& \text { Height of centre of mandrel above the bed ..... } 6 \mathrm{ft} \text {. } \\
& \text { Total length of bed................................... } 60 \text {,, } \\
& \text { Length of fixed headstock .............................. } 12 \text {,", } \\
& \text { Diameter of front bearing of mandrel in do. ... } 18 \text { in. } \\
& \text { Length of do. do. .... } 36 \text {,, } \\
& \text { Length of leading serew over all.................. } 52 \text { ft. } 3 \text { in. } \\
& \text { Dianeter of do. do. .................. } 7 \mathrm{in} \text {. } \\
& \text { Weight of fixed healstock, about....................... } 55 \text { tons } \\
& \text { Do. morable do., about................. } 18 \text {," } \\
& \text { Do. slide-rest and saddle, about........... 151 }{ }^{2} \text {,, } \\
& \text { Total weight, nearlj .................................... } 300^{2} \text { ", }
\end{aligned}
$$

In lathes of this enormous size -as in all machine too s of the heaviest class-great weight and a proper disposal
of it on a thoroughly seeure foundation are necessary fo: obtaining the rigidity which is a first essential to success, When, however, this and all other conditions have been fulfilied, and the tool and the speed have been suitably adjusted, the operation of paring off great shavings from the revolving mass bccomies one of such apparent facility that it is almost difficult for a stranger to believe that it is not lead or even some yet softer substance, rather than wrought iron or steel, which is under treatment.
It has been found that in leavy turning the best results are obtained by taking deep cuts at a low rate of speed, fast driving bringing no corresponding increase in the amount of work got through. Tarious other means, have thereforo been devised for accelerating operations. Each of the Woolwich lathes just mentioned is furnished with two slide-rests, so that two independent cuts can be takon at onee at different parts of the work. The duplex systeme effeets the same thing in a different way, two slide-rests (one in front and the other at the back of the lathe) being mounted on one saddle and adjusted simultancously by a single right and left handed screw,-a plan which has the advantage of subjecting the work to two opposite strains which either wholly or' partially balance each other. In some instances both the above adrantages are combined by using two duplex rests at different parts of the bed. A quick hand traverse is another time-saving arrangement, now common to almost all screw cutting lathes. It enables the slide-rest to be run quickly back from the end of oue cut to the starting point of the next. In turniug up a number of similar articles upon each of which sereral different tonls have to be used in succession, the time which would be lost in changing the tools is sometimes saved by employing a capsten rest, in which the whole series of tools is so fixed once for all that each in turn can be brought to bear upon the work without further adiustment.

Three examples of turning tools are given in fig. 5, the middle one being an ordinary hook tool, suited for outside work on wrought irou or steel, and the one abore it a lefthand too $t$ which can be used also for inside. Their cutting edges are of course forged and ground straighteer or more pointed or otherwise raried according to circunistances, and for cast iron or brass the angle of the edge is made much less acute, as in the lowest of the three in the engraving. The size of the steel from which they are made also varies, 2 inches square being by nn means exceptionally large, so that the weight of it uselessly employed in the shanks is very considerable,
 and altogether disproportionate to


Fig. 5.-Slide-Rest Toots. that required for the cutting edges. , The plan of fixiug a short steel cutte: in an iron tool-holder, suggested many years ago by Mr. Babbage (which has already been men tioned in connexion with foot lathes), has, Lowever, not found the favour which at first sight might have beer expeeted for it, in spite of the saving which it effects in this respect.
For chasing long or coarse-threaded screws the abovementioned screw-cutting lathes leave little or nothing be desired. But for producing the large number of scremerl bolts, studs, de., now required in mechanical workshops more rapid methods must be had recourse to, and special machines for forging, turning, screwing, and finishing them have arcordingly come into common use. Of these one example only can be given-the screuing machine, fig. 6 -with which the threads of bolts or nuts are cut to the "standard pitch" which now (happily) is almost
universally accepted. Immense loss and inconvenience were formerly caused by the absence of uniformity in this respect, but, thanks to the persevering manner in which the efforts of Maudslay and Clement to put an end to this avil have been followed up by Whitworth, it has now almost ceased to exist, and any bolt or nut can be substituted for any other of a like size, however different the processes by which the two have been manufactured. The machine (fig. 6) is in fact a lathe with a few special features, such as the hollow mandrel, whichenables it to operate upon a barof anylength. Dies mounted on a modified form of slide-rest cut the thread to the full

FIG. 6.-Screwing Machine.
depth at a single traverse, and a simple arrangement enables nuts to be tapped with equal facility. In some other varieties of screwing machines, more particularly those intended for hand power only, the outward resemblance to the turning lathe is less apparent, but if their action is looked into it will bo found that in them as in almost all machine tools it is the principle of the slide which is mainly conducive to their success.

Second only to the lathe in its importance stands the plening machine. Just as the slide lathe renders it easy to turn a cylindrical surface true from ond to end, $\_$task which before its introduction had been one of extreme difficulty, even for the most highly skilled workman, so the planing machine supersedes, by a method giving vastly superior results, the difficult and costly process of hand chipping and filing, by which flat surfaces of metal were ormerly produced. Although it is a comparatively modern invention, its real origin is obscure. No drawings or description of auy planing machine at all resembling those now in use were published in England previously to those of one made by Clement in 1825, which appeared in the Transactions of the Society of Arts. With this beautiful machine, which was of considerable size, being capable of $\varepsilon d$ mitting articles measuring as much as 6 feet in height or width, he obtained results which would satisfy all ordinary requirements at the present day.
The ordinary selfacting planing machine is shown in Gg. 7. Its action vears no resemblance to the familiar


Fia. 7.-Planing Machine.
process of rood planing, but is aualogous to that by which the sucressive cuts of a narrow tool produce a cylindrical surface in $n$ slide lathe. A traversiug table carrice tho
work and forces it against the tool, which is stationary while making its cut, but betreen the cuts has a slight "feed" motion along its horizontal slide. Perfectly parallel cuts are thus taken from every portion of the work in succession, the result being a surface, not indeed perfectly smooth and free from scores, but (what is generally far more important) possessing a general flatness and freedom from twist which can be obtained only with a great expenditure of time and trouble by hand labonr. The extent to which machinery has cheapened work of this kind will be appreciated from the fact that in 1826 the cost of rendering a square foot of surface true by hand chipping and filing was 12 s., whereas in 1856 it could be done in the planing machine at a cost of less than one penay.

Planing machines, equally with lathes, are required not only to give good results but to give them quickly. Provision is therefore made for regulating the traverse.of the table to suit the length of the cut, and for utilizing or accelerating its return journeys. The former is sometimes done by fixing the tool in a revolving tool-holder or "jim crow," so that its face can be always turned towards its cut, and for accomplishing the latter there are various arrangements which give a "quick return" to the table. It is also a common practice to use two tools at once, as in turning. It will be observed that the size of the work which can be treated in a planing machine, such as fig. 7, is strictly limited by the clear width between the standards, and the height of the horizontal slide abore the table when at its highest point. Although these dimensions are very considerable in the larger sizes, which can occasionally take in articles orer 9 feet in widtl. and height and 50 feet in length, yet it is sometimes desirable to be able to exceed them, and in these large machines the weight of the tabls and the power consumed in driving and reversing it become a serious consideration. It is therefore mechanically preferable to keep the work at rest when it is large or heavy, and to give all the requisite movements to the tool. This riew is now gradually gaining favour, and the makers of some receut machines have adopted a form of construction entirely difiersnt from the abore, which has the adrantage of enabling cuts either horizontal or vertical to be taken from any piece of work which can be secured to the base-plate, so that its full size is almost immaterial. An ordinary vertical drilling machine is represented in fig. 8 , one of comparatively small size and singlegeared having been chosen rather than a larger example with greater complication. When once properly started, this machine is self-acting, but for each hole the worl has to be adjusted by hand so as to bring the required portion exactly under the drill spindle, and the small size of the table prevents its being at any great distance from the edge. These objections are remedied in larger machines, either by making the table capable of horizontal adjustment,-a good way of doing this being to pirot a circular table at tho end of an arm which can revolse round the main standard of the machine,-or by mounting the drill spindle on a radial arm, and enabling its distance from tho


Fra. S. - Vertical Drilling Machine. standard to be veried. In the first case the tool is then distinguished as a "pillar" and iu the second as a "radial" drilling machine. Either of these methods enables the drill to be brought to vear caactly upon the desired spor
(within certain limits as to distance from tho edge, dc.), the first by adjusting the work below the drill, the second by adjusting the drill over the mork. A wall drill dispenses with a table altogether, and gives great facilities for operating on large pieces of work, especially if the meaus of adjustment is secured d by the radial arm just mentioned. 'Mulliple drilling machines, with which a series of holes can be drilled at once, are serviceable tools for some purposes, mainly on account of the sariag of time which they effect. Threo drills are shown in fig. 9, the first the old, bad, but not yet quite superseded pattern, which is incapable of making a straight or clean hole of any considerable depth, and which loses its original diameter both in wear and in


Fio. 9.-Drills. sharpening; the second the twist drill, which compares favourably with it in every one of these respects; and the third a pin drill, for enlarging a hole already existing.
Boring machines deal chiefly with apertures of large diameter, for which great straightness and accuracy are. required, such as the cylinders of pumps, steam-engines, \&c., or the bores of guns. The latter object brought them very early into existence, as already mentioned, and the general principle upon which the rude machinery of more than a century ago bored out the old cast iron mortars is still used for the powerful weapons of our own day. It consists in the employment of a boring bar formed by mounting a series of cutters (or a combination of guides and cutters) round the periphery of a cylindrical "head" somewhat less in diameter than the required bore. Fig. 10 will render evident the great similarity which exists between the oldest
and the most recent gun-boring heads, the one being talen from the
 Éncyclopédie already referred to, and the other from a drawing of a boring-bar used for a similar purpose at Woolwich. The head may be either a fixture at the end of its bar, in which case it forms a kind of drill with several cutting edges, or it may be so arranged as to traverse the bar to a small extent at each revolution, - a plan which is generally preferred for all open-ended cylinders, \&cc., and which admits of the work being kept stationary throughout the operation. The bar when in use is mounted either vertically or horizontally, according to circumstances, in a lathe or boring machine. The excellent results obtainable in this manner will be appreciated from the fact that with the gun-boring machinery at Woolwich a hole 10 inches in diameter and 10 feet deep cian be bored in solid steel at a single operation, and holes have been carried to a depth of 24 feet with a variation of less than $\frac{1}{100}$ of an inch in the diameter. The accuracy of modern machine work indeed not unfrequently brings into prominence sources of error which were previously unsuspected. The boring of large cast iron cylinders affords an instance of this, for it has been found that, however true the boring tool may be, the distortion of the cylinder itself, through being laid on its side, is sufficient to mar the results obtained with it ; consequently it has been found necessary always to bore a large cylinder in the vertical position which it will occupy when in ase.
In the construction of raodern machinery, \&c., it is oftea necessnry to depart from the simple geometric forms to the production of Which the tools which have thus far occupied our attention are maiuly ndaptel. We will now glance at some of the labeursaviog contrivances applicalle to other cases.
The slob-drilling machinc effects (by a methed said to have been
first used about the year 1848) the conversigh of the circular cavity producitle with an erdioary drilling machiue inte an elengated "slot" or slit. The extent of the
elengation can be raricd by in. elengation can be raried by increasing or diminishing the re. ciprecating moverncut of the slide which carries the rotating, drill. An example of it is given in fig. 11, and the cutting end of a roughing drill is shown to an enlarged scale. Where smoothness of the sunken surface is rc-


Fio. 11.-Slet Drilling. quired this is followed by a rose or some other finishing tool.
The slotizg machine (fig. 12) also cuts grooves aud slets, but in an entirely different manner. Those who are acquainted with the wood mertising macline, from which the idea of this toel was derived ly Roberts of Manchcster, will at once understand its principle, and will appreciate the good service which can be rendered by this pewerful paring tool. A large preportion of the shaping, \&c., required in leavy werk is now dene in these machines, which are sometimes of great size and power. The table on which the work is placed is piveted and mounted on a compound slide, and a self-


Fio. 12.-Slotting Machine. actigg horizontal transverse or circularmovement can thus be given to it.

For work of moderate size shaping machinucs, which are more of recent introduction than either slatting or planing machines, beth of which they resemble in their action, are in some respects more convenient. The slide which carries the toal is in their case harizontal, and its shert but variable strokes are in a dircction transrerse to the bed, along which it can travel, just as a slide-rest travels along a lathe bed. Curved surfaces, either convex or concave, as well as flat ones, can geverally be vorked up automatically in these machines, one of which is shown in fig. 13 , but their details and arrangements vary consider. ably. For operating upon small
 surfaces, especially thase of comFio. 13.-Shaping Machine. plicated outline, the plan of employing a revolving cuttcr, resembling a circular file, is now gaining favour. It is intercsting to note that this is but a return to a system which is stated to have beca devised by Dr Hoeke in 1664, and which was certainly used in some of the early "engines" for cutting the teeth of wheels. One such cutter or milling lool is shown in fig. 14. Others are of a plain cylindrical form, or are varicd in outline to any extent to suit the particular purpose for which they are intended, amongst which purposés may be raentioned that of cutting the teeth of other milling tools. When mounted on a compound slide and used in a milling machine, a tool of this kind is a labour-saving contrivance of a very efficient kind, and it should be observed
 that it may in some cases be employed for finishing that it may in some cases be employed for finishing metal sarfaces possessing a double curvature, to which none of the foregoing planing or shaping machines could be applied.
Profiling or cdge-milling machincs are a still more recent application of the milling-tool system. They enable the curved or complicated outline of a previously prepared templet to be reproduced with certainty any uumber of times in succession. They are in fact copying machines, acting in a similar manner to Jerdan's carviog machine or Blanchard's copying lathe, in beth of which the form of the cony is derived from the original pattern by causiag this pattern to control the mevements of the revelving tool.'

Another class of machine tools, which has sprung up of late years and is rapidly catending, is that of emery grinders. One thing.
which has given mnch impetus to these is the now not unfrequent -onessity for turning or abaping ateel in a more or less hard condition, for doing which these and natural grinding-stones are the only substances practically available on a larga scale, while the rapid wear of the latter unfits them for mauy of the purposes to which the artificial preparations of emery can be applied with great advantage. Accordingly envery wheels are now mounted for use in a great many different ways, -ither on alide-rests as turning tools, in cincry planers and emeryshaping machines (such as fig. 15), and various athers in which they take the place of steel cutters, ai as tool grinders either general or apecial, in which the rival material, 80 far from supplanting steel, does much towards increasing its efficiency, by enabling the process of grinding to be applied to many cutting tools which conld previously be sharpened only with much graaterlabonrand cost by other methods. Saws, grooved rimers


Fio. 15.-Emery Shaping Machine. and acrew taps, and twist drills are familiar instances of this application. A high rate of speed is essential for obtaining the full effect of an emery wheel, half a mile a minute being by no means an unusual or excessive rate of travel for its cutting surface. A conaiderable amount of heat is consequently developed at the point of contact with the work, and the composition of the wheel must be such that it can endure this without injnry. Some which could not fulfil this requirement have long beea ased by native workmen in India, lont others which could fulfil it were patented in England in 1842, though for years after this they were but little known or -ised.

Punching and shearing machinery holds the same isolated position amongst machine tools that punches and shears occupy amongst cutting tools used by hand-if indeed either the one or the other can be regarded as cutting tools at all. Yet, for performing rapidly and in many cases without any waste of material, shears can often claim anparinrity to any other means available for accoraplisling the same ends. The diagram (fig. 16) shows the old arrangement known as cropping shears, still in use at many iron-works, where early appliances seem to enjoy a remarkable vitality. An example of s self-contained shearing and punching machine is given in fig. 17. The apnarent ease with which


Fio. 16.-Cropping Sbears. machines of this kind, acting with a slow quiet struke, shear or perforate plates of iron, aven when of considerable thickness, gives an altogether false impression of the amnunt of power which the operation requires. Arrangements for obviating the difficulty of placing the work exactly in the correct position for each one of a serics of holes to be punched in it were devised by Mandslay ; his plan, which is the one now usually adopted, being to place a traversing table in front of the machine, from some part of which it is moved to a distance depending on the "pitch" of the holes after each atroke of the punch. Another aystem, by which the holcs could be arranged in any required pattern, was subsequently invented by Roberts.

The above examples of workshop tools have been confined to those to which the requisite pawer is transmitted from an indapendent steam-engine or some other prime mover-the usinal modo of transmission being by lines of shafting carrying pulleys or drams. Belts pass from these to aimilar puileys, which may be observed on many of the machines in the engravings. But this is not tho invariable method. The prime mover may itself form part of the marhine, as it does in the case of a ateam-hammor. Or steam may be disponsed with and water confined under a high pressure substituted, -which constitutes the hydraulic system of distribution, now largely applied to the working of cranes and many other purposes, and to some extent also to machine tools. Punches and shears lend themaelves readily to this aystem on account of thicir alow movoments ; so, too, do riveting machines. The distribution of power il. hydraulic means, and also by enmpressed air, was patented by PMir Bramah iu 1790. Another formidablo rival to stcam also has
now sprung up in the shape of elcetricity, and the results frorx it which are promised to us-and which indeed seem likely to be ob-tained-will go far towards revolutionizing all our present ideas as to the difficulty of transmitting power to a distance, and will mork a complete transformation in the aspect of the machine tools of the future


Fio. 17.-Punching and Shearing Machine.
One other class of machines must be mentioned before concluding, viz., measuring machines. The greatly increased accuracy of modern work has rendered necessary the secording of very minute dimensions, such as are quite beyond the measuring powers of ordinary rules and callipers. Difference engines, i.e., machimes which can measura minuta differences between two articles-such as a standard gauge and an intended copy of it-have thus found a place in engineers works. To their arrangement and manufacture, as well as to that of standard measuring bars and gauges, Sir J. Whitworth has paid great attention, and ho bas achieved sach ouccess that in his workshop measuring machines a differenca of To ${ }^{3} \sigma \sigma$ part of an inch is readily appreciable. At the standards department of the Board of Trade there is one of these machines, used for the verification of standarl gauges, which reads to the rover of an inch ; and with his most sensitive machines-which, howaver, require great care and special precautions in their usethe $\operatorname{Toj}^{\frac{3}{3}} 005$ part of an inch can be detected.
The aocial influence of machine tools we cannot discuss, though it is a subject upon which the diffasion of correct ideas is greatly needad. The days of mill-burning and implement-breaking mobs indeed are past, but the effect of the introduction of the machinery of which these toals are the parents is one which is still much misunderstood. More particularly is this the case amongst the hand: working classes in England, who see clearly the Jocal and temporary hardships which its intraduction occasionally causes, lut are blind to the greatly preponderating advantages which they reap from it in an especial degree.
(C. P. B. S.)

MACKENZIE, Sir AuExander (1755-1S20), \& Canadian explorer, was a native of Inverness. Havine emigrated at an early age to Canada, he was for a number of years engaged in the fur trade at Fort Chipewyan, on the north side of the Lake of the Hills. and it was there that his schemes of travel were formed. His first journey (3d July to 27th September 1789)-ior which he had prepared himself by a year's study in England of astronomy and navigation-was from Fort Chiperyan along the Great Slave Lake and down the river which now bears his name to the Frozen Ocean ; and his second (October 1792 to July 1793) from Fort Chipewyaa up the Pence river across to the Columbia river, and thence westward to the const of the Pacific at Cape Mowies, opposite Queen Charlotte Ielands. The narrative of these expeditions (Voyages through North America to the ${ }^{5} r c z e n$ and Pacific Oceans, Dondon, 1801) is of considerable inserest from the information it conteins about the native tribes; and it is prefaced by an historical dissortation on the Canadian fur trado. Mackenzie was rewarded for his discoveries by the bonour of knighthood in 1801.

MACKENZIE, Sir George (1636-1691), of Fosehaugh, knight, a promineut Scottish lawyer, was the grandson of Kenneth, first Lord Mackenzie of Kintail, and the nephew of Colin and George, first and second carls of Seaforth; his mother was a daughter of Dr Andrew Bruce, principal of St Leonard's College, St Andrews. He was born at Dundee in 1636, and, having passed through the grammar school there, was sent at an early age to college at Aberdeen, and afterwards at St Andrews, graduating at sisteen. He then engaged for three ycars in the stady of the civil law at Bourges; on his return to Scotland he was ealled to the bar in 1656, and before the Festoration had risen into considerable practice. Immediately after the Restoration he was appointed a "justice-depute," and it is recorded that he and his colleagues in that office were ordained by the parliameut in 1661 "to repair, onec in the week at least, to Musselburgh and Dalkeith, and to try and judge such persons as are there or thereabouts delate of witcheraft." In the same year he acted as counsel for the marquis of Argyll ; soon afterwards he was knighted, and he represented the county of Ross during the four sessions of the parliament which was called in 1669. Ho succeeded Sir John Nisbet as king's advocate in Augnst 1675, and in the discharge of this office became implicated in all the worst acts of the Scottish administration of Cbarles II:, earning for himself an unenviablo distinction as "the bloody Mackenzie." His refusal to concur in the measures for dispensing with the penal laws against Catholics led to his removal fron office in 1686, but he was reinstated in February 1688. At the Rerolution, being a member of convention, he was one of the miuority of five in the division ou the forfeiture of the cromu. King William was urged to declare him incapacitated for lolding any public office, but rcfused to accede to the proposal. When tho death of Dundee (September 1689) had finally destroyed the hopes of his party in Scotland, Mackenzie betook himself to Oxford, where, admitted a student by a grace passed on June 2, 1690, he was allowed to spend the rest of his clays in the enjoyment of the ample fortune be had acquired, and in the prosecution of his literary labours. One of his last acts before leaving Edinburgh had been to pronounce (March 15, 1689), as dean of the faculty of advocates, the inaugural oration at the foundation of the Advocates' Library. He died atWestminster on May 8, 1691, and was buried in Greyfriars churchyard, Edinburgh.
While still a young man Sir Goorge Mackenzie appears to have aspired to eminence in the domain of pure literature, his earliest publication having been Aretina, or a Scrious Romance (anon, 1660) ; it was followed, also anon ymously, by Religio Stoici, a Short Discourse. upon sceeral Divinc and Mroral Subjects (1663), A Moral E'ssay, preferring Solitude to Pullic Employment (1665), and one or tro other disquisitions of a similar natare. None of these earlier efforts are now read, if they ever were; and perhaps Mackenzie's strongest claim to be remembered at all in connexion with belles lettres is that which rests upon Dryden's grateful reminiscence of some stimulating conversation held with "that noble wit of Scotland, Sir George DTackenzie," about1673.; (See Dryden's "Discourse on the Origin and Progress of Satire," prefixed to his Juvenal in 1693.) His most important legal works are entitled A Discoursc upon the Laus and Customs of Scolland in Nattcrs Criminal (1678), Obscruations upon the Lazes aml Customs of Nations as to Preccdency, with the Srience of Heraldry (1680), Institutions of the Law of Scotlaml (1684), and Obscruations upon the Acts of Parliament (1686); of these the last-named is the most inportant, the Iustitutions being complutely orershadowed by the similar woris of his great contem. porary Stair. In his Jus Regium: or the Jusl and Solid Foundalions of Monarchy in general, and more especially of the Monarchy of Scotland, maintained (1684), Mackenzie appears as an uncomproinising advocate of the highest doctrines of prerogative. His $r^{\prime}$ inuliention of the Govermment of Scotzand duriny the reign of Churerles II. is valuable as a piece of contemporary history. The -ollected Works were published at Edinburgh ( 2 vols, fol.) in 1716-22; and Mentoirs of the Afairs of Scotland from the Restora. :ion of King Charics II., from previously unpublished DISS., in
1821. It may be well to add that the subject of this notice must not be confoundel with D1 George Mackellaic, the author of Liecs and Characters of the Most Emincht Writcr's of the Scots Nation (1705-22).
mackenzie, IIenry (1545-1831), was born at Edinburgh in August 1745. His father was Dr Joshua or Josiah Mackenzic, a successful plysician, who also cultivated letters in a small way. Mackenzic got the ordinary education of a youth in his position at the high school and university of Edinburgh, and was afterwards artielod to Mr Inglis, who was then attorney for the crown in the management of exehequer affairs. To this comfortable post the author in due time succeeded, and perbaps knew as little as any of that tribe ever did about the struggles and sorroms of 2 literary carocr. For his work's sake it would have been better if he had travelled some of life's rougher paths, or else been content to write about what he had actually seen in the Scottish world of that day. There was plenty of material there if he had had the open cye to see it, as Walter Scott showed by and by ; and it is a pity that MIackenzie did not try his hand at it, having been nore in the heart of it than Scott could ever have been. As it is, his stories are clearly not the fruit of his experience, but rather the echo of his reading. He could write graceful enough sentences, somewhat artificial, yet smooth and pointed; but the men he describes are mere shadows, and the life altogether unreal. His first and best-known work, The Ifar of F'eeling, was published anonymously when tho was only twenty-six years of age, and soon becauc highly popular. It was a droughty scason in Scottish literature, and therefore any little blossom, howerer sickly, was welcone for its rarity. Hunce and Robertson and Snith had left the scene; Burns was just learning to thiuk of tho daisy he turned up with his ploughshare, and Fergusson had lately closed his brief and troubled carecr. Naclsenzic had the field all to himself, and got the attention which is given to a solitary figure. He had read the Semimental Jouruey, as one can see from expressions here and there, as welt as from the affectation of writing his story in a fragmentary form; but ho had not a gleam of Stcrne's humour to relieve the sentimentality. He had read Richardson too, but he had none of that writer's subtle iusight into character. Perhaps Goldsmith was his real model, but the likeness was as that between a firefly and a star. The "man of feeling" is a weak foolish creature, possessed witin a futile benevolence, who goes up to London, where his friends should never have let him go, and meets a variety of sharpers, and comes out of their havds pretty much as Goldsmith makes the viear's son do, only withont the fun that clings to poor Moses. For this book is all in one key, sentimental and lachrymose, and the hero dies at last, from no particular cause, in a bighly tragic fashion beside his fainting mistress. His wext work, The Man of the World, is the picture of a born villain, a rogue in grain, who begins his rascality at school, perbaps earlier, and carries it through with entire consisteney to the end. The man is unnaturally bad, and the incidents are badly unnatural; and such a book at present would only find a place in some third-rate penny paper, if even there. Jullic de Roubigné, his only other novelette, was meant to depict the misfortunes of a number of quite blameless people-to be, in short, a tragedy without a villain, an Othello without an Iago. But, as it has no insight, and does not even try to have any jnsight, iuto the mystery of such calamities, the result is insipid and tedious. All these works lad great popularity in their day; but that day is long past, and what life they now have is only a tradition.
Mackenzie also wrote several dramas, mostly of tho tragic soris for in that tone he ǹad wul hio uliccesssus, such
as they were. But one who had no conception of distinct character, of human individuality, was not likely to succeed in the draina, which depends more on that than on anything ; and hence it was not our author's good tortune io deliver his country from the stigma of never having produced a gennino tragedy. Of The Spanish Father, The Prince of T'unis, and The Shipureck, the secoud was brought on the stage, and managed to live for six nights; the other two wero stillborn, and probably no nian living has ever read then, unless for purely critical purposes.

Lut Mackenzic, if nowise a great writer, but quite otlierwise essentially a small writer, with a knack of making sentences indeed, but having nothing particular of his own to say, was not thereforo altogether a useless man in his day. That he did well for himself, and perhaps for the exchoquer too, is quite likely, even though he toiled in the bigh-Tory service of Dundas, and wrote tracts meant to "broom" out of the country the tide of French Revolutionary notions. At any rate he became in his old age a kind of literary centre and social power in Edinburgh, when that was really needed and useful. He had known John Home and blind Dr Blacklock, and wrote lives of them ; bnt, what is of more consequence, he was among the first to recognize the genius of Robert Burus, as editor of The Lounger, which he and a group of young nen with some literary tastes wrote and printed for some years. Yet, though he once breakfasted with Johnson, and certainly met Burns more than once, he has told us nothing about cither of them, thorgh a page of Burns's talk would have been worth all The Man of Feeling twice told. It was so far good, however, that he hailed the peasant poet cordially, which we could hardly have hoped so artificial a writer would do, and even better that he noticed the dawn of German literature when Lessing and Schiller rose above the horizon, and not only wrote some account of them, taken frons French sources, but boldly set to the study of Cerman that ho night really know them at first hand. How far he went in that study we do not know, only be set yonng Walter Scott on the scent, with results such as he bimself could never have imagined. So he lived on, a kind of small ling in the Edinburgh literary world, till 1831, dying in his eighty-sixth year, with a wonderful new world around him, which bad not yet begun to criticize, but only to admiro and honour him.

MACKEREL. Mackerels are pelagic fishes, belonging to a small family, Scombrida, of which the tunny, bonito, albacoro, sncking-fish (Echercis), and a few other trupical genera are members (see Imtiryology, vol. xii. p. 600). Although the species are ferrer in number than in the majority of other families of fishes, they are widely spread and eitremely abundant, peopling by counticss schools the oceans of tho tropical and temperato zones, and approaching the coasts only accidentally, occisionally, or periodically. The mackerels proper (genns Scomber) are readily recogoized by their elegantly shaped, well-proportioned body, shiaing in iridescent colours. Small, thin, deciduous scales equally cover nearly the entire body. The dorsal fin extenils over a great part of the back, and consists of several portions: tho anterior, composed of feeble spines which can be laid backwards in a groove ; the posterior, of ray's only, of which the five or six hindmost are detached, forming isolated "finlets." The shape of the anal fin is similar to that of the rayed dorsal. Tho caudal fin is crescent-shaped, strengthened at the base by two short jidges on each side. Tha mouth is wide, arnied nbove and bolow with a row of very small, fixed teeth.

No other fisls shows finer proportions in the shape of its Enly. Every "lino" of its build is designed and eminently" adapted for rapid progression through the water; the muscles massed aloug the vertebral column are enormously
developed, especially on the back and the sides of the tail, and impart to the body a certaiu rigidity which interfercs with abruptly sideward motions of the fish. Therefore mackerel generally swim in a straightforward direction, deviating. sidewards only when conpelled, and rarely turning abont in the same spot. They are in almost continuous motion, their power of endurance being equal to the rapidity of their motions. Mackerel, like all fishes of this family (with the exiception, perlaps, of Echencis, which has not yet been examined in this respect), have a firm Hesh; that is, the museles of tho several segments are interlaced, and receive a greater supply of blood-ressels and nerves than in other fishes. Therefore the flesh, especially of the larger kinds, is of a red colour; and the energy of their muscular action causes the tempernture of their blood to be scveral degrees higher thau in other fishes.

All fishes of the mackerel fanily are strictly carnivorous; they unceasingly pursue their prey, which consists principally of otber fish and pelagic crustaceans. The fry of clupeoids, which likerise swim in schools, are followed by the mackerel until they reach some shallow part of the coast, which their enemics dare not enter.

Mackerels are found in almost all tropical and temperate seas, with the exception of the Atlantic shores of temperate South America, where they have not hitherto been met with. The distinctive characters of the various species have not yet been fully investigated; and there is much confusion in the discrimination of the species. So much is certain that the European mackerel are of two kinds, of which one, the comnon mackerel, Scomler scomber, lacks, while the other possesses, an air-bladder. The best-known species of the latter kind is Scombertolias, the "Spanish" mackerel; ${ }^{1}$ a third, Scomber menmatophorus, is believed bysome ichthyologists to be identical with S. colias. Be this as it may, we have strong evidence that tho Mediterranean is inbabited by other species different from S. scomber and S. colias, and well rlaaracterized by their dentition and coloration. Also the species from St Helena is distinct: Of extra-Atlantic species the mackerel of the Japanese seas are the most nearly allied to the European, those of New Zealand and Anstralia, and still more those of the Indian Ocean, differing in many conspicuous points. Two of these species occur in the British seas: Scomber scomber, which is the most common there as well as in other parts of the Nortb Atlantic, crossing the ocean to America, where it abounds; and the Spanish mackerel, Scomber colias, which is distinguisted by a somewhat different pattern of coloration, the transverso Llack bands of the con:mon mackerel being in this specied narrower, inore irregular or partly broken ap into spots, while the seales of tho pectoral region are larger, and the snout is longer and more pointed. The Spanish mackerel is, as the namo implies, a native of the seas of southern Europe, but single individuals or small schools reach frequently the shores of Grat Britain and of the United States.
The home of the common mackerel (to which the following remarks refer) is the North Athantic, from the Camary lslinds to the Orkneys, and from the Alediterranenn and tho Black Sca and the coasts of Norway to the United States.
Towards the spring largo schools approach the coasts. Twn causes havo been assigned of this migration : first, the iustinct of finding a suitable locality for propagating their specics; and, secondly, tho search and pursuit of food, which in the warmer season is mere abundant in the neighbourhool of land than in the open sca. It is probable that the latter is the true and only eause, for the following reasons:-1mackerel aro known to increase much nore rapidly in size whilo in the neighbourhood of land than in the months during whieh they lead a roving pelagic life in the open sea; and, further, one-year and two-yearold fishes, which have not yet attained maturity, and therefore do not travel land-

[^31] in America, viz, Cytium maculatamb
wards for the purpose of sparning, actually take the lead in the migration, and are followed later oll by the older and mature fishes. Finally, according to the observations made by sirs, vicinity of land or shallow water are not nccessary conditions for the oviposition of mackerel; they spawn at the sput which they happen to have reacheI during their wanderings at the time when the ova have attained their full development, independently of the listance of the land or of the depth of water below them, as the ora float and the embryo is developed on the surface of the water.
In the month of February, or in some jears as early as the end of January, the first large scliools appear at the entrance of the English Cliamel, and are met loy the more adventurous of the driftwet fishers many miles west of the Scilly lslands. These early scliools, which, as we mentioned above, cousist chictly of-one-year and two year-old fishes, yield sometimes enormous catches, whilst in other years they. escape the drift-nets altogether, passing them, for some hitherto unexplained reason, at a greater depth than that to which the nets reach, viz., 20 feet. As the scason advances, the schools penetrate farther northwards into St George's Channel or eastwards into the English Channel. The fishery then assumes proportions which render it next in importance to the herring and cod fisheries. In Plymouth alone a fleet of some two hundred boats assembles ; and on the French side of tbe Channel no less capital and labour are invested in it, the vessels employed heing, thongh less in number, larger in size than on the English side. Simultaneously with the drift-net the deep-sea-seine and shore-seine are used, which towards June almost entirely supersede the drift-net. Towards the cad of May the old fish become heary with spawn, and are in the highest condition for the table; and the latter half of Jume or beginning of July may be regarded as tho time at which the greater part of mackerel spawn.

Mackerel are scarcely less abundant in the German Ocean ; probably some of the schools nerer leavo it, and this resideut stock (if we are allowed to apply this term to a fish which is ever shifting its quarters) is inoreased by the schools coming from the Atlantic through the English Channel or round the north coast of Scotland. The schools approach the coasts of the German Ocean Somewhat later in the season, partly owing to the greater severity of the weather, which detains the resident fishes in the open sea, and partly owing to the grcater distance which the Atlantic shoals hare to travel. On the Norwegian coast mackerel fishing does not begin before May, whilst on the English coasts large catehes are "equently made in March. Large cargoes are now annually im. vorted in ice from Norway to the English market.

4 fter the spawning the schools break np into smaller companies which are much scattered, and offer for two or three months employment to the hand-line fishermen. They now begin to disappear from the coasts and return to the open sea. Single individnals or small companies are found, however, on the coast all the year round ; they may have become detached from the main bodies, and be seeking for the larger schools which have long left on their return migration.

Although, on the whole, the course and time of the annual bigration of mackerel are marked with great regularity, their appearance and abundance at certain localities are subject to great variations. They may pass a spot at such a depth as to evade the nets, and reappear at the surface some days after farther eastwards; they may deviate from their direct line of migration, and even temporarily return westwards. In some jears betreen 1852 and 1867 the old mackerel disappeared off Guernsey from the surface, and were accidentally discovered feeding at the bottom. Many were taken at 10 fathoms and deoper with the line, and all were of exceptionally large size, aeveral measuring 18 inches, and weighing nearly 3 tb ; these are the largest mackerel on record.

The mackerel most esteemed as food is the common species, and individuals from 10 to 12 inches in length are considered the best flavoured. In more southern latitudes, however, this species scems to deteriorate, specimens from the coast of Portugal, and from the Mediterranean and Black Sea, heing stated to be dry and resembling in flavour the Spanish mackerel (S. colias), which is not esteemed for the table. See also Fisheries. (A. C. G.)

MACKINTOSH, Sir James (1765-1832), publicist, historian, statesman, and philosopher, was born at Aldourie, 7 miles from Inverness, in 1765 . He came of old Highland families both through his father and his mother. Of the former, who was an officer in the army, and was mostly on duty abroad, he saw but little, and be spent bis early years under the care of bis mother and ber relatives. At a sery early ago young James bore the reputation of a prodigy for multifarious reading. and learning. His schooling he received at Fortrose, whence he went in 1780 to college at Aberdeen. As a student in the arts faculty there his reading extended far beyond the bounds of the
curricalum ; but the influence that most powerfully $\hat{\text { armas }}$ his mind was the companionship of liobert 1lall, afterwards so famous as a pulpit orator, with whom be ardently beat the nsual round of vexed questions. In 1784 be proceeded for the study of medicine to Ediuburgh, where he found a still more congenial field for his opening mind, at a time when Hume had been dead just eight years, while Adam Smith, Dr Black the father of chemistry, Dr Cullen, Robertson, Ferguson, and other eminent neen, were resident there. Mackintosh participated to the full in the intellectual fernient, bitt did not quite neglect his needical studies, and twok his degree, though with characteristic unpunctuality he kept the professors waiting for a considerable time on the examination morning.
In 1788 Mackintosh removed to London, then agitated by the trial of Hastings and the king's first lapse into insanity. He was much more intcrested in these and other political events than in his professional prospects; and his attention was specially directed to the events and tendencies which caused or preceded the Revolution in Franee. In the year of his removal to London his father died, and he succeeded to the family estate, which, being small and burdened, brougbt very little income; and, as he made no headway in his profession, his financial ontlook was not very bright. It was under these circumstances that he wedded bis first wife Catherine Stuart. Yet his marriage was a happy event for him. His wife's prudence was a corrective to his own unpractical temperament, and his efforts in journalism soon became fairly profitable. Mackintosh was soon absorbed in the question of the time; and in April 1791, after long meditation, he published his Vindiciz Gallice, a reply to Burke's Reflections on the French Revolution. It was the only worthy answer to Burke that appeared. It placed the author in the front rank of European publicists at the age of twenty-five, and won him the friendship of some of the most distinguished men of the time, including Burke himself. About the same time he became honorary secretary of the association of the Friends of the People. The success of the Iindicize finally decided him to give up the medical for the legal profession. He was called to the bar in 1795, and gained a considerable reputation there as well as a tolerable practice. During this period his greatest public efforts were his lectures (1799) at Lincoln's Inn on the law of nature and nations, of which the introductory discourse was published, and his eloquent defence (1803) of Jean Peltier, a French refugee, tried at the instance of the French Government. for a libel against the first consul. In 1804 he was created knight, and received the post of recorder at Bombay, where he spent the next seven years of his life. The spoilt child of London society was not at home in Bombay. He did seek to interest himself in India, and in imitation of Sir William Jones founded the Literary Society of Bombay; but the current literature of Europe was far more engrossing than the old Indian life, and the packet with the latest tidings from Europe and the newest development of the Napoleonic drama was infinitely more interesting than either. In spite of his scholarly and bistoric sympathies, bis beart always was with the new era, and be was glad to returu to England, where he arrived in 1812. True to his old faith, he courteously declined the offer of Perceval to resume political life under the auspiees of the dominant Tory party, though tempting prospects of office in connexion with India were opened up. He entered parliament in the Whis interest as momber for Nairn. He sat for that county, and afterwards for Knaresborough, till his death. In London society, and in Paris during his occasional visits, be was a recognized favourite for his genial wisdour and bis great conversational power. On Madame de Stael's visit to London he was the only Euglishman capable of
representing his couutry ia tale with that phenomenal woman. His parliamentary career was marked by the same wide and candid liberalism as his private life. He opposed tho repressive and reactionary measures of the Tory Government, supported and afterwards succeeded Romilly in his efforts for reforming the criminal code, and took a leading part both in Catholic emancipation and in the Reform Bill But he was too little of a partisan, too widely sympathetic and candid, as well as too elaborate, to be a telling speaker in parliament, and was consequently surpassed by more practical men whose powers were incomparably inferior. From 1818 to 1824 he was professor of law and general politics in the East India Company's College at Haileybury.

In the midst of the attractions of London society and of his parliamentary avocations Mackintosh felt that the real work of his life was being neglected. His great ambition was to write a history of England. His studies both in English and foreign speculation led him to cherish the desiga also of making some worthy contribution to philosophy. There is real pathos in the fact that it was not till 1828, when he was sixty-three years of age, and even then only at the instance of Macvey Napier, editor of the Encyclopredia Britannica, that he set about the first task of his literary ambition. This was the Dissertation on the Progress of Ethical Philosophy, prefixed to the seventh edition of the Encycloprdia. The dissertation, written mostly in ill-health and in santches of time taken from his parliamentary engagements, was published in 1831. About the same time he wrote for the Cabinet Cyclopadia a "History of England from the Earliest Times to the Final Establishment of the Reformation." His more elaborate History of the Ruolution, for which he had made great researches and collections, was not published till after his death. Already a privy conncillor, Mackiutosh was appointed commissioner for the affairs of India under tho Whig administration of 1830. He died in 1832.
Mlackintosh was undoubtedly one of the most cultured and catholic-minded men of his time. His atudies and sympathies eombraced almost every human interest, except pure science. But it was the width of his intellectual sympathies joined to a constitutional indecision and vis inertiz that prevented him from doing more onduring work. Thus it was that his actual actiievements came so far short both of his real power and of the promise given in his early efforts. The works of Mackintosh which have the best claim to permanent value are the VirdiciæGallice, the Disscrtation, and the History of the English Revolution. Of the threo the first is the greatest both in ability and historical significauce. It is the verdict of a philosophic Liheral on the development of tho French Revolution up to the spring of 1791 , and is at the same time a sympathetic estimate of its causes, principles, and tendencics. While respectful to his great opponent, he is firm and manly in his assertion of the rights and interests of man so deeply coucerned in the Revolution. Its excesses complelled him a ferv years after to express his entiro agreement with the opinions of Burke ; but few will now deny that his carly judgment was the more correct. The Dissertation is a sketchy and fragmentary work, redeemed by catholic criticism and ingenious suggestion. it was a grat undertaking, for which half a lifetime would hardly have been sufficient, attempted at a time when the study of the history of philosophy had hardly been begun. Yet his suggestions as to the formation of conscience are valuable. The IIistory of the Revolution ind England in 1688 , which is only a posthmous tragment of a long meditated history of England beginning with tho Revolution, is written in a stylu of calm and lofty impartiality. It is wanting in colouring, in movement, in the concreto and picturesque, and could never have been a popular history. It gives the listory only of threo years ( $1685-88$ ), breaking off at the point where Witliam of Orange is lreparing to intervene in the affairs of England. The account of the carly "eareer of the prince is a noblo and athiking piece of work, ehowing that, if the anthor could have resisted the charms of suciety and applied himself resolutely to historical composition, he might have achieved something reatly great in that departuent.
Seo the Bemoirs of Sir James Bfuctintosh's Life, edted ly hils son; also Macaulhy's Fissay on Sir J. Mackintosh.
MACLAURIN, Cozin (1698-1746), one of tho most eminent among the mathematicians and philosophers that

Great Britain has produced, was tue son of a clergyman, and born at Kilmodan, Argyllslire, in 1698. At the early age of eleven years hd outered the university of Glasgow, where he graduated ав master of arts in his sixteenth year. While at the university he exhibited a decided genius for mathematics, more especially for geometry; and it is said that before the end of his sixteenth year he had diseovered many of the theorems afterwards published in his Geometria Organica.

In 1717 he was elected professor of mathematics in Marischal College, Aberdeen, as the result of a competitive examiation. Two years later be was admitted a fellow of the Royal Society, and in a visit to London made the acquaintance of Newton, whose friendship and esteem he afterwards enjoyed. In 1719 he publisled his Geometria Organica, sive descriptio linearum curvarum universalis. This work was inspired by the beautiful discoveries of Newton on the organic description of conic sections. In it Maclaurin jatroduced the well-knowa method of generating conics which bears his name, and showed that manv species of carves of the third and fourth degrees can be described by the intersection of two movable angles. In 1721 he wrote a supplement to the Geometria Organica, which be afterwards published, with extensions, in the Philosophical Transactions for 1735. This paper is priacipally based on the following general theorem, which is a remarkable extension of Pascal's hexagram:-"It a polygon move so that each of its sides passes through a fixed point, and if. all its summits except one describe curves of the degrees $m, n, p, \& c$., respectively, then the free summit moves on a curve of the degree 2 mnp
which reduces to mnp . . . whea the fixed points all lie ou a right line."

In 1722 Maclaurin travelled as tutor and companion to the eldest son of Lurd Polwarth, and after a short stay in Paris resided for some time in Lorraine, where he wrote an essay on the percussion of bodies, which obtained the prize of the French Acadeny of Science for the year $1 \stackrel{2}{ } 4$. The following year he was elected professor of mathematics in the university of Edinburgh on the urgent recommendiation of Newton. After the death of Newton in 172心, his nephew, Mr Conduitt, applied to Macluurin for his assistance in publishing an account of Nerton's life and discoveries. This Maclaurin gladly undertook, but before the account was written the death of Mr Conduitt put a stop to the project. It was not until many ycars afterwards, and subsequently to Maclaurin's death, that this account of Nowton's philosuphical discoveries was published (1748).
In 1740 Maclauria obtained the high distinction of dividing with Euler nnd Daniel Bernoulli the prize offered by the French Academy of Scieace for an essay on the flus and reflux of the sea. This important memoir was subsequently revisel by him, and inserted in his Treatisc on Fluxions, which was published nt Edinburgh in 1742, in two volnmes. In the preface he states that the work was undertaken in conseguence of the attack on the method of flucions mado by Berkeley in 1734, under the title of The Analyst. Maclaurin's object was to found the doctrine of fluxions on geometrical demonstration, after the manner of Archinedes and the ancient mathenaticians, and thus to answer all objections to its nethod as being founded on false reasoning and full of mystery. He thus laid down the grounds of the flusional method, regarding fluxions as velocities, after Newton. Ho proceeded to give an extensive application of the method to curves, surfaces, and the other subjects usually discussed in works on the differential and integral calculus, his treatnent being almost exclusively geometrical ; but the most valunble part of the vork is that devoted to plyssicnl npllications, in which be embodied his essay on the tides, as stated abure.

In this he investigated the attraction of an ellipsoid of revolution, and showed that a bonugeneous fluid mass revolving uniformly round an axis under the action of grarity ought to assume the form of an ellipsoid of revolution. The importance of this investigation in connexion with the theory of the tides, the figure of the earth, and other, kindred questions has always caused it to be regarded as one of the great problems of mathematical physics. Thus Clairaut, D'Alembert, Lagrange, Legendre, Laplace, Gauss, 1vory, Poisson, Jacobi, Clasles, and other eminent mathematicians have successively attacked tho problem, and in doing so have declared their obligations to Haclaurin as the creator of the theory of the attraction of ellipsoids. Lagrange's statement as to Maclaurin's discoveries deserves to be especially cited: after observing that the attraction of a spheroid of revolution is one of the problems in which the method of the ancients has advantages over that of modern analysis, he adds that Maclaurin's investigation is "un chef d’œelvre de géométrie qu'on peut comparer à tout ce qu' Archimède nous a laissé de plus beau et de plus ingénieux" (Mém. de l'Acad. de Berlin, 1773). It may be added that Maclaurin was the first to introduce into mechanics, in this discussion, the important conception of surfaces of level, namely, surfaces at each of whose points the total force acts in the normal direction. He also gave in his Fluxions, for the first time, the correct theory for distinguishing between maxima and minima in general, aud pointed out the importance of the distinction in the theory of the aultiple points of curves.

In 1745 , when the rebels, having got between Edinburgh and the king's troops, were marching on that city, Maclaurin took a most prominent part in preparing trenches and harricades for its defence. This occupied lim night and day, and the anxiety, fatigue, and cold to which he was thus exposed, affecting a constitution naturally weak, laid the foundation of the disease to which he afterwards succumbed. As soon as the rebel army got possession of Edinburgh, Maclaurin fled to England, to avoid making the submission to the Pretender which was demanded of all who had defended the town. He accepted the invitation of Dr Herring, theu archbishop of York, with whom he remained until it was safe to retarn to Edinburgh. From that time his bealth was broken, and he died of dropsy on June 14, 1746, at Edinburgh, in his forty-eighth year. Maclaurin was married in 1733 to Anne, daughter of Walter Stewart, solicitor-general for Scotland. His eldest son, John, born in 1734, was distinguished as an advocate, and appointed one of the judges of the Scottish Court of Session, with the title of Lord Dreghorn. He inherited an attachment to scientific discovery, and was one of the founders of the Royal Society of Edinburgh, in 1782.

After Maclauria's death his account of Newton's philosophical discoveries was published, and also his algebra in 1749. As an appendix to the latter appeared bis work, De linearum geometricarum proprielatibus gencralibus tractatus, a treatise of remarkable elegance. Of the more immediate successars of Newton in Great Britain Maclaurin is probably the only one who can be placed in competition with the great mathematicians of the Continent at the time, and his name will ever bs held in remembrance in connexion with his important discoveries. Among his publications in the Philosophical Transacions the following should be noticed :-
(1) "Tractatus de curvarum constrnctione et mensura, ubi plurime series curvarum infinitæ vel rectis mensurantur, vel ad simpliores curvas reducantur," May 1718. The series of curves here treated are what are now styled "pedal" curves, which hold an important place in the modern discussion of curves. Naclaurin estahlished many geometrical properties connecting a curve with its perlal. He inrestigated the properties of the successive pedals of a circle with respect to a poin $\downarrow$ in its circumference, also those of the pedals of curves for which the perpendicular on the tangent varies as some power of the radius vertor dramn to the point of contact. (2) "Novamethodus
universalis curvas ommes cujuscunque ordinis mechanice describeud bola datorum anguloram et rectaram ope, January 1719. This and the preceding memoir were snbsequently enlarged and incorporated by Naclaurin in his Geometria Organica. (3) "On Equations with Impossible Roots," May 1726. (4) On "Continuation of the Same," March 1729. In these papers he gave avproof of Newton's rule for the discosery of the number of imaginary roots of an equation. He added some general results on the limits to the roats, and gave the well-known method of finding equal roats by aid af the tirst derived equation. (5) "Observation of the Eclipse of the Sun of Febrnary 18, 1737," January 1738, (6) "On the Bases of the Cells where Bers Dcposit their Honey," November 1743.

French translations of his Treatise on Flurions and that on Nenton's philosophical discoveries were published at Paris in 1749. His algebra was also translated into French, in 1753.
(B. W.)

M'LENNAN, John Ferguson, LL.D. (1827-1881), one of the mast original of modern iuquirers into the cunstitution of early society, was born at Inverness 14 th October I827. He studied at King's College, Aberdeen, where he graduated with great distinction in 1849, and then proceeded to Cambridge, where he renained till 1855 , but did not take his degree. After some years spent in literary work and legal studies in London and Edinburgh, he joined the Scottish har (January 1857). In 1865 he published au epoch-making study on Primitive Marriage, in which, starting from the prevalence of the symbolical form of capture in marriage ceremonies, and combining with great argumentative power a variety of phenomena of primitive society previously quite obscure, he dereloped au intelligible picture of the growth of the marriage relation and of systems of kinship (see Family) according to natural laws. Continuiug his studies on allied topics, M'Lennan published in 1866 (Fortnightly Revierb, April and May 1866) an essay on "Kinship in Ancient Greece," in which he proposed to test by early Greek facts the theory of the history of kinship set forth in Primitive DIarriage, and, three years later, a series of essays on "Totemism" (Fortnightly Reviev, 1869-70) (the germ of which had been contained in the paper just named), which mark the second great stepin the systematic study of early society, to which the energies of his life were now devoted. A reprint of Primitive Marriage, with "Kinship in Ancient Greece " and some other essays not previously published, appeared in 1876 under the title of Studies in Ancient History. The nem essays contained in this volume were mostly critical, but one of them, in which perbaps his guessing talent is seen at its best, on "hThe Divisions of the Irish Family," is an elaborate discussion of a problem whick has long puzzled both Celtic scholars and jurists; and in another, "On the Classificatory System of Relationship," he propounded a new explanation of a series of facts which, he thought, might be made to throw a flood of light upon the early history of society, at the same time putting to the test of those facts the theories he had set forth in Primitive Marriage. Papers on "The Levirate and Poly. andry," following up the line of his previous investigations,' appeared in the following year (Fortnightly Review, 1875), and were the last work he was able to publish. © From 1872 to 1875 his literary plans were much interrupted by his duties as parliamentary draftsman for Scotland, and when he retired from this office his health was broken; his last jears were cliefly spent abroad, and in spite of the self-denying assistance of his secoud wife (his first wife, a danghter of.M'Culloch the political economist, died in 1870 , and he married again in 1875) the vast materials which ise had accumulated for a comprehensive work on his favourite subjects were left only partially worked up, though the publication of his remains may still be looked for. He died 14th Juae 1881. In privata life M‘Lenaan was distinguished by his remarkable powers of conversation, by an uncompromising sense of duty, especially of duty to truth, by a warm and affectionate disposition, and by lis
readiness to help all workers in science, especislly young men of promise. Besides the works already cited; M'Lennan wrote Life of Thomas Drummond (Ednburgh, 1867). His later labours hed for immediate object the solution of the origin of exogamy-that is, of laws prohibiting the marriage of relations (lams of incest); and in connexion with thia he had prepared materials for a description of the social state of the less advanced races of men (kceping totemism in view as it bore on the history of society rsther than the history of religion), which, he believed, would throw much light on the history of marriage and the family, of kinship, and laws of inheritance.

MACLEOD, Norman (1812-1872). There were three Norman Macleods, all ministers of the Cburch of Scotland, and all men of some note in their day. The first was settled in Morven, the "Highland parish," looking out on the Sound of Mull, of which his grandson has given us so meny pleasant and sunny reminiscences. The second was minister of Campbeltown, afterwards of Campsie, and fivally of St Columba's Gaelic Church in Clasgow, an able Celtic acholar and popular preacher, with a dash of dry humour in him, and general Highland "pawkiness." The third Norman was boru in Campbeltown on June 3, 1812, and, like his father, he too could tell a good story, only his humour was not of the pawky kind, but verged on caricature, when it had not, as it mostly had, a vein of pathos in it; for he had received, probably from his mother, Agnes Maxwell, a richer blood and a larger life than we can trace in his more purely Celtic ancestry.

A sunny, light-hearted youth, full of jest and song, given to miscellaneous literature rather than to accurate scholarship or professional learning, would hardly seem to have been the kind of training to prepare for the life of an eloquent preacher and earnest pastor. Yet the broad human sympathies which were thus fostered were, after nill, more serviceable for the work that lay before him than a knowledge of the Greek drama or of Dutch divinity; and, though he was never much of a scholar or a theologian, ho was out and out a man, which is of more consequence in the long run. He had also moved about, and seen a good deal of the world in Highland Morven, in Glasgow, in Edinburgh, iu England, and in Germany, when in 1838, on the recommendation of Dr Chalmers, he was presented by the dowager marchioness of Hastinge to the psrish of Loudoun, and began his ministry among a curious combination of Davie Deanses and Silas Marners-covenanting sınall farmers and Chartist band-loom wesvers. There, in the small rural parish, his work had the same characteristic features as in the larger sphere whiciil afterwards opened up to him in the Barony church and in general literature. He carefully prepared for his pulpit, yet he was most eloquent when most spontaneous, for he was naturally more of a speaker than a writer. Courteous and chivalrous, yet also homely and ready-witted, ho was as much liked by the radical weavers as he was honourcd and trusted by tho marchioness aud her family. And if his natural gaiety of heart, which now and then amounted to rollicking animal spirits, gave him an occasional twinge of conseience which is duly recorded in his secret diary, that only shows that his genuine piety had not yct barnoonized his whole nature, as it afterwards did, blending the grave and gay in ono beautiful human service.

When he began his ministry, the tronbles in the Scottish Church wero already gathering to a head, and ho found limself. compelled to look around, and choose his ground. Ho wanted to get for the church all that Chalmers and his friends wanted. He felt that the best men, both lay and clerie, wero with them, and against himself. IIc had no love for lay patronage, and ho wished the cluurch to be free to do its proper work. But more than
all else he cluog $1 n$ those days to the idea of a national Established Church; and it was not rithout a simking of heart that he saw the long arrsy file out of the Assembly of 1843 after Drs Welsh and Chalners. Yet he girded hiniself up for the task that had now to be done with courage and wisdom. It was a heavy job to fill four hundred and thirty polpits with suchy materials as came to hand, moatly men who had already failed, and practically given up the profession. For years Macleod, and thoos who worked with him, toiled almost despairingly to inspire them with any living interest in the real business of the Christian Church. But in the long run his labours were crowned with a large measure of success, though his own brethren to the last hardly gave him the credit for it which was due almost to him alone-to him, at any rate, above all others. With his broad sympathies he flung himself upon the masses, and taught the working men to feel that the Church of Scotland was still as interested in their wellbeing es any denomination. Discerning also that the harder forms of Calvinism had no longer the hold on their minds that they once lad, he made room for the thoughtful teachings of his consin, Dr John Macleod Campbell, whom the Evangelical party had formerly cast out ns a heretic, gaining by this mesns not a little influence with the young and inquiring intellects of the country. And finally, by his efforts to diffuse a wholesome religions literature through the land, ho so identified his church with the, growiug spirit of the age that at length he lived to see it, not indeed the atrong and nuited community which in his youth practically controlled the nation, but yet once more a great power, dear to the hearts of many of the people, and doing good Christian service to the land.

It may be doubted if the work which Norman Macleod did for Scotland could heve been done in his day without the disruption of the church. For the Erangelical party, using that word in its technical sense, had not only gained the confidence of the people by much faithful service, but also had confirmed their power by somerwhat sharp treatment of all who differed from them. It needed a different kind of charch to tolerate the views of Macleod Campbell; bnt as these were now, more or less, identified with the living element in the kirk, with those who were most diligent in parochial work, and most zealous in mission enterprise, they gradually established their right to be preached in Calvinistic pulpits. Norman Macleod, of course, was not loug left to expend his energies on the weavers of Loudonn. Removing first to Dalkeith, he mas finally, in 1851, called to the Barony church," Glasgow, where the rest of his days were passed, in honour and infuence, as the foremost of its citizens. There the more liberal theology rapidly made way among a people who judged it more by ite fruits than its arguments. And, as they heard his eloquent voice pleading on behalf of churches and schools for the poor, penny savings bsnks, foreign missions, and every likely scheme for doing good to men, they learned to look without euspicion at opinions which yielded such Christian results.

Two other events also helped not a little to increase his influence. These were his position as editor of Good Hords, and his relation to the quecn and the royal family.

In 1860 a magazine was projected which was to deal with subjects common to all, only with a decidedly religious tone. It was not for Sunday only, nor was it for Christians only ; but it was to bo broadly human, and at the samo time clearly pious. For the conducting of such a magazine Macleod was singularly well qualificd. Not that ho had yet attained any great literary position, or indeed was ever likely to do so. He had written somo ceclesiastical pamphlets, amusing but
not weighty. He had edited the Edinburgh Christian Mragazine, without achieving any marked success. His best work as yet was the life of his friend and brother-in-law, John Mackintosh. But nothing human was foreign to him, and "good words," on things in general, were just the words that he could make quick and powerful. Very soon Good Words came to be by far the most popular magazine of the day. Nearly all his own literary work, by which he will be judged in other times, appeared in its pages,--sermons, stories, travels, novels, poems,-all of them honest "good words" which it was wholesome to read. But they hardly give him a name in literature,-at least, not such a name in the future as he had while he was still alive. They were too much the hurried productions of a life busy with many affairs. The short stories, like "Wee Davie" and "Billy Buttons," are those which are most likely to retain a place in letters, on account of their mingled humour and pathos. Of his more stutuied works "The Starling" is perhaps the best; but, while he could tell a brief tale admirably, he could not sustain a long narrative, with its play of varied character and incident ; End, instead of leaving his art to read its own lesson, he preached a sermon by means of a story. Always, iadeed, it is evident that he was more of an orator than a writer. The best of his poems is the hymn "Trust in God and do the right," though the "Curling" song has the right ring of the stones rattling over the ice. Altogether, his work was honest and good, not the highest in point of literary finish, but wholesomer than much that is more perfect in its form.

While Good Words made his name widely known, aud helped the cause he had se deeply at heart, his relations with the queen and the royal family strengthened yet further his position in the ceuntry. Never since Principal Carstairs had any Scotch clergyman been on such terms with his aovereign ; and therr friendship was felt to be alike honourable te both, resting, on her part, on esteem for hia work and character, and on his, on a loyal desire to serve his queen as a Christian minister may. All this helped not a little to increase his influence in the councils of the church, and to restore its prestige, which had for a time been nearly overthrown; and yet, while his popularity was in full awing, one unlucky piece of honesty made him for a time the man in all Scotland most profcundly distrusted.
Scotch Sabbatarian ideas had been a good deal disturbed by the running of Sunday trains and by other novelties, and in 1865 the presbytery of Glasgow issued a pastoral letter on the subject to be read from all the pulpits there. Macleod, of conrse, leved the day of rest as much as any of them, but he did not like the grounds on which they rested it, nor yet the spirit in which they would have it observed. Therefore he resolvea to deliver his mind on the subject to his brethren. Like St Paul, he refused to let any man judge him concerning "new moons and Sabbaths." His speech was not at first well reported, those parts only being printed which were most likely to startle the religious public; and in consequenct it was, for a while, greatly misunderstrod. Old friende shrunk from him. His house seemed to be shunned as plaguestricken. His brethren in the presbytery theatened a "libel" for heresy. And he needed all his courage to bear up against the outery which assailed him on all hande. A more correct version of the speech was issued, however, and the good sense and Christian intelligence of the people soon learued to form a juster estimate of its real bearing. The th reatened prosecution broke down. Truer ideas of Sabbath observance got a ledgment in men's minds. And, four years after, the church, which at one time seemed ready to cast him from her bosom, accorded him the highest honour
in her powet to give, by choosing him as moderator of her General Assembly.
Before that, however, he had already gained ber confidence so far as to be sent, along with Dr Archibald Watson, to India to inquire into the atate of ber mission there. He had always taken a deep interest in the India mission, and had been for some time convener of the committee which took charge of its interests. When asked to undertake this duty, he was already labouring under the disease which ăfterwards shortened his days; his medical advisers were not without grave anzieties as to the effect of the climate on his constitution, and it was with clear consciousness of the risk he ran that, in 1867, he sailed for the East. He returned fully resolved to devote the rest of his dajs largely to the work of rousing the church to ber.duty in carrying out "the marching orders" of her Commander. But he was not destined to do much more fer the cause that lay so near his heart than to make one or two stirring appeals to the conscience of the church. His health was now broken, and his old energy llagged. Always his habits of work had been somewhat irregular; properly, iodeed, he had no fixed habits, but only tremondous fits of labour and periods of exhaustion. Now neither body nor brain could atand this strain, and with reiuctance and pain he had to give up the charge of the India mission. His speech in doing so was the last aud greatest he ever made. It was as if he had gathered up his failing powers for one final effort, and spent his life on it. Shortly after his return from the Assembly of May 1872, his disease showed some fresh symptoms that alarmed the dactors. And on Sunday the 16 th of June, shortly after completing his sistieth year, Norman Macleod peacefully fell asleep, the country hardly knowing how it had loved him till he was borne to his quiet resting-place in Campsie churchyard.

Memoir of Norman Mracleod, D.D., by his brother, the Rev. Donald Macleod, 2 vols., appeared in 1876.
(W. C. S. *)

MACLISE, Daniel (1806 or 1811-1870), subject and histery painter, was born at Cork, the son of a Highland soldier. ${ }^{1}$ His education was of the plainest kind, but he was eager for culture, fond of reading, and anxious to become an artist. His father, however, placed him, in 1820, in Newenham's Bank, where he remained for two years, and then left to study in the Cork school of art. In 1825 it bappened that Sir Walter S̃cott waa travelling in Ireland, and young Maclise, having seen him in a bookseller's shop, made a surreptitious sketch of the great man, which he afterwards lithographed. It was exceedingly popular, and the artist became celebrated enough to receive many commissions for portraits, which he executed, in pencil, with very careful treatment of detail and accessory. Various influential friends perceived the genius and promise of the lad, and were anxious to furnish him with the means of studying in the metropolis; but with rare independence he refused all aid, and by careful economy saved a sufficient sum to enable him to leave for London There he made a lucky hit by a sketch of the younger Kean, which, like his portrait of Scatt, was lithographed and published. He entered the Academy schools in 1828, and carried off the lighest prizes open to the students, including, in 1829, the gold medal for the best historical composition. In the same jear he exhibited for the first time in the Royal Academy. Gradually be began to confine himself more exclusively to subject and historical pictures, varied occasionally by portraits of Campbell, 'Misz Landon, Dickens, and other of his celebrated literary

[^32]friends. In 1833 he exhibited Snatp Apple Night, or All Hallow Eve in Ireland, and Mokama Luveiling his Features to Zelica, which greatly increased his reputation, and were followed in the snecceding year by the powerful dramatic subject of the Installation of ('aptain Kock, and in $1 \times 35$ by the Chival $2:$ Vow of the Ladies and the Peacock, a work which procured his election as associate of the Academy, of which he became full member in 1840. The years that followed were occupied with a long series of figure pictures, deriving their subjects from history and tradition, and from the works of Shakespeare, Goldsmith, and Le Sage. He also designed illustrations for Moore's Irish Melodier, Lytton's Pilgrims of the Rhine, and several of Dickens's Christmas books, and for The Story of the Norman Conquest and Shakespeare's Seven Ages, published by the Art Union. Between the years 1830 and 1836 he contributed to Fraser's Magazine, under the nom-de-crayon of Alfred Croquis, a very remarkable series of portraits of the literary and other celebrities of the time,-character studies, etched or lithographed in outline, and touched more or less with the emphasis of the caricaturist, which have been siuce reproduced and published in a volume. In 1858 Maclise commenced one of the two great monumental works of his life, the Meeting of Wellington and Blücher, ou the walls of Westminster Palace, where he had previously painted his Spirit of Religion and his Spirit of Chivalry. It was begun in fresco, a process which proved unmanageable. The artist wished to resign the task; but, encouraged by Prince Albert, he studied in Berlin the new mathod of "water-glass"painting, and carried out the subject ard its companion, the Death of Nelson, in that medium, completing the latter painting in 1864. The intense application which be gave to these great historic works, and the various depressing and discouraging circumstances cunnected with the commission, had a serious effect on the artist's health. He began to shun the compuny in which he formerly delighted; his old buoyancy of spirits was gone; and when, in 1865, the presidentship of the Academy was offered to him, he declined the honour. In 1868 he exhibited the Sleep of Duncan, and in 1869 his King Cophetua and the Beggar Maid. Having finished the Earls of Desmond and Ormond, he was attacked by acute pneumonia, which carried bim off, after a brief illness, on the 25 th April 1870.

The works of Maclise are distingnished by powerful intellectual and imaginative qualities, but most of them are marred by harsh fond dull colouring, by metallic hardness of surface and texture, and by frequent tonches of the theatrical in the action and attitndes of the figures. His fame rests most securely on his two geatest works at Westminster. A memoir of the artist by his friend W. J. O'Driscoll was published in 1871.

MACLURE, William (1763-1810), the pioneer of American geology, was born at Ayr in Scotland in 1763. After a brief visit to New York he began active life as a gartros in the firm of Miller, Hart, \& Co., London. Four years later (1796) business affairs brought him again to America, which he thereafter made his home. In 1803 he visited France as one of the commissioners appointed to settle the claims of American citizens on the French Government for spoliations committed during the Revoluion; and during the few years then spent in Europe be applied himself with onthusiasm to the study of geology. On his return bome he commenced the self-imposed task of making a geological survey of the United States. Almost every State in the Union from the St Lawrence to the Gulf of Mexico was traversed and, snapped by him, the Alleghany mountains being crossed and recrossed some fifty times. The results of his unaided labours were submitted in a memoir to the American Pbilosophical Society (1803), and published in the Society's Transactions (vol, vi.), togethor with a geological map, which thers
antedates William Smith's great greological map of England by six years. Subsequent survey has corroborated the general accuracy of Maclure's observations, so far at least as the l'rimary and secondary formations are concerned. From $1 s 17$ to his death Maclure was president of the Academy of Natural sciences of Ihitadelphia, and much of the prosperity of the institution was due to his devoted services. In 1819 he visited Spain, und attempted to establish an agricultural collcge near the city of Alicante; but with the overthrow of the short-lived Liberal constitu. tion his plans became hopelessly deranged. Returning to America in 1824, he settled for some years at Ner Harmony, Indiana, endeavouring, but with small success, to develop his scheme of the agricultural college. Failing lealth ultimately constrained him to relinquish the attempt, and to seek (in 1827) a more congenial climate in Mexic. There, at San Angel, he died March 23, 1840.
His great geological memoir was issued separately, with some additional matter, in 1817; and in 1837 be published a collectiou of essays, in 2 vols., mainly on political economy, entitled Opinions on Various Subjects. His other original papers, includin-o observations on the geology of the West Indies and of Mexico, and remarks on the origin and arrangement of rocks, were published in the Journal of the Aeademy of Natural Sciences (Philadelphia), in Silliman's A merican Journal of Science and Arts, aud in the Freucls Journal de Physique.

MACNEE, Sir Daniel (1806-1882), portrait painter, was born in 1806 at Fíntry in Stirlingshire. He was educated in Glasgow, and st the age of thirteen apprenticed, along with Horatio Macculloch and Leitch the water-colour painter, to John Knox, a landscapist of some repute at the time. He afterwards worked for a year as a lithographer, was employed by the Messrs Smith of Cumnock to paint the ornamental lids of the planewood sauff-boxes for which their manufactory was celebrated, and, having studied in Edinburgh at the "Trustees' Academy," supporting bimself meanwhile by designing and colouring book illustrations for Lizars the engraver, he established himself as an artist in Glesgow. At first be was occupied a good deal with fgure nictures, but the increasing demands on his time as a iashionable portrait painter eventually left him little leisure for this branch of art. He was one of the twenty-four associates of the Royal Institution who, in 1829, were admitted members of the Royal Scottish Academy; and on the death of Sir George Harrey in 1876 he was elected president, and received the honour of knighthood, and the degreo of LL.D. from the Glasgor? University. From this period till his death, on the 18th of January 1882, he resided in Edinburgh, where his genial social qualities and his inimitable powers as a telles of humorous Scottish anecdote rendered him popular. Among his portraits may be mentioned those of Lord Brougham, Viscount Melville, Lord Inglis, and Mrs Bough. His Dr Wardlaw obtained a gold medal at the Paris Intcr. natioual Exhibition of 1855.

MACNEILL, Hector (1746-1818), a minor Scuttish poet, born near Roslin, October 22, 1746, died at Edinburgh, March 15, 1818. The son of an impoverished army captain, ho spent several jears of his boyhood on a farm which his father lad taken on the banks of Loch Lomond, and was sent to Bristol at the age of fourteen to enter on a mercantile carcer. Soon afterwards he was despatched to the West Indics, where he remained meny years without ever enjoying even a moderate prosperity. When about forty he returned to Scotland with the intes. tion of devoting hinself to a literary life, but his ill fortune still pursued him, and ho was obliged to go back to Jamaica. The kindness of two friends enabled him soon to come home again to Scotland, and on the journey he finished The Mary, a Legendary Tale, published at Edinburgh in 1739. After six yoar spent at Edinhurgi.
rendered miserable by shattered health and depressed epirits, he retired to the house of a friend at Stirling, where he wrote most of hie songs and his Scotland's Skaith, or the History of Will and Jean, a narrative poem intended to show the deteriorating influences of whisky and potnouse politics, which appeared in 1795 , and at once made its author popular, having passed through fourteen editions within the year. A sequel, The Trays of TWar, appeared next year, and in $1799^{\circ}$ The Links of Forth, or a Parting Peep at the Carse of Stirling, a somewhat feeble descriptive poem, intended as a parting tribute to his kind host before his own departure for Jamaica. Not long after his arrival an early friend settled on him an annuity of $£ 100$, which znabled the poet to return soon aftermards to Scotland, zad so close his long etruggle against ad versity with fifteen jears of comparatise comfort at Edinburgh.
In 1800 he published The Memoirs of Charles Macpherson, Esq., \& novel understood to be a close narrative of his omn hardships and adventures. His later works, which added little to his fame, were - I'he Pastoral or Lyric Druse of Scotland, 1809; two anonymous works in verse entitled Toun Fashions, or Modern Manners Delineated, and Byegone Times and Latecome Changes, and The Scottish Adventurcrs, a novel. He left behind an autobiography still uupublished, but of which an abstract appeared in Blackrwood's Magasine for December 1818. A complete edition of the poens he wished to own appeared in 1812, and it is on these that his fame will rest. His songs, "Mary of Castlecary," "Come under my plaidy," "My boy, Tammy," "O tell me how for to woo," "I lo"ed ne'er a lassie but ane," "The plaid amang the hether," and "Jeanie's black e'e," will lire, spite of Allan Cunningham, for their sweetness and simplicity, while his IFill and Jian, quite apart from its excellent intention and tendency, will maintain a place amoug the most characteristic prodactions of the Doric Mruse in Scotland.

MACON, the capital of Sainnc-et-Loire, France, occupies a gently sloping site on the right bank of the Saône, 41 miles north of Lyons. It is connected by a bridge of twelve arches with the suburb of St Laurent on the opposite bank of the river. The site is sheltered and the climate mild, but the locality is subject to sudden changes of temperature. Of the public buildings of Macon the most prominent is the old church of St Pierre, reconstructed in 1866, - a three-naved basilica, 328 feet in length, with two fine syires. Of the old cathedral, destroyed at the Revolution, nothing remains but the façade, portions of the tro towers, and a narthex of the 12 th century, now used as a chapel. The old episcopal palace, which has been rebuilt, is now used as the prefocture. The hospital is from designs by Soufflot; the 'jcenm bears the name of Lamartine (a native of Mare $n$, to whom there is a statue). The town house containe so library of 7000 volumes, and a museum. Macon is \& railmay centre of considerable importance, being the minat at which the line from Paris to Marseilles is joined by that from Mont Cenis and Geneva, as well as ty a branch from Digoin. Tho industries of the placa nclude brass-founding, the manufacture of agricultural mplements, weighing-machines, and the like, printing, dreing, and the production of faience. The principal articlos of commerce are wioe, barrels and hoops, and grain. 'The population in 1876 was 17,570
Biacon (3(atisco) was an important town of the 正dui, but under the Romans it was st.pplanted by Autun and Lyons. It suffered a succession of oisnecers at the hands of Germans, Burgundians, Vandals, IIuns, Huugarians, and even of the Carloringian kings. In 1228 it was solis to the king of France, but moro than once afterwards passed into the possession of the dukes of Burgundy, antil the ownership of the Frencl crown was fixed in the time of Louis XI. In the 16 th century Mrcon became a stronghold of the Huguenots, wided with the League, and did not yield to Henry IV. until 1594. The bishopric, created by King Childebert, was suppressed in 1790 .

MACON, a city of the United States, the chiof torm of Bibb county, Georgia, is situated on rising ground in the midst of a beautifully wooded ccuntry on bifti siưoe of the Ncmulgee river, a navigable headwater of the Altamisins, about so mules south-east of Atlayta, It is well laid out
mith tree-bordered streats, often 180 feet wide, and possesses since 1870 a fine central park, on the formation of which $\$ 125,000$ were expended. The principal institntions in tho town are the State academy for the blind (1852), the Mercer university (a Baptist foundation, 1838), the TVesleyan Femalc College (1839), the Pio Nono (Roman Catholic) College, and the Southern Botanico-Medical Institute. As an important junction for the Georgia, the Georgia Central, and the South-Westera Railways, and communicating with the coast by the direct live to Brunswick, Macon enjoys great facilities for trade; and, besides its extensive railway machine-shops, it has cotton factories, iron foundries, flour-mills, and sash and blind factories. . The annual fair held is the Central Park is the great meetingplace of the Georgian planters. From 5720 in 1850 the population has steadils adranced to 8247 in 1860, 10,810 in 1870, and 12,748 in 1880. The foundation of the town dates only from 1823.

MACPHERSON, James (1738-1796), the "translator" of the Ossianic poems, was born at Ruthven, Inverness, Scotland, in 1738, was educated in his native village and at King's College, Aberdeen, and from 1756 taught the school of Ruthven for some time. In 1758 be published a poem ontitled the Highlander, and abont the same period contributed eeveral minor piecos to the Scots Magazine. In 1759, whide residing with a pupil at Ioffat, he became accidentally known to Dr Carlyle of Inveresk and Mr Home, the anthor of Douglas, both of them already interested in the subject of ancient Highland poetry; some fragmentary "translatious" from the Gaelic, which in the cburse of a fers days he oupplied to Home, were nuch appreciated in the literary circles of Edinburgh, and in 1760 a volume was published by Macpherson, entitled Frayments of Ancient'Pootry collected in the Highlands of Scolland, and translated from the Gaelic or Erse Language, with a preface by Dr Blair. A sum of money was now subscribed by the faculty of advocates for the purpose of enabling Macpherson to go to the Scottish Highlands in search of other fragments, and the result of his labours was the publication at London in 1762 of Fingal, an Epic Poem, in six books, with other lesser Poems, dedicated to Lord Bute ; this was followed in 1763 by Temora, in eight books, with several other poems. For the real character of these publications see Celtic Lateeature, vol v. p. 313-4. At the time of their appearance they greatly advanced the translator both in fame and fortune; in 1764 he was appointed surveyor-general of the Floridas, and on his return to England two years afterwards he was permitted to retain for life the salary of the office. In 1771 be published An Introduction to the History of Great Britain and Ireland, and in 1775 A History of Great Britain from the Restoration to the Accession of the House of Hanover ( 2 vols. 4to) and Original Papers containing the Secret IIistory of Grcat Britain for the same period (also in 2 vols. 4to). His translation of the Iliad, published in 1773, was greatly praised by Robertson and others in Scotland, but met with a severe reception in England, and has not stood the test of time. About 1779 he was appointed to the lucrative post of agent for the naboh of Arcot, and fron 1780 onwards he sat in parliament for the borough of Camelford. He died at Belleville, an estate which he had recently purchased in Inverness, on February 17, 1796, and was buried in the Poets' Corner at Westminster Abbey. His will had provided for the pnblication of the Ossianic poems in the original Gaelic, which he is understood to have been preparing for the press at the time of his death; and the work accordingly appeared in 3 vols. 8 vo , in 1807, with a literal translation into Latin, by Robert Jacfarlane, and a dissertation on the authenticity of the zoercs, by Sir John Sinclair.

MaCREADY, Willa3 Charles (1793-1873), was born in London 3d March 1793, and educated at Rugby. His intention was to proceed to Oxford, but. the embarrassed affairs of his father, the lessee of several provincial theatres, called him to share the responsibilitics of theatrical managenent, in which he showed great prudence and address. In 1810 he made a successful debut as liomeo at Birmingham; and the fame which he had acquired in the provinces gave exceptional interest to his appearance in 1816 at Covent Garden, in the charactor of Orestes in the Distresseld Mother. In Lendon his choice of characters was at first confined chiefly to the romantic drama, but he showed his capacity for the highest tragic parts when he played Richard III. at Covent Gardes in 1819, and in the following year his performance of Virginius, in the new play of Sheridan Knowles, assisted to give solidity to his reputation. Transferring his services to Drury Lane, ho gradually rose in public favour, till, on the retirement of Kean and Young, be was regarded as the legitinate successor of these tragedians. In 1826 he completed a successful engagement in America, and in $1828^{\circ}$ his performances met with a very flattering reception in Paris. Already he had done something to encourage the creation of a modern English drama through the interest awakened by his performances in Virginius, Gaius Gracchus, and William Tell, and after entering on the nanagement of Covent Garden in 1837 he introduced, besides other new plays, Bulwer's Lady of Lyons and Richeliex, the principal characters of which were among his most effective parts. Both, however, in his management of Covent Garden, which he resigued in 1839, and of Drury Lane, which he held from 1841 to 1843 , he found his designs for the elevation of the stage hampered and fiually frustrated by the sordid aims of the proprietors and the absence of adequate public support. In 1843-44 he made a prosperous tour in the United States, but his last visit to that country, in 1849, was marred by a riot at the Astor Opera Honse, New York, arising from the jealonsy of the actor Forrest, and resulting in the dealh of twentytwo persons, who were shot by the military called out to quell the disturbavce. Macready retired from the stage in 1851 ; and the remainder of his life was occupied chiefly in superintending the education of his family, and in schemes for the welfare of the poorer classes. He died at Cheltenham 27th April 1873.

Macready's performances always displayed fine art istic perceptions developed to a hish degree of perfection by very comprehensive cul. ture, and even his least successful personations had the interest resulting from thorough intellectral) study. Fe belonged to the school of Kean rathor than of Kemblo; but, if his fastes wero letter disciplined and in some respeets more refined thau those of Kean, his natural temperament did not permit him to give proper effect to the most characteristic features of the great tragic parts of Shakespeare, King Lcar perhaps excepted, which in some degree afforded scope for his pathos and tenderness, the qualities in which ho specially excelled. With the exception of a voico of goed compass and capable of very varied expression, Macready was not in a special degreo gifted puysically for acting, but the defects of his face and figure cannet be said to have materially influenced his success. He created a considerable number of parts, which still retain thcir hold on the stage, and, although not by virtuc of natural genius werthy of a place among tragcdians of the first rank, he is almost entitled to this on account of the high degree of perfection to which he bat cultivated his prowers, and from the fact that there is no tragedian of the secend rank who can he mamed his equal. See Maereacly's Reminiscences, cdited by Sir I'rederick J'ollọck, 2 vols., 1875.

MACROPIUS, Ambrosius Theodosius, a Roman Erammarian and philesopher, who wrote towards the leginning of tae 5th century after Christ. He is described in the superscription of the best MSS, as vir clarissimus et illustris; hence it has been supposed that he is the Macrobius who was prafectus pratorius IIispaniarum in 398 a.D., proconsul of Africa in 410, and chamberlain
(propositus sacri cubiculi) in 422. But the tenure of high office at that date was limited to Christians, and there is no evidence in the writings of Macrobius that he was a Christian. On the contrary, he shews great intcrest in the deities of paganism; bis friends scem to have belonged wholly to the pagan party; and his philosophical riewa are those of the Neo-Platonists. Hence the identification is more than doubtful. It is possible, but by no means certain, that be was the Ticodosius to whone Avianus dedicates his fables. From the date of the persons whio are mentioned by him as contemporaries, he appears to have flourished in the time of Honorius.

The most impertant of his works is the Convivioruni Saturnatiorum Libri Septem, containing an account of the discussions held at the house of Vettius Pratextatus during the holiday of the Saturnalia. The latter part of the second book and the beginaing of the third, the second half cf the fourth book, and the end of the serenth have been lost ; otherwise the work is in fairly good preservation. It was written by the author for the benefit of his son Eustachius, and contains a great variety of curious historical, mytuological, critical, and grammatical disquisitions, the value of which is much increased by the frequent quotations from earlier writers. The machinery is somewhat cumbrous; for, as in some of Plato's dialogues, the discussions are not directly reported, but a certain Postumianus reproduces, for his friend Decius, the account which he had received from a rhetorician Eusebius, who had been present at them. There is but little attempt to give any dramatic character to the dialogue ; in each book some one of the personages takes the leading part, and the remarks of the others serve only as occasions for calling forth fresh displays of erudition. The first book is devoted to an inquiry as to the origin of the Saturalia and the festivals of Janus, which leads to a history and discussion of the Roman calendar, and to an attempt to derive all forms of worship from that of the sun. The second book begins with a collection of bons mots, to which all present make their contributions, many of them being ascribed to Cicere and Augustus ; it then appcars to have passed ioto a discussion of various pleasures, especially of the senses; but almost the whole of this is lost. The third, fourth, fifth, and sixth books are devoted to Virgil, dwelling respectively on his learning in religious matters, his rhetoricel skill, his debt to Homer (with a comparison of the art of the troo) and to other Greek writers, and the aature and extent of his borrowings from the earlier Latin pocts. The latter part of the third book is taken up with a dissertation upon luxury and the sumptuary laws intended to check it, which is probably a dislocated portion of the second book, being catirely out of place where it stands. The seventh book is of a more miscellaneous character, consisting largely of the discussion of rarious physiological questions. The value of the work consists solely in the facts and opinions quoted from earlier writers, for it is purely a compilation, and has little in its literary form to recommond it.
We have also two books of a commentary on the Somnium Scipionis narrated by Cicero in his De Republica. The nature of the dream, in which the clder Scipio appears to his (adopted) graudson, and describes the life of the good after death and the constitution of the universe from the Stoic point of view, gives occasion for Macrohius to discourse upon many points of physics in a series of essays interesting as showing the astrononical notions then current. The moral elevation of the fragment of Cicero thus preserved to us gave the work a popularity in the Middle Ages to which its own merits have little claim.

There is a geod critical edition of Macrobius, with a commentary by J. van Jan (2' vols., Loipsic, 1848-52), and a convenient aud cxccilent edition of the text by F. Eyssenhardt (Lcipsic, 1868).

MADAGASCAR , an inportant island in the Indian Ocean, and the third largest island in the world is about 300 miles from the sonth-east coast of the African continent, from which it is separated by the Mezambique Channel. It is 980 miles in length from north to south, the northern point, Cape Ambro, in $12^{\circ} \mathrm{S}$. lat., inclaning $16^{\circ}$ to the east from the longitude of Cape St Mary, the southernmost point, in $25^{\circ} 35^{\prime} \mathrm{S}$. lat., ao that the main axis of the island runs from north-north-cast to south-southwest. The broadest portion of Madagascar is near tho centre, where it is nearly 350 miles across, and there it is only 230 miles distant from the African coast. From this part of the island its northern half forns a long irregular triangle, while south of it the average breadth is about 250 miles. Its total area is nearly 230,000 вquare miles, or not quite four times the extent of England and Wales.

Although known to Arab merchants for more than a thousand years past, and frequently visited by Europeans since the beginniag of the 16th century, Madagascar is still but imperfectly explored. A careful survey of the coast was made in 1823-25 by Captain W. F. W. Owen, R.N., but all maps of the interior up to about ten years ago were constructed on the most insufficient data. But during the last decide many portions of the island previously unknown hase beca traversed by missionaries and naturalists, and maps, more or less detailed, have been prepared of a considerable partion of the interinr. Conspicuous in this work have been the missionaries of the London Missionary Snciety and the Friends' Foreign Mission, especially the late Rev. Dr Mullens, whose large map, published in 1879, embodied all that was known up to that date, and also M. Alfred Grandidier, a French traveller and scientist, whose great work on the island is now in process of publication.
Madagascar has a very regular and compact form, with but few indentations considering its great extent of shoreline. Along tro-thirds of its eastera side the cosst is almost a straight line, without any inlet, for Tamatave and Foule Pointe, which are the most frequented ports on this side of the island, are only open roadsteads protected by coral reefs. North of this, however, is Antengil Bay, a deep and wide ialet running northwards for about 50 miles ; farther north is Port Louquez, and at the extreme point of the island is Dicgo Suarez Bay, one of the finest harbours in the world. The nerth-western side of Madagascar is broken up by a number of spacious inlets, some of them landlacked and of considerable size. Going southward, these ere the hays of Chimpaiky, Pasendara, Port Radàma, Narioda, Majàmbo, Bémbatòka, and Ibòina, as well as the esturies of some of the rivers. South of Cape St Andrew, the north-west angle of the island, thero is nothing else in the shape of a gulf until we reach the sstuary of the river Ooilahy, or St Augustine's Bay. Rounding the suuthern end of the island, we find no other inlet until we coms to the small bay of Itapéra near Fort Dauphin, at the southern extremity of tho straight line of coast already mentioned.
The islands around Madagascar are ferv and unimportant. The largest are St Marie's, near the eastern cosst, a narrow island about 30 milcs long, and Nósibé, larger and more compact in form, opposite Pasaadàva Bay on the northwest coast. Except the Minnow group, north of Nósibe, the rest are merely rocky islets, chiefly of coral.

Much light has been thrown upon the physical geography of Madagascar by recent explorations. In most accounts, up to a very short time ago, a "central mountain chain" is described as runníng throughout the island as a sort of backbone from north to south; and most maps show this, with numerous branches extending in various directions. It is, hotwerer, now quite clear that instead
of this suppesed mountain chain there is an elevated mountainous region, froas 3000 to 5000 feet in altitude, occupying from a third to two-fifths of tho whole interier, but lying more towards the north and east. Around th's upper region are catensive plains, at a much less sleration above the sea, and most developed on the western side of the island, and in its southern portion beyond $23^{\circ}$ S. lat. But this lower region is not entirely level, as it is broken up towards the west 'by three prominent lines of hills ruaning north and south. See Plate IV.
The shores of the grenter portion of the southern hall of the island are low and flat, but in the northern wall much of the coast is bold and precijpitous, the high iand ofteu approaching the sea. On the eastern side the plains vary from 10 to 50 miles in breadth, but on the western sido they often excced 100 miles across. From these coast plains the ground rises by auccessive ranges of hills to the high interior land. This elevated region is broken up in all directions by moruntains, the highest in the island being centrally situated as regards its length, but noore to the eastern side. These are the summits of the basaltic nass of Aokàratra, four of the peaks ranging in elevation from 8100 to 8950 feet above the sea, and from 3300 to 4700 feet above tha general level of the surrouading country. The loftiest of these is named Tsi-afa-jarona, i.e., "that which the mists cannot climb." Besides these highest points there are a considerable number of mountains in the central provinces, varying in height from 5000 to 7000 feet, the highest as yet measured being Iàrohàika ("the Lofty defying one"), 1100 feet high, about 30 miles west-sotth-west of Ankàratra, and the highest point of a remarkably rocky and rugged district named Vàvavàto ("Stonemouth"). There are also very many lofty and grand peaks in the Bétsiléo province, seme, it is said, nearly 8000 feet bigh; and in the Bara country the Isallo mountains are compared by a recent traveller to the "Church Buttes" and other striking features of the scenery of Utah, on the line of the Pacific Railmay. One of the grandest of all the Madagascar peaks is an isolated mountain near the northern point of the island, called Amber or Ambohitra. This is said to be more than 6000 feet high, ar:d, rising, not as do thpse before-mentioned, from an elevated plateau, but from plains little above the aea-level, is a remarkably majestic hill as obserred from every direction, and is well seen far out to sea.

In the elerated region of Medagascar are many fertile plains and valleys. Among these are Bétsimitàtatra in Imérina, and Tsiénimparlhy in Bétsiléo, supplying a large proportion of the rice for the capitals of these two provinces. Still more extensive valleys are the plain of the Antsibànake country, the valley east of Angaro, and the Ankay district between the two eastern lines of forest (all of which are one step dowuwards towards the lower coast plains), and the ralley east of tho Bemaraha range in the Sakkalava country. Sections across tho central portions of Madagascar show that there is a sonmerthat saucer-like depression in the centre, the castern and western edges rising bigher than the enclosed apace. The eastern ridge is the higher of the two, so that the watershed for a considerable distance is much nearer the eastern than the western side, averaging from 50 to 80 miles from the sca The country is well watered, even in the highest ranges of the interior, the abundant rainfall giving a perennial supply to the innumerable springs and streams. There are, therefore, no extensira districts that can be called desert, except parts of the west and south-west provinces, where the rainfall is scanty. The extreme southern portion is also reported to be arid, but as yet little in accuratpp knowa of this part of the country.

As is necessarily the cass from the physical sonfre:
$=$
$\because$


,
of the interiur, the chicf rivers flow to the west and nurthwest sides of the islimd. The castern streams aro all less in sizo, except the Manguro, which flows for some distance parallel with the coast. Few of them, therefore, are of much service for uavigation, except for the light-draught sative canves, and almost all of them are more or less closed at their outlets by sand-bars. Commencing at the southern point and going northward, on the castern side, the principal rivers are the Mananara, Manambavi, Matitianana, Mananjàra, Onivé and Mangòro, Müningòry, fud the Anjahanambo at the head of Antongil Bay, besides numerous smaller streams. On the north-west coast, going southward, are the Sofia and Màbajamba, falling into Majambo Bay, the Bétsibòka with the Ikiöpa, -the great drains of the northern central provinces, and furming unitedly the second largest river of the island and falling into Bémbatòka Bay,-the Mànjarày, Mànambòlo, Tsiribihina or Onimainaty, the largest river of Madagascar, draiaing by its tributaries the Kitsimby, Mahajilo, and Mania the central parts of the island, the Morondava, Maharivo, Mangòy, the third largest river, the Màhanomby, Fiherénana, and Onilàhy.

Of these western rivers the Bétsiboba could be ascended by steamers of light draught for about 90 miles, and the Tsiribihina is also navigable for a considerable distance. The former is about 300 miles long; the latter is somewhat less, but by its affuents spreads over a greater extent of country. It brings down so large a body of water that the sea is said to be fresh 3 miles from the land. But owing to the height of the interior of Madagascar there is no oninterrupted water-communication with it from the sea by any of the rivers, which are all crossed by rocky bars, and in some cases by grand waterfalls, as on the Mania. The eastern rivers cut their way through the ramparts of the high land by magnificent gorges, amidst dense forest, and descend by a succession of rapids and cataracts. The Màtitanana, whose falls were first seen by the present writer in 1876, descends at one plunge some 400 or 500 feet.

On the eastern side of Madagascar the contest between the fresh water of the rivers and the sea has caused the formation of a long chain of lagoons for nearly three hundred miles. In many parts these look like a river following the coast-line, but frequently they spread out into extensive shects of water. So short is the distance between these that, by cutting about 30 miles of canal to connect them, a. continuous water-way could be formed for 260 miles along the coast. This will doubtless be accomplished at some future time, with great benefit to the commeree of the country. Besides these lagoons, there are few lakes of ony size in Madagascar, although there were probably some very extensive ones in a recent geologival epoch. Of one of the largest of these the Aliotra Lake in the Antsilanaka plain is the relic; it is about 25 miles long. Next comes Itisy, in western Imérina, about 8 miles long; and a large lake is roported by the natives to be formed by an oxpansion of the river Mangiky. Two salt lakes cre said to exist near the south-west coast.

Among the many new facts brought to light by recent research in Madagascar is the evidence of very widespread and porserful subterrancan action throughout a great part of tho islaud, apparently extending almost unbroken from the south-east to the nurth-west and extremo north. This voleanic belt is part of a line which ha: its northern extremity in the Comoro Islands, all of which aro volcanic in origin, and where, in Great Comoro, there is a still active rent. There is sow no active volcano in Madagascar, but a large number of extiact cones have been observed in Jarious patis of the country. In the cent-a? province of Imerina, within an arc of about 90 mile 1 ound the mass of Ankàratra, Dr Mullens counated n buadred craters. Others
are found farther north, in the Autsihànaka provicce and the Màndritsara valley, and on the north-west coast nad its islands, the great mountain Amböhitra being an old volcano. Others have been observed towards the southern extremity of the higher region of the island, as well as columnar basalt, and leds of lava rock, pumice, and ash. Slight shocks of carthquake "are felt every year in Madagascar, and other signs of subterranean action are evident in the hot springs which occur at several places in the central and eastern provinces. Several of these are sulphurous and medicinal, and have been found efficacious in skin diseases.

The geelogy of Madagascar has as yet been very imperfectly investigated, for few travellers have possessed the special scientific koowledge requisite to give much value to their observations; and hardly anything has yet been done towards makiog collections of fossils, or in procuring specimens of rocks and minerals. There are, bowever, a few facts of a general character which are easily recognizablc. In the first place, the upper region of the island already mentioned appears to consist chiefly of Primary and unstratified rocks-granite, gneiss, and basalt-which form the highest points of the hills, and present most varied and picturesque outlines, resembling titanic castles, cathedrals, domes, pyramids, and spires. The general face of the country consists of bare rolling moors, with a great amount of bright red and light brown clays, while the valleys have a rich vegetable soil of bluish-black alluvium. No stratified or fossiliferous rocks bave yet been discovered in this upper part of the island, which appears to be very ancient land, and during portions of the Secondary aud Tertiary periods probably formed the entire island, then about from a third to two-fifths of its present size, while the extensive southern and western plains werc again and egain subinerged.

The lower portions of Madagasear ao not, as far as is yet known, much exceed from 300 to 600 feet in height above the sea-level (except, of course, the three chains of liils in the south-west). They appear in sereral localities to consist of strata of the Secondary period, with fossils of the Neocomian age belonging to the genera Nerinea, Turrilella, Ammonites, Terebratulut, Rhynconella, Nerilina, and Echinoderms, and also Foraminifera of the genera Alveolina, Orbitoides, Triloculima, isc. There are also beds of a much later age, containing fossils of recently extinct gigantic tortoises, hippopotami, and struthious birds. In addition to the rocks already mentioned as found in the higher portions of the island, there are also slate, mica schist, grey wacke, chert, pink and white quartz, and an unstratified limestone deposited by bot springs. Iron exists iu great abundance in the central parts of the country, and copper and silver nre said to have been found in sinall quantities, but are not worked. Antimony seems to be plentiful in the north, and rock-salt, iron pyrites, plumbago, and rarious ochres and coloured carths are among the mineral products. On the north-west coast thin beds of lignite, suitable for steam coal, occur, but no truc coal has yot been discovered.

The clinate varies very much in different parts of the country. In tho high interior ilistricts it resembles that of the temperate zoncs, witl no intense heat, and is quite cold during the nights in winter. These parts of the island are therc fore tulorably healthy for Europeans. But the coasts are much hetter, especially on the western side ; and, from the iarge natourt of marsh and lagoon, malarial fever is prevalent, and frequently fatal both to Europeans and to natives from the interior. The seasons are twothe hot and rainy seusen from November to April, and the cool and dry season during the rest of the year. Raia indeed falls almost all the year round on the castern coast which is exposed to the vapui-laden south-east trant
winds, but it is much less frequent on the mestern side, being, intercepted by the high interior land. No snow is known even on the loftiest mountains, but thin ice is very occasionally found; and hail showers, often very destructive, are frequent in the rainy season. Terrific thunder storms are also common at that $p$, eriod; materspouts are sometimes seen, and hurricanes occur every few years, at very rare intervals ascending into tho interior high land. Very few extended or complete observations have been made in different parts of the island as to teniperature. On the eastern coast the heat is probably not very different from that of Bourbon and Mauritius, where the average annual mean is $75^{\circ}$ and $78^{\circ}$ in the shade, and the average daily range from $70^{\circ}$ at sunrise to $86^{\circ}$ in tho afternoon. The temperature of the capital resembles that of Naples or Palermo.

Tho flora of Madagascar is one of great fulness and interest, and receut collections have thrown much light upon its relationslips. One of the most prominent features is the existence of an almost unbroken belt of dense forest all round the island, at no great distance from the sea, and generally following the coast-line. It appears to be continuous everywhere except on the north-west coast, where, however, the two lines overlap for about 100 miles, leaving an opening of 70 miles wide between them. This forest belt has an arerage breadth of from 15 to 20 miles, but reaches 40 miles in the north-east, and contains a large variety of hard-wooded and valuable timber trees, as well as numerous species of palm, bamboo, treefrn, euphorbia, pandanus, baobab, tamarind, \&c. Ferns are numerous, about two hundred and fifty species having been already collected, and there are many interesting orchids. The vegetation of the forests, the abundant epiphytes, the tree-mosses, the filmy ferns, and the riviparous character of many of the ferns, show clearly how abundant the rainfall is in the forest region. Several trees and plants are characteristic of Madagascar vegetation; sonie of them are endemic, and others are very prominent features in the landscape. Among these are the traveller'stree ( $U_{\text {rania speciosa), with its graceful crown of plantain- }}$ like leares growing in a fan shape at the top of a lufty trunk, and supplying a quantity of pure cool water, and every portion of it being of some service in building; the röfia palm (Sagus Rưfia), from whose pinnate leaves a valuable fibre used for cloth is obtained; the curious and beautiful lace-leaf or lattice-leaf (Ouvirandra fenestralis), a water plant whose root is edible; the Madagascar spice (Ravintsara madagascariensis), a large forest tree with fragrant fruit and leaves; and the tangéna (Tanglinia veneniftua), formerly so destructive to life from its employment as a poisoin orleal. Although flowers growing on the ground are not remarkable for number or beauty, there are many magnificent flowering treas; conspicuons among these are the Poinciand regia, presenting, when in bloom, n mass of scarlet flowers; Colvillia racenosa, with yellow flowers; Cryptostegia madagascariensis, a purple-flowered creeper, and sereral species of Hibiscus, Irascarenhasia, Kitchingia, Tachiadenus, \&cc. There are large numbers of spiny and prickly plants, and numerous grasses, reeds, and rushes, many of them of great service in the native manufactures. MIr J. G. Buker of Kew says :-"We now know no less than two thousand flowering plants, aud among the tropical types there are"a considerable number of endemic genera. One natural onder, Chlanacce, is strictly confined to Madamascar, and there are not less than fifty peculiar genera of plants, some of then very curious types. Desides these the tropical flora contains a large proportion-(1) of end mic species of genera not known elserwhere; (2) of species common to Madagascar, Mlaurititis, and Bourbon, but not knotn elsewhere: ( 3 ) of species that spread across tropical

Africa; (4) of species spread universally through the tropics of the Old World; and (5) of species spread through the tropics of both hemispheres. A small proportion of the Hadagascar species are Asian bui not African; and the fiora of the mountaius corresponds closely with that of the great ranges of the tropical zone of Africa." "In the island altogether, the number of genera now known is about seven hundred ; of these about eighty are supposed to be endemic, as far as present knowledge extends." "The general plan of the flora follows thoroughly the same lines as that of the tropical regions of the Old World," and thus leads to somewhat different conclusions to what are suggested (as will be presently seen) by a study of the fauna. It is, however, probable that the Hora is as yet not half known, so that fuller research may modify some of the inferences drawn from the collections now available.

Among tho food-giving plants are rice-the staff of life Food. to the Malagasy-in several rarieties, maize, millet, siving manioc, yams, sweet potatoes, and numerous vegetables ${ }^{\text {plantw }}$ of European introduction. The fruits, indigenous and iutroduced, are the bauana, peach, loquat, mango, melon, pine-apple, mulberry, orange, citron, lemon, guava, Chinese guava, fig, raspberry, tomato, and several others. Seseral spices are grown; ginger, sugar-cane, coffiee, indigo, tobacco, cotton, hemp, gourds, dye-moods, and gums are also among the vegetable productions; and gam-copal and indiarubber have been exported in considerable quantities. Besides the dense forest belt already mentioned, a great oxtent of the coast plains is also well wooded, as well as the river valleys in the upper parts of the island; and, as many portions of the country, especially of the forests, have not yet been traversed by Europeans, its vegetablo wealth is probably still far from being fully known.

The fauna of Madagascar, while deficient in most of the characteristic tropical forms of life, is one of great interest to the naturalist. As a continental island, probably separated at a rery remote period from the mainland, it possesses no large quadrupeds-none of the larger carnivorous, ungulate, proboscoid, or quadrumanous animals; but it is the headquarters of the Lemuridx, no less than thirty-six of which animals are found in its forests and wooded plains. Some of these creatures are bighly spccialized, while the curions aye-aye (Chiromys madagasca:riensis), an allied form, is one of the most remarkable animals known, forming a genus and family by itself. Its whole structure is strangely modified to enable it to procure the wood-boring larve which form its food. - Other peculiar animals are sereral species of the Centefidre, a family of the Insectivora which is almost confined to Madagascar; while of the Camivora there are several small creatures belonging to tho civets (Vivervida). The largest of the ferocious animals, also forming a genus and family by itself, is the Cryptoprocta ferox; it is a plantigrade animal, 3 feet long, but rery like an enormons measel, and attacks the largest animals with great ferocity. African hurnped cattle were introduced several kaudred years ago into Dradagascar, and now exist in large herds all over the island. The fat-tailed sheep, goats, and swine have also been naturalized, as well as all kinds of domestic poultry, which are reared in great abuudance for export as well as for home consumption.

The ari-fauna is much richer than the mammalian, and, althnugh wanting the largest birds, as well as the most brilliantly coloured, comprises more than two hundred and twenty species, nearly half of which are peculiar to the island. Nany of the lirds are remarkable, not so much for their shape or colouring as for their distant relationsbips; many belong to peculiar genera, and some are so isolated that it is very difficult to classify them, and they yet remain a puzzle to ornithologists. There is a large variety of perching birds,
metrading several species of brilliant plumage-sun-kirch, kingfishers, \&c.; kites, hawks, and owls are numerous; and the lakes and streams abound with water-for:l. Althongh thero is now no living member of the Struthidx, until four or five ceoturies ago Madagascar was the home of a very largo bird of this family, the extinct EDpyornis, Those cggs, found in a sub-fossil state, are the largest known ( $12 \frac{1}{2}$ iuches by $9 \frac{1}{8}$ inches). The island is alnost, if not quite, free from deadly serpents, but contains two or three small species of boa; crocodiles abound in the rivers and lakes, and numerous species of lizard, chameleon, and tree-frog inhabit the moods. There are several peculiar tortoises, but the gigantic species are extinct on the mainland, and are now only found alive on the little ssland of Aldebra to the nortl. The insect life comprises many brilliantly coloured beetles, butterflies, moths, spiders, locusts, and flies, and also noxious spiders, and scorpions and centipedes. As a whole, the Madagascar fauna is marked by a strong individuality, which would appear to be the result of long isolation from the other zoolcgical "regions."
Numerons interesting questions snggested by the peculiar fauna are closely connected with the physical geography cf the island, and that of the numerous groups of small islands to the north and north-east. The Asiatic and Malayan affinities of many of its animals, as well as the physical conditions of the bod of the restern part of the Indian Ocean, make it highly probable that Madagascar is the chief relic of a considerable archipclago formerly occupying that area, and now only shown by groups of small islanls, and by coral ntolls and subails, whishl are gradually disappearing beneath the waves. These questions have been most fully treated by Mr. A. R. Wallace in his Geographical. Distribution of Animals (vol. i. chap. ix.) and Tslund Jife (chap. xix.).

The people of Madagascar, who are collectively known by the name of Malagasy, are divided into a considerable number of tribes, each having its own distinct name and customs. Althongh by its geographical position the country is an African island, a large portion, if not the majority, of its inhabitants appear not to be derived from Africa, but to belung to the Nalayo-Polynesian stock. This is inferred from their similarity to the peoples of the Indian and Pacific archipelagoes in their physical appearance, mental habits, customs, and, above all, in their language. Their traditions also point in the same direction. There is, howevor, an undoubtcd African misture in the western and some other tribes; and there is also an Aral elcment both on the north-west and sonth-cast coasts. It is believed that thero are traces of an aboriginal people who occupied portions of the interior before the advent of tho present inhabitants, and these appear to have been a somewhat dwarfish race, and lighter-coloured than the Malagasy generally. Looked at as rogards their present geographical position, the peoplo of Madagascar may be classed in three divisions: the castern, including the Bétsimisìraka, Bezinnozàno, Tanàla, Taisilka, and Taimòro; the central, including tho Sihànaka, IIova, Bétsiléo, and Bira ; and the western, comprehonding a number of peoples commonly known under tho namo of Sakalika, because this tribe conquered all the others, but each of which retains also its own proper name. Of all these the Hiva, who occupy the central province of Imerina, are now the dominant tribe; they appcar to bo the latest immigrants, and are the lightest in colour ; and they are also the most adranced, intelligent, and civilizcd of all the peoples inhabiting the island.

As regards both language and customs, there appears to be a wider diference between the Ifora and all the eurrounding tribes than exisis between any of these
latict, although living on opposite sides of the island, far sciparate from one another. The most striking proof of the virtual unity of the inhabitants of Madagascar is that there is substantially but one language spoken over the whole country. Thero are considcrable dialectic differences both in yocabulary and in pronusciation, but there is no evidence that any other distinctly differcnt language was ever spoken iu any part of the island. The Malay affnities of Dralagasy were noted more than two lundred and seventy years ago ; indeed, the second and fifth books published upon the country (in 1603 and 1613) were coniparative rocabularies of these two languages. Fuller and later investigations have quite confirmed the conclusions thus carly arrived at ; and very recently Tan der Tuuk, Marre de Marin, and W. E. Cousins have shown conclusively the close relationships which exist between the language of the Malagasy and those of tho Malayan and Polynesian regions. The Nalagasy had never invented for themselves a written claracter, and lad consequently no manuscripts, inscrip. tions, or books, until their language was reduced to writing by English missionaries about sisty years ago. ${ }^{1}$ Their speech nevertheless is very full iu many of its verbal and other forms, while it also exhibits some curious deficiencies. It is very soft and musical in sound, full of vawels and liquids, and free from all harsh gutturals. Native oratory abounds in figures, metaphors, and parables; and within the last five or six years a large number of folk-tales, songs, and legends have been brought to light which, together with the very numerous proverbs, give ample evidence of the mental ability and imaginative powers of the Malagasy.
While the people are not civilized in a European scnse, ('ivilizathey are not a savage race, and some of the tribes cantion. hardly be classed among barbarous peoples. They have never, for instance, fallen into the cannibal practices of many allied races in Polynesia; and the tribal instincts are strong among all sections of the population. They are law-obeying and loyal, living in settled commanities, in rillages which are often fortified rith considerable skill, with a goverament of chiefs and elders, a development of a primitive patriarchal system.

Native society in Imérina anong the Hòra is divided lamks of into three great classes: the Andriana, or nobles; the Hìva, suciety. freemen or commoners; and the Andero, or slaves. The Andriana, however, although genero!!y termed "nobles," are, strictly speaking, royal clans, being descendants of the families of several of the petty kings or chicfs who once ruled small divisions of the central province, and who were conquered, or otherwise lust their authority, through the increasing power of the ancestors of the present reigning family. Their descendants bave retained certain honours in virtuc of their rojal origin, such as special terms of salutation, the use of the smaller scarlet rumbrella (the larger one is the mark of royal rank), the right to build a particular kind of tomb, dc.; they also cnjoy exemption from certain Covernment service, and from some punishments for crime. There are six ranks of Andriana be sides the royal clau, and many mombers of the ligher ranks hold their lands on a kind of feudal tenure from the sovereign. They form a large proportion of the people, whole villages boing often occupied almost cutirely ly them and their slaves, and they monopolize some haudicrafts. Many are very poor, and there are no out ward distinctions in dress, dic., betrecn them and the people generally.

[^33]The Hora ${ }^{2}$ or commoners form the mass of the free population of Imetina. They are composed of a large number of tribes, who usually intermarry strictly among theroselves, as indeed do families, so that property and land may be kept together. Hitherto they have also been divided into two great sections-the böroàno or civilians, and the midramila or military class; but this distincton does not follow tribal lines, members of the same family belonging to both classes; and the Andriana are also almost all members either of the civilian or the military orders.
The third great division of native society compriscs the slave population. Until the year $18 i 7$ it was also again subdivided into three classes :-(a) the Zìza-hòva, that is, "offispring of the Hora," or free people who have been reduced to slavery for debt or for political or criminal offenoes; ( $b$ ) the Andèvo, or slaves proper, mostly the descendants of people of other Malagasy tribes who have been conquered by tho Hòra, and thus have become their slaves; and (c) the Mozambiques or African slaves, whose ancestors or they themselves have been brought across from the African coast by the Arab slaving dhorrs. These last, however, were in 1877 formally set free, and will be henceforth mostly reckoned among the Hòva.
Royalty and chieftainship in Madagascar has many poculiar customs connected with it. It still retains a semisacred cbaracter, the chief being in heathen tribes, while living, the high priest for his people, and after death worshipped as a god; and in its modern development among the Hova sovereigns it has gathered round it much state and ceremony. There are many curious examples of the $t a b u$ with regard to actions connected with royalty, and also in the words used which relate, to Malagasy sovereigns and their surroundings. These are particularly seen in every thing having to do with the burial of a deceased king or queen. ${ }^{2}$

While the foregoing description of native society applies chiefly to the people of the central province of Imérina, it is more or less applicable, with local modifications, to most of the Malagasy tribes, amongsi aimost ali of whom similar distinctions of rank are found. In modern times a kind of non-hereditary nobility has arisen, derived from military "honours"; and the tendency of recent changes in the native government is to depress the old fendal authority end influence, and to make it subservient to the army and its officers.

The chief employment of the Malagasy is agriculture, a large portion of their time being spent in the cultivation of riee, their staple food. In this they show very great ingenuity, the kètsa grounds, where the rice is sown before transplanting, being formed either on the margins of the streams or in the hollows of the hills in a series of terraces, to which water is often conducted from a coosiderable distance. In this agricultural engineering no people eurpass the Bétsiléo tribes. No plough is used, but all work is done by a long-handled spade; and oxen are only employed to tread out the soft mud preparatory to transplanting. The other processes are very primitive: the rice is threshed by being beaten in bundles on stones set upright on the thressing-floor ; and when beaten out the grain is stored by the Hova in rice-pits dug in the hard red clay, but by the coast tribes in small timber houses raised on posts to protect them from vermin. In preparing the rice for use it is pounded in a wooden mortar to remove the husk, this work being always done by the women. The manioc root is also largely consumed,

[^34]together with several other routs and many vegctables; but little animal food (save fish and freshwater Crustucea) is taken by the mass of the people except at festival times. Rice is used less by the western tribes than by those of the central and eastern provinces, and the former people are more nomadic in their habits than are the others. Large herds of fine humped cattle are kept almost all over the island.

The central and eastern peoples have a considerable amonnt of manual dexterity. The women spin and weave, and with the rudest appliances manufacture a variety of strong and durable cloths of silk, cotton, and hemp, and of rofia palm, alue, and banana fibre, of elegant patterns, and often with mach taste in colour. They also mako from straw and papyrus peel strong and beautiful mats and baskets in great variety, some of much fineness and delicacy, and also hats resembling those of Panama. The pcople of the sonth and south-east make large use of soft rush matting for covering, and they also prepare a rough cloth of bark. Their non-employment of skins for clothing is a marked distinction between the Malagasy and the South African races, and their nse of vegetabie fibres an equally strong link between them and the Polynesian peoples. The ordinary native dress is a loin-cloth or salìha for the men, and a kitamby or apron folded round the body from waist to heel for the women; both sexcs use over this the limba, a large square of cloth folded round the body something like the Roman toga. The Malagasy are skilful in metal sorking; with a few rudelooking tools they manufacture silver chains of great fineness, and filagree ornaments both of gold and silscr. Their iron-work is of excellent quality, and in copper and brass they can produce copies of anything made by Europeans. They display considerable insentive power, and they are exceedingly quick to adopt new ideas from Europeans.

There is a considerable variety in the houses of the Honser different Malagasy tribes. The majority of Hòva houses ank are built of layers of ihe hard red clay of the country, with villagea high-pitched roofs thatched with grass or rush. The chiefs and wealthy people have kouses of framed timber, with massive upright planking, and uity $^{2} \mathrm{ty}$ roofs covered with shingles or tiles. The forest and coast tribes make thcir dwellings chiefly of wood framing, filled in with the leafstalks of the traveller's-tree; with the leaves themselres forming the roof covering. The houses of the Bétsiléo ànd Sakalara are very small and dirty, but those of the coast peoples are more cleanly and roomy. Among the Hova and Bétsiléo the old rillages were always built for security on the summits of lofty hills, around which were dug several deep fosses, one within the other. In other districts the villages and homesteads are enclosed within formidable defences of prickly pear or thorny mimosas.

The country is very deficient in means of communication. There are no roads or wheeled rehicles, so that all goods are carried either by canoes, where practicable, or on the shoulders of bearers nlong the rough paths which traverse the country, and which have only been formed by the feet of the travellers. Intercourse between distant portions of the island is therefore very limited, bnt a large quantity of European goods is bronght up to the capital city and its neighbourhood, and a good deal of native produce is taken down to the coast. Commerce is gradually increasing, as shown by the consular returns, the chief articles of export being builocks, rice, hides, ròfia palm cloths (rabànnas) and fibre, and also gum-copal and indiarubber, although the yield of these products has latterly much diminished. Coffee is being planted to some extent by creole traders, and is like.'y to become a staple article of export, and from the natural fertility of the soil almost
unlimited quantities of most tropical produce could be obtained-sugar, coffee, rice, cotton, tobacco, indign, spices, \&ic. The chief imports are European and American calicoes and prints, hardware, and spirits. ${ }^{1}$ On the west coast a sea-going canoe with outrigger is employed, but in the south-east an ingeniously constructed boat, with all the timbers tied together, is used for going through the heavy surf. A considerable number of European traders are ecattered along the coasts, especially at Tamative and other eastern seaports, and there is a large Arab and Indian community in the north-western ports. There is no native coinage, but the French five-franc piece or dollar is the standard, and all sums under that amount are obtained by cutting up these coins into all shapes and sizcs, which are weighed with small weights and scales into halves, quarters, eighths, twelfths, and twenty-fourths of a dollar, and are even reckoned down to the seven-hundred-and-twentieth fraction of the same amount.
Worals. Apart from the modern influence of religious teaching, the people are very immoral and untruthful, disregardful of human life and suffering, and crucl in war. Until lately polygamy has been common among all the Malagasy tribes, and divorce effected in an absurdly easy fashion. At the same time the position of woman is much higher in Madagascar than in most heathen countries; and, since for more than fifty years past there have been (with a fer months' exception) only female sovereigns, this has helped to give women considerable influence in native society. Among some of the tribes, as, for instance, the Bära, there is ofteu a shameless indecency of speech and gesture. The southern and western peoples still practice infanticide as regards children born on several unlucky days in each month. This was formerly the general practice all over the island. The old laws among the Hova were very barbarous in their punishments, and death in various cruel forms was inflicted for very trifling offences. Drunkenness is very prevalent in many parts of the island (except in Imérina, where it is much restrained by the laws) ; and it can hardly be said of many of the Malagasy that they are very industrious. But, on the other hand, they are courageous and loyal to their chiefs and tribe, and for short periods are capable of much strenuons exertion. They are affectionate and firm in their friendships, kind to their children and their aged and infirm relatives, very respectful to old age, most courteous and polite, and very

[^35]hospitable to strangers. Although slavery has cxisted among them from time immemorial, it bears quite a patriarchal and family character, and is seldom exercised in a cruel or oppressive way. In 1877 all the dfrican slaves who had been brought into the island were formally set free; the other slaves are still retained in servitude, but probably with the adrance of Christianity slavery will eventually pass away.

In their religious notions and practices the Malagasy seem to occupy a middle position among beathen peoples. On the one hand, they have never had any organized religious system or forms of worship; there are no temples, images, or stated seasons of devotion, nor is there a priesthood, properly so called. On the other hand, they pave never been without some distinct recognition of a Supreme Being, whom thcy call Andrianènitra," The Fragrant One," and Zinaharry, "The Creator,"-words which are recognized all over the island. They have also retained in their public and oratorical forms of speech many ancient sayings, proverbial in their style, which enforce many of the truths of natural religion as to the attributes of God. With all this, however, there has long existed a kind of idolatry, which in its origin is simply fetichism, the belief in charms-worthless objects of almost any kind-as having porer to procure various benefits and protect from certain evils. Among the Hòva in modern times some four or five of these charms had acquired special sanctity and renown, and were each honoured as a kind of national deity, being called god, and brought out on all public occasions to sanctify the proceedings. Together with this idolatry there is also a firm belief in the. power of witchcraft and sorcery, in divination, in lucky and unlucky days and times, in ancestor worship, especially that of the ecvereign's predecessors, and in several curious ordeals for the detection of crime. The chief of these was the celebrated tangena poison ordeal, in which there was implicit belief as a test of guilt or innocence, and by which, until its prohibition by an article in the Anglo-Malagasy treaty of 1865 , thousands of persons, mostly innocent, perished every year. Sacrifices of fowls and sheep are made at many places at sacred stones and altars, both in thanksgiving at times of harvest, \&c., and as propitiatory offerings. Blood and fat are used to anoint many of these stones, as well as the tombs of nncestors, and especially those of the Vazimba, the supposed aboriginal inhabitants of the central provinces. In some of the southern districts it is said that human sacrifices were occasionally offered. The chief festival among the Hòva, and almost confined to them, is that of the New Year, at which tine a kind of sacrificial killing of oxen takes place, and a ceremonial bathing, from which the festival takes its namo of Fandròana (the Bath). Another and more general feast is at circumcision times. This rite is observed by royal command at intervals of a few years; these are occasions of great rejoicing, but also of much drunkenness and licentiousness. Funerals are also times of nuch feasting, and at tho death of people of rank and wealth numbers of bullocks are killed. Although, as already observed, there was no proper priesthood, the idol keepers, the diviners, the day-declarers, and some others formed a class of people closely connected with heatlen customs and interested in their continued observance.
Histors. - From the carlicst accounts given of the poople of Madagascar by Enropesn travellers, as well as from what may be inferred from their present condition over a large portion of the island, they seem for many centuries to have been divided into a number of tribes, caeh occupying its own territory, and oftea divided from tho others by a wide extent of uninlabited country. Each of theso was undes its own chicf, and was often at war with its neighthours. No one tribe secmis to have gained any great ascendency over tho rest until about two lundred amd thirty years ago. when a small but marlike prople
called Sakalaya, in the south-west of Maangasear, adranced nortnward, conquered all the inhabitants of the western lialf of the island, as well as some northern and central tribes, and eventually founded two lingdoms which retained their supremacy until the close of last century. About that time, however, the Hova in the central provinco of Imériaa began to assert their own position under two warlike and energetic chicftains, Andrianimpoina and his son Padama; they threw off tho Sakaliva anthority, and after severa? wars obtained a nominal allegiance from them ; they also conquered the surrounding tribes, and so made thenselves virtual kings of Madagascar. Since that time the IIOra authority las been retained over the central and eastern provinces, but is only nominal over much of the western side of the island, while in the sonth-west the yeople are quite independent, and aro still nuder their own petty kings or chiefs.

While European intercourse with Madagascar is comparatively ccent, the connexion of the Arabs with the island dates from a ery remoto epoch; and in very early times settlements were formed joth on the north-west and south-east coasts. In the latter locality there are still traces of their intluence in the knowledge of Arabic possessed by a few of the people; nad it is asserted that the ruling clans of the Tanala and other tribes in that district are all of Arab descent. But in these provinces they have almost lost all separate existence, and have become inerged in the general mass of the people. It is different, however, in the north-west of tha island. Here are several large Arab colonies, oecupying the ports of Amorontsànga, MDjanga, Marovoay, nud Morondiva, and retaining their distinct nationality, together with their own dress, labits, houses, worship, and language. There is also in these districts a Hindu clement in the population, for intercourse las also been maintained for some centuries between India and northern Madagascar, and in some towns tho Banyan Indian element is as prominent as the Arab one, and Hinlu dress, ornament, music, food, abd speech are marked features in the social life of these ploces. In the early times of their intercourse with Madagascar, the Arabs had a very powerful and marked influence upon the Malagasy. This is seen in the number of words derived from the Arabic which are found in the native langnage. Among these are the names of themontbs and the days of the week, those used in astrology and divination, some forms of salukation, words for dress and bedding, money, musical instruments, books and writing, together witll a number of miscellaneous terms. These form enduring menorials of the influcnce the Arabs have oxerted upon Malagasy civilization, and also on their superstition.

## Euro-

 The island is mentioned by several of the early Arabic writers tercourse size and position. Marco Polo has a chapter npon it, and terms it end at. Madeigascar, but his accounts are evidently confused with those of tempter the mainland of Africa. The first European voyager who saw coloniza- Madagascar appears to have been a Portagnesa captain named tion. Fernando Soares, in command of a squadron of cight ships from the flect of Don Francisco do Almeida. On his way home from India he sighted the island on the Ist of February 1506. The Portuguese gave names to mest of the capes, but made 110 persistent attempts nt colonization. After them the Dutch endearonred, but with little success, to form colonies; and in the time of Charles I. proposals were made to form an English "plantation," but these were never carried into effact, although for a short time there was a settlement formed on the south-wast coast. In the latter jint of the 17 th and during most of the 18 th century the French attempted to establish military positions at various places on the east coast, but with little permancat result. Far some time they held the extrame south-east point of the island at Fort Dauphin ; but several of their commandants were so incapable and tyrannical that they were frequently involved in war with the people, and mere than once their stations were destroyed and the French were massaered. Early in the present centary all their positions on the mainiand were relinquished, and they now retain nothing but the islands of St Maric on the east ceast and Nosibé on the north-west. No forcign power now holds lany portion of DIadagasear, for the native Government has jealously 'reserved all territorial rights to itself, and will suffer no purehaso of land by foreigners, allowing it only to be held on short leases.The political history of IIdagascar as a whole may be said to date from the reign of Radima I. (1810-23). The ancestors of that king had been merely ehiafs of the central provinces, but he was the first to claim by right of conquest to be supreme ruler of the whole island, althongh actually exereising ancuority over less than two-thirds of its surface. Radama was a man mucli in advance of his age, -shrewd, enterprising, and undeterred by difficulty, - $n$ kind of Peter the Greato f his time. He saw that it was necessary for his peoplo to be cducated and civilizen if the country was to progress; and making $n$ treaty with the governor of Manritius to abolish the export of slaves, he recei; ed every jear jn compensation a subsidy of arms, ammunition, and uniforms, as woll as English training for his troops. He was thas enableal to establish his authority oye: a large portion of the island, and, althongh this was often effected with munh eruelty, the ultionate results were bene-
fleial to the country ns a whole. A number of native yenths were sent to Mauritius, and others to England, for education and instruction in some of the arts of civilization, ns well ns in seamanship.1 For some years a British agent, Mr Hastie, resided at Radama's conrt, and exercised a proweriul influence over the king, daing very much for the material advance of the conntry. At the same jeciond (1820) Cliristian teaching was commence $\frac{1}{}$ is the eapital by the London Missionary Socicty, and by the efforts of its missioneries the language was for the tirst time reduced to a systematic written form, and the art of printing introduced; books were prepared, the Scriptnres woro translated, pumerous schoole trere formed, and acveral Christian congregations were gathered togetler. The knowledge of many of the uscful arts was also imparted, and many valuable natural productions were discovered, and their pre. paration and manufacture taught to the people. At the same time the power of superstition was greatly broken, a result partly due to the keen good sensa of the king, but chiefly te the spread of know. ledge and religious teaching.

The bright prospects thus opening up for the country were form-5 clouded by the death of Radima at the early age of thirty-six, and lour \& the scizure of the royal autherity by one of his wives, the l'rincess Ranavilona. Superstitious and despatic in temper, the new sovereign looked with much suspicion upon tho ideas then gaining power among many of her people, and after a few years of tentporizing she at langth determined to strike a decisive blow at the new taaching. In 1835 the profession of the Christion religion was declared illegal ; all worship was to cease, and all religions books were ordered to be given up. By the middle of the following year ell the English missionaries were obliged to leave the island, and for twenty-five years the most stranuous efforts were made by the quaen and her Government to suppress all opposition to her commands. This, however, ouly served to show in a very remarkablo mamner the courage and faith of the Christian Malagasy, of whon about two lundred suffered death in various cruel forms, while many lundreds were punished more or less severely by fine, degradstion, imprisonment, and slarery. During the queen's reign the politieal condition of the country was deplorable ; there were frequent rebellious owing to the oppressive nature of the government ; inany of the distant provinces were desclated by barbarous wars; and for some years all Europeane were excluded, and forcign cemmeree almost ceased. This last cirenmstance was partly owing to an ill-managed attack upon Tnmatave in 1846 by a combined English and Fiench force, made te redress the wrongs inflicted upon the foreign traders of that port. But for the leaven of Christisnity and education which had been introduced into the country it would have quite reverted to a state of barbarism.

This reign of terror was brought to a close in 1861 by the death Radamio of the queen and the accession of her son Radama II. . He island II. was reopened to European trade, and missionary efforts were recommenced. A determined attempt was made by some enterprising Frenchmen to gain for their country an overwhelming influance by mans of a treaty which they induced the king to sign. But this act, as well as the vices and insane follies into which he was led by worthless fareign and native favourites, soon brought his reign and his life to an cud. He was put to death in his palace (1863) after having reigned for less than two years, and his wite was placed on the throne. The new suvereign nnd her Government refused to ratify the agreement which had been illegally obtained, choosing rather to pay a million franes as compensation to the French company. During the five years' rcign of Queen Rasobérina, quiat and steady Rasohé advances were made in civilization and education, and treatics were rina. conelnded witl the English, French, and American Governments.

At the death of Raselerina in 1868, she was sueceeded by hel Fanaw cousin, the present (1882) sovereign, Ranavalona II. One of the loma IL first acts of the new queen was the public recognition of Christianity; and very soon aftarwards she and her husband, the primo minister, were baptized, and the arcetion of a chapel royal was commenced iu the palace yard. These aets were followed in the succeeding year by the burning of the royal idols, and inmmediately afterwards by the destruction of the idols thronghout the central provinces, the people generally putting themsclves under Christian instruction. Since that time cducation and enlightenment have male great progress, ehicfly through the labours of the London Nissiouary Socicty's missionaries, with whom are alse associated severnl agents of the Friends' Forcign Mission Association. About 1200 congrega tions have been formed, and about 900 schools, in which nearly 50,000 children receire instruction; and there are also normal schools and colleges where teachers, pastors, evangelists, and tho sons of the upper classes are well cdueated. A considerable amount of literature has bean prepared, and several printing prasses are constantly at work. Very marked advance has been made as regards the morality of the people by the suppression of the grosser aml more open forms of vice, the alonlition of polygamy, and the resthictions placed upon arlitrmy divoree. All the barbarous pmislal ments of the olel laws lave been done away with; and the only war carriced on during the present seign was conducted with sucly humanity as well as sagacity tlat juence was suecdily westorulb

Although these changes have as yet only affected about a fourth part of the whole population, there is reason to believe that the influcnces at work in the centre of the islaud will erentually affect all the different tribes. Alissionary work is also carricd on by Engligh Episcopaliers (S. P. G.), Norwegian Lutherans, and French Roman Catholics.
Tho governinent of Madagasear during the present century bas been and still is monarchical theoretically despotic, but practically limited in various ways. Radima 1. and Rauavalona 1. Were much wore absolute sovereigns than those before or after them, but even they were largely restrained by public opinion. New laws are announced at large assemblies of the people, whose consent is asked, and always given through the headmen of the different divisions of mative socicty; and this custom is no doubt a "survival" from a time when the popular assent was not a merely formal act, as it has now almost entirely become. The large disciplined armay formed by Radama I. aided mach in changing what was formerly a somewhat limited monarchy into an absolute one. The Hòva queen's authority is maintained over the central and eastern portions of Madagascar, and at almost all the ports, by governore appointed by the queen, and supported by small garrisons of Hova troops. At the same time the chiefs of the various tribea are left in possession of a good deal of thcir former honours and influence, so loug as they acknorledge the suzerainty of the Hova sovereign, and periorm a certain amount of Goverament service. The prescint queen and her predecessor have both been married to the prime rainister, a man of great ability and sagacity, who, by his position as husband and chief adviser of the sovereign, is the virtual ruler of the country. Chiefly owing to his influence, the last five or six years have beon marked by the introduction of scveral measures tending to modify the gevernment of the country and improve the administmatiou. The purpose of these new laws is to weaken the old oppressive fendal system ; to remodel the army; to appoint a kind of local magistracy and registrars; to encourage oducation ; and to form a responsible ministry, with departments of justice, war, education, ngrieulture, commerce, revenue, \&c.
Owing to the conservative habits of the people, considerable time will probably elapse before all these measures are carricd into effect, but their mere enactment is a proof of the progress of enlightened ideas. Until lately the military service has been very oppressive upon certain classes, being for life, and without any pay; but it is now to be made compulsory upon all, and for short periods only. The Hova army has becn variously estimated at from 30,000 to $40,000 \mathrm{men}$, althongh it is popularly termed $n y$ Folo-cilin-dìhy, i.e., "the Ten ten-thousand men." Military rank is reckoned by numbers, from one "honour," that of a private, to sixteen "honours," the rank of the highest officer ; but scveral of the English words for difcerent ranks are employed, as a sergeant, captain, general, marshal, sce. Justice has hitherto been administered by a number of unpaid judges appointel by tho sovercign, and they generally sit in the open air. There appears to be a somewhat small amount of crimes of violence; but cattlć-stealing raids made by oue tribe upon another are a frequent cause of petty wara away from the Hoba authority. The revenue of the Government is derived from customs duties, first fruits, fines and confiscation of offenders' property, and a money offcring called hesina, presented on a great variety of occasions both to the sovereign iu person and to her representa ${ }^{\text {E }}$ tives; and these are supplemented by "beuevolences" (in the medirval sense of the word) levied upou the people for occasional state necessities. Besides these, the Govermment claims the unpaid service of all classes of the community for all kinds of jublie work. Consuls appointed by the Enslish, French, and American Governments are accredited to the Malagasy sovercign, and the queen has a consul in England, and a consular agent at Mauritius. During the late Lord Clarendon's tenure of ollice as foreign secretary au understanding was come to betwoen the English and French Governments by which it was agrecd that each power should respeet tho independence of Madagascar; and, although the iutrigues of Jesuit priests have more than once fomented diffenlties between the native Government and the French, it may be hoped that the home authorities in France will still refinse to interfere, end will allow the Malagasy - undisturbed by fear of foreign invasionquietty to advance in that path of progress which they have for some years been following with such happy results. The best prospects for the future of the country would appear to be bound up in the gradual consolidation of the contral Hova authority over the whole island, bringing to every part of it those civilizing and enlightening iuflucuces which have already worked such changes in tho central provinces,
Antananarlvo, tho capital of Madagascar, is by far the largest city in the island. It has about 100,000 inhabitanta, and has been almost rebuilt during the last twelve years, the old timber and rush louses being nearly all replaced by much larger and more substantial ones of sun-driod brick and stone, constructed in Juropean fashiph. A group of royal palaces, with lofty roofs and stonearched veramiahs, erowns the eummit of the ridge on and around which the city is built, and hardly less conspicuous is the graud
new residence of tho prime minister. Four haudsome stone memorial churehes, with spires or towers, mark the spots where the Christian martyrs suffered; and other prominent buildinga are the Chapel lioyal, the Norwegian and the Romau Catholie clurches, the London Missionary College, the London Missionary Society and the Friends' normal schools, mission hospitals, the court of justice, and numerous large Congregational churches of sun-dried brick.
Next to the capital in size are the pert of Mojanga, on the northWest coast, with about 14,000 inhabitants; Tamative, the chief eastern port, and Fianàrantsoa, the chief town of the Bétsiléo, each with about 6000 people; and Ambohimanga, the old capital of Imérina, with about 5000 . There are very few places besides these wilh as many as 5000 people, and the majority of native towns are small. The population is dense in two or three districts ouly, and the entire island is variously estimated to contain from four to five millions of inhabitants.

Literahure - A considerahle number of books have been written upon Bfadagsscar, both in the Eaglish und Freach languages, but many of the latter are of little value. And during the last twenty yearsa grest many pupers npon the exploration, natural resources, animas and vegetable lite, and political and religions condition of the country have appeared in various periodicals and in the Proccedings of
the diferent learned societies, both English and Freach. In the following list a no attempt is made nt complefeness, hat only to select the most important of each class. As recards the scientific aspeets of the country, almost everything worth preserving in previous books and papers will be faclnded in the magnificent work now in eourse of publication in twenty-cight sto vols. by M. Alfred Grandidier, entitled, Histoire Aaturelle, Dhysique, el Politique de Badagascar. Of this magnum opus four volumes are already issued.
of books treating of the conitry generally, the following are the most nateWorthy :-1Inmond, Aludagascar, the Richest and most Frevtfull 1 sland in the Frovth, London, 1643; Boothby, A Breife Discovery or Descriplion of the most famous /sland of Madagascar or St Laurence. Londun, 1664; Flscourt, Jistoire do 1 a grande Isle de Madagascar: D'aris, 16js; Madagascar, or Robert Drurlis Jowrnat de sfaurice Auguste comto de Benyouski, Paris, 1791; Iochon, Voyages à Moadagascar, ic., Puris, an x.; Froberville, Histoire de Madagascar: Isle do France, 1809; Copland, A Mistory of the Istand of Madagascar, Lendon, 1822; Ellis, Hıtory of Madagascar, London, 1838; Lequevel de Lacombe, Voyage à Madagascar et́an. iles Coniores, Paris, 1840 ; Guiluin, Documents sur...Ia partie occiddalale de Madugasear, Paris, 1845; Mace Descartes, Histoire ct Giographte de Madagasear, Paris, 1816 ; ELlis, Thrce lisits to Madagascar, London, 1859 ; Oliver, Madagascar and the Mralagasy, London, 1863 ; Sibree, Mfadagascar and its People, London, 1870; artieles in Retue des Deux Mondes, 1572; Tantara ny Andriana cta Afadagascar: Ifistoire des Rois d'Imerina d'après les manuscrits Malgaches, Antanànarlvo, 1575 ; 3Iulena, Twelve Xfonthe in Bfadagasear, Lradon, 1875 ; Blanchard. L'lle de Adadagascar; Paris, 1875; Dahle, Madngaskar og dels Rebpere, Christiania 1876-78: The Antananarivo Annual, Noa, i.-v., 1875-81; and Sibrce. The Great African sslaud, London, 1880, and "The Arts and Commerce of Madagasear," Jour. Soc. Arts, Jume 4, 1880.
Philology.-Hontman, Spraak endo teoord boek in de Maleische ends Aradagaskiarsche talen, Amsterdam, 1603 ; 「oyage de C. van Heenssherk; vocabulaive de la langue parlde dans rile Suint-Laurent, Amsterdam. 1603 ; Megiscr, Beschreilung der Afchtigen und Weitberhünblen Insul Afodagascar, with dictionary and dialogucs, Aitenburc, I609; Arthris, Colloquia LatinoMaleyica et Afadagascarica, Frankfort, I613; Challand, Tocabulaire francaismalgache el malgache-frangais, $11 e$ de France, 1773; Froberville, Diction-

 de fa Cortettel Astrolabe, volnme on "Philologie, Paris, 1833. Freenan and Joins,
Diclionary pf the Afalagasy Language (Eng.-Mal. and Sfal.-Eng.), Antananarivo, IS35; Dulmend, Socabulairc et Grammaire pour les langues Malgaches, Sitikalara cl Beitsinzisara, Bourbon, $1842 ;$ R. C. Nissionatics Dictionnaire FrancaisMalguche, Rénnion, 1553, and Dictionnaire sfalgache-Fraņ̧ats, Péunion, 185b; Van der Tuuk, "Outhnes of a Grammar of the Malagasy Language", Jour. Roy. Asiat.
Soc. 1860 : Ailloud, Grammare Malgache-Hoba, Antanara)vo, 1872 : W, E., Soc., 1860; Ailloud, Gramunure Malgache-Abva, Antunaranilvo, 1872, W. Li: Consins, Concise Introduction to the Study of the Afalagusy Language as sposen Marte de Binin, Grammaire Malgache, Psisis, 1876; 1d., Fssai sur le Mfalgarhe, ou L'iude comparée des langues Javanaise, Malgache, el Nalayse, Paris, 1 s76; Id., Le Jardin des Racincs Oceaniennes, Pais, 1876 ; Dhhle, Specimeas of Jfalajasy Folk-lore, Antan., 1877 ; anl W. E. Cuuslns, "The Malagasy Langusge," in Trans Jhit. Soc., 187s. Besides these there are several valanble papers by Dahle in the yearly numbers of Tho Antanànartvo Annual (anfc), and a number of short rocubularies of const and other dialceta of Malagssy in the notes of various exploratory journcys published at Autanamarivo, noticed below.
Scientific: Geneyal and Exploratory,-VInsan, Yoyage i Madagascar, Pars, 1865: Coignet, "Foxenrsion sur la Côte Nord-eat de l'fle do Msdagasear," Bull. Soc. Gicog. Sept. et Oct, 1867; Grmndidfer, "Matagascar", Buhl. Soc. Géog." Angust 1871; Id.."Excmision chez Ses Antamosses emicres Mulf. Soc. Gemg. Provinees of Madaguscur," Proc. Roy. Geog. Soc., Janumy 1875 ; Silvree, South-
 1877 ; ILlchardson, Lights and Shadows [Sonth-west Msdsgaseme], Antan., 1877 ; elasp, xl, vol, i., of Wiallaces Geographical Distribution of Animals, London. 1876.: Sluree, "Ouservislons on the Physical Geogranhy and Geology of MadagasMrdagasen, " Jroc. Roy. Geug. Soc., Octaber 1879; chap. xix. In Wallacos Istard
 tlona in South Madaguscu," Hoc, Roy, Geog. Soc, sept. 1882 . Tho best gences
 a large seslo ( $12 \frac{1}{6}$ miles to the luch), and inciudes almast every journey mada
up to that unte, but is aomewhat deficient as regards the delincation of tho up to that unte, bat
Zoologr.-Klug, "Insckten von Madagasknu", In Kon. Ak. der Tissensehaften, Berlln, I832; Bolsduval, Faumo Entomologique do Dfadagasear, Nc, Peris, IN33 Owen, Honegraph on tho Aye-aye, Lonlon. 1863; V'insmn, Arancides des Jles Red waion, Madagascar, \&C. Jards, 1863 ; Bates "Nntural llistory of Madafascar, froc. Zool. soc., 1S63; Sclater, "Mammals of Madagascar," Quart. Jour. Sci., April
 dinces, 3 vola., Lcyilen, 1867 sq.: Jlartlath, Dhe Tögel Madagascars und den benachbarten liselgruppen, Halle, 1877 : "helhyume Rut unberglanse-Zoologie," in the Bremen Naturwissenschafliche Vorein, April 1881: also very numeroue articles on Madaga=car milmals, blrds, \&ic., in f'roc. 2ool. Soc, 1863-81, and in Aun. and Mag. of Nat. Mist., 1863-81.
 animes des ciences harluclles, fors aradaguscartensis fragmenta, In Account, Historical and Phyaiologlcal, ni the Madagascar Polsou Orden
(TangMaia Fenenifua)," Jour. of Amal. and Phys., vel. viti.; articles on ferns
 "Reliquim Rutenbergiana," In the bremen Ninturicssensehartiche lerein, No vember 1880; Baker on "The Planis of Malispascirr," Vafure, December 9, 1880 and on "Botany of Mulugascarr," Proc. of Brif. Assoc., 1 ss1.
Anshropelogy.-Ollver. "The Ildras and ether Characteristle Titbes of Madaguscar." Jour. Authrop. Inst., 1868 : Wake, "Tho Race Elentents of thu Madecasses" foid., 1 si63: Nullens, "On the Oricin and Procress of the Peomle of Madagascar," Joid., 1sis; Wake, "Notes on the Origin of tho Malagasy;" Joid. 18ی1; Sibree, "Malagasy Folk-Loro and l'opular Superstitions,". Foll-Lore Soc. Recosd, 1880; Id., The Oratory. Songs, Legendo, and Folk-Tales of the Ma'agasy, 18s.?
Retigious Ifistory.-Freeman and Johns, Sarratice of the Persecutions of the Chrisfusns in Jadagusc,nr, Londen, 1840: Ereut, Madagnsear, its Missions amb i.3 Jartyrs, London. 1863: Enlls, Madagascar fievisiled, London, 1867 : 1u., The Martyr Church, Lendon, 1369: "Religlen In MI Aevagascar," Ch. Quart. Rev., July 1878; and Ten years Reciew of yission Hork in Coancrion with the London 1878 ; and Ten Vears Reciew of Yission Work in Coincrion with the Londo
Wissionary Society, 1si0-80, Antan., 1880 . (J. S., jr.)

MADDALON゙I, a city of Italy, in the province of Caserta (Terra di Lavero), about $3 \frac{1}{2}$ miles south-cast of Caserta, with a station both on the railway from Casertu to Benerento and on that from Caserta to Avellino. It is prettily situated at the base of one of the Tiffata hills, the tewers of its medixval castlo and the church of San Michele crowning the heights above. The fine old palace of the Caraffas, once dukes of Maddaloni, the old college now named after Giordano Bruno, and the institute for the sons of soldiers (dating from 1859, and accommodating 500 pupils) are the chief points of interest. [n 1871 the population was 18,767 . About $2 \frac{1}{2}$ miles to the east, at Valle di Maddaloni, the Careline aqueduct (so called after Charles IV. of Naples), conveying the water of the Tiburno to Caserta (a distance of 19 miles), is carried across the valley between Monte Longane and Monte Gargano by a threefold series of neble arches rising to a height of 178 feet. The work was designed by Lodevico Vanvitelli, aud constructed between 1753 and 1759 .
Maddaloni (in medieval documents Matalonun, Hustalonum, and Magdalonuan) lies on the Appian Way, and is doubtfully ilentified with Sessuela. Its castlo and walls aro probably of Lonbard origin. The first count of Maddaloni was invested with the fief in 1465, the first duke in 1558 . In 1860 General Bixio's solunteers beat the royal Neapolitan forces at Maddaloni. See A. de Reuniont, The Carafas of Maddaloni, Bohn's serics, 1854.

MADDEN, Sir Frederic (1801-1873), one of the first palæographers and antiquaries of his time, and for nearly forty years assistant keeper and keeper of manuscripts at the British Museum, was bern at Portsmouth on February 16, 1801, the son of an officer of Irish extraction. From his earliest years be displayed a stroug bent to linguistic and antiquarian studies. In 1825 be was engaged in collating the text of Ciedmen for the university of Oxford, and assisting Dr Bliss in editing Blore's Monumental Remains; in the following year he joiued Mr Roscoe in preparing a catalegue of the earl of Leicester's MSS. at Holkham, which was completed in eight volumes folio, but remains unpublished. In the same year he was engaged by the British Museum to assist in the preparation of the classed catalogue of printed books at that time contemplated, and in 1828 he became assistant kceper of manuscripts. In 1833 he was knighted, and in 1837 succeeded the Rev. Josiah Forshall as keeper of manuscripts, which office he continued to bold until his retirement in 1866. Notwithstanding his indefatigable attention to his official duties, he found time for a great mount of exceediagly valuable literary work. Between 1828 and 1838 he edited for the Roxburghe Club the old English romances of Havelok the Dane (discovered by himself among the Laudian MSS. in the Bedleian) and William and the IFerwolf, and the old English rersions of the Gesta Romanorum. In 1839 he edited the aucient metrical romances of Syr Guwayne for the Bannatyne Club, and iu 1847 Layamon's Brut, with a prose translation, for the Seciety of Antiquaries. In 1850 the magnificent edition of Wickliffe's translations of the Scriptures from the original MSS., upen which he and his coadjuter, Mr Forshall, had been engaged for twenty years, was published by the university of Osford. In 1866-69 he edited the Historia

Winor of Y1 2 :bsw Paris for the Rolls series. In 1833 he prepared the literary part of Mr Shaw's work on Illuminated Ormments; and in $18 \mathbf{0} 0$ he edited the English translation of Silvestre's L'niversal Palxography. He had projected a history of chess in the Jiddle Ages; ill-bealth, however, and other causes, prevented the completion of the work. 110 dicd on March 8,1873 , bequeathing his journals and other private papers to the Bodleiau Library, where they are to remain unopened until 1920.
Sir Frederic Mindlen's attainments were grcat, and his services? to literature highly distinguishod. Ho wis perlaps the first praleographer of his day, and as keeper of manuserrpts was most zcalous and industrious, imposing a largo amount of manual as well as intellectual labour upon himself, and coutinually, although too often unsuccessiully, exerting himsclf to enrich tho collections committed to his carc. He was an acute as well as a laborious antiquary, but rather qualified for critical thau for original rescarch, and his unacquaintance with Gernan prevented his ranking high ns a philologer, although he paid much attcution to the early dialectical forms of French and Luglish. II is judgment was shown in the substantial value of the works edited by lim. Wickliffe's Bible is the first English version ; Layamon's Brut, a semi-Saxon paraphrase of the Norman Brut of Robert Wace, unites two ages of Euglish poetry; is an inestimable noumment of the languago at the preriod of its composition, and possesses no small poetical merit ; while Havelok is lardly less important in a philological and a metrical $10 i \mathrm{iut}$ of view. The first volume of his edition of Matthew Paris coutains a valuable critical introduction, and the third a biograply of the historian, with an estimate of his place in literature. Sir Frederic's minor contributions to antiquarian research wcre exceedingly numerous: the best known, perbays, is his dissertation on the ortlography of Shakespeare's name, which, mainly on the strength of the Florio autograph, he contends should be "Shaksperc." This modo of spelling has been adopted by the New Shakspere Society. It is not gencrally known that Sir Frederic was the first to discover the "Perkins" forgeries in the duke of Devoushiro folio Shakicypeare, although privato considerations induced him to leave the further elucidation of the matter to others. He also promptly detected the falrications of the Greck Sinonides, whicla had imposed upon sone of the first scholars in Gernany.
MadDEf, or Dyer's Maddfe, is the root of Rubia tinctorum, L., and perbaps of R. peregrina, L., as well, both being European; but $k$. cordifolia, L., and perlaps Mungista, Roxb., a native of the meuntains of Nepal, Bengal, Japan, \&c., supply the Indian madder or manjit (sce Pickering, Chron. IItst. of Pl., 421 ; Drury, Usejul Plants of Indiu, 541). Rubia is a genus of about thirty species of the tribe Galiex of the order Rubiacea, and much resombles the familiar Galiums, e.g., the lady's bedstraw and cleaver of English hedges having similarly wherled leaves, but the parts of the flowers are in fives and not fours, while the fruit is somewhat fleshy. The sole Dritish species is Rubia peregrina, L. The use of madder appears to have been known from the earliest times, as cleth dyed with it has been found on the Egyptian mummies. It was the ipevéizavov used for dyeing the cloaks of the Libyan women in the days of Herodotus (Herod., iv. 189). It is the éputpódavov of Dioscosides, who speaks of its cultivation in Caria (iii. 160), and of Hippocrates (De Sorl. Mrul., i.), and the Rubia of Pliny (xix. 17), (see Pickering, p. 275). Rubia tincturum, L., ", native of western Europe, dcc., has been extensively cultivated in South Europe, France, where it is called garauce: and Holland, and to a small extent in the United Staies! Large quantities have been imported into England from Smyrna, Trieste, Leghern, \&c. The cultivation, however, is decreasing since alizarin, the red colouring principle of madder, has been made artificially (see Alizarin), Madder was employed medicinally by the ancients and in the Middle Ages. Gerard, in 159 t, speaks of it as having been cultivated in many gardens in his day, and describes its supposed many virtues (Herball, p. 960 ); but the influeuce of madder over the system is now believed to be exccedingly slight. Its most remarkable physiological effect is that of colouring red the benes of animals fed upon it, as also the
claws and beaks of birds. This appears to be due to the chemical afinity of plinsphate of lime for the colouring matter (Pereira, Mat. Med., vol. ii. pt. ii. p. 52). Rubict chilensis, Mol., has been used for dyeing red from time immemorial (Pickering, p. 661). The chay-root, which furnishes a red dye in Coromandel and other parts of India, is obtained from Hedyotis umbellata, Lam., of the same family as madder (Drury, p. 366).

MADEIFA. The Madeiras, a group of islands in the North Atlantic Ocean belonging to Portugal, consist of two inhabited islands pamed Madeira and I'orto Santo, and three uninhabited rocks named collectively the Desertas. Funchal, the capital of Madeira, is on the south coast of the principal island, in $32^{\circ} 37^{\prime} 45^{\prime \prime} \mathrm{N}$. lat., $16^{\circ} 55^{\prime} 20^{\prime \prime}$ W. long. It is about 360 miles from the coast of Africa, 535 miles from Lisbnn, 1215 from Plymouth, 240 from Teneriffe, and 480 from Santa Maria, the nearest of the Azores. Funchal is connected by the Brazilian submarine telegraph, which belongs to a British company, with Lisbon on the one hand, and on the other with Brazil.

Madeira, the largest island of the group, has a length of 30 geographical miles, an cxtreme breadth of 13 miles, and a coast-line of 80 or 90 miles. Its longer axis lies east and west, in which direction it is traversed by a mountain chain, the backbone of the island, having a mean altitude of 4000 fent, up to which many deep ravines penetrate from both coasts, rendering travelling by land from place to place a very tedious and fatiguing labour. Pico Ruivo, the highest summit, stands in the eentre of the island, and has a height of 6100 feet, but some of the adjacent summits are very little lower. The depth and narrowness of the ravines, the loftiness of the rugged peaks that tower above them, the bold precipices of the coast, and the proximity of the sca afford many scenes of picturesque beauty or striking grandeur which are continually changing in claracter as the traveller advances on his way. The greater part of the ioterior is uninhabited, $\mathrm{fc}^{-7}$ the towns, villages, and scattered huts lie either at the mouths of ravines or upon the lower slopes that extend from the mountains to the coast. The ridges between the ravines usually terminate in lofty headlands, one of which has the beight of 1920 feet, and much of the const is bound by precipices of dark basalt. The north coast, having been more exposed to the erosion of the sea, is on the whole more precipitous than the south coast, and presents everywhere a wilder aspect. On the south there is left very little of the indigenous forest which once clothed the whole island and gave it the name it bears (Madeira, fromı materia, wood), but on the north some of the valleys still contain uative trees of fine growth. A long, narrow, and comparatively low rocky promontory forms the eastern extremity of the island, and hero is to be seen a tract of calcareous sand, known as the Fossil Bed, containing land shells and numerous bodies resembling the roots of trees, probably produced by infiltration. Upon an islet off this promontory stands the only lighthouse of the group. It has a flashing light visible at the distance of 25 miles in clear weather.

IIistory. - It las been conjectured, but on insufficieut evidence, that the Phonicians discovered Madcira at a very early period. Pliny mentions certain l'urple or Mauretanian Islands, the position of which with reference to the Fortunate Islands or Canaries might seem to indicate the Madeiras. Thero is a romantic story, of donbtful truth, to the effect that two lovers, Robert Machim and Anna d'Arfet, fleeing from England to Franco in 1346 , were driven out of their course by a violent storn, and cast on the coast of Madeira at the place subsequently named Machico, in memory of one of them. On the evidence of a portulano dated 1351 , preserved at Florence, it would appear that Madeira had been discovered long
previous to that date by Portuguese vessels under Genoese captains. In 1419 two of the captains of Prince Henry of Portugal were driven by a storm to the island called by them Porto Santo, or Huly Port, in gratitude for their rescue from shipwreck. The next year an expedition was sent out to colonize the island, and, Madeira being descried, they made for it, and took possession on behalf of the Purtuguese crown. The islands were then uninhabited. For the sixty years intervening between 1580 and 1640, Madeira, with Portugal itself, was under Spanish rule. In 1801 Pritish troops oxcupied the island for a few months, commanded by General Beresford, and it was again under the British flag from 1807 to 1814. Madeira is now a province and an integral part of the Portuguese kingdom, eatitled to send deputies to the Cortes assembling at Lisbon.

Inhabitants. -The iuhabitants are of Portuguese descent, with probably some intermixture of Moorish and Negro blood amongst the lower classes. The dress of the peasantry, without being picturesque, is peculiar. Both men and women in the outlying country districts wear the carapuça, a small cap made of blue cloth, in slape something like a funnel, with the pipe standing upwards. The men have trousers of linen, drawn tight, and terninating at the knees; a coarse shirt enveloping the upper part of their person, covered by a short jacket, completes their attire, with the exception of a pair of rough yellow boots. The women's outer garments consist of a gaudily coloured gown, made from island material, with a small cape of coarse scarlet or blue woollen cloth. At the end of 1881 the inhabitants of Madeira numbered 131,906 persons, the females exceeding the males by 7060. The population increases, notwithstanding the emigration to Demerara and the Hawaiian Islauds that occasionally takes place. There is strong reason for thinking that the islands are too densely peopled, considering the small proportion which cultivable ground bears to the whole, and the general want of capital.

Government.-The administration of affairs is in the hands of a civil governor appointed by the crown, under whom is a military officer in command of the troops, which consist of a battalion of infantry, a detachment of artillery, and some militia. The law of Portugal is administered by four chief judges, each of whom has a separate division (comarca) of the island in his jurisdiction, within which he tries both civil and criminal cases with the assistance of a jury. Magistrates elected by the people decide minor cases. For municipal purposes the island is divided into nine districts, called concelhos (Porto Santo forming a tenth), each of which has its popularly elected municipal clamber, whose duty it is to repair the roads, light and cleanse the towns and villages, \&c. The chief police magistrate of each district is the administrador, who is appointed by the central Government. $\Lambda$ bishop is at the head of the clergy, his cathedral being at Funchal. There are forty-eight parishes, each with its church and resident priest. Roman Catholicism is the established form of religion, but others are now tolerated.

Education.-By law all children of a certain age should be sent to school, but this regulation is not strictly enforced, and only a small fraction of the total number actually receive instruction. The chief educational establishment is the Lyceo at Funchal, where there are seven professors paid by Government. In 1881 the pupils at this establish: ment were two hundred and fifty in number. There is a seminary for young priests, and a number of public primary schools are seattered over the island.

Agriculture.-Until recently a considerable portion of the land was strictly entailed in the families of the landlords (norgados), but entails lave been abolished by the legislature, and the land is now absolutely free. Owing to the irremediable difficulties of the surface, the roads
are bad, except in the neighbourhood of the capital. $\Lambda$ deficient supply of water is another great obstacle to the proper cultivatiou of the land, and the rocky nature or steep inclination of the apper parts of the islands is an effectual bar to all tillage. An incredible amonat of labour has been expended upon the soil, partly in the erection of malls intended to prevent its being washed away by the rains, and to build up the plots of ground in the form of terraces, so as to lessen their slope. Water-courses, too, have been constructed for purposes of irrigation, without which at regular intervals the island weuld not produce a hundredth part of its present yield. These water-courses originate high up in the ravines, are built of masonry or driven through the rock, and wind about for miles until they reach the cultivated land. Some of them are brought by tunnels from the north siderof the island through the central crest of hill. The water thus conveyed is carefully dealt out according to the rights of each occupier, who takes his turn at the running stream for so many hours in the day or night at a time notified to him beforchand. In this climate flowing water bas a saleable value as well as land, for the latter is useless withnut a supply of the former. The agricultural implements employed are of the rudest kind, and the system of cultiration is extremely primitive. Very few of the occupiers are the owners of the land they cultivate; but they are almost invariably the owners of the walls, cottages, and trees standing thereon, the bare land alone belonging to the landlord. The tenant can sell his share of the property without the consent of the landlerd, and if he does not so dispose of it that share passes to his heirs. In this way the tenant practically enjoys fixity of tenure, for the landlord is seldom in a position to pay the price at which the tenant's share is valued. Money reuts are rare, the métayer system regulating almost universally the relations betreen landlord and tenant ; that is, the tenant pays to the owner a cortain portion of the produce, asually one half or one third. The holdings are usually very small, rarely larger than one man can cultirate with a little occasional assistance. Meadorss and pastures are seldom to be met with, the cattle being stall-fed when not feeding on the mountains. Horses are never emplosed for draught, all labour of that kind being done by oxen, of which there is an ample supply.
The two staple productions of the soil are wine and sugar. The rine was introduced from Cyprus or Crete soon after the discovery of the island by the Portuguese, but it was not actively cultivated until the early part of the 16 th century. The vines, after having been totally destroyed by the oidium disease, which made its first appearance in the island in 1852, were replanted, and in a few years wine was again made. The disease is now kept in check by the application of sulphur, which has the effect of increasing the quantity of fruit, whilst it shartens the life of the plaut. The phyllosera has also made its way to the island, and every vineyard in Madeira is more or less affected by it . The wine usually termed Madeira, and known in the trado as "London particular," is made from a mixture of black and whito grapes, which are also made separately into wines called Tinta and Verdelho, after the names of the grapes. Other high-class wines, known as Bual, Sercial, and Malmsey, are made from rarieties of grapes bearing the same names. The exported Madeira is a strong-bodied wine of fine bonquet and excellent quality; hut of late years it has gone out of fashion in England, the lighter mines of France and Germany having to a certnin extent surplanted it. Taking the four jears 1878-1881, the average quantity annually exported was 3045 pipes, each of 92 imperial gallons. It is not usual for the merchant to possess vineyards of his own. The vines are
cultivated by the peasants in their small patches of land. and the general rule is for the merchant or wine manufac turer to buy the must from them, and to have it conveyer as it comes from the press direct to his store, where tha process of fermentation and the subsequent treatment ar. carried on from first to last under his own eye.

The sugar cano is said to bave been brought from Sicil!, about 1452 , and in course of time its produce becane tho sole staple of the island. The cultivation languishes, however, as the more abundant produce of tropical countrics came into the European market, and sugar had lorg ceased to be made when the destruction of the vines contpelled the peasants to turn their attention to other thing. Its cultiration was resumed, and sugar machinery iolported. In 1881 about 6515 crts . of sugar, valued : t $£ 14,452$, mere exported. 1 considerable quantity of spir,t is made by the distillation of the juice, or of the molasses left after extracting the sugar, and this is consumed on tho island,-not an unmixed bencfit to the people, for intem. perate habits have greatly increased since they have been subjected to the temptation of clecap spirits. The cane does not flourish here as luxuriantly as within the tropics; still in localities below 1000 feet, where there is a good supply of water, it pays the cultivator well. -

The grain produced on the island (principally wheat, barles, and Indian corn) is not sufficient for the consumption of the people. The common potato, sweet potato, and gourds of rarious kinds are extensively grown, as well as the Colocasia esculenta, the Ralo of the Pacific islanders, the root of which yields an insipid fond. Mest of the common table vegetables of Europe-cabbages, carrets, onions, beans, pease, dc.-are plentiful. Besides applcs, pears, and peaches, all of pooir quality, oranges, lemons, guavas, mangos, loquats, custard-apples, figs, bananas, and pine-apples are produced, the last twe forming articles of export to the London market. The date palm is occasionally seen, but its fruit is scarcely edible. On the hills large quantities of the Spanish chestnut afford an item in the food of the common people. A little tohacce is grown, and is made up into cigars of inferior quality.

Trade and Commerce. - Excepting sugar and tobacce, the manufactures are insignifeant. Coarse linen and woollen articles and boots and shoes are made for island use. $\Lambda$ good deal of needlework embroidery is made by the women in and about Funchal for exportation. Baskets, chairs, \&c., of wicket work are also exported. According to official returns the total value of exports in 1881 was $£ 134,000$, whilst the imports from foreign countries amounted to $£ 175,000$ (iucluding $£ 128,500$ from the United Kingdom), and the imports from Portugal and the Azores to $£ 112,500$. The principal imports were textile fabrics, hardware, grain, salt fish, salt, tea and coffee, tobacco, cask staves, timber, and petroleum (the last three articles coming from Anerica). The duties levied at the custom-house amounted in the same jear to about $£ 41,000$. In the course of the year 710 merchant vessels entered the port, but more than half of these were English steamers calling on their passage to and from the west coast of Africa, the Cape of Good Hope, or Brazil. The number of Portuguese ressels was oaly 113.

There is a local bank at Funchal, and also a branch of the Bank of Portugal. The English merchants act as bankers for risitors, and bills or cleques can be negotiated tbrough them. Accounts are made out in reis, an imaginary coin, 4500 of which are equal to the pound sterling, and 1000 form the mil-rei or dollar, equal to 4 s . $5 \frac{\mathrm{~d}}{\mathrm{~d}} \mathrm{~d}$. The coins in circulation are of British gold and Portuguese silver, the latter in pieces of $50,100,200$, and 500 reis, the coinage being decimal. The Prench decimal system has been established here as in Portugal. Madeira, as a province
of Portugal; has the benefit of the regulations of the International Postal Union. Consuls from Great Britain and other European states, as well as from the United States and Brazil, reside at Funchal. Lines of steamers from Liverpool to the British colonies on the west coast of Africa, and from London and Plymouth to the Cape of Glood Hope, touch at Madeira, both on their outward and homeward voyages. There is steam commonication with Lisbon, and also with Brazil, the Cape Verds, the Canaries, and the Azores (St Michael's), as well as with Antwerp. A lange coal depôt for supplying the steamers has been established at Funchal by a firm of British merchants.

Funchal, the capital of the archipelago, lies on the south coast of Madeira, and has a population of about 18,000 persons, the immediate ncighbourhood being inhabited by nearly as many more. It is seen to great advantage from the bay, lying on its curving shore, and backed by an amphitheatre of lofty mountains, some of them 4000 feet in height. Numerous country houses (quintas) with terraced gardens, and surrounded by vineyards and patches of sugar cane, adora the slopes and give an air of cheerfulness to the landscape. A small fort on an insulated rock close to the shore commands the bay with its cannon, and there is a much larger fortress on an eminence behind the city. There are no facilities for landing either passengers or goods, nor is there any dock for vessels, which are obliged to remain in the open roadstead, where, however, the anchorage is good. Vessels are protected from all winds oxcept that from the south, which, when blowing with violence, occasionally driyes those on shore that do not slip their cables in good. time, and take to the open sea. The principal edifices in the city are the cathedral and the churches, none of which deserve much notice, the governor's residence, a semi-castellated building, nnd the fubstantial custom-house. The streets are for the most part narrow, but fairly clean, pared with small stones, without side walks, and lighted at night by petróleam lamps. There are two public walks planted with trees, and a garden of small extent, but rendered gay with flowering plants which would need protection in England. There are also fountains of good water, a large hospital, a poorhouse, and an unsightly ill-managed jail The late empress of Brazil built a spacious and handsome hospital close to the town for the reception of twenty-four consumptive patients of Portuguese or Brazilian birth. The entrances of some of the larger houses are through great gates iato a paved vestibule, from which a double flight of stairs ascends to the principal rooms. The shops are poor and without display. The windows on the ground floor of the dwelling houscs are filled with stout iron bars, which give a prisonlike air to the streets. Three stroams come down from the bills and run across the town at the bottom of deep channels, which in summer are dry, because the water is diverted higher up for irrigation parposes. Convenient market places have been constructed for the sale of meat, vogetables, and fish. Vegetables and fruit are abundant, but not of the first quality. Fish is plentiful and cheap when fishing is possible, and fresh fish forms with salted cod and herrings an important item in the food of the islanders. Butcher meat is fairly good, with the exception of the mutton, which is very inferior.
The affairs of the city are managed by a municipal chamber of seven persons with a president. . Their revenue is derived from imposts on graia and salt imported, and from duties on fresh meat and fish sold in tho open market, on wine exported, on houses, and on persons carrying on trade or business. It is oxpondod principally on the lighting and repairing of the streets, and the maintenance of markets and public gardens.
Wheel carriages aro not in use; and all heary articles
are transported either on the backa of mules or upon rade wooden sledges drawn by bullocks. When horses are not employed, locomotion is effected either by means of hammocks, or by bullock cars. The hammock is a piece of stout canvas gathered up and secured at each end to a long pole carried by a couple of bearers. In place of cabs, curtained cars on sledges, made to hold four persons, and drawn by a pair of bullocks, are employed. Theyare convenient eaough, but the rate of progress is very slow. The common people carry heavy burdens on the head and shoulders. Such aids as wheelbarrows and tracks are entirely rejected.
A few daily and weekly newspapers are published at Funchal, but they are small sheets, and their circulation is very limited. In a room of the building occupied by the municipal chamber there is a collection of books, numbering about 2800 volumes, accessible to the public. The Portuguese have a club, which has a large house containing a ball room, card rooms, and a billiard toom, but no library.

The wine trade attracted several British merchants in the last century to take up their residence at Funchsl, where, notwithstanding the decrease of that trade, there was in 1881 a resident British population of 208 persons. A church has been built where a resideut chaplain conducts the services of the English Established Church, and the Presbyterians of the Free Church of Scotland have also erected a place of wership. The British community have formed a cemetery, which is kept in admirable order. The English Club, to which strangers can subscribe, has a library of 5000 volumes and a billiard table.

Climate and Metcorology. - The following results have been -derived from observations made for a series of eight yearn at the Government observatory, Funchal, which has a height of 80 feet above the sea. The mean annusl barometrical pressure was $30 \cdot 14$ inches. The mean annual temperature was $65^{\circ} \cdot 84$ Fahr., the highest point during the eight jears having been $90^{\circ} 3$ Fahr. and the lowest $46^{\circ} 22$ Fahr. The two hottest months are Angust and September, when the mean temperature was $72^{\circ} \cdot 58 \mathrm{Fahr}$. The three coldest months are January, Febraary, and March, their mesn temperature being $60^{\circ} \cdot 6$ Fahr. The mean temperature of the six months November to April was $61^{\circ} .8$ Fahr. The mean temperature of winter (Deceniber to February) was $61^{\circ}$; of spring (March to May) $62^{\circ} 64$; of summer (June to August) $70^{\circ} \cdot 8$; of antumn (September to November) $68^{\circ} 9$. The mean number of days in the year on which rain fell was 80 t. The distribution of rain through the months from October to May varies a good deal, but the wettest months are usually November, December, January, and March. Taking a series of twelve yesrs' observations, the mean annual rainfall was $30 \frac{1}{2}$ inches, the cxtremes being 16 and $49 \cdot 15$ inches. The mean daily range of the thermometer from 8 A. S. to 6 P.M. daring the six months November to April is sbont $6^{\circ} \cdot 1$ Fabr., bnt taking the trenty-four hours the mean dsily range is about $10^{\circ}$.

The remarkable mildness both in summer and winter of the climate of Madeira, thongh it lies ouly $10^{\circ}$ north of the Tropic of Cancer, is owing to its being sarrounded by a great ocesn, from which the atmosphere obtains a large supply of wstery vapour. The mean humidity of the air is about 75 (saturation $=100$ ). The prevalent winds are those that blow from the north or from a few peints east or west of north, but these winds are much mitigated on the south coast by the central range of mountains. The west wind usanlly brings rain. That from the east is a dry wind. A hot and dry wind, the leste of the natives, occasionally blows from the east-sonth-cast, the direction of the Great Sahara, ind causes the hill region to be hotter than below, bat even on the coast the thermometer under its influence sometimes indicates $93^{\circ}$. As the thermometer has never been known to fall as low as $46^{\circ}$ at Funchal, frost and snow are there wholly unknown, but snow falls on the mountsins once or twice during the winter, very seldom, however, below the altitude of 2000 feet. Thunderstorns are rare, and scarcely ever violent.
Madaira has long had a bigh reputation as a sanatory resort for persone suffering from diseases of the chest. "When we take into consideration," said Sir James Clark in his work on Climate, "the mildness of the winter and the coolness of tho summer, togother with the remarkable equality of the temperature during the day and night, as well as thiroughout the year, we may safely conclnde that the climate of Madeira is the finest in the northern hemiaphere." Notwithstanding the ever-increasing competition of other winter resorts, a considerable umber of invalids, both English ond

German, continue to spend the minter at Funchal, where there are numerons well-conducted hotels and boarding-houscs, as well as furaished houses, with gardens, for hire in the neighbourhood, and where Eoglish and German physiciuma practise their profession. The island possesses one great advantago over most other places frequented by invalids in affording cool and comfortable suinmer quarters on the hills, so that they hase no need to make a long journey for the purpose of escaping from the heat.

Zoology. - No species of land mammal is indigenons to the Madeiras. Some of the early royagers indecd speak of wild goats and swine, but these animals must have escaped from confinement. The rabbit, and those pests the black rat, brown rat, and mouse, havo been introduced. The first comers encountered seals, and this amphibious mammal (Monachus albivener) still lingers at the Jerertas, but its early cxtinction is threatened, from the same cause that has brought about its extinction at the Couaries, the persistent attacks of gan. Amongst the thirty species of birds which breed in thesa islands are the kestrel, buzzard, and barn owl, the uheckbird, redbrenst, wagtail, goldfuch, ring sparrow, linpet, two swifta, three pigeons, the quail, red-legged partridge, rroodcock, tern, herring gull, two petrels, and three puffins. Only one species is endemic, and that is a wren (Regulus madcirchsis), but fivo other species are known elsarthere only at the Canaries. These are the green canary (Fringilla bu!uracca, the parent of tha domesticated yellow variety), a chaffinch (Fringilla tintillon), a swift (Cupselns unicolor), a wcod pigeon (Colunba trocaz), and a petrel (Thalassidroma buherii). There is also a local variety of the black cap, distinguishable from the common kind by the extension in the male of the cap to the shoulder. About saventy other species have been seen from time to time in Madeira, chiefly stragglers from the African coast, many of them coming with the leste wind.
The ooly land reptile is a small lizard (Lacerta dugesi), which is abundant and is very destructive to the grape crop. The loggerhead turtla (Caounna carctta, Gray) is frequently captured, and is cooked for the table, but the soup is much inferior to that made from tha green turtle of the West lndies. The only batrachian is a frog (Rara csculenta) which has been introduced and bas made its way from ravine to ravine.
About 250 species of marive fishes taken at DIadeira havo been scientifically determined, the Iargest families being Scombride with 35 species, the sharks with 24 , the Sparid $\mathscr{E}$ with 15 , the rays with 14, the Labridx with 13, the Gadidx with 12, the eels with 12, the Percides with 11, and the'Carangidæ with 10. Many kinds, such as the mackerel, horsa mackerel, groper, mullet, braise, \&c., are caught in abundance, and afford a cheap article of diet to the people. Several species of tunny are takea plentifully in apring and summer, one of them sometimes attaining the weight of 300 Ht . The only freshwater fish is the common eel, which is found in one or two of the streams. (Sea lists and memoirs by P. T. Love and J. I. Johason, published by the Zoological Society of London.)

According to the latest writer on the land mollusea of the Madeiras (T. Y. Wollaston, Tcstacca Atlantica, 1878), there haro been found 158 species on the land, 6 inhabiting fresh water, and 7 littoral species, making a total of 111. A large majority of the land shells are considered to be peculiar, but naturalists do not agree as to the distinctness of the so-called species. Many of the species are variable in form or colour, and some have an extraordinary number of varieties. Of the land mollusca 91 species are assigaed to the genus Helix, 31 to the genus $P_{u t p a}$, and 15 to the genus Achatina (or Lovea). About 43 species are found both living and fossil in superficial deposits of calcareous sand in Madeira or Porto Santo. These deposita sere assigned by Lyell to the Newer Pliocene period. Some 12 or 13 species have not been hitherto discovered alive. As to the marine testaceous mollusca it may be stated that between 300 and 400 species have been collected, but they have been only partially examined, and a large number of forms amait identification. Few of them are remarkable for size or colour, and a considerable number are very small. More than 100 species of Polyzoa (Bryozoa) have been collected, and amongst them are some higlly interesting forms.
The only order of insects which has been thoroughly examined is that of the Coleoptcra. By the persevering researches of the late T. V. Wollaston the astonishing number of 695 species of bectles has been brought to light at the Madeiras (Insecta Madercnsia, Cat. of Madciran Col., \&c.). The proportiou of endemic kinds is rery large, and it is remarkable that 200 of them are either wingless or thoir wings are so poorly developed that they cannot fy, wFilst 23 of the endemic genera have all their species in this condition. This fact, Mr Darwin thinks, may be maioly due to the action of natural aelection combined with disuse, aince those beetles which were much on the wing would incur tha risk of being blown out into the sea, whilst those with leas-developed wings had the heat chanco of sarviving. With regard to the Lopidoplera, 11 or 12 species of bntterflies have been seen, all of which belons to European genera. Some of the species are interesting as being geographical varietics of Tell-known types. Upwards of 100 moths hava been collected, the majority of them being of a Europeas
stamp, but probably a fourth of the total number are peculiar t the Madeiran group. Thirty-seven species of Nicuroptera have been observed in Madeira, 12 of them being so far as is kymira peculiar.

The bristle-footed worms of the coast have beeo studied by Prc. fessor P. Laugerbans, who has met with about 200 species, of which a lerge munber were new to science. There are do modern corn reefs at these islands, but sereral species of stony and flexible corals have been collected, though none are of commercial ralue. Theas is, however, © white stony coral allied to the red coral of th Mediterranean which would be valuable as an article of tracle if $t$ could be obtaiacd in sufficient quantity. Specimens of a rare aut handsome red Paragorgia are to be seen in the British Nuseum and Liverpool Museum.

Bolany. - The regetation of these islands is strongly impressel with a South-Europcan character. Dleng of the plants in the lowes region have undoubtedly been introduced and naturalized sioce thin Portugutsa colonization. A large number of the remainder ara found at the Canariea and the Azores, or in one of thcse groups, but nowhere else. Lastly, there are about a hundred plants which aro paculianly Madeiran, either as distinct species or as strongly marked varieties. The late $11 r$ Lowe undertook a description of the vegeta. tion in his Manual Flora of Mradira, hut unfortunately this valuable work has been left unfinished. The florering plants found truly wild belong to about 363 genera and 717 species,-the monocoty'ledons numbering 70 genera and 123 species, the dicotyledons 293 genera and 589 apecies. The three largest orders are the Compositz, Leguminoss, and Graminacca. Forty-one species of ferns grow in Madeira, threa of which are endemic species and six others beloug to the peculiar flora of the North Atlantic islands. About 100 species of moss have been collected, and 47 species of Hepaticæ. A connexion betreen the flora of Diadeira and that of the Weat Indies and tropical America has been inferred by tha fresence in the former of six ferns found nowhere in Europe or North Africa, but existing on the islands of the eust coast of America or on the Istlimus of Panama. A further relationship to that continent is to be traced by the presence in Madeira of tha beantiful ericaceous tree Clcthra arborca, belonging to a genus which is otherwise wholly American, and of a Pcrscr, a trea laurel, also an Amelican genus. The dragon tree (Dracenar Draco) is almost extinct. Amongst the trees most trorthy of note are four of the laurel order belonging to separate genera, an Ardisia, Pittosporum, Sidcroxylon, Notclxa, Rhamnzes, and Myrica,-a stranga mixtura of genera to be found on a small Atlantic island. Two lieaths of arborescent grorth and a whortleberry corer large tracta on the nountains. In some parts there is a belt of the Spanish chestout about the hcight of 1500 feet. There is no indigenous pine tree as at the Canaries; but large tracts on the hills have been planted with finus pinaster, from which the fuel of the inhabitants is maioly derived. A European juniper (J. Oxyccirus), growing to the height of 40 or 50 fect, was formerly abundant, but bas bern alnost exterminated, as its scented wood is prized by the calinetmaker. Indeed the flora has been recklcss? defaced ly the unsparing hand of man. Several of the native trees and slirubs now grow only in situations which are nearly inaccessible, and some of the indigenous plants are of the greatest raity. There are few remains of the noble forests that once clothed the island, and these are daily becoming less. On the other hand, some plauts of foreign origin have spread in a remarkable manuer. Amongst these is the common cactus or prickly pear (Opuntia Tuna), which in many spots on the coast is sufficiently abundant to give a character to the landsespe. As to Algx, the coast is ton rocky and the sea tor unquiet for a luxuriant marine vegetation. conscquently the species are fevr and poor.

Geology. - The hypothesis that the Mrdeiras during or since the middlo part of the Tertiary epoch formed part of a large tract of land connecting the Canaries in the south and the Azores in the west with south-western Europe and northern Africa has been com pletely discredited by the discovery of the great depth of the surrounding ocean. The origin of its existing founa and flora, both of which must have been very different if such a connexion had ever been a fact, is now attributed to the chance arrival from Europe os Africa at distant intervals of the ancestors of the prescat species, the wiads and waves, birds and insects, having been the means of transport. Tbis immigration must have comnienced at an early date if the aboriginal flura is partly traceable, as is asserted, to the Jiocenc flora of Europe, which has been found to contain genera notr represented by species only bung in the Athaniie islands aul in America.
In one of the not thern ravines of Madeira some masses of hypersthenite are axposed to view, aud these are believed to belong to 3 diabase formation (better displayed in some of the Canary lsland? than in Madeira) of much older date than the bede of basalt, tuff, \&c., conatituting the rest of the island. It is therefore supposed that there existed at an ancient but unknorna epoch an island or tha foundation of an island composed of diabase rocks, which, after being subjected to denudation, were overlaid by the materials thrown out by volcanoes of Miecune or later tines,

All the islands of the groun are of roleanic onigin, aind reent somulings ahow that they are the summits of very lofty mountains which have their bases in an abyssal ocean. the greater jumt of what is now visible in Madeirs is of aubaerial formation, consistiner of an accumulation of basaltic and tracliytic laras, beds of tulf anid other ejectanmenta, the result of a long and complicated series of eruptions from ionumerable vents. Besides this operation of building up liy the eusissiou of matter from cratera and clefts there is cvidence that a certain amount of uphearal in mass has takeu place, for at a spot about 1200 feet above the sea in the northera Talley of St Vicente, and again at about the same height on Pico duliana in Porto Santo, there have been found fragments of limestone accompronied by tuffs containing marinc shells and echinoderms of the Miocene Tertiary epoch. We have here proof that during or since that epoch prortious at lenst of these islands have been bodily uplifted mere than 1000 fert . The fossils are sufficiently well preserved to admit of their geuera and in many instances eveu their species being marle out.

That there were pauses of considerable duration whilst the island of Madeira was being increased in height is proved by several facts. The leat bed and the accompanying carbonaceous matter, frequently termed lignite, although it disphas's no trace of structure, which lio under 1200 feet of lavas in the valley of St Jorge, atford proof that there had been sufficient time for the growth of a vegetation of ligh order, many of the leaf impressions having been identified as belonging to spfecies of trees and shrubs which still exist on the island. It is evident, moreover, that great alterations and dislocations had taken place in the rocks of yarious localities before otherlavas and tuffs had been thrown upon them.
There are no data for determining when volcanic action commenced in this locality, but looking at the enormons depth of the surround. ing sea it is clear that a vast period of time must lave elapsed to allow of a great monntain reaching the surface and then rising several thousand feet into the air. Again, considering the conparatively feeble agents for effecting the work of denudation (neither glaciers nor thick accumulations of alpine snow being found here), and then the enormous erosion that has actually taken place, the inference is inevitable that a very great lapse of time was requirel to excavato the deep and wide ravines that everywhere intersect the island. Nor is anything known as to the period of the cessation of voleanic action. At the present day there are no live craters, or snoking crevices, as at the Canaries and Cape Verds, nor any hot springs, as at the Azores. On the slopes which descend from the central ridge to the sea, especially in the neigbourhood of Funchal, there are many hills with concal shapes of more or less regularity, which seem to have been formed at a comparatively modern epoch. Volcanic cinders and slag are lying upon several of them, which look as if they had been threwn out of a furnace yesterday. Yet round the base of others there may be traced streams of lava flowing from a higher source, and showing that, subsequent to the construction of thesc lateral conos, modern as they look, molten matter issucel from higher vents, which assumed, on cooling, the character of ordinary compact basalt.

If we examine the geuernl confguration of Madeira, we sball sec a mountan chain, abont 30 miles in length, running east and west, and throwing off lateral ridges, that give it an extreme breadth of abont 12 miles. Peaks rise abont the midule to a height of more than 6000 feet; and deep ravincs, lying between the lateral ridges, atrike for the most part north and south from the central ridge to the sea. In the sections alforded by the ravines, the nueleus of tho island is seen to consist of a confused mass of more or less stratified rock, upon which rest beds of tuti, scorim, and lava, in the shape of besalt, trap, aad trachyto, the whole traversed ty dykes. These beds ara thimest near the central axis; as they approach the coast they become thicker and less intersected by dykes. At the centre of tho island there are several summits of nearly the same altitude, and these nre in some places connected by narrow walls and ridges, which are frequently quite impassable, whilst at others they are *eparated by ravines of great depth. On all sides are seen rertical dykes, projecting like turrets abovo the weathered surface of tho - ofter beds.

In various parts of the island may he seen elevnted tracts of com. pratively level ground. Theso are smppnsel to have been formed by the meeting of numerous streams of lava flowing from cones and points of cruption in close proximity, varioua cjectamente assisting int the same time to fill up inequalities. Deep down in some of the lateral rarines may be geen ancient cones of eruption which have been overwhelmed by streams of melted matter issuing from the central region, and nifterwarls exposed to view by the gamo causes that ex eavated the ravincs. These ravincs may be regarded as haviag been formed at first by aubterranean movements, hoth gradual and violent, which dislocated the rocks, and cut clefts through which atreama llowed to the sea. In course of time the watcrs, periodically swollen by melted snows and the enpious rains of winter, would cut deeper nad deeper into the heart of the mountains, and wond undermine the lateral cliffs, until the ralleva beeame as large ns we now fuad them. Even the Curral, which,
from its rounded shape aud its position in the centre of the island, has been noudly deemed the coms of a crater, is thought to be nothing more than a valley scooped out in the way described. The rarity of crateiform cavities iu Madeira is very remaıkable. There exists, however, to the east of Funchal, on a tract 2000 leet high, the Lagoa, a small hut perlect crater, 500 feet iu diameter, and with a depth of 150 feet; and there is another, which is a double one, in the district known as Fanal, in the north-west of Madeira, nearly 5000 fect above the sea. The basalt of which much of the onter part of tho island is composed is of a dark colour and a tough texture, with small disseminated crystals of olivine and augite. It is sometimes full of resicular cavities, formed by the expansion of inprisoued gases. A rindely columnar structure is very often seen in the basalt, Lut there is nothing so perfect as the columns of Staffa or the Giant's Causeway. The trachytic rocks aje small in quantity compred with those of the basaltic class. The tufa is soft and friable, and generally of a yellow colour; but where it bas been overllowel by a hot streama ne hava it bas assumed a red colour. llack ashes and fragments of pumice are sometimes found in the tufaceous strata.
'The mineral contents of the rocks of Madeira are unimportant. There are no metallic ores, nor has any sulphur been found; but a little iron pyrites and specular iron are oceasionally met with. The basalt yields an excellent building-stune, various qualities of which are quarried near Cann dos Lobos, 5 or 6 miles west of Funchal.

At Porto Santo the trachytic rocks bear a nuch greater proportion to the basaltic than iu Madeira. An adjacent islet is formed of tuffs and calcareous rock, indicating a submarine origin, upon which supramarine lavas have been poured. The older series coutains corals and shells (also of the Miocene Tertiary epoch), with water-worn pebbles, cemented together by carbonate of lime, the Whole appearing to have been a coral reef near an ancient beach. The calcareous rock is taken in large quantities to Funchal, to be burnt into lime for building purposes.

Yonto Santo. - This forms a single concelho and parish, about 25 geographical miles nortb-east of Nadeira. It has a leugth of $6 \frac{1}{3}$ goograp hical miles and a width of 3. A stationary population of about 1750 persons inhabits 435 houses, chiefly collected at oue spot known as the Villa, where a lieutenant-governor resides. Tba island is very unproductive, water being scaree and wood wholly absent. Around the little town there is a considerable tract of pretty level gronnd covered by calcareous sand containing fossil fand shells. At each end of the island there are hills, of which Pico do Fncho, the highest, reaches the altitude of 1600 feet. Barley, but little else, is grown bere, the limited requirements of the inhabitanta being supplied from Funcbal by means of sunall sailing vessels.
The Desertas. -These are three uninhabited rocks lying ebont 11 miles south-east of Madeira. They are not easily accessible, as they present lofty precipices to the sea on all sides. Rabbits and goats abound on them. The archil weed grows on the rocks, and is gathered for exportation. The largest islet is $6 \frac{1}{3}$ miles long, and attains the height of 2000 feet. These rocks are conspicuous objects in the sea-vjews from Funchal.
(J. Y. J.)

MADISON, a city of the United States, the county seat of Jefferson county, Indiana, is situated on the north bank of the Ohio, 90 miles below Cincinnati, aud 44 above Louisville, with which it has daily steamboat communication. As the terminus of one of the divisions of the Jeffersonville, Madison, and Indianapolis Railroad, Madison commands extensive means of traffic; and its provision trade especially has attained important dimensions. Porkpacking is also carrien on, and brass and iron foundries, tannerics, and flour-mills appear among the industrial establishments. The population was 8012 in 1850,8130 in $1860,10,709$ in 1870 , and 8945 in 1880.

MADISON, a city of the United States, the capital of Wiscousin, and seat of justicu of Dane county, lies towards the soutl of the State, in $43^{\circ} 4^{\prime}$ N. lat. and $89^{\circ} 21^{\prime} \mathrm{W}$. long., 75 miles west of Milwankec. In the beauty of its situation it has few rivals, occupying as it does the undulating isthmus between Mendota and Menona, two of the lakes which gire name to the Four Lake Region, connected with the Mississippi by Yahara or Catfish river and Rock river; and the cool summer climate, which it owes to the fact that it stands 788 fect above the level of the sea, and 210 fect abore Lako Michigau, renders it 3 health resort of some raluc, especially for consumptive patients. The State capitol, situated in the midst of a finely nooded
park of 13 acres, is a rather imposiog but hybrid edifice of white limestcne crowned by a central dome rising 200 feet above the level of the basement; it was originally built in room of an earlier capitol in 1860 , at a cost of $\$ 400,000$, and has since been greatly enlarged. About a mile to the wcst of the capitol stand, on the high grounds known as College hill, the buildings of the Wisconsin university, an institution dating from 1850 , and attended by nbout eight hundred students. Other buildings of note are the United States post-office and court-house, the soldiers' orphans' bome, and at some distance from the city the State lunatic asylum. The Wisconsia Historical Socicty bas a library of 58,000 volumes. Various lines belonging to tho Chicago and North-Western Railway and to the Chicago, Milwankee, and St Paul Tailway meet at Madison; and tho city has not only a good general trade, but manufactures ploughs and otber agricultural implements, waggons, woollen goods, and flour. The population, which was only 1525 in 1850 , appears in the three later censuses as 6611,9176 , and $10,325$. When the site was selected (1836) for the capital of the territory of Wisconsin it was altogether unoccupied.

MIADISON, James ( $1751-1836$ ), fourth president of the United States, was born in King George countr, Virginis, on the 16 th of March 1751, during a temporary visit of his mother to her relatives. His father was the owner of large landed estates in Orauge county, Virginia, and was a man of distinction in the county. In 1769 Madison entered Princeton College in New Jersey, and graduated as B.A. in 1771; but he remained nnother year at Princeton studying under the direction of President Witherspoon. His close application to study had seriously impaired his health, which continued delicate for many years. Returning to Virginia in 1772, he pursued bis reading and studies, however, with the same zeal as before, the subjects chosen being particularly those of philosophy, theology, and law.

Madison had as jet taken no active part in the exciting politics of tho time. In 1775, however, he was chairman of the committee of public safety for Orange county, and in the spring of 1776 he was cbosen a delegate to the new Tirginia convention, which formed a constitution for the State. Failing to be re-elected in 1577, be was chosen in that year a member of the cuuncil of State, in which he took a promincnt part until the end of $17 \% 9$, at which time he was clected a delegate to the Continental Congress, later the Coogress of the Confederation. It was in this assembly that Madison 6irst displayed those powers which nltimately made him the founder of the constitution of the United States. He was in Congress during the final stages of the rerolutionary war, and one year after the establishment of peace, at a time when the confederation was in a chronic state of collapse, occasioned by the neglect or the refusal of the States to respond to the requisitions of Congress for supplies for the federal treasury, Madison was among the first to adrocate the granting of additional porsers to Congress. In 1781 he faroured the amendment of the articles of confederation, giving to Congress the power to enforce its requisitions; and in 1783 he zealously adrocated the proposed plan by which the States should grant to Congress for a period of twenty-five years the nuthority to lery an impost daty. Accompanying this plan was an address to the States drawn up by Madison. This address is one of the ablest of his state papers, and with others of this period placed him in the front rank of American statesmen.

In November 1783, the constitutional limit of his term as deputy haring expired, Madison returned to Firginia, and the next year he again took a seat in the legislature of that State. As chairman of the judiciary committee, he was particalarly instrumental in revising the statute
laws of the State. He opposed the further issue of paper moncy by the State, and tried to induce the legislature to repeal the law confiscating British debts.
As a member of the legislature of Virginia, Madison did not lose sight of the interests of the confederacy. He looked beyond mere local interests, believing that the highest good of the State would best bo advanced through a respected central Government. Virginia and Maryland posscssing a common jurisdiction over the waters of the Potumac riverand the Chesapeak Bay, it became necessary to come to some agreement betwcen them as to the commerce and navigation upon those waters. On Madison's proposal, commissioners of the two States met at Mount Yeroon in March 1785. Maryland having proposed to invite the States of Pennsylvania and Delaware to join in the arrangement, Madison saw an opportunity for a more extended and general concert in regard to commerce and trade, and proposed that all the States should be invitcd to send conmissioners to take into consideration the trade of the United States. This resolution was adopted by the legislature of Virginia; and thus was inaugurated the movement which led to the meeting at Annapolis in 1786, and later to the convention ot Yhiladelphia in 1787. The palpable defects in the government of the confederation had led Madison to make an extended stuảy of confederacies, ancient and modern. Among his papers was found one bearing the title Notes on Confederacies, but he gave the results of thise researches more at length in Nos. 17, 18, and 19 of The Federalist. His conclusion was that no confederacy could be long successful which acted upon States only, and not directly upon individuals.
As the time for the meeting of the convention approached, he drew up an outline of a new system of goveroment to take the place of the articles of confederation.
As expressed in a letter to General Washington of the 16th of April 1787, it was in substance that the individual sorereignty of the States is totally irreconcilable with the aggregate aovereignty, and that a consolidation of the whole into one simple republic would be as inexpedient as it was unattainable. He sought therefore some middle ground, which migbt at once support a due aupremacy of the national authority and not exclude the local authorities whenever they might be subordinately useful. He proposed, to this end, to change the basis of representation in Congress from States to the population.

The national government should, heve athority in all cases jequiring uuiformity: In addition to this positive fower, the national government should have a negative on all State laws "as heretofore exercised by the kingly prerogative." This uegative, he thought, rould best be rested in the senate, rhich should be s comparatively permanent body.

The rational supremacy should extend to the judiciary department and to the militia. The legislature ahould be composed of two branches-one, the more nnmerous, elected for a short term, the other, few in number, for a longer term. A national execntive should be prorided for, and the States abould be guamnteed against both internal and external dangers. The right of cocrcion should be expressly declared. "But the difficulty and awkwardness of operating by force on the collective will of a State rendered it desirable that the necessity of it should be precluded." He thonght the negatire on State laws might answer the parpose. This was a weak point in Madison's theory of government. He thonght, with Jefferson, that there could be found some means of governing without resorting to force. Lastly, "to give the new system its proper validity and energy, a ratification must bo obtained from the people, and not merely from the legislatures."
These ideas, somewhat modified and extended in details, formed the Virginia plan of goverament, presented in the convention by Edmund Randolph; and this plan, again, became the basis of the extended deliberations in the convention which resulted in the constitution adopted in that body on the 17 th of September 1787. In the convention, as a delegate from Virginia, Madison took a leading part in the debates, of which he kept notes which were afterwards published by order of Congress. It was his influence which largely shaped the form of the final draft of the constitutionBut the labcur was not finished with_this draft; the cond

Eticution was yet to be accepted by the people; that it was aweepted was due in an emineut degree to the efforts of timdison. In order to place the new constitution before the people in its true light, and to meet objections brought against it, le joined Hamilton and Jay in the publication of a series of essays, which were published in a collected form in 1788 under the name of The Federalist, and which are still worthy of careful study.

In the Virginia convention for ratifying the constitution he was again called upon to defend that instrument, and against such staunch patriots as Patrick Henry and George Mason. Madison here appeared at his best. He answered every objection in detail, calmly, yet with an eloquence and zeal that carried conviction to his audience. The result was a victory against an adverse public opinion, as well as against the eloquence of his opponents.

Although he remained in the public service for nearly twenty-five years longer, his greatest work was finished with the adoption of the constitution. He had gained the well-earned title of "father of the constitution." The part he bad taken, however, alienated from him the stipport of a majority of the people of his State. He was defeated as a candidate for United States senate, though lie was chosen in his own district as representative to Congress. Taking his seat in the Lower House in April 1789, he assumed a leading part in the legislation necessary to the organization of the new goverament. To Hamilton's measures, however, for the funding of the debt, the assumption of the State dobts, and the establishment of a national bank, he was opposed. On other questions, too, he sided with the Anti-Federalists, and gradually assumed the leadership of the opposition in the House of Representatives.

One would have expected to find him advocating with Washington, Hamilton, Marshall, Jay, and others those measures which would strengthen still more the federal government. On the contrary, we find him labouring to confine the powers of the national government within the narrowest possible limits.

Much has been said in regard to Madison's change of prineiples at this time. It has been intimated that he was influenced, perhaps unconsciously, by the decided attitude of his State, but especially by the dominating mind of his most intimate friend, Jefferson. Probably there is something of truth in this charge, yet it must be said that Madison had shown on many previous occasions an aversion to a liberal construction of granted powers. Timid by nature, he was frightened at the bold and comprehensive measures of the secretary of the treasury. He thought he saw in them a constructive latitude of interpretation and a centralization of interests dangerous to republican priuciples.

Madison opposed also the foreign policy of the administration in 1793-96, in its attenpts to maintain a neutral position between Great Britain and France, then at war with each other. And under the signature of "Helvidius" lie published in the public journals five papers of great power and acuteness, eriticizing the " monarehical prerogative of the executive " as cxercised in the proclamation of nentrality of 1793 , and the right of the recognition by the jresident of foreign states. So far as the question of interHational law was concerned, Madison was essentially right, lut in regard to the authority of the executive, and the fuestion of the expediency of Washiagton's neutral policy, the subsequent practice of the Goverument and the general verdict of history condemn his vier. In 1594 Madison introduced in the House of Representatives resolutions based upon Jefferson's report on commerce, advising retaliatory measures against Great Britain and a diserimination in commercial and navigation laws in favour of France. Again, in 1796 he strenuously opposed the
appropriation of money for the purpose of carrying into effect the treaty of 1794 with Great Britain. He sconted the idea as visionary that Great Britain mould go to war on a refusal to carry the treaty into effect. It was not conceivable, he thought, that she would "make war upon a country which was the best market she had for her manufactures." It had been a favourite theory wiih MIadison, as with Jefferson, that foreign nations could be coerced through their commercial interests. The fallacy of this doctrine was well exemplified by its utter inefficiency when put in practice by them in 1807-12.

In 1797 Madison withdrew to private life, ahough not to a life of inactivity. In 1798 be was induced by Jefferson to join in a movement in opposition to the Alien and Sedition Laws passed by the Federalists in that year, and was himself the author of the Virginia resolutions, which declared-
"That the constitution of the United States wase compact, to which the States were parties, granting limited powers of government ; that in case of a deliberate, palpable, and dangerous exercise of other powers, not granted by the compact, the States had the right, and were in duty bound, to interpose for arresting the progress of the erils and for maintaining within their respective limits, the authorities, rights, and liberties pertaining to them; that the Alien and Sedition Laws were such infractions of the compact ; . . . aud finally that the State of Virginia declared those laws unconstitutional and not law, but ntterly null, void, and of no effect, and invited the other States to join her in this action."
These resolutions, with those of Kentucky drawn by Jefferson, met with decided objections from the other States. Upon these objections Madison made a report to the legislature of Virginia, consisting of an elaborate and carefully considered argument sustaining in every point the resolutions of 1798 . Thirty years later these arguments were freely made use of by Calhoun and his school of nullifiers as the basis of their doctrine. But Madison, in 1830, repudiated the idea that the resolutions of 1798 involved the principles of nullification. He wrote at that time many letters to public men, and especially one to Edward Everett, in August 1830, to prove this position. The nullifiers were not convinced, bowever, by this reasoning, and continued to use his arguments in favour of their doctrine, till it became a source of great annoyance to him.

With the rise of the republican party to porwer in 1801, Madison became secretary of state in Jefferson's cabinet,a position for which he was well fitted both by his temperament and his training, well rersed as he wạ in constitutional and international law, and practising a calmness and fairness in discussion which are essestial qualities of the diplomatist. In defending the neutral rights of the United S'tates against the encroachments of European belligerents (1801-9), there was almost constant need of the use of all those qualities. The most importat of his papers during this period was An Excamination of the British Doctrine which subjects to capture a neutral trade not open in time of peace, that is, the so-called "rule of the war of 1756 ," as extended by Great Britain iu 1793 and 1803. This treatise, published in 1806, was an argument against the British dostrine, drawn from a careful investigation of authorities on international law, and was a valuable contribution to the diseussion of a question which, for various reasons, has now lost its importanec.

In 1809 Madison was elected president to succeed Jefterson, whose peace policy-a policy of commercial restrictions to coorce Great Britain and France-he continued to follow until, in 1812, he was forced by his party to change it for a policy of war. He had been, under the lead of Jefferson, a great licutcuant; be had for the most part furnished the arguments in support of the republican policy sinee 1790; but he did not possess the qualities of a leader. His cabinct was in part forced upon him in 1809 by a senatorial clique, and his administration lacked vigour,
particularly during the rar of 1S12-15. He had never leen a partisan in politics, and was averse to forcing his vews upon others, except in so far as he could do so by impartial arguments. In argument, he was not satisfied with generalities; his reasoning went to the foundation of principles-to the minutest details, sometimes almost painfully so. Ilis analysis of the arguments was powerful nad searehing. In this he reseabled Hamilton; but his conclusions were reacher through a laberious process of induction, whilst those of Hamilton seemed more the result of intuition. Madison, moreover, laeked Hamilton's boldness of conception and courage in assuming the responsibility of his theories. The difference between them was the difference betreen great talent and genius.

Madison served two terms as president, and in 1817 retired to Montpellier, his country seat in Virginia. For nearly twenty years therenfter he was engaged in agricultural pursuits, bnt was ever interested in literature and politics. To the time of his death he continued to be consulted by statesmen as an oracle on all constitutional questions.

Ia character he was mild and conciliatory ; and, whether in power or in opposition, he never lost the friendship or confidence of his politieal oppodents. His death occurred on the 28 th of June 1836.
His Lelters and Writings, in 4 yols., were published by order of Congress in 1865 . The Mild dison Papcrs, a report of debates during the Congress of the Confederation, and reports of delates in the Federal Con rention, were also published by order of Cungress. The History of the Life and Times of Madison, by William C. Rives, iu 3 vols., comes down only to 1794.

MADRAS, a presideney of British India, occupying, with its dependencies, the entire south of the Indian peninsula, and washed on the east by the Bay of Bengal and on the west by the Indinn Ocean. The north boundary is extremely irregular. On the extreme north-anst is the Bengal province of Orissa; then the wild highlands of the Central Provinces ; next the dominions of the nizam of Hyderabad; and lastly, on the north-west, the Bombay districts of Dhárwár and North Kánara. The extreme length from northeast to south-mest is about 950 miles, and the breadth 450 miles; the area of the British districts, (1879) is 135,856 square miles, and the population in 1871 was $31,672,613$. The five native states attached to Madras-Travancore, Cochin, Puducottah, Banganapalli, and Sandúr-have an additional area of 9818 square miles, and a population of $3,289,392$, making a grand total area of 148,674 square miles, with a population of $34,962,005$. - General Aspect. - From a physical point of view, the Madras presidency may be roughly divided into three tracts -(1) the long and broad east const, (2) the shorter and narrower west coast, and (3) the high interior table-land. These divisions are determined by the great monntain ranges of the Eastera and Westera Gháts. The Eastern Ghats form a continuation of the confused hill system of Chutiá Nagpur. They run in a south-west direction throngh almost the entire leagth of Madras until they lose themselves in the Nilgiris, and there join the Western Ghats. Their average height is only 1500 feet, and for the most part they leave a broad expanse of low land between their base and the sea; their line is pierced by three great rivers-the Godâvari, Kistna, and Káveri (Cauvery). The Western Ghats stretch continuously along the shore of the Indian Ocean. Rising steeply at a distance of from 30 to 50 miles from the coast, they catch almust the whole rainfall of the monsoon; and within Madras territory not a single stream breaks through their barrier. Some of the peaks attain an eleration of more than 5000 feet. Detween these two ranges lies the central table-land, with an eleration of from 1000 to 3000 feet, which includes the whole of 3 rsore, and extends over about half a dozen districts of Madras. The three principal rivers above-mentior 2d, each
baviag a large tributary system, all rise in the Weslerr Ghats, and run across the peninsula in a sonth-east direction into the Bay of Bengal. In the upper parts of their course they drain rather than water the country through which they fluw, and are comparatively valueless either for navigation or for irrigation; but before reaching the sea they spread over alluvial deltas, Other but smaller rivers of the same character are the North and South Peouár or Ponniyar, Palar, Váigai, Vellar, and Tambraparni. The two main hill systems have beell already described (seo GuAts, vol. x. p. 559). The Nilgiris, which join these, culminate in Dindibetta ( 8640 feet), the loftiest peak in southern India. There are, besides, many ontlying spurs and tangled masses of hills, of which the Sheraroys, Anamaluis, and the Palnis are the most important. The principal lake in the presideney is that of Pulicat on the east coast, which is 33 miles from north to south, and forms an important means of communication between Madras city and the north districts. On the west coast are a remarkable series of backwaters or lagoons, fringing the seaboard of Kanara, Malabar, and Travancore. The largest is the backwater of Cachin, which extends for a distance of 120 miles from north to sonth.

The mineral wealth of the province is as yet undeveloped. Iron of excellent quality has been smelted by native smiths in many localities from time immemorial; but attenpts to work the beds after European methods have hitherto proved unsuccessful. Carboniferous sandstone extends aeross the Godavari valley as far as Ellore but the coal has been found to be of inferior quality. Sc,entific researches hare proved the existence of gold in the Nilgiris, in sufficient quantity to render outlay on it profitable; and several companics, representing a large amount of capital, have heen formed for working the mines. Among other minerals may be mentioned manganese in the Nilgiris and Bellary; copper and lead ores in many parts of the Eastern Ghats; antimony and silver; and corundum in tho valley of the Káveri. Garnets are abundant in the sandstone to the Northern Cirears, and diamonds of moderate value ara found in the same region. Stone and gravel quarries irto. very numerous.
The Forest Department of Madras was first organized in 1856, and it is estimated that forests cover a total area of more than 5000 square miles, the whole of. Which is under conservancy rules. For supplying fuel to the railways an area of about 160,000 acres is strictly conserved. In the remaining forests, after supplying local wants, timber is either sold direct by the department, or licences are granted to wood-cutters. The more raluable timber-trees comprise teik, ebony, rosewood, sandal-wood, and redwood. The Goverument plantations corer an area of 9000 acres. The trees thus artificially reared are teak, eandal-wood, Casuarina, and Eucaljptus. The fibest teak plantation (over 3000 acres) is near Beypur in Malabar. At Mudumalli there are plantations of both teak and sandalwood; and the Eucalyptus or Australian gum-tree now grows on the Nilgiris in magnificent clumps. The total ralue of timber and wood exported was $£ 95,801$ in 1875-76, and £122,413 in 1880-81.
The wild animals are those for the most part common to the rest of India. Those deserving mention are the elephant, bison, sambur, and ibex of the Western Gbats and the Nilgiris. Bison are alsu found in the hill tracts of the Northern Circars. In Travancore state the black rariety of leopard is not uncommon. In 1880-81 182 persons and 11,628 cattle were returned as killed by wild beasts. The number of persons killed by snake-bites in 1880 was 928 . TL. elephant is now protected by law from indiserimina:s destruction. The agricultural roturns for $1880-8 \mathrm{I}$ report the number of buffaloes as

4, 224,435 , bullocks $3,228,907$, cows $2,873,970$, goats 2803,407, sheep $4,082,411$, h rses 8986 , and elephants 532. The cattle are small, but in Nellore and along the Mysore fronticr a superior breed is carefully kept up by the wealthier farmers. The best buffaloes are imported from tho Bombay district of Dharwar. Experiments in sheep breeding hare been made at the Saidípet model farm, with fair success.

Populction. -The first census, in 1822, returoed the population as $13,476,923$, and an enumeration in $1866-67$ gave $26,539,052$. The census of November 1871, howercr, was the first conducted in rogular form. The following table gives the results for the British districts of the presidency. According to the proluminary return the total population at the census in 1871 was $30,839,181$ ( $15,242,122$ malos and $15,597,059$ females). This would seem to show that the loss cansed by the famine of 1876-78 has been nesrly mado up.

Arca, Population, de., of Madras Presidency in 1871.

| - Name of Distrlct. | Sq. Mites. | V1lages. | Houses. | Populatlon. | Inhab. per Sq. Mile. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ganjún | 8,313 | 4,562 | 841,404 | 1.520,038 | $182 \cdot 9$ |
| Vizagapataiu ........... | 18,341 | 8,581 | 489,419 | 2,159,199 | $111 \cdot 7$ |
| SGodSivaid ................ | 6,224 | 2.202 | 889,712 | 1,592,939 | 253.9 |
| Kılstna... | 8,036 | 2,140 | 282,358 | 1,452,374 | $180 \cdot 7$ |
| Nellaro | 8,462 | 2.174 | 263,820 | 1,376,811 | 1627 |
| Cusdapah | 8.367 | 1.337 | 339,063 | 1,351,194 | 161.5 |
| Bsellacy ... | 11,007 | 2,568 | 351.943 | 1,668,006 | 151.5 |
| 'Kamul | 7.358 | 757 | 205,884 | 039,610 | $130 \cdot 4$ |
| Chengalpat . . . . . . . . . | 2.753 | 2,362. | 141,431 | 938,181 | $340 \cdot 7$ |
| North Arcot ........... | 7,139 | $5.202^{*}$ | 320,844 | 2,015,278 | 282.3 |
| South Arcor | 4,873 | 3,108 | 228,761 | 1,755,817 | $360 \cdot 3$ |
| Tanjore ................. | 3,654 | 8.935 | 369,984 | 1,973,731 | $540 \cdot 1$ |
| Tifcinnopo!1 ........... | 8,515 | 1,64t | 210,690 | 1,200,408 | 311.5 |
| Hadura ................. | 9,562 | 5.459 | 443,513 | 2,2GG,615 | 238.5 |
| \|linnevelli .............. | 5,176 | 1,824 | 403.803 | 1,693,959 | $327 \cdot 3$ |
| Colmbatore .. .......... | 7,432 | 1,5i5 | 861.109 | 1,463,27t | 237.3 |
| Nnglris. | 749 | 17 | 13,322 | 49,501 | 66.0 |
| Salem .................... | 7,433 | 4,021 | 391,519 | 1,966.995 | $262 \cdot 9$ |
| South Kinara.......... | 3,902 | 3.288 | 184,569 | 918,362 | $235 \cdot 4$ |
| Malabar Madras cl | 6,002 27 | 482 | 435,462 51,741 | $2,261,250$ 397,552 | $376 \cdot 7$ $14,724.1$ |
| Total . | 138,318 | 55,421 | 6,229,954 | 31,281,177 | $220 \cdot 2$ |

Hindus numbered $28,863,978$; Mohammedans, $1,857,857$; Christians, 533,760 ; Jains, 21,254 ; and "others," 4328 . The Hindus $992 \cdot 3$ per cent. of the whole) are sulbdivided into $16,159,610$ Sivaites, $11,657,311$ Vishnuvites, 154,989 Lingáyats, and 892,068 "others," including hill tribes, The Sivaites are most numerons in the extreme south and on the west const, while the Vishnuvites are chicfly found in the northern districts. The Lingayats may be described as a sect of Sivaite puritans, who derive their name from their practice of carrying abont on their persons the lingd or emblem of Siva. Of Hindu castes, Bráhmans number $1,094,455$. They follow various pursuits, and many of them are said to be recent immigrants, who came south in the train of the Mahratta armies. A peculiar caste of Bráhmans, called Namburi, is found in Malabar, who are said to be descended from fishermen. The Ksbattriyas, or warrior caste of tha ancient Hiudu organization, number only 190,415 . The three trading castes of Chettis, Beri Chettis, and Komatia number 714,712 , and except in Kánara district still retain in their hands nearly all the commerce of tho country. Agricultural castes number $7,826,127$; the highest classes among them do not cultivate with their own hands, and many of them formerly helle their lands on a milatary tennre. The pastoral castes number $1,730,681$, but a large proportion of them have now abandoned their hereditary occupation. Artisans number 785,085 , of whom nearly one-lalf are workers in metal. Weavers number $1,017,781$, but fleir industry is now decayed owng to Manehester competition. The labouring castes aro returned at $3,944,463$. Fishing and lunting castes number 971,837 , but many lave now betaken themselves to agriculture. The palm cultavators and toddy makers amount to $1,664,802$. Out-castes ( Parahis) number $4,761,503$; in the country round Madras they form about one-quarter of the total population. Up to the close of the last century they lived in a state of slavery to the superior castes, and they are atill compelled by custom to live in separate hovels outside the bonndary of the village, and to perform all monial services. They are described as a lidborious, frugal, pleasure-loving people, omnirurous in diet, and canablo of performing much hard work. Unelassilied Hintus ( $2,666,890$ ) consist of aboriginal hill races and wandering tribes. Numerically the most important are the Kandhs and Sauras, two conmate races who inlabit the momntainous tracts of the Eastern Fhíts attached to several of tho large zamenduris of Ganjim and Vizagapatam. On the Nilgiris, the nboriginal tribe best kin wn th Fitropeans is the Todas, a stalwart, hanghty race, who domincer over
of buffaloes. It is believed that the Todas are now dying out, for in 1871 they aumbered only 693 . The principal wsndering tribes are the Brinjaris and Lambadis, who are to bo found in all parts of the country as carriers of grain and salt.

The Mohammedans are thus oubdivided:-Sunuis, 1,654,529; Shias, 69,302; Wahhábis, 3954 ; unspecified, 130,072. A more familiar division is a race one:-Labbay, Mopla, Arab, Shaikh, Sayyid, Pathán, and Mughal. The Labbays $(312,083)$ are the descendants of Hindu converts, and are traders by hereditary occupation, although many now employ themselves as sailors and tishermen. The Moplas $(612,789)$ are the descendants of Malayalam converts to Islám,-the hesd of the tribe, the rajaj of Kenanir, being descended from a fisher family in Malabar. They are a hardworking, frugal people, but quite uneducated and very fanatical, and under the influence of religious cxcitement have often disturbed the public peace. The Shaiklis number 511,112, the Sayyids 89,219, the Patháns 70,943, and the Nughals 12,407.

Christians are more numerons in Madras than in any other part of India. They number in the British districts 533,760 , of whom 40,879 are Europeans or Eurasians, and the remainder native converts ; Roman Catholics number 397,071, and Protestants $¥ 3,228$. In Trsvancore and Cochin states the native Christians are still more numerous, constituting as much as one-fourth of the population. The Roman Catholics, whose number throughout southern India is estimated at upwards of 650,000 , owe their origin to St Francis Xavier, and the famous Jesuit mission of Madura; they are partly under the authority of the archbishop of Goa, and partly under twelve Jesuit vicariates. Protestant missions date from the beginning of the last century. The Dancs were the pioneers; but their work was taken up by the Society for Promoting Christian Knowledge, under whom laboured the great Lutherans of the last century-Schultz, Sartorius, Fabricius, and Schwartz. The Church Missionary Society entered the field in 1814 ; and subsequently an American mission joined in the work. The total number of Protestant native Christians in southern Indis (British and native) in 1878 rias 296,408.
Urbau life may be said to be more highly developed in Madras than in Bengal or Bombay. Fopulous cities, indeed, aro not numerons, but there is an unusual proportion of towns with from 2000 to 20,000 inhabitants. The six cities with a population of more than 50,000 are-Madras city (1871), 397,552; Trichinopoli, 76,530 ; Tanjore, 52,175 ; Madura, 51,987; Bellary, 51,766 ; Salem, 50,012.

Agricullure.-Oper the greater part of the area of Madras artificial irrigation is impossible, and cultivation is dependent upon the local Tainfall, which rarely exceeds 40 inches a year, snd is liablo to fall irregularly. Tho Malabar coast is tho only part where the rainfall brought by tho south-west monsoon may be trusted both for its amount and regularity. Other districts, such as Bellary, are also dependent upon this monsoon, but in their case the rain chouds have spent themselves in passing over the Western Ghatts, and cultivation becomes a matter of hazard. Over the greater part of tho presidency the rainy season is caused by the sonth-east monsoon which breaks about the end of September. The deltas of the Godívari, Kistoa, and Kaiveri rivers are the only spots on the east coast which artificial irrigation is able to sare from risk of occasional scarcity. Of the total cultivated area about 80 per cent. is returned as "dry" land, or that which is solely dependent upon local rainfall; 15 per cent. as "wet" land, irrigated from rivor channels; 2 per cent. as garden land irrigated from wells; and about 3 per cent. fallow aud pasture. The principal food staples are rice, chotam, kambu, ragi, and varagu. The most common oilsecd is gingelly. Garden crops comprise tobacco, sugar-cane, clillies, betel-leaf, and plantans. 'I'he fruit trecs are cocoa-nut, areca-nut, dato and palmyra palm, jack, tamarind, and mango. Special cropa includo cotton, indigo, coffee, tea, cinchona. T'lio principal coflee tract stretches along tbe slopes of the Western Chiaits from the noith of Hysore almost down t) Cape Comorin. The larger portion of this area lies nithin Mysore, Coorg, and Trarancore states, but Wainad and tho Nilgiri hills are within Madras. The first coffee plantation was opened in the Wainad in 1840. Nany of the early clearings proved unprofitable, and the enternise mado little progress till about $1855^{\circ}$, in which ycar the total exports were 32,000 elits. - Coffee, which is much cultivated on the Nilgiris, now covers in the whole presidency 131,343 acres. The tea plant was also introduced in to the Nilgiri hills about 1840, but was not taken up as a commercial speculation till 1865. The area under tea is over 4000 acres, and the exports in $1550-\$ 1$ were 263,940 1b. The cinchona plant was successfully introduced in to the Nilgiri hills by Government in 1860. In 18S0-81 847 acres were uuder cultivatinn ; 1,0s7,637 plauts were raised; and the receipts of sales werc $£ 39,618$, tho anount in 1875-76 being only $£ 4959$. Tobacco is extensively grown in Golávari and Kistna districts. 'l'he gixater part of the soil in Madras is helde ly the cultivaturs diecet foom Government under the tenure known as riyatwari. The averago rate of Govermment assessment is about 2s. 3d. per acio on unirifgated and 0 s . 6L. on irrigated land. Io $1880-$ si the total revenue
from this source amounted to $£ 4,1 ; 0,052$. Besides these lands in the hands of the Govemment, there are also proprictary or zamindiriestates 112 all parts of the country. These estates are either the remains of ancicnt prineipalities, which the lolder cannet sell or cnenmber beyond his own life interest, or they are creations of British rule and subjcet to the usual Hindu custem of partition. The total area of the zamindiri estates is about 21 million acres, br one-fourth of the whole yresideucy. The peshliash or tribute payable to Government in perpetuity amounts to about $£ 500,000$ a year. Incims, revenue-free or quit-rant granta of lands made for religious enderments or for services rendered to the state, occupy an aggregate srea of a little over $1,500,000$ acres.

Manufacturcs. - Madras possesses few staple manufactures. The preparation of the coffee herry for export constitutes the one great business carried on by means of Enropean capital and under European supervision. Indige is manufactured in consideralle quantities, but of inferior quality. The more important of the large manufactories are three cotton milis in Madras, a wearing cstablishment maintained by tho Basel missioir in South Kanara, sugar works in Ganjaim and South Arcot, and a jute factory at Vizagapatam. Up to the close of the last century cotton goods constituted the main article of export. Masulipatam, where the first Engltsh factory on the Coromanael ceast was established in 1620 , cnjosed a special reputation for its chintzes, which were ralned for the freshness and permanency of their dyes. There is still a small demand for these articles in Burmah, the Straits, and the Persian Gulf; but Manchester goods have nearly beaten the Indian exporter out of the field. Native looms, however, still hold their own in the iocal market, in face of strenuous opposition. After weaving, working in metala appears to be the most widespread native industry. Among local specialities which have attracted European euriesity may be mentioned the jewellery of Trichinopoli, ornaments of ivory and horn worked at Tizagapatam, and sandal-woed carving at Kanara. The manufacture and sale of salt is a Government monopely, carried on under close supervision. The process employed is aolsr eraporation, ond the entire eastern coast-line frem Orissa to Cape Comorin affords natural facilities for the indnstry. The preparation of arrack and toddy spirit is also a Gevernment monopoly. On the Nilgiri hilis and at Bellary country boer is masufactured by European fums suhject to an exciso duty of 6ả. per gallon.

Railways.-Two guaranteed railmay companies, the Madras and the South Indian, have their lines almost entirely within the presidency, Phe Madras Railway, which connects at Ráichur with the Great Indian Peainstiar system, runs south-east to Nadras, and then west across the peninsula to Beypur, witb branches to Bellary and Bangalore. The total leagtin open in 1881 was 858 miles; the canital expendel, $£ 10,441,698$; the net pronts $£ 17 \%, 433$, giving a diridend of $1 \%$ per cent. on the capital expended. The South Indian Railway (narrow guage) runs north from Tuticorin to Madras. In 1881 the tetal length was 658 miles; the capital expended, $£ 4,291, \$ 11$; and the net profits yielded a dividend of 2.9 per cont.

Commerce and Trade. - The continuons seaboard of the Madras presidency, without any uatural harbours of the first rank, bas tended to create a widely diffused trado. Madras city conducts nearly one-half of the total sea-borne commerce; next comes Malabar, containing the westem railway terminus near Calicut ; then Gedavari, with its cluster of ports along the finge of the delta; Tinnerelli, with the new harhour at Tuticorin, which has opened large dealings with Ccylon; Tanjore, Sonth Kánara, Ganjam, and Vizagapatan in the orler given. The total foreign trade in 1880-81 was as follews. The imports amounted to $£ 6,518,783$, of which cutton picce goods and twist made up £2, 208,379 , grain $£ 158,144$, and apparel $£ 147,691$. The exports amounted to $£ 9,271,345$, the chief items being-coffee, $£ 1,393,090$; raw cotton, $£ 939,127$; hides and skins, $£ 1,261,182$; rice, $£ 906,314$; seeds, $£ 708,390$; indigo, $£ 693,103$; spices, $£ 379,282$; ails, £3,2,119; sugar, £301,670. The total number of vessels encaged in foreign trade that cleared and entered Madras ports in 1890-81 was 6247, with a tonnage of $1,177,337$; the coasting trade was conducted by 11,316 vessel $\mathrm{s}_{\text {, }}$, with $3,748,474$ tons, for ports outside Nadrus presidency, and 24,057 ressels, with $3,092,256$ tons, for perts within the presilencs. The impertance of this active coasting trade may be gathered from the fact that in 187677 (the first year of the late famine) the imports of grais suddenly rose to 652,850 tons, by far the greater part consisting of rice from Bengal.

Administration. - The supreme executive authority is rested in the gorerner, with a council of three members, of whem one is the commander-in-ehief; the athers beiong to the corenanted ciril service. For legislative purposes this council is increased by the presence of the adrocate-general and from four to eight other memGers nominated by the governor, of whom not less than one-half must be non-officials. The local administration is orgenized mith tha district or $z i ? i$ as its unit. Of these districts there are trentyoue in all, including the Nilgiris and Madras city, both of which occupy an exceptional position. Each of the remaining districts is
nnder the jurisdiction of a collcetor-magistrate ond a sessions judge Bencatli the collector-magistrate come deputy collectors, sub-collectors, and assistants. E.och district is subilivided into taluks, numbering ono hundred and fifty-six in all, under the charge of a tahsiddir. Each taluk comprises from fifty to one huudred villages, Which constitute the ultimate units for fiscal and administrativo purposes. The hereditary villsge officials, to be found in almost every Hindu village, are employed to perform minor public offices, revenue and judicial, and are inadequately remunerated either by fees in grain and other cesses levied Irem tha villagers, or by a reduction in their land assessment. The licads of villages and village necountants (karnam) collect and account fer all revenue, rates, and taxes within their respective villages or townships.

Local and municipal administration, including reads and communications, schools and primary education, public bealth aud local endowments, together with special taxation levied for any of these purposes, is provided for by special legislation passed in 1871. Entire districts or, where thesie are of unmanageable size, parts of districts lave leen constituted local fund circles, each under tho management of a board of commissioners, of which the collector is ex officio president, and the district engincer, medical officer, and one or more eivil officers are official members. With them are associated at least an equal number of native non-official gentlemen, appointed by Gercrnment. To these boards is eutrusted the entire management of the locsl interests above named, subject to the aubmission of on anmual budget for the sanetion of Government, and of a report of the board's transactions at the close of each year. The twenty-one districts of the presidency comprise thirty five auch local find circles. The solurees of income at the disposal of these boards are a grant from provincial funds, a special land rate not exceeding one anna in the rupee of the Geverament assessment, tells, school fees, lecal endowments, and other minor special fuads. Munieipal administration of the larger towns is provided for hy boards of town commissioners, constitnted similarly to the local boards as regrads official and non-efficial members, except that, with the consent of Government, the latter may be elected by the rate. payers. Besides the above-named local interests, the commissioners manage the local sanitation and hospitals of the towns, registration of births and deaths, lighting, and police. About fifty towns, in. cluding Madras city, with an aggregate population of $1,500,000$, are provided with municipal administration, and the number is steadily increasing. The funds at the disposal of the commissioners consist of rates on houses and lands, a tax on professions and trades, a wheel and animal tax, tolls ond ferries, school and market fees, \&c. Unier the administration of these local and municipal beards great impulse has been given to the development of roads, education, and lospitals and dispensaries.

Revenue and Expenditure. -Donn to 1811 every branch of revenue and expenditure threughout India was managed in all details ly the Government of India. Under the decentralization schenic of that year the finarcial administration of the jail, police, and educational services, together with certain branches of the medical, sanitary, and other minor services, were transferred to the Governnaent of Madras, and a grant of a single fixed sum frem the imperial funds was assigned for their maintenance. The local fund boards, described abore, were eonstituted in the sane year, and the municipal administration improved. The provincial expenditure is alniest entirely met by a grant from imperial funds; and tho local receipts benefit in a similar way by a subsidy from the imperial ludget. The following figures shoiv the revenue and expendituro under cach head of finance for the year 1880-81, exclnsive of the charges under the heads of army, interest, and imperial public works. (1) Imperial : total revenue, $£ 5,526,451$, of which abont onehalf, $£ 4,2 S 4,335$, is denived from the land revenue, and $£ 1,433,974$ fron salt; expenditure, $£ 3,478,655$. (2) Provincial: total revenue, $£ 955,162$, of which $£ 781,990$ forms the allotment from the imperial funds; expenditure, $£ 971,011$, -the main items being police, £ 376,350 ; law and justice, $£ 105,962$; public works, $£ 142,187$; education, $£ 90,875$. (3) Unfettered local funds: receipts, £24,768; charges, $£ 19,625$. (4) Fettered local funds: income, £748,315; expenditure, $£^{2} 729,746$. (5) MIunicipal : total revenue, $£ 137,364$; expenditure, $£ 1: 29,525$. The gross ravenue of the presidency was $£ 9,030,152$, and the expenditure $£ 6,893,960$.

Army.-Tbe Madras army garrisons, besides the mhole of Madras proper, the aujoining state of Mysore, the Nizom's Dominions, the Central Provinces, and British Burmah; a regiment is also usually atationed at Dorunda in the Chutia Nagpur division of Bengal, and another at Cuttack in Orissa. The entire force cansists of 1 regiment of European cavalry, 19 batteries of European artillery, and 8 regiments of European infantry, with 1 company of native sappers and miners, 4 regiments of native cavalry, and 40 regiments of native infantry. In 1880-81 the European force numbered 10,229 , and the native army 30,958 of all ranks. The military expeaditure charged against Madras in 1850-81 Fas $£ 2,722,105$. The principal cantonmeuts are Kámpti, Secunderálád, Bangalore, Bellary, and Rangoon. St Thomas's Mount near Madras city is an iniportant station for artillery. The tro military sanatariums
are Ramandrug near Bellary, and Jakatala or Wellington in the Nilgiri hills.

Administralive Statistics.-An early task of the English administration was the repression of the system of black mail levied by bands of Kavilgárs, which was not fully extinguished for many years. By a Govermment regulation in 1866 the village police was placed under the head of the village, end became practically the most useful (although a somewhat dishonest) agency of the magistrate in the police administration. The Madras police force was organized in its present form in 1800. In March 1881 it consisted of a tatal strength of 26,415 officers and men, maintained at a cost of $£ 364,233$. In 1880 tho total number of prisoners passing through the jails in the presidency was 27,708 ,-considerably less than during and after the famine; the daily a verage number of prisoners was 12,202. Education was afforded in 1880-81 by 12,878 schools, attended by 327,808 pupils; the expenditure was $£ 284,873$, of which $£ 86,641$ was contributed by the state. The chief educational institutions are the Madras university, the provincial college of Combaconum, the Madras Christian college, the Doveton Protestant college, S. P. G. high school at Tanjore, medical college, civil engineering college, Lawrence asylum, achool of agriculture, school of ordazuce artifieers and sehool of arts, and the military orphanage at Utakamand in memory of the late Sir Hemry Lawrenee.
Climate and Hcalth. -The climate varies in different parts of the presideacy, being determined by the very diverse geographical conditions. The Nilgiri hills eajoy the climate of the temperate zone, with a moderate rainfall, and a thermometer rarely exceeding $80^{\circ} \mathrm{F}$., and sometimes falling to the freezing-point. On the Malabar coast the south-west monsoon brings an excessive rainfall, reaching 150 inches in the year at certain spots. The rain clouds hanging oa the slope of the Western Gháts sometimes obscure the sun for month after month. Along the eastern coast and on the eentral table-lands the raiufall is comparatively low, but the heat of the summer months is excessive. At Masulipatam the thermometer frequently rises to above $110^{\circ} \mathrm{F}$. in the shade. The whole coast of the Bay of Bengal is liabla to disastrous cyclones, which not only wreck the shipping in the roads, but have repeatedly overwhelmed the low-lying ports. The most prevalent diseases are fevers, diarrhœea, dysentery, and other bowel complaints, cholera. and sinall-pox.

History.-Uatil the English conquest the whole of southern India had never acknowledged a single ruler. The difficult mature of the hill passes and the warlike character of the highland tribes forbade the growth of great empires, such as succeeded one another on the plains of Ilindustion. Tho Tamil country in the extreme south is traditionally divided between the three kingdoms of Pandya, Chola, and Chera. Tho west coast supplied the nucleus of a monarchy which afterwards extended over the highlands of Mysore, and took its name fron the Carnatie. On the north-east the kings of Kalinga at one time ruled over the entire line of seaboard from the Krishna to tho Ganges. Hindu legend has preserved marvellous stories of these early dynasties, but our only authentic evidenco consists in their inseriptions on stone and brass, and their noble architecture. The Mohammedan invader first established himself in tho sauth in the beginning of the l4th centary. Alá-uddin, the second monareh of the Kbiljí dynasty at Delli, and his general Malik Kafur conquered the Deccan, and overthrew the kingaloms of liamataka and Telingána, which were then the most powerfu! in southern Indaa. But alter the withdrawal of the Mnsalmain armies the aativo monarclay of Vijayanagar arose out of the ruins. This dynasty gradually extended its dominions from sea to sea, and resehed a pitch of prosperity before unknown. At last, in 1565 , it was overwhelmed by a combination of the four Moliammedan principalities of the Deccan. At the close of the reign of Aurangzcb, although that emperor nominally extended his sovereignty as far as Cape Comorin, in reality Sonth India had again fallen under a number of rulers who owned no regular ellegiance. The nizám of the Deccan, himself an indenendent sovereign, repreaented. the distant court of Delhi. The most powerful of his feudatories was tho nawáb of tho Carnatie, with his capital at Areot. la Tanjore, a descendant of Sivaji ruled; and on tho cerstral table-land a Hindu chicftain was gradually establishing his nuthority and founding tho stato of Mysore, destincd soon to pass to n Molammedan usurper.

Vasco da Gama cast nnchor off Calicut on the 20th Mfay 1488, and for a century the Portuguese retaincd in their control the commerce of India. Tho Dutel began to cotublish themselves on the ruin of tho Portugueso at the beginaing of the 17 th century, and wero quickly followed by the English, who established themselves at Calicut and Cranganoro in 1616. Tellicherri became the principal British emporium on the west coast of Madras. The Fortugucse eventually retired to Goa, and the Dutch to tho Spico lslands. The first English settlement on tho enst coast was in 1620, at Masulipatam, even then celebrated for its fabrics. Farther south a factory, the nuclens of Madms city, wis crecicl in 1039. Pondicherri was purchased by tho E'reach in 1703. Eor many
years the English and French traders lived peacefully side by side, and with no ambition for teariterial aggrandisement. The war of the Austrian auccession in Europe lit the first flame of hostility on the Coromandel coast. In 1746 Madras was foreed to surrender to Labourdonnais, and Fort St David remained the only British possession in southern India. By the peace of Air-la-Chapelle Madras was restored to the English; but from this time the rivalry of the two nations was keen, and found its opportunities in the disputed successions which always fill a large place in Oriental politics. English influence was generally able to secure the favour of the rulers of the Carnatic and Tanjore, while the Freach succeeded in placing their orn nominee on the throne at IIyderabad. At last Dupleix rese to be the temporary arbiter of tbe fate of southern India, but he was overthrown by Clive, whose defence of Arcot in 1751 forms the turning point in Indian history. In 1780 the crowning rictory of Wandewash was mon by Colonel (afterwards Sir Eyre) Coote, over Lally, and in the following jear, despite help from Mysore, Pondieherri was captured.
Though the English had no longer any Eurepean rival, they had yet to deal with Mohammedan fanaticism and the warliko population of the bighlands of Mysore. The dynasty founded by Hyder Ali, and terminating in his son Tipú Sultan, proved itself in four several wars, which terminated only in 1799, the most formidable antagonist which the English had ever encountered (see Hyder Ali and lndia). Since the beginning of the present century Madras has known no regular war, but occasional disturbances have called for measures of repression. The palegars or local chieftains long elung to their independence after their country was ceded to the British. On the west coast, the feudal aristocreey of the Nairs, and the religious fanaticism of the Moplás, have more than once led to rebellion and bloodshed. In the extreme nerth, the wild tribes occupying the hilla of Ganjám and Vizagapatam have only lately learned the habit of subordination. In 1836 the zamindari of Gúmsúr in this remota tract Was attached by Government for the rebollious conduct of its chief. An inquiry then instituted revealed the wide prevalence among the tribe of Kandhs of human sacrifice, under the name of meriah. The practice has since been suppressed by a apecial agency.
The different territories comprising the Madras presidency have been acquired by the British at rarious dates. In 1763 the tract enciveling Madras city, now Chengalpat district, was ceded by the nawáb of Arcot. In 1765 the Northern Cirears, ont of which the French had recently been driven, were granted to tha Company by the Mughal emperor, but at the price of an annual tribute of $£ 90,000$. Full rights of dominion wrere not acquired till 1823, when the tribute was commuted for a lump payment. In 1792 'Tipú was compelled to cede the Baramahál (now part of Salem district), Malabar, and Dindigal subdivision of Madura. In 1799, on the reconstrnetion of Mysore ctate after Tipu's death, Coimbatore and Kánara were appropriated as the British share ; and in the same year the Mahratta rajá of Tanjore resigned the administration of his territory, though his descendant retained titular rank till 1855. In 1800 Bellary and Cuddapah were made over by the nizám of Hyderabad to defray the expense of an increased subsidiary force. In the following year the dominions of the nawáb of the Carnatic, extending along the east coast almost continuously from Nelloro to Tinnevelli, were resigned into the hands of the British by a puppet who had been put upon the throne for the pilrpose. The last titular nawáb of the Carnatie died in 1855 ; but his representatire still bears the title of prince of Arcot, and is reeognized as the first native nobleman in Madras. In 1838 the nawáb of Karnúl was deposed for misgoverument and suspicion of treason, and his terri; tories annexed.

Madras, capital of Madras presidency, is sitnated on the sea-coast iu $13^{\circ} 4^{\prime} 8^{\prime \prime} \mathrm{N}$. lat., $S 0^{\circ} 14^{\prime} 51^{\prime \prime}$ E. long. Although at first sight the city presents a disappointing appearance, and possesses not a single handsome street, it has several edifices of high architectural pretensions, and many spots of historical interest. Seen from tho roadstead, the fort, a row of merchants' offices, a few spires and public buildings, are all that strike tho eye. Roughly speaking, it consists of the following divisions. (1) Black Town, an ill-built, densely populated block, about a mile square, is the business part of the tomn, and contains the bauks, custom house, high court, and all the mercantile offecs. The last, for tho most part handsome structures, lio along tho beach. On the sea-face of Black Town are the pier and the new harbour. Immediately south of Black Town there is (2) an open space which contains the fort, esplanade, brigado parade ground, Government house, and several handsome public buildings on the sea-face. (3) West and south of this lung of the city como a scrics of crowded quarlers known by


Plas of Madras.
various natire names-Chintadrapet, Tiruvaleswarampet, |tho west of Black Town are the quarters of Veperi and Pudupâk, Royapet. Kistnampet, and Mylapur, which bend to the sea again at tho old torn of Saint Thomé. (4) To Pudupet, chiefly inhabited by Eurasians, and the suburhs of Egmore, Naugambákam, and Perambúr, adurned with

Janalsome Etropeniu mansious and their spacious "compounds" or parks. (5) South-west and soulh lie the European quarters of Tanampet and aristocratic Adyar. Amongst the buildings most deserving of notice for their architectural features are the cathedral, Scotch church, Government house, Patcheappah's holl, senate house, Chepauk palace (now the Reveuue Board), and the Central Railway station.

Nearly all the most important offices of the presidency, and the headquarters of every department, arc located in MLadras. Apart from the headquarters staff of the Madras army, that of the central division is also stationed herc, with a garrison of I European and 3 native infantry regiments, I battery of artillery, and the bodyguard of the governor ( 100 sabrea). At St Thomas's Mount are 3 batteries of artillery and a detachment of native infontry. Including these, the garrison of Madras is about 350 C strong, of whom 1200 are Europeahs.

The population of Madras city, as ascertained by the census of 1871, was 397,552 , including 330,062 Hindus, 50,96t Mohammedans, I2,013 Eurasians, and 3613 Europeans. The annual municipal income is about £53,000. Madras, notwithstanding its exposed situation, ranks third among the ports of India in respect of the number and tonnage of vessels calling and the value of its inports and exports. The port trades with every part of the world, exporting coffec, cotton, grain, hides, indigo, onilseeds, dyes, sugar, and horns, and importing piece goods, iron and other metals, and all kinds of Europan manufactures. The lighthouse, 125 feet high, is visible from a ship's deck 15 miles at sea. The Mradras roadstead, like the whole line of the western coast of India, is liable to be swept by hurricanes of irresistible fury, which occur at irregular intervals of years, generally at the beginniag of the monsoans in May and October. The first recorded cyclone was in October 1746, a fer weeks after the fort had surrendered to Labourdonnais, A French fleet then lay at anchor in the roads. Five large ships foundercd, with L200 men on board; and scarcely a single ressel escaped with its masts standing. Perhaps the most destructive of these storms occurred in May 1872. On this nccasion the registered wind pressure reached a maximum of $53 \overline{\mathrm{I}}$ to the square foot. In the space of a few bours nine English vessels and twenty nativo craft were driven ashore. In May I874 another cyclone broke on the Madras coast, but the ships were warned in time to put to sea and gain an offing. The most recent of these periodical hurricanes accurred in November I881, when the new harbour works sustained serious damage.

The trade of the town does not depend on any special local manufacturcs or produce. Such industries as once flourished-weaving, for instance-have decayed, and. no others have grown up to replace them. As elsewhere in India, spinning companies have recently been formed, but what effect they are likely to exercise on local trade remains to bo scen. With the exception of banks, and enterprises connected with the preparation of produce for export, e.g., cotton-pressing and coffee-cleaning, joint-stock undertakings lave not prospered. As the capital of southern India, Madras is the centre on which all the great military roads convergc. It is also the terminal station of two lines of railway, the Madras lino and the Madras and Tanjore section of the South Indian Railway.

The Buckingham Canal, which passes through an outlying part of the city, connects South Arcot district with Nellore and the Krishna and Godavari system of canal navigation. This long delayed project was undertaken as a famine work.
The torn of Madras dates from I639, when Francis Day, chief of the East India Company'e settlemeut at Armagon, obtained a sraut of the present site of the city from the rájá of Chandragiri.

A factory, with somo slight fortifications, was at once constracted; and a gradually inereasing population eettled around its walls. In 1653 Dladras, which had previously been subordinate to the settlenient of Bantani in Java, was raised to the rank of an independent presidency. In 1702 Dáúd Khản, Aurangzeb's general, blockzuled the towu for a few weeks, and in 1741 the Mahrattas unsuccess: fully attaelked the place. In 1746 Labourdonnais bombarded and captured the fort. The settlement was restored to the English two years later by the treaty of Aix-la-Chapelle, but the governuentut of the presidency did not return to Madras till 1762. In 1758 the French under Lally occupied the Blaek Town, and invested the fort. The siege was conducted on both sides with great skill aud vigour. After two months, the arrival of a British fleet relieved the farrison, and tho besiegers retired with somo precipitancy. With the exception of the threatening approach of Hyder Ali's horsemen in 1769, and again in 1780, Jiadras has since the French siege been freo from external attack. The town of Saint Thomé, now part of Mradras city, was founded and fortified by the Portuguese in 1504, and was held by the French from 1672 to 1674.

MADRID, a province of Spaic, one of the five into which New Castile is divided, is bonnded on the W., N.W., and N. by Avila and Segovia, on the E. by Guadalajara, on the S.E. by Cuenca, and on the S. by Toledo. The area is 2997 square miles, with a population in 1877 of 593,775 , an increase of 101,443 since 1860 . Madrid belongs to the basin of the Tagus, being separated from that of the Douro by the Sierra Guadarrama, which skirts the province on the north-west and north. The Tagis itself is the southern boundary for some distance, its chief tributary being the Jarama, which rises in the Somosierra in the north, and terminates at Aranjuez The Jarama, in turn, is joined by the Henares and Tajuña on the left, and by the Lozoya and Manzanares on the right. The Guadarrama, another tributary of the Tagus, las its upper course withia the province. Like the rest of Castile, Madrid is chiefly of Tertiary formation ; the soil is mostly clayey, and there are sandy tracts. Agriculture is in a somewhat backward condition ; the rainfall is deficient, and the rivers, poor though they are, are not utilized as they might be for irrigation. The chief products are wheat, barley, rye, oats, algarrobas (Ervum tetraspermum), pease, chick pease, ánd various other legumes, wine, oil, fiax, hemp, wax, honey, and varions fruits. Gardening is carried on to some estent near the capital, though the markets of Madria receive their most liberal supply of fruits and vegetables from Valencia. Sheep, gosts, and horned cattle are reared, and fish are foond in the Jarama and other rivors. The proviace is on the whole treeless; hut some wood is grown on the mountain slopes in the north. The Sierra Guadarrama bas quarries of granite, lime, and gypsum, and is known to contain iron, copper, and argentiferous lead, but these resources are as yet undeveloped. The manufactures are trifing (coarse cloth, leather, paper, earthenware, porcelain, bricks and tiles, saltpetre, glass and crystal, chocolate, lace); and there is very little commeree beyond that for the sapply of the capital with necessaries. The only towas with a population above 10,000 are Alcalí (Complutum) on the Henares, and Madrid ; the famons university of the former was transferred to the latter in 1836. Aranjuez (8154), on the Tagns, is also of historical importance.
MIADRID, capital of the above province and of Spain, is situated in $40^{\circ} 24^{\prime} 35^{\prime \prime} \mathrm{N}$. latt. and $3^{\circ} 41^{\prime} 51^{\prime \prime} \mathrm{W}$. long., on the left bank of the Manzanares, a subtribatary of the Tagus, at a maximum elevation of 2372 feet above the sea-level. The population ( 397,816 in 1877) was orer 400,000 in 1881. The town is nearly in the centre of the kingdom, almost equidistant from the Mediterranean, the Atlantic, and the Bay of Biscsy. The site consists of some sandy bills of little elevation, in the midst of an extensive plain, bounded to the view on the north only by the Sierra Guadarrama. The basin in which it stands is of Tertiary formation, consisting of gypsum, marl, and limestona.

Owing to its elerated and exposed situation, the climate of Madrid has some marked peculiarities. In winter the mean temperature is $43^{\circ}$ Fahr., and as many as sisteen degrees of frost have been observed; the mean in summer is $76^{\circ}$ Fahr., but a temperature of $107^{\circ}$ has been registered; and the daily oscillation sometimes amounts to as much as $57^{\circ}$. The readings in sun and shade at the same moment are also widely different. The tendeucy to inflammatory disorders in the population is, as might be expected from these circumstances, rery pronounced ; but against it mast be set the advantages of a dry atmosphere and a cloudless sky, and in point of fact the city is not exceptionally unhealthy; its salubrity has been much euhanced by the recent introduction of a plentiful supply of pure water from the Lozoya ( 32 miles distant).

The form of Madrid proper is almost that of a square
with the corners rounded off; from east to west it measures rather less than from north to south. It was formerly surrounded by a poor well, partly of brick, partly of earth, some 20 feet in hcight, and pierced by fire principal gates (puertas) and eleven "portillos." Of these gateways only three, the Puerta de Alcala on the east, the Puerta de Toledo on the snuth, and the Portillo de San Vicente on the west, now actually cxist; the first and the third were erceted in the time of Charles III., and the second in honour of the restoration of Ferdinand VII; ; all have some architectural pretensions. The Manzanares (or rather its bed, for the stream is at most seasons of the year quite insignificant) is spanned by six bridges, the l'uente do Tolcdo and that of Segovia being the chief. The Puerta del Sol (formerly the east gate and tower of the city, having on its front a representation of the sun-


Plan of Madrid.

Whence the name) is now the central plaza, and the favourite lonnge and place of most traffic in the city; the animated scene it presents has been described with more or less fulness in almost every book of Spanish travel. On its south side stauds the Palacio de la Gobernacion, or Home Office, a heavy square building, by a French architect, J. Marquet, and dating from 1768 . From the Pnerta del Sol diverge, immediately or mediately, almost all the principal streets of Madrid-eastward by north, the Calle de Alcalá, terminating in the Prado; eastward, the Carrera de San Geronimo, terminating by the Plaza de las Cortes also in the Prado; southward, the Calle de Carretas ; westward, the Calle Mayor, which leads to the council chamber and to the palace, and the Calle del Aremal, terminating in the Plaza de Isabel IL. and the opera-house; morti-westward, the Calles de Preciados and Del Carmen;
and northward, the Calle de la Montera, which afterwards divides into the Calle de Fuencarral to tho left and the Calle de Hortaleza to the right. Of these the Calle de Alcale is the finest; it is bordered on both sides with acacias, and contains some elcgant buildings, including the museum of natural history, formerly the general customhouse, dating from 1769, and the offices of the Board of Trade (Ministerio de Hacienda) on the north side, and on the south the palace of the duke of Sesto (the site of which is about to be occupied by the new buildings of the Banco de España or Bank of Spain) ; its irregularity in point of width and level, however, detracts much from its appearance. The Plaza de las Cortes is so called from the Congreso de los Diputados, or House of Commnns, on its north side, a building in the Corinthian style, but of little merit; the square contaius a bronze
statnc of Cervantes, by Sola, erccted in 1835. The Calle de Carretas ranks with the Carrera de San Geronimo and Calle de la Montera for the excellence of its shops. Front the Callo Mayor is entered the Plaza Mayor, a rectangle of ahout 430 fect by 330 , formerly the sceno of tournaments, bull fights, autos-de-fe, and similar exbibitions, which uscd to wo viewed by the royal family from the balcony of one of the houses called the Panaderia (belonging to the guild of bakers). The, square, which was built under Philip IIL in 1619, is surrounded by an arcade; the houses are uniform in height and decoration. In the centro stands a bronze equestrian statue of Philip III., designed by Pantoja, cast by Juan de Bologna; and finished by Pedro Tacea. From the south-east angle of the Plaza Mayor the Calle de Atocha, one of the principal thoroughfares of Madrid, leads to the ontskirts of the city; at the southwest angle of tho same square the Calle de Toledo begins, the chief mart for tho various woollea and silken fabries from which the picturesque costumes peenliar to the peninsula are made. In the Plaza de Isabel II., at the western extremity, of the Calle del Arenal, stands the royal npera-house, the principal front of which faces the Plaza del Oriente and the royal palace. In the centre of the plaza is a fine bronze equestrian statue of Philip IV.; it was designed by Velazquez and cast by Tacea, while Galileo is said to have suggested the means by which the balance is preserved. The gitt of the grand-duke of Tuscany in 1640, it stnod in the Buen Retiro gardens until 1844.

As compared with other capitals, Madrid bas very few buildings of much interest architectura'ly or otherwise. 'There is no cathedral. The Basilica de Nuestra Seùora de Atocha, on the Paseo de Atocha, a continuation of the Calle do Atncha, originally founded ia 1523 , after being destroyed by the French was rebuilt by Ferdinand VII ; it contains one of those niraculous images attributed to $S t$ Luko with which Spain abounds, and is specially associated in history with the name of Queen Isabella II. The collegiate church of San Isidro el Real, in the Calle de Toledo, dates from 1651; it las no architectural merit, but contains one or two valuable pictures and other works of art. The modern Gothic church of San Gerenimo el Real occupies a conspicuous site castward of the town; it is not at present used as a place of worship. Of secular Unildings unquestionably the most important is the royal palace (Palacio Reai) on the west side of the town, on a rising ground overhanging the Manzanares. It occupies the site of the aucient Moorish alcazar, where a bunting seat was built by Henry IV.; this was enlarged and improved by Charles V. when ho first made Madrid his residence in 1532, was further developed by Philip IL., but u!timatcly was destroyed by firo in 1734 . Tho present edifice was begnu nader Philip V. in 1737 by Saccletti of Turin, and was finishod in 176t. It is in the Tuscan stylc, and is 470 feet squaro and 100 feet in leight, the material being white Colmenar granite, resembling marble. To the north of the palace aro the royal stables and coachlouses, remarkable for their estent ; to tho sonth is the armoury (Museo de la Real Armeria), containing what is protably the best collection of the kind anywhere to be met with. After the Palacio Real may be mentioned the royal picture gallery (Real Museo do Puntures), adjuining the Salon del Prado; it was built about 1785 for Charles III. by Juan do Villanueva, as a muscum of natural history and academy of sciences. It contains the collections of Charles Vo, Philip. IL, anci Philip IV., and the pictures aumber upwards of $t$ wo thousand. The specimeus of Titiau, Raphael, Veronese, Tintoretto, Velazquez, Tindyck, Rubeues, and Teniers aro numerous and reararkahle, giving it a clim to be regarded as tho finest picture mallery in tho world. The palaces of the grandecs are gencrally noteworthy
only for their size. There are bome seventeen theatres of all classes. The bull-ring (Plaza de Toros), to the east of the town, accommodates 12,000 spectators; the present building dates from 1874. Of the promenades and open places of public resort the most fashionable and most freguented is the Prado (Paseo del Prado, Salon del Prado) on the east side of the town, with its northrward continuation the Paseo de Recoletos. To the sonth of the town is the Paseo de las Delicias, and on the west, below the royal palace, and skirting the Manzanares, is the Paseo de la Virgen del Puerto, used chiefly by the poorer classes. Eastward from the Prado are the Buea Retiro gardens, with the usual ponds and pavilions, and a poor menagerie. Tho gardens were formerly the grounds surrounding a royal hunting seat, on the site of which a palace was bnilt for Philip IV. in 1633 ; it was destroyed during the French occupation. 1

Modern educational movements have not left Madrid unaffected, and considerable improvements in this respoet have taken place within recent years. There are upwards of 100 official primary schools (attended by 4810 boys and 3058 girls), and a large number of private ones; amoug the other educational instrumentalities the numerous schools connected with various Protestant missions claim special mention. Thero are two normal schools. The university of Alcalá, founded by Cardinal Ximenes in 1508, was transferred in 1836 to Madrid, and has since that time undergone much reform and extension. In 1882 the teachince staff numbered 88 , and the students 7000 . Of these 2400 belonged to the faculty of law, 2500 to that of nıedicine, 400 to that of science, 1400 to that of pharmacy, and 250 to that of philosophy and literature. The faculty of theology was suppressed in 1868, and has not been re-cstablished. Madrid also has schools of agricultnre, architecture, civil and mining engineering, the fine arts, veterinary science, and music. The school of military engineering is at Guadalajara. Among the educational institutions may bo reckoned the botanical. garden, originated in 1781, the national library, with those of the palace, tho university, and Sau Isidro, and the muscum of natural science, esceedingly rich in the mmeralogical department. The nrincipail learned society is the Royal Spanish Academy, founded in 1713 for the cultivation and improvement of the Spanish tongue. The Academy of History possesses a grod library, rich in MSS. and incunabula, as well as a fine collection of coins and medals. There are likewise academics of the fine arts, the exact sciences, moral and political science, medicine and surgery, and jurisprudence and legislation, all possessing libraries. There are also anthropological, economical, and geographical societies, and a scientific and literary atheneum. The charitable institations include upwards of eighteen hospitals, tho largest of watch contaios 1200 beds; there are three fuundling hospitals and six for orphans. The military lospital is iarge and well conducted. There are very good schools for the blind and for deaf mutes, and a number ol asylums of various kinds.

The mannfactures of Madrid are inconsiderable; every article of food and clothing, almost without exception, is imported. The most important industries are the manu factures of tobaceo and cigars, gold and silror wares, tapestry and carpets, poreelain, hats, mirrors, and beer, Little wime is grown ncar the capital, and not much fruit but the markets are well supplict, a ad regularly, from all quartere of the kingdom. Madricl is still tho principal, one might aimost say the only, focus of the now largely developed railway system of the peninsuln. The subarbs of the town are rapidly extending, especially towards the north and sonth. Tlie immediate cavirons aro uninterest. ing. About C milos to the north-west lies the fine lunting seat El Pardo, restored ly Cllarics ILI.

Spanish archóologists have frequently claimed for Madrid a very high antiquity, bat the earliest authentic historical mention of the town (Majrit, Majoritum) occurs in an Arab chronicle, and does not take us farther back than to the first half of the 10 th century. The place was finally taken frem the Moors by Alphonso VI. (1083), and was made a hunting.seat by Henry IV., but first rose into importance when Charles $Y$., benefting by its keen air, made it lis occasional residenco. Philip II. created it his capital and "only court" (unica cortc) in 1560. T'o this day it only ranks, however, as "rilla," not as "ciudad." Fruitless attempts were made hy Philip Ill. and Charles 111. respectively to transfer the seat of gorernment to Valladolid and to Scrille.

MADRIGAL. The notice of this branch of musical art which will be included in the general article Music may here be anticipated by an approximately chronological list, according to nationalities, of the masters who have been chiefy distiaguished for their compositions of the class:Flanders: Egide Binchois, Brusnois, Jean Oheghem or Ockenheim, Jean Tinctor, Adrian Willaert, Cyprian di Rore, Jacques Hobrecht, Firmin Caron, Josquin des Près, Alexauder Agricola, Antoine Brumel, Pierre de le Rue, Jacques Arcadelt, Claude Goudimel, Philippe Verdelot, Jacques de Wert, Hubert Waelrent, and Orlando di Lasso; Rome: Costanzo Festa, Giovanni Pierluigi da Palestrina, Felice and Francesco Anerio, Giovanni Maria, Beruardine Naniui, and Luca Marenzio (styled in his own time "Il più dolce Cigno d'Italia"); Venice: Giovanni Croce, Andrea and Gievanni Gabrielli, Costanzo Porta, Orazio Vecchi, and Giovanni Giacomo Gastoldi; England: William Cornyshe (Pather and son), Richard Taverner, Robert Fayretnx, Thomas Phelyppes, Richard Edwards, William Byrd, Thomas Morley, Giles Farnaby, Edward Jolinson, Themas Weelkes, George Kirbye, John Dowland, Michael Este, Thomas Tomkins, John Bonet, John Hilton, Joha Wilbye, Thomas Ford, Thomas Bateson, Richard Allison, John Ward, and Orlando Gibbons, also Joln Cooper and Peter Plilips, who dwelt long in Rome, and published their works under the names respectively of Giovanai Coperario and Pietro Filippi. Many of all these wrote strictly madrigals, that is, continuous compositions abounding in ingenious artifices of imitation of one part by another; others wrote rhythmical songs of four or more parts, or ballets, or fal-las, nll of which, being for unaccompanied voices, or for viols instead of veices, are often erronenuzly ranked as madrigals, though differing entirely in structure from them. The English composers, to Byrd inclusive, produced pieces distinctly of the madrigal class, but described them by other definitions; it wes in the year 1588, when Byrd published Psalms, Sonets, and Songs of Sadness and Pietie, that the word madrigal was first introduced into England by Nicholas Yonge, a merchant, a lover of music who, having received copies of some foreign compositions in his clests of merchandise, adapted English words to these, and printed a collection under the title Musica Transalpina, the success of which stimulated the powers of English writers that had already been proved, and excited others to cmulate their example. The art of madcigal compositiou was never practised in Germany, and it died out in other countries early in the 17th century. The knowledge of the works that endear the madrigal writers to lovers of a high and most pure form of music was revived, and has since been kept alive, by the Madrigal Society. This ras founded in 1741 by John Immyns, an attorney, and its original members wero meckanics or small trsdesmen ; it held its frst meeting at the Twelve Bells Tavern in Bride Lane, made many migrations to other houses of entertainment, and has its present home at the Freemasons' Tavern, where its members nre of a far higher social caste than the men who associated themselves for the practice of contrapuntal vecal music when the rank and fashien of the land went to worship l'ariuelli at the Italiau opera, and to take part with the
followers of the kiag or the priace of Wales in supportina one or other of the opposition establishments for its performance. In 1811 the society offered a prize for the compositioa of a madrigal, which was won by William Beale. The same inceative bas occasionally been repeated. This encouragement, and still more the love for the class of inusic engendered by the public performance of madrigals by large choral societies during the last fifty yeare, hava incited later composers to mere or less successful imitations of the style, especially distinguished among whom was Tobert Lucas Pcarsall (1795-1856).

MADURA, a district in the south of the Madres presidency, India, lying between $9^{\circ} 4^{\prime}$ and $10^{\circ} 44^{\prime} \mathrm{N}$. lat., and $77^{\circ} 14^{\prime}$ and $79^{\circ} 20^{\prime} \mathrm{E}$. long., is bounded on the 1 f . by Coimbatore, Trichinopoli, and Tanjore districts, E. aud S.E. by the sea, S.W. by Tinnevelli district, and W. 1 y Travancore statc. Broadly speaking, it consists of a se tion of the plain stretching from the mountains cast to the sea, coinciding with the basin of the Vaigai river, and gradually sloping to the south-east. The plain is broken in the west by the outlying spurs of the Ghats, and by a few isolated hills and masses of rock scattered over the country. The most impertant spur of the Ghits is that lnown as the Palni hills, which project east-north-east across the district for a distance of about 54 miles. Their lighest peaks are more than 8000 feet above sea-level, and they enclose a plateau of about 100 square miles in area, with an average height of 700 rs fect. A sanatarium lias been recently established on this plateau, at Kodaikanal, and cofiee planting is here successfully carried onFarther east a cunfused group of hills, known as the Sirumalais," the highest of which has an elevation of nearly 4000 feet, clusters round the village of Nattam. Among isolated racks may be mentioned the precipitous fortress of Dindigal, and the "Elephant Rock," the "Cow Hill," and the sacred Skandamalia-all in the immediate. vicinity of Madura town. The chief river is the Vaigai, which divides the district into two almost equal portions. Yery little forest is found in any part of the district. The cultivated plain is absolutely barren of trees, except where a newly-planted avenue marks a line of road. Groves of palmyra and cocoa-nut palms fourish along the sen-coast and river banks. Among the wild products of the Palni hills are nutmeg, cinnanion, and pepper. The predomiaant geological formation is granite. Syenite occurs in large boulders. A gravelly bed of laterite, which runs across the district, is quarried for building purposes: and sandstone is said to extend along the whole length of the sea-coast. Mineral products include saltpetre, salt, lime, chalk, and graphite. Iron in various forms is found, but it is nowhere worked profitably, eveu by the rude native processes. Gold is washed in some of the streams Several kiads of opal, chalcedony, jasprer, garmet, and rockcrystal are found.
Tha census of 1871 showed a total propulation of $2,266,615$ peroons ( $1,112,066$ maTes and $1,154,549$ females), spread over an area of 9502 square milcs, aud inhabiting. 5459 villages and 443,513 houses. Hintus numbered 2,062,568, and Mohammedans 132,833; and the Catholics at the present day number abont 60,000 , under the charge of the missions of the Jesuits and of the Church of Goa The Protestant population are under the chargs of an American mission, first established in 1834. The principal terns ara Madnra city (51,987), Dindigal (12,818), Palni (12,801), Rámnád ( 15,442 ), Tirumangalam (5772), Parambakudi (6284), Sivagangá (7392), Killakarai, Aruppukotai, and Perifakulan. The only municipalities are Madura and Dindigal.
Of a total area of 9502 squara miles, 6507 belong to zamindárs or permanently assessed estatco. The total area of Government lands in occupation in 1875-76 was $1.013,000$ acres, of which 806,630 wero under cultivation. The chief food crops are rice, cholam (Holcus saccharratus), Kambu (Holcus spicatus), ragt (Elcusine corma cana), raragu ( Paspalum frumentaccun), samai (P'anicum miltacum, and scveral kiads of puses. Other crons irriuda cilsseel'
tobsceo of excellent quality, and a little indigo and cotton. The rainfall is snall ancl rariable in its seasons. Every possible menns of storingup surplus water has been resorted to from time imme. merial. An important engineering project, known as the Periyir scheme, has long been under consideration, by which the abundant miufall wh the firther slope of the Travancore hills might bo diverted into the drainage basin of the Vrigai. Salt is manufactured at certain slations on the coast as a Govermment monopoly. Handsome turbins fringed with gold eloth, and a peculiar kind of red gloth, are spurialities of Jladura town. Considerable sea-borme traule is carrinh on ly native craft, chiefly with Ceylon. Rice and other fool grains, gingelly oil, spires, cloth, salt fish, tolacco, red oulle, and carthenware are the principal exports. The district is traversell be the South latian railway from Tinnevelli to Trichinopoli. The total imprerial revenue in $1875-76$ amounted to $£ 393,448$, of which t'esn, 067 was drrivell from the lanil. Ellucation in $1876-i 7$ was allondel by 424 sehools, attended by 12,509 pupils. Besides orilinaiy discases, Madura 10 ssesses three special scourges:emlemic fever, which sometimes rages with exceptional sererity; sholera, disseminated by pilgrims to the sacred temple at Rames. waram; anl the well-known "Madura foot." This last complaint, known to sciente as mordus prdis contuphyticus, is a species of fungus which spreals over the whole toot in a mass of tubercles. It, primary cause secins to be unknown.
Mistory. -Madura was the seat of the Pandian monarchy, which raled over this part of hadia from the 5th century B.c. to the end of the 11th century of our era. The last of the Pandia kings is said to have exterminated the Jains, and conquered the neighbouring kinglom of Chola; but he was in his turn overthrowas by an insader from the north, conjectured to have been a Mohammedan. In 1324 a Moslem amy under Malik Kafur occupied Madura, and the Miwlus were hed in subjection for a period of fifty rears. Subseqnently Malara became a province of the Hindu empire of Vijnyanacar. In the mithle of the 16th century the govemor $V$ Viswanath establislied in hereditary rule which lasted for a century. The greatest of the line was Tirmmalit Nijak (1623-1659), whose magnificence and military exploits are recorded in the contemporary letters of the Jesuit missionanics. He aloraed Madura with many pnblic buildinss, and extended his cmpipe over the aljoining districts of Tinnevelli, Trasincore, Coimbatore, Salem, and Trichinopoli. His repudiation of the nominal allegiance paid to the rajai of Vijaiganagar brought him into collision with the sultan of Bijap pur, ami Mohammedaus, after the lapse of three centuries, again invaled Midma, and compelled hinu to pay then tribute. After the cleath of Tirumala the kinglom of Dadura gradually fell to pieces. In 1740 the district fell into the hamis of the nawab of the Carnatic, and the line of the Najaks was extinguished. 1n 1762 British oblicers took charge of Madura, in trust for Wallah Jah, the last independent nawab of the Carnatic, who finally ceded his lights of sovereignty to the East Ladiat Compnny in 1 sol.

Madura, the chief town and headquarters of Madura district, is situated on the south bank of the Vaigai river in $9^{\circ} 55^{\prime} 16^{\prime \prime} \mathrm{N}$. lat., and $78^{\circ} 9^{\prime} 44^{\prime \prime} \mathrm{E}$. long., with a population (1871) of 51,987 , being the fourth largest town in the Madras presidency. Its principal architectural feature is the great temple, forming a parallelogram 847 feet by 744 feet, surrounded by nine gopuras, one of which is 152 feet high. The priucipal structure is the "Hall of a Thousand Pillars" (the actual number being 997 ). The other buildings comprise the celebrated palace of Tirumala Náyak, the most perfect relic of secular architecture in Madras. Its ruins cover a large area of ground, and a considerable sum of muncy has been recently assigned by Government for the resturation of the building. Only second in importasce to the palace is the Vasanta or Puthu muntupam, which still exists in complete preservation, and is said to have been built as a sumner retreat for the god Sundareshwara, a form of Siva. On the opposite bank of the river is the Tamakam, a two-storied building of quaint architecture, said to have been erected as a stand from which to view sports and combats. Last is the Teppukularn or great tank, situated $1 \frac{1}{2}$ milcs to the east of the town, and measuring 1200 yards each way. Once a year its banks are illuminated ly (it is said) 100,000 lamps, while the idols from the pagola are drawn romm it on a teppam or saft.
MADURA, in High Javaneso Nudunten, an island of the East Indian Archipelago, separated by the shallow Strait of Madura from the east end of Jara. It extends
froa about $112^{\circ} 32^{\prime}$ to $114^{\circ} y^{\prime} \mathrm{E}$ long., and is divided iuto two nearly equal portions by the parallel of $7^{\circ} \mathrm{S}$. lat.; the area is estimated at 2100 square miles. As the few travellers who have visited Madura have been for the most part content to follow the highways which, though runuing the whole length of the island, never strike very far inlaud either from the north or the sonth coast, a considerable part of the country is but ragucly known to Europeans. It may be safely asserted, honever, that the geucral configuration is fairly simple,-the island being a plateau-like prolongation of the limestone range of northern Java, with frequeut interchange of hill and dale, culninating towards the east in Gunong Pedjudan or Tambuko at a height of 1512 feet. Hot springs are not unfrequent; and in the valley between Gunong Geger and Bandjar lies the mud volcano of Banju Ening. "Round the coast runs a gircle of tropical vegetation, broken only here and there by small white peaks with steep perpendicular clifts;" but, except in a few alluvial tracts in the lower courses of the streams, the scil is thin and poor, aod better fitted for pastoral than agricultural purposes. Maize is by far the most important of the crops; it is planted after rice in the non-irrigable sawahs, and often before it in the irrigable; in the tagal fields it is sometimes som thrice in a single year, frequently along with katjang (various kinds of native beans). Eluropean enterprise has not yet invaded the island ; thera is only one sngar plantation, Tedjeh, near Pamakasan, established in 1835. Nuch attention is paid to the rearing of cattle,-the small Madura oxen being greatly prized in Java, and consequently forming a regular article of export. Petroleum is found in snall yuautities in all the departments, but the most valuable product of the island is its salt (hence perhaps the name Madura; Sansk. M(andura, salt): The manufacture, a Dutch Gorernment monopoly, was formerly carried on in several places, as at Brantah and Bunder (where the salt pans now serve as fish ponds), but in 1870 Sumenep was made the sule establishment for Java and Madura, and it still remains by far the most important, though its annual production of $875,000 \mathrm{cwts}$. has since 1875 to be supplemiented by Ragung and Pangaringan. The population of Madura was in 1879 returned as $768,992,-472$ Europeans (mostly at Maringan near Sumenep), 3702 Chinese, 1445 Arabs and other Orientals, and 763,373 natives. These last constitute one of the three great races of Java and Madura, and speak a distioct language, for which compare Java, vol. siii.
The following are the places of elief note in the island. Kannal at the sonth-west corner is the point where people usually cross from Java. Bangkalang is the large and flourishing elief town of Madura proper, with the old palace of the sultan and the residences of the princes of the blood; the mosque is adorned with the first three suras of the Foran, thus differing from nearly all the mosques in Jara and Madura, though resembling those of western Islam. In the vicinity once stood the Erfprins fort. Arisbaya (less correctly Arosbaya) is the place where the first mosque was built in Madura, and where the Dutch sailors first made acyuaintance with the matires. The once excellent harbour is now silted up. Ajermata, so called from its salt-springs, is the burial-place of the princes of Bangkalang. Pamakasan, though a town of considerable extent; presents nothing worthy of notice apart from the regent's resilence. Sampang, the seat of an important market, seens hardly so tlourishing as in Valentyn's days. The town or kuta of Sumenep had 15,000 inhabitants in 1846 ; and there are populous Malay, Arab, and Chinese villages between the town and the Enropean settlement of Maringan. On a hill in the neighhourhood, with a fine outlook over the Bay of Sumenep, lies Asta, the burial-place of the Sumenep princes; and Nitia lusumn's nausoleum excels ever': thing of tho kind in Juva.

Madura formely consisted of the native stater-Madura or Bangkalang, limmikasan, aul Sumenep. Dutch authority was represented by an assistant resident, and the whole island considered part of the Java residency of Surabaya. The separate residency of Madura was constitited in 4857 . On the death of the second sultan of Bang. kulang ( 1 \$47) the title had been reduced to that of panembahan;
snd in 18.2 the new ruler was deprived of the right of collecting tares, and made a Government pensioner, while his territory was split into the two Dutch "departments" of Madura and Sampang. The sultan of Sumenep was in like manner suceceded by a panembalan in 1853; and the death of the panembahan in 1879 aftorded an opportunity of enlarging the Gorerument control. There are thus four "departments" in Madura,-Pamakasin, Madura, Sumenep, and Sampang. The first three are also regencies, and the fourth a subregency of Bangkalang; hut Pamakasan alone has the fult regeney organization. The number of rillage communities is 1271.

The best gystematic account of Mainara will be found in Professor Veth's Java, vol. Sil., the proof shects of which have, by the author's conatesy, Been consulted for this arviele. See also lileeker, In Indisch. Archicf., i, and Tivds. van Sed.
 xvii. - Jukes, boynge of the " Fty" ${ }^{\text {" }}$, and llageran in Tyds, van ied. Ind., 1848.
mecenas, C. Cilnius, is, from tro different points of view, a prominent representative man of the ancient world. He was the first, and one of the most capable and successful, of those who filled the office of a great minister under the Roman empire. He was also, if not the first, certainly the most fortunate and influential among the patrons of homan literature. It is in the latter capacity that he is best known. Among all the names, royal, noble, or otherwise eminent, associated with the patronage of letters, noue cilher in ancient or modern times is so familiarly known as that of Meccoas. Yet, if we had any contemporary history of the establishment of the empire, possessing the same permanent interest which the poetry of Virgil and Horace possesses, it is probable that his influence in shaping the political destinies of the world would have been as anply recognized as his influence on its literature.

The date and place of his birth are unknown. He first appears in history in the year 40 b.c., when he is employed by Octavianus in arranging his marriage with Scribonia, and afterwards in negotiating, along with Pollio and Cocceius Nerva ("aversos soliti componere amicos," Hor., Sat., i. 5, 28), the peace of Brundisium, and the reconciliation with Antony, which was confirmed by the marriage of the latter with Octavia. From the fact that he was then the most trusted friead and agent of the future emperor it is likely that he had been associated with his fortunes from the time when he came forward to claim his inheritance after the death of Julius Cæsar; and expressions in Propertius (ii. I, 25-30) seem to imply that he had borne some share iu the campaigns of Mutina, Fhilippi, and Perusia. He may have been a few years older than Octavianus, who began to play the forenost part in Roman politics before he was twenty years of age. The men of the Augustan age great in action and literature were all born within a few years of one another. Agrippa, the right hand of Augustus in war as Mæcenas was in peace, was born in the same year as his master; and there is no indication in the relations of Mrcenas to Augustus or to his friend Horace that he stood towards either of them in the relation of an older to a younger man. Although the place of his birth is unknown, we learn from Horace and Propertios that he prided himself on his ancient Etruscan lineage, and claimed descent from the princely house of the Cilnii, who, as is recorded by Livy (x. 3), excited the jealousy of their townsmen by their preponderating wealth and influence at Arretium in the 4th century before our era. He probably prized the glories of his paternal and maternal ancestry (Hor., Sat., i. 6, 3) as compensating him for his original social inferiority to the members of the great Roman houses ; and the fact dwelt on so prominently by his pancgyrists, that, through all his life, he preferred the position of a great commoner to the new hononrs of the senate and of the Roman magistracies, may have been the result as much of pride in bis provincial ancestry as of a politic desire to disarm tne jealousy of his master or of the Roman aristocracy. Cicero, in his defence of Cluentius.
speaks of a C. Mæcenas as one of the most substantial nembers of the equestrian order during the tribunate of Drusus ( 91 b.c.), and as ne of those who prefcrred the position their fathers had enjoyed before them to the higher rank obtainable through office (Cic., Cluent., 56, 153). From the identity of the praxomen and the rarity of the cognomen it is not unlikely that he may have been the grandfather. or perhaps the father, of the fature minister. It was in accordance with the policy of Jnlius Cæsar to choose his confidential friends from men of this order, as he chose his tools from a less reputable class; and the two most trusted friends and ministers of his successor would both have been regarded as "novi homines" by the representatives of the great senatoriau families. The testimony of Horare (Odes, iii. 8,5) and his own literary tastes imply that lio had profited by the bighest education of his time. His great wealth may have been in part hereditary, as there was no district of Italy in which the inequalities of wealth and station were greater than in Etruria; ${ }^{1}$ but le owed his position and influence in the state to bis early adherence to and close connexion with Augustus. Among the charges brought against him by Seneca, one of the most prominent is that he had been spoiled by his excessive grood fortune.

From the year 40 B.c. his influence as the confidential adviser of Octavianus seems, to have been thoroughly established. It was in the following year that Horace was introduced to him, and he hard before this received Varius and Virgil into his intinacy. Ir the "Juurney to Brundisium," which took place in the year 37 B.c., Mreenas and Cocceius Nerva are described as "missi magnis de rebns nterque Legati," and were again successful in patching up, by the treaty of Tarentum, a reconcilia. tion between the two claimants for supreme power. Duriog the Sicilian war against Sextus Pompeius in 36 в.c., he was sent back to Rome, and was entrusted with supreme administrative control iu the city and in Italy. He is again found acting as vicegerent of Octavianus during the camṕaiga of Actium, when with great promptness and secrecy he crushed the conspiracy of the yoanger Lepidus; and during the subsequent absencos of his chief in the provinces he held the same position. During the latter years of his life he fell somewhat out of favour with his master, or his services were less needed. Perbaps the freedom with which, in the earlier stages of his career, he had offered advice and told unpleasant truthas had become distasteful. One cause for a comparative coolness between the old frieuds was said to be the emperor's relations with Terentia, the wife of Mrecenas, to whom be was uxoriously attached. Perhaps the ennui resulting from the cessation of a life of constant vigilance an il activity may account for the state of sleepless restlessness and fever in which he passed the last three years of his lite. He died in the year 8 в.c., leaving the emperor heir to lis. wealth, and affectionately commending his friend Horace, who only survived him a few days, to his protection.

Opinions were much divided in ancient times as to th, personal character of Mæcenas; but the testimony as $t_{1}$ his administrative and diplomatic ability was unanimous He enjoyed the credit-or discredit, as the adherents of thr . republic must have regarded it-of sharing largely in thit establishment of the new order of things, ${ }^{2}$ of reconciling; parties, aud of carrying the new empire safely throngl many dangers. 'To his influence especially was attributerl

[^36]the humaner policy of Octavianus after his first alliance with Antony and Lefidus. Even Senech, who suows a very bitter animus against bim, admits that he deserved the credit of elemencys-although he attrihutes it to offeminacy rather than to true humanity. The highest tribute paid to him in Lis capacity of minister is to be found in the least eminent of the poets whose genius he fostered. "The true trophies of Mrecenas," says Propertius, "will be his loyalty." ${ }^{1}$ And in another elegy he addresses him as "fidele caput." Onc great testimony both to his loyalty and to his tact is the saying of Augustus, when ho bad made public the scandal concerning his daughter Julia, "that all this would never have happened if Agrippa or Mecenas had lived" (Sen., De lien., vi. 32). The ouly instance in which he is said to have acted with indiscretion as a minister was in his betrayal to his wife Terentia of his knowledge of the conspiracy in which her brother Licinius Murena was involved.

The best summary of his character as a man and a statesman is that of Velleius (ii. 88), who describes hin as " in critical emergencies of sleepless vigilance far-seeing ancl knowing how to act, but iu his relaxation from business more luxurious and effeninate than a woman." The latter is the aspect of his character on which Seneca chiefly dwells. He draws attention to the enervating effect which his good fortune had even on his literary style. We need out ask how far "the stately mansion on the Esquiline" outdid in luxury the "gardens of Seneca the millionaire" ("Seneče pradivitis hortos"). ${ }^{2}$ Mæcenas was certainly a man who combined an epicurean love of pleasure with a thorough devotion to business; and verses of his own aro quoted against him indicative of an mumanly clinging to life after the loss of all that makes life valuable. These may have been written in the feverish unrest of his last years, when he was no longer himself; but expressions in the Odes of Horace (ii. 17, 1), written at a much earlier period, seeni to imply that he was deficient in the robustness of fibre characteristic of the average Roman. His style of dress and his indolent lounging walk exposed him to animadversion; and the Maltinus of Horace's Satires (i. 2, 25) was supposed by some ancient commentators to be a sketzh of the great man, drawu before the poet was admitted to his intimacy. Probably there may have been some affectation or politic dissimulation in this assumption of a character so alien to the standard of the aspirants to public honours nt Rome. It was an exaggerated form of that indifference to appearances and conventionalities which made him satisfied with the position of an eques, and induced him to choose his intimate associates from poets of obscure and provincial origin. His ambition was to be the second man in the empire, and to enjoy the reality without the slouw of power. A similar character is aitributed by Tacitus to Sallustius Crispus, who, after the death of Mrecenas, most edjoyed the favour of Augustus.

His charaeter as a munificent patron of literature is not only acknowledged gratefully by the recipients of it in his own tinne, but is attested by the regrets of the men of letters of a later age, expressed through the mouths of Martial and Juvenal. 1 ilis patronage was exercised, not from vanity or a mere dilettante love of letters, hut with a view to the higher interest of the state. He recognized in the genius of the pocts of that time, not only the truest ornament of the court, but a power of reconciling men's minds to.the new order of things, and of investing the actnal state of ${ }^{\text {haffairs }}$ with an ideal glory and majesty. The chango in seriousness of purpose between the Eclogues and the Georgics of Virgil was, in a great measure, the result of the direction given by the statesman to the poct's genius. A

[^37]${ }^{2}$ Juv. x. 16.
similar change between the earlier odes of Horace, in which be declares his epicurean indifference to affairs of state, and the great national ndes of the third book is to be ascribed to the same guidance. He endeavoured also to divert the less masculine genius of Propertins from Larping coutinually on his lure to themes of public intercst.

Lut, if the motive of lis patronage had been merely politic, it never could have inspired the aflection which it did in its recipients. The great charm of Mecenas in his relation to the men of genins who formed his circle was his simplicity, cordiality, and sincerity. Although not particular in the cboice of some of the associates of his pleasures, he admitted none but men of worth to his intimacy, and when once admitted they were treated like equals. That loyalty which was hisown distinction in his public life was, if we may trust the evidence of Horace, the characteristic of his own relations to his intimates, and of their relations to one another. But, while loyal to all, to Horace he was bound by a closer tie. A mong the great friendships of history, none is more certainly attested, or nore honourable to both parties, than that between the poet and the statesman: Much of the wisdom of Mrecenas probably lives in the Suttires and Epistles of Horace. It has fallen to the lot of no other patron of literature to have his name associated with works of such lasting interest as the Georgics of Virgil, the first three books of Horace's Odes, nad the first book of his Epistles. Such a fortune can scarcely have been altogether undeserved. Accepting as literally true the disparaging statements of Seneca, admitting the weakness, and perbajs the vanity, which were the bluts in his character, and considering at the same time the difficulties of an unprecedented position, we must allow that few ministers of an irresponsible monarch have accomplished so much with such immunity from the baser and mace violent passions, for the gratification of which that position holds out unlimited opportunities. As a minister and friend of the emperur be compared favourably, both as regards capacity and character, not with men of the stamp of Sejanus and Tigellinus, but with Seneca. Few men hare used the in tuence of a grand seigneur with such enlightened beneficeuce, with such lasting results on human culture and civilization, with such genuine simplicity and cordial loyalty.
(w. y. s.)

MAESTRICHT, or MaAstricht, the chief town of tho proviuce of Limburg, in the Netherlarts, lies, as the nane expresses, at the trecht or crossing of the Maas (Meuse), where the Romans erected a military post on the road between Bagacum (Bavay) and Colonia Agrippina (Cologne). Aix-la-Chapelle is 18 miles east-south-east, and Liége 18 miles south by west. The baths discovered in 1840 in the Groote Stokstraat show that the settlement at Trajectum ad Mosam became a place of some considerable importance. The town is divided by the river into tro parts-the larger portion, or Maestricht proper, on the left bank, and the smaller portion, distinguished as Wijk, on the right. A stone bridge of eight arches connecting the two took the place of a wooden structure as carly as 1280 , and was greatly improved in 1828 and 1836. Formerly a fortress, Maestricht is still a considerable garrison town, but its ramparts were dismantled 1871-78; formerly the seat of a bishop, it still bears a strongly Roman Catholic impress ; and, in modern times more especially, it has developed into a great centre of commerce and industry. The churches and religious foundations are nlmost the sily buildings of nota, the chief exceptions being the town-house, completed in 1683, and the solitary Protestant church, Janskerk (13tb century). The church of St Servatius was, according to one account, rebuilt and enlarged as early as the time of Charles the Great. It is now 260 feet in length, and
ia the raried character of its Gothic architecture bears erldence of the frequency with which it has been restored and altered. The high altar has a Descent from the Cross by Anthony Vandyck. The saint whose name it preserves obtained great reputation in Maestricht by transferring his bishopric thither from Tongres, and his miracle-working relics became the occasion of a great septennial fair which was formerly of great service to the city. The Church of Our Lady (Lieve-Vrouwe-keilk), possibly founded in the 6th century, has two very ancient crypts and an 11th century chdir-of exceptional beauty, but in the nave has suffered severely from a restoration in 1764. St Matthyskerk was founded by the cloth-weavers' guild in the 13 th century ; and, though tho present Gothic building of St Martin's (in Wijk) was erected so late as 1859, the origiaal cluirch was one of the oldest in the city, and is said by tradition to have occupied the site of one of the old heathen teniples. The twelve hospitals, the poorhouse, the orphanage, and most of the other charitable foundations are Roman Catholic institutions, and neither the administrative bodies nor the educational estabishiments are free from ecclesiastical influence. Though Maestricht is no doubt mainly indebted for its commercial prosperity to its position on the river, it did not begin to reap the full advantages of the situation till the remoral of the fortifications and the opening of the railrays (Aix-la-Chapelle, 1853; Hasselt, 1856; Liége, 1861 ; Vanle, 1865, \&\&c.). At first a trade was carried on in wine, colonial wares, alcoholic liquors, and salt ; but now, besides Regout's well-known earthenware, glass, and crystal factory, there are establishments for the making of arms, tools, lead, copper, and zinc work, dec, as well as tobacco and cigar factories. The Maestricht beer also is higlly esteemed. The population, which was 18,000 in the beginning of the century, was 28,917 on January 1, 1882.
Maestricht ras talien and plundered by the Normans (888 and 884), by Bishop Henry of Guelders (1267), by Adolph de la Marck ( 13344 ), and by the people of Liege (1407 and 1408). In the war with Spain it was successively besieged by the Spaniards, the prince of Orange, Prince Maurice, and Frederick Henry (1579, 1580, 1594, 1632); and in the struggle between Louis X1V. of France and William MIIT, and again during. the French Revolution and the Napoleonic period, it paid the penalty of its frontier position-witness the sieges of $1673,1676,1701$, and 1793 . During the erovolution of 1830 it was invested by the Belgians. Ainong the more peaceful menories of the place is the marriage of Otto IV. with Mary of Brabant. The people of Neestricht have a special dialect of their omn ; ${ }^{1}$ but French and Dutch are in use among the upper classes. In the neighbourhood of the town are the great sandstone quarries of Petersberg, one of tho most extraordinary labyrinths of subterranean excavation in the world.
Maffet, Francesco Scipione, Marchese di (16751755), Italian archæologist and man of letters, was born at Verona on June 1, 1675 . He studied for five years in Parma at the Jesuit college, and afterwards from 1698 at Rome ; and in 1703-4 he took part as a volunteer in the war of succession, fighting on the Bavarian side at Donauverth. In 1709 he began at Padua along with Apostolo Zeno and Valisnieri the Giornale dei letterati

[^38]dItalid, a literary periodical which had but a short career; and subsegnently an acquaintance with the actor R.iccoboui led him to exert himself for the inprovement of dramatic art in Italy. His Merope, a tragedy, appeared in 1713; Teatro Italiano, a small collection of works for presentation on the stage, in 1723-25; and Le Cerenonie, an original comedy, in 172 S. From 1718 he becamo specially interested in the archrology of his native town, and bis investigations resulted in the valnable l'erona Illustrata (1731-32). Maffei afterwards devoted four years to travel in France, England, Holland, and Germany. He died at Verona on February 11, 1755. A list of his very numerous works will be found in the Biographie Générale. A complete edition of them appeared at • Venice ( 28 vols. 8vo) in 1790.

MAFRA, a town of Portugal, in the province of Estremadura and district of Lisbon, lies near the Atlantic coast, about 20 miles to the north-west of Lisbon, and had a population in 1878 of 3231 . It is remarkahle for its cloister palace, built by John V. in 1717-32) in consequence of a vow made during a dangerous illness to hild a convent for the poorest friary of the lingdom, -which proved to be a small Franciscan settlement here. The architect, Lndovisi, took the Escorial for his model; but the imitation is still loss successful than the original. The building, which is in the form of a parallelogram measuring upwards of 800 feet from north to south and 700 feet fromt east to west, is said to contain 866 rooms, and to be lighted by no fewer than 5200 windows. The centre is occupied by the domed church, sumptuously built of marble, and richly adorned with statnes and other objects of art. The conventual buildings (which are no longer used as such) contain 300 cells; and the library numbers 30,000 volumes. Adjoining the palace are fine gardens and pleasure grounds.

MAGDALA (more correctly Makdala), a natural stronghold in the country to the south of Abyssinia, situated about 200 miles inland from the Gulf of Aden, in $11^{\circ} 22^{\prime}$ N. lat. and $39^{\circ} 25^{\prime}$ E. long. The basaltic plateau of which it consists rises 9110 feet above the level of the sea, and forms along with the neighbouring height of Salassye ( 9160 feet), with which it is connected by the ridge of Salamgye ( 8650 feet), a comparatively small and narrow outrunner of the Amara Seint plateau. It is about three quarters of a mile ia length by less than half a mile in breadth, and lies more than a thousand feet higher than the neighbouring plain of Arogye. To the south runs the Kukullo Ravine and tc the north and the west the Bashilo and the Wark Waha Ravines, all of which ultimatcly drain into the Abai, and thus belong to the basin of the Nile. Chosen by King Theodore of Abyssinia as his principal stronghnld in the south, Magdala owes its celebrity to the fact that, as the place of imprisonment of the English captives, it became the goal of the great English expedition of 1868. At the time of its capture it contaned huts for a permanent population of about three thousand, a royal residence of the most neagre pretensions, a still more jusignificant church, and a large treasure-house stored with arms, ecclesiastical furniture, and vast quantities of Abyssinian manuscripts. The whole rock was burned bare by order of Sir Robert Napier, and on the departure of the English it was seized by Mastwat, queen of the Wollo Gallas, in whose country it is situated.
See Markham, History of the Abyssinian Expedition, 1869 ; and Rassam, British Mission to Theodore, 1869. Both contain plans and views of Magdala.

MAGDEBURG, the capital of the Prussian province of Saxony, and one of the strongest fortresses in Germany, is situated in $52^{\circ} 8^{\prime} \mathrm{N}$. lat. and $11^{\circ} 40^{\prime} \mathrm{E}$. long., mainly on the left bank of the Elbe, which here divides into three branches. It consists of the towa proper and of the four suburbs of Friedrichstadt, Neustadt, Sudenburg, and.

Buckau; the last tliree of these are separated from the town by the ramparts and glacis, but are all included within the new line of advanced bastions. In the Elbe, between the old town and the Friedrichstadt, lies an islanct called the Werder, occupied by the citadel, and united with both banks by bridges. With the exception of the Breiter Weg, a handsome thoroughfare running from north to south, the streets of the towa proper are narrow and crooked. Along the Elbe, however, extends a line promenade named the Fiurstenwall, at one end of which stands a monument in conmemoration of the Franco-German war. To the south of the inner town is the Friedrich. Wilhelm's Garten, a beautiful park laid out on the site of the celebrated convent of Bergen, which was founded in 937 and suppressed in 1810. By far the most important building in Magdeburg is the cathedral, a handsome and massive structure of the 13th and 14th centuries, exhibiting an


Plan of Magdeburs.

1, St James's Clurch.
2. Walloun Church.
3. St Catherine's.
3. St Catherine
k. Statue of A. W. Pranke
6. Statue of Otho the Great.
7. Rathhaus.
8. St John's Chutch. 9. School of Art.
10. St Ulrich's Church.
11. Town Theatre
12. St Mary's (Llebfrauen-
> 13. Dutch Reformed Chusch.
> 14. IIIgher Courts.
> 13. Post-Office.
> 10. Governmenl Builsings.
> 17. Cathedral.
interesting blending of Romanesque and Gothic arclitecture The two fine towers were completed about 1520 . The interior contains the tombs of the emperor Otho the Great and his wife Editha, an English princess, and the fine monument of Arclibishop Ernest, executed in 1497 by Peter Vischer of Nuremberg. The Liebfrauenkirche, the aldest church in Magdeburg, is an interesting Romanesgue odifice of the 12 th and 13 th centuries. The chief secular buildings are the town hall, built in 1691 and enlarged in 1866, the theatre, the governor's house, the central railway station, and the exchaage. The Breiter Weg and the old market contain numerous fine private houses in the style of the Remaissance. In front of the town-hall stands an equestrian statue of the emperor Otho the Great, erected towards the close of the 13th century. The favourable situation of Magdeburg, in the very heart of Germany, and on the Elbe belor all its principal-affliente, has mado it one of the most important commercial towns in the empire,
and it is also the focus of several important ruilways. The chief articles of commerce are agricultural and colonial products, manufactured goods, and wine. The town and its suburbs contain numerous manufactories of woollen, cotton, and silk goods, sugar, spirits, tobacco, organs and pianos, chocolate, and chicory. Magdeburg is the head. quarters of the 4th corps of the German army, and the seat of the provincial court of appeal and administrative offices, of a Lutheran consistory, and of a superintendent general of the Erangelical (Reformed) Church. It also contains two gymnasia, two "Realschulen," schools of art, medicine, surgery, and mining, and numerous scientific and claritable institutions. The population of Magdeburg in 1880 was 97,539 , or, including Neustadt and Buckau, 137,109.
Magileburg, which was in existence as a small trading settlement at the beginuing of the 9 thi century, owes its early prosperity chiefly to the emperor Otho I., who established a Benedictine convent hers in 937 (sce above). In 968 it became the seat of an archbichop, who was also primate of Germany, and exercised sway over an cxtensive territory. By the 13 th century Magdeburg had become a flourishing commercial town and an important member of the Hanseatic League. Its bench of shcriffs (Schöppenstuhl) becamo celebrated, and " Magdeburg law," securing the administmative independence of manicipalities, was adopted in many parts of Germany, Poland, and Bohemia. During the Middle Ages the citizena were almost constantly at variance with the archbishops, and by the end of the 15 th century bail beconte nearly independent of them. It should, however, be noted that Magdelurg never became a free city of the empire. The town embraced the Reformation in 1524, and was tbenceforth governed by Protestant administrators or arch. bishops. On the reflisal of the citizens to accept the "Interim," Magdeburg was besieged by Mamice of Saxony in 1550, and capitulated in 1551 on favourable terins. During the Thirty Years' War the city was twice besieged, and suffered tcrribiy. It successfully resisted Wallenstein for seven months in 1629 , but was stormed and aackel by Titly in 1631. The whole town, with the exception of the cathedral, the Franenkirche, and abont 140 honses, was burned to the gronnd, and 30,000 of its 36,000 inhabitants were butchered without regard to age or sex. The town recovered from this deadly blow with wonderful rapidity. In 1648 the archbishopric was converted into a secular duchy, to fall to Brandenburg on the death of the last administrator, which happened in 1680. In 1806 Magdehurg was taken hy the French and annexet to the kingdom of Westplaalia, but it was restored to Prussia in 1814, on the downfalt of Napoleon. Olto von Gucricke, the inventor of the air-pump, was burgonastor of Magdeburg at the tinse of Tilly's siege. Carnot died bere in exnle, and is buried in the cemetery, and Luther was at school here and sang in the strects for bread with other poor charisters.

See Rathmann, Geschirhte iler Stail Mfogdsburg, 1800-17; Hoffmann, Chronik der Statt Mratchurg, 1843-50; Barthold, Gcschichte der recutschen Staille, 1850.
magellan, ferdinand, in Portuguese Fersio de Magalhàes (c. 1470-1521), who, though he did not survive to returu bome with his ship, well deserves the title of the "first circumnavigator," was born about 1470 , and (accordiag to the somewhat questionable antlority of his will, dating from 1504) at Villa de Sabroza in the distrist of Villa Real, Traz os Montes. His family was "bidalgo," and he seems to have spent his boylood in the houseliold of Queen Leonora, consort of John II. of Portugal. For several years he was in active service in the East Indies. It was he who, in 1510, gave Siqueira timely warning of the plot of the people of Malacca, thus probably saving his countrymon from annihilaticu; and, along with Serrano, he commanded the ships sent out under Abreu for the dis covery of the Spice Islands. On his return from the East, Magellan was sent to Azamor in Moroceo; and this brief cpisode in his career is memorable for the wound which left lim lame for the rest of his life, aud for the beginning of the troubles which determined his future course. Contrary to what he had a right to expect, the king (Manuel) refused Magollan's application for an increase of the pay assigued to him as a member of the royal houschold; and the manner of the refusal added insult to what be considered injury. In company with another malcontent of note,

Ruy P'uleiro the astronomer, he furmally renounced his nationality, and went to offer his services to the court of Spain. Word was no sooner brought to Manuel of the schemes proposed to the Spaniards than he felt the mistake he had committed; but all the efforts put forth by special agents to allure his alienated subjects back to their allegiance, or to thwart their negotiations, proved of no arail. The bishop of Burgos, Jnan Rodriguez de Fonseca, bad taken the matter up, and things had gone too far for Magellan to retrace his steps. On Angust 10, 1519, the expedition set sail; to find his way by a western ronte to the Spice Islands of the East was the task which its commander had madertaken. When more than three years afterwards, on September 6, 1522, the "Victoria" cast anchor in a Spanish port, the captain, Sebastian del Cann, had a strange tale to tell of mingled triumple and tragedy. While the squadron lay in Port St Julian, on the PataGonian coast, three of Magellan's Spanish captains had Qefied him and conspired against him, and it was only by \& rapid execution of summary vengeance that he had maintained lis authority. At a later date the "Antonio," at the instigation of Gomez, the Portuguese pilot, his personal enemy, sailed home to Spain with evil reports, at the very moment of success, when the Strait of the Eleven Thousand Virgins, or of the Patigonians, now known as tho Strait of Magellan, had been explored almost to the Pacific. The strait was passed on November 28, 1520; and, though Magellan had not quite reached the Spice Islands when he fell in conflict with the people of Zebu, 27th April 1521, his task was virtually accomplished. The name Magellan's Laud-long given to Patagonia and that hypothetical continent of which Tierra del Fuego was consıdered only a portion-had disappeared from our maps, but has again been bestowed by Chili on the territory she claims in the extreme south.

No record of his exploits has been left by Magellan himself ; and contemporary acconnts are less detailed and cansistent than could be wished. The bost is that of Antonio Pigafetta, a volunteer in the fleet. It is printed in Ramusio, and exists in four eirrly MS. copies, three in French and one in Italian. The Italian was nrinted in 1801 by Amoretti. Along with five minor narratives an English version appears in Lord Stanley of Alderley's First Voyage round the Wori'd by Magellan, 1874 (Hakluyt Socicty's Publications, vol. lii.). See also Jı G. Kohl, Gesch. der Entdeckungsicise ... zur Magellan's Strasse (Berlin, 187i), and Ramon Guerrero Vergara, Los deseubridores del Estrecho de Magellanes, Santiago de Chile, 1880.

MagGiore, Lago (French, Lac Majeur; in Italian also frequently Lago Verbano; Latin, Yerbanus), is the westmost of the great lakes of northern Italy. In accordance with its popular name it has long been reputed the largest of them all; but thongh in length it somewhat surpasses Lago di Garda, it does not coser so extensive an area. Of the total surface of 82 square miles, 65 belong to Italy, and the remaining 17 to the Swiss canton of Tessin or Ticino. The length from north to south, between $45^{\circ} 43^{\prime}$ and $46^{\circ} 10^{\prime} \mathrm{N}$. lat., is 38 miles; the breadth, generally between 2 and 4 miles, is increased to 6 or 7 at the junction of the Toce ralley on the west. The Ticino, the leading tributary of the Po, enters at the one end of the lake and escapes at the other. The very interesting geological problems which Lago Maggiore suggests are not jet fully cleared up. (See Taramelli, Il cantone Ticina meridionale ed i paesi finitimi, Bern, 1880, forming rol. xrii.' of the matcrials for the geological map of Switzerland.) The whole of the west side and the east side as far south as Val Traraglia are shut in by a region of gneiss and schists, while the remaining portion presents dolomites, calcareous rocks, and conglonierates, mingled with strongly developed moraines. On Dufour's great map of Switzerland the greatest depth is given as 2801 fcet, opposite Pino; but this is probably much in excess, as in G. B. Jlaggi's
topographical map of the lake ('Turio, 185\%) the higheat figure registered along the medial line is only 1233 feet between Barbe and Lavello, and at the laying of a telegraph line in 1860 Salis found no more than 337 between Tira and Locarno. The ordinary height of the surface above the sea is about 640 feet.
Between the lowest and bighest water-mark, however, there is a difference in ordinary years of nearly 12 feet, and in rery exceptional cases of twice as much. For not only is the Ticino subject to floods, but the lake receires a number of considerable streams (the Toce, the Maggia, the Verzasca, the Tresa, \&c.), and some of these bring down the sarplus waters of other lakesLugano, Varese, and Orta Tlie flood of 1868, which exceeded by about 6 feet the grcatest that had been known for centuries, so


Lago Maggiore.
deepened and enlarged the ontlet of the river that the level of the lake was permanently reduced by about a foot and a half, and alterations had to be made at the various ports to suit the new condition of things. (See Paplo Gallizia in Atti del Coll. degli Ingegra. ed Archit. in Milano, 1879.) At least twenty-three species of fish are caught in Lago Maggiore; and the fisheries are of value enough to be closely preserved by the proprietors.

The principal towns and villages ronnd the lake are the following, -the first being in Switzerland, and the others in Italy:-Locarno (population in 1880, 2645), at the mouth of the Maggia, one of the altcrnate capitals of the canton of Ticino ; Canacibio (2000), famous from the 15 th century for its tanneries, and with paper-mills and silkworks; Luino (2000), the original home of the Luiui family, and the scene of one of Garibaldi's exploits in 1867, commemorated on the spot by a statue of the victor; Laveno (1500), formerly an Austrian naval harbour; Intra (4500), a busy manufacturing torn-cotton, glass, silk, dc.; and Pallanza (4200), a flourishing little city with a large cathedral, a penitentiary, \&c., and altogether the most important place on the lake. The celebrated Borromean Islands, lying off Pallanza, have been already described, vol. iv. p. 64 ; compare Medone, Le isole Borromee, with viers by Falkenstein (Novara, 1840). As the St Gotthard and St Bernardino routes mcet at Bellinzona, much of the trade between Italy and the north used to pass by way of the lake and the high roads that skirt its banks; and the opening of the St Gotthard railway, which joins the Italian system at Pino on the east side, aud goes as far as Locarno on the west side, will bring back some of the traffic which the earlier railways diverted into other channels. The first steamboat was launched on the lake in 1826.
See P. Morriggin, Tst. della Nobilti del Lago Mraggiore ; Amoretti, Viaggio ai tre laghi; Vagliano, Rire del Verbeno.

MAGHIANA, the chief town and headquarters o! Jhang district, Punjab, India, is situated in $31^{\circ} 17^{\prime}$ N. lat. and $72^{\circ} 21^{\prime}$ E. long., and had a population in 1868 (1) 10,525 (Hindus, 5192; Mohammedans, 4698; Sikhs, 306; and "others," 329). It has a considerable trade witb Kandabar, large exports of country cloth, and a fluctuating
ersiuess in graiu from the fertile lowlands of the Ravi. The civil station lies to the east of the town, and consists only of a court-house and treasury, sessions bungalow, jail, church, and three or four residences of ofticials. Maghiana forms a single municipality with Jhang town, which lies 3 miles to the north. The united population is 19,649.

MAGIC ${ }^{1}$ has its name from the mayi, Greek $\mu$ aroot, the hereditary caste of priests amoug the ancient Persians, thought to be of Median origia (Spiegel, Arestu, vol. ii. p. vi.). Among the magi the interpretation of dreams was practised, as appears from the story of the birth of Cyrus (Herodotus, i. 10i); later writers describe them in both a sacerdotal and magrical capacity, Lucian (Mckerob., 4) calling them a prophetic class aud devoted to the gods, while Cicero (De Divinatione, i. 23, 41) writes of them as wise men, augurs, and diviners. In such supernatural crafts the magi seem to have much influenced the Western nations, to judge by their name having passed into a set of elassical terms ( $\mu a \gamma \epsilon i a, ~ \mu a \gamma \epsilon i ́ \omega$, magia, mayice, \&c.) applied to sorcery, enchantment, and occnlt science in general. In the New Testament soothsaying and sorcery are so designated (Acts viii. 9, xiii. 6) ; while the astrologers who divine the birth of the liing of the Jews by the appearance of a star in the east are called magi (Mitt. ii.).

The word magic is still used, as in the ancient world, to include a confused mass of beliefs and paractices, hardly arreeing except in being beyond those ordinary actions of cause and effect which men accustomed to their regularity have come to regard as merely natural. Thus magical rites are difficult even to arrange in systematic order. A large propartion of them belong properly to the general theory of religion, inasmuch as their efficacy is ascribed to the intervention of spiritual beings. Thns the ghosts of the dead are called up by the necromancer to give oracles or discover hidden treasures, or sent to enter men's bodies aud afflict them with diseases or to cure them, or in a score of ways to do the behests of the magician, whose spells or incantations are thought powerful enough to control the will even of such divine beings as can drive the winds and give or withbold the rain. It must be noticed, on the other hand, that many magical arts show no connexion with spirits at all, or, even if ghosts or demons or gods have to do with them, the nature of these veings does not of itself account for the processes employed or the effects believed to result. This non-spiritual element in magic depends on imagined powers and correspondences in nature, of which the adepts arail themselves in order to discover hidden knowledge, and to act on the world around them by means beyond the ordinary capabilities of men. Thus by mere effort of will, by traditional formulas and rites, or by working on symbolic fancies, the sorcerer believes he can bewitch others to sickness or death, the astrologer reads the future in the aspects of the stars, the augur attends to omens frem the cries of birds and beasts, the haruspex prophesies by the heart or liver of a slaughtered animal, and other classes of diviners judge of the hidden past and the yet more hidden future by the falling of lots or dice, the twitching of their own fingers or the tingling of their ears, and a hest of other facts of nature which, as the educated world has now found out, have no practical connexion with the magical meanings or effects assigned to them. The great characteristic of magic is its unreality. Its methods have often an idcal coherence which may be plainly traced, but practical effect they hare none, and so they may be altered or transposed without being made worse or better.

[^39]One remarkable consequence of this is the fixity with which some magical formnlas framed thousands of years ago hold on almost unchanged to this day. To understand this, it must bo borne in mind that, if there were ally practical use iu such rules as those for divining by the cries of animals, the old rules would have been improved by experience into new shapes. But, they being worthless and incapable of improvement, this motive of change is absent, and the old precepts have held their ground, handed on by faithful but stupid tradition, from age to age. When the test of practical efficacy comes in upon the magic art, it is apt either to destroy it utterly or to transform it into something more rational, which passes from supernatural into natural science.

Magic is to be reckoned ameug the earliest growtus of human thought. The evidence for its remote antiquity lies partly in its presence among all races of mankind, the ruder tribes especially showing it in such intelligible shapes that the beginnings of magical crafts may be fairly supposed to have arisen in the oldest and lowest periods of culture. An example may be taken from the wild natives of Australia, whose whole life is pervaled by the belief, and embittered by the terror, of sorcery. They inagine the sorcerers, armed with their mysterious porrer called boyl-ya, to come moving along in the sky, invisible except to uther sorcerers; they enter the bodies of men, and feed stealthily on them, not eating the bones, but consuming the flesh; the native feels the pain as the boyl-ya enters him like a bit of pointed quartz, and in this shape of quartz crystal the evil can be extracted by another sorcerer. The sorcerer has other means of attacking his victim: he can creep near to him when asleep, and bewiteh him to death iy merely pointing at him a leg bone of a kangaroe; or he can steal away his kidney fat, where, as the natives believe, a man's power dwells; or he can call in the aid of a malignant demon to strike the poor wretch with his club behind the neck; or he can get a lock of hair, and roast it with fat over the fire till its former owner pines away too, and dies. The Australians, like other low tribes in the world whose minds are thus set on imaginary causes of death, hardly believe a man can die unless by being slain or bewitched. When a native dies what we call a natoral death, they ascribe it to magic. Then other magic must reveal the hostile sorcerer who has done him to death: either the corpse itself will seem to push its bearers in the direction of the murderer, or the flames of the grave-fire are seen to flicker towards where he is, or some insect will be seen creeping towards lis home; and, when the next of kin thus discover the magic enemy, they set off to take vengeance with earthly weapons. The sorcerer has kindlier duties when he sits by a sick man and charme and charms till he recovers, or sucks out the disease from his body in the shape of a stone spear-head or a fish bone, or bringh out the ailment along a string, the other end of which he draws between his own lips till it is covered with blood, telling the bystanders (who beliere it) that this bloud came along the string out of the sick man. Not disease and cure only, but uther events of life, come within the scope of native magic. Storm and thunder are the work of the sorcerers; they can bring rain and make the rivers swell, or burn up the lard with drought. Shooting stars aud comets are to the natives omens of disaster; the great hawk's cry in the night portends the death of a child, whose soul the bird is carrying off; but when a man's finger-joints crack he stretches out his arm, for in that direction some one is doing him a kiudness. ${ }^{2}$

[^40]Tuken tegether, such a repertory of the demonology and witcheraft of a special group of savage tribes shows remarkable correspondence in principle with the magic which once flourished in the civilized world, and which still lingers in peasant folklore. The very details often agree so much as to raise the question whether the magic of savages may sometimes have been borrowed frem the lower class of colonists. The superstitions of the peasant are in fact what the sarage would readily assimilate, as belonging to a state of mind like his own, and there is cren eridence of European charns and omens haring been sometimes borrowed by native tribes of Australia or America. It was necessary to mention this, if merely to point out that such berrewing has been only slight and superficiul. It in no way upsets the general principle that the magic of the lower races was developed among them, fitting as it does with their low level of knowledge. Every book of travels in sivage and barbaric countries shows the influence of the native magician, who, often at once snrcerer and established priest, and semetinnes even chief of his tribe, by the aid of spirits and other supernatural menns interferes in every act of life. Thus in the Pacific islands the Europeuns fouad a whole class of sorcerers living by making diseases, their method being the familiar oae of burning or otherwis practising on some morsel of hair or remnant of food, so as to send disease into its uwoer, by a malignant spirit tying knots in his inside till he writhed with agony. Every sick man was a source o! profit to the sercerer who was believed to have brought on the disease by burning his rubbish, and of conrse had to be beught off by liberal presents. In these Pacific islands a fact most important in the theory of magic everywhere comes into view with particular distioctneg-that such nagical arts prove effective through the patient's own imagination ; when be knows or fancies that he has been bewitched he will fall ill, nnd he will actually die unless he can be persuaded that he has been cured. Thus, wherever sorcery is practised with the belief of its victims, some system of exercism or some protertive magical art becomes, not only necessary, but actually effective, a mental disease being met by a mental remedy to match it. ${ }^{1}$ At the discovery of America, the Spaniards found the native sorcerers throwing themselves into delirieus ecstasy by snuffing a narcotic powder, their ravings in this state being held to be coaversation with departed souls, through whose help they were able to cure the sick by expelling the disease. The class to which these sorcerers belong extends over South America, and is generally known under the name of payé (or allied terms). The sorcerer is described as being iaitiated by living in some wild spot till by fasting and self-torture be attains his supernatural craft, becoming able to see spirits, to consecrate bits of bene or stene into powerful amulets, to make good or bad weather, to gain mystic powers over familiar birds and beasts, to take omens from their cries or from the itching of his own skia, which latter symptom an Abipene diviner declared to portend an attack from a tribe of enemies, in spite of the missionary, who irreverently set it down to fleas. The old arts of the payes, their malicious witchcraft with herbs and hair, the use of narcotics to produce ecstasy, and their mental excitement by drumming, rattling, aod dancing are still to be met with in the wild districts of Guiana aad Brazil. In North America practitioners of the same kind are generally. known as "medicine-men," from the Freach colonists calling them mélecins, as being the native doctors; the term is really appropriate to barbaric magicians in all parts of the world, whose

[^41]arts of causing and curing disease generally include con siderable knowledge of lerbs powerful as poisons and remedies, of simple stopping of wounds and bandaging burt limbs, iu fact of medicine in its elementary state, as yet not separated from the magic with which it was at first inextricably mixed up. The medicine.man's apparatus includes the sorcerer's usual music, the rattle and the drum, siaple and primitire jostruments whose constant nssociation with the lower magic bears witness to the begionings of music and magic having been mssociated together when civilization was yet in its low stages of development. The Anierican sorcerer carries a "medicinebag" made with the skin of his guardian amimal, which protects lim in fight, cures the bites of serpents, and strikes at a distance as a spiritual weapon. He knows magic chants of power over the elements; he can by sucking and blowing extract disease-animals from the sick; be can make pictures and images and pierce them with thorns so as to kill the men or nnimals they represent; and he can compel love by practising on the heart of the picture of the beloved one. ${ }^{2}$ In Africa the native sorcerer bears the name of mganga among the west and central negro tribes, nyanya among the Zulus of the sonth. He is the rain-maker, an office of the utmost importance among tribes who may perish of famine and disease after a long drought. In his craft a principal part is played by what the English in Africa (using the Portuguese word fcitiço, charm or amulet) call "fetiches," which are claws, fangs, roots, stones, and any otber odds and ends faucied to be inhabited by spirits or invested with superhuman power. These fetiches the negroes trust in for good and against evil fortune, with a confidence which no failure can shake further than to cause the unlucky bearer to discard a particular fetich which has failed, and to replace it by a more successful one. The African mganga has intercourse with demons; and, being called ou every day to predict the forture of a fight or a bargain, or to discever lost or stolen cattle, he professes to gain information from the spirits, or uses his various mades of divination, such as taking omens from the cries of the eagle or the owl, the swimming of berries, or the moving of sticks in his own hands as they twitch spasmodically in nerrous excitement. As with magicians every where, his trade is profitable but dangerous, for if his arts of killing have been successful beyoud bearing, or still worse if public opinion decides that he has wilfully withheld the rain, he may be drowned or burned as miserably as one of the many victims he has done to death. ${ }^{8}$ These instances are selected to give an idea of the sorcerers of the lower races and their modes of working, which are remarkable for their uniformity in the most distant regions, among tribes who can have had no communication or connexion since remote ages. Where, howerer, such races as the African aegroes come in contact with such foreigners as the Arabs, who though more civilized than themselves hare not outgrown the magical stage, they borrow their more cultured magical arts, such as divination by lots. In this may the natires of Madagascar ar pear to have borrowed from the Arabs a system of lucky and unlucky days of birth, which, carried out with stupid ferocity, has cost the lires of thousands of children, born truly in an evil bour. for when the magician declares their birth ill-omened their fate is settled at once by putting them to death. ${ }^{4}$

Turning now to the cultured nations of antiquity, among

[^42]whom the art of writing consolidated and developed false as well as true scicnce, we fiud magic in full vogue, hardly differing in principle from that of the illiterate barbarians, but worked into more elaborate system and ritual. Of ancient Egyptian magic various original documents have been preserved, contaiaing formulas, mostly of religious magic, 一that is, acting throngh the aid of deities invoked. For instance, there are hymns against dangerous animals in the water, and spells fer remaining in the country; and the 1 10wer ascribed to such formulas appears from passages like the following:-"I confide in the efficacy of that excellent written book given to-day into my hand, which repels lious through fascination, disables men, . . . . . which muzzles the months of lions, hyrenas, wolres, . . . . . the mouth of all men who have bad faces, so as to paralyse their limbs," \&c. Ancient as Egyptian magic is, it has evidently grown up flam still earlier forms, as is shown by that plainest symptum of old traditional lore, the relying on ancient or foreign epithets as words of power over the gods. This practice appears in the ancient papyri, and goes on to later ages, when the god Set is invoked by other mystically powerful nimes which he must obey, such as "Joerbeth." The medical art in ancient Egrpt shows an interesting combination of practical and magical remedies. The practical recipe might contain nitre or cedar chips, or deer horn, or various other ingredients administered in ointment or drunk in beer, but with this the magical formula was also required to deal with the demon-cause of the ailment. Thus an emetic was given with the following formula, "O demon who art lodged in the stomach of M., son of N., thou whose father is called Head-smiter, whose name is Death, whose name is cursed for ever!" \&c. It must be remembered that such formulas, foolish as they seem to modern education, had and still have great efficacy in relieving the mind of the superstitious patient, and giving a fair chance to diet and medicaments. Their appearance in medicine so anciest us that of Egypt is good historical cridence how the uld magical treatment was encroached upon by naturai remedies, though then aud for many ages afterwards the $\mathrm{p}^{\text {hhy }}$ yicians, wise in their generation, thought it best not to discard the supernatural charm. The Egyptians divided out the limbs and organs of the human body, putting each under the special care of a god, a system whicl, like mary mither details of their magic, has lasted on into the moderu world. From the astrological point of view they made a calendar of lucky and unlucky days, according to which fur instance on the 19 th of the month Athor one must no ${ }^{2}$ embark on the Nile, while a child born on the 5 th of the month Paopi will be killed by a bull; traces of this set of precents may be discerned still ia the modern Egyptian ulmanac. Another point deserving attention is the appearunce in early Egypt of the distinction between good and bad magic. Magical curative arts were practised by learned seribes or priests, and were doubtless in bigh esteem, but when it came to attracting love by charms or philtres, or piralysing men by secret arts, this was held to be a crime. As long ago as the time of Rameses III. it is recorded that one Hai was accused of making images and paralysing a nan's hand, for which he was condemned to death ; this was doubtless the ordinary bewitching by an image or picure, here alceady mentioned among the lower races, and to be mentioned again as not forgotten among ourselves. ${ }^{1}$

Still more preminent among the ancient nations who hrought magic into its pseudo-scientific stage were the Babylonians, whoso supernatural arts were adopted and continued among the Assyrians. No savage tribe ever filled their world with more swarming hosts of nature-

[^43]spirits and demons; only these more cultured nations denlt systematically with them by set formulas of propitiation and expulsion. The cuneifurm writings preserve numerons documents of this kind, such as "From the burning spirit of the entrails which devours the man, from the spirit of the entrails which work's evil, may the king of heaven preserve, may the king of earth preserve !"-"The god. . . . shall stand by his bedside. Those seven evil spirits ho shall root out, and shall expel them from his body; and those seven shall never return to the sick man again." The magic power believed to reside in the secret names of the gods was recognized by the Babylonians, one of whose famous myths relates how by the utterance of these mystic mames the goddess Ishtar was delivered from Hades. In the rites of the magician priests, this kind of supernatural nuwer resided in sacred texts, whether clanted or tied on as phylacteries. In divinatory magic the Babylonians had claborate codes of rules, of which nany have been preserved. Thus omens wicre drawn from prodigies, such as "when a woman bears a clild and at the time of birth its teeth are cut, the days of the prince will be long." So with omens from animals: "if a dog goes to the palace and lies down on a throne, that palace will be burned." A remarkable passage, Ezekiel $x$ xi. 21, mentions three modes of divination practised by the kiog of Babylon as he stood at the head of the two ways: "he shuffled arrows, be consulted teraphim, he looked in the liver." The arron'divination or belomancy here mentioned was done with pointless arrows marked and drawn as lots. They are often represented on Babylonian and Assyrian cylinders, and their use was lept up among the Arabs till the time of Molammed. The Babyloniall rules of haruspication, or examining the entrails of animals, were most miunte, to judge from the omens of prosperity or misfortune to be drawn from the twisting and colour of the intestines of an ass. Diodorus Siculns (ii. 29, \&c.), in his account of the Chaldean priests, mentions with eridently good iufornatien their hereditary skill in various branches of magic, their use of purifications, sacrifices, and chants, to avert eril and obtain good, their foretelling by omens, dreams, prodigies, dc. But it is on their astrology that he deservedly lay's the greatest stress. The five planets, which they called "interpreters," they held to portend events by their rising and setting and their culour, foretelling the wind or rain or heat, comets also, and cclipses of the sun and moon, and earthquakes, and atmospheric changes, beneficial or harmful, both to nations and kings and common men. The Babylonian calendars still remain to show how eclipses were brought isto connexion with fleods, invasions, good and bad harrests,-such ideas being worked out, not by mere arbitrary fancy, but from such fancied regularities as that-the same weather and the same famines and pestilences tended to recur in a cycle of twelre years. To the Babylonian astrological system belong the stars of men's nativities, the planetary houses, the twelve signs of the zodiac (probably invented in observatories in Babylon), while the fixed stars are associated with the planets and gods in a system which is seen at a glance to be the astrology which later nations of Asia and Europe have followed since with servile faithfulness. ${ }^{2}$

Egypt and Babylon, as these bricf notices show, were tho chief sources whence the world learnt what may be called the ligher. branches of occult science, and from the historical point of view the magical rites nud beliefs of other ancient Eastern nations, such as Asia Minor and India, are of little importance. It was mainly through Greece and Reme that nagic was consolidated and

[^44]$$
\text { xv. }-=6
$$
aeveloped in Western civilization. In these classic nations there may be traced the rude old magic inherited from barbaric ancestors, to which in later times were added ceremonios and calculations imported as Oriental wisdom. Ancient literature showa the Greeks as a people whose religion ran much into the consaltation of oracle-gods at many temples, of which the shrine of Apollo at Delphi wae the chief. No rite could keep up more perfectly the habit of savage religion than their necromancy (veкронаитcia, veкvopavтeia) or consulting ghosts for prophecy; there was a famous oracle of the dead near the river Acheron is Thesprotia, where the departing souls crossed on their way to Hades (Herod., v. 92). The myth of Circe turoing the companions of Odysseus into swine shows the barbaric belief in magical transformation of men into beaats, and the classic sorcerer was believed to turn himself into a wolf by sublls like the medicine-man of some modern savage tribe. Not less clearly does the story of Medea and her caldron typify the witch-doctress with her pharmacy (фарнакеia) powerful both to kill and bring to life. Tho worship of Hecate, the moon, seuder of midnight phantoms, lent itself especially to the magician's rites, as may be seen from this formula to evoke her: "O friend and companion of night, thou who rejoicest in the baying of doga and spilt blood, who wanderest in the midst of shadea among the tombs, who longest for blood snd briagest terror to mortals, Gorgo, Mormo, thousand-faced moou, look favourably on our sacrifices!" This magical record, preserved by an early Christian writer, may be compared with the poetic picture in Theocritus's idyll of the sorceress (Idyll., ii.), where the passionate witch cries in similar words to Hecate, the moon, to shive clear while she compels by sacrifico her faithless lover, and goes through her magic ritual of love and hate, striving to force her beloved home to her by whirling the brazen rhomb, acattering his bones with the seattered barley, melting him to love by the melting wax, casting into the fierce flames a torn shred of his cloak and laurels to crackle and blaze and be consumgd that his flesh ahall be consumed likewise. This ancient witchcraft sscribed magic power to such filth as pounded lizards and the blood of creatures uatimely dead, revolting messes made familiar to moderns by Shakespeare, who introduces real magic recipes in the witches' caldron in Macbeth. The early Greeks lived in the same fear as southern nations atill do of the arts of "fascination" ( $\beta$ arravia, Lat. fascinatio) worked by envious praise, or ill-wishing, or the evil eye; and they sought to avert these bad influences by the means still in use, spitting and aymbolic gestares, and the use of charms and amulets. As to aacient Rome, much of the magic in the Latin poets, such as Virgil and Horace, is only Greek sorcery in a Latin dress. But severe Romen laws against those who practised such malefic arts as making hail and spoiling the crops show that here slso the soreerer was at his usual work. What is more remarkable is the high official place given to divination in old Rome, where every public act was done under magical sanction. The auspex, or bird-viewer, and the augur, whose similar name seems to refer also to omena from the flight and cries of birds, in fact carried on supernatural divination not by omens from birds only, but by a variety of magical processes forming a comples traditional system, partly adopted from the Etruscans, as to which some curious remarks have come down to us in the treatias On Divination by Cicero, himself an augur, though living in the days when the ancient lore was falling ioto contempt. The Roman divination was, as its name implies, a religious syatem of consulting the gods, who sent the aigns to guide mankind. Jupiter, the Heavenfather himself, was heard and seen in thunder and lightning; wherefore these heaveuly manifestations were
of the highest import, observel by the augnr in the templum or division of the sky marked out with his lituus or curved wand ; there waa no better omen than when Jove lightened on the left. Among birds, the fierce eagle, Jove's messenger, gave the highest presage of victory, while the owl with its dismal cry was unluckiest. The good or ill signs given by many birda depended on whether they were on the right or left hand, and the sacred chickens gave their omens according as they were eager or not to feed, and dropped crumbs on the ground. All prodigies were recorded as portents in Roman affairs; and those which Livy mentions year by year, whether they were real or fictitious, in either case had their effect on the minds of men who saw national signs in a heavy hailstorm, a calf bora with two heads, or a bullock found when sacrificed to have no heart. It was in quest of auch portents that the haruapex made his professional examination of the entrails of the victims, and reported the aspects of the head of the liver or cleft of the lungs, as a sacred guide, to warriors and statesmen in the condact of national affairs. Fublic diviation being on this footiag, it is not to be wondered at that, in the time of the empire, foreign soothsayers thronged to Rome to practise their craft among rich and credulous dupes. It appears that the magic of Egypt and Babylon still held a prominent place, for Juvenal refere to both in his sixth satire, where he rails at the superstitious women of his time for putting their trust in Chaldæan aatrologers, all the more if under the laws against magicians they had been put in prison or banished, while ladies would not go out for a drive or take a meal without consulting their book of lucky and unlucky hours, which bore the Egyptian name of Petosiris.

In the classic world, however, the growth of knowledge and accurate reasoning began to have their effect in bringing magic to the test of facts, and proving its failure. Greek philosophy, with its physical theories of the universe, had shaken the old religion, and with it the old magic. Though the Romans kept it up as n matter of statecraft, the judgment of statesmen and philosonhers revolted from it, holding rather with Ennius, who pointed out the absurdity of the hungry fortune-teller promising others wealth and begging a drachma for hiuself, or with Cato, who wondered that one diviner could meet another snd not burst out laughing. These are both quoted by Cicero, with other passages argued quite in the modern spirit, as where he asks on what principle a raven's croak should be propitious ou the right but a crow's on the left, or how a chicken eating a cake could help dropping crumbs. Historically attacks of this kind have a particular value, as recordıng many magical details which we do not know from the believers themselves. Of such details Pliny's Natural History is full, though he hates magic as the most fraudulent of arts; and among the most instructive accounts of classic astrology must be reckoned the treatise rritten against it by Sextus Empiricus. Had sceptlca! philosophy had its way, magic would have perished agea earlier out of the civilized world. But there were other influences already at work, not only to preserve it, but even to give it another great expansion before its final decay.
The Pythagorean philosophy, while on the one hanc bringing in the science of Egypt and Babylon, and develop ing it into Greek mathematics and physics, on the other hand faroured the growth of magic by mystical speculations, such as those on numbers. Not that the Pythagoreaus began this delusive acience, which had long been at home in Babylon, where the occult powera of the planetary 7 aud the zodiacal 12 were recognized, and spiritual arithmetic was carried so far as to indicate good deities by whole numbers and cril demons by fractiona. But the Pythagoreans developed, it further in their mystic
symbolism of the active 1 and the passive 2, the sacred 4 of space proceeding from the 1 , the 7 of intelligence, the 8 of love, and the 10 of the universe. Whatever rational thought nay at first have been veiled under all this, its literal nonseuse suited the magical mind, and its effects may be traced in magical literature ever aince. With such speculations was combined an animistic system of spirits pervading the world, ranging from gods and demons down to the souls of beasts and plants. Both in mystic symbolism and in the doctrine of demons the mind of Plato followed the Pythagorean track, and at a later period the tendency towards magical speculation came out strongly among the Neo-Platonists, when enthusiasts, not content with speculating about the dæmonic powers of the universe, sought to establish personal relations with them, and use them for their own ends. The treatise on the Egyptian mysteries ascribed to Iamblichus is an interesting record of this plase of thought. Alexandria became the especial home of systems of theurgic magic, in which invocations, sacrifices, diagrams, talismans, were employed with rule and method, as though they were really effective. Much of this delusive craft has perished or become unintelligible, but its once considerable hold on men's minds may be traced in auch relica as the gem-talismans of the Gnostics, still objects of curiosity to archæologista; aniong their formulas is the celebrated Abraxas, the Greek letters of which ( $\mathrm{A} \beta$ pa $\xi a s, \mathrm{~A} \beta$ paga. ${ }^{5}$ ) atand with astronomical aignificance for the number 365. The theurgy which came down into medixval and modern Furope is strongly narked with Jewish magical speculation. After the captivity, the Jews worked out a classification and nomenclature of angels and demons. On the one side are ranged suclh celestial powers as Gabriel and Raphael, while against them atand such beings as Beelzerob (q.v.) and Ashmodai or Asmodæus (Tobit, chap. iii., \&c.), who is clearly the great evil demon Aeshma-daeva of the Persian religion. "Many centuries afterwards, in European magic buoks of the Middle Ages we find the remains of these theurgic systems still handed on. Their elaborate folly may be best realized by looking into such books as Francis Barrett's Magus, or Horst's Zauber-Bobliothek, where the actual rites and formulas for raisiag demons are, given. The evocations, with their uncouth jumbies of sacred names, have some historical interest from their strangely mixed traces of ancient religions, preserved by charlatans whose blnnders show how little they understood the words they copied. We can fancy the magician in his black robe embroidered with mystic characters, waving his wand as he invokes at one breath the great demons "Acheront," "Ashtaroth," "Asmodi," names which the modern student recognizes as borrowed from the ancient religions of three different conntries-Greece, Phœenicig, Persia. Of all the sources of this branch of magic, the Jewish tradition is the chief. The magician relies on the power of divine Hebrew names, snch nat tbe shem hammephorash or the name Jehovah in its true pronunciation, with which Solomon and other wonder-workers of old did marvellous things. He draws powerful spells from the Kabbalar ( $q . v$. ) of the later Jexs, with its transposed letters and artificial words,using for instance the namo Agla, formed from the initials of the Hebrew aentence-"Thou art a mighty God for ever." But in compelling the spirits he can use Hebrew and Greek in admired confusion, as in the following formula (copied with its mistakes as an illustration of magical scholarship in its lowest stage)-" Hel Heloym Sother Emmanuel Sabaoth Agla Tetragrammaton Agyros Otheos Ischyros Athanatos Jehora Va Adonai Saday Homousion Messias Eschereheye!". One of tho most curious features of the demon-evocation is the use of the pentagram, an esscutial adjunct of the magic circle, whose
effect in barring the passage of Mephistopheles is described in a well-known scene in Goethe's Faust. This agmbol is an interesting proof of tradition from the Pythagoreans. It is a geometrical figure for the construction of the regular pentagon (Euclid, iv." prop. 11), now familiar to school-boys, but ${ }^{2}$ which to the school of Pythagoras was so wondrous a novelty that they used it as a sign of fellowehip (see Bretschneider,
 Geometrie vor Euklides, p. 85), and it after-

Pentagram. wards became a magical symbol, still to be seea in use iô every country from Ireland to China.
The magic of the Moslem world is in part adopted from Jewish angelology and demonology, and ia part carries on Babylonian-Greek astrology, as systematized by aucb writers as Paul of Alexandria ard Claudius Ptolemy. Thus the proceedings of the Moslem magician, as met with in the Thousand and One Nights, mostly run parallel with those familiar in Europe, in their fumigations and incanta. tions, talismans ( $\tau \epsilon \tau \epsilon \lambda \epsilon \sigma \mu$ éva), horoscopes, and almanacs on calendars of lucky and unlucky days. In fact a modern Zadkiel in England would find himself on common ground with his brother practitioner in Baghdad or Delhi. ${ }^{1}$ In other districts of Asia, more pcculiar developments of magic have been preserved. To mention a few of the most noteworthy, the Sanskrit literature in India is rich in ancient magical precepts and bymn-charms. ${ }^{2}$ The ancient Hindu magic is religious, turning on the actions of dcmons (bhvita) in causing disease by possession, and their exorcism and compulsion, as well as power obtained over higher spirits by sacrifices, austerities, and formulas or charms (mantra). From their connexion with early Aryan customs, these rites sometimes throw light on Europeaa practices derived from the sime stock. Thus the magical practice of going round " with the sun," well known as deisil in High. land superstition, and kept up in England in the rule of passing the decanter "through the button-hole," appeara to $b \in \frac{2}{2}$ rite of Aryan sun-worship belonging to remote antiquity, for (under the name of pradaxina) it forms part of the Hiadu marriage ceremony handed down from Vedic times. ${ }^{3}$ Buddhism as well as Brahmanism had its magical side, and its literature of magic formulas (tantra). The "red-cap" lamas of Tibet, with their pretended miracles of breathing fre, swallowing knives, and ripping themselves up, are curious as reminding us of the time when these tricks, now come down among us to jugglers' feats, were regarded as supernatural. In the low Buddhism of the Mongols, mixed with native barbarism, the shamans or sorcererpriests, with their rude sacrifices and demon-dauces, are among the most remarkable types of their ancient class. In this part. of Asia, and farther east, a somewhat remarkable aystem of divinatory magic has growin out of the reckoning of daya, months, and years by a zodiac-calendar, whose signs ape, horse, dog, de., are combincd in series with the elements, male and female, so that a year may be called that of the "female fire-dog." It was ineritable that auch a system should lead the magicians to draw omens from its signs. They do so in a most elaborate way, interfering with their presages on erery occasion of life, beginning when the child undergoes its ceremonial washing, and has its fate defined by the aigns it is born under, as "in the element fire, under the red aign in the year of the tiger, in the month of the sheep and day of the hog, in the fortieth division of the day under the influence of the ninth star," \&c. This quaint science seems, however, not altogether native, for the influence of

[^45]Babylonian and Greek scientific and magical ideas has extended across Asia, even into China. The magic of this latter country is remerkable for its various and elaborate modes of divination. These may be obtained from mediums possessed by spirits, and giving oracles by apeech or writing with the "descending pencil," as has lately been done by "spiritualists" in Europe. But higher authority is given to divination by throwing sacred lots, as the two wooden ka pue, which fall with the flat or rounded side up. The results of such processes of diviastion, in themselves meagre, may be brought to any required elaborateness by the use of the "eight diagrams" obtained by combinations of the whole line ( - ) and the broken line (-). These, primarily interpreted as representing the male and the female principle (yang, $y n$ ), perfect and imperfect, heavenly and earthly, are referred by syatematic fancy to elements, qualities, tempers, dc., and interpreted in the celebrated Chinese classic book called the $Y^{\prime}$-king into a collection of oracular responses. ${ }^{2}$ The feng-shui, or "wind-and-water" magic, is a system the practitioners of which regulate the building of houses and tombs by their local aspects; it has of late come under the notice of Europeans from the unexpected impediments it has placed in their way when desirous of building or constructing railways on Chinese soil. ${ }^{2}$

In the lower stages of civilization the distinction between religion and magic hardly appears, the functions of priest and sorcerer being still blended, as was long since pointed out by Meiners (Geschichte der Religionen, book zii.). As established religiona were formed among nations of a higher grade, the separation became more distinct between the official rites of the priesthood and those practised by castes of magicians, rivalry often becoming serions between them. Thus in ancient Egypt there appear, on the one hand, the miracles worked by diviuities under official sanction of the priesthood, and, on the other hand, the unlicensed proceedings of sorcerers, who indeed doubtless deserved ill of society by practices done by detestable means or for detestable ends, such as bewitching by hurtful demons, or administeriog love-potions. Here we come into view of the distinction atill espressed by the terms "white magic" and "black magic." Laws were made against magic in these ancient times, but it must be remembered that then and for thousands of years later, the opposition to magic had seldom anything to do with the sceptical doubts of its reality which arose among the classic philosophers. Magic was none the less believed in for being hated and prossribed; nod when a soothsayer was looked upon as a false prophet the inference was, not that magic was unreal, but that this particular magician was pretending to supernatural power he did not possess. The Levitical law prohibits sorcery under penalty of death (Levit. xx. 27). Among the early Cbristians sorcery was recognized as illegal mizacle ; and magic acts, such as turaing men into beasts, calling up familiar demoins, raising storms, \&c., are mentioned, not in a sceptieal spirit, but with reprobation. In the changed relations of the state to the church under Constantine the laws against magic served the new purpose of proscribing the rites of the Greek and Roman religion, whose oracles, sacrifices, and auguries, once carried on under the highest public sanction, were put under the same ban with the low arts of the necromancer and the witch. ${ }^{3}$ As Christianity extended its sway orer Europe, the same antagonism continued, the church striving with considerable success to put dorn at once the old local religions, and the eren older

[^46]practices of witchcraft ; condemning Thor and Woden as demons, they puaished their rites in common with those of the sorcerers who berritched their neighbours, and turned themselves into wolves or cats. Thus gradually arose the legal persecution of witches, which went on through the Middle Ages under ecclesiastical sanction both Catholic and Protestant. The literature of the Middle Ages does not contribute many new elements to the study of magic, which was carried on under the old traditioal systems. But it showa on the one hand how unbroken the faith of even the educated classes remained in the reality of magic, and on the other hand that its more respectable branches, such as astrology and alchemy, were largely followed, and indeed included in their scope much of the real science of the period (see the works of Thomas Aquinds, Gerbert, Roger Bacon, Cornelius Agrippa, \&c.). The final fall of magic began with the revival of science in the 16 th and 17 th centuries, when the question whether the supposed effects of magic really take place or not was raised, and decided against it. In our day the occult sciences are rapidly dying out in the educated classes of the civilized world, though astrology still has its rotaries, and the communications in "spirit circles" by possessed mediums nnd apirit-writing are what would in old times have been classed as necromancy. The magic which holds its place most firmly in Europe has come dowa by tradition in popular folk-lore, which is full of precepts for bewitching and averting witchcraft, and diviuing by omens. Among the practices which occur to everyone's mind are foretelling changes of the weather by the moon's quarters, taking omens from seciog magpies and hearing a dog howl at night, the fear of spilling salt, observation of the shroud in the candle and the stranger in the tea-cup, the girls' listening to the cuckoo to tell how soon they will be married, pulliag aff the row of leavea to settle what the lover's calling will be, and perhaps even compelling him to come by a pin stuck through the rushlight. Nor has the wizard forgotten how to cure inflammation with a "thunderbolt," generally an ancient stone or bronze hatchet dug up in the fields, nor how to punish an enemy by means of a heart stuck full of pins aud hung in the chimney. These are but a few out of hundreds to be found in Brand's Popular Autiquities and the volumes published by the Folklore Society, or in the similar collections from every country of Europe. If any one wooders that popular magic still enjoya much credit in the peasant class, it should be remembered that even the educated world still shows a remarkable unreasonableness in connecting causes and cffects. Thus the old magical belief survives that a loadstone, because it draws steel, will also draw out pain. Peasants may well carry a magnet in their trousers' pocket against rheumatism when better-informed people will wear with as great confidence a "galvanic belt," though any clectrician will tell them it has not the porrer to hurt or cure a fly. One of the most farourable proofs of the changed public opiaion in England is seen in the larss, where the penalties of the old statute agaiast those who keep familiar demons are abolished, and the time-honoured charge has disappeared from the commission of the peace to inquire of all "inchantments, sorceries, art magic, trespasses, forestallings, regratings, \&c." Eut persona pretending to exercise witchcraft, sorcery, enchantment, or conjuration, or undertaking to tell fortunes or pretending by occult or crafty science to discnver lost or stolen goočs, may be imprisoned under 9 Geo. II. c. 5 , or fortune-tellers dealt with as rogues and ragabonds under 5 Geo. IV. c. 83, or they may be prosecuted for obtaining money under false pretences.

Looked at as a series of delusions, magic is distasteful to the modern mind, which, once satisfied of its practical futility, is apt to discard it as folly unworthy of further notice

This, however, is hardly doing it justice, for in the early developments of the human mind both religion aud science were intimately connected with magic, whose varions branches, unfruitful as they may be, are nevertheless growths from the tree of knowledge. The universal diffusion of magical ideas among mankind, excepting only the limited class who have abandoued them through higher education, ohows that we are here in presence of a deep-seated intellectual process, while the strong likeness in the principles of magic among the rudest tribes points to its having syrung up under most ancient and primitive conditions. The connexion between magic and religion in its lower stages is obrious from the impossibility of separating them, inasmuch as in every country sorcerers and diviners, savage or civilized, are found invokiog the aid of ghosts, demons, or gods, to give them information or execute their will. So far as magic is ascribed to the influence of spirits, its theory belongs to the animistic philosophy developed in the lower levels of civilization, where all the powers of life and nature are set down to spiritual beings (see Animism). A chief part of the magician's business being to cunverse with spirits and gsin their help, he sets about this in various ways. More often than not the spirit is considered to be a human ghost, which behaves much as it did while it was still a living man's soul; or if it is called a demon or deity, still these are beings modelled on the human soul. Thus their manuer of hearing prayers and receiviug offerings is like human iatercourse, especially in the frequent cases where the sorcerer is a "medium" possessed by the spirit, who is considered to inhabit his body like his ordinary soul, and to give oracles speaking by his human voice. In such supposed ioterviews with spirits there is plenty of delusion and fraud, bat nothing specially magical; and, in fact, were the whole craft of the sorcerer of this spiritualistic kind, there would be no practical distinction between the sorcerer and the priest, and magic would fall into its place as an inferior branch of religion. It is because magical practices are by no means accounted for altogether by the doctrine of spirits, but involve other special explanation. of their own, that it is found convenient to make magic a department by itself. Such explanation is needed in ordinary magical practices, like that of the American medicine-man, who draws a deer on a piece of bark and shoots at it, expecting thereby to kill a real deer next day, or of the Tongan sootlisayer, who spins a cocoa-nut as a teetotum, in order to disconor a thief by noticing towards whom the monkey-face of the nut is looking when it stops. The magical train of thought which leads men to resurt to such devices is childishly simple. It is merely imperfect reasoning, the mistalring of an ideal connexion for a real oue, the confusion of ineffective analogy with effective cause. Our minds go with those of the barbaric magicians so far as to recognize the analogy between shooting an animal and its picture; we see as plaialy as they that the cocoa-nut as it were looks in a particular direction. The difference is that, in the magical stàge of thought, these are taken to be real connexions, while more advanced knowledge discards them as ideal. As Wilhelm von Humboldt well remarks, "Man begins by seeking the connexion even of external phenomena in the region of thought ; . . . . pure observation, still more experiment, follow at a wide distance after ideal or phantastic systems. Man's first attempt is to govera nature through its idea."

So much of the intellect of mankind has been spent aince remote antiquity on magic that it may seem hard to believe the chief secret of the occnlt sciences to be after all nothing but bad reasoning. This at any rate is very unlike the theories propounded by those who have condemned magic as a real craft made known to mau by diabolical influence, or by those who have thought to find ia
its raystic precepts relics of antique wisdom. The question is not, however, an abstruse one, for every reader has the means of satisfying himself by inspection of a few magical processes, as to what amount of reason really goes to making them. In a large proportion of cases there may be perceived, not absolute nonsense, but a kind of halfformed sense stopping short of practical value. There being an evident relation betreen an object and the thought of it, it becomes one of the chief practices of the sorcerer to try to make things happen by thinking about them. Thus he so "takes the will for the deed"that when he "ill-wishes" his enemies, and looks upon them with the "evil eye," ha believes that he does them direct harm. On the other hand, those who know or suspect that such influence las been used against thens suffer in reality from fear, often even dying of it . The belief in this mysterious power furnishes an explanation which is resorted to when any ono falls ill or has any misfortune, and thus the belief in witchcraft among savages leads to constant enmity and revenge. Nor is this state of things to be traced only in what is called the uncivilized world, for those who have much intercourse with English country folks may still meet with instances of some cow or child firmly belicved to have been "overlooked," the death of which may possibly be revenged on a neighbouring cottager, supposed to be the witch. Whenever a good or evil wish is uttered in words, it becomes a blessing or curse. When these are addressed to some deity or demon, they are in fact prayers, but when they are merely expressed wishes, without, reference to any spiritual being, then their supposed effects are purely magical. Thus, in an ancient Hindu love-charm, the girl expects to bring back an offended lover by repeating the formula, "May thy heart devour itself for me, may thy dry mouth water for me!" \&c. Still more does this kind of magic explain itself in the parious rites where some object is used as a aymbol, and the association of ideas trausfers whatever is done to it to the persoa it represents. Thus Ovid's surceress (Heroid., vi. 91)-
"simulacraque cerea fingit, Et miserum tenuis in jeeur urget acus."
King James in his Dxmonology says that "the devil tearheth how to make pictures of wax or clay, that by roasting thereof the persons that they bear the name of may be continually melted or dried away by continual sickness." By a similar association of ideas, any object which has belonged to a person may be thus practised on, as has been already here mentioned among the South Sea islanders, or, to take a case nearer home, when in 1618 two women were executed at Lincoln for burying the glove of Heury Lord Rosse, so that, "as that glove did rut and waste, so did the liver of the said lord rot and waste." By like reasoning, when internal disease is ascribed to knots within the patient's body, it becomes a branch of witcheraft to tie magic knots, which produce their corresponding effect within the victim. Kindlier though not less delusive operations of misundersteod analogy are found in attempted cures by sympathetic magic, on the same principle which malignant sorcerers would have used in giving the disense itself. Thus knots are untied in order to untie internal complications in the sick beast, and weapons treated to cure by sympathy the wounds they made :-
"But she has ta'en the broken lance,

> And washed it fron the elotted gore,

And salved the splinter o'er and o'er.
William of Deloraine in trance,
Whene'er she turued it round and rouna,
Twisted, as if she galled his wounid.
Then to her maidens she did say
That he should be whole man and sound
Withia the eourse of a night and day:"
-Lay of the Last Minstrel, iii. 23.
The herls used as medicaments in the iufaucy of
medicine appear to hare been chosen for magical rather than medical motires, by a kind of reasoning which comes ont rery plainly among Chinese physicians, who administer the heads, middles, and roots of plants to cure their patients' heads, bodies, and legs respectirely. In like manuer European doctors long followed the "doctrine of signatures," which was in fact mere magic,-prescribing euphrasy or "eye-bright" for complaints of the eyes, because of the likeuess of an eye in the flower, aud treating small-pox with mulberries because their colour made them proper to diseases of the blood (see Pettigrew, Superstitions of Medicine and Surgery). The same easilyunderstood thongh practically absurd principle may be seen to hare guided the processes of divination, many of which show plainly the association of ideas that suggested them. Thus, in the Foman augury already mentioned, there is no difficulty in following the fancy which made the war-eagle gire an omen of victory, but attached a doleful foreboding to the melancholy awl. The same halfrational meaning explains the reversal of omens accordingly es they come on the right or left, that is, the grod or bad hand. Any one who glances through one of the cheap dream-books still bought by servant-maids, which fa:rly represent the ancient books on oneironzancy, such as that of Artemidorus, will find many of the analogies still intelligible on which they are founded, as that to dresm of washing one's hands presages relief from anxiety, While he who dreams of losing a tooth will lose a friend. The ancient art of chiromancy, or telling fortanes by the hand, goes on the evident analngy between the lines of the palm and the diverging conrses of human life; closely allied to this is scapulimancy or divining by the cracks of a shonlder-blade put into the fire. Of divination by lots, so common that the term for throwing lots (sortes) has passed into sorcery, there are many rarieties. Some are quite pictorial, such as the Mauri diviner's sticks set up in the ground to show by their standing or falling the fate of the warriors they represent. But this strong analogy is not necessary, for it only requires a particular lot to be mentally associated with a particular idea to make the diviner believe that the fall of that lot makes that idea true. It would be tedions to go at length through other details of magic where the same key of imperfect analogy applies. But it may be pointed out that this explanation is nowhere more conclusire than in astrology. The very foundation of the science of the horoscope lies in the mere analogy between the rising of a star above the horizon and the birth of a man. Such circumstances as whether a planet is in conjunction or apposition alter their effect on the "native" in corresponding ways. The names of gods, happening to be given also to certain planets, are taken as omens, so that because a planet bears the name of Mercury it is brought into fanciful connexion with wisdom, and in like manner the planet Venus with love. Each planet having a colour assigned to it, the aspect of Mars or Saturn is believed to tell one, when in quest of a thief, whether be will have on red or black clothes. So the arbitrary names of the signs of the zodiac are made inta presages, a just person being found under the sign of Libra, and charins against bugs being effective in the sign of Cancer. For convenience some of these examples are taken from modern handbonks of astrology, but in principle the ald stareraft has changed little in the course of ages. In the stody of magic it is necessary further to notice that precepts which seem quite arbitrary, not showing even fanciful lialf-reason, are often explained on further examination, which gives the key to the symbolic process by which they are formed. For instance, it would hardly be guessed why Cancer shonld be a sign involving movableness, but Scorpio firmness, were it not known that this result is abtained by arranging the
twelve signs in order as they stand, as successively morab!t, fixed, and double (see Proclus, Parapleresis, i. 15). Cursidering the antiquity of magic, the wonder is not that su much of its sense sliould be lost, but that so much is still intelligible. ${ }^{2}$. Various other causes may be traced in the occult sciences, among which can only be mentioned here rhabdomancy.or the use of the divining rod, by which the cunning man professes to discover noter springs, murderers, or hidden treasure. Here it is evident that the decision is really arrived at by the diviner himself, not by the twig, and the same is trne of various similar arts. From the earliest times also tricks of sleight-of-hand, de., have been passed utf by magicians as miracles to deccive their dures; our language still testifies to this in the use of the word conjuror; the wonder-worker carrying on the old juggling, althongh no longor evoking demons to give him his inysterinus power.

Hitherte magic has been dealt with on its delusire and harmful side, this being what most practically manifests itself in history. Iet it must be borne in mind that in its early stages it has been a source of real knowlerlge. True as it is that misunderstood facts and misleading analngies hare produced its delusions, its imperfect arguments have beep steps towards more perfect reasoning. Analogy has always been the forerunner of scientific thought, and, as experience carrected and restricted it into real effecticeness, from age to age whole branches of what was magic passed into the realm of science. The vague and misleading parts whicls could not be thas transformed were left behind as occulf science, and thus the very reason why magic is almost all bad is because when any of it becomes good it ceases to be magic. From this point of view the intellecturl position of magic is well expressed by Adolf Bastion (Rechtsalterthü̈ner, p. 242):-"Sorcery, or, in its higher expression, magic, marks the first dawning consciousness of mutual connexion throughont nature, in which mau, feeling himself part of the whole, thinlss himself able to interfere for his own wishes or needs. So long as religion fills the whole horizon of culture, the vague groping of maric contains the first expcriments which lead to the results of exact science. Magic is the plyssics of mankind in the state of nature. It rests on the begimning of induc. tion, which remains without result only because in its imperfect judgments by analogy it raises the post hoc to the pronter hoc, dc." The nature-spirits and demons rith which the magician has so much to do represent indeed the notion of physical cause in the rudimentary science of the lower races, while the association of idcas nn which his sorcery and divination is based has much the same relation to the scientific induction which succeeds it. That this view is sound is best shown by noticing the great departments of science whose early development is known to have taken place through magic. Astronomy grew up iu Babylon, not through quest of mechanical laws of the universe, but through observation of the heavens to obtain presages of wars and harvest; while even in modern times Kepler's discoreries in physical astronomy were led u' to through mystic magical speculations. In alcheny appears the early history of clemistry, which only emancipated itself in modern ages from its magical surroundings. Tho astrological connexion of the metals each with its plavet was one of its fundamental ideas, of which the traces are still to be found in the name of the metal "mercury," and that of "lunar caustic" for silver nitrate. Lastly, the history of medicine goes back to the times when primitive science accepted demoniacal pnssession as the rational means of accounting for disease, and marical npcrations with herbs ariginated their more practical, use in materia medica.
(E. E. T.) ‥

[^47]magIC, White. Under this head is included the art of performing tricks and exhibiting illusions by aid of apparatus, excluding feats of desterity in which there is no deception, together with the performances of such automaton figures as are actuated in a aecret and mysterious manner. Conjuring by prestidigitation, or sleight of hand, independently of mechanical apparatus, is referred to under Legerdemaln.

Whether or not the bnok of Exodus makes the carliest Listorical reference to this natural magic when it records how the magicians of Egypt imitated certain miracles of Moses "by their enchantments," it is known that the Egyptian hierophants, as well as the magicians of ancient Greece and Rome, were accustomed to astonish their dupes with optical illusions, visible representations of the divinities and subdivinities passing before the spectators in dark subterranean chambers. From the descriptions of ancient authers we may conjecture that the principal optical illusion employed in these effects was the throwing of spectral images of living persens and other objects upon the smoke of burning incense by means of concave metal mirrors. But, according to the detailed exposure of the tricks of the magiciaus given by Hippolytus (Ref. Om. Hxr., iv. 35), it appears that the desired effect was often produced in a simpler way, by cansing the dupe to look into a cellar through a basin of water with a glass bottom standing under a sky-blue ceiling, or by figures on a dark wall drawn in inflammable material and suddenly ignited. The flashes of lightning and the rolling thunders which sometimes accompanied these manifestations were easy tricks, now familiar to everybody as the ignition of lycopudium and the shaking of a sheet of metal. The aacient methods described by Hippolytus (iv. 32) were very similar.
Spectral pictures or reflexions of moving objects, similar to those of the camera or magic lantern, were described in the 14thand 16th centuries. Thus, in the Ilouse of Fame, bk. iii., Cliaucer speaks of "appearances such as the subtil tregetours perform at feasts "-pictorial representations of hunting, falconry, and knights jousting, with the persons and objects instantanconsly disappearing; exhibitions of the sanue kind are mentioned by Sir John Nandeville, as seen by him at the court of "the Great Chan" in Asia; and in the middle of the 16 th century Benvenuto Cellini saw phantasmagoric spectres projected upon smoke at a nocturnal cxhibition in the Colosseum at Rome. The existence of a camera at this latter date is a fact; for the instrument is described by Baptista Purta, the Neapolitan philosopher, in his Magice Naturalis (1558). And the doubt how magic lantern effects could have been produced in the 1 4th century; when the lantern itself is alleged to have been invented by Athanasius Kircher in the middle of the 17 th century, is set at rest by the fact that glass lenses were constructed at the carlicr of these dates,---Roger Bacon, in his Discovery of the Miracles of Avt, Nature, and Magic (about 1260), writing of glass lenses and perspectives so well made as to give good telescopic and microscopic effects, and to bo useful to old men and those who have weak eyes. Towards the end of last century Comus, a French conjuror (the sccond of the name), iacluded in his entertainment a figure which suddenly appeared and disappeared about 3 foet above a table,-a trick explained by the circumstance that a concare mirror was anong his properties; and a contemporary performer, Robert, exhibited the raising of the dead by the same agency. Early in the present contury Philipstal gave a sensation to his magic lantern entertainment by lowering unperceived between the audience and tho stage a sineet of gauze upon which fell the vivid moring shadows of phantasmagoria.

A new era in optical tricks began in 1863 when John

Nevil Maskelyne, a Cheltenliam artist in jewellery, invented a wood cabinet in which persons vanished and were made to reappear, although it was placed upon high feet, with no passage through which a person could pass from the cabinet to the stage floor, the scenes, or the ceiling; aad this cabinet was examined and measured for concealed space, and watched round by persons from the audience during the whole of the transformations. The general principle undoubtedly was this:-if a looking-glass be set upright in the corner of a room, bisecting the right angle formed by the walls, the side wall reflected will appear as if it wrere the back, aad hence an olject may be hidden behind the glass, yet the space seem to remain unoccupied. This principle, however, was so carried out that no sign of the existence of any mirror was discernible under the clusest inspection. Two years later the same simple principle appeared in "The Cabinet of Protens," patented by Tobin and Pepper of the Polytechnic Institution, in which two mirrors were employed, meeting in the middle, where an upright pillar concealed their edges. In the Eame year Stodare exhibited the illusion in an extended form, by placing the pair of mirrors in the centre of the stage, supported between the legs of a three-legged table having the apex towards the andience; and as the side walls of his stage were draped exactly like the back, reflexion showed an apparently clear space below the table top, where in reality a man in a sitting position was hidden behind the glasses and exhibited liis head ("The Sphinx") above the table. The plane mirror illusion is so effective that it has been reproduced with modifications by various performers. In one case a living bust was shown through an aperture in a looking-glass sloping upward from the front toward the back of a curtained cabinet; in another a person stood half-hidden by a vertical mirror, and imitation limbs placed in front of it were sundered and removed; and in another case a large vertical mirror was pushed forward from a back corner of the stage at an angle of 45 degrees, to cover the entrance of a living "phantom," and then withdrawn. Maskelyne improved upon hisoriginal cabinet by taking out a shelf which, in conjunction with a mirror, could enclose a space, and thus left no apparent place in which a person could possibly be hidden. He introduced a further mystification by secretly conveying a person behiud a curtain screen, notrithstanding that, during the whole time, the existence of a clear space under the stool upon which the screen is placed is proved by performers continually walking round. And the illusion reached its height When he revealed or "vanished" a succession of persons out of a light shell obelisk or "Clcopatra's Necdle," with a sheet of paper interposed between this corer and the stool it stood upon, thus intercepting the apparently only available avenue of approach. The principle of reflecting by means of transparent plate-glass the images of highly-illuminated objects placed in front, so that they appear as if among less brilliantly lighted objects behind the glass, was cmployed in the "ghost" illusions of Sylvester, of Dircks and Pepper, of Robin, and of some other inventors,- the transparent plate-glass. being, in some cases, inclined forwards so as to retlect a lime-lighted object placed below the front of the stage, and in other arrangements set vertically at an angle so as to reflect the object from a lateral. position.

Among the acoustic wonders of antiquity, fabled or real, were the speaking head of Orpheus, the golden virgins, whose voices resounded through the temple of Delphi, and the like. Hippolytus (iv. 4) explains the trick of the speaking head as practised in his day: the voice was really that of a concealed assistant who spoke through the flexible gullet of a crane. Towards the close of the 10th century Gerbert (Pepe Sylvester II.) constructed (saya

William of Malmesbury) a brazen head which answered questions; and similar inventions are ascribed to Roger Bacon, Albertus Magnus, and others. In the first half of the 17 th ceatury the philosopher Descartes made a speaking figure which be called his daughter Franchina; and the superstitious captain of a ressel had it thrown overhoard. In the latter part of the same century Thomas Irson, an Englishman, exhibited at the court of Charles II. a wooden figure with a speaking-trumpet in its mouth; and questions whispered in its ear were answered through a pipe secretly communicating with an apartment wherein was a lcarded priest able to conserse in various languages. Beckmann, in his History of Inventions (about 1770), relates bis inspection of a speaking figure, in which the mords really came through a tube from a confederate who held a card of signs by which lie receired intelligence from the exhibitor. Somewhat later was shown in England the figure of an infant suspended by a ribbon, having a speaking-trumpet in its month, -an illusion in which two concave mirrors were employed, one of them concentrating the rays of sound into a focus within the head of the figure; and the mirror nearest the figure was hidden by a portion of the wall-paper which was perforated with pinholes. In 1783 Giuseppe Pinetti de Wildalle, an Italian conjuror of great originality, exhibited among his many wooders a toy bird perched upon a bottle, which fluttered, blew out a candle, and warbled any melody proposed or improvised by the andience, -doing this also when removed from the bottle to a table, or when held in the performer's hand upon any part of the stage. The sounds were produced by a confederate who imitated song-birds after Rosaignol's methorl by aid of the inner skin of an onion in the mouth; and speaking-trumpets directed the sounds to whatever position was occupied by the bird. About the year 1825 Charles, a Frenchman, exbibited a copper globe, carrying four speaking-trumpets, which was suspended in a light frame in the centre of a room. Whispers uttered near to this apparatus were heard by a confederate in an adjoining room by means of a tube passing through the frame and the floor, and answers issued from the trumpets in a loud tone. And of late years have appeared more than one illusion of a similar order, in which the talking and singing of a distant person issue from an isolated head or figure by aid of ear-trumpets secretly contained within parts in which, from their outside furm, the presence of such instruments would not be suspected. It is probable that the automaton trumpeters of Kaufmann and of Maelzel were clever deceptions of the same kind. As described in the Journal de Mode, 1809, Maelzel's life-size figure had the musical instrument fixed in its mouth; the mechanism was wound up, and a set series of inarches, army calls, and other compositions was performed, accompaniments being played by a real band. Mechanical counterparts of the human lips, tongue, and breath, both in speech and in playing certain musical instruments, have, lowever, been constructed,-as in Vaucanson's celebrated nutomaton fute-player, which was completed in 1736 ; the same mechanician's tambourine and flageolet player, which was still more ingenious, as, the flageolet having only three holes, some of the notes were produced by half-stopping; Abbé Mical's heads which articulated syllables, and his automata playing upon instruments; Kempelen's and Kratzenstein's speaking-machines, in the latter part of last century; the speaking-machine made by Fabermann of Vienna, closely imitating the human voice, with a fairly gnod pronunciation of various words; the automaton clarionet-player constructed by Van Oeckelen, a Dutchman, and exhibited in New York in 1860, which played airs from a barrel like that of a crank-organ, and could take the clarionet from its mouth and replace it; and, lastly,

Maskelyne's two automata, "Fanfure" (1878) playing a curnet, and "Labial" (1879) playing a euphonium, boils operated by mechanism inside the figures and suppliced with wind from a bellows placed separately upon the stage.

Lucian tells of the magician Alesander in the 2d century that be received written questions enclosed in sealed cavelopes, and a few days afterwards delivered written responses in the same curelopes, with the seals apparently unbroken; and both he and Hippolytus explain several methnds by which this could be effiected. In this deccption we have the germ of " spirit-reading" and "spirit-writing," which, introduced in 1840 by Anderson, "The Wizard of the North," became common in the repertoive of modern conjurors, - embracing a yaricty of effects from an instantaneous substitution which allows the performer or his confederate to see what has been secretly mitten by the audience. The so-called "secoud-sight" trick depends upon a system of signalling between the exhibiter, who moves among the audience collecting questions to bo answered and articles to be described, and the performer, ${ }^{*}$ who is bliudfolded on the stage. As already stated, the speaking figure which Stock showed to Professor Beckmann, at Göttingen, about 1770, was instructed by a code of signals. In 1783 Pinetti bad an automaton figure about 18 inches in beight, named the Grand Sultan or Wise Little Turk, which answered questions as to chosen cards and many other things by striking upon a bell, intcllizence being communicated to a confederate by an ingenious ordering of the words, syllables, or rowels in the questions put. The teaching of Mesmer and feats of alleged clairvoyance suggested to Pinetti a more remarkable performance iu 1785 , when Signora Pinetti, sittiog blindfold in a front box of a theatre, replied to questions and displayed her knowledge of articles in the possession of the audience. Half a century later this was developed with greater elaboration, and the system of telegraphing cloaked by intermixing signals on-other methods, first by RobertHondin in 1846, then by Hermann in 1848, and by Anderson at a later period. Details of the system of indicating a very large number of answers by slight and unperceived variations in the form of question are giren by F. A. Gandon, La Seconde Fue Dévoilèe, Paris, 1849.
Fire tricks, such as walking on burning coals, breathing flane and smoke from a gall-nut flled with an inflammable composition and wrapped in tow, or dipping the bands in boiling pitch, were known in carly times, and are explained by Hippolytus (iv. 33). At the close of the 17 th century Ifichardson astonished the English puolic by chewing ignited coals, pouring melted lead (really quicksilver) upon his tongue, and swallowing melted glass. Strutt, in Sports and Pastimes of the People of England, relates how he sav Powel the fire-eater, in 1762 , broil a piece of beefsteak laid upon bis tongue,-a piece of lighted charcoal being placed under his tongue which.a spectator blew upon with a bellows till the meat was sufficiently done. This man also drank a melted misture of pitch, brimstone, and lead out of an iron spoon, the stuff blazing furiously. These performers anointed their mouths and tongues with a protective composition.
Galen speaks of a person in the $2 d$ contury who relighted a blown-out candle by holding it against a wall or a stone which had been rubbed with sulphur and naphtha; and the instantaneous lighting of candles became a famous feat of láter times. Baptista Porta gave directions for performing a trick catitled "many candles shall be lighted presently." Thread is boiled in oil with brimstone and orpiment, and when dry bound to the wicks of candles; and, one being lighted, the flame runs to them all. He says that on festival days they are wont to do this among the Turks. "Some call it Hermes his ointment." In 1783
l'inetti showed two figures sketched upon a wall, one of which put out a candle, and the other relighted the hot wick, when the candle was held to their mouths. By wafers lo had applied a few grains of. gunpowder to the nouth of the first, and a bit of phosphorus to that of the other. A striking trick of this conjuror was to extinguish two wax candles and simultaneously light two others at a distance of 3 feet, by firing a pistul. The candles were placed in a row, snd the pistol fired from the end where the lighted candles were placed; the sudden blcst of hot gas from the pistol blew out the flames and ?ighted the more distant candles, because in the wick of each was placed a millet-grain of phosphorus. A more recent conjuror showed a pretty illusion by appcaring ta carry a flame invisibly between his hands. from a lighted to an unlighted candle. What he did was to huld a piece of wire for a second or two in the flome of the first candle, and then touch with the heated wire a bit of phosphorus which had been inserted in the turpentine-wetted wick of the other. But in 1842 Louis Döbler, a German conjuror of much originality, surprised his audience by lighting tro hundred candles instantaneously upon the firing of a pistol. This was the earliest application of electricity to stage illusions. The candles were sn arranged that each wick, black from previous burning, stood a few inches in front of a fine nozzle gas-burner projecting horizontally from a pipe of hydrogen gas, and the two hundred jets of gas passed through the same number of gaps in a con-ducting-wire. An electric current leapiug in a spark through each jet of gas ignited all simultaneously, and the gas flames fired the candle wicks.

Robert-Houdin, who opened his "Temple of Magic" at Paris in 1845, originated the application of electromaguetism for secretly working or controlling mechanical apparatus in stage illusions. He first exhibited in 1845 his light and heary chest, whicb, when placed upon the broad plank or "rake" among the spectators, and exactly over a powerful electromagnet hidden under the cloth covering of the plank, was held fast at plensure. In order to divert suspicion Houdin showed a second experiment with the same bos, suspending it by a rope which passed over a single small pulley attached to the ceiling; but any person in the audience who took hold of the rope to feel the sudden increase in the weight of the box was unaware that the rope, while appesring to pass simply over the pulley, really passed upward over a winding-barrel worked as required by an assistant. Remarkable ingenuity was displayed in concealing a small electromagnet in the handle of his glass bell, as well as in his dram, the electric current passing through wires hidden within the cord by which these srticles were suspeadod. In one of Houdio's illusions-throwing eight half-crowns into a crystal cashbox previously set swinging-electricity was employed in a ditierent manner. Top, bottom, sides, and onds of an oblong casket were of transparent glass, held together at all the edges by a light metnl frame. The coins were concealod under an opaque design on the lid, and supported by a false lid of glass, which was tied by cotton thread to a piece of platioum wiro. Upon connectiog the electric circuit, the platinum, becomiag red-hot, severcd the thread, letting fall the glass flap, and dreppiug the coins into the box.

Down to the latter part of last century no means of socretly communicating ad libium motions to apparently isolated pieces of mechanism had superseded the clumsy device of packiag a confederate iato a box on legs draped to look like an uasophisticated table. Piacti placed three horizontsi levers close beside each other in the top of a thin table, covered by a cloth, these levers being actuatod by wires passing through tho legs
and feet of the table and to the confederate behind a scene or partition. In the pedestal of each piece of apparatus which was to be operated upon when set loosels upon the table were three corresponding levers hidden by cloth; and, after being examined by the audience, the piece of mechanism was phiced upon a table in such a pusition that the two sete of levers exactly coincided, one being superimposed upon the other. In one "effect" the confederate worked a small bellows in the base of a lamp, to blow out the flame; in another he let ga a trigger, causing an arrow to fly by a spring from the bow of a doll sportsman; he actuated a double-bellows inside a bottle, which caased flowers and fruit to protrude from among the foliage of an artificial slirub, ly distending with air a number of small bladders shaped and paiuted to represent them; he opened or shut valves which allowed balls to issue out of various doors in a moldel house as directed by the audience; and he moved the tiny bellows in the body of a toy bird by which it bles ont a condle. Other conjurors added more complicated picces of apparatus, -one being a cluck with small hand moving nyon a glass disk as required by the audicnce. The glass disk carrying the numbers or letters was in reality two, the back one being isolated by ratchet teeth on its periphery hidden by the ring frame which supported it, and, though the pillar-pedestal was separated into three pieces and shown to the spectators, movable rods, worked by the table levers, were in each section duly covered by cloth faces. Another mechanical trick, popnlar with Torrini, IIoudin, Philippe, and Robin, and worked in a similar way, was a little harlequin figure which rose out of a box set upon the table, put his legs over the front of the box and sat on the edge, nodded his head, smoked a pipo, blew out a candle, and whistled a one-note obbligato to an orchestra. Robert-Houdin employed, instead of the tablo levers, vertical rods each arranged to riso and fall in a tube, according as it was drawn down by a spiral spring or pulled up by whip-cord which passed over a pulley at the top of the tube and so down the table leg to the hidingplace of the confederate. In his centre table he had ten of these "pistons," and the ten cords passing under the foor of the stage terminated at a keyboard. Various ingenions antemata were actuated by this means of traosnittiog motion ; but the most elaborate piece of mechanical apparatus constructed by Houdin was lis orange tree. Tho oranges, with ove exception, were real, stuck upon small spikes, and concealed by hemispherical scrcens which were covered with foliage; and the screens, when released by the upward pressure of a piston, made half a turn, and disclosed the fruit. The flowers were hidden belind foliage until raised above the leaves by the action of another piston. Near the top of the tree an artificial orange opened into four portions; while two butterflies attached to two light arms of brass rose up belind the tree, appeared on esch side by the spreading of the arms, and drew out of the opened orange a handkerchief which had been borrowed and vanished away.

It is remarkable how many of the illusions regarded as the origiaal inventions of emineat conjurors have been really improvements of older tricks. Hocus Poczs Junior, The Anatomy of Legerdemain (4th edition, 1654), gives an explanatory cut of a method of drawing different liquors out of a single tap in a barrel, the barrel being divided into compartments, each having an air-hole at the top, by means of which the liquid in any of the compartments wes withheld or permitted to flow. Robert-IIoudin applied the principle to a wine-bottle held in his hand from which he could pour four different liquids regulated by the unstopping of any of the four tiny air-holes which wero covered by lis fingers. A large number of very small
liqueur glasses being prerided on trays, and containing drops of certain flavouring essences, enabled him to supply imitations of rarious wines and liquors, according to the glasses into which he poured syrup from the bottle; while by a skilful substitution of a full bottie for an enptied one, or by secretly refilling in the act of wipiug the bottle with a cloth, he produced the impression that the bottle was "inexhaustible." In 1835 was first exhibited in England a trick which a Brahman had been seen to perform at Madras several years before. Ching Lau Lauro sat crosslegged upon nothing,-one of his hands only just toucbing some beads huag upon a genvine hollow bamboo which was set upright in a hole on the top of a mooden stool. The placing of the performer in position was done behind a screen; and the explanation of the mysterious suspeasion is that he passed through the bamboo a strong iron bar, to which he connected a snpport which, concealed by the beads, his hand, and bis dress, upheld his body. In 1849 Robert-Houdin reproduced the idea under the titlo of 'ethereal suspension,-professedly rendering his sun's body devoid of weight by administering vapour of ether to his nose, and then, in sight of the andience, laying him in a horizontal position in the air with one elbow resting upon a staff resembling a long walking-stick. The support was a jointed iron frame under the boy's dress, with cushions and belts passing round and under the body. Subsequently the trick was improved apen by Sylvester-the suspended person being ahoro in several changes of position, while the sole supporting upright was finally remured. For the latter deception the steel upright was made with polished angular faces, apex toward the spectators, and acted in a dim light on the seme principle as the mirrors of a Sphiax table. Before lowering the light, the reflector bar is covered by the wood staff set up before it.

The mysterious ranishing or appearing of a person under a large extinguisher upon the top of a table, aud without the use of mirrors, was first performed by Comus, a French conjuror very, expert in the cups-end-balls sleight-of-hund, who, appearing in Londoa in 1789, announced that be would convey his wife under a cup in the same manner as he would balls. The feat was accomplished by means of a trap iu a box table. Early iu the present ceatury Chalons, a Swiss conjuror, transformed a bird into a young lady, on the asme principle. In 1836 Sutton varied the feat by causing the vanished body to reappear nuder the crust of a great pie. Hondin "vanished" a person standing upon a table top which was shown to be only a few inches thick; but there was a false top which was let down like the side of a bellows, this distension being bidden by a table-cloth hanging sufficiently low for the purpose, and the person, when covered by the extinguisher, entered the table though a trap-door opening upirards. Robin, in 1851, added to the wooder of the trick by ranishing two persous in succession, without sny possibility of either escsping from the table,--the trro persons reslly packing themselves into a space which, without clever arrangement and practice, conld not hold more than one. The sword-and-basket trick was common in Iudia many years ago. In one form it consisted in inverting an empty basket over a child upon the ground; after the child had secreted himself between the basket-bottom and a belt concealed by a curtain painted to look like the actual wicker bottom, a sword was thrust through both sides of the basket, the cliild scresming, and squeezing upoo the aword and upon the ground a blood-coloured liqnid from a sponge. When the performer upset the basket, the child could not be seen; but another child similarly costumed suddenly appeared among the spectators, having been up to that time supported by a pair of stirrups under the cloak of a confederate among the bystanders. In another
form an oblong basket is used larga at the botiom and tapering to the top, with the lid occupying only the central portion of the top, aurd the child is so disposed ronnd the basket that the sword planged downward avoids him, and the performer can step inside and stamp uphen the bottom to prove that the basket is empty. In 1865 Stodare iutroduced the trick into England, but in a new manner. Upou light tressels he placed a large oblong basket; and after a lady attired in a profuse mustin dress had composed herself and her abnndance of skirt withiu, after the lid bad been shut and the sword plunged through the sides, the basket was tilted towards the audience to show that it was empty, and the lady reappeared in a gallery of the hall.': The basket was formed with an onter shell to turn down, learing the lady with her dress packed together lying upnin the basket bottom and behind what had formed a false front side, -the principle being the same as in the clown's box, which, when containing a man, is rolled over to display the iuside empty. The reappearing lady was a double or twic sister.

Among the most meritorious and celebrated mechanical illusions have been automaton figures secretly influenced in their movements by concealed operators. In the 17th centary M. Raisin, organist of Troyes, took to the French court a harpsichord which played airs as directed by the andience ; but, upon opening the instrnment, Louis XIV. discovered a yenthful performer inside. In 1769 Baron Kempelcn, of Pressburg, in Hungary, completed his chessplayer, which for a long time remained the puzzle of Enropc. It was an illusion,-the merit consisting in the devices by which the confederate player was hidden iu the cabinet and body of the figure, while the interior was opencd in successive instalments to the scrutiny of the spectators. The first player was a Polish patriot, Worousky, who had lost both legs in a campaign; as he was furnished with artificial limbs when in public, his appearsuce, together with the fact that no dwarf or child travellcd in Kempelen's company, dispelled the suspicion that any person could be employed inside the machine. This automaton, which made more than one tour to the capitals and courts of Europe, and was owned for a short time by Napoleon I, was exhibited by Maelzel after the death of Kempelen in 1819, and ultimately perished in a fire at Pbiladelphin in 1854. A revival of the trick appeared in Hooper's "Ajeeb," shomn a few years ago at the Sydeniam Crystal Palace and elsewhere. Still more recently a chessplaying figure, "Mephisto," designed by Gumpel, has been on vierr. No space exists for the accommodation of a living player within; but, as there is no attempt at isolating the apparatus from mechanical communication through the carpet or the floor, there is nothing to preclude the moving arm and gripping finger and thumb of the fygure from being worked by ony convenient connexion of threads, wires, rods, and levers. In 1875 Maskelyne and Cooke producell at the Egyptian Hall, in Londou, an automaton whist-player, "Psycto," which, from the manner in which it is placed upon the stage, appears to be perfectly isolated from ony mechanical communication from without; there is no room within for the concealment of a living player by aid of any optical or other illusion, and yet the free motions of both arms, especially of the right arm and hand in finding any card, taking bold of it, and raising it or lowering it to any position and at any speed as demanded by the audience, prove that the actions are directed from without. The arm has all the complicated mosements necessary for chess or draught playing; and Psycho calculates any sum up to a tutal of $90,000,000$. What the mysterious means of connexiou are bas nut been discovcred; or, at any rate, down to the time of writing
this article there has appeared no correct imitation of this joint invention of John Nevil Maskelyne and John Algernon Clarke. Perhaps a still more original automaton is Maskelyne's figure "Zoe," constructed in 1877, which writes and draws at dictation of the audience, yet cannot have a living person within, and could not be more completely severed from all conceivable means of control without. "Zoe," a nearly lifc-size but very liglit doll, sits loose upon a cushioued skcleton-stand, of which the solid feet of the pliuth rest upon a thick plate of clear glass laid upon the floor-cloth or carpet of the stage. "Psycho," a sinaller Orieutal figure, sitting cross-legged on a box, is surported by a single large cyliuder of clear glass, which, as originally exhibited, stood upen the carpet of the stage, but was afterwards set loose upon a small stool, having solid wood feet ; morenver, this automaton may be phaced in almost any number of different ways. Thus, from the precautions observed in the isolation of Maskolyne's autemata, no current of electricity, no magnetic attraction, no liydraulic or pneumatic force can reach them, or, if it could, would not account for the many and delicate movements which they execute; aud there can be no wires, threads, or beirs, passing in any directiun amay from the figures, seeing that persons from the audience admitted close around the figures while they are in operation could not fail to observe them. It may be mentioned that, in the same year in which "Psycho" appcared, the joint inventors patented a method of controlling the speed of clock-work mechanism by compressed air or gas stored in the pedestal of an automaton, this compressed fluid acting upon a piston in a cylinder and also upon a rotating fan when a ralve is opened by "an electrical or other conncxion worked by the foot of the performer or on assistant." But it is not known whether the principle obscurely described in the specification was applicable in any may to the invisible ngency employed in "Psycho" or in "Zoe," or whether it had refcrence to some other iuvention which has never been realized. The whist-playing automaton is affirmed to be the only one of Maskelyne's many subtle inventions in which ho received snggestions from another person.

That a mysterious and apparently elaborate mechanical morement may, after all, possess the ntmost simplicity is illustrated by the familiar conjuring trick known as "rising cards." Four cards having been closen by the andience and returned to the pack, this is placed end upwards in a glass goblet, or in a thin case not deep enough to hide the pack, upon the top of a decanter or upon a stick. At commund, the cards rise, one at a time, out of the pack; one rises part of the may and sinks back arain ; one risos quickly or slowly as directed; one comes out feet first, and, on being put back, rises head upwards like the others; and one dances in time to music, and finally jumps out of the pack. At the coaclusion there remain only the goblet or the case and the cards, subject to the miuutest oxamination of any one from the audience, without a trace of moving mechanism visible. This was one of the chicf jeux of Cumte, tho French conjuror and ventriloquist, at the end of last century, and in raried forms has been popular to the present day. Probably it was suggested by the earlier dovice of the golden heal dancing in a glass tumbler, which is deseribed in The Conjuror Uumasted, 1790. Several crown pieces were put in tho glass, a small gilded head above them, and a plate or other flat cever laid upon the mouth of the glass; yet the head thus isolated jumped inside the glass so as to count numbers and answer questions. The secret communicator of motion was a fine silk thread attached to the head and passing through a tiny notch cut in the lip of the glass, and so to a confederate who pulls it. In the case of the rising cards the
whole of the movements are effected by arranging a single silk thread in the preriously prepared pack, jassing over some cards and under others, and led behind the decapter or other support to the stage and thence to the confederate. As this infinitely simple mechanical agent is dramn altogether out of the pack after the last card has risen, literally no trace remaios of any means of communicating motion to the cards.

Oriental ingenuity, which furdished the origiual idea of the cthereal suspension trick, contributed the Chinese rings introduced into England in 1834; also the Chincse feat of producing a borl of water with gold fish ont of a shawl, first seen in England in 1845, nud the Indian rope-tying and sack feats upon which the American brothers Davenport founded a distinct order of performances in 1859. Their quick escape from rope bonds in which they were tied by represeutatives of the andience, the instantancous remoral of their coats in a dark séance, leaving themselres still bound, and their various other so-called "phenomena" were exposed and imitated by Maskelyne, who, in 1860, greatly surpassed any feats which they had accomplished. He proceeded to exhibit himself floating in the air, to show "materialized spirit forms," end to present a succession of wonders of the spirit mediums in novel performances dorn to the present time. One of Maskelyne's cleverest inventions was the box which he constructed in 1860 ; it closely fitted when be packed limself in a cramped position withid ; it was enclosed in a canvass wrapper, corded with any length and complicated meshing of rope, and the knot sealed, yet his escape was effected in the brief space of seven seconds. Taking more time, he performed the converse of these operations except the sealing. Provided with the wrapper and the open box, himself standing outside, he drew a curtain before him to conceal the modus operandi, and in a few minutes was found in the bos, which, though so small as to permit no limb to be moved more than a few inches, he nevertheless wrapped and corded as exactly as if he had operated from the outside. Partially imitated with trick boxes of larger size, this feat has never been execnted under the same conditions by any other conjuror; and the process of escape and repacking has never been fully elucidated.
(J. A. CL.)

MAGIC LANTERN is tho name given to an optical instrnment for projecting on a whito wall or screen largely magnified, representations of transparent pictures painterl or photographed on glass.
The invention of the magic lantern is usually attribnter to Athanasins Kircher, who died in 1680, sithough, according to some, it was known four centuries earlier to Roger Bacon (see p. 207). For long nfter its discovery the magic lantern was used chiefly to oxhibit comic pictures, or in the hands of so-called wizards to summon up ghosts and perform other tricks astonishing to thoso who were ignorant of the simple optical principles employed. Within the last twenty or thirty years, however, and mainly on acconnt of the invention of photography, the magic lantern has been greatly improved in construction, and its uso widely extended. By its means fincly executed photographs on glass can be shown greatly maguified to large andiences. The scientific lecturer is thus saved the trouble and expense of preparing largo diagrams, besides laring his subject better illustrated. When suitably constructed, tho magic lantern can be used in the form of a microscope to exbibit on a sereen the forms and movements of minute living organisms, or to shom to an audicnce delicate physical and chemical experimenta which conld otherwise be seen only by a few at a time.
The magic Inntern in ite simplest form is represented in fig. 1. A is a dark box surmounted by a suitable chimney for carrying off the products of combustion from the soarce
of light L , which is placed in the focus of a spherical reflector. Ou the side oppesite the reflectur the box is pierced by a round hole; into which is fitted the metal tube D, which may either be cylindrical or slightly tapered. To the inner end of the tube D is fitted a lens or combin?tion of lenses C called the "condenser." Inmediately in front of the condenser, and at right angles to the axis of the tube, is a vertical slit $S$ for receiving the transparent pictures usually called "slides." To the outer end of D is fitted a lens or combination of lenses O called the "ohjective" or "project. ing lens." At a suitable distance from O is placed the scroen for recciving the magnified picture -the screen and slit lociog in the conjugate foci of the lens $O$. Since the objective reverses, the picture must be inserted in the slit


Fig. 1. upside down. The objective can be mored back wards and formards in the tube $D$ by means of a rack and pinion. Since the screen and slide are in the conjugate foci of $O$ the diameter of the picture on the screan bas the same ratio to the screen's distance from $O$ that the diameter of thie picture on the slide bas to the slide's distance from 0. The ratio alopted is generally 1 to 3 or 4 .

Source of Light.-Almost any good source of lighit can be used in the magic lantern. In the earlier forms a simple oil light was used; and in the toy forms. either an oil light or simple gasflame is still employed. Better effects are obtained from the Argand fountain lamp (fig. 2) or from the coromion Argand gas burner with a glass chimney. In the sciopticon (fig. 3)-a handy and escellent form recently introduced-a specially constructed paraffin lamp is employed with three parallel flat wicks set edgeways to the condenser. With this lampa clear, well-defined picture varying from 6 to 10 feet in diameter can be readily thrown
 the screen. For the best elfects, Fountain Lanp. however, reconrse must be had to the oxy-calcium light (fig. 4), in which a small cylinder of line is heated to intense luminosity in the flame of a spirit lamp througl which a jet of ozygen plays; the Oxy-hydrogen Licht


Fia. 3.-Sciopticon.
(q.v.); the maguesium light, in which two narrow ribands of magnesium are put throngh slits bya clock-work arrangemeat and born as theyadvance; or, best of all, -unless when sunlight can be used with t'e aid of a heliostat (see Helro-grapuy),-the electric light.

Condenser and Objective.-The ohject of the condenser (fig. 5, C) is to collect as much light as possible from the source, and pass it through the transparent picture in the slit. For this purpose the condenser should subtend as large, an angle as possible at the source of light. To secure this, the condenser should be tolerably


Fio. 4.-Oxy-calciuns Lamp. large, aud its distance from the light, that is, its focal length, small. Since effective single leuses of large dianeter are necessarily of long focus, a really good condenser of considerable diameter aud yet of short focus unst be a combination of tro or more lenses.
Let $f_{1}$ and $f_{2}$ be the focal lencths of two leases, and $f$ the focal length of their combination. Then, ne-


Fic. 5.-Condenser and Objective. glecting the thickness of the lenses, we hare when the tro are closo toegther

$$
\frac{1}{f^{\prime}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}
$$

From which re get $f=\frac{f_{1}, f_{2}}{f_{1}+f_{2}}$, a fraction which is alwngs less than either $f_{1}$ or $f_{2}$ provided these nre not zero. Suppose, for exanpple, two lenses of 8 and 10 inches focal length resprectively; the focal length of their combination will he $\frac{6 \times 10}{6+10}=3$ inches.
In the carlier lanterns, as still in the cheaper forms, only a single plano-courex lens or lull's-eye was emplosed as $n$ condenser. Better effects are produced by tro such lenses. Perlaps the best condenser for ordiuary work is that proposed by Herschel and represented in fig. 5 , C , consisting of a biconvex leus and a menischis mounted together with the concave side of the meniscus next the light. The diannter of sucli a condeuser is nbout 6 inches, and its focal length 3 little orer 3 inclics. The focus nulust not be so shurt as to bring the lens too near the light, and render it liable to crack from the intense heat. In some lanterns this is guardeil against by placing a plate of thin glass between the condeuser nud the light. In the sciopticon (fig. 3) the condenser cousists of tw . plane-conrex lenses, each about 4 inches in diameter. Condensers of large diamicter are not so essential now as formerly, seciug that small pictures can easily be prodnced by photegraphy.

The fuaction of the objective (fig. 5, O) is to produce a magnified inverted image of the picture on the screen. In toy lanterns it is a simple double-convex lens of short focus. This, however, can only produce a small picture, and that not very distinct at the edges. The best objective is the portrait combination lens used in ordinary photographic cameras. These are carefolly corrected both for spherical and chromatic aberration, which is absolutely essential in the objective, although not so necessary in the condenser. It is essential, however, that the condenser be free from cracks or flaws, as these would appear and mar the picture.

Slides. -These are pictures, painted with transparent water or oil colours, or photographed on pieces of glass. The pieces of glass are usually fixed in small wooden frames for insertion in the slit. If parts of the picturc are to bo movable, two disks of glass are employed, the one morable in front of the other, the fixed part of the picture being painted on the fixed disk and the morable part on the other. By means of a lever the latter disk is moved in its
own plane; and in this way a cow for instance can be represented drinking, or a donkey rattiag amusing capers. A lever slide is represented in fig. 8. In the chromatrope


F10. 6.-Lever Slide.
slide (fig. 7) two circular disks of glass are placed face to face, each containing a design radiating from the centre, and painted with brilliant transparent colours. By a small pinion gearing in toothed wheels or endless bands the disks are made to move in opposite directions in their own plane.


Fia. 7.-Cbromatrope.
The effect produced is a singularly beautiful change of design and colour. In astronomical slides the motions of the heavenly bodics, eclipses, the phases of the moon, or the like are similarly represented by mechanical means. Slides can also be made from narrow glass tauks with parallel sides. When these are filled with water containing delicate living organisms the forms and movements of the latter are beautifully seen. Such tauks can also be employcd to show such phenomena as the gradual growth of crystals, the electrolysis of water between platinum electrodes, \&ea A great variety of plysical and chemical experiments can be shown in this way.

Dissolving Views. - For this purpose two magic lanterns nro necessary, arranged either side by side or tho one on the top of the other. The fronts of tho lanterns aro slightly inclined to each other so as to mako the illuminated disks on the screen due to each lantern coincide. By means of a pair of thin metallic shatters terminating in comb-liko tecth, and morable by a rack or lever, the light from cither lanteru can be gradually cut off at the same time that the light from tho other is allowed gradually to fall on the bercen. In this way one view appears to melt or dissolvo into another. This arrangement was first adopted by Childe in 1811.
Phantasmagoria. - In this arrangement the pictures on the screen appear gradually to increase or diminish in eize and brightness. To effeet this a semi-transparent sercen of cotton or other material is ased, the lantern being behind and the andienco in front. The lantern is mounted on wheels so that it can bo rapidly moved up to or withdrawn from tho sereen; and nn nutomatic arrangement is provided wherely simultnneously with this tho objeetivo is mado to approneh or recede from tho slide so as to focus the pieturo on the screen in any position of the lantern. In this way a very small picture appears gradually to grow to enormous dimeusious.

Lantern Polariscope. - This, perhnps tha most beautiful modificntion of the pexgic lmutern for acientilic puryoses, consists of an elbow.
shaped tule, containing mirrors, lenses, \&c., and attached to tho frout of the lantern in place of the tube contaiuing the olyjective. It is represented in section in lig. 8. $\mathrm{C}^{\prime}$ is the usual condenscr belonging to the lantern. $G$ is a set of thin glass plate inclined at the polarizing angle $56^{\circ} 45^{\prime}$ to the axis of the tuhe. The beam of polarized light from $L$ rcflected from $G$ passes through the lenses


Fio. \& - Lantera Polariscape.
$F$ and the analysing Nienl's prism $P$, and falls on the screen. The objects to he exanined by the nolarized light are placed in the transverse slit $O$. When thin plates of selenite or other doubly refracting crystals are placed in 0 , a most beautiful display of complementary colours is produced on the screen by rotating the Nicol's prism. Almost all the experiments on polarized light can be well shown by this arrangement.

The sciopticon (fig. 3) is an excellent and convenient lantern, very suitable for all the requirements of the lecturer, as well as for school use in teaching geography, \&c.

Sce Brewster's Oplics; Ganot's Physics ; and Chadwick's Manual of the Magic Lastern.
(J. UL.)

MAGIC SQUARE. A magic square is one divided into any number of equal squares, like a chess-board, in each of which is placed one of a series of consecative numbers from 1 up to the square of the number of cells in a side, in sach a manaer that the sum of those in the same row or column and in ench of the two diagonals is constant.

From a very early period these squares engaged the attention of mathematicians, especially such as possessed a love of the marvellous, or sought to win for themselves a superstitious regard. They were then supposed to possess magical properties, and were worn, as in India at the present day, engraven in metal or stone, as amalets or talismans. According to the mystic imaginings of the old astrologers relations subsisted between these squares and the planets: a square with only one cell, containing 1 , symbolized the unity of the deity; a square of two, containing the four elements, was the symbol of matter; while those of $3,4,5,6,7,8$ were consecrated respectively to Saturn, Jupiter, Mars, the Sun, Venus, and Mercury. In later times such squares ranked only as mathematical curiosities; till at last their mode of constraction was systematically investigated. These squares were at first mere triumpls of the same dogged perseverance as was in later times exhibited by the Dutchman, Ludolph van Ceulen, who, after calculating $\pi$ to 35 places of decinals, directed, like Archimedes, that it should be engraven on his tomb, though his industry was surpassed by M. de Lagry, who continued the decimal to 127 places. The earliest known writer on the, subject was Emanuel Moscopulas, a Greek, who lived in the 4 th or 5 th century, and whose manuscript is preserved ia the National Library at Paris. After him Frenicle constructed magic squares, such that if one or more of the encircling bands of numbers bo taken away the remaining central squares are still magical. Subscquently 3I. Poignard coustructed squares with numbers in arithmetical progression, having the magical summations. The later researches of M. de la Hire, recorded in the Ménoires de l'Acadimie Royale in 1705, are intersting as giving general methods of con-
struction. Ho has there collected the results of the labours of earlier pioncers; but the subject has now been fully systematized, and extended to cubes.

In order to understand the rest of this article diagram A should be carefully examined. A square of 5 has adjoining it one of the eight equal squares by which any square may be conceived to be surrounded, each of which has two sides resting on adjoining ones, while four have sides resting on the surrounded square, and four meet it only at its four angles. 1, 2, 3 are placed nlong the path of a knight in chess ; 4, nlong the same path, would fall in a cell of the outer square, and is placed instead in the corresponding cell of the original square; 5 then falls within the square. $a, b, c, d$ are placed disgonally in the square $;$ but $e$ enters the outer
 square, and is removed thenco to the same cell of the square it had left. $a, \beta, \gamma, \delta_{s} \in$ pursue another, but regular, course ; and the diagram shows how that course is recorded in the square they have twice left. Whichever of the eight surrounding squares may be entered, the corresponding cell of the central square is taken instead. The $1,2,3, \ldots, a, b, c, \ldots, a, \beta, \gamma, \ldots$ are said to lie in paths.

Squares whose Roots are Odd.-Diagrams B, C, D exhibit one of the carliest methods of constructing magic squares. Here the 3's in B and 2's in C are placed in

| 1 | 4 | 2 | 5 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | 5 | 3 | 1 |
| 2 | 5 | 5 | 1 | 4 |
| 5 | 3 | 1 | 4 | 2 |
| 3 | 1 | 4 | 2 | 5 |


| 2 | 4 | 0 | 3 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 4 | 0 | 3 |
| 3 | 1 | 2 | 4 | 0 |
| 0 | 3 | 1 | 2 | 4 |
| 4 | 0 | 3 | 1 | 2 |


| 11 | 24 | 2 | 20 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| 9 | 12 | 25 | 3 | 16 |
| 17 | 10 | 13 | 21 | 4 |
| 5 | 18 | 6 | 14 | 22 |
| 28 | $?$ | 19 | 7 | 15 |

opposite diagonals to secure the two diagonsl summations; then each number in C is maltiplied by 5 and adied to
E.
r.
G.


| 17 | 6 | 5 | 23 | 14 |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 24 | 12 | 16 | 10 |
| 11 | 20 | 8 | 4 | 22 |
| 9 | 2 | 21 | 15 | 18 |
| 25 | 13 | 19 | 7 | 1 |

that in the corresponding number in B , which gives the square D. Diagrams E. F, G give M. de la Hire's method; H.

I.

| 11 | 24 | 7 | 20 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 12 | 25 | 8 | 16 |
| 17 | 5 | 13 | 23 | 9 |
| 10 | 18 | 1 | 14 | 22 |
| 23 | 6 | 19 | 2 | 15 |

1
the squares $E, F$, being combined as abose, give the magic square G. M. Bachet arranged the numbers ss in H, where there are three numbers in each of four strrounding
squares; these being placed in the corresponding cells of the central square, the square I is formed. He also constracted squares such that if oue or more outer bands of numbers are removed the remaining central squares are magical His method of forming them may be understood from a square of 5 . Here each snmmation is $5 \times 13$; if therefore 13 is subtracted from each number, the summa-

| -9 | 12 | 5 | -2 | -6 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 7 | -11 | 4 | -1 |
| -8 | -3 | 0 | 3 | 8 |
| 10 | -4 | 11 | -7 | -10 |
| 6 | -32 | -5 | 2 | 9 |


| 4 | 25 | 18 | 11 | 7 |
| :---: | :---: | :---: | :---: | :---: |
| 14 | 20 | 2 | 17 | 12 |
| 5 | 10 | 13 | 16 | 21 |
| 23 | 9 | 24 | 6 | 3 |
| 19 | 1 | 8 | 15 | 22 |

tions will be zero, and the twenty-five cells will contain the series $\pm 1, \pm 2, \pm 3, \ldots \pm 12$, the odd rell having 0 . The central square of 3 is formed with four of the twelve numbers with + and -signs and zero in the middle; tho band is filled up with the rest, as in diagram J ; then, 13 being added in each cell, the magic square K is obtained.
Squares whose loots are Even.-These were constructer in various ways, similar to that of 4 in diagrams L, M, N. The numbers in 12 being multiplied by 4 , and the squares $\mathrm{L}, \mathrm{JI}$ being superimposed, give N : The application of

| 1 | 3 | 2 | 4 |
| :--- | :--- | :--- | :--- |
| 4 | 2 | 3 | 1 |
| 4 | 2 | 3 | 1 |
| 1 | 3 | 2 | 4 |

$$
\begin{array}{|l|l|l|l|}
\hline \text { M. } \\
\hline \begin{array}{|l|l|l|l|}
\hline 2 & 1 & 1 & 2 \\
\hline 1 & \frac{2}{2} & 2 & \frac{1}{1} \\
\hline 3 & 0 & 0 & \mathrm{~s} \\
\hline
\end{array}
\end{array}
$$

| N. |  |  |  |
| :---: | :---: | :---: | :---: |
| 1 | 15 | 14 | 4 |
| 12 | 6 | 7 | 9 |
| 8 | 10 | 11 | 5 |
| 18 | 8 | 2 | 16 |

this method to squares the half of whose roots are odd requires a complicated adjustment. Squares whose half root is a multiple of 4 , snd in which there are summations slong all the diagonal paths, may be formed, by observing, as when the root is 4 , thint the series 1 to 16 may be

clanged into the series $15,13, \ldots 3,1,-1,-3, \ldots$ $-13,-15$, by maltipising each number by 2 and snbtracting 17; and, vice versa, by adding 17 to each of the latter, and dividing by 2. The diagonal summations of a square, filled as in diagram O , make zero; and, to obtain the same

in the rows and columns, we mast sssign such ralues to the $p^{\prime}$ 's nad $q$ 's as satisty the equations $p_{1}+p_{8}+a_{1}+a_{2}=0$, $p_{8}+p_{2}+a_{2}+a_{4}-0 \quad p_{1}+p_{3}-a_{1}-g_{2}=0_{1}$ and $p_{2}+p_{1}$
$-a_{2}-a_{4}=0,-2$ solution of which is readily obtained by inspaction, as in diagram $P$; this leads to the square, diagram Q. When the root is 8 , the upper four subsidiary rows may at once be written, as in diagram $R$; then, if the square be completed, 65 added to each, and the sums halved, the square is completed. In such squares as these, the two opposite squares abont the same diagnal (except that of 4) may be turned through any number of right angles, in the same direction, without altering the summations.

Nasik Squares.-Squares that havo many more summations than in rows, columns, and diagonals have been investigated by the Rev. A. H. Frost (Cambridge MKath. Jour., 1857), and called Nasik squares, from the town in India where he resided; and he has exteaded the method to cubes, varieus sections of which have the same singular properties. In order to understand their construction it will be necessary to consider carefully diagram S , which shows that, when tle root is a prime, and not composite, number, as 7 , eight letters $a, Z, \ldots h$ may proceed from any, the same, cell, supposo that marked 0, each letter being repsated in the cells nlong different paths. These eight paths are called normal paths, thcir number being one more than the root. Ohserve here that, excepting the cells from which any two letteme stact, they do not occupy again the same cell, and that two letters, starting from any two different cells along different paths, will appear together in onc and only one cell. Hence, if $p_{1}$ be placed in the cells of one of the $n+1$ normal paths, each of the remaining $n$ normal paths will contain one, and only one, of these $p_{2}^{\prime}$ 's If now we fill each row with $p_{2}, p_{3}, \ldots p_{n}$ in the came order, commencing from the $p_{1}$ in that row, the $p_{2}$ 's, $p_{3}$ 's, and $p_{4}$ 's zill lie each in a path similar to that of $p_{1}$, and each of the n normal paths will contain one, and only one, of tho letters $p_{1}, p_{2}, \ldots p_{n}$, whose
S. sum will be $\leq p$. Similarly, if $q_{1}$ be placed along any of the normal paths, rlifferent from that of the $p$ 's, and each row filled as above with the letters $q_{3}, q_{3}, \ldots q_{n}$, the snm of the q's along any normal path different from that of the $q_{1}$ will be $\Sigma q$. The $n^{2}$ cells of the square will now be found to contain all the combinations
 of the $r$ 's nod $q$ 's; and, if the $q$ 's be mnltiplied by $n$, the $p$ 's made equal to $1,2, \ldots n$, and the $q$ 's to $0,1,2, \ldots \overline{n-1}$ in any order, the Nasik square of $n$ will be obtained, and the summations along all the normal paths, except those traversed by the $p$ 's and $q$ 's, will be tile constant $\Sigma n q+\Sigma p$. When the root is an odd composite number, as 9,15 , \& c., it will be found that iu some paths, different from the two along which the $p_{1}$ and $q_{1}$ were placed, instead of having each of the $p$ 's and $q$ 's some will be wantiog, while some are repented. Thus, in the case of 9 , the triplets $p_{1} p_{s} p_{7}, p_{5} p_{5} p_{s}, p_{3} p_{G} p_{9}$, and $q_{1} q_{4} q_{7}, q_{2} q_{5} q_{s}$, $q_{3} q_{6} q_{9}$ accur, each triplet thrice, along paths whose summation should be- $\Sigma p, 45$, and $\Sigma r, 30$. But if wo make $p_{1}, p_{2}, \ldots p_{9}=1,3,6,5,4,7,9,8,2$, and the $r_{1}, r_{2}$, $\ldots r_{9}=0,2,5,4,3,6,8,7,1$, thrice each of the above sets of triplets will equal $\Sigma_{p}$ and $\leq q$ respectively. If now the $q$ 's are multiplied by 9 , and odded to the $p$ 's in their several cells, we shall have a Nasik sqnare, with a constant summation along eight of its ten normal paths. In diagram $T$, the numbers are in the nonary scale; that in the centre is the middle one of 1 to $9^{2}$, and the sum of pairs of numbers equidistant from and opposite to the contral 45 is twice 45 ; and the sum of any number and the 8 numbers 3 from it, diagonally, and iu its row and column,
is the constant Nasical summation, e.g., 72 and 32,22 , $76,77,26,37,36,27$. The numbers in $T$ being kept in the nonary scale, it is not necessary to add any nine of them together in order to test the Nasical summation; for; taking the first column, the figures in the place of units are seen at once to form the series, $1,2,3, \ldots 9$, and those in the other place three triplets of $6,1,5$. For the squares of 15 the $\mu$ 's and $q$ 's may be respectively $1,2,10,8,6,14$, $15,11,4,13,9,7,3,12$, 5 , and $0,1,9,7,5,13,14$, $10,3,12,8,6,2,11,4$, where five times the sum

| 63 | 68 | 74 | 13 | 8 | 24 | 53 | 48 | 34 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 9 | 25 | 51 | 40 | 35 | 61 | 80 | 75 |
| 52 | 47 | 36 | 62 | 87 | 76 | 12 | 7 | 2 G |
| 68 | 84 | 73 | 18 | 4 | 23 | 58 | 44 | 33 |
| 19 | 5 | 21 | 59 | 45 | 21 | 69 | 85 | 71 |
| 57 | 40 | 32 | 67 | 86 | 72 | 17 | 6 | 22 |
| 64 | 83 | 78 | 14 | 3 | 28 | 54 | 43 | 38 |
| 1.5 | 1 | 29 | 55 | 41 | 39 | 65 | 81 | 79 |
| 58 | 42 | 37 | 66 | 82 | 77 | 16 | 2 | 27 | of every third number and three times the sum of every fifth number makes $\Sigma p$ and $\Sigma q$; then, if the $q^{\prime}$ s are multiplied by 15 , and added to the $p$ 's, the Nasik square of 15 is obtained. When the root is a multiple of 4, the sanue process gives us, for the square of 4 , the diagram U. Here the columns


| $p_{4} q_{3}$ | $p_{2} q_{4}$ | $p_{4} q_{1}$ | $p_{2} q_{2}$ |
| :---: | :---: | :---: | :---: |
| $p_{3} q_{1}$ | $p_{1} q_{2}$ | $p_{3 q_{3}}$ | $p_{1 q_{4}}$ |
| $p_{2} q_{3}$ | $p_{4} q_{4}$ | $p_{2} q_{4}$ | $p_{4} q_{2}$ |
| $p_{1} q_{1}$ | $p_{3} q_{2}$ | $p_{1}$ | $p_{3} q_{4}$ | give $\Sigma_{p}$, but alternately $2 q_{1}, 2 q_{3}$, and

$2 q_{2}, 2 q_{4} ;$ and the rows give $\Sigma q$, but alternately $2 p_{1}, 2 p_{3}$,
and $2 p_{2}, 2 p_{4} ;$ the diagonals giving $\Sigma_{p}$

| 15 | 19 | 3 | 6 |
| ---: | ---: | ---: | ---: |
| 4 | 5 | 16 | 9 |
| 14 | 11 | $\frac{2}{2}$ | $\frac{7}{7}$ |
| 1 | 8 | 13 | $\frac{12}{}$ | and $\Sigma q$. If $p_{1}, p_{2}$, $p_{3}, p_{4}$ and $q_{1}, q_{2}, q_{3}, q_{4}$ be $1,2,4,3$, and $0,1,3,2$, we have the Nasik square of diagram V. A square like this is engraven in the Sanskrit character on the gate of the furt of Gwalior, in India. The squares of higher multiples of 4 are readily obtained by a similar adjustment.

A Nasik cube is composed of $n^{3}$ small equal cubes, here called cubelets, in the centres of which the natural numbers from 1 to $\pi^{3}$ are se placed that every section of the cube by plames perpendicular to an edge has the properties of a Nasik square; also sections by planes perpendicular to face, and paseing throogh the cubelet centres of any path of Nasical summation in that face. Diagram W shows by dots the way in which these cubes are constructed. A dot is here placed on three faces of a cubelet at the comer, showing that this cubelet belongs to each of the faces $A O B, B O C, C O A$, of the cube. Dets are placed on the cubelets of some path of $A O B$ (here the knight's pati), beginning from O , also on the cubclets of a knight's path in BOC. Dots are Dow placed in the cubelets of eimilar paths to that on BOC in the other six sections parallel to BOC , starting from their dots in AOB. Forty-nine of the three hundred and forty-three cubelets will now contain a dot; and it will be obgerved that tho dots in sections perpendicular to BO bave arranged themselves in similar paths. In this manner, $p_{1}, q_{1}, r_{1}$ being placed in the coruer cubelet 0 , these letters are severally placed in the cubelets of three different paths of $A O B$, and again alongany similar pathe in the soven scetions perpendicular to $A 0$, starting from the letters' position in 10 BB . Next, $p_{2} q_{2} r_{2}, p_{3} q_{3} r_{3}, \ldots p_{7} q_{7} r_{7}$ are placed in the other cubelets of the edge $A 0$, and dispersed in the same manner as $p_{1} q_{2} r_{1}$. Every cubelet will then be found to contaiu a different com. bination oi the $p^{\prime} s, q^{\prime} \theta$, and $r^{\prime} \theta$. If thercfore the $p$ 's arc made equal to $1,2, \ldots 7$, and tho $q^{\prime}$ a and $r^{\prime}$ s to $0,1,2, \ldots 6$, in any order, and the $q$ 's multiplied by 7 , and the $r^{\prime}$ 'by $7^{2}$, then, as in the case of the squares, the $7^{3}$ cubelets will contain the numbers from 1 to $\hat{\gamma}^{3}$, and the Nasical summations will be $\Sigma^{2}{ }^{2} r+\Sigma 7 q+\rho$. If $2,4,5$ be values of $r, p, q$, the number for that cubelet is witten 245 in the septenary ecale, and if all the cubclet numbers are kept thus, the paths along which summationsare found can be secn without adding, as the seven numbers would contain $1,2,3, \ldots 7$ in the unit place, and $0,1,2$, $\qquad$ . 6 in each of the other places. In all Nasik cubes, if such values are given to the letters on fie central cubelet that the number is the niddle one of the series 1 to $n^{3}$, the sum of all the pairs of numbers opposite to and equidistant from the middle limmber is the double of it. Also, if around a Nasik cube the twenty-six surrounding equal cubes be placed with their cells filled with the sauc uumbers, and their corresponding faces looking the
same way,-aul if the surrounding space be conceived thus filled with similsrecubes, and a straight line of unlinited length bo drawn through any two cubelet centres, onc in cach of any two cubes, - tho numbers slong that line will be found to recur in groups of seren, which (exeept in the three cases where the same $p, q$, or $r$ recur in the group) together rake the Nasical summation of the cube Further, if we take $n$ similarly filled Nasik cubes of $n, n$ new letters, $s_{1}, s_{2}, \ldots s_{n}$, can bo so placod, one in each of the $n^{4}$ cubelcts of this


Nssik Cube.
sroup of $n$ cubes, that each shall contain a different combination of the $p^{\prime} s, q$ 's, $r$ 's, and $s$ 's. This is done by plscing $s_{1}$ on each of the $n^{2}$ cubelets of the first cubs thst contain $p_{1}$, and on the $\pi^{2}$ cubelets of the $2 \mathrm{~d}, 3 \mathrm{~d}, \ldots$. and $n$th cube thst contain $p_{2,} p_{3}, \ldots, p_{4}$ respect. ively. This process is repeated with $s_{2}$, beginning with the cabe at which wo ended, and so on with the other $s^{\circ} s$; the $n^{4}$ cubelets after multiplying the $q^{\prime} s, r$ 's, and $s^{\prime} s$ by $n, n^{2}$, and $n^{3}$ respectively,

| 1 | 8 | 29 | 28 | X. | 11. | 14 | 23 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 80. | 27 | 2 | 7 |  | 21 | 20 | 9 | 16 |
| 4 | 5 | 32 | 25 |  | 10 | 15 | 22 | 19 |
| 31 | 26 | s | 6 |  | 24 | 17 | 12 | 13 |

will now be filled with the numbers from 1 to $n$, and the constant summstion will bs $\Sigma n^{3} s+\Sigma n^{2} r+\Sigma n q+\Sigma p$. This process may be carried on without limit ; for, if the 24 cubes ars placed in a row with their faces resting or each other, and the corresponding faces looking the same way; $n$ such narallelepipeds night be put sido by side, sud the $n^{5}$ cabelcts of this solid square bs Nasically filled by the introduction of a new letter $t$; while, by introducing another letter, the $n^{6}$ cnbelets of the compound cube of $n^{3}$ Nasik cubes

$$
\begin{aligned}
& \text { Y. } \\
& \begin{array}{|c|c|c|c|c|}
\hline 23 & 18 & 11 & 6 & 25 \\
\hline 10 & 5 & 24 & \frac{17}{} & \frac{12}{} \\
\hline 19 & 22 & 13 & 4 & \frac{.7}{} \\
\hline 14 & 9 & 2 & \frac{21}{21} & \frac{16}{} \\
\hline 1 & 20 & 15 & 8 & 3 \\
\hline
\end{array}
\end{aligned}
$$

might bs filled by the numbers from 1 to $n^{6}$, and so ad infinitum. When the root is an odd composite number the valnes of the threc groups of jetters have to be adjusted as in squares, slso in cubes of an even root. A similar process enables us to place successive numbers in the cells of several cyual squarcs in which the Nasical summations are the same in each, is in diagrams $X$.

Among the many ingenions squares given by various writers, this
article may justly close with two by Enler, in the IIsloine de $T A c a$ demic Royale des Seicnecs, Berlin, 1759. In diagram Y the natural numbers show the path of a knight that moves within an ould square in such a nuanner that the sum of pairs of numbers opposite to nud equidistant from the middte fignre is its double. In diagran Z the knight returns to its starting cell in a equare of 6 , and the differcuce botween the pairs of nunibers opposite to and equidistant from the middle point is 18.

A model consisting of scven Nasik cubes, constructed ly Mr Frost, ean be seen in the South liensington Mnsenm. The centres of the cubes are placel at equal distances in a straight line, the similar faces looking the game way in a plane paralicl to that line. Each of tho cubes has seven parallel glass plates, to which, on one side, the seven numbers in the septenary scale are fixed, and behind each, on the other side, its value in the common seale. 1201, the middie rumber from 1 to $7^{4}$, occupies the central cubelet of the middlo cubo. Besides cach cabe having sonarately the samo Nasical summation, this is also obtained by aelding the numbers in any seven similarly sit:sated cubelete, ono in each cube. Also, the sum of all paits of numbers, in $n$ straight line through the central cube of the system, equidistaut from it, in whaterer cubes they are, is twice 1201.

A very complete blbliographical index of writers on thls sabject is given in Professor Lucas's Ricréations Jfathématiques, Palls, 1882.

$$
\begin{aligned}
& \text { is given if }
\end{aligned}
$$

MAGISTRATE. The term magistrate, derived from the Latin nugistrutus, is one of more general and comprehensive meaning than Justice of the Peace, which has already been treated of (vol. xiii. p. 783), and is of far higher antiquity. In its full significance it indicates one side of the universal public relation by which men are counected together is governors and governed-in other werds, as magistrates and people. Of magistrates some are supreme, ia whom the sovereign power and executive government of the state reside, as the king or quicen regnant, or the presideat of a republic, as of the United States; and such a functionary would formally be designated the first magistrate of the realm or state. Speuking generally, a magistrate niay be described as a public civil officer invested with legal or other authority; but the term is more particularly applied to subordinate officers, ns justices of the peace and the like, deriviag their authority solcly from the chief of the state or in virtue of legislative enactment. During the Roman republic the offices of magistrale and judge were distinct and separate. A magistrate was appointed cumjurisdictione et imperio ; to a judge belonged only nuda notio sine jurisdictione et imperia. The office of the magistrate was to inquire into matters of law ; and whatever business was transacted before hins was said to be done in jure. The office of the judge was to inquire into matters of fact, and whatever was transacted before him was said to be done in judicin. This distinction is thus clearly defined by Cicero in his well-known oration for Cluentius:-" Legum ministri, magistratus; legum interpretes, judices." When the magistrate took cognizance both of the law and the fact he was said to admiaister justice extro ordinem; and the judgment so admiaistered was called extraerdinary. The magistrate, when he decided on matters of lar, was assisted by a council of ten, called decemviri litibus judicandis. To these mas added in important cases another council of one hundred and five persons, selected from each tribe, whose judgment was ânal; this was called judicium contumvirale. After tho decline of the Roman republic the offices of magistrate and judge were united, by which means all judgments became extraordinary, and the distiaction of what was dune in jure and in judicio was abolished. The magistrates were chesen only from the patricians in the early republic, but in the course of time the plebeians shared in these honours. The chief magistrates of Athens were designated archons. They were nine in number, and none were chosen but such as were descended from ancestors who had been free citizens of the republic for three generations. They toak an oath that they would observe the laws, administer justice with impartiality, and never suffer themselves to
be corrupted．They all had the power of punishing maie－ factors with death．The chief among them was called archon，and the year took its designation from him，－the archon eponymus，who was also constituted a sort of state protector of those who were unable to defend themselves． The Franks，Lominurds，and Saxons appear to have been jealous of judicial authority，and averse to removing what concerned a man＇s private right out of the hands of his neighbours and equals ；every ten families are supposed to have had a magistrate of their own election，the tything man of England，the decanus of France and Lombardy． The decanus was the lowest species of judge．
See Blackstonf＇s Conmmentarics，1825；Cowel，Law Dict．，1717； Geldart＇s Hallijax on the Civil Lav； 1836 ；Hallam，Niddle Ages．
MAGLIABECHI，Aッтonio（1633－1714），one of the most remarkable bibliophiles of his time，was born at Florence，October 28，1633，and followed the trade of a goldsmith until 1673，when he received the appointment of librarian to the grand－duke of Tuscany，a post for which he had qualified himself by his vast stores of self－acquired learning．He died on July 4，1714，bequeathing his large private library to the grand－duke，who in turn handed it over to the city．See Libraries，vol．xiv．pp．530， 548.
magna Charta．See Charter，and England． vol．viii．pp．306， 308.
Magna grecta．See Grecta．
MAGNESIA，in aucient gengraphy，was the name of two clties in Asia Minor，both of considerable interest and importance．
（1）A city of Ionia，situated on a small stream Howing iato the valley of the Mæander，whence it was commonly called Magnesia ad Mæandrum．It was distant 120 stadia or 15 Roman miles from Miletus，and rather less from Ephesus． According to tradition，as well as the similarity of names， it was founded by a body of colonists from the Thessalian tribe of the Magnetes，with whom were associated，accord－ ing to Strabo，some Cretan settlers．It was thus not properly an Ionic city，and for this reason apparently was not included among the cities of the Ionic league，though superior in wealth and prosperity to most of them，except Ephesus and Miletus．It was indeed taken and destroyed by tho Cimmerians in their irruption into Asia Minor （about 660 в．c．），but was soon after rebuilt，and gradually recovered its former prosperity．．It was one of the towns assigned by Artaxerxes to Themistocles for his support in his exile，and there the latter ended his days（ 449 b．c．）． Iu later times it was chiefly noted for its temple of Artemis Leucophryne，which，àcording to Strabo，surpassed that at Ephesus in the beanty of its architecture，though inferior to it in eize and wealth．The remains of this temple，as well as of the ancient city adjoining it，are still extant，and have been laid open by recent excavations．They are described by M．Texier（Asie Mineure，vol．iii．）．Magnesia continued under the kings of Pergamum to be one of the most flouriahing cities in this part of Asia，but appears to have gradually declingd under the Roman empire，and its name disappears from history，though its continued exist－ ence is attested by coins as late as the time of Gallienus．
（2）A city of Lydia，about 40 miles north－east of Smyrna，which stood on the southern bank of the river Hermus，at the foot of Mount Sipylue，from which circumstance it was often called for distinction＇s sake Magnesia ad Sipylum．It is proboblo from its name that it was founded，like the city of the same naine in the valley of the Mæander，by Mngnesian coloaists from Thessaly；but we have no authority for the fact．Nor is any mention of the 1 ton found in history till 190 b．c．， when the Syrian king，Antiochus the Great，was defeated under its walls by the Roman consul L．Scipio，who derived from bis succass in this campaign the ourname of

Asiaticus．Magnesia became a city of importance under the Roman dominion，and，though cearly destroyed by an earthquake in the reign of Tiberius，was restored by that emperor，and continued to flourish throughout the period of the Roman empire．It was one of the few towns in this part of Asia Minor that retained its prosperity under the Turkish rule；and Manisa（q．v．）is at the present day a large aind flourishing town with considerable trade．

MAGNESIUNI，a metallic element（symbol Mg）forming a basic oxide＂magnesia，＂MgO，which in some form or other is universally disseminated throughout the whole of the earth＇s crust，apart from the large nasses of mineral con－ sisting essentially of magnesia compounds．This accounts for the presence of at least traces of magnesia in the ashes of all plants and animals，and for its presence in almost all natural waters．In these，however，it in general is present only as a quasi－contamination of the lime ；in certain mineral waters，on the other hand，known as bitter waters（as those of Epsom，Sedlitz，Püllna），sulphate of magnesia forme the principal solid component．All native chloride of sodium is accompanied by magnesia aalts，including the cases of salt－springs and of ocean－water，the latter contain－ ing about 0.21 per cent．of magnesia as sulphate and chloride．
Of magnesium minerals we nuay name the following：－
A．Silicates．－（1）Olivine， $\mathrm{SiO}_{2} .2 \mathrm{MgO}$ ，occasionally met with in transparent crystals（＂chrysolite＂），but more fre－ quently embedded as an admixture in lava，basalt，and other rocks；also in meteorites．（2）Augite and（3）born－ blende，both $\mathrm{MgO} . \mathrm{SiO}_{2}$ ．The latter more frequeatly than the former forma iadepeadent rocks；both occur abundantly as components of more ordiaary mixed rocks，all basalts containing augite as a principal component．（4）Ser－ peatine， $\mathrm{SiO}_{2} 2 \mathrm{H}_{2} \mathrm{O} .3\left(\mathrm{SiO}_{2} .2 \mathrm{MgO}\right)+2 \mathrm{Aq}$（meaning $2 \mathrm{H}_{2} \mathrm{O}$ loosely combined），－a very common mineral ；there are mountain masses consisting almpst of it alone．In all these silicates，and more especially in（2）and（3），the MgO is partly replaced by $\mathrm{FeO}, \mathrm{CaO}, \mathrm{MnO}$ ，and other isomorphous oxides，these latter not unfrequently even predominating over the MgO itself．Their names，in fact，represent genera of minerals comprising each numerous species．Asbestoa （so remarkable on account of its exceptional structure， which lends itself for the production of fire－proof textilo fabrics，paper，pasteboard，\＆c．）must be mentioned bere， as some varieties fall under hornblende，others under chrysotil（included in serpentine）．More purely magnesian are－（5）talc， $4 \mathrm{SiO}_{2} \cdot 3 \mathrm{MgO} . \mathrm{H}_{2} \mathrm{O}$（Rammelsberg），and（6） meerschaum， $3 \mathrm{SiO}_{2} \cdot 2 \mathrm{NIgO}+4($ ？$) \mathrm{H}_{2} \mathrm{O}$（same authority）．

B．Carbonates．－Of these the most abandant are the dolomites，all compounds of the carbonates of lime aud magnesia，$\quad x \mathrm{Cr} .(1-x)$ IIg．o． $\mathrm{CO}_{2}$ ，where $x$ may assume almost any value down to zero，which it actually has in ＂nagnesite，＂ $\mathrm{IgOCO}_{2}$ ．Bitter spar， $\mathrm{MgOCO}_{2}$ ，is very similar to and isomorphous with Iceland spar， $\mathrm{CaOCO}_{2}$－

C．Soluble Salts，known chiefly as occurring in the famous salt－deposits of Stassfurth in Germany ：－kieserite， $\mathrm{MgOSO} \mathrm{3}_{3} \mathrm{H}_{2} \mathrm{O}$（Epsom salt minus $6 \mathrm{H}_{2} \mathrm{O}$ ）；carnallite， $\mathrm{MgCl}_{2} \mathrm{KiCl}^{2}+6 \mathrm{H}_{2} \mathrm{O}$ ；kainite，a bydrated compound of chlorides and aulphates of magnesium and potassium．

Any of these miaerals may be used，aud A（4），B，and C are actually used for the preparation of magnesium compounda．Starting from magnesite，we need only sub－ jert it to gentle ignition to obtain the oxide MgO；treat－ ment with dilute aulphuric or muriatic acid produces the sulphate（Epsom Salt，q．v．）or the chloride，as a solution， contaminated in general，－chielly with iron，also with alumina，ond perbaps linie．The two former，after peroxida－ tion of the iron by chlorine，may be eliminated by digestion with 1 owdered magnesite，and filtered off．The acidifed muriate solution，on evanoration and cooling，deposits trans
parent crystals, $\mathrm{MgCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$, very hygroscopic, very readily soluble in water, and (like the anhydrous salt) soluble also in alcohol. When dehydrated by heat it loses acid ( HCl ), so that the residue is largely contaminated with oxycblorides, $\mathrm{MgCl}_{2} . x \mathrm{MgO}$. Certain of these are industrially important as cements, used by dentists and otherwise. A concentrated solution of the chloride, made into a paste with the ignited ( $\mathrm{CO}_{2}$-free) oxide, in a fer hours hardens into a stone susceptible of polishing (Sorel). To prepare the anbydrous chloride, the crystallized or dissolvod hydrated salt is evaporated with sal-ammónia to dryness, and the residne (a stable double salt) is ignited in platinnm. Pure chloride, $\mathrm{MgCl}_{2}$, remains as a clear liquid, solidifying on cooling into a compact aggregate of lexible crystal-leaves of a mother-of-pearl lustre. From the chloride the metal can be produced, either by electrolysing the fused substance, or (more conveniently) by Caron and Deville's method: 600 grammes of the chloride, 480 grammes of powdered fluor-spar, and 230 grammes of finely cut-up sudium are mixed, and thrown, small portions at a time, into a red-hot crucible, which is theu well covered. When the reaction, which is violeut, is over, the contents are well stirred with an iron rod to cause the small metal-beads to unite into bigger lumps, which, after cooling, are picked from the broken-up mass. Sonstadt (who, along with Mellor, was the first to prepare nıagnesium industrially) substitutes for plain $\mathrm{MgCl}_{2}$ the double chloride of potassium and magnesium, obtainable syothetically from the hydrated components without the use of sal-ammoniac, or simply by igaition of pure carnallite. To purify the crude metal Sonstadt and Mellor distil it "per descensum" out of an iron crucible provided with a pipe piercing the bottom and reaching up to almost the lid; an atmosphere of coal-gas is established to prevent oxidation of the metal in this operation, as also in the eubsequent casting of the ingot.

The metal magnesium has the colour of silver, and remains unchanged in dry air; in ordinary air it tarnishes a little more readily than zunc does. It is malleable and ductile, hut has little tenacity. The specific gravity is 175 ; thus it is considerably lighter than even aluminium, whose epecific gravity is $2 \cdot 6$. It fuses and distils at about the same temperatures as zinc. It is generally sold in the form of thin ribbon, being used for the easy production of highly intense light. The ribbon kindles readily in a candle flame, and then continues burning most intensely by itself, the solid oxide produced radiating out abumdant light. A wire 0.3 millimetre ( $=.012$ inch) thick gives out the light of 74 stearine candles weighing 100 grammes ( $\frac{2}{8} \mathrm{Ib}$ aroirdupois) a piece (Bunsen and Roscoe). It used to be employed for photographing at night, but is now superseded by the electric light. Magnesium has the exceptional property of combining (at a bright red heat) directly with nitrogen gas into $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ (Briegleb and Geuther), a greenish-yellow powder, which, when beated in ateam, yields magnesia and ammonia, $\mathrm{NH}_{3}$.

Of magnesium salts the most important is the sulphate, Epsom Salt (q.v.). This salt serves as a raw material for the preparation of two or three medicinally important aubstances, especially magnesia alba. When epsom salt solution is precipitated by carbonate of soda, the salt $\mathrm{MgOCO}_{2}$, first formed, loses carbon'c acid and takes up water, forming a precipitate of the approximate composition $3 \mathrm{MgCO}_{3} . \mathrm{Mg}(\mathrm{OH})_{2}+2$ to 3 times $\mathrm{H}_{2} \mathrm{O}$. When prepared by cold precipitation it forms a very light, when in the heat a somewhat denser, white powder (magnesia alba levis and ponderosa). This substance holds an important position in the history of chemistry, having served, in tho hands of Black, to prove finally the individnal existence of magnesia as something distinct from lime, and belped him in estahlishing the true relation betreen "caustic" and
"mild" alkalies. Before his time the "causticity." ras supposed to go into the "mild" substance from-the fire; Black showed that it is owing to the lusa of a ponderable substance, which he called "fixed air" ibat is, carbonic acid. It was in this memorable research that for the first time in chemistry the balance was nsed for the precise determination of quantitative relations.

Magnesia, the oxide MgO, is produced by the gentle ignition of magnesia alha. It is a white powder, absolutely infusible and non-volatile, and not reducible by charcoal, and is used medicinally. The gently ignited oxide combines very slowly with water into the practically insoluble hydrate $\mathrm{MgO} \mathrm{H}_{2} \mathrm{O}$. Magnesia when boiled with sugarwater dissolves into a solution of saccharate, and in this form is sometimes administered medicinally in lieu of plain magnesia. Magnesia alba (also the normal carbonate) dissolves rather largely in carbonic acid water. According to R . Wagner, one part of $\mathrm{MgOCO}_{2}$ dissolves in 760 parts of water saturated by carbonic acid under 1 atmosphere pressure. Under 6 atmospheres pressure it requires only 76 parts of carbonic acid water for its solution. Dinneford's "fluid magnesia" is a solution of such bicarbonate of magnesia. The bicarbonate solution, when allored to stand in air, deposits crystals of bydrated normal carbouate, $\mathrm{MgCO}_{3}+3$ or $5 \mathrm{H}_{2} \mathrm{O}$.

Magnesia preparations play a great part in therapeutics. The oxide and basic carbunate (also the dissolved forms of saccharate and bicarbonate) are used in small doses as anti-acids, in larger oues as very mild pargatives, for children more especially. For the latter purpose, however, the sulphate is generally preferred as acting far more energetically. The nauseous bitter taste of the salt can be concealed, to some extent, by acidification of its solution with dilute sulphuric acid. Citrate of magnesia, being exceptionally free of the "Bittererde" taste, was introduced some thirty years ago by the French as a pleasant substitute for Epsom salt, and it has since come much into fashion everywhere, although, weight for weight, it is far less efficient than the sulphate. The preparation of dry soluble citrate offering difficulties, the French originally dispensed it exclusively in the dissolved form of "Limen. ade au citrate de magnésie," a flavoured, decidedly acid solution of the salt, rendered effervescent by addition of some bicarbonate of soda immediately before corking up. In England it is generally preferred to offer the dry ingredients of the "limomade" in the form of "granular effervescent citrate of magnesia.". Magnesia alba is pounded up with an excess of citric acid crystals and a few drops of water to produce a paste of aroorphous acid citrate, which is dried at a temperature below $30^{\circ} \mathrm{C}$. At higher temperaturcs the salt would pass into a crystalline, insoluble, and consequently therapentically valueless modification. The citrate is mixed with bicarbonate of soda, citric acid, and sugar, made into a "dough" with alcohol, granulated, and dried. The granules, when thrown into water, dissolve with efferrescence. We must not omit to state here that much of what is sold under the name is a mere concoction in which Epsom salt figures as "citrate."

To test a solution for magnesia, remore whatever can be precipitated by means of sulphuretted hydrogen or sulphide of ammonium; then eliminate lime, baryta, and strontia by precipitation rith carbonate of ammonia in the presence of sal ammoniac. The magnesia remains dissolved, and can be precipitated (and detected) by addition of-phosphate of ammonia (or soda) and free ammonia; the salt $\mathrm{PO}_{4} \mathrm{Mg} \mathrm{NH}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ gradually separates out as a crystalline precipitate. This method of course fuils when the, magnesia is present from the first as phosphate; but we cannot here enter into a consideration of this or any other exceptionally difficult case
(w. D.)

## MAGNETISM

T1HE word magretism is derived from the Greek word $\mu a ́ \gamma \eta \eta s$, which was applied to an ore of iron possessing a remarkable attractive power for iron, and supposed to have been originally found near the town of Magnesia, in Lydia. ${ }^{2}$ Thus Lucretins writes:-

Quem Magneta vocant patrio de nomine Graii, Magnetum quia fit patriis in finibus ortus.
This name is said by Plato ${ }^{2}$ to have been given to it by Euripides, and he adds that most call it the Heraclean stone. It is needless here to criticize the above or other derivations that have been given for the word; we merely remark that it is now applied to all the phenomena kindred to that which first drew atteation to the magnetic iron ore, viz., a aelective attraction for iron.

Ia the following article we shall give, in the first place, a sketch of the leading phenomena of strongly magnetic bodies. We shall then describe a provisional theory sufficient to render a general account of theso phenomena, and shall afterwards proceed to render this theory more precise, to develop it to its necessary conclusions, and to compare these with experiment, indicating where the theory is either incorrct or incoraplete. Then we shall discuss the paramagnetic and diamagnetic properties of all bodies, as expounded by Faraday; an account will be given of the connesion between the magnetic and the other physical properties of bodies; and, lastly, we shall endeavour to give some idea of the different physical theories that have been proposed in order to give zomething more than a mere shorthand record of the facts of observation.

## Leading Phenoyena.

It appears, from what Lucretius says in the passage above qnoted, ${ }^{3}$ that the Greeks and Romans were aware, not only that the loadstone, or magnetic iron ore, attracted iron, but also that. it endued iron in contact with it with its own peculiar property. Thus an iron ring will hang suspended by the attraction of a loadstone, and from that ring another, and so on, up to a certain number, depending on the power of the stone and the weight, \&c., of the rings. They were also aware that the attraction was confined to iroa, or at all events was not indiscriminate, and that it was not destroyed by the intervention of other bodies, such as brass, between the magnet and the iron. It appears, too, from the passage-

> Fit guoque nt a lapide hoc ferri natura recedat

Interdum, fugere atque sequi consueta vicissim, scc.-
that they had an idea that, under certain circumstances, the attraction might be replaced by a repulaion. If, however, we understand aright the latter part of Lucretius's somewhat obscure description of what seems to have been an actual experiment of his own, this notion was in reality a hasty generalization, not justified by the observed facts. ${ }^{\text {* }}$ In any case there aeems no warrant for assuming, as aome bave done, that the ancients lad any definite conception of magnetic polarity.
What they wanted in definite experimental knowledge they aupplied by an abundant use of the imagination.

[^48]We are told, for instance, that the maguet attracts wood and flesh, which was certainly beyond their powers of observation; that it is effective in the cure of disease; that it affects the brain, causing melancholy; that it acts as a love philtre; that it may be used iu testing the chastity of a woman ; that it loses its power when rubbed with garlic, but recovers it when treated with goat's blood; that it will not attract iron in the presenco of a diamond, and much else that was eagerly copied by the twonder-loving writers of the Middle Agea.

The science of magnetism made no real progress till the invention of the mariner's compass. T'he early history of this instrument is very obscure. According to aome antho rities it was invented in China, and found its way into Europe probably through Arabian sources. The light thrown by recent researches on the literature of the Chineso has apparently thrown doubt upon their claim to this invention, ${ }^{5}$ although the knowledge of the loadstone and its attractive property may bave been older among them than even among the Greeks. The first accounts of the compass in Europe go back to the 12 th century, and, although the instrament described is very rough, it is not spoken of as a new invention. In its earliest form it seems to have consisted simply of an iron needle which was touched with the loadstone and placed upon a pivot, or floated on water, so that it could turn more or less freely. It was found that such a needle came to rest in a position pointing approximately north and 8outh (some accounts say east and west, in which case there must have been a cross piece on the needle to indicate what was probably the important direction for the mariner). Aa these compasses were made of iron (steel was not used till mnch later), and were probably ill-pivoted, they must have been very inaccurate; and the difficulty of using them must have been much increased by the want of a card, which was a later addition made apparently by the Dutch.

It is unnecessary to enter into more detail here respecting the early history of the compass, as the matter has been very fully treated in the article Cospass. ${ }^{6}$.We proceed therefore to show the bearing of the invention upon the science of magnetism. It will at once be seen that it involves two scipatific discoveries of capital importance:first, that the loadstone can transmit to iron with which it comes in contact a permanent property like its own; and, secondly, that a loadstone or magnet if suspended freely will turn so that a certain direction in it assumes a fixed position relative to the geographical meridian, a certain part of the magaet turning always towarda the north, and the part opposite towards the south. These opposite parts of the magnet are called its "poles."

To fis our ideas we shall describe a process by whick we might definitely deternino thia dircction in the magnet. Following the exanple of Gilbert, let.us conaider a apherical magnet. Our reason for dealing with this form in the first instance is to make it perfectly clear that the phenomena depend essentially on something apart from the form of the body. We shall suppose that the maguet is homogeneous as to its mass, so that its centre of gravity

[^49]ceincides with its centre of tigure. Suspend this spherical magnet by a fine thread of untwisted silk, attached to any point of its surface, say $P$. After the magnet has come to rest, mark the vertical plane through the centre which falls in the geographical meridian; this may be done by tracing a great circle on the surface of the magnet. Next find the point $\mathrm{P}^{\prime}$ in which the vertical through P . cuts the surface again, and suspend the magnet by $\mathrm{P}^{\prime}$, again marking the plane which falls in the meridian. New, find the plane which bisects the acnte angle between the two former planes, mark it by a great circle, and call it the axial plane of P. If we thas find the axial planes of any number of points, we shall find that they all intersect in one common line passing through the centre of the sphere. We may call this line the "axis" of the magnet. - Let us mark the points where it cuts the surface; we may call these the "poles" of the magnet. We shall then observe that, however we suspend it, the magnet will alpays come to rest se that the vertical plane throngh the axis makes a definite angle with the meridian. This angle ( $\delta$ ) is called the "declination" (also, by sailors, the "variation"); it varies from place to place, and from time to time, but very slowly, so that threnghout a limited area of the earth's surface, and for a limited time, it may be regarded as censtant. ${ }^{1}$

One end of the axis always turns northwards, and the other always sonthwards; we shall call the former the "north" and the latter the "south pole," although, for rearons to be afterwards explained, it would be mere appropriate to invert the order of these names. Henceforth the vertical plane in which the axis of the magnet comes to rest wiil be called the magnetic meridian, and the two horizontal directiens in this plane magnetic north and anagnetic south respectively.

It must be carefully noticed that there is a certain amount of arbitrariness in our definition of the asis and poles of a magnet. In reality it is only the direction of the axis that is fixed in the body, and not its absolute position. This will be made plain if we repeat all our experiments with the spherical magnet after fastening to it a piece of wax or other non-magnetic bedy, so as to leave its magnetic properties unchanged, but to throw its ceatre of gravity out of the centre of figure. Everything will fall out as before, only the axial planes of the different points of suspension will now meet in a line, parallel, it is true, to the axis determined befere, but passing through the new centre of gravity. In point of fact, therefore, we might choose any point in the body, draw a line through it in the proper direction, and call this the axis. Hereafter we shall, unless the contrary is stated, draw the axis through the ceutre of gravity of the body, or through its centre of figure if it has oue; and we define the poles, for the present, as the points in which the axis cuts the surface of the magnet, supposing, as will bo generally the case, that the line cuts the surface in two points and no more.

Having now obtained a definite idea of the axis of a magnet, and seen that it has, in the first instance at least, nothing to do with the external form of the body, let us proceed to make an artificial magnet of the particular kind usually called a "magnetic needle," and briefly examine its properties. Take a tolerably thin flat piece of pretty bard-tempered steel, of the elengated symmetrical form NS shown in fig. 1. We suppose it, in the first place, in an unmagnetic condition. Let it be pierced by a wellturned axis $a b$, passing accurately through its centre of gravity, and perpendicular to its plane, so that, when the

[^50]axis is placed on two horizontal knife edges, the needle will rest in ans position indiferently. F'urther, let four very small hooks, $c, d, e, f$, be attached, two $(c, d)$ to the ends of the asis, and other two $(e, j)$ to the edgcs of the needle in a line perpendicular to NS. Norr rub the half of the needlo


Fig. 1.
towards $N$ with the south pole of the spherical magret whuse properties we have just discussed, beginning the stroke at the middle and ending it at the point of the necdle, and for symmetry's sakc lot us do the same to the other side of the needle, and then repeat this process with the north pole of the sphere on the other half towards S . Let us examine the properties of the ueedle thus "magnetized." If we suspend it first by the book c and then by the hook $d$, we shall find that in both cases the line joining NS ${ }^{2}$ makes very nearly the same angle with the geographical meridian. Hence the mag: netic axis must lie in a plane through NS perpendicular to the plame of the needle. A similar experiment with the two hooks e, $f$ will show that the magnetic axis dies approximately in the plane of the strip, which we may suppose for the present to be infinitely thin. Hence the magnetic axis may be taken to be ceincident with the line . NS j j -ining the points of the needle. This coincidence is, however, in general ouly approsimate, and in delicate measurements corrections have to be made on that acceunt,' of which mere hereafter. If we now mount our magnetized needle on a piece of cork or two straws, and float it in a basin of water, or replace its axle by a small cap and set it on a pivot, we have the meriner's compass in its early form. We shall call it a magnetic needle, to distinguish it from the more elaborate compass of the present day. A favourite way of showing the directive property of a magnet, described by Gilbert; is to magnetize a sewingneedle, and lay it very gently, by means of a fork of wire, on the surface of water; it will float and turn until it takea up its position in the magnetic meridian.

A needle mounted in this way, so as to have great freedom to move in a horizontal plane, is of great use in magnetic experiments. Gilbert calls it a "versorium." When very delicate applications are in view, the point of the pivot on which it is mounted must be very hard (say of hard tempered steel or iridium), and the cap should be fitted with an agate or other, hard stone having a polished cavity of the form of a blunted cone to receive the pirot. A still better arrangement, also used by Gilbert, is to suspend a short and very light piece of steel wire-a fine sewing needle may be usedby means of a single fibre of silk. The most delicate arrangement of 'all is to use one of Sir W. Thomson's light galvanoraeter mirrors with the magnets attaohed, and follow its movements by means of the lamp and scale as usual. See Galvanometer.

Such, with as much of medern accuracy imported into them as was necessary for clearness of exposition, were the facts of magnetism as known up to the beginning of the 16th century.
Anether experiment with our magnetized needle will enable us to describe the next important magnetic. dis covery. In its unmagnetized condition the needle rested indifferently in any position when its axis was placed on

[^51]two horizontal knife edges. In the magnetized state this is no longer the case. The axis of the needle not takes
up a fixed position, with its north end pointing duwnwards (fig. 2), and if disturbed will uscillate abont that position, and finally settle into it agaiu. The angle which the axis NS makes with the horizon is least when the plane of rotation of the needle is in the mag. netic meridian: the angle (c) in this case ia called the "dip," or (by Contivental writers) the "inclination." It is greatest, viz., $90^{\circ}$, when the plane of rotation of the needle is vertical and perpendicular to the magnetic meridian. At Greenwich the dip is about $67^{\circ} 30^{\prime}$ at the present time. If we place the ncedle with its plane of rotation perpendicular to the line of dip, the equillbrium will be indifferent, as it was

|Fig. 2.
in all positions before magnetization; but there is no other position of the magnetized needle for which this is trne.

The remarks which we made as to variation in apace and time of the declination apply also to the dip. The variation from place to place differs, however, in nature from that of the declination. Along a line running in the neigbbourhood of the geographical equator, partly north and partly south of it, the dip is zero. North of this line, which is called the magnetic equator, the north end of the needle dips below the horizon; and the angle of dip increases as we go northwards, until, at a point in the Hudson's Bay Territory, the needle dips with its north pole vertically downwards. South of the magnetic equator the aouth end dips below the horizon; and there is again a point in the southern hemisphere where the south end dips vertically dewnwards. These points are called the "magnetic poles" of the earth. For further details on this subject we refer the reader to the discussion of terrestrial magnetism in the article Meteorolocy.

It was in the accurate observation of the declination and dip of the magnetic needle that the science of magnetism arose. The dip appears to have been first observed by Georg Hartmann, vicar of the church of St Sebaldua at Nuremberg (1489-1564), who aeems to have been in advance of his age in magnetical matters. In a letter ${ }^{1}$ to Duke Albrecht of Prussia, dated 4th March 1544, he writea:-

[^52]measurement, and it is not surprising that be got a result of $9^{\circ}$ instead of somewhere about $70^{\circ}$.

In 1576 the dip was independently discovered by Robert Norman, a skilful seaman and an ingenious artificer, according to Gilbert. He was in the habit of muking compass needles, and carefully balancing them so as to play horizontally on their pivots before magnetization. He found that, after they were magnetized, they constantly dipped with the north end dowawards, so that a counterpoise had to be added to bring them back to the horizon. This led him to construct a special instrument, the prototype of the modern dipping needle, to show this new phenomenon. With this instrument he made the first accurate measurement of the dip, and found it to be $71^{\circ}$ $50^{\prime}$ at London. ${ }^{2}$

The early English nagnetic observers, of whom Norman and Burroughs (who wrote an able supplement to Norman's work) were admirable examples, must have done much for the introduction of precise ideas into magnetism. But their fame was speedily eclipsed by William Gilbert of Colchester ${ }^{9}$ Gilber (1540-1603), whom Poggendorff has justly called the Galileo of magnetism, and whom Galileo himself thought enviably great. In his great work entitled De Magnete Magneticisque Corporibus et de Magno Magnete Tellure Physiologia Nova, frst published in 1600, we find a consplete account of what waa known of magnetic phenomena up to his time, with a large number of new ideas and new experimental facts added by himself. We find in Gilbert's work, in a more or less accurate form, nearly all that we shall lay before the reader in the first section of this articles, described very much in the language that we shall use. "How far be was ahead of his time is best proved by tho works of those who wrote on magnetism during the first few decades after hia death. They contributed in reality nothing to the extension of this branch of physical science." 4

Mutual Action of Like and Unlike Poles.- If we take a Like magnet whose poles $\mathrm{N}^{\prime}, \mathrm{S}^{\prime}$ have been determined and magnetio marked as above explained, and bring its north pole $\mathrm{N}^{\prime}$ poles ; near the north pole $\mathbf{N}$ of a magnetic needle, N will move unlike in a direction indicating repulsion between N and $\mathrm{N}^{\prime}$. strace The same result will follow if the south pole $S^{\prime}$ of the magnet be brought near the aonth pole $S$ of the needle. Bnt if $\mathrm{S}^{\prime}$ be brought near N , or $\mathrm{N}^{\prime}$ near S , attraction will be indicated. Hence the following fundamental law of the action between two magnets :-Like poles repel each other; unlike poles attract each other. It would appear, therefore, that the whole action of one nagnet upon another is of a somewhat complicated character, even if we take the simplest view of it that the experimental facts will allow, viz.,


「Fig. 3. that the action may be represented by forces acting between the two pairs of points in cach magnet which we have defined as north and south poles. On this assumption, the action of $N^{\prime} S^{\prime}$ upon NS would consist of the four forces represented in fig. 3 , for all these must exist in accordance with the law just establishcd. Whether this is a sufficient

[^53]representation of the most general case, and what the exact law of the forces ought to be, we are not yet in \& position to decide. One thing, horever, is clear, that the action between two poles must diminish when the distance between them increases; otherwise we should not have been able to make the action of $N$ or $S$ upon $N^{\prime}$ prevail, by bringing the one or the other nearer.
It was perhaps the complexity of this analysis (along with the fact that the action of the magnet upon ooft iron, which was the carliest discovered magnetic phenomenon, is not a pure case of this action, but involves also another phenomenon, viz., magnetic induction) that prevented for so long the discovery of the elementary law we are now discussing. At all events, it seems to have been a new discovery in the 16 th century, if we may judge from a passage in the letter of Hartmann above alluded to. He was certainly aware of the cxistence of magnetic repulsion in some form or other. It is somewhat difficult to gather from $h^{\circ}$ s description what it was exactly that he observed, and he nowhere states the luw fully and explicitly. In Norman's Newe Attractive ${ }^{1}$ we find it clearly stated, and demonstrated by means of a needle floating on water or suspended by a thread; ${ }^{2}$ yet he does not appear to claina the fact as his discovery. If, therefore, Hartmann whs not the actual discoverer, we may at least conclude that the law became familiar to magnetic philosophers during the thirty years that separated him from Norman.

The Magnetic Field.-We nest introduce a method of conceiving and describing magnetic actions which was invented and much used by Faraday. Since a magnet acts upon a magnetic needle placed anywhere in the surrounding space, ${ }^{3}$ we call that space the magnetic field of the magnet. Neglectiog the earth's magnetism, we may map out this field as follows. Conceive any plane drawn throigh the axis of the magnet, and place it so that this plane shall be horizontal. Then at any point in this plane place a very small magnetic needle, and note the direction which its axis assumes under the action of the magnet; then proceed to move the centre of the peedle in the direction in which its north pole points, and continue the motion so that at each point the centre is following the direction indicated by the north pole. The line thus traced will at last cut the surface of the magnet at some point lying towards its south pole; and if we continue the line backwards, by following the direction cointinually indicated by the south pole of the needle, it will cut the surface of the magnet at some point lying towards the north pole. Such a line is called a line of magnetic force; and, since one such line can be drawn through every point of tie plane, and any number of planes can be taken through the axis of the magnet, we can conceive the whole magnetic field filled with such lines. Fig. 4, taken from Faraday, gives an idea of the distribution of the lines of force in the field of a bar magnet; fig. 5 represents the lines in the field due to two neighbouring like poles.

These diagrsms were not obtained by the method we bave just described, but by a much simpler process which we shall describe by and by. Their use, so far as wchave gone, is to tell us how a small needle, free to move about its centre in any direction, will place itself at any part of the field, viz., it will place its axis along the tangent to the line of force which passes through its centre, its north pole pointing in that direction which ultimately leads to the south pole of the magnet producing the field.

- Suppose we apply these ideas to a spherical magoet (a terella, or earthkin, as Gilbert calls it). The lines of force

[^54]in sns plane through its axis would be found to run something like the curves in fig. 6. If, therefore, we carried a small needle (suspended from a silk fibre so as to be perfectly free to move in all directions) round the magnet


Fig. 4.
in a meridian plane, its axis would constantly remain in the meridian plane, its north pole always point towards the south pole of the apherical magnet, hit dip more and mare

f'ig. 5.
below the tangent plane to the sphere as the centre recedes from the equator, and end by pointing straight towards the south pole when the centre reaches the magnetic asis (see fig. 6).


Fig. 6.
When we reflect that in all our experiments the properties of magnets, whether native, such ss the loadstone, or artificial, such as the needles magnetized by rubbing with the loadstone, have proved alike, and that every
purely magnetic action on a nagnet has its source in some other magnetie body, we are naturally led to the conclusion that the reason why at every point of the earth's surface the axis of a freely suspended magnet assumes a definite position is simply that the earth itself is a great magnet, and that in observing the declination and dip we are simply exploring the magnetic field of the carth. It is true that, according to the experiment above described, the declination would every where be zero, and the magnetic equator would ceincide with the geographical, but that arises merely becanse we assumed our carthkin, for simplieity of explanation, to be symmetricnlly magnetized, so that its lines of force ran in planes passing through its axis. It remains to be discusserl whether the mest general assumption, viz., that the earth is a magutic body, will not account for the facts of terrestrial magnetism. The answer to this question has been giveo, as we shall see, by Gauss.

This idea, whose simplicity is the truest measure of its greatness, is due to Gilbert, and was by him made the foundation of his work on magnetism. The boldness of his theory will be appreciated when we remind the reader that in his day the dip was but newly discovered, and had been measured only at Lundnn, so that Gilbert's very full and clear exposition of this phenomenen, which we have given abore, was in fact a scientific prediction, which was not fully verified till long afterwards. ${ }^{1}$ Before Gilbert a variety of wild conjectures had been marle as to the canse of the directive property of the magnet. ${ }^{2}$ Many, like Columbus, Cardan, and Paracelsus, believed that the magnet was attracted by a point in the heavens, pessibly sone magnetic star. Others supposed that the attraeting point was situated in the earth; Fracastorius imagined hyperborean mountains of loadstone situated near but not quite at the north pole; and to this theory others contributed the detail that the magnetism of these mountains was so porerful that ships in these regions have to be built with wooden nails instead of iron ones, which would be instantly drawn out by the magnetic attraction.
It is clear that, if we call that magnetic pole of the earth which lies in the northern hemisphere its north poite, we ought, in aecordance with our fundamental lav of magnetie action, to call the north.secking pole of an ordinary maguet a southo pole. When it is necessary to speak of nagnets from this point of view, the difficuity is got over by calliug the north-secking pole the anstrai pole, ant the south-seeking poie the boreal pole. In reality the danger of confusion is more imaginary than real.' The reader should be warneil, however, that in some Frencl works the ordinary nomenclature is reversed, and that Faradny uses "marked "and "unmarked," and Airy "red" "and "blue," in the sense in which north and sonth are coummonly used.

The Earth's Action, on a Magnet is a Couple.-Norman in his Newe Altractive (chapters v. and vi.) discusses very acutely the question whether there is any force of translation exerted upon a magnet. He advances three conclusive experimeats to prove the negative. First, he weighed several small pieces of steel in a delicate gold balance, and then magnetized them, but could not detect the slightest alteration in their weight, "though every one of them had repeived vertue sufficient to lift up his fellow." Secondly, he pushed a steel wire through a spherical piece of cork, and carefully pared the latter so that the whole sank to a cortain depth in a vessel of water and remained there, taking up any position about the centre indifferently. After the wire was naggoetized very carefully, without disturbing its position in the cork, it sank to the same

[^55]depth as before, neither more nor less, the only difference Leng that now the wire set itself jersistently in a definite fixed direction jarallel to the maguetic meridian, the north end dipping abnut $71^{\circ}$ or $73^{\circ}$ below the horizon. Thirdly, he arranged a magnetized needle on a cork so as to float on the surface of water, and found that, although it set in the magnetic meridian, therc was not the slightest tendency to translation in any directinn. ${ }^{3}$ He concludes that there is no force of translation on tho magnet, either vertical or hurizontal. He was evidently somewhat puzzled how to prit this result into a positive form, and his "point respective," as he calls it, is nota very clear explanation of the earth's action. What he wanted was the modern idea of a "couple," i.e., a pair of equal but oppositely directed parallel forces acting on the two ends of the needle; but snch an idea was not conceived in Norman's day. Gilbert adopts Norman's result in this matter, 'addiag nothing essiential, reproducing even Norman's diagram of the spherical cork mith the wire through it. It is clear therefore that Gilbert had a ferernnner in the practice, as Eacon had in the theery, of inductive science ; for Norman says, speaking of the mass of fables that had passed for trath in geography, hydrography, and navigation before his time, "I wish experience to bee the leader of Writeis jn those Artes, and reason their rule in setting it downe, that the follewers bee not led by them into errors, as oftentimes have beene seene."

The Magnetic Property is Molecular:-Apart altogether from the question as to how we are to represent the action of a magnet unon other magnets, there arises another quite distinct question, as to where the cause of this action resides. That these two questions are really distinct, although there has always been a tendency in the more superficial treatises on the subject to confuse theu, will be obvious from the faet that we shall afterwards obtain more than one perfectly general way of representing the action of a magnet at external points, whereas there must be one and only one cause of this action. A very old experiment ${ }^{4}$ at once throws considerable light on this point. If we break a bar mag. net into two pieces, jt will be found that each of these is itself a magnet, its axis being in much
 the same direc-
tion as that of the original magnet, and its pules in corresponding positions, see fig. 7. The same holds if we break the bar into any number of pieces; and, quite generally, if we remove any piece, however small, from a magnet, this piece will be found to be magnetic, the direction of its axis usually bearing a distinct and easily reengnizable relation to the direction of the axis of the whole magnet. We are therefore driven to the conclusion that the magnetic quality of a body is related to its ultimate structure, and not simply to its mass as a whole, or to its surface alone; and this conclusion is not to be invalidated hy the fact that we can in general, as will afterwards appear, represcnt the action of the magnet at exterual points by means of a proper distribution of centres of attractive and repulsive forces upod its surface merely.

Temporary Magnetism of Soft Iron and Steel in the Magnetic Field.-Bodies which possess permanent magnetio

[^56]
## M A G N E T I S M

properties, not depending on the circumstances io which they are placed, we shall henceforth call "permaneat magnets." The law of the action of one permanent magnet upon another, as we have seen, is that like poles repel and unlike poles attract cach other. The action of a permanent magnet on pieces of soft iron is, at first sight, different, for either pole attracts them alike.

To fix our ideas let us take a small thin bar of saft iron or of steel, and test it with a delicate magaetic needle. It will usually be found, more particularly if a steel bar is taken, that one end of the bar will repel one or other of the poles of the needle. This is a sure sign of permanent magnetism. If, however, we heat the bar to whiteless and allow it to cool in a position perpendicular to the carth's magnetic force, all permanent magnctism will be found to have disappeared. If $\wedge$ we now place the bar in a horizontal plane (fig. 8) with its axis perpeadicular to the axis of the needle, and one of its ends A, B near either pole of the needle, that pole will be attracted, no matter whether it be the arth pole or the south pole of the needle, or which end of the bar be used.


Fig. 8.
Care must be taken in this experiment to avoid using a too strongly magnetized needle, and to keep the seedle from touching the bar, otberwise the bar may receive traces of permanent magnetism which will disturb the result. It is very easy, by repeating the above experiment with an unmagnetized needle, to show that the power that the bar acquires of attracting the poles of the needle is temporary and depends on the presence of a magnetized bady:

Keeping to our principle that a magnetic cause is to be sought for every magnetic action, we are led to explain the above experiment by saying that in the magnetic field a bar of soft iron or of unmagnetized steel becomes magnetic in such a way that its north pole points as nearly as may be in the positive direction of the lines of force passing in its neighbourhood (or, in other words, in the direction, as neurly as may be, in which a magnetic needle would point if placed in its neighbourhood). A body which becomes magnetic in this way by the magnetic action of another body is said to be "magnetized "by "induction." We shall suppose, in the meantime, that it loses all the magnetism thus acquired when the inducing action is withdrawn; although this is not necessarily, and in fact not generally, the case, as we shall see by and by. The reason why soft iron is attracted by a permanent magnet is therefore now said to be that the iron becomes magnetic by induction, and is then acted upan by the magnet like any other magnet sinilarly placed. The accuracy of this analysis of the phenomcoon may be confirmed by many simple but striking experiments, such as the following.

In the experiment above described, instead of placing the non-magnetic bar in a horizontal plane, place it in the plane of the magnetic meridian with its axis in the direction of the earth's force (i.e., parallel to the liae of dip). The lower end of the bar will then be found to repel and the upper ead to attract the north pole of the needle (figs. 9, 10). This is at once explained on the above hypothesis; for the bar will be magretized inductively by the earth's force, so tuat its lower end becomes a north pole, and its upper eod a south pole.

Let NS (fig. 11) be a bar magnet placed horizontally so that its axis produced passes through $O$, the centre of suspension of the needle $s n$, then the needle will be deflecter


Fig. 9.
in the direction of the arrow. If now we place between $S$ and $O$ a small sphere of soft iron, this deflexion will be


Fig. 10.
increased, the reason being that the sphere is magnetized by induction, having a south pole towards O and a north pole


Eig. 11.
towards S, and the action of these is added to that of NS.
Let NS (fig. 12) be a magnet placed in the magnetic
meridian, $n^{\prime} s^{\prime}$ a small magnetic needle in the same horizontal plane, with its centre in the line bisecting NS at right angles. When acted on by NS alone, $n^{\prime} s^{\prime}$ will place itself parallel to NS, with its north pole pointing in the direction NS

fig. 12.
Let the dotted line represent a line of force. If we movs a small piece oi soit iron $n s$ along this line in the direction from $N$ towards $S$, it will first deflect the needle as
in fict 13 ，and finally as iu tig．I4，ard in each position reverging it end for end will not alter the effect．All this is at once explained by the above hypothesis．

A variation of the last experiment may be made thus． Place a magnct verti－ cally，ia the neigh－ bourlhood of a mag－ netic needle；by mor－ ing it up and down a position will be found in which the action of the magnet on the needle is wholly verti－ cal，so that the needle is not defleeted from the magnetic meridian． Now take a small piece of soft iron and move it along a line of force passing near the needle， proceeding from the worth to the south pole of the vertical magnet．It will then se found，in accord－ nnce with．our bypo－


Fig． 13.


Fig． 14. thesis，that the north pole of the needle is first repelled， and finally attracted by the soft iron．

If we hang two short pieces of iron wire alongside of eaeh other by parallel threads，they will be found to repel one another，and to hang separated by a considerable interval when a magnet is brought under them （see figs． 15 and 16）．This experi－ ment is due to Giibert，who rightly explains it by sayiag that the two ends nearer the magnetic pole $S$ become like poles of opposite kind to S ，while the two farther ends are like poles of the same kind as S ．The experiment may be varied by placin\％ some little distance below tho pole of a magnet $S$ a piece of mica or thin card－


Fij． 15.


Fig． 16.
board M，and placing below that a short piece of soft iron wire；it will remain adhering to the mico，and so long as it is alone will hang more or less nearly vertical，but when another is placed alongside of it the two will diverge as in fig． 17.

One of the most interesting examples of magnetic iadue－ tion is furaished by the action of a magnet on irou filings． If wo plunge a magnet into
 a quaatity of irou filings and then remove it，we find it thickly fringed around the pules，whore the filings adhere to the magnet and to one another so as to form short busly Glaments；the thick－
nass of the frimge diminishes very rapidly towards tho middle of the magnet，where very few adhore at all．Thuse filmments are composed of magnetized particles of iron adheriag lyy their unlike poles．

If we $p^{\text {lince a small bar magnet under a piece of morle－}}$ rately rough drawing paper，strewn as uniformly as possible with fine iron filings，and then tap the paper very gently so as to relieve the frietion，and allow ench filing to follow the magnetic action，then the filiugs will be seen to arrange themselves in a series of lines，passing，roughly speaking， from pole to pole，as in fig． 4 （p．222）：The explanation of this phenomenon is simply that each filing becomes magaetized by induction，and，if it were quite free to move about its centre，it would not be in oquilibrium until it set its luagest dimension along the line of force through its centre．The roughness of the paper cffectually prevents trauslation，but does not hinder rotation，especially when the friction is relieved by tapping；henec every filing does actually set as if it were a little magnetic needle，subject of course to some slight disturbance from the neighbouring flings．The whole therefore assumes a graiued structure，and the graining runs in the dircetion of the lines of force．We lave thus an extremely convenient way of representing these lines to the eye，which lends itself in a variety of ways to the illustration of magnctic phenomena．In fig． 5 are shown the lines formed in the field near two like magnetic poles．These magnetic figures may be fixed in a great variety of ways，and projected on a screcu so as to be visible to a large audience，but it is searcely necessary to dwell here upon details of this kind．
These magnetic curves seem to have fixed the attention of natural philosophers nt a very carly period．They were originally called the magnetic currents，from an iden that they represented the stream lines of magnetic matter，which explained the magnetie action according to the theory then in vogue．La Hire mentions then，Mém．de l＇Aead．， 1717. Bazin gives an claborate account of them in his Description des Conrans Magnélizues dessinés d＇après Nature，Stras－ burg，1753．Musschenbrock seems to have been the first to give the correct explanation depending on magnetic induction，Diss．de Mragnete， 1729.

If the filings be laid very thickly on the paper，and one pole of the magnet be brought under them at a sloort distance off，they wiil arrange thenselves in a pattern， and at the same tinne bristlo up so as to stand more or less erect，according as they are nearer or farther from the magnet．They have thus the apprearance of being repellet from the magnet．It was，in all proba－ bility，this phenumenon that was observed by Lucretius when he say＇s（vi．1012）：－
> ＂Fxultare ctian Sanuothracia ferrea vidi， Ae nementa simul ferri furver intus ahomis If eraphliis，lap is hic Magnnts cunn subulitus essct．＂

His conclusion，therefore，that iron sometimes flies and sometimes follows the magnet，was searcely justified by lis experimental facts，and it is a mistake to sllppose，ns sonic bave donc，that he was aware of the polarity of permaneut magnets．

If we tap the card in the last experiment a curious result may sometimes be observed．${ }^{\text {I }}$ The lines of filings will be seen to recele from the point of the card immediatcly＂over the pole of the magnet．If，however，the magnet bo lield over，instead of under，the eard，tapping will cause the filings to approach the point under the poot of the magnet．The most probable explanation ${ }^{2}$ of this is to be found in the fact that the crected filings，stand in the

[^57]former case as slown in fig. 18, and in the latter as shown in fig. 19 ; that is, in buth cases, owing to the action of grasity, they are more acutely inclined to the card than


Fig. 18.
the lines of force (represented by dotted lines in the figure). Consequently, when the filing springs up into the air, and is thus free to follow the magnetic couple, it turns more


Fig. 19.
into the direction of the line of force; the effect of this is to carry its lower end each time a little farther from the axis of the magnet in the one case, ard a little nearer to it in the other.

By far the most important casa of magnetic induction is the electromagnet. Whenever an electric current flows in a closed circnit, the surrounding space becomes a field of magnetic force, and any piece of iron in it will be iuductirely magnetized. Such an arrangement of an electric circuit aud iron is called an electromagnet. The variety of form and of application of such instruments in modern science is endless. A few of the more important modifica. tions will be considered below.

Co-existence of Induced and Permanent Magnetism.-Tbe fact that a body is already a permanent magnet does not prevent its being susceptible to magnetic induction. If we take any piece of iron at random, the chances are that one end or other of it will repel the north pole of a magnetic needle, - in other words, it will be to some extent permanently magnetic ; but if we bring it slowly nearer and nearer to the pole of the needle, provided its magnetism be not too strong, it will by and by attract-the pole which it at first repelled. Again, if we take two steel magnets, which may be as powerful as we please, provided at all events that they are unequally powerful, and bring two like poles together, these poles will at first repel each other in accordance with the fundamental law of permanent magnets; but, when the distance is less than a certain amount, the repulsion passes into an attraction, and when the poles are in coutact this attraction may be very considerable. These phenomena are at once explained by the law of induction. The induced or temporary magnetism is superposed on the permanent magnetism, and, when the poles are near enough, the opposite raagnetism induced by the pole attracts it more than the permanent like magnetism repels it; and this nuppens even with steel, whose susceptibility for mignctic induction is considerably less than that of iron. This phenomenon was observed precty carly in the history
of maguetism, but was not fully explained until the idea of magnetic induction was fully developed. Michell, in his I'reatise of Artificial Aragnets, ${ }^{1}$ gives a tolerably clear account of it. Musschenbroek mentions it, ${ }^{2}$ along with the fact that a magnet attracts iron mora than it does another magnet, but offers no explanation of either fact. The latter result, so far as it is true, can of course be explained by the smaller susceptibility of steel, particularly of hard stecl, to magnetic induction, which is the main factor in attraction at small distances. Poggendorff ${ }^{3}$ and others have experimented on the subject in later times. The reader should notice the close analogy between theso phenomena and the repulsion and attraction at different distances between tro similarly electrified conductors. See article Electricity, vol. viii. p. 33.

Induction of Pernanent Magnetism. -The case above supposed, in which the induced magnetism is wholly temporary, althouglt it can be easily realized with small magnetizing forces, is not the general one, but in fact the exception. Usually a certain proportion of the magnetism remains after the inducing force is remored. This happens even with the softest iron, when the inducing force is rery great. Just as bodies differ very much in their susceptibility for indnced magnetism, so they differ greatly in their power of retaining this magnetism when the inducing force ceases, or, as the phrase is, in "coercire force." Thus, while the inductive susceptibility of steel is less than that of iron, it retains much more of the magnetism imparted to it, and is therefore said to have much greater coercive force; and the coercive force is greater the harder the steel is tempered.

It is obvious, therefore, that the principle of "inductiou," along with the idea of "retaining power" or "coercive force," furnishes us with the key to the explanation of the communication of permanent magnetism, whether by means of natural magnets or of artificial magnets, or of the electric current. In particular, we see at once the reason why the end of a needle which has been touched by the north pole of another magnet becomes a south pole, and vice versa,-a fact which greatly puzzzled the earlier magnetic experimenters, and indeed all who were inclined to think that, in the process of magnetization, something was communicated from the one magnet to the other.

## Mathematical Theory of the Action of Permanently Magietized Eodies.

In this section we shall suppose the bodies considered to be rigidly magnetized; i.e., we sball suppose that magnetic action exerted on any body produces no change in its magnetization. It is further to be observed that we ara merely establishing a compendions representation of observed facts, and foreclosing nothing as to their physical theory or ultimate cause. Gur method is therefore to some extent tentative, and its success is to be judged by the agreement of the results with experiment.

There are two main facts to be borne in mind :-(l) that a magnet is polarized, and (2) that the properties of its smallest parts are similar to those of the whole. Adopting the mathematical fiction of action at a distance, we may represent the action of such a body by a proper distribation of imaginary positive and negative attracting matter throughout its mass. This imaginary matter, following Sir W. Thomson, we shall call "magnetism," as we thns avoid suggesting other properties of matter than attraction, of which in the preseat case experience has given no evidence. We assume that magrettsm of any siyn repels magnetism

[^58]of the same sign and attracts magnetism of the opposite sign. Magnetism is supposed to be so associated with the matter of the body that magnetic force exerted on the magnetism is poaderomotive force eserted on the matter. On the other hand, magnetic force is always supposed to be exerted by magnetism upon magnetism, and never directly by or upon .matter. Into the nature of this association of magnetism with matter there is no pretence, indeed no need, to enter.

The elementary law of action assumed is that the attraction or repulsion (as the case may be) between two quantities $m$ and $m^{\prime}$ of magnetism supposed concentrated in two points at a distance $r$ apart is $\frac{m m^{\prime}}{r^{2}}$, and is in the line joining the two pounts. This aupposes that the unit quantity of magnetism is so chosen that two units of positive magnetism at unit distance apart repel each other with unit force. This definition, which is fundamental in the electromagnetic system of units, gives for the dimensions of a quantity of magnetism $\left[L^{1} 1^{3} \mathrm{~T}^{-1}\right]$. If the electrostatic ssstem be ndopted the result would of course be different.
Strengtin. An accurate meaning can now be given to the phrase of mag. "strength of a magnetic field," or its equivalent "resultant eetic
deild. Re- magnetic force at a point in the field;" it is defined to dultant be the force exerted upon a unit of positive magnetism magnetic supposed concentrated at the point. The force exerted on fares.

## Folame

## and

surface density of magnetism. a unit of negative magnetism would of course be equal in magnitude, but oppositely direcied; and in general, if $R$ denote the resultant magnetic force at the point, the magnetic force exerted on a quantity $\kappa$ of magnetism concentrated thers is $\kappa \mathrm{R}$.
We may, as in the corresponding theory of electricity, introduce the ideas of volume density ( $\rho$ ) and surface density $(\sigma)$,-so that $\rho d v$ and $\sigma d \mathrm{~S}$ denote the quantities of magnetism ia an element of volume and on an eleinent of surface respectively; $\rho$ and $\sigma$ may of course be positive or negative according to circumstances.

It will now be seen that, mathematically speaking, the theories of action at a distance for electricity and magnetism are identical, nnd every conclusion drawn will have, so far as tho physical diversity of the two cases may allow, a donble application. ${ }^{1}$ Iu particular it will be found that the theory of magnetism, when properly interpreted, gives the theory of dielectrics polarized in the way imagined by Faraday.

The fact of magnetic polarity requires the consception of marnet- aegative as well as positive magnetism ; the fact that the 1sm zero properties of the smallest parts of a magnet are similar to those of the whole requires that in every element of the body there shall be both negative and positive magnetism. From the fact that in a uniform field, i.e., one in which the resultant magnetic force has at every point the same magnitude and direction, the force of translation upon a magnet is nil, it follows that the algebraic. sum of all the magnetism in any magnet must be zero; for, if $\mathbf{R}$ denote the strength of the field, by the theory of parallel forces the whole force on the magnet will be $\Sigma(\kappa \mathrm{R}),=\mathrm{R} \Sigma_{\kappa}$; henco $\Sigma_{\Sigma} \times=0$. In other words, in every magnet there mast be as much negative as positive magnetism; and this conclusion also must be extended to the smallest parts of every magnet, ao long as we do not go behind the mero facts of observation. The positive and negative magnetism cannot bo coincident throughout, otherwise there would be no external magnetic action, but the separation is in the elements of the body. Thus, althnugh there is no force of translation in a uniform field, there will in general bo a couple. Consider the positive and negative magnetism

[^59]separately, and let $\kappa$ denote any element of the iormer and $\kappa^{\prime}$ any element of the latter. Let $N$ be the centre of mass of the positive, $S$ the centre of mass of the negative magnetism; so that, if the magnet be referred to a set of rectaagular axes, the coordiuates of $N$ and $S$ are
and
\[

\left.$$
\begin{array}{lll}
\frac{\Sigma \kappa x}{\Sigma \kappa}, & \frac{\Sigma \kappa y}{\Sigma \kappa}, & \frac{\Sigma \kappa z}{\Sigma \kappa}  \tag{1}\\
\frac{\Sigma k^{\prime} x^{\prime}}{\Sigma \kappa^{\prime}}, & \frac{\Sigma \kappa^{\prime} y^{\prime}}{\Sigma \kappa^{\prime}}, & \frac{\Sigma k^{\prime} z}{\Sigma \kappa^{\prime}}
\end{array}
$$\right\}
\]

Let the distance $N S=l$, and let $K=l \Sigma \kappa,=-l \Sigma \kappa^{\prime}$; this quantity K is called the "magnetic moment." By the theory of parallel forces, if we suspend the magnet in a uniform field of atrength R , the action upon it reduces to two forces $\mathrm{R} \Sigma \kappa$ and $-\mathrm{R} \Sigma \kappa$, each parallel to the direction of the field, acting respectively at $N$ and $S$, in other words to a couple whose moment is REslsiax or KRisin $\chi$, where $\chi$ is the angle between $\stackrel{\rightharpoonup}{\mathrm{SN}}$ and the direction of the field. Hence, if the magnet be perfectly free to follow the magnetic action of the field, it will set so that the line $\stackrel{S N}{S N}$ or the line $\stackrel{\rightharpoonup}{N S}$ is parallel to the direction of the field, the equilibrium being stable in the former case, but unstable in the latter. The line NS is therefore parallel to what we have already defined oa experimental grounds as the axial direction iu the magnet. $N, S$, and NS are sometimes called par excellence the poles and the axis of the magnet; we have adopted the looser definition given above because it is more convenient and nearer the popular usage.

The above results may be applied to aome ceses very important in Therms practice. Let the magnet whose centres of positive and negative of magnetisn are N and S be suspended by the middle point of NS, dipmo. Thich, for simplicity, may be assumed to he also its centro of neeuls gravity. Let OX (fig. 20) be a horizontal line drawn northwards, OZ


Fig. 20.
a vertical drawn downmards, both in the magnetic meridian. Let the vertical plane through NS make an angle $\theta$ with the magnetic meridian, and let ON make an angle $\phi$ with the horizcn. If $R$ bo the strength of the earth's maguetic field, and st the angle of dip, then the horizontal and vertical compowents of the earth's force aro $\mathrm{H}=\mathrm{R} \cos$ s and $\mathrm{Z}=\mathrm{R} \sin$.
First, suppase the angle $\phi$ fixed, and the magnet free to rotate about $O Z$ only'; then the couple tending to diminish the angle $\theta$ is 2. $\Sigma \pi \cdot \mathrm{R} \cos \iota \frac{i}{2} \cos \phi \sin \theta$, or $\mathrm{K} R \cos \iota \cos \phi \sin \theta$.

In other words the directive couple raries as the sine of the angle of deviation from the magnetic meridian. This conclusion was verified experimentally by Lambert, and also by Coulomb ${ }^{2}$ by means of his torsion balance. It will be seen that, cexteris paribus, the directive couple is greatest when the magnetic axis is horizontal.
${ }^{2}$ Mém. de 「Acad., 1785.

Noxt supprose the angle of fixcl, nad the mamnet fire to rotate alout a herizontal axis inclined at an angle $90^{\circ}-\theta$ to OX. The couple fonding to diminish the onglo $\phi$ is $\mathrm{Kll}(\cos 九 \cos \theta \sin \phi-$ $\sin , \cos \phi)$. The position of equilibrivin is given by the equation $\tan \phi=\sec \theta \tan$ i。

The angle at which the axis is depressed below the horizon is therefore least when $\theta=0$, and greatest when $\theta=90^{\circ}$, its value being c in the former case, and $90^{\circ}$ in the latter, as stated above, p. 221.
In geueral, if $\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}$ and $\lambda_{1} \mu, \nu$ be the direction cosincs of the direction of the field and of the axis of tho magnet respectively, then, resolving the forces acting at $N$ and $S$, we sec at ouco that the three components of the moguetic couple are

$$
\begin{equation*}
\operatorname{KR}\left(\nu^{\prime} \mu-\mu^{\prime} \nu\right), \operatorname{KR}\left(\lambda^{\prime} \nu-\nu^{\prime} \lambda\right), \operatorname{KR}\left(\mu^{\prime} \lambda-\lambda^{\prime} \mu\right) \tag{2}
\end{equation*}
$$

These are clenrly the snme as the components of the couple on a system of three magnets whose axes are parallel to $\mathrm{OX}, \mathrm{OY}, \mathrm{OZ}$, and whose magnetic moments are $\mathrm{K} \lambda, \mathbb{K} \mu, \mathrm{K} \nu$. Hence, so far as the action of a uniform fied is concerned, we may resolve the magnetic moment like a vector, and replace a given magnet by others the resultant of whose momeats is the moment of tie given magnet.
It appears therefore that in a uniform field every magnet behaves as if it were made up of a certain quantity of positive magnetism and an equal quantity of negative magnetism placed at such a distance a a art on a line parallel to the magnetic axis that the product of the quantity of magnetism into that distance bas a value equal to the magnetic moment of the magnet. It is very important to observe that the magnetic moment alone appears in the above formulx for the magnetic actien. We cannot therefore separately determine from observations in a uniform field either the quantity of positive or negative magnetism in a magnet or the distance between the magnetic centres of mass.
Let $M$ be any magnet, and Pa point whose distance from magnet replaced by 3 m manite number of infinitely omall magoets.
called a "line of magnetization." It is clear from what las already been shown that we may if we choose rejlace the element $d v$ by threc ideal magnets whose ases are parallel to the coordinate axes, and whose moments aro Adv, Belv, Cdv respectively.
If the IK be the magnactic moment of the whole magnct, $\delta \mathrm{K}$ the moment of any clement $\delta v$, and $p, q, r$ the direction cosines of the
 lering that $\kappa^{\prime}=-\kappa$ ! or every clement,

$$
p-\left(\frac{\Sigma \kappa x}{\Sigma \kappa}-\frac{\Sigma \kappa^{\prime} x^{\prime}}{\Sigma_{\kappa^{\prime}}}\right) \frac{1}{l}=\frac{\Sigma\left(l_{\kappa} \cdot \frac{x-x^{\prime}}{l}\right)}{l \Sigma_{\kappa}}-\frac{\Sigma(\delta k \lambda)}{K}=\frac{\Sigma \Gamma \lambda \delta v}{K}=\frac{\Sigma \Lambda \delta v}{1 i}
$$

We may therefore write, replacing summation ly iutegration,

$$
\begin{equation*}
\mathrm{K} p=\iiint \Lambda d v, \mathrm{~K}_{q}=\iiint \mathrm{B} d v \quad \mathrm{~K}_{q}=\iiint \mathrm{C} d v \tag{3}
\end{equation*}
$$

Let SN be an idcal magnet of infinitely small length $l$, let in bo its Potencia) magnetle moment, and $m=\kappa l$. Let $Q$ be its middle point, and the of inangle $\mathrm{PQN}=\theta, \mathrm{N}$ being the positive or north-sceking pole; and let finitely $\mathrm{QP}=\mathrm{D}$. Then the poteutial at P due to this magnet is

$$
\kappa\left\{D^{2}-D l \cos \theta+l^{2}\right\}^{-1}-\kappa\left\{D^{2}+D l \cos \theta+\left\{l^{2}\right\}^{-\frac{1}{2}}\right.
$$

smabll magnet

Expanding and neglectug powers of $\frac{l}{D}$ above the first, we get for
the potential

$$
\begin{equation*}
\frac{m \cos \theta}{D^{2}} \tag{4}
\end{equation*}
$$

Hence the potential et $\mathrm{P}(\xi, \eta, \zeta)$ of an iufinitely small magnct Potentias Adv at ( $x, y, z$ ), having its axis parallel to the axis of $x$, is of filmle $\mathrm{A}(\xi-x) / \mathrm{D}^{3}$, and similarly for the other two. We thercfore of main magi: $\%$ for the potential of the whole magnet

$$
\left.\begin{array}{rl}
\mathrm{V} & =\iiint \mathrm{A}(\xi-x)+\mathrm{B}(\eta-y)+\mathrm{C}(\zeta-z) \frac{1}{\mathrm{D}^{3}} d v  \tag{6}\\
& \left.=\iiint\left\{\mathrm{A} \frac{d\left(\frac{1}{\mathrm{D}}\right)}{d x}+\mathrm{B} \frac{d\left(\frac{1}{\mathrm{D}}\right)}{d y}+\mathrm{C} \frac{d\left(\frac{1}{\mathrm{D}}\right)}{d z}\right\} d v\right\} \\
& =\iiint \mathrm{I}\left\{\lambda \frac{d}{d x}+\mu \frac{d}{d y}+v \frac{d}{d z}\right\} \frac{1}{\mathrm{D}} d v
\end{array}\right\}
$$

Taking the sccond of these expressious and integrating by parts in the usual way, we get
where

$$
\left.\begin{array}{l}
V=\iint \frac{\sigma}{\mathrm{D}} d \mathrm{~S}+\iiint \frac{\rho}{\mathrm{D}} d v  \tag{6}\\
\sigma=l \mathrm{~A}+m \mathrm{~B}+\imath \mathrm{C}=\mathrm{I} \cos \theta \\
\rho=-\left(\frac{d \mathrm{~A}}{d x}+\frac{d \mathrm{~B}}{d y}+\frac{d \mathrm{C}}{d z}\right)
\end{array}\right\}
$$

$l, m, n$ heing the direction cosines of the outward normal to any chement $d s$ of the surface of the magnat and $\theta$ the angle between the normal and the direction of magnetizatiou at $d \mathrm{~S}$.

Heace the action of any magnet may be represented by poision'y means of a certain volume distribution ( $\rho$ ) and a certain distribusurface distribution $(\sigma)$ of free magnetism. This important tion. proposition is due to Poisson. ${ }^{1}$

The fact, in itsclf obvious, that the sum of all the magnetism of Poisson's distribution must be zero, gires the theorem

$$
\left.\begin{array}{rl}
\iint\left(\frac{d \mathrm{~A}}{d x}+\frac{d \mathrm{~B}}{d y}+\frac{d \mathrm{C}}{d v}\right) d v & =\iint(l d+i n \mathrm{~B}+n \mathrm{C}) d \mathrm{~S}  \tag{7}\\
& =\iint \mathrm{I} \cos \theta d \mathrm{~S}
\end{array}\right\}
$$

which admits of course oi direct analytical proof.
The magnet may also be replaced, so far as its external action is concerned, by a distribution wholly on its surface, ns was shown by Gauss. ${ }^{2}$ This will be seen at once if we replace the positive and negative magnetism throughout the body by positive and negative electricity, and suppose the surface of the magnet covered with a conducting layer in connexion with the earth. The surface will thus become charged with a distribution of positive and negative electricity whose total sum is zero, such that the potential of the surface is zero, and hence the potential at every external point zero. The potential of this surface layer

[^60]at eve.y point external to the body is therefore equal and opposite to'that of the internal electricity. If, therefore, ,we change the sign of the surface deusity at every point, we obtain a surface distribution whose potential at every external point is the same as that of the body. There is of course only one such distribution: we may call it Gauss's distribution.

Poisson's distribution will coincide with that of Gauss provided the magnetization be such that

$$
\begin{equation*}
\frac{d \mathrm{~A}}{d x}+\frac{d \mathrm{~B}}{d y}+\frac{d \mathrm{C}}{d z}=0 \tag{8}
\end{equation*}
$$

when this condition is satisfied at every point of the body, A is said to be "solenoidally" magnetized; a particular case is that of uniform magnetization.
So long as the point considered is external to the magnet there is no difficulty in attaching a definite meaning to the resultant magnetic force. (i) at a point; its components are given by

$$
\begin{equation*}
\alpha=-\frac{d \mathrm{~V}}{d x}, \quad \beta=-\frac{d \mathrm{~V}}{\partial y}, \quad \gamma=-\frac{d \mathrm{~V}}{d z} \ldots \tag{9}
\end{equation*}
$$

and the values obtained will be the same whether V be calculated by means of Poisson's or of Gauss's distribution. Inside the body the result is otherwise, for reasons that are not difficult to understand, when we examine the nature of our fundamental assumptions. It is therefore necessary. to be careful to define what we mean by resuiltant magnetic force in the interior of a magnet. It is defined by the above equation (9) on the understanding that V is calculated from Poisson's distribution. We can show that 9 thus defined is the resultant force in an infinitely small cyliodrical cavity within the magnet, whose axis is parallel to the line of magnetization, and whose radius $c$ is infuitely smail compared with its axis $2 b$.
The removel of the matter filline such a cavity- will affect Poisson's volume distribution to an infinitely amall extent; the alteration of the force if 'any, will therefore arise simply from the surface distribution which we must place on the walls of the cavity in order to make up the complete representation of the action of the magnet in the cavity. This distribution reduces to two circular disks of radius $a$ at the two ends, the densities of the magnetism on which are $-I$ and $+I$ respectively. The action duo to these is a force $4 \pi 1\left(1-b / \sqrt{a^{2}+b^{2}}\right)$ in the direction of magnetization. If $a$ be infinitely small compared with $b$, this force becomes zero, which proves our proposition.

If, on the other hand, the cavity in the magnet be diskaetic in dactica.

For if $\nu, \tau$ and $n_{v} t$ be the Durmal and tangential components of ond $Y$ just irside, and $\nu^{\prime}, \tau^{\prime}$ and $n^{\prime}$, $t^{\prime}$ the correspondiag comporenrs just outside the surface near eny point, we have $n=\nu+4 \pi I \cos \theta$, anf $n^{\prime}=\nu^{\prime} ;$ but $\nu^{\prime}=\nu+4 \pi \mathrm{I} \cos \theta$, therefore $n=n^{\prime}$. On the other hand $\tau^{\prime}=t^{\prime}$, whereas $\tau$ is the resyltant of $t$ and $4 \pi I \sin \theta$, which is parallel to the surface, but otherwise may have eny direction according to circumstances; bence, since $t^{\prime}=t$, in general $\tau^{\prime}$ is not equal to $\tau$.
In fact there will be tangential discontinuity of the magnetic induction unless the line of magnetization be perpendicular to the surface of the magnet; in this case there is complete continuity of the magnetic induction. When the magnetization at the surface is tangential, there is, on the other band, complete continuity of the magnetic fores.

It follows from the above that the surface integral of the magnetic induction taken over any closed surface $S$ vanishes.
First, let the surface be wholly within or wholly withont continuously anagnetized mitter. We lave, jotegrating all over $S$ and all over the apace enclosed by S , the aualytical theorem

$$
\begin{equation*}
\iint(l a+m b+n c) d \mathrm{~S}=\iiint\left(\frac{d a}{d x}+\frac{d b}{d y}+\frac{d \mathrm{c}}{d z}\right) d v . \tag{14}
\end{equation*}
$$

hence the result follows, for every elenent of the right-land integral vaniehes. Next, supposa S to be partly within and partly without a magnetized body. Divide it into two parts by a double partition one of whose walls runs outside the surface of the body end jufinitely near it, the other inside and infinitely near it; then, on account of the normal continuity of $\mathfrak{Z}$, the surface integral will bo the same in a bsoluta value over each of these raills. Hence the integral over the whole of $S$ differs infinitely little from the sum of the integrals over the two surfaces into which it is broken up by the double partition, cach of which vanishes by the former case. Hence the theorem holds in this case also.
We may therefore apply to lines and tubes of magnetic induction without restriction all the theorems proved for lines and tubes of electric force in space free from electrified bodies. We may speak of the number of lines of magnetic induction instead of the surface integral if we choose. And we have this important theorem :-
The number of lines of magnetic induction that pass through an unclosed surface depends merely on its boundary.
There must therefore be a vector $\mathfrak{c}$, whose line integral Vector round the boundary is equal to the surface integral of $\mathcal{F}$ potan. over the surface.
The components F, G, H of $\mathcal{G}$ are connected with those of $\%$ by the equations

$$
\begin{equation*}
a=\frac{d \mathrm{H}}{d y}-\frac{d \mathrm{G}}{d z}, \quad b=\frac{d \mathrm{~F}}{d z}-\frac{d \mathrm{H}}{d x}, \quad c=\frac{d \mathrm{G}}{d x}-\frac{d \mathrm{~F}}{d y} \tag{15}
\end{equation*}
$$

as has been shown in the article Electhicity, rol. viii. p. 69.
Mutizal potontial energy and mutual action of two magnetic Mrtua. systems.-The potential energy of a small magnet is $\kappa\left(V_{2}-V_{1}\right)$, potentu where $V_{1}$ and $V_{2}$ are the values of $V$ at its negative and positive poles. energy If the magnet be infinitely small, of length $d s$ say, tlie direction of two cosines of $d s$ being $\lambda, \mu, v$, this may be written $\kappa d s d V / d s, i . e ., m d V / d s$, inagnots or, if. we are considering a maguetized element of volume $d v$,

$$
\begin{equation*}
\mathbf{I}\left(\lambda \frac{d V}{d x}+\mu \frac{d V}{d y}+\nu \frac{d V}{d z}\right) d v \tag{16}
\end{equation*}
$$

Hence the potential energy of tho wholo magnetic system in a field whose potential is given by $V$ is

$$
\left.\begin{array}{rl}
\mathrm{W} & =\iiint\left(\mathrm{A} \frac{d V}{d x}+\mathrm{B} \frac{d V}{d y}+\mathrm{C} \frac{d V}{d z}\right) d v  \tag{17}\\
& =-\iiint(\mathrm{A} a+\mathrm{B} \beta+\mathrm{C} \gamma) d v
\end{array}\right\}
$$

the integration being extended all over the magnetized masses sup-: posed to be acted upou. Integrating by parts, we get at once

$$
\begin{equation*}
\mathrm{W}-\iint \mathrm{V} \dot{\sigma} d \mathrm{~S}+\iiint \cdot \mathrm{V} \cdot \rho d v \tag{18}
\end{equation*}
$$

$\because$ and $\rho$ being the surface and volume densitics of Poisson's distri: hution, a result that might have been expected. W may also be expressed as a aextuplo integral ; for, if $1^{\prime}, \lambda^{\prime}, \mu^{\prime}, z^{\prime}, x^{\prime}, y, z^{\prime}$ refes to the acting system, then

$$
\mathbf{V}=\iint \mathrm{I}^{\prime}\left(\lambda^{\prime} \frac{d}{d x^{\prime}}+\mu^{\prime} \frac{d}{d y^{\prime}}+\nu^{\prime} \frac{d}{d z^{\prime}}\right) \frac{1}{\mathrm{D}} d x^{\prime} d y^{\prime} d z=
$$

Whence

$$
\left.\begin{array}{c}
\mathrm{W}=\iiint \iiint d x d y d z d x^{\prime} d y d z^{\prime} 11^{\prime}\left(\lambda \frac{d}{d x}+\mu \frac{d}{d y}+\nu \frac{d}{d z}\right)  \tag{19}\\
\times\left(\lambda^{\prime} \frac{d}{d x^{\prime}}+\mu^{\prime} \frac{d}{d y^{\prime}}+\nu^{\prime} \frac{d}{d z^{\prime}}\right) \frac{1}{\mathrm{D}}
\end{array}\right\}
$$

A- remarkable expression for $W$ may be obtained by supposing the integration in (17) extended throughont the whole of space, on the understanding that A, B, C are zero where thero is mo magnetized matter, and then integrating by parts. We get, since the surface integral at infinity may be shown to ranish,

$$
\left.\begin{array}{rl}
\mathrm{W} & =\iint_{-\infty}^{\infty} \int_{-\infty}\left(\mathrm{A} \frac{d \mathrm{~V}}{d x}+\mathrm{B} \frac{d \mathrm{~V}}{d y}+\mathrm{C} \frac{d \mathrm{~V}}{d z}\right) d v  \tag{20}\\
& =-\iint_{-\infty}^{\infty} \mathrm{V}\left(\frac{d \mathrm{~A}}{d x}+\frac{d \mathrm{~B}}{d y}+\frac{d \mathrm{C}}{d z}\right) d v
\end{array}\right\}
$$

where it must he nuderstood that A, 1, C vary continuously, however rapidly. In point of fact, where, as at the surface of a magnetized body, there is discontinuity, a finite portion of the integral will arise from an iotinitely thin stratum near the surface. The proper representation of this part will be a surface integral, as may be seen by refering to (18), from which we might have starterl.
If now $V^{\prime}$ be the potential of the magnet acted upon, thea

Whence

$$
\frac{d^{2} V^{\prime}}{d x^{2}}+\frac{d^{2} V^{\prime}}{d y^{3}}+\frac{d^{2} V^{\prime}}{d z^{3}}=4 \pi\left(\frac{d A}{d x}+\frac{d^{3} \mathrm{~B}}{d y}+\frac{d^{\prime} \mathrm{C}}{d z}\right) ;
$$

$$
\left.\begin{array}{rl}
\mathrm{W} & =-\frac{1}{4 \pi} \iint_{-\infty}^{\infty} \int_{-\infty} \nabla\left(\frac{d^{2} V^{\prime}}{d x^{2}}+\frac{d^{2} V^{\prime}}{d y^{2}}+\frac{d v^{2}}{d v^{\prime}}\right) d v \\
& -+\frac{1}{4 \pi} \iint_{-\infty}^{\infty} \int_{0}\left(\frac{d V}{d x} \frac{d V^{v}}{d x}+\frac{d V}{d y} \frac{d V^{\prime}}{d y}+\frac{d V}{d z} \frac{d V^{\prime}}{d z}\right) d v^{\prime}  \tag{21}\\
& -+\frac{1}{4 \pi} \iint_{-\infty}^{\infty} \int_{\mathrm{R}} \mathrm{RR} \cos \theta d v^{2}
\end{array}\right\}
$$

where K and $\mathrm{R}^{\prime}$ are the resultant forces at ans point of space dne to the ecting and acted-upon systems respectively, and $\theta$ the angle between their directions.

In practice $W$ is expressed as a function of the variables (equal in number to the degrees of freedom) that determine the relative position of the two systems; differentiation with respect to any one of these then gives the generalized force component tending to decrease that variable.

We may also calculate the forces directly. For, the components of force on the elemeat $d v$, being the differences of the forces acting on the two poles of the clenent, are

$$
\left(\mathrm{A} \frac{d a}{d x}+\mathrm{B} \frac{d a}{d y}+\mathrm{C} \frac{d a}{d z}\right) d x, \& \mathrm{c} ;
$$

and the components of couple, in calculating which the field may be sappiosed uniform, are (see above, p. 22s)

$$
(\gamma \mathrm{B}-\beta \mathrm{C}) d v, \& c
$$

Hence, integrating, we get, with the closea origin, for the com. ponents of the whole force and couple,

$$
\mathfrak{z}=\iiint\left(\mathrm{A} \frac{d a}{d x}+\mathrm{B} \frac{d a}{d y}+\mathrm{C} \frac{d a}{d z}\right) d v,
$$

and similarly for $\mathrm{yd}_{\mathrm{m}}$ and $\approx$.

$$
\begin{align*}
& y=\iiint\left\{r \mathrm{~B}-\mathrm{BC}+y\left(\mathrm{~A} \frac{d \gamma}{d x}+\mathrm{B} \frac{d \gamma}{d y}+\mathrm{C} \frac{d \gamma}{d z}\right)\right\}  \tag{22}\\
& \left.-z\left(\mathrm{~A} \frac{d \beta}{d x}+\mathrm{B} \frac{d \beta}{d y}+\mathrm{C} \frac{d \beta}{d z}\right)\right\} d v, \\
& \text { and sumilarly for } \mathfrak{n l} \text { aod }
\end{align*}
$$

In the important case of a uniform field whose components are $\alpha, \beta, \gamma$, we have

$$
\begin{equation*}
\mathrm{W}=-\mathrm{K}(l \alpha+m \beta+n \gamma) \tag{23}
\end{equation*}
$$

F. being the moment of the magnet, and $\ell, m, n$ the direction cosines of its axis. From this formula the results given ebove (p. 227) can be deduced with great case.

Examples.-Some examples of the application of the foregoing theory are here given, partly on account of their intrinsic value as types enabling us to conceive the different varieties of magnetic action, partly for the sake of the light they throw on the theory itself. The reader who
desires more such should consult Maxwell's Electricity and Maguctism, or Mascart and Joubert, Legons sur l'Électricité et le Mugnétisme.

Solenoidel Magnets have already been defuncd as such that the rector I satisfies tho solenoidal condition

$$
\frac{d \mathrm{~A}}{d z_{i}}+\frac{d \mathrm{~B}}{d y}+\frac{d \mathrm{C}}{d z}=0
$$

The lines of magnctization, therefore, have all the properties of lines of magnetic induetion or electric force. In partienlar, if mo consider a portion of the magnet enclosed by a tubo of the lines of magnetization, the product of the intensity of magnctization by tho section at each point is the same. Such a portion of mannctizeld mattor taken by itself is called a "magnetic solenoil," and the produet mentioned is called its "strength." It is clear from the general definition, or it may be proved direetly from the sccondary property just mentioned) that the action of the solenoid may be represented by the distribution of a certain cquatity ol of positive maguetism on the oae end and an equal quantity of negative magnetisin on the other, I being the intensity of magnctization, $\omega$ the normal section at the eat. The action thereloro depends merely on tho strength of the solenoid and on the position of its evds. The slopo


Fig. 21.
of the interveuing portion is immaterial. If we suppose it straight, end if the section be infinitely small so that the magnetism at the eads may be regardcu us condensed at troo points, we have an ideal magnet of finite length. The equipotential lines of such a magnet in any plane through its axis are of course given by the equation

$$
\begin{equation*}
\frac{1}{r}-\frac{1}{r^{\prime}}=\text { const. } \tag{24}
\end{equation*}
$$

where $r$ and. $r^{\circ}$ are the distances of any point $P$ ou the line from tho poles.
The equation to the lines of force is casily obtained ; ${ }^{2}$ for, if NP and SP (hig. 21) make angles $\theta$ and $\theta^{\prime}$ vith the axis of the magner, and $\phi$ and $\phi$ with the line of force, we must have

$$
\sin \phi / r^{2}-\sin \phi^{\prime} / r^{\prime 2}=0 ;
$$

hence, since

$$
\sin \phi=r d \theta / l s, \quad \sin \phi^{\prime}=r^{\prime} d \theta^{\prime} / d s
$$

we get

$$
d \theta / r-c\left(\theta^{\prime} / r^{\prime}=0 ; \quad i . c ., \sin \theta d \theta-\sin \theta^{\prime} d \theta^{\prime}=0 ;\right.
$$

which gives for the equation to a line of force

$$
\begin{equation*}
\cos \theta-\cos \theta^{\prime}=\text { const. } \tag{25}
\end{equation*}
$$

We may imagine a magnet of this kind so long that the action of one of its poles may be altogether neglected at points whieh are at a finite distance from the other. We thus effictively realize what never occurs in mature, viz, a magnet with one pole only. If we placo the like poles of tro such magnets near cach other, we get a field the equipotential lines and lines of force in any axial plane of which are given by the cquations

$$
\begin{align*}
& \frac{1}{r}+\frac{1}{r^{\prime}}=\text { const. }  \tag{26}\\
& \cos \theta+\cos \theta^{\prime}=\text { const. } \tag{27}
\end{align*}
$$

The lines of force given by cquations (25) and (27) may be traced in a diagram by mans of the following simple and elegant constraction. ${ }^{3}$ Dravv $t$ two circles A and B , having equal radif and N and S respectively for oentres; produce the line NS both ways, and, starting from the centre, divide it into any number of cyual prits; throngh these draw perpendiculars to mect the circles $A$ and 13 ;

[^61]Berin, 170.
3 Ioget, Jour. Rov. Inst., 1831.
from N draw a series of lines to the points of division on B , and from S a similar series to the points of divisien on A . These lines will form a netrook of lozenges the loci of the vertices of which will be lines of force, corresponding to (25) or (27) according as tre


Fig. 22.
pass from peint to point along ono set of lozenge diagonals or along the other. Fig. 22 will give the reader an idea of the general appearance of the two sets of lines. He may compare the ideal with the actual eases by referring to figs. 4 and 5, p. 222.

In tho case of an infinitely sunall magnet, the eqnipotential lines are of course given by the polar equation $\gamma^{2}=c^{2} \cos \theta$, c being a variable parameter. It is easily shown that the lines of force, which are decessatily orthogonal to these, have for their equation $r=c \sin ^{2} \theta .{ }^{1}$ If $\phi$ be the angle between $r$ and the tangent of the line of foree, we have $\tan \phi=r d \theta / d r=\frac{1}{2} \tan \theta$; hence the following coustruction for the direction of the line of force at P due to a small magnet at 0 :let K be the point of trisection of OP nearest O , and let KT , perpendicular to $O P$, cut the axis of the magnet in $T$; then TP is the tangent to the line of force at P . This construetion in a slightly different form was given by Hansteen ${ }^{2}$ and. by Gauss ${ }^{3}$; the latter ndds that the resultant force at P is given by MIPT/ $\overline{\mathrm{O}_{1} \mathrm{OP}^{3}}$ where M in the magnetic monent of the magnet, a proposition which the reader will easily verify. These propositions are of considerable use in rough magnetic calculations. As this is an important case wo give a diagram of the equipetential lines and lines of force in tig. 23.
We may, if we cloose, consider a filament of matter magnetized longitudinally at every peint, but so that the strength $\omega 1$ ( $=\mathrm{J}$, say) is variable. Such a filament is called a complex solenoid. It may clearly be supposed made up of a bundle of simple solenoids whose ende aro not all coincident with the ends of the filament. If $d s$ be an element of such a filament, the potential is given by

$$
\begin{equation*}
\mathrm{V}=\int d s \mathrm{~J} \frac{d\left(\frac{1}{\mathrm{D}}\right)}{d s}=\frac{\mathrm{J}_{3}}{\mathrm{D}_{1}}-\frac{\mathrm{J}_{2}}{D_{2}}-\int d s \frac{1}{\mathrm{D}} \frac{d \mathrm{~J}}{d s} \tag{28}
\end{equation*}
$$

That is, its action may be represented by two particles of magnetism $\mathrm{J}_{1}$ and $\mathrm{J}_{2}$ at its two ends, and by a continuous distribution of free magnotism along its length whose density is $-d J i d s$. This is of conrse merely a particular case of Poisson's distrlbution.

When a body is solenoidally magnetized, tho magnetic force yj both external and internal depenils solely on the surface distribution, i.c., merely on the ends of the solenoids of which the body is composed. We may therefore suppose the two ends of any solenoid joined by a solenoid of equal strength lying in the surface of the body. Proceeding thus, wo may in an infinite number of wnys construct a surface layer of tangenticlly magnetized matter which will represent tho magnetic action of a solenoildally nagnetized bedy. Thomison has sherva by means of a lighly interesting piece of analysia how to find the cemponents of this tangential magnetization. See Rcprint of Pajecrs on Electricity and ALrgnetism, p. 401.
The magnetic theorems just etated will suggest at once to the

[^62]mind of the reader acquainted with the analysis employed in hyilrokinetical problems the close analogy that subsists between tha two methods. In fact, by proper arrangement, every problem in the one sulbject ean be converted into a problem in the other. For details we refer the reader to Thomson, who was, se far as we knom, the first to work out this matter fully ; in the present connexion he should consuit more particularly $\$ 5573 \mathrm{sq}$. of the Reprint.


Fig. 23.
Uniformly Dfagnetized Bodies constitute in practice the mest im. Potential portant cense of solenoidal magnets. In the first place it is obvious of unithat the whole magnetic moment of such a body is simply its volume formly multiplied by the intensity of magnetization, and that the axis of magnet the whole is parallel to the axis of earh of its infinitely small parta. ized The method usually applied to calculate the potential in this case bodies, may be presented in two ways. The potential is calculated accordIng to Poisson's method in this case merely from a surface distribution of varying density I $\cos \theta$. We may replace this by a layer of uniform density $\rho$ and varying normal thickuess. Let the thickness at any point measured parallel to the magnetic axis be $t$; then the normal thickness is $t \cos \theta ;$ hence $\rho t \cos \theta=$ Ieosz, and $\rho t=1$; i.e., $l$ is constant. We may therefore suppose the magnet replaced by itself (fig. 24) with a uniform volume distribution $p$ of positive magnetism, and itself dis-


Fig. 24. placed through a distance $t$ in a direction opposite to that of magnetization with a minform volume distribution $-\rho$; or, which comes to the same thing, the potential of the magnet at $P$ is $p\left(U-U^{\prime}\right)$, where $U$ is the potential at $P$ of a uniform volume distribution of density +1 throughout tha magnet, and $U^{\prime}$ tha potential of the same at a point $P^{\prime}$ displaced through a distance $\ell$ in the direction of magnctizstion.
If $l, m, n$ be the direction cosines of the magnetic axis, this gives at once

$$
\left.\begin{array}{rl}
\mathrm{V} & =-\rho\left(\frac{d \mathrm{U}}{d x} l t+\frac{d \mathrm{U}}{d y} t n+\frac{d \mathrm{U}}{d z} t n\right) \\
& =-\mathrm{I}\left(l \frac{d \mathrm{U}}{d x}+m \frac{d \mathrm{U}}{d y}+n \frac{d \mathrm{U}}{d z}\right)  \tag{29}\\
& =\mathrm{AX}+\mathrm{BI}+\mathrm{CZ}
\end{array}\right\}
$$

Whera $X, Y, Z$ are the components of the resultant force due to volume distribution $\rho=+1$ throngheut the body, and $A, B, C$ the compenenta of the magnetization.

Tho sane result may also bo arrived at thus. The part of the potential due th the element $d v$ is $I d v \cos \theta / r^{2}$, but this is the component parallel to tho direction of $I$ of tho rosultant forco st $P$ of a rclume distribution whose density in $d v$ is $I$; hence, since the
direction of I ls everywhere the same, the whole matential is the component parallel to the magnetle axls of the body of the resultant force at $P$ of a volume distribution $p=I$ throughout its whelo extent. Z'his gives at once the expression of (29) for $\%$.

In the case of a uniformly magretized spliere of radius $u$, the axis being parallel to the axis of $x$, and the centre at the origin, we get, if $r$ be the distance of $P$ from the origin, for cxtcrnal points,

$$
\begin{equation*}
T=\frac{4}{3} \pi I a^{7} x / 2^{3} . \tag{30}
\end{equation*}
$$

in other words, the external action is that of a maguct of infinitely small dimensions, laving the same mement and axis, placed at the centre.

For internal points

$$
\begin{equation*}
V=4 \pi 12 \tag{31}
\end{equation*}
$$

whence it appears that the magnetic force inside the splere is constant in magnitude and in direction, being opposite to the uniform inagnetization, and equal to $-\frac{1}{3} 1$.

The potential of a unformly magretized ellipsoid may be siailarly treated. Let the origin be at the ontre, and the axcs along the principal diameters of the ellipsoid, whose lengths are $2 n, 2 h$, $2 c$, and let $l, m, n$ be the direction cosines of its magnetic axig. Consider first an external point. Then, ${ }^{1}$ if

$$
\begin{equation*}
L=2 \pi a b c \int_{a}^{\infty} \frac{d \phi}{\sqrt{\left(a^{2}+\phi\right)^{3}\left(b^{2}+\phi\right)\left(c^{2}+\phi\right)}}, \quad \mathbf{M}=\& c ., \quad \mathbf{N}-\& c . \tag{32}
\end{equation*}
$$

where $a$ is the positive root of

$$
\frac{x^{3}}{a^{2}+\phi}+\frac{y^{2}}{b^{2}+\phi}+\frac{z^{3}}{c^{3}+\phi}=1
$$

we have

$$
\mathbf{X}=\mathrm{L} x, \quad \mathrm{Y}=\mathrm{M} y, \quad \mathrm{Z}=\mathrm{N} z,
$$

and

$$
\begin{equation*}
\mathrm{V}=\mathrm{AL} x+\mathrm{BM} y+\mathrm{CN} z \tag{33}
\end{equation*}
$$

where it must be remembered that $L, M, N$ are functions of $x, y / z$, inesmuch as a is so.

If $(x, y, z)$ be an internal point, $X, Y, Z$ are the components of the force due to a similar and similarly situated ellipsoid through $(x, y, z)$. Let its axes be $p a, p b, p c$; we now have

$$
\mathrm{X}=\mathrm{L} x, \mathrm{Y}=\mathrm{M} y, \mathrm{Z}=\mathrm{N} z
$$

where

$$
\mathrm{L}=2 \pi p a p b p c \int_{0}^{\infty} \frac{d \phi}{\sqrt{\left(p^{2} a^{2}+\phi\right)^{3}\left(p^{2} b^{2}+\phi\right)\left(p^{2} c^{2}+\phi\right)}}
$$

or, mriting $\phi=p^{2} \psi$,

$$
\begin{equation*}
\mathrm{L}=2 \pi a b r \int_{0}^{\infty} \frac{d \psi}{\sqrt{\left(a^{2}+\psi\right)^{3}\left(b^{2}+\psi\right)\left(c^{2}+\psi\right)}}, \mathrm{M}=\& \mathrm{c} ., \mathrm{N}=\& \mathrm{c} . \tag{31}
\end{equation*}
$$

We thus obtain for V ,

$$
\begin{equation*}
V=A L x+B M y+C N z \tag{35}
\end{equation*}
$$

Where L; M, N are now constants, which remain the same go long as the ratios of the axeg remain analtered. The components of the force inside the ellipsoid are

$$
\begin{equation*}
a=-\mathrm{AL}, \quad \beta=-\mathrm{BM}, \quad \gamma=-\mathrm{CN} \tag{36}
\end{equation*}
$$

The force is thereforo uniform; but its direction does not coirscide with that of the magnetization, unless the latcer be parallel io one of the priseipal diameters, and then the force is opposite in direetion to the magnetization. It will be observed that the foree irside similar ellipgoidg similarly $\operatorname{coargnetized~to~the~same~intensity~is~}$ always the game.

For an oblate ellipsoid of revolntion, in which $b=c=a / \sqrt{1-c^{2}}$, $\mathrm{L}=4 \pi\left(\frac{1}{e^{2}}-\frac{\sqrt{1-\varepsilon^{2}}}{\epsilon^{3}} \sin ^{-1} e\right), \mathrm{M}-\mathrm{N}=2 \pi\left(\frac{\sqrt{1-c^{2}}}{c^{3}} \sin ^{-1} c-\frac{1-e^{2}}{c^{2}}\right)$. For a very flat oblate cllipsoid of revolution $L=4 \pi, M=N=\pi^{2} \pi / c$. For a prolate or ovary cllipsoid of revolution, in which

$$
\begin{gathered}
c=b=c \sqrt{1-c^{2}}, \\
\mu=M=2 \pi\left(\frac{1}{c^{2}}-\frac{1-c^{2}}{2 c^{3}} \log \frac{1+c}{1-c}\right), \\
N=4 \pi\left(\frac{1}{c^{2}}-1\right)\left(\frac{1}{2 c} \log \frac{1+c}{1-c}-1\right)
\end{gathered}
$$

From the formulx for an ellipgoid me conld easily deduce these for an infinitely long elliptic or circular cylinder; we hare merely to make one of the axes infinite. We find in this way, for instance, that the force inside a circnlar cylizder of infinite length magnetized trausversely is $-2 \pi \mathrm{I}$.

The reader will find it interesting to examinc the valnes of the magnetic induotion in the foregoing cases, and to verify its normal continuity at the surface of the magnet.

Lamollar Mragncts form another very important class. In them the components of magnetization are derivable by differentiation

[^63]from a function $\phi(x, y, z)$, which is sometimes called the "petential of magactization," so that
\[

$$
\begin{equation*}
\Lambda=\frac{d \phi}{d x}, \quad \mathrm{~B}=\frac{d \phi}{d y}, \quad \mathrm{C}=\frac{d \phi}{d z} \tag{37}
\end{equation*}
$$

\]

It is obviong at once that the fanlly of stirfaces $\phi(x, y ; z)=$ const. cut the lines of magoetization at right angles, for, if $d x, d y, d z$ be the projectinns of the element of any line on the surface, wh have by dilfereatiatiou

$$
\frac{d \phi}{d x} d x+\frac{d \phi}{d y} d y+\frac{d \phi}{d z} d z=0
$$

$i c ., \quad A d x+\mathrm{D} d y+\mathrm{C} d z=0$,
which is the analytical expression of the property in question. Wo may thpr-fore suppose n lamellar magnet divided up hy these surfaces of magnetization into an infinite number of intinitely thin normally magnetized shells or lamelle. It can be shown that the product of the intensity of magnetization by the thickness at each print of a"y cuch shell is the same; for, if $\phi(x, y, z)=c$ and $\phi(x, y, z)$ $-c+\delta$ le the muatinns to the two surfaces bounding the shell, of the normal distance between them at ant print, we bove

$$
\frac{d \phi}{d x} \delta x+\frac{d \phi}{d y} \delta y+\frac{d \phi}{d z} \delta z=\delta c
$$

henco

$$
\left(\frac{d \phi}{d x} \frac{d x}{d \nu}+\frac{d \phi}{d y} \frac{d y}{d \nu}+\frac{d \phi}{d z} \frac{d z}{d \nu}\right) \delta \nu=\delta c,
$$

i.c., $1 \delta \nu=\delta c=$ constant for the same shell, which was to le proved. This product is called the strength of the shell.

A shell, which is everywhere normally magnetized, but whoso strength is mot constant, 18 calsed a "complex sheil "; a magnet made up of such shells is called a "complex lamellar maguet." The condition to be satistied by $A, B, C$ iu this case is siniply that the lines of magnetization must be orthogonal to a family of surfaces, i.e., $\mathrm{Ad} x+13 d y+\mathrm{C} d z \mathrm{~m}$ ist he convertible into a perfect differential by multiplication by a factor; otherwise that

$$
\mathrm{A}\left(\frac{d \mathrm{~B}}{d z}-\frac{d \mathrm{C}}{d y}\right)+\mathrm{B}\left(\frac{d \mathrm{C}}{d x}-\frac{d \mathrm{~A}}{d z}\right)+\mathrm{C}\left(\frac{d \mathrm{~A}}{d y}-\frac{d \mathrm{~B}}{d x}\right)=0
$$

The potential at $P$ of a simple magnetic shell of strength $i$ is given by the formula

$$
\mathrm{V}=\iint \frac{i \cos \theta d \mathrm{~S}}{D^{2}}=j \iint \frac{d S \cos \theta}{\mathrm{D}^{2}}=i \omega
$$

where $\omega$ is the solid angle sulbtended at the point P. ${ }^{3}$ There is a convention here as to sign, viz., that side of the shell is positive towards which the lines of magnctization pass, and the solid anglo aubtended at points intinitely near that side is positive, while that subtended at points infinitely near the other side is negative. If we cause $\mathbf{P}$ to move from the positive side away to infinity, then back from infinity to the negative side, or to move anyhow from infinitely uear the positive side to a point infinitely mear the neggtive side without cutting through the shell, it will decrease continuously ly $4 \pi i$; if we pass through the shell from a point infinitely near ou the regative side to a point infinitely near on the positive side, thera will be a sndden increase of 4Ti; tangentially to the shell there is continuity. The potential of a closed shell is evidently zero for nny external point, $\pm 4 \pi i$ for an internal point according as the positive or negative side is innermost. It appears algo that the potential of a simple magnetic shell depende merely on its strength and on its boundary, just as that of a magnetic solenoid depends merely on its strength and the position of its ends.

A lamellar magnet will in general be made up partly of closed shells, and partly of shellg whose boundaries lie on the surface ; only the latter of course cau influence the potential at external points. The general expression for the potential at any point $\mathrm{I}^{\prime}(\xi, \eta, \zeta)$ is

$$
\left.\begin{array}{rl}
\mathrm{V} & =\iiint\left(\frac{d \phi}{d z} \frac{d\left(\frac{1}{\mathrm{D}}\right)}{d z}+\frac{d \phi}{d y} \frac{d\left(\frac{1}{\mathrm{D}}\right)}{d y}+\frac{d \phi}{d z} \frac{d\left(\frac{1}{\mathrm{D}}\right)}{d z}\right) d v \\
& =\iint \phi\left(l^{d} \frac{\left(\frac{1}{\mathrm{D}}\right)}{d x}+m \frac{d\left(\frac{1}{\mathrm{D}}\right)}{d y}+n \frac{a\left(\frac{1}{\mathrm{D}}\right)}{d z}\right) d \mathrm{~S}-\iiint \phi \nabla^{2}\left(\frac{1}{\mathrm{D}}\right) d v \\
& =\iint \frac{\phi \cos \theta}{\mathrm{D}^{2}} d \mathrm{~S}+4 \pi \phi^{\prime}
\end{array}\right\}
$$

(39).

Where $\theta$ is the angle between D and the outward nermal to $d \mathrm{~S}$, and $\phi$ the value of $\phi$ at the point $\xi, \eta, \zeta$ (zrro of course if $\xi, \eta, \zeta$ be outside the marnet). The value of $\nabla$ thus fonod is not discontinuous at the surface as might be supposed, for both the surface integral and
${ }^{2}$ To be distinguished of caurse from the magnefic potentint
s Gauss, Allgemeine Thearie des Erdmagnetismus. \&\% 39.
$4 \pi \phi^{\prime}$ have discontinuities there, and they are equal in anount and of opposite sign.

For all external point the potential is

$$
\iint_{D^{2}}^{\phi \cos \theta} d \mathrm{~S}
$$

The immediate interpretation of this is that the potential ls the same as that due to a normally magnetized lajer on the surface uf the body whose streagth at $d$ ss is $\phi$; in other worls, qua external restion, cvery lamellar magnet may bo replaced by a coundex shell on its surface.
There is, however, another way of looking of the result. Since A, $B, C$ are derivalle fron a potential $\phi$, the difference leetween the values $\phi$ at any two points is simply the value of the inceintegral $\int(A d x+B d y+C d z)$ along any path between those points. Hence if the tangeutial component of magnetization be given in durection and magnitude all over any surface, the value of $\phi$, ì constant press, is given all over that surface. We conclude therefore that, if a body be lamellarly magnetized, aad we know the tangential component of its magnetization all over ite surface, its external action is determused; ${ }^{1}$ for a constont $c$ added to $\phi$ will simply add to the surliace integral

$$
c \iint \frac{\cos \theta d S}{D^{2}}
$$

which, being ctimes tie whole solirl angle subteniled by the surface at ony externa! point, vanislics. F'ur another very interesting proof of this result, see Thmanson, Repriut, 1. 398 sq.

Tha vector potential of a lamellar magnet may he expressed hy means of tho formilute

$$
\begin{align*}
& \mathrm{F}=\iiint\left(\frac{d \phi}{d y} \cdot \frac{d\left(\frac{1}{D}\right)}{d z}-\frac{d \phi}{d z} \frac{d\left(\frac{1}{D}\right)}{d y}\right) d c \\
& \left.-\iint_{\phi} m_{d\left(\frac{1}{1}\right)}^{d z}-n-\frac{d\left(\frac{1}{1}\right)}{d y}\right) d s^{\prime \prime}  \tag{40}\\
& -\iint \frac{1}{D}\left(\mu \frac{d \phi}{d_{z}}-\mu \frac{d \phi}{d y}\right) d \mathrm{~S}^{\prime} ; \mathbf{G}=\& \mathrm{c}_{\mathrm{r}} ; \mathrm{H}=\& \mathrm{c} .
\end{align*}
$$

These formulx furnish an immediate proof of the theorems of Thomson above stated.
Poten.
By means of the last of thent, it has been ahown in the article Electricity ${ }^{2}$ that the vector potential of a simple magnetic shell energy of can, os might be expected, be expressed by means of a line integral magnetic taken ronnd its bouadary; in the same place it has also beeu shown shell, \&c. that the potential energy of such a shell in a magnetic field reduces to a similar line integral ; ans! that the mutual potential energy of two such shells reduces to a double line integral taken sound their boundaries. An inics.
An important approximate expression for tho potentiol of a magnet at a point $P$, whosa distanco $r$ from aome chosen point in expres* the megaet is great compared witl the greatest linenr dimension of siou for the magnet, may bo obtained as follows. Let tho coordiantes of $P$ magnetic with respect to the chosen point and any axes through it be $\xi, \eta, \zeta$; jeteathal and let tho coordinates of any point in the body refered to the same axes be $x, y, z$. Also let $\mathrm{D}-\left\{(\xi-x)^{2}+(\eta-y)^{2}+(\zeta-z)^{2}\right\}^{\frac{1}{2}}$, and let $r=\left(\xi^{2}+\eta^{2}+\delta^{2}\right)^{\frac{1}{2}}, s=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}, t=\xi x+\eta y+\delta z$. Then the 1oteutial U at $(x, y, z)$ of a unit polo placed at $(\xi, \eta, \zeta)$ is given by

$$
\begin{aligned}
\mathrm{U}=\frac{1}{\mathrm{D}} & =\frac{1}{r}+\frac{t}{\gamma^{3}}+\frac{3 t^{2}-r^{2} s^{2}}{2 r^{5}}+\frac{5 t^{3}-3 t r^{2} s^{2}}{2 r^{7}}+\& \mathrm{c}^{2} \\
& =\frac{1}{r}+\mathrm{U}_{1}+\mathrm{U}_{2}+\mathrm{U}_{3}+\& \mathrm{c} .
\end{aligned}
$$

ly a well-known theorem, where $U_{1}, U_{2}, U_{3}$, \&c., are splierical harmonics of legrees $1,2,3, \& c .$, in $x, y, z$, ond $-2,-3,-4, \& e$. in $\xi, \eta, \zeta$. Now, by the theorem of mutual potential energy, the potential $V$ of tho unghnt at $(\xi, \eta, \zeta)$ is the potential energy of the magnet in tho field due to a unit pole at $(\xi, \eta, \zeta)$; hence by (IT)

$$
\left.\begin{array}{c}
V=\iiint\left(\Lambda \frac{d U}{d x}+B \frac{d U}{d y}+C \frac{d U}{d z}\right) d v  \tag{41}\\
=V_{1}+V_{2}+V_{3}+\& c
\end{array}\right\}
$$

whero $V_{1}$ arises from $U_{1}, V_{2}$ from $U_{s}$, and so on. $V_{1}, V_{n}, V_{3}$, \&.c., will ho apherical harmonies ia $\xi, \eta, \xi$ of tho most general kind, iuvolving essontially $3,5,7, \ldots 2 i+1$ constants respectively, their legrees being $-2,-3, \ldots-i$ respectively. Theso constants will, however, depend in each caso on a larger number of integrals taken tliroughont tho magnetized body, thus the constants in $V_{i}$ will depond upon ${ }^{3}(i+1)(i+2)$ integrals. ${ }^{3}$ There is no dilli-

[^64]culty in writing down these terms except the length of the formulx. Putting
\[

\left.$$
\begin{array}{l}
\iiint \mathrm{A} d v=\mathrm{K} l, \quad \iiint \mathrm{~B} d v=\mathrm{K} n, \quad \iiint \mathrm{C} d v=\mathrm{K} u  \tag{42}\\
\mathrm{~L}=\iiint \mathrm{A} r l v, \quad \mathrm{D}=\iiint \mathrm{B} y d v, \quad \mathrm{~N}=\iiint \mathrm{C} z d v \\
\mathrm{P}=\iiint(\mathrm{B} z+\mathrm{C} y) d v, \quad \mathrm{Q}=\& \mathrm{c}, \quad \mathrm{R}=\& \mathrm{c} .
\end{array}
$$\right\}
\]

we get
$\mathrm{V}=\mathrm{K} \frac{\xi \xi+n \eta+n \zeta}{r^{3}}+\frac{(2 \mathrm{~L}-\mathrm{M}-\mathrm{N}) \xi^{2}+\& \mathrm{c} .+3 \Gamma \eta \zeta+\& \mathrm{c} .}{r^{2}}+8 \mathrm{c}$.
It may be slown ${ }^{4}$ that, in the most general case, if we take the axis of $x$ parallel to the maguctic axis, and the origia at the point

$$
\{(2 L-M-N) / 2 K, \Gamma / K, Q / K\}, 5
$$

and turn the axes about an angle $\tan ^{-2} \mathrm{P} /(\Delta l-N)$, the above reduces to

$$
\begin{equation*}
\mathrm{V}=\frac{\mathrm{K} \xi}{r^{i j}}+\frac{3}{2} \frac{(\mathrm{II}-\mathrm{N})\left(\eta^{3}-\zeta^{2}\right)}{r^{3}}+\& \mathrm{c} \tag{44}
\end{equation*}
$$

As interesting prarticular case is that in which the magnet is symunctrical with respect to the three coordinate planes. If wo take its axis to be iu the axis of 2 , then, since all the integrals $L, M, N, P, Q, R$ vanish, $T_{2}$ disapicars, of the next set only

$$
\begin{equation*}
\Lambda_{1}=\iiint A x^{2} d v, \quad A_{2}=\iiint A y^{2} d v, \quad A_{3}=\iiint A z^{9} d v \tag{45}
\end{equation*}
$$

remain, and we get
$Y=\frac{\boldsymbol{K} \xi}{r^{3}}+\frac{3\left\{\mathrm{~A}_{1}\left(2 \xi^{2}-3 \eta^{2}-3 \zeta^{2}\right)+A_{2}\left(4 \eta^{2}-\zeta^{2}-\xi^{2}\right)+\mathrm{A}_{3}\left(4 \zeta^{2}-\xi^{2}-\eta^{2}\right)\right\} \xi}{2 r^{\overline{7}}}$
The potential to the same degree of approximation of a positive and negative prele of streugth $\mu$, placed on the magnetic axis at distances +L and -L from the origin (centre of symmetry), is

$$
\mathrm{V}^{\prime}=\frac{2 \mu \mathrm{~L} \xi}{\gamma^{2}}+\frac{2 \mu 1,^{3} \xi\left(2 \xi^{2}-3 \eta^{3}-3 \zeta^{2}\right)}{2 r^{7}}
$$

If we attempt now to find $\mu$ and L , so that the two magnetic Ideal systems may be equivaleut, we fiud different values for $L$ for represendiferent positions of the external point. If, however, the magnet tative be symmetrical rbout its axis, so that $A_{2}=A_{3}$, then the expression magaet. for $V$ reduces to

$$
\begin{equation*}
\mathbf{V}=\frac{\operatorname{li} \xi}{r^{3}}+\frac{3\left(\mathrm{~A}_{1}-\mathrm{A}_{2}\right) \xi\left(2 \xi^{2}-3 \eta^{3}-3 \zeta^{2}\right)}{2 r^{7}} \tag{47}
\end{equation*}
$$

we thenget $2 \mu \mathrm{~L}=\mathrm{K}$, and $2 \mu \mathrm{~L}^{3}=3\left(\mathrm{~A}_{1}-\mathrm{A}_{n}\right)$, whance $\mathrm{L}^{2}=3\left(\mathrm{~A}_{1}-\mathrm{A}_{2} / / \mathrm{K}\right.$. In other words, in the ease of a magnet which is symmetrical abont its axis and also about an equatorial plane, we can represent the exterual action by means of a fixed ideal magnet, provided higher powers of the ratio of the greatest liuear dimension of the magnet to the distance of the point considered than the fourth can he neglected. It is to be observed, however, that if $A_{1}<A_{3}$ the lensth of the icleal representative 1angoet will he imaginary. ${ }^{B}$
$\AA$ convergent sevics for the nutual potential energy of two Series fo: magnets $M$ and $M^{\prime}$ may ba obtained from the sextuple integral of mutual (19). Let the ofinin be a fixed point $O$ in $M$, and let the coor-potentiss linates of a fixel point $O^{\prime}$ in $\mathrm{M}^{\prime}$ with leference to a set of axes fixed eaergy. in $O$ be $\xi, \eta, \zeta$; further, Jot $x, y, z$ and $x^{\prime}, y^{\prime}, z^{\prime}$ be the coordinates of any elements $d v$ and $d v^{\prime}$ in N and $\mathrm{I}^{\prime}$, the axes being w the former rase the systern ahready indicated, in the latter a jarallel system through $O^{\prime}$; then, if $r$ denote $\left(\xi^{2}+\eta^{2}+\zeta^{2}\right)^{3}$, and $\delta_{1}, \delta_{2}, \delta_{3}$ stand for $\frac{d}{d \xi}, \frac{d}{d \eta}, \frac{\lambda}{d \zeta}$, we have

$$
W^{\prime}=-\int d v / d v^{\prime}\left(\Lambda \delta_{1}+\mathrm{B} \delta_{2}+C \delta_{3}\right)\left(A^{\prime} \delta_{1}+\mathrm{D}^{\prime} \delta_{2}+\mathrm{C}^{\prime} \delta_{3}\right)\left(\frac{1}{r}+\Sigma u_{n}^{\prime}\right)
$$

where

$$
x_{n}=\frac{1}{n!}\left\{\left(x^{\prime}-x\right) \delta_{1}+\left(y^{\prime}-y\right) \delta_{2}+\left(z^{\prime}-z\right) \delta_{3}\right\} " \frac{1}{r}
$$

or

$$
\begin{equation*}
W=W_{1}+W_{2}+W_{3}+ \tag{4S}
\end{equation*}
$$

where $W_{1}, W_{8}, W_{3}$, ore spherical harmonics in $\xi, \eta, \zeta$ of degrees $-2,-3,-4$, \&c.
1f we neglect nil amounts to supposing $M$ and $\mathrm{M}^{\prime}$ iufinitely small, we get

$$
\mathrm{W}=-\mathbb{} \mathrm{K}^{\prime}\left\{n^{\prime} \delta_{1}^{2}+\ldots+\left(n u u^{\prime}+m^{\prime} n\right) \delta_{2} \delta_{3}+\ldots\right\} \frac{1}{r} .
$$

If $\theta_{1}, \theta_{2}$ he tho angles between the axes of M and $\mathrm{NI}^{\prime}$ and tho lino

[^65]from the centre of $M$ to the centre of $M$. and $\theta_{12}$ the angle botween the uxes, this reluces to
\[

$$
\begin{equation*}
W=\frac{h^{\prime}}{r^{3}}\left(\cos \theta_{12}-3 \cos \theta_{2} \cos \theta_{2}\right) \tag{49}
\end{equation*}
$$

\]

From this furmula we can derive at oace by differentiation tho force of translation and the couple about the centre of $M^{\prime}$, which represent the action of $M$ unon it. An elegrate spathesis of this action has been given for the most general case by Tait. ${ }^{1}$ It will be sufficient to confine ourselves here to the case where the magaetic axes are in one plame. In this case $\theta_{13}-\theta_{1}-\theta_{2}$, anl $W$ becomes $K K^{\prime \prime}\left(\sin \theta_{2} \sin \theta_{3}-2 \cos \theta_{1} \cos \theta_{2}\right) / 2^{\text {a }}$. Denoting by $X, I, L$ the forces of translation parallel to MII' anil perpendicular to MIN' (so as to decrease $\theta_{1}$ ) and the couple tending to decrease $\theta_{2}$, we havu

$$
\begin{align*}
& I=-\frac{d W}{d r}=\frac{3 K K^{\prime}}{r^{4}}\left(\sin \theta_{1} \sin \varepsilon_{2}-2 \cos \theta_{1} \cos \theta_{2}\right) \\
& I=\frac{d W}{r d \theta_{1}}+\frac{d W}{r d \theta_{2}}=\frac{3 K K^{\prime}}{r^{4}} \sin \left(\theta_{1}+\theta_{2}\right)  \tag{50}\\
& L=\frac{d W}{d \theta_{2}}=\frac{K K^{\prime}}{r^{3}}\left(\sin \theta_{1} \cos \theta_{2}+2 \cos \theta_{3} \sin \theta_{2}\right)
\end{align*}
$$

Force of eransla(iou ex
(dist) ${ }^{-6}$. Couplex $(d i s t)^{-3}$.

One most important conclasion follows at once from these for mulie, viz., that the trauslatory forces vary iuversely as the fourth power of the distance, whereas the directive couple varies only $x$ sible at distances for which the fore of translativin is inaplyreciably small. These conclusions apply of course eqtrally to any pair of nagnetized bodies, provided the distance between them be sufticiently great as conpared with their lincar dimensions. This, applied to the case of the earth, at once explains the phenomena that puzzlen Norman and the earlier magnetic philusophers so greatly. The followiag particular cases are impertant (6\%. 25) :-
(A) $\theta_{1}=e_{2}=0, X=-\frac{6 K K^{\prime}}{r^{4}}, Y=0, L=0$.
(I) $\theta_{1}=\theta_{2}=\frac{\pi}{2}, X=\frac{3 K K^{\prime}}{r^{*}}, \mathrm{I}=0, \mathrm{~L}=0$.
(C) $\theta_{1}=0, \quad \theta_{2}=\frac{\pi}{2}, X=0, I=\frac{3 K K}{\gamma^{4}}, L=\frac{2 K K^{\prime}}{r^{3}}$.
(D) $\theta_{1}=\frac{\pi}{2}, \theta_{2}=0, X-0, I \frac{2 K K^{\prime}}{j^{s}}, L-\frac{K K^{\prime}}{j^{3}}$.

Deflect- Tho last two cases are especiaily important che position of the ing
magnet "end on" and - broal. side on." deffectiog magnet in (C) is described as "end on" (erster Hanjttage), iu (D) as "hroadside on" (zweiter Haupthace) ; it will be noticed. that the couple in the former case is double that in the latter.


Fig. 25.
If the terns of the second and third order be taken into account, and the magnet ris' he deflected through an allgle $\phi$ from its orginal position by a deflectiog magnet (1.) oripinally end on and (11.) origtmally broadside on, we get for the conples

$$
\begin{aligned}
& \text { 1. } \left.\cos \phi\left[\frac{2 \pi K^{\prime}}{r^{3}}-\frac{T_{1}}{r^{4}}+\frac{T_{2}}{r^{3}}+\ldots\right]\right] \\
& \text { 1I. } \left.\cos \phi\left[\frac{\kappa K^{\prime}}{r^{3}}+\frac{T^{\prime}}{\gamma^{4}}+\frac{T^{\prime}}{r^{5}}+\ldots\right]\right\} \\
& { }^{1} \text { Quert. Jour. Math., } 1860 \text {; and Quatemions, § } 414 .
\end{aligned}
$$

where $T_{1}$ amd $T_{1}^{\prime}$ are old finnetions of the relative proxitinn of $M$ and M'. hut ' $\mathrm{I}^{\prime \prime}$ and $\mathrm{I}^{\prime \prime}$ " ane even. In the case whelv $\mathbf{M}$ and $\mathrm{M}^{\prime}$ are symnetrient aljoat three orthoronal planes, $O$ and $O^{\prime}$ being tho ceutres of symmetry; ' l ' annl $\mathrm{T}_{1}$ vanish, and the writer has obtained for the ralues of ' $\Gamma_{8}$ and $T_{3}$

$$
\left.\begin{array}{l}
T_{2}=-6\left\{K\left(3 A_{1}^{\prime}-4 A_{2}^{\prime}+A_{3}^{\prime}\right)-\Pi^{\prime}\left(2 A_{1}-A_{3}-A_{3}\right)\right\}  \tag{52}\\
T_{3}^{\prime}=-\frac{3}{2}\left\{K^{\prime}\left(12 A_{1}^{\prime}-11 A_{2}^{\prime}-A_{3}^{\prime}\right)-K^{\prime}\left(3 A_{1}-4 A_{3}+A_{3}\right)\right\}
\end{array}\right\}
$$ where $A_{1}, A_{g}$, Sic. Lave the manings above assigued in (45).2

Sphere Marmetized in ainy Manmer.-This is the most interesting of all the cases that fall under the present section: buth from its being amenable to mathematical treatment aud on account of its listorical interest. It was first discussed in the beautiful inenoir, entitled Allgemeine Theorie des Erilnagnetismus, ${ }^{3}$ in which Gauss laid tho foundation of the rational theory of terrestrial magnetism. The following is a brief account of the theory, which has nut been greatly added to since lie left it.

Let $1,1, Z$ be the components of the earth's resultant magnetic force at any point on its surface, in the directions of geographical north, recgraphical west, and vertically upwards respectively. The force is completely known when these are given, since it depends on threa elements oaly. If $H, \delta, \iota$ have the meanings formerly assigned (p. 220, 221, 227), we have of course

$$
H=\sqrt{X^{2}}+Y^{\prime 2}, \tan \delta=Y / X, \tan c=Z / \sqrt{X^{2}+Y^{\prime 2}}
$$

Again, if $V$ be the mingnetic potential of the earth, $l$ the latitude, and $\lambda$ the longitude of any point on its arface, tlen, supposiog the eartl to be a ephere of radius $a$, we have

$$
\begin{equation*}
X=-\frac{1}{a} \frac{d V}{d l}, \quad Y=-\frac{1}{a \cos l} \frac{d V}{d \lambda}, \quad Z=\frac{d V}{d r}, \tag{53}
\end{equation*}
$$

$r$ denoting the clistance of any point from the centre of the earth. When $Y$ is known, therefore. the force is completely determinerl.

If now we suppose all the magnetized matter (or its equivalent-say, electric currents) to le within the earth, it follows, from the theory of spherical harmonics, that we can write down a convergent series for its potential at all external points, when the potential at every point of its surface is given. ${ }^{4}$ In fact, if the expansion of this surface potential in terms of surface barmonics bo

$$
S_{1}+S_{2}+\ldots+S_{i}+\ldots
$$

we have for all external points

$$
\begin{equation*}
V=\mathrm{S}_{1}\left(\frac{a}{r}\right)^{2}+\mathrm{S}_{2}\left(\frac{a}{r}\right)^{3}+\ldots+\mathrm{S}_{1}\left(\frac{a}{r}\right)^{1+1}+\ldots \tag{54}
\end{equation*}
$$

The number of terms of this series that must be retained in order to obtain a sufficiently accurate representation of the pheuomena will of course depend on circumstances, and can only be ascertained by trial. $S_{1}, S_{2}, \ldots S_{i}$ are functions of known form, containing respectively $3,5, \ldots$ $2 i+1$ constants; lence, if terms beyond the $i^{\text {ih }}$ order may be neglected, the expression for $Y$ will contain $i^{2}+2 i$ arbitrary constants. These must be determined by observation, and then the magnetic action at all points on tho surfacs or outside the earth is known irrespective of the internal distribution of the magnetic causes.

If we look at the matter from the general point of view that $Y$ is determined when its surface value is known, we lare the following propositions.
I. $V$ is determined when the rertical force is known at every point of the earth's surface.

For, let the surface ralue of $Z$ be expanded in a serics of surface hamonics of which the $i^{\text {th }}$ is $Z_{i}$; then, equatiog this to the $i^{\text {in }}$ harmonic in the smface value of $\mathrm{Z}=-d V^{+} p r^{r}$ derived from (54), we litve $(i+1) S_{i}=a Z_{i}$, which determines $S_{i}$, Thus the proposition is proved.

* Cf. Riecke, l.c. ${ }^{3}$ Res. d. Jag. V"creins, 1838.
\$ See Thomsm aud Tait, vol. i. chap. 1, App. A and B.
${ }^{3}$ The term $S_{o}$ of course vauishes, since the sum of the positive and negative maguctism within the earth is zerv.
II. The surface value of $V$, and hence its general value for external points, is determined if the northward component of the magnetic force be known at every point of the earth's surface.
This follows at once from the fact that the differcnce of the values of V at any two phaces is the lino integral of the magnetic force along any line joining them; thus, if $V_{0}$ be the value of $V$ at the geographical north pole, we have

$$
\begin{equation*}
W=-u \int_{\frac{\pi}{2}}^{l} X d l+V_{0} . \tag{55}
\end{equation*}
$$

Bit tho constant $\mathrm{V}_{0}$ does not affect the general value of V ; hence the proposition is estallished.
III. The same couclusion follows if the westward horizontal compenent be known all over the earth's surface and the northward compenent along any one meridian.
In fict, if V be the potential at suy place whose latitude is $l$ eñi longitude $\lambda$, then

$$
V=-a \int_{\frac{\pi}{2}}^{1} X d l-a \int_{\lambda_{0}}^{\lambda} Y \cos l d \Lambda+V_{0},
$$

the first integration being performell along the given meridisn, the second olong the parallel of latitude corresponding to the place.

From I., II., and III. wo have the remarkable conclusion that, if the vertical component be given all over the earth, or the northward component, or the westward compoeent and the nerthward along one parallel, then in each case the other two elements are determined.
Gouss gives another interesting application of the line integral of mangetic force. If this in tegral he takon all round any closed curve or 1 plygon, the result is zero. Let us express this for any geodesic triangle ABC, at whose vertices the horizontal force has the values
$\mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{H}_{5}$. If the inclinations of H to $\stackrel{\rightharpoonup}{\mathrm{BC}}$ at B and C be $\alpha$ and $a^{\prime}$,
 the arcs $B C, C A, A B$ be not too long, we may replace the conipronent along BC at every point by the average of its values at $B$ and C , and so on. We thus get

$$
\frac{1}{3} \mathrm{BC}\left(\mathrm{H}_{4} \cos \alpha+\Pi_{3} \cos \alpha^{\prime}\right)+\frac{1}{2} \mathrm{CA}\left(\mathrm{H}_{3} \cos \beta+\mathrm{H}_{1} \cos \beta^{\prime}\right)
$$

$$
\begin{equation*}
+\frac{1}{2} \Delta B\left(H_{1} \cos \gamma+1_{2} \cos \gamma^{\prime}\right)=0 \tag{56}
\end{equation*}
$$

If we suppose the values of $I \mathrm{I}$ at B and C to be known, and the vilucs of the declination to be known at all three places, the above equation deterniues the value of II at $A$. Calculating in this way from observed values at Göttiogen, Milan, and Paris, Gauss found for H at Paris 0.51696 , the observed valuo being 0.51804 .

It has been supposed hitherte that the magnetic causes are entirely internal to the earth. The foregoing theory enables us to test how far this nssumption is correct.
If ine suppose that there aro external causes, theu the potential at internal points due to these will be

$$
\mathrm{T}_{0}+\mathrm{T}_{1} \frac{r}{a}+\mathrm{T}_{2}\left(\frac{r}{a}\right)^{2}+\ldots \mathrm{T}_{\mathrm{i}}\left(\frac{r}{a}\right)^{2}+\ldots,
$$

$T_{0}, T_{1}, T_{2} \ldots T_{i}$ being the different hormonics in the surface valuc of the part of the potentiol due to cxternal canses. Suppose now the whole vertical force deduced from observation for all parts of the earth's surface, and expanded in a series of surface harnionics, the $i^{\prime h}$ of which is $Z_{i}$; then, since this is the sumn of the $i^{\text {th }}$ harnonirs in the parts due to intermal nod to external causes, we have

$$
\begin{equation*}
-(i+1) \mathrm{S}_{1}+i \mathrm{~T}_{i}=a Z_{i} . \tag{5}
\end{equation*}
$$

Fnither, suppose the surface value of $V$ determined from observations of borizontal force, and let the $i^{\text {ih }}$ barmonic in it be $\mathrm{V}_{i}$, then wc have

$$
S_{1}+T_{i}=V_{i} .
$$

(58).

From equations (57) and ( 58 ) we can determine $S_{i}$ and $\mathrm{T}_{i}$, and thus settle how much is due to external and how nuch to internal causes. It does not appear from obscrvation that any sensiblo part of the mean value of V arises from causes external to the earth.

Wo have acen already that the action of any body can be represented at exterinal points liy nu ileal layer of positire and nergative magnetisnn. Gnuss finds for the surface density of the layer in the caso of a splherracil body like the earth, the expression (V)/4-27)/4 $\pi$, which may bo dedncel immedintely from the foramule alrealy given.

If we draw a scrics of equipotential surfaces correspond-
ing to small equidifferent values of $V$, these will cot the earth's surface in a series of equipotential liaes, which are callet the "magnetic parallels." These lines obviously have the following properties. The borizontal force is everywhere perpendicular to them, and is at any point inversely propertional to the distance between two consecutive lines there. So that, if these lines were drawn upon a terrestrial globe, their crowding would indicate increase of horizontal force. The lines of horizontal force, or "magnetic meridians," the tangent at every point of which is parallel to the herizontal component, are everywhere orthogonal to the magnetic parallels, and their positive direction is from parallels of greater patential to parsllels of less potential. If, as has been tacitly assumed hitherto in accordance with the results of observation, the potential on the earth's surface hare but one maximum and one minimum, then the parallels will be closed curves expanding successively from the naximum point snd then closing again round the minimum point, and the magnetic meridians will all run between these two points. It is clear that at each of these points the equipotential surface and the earth's surface touch; at the minimum point the line of tetal resultant force will pass to the earth, at the maximum point from it; at the former, therefore, the north end of a freely suspended needle will dip vertically downwards, st the latter the south end will do the same. This is the simplest possible case for a magnetized sphere. It is easy to seo that, if we define a north pole ${ }^{1}$ as a point on the earth's surface at which the horizontal intensity vanishes, and the dip is $90^{\circ}$, there might be more than one such point. Consider the series of equipotential surfaces $1,2,3,4,5,6$ in 6 g . $26,{ }^{2}$ each of which has two eminences with a depression


Fig. 26.
between them. The lines $a, b, c, d, e, f$ are the sections of these by the earth's surface. 1 just tonches the surface in $a$; and, if the potential increase in the order in which the surfaces are numbered, $a$ will be a north pole. The section by 2 is the single oval $b$. 3 touches the surface in $c^{\prime}$, which is clearly snother north pole, and also meets the surface in a single oval $c$ equipoteutial with $c^{\prime}$. The section by 4 is the double oval $d, d^{\prime}$. The depression on 5 False touches the surface at $F$, and meets it in a fagure of $S, e, e^{\prime}$, poles on which $F$ is the double point. $F$ is therefore yet another north pole according to our definition ; it differs, however, from an ordinary north pole in one important respect; for the law that the nerth end of the compass points from parallel of greater to parallel of less potential shoms nt once that near $F$ and iuside the 8 -shaped parallel the south end will point to $F$, whereas at a neighbouring peint outside the north end will point to F. Sucb a point is called a false north pole, and we see that the existence of two true north poles necessitates the existence of a false north pole; and in gencral it may be established ${ }^{3}$ that,

[^66]however many poles of the same kind there may be, truc and false, the thole number must be odd. This of course disposes of the notion furmerly held by some physicists that the earth actually harl two north poles. As already indicated, Gauss concluderl from his rednction of the magnetic observations at his disposal that, apart from purely local disturbanres, the earth has, as a matter of fact, only one north and ooe south pole.

The effect of a depesit of magnetic ore, or other cause of the kind, might of course produce a disturbance. within a limited area, of the equipotential lines. It may assist the practical maguetist to indicate the nature of this disturbance in a particular case. Let us suppose that a maynet is placed some distance underground, vertical, with its north pule uppermost. Then, if its moment be sufficiently great, the equipotential lines will be as in fig. 27.1 The upper side of the figure is supposed to be magnetic north, and it is supposed that the uodisturbed


Fig. 27
parallels would be straight lines ruming magnetic east and west, which is sufficiently near the truth in i.sst eases. It should be observed that fig. 27 is in reality a transformation of figure 26 , one of the poles being projected to infinity. The reader should notice that the double point F, due south of the point $a$ vertically over the disturhing magnet, is a point of equilibrium at which the horizontal components of the forces of the earth and the magnet destroy each other; it will be a false pole, south or north nccording as the maguet or the earth prevails.

## Experinental Foundation for the Lain of the Inverse Square.

From what has already been laid down, it will be seen that the determination of the elementary law of magnetic action is a rery complex problem. The action between tro magnets depends, not on?y on their distance apart, but also on their relative angular position. Then we have to distinguish force of translation, which varies iuversely as the fourth power of the distance, and directive couple, which varies inversely as the third power. It nust also be remembered that the elementary law results in part from an hypothesis as to the pature and distribution of the cause of the magnetic action, for, until some such bypoth usis is made, no clear conception is possible of what is to be understood by elementary action. Lastly, we bave the disturbance which arises from magnetic induction, the consequence of which is that magnetically speaking two nagnets are not the saose at different distances apart. When all these circumstances are considered, it is not surprising to find considerable uncertainty and difference of opinion among the earlier magnetic philosophers. The truth is that the law as now established owes quite as
mucn to tue development of magnetic theory. as to this wark of magnetic experimenters.

The question attracted the notice of Husgeus and Huveev Hooke, but Newton seems to have beea one of the first 1 who propounded any law on the subject. He says (Principia, lib. iii. prop. 6, cor. 5) that some rough experiments had led him to the conclusion that the magnetic force (vis magnetica) decreases according to the law of the inverse cube of the distance. Nio account ot the experiments is extant, and it does not appear what hos means exactly by vis magnetica. If the directive couple is meant, and the action of the entire magnet is intended, then, as we lave seen, this is is agreement with modern theory. In a remarkabic rote in the annotated cdition of the Principia by Le Suenr and Jacquier (assisted by Le Suen Calandrini ?) (1742) on the passage in question, a series and of deflexion experiments are describer, and an accurate jacquier. discussion is given, from which results the law of the inverse cube for the deflecting couple. HawksLee ${ }^{2}$ made Huwksexperiments with a view to determine the law of magnetic bee and action, in which a deflecting magnet was moved at rarious Taylor. distances round a compass, and the corresponding defiexions noted. A few years later Brook Taylor ${ }^{3}$ and the same experimenter made a series of obscrvations in which the "end on" method of defiexion still io use was adopted. But in neither case was any definite result arrived at. A similar uncertainty appeared in the experiments of Whiston, Whiston. who indicates the inverse $\frac{3}{2}$ th power of the distance as the law of decrease. Musschenbroek's experiments, which were Muesct extensive, also led to no final result. He nsed the method of broek. Hooke, in which the attraction of a vertical bar magnet upon another suspended from one arm of a delicate balance is balanced by weights attached to the other arm. From some of his experiments he deduces as low a power as the inverse lst, from others the $\frac{3}{2}$ th, and so on; but no attempt is made to analyse the phenomena. Nichell, in his treatise on artificial magnets ( 1750 ), however, deduces the law of the inverse square from Musschenbroek's results. Although Epinus does not arrive at any definite result as to the elementary law, there can be no doubt that his Tentamen Theorix Electricitatis et Magnetismi (1759) contributed porerfully towards the solution of the question. Tobias Tobias Mayer seems to have been the first to publish the law of Mayer. the inverse square as the actual result of an experimental investigation. His paper wias read before the Royal Society of Göttingen, and was referred to in the Göltinger Gelehrter Anzeiger for 1760, but never fully published; it is best known from the criticism of Æpinus, "Examen Theoriæ Magneticæ a Tob. Mayeru propusitæ" (For. Comm. Acall. Petrop., 1768). ${ }^{4}$ The most important of the earlier contributions was undoubtedly that of Lambert. ${ }^{5}$ Lambert. He seems to bave been the first to analyse the physical circumstances of the problem in a thorough manner, and to point out the various elements of disturbance to be provided for. We regret that we are unable to devote space to an exhaustive account of his memoirs, ${ }^{6}$ which are most instructive reading even now. He showed that the effect of an oblique magnetic force on the needle varies as the sine of the inclination; and, making allowances for this, he deduced the law of the inverse square from doflexion experiments made at different distances. He also described the method of oscillations, but found difficulties in its practical application. It is upon his theoretical work, however, rather than upon his experiments, tbat his claim to be remembered rests. About the same time as Lambert,

[^67]ire have Dalla Bella ${ }^{2}$ atd Robison,? the well-known professor of natural philosophy in the university of 'Edinburgh, working at the same subject. The former used the method of Hooke and Musschenbroek, but discussed more carefully the exact nature of the resultant action. His results indicated the law of the iaverse square. Fobison used both the method of deflexion and the methor of oscillation, the peculiarity in his apparatus being the movable magnee which was composed of two magnetized spheres connected by a slender rod, and suspended either in the field of the earth alone, or at different distances from a large magnet. He made several independent investigations, and seems to have arrived in each case at the law of the inverse square as his final result.
The researches of Coulomb, ${ }^{3}$ from which many date the commencement of the modern theory, present many features of great interest. He used the improved form of Nichell's torsion balance, which had served him so well in his electrical experiments. In order to realize as nearly as possible the ideal case of a linear solenoid, whose action can be represented by positive and negative magnetism concentrated at its ends, he worked with magnets made of thiu steel wire magnetized longitudinally. The circumstances of the experiment are thus considerably simplificd, for the acting magnet may be so arranged that the action of one of the poles may be neglected, or, failing that, the action of both can be easily calculated.

In one of his experiments he took a magnetized steel wire 25 inches long, and It lines thick, and placed it vertically in the magnctic meridian before a horizontal magnetic needle some 3 inches long, delicately suspended by a silk fibre. The rod was raised and lowered at a given distance from the needle until the attraction on the near pole of the needle, as tested by the rapidity of the vibrations, was a maximum; it was then found that the larer end of the bar was about 1 inch belory the needle. Again, the rod being placed horizontal and perpendicular to the magnetic meridian on a level with the needle, it. was displaced until the needle returned to the magnetic meridian; it was then found that the peedle mas directed to a point about 1 inch from the end of the bar. Both these experiments thus indicate that the magnetism at one end may be supposed concentrated at a point about an inch from the end of the bar. It is clear that, in these experiments, provided the rod is sufficiently long or the distance between it and the needle not too great, the action of the distant pole may be neglected, for the double reason that the pole is more distant and that the force excrited by it is nearly perpendicular to the direction in which it can be effective. Making this assumption, Coulonsb observed the number of vibrations, when the vertical rod was absent, a.2d when it was placed at various distances.

The forces thence deduced were found to vary very nearly as the inverse equare of the distance. Statical experiments with the torsion balance led to a like result.
Later re- Later than Coulomb we have the experiments of Bidone, ${ }^{4}$
 Binnslean. important among these is Hansteen, whose methods

In his classical memoir on the absolute measuremeat of the earth's magnetic force, Gauss took up the question in Ganss the most general manuer yet attempted. Assuming that the force due to an element of positive magnetism varies as the inverse $n$th power of the distance, he showed that, when the distance between the magnets is sufficiently great compared with the greatest linear dimensions of either (more than four times as great in his own experiments), the deflexion3 $\phi$ and $\phi$ " for the "end on" and "broadside on " positions of the deflectiag magnet are given by

$$
\begin{aligned}
& \tan \phi=\mathrm{L}_{1} r^{r-(n+1)}+\mathrm{L}_{3}{ }^{r}-(n+2)+\& \mathrm{c}_{2}, \\
& \tan \phi^{\prime}=\mathrm{L}_{1}{ }^{\prime} r^{-(n+1)}+\mathrm{L}_{3}{ }^{\prime} r^{-(n+2)}+\text { \&c. }
\end{aligned}
$$

where $L_{1} / L_{1}^{\prime}=n$. He made a series of deflexion experiments, and found that his results could be represented with sufficient accuracy by the formulx ${ }^{8}$

$$
\begin{aligned}
& \tan \phi=0.056850 r^{-3}-0.002185 r^{-s} \\
& \tan \phi^{\prime}=0.043435 r^{-3}+0.002449 r^{-s}
\end{aligned}
$$

The following table shows the closencss of the agreement between theory and experiment $(r$ is measured in metres; $\Phi$ and $\Phi^{\prime}$ denote observed and $\phi$ and $\phi^{\prime}$ calculated values):-

| $r$ | \$ | \$- $\phi$ | $\Phi^{\prime}$ | $\phi^{\prime}-\phi^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: |
| $1 \cdot 1$ |  |  | I 5 \% ${ }^{\prime} 4$ | +2•8 |
| 1.2 |  |  | $12940 \cdot 5$ | -6.0 |
| $1 \cdot 3$ | ${ }^{\circ} \mathrm{I} 3151.2$ | + 0.8 | 11019.3 | $+6.0$ |
| $1 \cdot 4$ | $14728 \cdot 6$ | + $4 \cdot 5$ | 05558.9 | $+0.2$ |
| 1.5 | $12719 \cdot 1$ | - 9.6 | 04514.3 | $-6.6$ |
| 1.6 | 11276 | - 3.3 | $03712 \cdot 2$ | - 3.2 |
| $1 \cdot 7$ | $1 \begin{array}{lll}1 & 0 & 9.9\end{array}$ | - 5.0 | 03057.9 | $-12$ |
| 1.8 | 05052.5 | + 4.2 | 02559.5 | -3.4 |
| $1 \cdot 9$ | 04321.8 | + 7.8 | 0229.2 | +2.6 |
| 2.0 | 03716.2 | +10.6 | 019 1.6 | +5.9 |
| $2 \cdot 1$ | 032486 | + 0.9 | 01624.7 | $+4 \cdot 9$ |
| $2 \cdot 5$ | $01851 \cdot 9$ | $-10.2$ | 0 - 936.1 | -2.5 |
| 3.0 | $\begin{array}{llll}0 & 11 & 0.7\end{array}$ | - 1.1 | $0 \quad 533.7$ | -0.2 |
| $3 \cdot 5$ | $0 \quad 656.9$ | - 0.2 | 0 O 38.9 | $-1.0$ |
| $4 \cdot 0$ | 0 $435 \cdot 9$ | - 3.7 | $\begin{array}{lll}0 & 2 & 22.2\end{array}$ | $+1.7$ |

We have here a double proof of the law of the inverse square,-first, in the fact that $\tan \phi$ and $\tan \phi^{\prime}$ can be expressed so accurately by two terms of a series, the first of which contains $r^{-3}$; second, in the fact that the coefficient of the first term in $\tan \phi$ is exactly double that in $\tan \phi^{\prime}$. These researches of Gauss are remarkable, not only for the great generality of the theory, but also for the novelty of the experimental method, and the exceeding accuracy and refinement of the observations. The law of the inverse square has in fact been regarded as settled ever since they were made. They are important from another point of view, to which we shall return presently.

## Magnetic Measurements, Relative and Absolute

be mos. important magnetic detcrminations that have to be made are the direction of the axis of a magnet re latively to its mass, the magnetic moment of a magnet, the direction of a magnetic field, and the strength of a magnetic field, or its component in any given direction. In most of thicse cases the measurement may be either relative or absolute. For example, we may determine the moment of a magnct either rclatively, in terms of the moment of some other magnet arbitrarily chosen, or absolutcly, in terms of the fundamental units of space, mass, and time. The complete theory of measurements of the latter kind is due to Gauss, and the carrying of them into practice to him in conjunction with Weber and the Magnetischer Verein, of which these two German philosophers were the leading spirits. We slaall discuss the

[^68] were a great. step towards the more, complete trcatment finally adopted by Gauss. He uses Taylor's "end on" method of deflexion, and also the method of Hooke and Musscberbroek. The acting magnet was a bar magnet, the action of which lie represents by a distribution of positive and negative magnetism on its two halves whose density at a distance $x$ from the centre is $\lambda x^{7}$. The force at distance D due to an element $d \mu$ of positive magnetism he assumes to be $d \mu / \mathrm{D}^{n}$. He finds that in all his experiments the value $n=2$ best represents the results obtained; bot that various ${ }_{\infty}$ values of $r$ nalay be adoptcd with almost equal advantage ; he iaclincs, bowever, to the value $r=2$.
matter here only in so far as it concerns the work of a physical laboratory, the rest belonging more properly to the subject of Terrestrial Magnetism (aee Meteonology).

Axial Direction and Magnetic Declination.-The magnet is suspended, usually by means of one or more fibres of nospun ailk, so as to be free to move about a vertical axis. We shall suppose, for simplicits, that the magnetic axis is in a horizontal plane. If this is not so, iostead of determining the axial direction, we determine a vertical plane through it. In order to obtain a fixed line of reference in the magnet, two marks may be made on it as nearly in the direction of the axis as can be guessed to begin with; this arrangement is used with dipping needles and also for horizontal needles when no great accuracy is required. For declination needles two contrivances of greater refinoment are used.
Mirror method.

1. A mirror is rigidly attached to the magnet, so that the normal to its sarface is nearly parallel to the magnetic axis. The image of a fixed horizontal scale in this mirror is observed by means of a fixed telescope, and the angular motion of the magnet deduced from the motion of the scale divisions over the wires of the telescope. This is called the mirror method. ${ }^{1}$
2. A more compact arrangement is to attach to the magnet a small photographic scale and a leus, the former being placed at the principal focus of the latter, so that the line joining the middle division of the scale to the optical centre of the lens is nearly parallel to the axis of the magnet. The scale is viewed throngh the lens by means of a fixed telescope, and it is clear that the line just mentioned gives us a fixed direction in the magnet, and that the motion of the magnet can be followed by observing the apparent motion of the scale across the wires of the telescope. This may be called the collimator method. ${ }^{2}$
Unifiar The apparatus usually employod in the United Kingdom for magneto- observing the magnetic declination, ${ }^{3}$ and also for other ahsolute meter. magnetic measurements, is the portable unifilar magnetometer, the upper part of which is shown ia figs. 28, 29. The lower part consists simply of a tripod stand supporting three V-shaped groves, into which the points of the levelling screws attached to the fixed limb of the instrument are set. In making an observation of the declination the instrument is arranged as in fig. 28. The declina. tion collimator magnet is euspended in the box A (the sides of which are remored to allow the interior to be seen) by mesos of the suspension fibre D, attached to the torsion head PH. The scale of the magnet is observed through the small telescoje QBG. The first step is to remove the torsion as far as possible from the suspension fibre by hanging to it a brass plummet $E$ of the same weight as the declination magnet. After this weight has come to rest, it is replaced by the declination magnet, so that the latter shall rest as nearly as possible in the magnetic meridian without introducing torsion of the fibre. The movable limb is now turned till some division of the magnet scale is on the cross wires of the telescope. It is then ciamped. The magnet is now inverted, and the number of the scale division on the wires egain read. The mean of these readings gires the point of the scale the line from which to the centre of the collimating lens is parallel to the sxia of the magnet. This point of the scale (axial point) will remain the sane so long as the magnetism of the magnet does not alter, or the adjustment of the scale and collimating lens is not interfered with. The tangent screw is now worked until the cross wires of the telescope are on the axial point of the scale. The verniers of the limb are then
${ }^{3}$ The mirror method was first suggested by Poggendorff (Pogg. Ann., vii., 1826). It was carried out io practice by Gauss.
${ }^{2}$ There seems to be some doubt to whom the collimstor method is due. Airy, Lloyd, Lamnot, and Weber all did something for it. See Lamoot, Handb. d. Magnetismus, p. 154.
${ }^{3}$ Want of space compels us to omit all but the leading points. Readere is search of full practical delails must be referred to The Admiralty Manual of Scienlific Enquiry, pp. 84 sq .; Msxwell, Electricity and Bfagnetism, $\$ \$ 449 \mathrm{sq}$; Lamont, Handbuch der Magnetismus, sod Brd-Magnetismus, where references to all the authorities up in his tiane wil! be found. They should also study the classirsl memoirs of Gauss to be fuund in the fifth \%olume of his collected works.
read." The next step is to observe the azimuth of the sun or of'some other heavenly body, by means of which we can refer the azimuth of the magnetic meridian to the true north. For this purnose tbe instrument is provided with a small transit mirror NO, which has a motion in altitude so as to bring any olject lnto the field of the telescope. To use it, the limb is unclamped, and it and the


Fra. 28. - Unifilar Msgnetometer, arranged to indicate declination, mirror moved until the sun or star comes into the field of the telescope ; the limb is then clamped and the time noted at which the heavenly body passes the intersection of the sross wires. The veraiers are again read. The differences of the readings, added to the azimuth of the heavenly body fonnd by means of the time from the Nautical Almanac, gives the declination at the time and place of observation.

Tbere are sereral causes of error to be guarded against. (1) Torsion is reduced within as small limits as possible to begin with, and if there is reason to suspect any residual error we may test the apparatus by turniog the torsion head of the suspension tube first $90^{\circ}$ one way and then $90^{\circ}$ the other. If the deflexion of the magnet is exactly the same and oppositely directed in the two cases, then We may conclude that the torsion is zero in the azimuth of equilibrium. If not, then we may turn the torsion bead so as to reduce the error still further; or we may calculate its arnount (assuming torsion to ho proportional to twist) from the two observptions, and allow for it. (2) If the axis of the magoet is not very nearly parallel to the line of collimation of the telescope to begith with, and consequently the two scale readings far spart, an error may arise from the vertical axis of suspension not being exactly reversed by the inversion. This error is reduced by repeating the observation, after adjusting the axis of the magnet and telescope so as to be more nearly parallel. (3) If mean declination for a fiven day be desired, correction must be made for the diurnal variation, and under certaid circumstauces this variation may even produce disturhances in the course of a single observation.

Magnetic Moment, Horizontal Intensity of the Earth's Force.-If merely relative measurements of the magnetic moment K of a given magnet, or of the horizontal intensity H of the earth's force, are desired, there are two methods of obtaining them. The first is the method of vibrations. Having found the moment of inertia A of the magnet 31 about its vertical axis of suspension, and the
time T of its vibration under the earth's force, we obtain the product $\mathrm{KH},=p$, say. Secondly, by the method of deflexion, of which two varieties, tangent deflexion and sine deflexion, are in use, the falue of the quotient $\mathbf{K} / \mathbf{H},=q$, say, is found. In this method $\mathbf{K}$ is used as the deflecting magnet, and the moment $\mathrm{K}^{\prime}$ of the deffected magnet does not appear in the result. ${ }^{1}$ It is obvious that, if we know the value of $H$, or may assume it constant, either of these methods will enable us to express the moment of any magnet in terms of that of another arbitrarily chosen as unit; and, reciprocally, if we operate with a magnet of known or of constant moment, we can determine the values of $H$ at different times and places in terms of its value at an arbitrarily chosen time and place.

By combiaing two observations, in one of which a magnet K is the vibrating and in tho other the deflecting magnet, we can obtain both K and H in absolute measure, for we have two equations $\mathrm{KH}=v$, and $\mathrm{K} / \mathrm{H}=q$, which givo

$$
\mathrm{K}=\sqrt{p q}, \text { and } \mathrm{H}=\sqrt{p / q} .
$$

Tiuration Experiments. - If $\theta$ be the angle between the axiz of the magnet and H at time $\ell, \gamma$ the angle between the axis and H in the position of no torsion, TKH the coefficient of torsiou, thea the equation of motion of the magnet, when the arc of oscillation is very small, may be written

$$
\begin{equation*}
\mathrm{A} \ddot{\theta}+\mathrm{KH} \theta+\tau \mathrm{K} H(\theta-\gamma)=0 . \tag{59}
\end{equation*}
$$

This gives for the period of a complete vibration

$$
\begin{equation*}
\mathrm{T}^{2}=4 \pi^{2} \mathrm{~A} / \mathrm{KH}(1+\tau) . \tag{60}
\end{equation*}
$$

The observations are made with the magnetometer arranged ns for the dechnation experiment. The swinging magnet is brought to rest, and the circle so clamped that the axial point of the magnet scale is on the cross wira of the telescope; the magnat is then slighltly disturbed so as to oscillate through a small arc ( $16^{\prime}$ or so). The time of vibration is found first roughly, by taking the time of a aingle vibration, then more accurately by counting a large number of vibrations and timing the end of the last as accurately as possible. $\tau$ is found by observing the deflexion $\theta^{\prime \prime}$ and $\theta^{\prime \prime}$ caused by turning the torsion bead through an angle $\beta$ in ona direction and then through an angle $\beta$ in the opposite direction; we thus get from equation (59)
$K H \theta^{\prime}+\tau K H\left(\theta^{\prime}-\gamma-\beta\right)=0$,
$\mathrm{KI} \theta^{\prime \prime}+\tau \mathrm{KH}\left(\theta^{\prime \prime}-\gamma+\beta\right)-0$;
and $\tau=\left(\theta^{\prime}-\theta^{\prime \prime}\right) /\left(2 \beta-\theta^{\prime}+\theta^{\prime}\right)$. From tho bame equation we ,may also determine $\gamma$ when pecessary.

The most troublesome part of the whole process still remains, viz., tho determination of $A$. This is effected by attaching to the magnet a body whose moment of inertia $B$ can be calculated from its dimensions. For this purpose Gauss fixed a cross bar of wood to the magaet, and attached to it at known equal distances from the axis of ouspension two cylindrical wcights of known mass and dimension. Sometimes a cylinder of gun metal is slung below the magaet by means of two loops. Perhaps the best method is to use a ring of gun metal attached to the magnet so that its plano is horizantal and its centre as noarly as possiblo in the line of suspensioa. The new time of vilration being $T_{1}$, and the new cocflicient of torsion (if different) $\tau^{\prime}$, wo hove the ncw equation

$$
T_{1}^{3}=4 \pi^{2}(A+B) / K I I\left(1+\tau^{\prime}\right) .
$$

From this and (60) we get

$$
A=B /\left(\frac{1+\tau}{1+\tau^{2}} \cdot \frac{T_{1}^{2}}{T^{2}}-1\right) .
$$

${ }^{1}$ This important fact was first noticed by Lambert

There are several corrections which, although in general negligible, may sometines require to bo considered. (i) H nay vary so much duing the experiment as to cause a sensible error ; (2) if the arc of vibratiou be too large, it may be necessary to apply the reduction to infinitely small ares; (3) if the amplitude of the ribrations decrease too rapilly, account must be taken of the resistance to the motion arising frou the viscosity of the air, \&c. ; ${ }^{2}$ (4) a correction has to be made for the alteration of the moment of the magnet by the earth's induction, ${ }^{3}$ and (5) a temperature correction for the magnetic momeut and the moment of inertia.

Deffexion Experiments.-In Gauss's arrangement the deflecting magnet was placed iu an east-rest direction, i.e., end on to the original position of the deflected magnet. The equation of equilibrium iu this case is [see equation (51)]

$$
\mathrm{K}^{\prime} \mathrm{H}(1+\tau) \sin \theta=\cos \theta\left(\frac{2 K \mathrm{~N}^{\prime}}{\tau^{3}}-\frac{T_{1}}{r^{3}}+\frac{\mathrm{T}_{2}}{r^{2}}+\cdots\right)
$$

or

$$
\begin{equation*}
{ }_{r^{3}}{ }_{2}^{\mathrm{H}(1+\tau)} \tan \theta=1-\frac{\mathrm{P}_{1}}{\tau}+\frac{\mathrm{P}_{2}}{\tau^{2}}+\cdots \cdots \cdot \tag{61}
\end{equation*}
$$

where $P_{1}=T_{1} / 2 \mathrm{~K}^{\prime} \mathrm{K}, \mathrm{P}_{2}=\mathrm{T}_{2} / 2 \pi^{\prime} \mathrm{K}, \& c \mathrm{c}$.
In the nuethod of sines the daflecting magnet is turned ontil it is perpendicular to the axis of the deflected magnet in ita final position of equilibrium ; the equation of equilibrium in this case is

$$
\begin{equation*}
\frac{r^{3} \mathrm{H}}{2 \mathrm{~K}} \sin \theta=1-\frac{\mathrm{P}_{1}}{r}+\frac{\mathrm{P}_{2}}{r^{2}}+\$ c . \tag{62}
\end{equation*}
$$

The advantage of the method of tangents is that the moment of the deflector is not affected inductively by the earth's force. In the method of sines a correction has on this account to be made; but, on the other hand, there is no torsion, and, from the symmetry of the position of the tro magnets. the approximate formula have a more exact application.

The new pattern of the unifilar magnetometer is adapted for the method of sines. The instrument arranged ns in fig. 29 is first carefully levelled, and fitted with the graduated cross bar D, which


Fro. 29.-Ünifiar Magnetometer, arranged to show defocion.
is ao set in its sockets as to he perpendicular to the line of collimation of the telescope A. The hox is opened, aad the torsior. $\mathbf{r e m o v e d}$ from the suspending fibre by means of a plummet as already explaiued. The dellectell maguet is then suspeaded so as to bo ot the same height as the deflecting magnet when tho latter is placed iu ita carriage on the cross bar. The sides of the box aro now closed, and the circle of the instrumeat turned until the middle division of the acalo B , scen by reflexion from a mirror attached to the defected magnet, is on the cross wirea of the telescope $A$; the circle is thea clamped, and tho vernjers read. The deflecting nagnet k (the same as that used in the vibution experiments) is next placed in its carriage Ifon the cross har ad a distance $\tau_{1}(30 \mathrm{~cm}$. or so) east ; the circle is then turned until tho midule division of the scale is agaia on the cross wires; the veruiers are read once mare. Tho difference betweea the two readings being $\theta_{1}$, we have

[^69]\[

$$
\begin{equation*}
\frac{r_{1}{ }^{3} \mathrm{H} \sin \theta_{1}}{2 K}=1-\frac{P_{1}}{r_{1}}+\frac{P_{2}}{r_{1}{ }^{3}}+. \tag{63}
\end{equation*}
$$

\]

The debecting magnet is reversed in its carriage, and the whale operation repeated. If the deflexion naw be $\theta_{2}$, irrespective of sign, then

$$
\begin{equation*}
\frac{r_{1}^{2} \mathrm{H}}{2 \mathrm{k}} \sin \theta_{2}=1+\frac{\mathrm{P}_{1}}{r_{1}}+\frac{\mathrm{P}_{2}}{r_{1}{ }^{2}}+ \tag{64}
\end{equation*}
$$

The mean of these gires

$$
\begin{equation*}
\frac{r_{1}^{3} H}{4 K}\left(\sin \theta_{1}+\sin \theta_{2}\right)=1+\frac{P_{2}}{r_{1}{ }^{2}}+ \tag{65}
\end{equation*}
$$

The magnet is finally remored to a distance $r_{2}$ west, and the previons obserrations repeated; wo thus get

$$
\begin{equation*}
\frac{\tau_{1}^{3} \mathrm{H}}{4 \mathrm{~K}}\left(\sin \theta_{3}+\sin \theta_{4}\right)=1+\frac{P_{2}}{r_{1}^{2}}+ \tag{66}
\end{equation*}
$$

The mean of (65) and (66) is then taken, and re get

$$
\begin{equation*}
\frac{r_{1}^{3} \mathrm{H}}{2 \mathrm{~K}} \mathrm{~S}_{1}=1+\frac{\mathrm{P}_{2}}{r_{1}^{2}} \tag{6i}
\end{equation*}
$$

where $S_{1}=\frac{1}{2}$ (sin $\theta_{1}+\sin \theta_{2}+\sin \theta_{3}+\sin \theta_{4}$ ), or, what is practically the same, the sine of the mean of $\theta_{1}, \theta_{2}, \theta_{3}$, and $\theta_{4}$. The object in taking the mean of (65) and (66) is to climinate any error arising from the non-coincidence of the midule point of the cross bar with the axis of suspension.

In order to eliminate $P_{2}$, another set of observations are made with a new distance $\tau_{2}(26 \mathrm{~cm}$. or so), giring the equation

$$
\begin{equation*}
\frac{r_{2}{ }^{9} \mathrm{II}}{2 \mathrm{~K}} \mathrm{~S}_{2}=1+\frac{\mathrm{P}_{0}}{r_{2}{ }^{2}} \tag{68}
\end{equation*}
$$

From (67) and (68) we have finally

$$
\begin{gathered}
\frac{\mathrm{K}}{\mathrm{H}}=\frac{r_{1}{ }^{5} \mathrm{~S}_{1}-r_{2}{ }^{5} \mathrm{~S}_{2}}{2\left(r_{1}{ }^{*}-r_{2}^{2}\right)} ; \\
\mathrm{P}_{2}=\frac{r_{1}^{2} r_{2}{ }^{2}\left(r_{2}{ }^{3} \mathrm{~S}_{2}-r_{1}{ }^{3} S_{1}\right)}{r_{1}{ }^{5} S_{1}-r_{2}{ }^{5} \mathrm{~S}_{2}}
\end{gathered}
$$

When great accuracy is required, several corrections lave to be applied:-(1) the moment of the deflector must be corrected for indaction; (2) the moment of the deflector must be corrected for temperature; (3) the lengths $r_{1}$ and $r_{2}$ on the cross bar must be corrected for temperature.

Statical Method.-There is snother method by which we msy determine the product KH, viz, we msy oppose s statical conple to the couple exerted by the earth on the magnet in a given position, 80 that there may be equilibrium ; the statical couple, which may arise from the tersion of a fibre, from a bifils suspension, or other gravitationsl force, thus becomes the messure of the magnetic conple; snd hence KH can be determined in absolnte measure Coulomb's tersion bslance experiments are an exsmple of this method. It finds numerous spplicstions in the variation instruments of fixed magnetical observatories, and also in instruments for magnetic observstions at sea, bat it is very little used in the ordinary work of a physical laboratery.

Magnetic Measurement by Electromagnetic InductionIt has been explained in the article Electricity that, if, either owing to the variation of the magnetic field, or owing to the motion of a closed linesr conducter in it, the number of lines of magnetic force $N$ passing in the positive direction through the conductor vary, this variation will cause an electromotive force $-d N / d l$ in the positive direction round the circuit. Let us suppese, to take a simple case, that we have a coil of wire made up of a number of parallel plane circular windings, and that the sum of all the sreas of the separate windings is A. If we place this in a field of aniform intensity $R$, so that the normal to the windings mskes sn sngle $\theta$ with $R$, the number of lines of force passing through the coil will be $\mathrm{N}_{1}=A R \cos \theta$. If we now suddenly reverse the coil, by turning it through $180^{\circ}$ about en axis perpendicular to its normal, the value of N in the new position is $\mathrm{N}_{2}=-\mathrm{AR} \cos \theta$. Hence the integral electromotive force during the motion is $-\int d t d \mathrm{~N} / d t=\mathrm{N}_{2}-\mathrm{N}_{1}=-2 \mathrm{AR} \cos \theta$, and the whole qusntity $Q$ of electricity which passes will .be $Q=-2 A R \cos \theta / S$, where $S$ is the resistance of the
ceil. If $Q$ be found in sbsolute measure, ${ }^{1}$ and $A$ and $S$ be known, we thus obtsin the value of $\mathrm{R} \cos \theta$. This is the principle of Weber's "esth inductor," 2 by means of Weber's which the herizontal and vertical components of the earth's earth iu, force can be messured, and in censequence the declination ductor:' and inclination determined.

If the test coil be made very smell, se that the portion Verdet ${ }^{\circ}$ of the field which it occupies may be supposed uniform, explor this method may be applied to measure the intensity at coildiffcrent parts of a non-uniform field. ${ }^{3}$ The small coil is placed with its windings perpendicular to the lines of force, sud then suddenly reversed, or, if that be impossible, suddenly removed to a part of the field where the number of lines of force passing through it is zero. The integral electromotive force is of course in the latter case only half what it is in the former. This method is often of use where, owing to the great strength of the field and the consequent distarbances arising from induction, any other method would be utterly useless.

The method of electromagaetic induction may also be Msgonet applied to measure the component of the magnetic moment nomeat of any body parallel to a given line.
Let $a a^{\prime} b^{\prime}$ ( $f \mathrm{~g} .30$ ) be the section of a uniforn cyliodrical coil of electro. length 2l, made up of a single layer of flat circular windings of mangetic radins $b, n$ to the centimetre. Let the axis of the coil be taken inductiou. for $r$-axis, and let K be any magnet within the coil, placed with


Fig. 30.
0
the given line parallel to the sxis of the coil. Let $p q$ be any single winding of the coil, then the surface integral of the magnetic induction for $p q$ is given by $f f a d y d z$; hence the whole number of lines of force through the coil is given by

$$
\begin{aligned}
\mathrm{N} & =\int n d x \iint a d y d z, \\
& =n \iiint a d x d y d z,
\end{aligned}
$$

the integration being extended all orer the cylindrical space abb' $\alpha^{\prime}$. Now, since $a=\alpha+4 \pi \mathrm{~A}=-d \mathrm{~V} / d x+4 \pi \mathrm{~A}$, we get

$$
\begin{align*}
\mathrm{N} & =-n \iiint \frac{d V}{d x} d x d y d z+4 \pi n \iiint \Delta d x d y d z \\
& =-n\left(\iint \mathrm{~V} d y d z-\iint \mathrm{V}^{\prime} d y d z\right)+4 \pi n \mathrm{~K}  \tag{69}\\
& =+4 \pi n \mathrm{E}-n\left(\mathrm{~S}-\mathrm{S}^{\prime}\right)
\end{align*}
$$

where K is the component parallel to the axis of the coil of the moment of the magnet, and $S$ and $S^{\prime}$ the ralnes of the surface integral of the potential of the magoet (derived from Poisson's distribation) over the tro ends of the coil. When there are more layers tban one, we must of course sum the different parts of N erisiog from the different layers.

The formula are quite general, and some spplicstions will be given' later. Meantime we aee that, if the coil be

[^70]so long that the magnetic potential of the body at its two ends may be neglected, then the integral electromotive force caused by the sudden removal of the body, or by the sudden destruction of its magnetism, is $4 \pi n$ times the component of the magnetic moment parallel to the axis of the coil, $n$ being the number of windings per unit of length of the coil.

Mistorical Remarks on the Progress of Mragnetic Measurements. -The method of vibrations came very early into use iu magnetic measurements. Whiston and Graham made vibration observations with a dipping needle. Nusschenbroek and Mallet also used a horizontal needle. Lambert appears, however, to have been tho first to thoroughly understand and nppreciate the method. For long it was the only accurate process in use for obtaining relative measures of the earth's force. It wns so used by Rossel, D'Entrecasteaux, and Humboldt. Coulomb, Hansteen, nud Poisson, all contributed more or less to its improvement; nad it finally reached perfection in the hands of Gauss, ${ }^{1}$ who gave the experimental process for obtaining the moment of inertia, invostigated the correction for resistauce, and, by the introduction of the mirror and scale method, imparted astronomical accuracy to the determination of the period of vibration.
The method of deflexion, in one form or another, is very old. Its existence as a thoroughly scientific method, however, dates from Hansteen. The essential improvement of eliminating the constants depending on the magnetic distribution by observations at different distances is due to Gauss. The advantages of the sine method were first pointed out by Lamont in $1841 .{ }^{2}$

Poisson aeems to have been the first to couceive the ides of absolute magnetic measurement. In n short but luminous article at tho end of the Connaissance des Tenpps for 1828, ho deacribes a method for obtaining the value of $H$ in absolute measure. Horizontal vibration experiments are to be made with two magnets $A$ and $A^{\prime}$, whose muments of inertia A and $\mathrm{A}^{\prime}$ are known. The times of vibration $t$ and $t^{\prime}$ of $A$ and $A^{\prime \prime}$, each suspended alone, are to be observed. Then both are to be Iplaced in the magnetic meridian at a distance $r$ apart in the same horizontal line, and the periods $\theta$ and $\theta^{\prime}$ observed, of A when $\mathrm{A}^{\prime}$ is fixed, and of $\mathrm{A}^{\prime}$ when A is cixed. If $r$ be very great compared with the linear dimensions of A and $\mathrm{A}^{\prime}$, then

$$
\mathbf{H}^{9}-\frac{8 \pi^{2} \theta \theta^{\prime} \sqrt{\mathrm{AA}^{\prime}}}{\mathbf{r}^{3}\left(t_{1}^{\prime} \sqrt{\left(t^{2}-\theta^{2}\right)\left(t^{\prime 2}-\theta^{2}\right)}\right.} .
$$

He recommends, however, that comparatively amall values of $r$ be taken, and the constants of distribution eliminated by experimenting at different distances. His fundamental units are the gramme, metre, and second.

Nothing came of Poisson's proposal until Gauss took up the subject, both theoretically nnd experimentally, as above described The first absolute neasure of the earth's horizontal force was made by him at Cöttingen on the 18th Neptember 1832; the value found was $1.782^{\text {s }}$ in millimetre milligramme second units. The magnet he used (about a foot long and weighing about 1 ft ) had for its moment $100877000^{4}$ in the eame units.

The determination of the distribution of magnetism withis a body, in other words, the determinntion of the magnetic moments of its individual eloments, by observations of magnetic force at external points, is, ns we have seen, an indeterminate problem. Neverthelees, a considerable part of the literature of magnetic science relates to it ; and wo must give some account of what has been done, althongh

[^71]the results obtained are of comparatively slight phssical interest, and of small practical value.

Experimenters have been somewhat slow in recognizing the essential indeterminateness of the problem. This ne doubt has arisen from their imperfect analysis of the phenomena. Thus, although we cannot determine the actual internal distribution, yet the problem to determine the Gaussian surface distribution which will represent the magnetic action nt nll external points, however difficult, is quite determinate. This surface distribution has been called by some the "free magnetism" of the body; nnd some, nll the powerful contrary evidence notwithstanding, have imagined that this distribution has a physical existence, and have even spoken of the depth to which the free magnetism penetrates into the magnet. Others have confounded the free magnetism of Gauss's distribution with that of Poisson's; and in many cases it is impossible to gather what the experimenter meant to indicate exactly by the phrase.
The case in which, from the circumstances, the variation of the internal distribution is confined within the narrowest limits is that of bar magnets, whose length considerably exceeds their laternl dimensions; and this is practically the only case that has been much studied. The most natural way of attempting to represent the action of such a magnet wonld be to suppose it replaceable by n fixed ideal magnet, and then to determine by experiment the atrength and position of the poles of this magnet. The earliest notion was that the poles were situated exactly at the ends of the bar. It was soon found, however, that, if the poles did exist, they were not in general exactly at the ends. Lambert and Kupfer ${ }^{5}$ concluded from their experiments that in many cases the poles lay outside the bar, while in weak magnets they lay inside. Coulomb, as we have aeen, and also Dalla Bella, inferred from their results that the poles fell within. Recent experiments have been made by Pouillet, ${ }^{\circ}$ by Benoit, ${ }^{7}$ by Petruscheffsky, ${ }^{8}$ and by others on the same subject; but it is needless to describe them here.
"The word "pole," like the phrnse "free magnetism," has "Poles" been used by different writers in very different senses, diffrent Some have epplied that name to the mass centres of the meaning positive and negative magaetism of the actual molecules, " But, although as a matter of convenience tro have used these points in our theoretical development, they have, as iar as physical observations are concerned, no existence. Others have defined the poles to be the mass centres of the positive and negative parts of Gauss's surface distribution. These might of course be determined, although the process would be extremely troublesome, and the result of no practical value whatever. In point of fact, if the magnet be in a uniform field, i.e., at a very great distance from tho system that acts on it, the action depends solely on the magnetic mument, nud the magnetic distribution las nothing to do with it; the poles in this case are physically indeterminate. If, on the other hand, two magnets aro within n moderate distance of cach other, we may set to ourselves the problem to find two points in each of them such that tho mutual nction will bo represented by quantitics of positive and negative maguetism concentrated there. Then, in general, such points may or may not exist. Riecke has shown (see above, p. 233) that, if the distance between the magneta exceed a certaia limit, then, ns a matter of approximation, these equivalent poles, as he calls them, do exist. Except, however, in the case of magnets ajmmetrical about an axis, nad also about an equatorial plane, they are not fized in the magnets, but

[^72]depend npon their relative position. Although his results are extremely interesting from a mathematical and theoretical point of view, we do not see that much practical udrantage would attend the use of these equivalent poles; and we are inclined to think that, except in the popular usage for distinguishing one end of a magnet from the other, and in the case of ideal magnets, the word pole had better be abandoned altogether.
The idea of representing the action of a linear magnet by a continuous distribution of free magnetism, positive in one half and negative in the other, is very old. It appears in Bazin's work on the magnetic curves published in 1753; and Tobias Mayer, in his memoir above quoted, assumes that the density of the distribution is proportional to the distance from the middle of the bar. Four distinct methods have been uaed in attempting to determine the law of distribution.
I. The deflexions of a amall needle in different positions near the magnet have been observed, and by means of these the constants in aome formula assumed for the distribution have been calculated. This was the process adopted by Lambert and Hansteen, and, in some of his expariments, by Lamont. ${ }^{1}$
2. Instead of measuring deflexion, we may count the oscillations of the needle, and proceed as before. This method was used by Coulomb, Becquerel, and Kupfer, but it led to no satisfactory results, partly owing to the disturbances arising from induction and the force of translation upon the needle, partly owing to the difficulty of putting a satisfactory theoretical interpretation upon the results.
3. Some observers have measured the force required to detach a small armature of soft iron or ateel from different parts of the bar, thinking thereby to obtain a direct measure of the free magnetism. It is not very easy to say what is measured by this process, but it is obvious, on a little consideration, that the effect is complex, depending greatly on the nature and extent of the surfaces in contact, and also upon the mutual induction between the magnet and the armature. Experiments of this kind have been made by Dub, Lamont, and others.
4. Another method frequently employed is to slide along the bar a small ring-shaped coil embracing it as closely as possible, and to measura the induction currents for a given displacement. The assumption usually made is that the integral electromotive force is proportional to the free magnetism on the portion of the bar passed over, or, what amounts to the same thing, to the difference between the magnetic momenta per unit of length of the sections of the bar on which the coil rests at the beginning and end of the motion. This is, however, only an approximation to the truth, and the accuracy of this approximation is very dificult to estimate in the practical case where the lateral dimensions of the bar are finite. The following investigation will show the ature of the difficulty.
The integral electromotive force is $-\left(N_{1}-N_{2}\right)$, where $N_{1}$ and $N_{2}$ are the surface integrals of magnetic induction taken over the coil in it initial and final positions. Let us take first a linear solenoid SN (fig. 31) of length $l$, and magnetic moment $m$, and a coil of a single winding $P Q$, which moves so that its ceutre $R$ is always in the line SN, and its plane always perpendicular to SN ; then
$$
N-\iint a d y d z=\iint a d y d z+4 \pi \iint A d y d z,
$$
the former integral extending sll over $P Q$, the latter over the infinitely small section of the soleaoid at $\mathrm{R}_{a}$ a being the force due to the end distribution at N and S . We thus get
\[

$$
\begin{equation*}
\mathrm{N}=\frac{2 \pi n}{l}(\cos \theta-\cos \theta) \tag{70}
\end{equation*}
$$

\]

Fhere $\theta$ and $\theta^{\prime}$ are the angles PSX and PNX. This shows, in the first place (see equation (25) above), that if the coil $P Q$ were to expand and contract as it moves, so as alwaye to remain a section of the same tube of force, there would be no variation of $N$, and no
electromotive force, which is as it should be. If we were at liberty to suppose $P Q$ infinitely small, then, when $R$ is between $S$ and $N$, $\cos \theta-\cos \theta^{\prime}$ would be the sum of two unities, and, when $R$ is outside, the difference. la such a case, so long as YQ inoved on the magnct, there would be no electromotive force, hut if we suddenly move it over the end, there would be nn electromotave furce

$-4 \pi \mathrm{~m} / \mathrm{l}$, which is proportional to the moment of the bar. When $P Q$ is not infinitely small, there is a variable part of $N$, depending on the dimensions of $P Q$. which will give rise to an electromotive force, even when the coil is moved along a unilormly magnetized bar, where there is no free magnetism except at the ends.
It is norr easy to form a concention of what happens in the case of an ordinary complex solezoidal bar. We may suppose such a bar made up of a number of aimple linear solenoids. A certaio number of these, corresponding to the eud parts of Poissou's distribution, will have the same length as the bar; the others, corresponding to the lateral surfnce and volume parts of the distribution, will be of continuously diminishing lengths. If we were at liberly to suppose the lateral dimeusions of the bar and the radius of the coil to be infinitely small, then, as the coil moves along the bar, we should have an electromotive force due to passage over the eads of the short solenoids, and, as it moves over tho end, an electromotive force dae to passage over the ends of the loug solenoids. We might in this way by a aufficient number of observations determine the distribntion of the free magnetism throughout the bar and st its ends; and in this case no distinction would be necessary between the volume and the surface distribution in any section.

If, however, the dimensions of the section of the bar, and consequently of the coil, be finite, a correction would have to be arplied, depending, not only on the dimensions of the bar and coil, but al:o bn the magnetic distribntion. All that we can then do is to assume a formula tor Gauss's surface distribution and determine its coostants. We thus get Gauss's distribution, and a formula that will account for the electrical observations; but we obtain no information as to the actual internal distribution of the magnstism in the bar.

Lenz and Jacobi ${ }^{2}$ appear to have been the first to apply the method of induction currents to the measurement of the magnetic distribution in bar magneta. They attempted no theoretical analysis of their results, although they assigned a law of distribution. Van Rees, ${ }^{3}$ who questioned their conclusions, gave an imperfect theory, and made some careful researches of his own. Rothlauf ${ }^{4}$ made further experiments, and entered more fully into the theory, though still with insufficient generality. The most recent experiments of the kind we are aware of are those of Schaper, ${ }^{5}$ who discusses the theory with complete generality, takiog account of the ends of the bar.
After what has been said, the reader will scarcely be surprised to find that the different experimenters assigned very different formule for the distribution in bar magnets. Lambert deduces from his experiments a distribution whose density is $A x,-A$ being a constant, and $x$ the distance from the ends of the bar. Brugmane, $V$. Swinden, and Lenz and Jacobi adopt the law Ax ${ }^{2}$; Hansteen, as we have seen, the law A $x^{*}$, where $r=2$ or 3 . Biot deduced from Coulomb's experiments the law $\mathrm{A}\left(\mu^{x}-\mu^{-x}\right)$ for the density of the free magaetism, which would give for the moment per unit of length of the bar the law $a-b\left(\mu^{x}+\mu^{-x}\right)$, aee above, p. 231. Becquerel,

[^73]Van Rees, Lamont, and Rothlauf favour this last formula; but none of these experimenters give any proper account of the ends, which must be specially represented in all but those cases where the magnetic monent is zero there. Schaper finds that the results of experiment can be adequately represented by means of end distributions, and a lateral surface distribution following the law $\mathrm{A} x+\mathrm{B} x^{3}$. See his paper above quoted, p. $242 .{ }^{1}$

Carrying Power of a Magnet.-It is obvious that the magnetization of a piece of iron must affect its force of cohesion. The most familiar case is that of a magnet to which an armature is fitted. If the surfaces of the pole and armature be carefully ground flat, so as to fit, we may regard the magnet and the armature as continuations of each other. The force of cohesion here is inainly due to the magnetism; and the force required to separate the two is called the "earrying power" of the magnet. To simplify the question, let us consider a cylindrical bar of section $\omega$, uniformly magnetized in the direction of its length with inteosity I. Suppose the bar cut so that the normal to the plane of section makes an angle $\theta$ with I , and let the surfaces of section be separated infinitely little, then the surface density of Poisson's distribution will be $I \cos \theta$ on each surface. Assuming that the cohesion is caused solely by the attraction of these surface layers, we get for the carrying power $P=2 \pi I \cos \theta \times I \cos \theta \omega \sec \theta$, i.e., $\mathrm{P}=2 \pi \mathrm{I}^{2} \omega \cos \theta$. The carrying power is therefore greatest, viz., $2 \pi \omega I^{2}$, when the surface of the pole is perpendicular to the lines of magnetization.

A great variety of experiments have been made on this subject by Joule, Dub, Tyndall, Lamont, and others, mostly, however, under circumstances that do not admit of the application of the above theory. For an account of what has been done, the reader should consult Wiedemann's Galvanismus, ii. $\S 425$ sq. The most recent investigations on the subject will he found in the papers of Rowland, quuted below, p. 255, and in papers by Stefan and Wassmuth in the Monatsberichte der Weiner Akadenie for 1880 and $1882 . .^{2}$ The facta are not so simple as the above theory would indicate; but Wassmuth finds a modified form of it to agree sufficiently well with observation.

## Mathematical Theory of Magnetic Induction.

Axioms The two fundamental axioms of this theory are the following:-

1. The induced magnetism in any element of a body depends merely on the magnitude and direction of the resultant magnetic force ( Sis $_{8}$ ) at the element.
2. The magnetic moment induced by any ferce if is the resultant of the magnetic moments induced separately by any forces of which ${ }^{\text {fig }}$ is the resultant.
With reference to axiom 1 it is to be remarked that account must be taken of the physical cendition of the body as to temperature, and so ferth; but it is implied that no account is to be taken of its magnetic state, except in so far as that affects the resultant magaetic force. In other words, it is asserted that the moment induced by any force does not depend upon any pre-existing magnetic moment in the element, and is the same whatever forces may have ncted on the element previously. The full significance of these statements will be better appreciated when we come to consider the exceptions to them in case of etrongly mag. netic bodies. It should also be noticed that it is supposed

[^74]that the body has reached a state of magnetic equilibrium, and that by whole resultant magnetic force is understood, not only that arising from the given inducing system, including pre-existing magnetism in the body itself, but also that arising from induced magnetism.

In the mathematical theory no distinction is drawn betweea the part of the induced magnetism which disappears when the inducing force is removed, and that which remains. If any where we contemplate what happens after the removal of the furce, it is assumed that all the induced magnetism disappears. This important restriction must be borne io mind in applying the results in practice.

Axiom 2 enables $u s$ to assign at once the law connecting the components of induced magnetization $A_{1}, B_{1}, C_{1}$ with the components $\alpha, \beta, \gamma$ of the resultant force. If $r_{1}, q_{3}, p_{2}$ be the components parallel to the three coordinate axes of the induced magnetization caused by a unit resultant force parallel to the axis of $x$, then, by the axiom, the components of mannetization induced by a force $\alpha$ in the same direction will be $r_{1} \alpha, q_{3} \alpha, p_{2} \alpha$; similarly, if $p_{3}, r_{2}, q_{1}$ be the components due to unit forcs parallel to the $y$ axis, then the components due to $\beta$ will be $p_{3} \beta, \gamma, \beta, q_{1} \beta$; and finally, If $q_{2}, p_{1}, r_{3}$ be components due to unit force parallel to $z$ axis, the components due to $\gamma$ will be $q_{2} \gamma, p_{1} \gamma, r_{3} \gamma$. Compounding all these, according to the axiom, we get

$$
\left.\begin{array}{l}
\mathrm{A}_{1}=r_{1} \alpha+p_{3} \beta+q_{2} \gamma  \tag{71}\\
\mathrm{~B}_{1}=q_{3} \alpha+r_{2} \beta+p_{2} \gamma \\
\mathrm{C}_{1}=p_{2} \alpha+q_{1} \beta+r_{3} \gamma
\end{array}\right\}
$$

law of induction.

Hence the most general expressions for the components of magnetization compatible with our axioms are three linear functions of the components of the resultant force.

Here it is necessary to introduce a classification of bodies according to their magnetic properties.

If equal, similar, and similarly situated elements cut Homo from different parts of a body have identical magnetic pro- geneity perties, it is said to be "magnetically homogeneons," if not, and
"hetero-
geneity.
geneity.
If equal and similar elements cut around the bame point lsotropy in different divections be identical in their magnetic proper- andæolo ties, the body is said to be magnetically "isotropic "; if tropy. not, "æolotropic."

These are not cross classifications; for a body (e.g., Iceland spar) may be æolotropic and yet homogeneous, and it might be beterogeneous and yet isotropic. We must regard the coefficients $p, q, r$ of ( 71 ) as belonging to a point of the body; and we sec that in a homogeneous body they will be tho same for all points, whereas in a beterogeneous body they will vary from point to point, i.e., they will be functiona continuons or discontinuous of the position of the point.

In the case of an isotropic body it is obvious a priori Law of that the induced magnctization must be coincident in inniucdirection with the resultant force; the conditions for this tion for are that the coefficients $p$ and $q$ should all vanish, and that $r_{1}=r_{2}=r_{3}=\kappa$. The equations (71) thus reduce to

$$
\begin{equation*}
\mathrm{A}_{1}=\kappa \alpha, \mathrm{B}_{1}=\kappa \dot{\beta}, \mathrm{C}_{1}=\kappa \gamma \tag{72}
\end{equation*}
$$

In an aolotropic body, on the other hand, the coefficienta may be all different from zero and from one another; but, as we shall soe, at all events in the ideal case centemplated by the mathematical theory, the conservation of energy reduces the number of independent constants by three; while a proper choice of ares redaces it by threo more; so that the magnetic properties of any element of an xolotropic body depend virtually on three independent constants.

The theory here given is the generalization of Poisson'a theory due to Sir William Thomson. It aims at giving the sinplest possible exposition of the resulta of experiment with the fewest assumptions as to the molecular atructure of bodics. We first discuss specially a few of the cases
more important in practice, and then gire a bricf account of the general theory with a view to establish some general principles to guide us in the subsequent account of the (often very complex) phenomena observed by experimenters.

Homogeneous AEolatropic Sphere in a Uniform Field of Inductive Force.-We suppose that the sphere, to begin with, is not magnetized. If the sphere were uniformly magnetized, ${ }^{1}$ with components $A_{1}, B_{1}, C_{1}$, then (see above, p. 232) the force inside the sphere due to this magnetization would haro for its components

$$
a_{1}=-\left\{\pi A_{1}, B_{1}=-j \pi B_{1}, \gamma_{1}=-\frac{5}{2} C_{1} .\right.
$$

This uniform force combined with the given uniform force $\left(\alpha_{0}, \beta_{0}, \gamma_{0}\right)$ of the inductive field would result in a uniform force

$$
\begin{equation*}
a=a_{0}-\frac{1}{5} \pi A_{1}, \beta=\beta_{0}-\frac{j}{j} \pi B_{1}, \gamma=\gamma_{0}-\frac{1}{3} \pi C_{1} ; \tag{73}
\end{equation*}
$$

It is obvious therefore that the assumption of uniforn magnetization will enable us to satisfy the law of induction.
In point of fact, substitating in (71) and transposing, we got three linear equations to determine $A_{1}, B_{1}, C_{2}$ in terms of $\alpha_{0}, \beta_{0}, \gamma_{0}$, viz.,

$$
\left.\left(1+\frac{1}{5} \pi r_{1}\right) A_{1}+\frac{5}{5} \pi r_{3} B_{1}+\frac{4}{5} \pi q_{2} \mathrm{C}_{1}=r_{1} a_{0}+r_{3} \beta_{0}+q_{2} \gamma_{0} \text {, \&c. ( } 44\right) \text {. }
$$

It is easy, by means of these and formulx given abore, to calculate the couple exerted on the inductively magnet-

Keduc.
tion in
the number of induchion coefficients. ized spherc. If we put $\alpha_{0}=0, \beta_{0}=F \cos \theta, \gamma_{0}=F \sin \theta$, we can calculate the work done on the sphere in turning through $180^{\circ}$ about an asis perpendicular to the dircction of the field. This, by the conservation of energy, ought to vanish, and we thus get the conditions $p_{1}=q_{1}, p_{2}=q_{2}$, $p_{3}=q_{3}$. The equations (74) therefore reduce to

$$
\left.\begin{array}{l}
\mathrm{A}_{1}=r_{1} a+p_{3} \beta+p_{2} \gamma  \tag{75}\\
\mathrm{~B}_{2}=p_{3} a+r_{2} \beta+p_{2} \gamma \\
\mathrm{C}_{2}=p_{2} a+p_{2} \beta+r_{3} \gamma
\end{array}\right\} .
$$

Heuce, if $a, \beta, \gamma$ be parallel to a radius of the central quadric $r_{1} x^{2}+r_{2} y^{2}+r_{z^{2}} z^{3}+2 p_{1} y z+2 p_{r} x x+2 p_{3} x y \infty 1$,
$\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{2}$ will be normal to the diametral plane of that radius. We have, therefore, by the theory of surfaces of the second degree, the following conclusions.
Tlures

1. The induced magnetization is not in general in the procipal direction of the inducing force; but there are in general magnetic at every point three directions, called the three principal ases. magnetic axes, mutually at right angles to each other, for which the directions of the induced magnetization and of the inducing force coincide. If the axes of coordinates be parallel to these principal axes, the equations (75) reduce to

$$
\begin{equation*}
\mathrm{A}_{1}=r_{2} a, \quad \mathrm{~B}_{1}=r_{2} \beta, \mathrm{C}_{1}=r_{3} \gamma \tag{76}
\end{equation*}
$$

Principa: The values of $r_{1}, r_{2}, r_{3}$ in this case are called the "principal marretic magnetic inductive susceptibilities." Bodies for which these ${ }_{\text {nd }}^{\text {misceptive }}$ coefficients are all positive are called paramagnetic or sinsepti• ferromagnetic. Bodies for which they are all negative are called diamagnetic. No substance is known for which some are positive and others negative, although this is a mathematically possible case. Since intensity of magnetization and resultant magnetic force are of the same dimension $\left[\mathrm{L}^{-1} \mathrm{M}^{3} \mathrm{~T}^{-1}\right], r_{1}, r_{2}, r_{3}$ are pure numbers; for all substances cxcept iron, nickel, and cobalt, they are extremely small. The value of the coefficients $r$ and $p$ for any other axes can be expressed in terms of the three principal susceptibilities by means of simple formulæ which we need not stop to deduce.

A physical meaning can be given to $r_{1}$, as folloria. Let the body be homogeneous, and let us cut from it a cylindrical piece whose axis is parallel to the principal asis of susceptibility $r_{1}$. Place this cylinder in the direction of

[^75]the lines of force in a uuiform field of unit strength, then, provided the cylinder be infinitely thin, and of longitudinal dimensions infinitely great compared with its lateral, the internal force due to the induced magnetization will be zero (sce abose, p. 229), and it will be magnetized inductively with a uniform intensity $r_{1}$. Similarly for $r_{2}$, $r_{3}$.

The three cocfficients

$$
\bar{x}_{1}=1+4 \pi r_{1}, \bar{x}_{2}=1+4 \pi r_{2}, w_{3}=1+4 \pi r_{3},
$$

used later on, are called by Thomson the three principal permeabilitics of the body at any point. These nre of course pure numbers, and they are positive for all knowr substances.
2. If the susceptibilities for nny two principal axes be equal, then every axis in the plane of these two is : principal axis.
3. If all three principal susceptibilities be equal at any point, then every axis through that point is a principal axis, nnd the susceptibility for every such axis is the eame. The body is therefore isotropic at that point, and the direction of the induced magnetization coincides with the direction of the inductive force for every direction of the latter.
Returning to the problem of the zolotropic sphere, let us Magnet simplify our equations by taking the coordinate axes parallel to the ization common directions of the principal axes throughout the homogene- and ous splere. We then get for the components of maguetization

$$
\begin{equation*}
A_{2}=\frac{r_{1}}{1+\frac{4}{3} \pi r_{1}} \alpha_{0}, \quad B_{1}=\frac{r_{3}}{1+\frac{4}{3} \pi r_{3}} \beta_{0}, \quad C_{2}=\frac{r_{3}}{1+\frac{4}{5} \pi r_{3}} \gamma_{0} \tag{77}
\end{equation*}
$$

Using thesc formulx, we get, by means of (22), for tha componcuts of the couple acting on tho sphere (of volume $\tau$ ),

$$
\left.\begin{array}{c}
\mathcal{S}=r^{\prime} \frac{r_{2}-r_{3}}{\left(1+\frac{4}{3} \pi r_{2}\right)\left(1+\frac{5}{3} \pi r_{3}\right)} \beta_{0} \gamma_{0} \\
\mathfrak{N}=r \frac{r_{3}-r_{1}}{\left(1+\frac{5}{3} \pi r_{3}\right)\left(1+\frac{5}{3} \pi r_{1}\right)} \gamma_{0} a_{0} \\
\eta=r \frac{r_{1}-r_{9}}{\left(1+\frac{4}{3} \pi r_{1}\right)\left(1+\frac{5}{3} \pi r_{2}\right)} a_{0} \beta_{0}
\end{array}\right\}
$$

There is of course no force of translation. As a special case let us suppose $\gamma_{1}$, $r_{2}$, and $r_{3}$ to be in descending order of algebraical magnitude, and suspend the sphere with the axis of $r_{1}$ perpendicular to the lines of force. We may put $\beta_{0}=F \cos \theta, \gamma_{0}=F \sin \theta$, where $\theta$ is the angle between the axis of $\gamma\left(r_{2}\right)$ and the direction of the field, then we have

$$
\frac{3}{3}=\frac{1}{2} v F^{2}\left(r_{2}-r_{3}\right) \sin 2 \theta /\left(1+\frac{5}{3} \pi r_{2}\right)\left(1+\frac{1}{3} \pi r_{3}\right)
$$

Hence the splere tends to turn so as to place the axis of algebraically greatest susceptibility parallel to the lines of force. It will be in equilibrium when either principal asis is parallel to the lines of force; but in stable equilibrium only when the nxis of greatest permeability is in that position. It is to be noticed that the couple is proportional to the aquare of the strength of the field.
There is another way of expressing these resulte more in accordance with the ideas of Faraday.
If $N$ be the surface integral of magnetic induction taken over the meridian section ( $\omega$ ) of the sphere perpendiculor to the directior of the vector $\mathfrak{z}$ inside, or, as we may call $i$ t, the number of liucs of force that pass through the syhere, then we lars

$$
\begin{aligned}
& N=3 F \omega\left\{\left(\frac{\pi_{2}}{w_{2}+2}\right)^{2} \cos ^{2} \theta+\left(\frac{\pi_{3}}{w_{3}+2}\right)^{2} \sin : \rho\right\}^{\frac{2}{2}} . \\
& y=-\frac{1}{24 \pi^{2} R} \frac{\left(\bar{\sigma}_{2}+2\right)\left(\bar{w}_{3}+2\right)}{w_{2}+\pi_{3}+w_{2} \bar{w}_{2}} \frac{d\left(\mathbb{N}^{2}\right)}{d \theta},
\end{aligned}
$$

$R$ being the radius of the sphere.
From these formula we can draw the following conclu sions:-

1. The number of lines of force that pass through the Dolue. sphere is greatest, viz, $3 \mathrm{~F} \omega \boldsymbol{m}_{2} /\left(\omega_{2}+2\right)$, when the axis of tion of greatest permeability is parallel to the direction of the un. Faradas disturbed field, and least, viz., $3 \mathrm{Fwa} \frac{8}{} /\left(\varpi_{8}+2\right)$, when the ${ }^{\text {laws }}$ axis of least permeability is in the same position.
2. In any position the number of lines passing throngh the spherical epace is greater for a paramaynetic lody, and
tess fur a diamagnctic body, than it wonld be if the sphere were absent.
3. The sprecte is in equilibriune when the namber of lines of force passing through it is a maximum or a minimum, the equilibrium being stable in the former case, and unstable in the latter.

Honrogoneous Istropic Sphere in Uniform Field.-This pase is obtained by putting $r_{1}=r_{2}=r_{3}=\kappa$ in the above formulx. The magnetization is parallel to the undisturbed field; ond the couple vanishes, so that the sphere is in equilibrium in all positions. If the strength of the field ; be $F$, we get for the intensity of magnetization
also

$$
1=\frac{\kappa}{1+\frac{s}{3} \pi \kappa} F=\frac{(\overline{-1}}{\frac{(\sigma)}{+2}} \mathbf{F} ;
$$

$$
N=\frac{3 \pi}{w+2} F \omega .
$$

In order to familiarize the reader with this important case, we give two figures of the lines of force from Sir W. Thomsun'a Reprint, pp. 490, 491,-one for a paramagaetic


Fic. 32.-Lines of Force for a Paramaguetic Sphere.
(fig. 32) haviag $=2 \cdot 8$, and another for a diamagnetic (6g. 33) having $=\cdot 48$. The former represents a paramagnetic whose susceptibility is something like $\frac{1}{40}$ th of the maximum observed for the best Norway iron. The latter corresponds to a diamagnetic having a susceptibility some 16,000 times that of bismuth, which is the most powerfully diamagnetic substance known.
The reader should observe that, although the field inside the isotropic sphere is uniform, this is not the case outside,


F10. 33.-Lines of Force for a Dlanagnctic Sphere.
a fact sometimes forgotiten by experimenters. Of course the disturbance in the case of a bismuth sphere would be infinitesímal.

Homogeneons Eulotropic Ellipsoil in a Unijorm Field. -In the case of a sphere the tendency to set in a uniform field is wholly dependent on the colotropy of the 3! here, and is independent of its ferm. It is important, in order to get a complete picture of the behaviour of inductively magnetized bodics, to obtain a solution for some case where the form has an effect upon the resilt. i solid bounded by a surface of the aecond degrce affords nuch a case.
If an ellipsoid be uniformly magnetized so that the conplonents of magnetization parallel to its threc principal axes $a, b, c$ be $A_{1}, B_{1}, C_{1}$, this magnetization gives tise to a force

$$
a_{1}=-A_{1} \mathrm{~L}, \quad \beta_{1}=-B_{1} \mathrm{~N}, \quad \gamma_{1}=-\mathrm{C}_{1} \mathrm{~N} \text { : }
$$

rihen L. M, N have the ralues girch abore, 1. 232. If $\pi \mathrm{c}$ now
phace this cllipsoid in a uuiform field ( $a_{00}, \beta_{0}, \gamma_{0}$ ), tho force inside will be given by

$$
\begin{equation*}
a=a_{0}-A_{1} L, \quad \beta-\beta_{0}-B_{2} L, \gamma=\gamma_{0}-C_{1} L \tag{79}
\end{equation*}
$$

It is obvious, thecrefore, that the equations (75) of induction cinl, as in the cass of a sphere, be satisicicd by the assumption of uniform magnetization.
There is no difficulty in dealing with the gencral ease in which the principal magnetic axes are not parallel to the principal axes of figure ; we shall content ourselves, howcrer, with the case in which the principal magnetic axes $r_{1}, r_{2}, r_{3}$ are parallel respectively to $a, b, c$. Equations (76) then give at ouce whenco

$$
\begin{equation*}
A_{1}=\frac{r_{1} a_{0}}{1+r_{2} \mathrm{~L}}, \mathrm{~B}_{1}=\frac{r_{i} \beta_{0}}{1+r_{2} \mathrm{MI}}, \mathrm{C}_{1}=\frac{r_{3} \gamma_{0}}{1+r_{3} \mathrm{~N}} \tag{81}
\end{equation*}
$$

Tho coumponcnts of the magnetic momeat are of coursc obtained at onec from these by multiplying by the volume.
For the compouents of couple, $x$, Mrt, gl, tending to turn the cllipsoid about the axes $c, b, c$, we get

$$
\left.\begin{array}{c}
Y=\frac{3}{2} \pi l b c  \tag{82}\\
r_{0}=r_{3}+r_{2} r_{3}(N-M) \\
\left(1++r_{2} M\right)\left(1+r_{3} N\right) \\
M=\& \beta_{0} \gamma_{0}
\end{array}\right\}
$$

From these equations we can draw the following impertant conclusions,-first as to the magnetization of the cllipsoid.

1. When $r_{1}, r_{2}, r_{3}$ are so small that their squares may be With neglected, as in fact is the case with all bodies except iron, weakly nickel, and cobalt, the components of magnetization reduce smabnotla to $r_{1} a_{0}, r_{2} \beta_{0}, r_{3} \gamma_{0}$. $\Lambda$ glance at equations ( 79 ) will ces the show that what happens is simply that the part of the $\mathrm{R} . \Omega$ do. internal inducing force which depends on the squares of not affect the susceptibilities is not sensible. In other words, the form of the bedy is without influence on the induced magnetization. Or, what is again equivaleut to the same ization thing, the induced magnetism may be supposed to produce, no disturbance in the inducing field.

These conclusions are of course not limited to the ellipsoidal form in particular ; but we have the general result that, if the squares of the susceptibilities are negligible," then the form of the body has no effect on the induced magnetisin.
2. On the otber hand, when the susceptibilities (and with consequently the permeabilities) are very great, since strongly) $\mathrm{A}_{1}=a_{0} /\left(1 / r_{1}+\mathrm{L}\right), d_{c}$. , it is clear that the inftuence of the magnet form of the body predominates. The extreme case is that the infuof a body of infinite permeability, in which the induced enee of magnetism is whelly determined by the forn.
3. If, however, the ellipsoid be very elongated in the direction of $a$, then $L$ will be very small, and $r_{1} \mathrm{~L}$ may be very small, notwithstanding the largeness of $r_{2}$. In that form prear domi-
nates. case $A_{1}=r_{1} \alpha_{0}$
4. Trom 1, 2, and 3 we have the following most Best form important results. In experimeating with weakly magnetic for dettrbodies in a uniform field-in order, say, to determine their minastion susceptibility-the form nf the body is indifferent. On the other hand, with strongly magnetic bodics an elongated form must be used, because in that case only does the induced magnetism depend mainly on the susceptibility of the material. With bodies approaching the spherical form differences in form produce far more effect on the experimental results than differences in the susceptibility of the material, so that in such casca the experimenter rcally measures the accuracy of his instrument maker ${ }^{2}$ more than the magnetic susceptibility of his material.
5. For a flat disk (infinitcly oblate ellipsoid), having its $r_{1}$ axis parallel to the lines of force, $L=4 \pi$, and $A_{1}=r_{1} a_{0} /\left(1+4 \pi r_{1}\right)=a_{0}\left(\pi_{1}-1\right) / 4 \pi \pi_{1}$. If such a body were diamagnetic, and had $r_{1}=-1 / 4 \pi$, i.e, had zero

[^76]permcability, the normal magnetization would be infinite for any finite force.

Next, we have the following conclusions as to the magnetic couple. Let us suppose the ellipsoid free to move about its $a$ axis, and let the direction of the field be perpendicular to $a$, so that $\beta_{0}=F \cos \theta, \gamma_{0}=F \sin \theta$; the coupls tendiag to turn the $b$ axis parallel to the undisturbed direction of the field is the sum of two parts:-

$$
\begin{equation*}
s_{1}=\frac{\pi a b c F^{2}\left(r_{2}-r_{3}\right)}{\left(1+r_{2} M\right)\left(1+r_{3} N\right)} \sin 20 \tag{83}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{8}=\frac{\pi \pi b c r_{3} r_{3}(N-N)}{\left(1+r_{2} I\right)\left(1+r_{3} N\right)} \sin 2 \theta \tag{Sf}
\end{equation*}
$$

1. If the susceptibitities are so small that their squares and products are negligible, then ${ }^{3}$ reduces to

$$
r_{1}=\frac{5}{3} \pi a b c \mathrm{~F}^{2}\left(r_{2}-r_{3}\right) \sin 2 \theta_{2}
$$

[n other words, the form of the body has no effect, and it behaves exactly like an roolotropic sphere of the same. volume ; i.e., it will tend to tura its axis of greatest permeability parallel to the lines of force.

For
larga
tusceptibilities bilities sign as $b^{2}-c^{2}$; bence the ellipsoid will teind to place its
the effect el form predomientes.
2. If the susceptibitities be very large, then the most important part of will be $\mathscr{I}_{2}$. Now a glance at the values of $M$ and $N(34)$ shows that $N-M$ has the same longest dimension parallel to the lines of force. ${ }^{1}$ This is the general effect of the influeace of form in the case of strongly magnetic bodies, or, if we cheese to put.it so, the effect of the disturkance of the feld by the induced magaetism.
3. It is of course possible in the case of strongly magnetic bodies that both parts of may be sensible, so that the resultant action would be affected both by form and by the magnetic structure, either predeminating according to circumstances; for by properly shaping the ellipsoid we can give $N-M$ any value positive or negative from 0 to $2 \pi$. In this way, given an æolotropic body for which $1 / r_{3}-1 / r_{2}$ is not greater than $2 \pi$, we might so shape it that it would turn its longest dimensions parallel to the lines of force, or so that it would turn its shortest dimensions parallel to the lines of force, the shortest axis in the second case being the axis of greatest permeability ; or we might so shape it that the equilibrium \%ould be neutral.

And, in general, given a body æolotropic within certain limits, we might shape it in such a manner that the effect of its form would exactly neutralize the effect due to its structure, so that, as far as setting in a uniform field is concerned, ${ }^{2}$ it would bebsve like an isotropic sphere.
isotropic
that the tendency of an elougated isotropic body to set in a uniforn field is insensible.

Ring Electromagnet.-A simple case, ${ }^{3}$ which has reccatly Tore. acquired practical importance, is that of an electromagnet heving a soft iron core shaped like an anchor ring, whose mean dianeter is R , and radius of section $a$, wound uniformly with $n$ turns of a primary coil in which flows a current $i$. The lines of force and the lines of magnetizatien will evidently be circles, and, since the Poisson's surface and volume distributions vanish, the whole magnetic force 资 will be simply that due to the current. At a distance $\rho$ from the $2 x i s$ of the ring ${ }^{3}=2 n i / \rho$; for the whole work done on a unit pole in passing round any coaxial circle of redius $\rho$ is $\frac{3}{3} \times 2 \pi \rho=4 \pi n i .{ }^{4}$ The intensity of magnetization is, therefore, $\mathrm{I}=2 n \kappa i / \rho$, sad $\xi=$ $2 n i(4 \pi \kappa+1) \cdot \rho=2 n=i / \rho$. Hence it appears that the total induction through a secondary coil of $n^{\prime}$ windings is $2 n n^{\prime} i\left(4 \pi \kappa \int d \mathrm{~S}^{\prime}, \rho+f d \mathrm{~S}^{\prime} / \rho\right)$, where $f d \mathrm{~S} / \rho$ is taken over the section of the corc, and $f d S^{\prime} / \rho$ over the section of the coil. In the case of an anchor ring of circular section, if wo neglect the difference between the radius of the primary coil and the radius of the core, the expression for the total induction through the secondary is $4 \pi n n^{\prime} w i\left(\mathrm{R}-\sqrt{R^{2}-a^{2}}\right)$.
In a non-uniform field the problem of magnetic Small induction becomes very dificult for bodies of ifnite size. sphero in If, however, we deal with infinitely small bodies we may nonsuppose the field uniform throughout the body, and apply the field. results already obtained to find the induced magnetism.
Small Eolotronic Sphere in a Non-nniform Field.-Let $A_{1}, B_{1}, C_{1}$ be tha coniponents of tha induced magnetization parallel to the principal magnetic axes of the sphere, $\alpha_{0}, \beta_{0}, \gamma_{0}$ tha components of the strength of the undisturbed field at the centre of the aphere in the same direction; then, denoting $r_{2} /\left(1+\frac{f}{5} \pi r_{1}\right)$ by $s_{13}$, and so on, wa bave $A_{1}=s_{1} \alpha_{0}, B_{1}-s_{2} \beta_{0}, C_{1}-s_{3} \gamma_{0}$. If the mag. netization of the small sphere (of volume $v$ ) were rigid, its potential energy $W^{\prime}$ would be $W^{\prime}=-v\left(A_{1} a_{0}+B_{1} \beta_{0}+C_{1} \gamma_{0}\right)$. The actnal potential energy, W, of the indnctively magnetized sphare is different, because its magnetism varies as it. passes from ona part of the field to another. In any infinitely small diaplacement, however, we may calculate the work on the supposition that the magnetism is temporarily rigid. In other words, wa may put $d W=d W^{\prime}$, whera the latter is taken on the supposition that $A_{1}, B_{1}, C_{1}$ do not vary, while on the other hand an $\beta_{0}, \gamma_{0}$ do vary, because the resultant force both alters its magnitnde and its direction relative to the principal axes of the sphere. Wa thua get

$$
d W=-v\left(\mathrm{~A}_{1} d a_{0}+\mathrm{B}_{2} d \beta_{0}+\mathrm{C}_{2} d \gamma_{0}\right)
$$

In integrating we must take account of tha fact that $A_{2}, B_{1}, C_{1}$ are variahle. Substituting their values, we get

$$
d W=-v\left(s_{1} \alpha_{0} d a_{0}+s_{2} \beta_{0} d \beta_{0}+s_{3} \gamma_{0} d \gamma_{0}\right),
$$

whenca

$$
\begin{equation*}
W=-\frac{v^{2}}{2}\left(s_{1} \alpha_{0}{ }^{2}+\varepsilon_{8} \beta_{0}{ }^{3}+s_{3} \gamma_{0}{ }^{2}\right) \tag{87}
\end{equation*}
$$

This important formula contains the whole of the theory of the movement of small spherical masses of inductively magnetizable matter in any field of force. We can deduce from it at once the position of equilibrium of an æolotropic sphere suspended in a uniform magnetic field, with freedom to rotate about a given diameter.

Let $\therefore \quad: \nu$ and $l, m, n$ be the direction cosines of the given diameter and of the direction of the field relative to the principal magnetic axes of the sphere, and $R$ the atrength of tha field; then W-$-\frac{1}{2} v \mathrm{R}^{2}\left(s_{1} l^{2}+s_{2} m^{2}+s_{s} r^{2}\right)$. For stable equilibrium $W$ must be a minimun, and for nnstable equilibrium a maximm, i.e., there is stable or unstabla equilibrium according as $s_{1} l^{2}+s_{2} m^{2}+s_{3} n^{2}$ is a maximum or a minimum under the given kinematical conditions, which will be expressed by a ralation between $\lambda, \mu, \nu$ and $l, m, n_{0}$. It is needless to work ont the analytical solution; for it leads to results easily obtainabla from formulæ already given. It is important, however, to show the identity of this method of treatment

[^77]with Faraday's view of the matter. If $a, b, c$ be the components of the magnetic iaduction parallel to tho principal axea of the sphere, then we get $a=\left(1+\frac{s}{5} \pi s_{1}\right) \mathrm{R}, b=\& \mathrm{c}_{6}, c=8 \mathrm{sc}$. Whence if N denote the total induction through the splere ${ }^{1}$ in the directiou of the undisturbed field, Te have, $\omega$ being the area of its meridian section
\[

$$
\begin{aligned}
\mathrm{N} & =\omega(a l+b m+c n) \\
& =\mathrm{R}+\frac{s_{3} \pi \mathrm{R}\left(s_{1} l^{2}+s_{2} m m^{2}+s_{2} n^{2}\right) .}{} .
\end{aligned}
$$
\]

$N$ is thns a maximum or a minimum wben $s_{1} l^{2}+s_{2} m^{2}+s_{3} n^{8}$ is a unaximum or a minimum.

We have therefure established quite generally Faraday's law that an woiotropic sphere suspended in a iniform field with freedom to rotate about any diameter will be in stable or unstable equilibrium according as the number of lines of force that pass through it is a maximum or a minimum. A particular case of this theorem has already been proved above ( p .245 ) for strongly magnetic bodies.

We next apply the formula (87) to deduce the force of translation in a heterogeneous field.

1. We see that in a uniform field $W$ is constant so long $2 s$ there is translation merely without rotation, i.e., there is no tendency in an æolotropic or isotropic sphere to move bodily in s uniform field.
2. If we suppose the splere isotropic (i.e., $s_{1}=s_{2}=s_{3}=\tau$ ), then $W=-\frac{1}{2} \tau v\left(a_{o}^{2}+\beta_{0}^{2}+\gamma_{o}^{2}\right)=-\frac{1}{2} \tau v R^{2}$. Hence the force tending to move the sphere in the direction of $d s$ is

$$
\begin{equation*}
-\frac{d W}{d s}=\frac{1}{2} \tau v \frac{d\left(\mathrm{R}^{2}\right)}{d s}=\tau v \mathrm{R} \frac{d \mathrm{R}}{d s} \tag{88}
\end{equation*}
$$

In other words, the small sphere is subject to a force of which the scalar potential is $\frac{1}{2} \tau v \mathrm{R}^{2}$. If then we draw the isodynamic surfaces $\mathbf{R}^{2}=$ const., the force on an inductively magnetized isotropic sphere will be everywhere at right angles to these ; that is, the direction of this force at every point will be tangential to the lines of slope of the resultant force, viz., in the direction in which that force varies most rapidly. In the case of paramagnetic bodies, for which $\tau$ is positive, the spheres will tend to move from places of weaker to places of stronger resultant force; in the case of diamagnetic bodies, for which $\tau$ is negative, from places of stronger to places of weaker force. This is the famous law fond experimentally by Faraday, and afterwards theoretically established by Sir William Thomson.
withont rotation in any direction $d s$. Let the direction Eolocosines of the field relative to its principal magnetic axes tronio be $l, m, n$, then these are constant during the displacement; spheres and, if $\boldsymbol{R}$ be the iutensity of the field, $\alpha_{0}=R l, \beta_{0}=R m_{3}$ $\gamma_{0}=\mathrm{R} n$; whence

$$
\begin{equation*}
-\frac{d W}{d s}=\frac{1}{2} v\left(s_{1} l^{2}+s_{\mathrm{g}} m^{2}+s_{3} n^{2}\right) \frac{d\left(R^{2}\right)}{d s} \tag{89}
\end{equation*}
$$

Hence, as before, the resultant force of translation on the sphere is along the line of slope, in the cirection in which the force increases if the body le wholty paramagnetic, in the opposite direction if it be wholly diamagnetic.

Besides depending on the nature of the field, the force of translation, on acconnt of the factor $s_{2} l^{2}+s_{2} m^{2}+s_{3} n^{2}$, depends on the position of the body relative to the lines of force. Bearing in mind the theory of the radii of an ellipsoid, we have the following proposition :-

The force of translation on an zolotropic sphere is greatest when its axis of (numerically) greatest magnetic susceptibility is parallel to the lines of force, and least when the axis of (numerically) least susceptibility is in the same position.

Or, using permeability instead of susceptibility, -
The force of translation is greatest for a paramagnetic sphere when its axis of greatest permeability is parallel to the lines of force, for a diamagnetic spherc when the axis of least permeability is jarallel to the linez,of force, and vice versa.

Or, yet again, in the words of Faraday:-
The force of translation exerted upon a paramagnetic sphere is greatest when it is so placed that the greatest number of lines of force pass through it, whereas in the case of a diamagnetic sphere the force is greatest when it is so piaced that the least number of lines of force pass through it, and vice versa.

Approximate Theory of the Actıon on Bodies of Finite Size Approxiin a Non-Uniform Field. -We have seen that, if the square of the susceptibility be negligible, the effect of the form of the body and the disturbance of the field arising from the induced nagnetism may be neglected. In that case we may replace the spheres of the foregoing discussion by cubrs, and determine the action on a body of finite size by Integrating the action on the elementary cubes of whicl it is composed. Thus the potential euergy will be $-\frac{1}{2} \iiint\left(s_{2} a_{0}^{2}+s_{2} \beta_{0}^{2}+s_{3} \gamma_{0}^{2}\right) d v$, and the body need not necessarily be homogeneous. From this expression we can deduce the force under given circumstances.

It is quite easy to see, without any mathematical calculation, what will happen in a field of forco which diminishes in intensity outwards from an axial line. If we suspend an elongated paramagnetic body with its centre in the axis of the field, it will evidently be in stable equilibrium with its longest dimension placed axially; for if it were slightly displaced every little cube of it would move into a place of weaker force, and would thereforo tend to return. If, on the other hand, the body were diamagnetic, it would be in stable equilibrium in an equatorial position; for any displacement from that position would bring every little cube nearer the axis of the field, i.e., into a place of stronger force, and therefore each such cube would tend to return.

General Problem of Magnetic Induction.-It will be instructive to consider for a little the theors of induced magnetism in its most general form.

We shall supposo the induction to arise from given magnetic ferce : $\alpha_{0}, \beta_{0}, \gamma_{0}$ ), arisiog from pre-existing magmatism ( $\lambda_{0}, B_{0}, \mathcal{C}_{0}$ ) or otherwisc. Letters with euffix 1 denoto components of induced magnetism, of force arising therefrom, and 80 on. Letters without suffx denoto components of total force, totnl magnetization, sc. Thus $V_{0}, V_{1}, V$ donoto the potentials due to pre-existent, induced, and total magnetism respectively; and we have $T=V_{0}+V_{1}$, and the like relation in other cases.

Wo suppose all the media within tho field to have definite permesbility: but there may be reolntropy and heterogeneity to any axtent, and diacontimuly along given surfaces.

Resolving along tho principal mognoticaxes at $(x, y, z)$, wo get, ly the law of induced magnetism, $\left(l_{3}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right),\left(l_{3}, m_{3}, l_{3}\right)$ being the direction cosincs of the axes $\pi_{1}, \pi_{2}, \pi_{3}$,
$a l_{1}+\delta n_{1}+c n_{1}-z_{1}\left(a l_{1}+\beta m_{1}+\gamma l_{1}\right)+4 \pi\left(A_{0} l_{1}+B_{0} m_{1}+C_{0} l_{1}\right)$, and tro similar equations.

Multiplying theso by $l_{1}, l_{2}, l_{3}$, adding and so on, we get

$$
\left.\begin{array}{l}
c=s_{1} a+l_{3} \beta+l_{2} \gamma+4 \pi A_{0} \\
b=l_{3} a+s_{3} \beta+l_{1} \gamma+4 \pi B_{0}  \tag{90}\\
c=l_{1} a+l_{1} B+s_{1} \gamma+4 \pi C_{0}
\end{array}\right\}
$$

where

$$
\delta_{1}=\nabla_{1} l_{1}^{2}+\sigma_{2} l_{2}^{2}+\varpi_{3} l_{2}^{2}, \quad t_{1}=\sigma_{1} n_{1} n_{1}+\sigma_{2} n_{2} n_{2}+\varpi_{3} n_{3} n_{3},
$$

Sic.;-that is to aay, given functions of $x, y, z$.
Besides these, wo have the conditions of normal continnity for 6, viz.,

$$
\frac{d a}{d x}+\frac{d b}{d y}+\frac{d c}{d z}=0
$$

and at a ourface of discontinaity, $\lambda, \mu, \nu$ belng the direction cosines of the norp.al $a_{\text {. any point fron the first medium to the second, }}$

$$
\left(a-a^{\prime}\right) \lambda+\left(b-b^{\prime}\right) \mu+\left(c-c^{\prime}\right) \mu=0
$$

doshod letters referring to values on the first side of the snrface, undashed lettera to values on the aecond.

From these we get finally, for the determination of $V$.

$$
\begin{equation*}
\frac{d}{d x}\left(s_{1} \frac{d V}{d x}+t_{3} \frac{d V}{d y}+t_{2} \frac{d V}{d z}\right)+\& c_{0}+\& c+4 \pi \rho_{0}=0 \tag{91}
\end{equation*}
$$

and

$$
\begin{array}{r}
\left\{s_{1}^{\prime} \frac{d V^{\prime}}{d x}-s_{1} \frac{d V}{d x}+t_{3}^{\prime} \frac{d V^{\prime}}{d y}-1_{3} \frac{d V}{d y}+f_{3} \frac{d V^{\prime}}{d z}-t_{2} \frac{d V}{d=}\right\} \lambda \\
+\left\{\& c .\left\{\mu+\{\& c\} y+4 \pi \sigma_{0}=0\right.\right. \tag{92}
\end{array}
$$

Here

$$
\begin{aligned}
& \rho_{0}=-\left(\frac{d \mathrm{~A}_{0}}{d x}+\frac{d \mathrm{~B}_{0}}{d y}+\frac{d \mathrm{C}_{0}}{d z}\right) \\
& \sigma_{0}=\left(\mathrm{A}_{0}-\mathrm{A}_{0}^{\prime}\right) \lambda+\left(\mathrm{B}_{0}-\mathrm{B}_{0}^{\prime}\right)_{\mu}+\left(\mathrm{C}_{0}-\mathrm{C}_{0}\right) \nu
\end{aligned}
$$

i.e., they are Poisson'a volume and surface densities for the pre. existiog magnetization.

It may be ahown by a method ${ }^{2}$ essentially the samne as that used in the articlo Electricity, vol. viii. p. 27, that equations (91) and (92), with the condition that V be continuous evetywhers and vanish at infinity, lead to a unique determination of V . When V is known, $A_{1}, B_{1}, C_{1}$ can be found at once from (90).

Case of homogeneous tropic media, and we shall aupposo that in parts of the mediun inductively magnetizable there is no preexisting magnetiam. The isotropic equations (91) and (92) then reluce to
medium with no preexisting magnet. ration.

$$
\begin{align*}
& \frac{d^{2} V}{d x^{2}}+\frac{d^{2} V}{d y^{2}}+\frac{d^{2} V}{d z^{2}}=0  \tag{93}\\
& \quad \frac{d V}{d \nu}+\frac{d V^{\prime}}{d \nu^{\prime}}=0
\end{align*}
$$

and
$d \nu, d \nu^{\prime}$ being elements of normals drawn iurrards in the tro media. Equations (90) reduce to
whence $\quad a=\tau a, b=\pi \beta, c=\pi \gamma ;$

$$
\begin{equation*}
A_{1}=-\frac{\pi-1}{4 \pi} \frac{d V}{d x}, B_{1}--\frac{\pi-1}{4 \pi} \frac{d V}{d y}, \dot{C}_{1}=-\frac{\pi-1}{4 \pi} \frac{d V}{d y} \tag{95}
\end{equation*}
$$

From these last, combined with( 93 ), we have the im. portant consequence that the induced magnetization is both solenoidal and lamellar. This is true only for homogeneous isotropic media in which the pre-existing magnetism, if any there be, is solenvidal.

In all cases such as we are now considering, the part of the magnetic potential due to induced magnetism may be calculated wholly from surface distributions at the surfacea of discontinuity. If $\sigma_{1}$ be this surface density, we have

$$
\begin{equation*}
\frac{d V}{d \nu}+\frac{d V^{\prime}}{d \nu^{\prime}}+4 \pi \sigma_{1}=0 \tag{96}
\end{equation*}
$$

From equations (94) and (96)

$$
\begin{gathered}
\sigma_{1}=\kappa_{1} \frac{d V}{d \nu}=\kappa_{p}^{\prime} \frac{d V^{\prime}}{d \nu^{\prime}}, \\
\text { where } \quad \kappa_{1}-(\overrightarrow{-m}) / 4 \pi \pi^{\prime}, \kappa_{1}^{\prime}-\left(\vec{m}^{\prime}-\vec{m}^{\prime} / 4 x \pi .\right.
\end{gathered}
$$

Let us suppose that a body $A$ of permeability $w$ is sus-

[^78]pended in a medium of permeability $\varpi^{\circ}$. If the suscepti- Difei bilities be small, the forces arising from the induced tin? sagnetisn will be so small that the direction of the action, normal force at the surface of A will be the same as if the field were undisturbed by its presence.

First, let the medium be racuum, for which we suppose $a^{\prime}=1$, then, if A be paramágnetic (i.e, $\vec{r}>1$ ), $\kappa_{1}$ will be positive, and the surface magnetism will be positive where the lines of force leave the body, and negative where they enter it. If A be diamagnetic (i.e., $=<1$ ), $\kappa_{1}$ will be negative, and the magnetic polarity of the body as a whole will be opposite to what it was in the former case.

Secondly, let the surroundiag medium have permeabilits $z^{\prime}$, then $\kappa_{1}$ is positive or negative according as $m$ or $<\pi^{\prime}$; in the former case A will behave like a paramagnetic bodyt in vacuo, in the latter like a diamagnetic body in vacuo.
It appears then that, by virtue of differential action, "t body naay behave paramagnetically or diamagnetically according as it is placed in a less or in a more permeable medium than itself.
In practice it is most convenient in general to determine Poisson's $V_{1}$ instead of $Y$. The above equations can be easily modificd equetion. to admit of this. In fact we get at oncy, jemembering that $d \mathrm{~V}_{0}^{\prime} / d \nu^{\prime}=-d \mathrm{~V}_{0} / d \nu$, since $\mathrm{V}_{0}$ has no discontnuily at the surface of the media,

$$
\begin{gather*}
\frac{d^{2} V_{1}}{d x^{2}}+\frac{d^{2} V_{1}}{d y^{2}}+\frac{d^{2} V_{1}}{d z^{2}}=0 \ldots  \tag{9i}\\
=\frac{d V_{1}}{d \nu}+\sigma^{\prime} \frac{d V_{1}^{\prime}}{d \nu^{\prime}}+\left(\varpi-\nabla^{\prime}\right) \frac{d V_{0}}{d \nu}=0 . \tag{98}
\end{gather*}
$$

These equations, together with the condition that $V_{1}$ be finite and continuons and ranisb at infinity, determine $V_{1}$ completely. Since the induced magnetization is lamellar, we may write $A_{1}=d \phi_{1} / d x \& c$., we then get by (95)

$$
\begin{equation*}
\phi_{2}=-\frac{\pi-1}{4 \pi}\left(V_{0}+V_{1}\right)=-k\left(V_{0}+V_{1}\right) \tag{99}
\end{equation*}
$$

which give the components of moment in terms of the known functiou V.
The number of cases in which the solution of the induction problem can be worked out is very small. Besides those already treated synthetically, one or two more, affording examples of the general method, will be mentioned in the historical summary below. Meantime, we J. Nenmust not onit to mention an extremely elegant transfor- mann. mation theorem, due to J. Neumann, ${ }^{2}$ which enables us to triasfor deduce the magnetic moment of any body as a whole under theorem. the action of any forces whatevte, when its magnetization. in a uniform field is known.

Let $A_{1}^{\prime}, B_{1}{ }^{\prime}, C_{1}{ }^{\prime}$ be the componenta of induced megnetization produced in the body $A$ by the uniform field whose components are $a_{0}{ }^{\prime}, \beta_{0}{ }^{\prime}, \gamma_{0}{ }^{\prime} ; A_{1}, B_{1}, C_{2}$ tha magnetization prodnced in $A$ by any field whatever $\left(\alpha_{0}, \boldsymbol{\beta}_{0}, \gamma_{0}\right)$. Let $f d v$ denote volume integration throughout A ; and consider the funotion

$$
\mathrm{U}=\int l v\left(a_{0} A_{2}^{\prime}+\beta_{0} B_{1}^{\prime}+\gamma_{0} C_{2}^{\prime}\right)
$$

U is known, aince we auppose $a_{0}, \beta_{0}, \gamma_{0}, A_{1}, B_{1}, C_{1}{ }^{\prime}$ to be known. But, aince $A_{1}=\kappa\left(a_{0}+a_{1}\right)$, \&ic., $A_{1}^{\prime}=\kappa\left(a_{0}^{\prime}+a_{1}^{\prime}\right)$, \&C., we liave

$$
\begin{aligned}
& U=\int d v\left\{\left(\frac{A_{1}}{\kappa}-a_{1}\right) \kappa\left(a_{0}^{\prime}+a_{1}^{\prime}\right)+\& c . \cdots\right\} \\
& \quad \int d v\left(a_{0}^{\prime} A_{1}+\& c .\right)+\int d v\left(a_{1}^{\prime} A_{1}+\& c .\right)-\int d v\left(a_{1} A_{1}^{\prime}+\& c .\right)
\end{aligned}
$$

Now tho last two terms destroy each other ; for they are simply different expressions for the mutual potential energies of the induced magnetism due to $\left(a_{0}, B_{0}, \gamma_{0}\right)$ and to $\left(a_{0}^{\prime}, \beta_{0}{ }^{\prime}, \gamma_{0}^{\prime}\right)$, regarded as separate rigid aystems, although coincident in position. Hence we get
whence

$$
\mathrm{U}=a_{0}^{\prime} \int l v \mathrm{~A}_{1}+\beta_{0}^{\prime} \int d v \mathrm{~B}_{1}+\gamma_{0}^{\prime} \int d v \mathrm{C}_{1}
$$

$$
\int d v A_{1}=\frac{d U}{d a_{0}}, \quad \int d v B_{1}=\frac{d U}{d \beta_{0}^{\prime}}, \quad \int d v C_{1}=\frac{d U}{d \gamma_{0}^{\prime}}
$$

${ }^{2}$ Crelle's Jour., $x \times x$ ii. 44 (1848). The proof given is a motification of Kirchhoff's, Crelle, xlviii. 986 (1854).

For an ellipsoid this gives at once for the components of moment

$$
P=\frac{\kappa}{1+\kappa L} \int d i\left(a_{0}, Q=\frac{\kappa}{1+\kappa I I} \int d \tau \beta_{0}, R=\frac{\kappa}{1+\kappa M} \int I^{\prime} r \gamma_{n}\right.
$$

An interesting particular case is that of an infnite cylinder. If P be the component of the moment parallel to its axis, $\mathrm{P}=-\kappa j_{j i t y d z}\left(\mathrm{~V}_{\infty}-\mathrm{V}-\infty\right)$. If the inducing system be magnetic bodies at a finite distance, then $V_{p}=V_{-}=0$, and $P=0$. If the cylinder be magnetized by a spiral current $i$, of $n$ windings, of whatever furm, then, $r$ being the radius of the cylinder, $\mathrm{P}=4 \pi^{2} \kappa r^{2} n i^{1}{ }^{1}$

Generalization of the Theory for Isotropic Nedia in which $\kappa$ is not constant. - In the abore theory we have supposed the magnetic susceptibility to be constant. This is by no means the case in nature, however. It is of importance therefors to consider how the thenry must be modified when we assume $\kappa$ to be a function of the magnetization already induced. Subject to the restriction (obviously neeessary for isotropic miedia) that the resultant magnetization shall coincide in direetion with the totsl resultant magnetic force ( j ), thic most general assumption that can be made is

$$
\begin{equation*}
\mathrm{A}=f(\mathrm{I}) \alpha, \mathrm{L}=j(\mathrm{I}) \beta, \mathrm{C}-f(\mathrm{I}) \gamma \tag{100}
\end{equation*}
$$

where $f$ is a function depending on the nature of the sub. stance. From these equations, by squaring, adding, and extracting the square root, we get $f(\mathrm{I}), \mathrm{I}=1$, i , in other words, I, and therefore $f(1)$, are functions of ${ }^{2}$. Heace we may write the equations (95).

$$
\begin{equation*}
\left.A_{1}=F(i) \alpha, \quad B_{1}=F(\underline{3})\right\rangle, \quad C_{1}=F(3) \gamma \tag{101}
\end{equation*}
$$

It is easy by means of these to introduce the requisite modifications into the general equations of magnetic equilibrinm. For the details we refer our readers to Kirchhoff's menoir in C'relle's Journal, ${ }^{2}$ where the matter was first fully worked out. It will be soen at once thst the induced magnotization is in general neither solenoidal nor lamellar.
There is one important class of cases in whieh the conclusions arrived at on the assumption that $\kappa$ is constant still hold, viz., those in which the induced magaetization is uniform. In such cases I has the same value throughout the body, and $\kappa$ is therefore constant throughout the body in any one case, although it differs from one case to aoother. For example, in the rase of an ellipsoid the equations (85) above given for the components of magnetization still hold good, provided we understand $\kappa$ to be defined by the equation

$$
\begin{equation*}
\kappa \propto F\left[\left\{\left(\frac{a_{0}}{1+\kappa L}\right)^{2}+\left(\frac{\beta_{n}}{1+\kappa M}\right)^{2}+\left(\frac{\gamma_{n}}{1+\kappa \mathbb{N}}\right)^{2}\right\}^{1}\right] . \tag{102}
\end{equation*}
$$

It is clear, therefore, that by experiments on an ellipsoid placed in a uniform field we conld determiae the function $\mathbf{F}(\dot{g})$, and also tost the truth of the mathematical theory. For, $\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}$ being obtained by observation, one of the equations ( 85 ) will emble ns to determine $\kappa$, and the argument dean be ealculated from $\alpha_{0}, \beta_{0}, \gamma_{0}$ and $A_{1}, B_{1}, C_{1}$; the test of the truth of the theory would be the agreemeat of the three values of $\kappa$ obtained from the three equations (85).

Historical Remarks on the Ilistory of the IFathematical Theory.-Althnugh the Tentamen of Epinns, published in 1759 , and the discoveries of Mayer and Lambert did much to make clear the exact naturo of the problems involved in the modern mathematical theory of magnetism, yet the origin of that thenry is usually, and with justice, dated from Coulomb. ${ }^{3}$ Not only did the results of his careful and judicions experiments afford thic means of bringing a mathematical theory to the test, but the marvellons sagacity ho displayed in analysing the phenomena cnablect him actually to lay the foundations upon which such a

[^79]theory conld be constructed. After hian, Biot and Han- Bict. steen, ${ }^{\text {, }}$ of whose services we have already spoken, are to be Hansleen reekoned as pioneers. The theory as it now stands was virtually created by Poisson in four of the most admirable Poisson memoirs ${ }^{6}$ to be fennd in the whole literature of mathematical physics. In the first two he investigates expreasioas, fon the foree due to bodies magnetized in any maaner; he then applies his formule to the case of bodies inductively mag. netized but having no coercive force. Although he confines his investigations to the case of isotropic bodies, he is quite aware of the general nature of the consequences of æolotropy, aad in fact distinetly predicts as possible the mag. necrystallic phenomena afterwards discovered by Pliieker and Fararlay. The formula he gives are practically ideatical with those given above (p. 248). He works out in detail the solution for the case of a hollow or solid sphere exposed to any systea of iaducing forces haviag a potential, ${ }^{7}$ and in particular conpares the results, when the inducing field is uniform, with the experiments of Barlow. In the second memoir he rorks out the solution of his equations for an ellipsoid in a uniform field, examining specially the case of an ellipsoid of revolution and its extreme cases (see above, p. 245). At the end of this memeir he discusses the disturbing forces on a compass, arising from the earth's induction on any distribution of soft iron, and shows that the given components of tho disturbing force are expressed by linear functions of the components of the earth's force, involving niae constants which depend on the quantity and distribution of the iron. The third memoir, on magnetism in motion, is an attempt to explain the phenomeaa of the deviation of the magnetic needlo cansed by rotating metal spheres or disks. Althongla the physieal interest of this memoir was in a great measure destroyed by the discoveries of Faraday as to the true nature of this action, yet, as a piece of profound mathematical investigation, this work of Poisson's is still worthy of study; nor is it perfectly certain that his theory will not after all be required to explain certain residual phenomena. The fourth memoir develops the mathematical theory of the deviation of the compass cansed by the iron of ships. After Poisson the most important investigators are Green and Ganss. Green's ser- Green vices have already been alluded to in the articlo Elec-Gauss tricity ; we need only mention here his approximate solution of the problem of the magnetic distribution on cylindrieal bars, whieh gives a formula agreeing with that of Diot. The all-important work of Gauss has stready been detailed.

In Crelle's Journal for 1818 J. Ncumann worked out Neumann. the solution of the induction problens for an ellipsoid of revolution under tho aetion of any conservative system; and six years later, in the samo journal, Kirchhoff worked Kirellund out the case of a eircular eylinder of iufinite length. Wo are not aware that tho solution of Poisson's equations in particular cases has been carried any farther, untess we inelude as new the case of a hollow ellipsoid treated by A.I G. Greenhill in the Journal de Physique for 1881.

The most important contributions to the geaeral theory of nagnetism sinee Poisson aro to be found in a series of memoirs ${ }^{8}$ by Sir Willian Thomson, the first of which appeared in the Philosophical Transactions for 1851. He divests the theory of Poisson of all particular assumptions connected with the two-fluid theory, and bases it on ${ }^{3}$

[^80]small namber of principlea drawn from observation. He enters more fully than Poisson had done into the specification of magnetic distribution. He gires simple synthetic solutions of the induction problem for spheres and cllipsoids in a uniform field. He gives for the first time with full generality the theory of jnduction in reolotropic media, and shows that l'oisson's theory thus fully developed leads to all the laws of paramagnetic and diamagnetic action discorered by Faraday, and also to the laws of magnecrystallic action discovered by Plicker and Faraday. The value of his theory was fully recognized by Plucker, ${ }^{2}$ and apparently also by Faraday; indeed one of its ablest expositors was Eeer ${ }^{2}$ tho friend and coadjutor of Plücker. The experimenters who followed these masters were less intelligent, and the theory of Thomson was for a number of jears misunderstood or neglected, the result being much fruitless discussion in which the true issues were often confused. Of Yate the theory bas obtained wide currency and the adbesion of every physicist worthy of the name. Quite recently Thomson's theory has been further developed in an interesting paper by Helmboltz, ${ }^{3}$ chiclly with a view to its application to the phenomena of dielectric polarization,
For the benefit of the mathematical reader we append a list of the more important papers on the mathematical theory of maguetism that hare appoared recently, and are not quoted above:-

Plana, "Mépuoire sur la thénrie du magnćtisme," Ast. Nach., xxxix., 1854 ; F. Nummann, Vorlesungen iiber dic Theoric des Mfagretismus, delivered 1857, editel by C. Neumann, 1881 ; Riemann, Selncerc, Eicctricitat, uad Mragnetismus, lectures delirered in 1861, edited by Hatteadorf, 1876; Lamont, "Beitrag $2 n$ einer mathematischen Theorie des Magnetismus," Sitzer. d. Bayer. Alad., 186.2 L Weber, Zer Theoric der Magnetischen Tniluction, 亡iel, 18i7, seo Wicl. Bcill., 1878; Forrland, Silliman's Jour., 1879 (calculation of counle on a body suspended in a. heterogeneous minnetic fielत); Boltzmann, "Magnetisirung cines Eisenringes," Wicd. Bcibl., 18i9; Id., "Ueber dic auf Diamagnete wirkende Kraft," Wien. Ber., 1879 ; Rieeke, Wiccl. Ann., 1881 (npproximative solntions of the problem of magnctic induction!

## Induction in Strongly Magenetic Bodies.

## Experi-

 ments of Barlow and ChristleThe earliest experiments bearing on the mathematical theory of magnelic induction are those of Barlow ${ }^{4}$ and Cluristie, who determined the deflexion of a compass needle placed in various positions relatively to spheres of cast iron indnctively magnetized by the earth's force. They found that the deflexion a of the compass could be represented by $\tan a=A \sin \theta \cos \theta \sin \phi{ }^{\prime} r^{3}$, where $\theta$ is the angle between the line of dip and the line joining the centres of the sphere and compass, and $\phi$ the angle between the plane of these $t$ wo lines and the plane of the magnetic meridian. It was also found that the deflexion produced by a hollow sphere was as great as that produced by a solid sphere so long as the thickness of the former was not less than the $\frac{1}{127}$ th of its radius.

All these results of Barlow and Christie are in agreenment with the theory of Poisson. ${ }^{5}$ Another consequence of great practical importance follows from the mathematical theory, viz., that inside a hollow iron sphere of any considerable thickness the magnetic force is very small in comparison with the external inducing force. Sir William Thomson takes advantage of this principle to render his marine galranometers independent of external mageetic furce by surrounding them with a tube of soft iron.

Along with the experiments of Barlow we may rank

[^81]those of Plicker ${ }^{6}$ and Dronke ${ }^{7}$ as aftiording us the means of testing the general applicability of the mathematical theory to the magnctization of soft irun. In Plicker's experiments an ellipsoid of soft iron was fired in a graduated brass ring with its longest and shortest axes ( $x$ and $c$ ) in the plane of the ring. When the ring was suspended rith the longest axis a rertical in the nearly uniform field between the two flat rertical faces of the poles of an electromagoct, the mean axis $b$ set itself parallel to the borizontal line of force; as the point of suspension was moved along the circunference of the ring a point was reached at which the plane of $b$ and a ceased to set parallel to the lines of force, and the plane of a and $c$ began to do so; $\omega$, the number of degrees between this point and the end of the asts a, was observed. The times of vibration, $T_{a}$ and $T_{c}$ of the ellipsoid, when suspended so that $a$ and $c$ were vertical, were ther observed. By the theory we onglit to have
$$
\left.\tan { }^{n} \omega=\mathrm{T}_{\dot{c}}^{1} \iota^{2}+c^{2}\right) / \mathrm{T}_{\dot{i}}^{*}\left(\iota^{2}+\iota^{2}\right) .
$$

The value of $\omega$ calculated by means of $T_{c}$ and $T_{a}$ from this formula was $30^{\circ} 13^{\prime}$; the valuc observed was about $29^{\circ}$ The relation connecting $T_{a}, T_{b}, T_{c}$ according to the theory 13

$$
\left.x^{2}+l^{2}\right) / / T_{c}^{2}+\left(l^{2}+c^{2}\right)_{i} \mathrm{~T} \bar{i}-\left(c^{2}+u^{2}\right)_{i} \mathrm{~T}_{\bar{c}}^{2}=0 ;
$$

and the observed values of $T_{n}, T_{b}, T_{e}$ did, in fact, satisfy this equation sery nearly. Dronle's experiments on ellip' soids uf iron and nickel were of a similer character.

Deviation of the Contpass.-One of the carliest and certainly the most important of the applications of the mathematical theory of magnetic induction was the discus- the diens sion of the deviation of the compass caused by the magnet-ation. ism of the iron in ships. This disturbance seems to have been first noticed by Wales the astronomer, who accom. panied Cook on lis royages of discovery (1752 to 1779). The same thing Tas noticed during the voyage of D'Eutro. casteaux in scarch of La Pérousc; and Beautemps-Ecaupré, Who accompanicd him, calls attention to the errors thence arising in the surveying of coasts by means of the compass. Flinders, ${ }^{8}$ using the numerous observations made by Wales and by hinself, cndearoured without success to construct empirical formule for correcting the crrors of the compass. He also attcmpted to correct the crrors partially by meaus of a rertical bar of soft iron placed near the binnacle. Barlow ${ }^{9}$ and Scoresby ${ }^{10}$ also occupied themsclves with tho problem.

The unusually great deriations observed during the Arctic royage of the "Isabella "and "Alexander"in 1518 attracted the attention of Poisson, and gave rise to Lis memoir on the subject already allurled to. Important as the matter then appeared, it became still more so after the introduction of jron ships. Investigations both theoretical and experimental were made in England by Jolinson, ${ }^{11}$ Airy, ${ }^{12}$ Evans, ${ }^{13}$ Smith, ${ }^{13}$ de. It is to Snuith that tho mathematical theory as it now stands is mainly due.

The cause of the deriation of the compass is tivofold ; Cause it arises partly from the permanent magnetism of the ship, partly from the temporary or induced magnctism. The permanent magnetism of the ship is acquired for the most part during the process of building. The earth's force acts on the iron, and the constant jarring in the process of construction enables it to induce a considerable permanent magnetization, which the ship carres with her to sea. The quantity and distribution of this magnetism will depend greatly on the build of the ship (whether of wood or of

[^82]iron), and on her position with respece to the magnetic meridian during building. A considerable pertion of it is what Airy calls subpermanent, i.e,, it diminishos gradually as the ship is worked. This imagnetic settling down will take place more rapidly in a stoamer which is constantly ngitated by the jarring of mackinery than in a sailing ship, unless the latter be subjected to shocks frons the impart of waves in rough weather. After a time the ship reaches a more or less stationary condition as to permanent magnetism. Along with the phenomenon of subprormanent magnetism has to be classed what is semetimes called the sluggishness of ships' magnetism; this arises from the fact that all the temporary magnetism of a ship shich has sailed for some time on any one magnetic course in any one latitudo does not at once disappear when the course or the latitude is changed, sc that to the permanent magnetism of the ship has to bs added a subpermanent magnetism depending on her course and position severaldays before. It is evideut that the canse of disturbance at present under discussion is somewhat capricious, and can only be controlled by constant attention on the part of the mariner.

The temporary induced magnetism depends on the ship's position on the earth, and on her angular position relative to the magnetic meridian; but, so long as the iron in the ship or the position of the compass is not aitered, the constants which determine it remain the same; the disturbance can be foreseen, and either allowed for or mechanically corrected with much greater certainty than in the case of the permanent magnetism.
Mathematical Formula for the Deviation. - Let the origin be at the centre of auspeusion of the compass card; and let the axes of $x, y$, snd $z$ be drava in the direction from stern to head, in the perpendicular direction frons port to starboard, sad vertically downwards respectively, the ahip for the present being eupposed to be on even keel. Let $P, Q, R$ be the components of the magnetic force parallel to these axes arising from the pernasent magaetism of tho ehip ; $x, y, z$ the com ponents of the earth'e force ; snd $x^{\prime}, y^{\prime}, z^{\prime}$ the components of the whole force et tho centro of the compass card. Thes

$$
\left.\begin{array}{l}
x^{\prime}=x+a x+b y+c z+\mathrm{P}  \tag{103}\\
y^{\prime}=y+d x+c y+f z+\mathrm{Q} \\
z^{\prime}=z+g x+h y+h z+\mathrm{R}
\end{array}\right\}
$$

are, accordlag to Poisson's general theory, tho fundamental equations of the subject. $P, Q, R$ are constants depending on the permanent, and $a, b, c, d, c, f, g, h_{1}, k$ constants depending on the tcmperary induced magaetisn.
By a eynthetic process of great interest and importance we may show that the nine constants $a, b, c, d, e, f, g, h, z$ are all independent. For example, if we place a rod of practically infinite length with its cnd before the bindacle, and stretching forward, or with its end abaft the binnacle and stretching aft, it will give rise to the term $a x$ in $\alpha^{\prime}$. If $a$ be negative the rod must be finite and it muat run under the binmacle, ending a little fore and aft; again, to represent $d x$, we must have a pair of infnite rods with their ends to starboard and port of the binnacle, and running fore and aft or aft and fore respectively, according as $d$ is positive or negative ; finally, to represent $g x$, a pair of inlinite rods with ends above and below the binnacle, running fore and aft or aft and fore respectively. The reader will have no difficulty in completing the ocheme, the rule being that the ends lie in the direction of $x^{\prime \prime}, y^{\prime}$, or $z^{\prime}$, and the lengths in the direction of $x, y$, or $z$.
Fron equations (103) the deviation of the compass is expressed in terms of the magnetic or of the compass course as follows. Let II be the horizontal force of the earth; $H^{\prime}$ the horizontal force of the earth and ship; $\theta$ the dip; 5 the " magnetic course," i.e., the azimuth of the ship's head eastward from magnetic north; $\zeta$ the "compass courso,", i.e., the azimuth of the ship's head castward from the direction of the disturbed ncedle; $\delta=\delta-\zeta^{\prime}$ the custerly deviation of the compass. Then

$$
\begin{aligned}
& \left.\frac{\mathrm{H}^{\prime}}{\mathrm{AH}} \sin \delta=\mathfrak{c}+\boldsymbol{\cong} \sin \zeta+\mathbb{C} \cos \zeta+\pi \sin 2 \zeta+\mathbb{E} \cos 2 \zeta\right\} \\
& \left.\frac{I^{\prime}}{\lambda I I} \cos \delta-I+\xi \cos \zeta-\mathbb{C} \sin \zeta+\delta \cos 2 \zeta-\epsilon \sin 2 \zeta\right\}
\end{aligned}
$$

(104),
here $\lambda=1+\frac{a+c}{2}, g-\frac{d-b}{2 \lambda}, \delta-\frac{a-c}{2 \lambda}, \in=\frac{d+b}{2 \lambda}$,

$$
y=\frac{1}{\lambda}\left(c \tan \theta+\frac{P}{1 i}\right), C \in=\frac{1}{\lambda}\left(f \tan \theta+\frac{Q}{11}\right) .
$$

From (104) Te get

which gives the deviation on any given magnetic course.
From (105) we get by sabstitution
$\sin \delta=g \cos \delta+3 \sin \zeta^{\prime}+c \cos \zeta^{\prime}+\sum \sin \left(2 \delta^{\prime}+\delta\right)+C \cos \left(2 \zeta^{\prime}+8\right)(106)$, an equation connecting the deviation with the compass conrse.
When the deviation is not greater than $20^{\circ}$ or so, then (108) may be replaced with sufficient accuracy by
$\delta=A+B \sin \zeta^{\prime}+C \cos \zeta^{\prime}+D \sin 2 \zeta^{\prime}+E \cos 2 \zeta^{\prime}$
(107),
where $\mathfrak{O}, \mathfrak{Z}, \mathbb{C}, \mathfrak{D}, \mathbb{C}$, are nearly the natural sines of $A, B, C, D, E$ In the abore it is supposed that the ship is on even keel. Strictly we ought to take into account both the pitch and the beel of the ehip; in practice the pitch is always so small es to be of no consoqueace, but the heel, especially in a ship undcr sail, may be very considerable. When the ship heels through en angle $i$, the deviation is obtained from the above formulm ly writing $a_{i}, b_{i}, \&<$., in place of $a, b, \& c c$., where

$$
\begin{aligned}
& a_{i}=a, \quad b_{l}=u \cos i-c \sin i, \quad c_{i}=c \cos i+b \sin i, \\
& d_{i}=d \cos i-g \sin i, \quad e_{1}=e-(f+h) \cos i \sin i-(c-k) \sin ^{2} i, \\
& f_{i}=f+(e-k) \cos i \sin i-(f+h) \sin ^{2} i, \quad g_{i}=g \cos i+d \sin i, \\
& h_{1}=h+(e-k) \cos i \sin i-(f+h) \sin ^{2} i_{1}, \\
& k_{i}=k+(f+h) \cos i \sin i+(\sigma-k) \sin ^{2} i_{,}, \\
& P_{i}=F, \quad Q_{i}=Q \cos i-R \sin i, \quad R_{i}=R \cos i+Q \sin \dot{i} .
\end{aligned}
$$

If the soft iron be aymmetrical with respect to the fore and aft central liae, and if $i$ be so mm sll that its square may be neglected, then

$$
\begin{aligned}
& \mathscr{C}_{i}=\mathbb{C}+\frac{1}{\lambda}\left(e-k-\frac{R}{Z}\right) \tan \theta i=\mathbb{C}+J i ;
\end{aligned}
$$

and if $\delta_{i}$ represent the deviation for the given compass course $S^{\prime \prime}$ when the sliip heels $i$ to starboard, $\delta$ the deviation on the same course on even keel, then

$$
\begin{equation*}
\delta_{i=0} \delta+\frac{c-g}{2 \lambda} i+J i \cos \zeta^{\prime}-\frac{c+g}{2 \lambda} i \cos 2 \zeta^{\prime} . \tag{108}
\end{equation*}
$$

The part of the deviation which depends mainly on $g$ is called Constant the "coastant deviation"; it can only arise frem horizontel in- deviadnction on soit iron unsymmetrically placed. $\qquad$
The pait depending mainly on y and $\mathbb{C}$, viz, $B \cos S^{\prime}+C \sin$ S's $^{\prime \prime}$ Semiciris called the "semicircular deviation" because it renishcs and cular do changes sign on two diametrically opposite conpass courses, ur viation, neutral points. The principal coefficient of the semicircular derintion is ${ }^{3}=(\operatorname{ctan} \theta+\mathrm{P} / \mathrm{H}) / \lambda$; ctan $\theta / \lambda$ arises from vertical induction in soft irou before or abaft the compass ; $\mathrm{P} / \mathrm{\lambda H}$ arises frem the permanent magnetism of the ship. The second coefficient $\mathbb{C}=$ $(f \tan \theta+Q / H) / \lambda$ cansists of $f \tan \theta / \lambda$, arisiag from soft iron unsymmetrically placed, and therefore in general yery small, and $Q / \lambda \mathrm{A}$ arting from permanent magnetism. $\mathcal{Y}$ can be reducca to zero by a msgnet placed fore and aft with its centre in a tranaverse vertical plane passing through the compase, © by means of a transverse magnet in a fore and aft plane throngh the compass.
In mooden ships the courses for which the semicircular deviation venishes are nearly north and south; but in iron ships they approximate to thoso points of the conpass towards which the stens and stern lay in building.
The terms $D \sin 2 \xi^{\prime}+E \cos 2 \zeta^{\prime}$, depending mainly on the constants In ond $\mathbb{E}$, are called the "quadrantal deviation." This part is -Iternately easterly and westerly in the four quadrants, vanishing on four compass courses. $Z-(a-c) / 2 \lambda$ is the principal coefficient of the quadrantal deviation; it depends on horizontal induction in aymmetrically placed fore aud aft or transterse soft iron. It is in geaeral positive, and in that case can be resuced to zero by troo transverse rolls with their cnde symmetrically placed to starboard and port of the compass. In practice two hollow apheres an inch or so thick are used instead of the rods. The otber coeflicient $\mathcal{E}=(d+b) / 2 \lambda$ is in general amonil, as it depends on horizontal induction in soft iron ussymmetrically placed. It is only when the ship heels that this coefficient is in general of any importance.

Whereas the semicircular deviation depends both on the geographical position of the ship and on the state of its subpermanent magnctism, the quadrantal deviation is iadependent of both, and can be corrected inechanically once for all, or allorved for by meana of tables constructed from observations made in any one place. The anaunt of the semicircular deriation in England does not cxceed $10^{\circ}$ for woollen ships of war, but in iron-built shipg it frequently excceds $30^{\circ}$ orca ot the standord compass. The quadrantal deviation in wooden ehips doces not often excecd $1^{\circ}$ or $2^{\circ}$; in ordinary iron shins it ranges from $3^{\circ}$ to $7^{\circ}$, but in some armour-plated iron ships of war it has reached as much ns $81^{\circ}$ ot tho standard. compass, and $15^{\circ}$ for compnasses less favourably placed.

The chief part of the heeling deviation is the term Jicos $\delta^{\prime}$, depending on the coefficient $J=(e-k-\mathrm{R} / \mathrm{Z}) \tan \theta / \lambda$. This coefticinet may be reduced to zero by increasing or diminishing the earth's vertical fores ly means of a vertical magnet under the compass.

The usual way of ascertaining the deviations of a slip's compass is to "swing" the ship gently round so that her head comes into various positiona, and to observe with the compass the magnetic bearing of some well-defined distant point (compass mark) on shore. The true magnetic bearing of this point is then ascertained, which may be doue by taking the compass ashore, carefully placing it in a line joining the compass mark rith the point on board at which the compass was formerly placed, and then taking the magnetic bearing of the mark once more. Care must of course be taken that there is no local magnetic disturbance at the ahore station. The differences between the bearings on board and the bearing on shore give of course the deviations for the various positions of the ahip's head.
When the deriations have thus been ascertained they may be either corrected by means of tables, by graphical methods, such as the steering diagram of Napier or the dygograms of Smith, or mechanically as we have partially explained. For full details on the subject the reader shonld consult the Admiralty Manual on the Deviation of the Compass.

ThomBOD's compass.

Of late years Sir W. Thomson has devoted his great scientific knowledge and well-known practical sagacity and inventive skill to the improvement of the compass. By redncing the size of the magnets and increasing their number he has succeeded in reducing Airy's apparatus for the mechanical correction of the quadrantal deviation within convenient bulk, and by lightening• the card and suspension of the magnets in a very ingenious manner (at the same time throwing all the remaining weight as much as possible to the circumference) he has reduced the friction on the pirot to a minimum while retaining a sufficiently long period of vibration to secure perfect steadiness. He has also contrived apparatus for facilitating the determinations of the deviation on different courses and of the heeling error. ${ }^{1}$

The experimental investigation of induced magnetisn

Esperimental dijicul. ties! reduces itself mainly to the iovestigation of the dependence of the "magnetic susceptibility $\kappa^{2}$ (or the magnetic permeability $\pi$ ) upon the magnetizing force aij. Confining ourselves to the strongly magnetic metals, iron, nickel, and cobalt, it will be seen presently that $\kappa$ depends, not only upon 駼, but also upon the magnetic condition of the body It the actual moment when is in action, and upon its previous magnetic history. $\kappa$ also depends greatly on the "emperature, on the state of the body as to purity (nctably in the case of iron and steel on the percentage of carbon preseut), and on the temper. Thus, if we make one experiment on a body by magnetizing it in any way, we permanently alter its magnetic properties, and can resture it to the magoetically virgin condition only by heating it to a high temperature; but in this process we are very apt to permanently alter its molecular condition, so that, although magnetically indifferent, it is physically changed. Owing to the fact, already insisted upon, that we cannot infer the magnetic distribution inside a heterogeneously magnetized body from its external magnetic action, and to the fact, preseatly to be established, that $\kappa$ varies with ay,

[^83]it is of the last importance to choose the experimental Inport circumstances 80 that both the magaetic field and the in- ance of duced magnetization shall be uniform, or very approximately so. A further necessity for the fulfilment of these conditions arises from the fact that we must in all casea be able to render an account of the effect of the form of the magnetized body, because the true argument of $\kappa$ is not the strength of the original field but the whole force $\frac{7}{8}$ due to the original field and the induced magnetism together.

The aimplest method for securing a uaiform field whose strength can be controlled is to place the body inside a hollow cylindrical coil (usually called the magnetizing spiral), whose length 80 far exceeds that of the body that the disturbance arising from the ends of the coil may be neglected in the neighbourhood of the body. The results in all cases where the length of the body or core is nearly equal to or exceeds that of the coil are impure, and can only be used with the greatest caution in drawing general conclusions as to the value of $\kappa$. The core should always Best be either exactly or approximately one of the calculable form of forms, but preferably such that the dimension parallel to ${ }^{\text {core }}$ the axis of the spiral very much exceeds the others, because in this case the effect of the form is of secondary importance compared with the effect of the susceptibility (sea above, p. 245). Thus a very thin cylindrical core is convenient, because the force inside it differs very little from that of the undisturbed field, and any small difference can be easily calculated by supposing the cylinder replaced by a very elongated ellipsoid. On the other hand, a thick cylindrical bar is a bad form of core for the determination of $\kappa$, both because the magnetizing force inside it is less than the intensity of the undisturbed field by a large quantity, which it is impossible to calculate, and because the magnetization at the end is not uniform, and the disturbance thereby arising is 80 great that it may mask the general character of the function $\kappa$ altogether.' A further question arises as to how far the time during which a magnetizing force acts affects the resulting magnetization, whether temporary or permanent. It is also important to consider the disturbances arising during the make and break of the current in the magnetizing spiral. As the resistance in the circuit is usually small, and the self-induction and capacity sensible, oscillatory currents may arise; to these will correspond oscillatory magnetizing forces, which may even rary in sign. When we consider that the permanent magnetization produced by any force may be very much weakened or even altogether destroyed by a smaller force in the opposite direction, it is evident that we have no right to conclude that these disturbances, especially at break, will be without effect upon the permanent magnetization. In order to elude these difficulties, some experimenters have followed the practice of first establishing the current, then gently ${ }^{9}$ introduciug the core iuto its place, and finally removing it before breaking the circuit. In this way the disturbances just alluded to are aroided; but another difficulty is raised, for it is clear that in this operation the core passes through a heterogeneous field before it reaches the final position where the magnetiz. ing force is uniform; different parts of it have therefore been subjected successively to different influences, and wo are not at liberty a priori to conclude that this fact will not influence the results. Perhaps the best plan mould be to place the core in its position, and allow the current to rise very slomly to the maximum value required, and then to fall slowly to zero. This, however, is not the place to dogmatize concerning the best method $o^{x}$ experimenting : all that is necessary is to furnish the reader with points of
${ }^{3}$ Carefnlly avoiding all shocks or tremors which exercise a very imporin. $t$ influence on the indnced magnctism, see below, p. 268.
oiew from which to criticize the experimental results now to be cited.

In the researches of Leuz and Jacobi ${ }^{1}$ the magnetic sooment of the core was measured by the induction current in a secondary coil placed upon the magnetizing spiral. A considerable portion of their work was directed to proving principles which we here take for granted, e.g., that the magaetizing force is independent of the. thickness of the wire of the magnetizing spiral, of the radius of its windings, and so on. They concluded from these experiments that the nagnetization is proportional to the magnetizing forco; i.e., $\kappa$ is coustant for a given quality, \&c., of metal. The experimants of Joule, ${ }^{2}$ which were made independently about the same time, led in geueral to a similar result. His method consisted in measuring by means of a balance the attraction $P$ between two electromagnets actuated by the same current $C$. If the magnetization of the core were strictly proportional to the magnetizing force, i.e., to the current, then $P$ would be proportional to $\mathrm{C}^{2}$, and $\mathrm{P} / \mathrm{C}^{2}$ would be constant. In most cases this was ao; but in two cases, where the cores of the electromaguets were very thin and the windings more than usually numerous, the ratio $\mathrm{P} / \mathrm{C}^{2}$ was found to decrease as the current increased. This shows that the magnetization tends to a maximum valuc as the current increases, in other words, that, for very large values of $\frac{2}{2}$, $\kappa$ decreases.

Müller, ${ }^{8}$ using the method of deflexions, arrived at a similar conclusion. His cores were 56 cm . long and from 9 mm . to 44 mm . thick, liis magnetizing spirals from 48.2 cm . to 53.2 cm . long; his results are therefore impure and the empirical formula by means of which he represents them of comparatively little importance; but the approach to a maximum of megnetization (saturation) is quite clearly demonstrated. He found, in accordance with theory, that if we iocrease the external magnetizing force $\left(\mathrm{H}_{0}\right)$ aturation ia more quickly reached in thin than in thick bars. Somewhat similar experiments were made by Yon Waltenhofen, ${ }^{4}$ who deduces ${ }^{\circ}$ from some of his own experiments with very thin cores, and from the experiments of Mïller, Weber, and Dub, 1678 to $2125 \mathrm{~mm} . \mathrm{mg}$. sec. units of magnetic moment per mg. of iron as the maximum of magnetization. This would give from 1317 to 1668 C.G.S. units for the maximum magnetic intensity in iron. These numbers, derived from more or less impure resnlts, are merely rough approximatioos, but they agree very well with those derived at a later date by methoda lesa open to theoretical objections.

The approach to saturation may be very neatly demonstrated as follows. ${ }^{6}$ The ame current is sent through a galvanometer and through the coil of an electromagnet with a thin core. The electromagnet is so placed that its action on the needle of the galvanometer just compensates the action of the gal vanometer coil for a particular strength of current ; the needle then points to zero. If now the current be increased, since the increase of magnetization does not keep up with the increase of the current, the action of the coil 1 prevails, and the needle deviates accordingly.

Tha most extensive and importani of tho earlier researches into the general nature of magnetic induction are those of Wiedemann. ${ }^{5}$ An epitome ${ }^{8}$ of his results, with references to costemporary or preceding researches in the eame direction, will put the reader in posession of almost all the more important general facts

[^84]koown uatil the qunutitative experiments of Stoletor, Rowland, and their followers gave a complete account of the general characteristics of the function $\kappa$.

In these experiments the method of deflexion was used: Tho magnetizing spiral was ploced magnetic east and west, and in the continuation of ita axis was hung a magnetic ateel mirror in a thick copper box to damp its oscillations. The deflexions of this mirror, read as usual with a scsle and telescope when the core was not in, gare a measure of the current; and the increase of the deflexion on introducing the core gave a measure of the magnetic moment of the core. The cores were cylinders 22 cm . long., 1.35 cm . thick, and the length of the spiral was ouly $24 \mathrm{~cm} .-80$ that perfectly pure results could not be obtained. To compensate to some extent for the shortness of the spiral, the bars were gently drawn to and fro several times before being placed in the fiual position for which the reading was taken. In order to measure the permanent magnetism the core was removed, the current broken, the core returned to its former position, and a reading again taken. The conclusions arrived at were as follows.
I. When a steel or iron bar is magnetized for the first Maxi time by a current $C$, the temporary moment $K$ produced mam $\alpha$ during the action of the current at first increases faster magnet than the current, then more slowly, and finally tends to a and maximum, as ahown by Joule and Mïller. The period of turning quicker iacrease is mare marked in long than in short point bars; it shows itself even on remagnetizing bars that have been several times magnetized and demagnetized. As C increases, the maximum of K is reached sooner in thin and long bars thar in short and thick bars. Between the period of increase of K/C and its period of decrease there is no period of any considerable length for which it is constant. This last fact may be shown by means of the experiment of Koosen described above; viz., if the compensation be made for very small currents, when the current is increased, at first the electromagnet prevails, and the needle goes to one side of zero, then the current in the coil prevails, and the needle returns towarda zero, and finally deviates on the other side.

The point at which the ratio $\mathrm{K} / \mathrm{C}$ has its maximum for any particular electromagnet is called by Wiedemann the "turniag point" (Wendepuakt). The turning point relates to the body as a whole, and the value of the external maguetizing force ${ }_{5}$ a $_{0}$ for which it occurs depends both on the form of the body and on the nature of the metal. It has therefore no very definite physical meaning. It must be carefully distinguished from the "saturation point." Any element of a body ia said to be magnetized to saturation when no increase of the magnetic force can increase its magnetization any farther. It may happen, however, that some parts of a body are magnetized to saturation while others are not. With regard to the turning point, Dub ' has shown that with similar and similarly wound cores the turning point occurs for the same value of the current. This is of course in agreement with an obvious corollary of the general theory of magnetic induction. ${ }^{10}$
II. In a freshly ${ }^{11}$ magnetized bar the permanent moment which remaina after the action of the current has ccased at first increases quicker than the producing current; but for stronger currents a turniog point is reached; and then the moment increases more slowly than the current, and approachea a maximum.

IIL. In attempting to destroy the permanent magnetism of a bar by means of a demagnetizing current, it may bappen that a current, which, during its action, already

[^85]
## M A G N E T I S M

produces a temporary maguetic moment of opposite sign， atill leaves on ceasiug to act a permanent magnetic moment of the same sign as before，although less in amount．${ }^{1}$ On increasing the demagnetizing current still farther the per－ manent moment is at last destroycd．In this process the permanent magnetism decreases faster than the demagnet－ izing current increases，－so that the current required to destroy a given permanent magnetism is less than the current that originally produced it．${ }^{2}$
1V．When a fresh bar has been magnetized with any permanent moment，aud then demagnetized by a current － $\mathrm{C}^{\prime}$ ，opposite to the magnetizing current $\mathbf{C}$ ，a second application of $-\mathrm{C}^{\prime}$ ，or of any weaker current in the same direction，will not produce a reverse permanent moment， although a current $\mathrm{C}^{\prime}$ in the same direction as C will magnetize the bar permanently in the original direction more or less strongly．It follows therefore that demaguetiz－ ing by an opposite nagnetic force，although it may destroy the permanent magnetism of a body，does not render it magnetically indifferent，as heating to a white heat would do．The body remains in fact more easily magnetizable in oue direction than in another．${ }^{3}$
V．In certain cases a fresh bar was magnetized by a current C ，and then partly demagnetized；it was then found that a corrent $C$ was required to bring it back to its original pernanent moment．
VI．In another case a fresh bar was magnetized by a current C to permanent moment K ，thea reduced by a demagnetiziug carrent $\mathrm{C}^{\prime}$ to permanent moment $\mathrm{K}^{\prime}$ ，then by a direct current $\mathrm{C}^{\prime \prime}$ less than C bronght to permanent moment $\mathrm{K}^{\prime \prime}$ ．It was then fonud that a current $\mathrm{C}^{\prime}$ was necessary to bring it back to permanent moment $\mathrm{K}^{\prime}$ ；and this held whether $\mathrm{K}^{\prime}$ was positive，zero，or negative．
Repeated VII．When a bar is repeatedly magnetized and demag－ raygnet－uetized by currents of the aame intensity，the permanent ization magnetic moments corresponding to a given force become， ${ }^{3 n}$ mid de．to begin with，a little greater than at first；to begin thougl not so fast as at the first．The turning point， however，occurs for a meaker current than before． The magnetization obtained with the strongest current gradually decreases a little．The moments left by the demagnetizing current decrease less rapidly than before， so that a current at first capable of demagnetizing the bar altogether leaves after repeated magnetization and demag－ netization a slowly increasing residual moment．After a large number of repetitions of the operation of magnetiza－ tion by a current $C$ and demagnetization by a current $-\mathrm{C}^{\prime}$ ，the bar finally reaches a constant state，so that each magnotization and demagnetization leaves a corresponding invariable permanent moment．When wo pass beyond the limits C and $-\mathrm{C}^{\prime}$ ，these phenomena are repeated in the same order as before．${ }^{4}$

VIIL．All the above phenomena are most clearly seen in hard steel，less clearly in soft steel and iron．For small magnetizing forces the temporary moment in hard steel is less than in soft steel，and greatest of all in soft iron．The feneral rule is，the harder the material the less the tem－ porary and the greater the permoncnt moment for a given magnetizing force．

IX．If，however，we conside：the ratios of the tempurary moments in soft steel and iron to the temporary moment in hard steel，all for the same force，then these ratios decrease gradually as the force increases ；ao that the tem－

[^86]porary moment in soft iron reaches its maximum sooner than in soft steel，and still sooner than in hard steel．${ }^{6}$

The earliest experiments from which definite values of Earlie， $\kappa$ hare been calculated are those of Weber．${ }^{6}$ A cylindrical values bar， 10.02 cm ．long and 36 cm ．thick，was placed inside a spiral so long that the magnetizing force throughout the length of the bar could be assumed to be nuiform．The moment of the bar was measured by the method of deflex－ ion，the action of the spiral on the deflected magnet being． compensated by means of a part of its own circuit suitably arranged．The intensity of the current in the spiral was found in absolute measure by means of a tangent galvano－ meter．Assuming that the bar could be replaced by a very elongated ellipsoid，Kirchhoff calculated by means of tho theory explained above（p．249）the values of $\kappa$ for values of fif ranging from 29.6 to 248.4 （C．G．S．units），and found that it decreased steadily from 25.0 to $5 \cdot 6$ ．In the experiments of Von Quintus Icilius ${ }^{7}$ bars were used which had been Quiutur reduced by filing as nearly as possible to the form of lciliua ellipsoids of revolution．The magnetic moments were measured partly by the deflesion method，partly by tho method of electromagnetic induction．In this last metliod a secondary spiral is placed upon the magnetizing spiral， and the induced current in it，caused by reversing tho magnetizing current，is observed first when the ellipsoid is in the magnetizing spiral，secondly when it is not．When these currents are known in absolute measnre，the momeut of the ellipsoid can be calcolated．The experimenter did not himself reduce his results so as to obtaia $\kappa$ ，bet con－ tented himself with remarking that the ratio of the wholo moment of the ellipsoid $K$ to the etrength of the
 increased，this maximum occurcing for smaller values of $a_{3}{ }_{0}$ the more elongated the ellipsoid．The true meaning of his results was brought out by Stoletow，${ }^{8}$ who Shinew reduced them，and established the interesting fact that，dedins as the magnetizing force ${ }^{9}$ of increases from very small values，$\kappa$ at first increases rapidy $y$ ，then reaches a maximum， and afterwards decreases moro slowly．For one ellipsoid $\kappa$ increased from $30 \cdot 5$ ，for $0 \cdot 24$ ，to a maximum $120 \cdot 4$ ， for $\frac{1}{3}=4 \cdot 56$ ，and then decreased to the value 39.4 ，for第 $=30 \cdot 07$ ．In another，the initial value was 20.1 for
 tinal ralue 2.86 for $3=454 \cdot 1$ ．

Thalén，adopting a method indicated by Weber，${ }^{10} \mathrm{Th}$＊ determined the value of $\kappa$ for small magnetizing forces． Long bars were placed in the axis of a cylindrical coil con－ siderably exceeding them in length．This coil was caused to rotate $180^{\circ}$ about a horizontal axis，so that the magnetization induced by the earth＇s vertical force was reversed relatively to the coil．The current thns caused was meaured by means of the swing of a galvanometer in circuit with the coil；from this（see above，p．240）the moment of the induced magnetism was calculated；and thence，assuming the bar to be replaceable by an ellipsoid， $\kappa$ was calculated．From three bars of the aame metal each 400.4 nm ．long，having diameters of $36.4,29.94$ ， and 23.87 mm ．respectively，the values of $\kappa$ deduced were $32 \cdot 32,31 \cdot 80$ ，and $32 \cdot 64$ ．For other specimens of iron he found values of $\kappa$ ranging from $27 \cdot 24$ to $44 \cdot 23$ ．

[^87]A set ol observations on ellipsoids of revolution were made by Riecke, ${ }^{1}$ by the method just described. The ellipsoids, seven in number, were all cut from the sams piecs of aoft iron, but varied in volume and in eccentrieity. 'The resulting values of $\kappa$ were found to be independent of the volumo of the ellipsoids and of the part of the iron from which they were cut; but, on the other hand, with onc slight exception, they increased with the eceentricity of the ellipsoids. Kohlrausch, in communieating these results to Poggendorff's Annalen, remarked that they stand in contradiction with the theory of Poisson and Neumann; in so saying he probably considered the constant $v=r t i c a l$ force of the earth ( 数 $_{0}$ ) to be the argument of the fuaction $\kappa$; but this is not so, as Stolerow points out in the paper already quoted. The actual magnctizing forces are greater in the more elongated ellipsoids; and Riecke'a results simply prove that for values of 等 varying from 031 to $072 \kappa$ increases from 13.5 to $25 \cdot 4$.

In order to establish the initial increase of the magnetization function $\kappa$ beyond all doubt, Stoletow (l. c.) made a new set of experiments on a carefully annealed irun ring ${ }^{2}$ of rectangular section (exterior diameter 20 cm ., iu-
terior diameter 18 cm ., height 1.47 cm. .). The riug nas carefully wound throughout with a primary coil of $n(=800)$ windings; over this, in one or more shorter or longer stretches, was wound a secondary coil of $n^{\prime}(=50$ to 750$)$ windinge. The induction current in the secondary, due to the rerersal of a known current $i$ in the primary, was sent through a galvanometer, and thus measured. If E be the electromotive foree of this current, then (see above, p. 246) $\mathrm{E}=4 n n^{\prime} i(4 \pi \kappa M+\mathrm{P})$, where $M$ and $P$ can be calculated from the dimensions of the ring and its primary coil. All then that is necessary is to know $\mathrm{E} / \mathrm{i}$ in absolute measure. We refer the reader to the original paper for the details of the measurements. The results are very interesting, and fully confirm the conclusions drawn from the results of Von Quintus Icilius and Riecke. The smallest value of was 43 , and the corresponding value of $\kappa$ 21.5 ; the maximum value of $\kappa$ was 174 , for $3=3.2$; the last value observed was $\kappa=42 \cdot 1$, for $2=30 \cdot 7$. The temperature varied from $15^{\circ} \mathrm{C}$. to $20^{\circ} \mathrm{C}$., but it appeared from the experiments that $\kappa$ did not alter much for moderate changes of temperature. In figure (34) is given a transcription of the curve that represents the reaults of


Fig. 34.
magnetization, and so on ; the results for cobalt are, hurwever, held to be less satisfactory than those for irou and nickel, fur a varicty of reasons which bo assigns.

In treating bis resnlts graphically, two meibods are followed. In the first the magnetic induction $z$ is plotted against the maguetizing force ${ }^{2}$ as abscissa. Figure 81 shows the curve obtained in this way from one of his tables. In the second method (l) the permesbility $w$ is plotted against the magnetic induction $\mathcal{Z}$, or (2) the susceptibility $k$ is plotted against the intensity of magnetization E. Either variety of the aecond method leads to a curve having the general form shown in figures 35 and 36.


Fro. 36.-Curres way for Nicliel at different temperatures.
The curves obtsined, whether for wand $B$, or for $\kappa$ and है, fall very rapidly, and ultimately to all appearance almost straight, towards the axis of 8 or c. This suggests that \% or है or both reach a maximum when ? is increased indefinitely. Supposing such $8 n$ increase of possible, the question arises 83 to which it is that actually reaches a maximum. Most experimenters seem to-assume that dues 80, but it must.be remarked that, this is simply an assumption. ${ }^{1}$ Several delicate points of great physical interest might be discussed here, butit will be sufficient to refer the reader to. the introduction to Rowland's second paper.

The general conclusione to be drawn from these experiments are as follows :-

1. The magnctic properties of iron, nickel, and cobalt at ordinary temperstures differ in degree but not in quality.
2. As the magnetizing force increases from 0 upwards, the permenbility of iron, aickel, and cobalt increases until

[^88]it reaches a muximum, snd after that diminishes domn to a very small value. The maximum value ${ }^{2}$ is reached when the metal has attained a magnetization of from 24 to 38 of the msximum. The following table will give some idea of the order of the magnitudes involved; $w_{0}$ denotes the permeability for ${ }^{3}=0$, ${ }^{\prime \prime}$ the maximum permeability, and "3 the force for which it occurs. In some cases the actual maximum ia given, ia other cases simply the greatest recorded in tho tables of experimental results, and the values of $\frac{3}{2}$ are stated roughly ; strict accuracy is of no consequence, owing to the great rariability of all the magnitudes.

| Shape. | Suterdai. | Jemper. | State. | W0 | - | (1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring. | Very fibrous hroa wire. | Arnealed. | Bunt. | 180 | 1106 2167 | $\cdots$ |
|  | Solt whe. | " |  | 180 | 2167 2475 | 2.5 |
| Kıng. | Burdena best Lon. | ") | Normal. | 352 216 | 2475 $=359$ | 2.5 2.4 |
| " |  | Carefully anneuled. | Burnt. | 544 | 8621 | 16 |
| " | Norway Jron. | " $\quad$ - | Normal. | 720 | 5515 |  |
| . |  | Varul | Magnettc. | 410 | 4656 | 12 |
| - | Bessemer ateel. | Naturul. | Normal. | 200 | 1281 | 5.6 |
| Bar. | Stubbs' stcel. |  | n | 76 | 331 | $20^{20}$ |
| IIJIng. | Cast alckel. 153 |  | " | 38 | 169 | 11.0 |
| ," | $\cdots \quad$ at $15^{\circ} \mathrm{C}$. | Natural. | Magnette. | ... | 222 | B 1 $B 8$ 8 |
| " | $\cdots \quad$ at $12^{\circ} \mathrm{C}$. | " | Magnetic. | $\cdots$ | 224 314 | 88 <br> 58 <br> 8 |
| " |  | - | Normal. | $\cdots$ | 142 | 188 |
| " | " at $-5^{\circ} \mathrm{C}$. | " | Slagnetic. | ... | 244 | $16^{\prime} 8$ |
| * | $\cdots \quad$ at $230^{\circ} \mathrm{C}$. | * | - | $\ldots$ | 236 | 101 |

The smallest permeabilities (for large forces) pbserved were-for iron 258 , for $6=64$; for steel 246 , for $\frac{1}{2}=48$;

3. The curve slowing the relation between $\kappa$ and 急, or between wand $B$, is of such a form that a diameter can be drawn bisecting chords parallel to tho axis of of or and its equation is approsimately -

$$
y=\mathrm{B} \sin \left(\frac{x+b y+d}{\mathrm{D}}\right)
$$

where $y=\kappa$ or $\approx, x=$ of or 2, , and $b, c, B, D$ are constants.
4. If a metal is permanently magnetized, its permeability is less for low magnetizing forces, but is unaltered for high magnetizing forces. This applies to the permanent state fially attained after several reversals of the magnetizing force; but if we atrongly magnetize a bar in one direction, and apply a weak magnetizing force in the oppoaite direction, the change of magnetization will be very great.
5. Iron, nickel, and cobalt all probably have a maximum Naxiof magnetization, although its existence can never be mum entirely established by experiment, and must always be a inteumatter of infereace. If such a maximum exists, then at field 20 d ordinsry temperatures it will be roughly as follows:-

> For iron when $23=17,500$, or then $\begin{gathered}y \\ =1390 \text {; }\end{gathered}$
> For nickel when $3-6,340$, or when $\frac{3}{x}=494$;
> For cobalt when $\mathfrak{y}=10,000$, or when $\mathfrak{y}=800 .^{3}$

[^89]6. The permeability of any metal depends on the quality of the metal, on the amount of permanent magnetization, on the total magnetization, and on tho temperature.
7. The permeability of mickel and cobalt varies very nuch with temperature. In nickel for a moderate amonnt of magnctization tire permeability increases with rise of temperature, but for high magnetization it decrcascs. This is very well shown in fig. 36 , where the permeability curves for $15^{\circ} \mathrm{C}$. and $220^{\circ} \mathrm{C}$. intersect each other. In cobalt, on the other hand, the permeability appears to be always inereased. The permeability of iron is not much affected by moderate changes of temperature.
8. The maximnan of magnetization of iron and nickel decreases with rise of temperaturc, at least between $10^{\circ}$ C. and $220^{\circ} \mathrm{C}$., the first very slowly, the second very rapidly. At $220^{\circ}$ C. the maximam for iron is $\hat{Z}=17200$ or $\mathfrak{y}=1360$, and for nickel $\mathfrak{z}=4900$ or $\{=380$.
The researches of Stolctow and Rowland have undoubtedly made clear the maiu phenomena of magnctic induction; but in so doing they have raised a host of other questions which havo not as yet been settled. There is no lack of recent work hearing on them, but it would be a difficult matter to give succinctly a complete account of the conclusions arrired at. The results of the different experimenters arc not seldom contradictory, and the circumstances of experiment are often so complicated that criticism with the view of reconciling then seems hopeless in the meantime. While, thercfore, we shall give a fairly complete list of the literature, the reader must not expect in this article an exhanstive analysis of the different memoirs that have recently appeared. Any remarks ree shall make lave cliefly for their object to call attention to the promiuent questions that have been raised by the different workers.
Riecke ${ }^{1}$ mado a serics of experiments on ellipsoids of soft iron; he expresses his results in terins of $p$ the magnetization function for a sphere, and fiads, as be ought to do, that, for a considerable range of values of the magnetizing force, $p$ is approximately constant. ${ }^{2}$ In poiat
pheres. of fact this method of representation is bad, for the quality olecimat metal only begins to affect $p$ about tue forrth or afth ellipsoids of soft iron were made by Fromme; ${ }^{\text {a }}$ aud a very extensive series by A. L. Holz 4 on ellipsoids of iron and steel, in which be gives tables and curves showing the values both of $p$ (to a large number of decimals) and of $\kappa$; and the values of the temporary, permanent, and vanishing tnagnetisas for a considerable range of magnetizing forces. The results, although wanting in regularity and smothness for the larder kinds of steel, agree in the main with those of Stoletow and Rorland. Holz enters largely in this and in a former paper ${ }^{5}$ into speculations concerning the effect of the molecular structure of the metal upon its nagnetie propertics.
lielating morc particularly to the phenomena of the permanent and tenporary magnetization of steel we liavg important nemoirs of recent date by Bouty, Fromme, and Auerbach. Bouty's papers, ${ }^{0}$ besides copions references to the general literature of the subject and interestiug critical discussiuns of magnetic theory, oontain the resnlts of carcful investigations as to tho permanent magnctization attained by repeated applications of magnetic force under various circumstances, and verifications of the formule of

[^90]Green for the magnetic distribution in thin needles and cylindrical bars of steel. Two points as to his methods are worthy of notice. He employs a very simple method of measuring the magnetic moment of smail pieces of stecl ; a small needle of moment $m$ attached to a stiff stem, which carries a mirror, is freely suspended ard allowed to come to rest in the magnetic meridian; the needle whose moment $x$ is to be neasured is then inserted into a tube fixed to the stem with its axis at right angles to the former needle. The deviation $a$ of the compound system being measured by means of the mirror, we have $x=m$ tana. He stadies the magnetic distribution in very thin hard needles by the method of rupture, finding that, if the needle be carefully broken, so that the distortion or shock cansed by the bending does not extend far from the point of rupture, the magnetic moment of the different parts is little, if at all, affected. For thicker magnets he uses the ordinary method of deflesion.

Boaty found, in agreement with Hermann Sclolz and Effect of Frankenheim, ${ }^{7}$ that, although the continued application of repeated a magnetizing force does not increase tho resulting per- applica manent magnetization, the repetitions of its application nion of will. He finds for the magnetic moment $y$ of a thin ncedle izing passed $x$ times through a magnetizing spiral the formula force. $y=\mathrm{A}-\mathrm{B} x$, where A and B are constants: e.g., in one case, $A=57 \cdot 78$, and $B=6.32$. The ratio $A(A-B)$, that is, the ratio of the moment attained by an infinite number -of applications of the magnetizing force to that attained by one, decreases as the force increases; on the other hand, if $\mathrm{R}^{\prime}$ be the force required to produce by a single application the same effect as $R$ produces by an infinite number, he finds the ratio $\mathrm{R}^{\prime}$, R fairly constant ${ }^{9}$ (viz., from 1.060 to 1.065 in his best experiments) for values of $R$ ranging from 10 to 42. In certain cases where the magnetization was effected by induced currents, he finds the formulil $y=\mathrm{A}+\mathrm{B}\left(1-e^{-a x}\right)$ to represent the results better. ${ }^{10}$
He found that Green's formula,
where

$$
y=\lambda a^{2}\left(x-\frac{2}{-\frac{1}{\beta} \beta x}-c^{-\frac{1}{2} \beta x}+c^{-\frac{1}{2} x}+c^{-\frac{1}{2} x}\right),
$$

giving the moment of a cylinder of leugth $x$ and diameter $a$, was sufficiently accurate both for temporary and for permanent magnetism, and for hard or soft tempered stcel, whether saturated or not, provided the bars were in a virgia condition before magnetization. For example, in a saturated bar of soft steel ( $a=7 \mathrm{~mm}$.), for the temporary magnetism $A=4.081, B=1 / 7.142$; for the permanent magnetism $\mathrm{A}=2.34, \mathrm{~B}=1,17.857$. In a non-saturated bar of soft steel ( $a=10 \mathrm{~mm}$.), for temporary magnetism $\mathrm{A}=$ 9966, $B=1,7 \cdot 142$; for permanent magnetism $A=\cdot 723$, $\mathrm{B}=1 / 17.857$; so that B is independent of the magnetir force. With hard tempered bars, A was less, both for temporary and permanent magnetism, than with soft bars ; B was independent of the magnetizing force for temporary magnetism, but increased for. permanent magnetism with large magaetiziag forces. He calls the macnetic distribution long or short according as $B$ is small or great, and

[^91]explains the phenomena of demagnetized or remagnetized bars by the superposition of long and short distributions. His final conclusion is that there is a greater independence between permaneat and temporsry magnetism than is usually admitted; nud he starts a theory that magnetic bodies are composed of a mixture of two kinds of magaetic molecules, one kind retaining all the induced nnagnetism, the other wholly devoid of coercive force.

It is obvious, from the results of Wiedemann, Frankenheim, and Bouty just alluded to, that the assumption made in the mathematical theory, that the effect of a maguctizing force is independent of the prorious magnetic history of the body, is not even a first approximation to the actual truth. It becomes a matter of importance therefore to study the modification in the induced magnetism corresponding to any force produced by the forces that have preceded it. This effect has been called by German experimenters the magnetic after-effect (Maguetische Nachwirkagy). Fromme and Auerbach have recently occupizd themselves with this subject, and it may be of soma interest to the reader to indicate a few of their conclasions.
Srorume.
In his first paper ${ }^{1}$ Fromne experiments with rotational ellipsoids of soft steel, using partly the method of Weber, Thalén, and Riecke, partly the ordinary method of deflexion. He found, in the first place, that the generalized thenry cf magnetic induction was applicable for values of 管 varying from 0061 to $\cdot 132$, $\kappa$ decreasing between these limits from 23.5 to 8.68 . He attempted to find the maximum force for which permanent magnetism first appears, and fires it with some reserve at from 2 to $3 .{ }^{2}$ The curve which he indicates for the temporary magnetization of soft steel has two points of iuflexion, being first concave to the axis of \%, then convex, and finally concave again.

He confirms the obscrvation of Frankenheim that repeated applications of the magnetizing force increase the permanent magnetization up to a certain limit, and finds that when that limit is reached the body behaves towards all smaller forces having the same direction as if it were devoid of coercive force. Experimenting on ellipsoids permanently magnetized in this way, he found the mathematical theory of Kirchloff to be inapplicable, it being impossible to fit the results obtained with the different ellipsoids together; and the discrepancy was greater with the softer than with the barder steel. For furces that are not suficient to alter the permanent magnetization, $\kappa$ decreases with decreasing force, as is the case with soft iron, so long at all events as the forces are rot very great ; and, again, for such forces the variation of $\kappa$ is more regular the greater the permauent magnetization.
The number of impulses required to saturate with permanent magnetism was greater the greater the ratio of the moment of saturation to the initial moment, e.g., greater for lard than for soft steel. It was found, in extension of a result of Frankenheim's, that, if $U$ be the original monent, $\mathrm{I}_{1}$ that produced by one and $l$ that produced by an infinite number of impulses of the maguetizing force, then $\left(U+T_{1}\right) /(U+R)$ is tolerably constant ; but $R_{1} / R$ decreases with increasing magnetizing force.
With reference to the non-permanent magnetism of a bar repeatedly maguetized by the same constant current, te concludes from his researches that it diminishes, but in juch a way that the totsl induced magnetism remains con3 tant, -so that what is lost in non-permanent is gained in permanent magnetism.
In his second paper ${ }^{3}$ Fromme experimented both with

[^92]irun and with steel cylinders, pointed at the end, of lengths varying from 140 to 220 mm ., and of thicknesses from 1.5 to 8 mm . The method of deflexiun was used, the effect of the magnetizing spiral itself being compensated by an auxiliary spiral suitably placed. The cores were carefully introduced into the spiral after the current was established, removed before it was broken, and then replaced when the permanent magnetism mas determined.
In the following extract from his conclusions $\mathrm{T}_{v}$ denotes the total induced magnetization, $\mathrm{R}_{\mathrm{n}}$ the whole residual or permanent maguetization, $V_{n}$ the non-permaneat or vanishing magnctization, after $n$ impulses of a given magnetizing force, the suffix being dropped when the number of, impulses is not iu question, and replaced by $\infty$ when the number is so great that by further increasing it no alteration iu the effect is produced.

A constant force greater than all preceding induces a T Vargme: which varies with successive impulses, sometimes increas effect of ing, sometimes decreasing. If a bar previously beated Thite hot be subjected to a large force, successive impulses pulses usually give a decrease of T. If, however, the force is on tem preceded by oue somewhat smaller, successive impulses poriary usually give an increase. It depends merely on the magnct magnitude and the number of impulses of the preceding force P -whether the repeated impulses of a force $p$ will give an increasing or a decreasing T.
$R$ always incresses with successive impulses until the limit Effect is reached, and always faster than $T$; hence increase of $R$ and decrease of $V$ go hand in hand; the magnitude of this increase depends on P and $p$, and approaches zero with P-p.

In order that the action of a force $p$ may not be influenced by the after-effect of smaller forces preceding it, it must be applied so often that its further application ceases to increase R . When saturation for R is thus reached, theu $\mathrm{T}, \mathrm{R}$; a ad V have the values corresponding to frequent impulses of $p$ for a fresh bar.
$R_{1} / R_{\infty_{0}}, R_{2} / R_{\infty}$, dc., all starting frons unity, decrease as the force $p$ increases from zero, diverging more and more until they all reach minima for the same value of $p$; they then converge again towards unity, which they all reach at the maximun of pernanent magnetization. The values of $p$ corresponding to the maxima of $\mathrm{R}_{\infty} / p, \ldots$ $\mathrm{T}_{2}!p, \mathrm{R}_{1} / p$ are in ascending order of maguitude, and the first of them is the value corresponding to the minima of $R_{1} / R_{\infty}, R_{2} / R_{\infty}$, dc.

What was stated for $\mathrm{R}_{1} \mathrm{R}_{\infty}, \mathrm{R}_{2} / \mathrm{R}_{\infty}$, \&ce., holds word for word for $\mathrm{T}_{\infty} / \mathrm{T}_{1}, \mathrm{~T}_{\infty} / \mathrm{T}_{2}$, d.c. Hence the decrease of T is conditioned solely by the increase of R ; so that it would appear that the after-effect of a preceding force P depends on the R which it produces. It would therefore be more correct to say that the after-effect depends on $r-\mathrm{R}$ than to say that it depends on $p-P$.

When a bar las been magnetized by any force $P$, all smaller succeeding forces leave R unaltered, yet by repeated impulses of $p\left(<l^{\prime}\right) T$ decreases until it reaches a certain linit. We may repeat the process as often as we please by always beginning with a new application of a larger force P ; if we rary P , keeping $p$ constant, $\mathrm{T}_{1}, \mathrm{~T}_{2}$, dec., vary, but the limit $\mathrm{T}_{\infty}$ is always the same. In these experiments it was indifierent whether a few seconds or several hours elapsed between the applications of P and $p$ : time had no influence on the vanishing of this species of Laws magnetic after-effect. On the other hand, several impulses arter of the greater force gave no more after-effect than a single impulse, of whatever duration. If N denute the after-eflect of a greater force $P$ upon the action of a smaller $p$, the law of the phenonmenn is

$$
N=\left(r p^{2}(P-p)^{\circ},\right.
$$

where $c$ is a constant and $a$ aud $b$ are constant positive
numbers, $b$ being a proper fraction, and a possibly very near unity. This of course gives $\mathrm{N}=0$ for $p=0$ and for $\jmath=\mathrm{P}$, and gises a maximum valuc of N for ${ }^{\circ}$ me value of $o$ between $U$ and $P$.
The interposition of a force $\mathrm{P}^{\prime}$ between P and $p$ increases the after-eflect if $\mathrm{F}^{\prime}>\mathrm{P}$, dimioishes it if $\mathrm{P}^{\prime}<\mathrm{P}$; and this holds irrespective of the sign of $\mathrm{P}^{\prime}-p$.
If we denote by $k$ the susceptibility of a body for panishing magnctism (V) induced by any force $p$, the question arises how far this is influenced by the permanent magnetism R induced by pieceding greater forces. Jamin holda that $k$ is approximately, and Chwolson that it is absolutely, independent of such permanent magnetism. Frompe finds that, when a force $p$, capable of itself producing a permanent magnetism $r$, acts on a bar already possessing a permanent magaetism $\mathrm{P}>r$, then $k$ is increased (by the presence of $R$ ) if $R-r$ is small, but diminished when $R-r$ is great. ${ }^{3}$ The after-effect for small forces $p$ ) may therefore be either increase or decrease of $k$; but for large forces $p$ it is always increase.
At the conclusion of his paper Fromme points out the contrast between magnetic and elastic after-effect, and dwells upon the analogy between his resulta and those of Thalén ${ }^{2}$ concerning the limits of elasticity in solid bodies.

Aucr. bach.

The experimentat method followed by Auerbach ${ }^{3}$ was much the same as that of Fromme, except that the core
the after-effect exclusively ouly when it differs more from $p$ than the first; in other cases both contribute to the aftereffect; in no case does the first exclusively determine the after-effect. In the case where both preceding forces lie on the same side of $p$, the exceptions to the general law are far less marked; only where the second force is very nearly equal to $p$ does it exercise a disturbing influence on the after-effect of the first.

The process used for obtaining T ar a function of P , for a given $p$, say 10 , is therefore to causo th 3 infloencing forces to alterante with the infinenced, th succession of the former being such that the one preceding $p$ alwaya differs less from $p$ than the one following. The stationary condition is supposed to be established for each pair as above explained; e.g., starting with $\mathrm{P}=11$, the series might be $11,10,8,10,13,10,6,10,15,10,4,10, d c$. In this way $\mathrm{T}_{11}, \mathrm{~T}_{\mathrm{s}}, \mathrm{T}_{13}$, dre., can be determined.

When the values of $T$ are pletted against the values of P, the curves corresponding to different values of $p$ have all a similar character (see figure 37). They consist of two congruent parts lying on the two sides of a point of inflexion, which is the only point that has any marked character. To the right of the inflexion the concavity is towards the axis of $P$, to the left in the opposite direction. The infinite branches appear to approach


Fig. 37.
asymptotes parallel to the axis of P . The abscissa of the peint of inflexion for any particular curse $p$ is $\mathrm{P}=p$; the erdinate is $T_{p}$, which may be called the normal magnetization corresponding to $p$ when $p$ alone has acted before. This of course is an ideal case; but a process is indicated for determining $\mathrm{T}_{\mathrm{p}}$ directly. ${ }^{4}$ The dotted curve in the figare is the curve of nermal magnetization, whose abscissa and ordinate are $p$ nod $T_{p}$.

From the aymmetry of the curves representing the aftereffect Auerbach concludes that the after-effect of forces on opposite sides of $p$ as to magnitude, and equidifferent from it, is equal and opposite, and ascribes the failure to observe the after-effect of forces smaller than $p$ to the interposition of the force zero. He further concludes that the alter-effect depends in the same way on $\mathrm{P}-p$ as $\mathrm{T}_{p}$ depends on $p$.

There is one of the curves of after-effect, that, viz, for $p=0$, which has a special meaning. It is clearly the curve

[^93]was left in the magnetizing spiral during the make and break of the current. The core was generally a hollow cslinder of soft iron 148.1 mm . leng, 17.8 mm . in diameter, 1.6 mm . thick, with end plates 1.5 mm . thick. He distinguishes tro kinds of magnetic after-effect. The first kind consists in alteration of the magnetization of the body during the action of a constani force, or after it has ceased to act. The second kind is that already mentioned, in which the action of any ferce is influenced by preceding forces. It is this second kind of after-effect that is dealt with in the paper from which we are quoting.

The leading peculisrity of his view of the phenomenon is the introduction of the force zero, both as a preceding and as a final force. The fundamental principle laid down is the following :-

When the force $p$, which, following immediately after the ferce 0 , would produce a magnctization $T_{0}$, is preceded by a series of forces $P_{1}, P_{2} \ldots P_{n}$, the maguetization which resulta is $T$, differing from $T_{0}$ by an amount $N$ called the after-effect. $N$ is wholly determined by the first of the preceding forces $P_{n}$, which is such that all the forces that act between $\mathrm{P}_{z}$ and $p$ lie in magnitude between $\mathrm{P}_{z}$ and $p$.

This general law is, however, subject to exceptions. For evample, let the whole series of forces acting be $\mathrm{P}_{10}, p, \mathrm{P}_{0}$, $p$ (evidently an extreme case), then experience shows that neither $\mathrm{T}_{10}$ nor $\mathrm{T}_{9}$ is the resulting magnetization, but something internediate, much nearer to $\mathrm{T}_{10}$, however, than to $T_{0}$. In order to obtain $T_{9}$ a force $\mathrm{P}_{0}<p$ nust be interposed before $P_{9}$; cven then the magnetization varies a little with $\mathrm{P}_{0}$, but, if the stationary condition for $\mathrm{P}_{0}, p$ be establishod hy alternating $P_{0}, p$ many times after applying $P_{0}$, thus $\mathrm{P}_{10}, p, \mathrm{P}_{0}, \mathrm{P}_{0}, p, \mathrm{P}_{n}, p, \mathrm{P}_{0}, p, \ldots$ the limit is found to loe indepeudent of $\Gamma_{0}$, and is held to be the true value of ${ }^{7}{ }^{9}$.

In thas way, for a given $p$, T can be determined as a function of P. It is necessary, however, to attend to the following principle,-that, of two preceding forces lyiog in magnitude on different sidea of $p$, the second determines

[^94]of permanent or residual magnetism, which is thus in Auerbach's vier a particular cise of after-cffect. To it we can apply the general rule given nbove, subject of courso to like exceptions.

It would be premature to prowounce any opinion as to the ultimate value of Auerbach's results; but the elegance of his representation of the phenomena will scarcely be disputed. In the latter part of his paper ho applies his wiews to cxplain the peculiarities in the curve of magnetization with forces of ascending magnitude obtained when the after-effect is neglected, and to the cyclical process discussed by Warburg. ${ }^{1}$ He also discusses the influence of tho duration of the impulse of tho magnetizing force and of the sudden closing and opening of the current. His conclusions agree in the main with those of Fromme: in particular he incliaes to Fromme's view ${ }^{2}$ that there is a specific magnetic effect produced in certain cases by the breaking of the current while the core is in the spiral. This effect in certain cases (with short thick corcs) is so great that a permanent magnetization of opposite sign to the total induced magnetism remains. ${ }^{3}$ This "anomalous magnetization" was first observed by Von Waltenhofen, ${ }^{4}$ who also establishes the more general result, of which this is an extreme case, viz., that the residual magnetism of the core depends upon the rapidity with which the magnetizing force is reduced to zero. Auerbach lays dornn as a general principle that when the variation of the magnetizing force is slow and continuous the velocity of the transition does not influence the final magnetization; but sudden transition causes tho final magnetization to be lcss or greater than that obtained by gradual transition, according as the passage is from a greater to a less or from a less to a greater force.

The reader who wishes to pursue the present sulbject farther should consult the works of the following experimenters:-
Jamin, ${ }^{5}$ who holds what he apparently regards as a new theory of magnetization. It is in point of fact merely a modification of the theory of solenoids, somerrhat restricted in its application to the phenomena of magnetic induction. His special point is that the fines of magnetization in a bar magnetized (aay) by a magnctizing spiral only penetrate to a limited depth, which is greater the greater the current. The following experiments ${ }^{\circ}$ are adduced io confirmatien of his viers. The steel tube of a Chassepot riffe was plugged at both ends by screwing into it holts of the sama metal. Inside was placed a cylindrical rod. It was found that, so long as the surreat in the spiral was not very grent, the rod was not sensibly magnetized; bnt, as the current increased, it becanse more and more affected, and by and lyy was as much permanently mognetized as if the enveleping tube had been absent. Again, the rod having heen magnetized to saturation and inserted in the tuhe, a demagnetizing force was applied to the whole, and it was found possible to render the tube and core together seemingly nentral, or even oppositely magaetic, while the rod when taken out proved to be atill pewerfully magnetized in ${ }^{\circ}$ the original direction. Again, a bar was magnetized by a powerful current, and then magnetized in the opposite direction by another current. The surface of the bar was then eaten nway to a certain depth; and it was found that the original maguetization reappearad. These experiments, although most intercsting in themselves, do not appear to warrant the interpretation which their author puts upen them. Jamin has made extensive researches on the magnetic Alstribution ia bars and riluhons of steel, partly with a view to obtain emplrical rules for the construction of powerful permanent magnats, in which he has been very successfin].
Gaugain, Comptes Rendus, passim ; Ann. d. Chim, et d. Phys., (5) $x i$.

[^95]Christiansen, " Resoarches on tho Dagnetic Distribution in an Iren liar: on oue part of which is placel a Short Magnetizing Spiral," "Wied. Bcibl., i., $18 i \bar{T}$.
lautis, "UeLer den Àlagnetismus wcisher Fisencylunder unl verschieden hartel' Stahlserten" (Dortnumd, 1876), Wied. Dcibl., i., $187 \%$.

Whipple, "Induction Constants of Permanent Magnets of various shapes, from the determination at licw," fioc. Roy. Soc. Lond., 1877.

Oherbeck, "Ucber die Fortphanzung der magnetiselien Induetion in weichen Eiscn" (llalle, 1878), IFicd. Dciul., ii., 1878.
Kiilp, "Experimentaluntersnchungen inber magnetische Coïcitivkraft," Carl. Licp., 1880.
Baur; "Expcriments with nut Iron Ring on the Mnguetization Function for very small Furces," Iricel. Am2., xi., 1880.

Riecke, "On the Expcrimental Test of Poisson's Theory," Wied. An2., xiii. p. 485, 1881.
Sicmens, a wery intercsting paper, "On the Efect of the Nlag. netization of Iron in nuy Direction unen its Permeability in the Perpendicular Dircetion," Wiccl. Amn., xiv., 1881.
Righi, "Contributions to the Theory of the Mngnctization of Śteel," Afcm. d. Acc. d. Bologna, 1880 ; Wiecl. Beill., v., 1882.
For a succinct nccount of sereral of the foregoing memeirs, see tho "Nachtrige" to Wicdemam's Galvenismus, nnd a paper" by the same anthor in Pogycndonff' s Amaclen, clvii. p. 257, 1870.

Infinence of the IIardhess and Stracture of Iron and infmenco Steel on Permanent Alagnetism.-Some informntion has of hard. already been given incidentally on this subject, and struca lengthy discussion would be out of place here. The ture. statements of the various nuthoritics are very contradictory. This is not to be wondered at; for tlose best qualified to propare the materials for experiment are generally deficient in the scientific knowledge requisite to enable them to form a sound judgment as to the result, while thoroughly trained scientific men have not as a rule acquired a command over the delicate manipulation of tho forging and tempering of steel, an art which those who possess it usually find difficult to describe in words or reduce to rules. There is the further circumstance that many who have been successful in making good stee! for magnetic or other purposes have found it for their interest not to publish the process by which success was attained.

Fineness of grain and uniformity of temper are the Fleeness greatest requisites in steel for permanent magnets. The of grain latter in bars of any size is never attained in perfection, for the surface is always harder than the interior. The mischief which thereby arises may le understood by taking temper. the extreme case of a thin steel tube magnetized to saturation, and then fitterl with a perfectly soft iron core. It is clear that the core will act very much like the armature of a liorse-shoo magnet; the lines of foree will run back through it, and tho external action will be in a great measure destroyed.
The different tempers of steel may be rouglily classified as glass hard, straw colour, blue, and soft. The current statement is that the larder the steel the more difficult it is to magnetize, but the better it retains its magnetism. If this were so, provided sufficient magnetizing force to produce saturation were at command, the best temper for magnets would be glass hard. Lamont, however, whose experience was great, states that he found the loss after magnetization to be as great, and to continue as long, will glass hard as with blue tempered magnets.. The samo experimenter gives it as his opinion that great differences in the quality of magnets arise more from defects as to homogeneity, continuity, and uniformity of temper than from the quality of the steel in other respects; he inclines, however, to a preference for English cast steel.

Purity and bomogeneity of structure are equally necessary in iron of high magnetic inductive susceptibility and small coercive force. Hammering, rolling, and drawing diminish the susceptibility and increase the coercive force. Tolling does so more in the direction of rolling than transversely, so that the iron becomes æolotropic. It is advisable in all cases where high susceptibility is wished to anneal the
body carefully after manufacture, by heating it in a woad fire and allowing it to cool very gradually; this process is still more effective when the iron is covered all over beforehand with half an inch or so of clay.
The reader who wishes for further details on this subject should eonsult Lamont's Handbuch des Magnetismus, chap. v. The following references to the literature may be useful.
Michell, Treatisc of Artificial Nagnets, 1750 ; Coulonll, Mén. Ilc l'Acud., 1784; Bailow, Phil. Trans., 1822; Kater, Phil. Trans., 1821; Sabine, Phil. Trans., 1843 ; Hansteen, F'ogg. Ann., 1825; Haicker, Pogg. Anu., 1848 ; Poggendoıff, 1 lb ., 1850 ; Miiller, Ib., 1852; Mattliessen, Phil. Mag., 1858 ; Airy, Ib., 1863; Von Waltenhofen, Pogg. Amı., 1864 ; Crève, Comples Rendurs, 1869 ; A. L. Holz, Wicd. Ann., v., 18 is ; Ruthe, Wicrl. Ecib1. i. 1875 ; Cheesman, Wied. Ann. 1882.

Special Magnclic Character of Nielicl and Cobalt.-Besides the results of Rowland above quotcd, we have on record experiments by the following physicists:-Biot, Traite ele Phys., 1806 ; Gay Lussac, Arar. d. Chim. el cl. Phys., 1824 ; Lampadius, Schueggen's Jour., 1814 ; E. Becquerel, Comptes Scndres, 1845 ; 1 liicker, Pojg. An22., 1854; Arndtsen, Il., 1858; Hankel, IVicd. An2., 1877; Becquercl, Ann. d. Chim. cl d. Phys., 1879; Gaiffe, Counptes' Renclus, 1881; Wild, Wicd. Beibl., 1877.
Experiments weilh Fincly Divided Mragnelic Mctats and vith Elcetrolytic Iron. -These liave been made by various physicists, mostly to test the theory of molecular magnets. The earliest of the experiments with finely divided iron was nade by Coulomb, who mixed iron filings with wax, and found that the magnetic moment was proportional to the mass of magnetic metal. Similar experiments were nade by the clder Decqucrel, ${ }^{1}$ his result being that the magnetic moment was proportional to the wcight of magnetic substance, so long as the filings were not too denscly distributed; with increasing density the mixture acquires magnetic propertics more like these of a continuons metallic mass. Several modern experimenters have gene into the matter with considerable care ; but their results are not sufficlently concordant, or of sufficient general interest, to justify us in dwelling at length upon them here. A few references to recent memoirs will suffico.

Boernstein, Pogy. Amr., 1875 ; Toepler and Von Ettingshauscn, Ib., 1877; Von Waitenhofen, Wicd. An:2., 1879; Auerbach, Il., 1880 ; Baur, 1b., 1880.

Experiments on electrolytically deposited ivon have been made by Becz, Pogg. Ann., 1860 ; Jacabi, 1b., 1873 ; Beez, Ib., 1874 ; Holz, Ib., 1875 ; Baur, IVicd. Ann., 1880.
Using a fine scratel on a varnished silver wire as electrode, Beez deposited a thread of iron between the poles of an electromagnct, and thus obtained a permanent magnet of extreme tenuity. It was found that the inductive susceptibility of this linear magnet was very small, and that considerable magnctizing force produced no increase of its permanent magnctism. Thils in one case the original magnetism was 360 , the total magnetism under the inducing ferce 370 , the magnetism remaining after the force ccased to act 360. Broader, but equally thin, magnets deposited in a strong field in the same way gave more temporary magnetism than the linear magnets, but never more permanent maguetism than they possessed originally. Thicker plates exhibited greater temporary magnetism, and also an increase of the permanent magnetisin acquired during deposition. With continued reversals of the magnetizing force electrolytic iron gave a continual decrease of the temporary magnctism down to a certain limit (as docs stecl); but the negative permanent magnetism never approaches so near the positive after many reversals as in the case of stcel. On the other hand, Jacoli found that iron rednced electrolytically from ferrous sulphate and sul. phate of magncsia, even after tempering, took a considerable temporary moment, but retained very little permanent magnetism. Molz found that the iron reduced from the solution of Jacobi and Kloin was not sensibly haydened by heating and suddenly cooling, although its density was increased, and that its coercive force was diminished. On the other hand, it was found that hard tempering decreased the density of stecl. He draws the conclusion that the coescive force is greater the farther apart the molecules. Baur's main result is that the maximum of magnetization with electrolytic iron occurs for much larger forces than with ordinary iron. These results are not wholly concordant; but the discrepancies may be reasonably assigned to differences in the preparation of the metal.

## Magnetic Properties of Matter in General.

Among the carliest statements of the properties of the lordstone we find accounts of its action on other bodies; but it is clear from their surroundings that these statements are purely fabulous. Many experimenters at a later date
found indicatious of magaetic action In other metals besides iron; but with praiseworthy caution they ascribed them for the most part to the admixture of small quantilies of iron. ${ }^{2}$ There can be no doubt that the results of Cavallo ${ }^{3}$ Early obtained with brass (especially hammered brass) were due observe to impurity, for Benuet ${ }^{4}$ failed to obtain any indications tions. of magnetism with pieces of brass made from pare zinc and copper, whereas he was immediately successful on adding small traces of iron to the metal.

It very soon appeared, however, that an independent magnetic property must be ascribed to nickel and cobalt, and to these were by and by added with more or less certainty manganese and clromium. ${ }^{5}$
Brugmans ${ }^{6}$ seems to bave been the first to observe the repulsion by a magnet of a body not permanently magnet-; ized. He found that a piece of bismuth floating upon mercury in a small paper boat was repelled by both poles of a magnet. Lebaillif 9 confirmed the observation of Drugmans, and found that aatimony possessed a like property. Saigey, ${ }^{8}$ who experimented on the same subject, concluded that all bodies when suspended in air behave like bismuth, unless they contain traces of iron.
Notwithstauding these results and others whiclu we pass over, ${ }^{9}$ the whole matter remained in obscurity till the repulsion of neutral bodies was rediscovered by Faraday in 1845. He speedily unravelled the laws of the phenomenon, Farades showing how much depends on the nature of the body, redisand how much upon the nature of the magnetic feld. His observations enabled him in fact to comprebend under a few general principles the action of all magnetic bodies whether of the nature of iron or of the nature of bisnuth. The earlicr observers bad fallen into difficulties by neglecting the effects due to heterogeneity of field; these were pointed out for the first time by Faraday, and since then order reigns where there was formerly confusion.

Tho best arrangement for testing the behaviour of Experiweakly magnetic bodies is to suspend either a small sphere mentil of the sulbstance or else a small cylinder in a heterogeneous ${ }_{\text {armanta }}^{\text {arrase }}$ magnetic field. This field is usually produced by placing for test two pointed soft iron poles (fig. 38) on the arms of a power- ing ful electromagnet. The line joining these poles is called weakly the axial direction of the field; directions perpendicular to mapnotic this line are called equatorial. I'lie magnetic force varies

along the axial line, being less in the middle than at the poles; and it decreases everywhere from the axial line outwards. For some purposes poles of the shape shown in figure 39 are used; here the line along the upper edges of the poles are lines of greatest force, whereas the line in the plane of the upper faces equidistant from the upper edges is a line of weakest force; the force also decreases to the right of $a b$ and to the left of $c d$.

In suspending small spheres the best plan is to hang them from one end of an arm of rood db (fig. 40). At thic other end of this arm is placed a counterpoise $b$, and the wholo is suspeuded by a fibre of unspun silk $u$ from a torsion head $t$, by means of which the arm $d b$ can be brought into

[^96]any required position, and if necessary kept there by the exertion of a koown torsional couple. The arm aud suspension must be carefully guarded from draughts by enclosing it in a glass case, which fits orer the poles of the electromagnet, and is provided with a door and with means for briagiog the torsion head $t$ over any given part of the magnatic field. When a cylindrical piece is to be tested It is suspended from the fibre usoas to bang horizontally. For this purpose Faraday was in the habit of using a "atirrup of carefully selected writing paperattached to the lower end of the fibre. It is of the utmost importance to guard against magnetic action on the suspension; the least trace of iron in the nrm $d b$ for instance, or in the paper stirrup, would

in many cases be more than gufficient to mask the action proper to 2 weakly magnetic body.
In every experiment the magnetic behariour of the eupport should be tested by itself beforehand, so that if any residual effect bo present it may be allowed for. The greatest caution is also requisite in choosing the material to be experimented upon. There must be no chemical impurity, especially no trace of iron ; the spheres and cylinders must not be worked rith iron tools or even with dirty ìands. A source of error ${ }^{1}$ to be specially guarded against in experiments with metals, or other good conductors, is the action arising from induced currents in the .mass of the tested body caused by the increase and riecrease of the strength of the magnctic fieid when the circuit of the electromagnet is made and broken. This error is wholly avoided by waiting till the suspended body haș come to rest, and attending only to deflesions which are permanent after the intensity of the field has become steady:

The first substance with which Faraday experimented pas a bar of the heary glass with which he had discovered the rotation of the plane of polarization of light. It took up the equatorial position between the poles of the electromagnat as soon as the current was established. There was no distinction between its ends, or according to the direction of the lines of force; the bar always teok the shortest course to the equatorial position, and remained there in stable equiliorinm. When placed in the axial position it was in unstable equilibriam, and on the slightest displacement either way it moved off in that direction to
the equatorial position. A further action was onserved when the bar was placed with its centre of mass out of the ceatre of the field; it was then repelled as a whole away from the ncarest pole (no matter which). Ou testing a small cube or spbere of the sabstance, no pointing tendency was observed, but the mass as a vihule when it was placed unsymmetrically with respect to the poles tended to pass away from the poles towards the ceatro of the field, and fron the axial line outwards.

Faraday sums up the matter by saying that every element of the heary glass tends to more from places of stronger to places of weaker resultant magnetic force. Thisis exactly the opposite of the law for bodies like iron (see mathematical theory above, p. 247). All bodies that follow the same law as heary glass he calls diamagnetics, all tbat follom the opposite law, like iron, paramagnetics. For the purposes of experimeotal demonstration it is oetter to take some weaker paramagnetic than iron, e.g., a tube filled with a solution of ferric cbloride; for tbe order of magaitude of the effect obtained is then the same as with diamagnetics, and thero is no danger of complications arising from the mutual action of the particles of the substance (see above, p. 245).

Faraday found the following substances to ba dia magnetic; i.e., pieces of them tended to set their longest dimension equatorial between pointed poles, and spheres and cnbes of them tended to pass from places of stronger to placea of weaker forca :-rock crystal, sulphate of lime, List sulphate of baryta, sulphate of soda, sulphate of potash, of diasulphate of magnesia, alum, muriate of ammonia, chloride mag. of lead, chloride of sodium, nitrate of potash, nitrate of lead, carbonate of soda, Iceland spar, acetate of lead, tartrate of potash and antimony, tartrate of potash and soda, tartaric acid, citric acid, water, alcohol, ether, nitric acid, aulpharic acid, muriatic acid, solntions of various alkaline and earthy salts, glass, litharge, white arsenic, iodine, phosphorus, sulphur, resin, spermaceti, caffeine, cinchonja, margaric acid, wax from shellac, sealing max, olive oil, oil of turpentine, jet, caoutchouc, sugar, starch, gum arabic, wood, ivory, mutton (ṫried), beef (dried), blood (dried or fresh). leather, apple, bread.

In testing liquids Faraday nsed a. very thin glass tube Liquiden of the form shown in figure 41 ; the opening being very fine, there was no need for a cork or other stopper which might have caused disturbance ; the slight diamagnetic effect arising from the glass was allowed for. Another way of testing a liquid ${ }^{2}$ is to place it in the bottom of a ratch glass which rests on the edges of the pole of the electromagnet. When the fluid is paramagnetic, it collects in the places of greater force, forming a depression in tha centre of the field as in figure 42 ; when it is diamagnetic, it collects in the places of meaker force in the centre of the field,


Fig. 41.


Fig. 42.


Fig. 43. as in fig. 43. Yet another method ${ }^{3}$ is to put a small quantity of the fluid in a narrow tube, and place the tube horizontally in the equatorial line so that the end of the liquid column is just on the axial line. When the electromaguet is excited the liquid rill be driven away from the asial line or drawn in according as it is diamagnetic or paramagnetic.
Faraday found that breeking a weakly magnetic body into pieces, or even reducing it to powder, produced 40 effect upon its maynetic behaviour provided its general form was unaltered. In order to avoid disturbance from

## M AGNETISM

Tho magneerystallic effect to be described presently, it is ften advisable to reduce certain substances to porder before testing them; the powder is filled into a thin glass sube and then tested like a liquid. By means of powdered bismuth the tendency of a diamagnetic to pass from places of stronger to plaees of weaker force can be very prettily shown. If the porder be strewn upon the circular end of the core of an electromagnet, it will leave the edges and collect in the centre, whereas iron filings will leave the centre and arrange themselves round the edges, the fact being that at the edges the force is mulh mure intense than in the centre. ${ }^{1}$
1 Faraday arranges the metals in the following order of deseending magnetịe sussecptibility :-

|  | Paranaguctic. |  |
| :---: | :---: | :---: |
| Iron. | Chronniun. | Palladium. |
| Nickel. | Cerium. | Platinum. |
| Manalt. | Titaniuu. | Osmium. |
| Mangucs. | Diamagnetic. |  |
| Bismutli. | Mercury. | Arsenic. |
| Antimony. | Lead. | Uraminn. |
| Zinc. | Silver. | Rhatium. |
| Cadoriun. | Gopld. | Tungsten. |
| Sodium. |  |  |

Silicium is given as strongly paramagnetic, and berylliun, ${ }^{2}$ aluminium, potassium, and socium ${ }^{3}$ as weakly magnetic; The last three were given as diamagnetic by Faraday; the magnetic character appears to depend on the method by which the material is prepared, being doubtless determined by the presence or absence of slight impurities. The copper of commerce is magnetic, owing to traces of iron; but when it is reduced by means of zinc from the chloride or sulphate it is diamagnetic. It would appear iaut tiuo paramagnetism of titanium, palladium, platinum, and osmium is due to iron impurity. ${ }^{4}$ Platinum ${ }^{5}$ reduced from very pure chloroplatinate of ammonium by heating in a current of air is diamagnetic. According to Graham the magnetism of palladium when clarged with hydrogen is due to the presence of hydrugenium; Blondlot, ${ }^{6}$ however, has recently found that palladium is less magnetic when charged with hydrugen than when uncharged, from which he concludes that condensed hydrogen is pretty porverfully diamagnetic. Tellurium, sulphur, selenium, aud thallium arestrongly, and niobium and tantalum reaklydiamagnetic.
Magnetic Properties of Gases.-The earliest results of Faraday were of a negative description, but the discovery by Bancalari ${ }^{7}$ of the porrerful diamagnetic action of flame again drew tho attention of Faraday, ${ }^{8}$ Pliicker, ${ }^{9}$ and Beequerel ${ }^{10}$ to the sulject. Faraday caused tho gas under examination to stream vertically upwards or downwards (according as it was lighter or hearier than the surrounding gas) between the poles of au electromagnet, and obsersed how the stream was deflected. In the case of colourless gases the deflexion was observed by allowing small traces of hydrochlorie acid to mix with the gas, and then placing in different parts of the field small tubes containing pieces of filter paper moistened with ammonia; by noticing in which of these the white fumes of ammonium chloride were formed the course of the gaseous current could be deterinined. Another method employed was to 6x two thin glass tubes containing gases to be tested to the ends of a cross piece on one end of the arm of a torsion

[^97]balance ; the tube containing the most magnetic then moved towards the axial linc. Another method, employed both ly Plücker and by Faraday, is to blow soap bubbles with the gas to be lested, and observe their behaviour in the magnetic field, allowing of course for the feeble diamagnetism of the -ater film. Faraday's results are as follows:-

|  | In Air. | In Carlmuic Achal. | $\stackrel{\ln }{\text { In julrogen. }}$ | In Cons Cas. |
| :---: | :---: | :---: | :---: | :---: |
| Air. ................ | 0 | $+$ | + weak | $+$ |
| Nitrogen ... ..... | - | - | - stroug | - |
| Oxygen ........... | $+$ | $+$ | + Etrulig | + etrongis |
| Hydrogex ........ | - strcisic | - . | 0 |  |
| Carbonic acid ... | - | 0 | - | - weak |
| Carbonic oxite.' | - | - | - | - weak |
| Nitrous uxilc... | - | - weak | - |  |
| Nitric oxida.... | - ? weal | $+$ | $+$ |  |
| Nitrous acill .... | + ? wenk |  |  |  |
| Olefiat gas..... |  | - | - | - woak |
| Coal gas ......... | - strunif | - |  |  |
| Sulphuric acid. | - |  |  |  |
| $\left.\begin{array}{r}\text { Ilydroclaloric } \\ \text { acid .... .... }\end{array}\right\}$ | - |  | - ? weak |  |
| IIydriodic nciul. | - |  |  |  |
| Fluosilicic neitl. | - |  |  |  |
| Ammonis ....... | - | - | - |  |
| Chlarine ......... | - |  | - Wcale |  |
| Iodine ............. | - |  |  |  |
| Bromine ......... |  |  |  |  |
| ('yanuğ! .....) | -strongr |  |  |  |

+ menna magncile relatively to the survomblist \&us. - dimusgnctic; tho epliliets strong and weak relate of couse to the appareat beliaviour uider tho chreumstances of the experiment.
It appears therefore that oxygen is the most paramag- Oxysen. netic of all the gases; on this account Faraday conceived that it probably played an important part as a cause of terrestrial magnetism. ${ }^{11}$. Becquerel ${ }^{12}$ has concluded from recent experiments of his own that the specific maguetism of ozone is still greater than that of oxygen. Faraday was able by filling thin glass bulbs with oxygen at different densities to show that the magnetic susceptibility decreased with the density, apparently in sinple proportion. Some numbers giving an idea of the magnetic susceptibility of the various weakly magnetic budies are given below:

In all experiments with gases or fluid media, and indeed Faradny's in every possible magnetic experiment more or less, it is cxperiimportant to notice that the resulting magnetic action is minets on the difference betwcen the action of the muvable body and ential the action on the surrounding medium. This was first magnetic pointed out by Faraday. ${ }^{13}$ He prepared three solutions netien. of ferrous sulphate. No. 1 contained 74 graios of the hydrated salt for every ounce of water; No. 2 was formed by diluting one volume of No. 1 with two volumes of water, No. 3 by diluting one volume of No. 1 with fifteen volumes of water. Three glasses $g_{1}, g_{2}, y_{3}$ and three tubes $t_{1}, t_{3}, t_{3}$ were filled with the respective snlutions. The glasses were placed in succession between the pointed poles of the electromagnet, and the tubes tested in them with the following result :-


- means polnted oxinlly: + + tho samo with creater deckston; - pointed cquatorially; 0 was indifferent.
We have here the cxperimental confirmation of the important theoretical conclusion (see above, p. 248) that any body will belave paramagnetically or diamagnetically according as it is surrounded by a mediam less or more magnetic than itself. In cases where the equare of tha

[^98]susceptibility may be neglected, it is clear that the resultaut action on any body is the difference between the action upon it and the portion of the medium which it displaces. This principle, which is the analogue of the Archimedean law for lloating bodies, is of great use in quantitative magaetic experiments. It was exemplified by Plicker, ${ }^{1}$ and cxtensively applied in magnetic observations by Becquerel. ${ }^{2}$ Beequerel found, for iustance, that the differences between the couples tending to set a small rud of sulphur in water aad in air, in magnesinm chloride and in air, and in nickel sulphate and in air were very nearly the samo as the corresponding differences fur a rod of wax.
Very curious qualitative illustrations of differential magnetic action are obtained by seattering drops of alcoholic solution of chloride of iron in olive oil ; ${ }^{3}$ tho drops of chloride collect and displace the olive oil in the places of stronger force. Another form ${ }^{4}$ of the samo experiment consists in placing a layer of oil of viulets over Dunerent a layer of solution of chloride of iron. When a narrow cell iliquids. filled in this way is placed equatorially with the iuterface of the tro liquids in the asial line, on exciting the electromagnet the iron solution rises in the equatorial plane forming a disk-shaped mass around the axial line. Notvithstaudiag these results the gencral opinion of experimenters seems to be that no separation of the parts of is solution can be effected magnetically once the constituents Constitu- have been thoroughly mixed. Thus Feraday ${ }^{5}$ could obtain ents of a $n 0$ evidence of the conceritration of en iron solution near thorough
mixture
the pole of a magnet, although it was exposed for days mixture not sepa. rated.

Rarefaction of air doublful. together in the magnetic field, and found no separation of the oxygen and nitrugen of ntmospheric air, although they differ greatly in their maguetic character.
Plücker ${ }^{6}$ endeavoured to show that the air enclosed in a vessel placed between the poles of an electromagnet was rarefied by the magnetic action. Faralay, howercr, with almost identical experimental arrangenents arrived at a negative result.
Magnetic Elaborate investigations of the rlagnetism of chemical be-
haviour of chems cal compounds. Wiede. mauns.
salls fresuly precipitated; and gencrally, with like chemical properties of the metallic molecule, the molecular susceptibility remaius the same. ${ }^{5}$
5. Two diamagnetie elemcuts may gire a magucue compound; e.g., copper and bromine, both diamagnetic, give bromide of cupper, which is paramagnetic.
6. When two solutions are mixed and the salts exchange their constituents by double decomposition, the specific mannetisn of the solutions taken together is machanged. Whence the conclusion is drawn that the suseeptibility of a binary compound is made up by addition of the susceptililitics of its constituents, and that these constituents preserve their susceptibilities unaltered when their constitution or atomic arrangement in composition is maltered.
Magnecrystullic Action.-In what preeedes we supposed Mazthe inductively magnetized body, whether paramagnetic or cryst...1. diamagnctic, to be isotropie, and all experiments on its action. magnetie properties to be conducted in a heterogencons magnetic field. In a uniform field such a borly would be aeted upon neither oy foree of translation nor by rotational couple. The case is otherwise if the budy be magnetically reolotropic. In this case, necording to the mathematical theory, (1) the body onght to set in o uniform field so as Two to place its axis of greatest magnetic permeability (i.e., of kiuds ol greatest paramagnetic and of least diamagnetic suscepti- ${ }^{\text {it. }}$ bility) parallel to the lines of force, and (2) in a heterogeneous field Faraday's translational force from places of less to places of greater resultant force in the case of paramagnetic, and from places of greater to places of less in the case of diamagnetic bodies, ought to be greaiest when the axis of greatest susecptibility is parallel to the lines of force, least when the axis of least susceptibility is in the same position, and intermediate for oller positions of the boly.

In observing tho first class of phenomena above men- Approxitioned, poles with that faces nro placed on the elcectro- mately magnet. Faraday recommends that the faces should be field placed at a distance of about one third of their breadth. bectwecr Ho warns the experimenter, however, that the uniformity flat pole with this arrangement is by no means perfect, although in "sed for general sufficient. Tlie best arrangement would be to use frist kind the magnetic field in the interior of a cylindrical coil of sufficient length were it not for the difficulty of altaining crystallio the requisite intensity in this way. In cases where there is action.
any doubt it is well to give the body under examination a spherical or cubical shape, and so eliminate the tendeucy to set arising from heterogencity of field.

The first observations of the magnecrystallic couple were Nagne. made by Plucker, ${ }^{0}$ and claborate iusestigations of the crystarho phenomenon were made by him in conjunction with Beer, ${ }^{\text {do }}$ couple in the course of which the magnetic properties of a largn covered number of crystalline bodies were examined. Plicker alse hy detected the magneerystallie property in a rapidly cooled Plucket cylinder of glass. Shortly nfter Pliicker's first results were published, Faraday discovered the magneerystallic Farads. aetion of crystallized bismuth. At first, misled no doubt by the language in which Pliicker stated the newly dis. covered facts, he did not recognize the identity of the two plenomena; but on further investigation he was able to class all the observations under a few simple laws, ${ }^{11}$ whieh in the mathematical furn given to them by Thomson con-! stitute the theory already given. To the observations of Plücker and Faraday Knoblauch and Tyndall added the important discovery that bodies In which the linear density in one direction is greater than in another, whether ns a consequence of compression or of stratification artificial or natural, exliibit magnetic æolotropy.

[^99]It is convenient, following the analogy of nhysical optics, to divide magnetically æolotropic bodies into (a) "uniazal" bodies, i.e., those that are symmetrical about one principal axis of magnetic susceptibility, or, in other words, have two of the principal coefficients of magnetic susceptibility equal $\left(\kappa_{2}=\kappa_{3}\right)$; and (b) "biaxal" bodies, i.e., those that have the three principal susceptibilities unequal.

Class (a) naturally divides itself into those in which the susceptibility parallel to the axis of symmetry is grester and those in which it is less than that in the plane perpendicular to it. The former (where $\kappa_{1}>\kappa_{2}$ ) are said to be positive, the latter ( $\kappa_{1}<\kappa_{2}$ ) negative uniaxals. We have also to attend to the distinction which arises according as the mass of the crystal is parsmagnetic or diamsgnetic ( $\kappa_{1}$ and $\kappa_{2}$ both + , or both - ). We have then the followiog experimental behaviour in uniaxal bodies:-

|  |  | Sets the Axis of Symmetry |
| :---: | :---: | :---: |
| Positive | $\left\{\begin{array}{l}\text { Paramagnetic } \\ \text { Diamagnetic }\end{array}\right.$ | Parallel to lines of force, ${ }_{\text {P }}$ |
|  | Siamagnetic | Perpendicular to lines of force. Perpendicular to lines of force. |
| Negative | $\{$ Diamagnetic | Parallel to lines of force. |

Faraday found for example that a crystal of bismuth suspended with its plane of smoothest cleavage verticsl set with this plane perpendiculsr to the lines of force, but was indifferent when suspended with this plane horizontal. The axis of magnetic symmetry is therefore perpendicular to the plane of smoothest cleavage, and, since the substanco is diamagnetic, it is a negative uniazal. When suspended in any other way the crystal set so that the magnetic axis rested in a vertical plane through the direction of the lines of force. The difference between the behaviour of magoetic and dismagnetic uniaxals is beautifully illustrated hy the bebsviour of pure Iceland spar, which is a positive diamagnetic uniazal, and sets the optic axis, which is the magnetic axis, equstorially; when, bowever, as sometimes happens, the calcium is psrtly replaced by iron, its physical propsrties (opticsl iacluded) being thereby unchanged, except thst the mass of the crystal becomes magnetic, it sets the optic axis axial. ${ }^{1}$ crystallic the the couple that the body sets the axis of greatest permeability parallel \&ndependent of surrounding medium. to the lines of force. Since the setting of weakly magnetic æolotropic bodies depends merely on the differences between the principsl magnetic susceptibilities, it follows that it is iodependent of the medium in which the body is placed. This was established experimentally by Fsradsy, ${ }^{2}$ who found the magnecrystallic couple exerted on a crystal of bismuth to be the same whether it was surrounded by air, by water, or by a saturated solution of protosulphate of iron.

Plücker gives the following list of uniaxal æolotropic bodies:-

Mhonetic.

| Posilive. |
| :--- |
| Spathic iron ore. <br> Scapolito. <br> Green uranite. <br> Ferruginous sulphate of mag. <br> nesia. | Tourmaline. ${ }^{\text {Negative. }}$

Tourmaline.
Reryl.
Dioptase.
Vesuvian.
Sulphate of nickol.
Ammoniochloride of copper.

## Diamhonetic.

Posilive.
Cale-spar.
Antimony.
Molybdate of lead.: Arsenide of lead.
Sulphato of potash.
Nitrate of potash.

Negative.
Bismuth.
Arsenic.
Ice.
Zircon.
Mellite.
Cyanide of mercury.
Arseniate of ammonium.

[^100]The phenomena in the case of biazal æolotropics are naturslly more complicated; but they are all comprebended in the simple rule given abors (page 244) that the axis of greatest psramagnetic or of least diamagnetic resultant susceptibility in the borizontal plane tends to set itself parallel to the lines of force, or, in the words of Faraday, the body tends to set so as to allow the greatest number of lines of magaetic induction to pass through it. In the azimuth just mentioned the body is in stable equilibrium, in the perpendicular azimuth in unstable equilibrium. There are two sxes of suspension in the plane of the axes of least and grestest susceptibility, viz., the normals to the circular sections of the ellipsoid $\kappa_{1} x^{2}+\kappa_{2} y^{2}+\kappa_{3} z^{2}=$ constant, such that the body behaves indifferently; these axes were called by Plicker the "maguetic axes" of the body. If we observe the times of vibration $T_{1}, T_{2}, T_{3}$ of a sphere of the substance, when the axes $\kappa_{1}, \kappa_{2}, \kappa_{3}$ respectively are vertical, then we have at once by the theory already given

$$
T_{1}: T_{2}: T_{3}:: 1 / \sqrt{k_{2}-\kappa_{3}}: 1 / \sqrt{\kappa_{1}-k_{3}}: 1 / \sqrt{\kappa_{1}-k_{2}} ;
$$

whence $1 / \mathrm{T}_{1}^{2}+1 / \mathrm{T}_{3}^{2}=1 / \mathrm{T}_{2}^{2}$, and $\tan \omega=\mathrm{T}_{3} / \mathrm{T}_{1}$, $\omega$ beiog the angle between either magnetic axis and the axis of greatest magnetic susceptibility. 'These results were verified experimentally by Plücker. ${ }^{3}$

Magnecrystallic phenomena, of the second kind were Phenolooked for by Fsraday very early in the history of the mena subject, but at first he was unsuccessful in detecting them. ${ }^{4}$ second He seems, however, to bave understood and clearly represented to himself in his own way their close connexion with the phenomena of the first kind, for he alluded to the subject more than once, and finally in the twenty-sisth series of his experimental researches, where he explained at length his magnetic theory, he showed that such an effect ought to exist, and actually succeeded in observing it in the case of a crystal of bismuth, which he found to be less repelled from places of stronger to places of weaker force when its First dis? axis was parallel to the lines of force than when it was covered perpendicular to them. He concluded that with Iceland spar the translational force ought to be greatest when the axis is parallel to the lines of force, and least when it is perpendicular to them; but his apparatus was not sufficiently delicate to show the effect.
Unlike the magnecrystallic phenomena of the first kind, Phenethose of the second kind depend on the difference between mena the susceptibilities of the body and of the surrounding of the medium. Faraday ${ }^{5}$ demonstrated this conclusion experi- kind mentally by covering crystals of the red prussiste of depeud potash with a thin lsyer of wax to prevent dissolution, and on the immersing them in solution of sulphate of iron of various strengths between the pointed poles of an electronagnet. In water the crystal was attracted to places of stronger forci in all positions, in concentrated solution of sulphate of iron repelled in all positions, while in 8 solution of 14 or 15 volumes of the concentrated solution to 6 volumes of water it was attracted when the axis of symmetry was parallel to the lines of force and repelled about as strongly when the axis was perpendicular to them. Here then the crystal actually behaved paramagnetically in one direction and diamagnetically in the otber. Similar results can be obtained with Iccland spar in a mixture of alcohol and risten
The prediction of the second class of magnecrystallic phenomena is one of the most cxtraordinary instances of tho theoretic insight which formed so large a part of the genius of Faraday. The laws of the phenomeoa of the first class niight be regarded as merely a skilful classification of observed facts, but the passage therefrom to the second class was a step of the first magnitude ; it constitutes in fact the root of the whole matter. To Sir William

[^101]day in
biswuth.

Thomson belongs the credit of throwing the laws of magnecrystallic action iato the appropriate mathenatical form, and of showing that they range themselves quite naturally under the theory of Puisson. ${ }^{1}$

Tyndall succeeded, where Faraday had failcd, in showing the magnecrystallic phenonienon of the secund kind in Iceland spar. It is particularly instructive to compare his results for carbonate of iron and carbonato of lime, both positire uniaxals, but the one magnetic and the other liamngnetic. His results are as follows :-

| Substance. | Axi9 Axalat. |  | ( ${ }_{\text {Magnetle }}^{\text {Claracter. }}$ |
| :---: | :---: | :---: | :---: |
| Carbonate of iron | 100 | -1 | $+$ |
| Carbonate of lime | 100 | 90 | - |
| Sulphate of iron... | 100 | 85 | + |
| Bismuth ............ | 71 | 100 | - |

Hankel ${ }^{2}$ measured the repulsion on a cylinder nf bismuth placed with its me rnetic axis inclined at angles of $15^{\circ}, 45^{\circ}$, and $75^{\circ}$ with the lines of force, and compared his results with the theoretical formula $90 \cdot \overline{1}+45 \cdot 3$ sin ${ }^{2}$ 中; the result was as follows :-

|  | $\pm 15^{\circ}$. | $\pm 45^{\circ}$. | $\pm 75^{\circ}$. |
| :--- | :--- | :--- | :--- |
| Oliserved repulsion .......... | $94 \cdot 1$ | $113 \cdot 3$ | $132 \cdot 4$ |
| Calculated repulsion ....... | 93.7 | $113 \cdot 3$ | $133 \cdot 0$ |

flation -1 maj゙ qetic enlotropy to crystal. line form.

Influence of Crystelline Form, Compression, de., in producing Magnetic Eolotrony.-In general the magnetic rolotropy, stands in close relation to the crystalline form, and consequently to a considerable extent also to the optical properties. Thus crystals of the regular systen exhibit as a rule no magnccrystallic properties, but there appear to be exceptions in the case of certain pyroelectric crystals such as boracite. Again, crystals that have one crystallographic axis of symmetry are usually magnetically uniaxal, but the optical distinctiou of positive and negative does not involve the corresponding magnetic distinction, as is shown by the results of Tyadall and Knoblauch with pure Iceland spar and Iceland spar in which part of the calcium is replaced by iron. Crystals that are optically biaxal are as a rule magnetically biasal, but the magnetic properties cannot be deduced immediately from the optical.
Effect of If a small cylinder be made of a paste formed with finely sonpres. ground bismuth and gum water it will point equatorially sion. Tyndall and Knob. sauch.
in a heterogencous field, but if the roll be squeezed Hat the plate thus formed will point axially, although its leagth be ten times ita breadth. A roll of paste of pordered carbonate of iron, again, will point axially, the plate formed by squeczing it flat equatorially. ${ }^{3}$ From these results Tyndall and Knoblauch concluded that, if the arrangenent of the particles of any body be such as to present different degrees of proximity in different directions, then the line of closest proxinity, other circumstances being equal, will stand axial if the mass be magnetic, equatorial if the mass be diamagnetic. They constructed parallelepipeds ( $1 \mathrm{in} . \times \frac{1}{4} \mathrm{in}. \times \frac{1}{4}$ in.), first, by gumming together rectangular slips of sandraper ( $1 \mathrm{in} . x_{\frac{1}{4}}$ in.), secondly, by gumming together squares of the same ( $\frac{1}{4} \mathrm{in} . \times \frac{1}{4} \mathrm{in}$.). The paper Was comparatively indiferent, while the sand by itself was magnetic ; and it mas found that the first model set its longest dimension axially, while the second set its longest dimension equatorially; i.e., the layers of sand set in both eases axially. Tyndall ${ }^{\text {has }}$ as observed sim:ilar magnecrystallic actions with naturally stratified bodies such as shale, and in fibrous bodies ouch as rood. He was even able by

[^102]squeczing plates of bismuth to appareatly reverse the masnetic character of the substance ; for the compression rendered the plates wolotropic with an axis perpendicular to their longest dimension, aud in consequenco they set axially like plates of $\Omega$ paramagnetic substance. A crystal of bismuth conpressed in a direction perpendicular to the ordinary magnetic axis, i.e., nmallel to the planes of principal cleavage, had its behaviont reversed as to the second class of magnecrystallic effects, the ratio of the repulsiens when the crystal was set mith its original axis axial and with its original axis equatorial having been clanged from $71: 100$ to $112: 100$. It was also found possiblo by squeezing a ball of bismuth dough unequally in tro perpendicular directions to imitate a biaxal magentic crystal such as heary spar. Tyndall and Kneblanch attempt to explain the magnetic phenemena exhibited by crystals proper by means of these results. They assume that the planes of cleavage are directions of closer aggregation, and therefore tend to point axially in magnetic and equatorially in cliamagnetic crystals. For example, the Theor, first of the above-mentioned sandpaper models would represent inagnetic crysta is that cleave parallel to their axis, Tyndals the second magnetic crystals which cleave perpendicular Knobto their axis. If we regard this theory merely as a way lauch. of representing the facts of observation, even if we allow it to be sufficient, it is far inferior in simplicity to the theory of Faraday aud Thonson, the sufficienc:" of which is not disputed. Ragarded as all attempt to penetrate a little farther into the relation between molecular structure and magnetic properties, it is of great interest and impertance, even if we adnit that like most other speculations of the kind it leads us but a little way; for the questio. arises immediately, How does proximity of the molecules increase specific inductive capacity? This last question is all the more difficult to answer that no experiment bas ever yet been adduced wherein the effect of the mintual induction of the parts of a diamagnetic or meak para. magnetic body plays an undoubted part. ${ }^{5}$

Discussion as to the Existence of Diamagnetic Potarity. - Contro Soon after Faraday's first discovery of diamagnetism, an concern animated discussion arose as to the proper way of stating ing dia the facts iavelved in the new phenomenon. Faraday him- magnel self inclined in the first instance to put the matter by Faraday saying that under the action of an inducing force a diamagnetic body is magnetized in a direction opposite to that of soft iron; at a later period he abandoned this form of statement in favonr of what he called the theory of magnetic conduction, which fitted better with his ideas as to the part played by the surrounding medium by means of which magnetic action is transmitted from one body to another. Faraday's first theery under the name of the theory of diamaguetic polarity was immediately adopted by the Continental physicists, such as Weber, Reich, and Poggendorff, who naturally found it consonant with their favourite views as to action at a distance. It was also supported in England by Tyndall and others. Many experiments were advanced on both sides or the question, and the result was much instructive illus tration of the larts of magnetic action. But the con troversy settled nothing, because in point of fact there way nothing to settle. Either theory was perfectly sufficient when properly applied, to represent the $1^{\text {hhenomen: }}$ and each left the question of the ultimate nature of paramagnetic and dianagnetic action where it found it. This ought to have been evident after Thonason had show: 'hat the phenomena were included in a perfectly natural generalization of Poisson's theory, indicated in fact by

[^103]Poisson himself, aud demonstrated that Faraday's conception of the phenomena was only another method of viewing the facts leading to identical conclusions. Faraday himself ${ }^{1}$ seems in the end to have considered that the difference was a matter of phrases. Since Clerk Maxwell's elaborato mathematical reconstruction of the theories of Faraday this seems to be universally recoguized, and the discussion las subsided. For a full acconnt of the varions interesting experiments that were made during the controversy the reader may be referred to Wiedemnm's Galo vanismus, $\S 558$ sq., and to the reprint of Tyndall's $P^{\prime}(1) e r$ 's $\because$ Dictnagnetism and ALagnecrystallic Action, pp. 76 sq.
Numerical Data respecting the Susceptibility of Treakly N:agnetic Bodies.-The earlier experimenters arrived for the nost part at the conclusion that the susceptibility k of weakly magnetic bodies is constant. Among these may be mentioned Weber, who experimented with bismuth, E. Becquerel, ${ }^{2}$ Tyndall, ${ }^{8}$ Joule, ${ }^{4}$ Reich, ${ }^{5}$ and Matteucci, ${ }^{6}$ who experimented on various substances by means of the torsion balance; Christie, ${ }^{7}$ who worked with bismuth, and Arudtsen, ${ }^{8}$ who worked with ferric sulphate and ierric chloride, both using Weber's diamagnetometer ; and Wiedemann, ${ }^{9}$ who experimented with solutions of a variety of salts. E. Becquerel, however, in some of his experiments, e.g., with sulphate of nickel, found that $\kappa$ showed a tendency to decrease for very large values of the magnetizing force ; Plicker, ${ }^{10}$ who tested a great variety of substances (powdered or in solution) by measuring with a delicate balance the attraction or repulsion exerted upon them by an clectromagnet, arrived at a similar conclusion; but the methods of both these experimenters are open to suspicion.

A large number of relative results were ootaned by the earlier experimenters, ${ }^{11}$ but in some cases the methods employed were not satisfactory, and in others the results so evidently depend on the state of aggregation of the material that they are of littlo importance. The following tables will give the reader some idea of the relative magnitudes of the suscentibilities of different substances:-

Pücker's Table for Magnetics.

|  | Tabi |
| :---: | :---: |
| ......... | 0 |
| Magnetic iron ore | 0,227 |
| Ferric oxide. | 286 |
| Ifenatite | 134 |
| Specular iron ore | 533 |
| 11 ydrated ferric oxide .... | 156 |
| Ferric sulphate. | 11 |
| Green vitriol. | 78 |
| Nitrate of iron, conc. solu. | 34 |


| Ferric chloride, conc. soln. |  | $98$ |
| :---: | :---: | :---: |
| Ferrie sulphate |  | 58 |
| Ferrous chloride |  | 84 |
| Ferrous sulphate | , | 126 |
| Nickelous oxide |  | 35 |
| Mlydrate of do. |  | 106 |
| 1 l drated manga | id | 70 |
|  |  |  |

Nitrate of iron, conc. solu. 34 Mangano-manganic oxide. 167
Olive oil.

- 86
Nitric........................ - 87
Nitic acid.................. -88
Water.................. -96.6
Ammonia solution ... ... - 98
Bisulphide of carboun.... - 100
Sat. solation of vitre... - 100
Sulphuzic acid ............ - 104
Chloride of atsenic......... - 122

Sululur........................ - 118
The reanla morked with an asterisk are taken fiom hecquerel; the rest are from Faralay. 'The numbers ralate to equal volumes of the sulispances, and the medium is sumposed to bo vscumm; so that water in air would be represented by 100 .

The mmbers of Furaday. Reequerel, and Mattencei agree very fainly; c.y., according to Faraday the susceptibilities of it ter. oxygen, and sir are as $-100:+1 \cdot 8:+\cdot 352$, accoriling to Beerguerci as $-100:+1$-82:+"382. Pliucker's results do not sgree so well with those of Faraday and Beequerel ; but his method was fsulty.

Within the last five years a large number of absolute determinations of $k$ have been made, chiefly for bismuth and ferric chloride. Toepler and Yon Ettingshausen ${ }^{12}$ in their exproments on bisnuth used with some alteration the method of induced currents emploged by Weber ${ }^{13}$ in the earliest attempts that were mado to determine this susceptibility of bismuth. Like Weber they compare bismuth with iron, an unsatisfactory procedure on account of the great variability of the susceptibility of iron for different magnetizing forces, and for different samples with the same maguetizing force:

Silow worked with ferric chloride. In lis first set of silow. experiments ${ }^{14}$ he observed the time of vibration of an astatic needle suspended over a cylindrical vessel fillu. with the solution; in his second investigation ${ }^{15}$ the solntion was placed in a glass globe, on the outside of which insulated wire was wound so that a given current in it produced a uniform maguetic field whose strength could be calculated; ${ }^{26}$ the deflexiou of a properly astatized needls suspended inside the globe, was observed when the globe was empty and when it was full, and thence $k$ was calculated; in his third determination ${ }^{17}$ he wsed the method of Toepler aud Von Ettingshausen so improved as to allow ar absolute determination of $\kappa$ to be obtained directly.

Borgmann ${ }^{18}$ enclosed one coil witbin another, and filleả Bory. the hollow cylindrical space between them with the solutiod mann. of ferric chloride to be tested; he also used the ring method of Stoletow and Rowland.
Jacques, ${ }^{19}$ following a nethod eaboraved by Rowland, racunes measured the repulsion of crystals of bismuth and Jceland in spar placed with their magnetic axcs axially and equatorially between the poles of a Ruhmkorffe electromagnet, the field of which was carefully explored after the manner of Verdet by means of a small coil moved throngh a known distance in different parts of it; from these observations the two principal magnetic suscentibilities were calculated

Schuhmeister ${ }^{20}$ experimented with ferric cblaride, using Schuhtho samo method as Rowland and Jacques.
In the experiments of Eaton ${ }^{21}$ the method formeriy employed by Wiedemann was adopted; the data in his paper are, however, insuflicient for an absolute determination either of the magnetizing force or of $\kappa$; in fact he deternines merely the forco with which the magnetic body is attracted and tho magnetic moment of the electromagnet, assuming that the strength of the maguetic field at a given point is proportional to the latter, 一 Which is not necessarily true, for tho magnetic distribution in tho core of the electromagnet may alter with increasing current.

[^104]Von Ettiugsliausen ${ }^{1}$ in the most recent research on the subject with which we are acquainted has made determination of the susceptibility of bismuth by four different methods. The first of these was that formerly used by Toepler and himself, with tho addition that the action of the bismuth bar was compared with that of a solenoid of as nearly the same dimensions as possible through which flowed a current of given strength (an artifice previously used by Christie). The second inethod consisted in measuring the force with which a portion of the diamagnetic substance hang in the axis of a coil and near one of its ends was repelled out of the coil when a known curreut passed through it. The third method was that of Rowland and Jacques. The fourth consisted in measuring the deflexion of a magaetometer needle produced by placing a piece of the diamagnetic substance between the poles of a powerful magnet under whose action the magnetometer needle had come to rest in the first instance. ${ }^{2}$ The agreenent between the results obtained by all the different methods was very fair considering the smallness of the effects to be measured in some of them. The second method is pronounced to be the best, and by means of it he gives also a determination of $\kappa$ for ferric chloride.

Some of the results of the different experimentera for bismuth are given in the following table:-

| Magretizing Force. | $-10{ }^{6} \mathrm{~K}$. | Authority, se. |
| :---: | :---: | :---: |
| 63 | $14 \cdot 6$ | ¢ Calculated by Stoletow from cer- |
| 301 | 14.9 | $\left\{\begin{array}{l}\text { tain results of - Weber's, } \\ \text { Silow, Wied. Ann., 1882. }\end{array}\right.$ |
| ... | 16.4 | Calculated by Von Ettingshausen, l.c., from Weber. |
| ... | 14.6 | Calcnlated by Von Ettingshapsen, l.c., from Christie. |
| 25.8 to 128 | 13.99 |  |
| $71 \cdot 4$ to $110 \cdot 2$ | 14.54 13.48 | $\} \begin{gathered}\text { Ettingshausen's sccond method. }\end{gathered}$ |

Most of the specimens contained slight traces of iron. Although the range of the magnetizing force in Von Ettingshausen's experiments was considerable, $\kappa$ was very nearly constant; if there was any tendency to variation, it was decrease with the large magnetizing forces.

The results for ferric chloride are not so concordanto Silow, after comparing his own earliest tesult ( $10^{6} \kappa=81$ for a solution of density 1.475 , magnetized by the earth's horizontal force) with those of Borgmann $\left(10^{6} \kappa=48 \cdot 8\right.$, density 1.87 , magnetic force 40 to 59 ), concluded that the susceptibility of ferric chloride probably follows the same law as that of iron; i.e., it first increases, then reaches a maximum, and afterwards decreases more or less slowly. His later experiments confirm this conjecture, and be finds that $\kappa$ has a maximum value for a magnetizing force of obout 4 C.G.S. The smallest force used was about 08 C.G.S. and the corresponding value of $10^{6} \kappa$ was 34 ; the largest value of $10^{6} \kappa$ occurring in his tables is 179 . The values obtained in bis last investigation are smaller than those given in his first table, but there is the same inarease and decrease. The following are his latest results :-

| 3 | 106 к. | W | ${ }^{106}$ к. |
| :---: | :---: | :---: | :---: |
| t.15 | 96 | $2 \cdot 45$ | 104 |
| $1 \cdot 35$ | 104 | $3 \cdot 73$ | 70 |
| 1-60 | 131 | $5 \cdot 3.3$ | 69 |
| $1 \cdot 70$ | 131 | $5 \cdot 35$ | 68 |
| 1-81 | 142 | $6 \cdot 54$ | 65 |
| $1-90$ | 141 | $7 \cdot 00$ | 62 |
| $1 \cdot 96$ | 131 | 10.00 | 60 |
| $2 \cdot 13$ | 111 | $12 \cdot 6$ | 55 |
| $2 \cdot 40$ | 99 |  |  |

[^105]The unit of ${ }_{5}^{5}$ is the earth's horizontal force, presumably at Moscon:

From tho observations of Arndtsen on a solution of density $1-195$ Silow $^{3}$ calculates $10^{6}{ }_{\kappa}=57.5$ (magnetic force $20 \cdot 3$ ). For a solution of density 1.395 , with magnetizing forces from 38 to 252 , Schubmeister gets $10^{\circ} \kappa=30$ to 39. Von Ettingshausen, for a solution of density $1 \cdot 48$, with magnetizing force 14 to 20 , gets $10^{6} \kappa=59$ to 56 .

The folloming are the values of $10^{6} \kappa$ obtained by Schuhmeister for various substances.

| 犋.................. | 61.5 | $130 \cdot 8$ | 252.7 |
| :---: | :---: | :---: | :---: |
| Water .......................... | -. 55 | - -45 | - ${ }^{44}$ |
| Alcohol ......................... | -. 45 | - 42 | - 38 |
| Bisulphide of carbon ........ | -.46 | - 39 | - 37 |
| Ether.......................... | - $\cdot 40$ | - 29 |  |


| \% ${ }^{\text {c/............... }}$ | 66.8 | 141.8 | 272.2 |
| :---: | :---: | :---: | :---: |
| Oxygen from chlorate oi | \{ 046 | -059 | - 122 |
| porssh ........................ | - 056 | -067 | -128 |
| Oxygen from electroly is | $\{117$ | -181 | ... |
| nzonized ................. | - 103 | -177 | - |
| Nitrogen | $\left\{\begin{array}{l}.0278 \\ .0232\end{array}\right.$ | . 0377 | -0496 |
| Nitrog | -0232 | .03S0 | -043i |

## Relation of Magnetism to other Physical Properties.

Shocks, Jorring, or Vibration.-The effect of these in aiding the action of an inductive magnetic force was known to Gilbert; and it was also known to the earlier experimenters that the permanent magnetism of a body not subject to external magnetizing force was destroyed by like causes. The action is precisely similar to that found in the case of bodies temporarily or permanently deformed by mechanical stress, and, again, to the first effects of temperature on bodies temporarily or permanently strained, or temporarily or permanently magnetized. ${ }^{4}$ The effect may be conceived as consisting of a loosening of the molecules fer the moment, so that they follow more easily any force acting on then whether mechanical or magnetic. The following parallel statements, taken from the results of Wiedenann, who has devoted much careful study to these pbenomena, will sufficiently illustrate the matter :-

1. Jarring a body under twisting stress canses increase of twist.
2 Permanent twist in a wire is diminished by jarriug.
2. A wire permanently twisted and then partly uhtwisted loses or gains twist when jarred according as the untwistiog is amall or great. ${ }^{5}$
I. Jarring a bar under magne- Wíctetizing force causes increase of marn'a maguetization.
II. Permane paralles in Pananent magnetization state. a bar is diminisbed hy jarring. ments.
IlI. A bar permanently magnetized and then partly demag. netized losos or gains magnetization according as the demaguet. ization is small or great. ${ }^{\circ}$
Minuter details regarding the effects of jarring will be found in memoirs by Wicdemann; Fromme, Auerbach, and others already quoted. The reader may also consult Warburg, Pogg. Ann., 1870, and Villari, Pogg. Ann., 1869.

Mechanical Strain produced by Magnetization.-The starting point of accurate research on this subject was the discovery made by Joule ${ }^{6}$ in 1842 that a bar of soft irna lengthened when it was temporarily maguetized in the longitudinal direction. When the magnetizing force was removed the bar shortened, but in general not quite to its

[^106]origiual length. This residual extension was due in part to permanent magnetism, but he found that the permanent magnetization due to a current 1088 was reversed from - 1.3 to $+\cdot 25$ by a curreat 175 , while two-thirds of the permanent extension was still left. The actual elongation of aa iron bar magnetized to saturation was foued to be from - स $\pi^{2}$ th to $\frac{1}{200000}$ th of its whole length. The extension varied approxinately as the square of the jatensity nf magnetization (temporary or permanent). The general character of the phenomena is the same in soft or bard iron, and in soft or hard steel ; ${ }^{1}$ but the effects are smaller with liard than with soft bara.

It was found that longitudinal compression of the bar influeaced the magnetic extension little if at all ; on the other band, longitudinal traction was found to diminish it, and in the case of thin wires uader considerable tension the magnetization caused a contraction. Thus in the case of a bar 1 foot long, $\frac{1}{4}$ incl in diameter, with a weight of 600 tb , there was neither extension nor contraction, even with a current of 1600 ; with weights of 1040 lb and 1680 HD , and a current of 1804 , there was a coutraction of $\cdot 00002$ inch and 000032 inch respectively. The contraction under teasion was found to vary approximately as tho product of the magnetizing current and the intensity of magnetization. After the nagnetizing force was withdrawn the wire regained its original length, pernanent magnetiza. tion notwithstanding.
Joule made careful experiments to determine whether the magnetization of an iron bar produced any alteration of its volume, but could find none. He tberefore concluded that the longitudinal extension of a magnetized bar is accompanied by an equal lateral coutraction; and, in accordance with this conclusion, he fond that when an iron tube is circularly magnetized, perpendicular to its length, by passing a current along its axis, it contracts longitudinally.

The results of Joule have been verified and to some extent addel to by Wertheim, ${ }^{2}$ Bulf, ${ }^{3}$ Beez, ${ }^{4}$ Tyndnll, ${ }^{5}$ Mayer, ${ }^{6}$ Righi, ${ }^{7}$ and Ader, ${ }^{8}$ The three first experimentod with magnetizing coils sherter than the bar, and found that the extension was much greater when the coil wrs near tho free end than when it was near the fixed end of the bat. This of course raises the question how far the extension is due to electromagnetic netion between tho coil and the bar, and how far to intermal molecular disturbance. ${ }^{9}$ Mayer's results are in ngreement with Joule's except in the case of bars of soft steel, which (not under traction) when the magnetizing eurrent was first estabjished, elongated in some cases and retracted in othera, -at the first break elongated, and subsequently retracted at make and elongated nt break. Righi's results for longitudinal magnetization are in ngreement with those of Joule ; he also gives a variety of interesting results regarding the effects of circular and longitudinal marnetization on the length of iron wires. Barrettio has recently arrived nt the interesting result that nickel behaves oppositely to iron,-retracting about $\frac{15000 \text { th }}{}$ when unagnetized to saturation; the gives for tho elongation of iron mad celnlt under like circuntstances 508borth and worborth respectively.

Efject upon Afagnetization of Tiraction along the Lines of 'IFannetization.-Matteucci ${ }^{11}$ scems to have been the first to discover tbat when a bar subject to a magnetizing force in the direction of its leagth is stretched in the same direction its temporary magnetization increases. When the stretching force is removed the magnetization again diminishes. Wertheim ${ }^{12}$ confirmed Matteucci's observation. Villari, ${ }^{18}$ however, found that, after the first effect, which

[^107]is always increase, the application of the traction will caure increase if the intensity of magnetization is not beyond a certain critical value, but derrease if that value is surpassed; the removal of the traction causea in each casa the opposite effect to the application.

The effect of the first traction on the permanent magnetization, whether of iron or steel, is a dibinution; the effect of subsequent tractions in steel is a dianinution on application, with iucrease on renoval ; in soft iron an iucrease on application, a clisinution on removal. Partial demagnetization of a steel har by an opposite magnetic force causes it to belave like suft iron; when the demagnetizing force is sufficient to reverse its polarity, the effert, of even tbe first traction may be to increase the magnetization.

Sir W. Thomson ${ }^{14}$ has carcfully studied the phenomena in question, as exhibited in a very aoft iron wire $\cdot 075 \mathrm{~cm}$. in diameter permanently stretched by a weight of 1 lb , aud alternately stretched by weights of $7 \mathrm{lb}, 14 \mathrm{Hb}$, or 21 fb , and unstretcbed (so that there was no permanent elongation). As the magnetizing force was increased, the increase of magnetization caused by the application of traction iacreased to a maximum, then diminished, and became zero for a ccrtain critical value of the magnetizing force; after the critical value was paased, the tractien caused a dimiaution of the magnetization, which increased asymptotically towards a fixed linit as the magnetizing furce was increased more and more. The following table will give an idea of the results.

I denotes the maximum increase, aud D the limit of the decrease, roughly estimated in the same arbitrary unit ; ${ }^{\prime} g^{\prime}$ is the force corro aponding to I, and $y_{0}$ the critical force, each expressed in terms of the earth's vertical force at Glasgow as unit ; $T$ is the traction, $t$ the temperature.

| T | 6 | I | D | 弱 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \% | $\begin{aligned} & \text { Ord. } \\ & 100^{\circ} \end{aligned}$ | $\begin{aligned} & +31 \\ & +26 \end{aligned}$ | -6 -3 | 5.9 6.4 | 34 35 |
| ... | $\begin{aligned} & \text { Ord. } \\ & 100^{\circ} \end{aligned}$ | $\begin{aligned} & +3 \overline{1} \\ & +33 \end{aligned}$ | -14 -9 | $\begin{aligned} & 4.8 \\ & 4.5 \end{aligned}$ | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ |
| 21 .. | $\begin{aligned} & \text { Ord. } \\ & 100^{\circ} \end{aligned}$ | $\begin{aligned} & +54 \\ & +51 \end{aligned}$ | -21 -15 | $\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 26 \\ & 29 \end{aligned}$ |

Bars of nickel aud cobalt were also examined; and it was found that after the first effect the result of applying traction in the direction of magaetization was in both cases to diminish the magnetization. The effect appeared to increase up to a maximum, and then to diminish as the magnetizing force increased; but the critical value was not reacled with the largest forces employed.

Traction perpendicular to the lines of magnetization waa found by Thomson to diminish the magnetic susceptibility. The experiment was made by means of a gua barrel maguetized longitudinally, and subjected to iutersal bydrostatic pressure.

The effect of pressure along or perpendicular to the magnetization would in all probability be opposite (and equal ?) to that of an equal amount of traction; but no experiarents have as yet been made on the subject. ${ }^{15}$ The effect of traction is therefore to produce magnetic xeolotropy, the suaceptibility being increased in the direction of the stress and diminished in the perpeadicular direction so long as the intensity of magnetizatiou is not abore a certain critical value; above that value the effects are reversed. The effect of pressure would be opposite in every particular. Heace the effect of a shearing stress would be increase of magnetic susceptibility along the principal axis of elongation, aud decrease (to an equal exteat ?) along the principal axis of compression.

[^108]Relations between Torsion andMEagnelization.-These wero investigated by Matteucci, ${ }^{1}$ and after him by Becquerel and Wertheim. ${ }^{2}$ The wholo subject was carefully studied by G. W. Wiedemann, ${ }^{3}$ who has dono more than any living physicist both in discovering new facts in this interestiug field and in coordinating those fonnerly known. We extract from his Galvanismus ${ }^{4}$ tho following scries of parallel statements, which will serve the duuble purpose of inaking the reader acquainted with the principal facts, and of drawing his attention to tho closo analory belween the mechanical and magnctic propertics of bodies, and to the ulmost perfect reciprocity of their experimental laws.

1. The permanent torsion of iron wires is diminished by naguetiastion in a proportion decreasing mith increasing magnetization.
2. Repatition of magnetization in the sanse directiou diminishes fermanent torsion very little farther; but magaetization in the ooposito direction causes a fresh and considerable diminu. tion.
3. When the permanent torsion of a wire has becen removed as far as it can be by magnctizations within certain limits repented altermately in oppositedirections, it takes a maximuan of torsion when magnetizedin onc lirection, a minimum when magnetized in the other direction.
4. A permanently tivisted nira partially untwisted loses less of its twist when magnetized than an ordinary permanently twisted wire. If the untwisting has been considerable, feeble magnetization canses an iacreaso of torsion, which rises to a maximum and then decreases as the magnetization is increasel. The freater the untwisting the stronger tho magnetization corresponding to this maximum, and, wher the untwisting is vory great, the maximum may not be reached at all.
5. If a wire nuder the inflenence of a twisting stress is magnetizel, tho twist increases with weak but decreases again with strong magnetization. The first elfect of magnetization is usually to increase the twist; but, if the wire be jarred beforchand, tho mognetization at once causes untwisting, which disappears when the magnctization ceasc's.
6. If we magactizo an iron wire so that its free end has north polarity, and then pass in current from the fixed to the free ent, or first pass the current amd then magnetize, the freo end of the wire as seen from the fixed end twists in the direction of the iamels of 2 watcli. The reversion of current or of magnetization reverses the twist; reversion of both leaves it unaltered.
[ It would appear that when tho magnetizingforce and the current are both in action tha twist tends to a maximum when either is increasel. the other remaininer constant.]

The altcratious of the longitulinal and circular magnetization of

[^109]1. The permanent maguetization of steel bars is dimiuishad hy torsion in a proportion decrensing with iucreasing torsion.
II. Repatition of torsion in the samo direction diminislies fermancht magnetization very littlo farther; but torsion in the opposite direction causes a fresh and considerable diminution.
III. When the fermanent maguctization of a bar has been removed os far as ic can be by twisting within certain limits repeated alternately in oppo. site directions, it takea o maximuar of magnetization when tristed in one direction, a minimum rihen twisted in tha other direction.
IV. A permanently magnetized bar partially demaguetized Joses less of its magnetization when tristed than an ordinary permanently maguetized bar. If the demagnetization has been considerable, feobla twist cnuses an increase of magnetization, which riscs to a maxinum and ther decreases as the twist is increased. The greater the demaguetization tho greater the tivist correspouding to this maximinm, and, when the demagaet. ization is very great, tho maxiwurs may not be reached at all.
V. If a bar undor the influence of a longitudinal magactizing force is twisted, the maructization increases with smalif twists but decreases again with largo twists . The first effect of twisting is usually to increaso the magnct. jzation ; lut, if the bur be jarreal beforchaud, tho twist at onco chuses a lecrease, which disaprpoars when the twist ceascs.

V1. If we twist the free end of a wirc in the direction of tho liands of a watch as scen from thon fixed emb, while a curront from fixed cul to free eud cither is passing throngh it or has passed throngh it, the wire becones longitudinally magnetizal so that its frece end has north polarity. Tlic reversion of cur. ient or of twist reverses the mas. netization; reversion of loth leaves it unaltcred.
irnn wires may be shom by the induced enrrents thereby caused in a coil surrounding the wiro or in tho wire itselk. For example, if an iron wire be circularly magactized by passing a current througli it, and then twisted in eitler direction, an induction current dows through the wire in tha same direction as the original current ; and an opposito current is observed when the wiro is untwisted again. This shows that twistiug the wire diminishes the permanent circular magnetization, while untwisting partially restores it. ${ }^{5}$

Tha relation between bending stress ond mognetization has been studied by Guillemin, ${ }^{6}$ Werthem, ${ }^{7}$ Ader, ${ }^{9}$ and Kimball; ${ }^{9}$ but the results are not of sufficient interest to be cited hero. The question has also been raiscd whether magnetization affects the elasticity of bodies, and has hcen answerel by Wcrthcim and Wartmann in tho negative. Both $\lim$ ball ${ }^{9}$ and Pinzzoli ${ }^{10}$ find that the breaking tension of iron wires is increased by longitudinal magnatization; the former luts the increase at 0.9 per cent. when the wire is saturated.

This is the place to mention tho so-called " magaetic sounds" which accompany tho magnetization and demagnetization of the strongly magnetic metals. It is now established heyond all doubt that these sounds have their origin partly at least in the mechanical strains accompanying magnetization. In many cases direct magnetic or electromagnetic action, and even electrostatic and thermal actions, concur in producing them, and it is often diff. cult to say how much is due to each of these several causes. This is especially to be observed where the sonads are produced by the passage of interrupted or undulatory currents through wires of the strongly magnetic metals. A full discussion of the matter belongs more properly to the subject of electric telephony; but a ferw notes on the history and literature of the subject may be giren here.

Page ${ }^{11}$ secms to have been one of the first to notice plenomena of tlis kind; but Jonla ${ }^{12}$ appears to have firat ststed clearly that mag-netic-mechanical strain was a specific cause. He says that the magnetic extension in the core of an electromagoct takes place so suddenly that the shock is sensible to the touch, and is sccompanied by a mnsical note arising from vibration in the metal. Marrian, ${ }^{13}$ Matteucci, ${ }^{14}$ Beatson, and Wertheim ${ }^{15}$ all took up tho matter; and Dela Rirc ${ }^{16}$ published mauy investigations concerning it. In 1861 Reiss published the iurention of an electric telephone for the transmission of music and speech, which depended essentially on the marnetic sounds produced by a varying current in an iron corc. This iostrument was the prototypo of the telephone ol Gray, and of the still more famous instrument of Bell, whose action, olthough often described as furely electromagnetic, is no doubt in part due to the magnetic strains. Among the more recent investigations on this subject may be mentioned Ferguson, Proc. Rioy. Soc. Edin., 1878 and 1850; Ader, Comples Fendus, 1879; Du Moncel, Il.; Chrystal, N'ature, vol. xxii., 1880; Hughes, Proc. Moy. Soc. Lond., xxxi. and xxxii., 1881.

General Remarks.-Wiedemann has remarked with justice that most of the effects of strain upon magnetization and vice rersa are complex. Apart from the possible arlunisture of direct magnetic action, we must distinguish (1) tho mere disturbing effect of jarring: thus the first Effects application of a mechanical stress has the same effect as a conplex shock, i.e., it loosens the molecules of the body, as it werc. and renders them more ready to follow any juductive magnetic force, while the first effect of magnetization upon a body under stress is precisely similar, and may in fact be imitated by mechanical jarring pure and simple; (2) after-effect, whether mechanical or magnetic, the consequence of which is that the effect due to any mechanical stress or magnetizing force is affected by pre-existing stress and marnetization ; (3) the proper effect of mechanicin stress or maguetic force, which appears at once where one or the other is applied, and disappears when it is removed

[^110]In bis excellent analysis of the phe:nomena, Tiedemann coordinates them throughout by means of an extensinn of Weber's theory of "molecular magnets" (Drchbere . Molecul(ermaynete). This of course involves an attempt to 1 nss beyond the mere results of experience; and there can be no question that, on the whole, this theory explains the facts in a highly instructive and suggestive manner. The main defect in it is the multitude of assumptions and the want of clearness and definiteness in its conclusions. Thus it is sometimes not easy to see why eactly the opposite conclusion should not be drawn; and it appears hopeless to bring it to the test of a quantitative comparison with experiment.

Without entering into the ultinate causes of magaetism, we might endeavour to reduce the phenomeua to the smallest number of experimental facts. Thus, assuming merely the effects of longitudinal and transverse traction upou magnetization and the magnetic extension and compression along and perpendicular to the lines of magnetization, we might explain many of the results concerniug the relation between torsion and magnetization.
Let us take for example No. VI. of Wiclemanu's parallel statements. In fig. $4 \pm$ let the upper end of the wire be the fixed end, and let $P$ be a point in any of the thin ceaxal cylindrical shells into which the wire may be supposed divided. First suppose the wrre to be circularly magnetized by the action of a downward current, the resultant mannctic force at $P$ being in the horizontal direction PB. If now the ware be twisted in the direction of the arrow 7 , it acquires twe axes of greatest and least magnetic susceptibility Pc and Pr. The resultant magnetic force PB being resolved olong these axes will induce more magnetisnu along Pe than along $\mathrm{P} r$; hence the wolotropy will cause tho resultant magnetization to take the direction $\mathrm{PB}^{\prime}$; it will therefore have a positịve wertical component downwards, which agrees with statement V1. In fact the twisting converts the curcular lines of magnetization into righthanded helices.
Next let us suppose the wire untwisted to begin with, but magnetized both circularly and loagitudinally, the components being PB and PA. The resultant magnetization will then have some direction such as Pe , but, by Joule's principle, this will canse extension along. Pe and


Fig. 44. compression along the perpendicular direction $\mathrm{P} \cdot$; consequently the wre will twist in the direction of the arrow $T$, which agrees with statement 6. Moreover, since inagnetization along PB alone would smply cause the tube to expand aieing a horizontal section, and magnetization along PA alone vould simply cause longitudinal extenson, it is clear that when cither $\Lambda$ or $B$ is given the twisting reaches a maximum and then diminishes when the other is increascd. ${ }^{2}$
It does not seem unreasonable to expect that a general mechanical theory of this kind will yet be found to coordinate all the facts; although there are difficulties in its way at present. ${ }^{2}$ The phenomena will then be reduced to two or three experimental facts at the utmost, which it will be the busincss of some ultimate dynamical theory of magnetism to explain.

Effect of T'emperature.-Some information on this subject has been given incidentally above, p. 256 . We collect here a few additional facts; but a complete account of all that tas been done conld $n$ ' $t$ be compressed within uur available space, owing to tho great diversity of opinion upon the subject. That the question is a very difficult one will appear at once, if we reflect that variations of temperature intluence the density and molecular structure of nagnetic badies to a remarkable degree, and that thus secondary

[^111]influences arise in addition to the proper effect of tempera ture.
That rery high tomperatures destroy twith the magnet: sasceptibility and the power of retaining magnetisn altogether has been kuown since the infancy of magnetic scie.tce. Thus Gilbert found that a loadstone and a piecc of iron equally lost their puwer of affecting the magnetiq ncedle when heated rery hot, and remarlss that the magnetic property returus to the iron after it has cooled a little, but that the magnetic rirtue of the loadstone is altogether destroyed. ${ }^{3}$ Similar results were obtained by Irrugnans, Boyle, Cavallo, Barlow and Bonuycastlc, Christie, Ritchic, Ermau, Sccresby, Scebeck, and others. Faraday ${ }^{4}$ found that a steel magnet lost its permanent magnetism rather suddenly at a temperature a little under the boiling point of almond oil ; it behaved lise soft iron till it was raised to an orange-red heat, and then it lost its magnetic susceptibility and became indifierent. The temperature at which retertive power for permanent magnetism was lost appeared to vary in steel with the hardness and structure; in fragmants of loadstone it was very high : they retained their permanent magnetism until just below visible ignition in the dark, but, on the other hand, they lost their susceptibility at dull ignition, i.e., at a much lower temperature than irou. Nickel was found to lose its magnetic susceptib:lity at a much lower temperature than iron, viz, abcui $330^{\circ}$ to $340^{\circ} \mathrm{C} .{ }^{5}$ Cobalt is nuch more refractory, fa: it retains its susceptibility, according to Faraday, nearly up to the melting point of copper, i.e., to a white hicat. The writer had occasion to verify these results in the course of some experiments ous the maguetic sounds in wiras of iron, nickel, and cobalt traversed by an interrupted c:rrrent of electricity. ${ }^{5}$
The effect of extreme cold, produced in the ordinary Effect of way by means of solid carbonis acid and ether, was, accord- extrenıe ing to Trowbridge, ${ }^{7}$ to diminish the moment of a steel cold. magnet (magnetized at $20^{\circ}$ C.) by about 60 per cent.
The effect of moderate alteration of temperature varies Modegreatly according to circumstances. We shall consider rate separately the effect upon the magnetic susceptibility and varia. apon the permanent magnetism; but it must bo noticed temperathat no such separation is possible in actual esperiment. ture.
The temporary magnetism of bars of cast iron, smithy Effect on iron, soft iron, soft steel, and hard steel magnetized by the mar. earth's vertical force was found by Scoresbys to be insensible netic at a white heat, but to be muclı greater at a dark red bility heat than at the temperature of the air. The difference was most marked in the case of hard steel, no doubt partiy because of the softening of the bar. Similar experiments were made by Bailow, Seebeck, and others. Knpfer? experimented on the subject using variations of temperaturo between $0^{\circ}$ and $100^{\circ} \mathrm{C}$., and found the susceptibility of soft iron to increase with the temperature. Wiedemann's con- Wiede. clusion is that the first alteration of temperature, whether maun's increase or clecrease, incroases the temprorary magnetism of results iron or steel, whatever the temperature at starting. If the temperature be repeatedly altered and brought back to its initial value, the magnetization continues to increase, but after a timo becomes more and more nearly constant at the initial temperature. After this state has been reached, an increasc of temperature canses increase of magnetization in very hard steel bars, a decrease of temperature a decrease of magnetization : the bchaviour of soft steel bars is exactly opposite.

[^112]
## Banca-

larl.
Fara-
day's
experi
ments
on
healed
gases.

Burur ${ }^{1}$ and Wassmuth ${ }^{2}$ have recently taken up the matter with all the advantsges of modern experience. The former concludes from his experiments on iron by the ring method: at tetnperatures between $0^{\circ}$ aod $150^{\circ} \mathrm{C}$., that the magnetic susceptibility for a given magnetizing force increases with the temperature if the force be below a certain critical value ( 3.6 or so), but decreases as the temperature increases if the force be above that value. ${ }^{3}$ The smaller the magnetizing force the greater the influenca of tenperature on the magnetic susceptibility. The result of his experis ments at very high temperatures is that, for small magnetizing forces, the susceptibility at first increases rapidly as the temperature increases, reaches a maximum at red heat, and then falls suddenly to zero. For large forces, the susceptibility decreases gradually until red beat, and then falls suddealy to a very small value. According to him, if a bar be cooled from white beat the, first traces of susceptibility are observed at a very bright red, the brighter the greater the maguetizing force. He gives a variety of interesting results conceraiog the phenomeaon of Gore, ${ }^{4}$ all in ascordance with what we have just stated.

In his earlier researches l'araday was uasuccessful in obtaining auy evideace of the influence of temperature on the susceptibility of reakly magnetic bodies, such as the chlorides of the magnetic aretals or of diamagnetic bodies. ${ }^{5}$ His earliest results were obtained with gases, and that too, strange to say, before the magnetic character of gases was fuily iavestigated. It was Bancalari's discovery of the extrsordiaary behaviour of flame between the poles of su electromagnet that led Faraday to resume his magnetic experiments on gases. Flames of all descriptions are strongly repelled from the axial line of a beterogeneous magnetic field, -so muck so that it is impossible to induce the flame of a candle to go between the pointed poles of a powerful electromagaet when they are placed at a short distance apart. The flame is blown aside, or even downwards, as if by a strong current of air issuing from between the poles. If a flat pointed flame is placed with its centre a little below the axial line, when the magnet is excited it drops down and spreads out below and around the axial line, assuming a fish-tail shape. It appears that the effect is not due to the solid matter in the flame but simply to the hot gases in it; for the upper and cooler part of the stream of smoke from a freshly extinguished taper is scarcely affected, while the lower sud hotter part is most powerfully acted upon, being blown aside and often split into two iadependent streams. A careful investigation led Faraday to the conclusiou that oxygen, carbonic acid, and coal gas are reodered more diamagnetic, or, what is the same thing so far as the resultant differential action is concerned, less magnetic by heat, ${ }^{6}$ and that this effect was much greater than could be accounted for by the mere rarefaction of the gas. He likervise obtained an increase of the susceptibility of oxygen by cooling it with ether and solid carbonic acid. Nitrogen appeared to be altogether indifferent. He found in a later series ${ }^{7}$ of experiments that the magnecrystallic property of bismuth was destroyed at a temperature a little below its melting point, and that the same thing happened to crystalline antimony a little below red heat. In the thirtieth series of his experimental researches he states that between $35^{\circ}$ and $142^{\circ} \mathrm{C}$. the susceptibility of a specimen of spathic iron ore perpendisular to its magaetic axis decreased by 333 per cent. per legree centigrade of rise of tempersture; this agrees very tlosely with the formula which was found by Wiedemann to

[^113]represent very spprosimately tise temperature effect for salt solutions, viz., $k_{t}=k_{0}(1-00325 t)$. F'ur the decrease in the magnecrystallic couple, or, which is the same thing, in the difference betreen the susceptibilities along and perpeadicular to the magnetic axis, he found for the spathic iron ore 482 per cent. between $0^{\circ}$ and $138^{\circ} \mathrm{C}$., and the percentage of Idecrease was fonr times as great betweeu $-14^{\circ}$ and $0^{\circ}$ as between $129^{\circ}$ and $143^{\circ}$. The correspondins deercase in the case of crystalline bismuth Letween $30^{\circ}$ and $137^{\circ} \mathrm{C}$. was 53 per cent. The experimeuts of Pliieker and Matteucci led them to conclude that the susceptibility of diamagaetics diminishes with increase of , temperature; in the case of bistauth the decrease Letriveen ordinary tempratures and its melting point is sail to be about one-sixth or more.

Canton seems to have been one of the first to study the Effect of effect of moderste variations of temperature on the per- heat on manent magnetism of iron and steel. The results of his and Hallstrüm's experiments went to show that permanent magnetization decreases when the temperature rises, and increases again when the temperature falls. In reality, however, as was shown by Kuptfer, Riess and Moser, G. Wiedemann, and others, the phenomenon is complicated; for, if we repeatedly heat a magnet and allow it to cool to First its iaitial temperature, the magnetization lost at each heat-and pering is ouly partially recovered on cooling, snd thus a manent progressive. loss goes on, until at last a coastant state is effect. reached, in which the magnetization lost on beating is completely recovered on cwoling. In this respect, as well as in the effeet on the magnetic susceptibility already discussed, there is an analogy between the effect of temperature and the effect of strain ; $i_{\text {: }}$., there is a first or permanent effect and a proper or temporary temperature effect. The permanent effect is that any alteration of tempersture, be it increase or decrease, diminishes the permanent magnetization just as a shock or a jar would do, and probably for a similar reason. The proper or Proper temporary effect consists in a decrease of magnetization tem. witb increase of tempersture, which is completely recosered on decrease of temperature and vice versa. ${ }^{8}$ If this be borne in mind, together with what has already been said above, it will nut be difficult for the reader to see that the order and amount of the temperature variations, the harduess and form of the bar, and its magnetic history will all influeace the temperature coefficient.
To take oue example, Wiedemann found that a bar magnctized at $0^{\circ} \mathrm{C}$. and then partially demagnetized by an opposite force, lost magnetism when heated; if the demagnetization was not carried too far, it did not when cooled again to $0^{\circ}$ wholly recover what it had lost. If the demagnetization was carried a certain length, it recovered all that it had lost; if farther still, more than it had lost. It was in fact found possible to demagnetize a bar, во as to render it apparcatly unmagnetic, and then to restore part of its original magnetism by morely heating and cooling it again. Similar phenomena were observed with a bar magnetized and demagnetized at $100^{\circ}$, and then alternately cooled and heated. Unverdorben, ${ }^{9}$ who arrived somewhat later st similar reaults, represents the matter by aaying that the bar in this case has two magnetizations superposed, each haviug its own temperature coefficient.
The following are a few additional references to eources of information conceroing tha present aubject: Mauritius, Pogg. Ann., 1863, and Phil. Mag., 1861 ; Jamin and Gaugain, Comptes Rendus, passim; Favé, 1b., 1876 ; Poloni, Wied. Beibl., 1878.

[^114]$\qquad$
$\qquad$ —

Development of /hect dieriarg Magnetization.-Tioasoning on purely thernodymamic principles from the results of Laraday, as to the influence of temperature on the maronetic properties of bodies, Thomson' has concluded-(1) that a piece of soft iron at a moderate or low red heat, when drawn gently amay from a magnet, experiences a cooling effect, and, when allowed to approach, a heating cffeet, and that nickel at urdinary temperatures and cobalt at ligh temperatures (between the melting point of copper and some lower tomperature) experience the same kind of cffect; (2) that cobalt at ordinary temperatures and up to the temperature of maximum permeability experiences a cooling effect when allowerd to approach a magnet, aud heating when drawn away; (3) that a crystal in a magnetic fich experiences couling when the axis of greatest paramagnetic or of least diamagnetic susecpetibility is turned from along to across the lines of force, and vice versa.

Besides these considerations, the fact that those who adopt the molecular magnet theory are ubliged to assume something of the nature of a frictional resistance to the turning of the magnetic molecules, and generally, without reference to any partienlar theory, many of the phenomena of coercive force, ${ }^{2}$ lead us to suppose that some specific development of heat may accompany marnetization and fixperi-demagnetization. The experimental verilication of this mental suspicion is, however, a matter of great difficulty, owing to dint- the enormous generation of heat arising sccondarily from cultien induced currents in the mass of the metal. The developmeut caused by magnetization and demargnctization was taken advantage of by Joule in one of his determinations of the mechanical equivalent of heat, but he makes no attempt to separate the cffect of the $t$ wo causes, indeed it rlid not concern his purpose to do $50 .{ }^{3}$ Notwithstanding that several experimenters have attacked the problem, it cannot be said that it is yet completely solved. It will therefore be best simply to call the reader's attention to some of the papers that have been published on the subject, and leave him to form lis own judgment.
See Von Preda, Pogq. Anh, iS46; Grove, Phit. Mag., 1849; Edlund, Pogg. Ann., 186t; Villari, N: Cim., 1870; Cazin, Comptes' Findus, 18it; Herwig, Wicd. Ann., iv., 18i8; Trowbridge, V'icd. Bcibl., 1870.
Thermal Miscellancous Relations of Magnetism to other Physical anrlur. Propertics. - According to Maggi ${ }^{4}$ the thermal conductivity tivity. of magnetized irou is less along the lines of force than across them. Naccari and Bellati ${ }^{5}$ were unable to verify this result; Tomilinson, ${ }^{6}$ however, found that the conductivity of iron and steel bars was diminished by longitudinal and increased by transversal magnetization.

Abraham, Edlund, Mousson, and Wartmann all mado experiments in search of a magnetic alteration of the electric conductivity of iron. Thomson seems, however, to have been the first to arrive at any definite result. ${ }^{7}$ He found the conductivity to be diminished along the lines of magnetization and increased across them. Beez ${ }^{8}$ verified the former result, but doubts the latter, which he is inclined to explain as a secondary effect caused by the compression of the iron arising from the external magnetic action on the plates used in Thumson's experiments.

Thomson also found ${ }^{9}$ that the thermoelectric quality of iron was affected by magnetization; the thermoelectric current flowed from unmagnetized to longitudinally magnetized, and from transversely magnetized to un. magnetized or longitudimally magnetized iron through the

[^115]hot junction. In the case of uickel, the current flowed from longitudinally magnetized to unmagnetized through the hot junction, i.e., nickel behaved oppusitely to iron. Thomson's results have been in part contirmed by a rccent investigation of Stroubal and Barus. ${ }^{10}$

A relation between magnetism and light was first established by Faraday's discovery of the magnetic rotation of the plane of polarization of a ray passing along fle lines of force. This subject belongs more properly to plysical opties, but there is one magnetic phenomezon apparently closely connected with it which falls to be mentioned here. This is Hall's discovery ${ }^{21}$ that, if an electric curreut fluw in a thin metallic strip in a direction $\triangle B$, the cffect of placing the strip iu a magnetic field with its plane perpendicular to the lines of force is to cause a transverse electromotive force perpendicular to $A B$, which changes in sign when the direction either of the current or of the magnetic field is changed. This transverse clectromotive force is proportional to the product of the current intensity and the strengtl of the magnetic field; cateris puribus, its direction in the case of iron is opposite to that in other metals, and its magnitude is also greatest with iron. This discovery establishes the existence of the rotatory coefficient of resistance mentioned by Maswell ${ }^{12}$ in his discussion of æolotropic conductivity; and Rowland has shown that the phenomenon is probably due to the same cause as the magnetic rotation of the plaue of polarization. ${ }^{13}$
lf, as modern pliysicists suppose, magnetism be a dynamical phenomenon, time must enter as a conditioning eiement. The question has been raised how long any magnetizing force takes to develop the maximum magnetization that it is capable of producing. There are many facts that go to prove that this time is very small, or, at all events that any force develops a very large fraction of the total naguetization due to it in a very shurt period of time. Perhaps the most wouderful evidence on this head is the fact that the telephone, which depends essentially, ou varying magnetic action, can reproduce the sounds of human speech even to the consonants. ${ }^{14}$ Experiments bearing directly onf the subject have been made by Villari. ${ }^{15}$ A flat circular disk of fint glass was placed between the poles of a Huhmkorf's apparatus for measuring the magnetic rotation of the plane of polarization. The axis of the disk was perpendicular to .the axial line, so that rotation brought the different radii successively into the line of sight. When the disk was at rest the magnetic action in one experiment caused a rotation of 19 divisions; spinning the disk at the rate of 110 , 121,143 , and 180 turns per sccond reduced the magnetic rotation of the plane of polarization by $2,5,10$, and 17 divisions respectively; the reduction was less the greater the magnetic force. From this Villari concluded that in flint glass not less than 0.001244 sccond is required to produco such a diamagnetic intensity as can be observed by the rotation of the plane of polarization, and that 0.00241 second at least is required to develop the greatest diamaguctization of which this substance is capable; lie also states that the diamagnetism lasts for less than 0.00018 second after the inducing force is withdrawn. A serics of interesting experiments on the oscillation of the plane of polarization caused by the oscillatory discharge frum a Leyden jar recently made by Bichat and Blondlot ${ }^{16}$ lod them to a different conclusion, viz., that if any lagging of the induced magnetization behind the magnetizing force

[^116]exists it is less than 0.000033 second. No explanation
has been given of the discrepancy of these results.
In the early part of this century there was an animated controversy as to whether light exerted a direct influence upon magnetization, in which Morichini, Mrs Somerville, Clristie, Riess and Moser, and many others took part. Nothing definite, however, was established. A similar fate befell the attempts to trace the influence of inagnetic force upon crystallization, and to detect a relation between magnetism amil gravity, although buth quests at one time or another engaged the skill of Faraday.

## Forys, Constriction, and Preservation of Mageets.

This subject occupied a large portion of most of the earlier treatises on magnctism. Much of the information given, however, either has now been recognized to be of questionable value or has been superseded by recent progress, and retains a merely antiquarian interest ; a few brief remarks, nainly historical, will therefore be sufficient.
The oldest form of marnet was a piece nf nagnetic iron ore or loalstone. The power nf these natural magnets varicd exceedingly from one specimen to another. An elaborate diseussion of the varions kinds of loadstone rill he found in Gilbert's Dc Magnete. ${ }^{2}$ In order to increase the carrying power, the loadstnne was usmally fitted with armatures of soft iron apon its phlar egions; figure 45, taken irom Gilbert, represents one of the oldest arrangements.
 Figure 46 is taken fronn a loasastonc in the collection of physieal apparatus belonging to the university of Edinburgh, the carrying power of which is 205 kb . A loadstone in the Teylerian Museum at Haarlem has a carrying porter of 230 Ib ; and one at Lisbon, pre-


Fig. 46.
sented by the emperor of China to King John V. of Portugal, is said So support as much as 300 th . Small loadstones are often very powerful in proportion to their weight; $c_{2} g .$, Newtnn is said to have wom in a ring one that weighert only 3 grains, and yet was able to rarry about 746 grains; and one in the physical collection at Edinburgh, formerly belonging to Sir John Leslie, wcighing itself $3 \frac{1}{2}$ graios, bad at one time a carrying power of 1560 grains.
The intraduction of sted minguets, and the perfection to which they were gradually brought, eaused the lnadstone to fall into disuse. It is said that Galilen possessed the art of making steel magnets nlout the begtining of the $1 \bar{i}$ th century. It was early discorered that the earth's force could be utilized in magnetizing steel.

[^117]Gilbert was aware that a fechle maguetizalion could be produced in this way; and Michell, in his treatise on artificinl magnets, minutely describes how weak magnets may be made by means of the earth's force, then combined into hundles or "rangazincs" and used in turn to produce stronger magnets, these used to produce still stronger, and so on.
The earliest process of all was no douht the method of rubbing or touching by another manget. This method of making masnets was studied with innch attention by the natural philnsoplers of the 18 th century, among whem we may mention Savery, linight, Duhamel, Le Maire, Canton, Mlichell, Epinus, Coulonib, and Eulcr. The method of single touch cousists simply in stroking the bar to be magnetized alternately on its two halves with the sonth and north loles of a loadstone or bar magnet, the stroke beginning always at the mild le and ending th the end. According to Lamiont, the best plan is to lay the magret flat, overlapping one lale of the bar to be magnctized, and then draw it ofl; when the magnet is held perpendicular to the bar during the process, the result is apt to give an irregular magnetization : c.g., we may cven get a magnet with its two cnds north poles and with a sonth pole in the midulle, or one with four polcs, a north an! south pole at the two ends and a south and north pole in the mi:14le, ${ }^{3}$
The first improvement on single touch was double touch with separate magnets. This consists in using two magneta sinuultaneously on the two halres of the bar endergoing magnctization. The north pole of one ind the south pole of the other are placed cither close together, or at a small distance apart near the middle of the har, and then each is drawn towards the end of the holf on rihich it lies; according to Lamont, here, as in single tonch, the magnets should be laid tlat on the bar. ${ }^{4}$ Nichell introluced the further improvement of using two bar magnets (or bandles of such) fastened together and kept jarallel at a amall distance apart by means of small fieces of wood, the north pole of one being conterminous with the south pole of the other. This pair is placed vertieal with one end on the middle of the bar, drawn towards one end and slipped off, then replaced or the middle and dramn to the other end. and yo on alternately until the moment of the bar ceases to increase any farther. Instead of the pair of bar magnets a horseshoe magnet might of course be used.

Le Maire ${ }^{5}$ introduced the easential improrement of placing the bar to be magnetized upnn a larger har, and then magnetizing the two together. The adrantage of this is lest seen in the forms of the same device adopted by Canton ${ }^{6}$ and Dubamel, ${ }^{5}$ who magnetized steel bars in prairs, connecting them up parallel to each other by means of two pieces of soft iron, and then magnetizing them in opnosite directions. It is easy to sce that the magnetiza. tion of the one reacts on the magnetization of the other and strengthens it. Michell ${ }^{7}$ obtained a similar advantage by magnetizing a number of bars placed end to end in a line; he found, as was to be expected, that the end bars were weaker, but this defect he remedied by repeatiog the process with the bars arranged in a different order Coulomb's method was to place the ends of the bar on the north and south poles of two bar inagnets arranged in line at the proper distance apart. This process of connceting up the bars to be magnetized in a elosed magnetic circuit is sometimes called circular touch; it can be appliel to horse-shoe magnets by piacing a pair of thera with their ends togetlaer, and then passing round and round upon thens a horse-shoe magnet or a pair of bar magnets arrangend as already described. ${ }^{8}$

Inmediately after Ersted's discovery of the magnetie action of Electrothe gadranic enrrent. Arago, ${ }^{9}$ Boisgiraud, ${ }^{10}$ and Dary almost sinul. magneie tanenusly applied this property to the magoctization of irnn and steel." Powerful electromagnets, with cores of soft iron, were first constructed a fer years later hy Sturgeon and Brewster. Folil, Moll, and l'faft in Germany, and Ilenry and Ten Eyek in America, may he mentionel as the most guccessful of the early ennstructors. Ono of the electromagnets of Heney and Ten Eyck reacbed a carrying
${ }^{3}$ Poles sithated qunormally in this way are called "consecutive roints."

4 This methnd appears to have been invented by Knight (about 1740), and used in producing the powerful magncts for which he was famous. The aecret of his process was never dirulged by himself, but was published by Wilsun after his death. See art. Mtagaetism, 8 th edition of Encyclonsedia Pritannica.
${ }^{5}$ Mein. d. Cicad d. Paris, 1745 and 1750.

- Phil. Trans., 175].

T Treatise of Astificial Magnets, 1756.
a For fuller information on the present subject, see Gebler's Physiíalisches W"ortcrbuch, art. "Magnetismus," xr.
9 Ann. d. Chim el d. Phys., 1820.
${ }_{10}$ Phit. Trans., 1820-21.
${ }^{11}$ The anomalous magnetization of needles by the discharge from Leyden jars had beeo observed earlier, but not properly anderstood. See art. Eeectnicitt, vol. viii. p. 82 .
power of 2061 th ; but magnets specially constructed for carrying power have surnassed this limit. As a specimen of scientific toys of this description may be mentioned the electromagnet of Roberts (fig. 47), which consists of a square block of iron deeply slotted with four rarallel grooves into which three layers of coprer wire cable are wound in zigzag tashion so that the carrent converts the flanges alternately into north and south polas; the armature is a square block planed to fit the face of the magnet. The carrying power of a machine of this kind was 2949 io, i.e., more than $1+$ tons!
The forms of electromagnet used in the arto, c.g., in electric bells, fire alarms, telegraphs, telephones, electric light regulators, dynamo machincs, dc., sre simply innumerable. It will be sufficient to allude to those constructed for the purpose of producing an intenso magnetic field, uniform or you-uniform, over a larger or smaller area; these find their prsctical application in the construction of dynamo-electic machines, hat they are mainly interesting to purely scientific men on account of then use in the investigation of the propertics cf weakly magnetic bodies. Tigure 10 shows the usual arrangement adopted for large laboratory magnets. In considering the greatest availablestrength of such magnets, it is necessary to bear in mind the fact


Fig. 47. that magnetic saturation of iron is practically reached with mag. netic forces much under the greatest that we can command. Tbe atrength of ficld in a narrow crevasse perpendicular to the lines of magnetization in saturated iron is less than 18,000 C.G.S. units; ${ }^{1}$ and this is practically tho ntmost at present attainable, for any addition to the strength of the field, arising from drect action of tho magnetizing helix, would not under ordinary circumstances afect the hundreds in this nomier. Further increase of magnetizing current after we have reached within a small percentage of the limit of saturatior is a waste of power.

Elias ${ }^{2}$ of Haarlem seems to have been the first who applied the elcetric current directly with success in the manafacture of powerful permanent nagnets. He used a short lat magnetizing coil which was pushed backwards and forwards along the bar, the ends of which were caused to abut against two pieces of iron, which becoming inductively magnetized reacted on the har, and also served to keep the magnetization at the eads more uniform. The famous Logeman mnagnoty were constructed by this process.

By far the most convenient way of magnetizing steel is to use an electromagnet. ${ }^{3}$ The bar to be magnetized nay be laid Hat on the pole of the magnet before it is excited, and after excitation drawn alowly off. By repeating this process seversl times, with the north pole of tho clectromagnet for one half and the south pole for the other half, saturation can be very quickly obtained. Perhaps a better plan is to lay the bar with its ends on the two poles, and then excite the electromagnet. For reasons already aufficiently explained, it is advisable to hammer the bar with a mallet while the inagnctizing force is in action, and to turn the current off and on several times in succession. ${ }^{4}$

On account of the difficulty of tempering steel to any great depth from the surface, and for apecific magnetic reasons as well, it has been customary in constructing powerful permanent magnets to build them up of thin laminx of ateel, each of which is separately magnetized. Figure 48 represcats an arrangement of this nature


Fig. 48.
adunteu oy Coulounh, and figure 49 a horse-shoe magnet constructed In the same way. It will be observed that the ends of the lamina ere not exactly conterminous, the middle ones projecting more than tho othera; this arrangement was adopted with the view of getting rid to sobie extent of the weskening effect which tho induction of one lamina has unon theother. That such an effect exists and is very great was conclusivcly shown hy Coulomb; how far the modification

[^118]in question cures it is another matter; much no doudt depends on the purpose for which the magnet is required; but it is scarcely worth while to discuss the subject hero. We may call attention ta a farther point in the construction of Coulormb's magnet, viz., that the ends of the laminæ are embedded in two soft iron terzaimals N and $S$; there can be no doubt that, for sone parposes at least, this is an advantagenas arrangement. Among the famous modern makers of permanent magnets Häcker of Nuremberg, Logeman and Wettezen of Haarlem, ${ }^{5}$ Willward, aud Jamin deserve to be specially meutioned. ${ }^{\text {s }}$
In the preservation of permanent magnets it ia assential to avoid extreme changes of temperature and shocks. When the magnet is laid aside it should bo made part of a closed magnetic circuit; in the casc of a horse-ahos magnet this is attained ly simply laying a piece of soft iron, called the keeper, across the poles; bar marnets should be kept in parallel pairs, north pole to south pole and south pole to north pole, with two pieces of soft iron
 betwreen the poles. Wheri this is done the induced magnetism' reacts on the magnets and diminishes tho denagnetizing force; the action of shocks then ceases to destroy the permazent magneto, ism, and may even increase it.

## Ulmimate Theories of Macnetic Phenomens.

If we pass over che stream theory, which. althonghy partially developed by Eulcr, has never taken root in modern physical science, the first great theory that we find proposed with a view to the explanation of magnetism is the two-fluid theory of Coulomb and Poisson. This is not an ultimate theory in the modern sense, inasmuch as it is not dynamical: but it was, doubtless, looked upon as ultimate in the days when the imponderable fuids had a recognized role iu the physical sciences. In the two-fluiditwn theory the imaginary positive and negative attractivefluid agents (called magnetism in the empirical theory developed thewrs "t above) are regarded as imponderable fluids; but tlee essential point in the definite form of the theory due to Poisson is that he regards a body susceptible to magnetic induction as made up of an infinite number of particles of infinite permeability immersed in an impermeable medium. After pointing out that, if the particles were of elongated form, and arranged so that the axes of elongation had one preponderatiog direction, or if they were arranged so that the linear density in different directions varied, the result would be æolotrapy, he assumes that they are spheres uniformily distributed in the impermeable medium so that the volume of the magnetic particles in unit volume of the substance is the fraction $K$. The problem of magnetic induction under the influence of a uniform forco is then the same as t!: R problem of electric induction for an infioite number of perfectly conductiog spheres uniformly distributed in a non-conducting medium. He finds for the permeability $\pi=(1+2 k) /(1-k)$.

Maxwell has pointed out one fundamental objection to this theory, viz., that the value of $k$ calculated from the formula just given by mesns of observed valucs of $z$ in the case of iron is greater than it would bo evea if the magnetic spheres were packed in the closest possible manner. Another objection is that tho theory affords no explanation of the variability of $k$ with differeut forces. We might of course modify the hypothesis, as was done by Pliicker, by supposing that a resistance depending on tha magnitudo of the force opposes the separation of the fluids in the magnetic molecules, and that in certrin cases a frictional resistance tends to prevent their reunion. Wo might in this way explain magnetic asturation and permanent magnetisos; hut the theory thus bordened has no more scientific ralue than the purely empiric theory, and, moreover, affotds no cluc to the pheuomena of dianagnetism.

[^119]In a very important class of modern theories, the fund mental assumption is that the molecules, or at all events a fertain proportion of tho molecules, of magnetic substances are snall permanent magnets. In a body which is to outward appearance unmagnctized, the nxes of those molecular magnels are turned indiffereutly in all directions; in a body which is magnelized in a certain direction a larger proportion than asual of the molecular maguets liave their axes more or less in that direction. Maguetic induction is supposed to consist, not in any alteration of the molccular magnets themselves, but in the orientation of their axes under the action of the inducing force. The reader may figure to himself the nature of the action by imagining a line of small maguetic ncedles will their axcs all horizontal, but all peinting in different directions; the whole system thus arranged will lave no determinate nagnetic moment, and will represent an unmagnetized body. Next, suppose a magnetizing force to act parallel to the line joining the centres of the necdles, they will then arrange themselses in that line, and the magnetic moment of the system will be the sum of the moment of the different parts; we have thus au image of a body magnetized by induction.

Waber's forw

The netion of molecular magnets seems to have been suggested by Kirwan; but it was not until a definite form was given to it by Weber that it acquired any inportance. The mathematical problem presented is one of great complexity. In the position of equilibrium any molecule is acted on by the magnetizing force, by a magnetic force due to the combined action of the other molecules, and possibly by a force arising from the displacement as well. Weber assumes that the couple tending to restore the molecule to its original position is that due to $\&$ coustant magnetic force D, parallel to the original direction of its axis. If $m$ be the magnetic moment of a molecule, and there be $n$ molecules in a unit of volume, then tha magnctic intensity of due to the magnetizing force ${ }^{\prime}$ is
 $\hat{c}>\mathrm{D}$. In other words, the curvo $(3, y)$ is straight till it reaches tho point ( $\frac{8}{3} \mathrm{mn}$, D), it then becomes concave towards the axis of $\%$, and riscs towards an asymptote parallel to the axis of $\%$; the maximum value of $y$ is mn. The theory does, therefore, give a general explanation of the phenomena of magnetic induction. The reader will be able by comparison with the experimental data given above to see how far it falls short of a complete explanation.

If the magnetic substance be deroid of coercive force, we must suppose that the molecules return to their original positions when the magnetizing force is removed. In substances capable of being permanently magnetized, we must imagine something of the nature of a frictional resistance to the motion of the magnetic moleculcs ; so that, when they are deflected through more than a certain angle, they retain a permanent set after removal of the magnetizing force. Maxwell has worked out the particular hypothesis that each molecule which is deflected through an angle less than $\beta_{0}$ rcturns when the magnetizing force ceases to act, but that a molecule deflected through an angle $\beta>\beta_{0}$ retains the deflexion $\beta-\beta_{0}$. Denoting $1) \sin \beta_{0}$ by $L$, he finds as the result of the above supposition that the curve of temporary magnetization is a straight line from $y_{j}=0$ to $\mathrm{y}=\mathrm{L}$; after that it is concave to the axis of ${ }^{2}$, and rises to an asymptote, the maximum valuc of 3 , being $m n$ as bcfore. The curve of resilual magnetization begins when ${ }_{3}=\mathrm{L}$; it is concave to the axis of ${ }_{c} \mathbf{y}$, and rises to an asymptote cerresponding to the maximun $e^{\prime}-\frac{1}{2} n\left\{1+\sqrt{1-L^{2} / D^{2}}\right\}^{2}$. It results from the hypothesis that, when a bar is permanently magnetized by a positive force ${ }^{3}{ }_{3}$, its magnetism cannot be increased by a positive force < NJ, but may be diminished by a negative force $<y_{1} ;$ and, when the bar is exactly demagnetized by a negative force $x_{2}$, it cannet be magnetized in the opposite direction without tha application of a force $>\mathrm{e}_{3}$; but a positive force $<\mathrm{T}_{2}$ is sufficient to begin to remagnetize the bar in the original direction.

Behind the molecular magnet theory there arises the question, What is the nature of the magnetic molecule? One answer to this question is given by the hypothesis of Ampere, that around each such molecule a current circulates in planes perpendicular to the axis of the molecule. That such an arrangemet will be equivalent to an infinitely small magnet in the axis of the molecule, so far as external action is concerued, we knew frem the lawa of electrodynamics. It remains only to inquire what the nature and properties of these molecular curreuts must be, to trace the full logical
cousequences of the assumption, and to compare them with experience. This was first done by Weber, and afterwards more completely by C̣lerk Maxwell.

It is obvious in the first place that the circuits in. which the molecular currents flow must be perfectly conducting ; for otherwise the electrokinetic energy of the molecular currents weuld be continually transformed into heat, and a constant supply of energy frem without would be necessary to suppert the magnetism of a permanent magnet, which is contrary to experience. Let A be the effective area of a molecular circuit, $L$ its coefficient of selfinduction, $\theta$ the inclination of its axis to the inducing force $\%$ ), $\gamma_{0}$ the primitive current, and $\gamma$ the current after the inducing force is in action. Then $\gamma=\gamma_{0}-\hat{y} .1 \cos \theta / L$; and the component of the moment parallel to (\%) will be $A\left(\gamma_{0}-2 \cos \theta / \mathrm{L}\right) \cos \theta$. There are three different cases to corsider.

1. Let either $\gamma_{0}$ he so great, or ${ }^{2} A / L$ be so small, that tho effect due to the electromagnetic induction nay be neglected in comparison with the effect due to the deflexion of the molecule; putting $m=\Delta \gamma_{0}$, we have thus mercly the theory of molecular nagnets alrcady explainel.
2. Let the ferce resisting the turning of the melecules be in-Welister's finitely great, we then find for the magnelic susceptibility the valuc theory of $\kappa=-\frac{1}{2} u \Lambda^{2} / L$ This is the theory originally proposel by Weber to diamagexplaiu diamagnetism.
3. If the effects due to deflexion of the molecules and to clectromagnetic induction in the molecular circuits be both censidered, we have a theory intermediate to (1) and (2), inclining to the one or the other according to the assumptions made as to the relativa values of $\gamma_{0}, A$, and $L$.
The reader will find a full discussien of the different cases in Maxwell's Elcctricity and Magnetism, vol. ii. chap. xxii.

The most important attempt that has yet been mado to Maxrealizo a mechanism affording a dynamical explanation of maguelic phenomena is the theory of molecular vortices, published by Clerk Maxwell in the Philosophical Magazine for 1861 and 1862 (4th ser., vols, 21 and 23). The seneral results, stripped of all particular assumptions, will be found embodied in his great treatise on Electricity and Magnetism; but the following summary, taken from the original paper, may be of some interest.

1. Magnetoelcctric phenomena are duc to the existence of matter under certain conditions of motion or of pressure in every part of the magnetic field. The substance nrodncing these efiects may lo a certain part of ordinary matter, or it may be an æether associnted with matter.
2. The condition of any part of the ficld through which lines of magnetic force pass is ouc of unequal pressure in different dircetions, the pressure being least along the lines of force, so that they may be considered as lines of tension.
3. This inequality of pressure is due to vertices coaxial with the lines of force. The density of the revolving matter is pronortional to the magnetic permeability of the medium. The direction of rotation is related to the direction of the line of Corce; and tho velocity at the circumference of the vortex is propertional so tho resultant magnetic force.
4. The vertices are separated from each olher by a single layer of round particles; so that a system of cells is formed, the partitions being layers of these particles, and the substance of each cell being capable of rotating as a vortex.
5. The particles forming the layer are in rolling contact with both the vortices which they separate, but do not rub against each other. They are perfectly free to roll between the vortices and so to change their place, provided they keep within one complete molcule of the substance; but in passing from one molecule to another they experience resistance and generate irregular motions which constitute heat. These particles play the part of electricity. Their motion of translation constitutes an electric current; their rotation serves to transmit the metion of the vortices from one part of tha field to another ; the tangential pressures thus called into rlay constitute electromotive force; and the elastic jielding of the, connecting particles constitutes electric displacement.

Maxwell deduces rithout difficulty all the principal eleetrica! and magnetic phenomena from this theory; and he points out that its general conclusions have a value which does not depend upon the somewhat intricate kinematical arrangements supposed to exist in the magnetic medium. The theory certainly affurds us a most instructive dynamizal piclure of the phenomena of elcctricity and magnetism; and it remains, so far as we knuw, the only snecessful nitempt of its kind.
(c. cr.)

MAGNETISM, Animal. The terms animal magnetism, electro-biology, mesmerism, clairvoyance, odylic or odic force, and hypnotiom have been used to designate peculiar nervous conditions in which the body and mind of an individual were supposed to be influenced by a mysterious force emanating from another person. With the exception of mesnerisn, a name given to the phenomena in honour of one of their earliest investigators, F. A. Mesmer, each of these terms implies a theory. Thus the phenomend of animal magnetisn were supposed to be duc to some kind of magnetic force or influence peculiar to liviug beings and analogons to the action of a magnet upon steel or certain metals; electro-biology, a more modern term, introduced in I 850 by two American lecturers, referred the phenomena to the action of electrical currents generated in the living body, and capable of influencing electrically the bodies of others; clairvoyance implied a power of mental vision or of mental hearing, or of a mental production of other sensations, by which the individual became aware of events happening in another part of the world from where he was, or could tell of the existence of objects which could not affect at the time auy of his bodily senses; odylic force was a term given to a force of a mysterious character by which all the phenomena of animal magnetism might be accounted fos, and hypnotism, from $v \pi v o s$, sleep, was a name applied to a condition artificially produced in which the person was apparently asleep and yet acted in obedience to the will of the operator as regards both motion and sensation.

History. - It was natural that the apparent power of infuencing the bodies and minds of others shonld attract much attention and be eagerly sought after for purposes of gain, or from a love of the marvellous, or for the cure of diseases. Hence we find that, whilst not a few have investigated these phenomena in a scientific spirit, more have done so as quacks and charlatans who have thrown discredit on a department of the physiology of man of the deepest interest. Recently, however, as will be shown iu this article, physiologists and plysicians have set abont investigating the subject in such a manner as to bring it into the domain of exact science, and to dispel the idea that the phenomena are due either to any occult force or to sopernatural agency. It would appear that in all ages discases were alleged to be affected by the touch of the hand of certain persons, who were supposed to conimunicate a healing virtue to the sufferer. It is also known that among the Chaldrans, the Babylonians, the Pcrsians, the Hindus, the Egyptians, the Grecks, aud the Romans many of the priests effected cures, or threw people into deep sleeps in the shades of the temples, during which the sleeper sometimes had prophetic dreams, and that they otherwise produced effects like those now referred to animal magnetism. Such influences were held to bo supernatural, and no doubt they gave power to the priesthood. In the middle of the 17 th century there appeared in England several persons who said they had the power nf curing discases by stroking with the hand. Notable amongst these was Valentine Greatrakes, of Affane, in the county of Waterford, Ireland, who was born in Februsey 1628, and who attracted great attention in England by his supposed power of curing the king's evil, or scrofula. Many of the most distinguisherl scientific and theological men of the day, auch as Robert Boyle and R. Cudworth, witnessed and attested the cures supposed to be effected by Creatrakes, and thousands of sufferers crowdedi to him from all parts of the kingdom (ses Colquhoun's IIistory of Magic, dec., vol. ii. 1. I46).

Phenomen: of n marvellous kind, more especially such as imply a mysterious or supernatural power exercised by one person over another, not only attract attention, but take so firm a hold on the imagination that belief in
them breaks out now and again with all the intensity of an epidemic. Thus since the time of Greatrakes, at short intervals, meu bave arisen who have led the public captive at their will. A bout the middle of the 18 th century John Joseph Gassuer, a Roman Catholic priest in Swabia, took up the notion that the majority of diseases arose from demoniacal possession, and could only be cured by exorcism. His method was undoubtedly similar to that followed by Mesmer and others, and he had an extraordinary infiuence over the nervous systems of his patients. Gassner, however, believed his power to be altogether supernatural and connected with religion.

Friedrich (or Franz) Anton Mesmer was born at Wcil, near the point at which the Rhine leaves the Lake of Constance, on May 23, 1733. He studied medicine at Vienna under the eminent masters of that day, Van Swieten and De Haen, took a degree, and commenced practice. Iuterested in astrology, he imagined that the stars exerted an influence on beings living on the earth. He identified the suppused force first with electricity, and then wilh magnetism; and it was but a short step to suppose that stroking diseased bodies with magnets might effect a cure. He published his first work (De Planetarum Influxu) in 1766. Ten years later, on meeticg with Gassner in Switzerland, he observed that the priest effected cures without the use of magnets, by manipulation alone. - This led Mesmer to discard the magnets, and to suppose that some kind of oceult force resided in himself by which he could influence others. He held that this force permented the universe, and more especially affected the nervous systems of men. He removed to Paris in 1778, and in a short time the French capital was thrown iuto a state of great excitement by the marvellous effects of mesmerism. Mesmer soon made many converts; controversies arose; lie excited the indignation of the medical faculty of Paris, who stigmatized him as a charlatan ; still the people crowded to him. He refused an offer of 20,000 francs from the Government for the disclosure of his secret, but it is asserted that he really told all he knew privately to any one for 100 lonis. He received private rewards of large sums of money. Appreciating the effect of mysterions surroundings on the imaginstions of his patients, he had his consulting apartments dimly lighted and hung with mirrors; strains of soft music oecasionally broke the profound silence; odours were wafted through the room; and the patieuts sat round a kiud of vat in whicl varions chemical ingredients were coneneted or simmered over a fire. Holding each others' hands, or ${ }^{-}$ joined by cords, the patients sat in expectancy, and then Mesmer, clothed in the dress of a magician, glided amongst them, affecting this one by a touch, another by a look, and making "passes" with his hand towards a third. The effects were various, but all were held to be salutary. Nervous ladies became hysterical or faintcd; some men became convulsed, or were seized with palpitations of the heart or other bodily disturbances. The Government appointed a commission of physicians and members of the Academy of Sciences to investigate these phenomena; Franklin and Baillie werd members of this commission, and drew up ad claborate report admitting many of the facts, hut contesting Mesmer's theory that there was an agent called animal magnetism, and attributing the effects to physiological causes. Mesmer himself was undoubtedly a mystic; and, although the cxcitement of the time led him to iudulge in mummery and sensational effects, he was honest in the belief that the phenomens produced were real, and called for further iuvestigation. For a time, howerer, animal magnctism fell into disrepute; it became a system of downright jugglery, and Mesmer himself was denounced as a shallow cappiric and impostor. He with. drew from Paris, and died at Mecrsburg in Switzerland
on 5th March 1815. He left many disciples, the most distiuguished of whom was the Marquis de Puysegur. This nobleman revolutionized the art of mesmerism by showiug that many of the phenomena might be produced by gentle manipulation causing sleep, and withont the mysterious surroundings and violeat means resorted to by Mesmer. The geatlor methed was followed successiully hy Deleuz?, Bertrand, Georget, Rostan, and Foissac in France, and by Dr Jeho Elliotson in England up to about 1830.

In 1845 considerable attention was drawn to the announcement by Baron von Reichenbach of a so-called now "imponderable" or "influenco" developed by certain rrystals, marynets, the human body, associated with heat, chemical action, or electricity, and esisting throughout the universe, to which he gave the name of odyl. Persons sensitive to odyl saw luminous phenomeua near the poles of maguets, or eveu around the hands or heads of certain persoas in whose bodies the force was supposed to be concentrated. Ia Britain an impetus was given to this view of the subject by the translation in 1850 of Reiçhenbach's Researches on Magnetism, dec., in relation to Vital Force, by Dr Gregory, professor of chemistry in the university of Ediaburgh. 'These Researches show many of the phenomena to be of the same nature as those described previously by Mesmer, and even long before Mesmer's time by Swedenborg. The idea that some such force exists has been a favourito speculation of scientific men laving a mental bias to mysticism, and it makes its appearance not unfrequently.

The next great atep in the investigation of these phenomena was made by James Braid, a surgeon in Manchester, who in 1841 began the study of the pretensions of animal magnetism or mesmerism, in his own words, as a "complete sceptic" regarding all the phenomena. This led him to the discovery that he could artificially produce "a peculiar condition of the nervois syatem, induced by a fised and abstracted attention of the mental and visual eye on one object, not of an exciting nature." To this condition he gave the name of neurohypnotism (from veipov, verve, ĩivos, sleep); for the sake of brovity, neuro was suppressed, and the term lypnotism came into general use. Braid read a paper at a meeting of the British Associastion in Manchester on 29th Jme 1842, entitled Practical Essay on the Curative Agency of NeuroHypmotism; and his work Neurypnology, or the Rationale of Nervous Sleep considered in relation with Animal Magnetism, illustrated by numerous cases of its successful application in the relief and cure of disease, was published in 1843. It is necessary to point this out, as certaio recent Continental writers have ubtzined naany of Braid's results by following his methods, and have not adequately recogaized the ralue of the work dune by him forty years ago. Braid was uudoubtedly the first to investigate the subject in a srientific way, and to attempt to give a physiological explanation. Iu this he was much aided by the physiologist Herbert Mayo, and also by Dr William B. Carpenter,-the latter being the first to recognize the value of Braid's researches as bearing on the theory of the refles action of the ganglia at the base of the brain and of the cerebrum itself, with which Carpenter's own name is associated.

Recently the subject bis been reinvestigated by Professor Weinhold of Chemnitz and more particularly by Dr. Rudolf Heidenlain, professor of physiology in the university of Breslau, who las published a small but interesting work on animal magnetism. In this work Heidenhain attempts to explain most of the plenomena by the physiological doctrine of inhibitory nervous action, as will be shown hereafter.

Phenomena and Physiological Explanation.-The usual
method of inducing the mesmeric or hypuntic state is to causo the person operated on to stare fisedly at a faceted or glitteriag picce of glass hold at from 8 to 15 inches from the cyes, in such a position above the forehead as will atrain the cyes and eyelids. The operator may stand behind the patient, and he will observe that the pupilsare at first contracted from the effort of accommodation of each eye for near vision on the object; in a short time the pupils begin to relax, and then the operator makes a few "passes" over the face witheut touching it. The eyelids then close; or the operator may gently close them with the tips of the fingers, at the same time very gently stroking the chiceks. Often a vibratory motion of the eyelids may be observed when they are closed, or there may bo slight spasm of the cyclids. The eyes may afterwards become widely opened. The patient is now in a slecp-like condition, and the limbs often remain in almost any position in which the operator may place them, as in a cataleptic coadition. At the same time the patient may now be caused to make muvements in obedieace to the commands of the operator, and to act accordiug to ideas suggested to him. Thus, ho may eat a raw onion with gusto, apparently under the impression that it is an apple; he ruay make wry faces on drinking a glazs of water when told that what he is taking is castor oil; he may ride on a chair or atoul as in a herse race; he may fight with imagiaary enemies, or show tokens of affection to imaginary friends; in short, all kinds of actions, even of a ridiculous and a degrading nature, may be done by the patient at the command of the operator. Another class of phenomena consists in tho production of stiffness or rigidity of certain muscles or groups of muscles, or even of the whole body. For example, on atrokiog the fore aras it may become rigid in the prone or supine condition; the keee may be strongly bent, with the muscles in a state of spasm ; the muscles of the trunk may become so rigid as to allow the body to rest like a $\log$, head and heels on two clairs, so stiff and rigid as to bear the weight of the operator sitting upon it; or various cataleptic conditions may be induced and as readily removed by a few passes of the hand. Many disorders of sensation have been observed, such as defective colour perception, the hearing of special sonnda which have no objective existence, or deafness to certain tones, or perverted sensations, such as tingling, prickling, rabbing, \&c., referred to the skig. The patient may remain iu this condition for an hour or more, and may then be roused by holding hin for a few minutes and blowing gently into the eyes. Usually the patient has a vacoue recollection, like that of a disturbed dream, but zometimes there is an acute remembrance of all that has happened, and even a feeling of pain at having been compelled to do ridiculous actions. Certain persons are more readily hypnotized than others, and it has been obscrved that, once the coudition has bcen successfully induced, it can be more easily induced a secoad time, a third time more easily than a second, and so on until the patient may be so pliant to the will of the operater that a fixed lools, or a wave of the hand, may throw him at once into the condition. Such are the gencral facts in artificially induced bypnotism, and they belong to the same class as those referred to animal. magnetism, electro-biological effectz, odylic influcnces, \&c., according to the whim or theory of the operator.
It is not surprising that such phenomena bave been the cause of much wonder and the basis of many superstitions. Some have supposed that they were supernatural, others that they indicated the existence of a specific force exerted by the experimenter upon the passive subject. Many operators have no doubt believed they possessed such a force; such a belief would not affect the success of their cxperimeuts except to make thens more likely to bo
suceessful, es the operator wonld readily comply with all the conditions; but most of these phenomena can be oxplained physiologically, and those which camot be so accounted for will remain hidden until tve get further light on the physiology of the nervons system.

The symptoms of the hypnotic state, as showa by Heidenhain, may be grouped under four heads:-(1) those referable to conditions of the seusorium or portion of the brain which reeeives nervous impulses, resulting in movements of a reflex and imitative character ; (2) insensibility to pain, and verious forms of perverted sensation; (3) iocreased irritability of the portion of the nervons system devoted to reflex actions; and (4) states of the nervons centres controlling the movements of the eye, the accommodation of the eye to objecta at various distances, and the movements of respiratien, de.

1. The State of the Sensorium.-By the sensorium is meant that portion of the nervous system which receives ioupulses from the nerves coming from the organs of sense, such as those from the eye, ear, nose, tongue, and skin. Each of these nerves brings its message to a portion of the central nervous aystem in intimate connexion with the rest of the nervous system. This message may possibly arouse nerrous aetions associated with consciousness, or it may not; or the nervous actions of consciousuess may be so transient as to leave a faint impress on the memory, so that it can be revived only if no great interval has elapsed since the impression was made on the sense organ. If, however, the impression be vivid, then it may be revived long afterwards. This impresaion may be consciously pereeived, and then any apparent effect may end ; but it may set up a set of actions, resulting in motion, which are apparently of a reflex character. Thus, suppose a person in the dark; light is suddenly brought before the eye; thia affects the retina, and through the changes in it the optic nerve and central organ ; there may be consciousness or there may not; if the person be wide awake he will see the light; if he be asleep he will not see it, at all events he will give no indication of seeing it ; on awaking, he may have a recollection of a drearn in which light has a place, or his memory may be blank; but nevertheless the light will cause the pupil of the eye to contract by reflex action without his consciousness; and perhaps, also, without consciousness, the sleeping person may make an effort to avoid the light, as has been noticed in the case of aomnambulists.
Now, when a patient has ocen thrown into a weak hypootic state, there may be a vivid recollection on awaking of all that happened during the apparent aleep. This implies, of course, that conscious sensory perceptions took place during the condition. Memory depends on the direction of the attention to sensations. If the effort of attention be strong, the recollestion will probably be vivid, and the converse is true. But this does not preclude the supposition that sensory perceptions may come and go, like the shadows of clouds on a landscape, without any attempts at fixing them, and conaequently with no rocollection following their occurrence. The sensory perceptions may have existed for so short a time as to leave no impress behind. This may explain how it is that in the deeper forms of hypnotism there is either no recollection of what oceurred or the recollection can only be aroused by hints and leading questions. Attention is neeessary, therefore, to form a censcious idea arising out of a sensation.

It is genorally admitted by phyaiologists that the cerebral hemispheres are the aeat of the higher mental operations, such as attention, \&c., although the interdependence of these hemispheres with the lower sensory ganglia, which receive all sensory impressions in the first instance, and with motur ganglia, which are, in like manner, tbe
starting.pouts of motor impulses, is not understood. The one portion of the nervous system may work without the other. Thus, during free cerebral activity we pay little attention to what we see or hear, and consequeatly we remember nothing. A man in a reverie may have many impressions of sight or of hearing of which he has been really uncenscions. On the other hand, the cerebaal apparatus may be so attuned with the recipient porticu that if the latter receives a message the former synupathetically responds. For example, a mother sound asleep, is disturbed by the slightest cry of her child, although loud aounds of other kinds may not awake lier.

It would appear then that impressions on the senses and the consciousness of impressions are two separate states which may oceur in a manner independently; that is to say, there may be purely sensory operations, in which consciousness is not involved, or there may be the conscious repetition of old impressions, or what is called memory. Now it is a law of nervous action that processes which at first are always of a conscious kind may by repetition become so habitual as to be performed without consciousaess. Thus a child learns to perform a piece of music on the fianoforte by conscious efferts, often of a painful kind ; each note bas to be recognized, and the appropriate muscular movements required for its production on the instrument execnted with precision and delicacy; but by and by the music may be performed aecurately even while the attention is directed to something else. In like manner, all movements which are the results of sensory impressions may become uncouscions movements; the sensory impressions are at first paid attention to ; but as they become habitual the mind becomes less and less engaged in the process, until the movements resulting from them are practically unconscious. A familiar illustration is that of a man in deep reverie walking along a street.. Immersed in thought, he pays little or no attention to passers by ; as liis eyes are open, their images, or those of adjacent objects, must affect his visual apparatus, but they arouse 110 conscious impression, and still those impressions, evanescent as they are; are sufficient to excite the appropriate movements of locomotion. These movements are in all respects like voluntary movements, but they are not really voluntary, showing that, by the machinery of the nervous system, movements like voluntary movementa may be executed without volition. It is important to observe, however, that these movements are the result of sensory inpressions. 1 man in the decpest reverie, with his eyes blindfolded, could not execute the requisite movements; and when we see tho blind walking in the streets, they afford no contradiction to this view, as their minds are busily engaged in noticing another set of sensory impressions derived from the sense of teuch, muscular mavement, and hearing, a set of impressions of the greatest importance to them, although of little iniportance comparatively to ordinary veople, who are guided chielly by visual impressions.

A persoa in a state of hypnotisn may be regarded as in a condition in which the part of the ncroous apparatus associated with conscious pereeption is thrown out of gear, without preventing the kind of movements which would result were it really in action. Impressions are made on the sensory organs; the seasory nerves convey the impressinn to a part of the brain; in the deepest condition of hypnotism these impressions nay not arouse any consciousness, but the result nay be'the kind of movement which would naturally follow supposing the person had heen censcious. The movements made by the hypaotic are chiefly those of an initative kind. It has often been noticed that the mere suggestion of the movement may not be enough to excite it ; to secure success,
the movenent must be made before the eyes of tha persou. For example, it is a commou part of the exhibition of such persons for the operator to clench his fist; the patient at once clenches his; the operator blows his nose ; the patient rloes likewise; but if the operator performs these actions behind the back of his patient the chauces are that the patient will not repeat tho moyements.

The condition seems to be one in which the seusory impression leads to no conscious perception and to no voluntary movement, but is quite sufficient to arouse those nerpous and muscular mechanisms which lead to unconseious imitation. The patient is in a sense an automaton played upon by the operator through the medium of the patient's seusory organs. It is important to observe that in deep hypnotism the patient has no idea corresponding to the movements he makes in obedience to tho example of the operator. For example, suppose ho is swallowing a glass of water and the operator tells him it is castor oil, at the same time making the requisite grimaces, tho patient will imitate these grimaces without having any idea either of water or of castor oil. The grimaces are purely imitative, without any connexion with the idea which would naturally excite them. This is the case only with those deeply liypnotized. In some cases, however, the hypnotism is so deep as to resemble coma, and in these there is no trace of any sensory impressions or of movemonts. In cases where the hypuotism is slight, there may be a curious mistare of effects. Here the patient may be partially conscious of the requests made to him, and of the imitative morements executed before his cyes; to some extent he may resist the commands of the operator, he may feel he is being fooled, and yet he may perform many ridiculous actions; and when he awakes he may have a wivid recollection of the erents in which he participated. A liypnotized person, in fact, is in a state similar to that of the somnambulist, who acts the morements of a clisturbed dream. .There are many degrees of the sleeping state, from the profound condition resembling coma to that of the light sleeper who starts with every sound. In some sleeps there are dreams in which the sleeper is so occupied with the phantoms of thought as to pay no atteution to external impressions, unless thesc be sufficiently porerful to awake him, whilst thero are other sleeps in which the boundary between the conscious reception of new impressions and the reproduction of old ones is so thin as to permit of a blending of the two. In this kind of sleep, a spoken word, a familiar touch, the suggestion of something in keeping with the thoughts of the dreamer, are sufficient to change the current of tho dream, and even to excite move...ents. When the ideas of the dreamer cause movements correspondiug to these ideas, titen the dreamer becomes a somnambulist. He acts the dream; according to the depth of the scmi-conscious state will be his capacity for responding to external impressions. Some somnambulists respond to external suggestions readily, others do not; and in all there is almost invariably no recollection of the state. Artificial hypnotism is a condition of the same kind, though usually not so profound.

The question now arises as to how this artificial state may be iuduced. In one arrake and active, all sensory impressions as a rule are quick, evanescent, and constantly rencised. New successions of images and thoughts pass rapidly before the mind during walking, working, eating, or in the leisure hours of social life; but none last so long es to cause fatigue of any particular part of the body. By and by there is a general feeling of fatigue, and then sleep is needed to restore exhausted nature. But if the attention be fixed on one set of seusory impressions, fatigue is much sooner experienced than if the impressions are various in kind and degree. Thus oue or two hours spent at a
picture gallery or at a concert, if the attention be deroted to the impressions on the eye or ear, usually cause fatigue. It would appear that the method of exciting hypnotism by causing the patient to gsze at a bit of glass or a bright button depends in the first place on the fecling of fatigue induced. At first there is a dazzling feeling; then the eyes become moist ; images become blurred and iudistinct, and seem to swim in the field of vision; the field of vision becomes unsteady, and just about this period ideas do not pass in the mind in orderly sequence, but irregalarly, as in the few minates immediately before passing into sleen. At this stage also the puipils becone widely dilated, and the eyeballs become more prominent than usnal. The innervation of the iris must be understood, so as to appreciate the physiological meaning of these changes. The muscular structure of the iris is supplied by tro nerves, the third cranial nerve and the sympathctic nerve. If the third nerve be cut the pupil dilates; if the distal end of the nerve be irritated the pupil contracts. On the other hand, if the sympathetic nerve be cut the pupil contracts, whilst if the distal end be irritated the pupil dilatcs. These experimental facts show that the radiating fibres of the iris which dilate the pupil are uader the control of the sympathetic nerve, whilst the circular fibres which contract the pupil are supplied by the third. Further it can be shown that the corpora quadrigemine, two ganglionic masses in the brain, are the refex centres for the regulation of these movements. The optic nerve from the retina supplies the sensory stimulus which causes the pupil to contract. Thus, surpose light to be brouglt before the eye while the pupil is dilated; the retina is affected, a stimulus is sent to the corpora quadrigemina along the fibres of the optic nerve, and from the corpora quadrigemina a nervous infuence passes along the fibres of the third nerve to the circular fibres of the iris, causing the pupil to contract. It is also very probable that the corpora quadrigemina act as reflex centres for nervons impulses regulating the calibre of the blood-vessels of the eye, the vaso-motor nerves. If tre apply these facts to the case of a hypnotized person, we find that (1) the pupil of a lypnotized person contracts energetically when light falls upon the eye, showing that the refiex mechanism is still intact; (2) just before the hypnotic state is induced the pupil dilates, indicating feeblo nervous impulses passing aloug the third from the corpora quadrigemina; (3) at first, the eyeballs seem to siuk in, but when hypnotism is complete they project in a manner similar to what has been observed in an animal when the arteries supplying the head have been compressed so as to make the brain anæmic or bloodless; and (4) the ophthalmoscope has not shown any change in the calibre of the blood-vessels of the retina in the hypnotic state. From a consideration of these facts and inferences Heidenhain was at first inclined to belicre that byprotism might be due to a reflex influence on the vessels of the brain, causing them to contract so as to permit the passage of only a small quantity of blood, and make the brain anæmic. This view, horrever, had to be abandoned, as the faces of liypnotized persons are usually red, and not pale, as they would be were the arterioles contracted. Further, Heidenhain performed a crucial experiment by giving to his brother nitrite of amyl, which causes dilatation of the vessels by vaso-motor paralysis, when he still found hypnotism could be readily induced, showing that the state was not caused by deficient blood supply.

Heidenlasin lias advanced another and more prohalile hypethesis. During the past trenty years a new morle of nervous netion, known as inhilitory action, has been discovered by physiologists. A good example is supplied by the innervation of the heart. - This organ has nervous
ganglia in its substance by which its rhythmic contractions are maintained. Further it is surplied by the vagus $2 r$ pneumogastric nerve and by the sympathetic. Section of the vagus is followed by quickening of the heart's action, and stimulation of the lower end causes slowing and, if the stimulation be strong enough, stoppage of the heart, not, however, in a tetanic state (which would be the caso if the fibres of the vagus acted directly on the muscular structure of the heart, as a motor nerve), but in a state of complete relasation or diastole. Opposite results follow section and stimulation of the sympathetic fibres. It has been clearly mado out that the terminal fibres of both nerves do not act on muscular fibres but on ganglion cells, those of tho vagus."inhiliting" or restraining, whilst those of the sympathetic "accelerate" the actinn of the cells. Inhibition is now known to play on important part in all nervous actions, and it would seem tuat any pewerful impression in a sensory nerve may inhibit or restrain motion. This is strikingly seen in some of the lower animals. A ligature applied loosely round the thigh of a frog whilst it lies on its back apparently deprives it of all power of motion. The weak sensory stimulation in this case seems to stop voluntary motion. Pressure on the internal organs of such animals as the rabbit, although gentle, sometimes causes paralysis of the lower or hinder limbs. Again, it has been ascertained that, whilst the spinal cord is the chief reflex centre, the reflex activity can be inhibited by impulses transmitted to it from portions of the cerebral hemispheres which aro in a state of high activity. It would appear then that, if we suppese one set of sensory or recipient cells in the brain to be brought into a state of exalted irritability by the preliminary operations of hypnotism, the result might be inbibition of the parts devoted to voluntary movement. In like manner, the activity of sensory nerve cells may become inhibited. Thus stimulation of a certain cutaneous area, say the arm, by a mustard plaster, has been found to lower the sensibility of the corresponding portion of skin on the opposite arm. The theory then offered is that "the causs of the phenomena of hypnotism lies in the inhibition of the activity of the ganglion-cells of the cerebral cortex, . . . the inhibition being brought about by gentle prolonged stimulatien of the sensory nerves of the face, or of the nuditory or optic nerve."

According to this view, the portion of the brain dovoted to voluntary movements is as it were thrown out of gear, and the movements that follow, in the hypnotic state, are involuntary, and depend on impressions made on the senses of the patient. To understand hew this is possible, we must now consider shortly some of the views presently held as to the action of the brain. The researches of Hitzig, Fritsch, Fcrrier, Hughlings Jackson, and many others indicate that certain movements initiated as a consequence of perception, and of the ideas thereby called forth, are due to nervous actions in the grey matter in certain areas no the surface of the cerebral hemispheres, and that there is another class of movements which do not require the agency of the cortex of the brain, but depend on tho activity of deeper centres. These deeper centres are the optic thalami, which receive sensory impressions frem all paris of the skin; the corpora quadrigemina, which receive luninous impressions from the retinn; and the corpora striata, which are the motor centres whenco cmanate influences passing to the various groups of muscles. No doubt other scnsory centres exist for hearing, taste, and smell, but these have not been clearly ascertained. In the case of conscious and voluntary movements carricd out as the result of external impressions, the cxcitation would pass first to the thalami optici (tactile) or corpora quadrigemina (visual), thence to the
cereoral hemispheres, where ideas would be called forth and volitional impulses generated; these would then bs transmitted downwards through the corpora striata (motor) to the crura cerebri and spinal cord, and from thence to special groups of muscles, thus causing specific movements. Suppose now that the portions of ccrebral hemispheres connceted with ideation and volition were thrown out of gear, and that a similar sensory impression was made on the person ; again the path of nervous impulses would be to the thalami optici (tactile) or cerpora quadrigenina (visual), and from thence directly through corpora striata (motor) to crura cerebri and spinal cord, then passing out to muscles, and causing mevements as precise as those in the first instance, and apparently of the same character. The differenco between the two operations, however, would be this:-in the first there would be movements following perception, ideation, and volition; in the secend the same class of movements would be effected by anautomatic mechanism without any of the psychical operations above alluded to. Thistheory bas the merit of simplicity, and is in accordance with most of the facts. The chief difficulty in the way of accepting it is to understand why, if hypnotism be so induced, it is not induced much oftener. One would suppose that, if gazing at a coin and having a few passes made with the hand were sufficient to bring about physiological changes of such importance, men would be oftener hypnotized in daily life than they are. But it is to be remembered that attention is seldom fixed on one object so long as in the experiment of producing hypnotism. The first occasion the experiment is made, even with so-called susceptible persons, the time occupied may be from 10 to 20 minutes, and during all that time the attention is on the strain, and feelings of fatigee are excitel in the way above described. Again it is well known that sudden and strong sensery imprcssions often paralyse voluutary action for a time, even in ordinary life, and what is called "presence of mind" really means that power of self-control which prevents the bodily energies being paralysed by strong sensory impressions. 4 carriage bearing down on a nervous lady in a crowded street may deprive her of all power of movement, or she may automatically rua here or there in obedience to the shouts of tho bystanders; bnt one with coolness can thread her way among the vehicles without fear or trouble.

A hypnotized nerson is therefore to be regarded as an automaton. "To cuise him to move his arm, the image of a moving arm must pass over his retina, or an unconscious sensation of motion must be induced through passivo movement of his arm."
2. Insensibility to Pain.-It has often been notieed that in the mesmerized or hypnotized person there may bo complete insensibility to pain, so that deep pricks with a needle are not felt. During deep bypnotism a pin may be run into the hand without pain, but pain will bo felt on awaking, and pulling out tho pin in the waking state will causo acute pain. It would appear that certain nerves may convey tactile sensibility whilst others convey only painful impressions, and in certain forms of paralysis tho patient may havo tactils sensibility without pain, or the reverse. In hysterical women, as has been shown by Charcot and others, disorders of sensibility of this kind aro not uncommon, indicating changes in the nervous centres.
3. Increased Reflex Spasm of Muscles.-One of the most striking phenomena of the hypnotic state is the case with which certain voluntary muscles may be rendered stiff. For example, if the operator stroke the skin over the biceps muscle in the upler arn, the limb will be at once powerfully flexed, and the biceps can be felt stiff and rigid. To understand the physiological explanation offered of this

I Lenumenon it will be necessary soortly to descrioe the mechanism of reflex acts. If a sensory nerve be irritated at its peripbery, say in the skin, a nerwous impulse is transnitted to a central nervous organ, such as the spioal cord, and throngh the agency of nerve cells in this organ impulses are then transmitted by motor nerves to muscles, cansing movemonts, without any operation of the will. Thes a particle of food getting into the larynx irritates scusury nerves of the vagus, and there is a reftex spasm of variuus muscles of expiration, causing a violent cough. That sucli reflex acts not only can occur withont the will, but in spite of $i t$, is shown by the want of control over a saceze when the nostril is irritated by snuff. Now these reflex centres in the cord are partially under the control of higher centres in the brain. If the agency of the latter be removed, the activity of the cord-centres is increased, and reHex actions are more easily induced. This we have assumed to be the state of the hypnotic. If a portion of lis skin be stroked, first one muscle, say the one inmeciately under the skin stroked, will become stiff, then in obedience to a law regulating reflex actions, -uamely, that they tend to become diffused according to the strength and duration of the stimulns,-other muscles become rigid, and so on matil the whole trunk becomes cataleptic. This phenomenon is so well described lyy Heidenbain tbat we guete as follows (pp. 23, 24):-
"With slimht increase of reflex invitahility, those muscles alone contract wlich lie immediately under the area of skin which has been stroked. In this conslition it is easy to bring single muscles and groups of muscles into isolated action, and thus demoustrate their special motor function. Stroking the ball of the thumb causes adduction of the thumb (towards the palm). Stimulating the skin orer the sternomastoid causes the hend to assume the well-known, oblique position which it has when one has got a "stiff neck"; stroking the skin at one corner of the mouth leads to distortion of the mouth on that side, owing to the contraction of the muscles iuserted there. When the imftability is somewhat more increased, we arc able, by continuous irritation of a defined group of skin, to set in activity neighbouring and distant groups of musele, according to the degrea of irritation. Thus, when I gently stroke the ball of the thumb, only the flexors and the adductors of this member are sct in activity. If I stroke somewhat harder, the forearm muscles, especially the flexors of the fingers, contract. Our patient can, howerer, still bead aud stretch his arm at the elbow, the upper arm mnscles being still unaffected. Thirough further increase of the irvitation, the latter too and the shoulder muscles are throfun into Aphsm, so that the whole limb appears immovably fixed. But the highest degree of reflex irritability is not yet attained. Mr A. lleidenhain sits quietly here on a chair. I now once stroke the hall of his left thunib. Please observe the exact succession in which the spasm slowly spreads from one part of the body to the other. You will see the following muscle groups successively affected, so:ne seconds intervening in the passage from one group to another: - left thumb, left hand, left forearm, left upper arm and shonlder, right shoulder and arm, right forearm, right hand, left $\mathrm{l}_{\mathrm{c}} \mathrm{g}$, leit thigh, right thigh, right leg, muscles of mastication, nunseles of the neck. But now I must put an end to it. I strike forcibly the left arm, and the rigor at once disappears. lustant relaxation of the whole body occurs also when I forcibly extend a finger of the clenched fist. Probably the reflex excitement would extenl still farther, but I maturally consider it out of the question to thy whethace the nuseles of respiration would become affected. 1t is easily understood that such experiments renuire tho greatest cantion, and may be very seldom carried out."

This condition of the mosles is exactly like that in catalcןsy, a peculiar nervous discase; and hypnotism may be regarded as an artificial catalepsy.
4. Other Peculiar Aemous Phenomena of the Bypnotic Siatt. - The changes in the cyes have been already alluded to. The pupils dilate, the eyelids open widely, and the eyeballs protrude. Occasionally the upper eyelid droops, su that the eyelids seem closed. It has often been asserted that clairvoyants see with the eyelids closed, but they are really partially open. The morements of respiration are often quickened from 16 to 30 or 35 per minute, indicating stimmlation of the respiratory centres in the medullia oblongata. Sometimes the flow of saliva is increased.

Hallucinations of sense may oceur, though they are rare One man in the hypnotic state experienced a strong odour of violets.

There is a class of phennmena referred to the hypnotic state of a very doobtful character, inasmuch as we have to depend entirely on the statements of the person operated on, and no ubjective tests can be employed. Such, for example, are vario ds disturbances of sensation, hearing with the pit of the stomach more acutcly than when the sound is made in the usual ways towards the ear, and the application of the land of the operator to the body giving rise to profound sleep or dreams, induced dreaming, dec. Again it is asserted by Heidenlain and Gruitzner (Breslaner Aerztl. Zeitsch., No. 4, 28 th February 1880) that unilateral hypnosis is possible. Thus stroking the left forchead and temple caused immobility of the right arm and leg.
"Stroking on both sides causes catalensy of all four limbs; no facial paraljsis or alhasia. Unilateral stroking causes crossed catalepsy ant facial paralysis, accompanied when on the left by aphasia. If in adlition to unilateral stroking, and this being still maiutained, the other side be stroked, then the sane result is brought about as if boih sides had beeu stroked from tha begin ning. Measurement of the volume of the arm by means of Mosso s volumeter [an instrument for estimating the bulk of the limb by displacement of water and movements of a recording lever] proves that in the cataleptic arm the quantity of blood (in consequence of the vascular contraction) sinks enormously, whilst it simultaneously risesin the other arm. When the catalepsy is gono by, the quantity of blood in the cataleptic arm increases, whilst in the other arm it sinks" (leidenhain, p. 91).

Charcot has pointed out that in certain kinds of hysteria in wumen there are remarkable unilateral disturbances or perversions of sensory impressions of colnur. Phenoinena of the same kind have been observed by "Cuhn, Ileidenhain, and others in hypotized persons. Thus A. Heidenhain became completely colour blind in the eye of the cataleptic șide. All colours appeared grey in different degrees of brightness, from a dirty dark grey to a clear silver grey:
'If one eye be treated with atropin, whilst tha effect of the latter is making its appearance, the phenomena of colour bliodness are changed as follows:-red and green still appear as different shades of grey ; blue and yellow, on the other hand, do not appear grey. They appear differently in the different stages of atropin action :-first stagc, yellow appears grey, with a glimmer of blue: sccond slayc, yellow appears pure blue; ilizrd stage, yellow appeara blue with a slight tinge of jellow, somewhat as in the so-called struggle of the fields of vision, - yellow is seen, as it were, through a blue mist ; fourth stage, yellow appears mostly yellow, with a tinge of blue. When blue is tried, the corresponding result is obtained; that is, at last blue with a slight yellow tinge is seen. During the action of atropin the sensation of yellow or hlue passes from grey throngh the contrast colour to the right colour, whilst red and green only anpear as different shades of grey" (Heiden. hain, r. 95).

These facts are interesting as snowing perverted sonsation in the particular indiridual affected, but they throw no light on the condition of hypnotism.

It is evident then that animal magnetism or hypnotism is a peculiar physiological condition excited by perverted action of certain parts of the cerebral nervous organs, and that it is not caused by any occult force emanating from the operator. Whilst all the phenomena cannot be accounted for, owing to the imperfect knowledge we possess of the functions of the brain and cord, enough has becn stated to show that just in proportion as our knowledge has increased has it been possible to give a rational explanation of some of the phenomena. It is also clear that the perverted condition of the nervous apparatus in hypnotism is of a serious character, and therefore that these experiments should not be performed by ignorant empirics for the sake of gain, or with the view of cansing amusement. Nerrous persons may be serionsly injured by being subjected to such experiments, more especially if they undergo them repeatedly; and it should be illegal to
have publie exhibitions of the kind alluded to. The medical profession has always beea rightly jealous of the emplogment of hypnotism in the treatment of disease, both from fear of the ellects of such operations on the nervous systems of excitable people, and beeause such practice is in the border land of quackery and of imposture. Still in the bands of skilful men there is no reason why tho proper employment of a method influencing the nervous system so powerfully: as hypnotism should not be tho means of relieviny pain or of remedying disease.
Literature.-A very complete bibliography will be found appende! to the articlo "Mestuerisme," Dictionainc Eneyclopidiquc Hes Sciences Medicalcs (deuxiëme serie, 1873). In addition. ste Braid, Nérrymmology, Lonllon, 1843; Elliotson, Htemum Physsolog!, London, 1840; Colqulioun, Mistory of Mayic, Witchervit, amb Animal Magnetism, London, 1851 ; 'Nayo, L.cller's on the Truths mintainatl in Popmlar Superstitions, with an Account of AIcsuncrism, Elli:burgh, 1851; Scoresby, Zoistic Mragnetism, London, 1849 Husthes Bennet, Lccture on the Mesneric Mania of 1851, EdinGurgh, 1851 ; Reiclienhach, Rescurches in Magnctism, Electricit!, Itcat, Light, Ciystallization, and Chenical sttraction, iar llicir relation to Vital Forcc (traaslatel by Dr Gregory, Lonlon, 1850 ; in this volume the doctrine of olylic foree is set forth); Andrew Buchanan, Dartingisnt, misnaried Elcetro-Biology, London, 1851 Alexander Wood, What is Mcsmerism? Elinburgh, 1851; Weinholl, Secren Lecturcs on Somnambutism, translated by J. C. Colquhoun, Edinburgh, 1845: John Forbes, Illustrations of Modern Mesmerism, Lomlon, 1845. See also Mandsley, Physiology of Mind, Loondon, 1876 ; and especially Carpenter, Mcntal Pliysiology, p. 547 sq. (where the anithor atternpts to account for many of tho phenomena by the theory of a dominant idea influencing and governing all other mental operations), London, 1874. The most recent aecount of these phenomena will be found in Heilenlain's Aninal Magnctism, translated by Wooldridge, with a preface by G. J. Romanes, Lonlon, 1830. For a short and clear account of hysteria as bearing on the phenomena of hyprotism, see Rosenthal, Clinical Tircatise on the Discascs of the Nerrons System, vol. ii. p. 29 sq., Louldon, 1881 (J. G. M.)

MAGNOLIA, L., the typical genus of the order Afagnoliacex, named from Pierre Magnol, professor of medicine and botany at MIontpellier. It contains about fourten species, distributed in Japan, China, and the Himalayas, as well as in North Ameriea and Nexieo (De Candulle, Prod., i. 79 ; Bentham and Hooker, Ger. Pl., i. 18 ; A. Gray, G'ch. Ill., xxiii., xxir.).

Magnolias are trees or slırubs with evergreen or deciduous foliage. They bear conspicuous, and often large, fragrant, white, rose, or purple flowers. The sepals are three in number, the petals six to twelve, in two to four series of three in each, the stamens and carpels being numerous. The fruit consists of a number of follicles which dehisce (contrary to the rulc) along the outer edge to allow the scarlet or brown seeds to eseape, but which are suspended by a long slender thread. Of the Old-World species, the earliest in cultivation appears to have been M. I'ulan, Desf. (conspicuc, Salisb.), of China, of which the buds were preserved, as well as used medicinally and to senson rice (Pickering, Chron. Hist. of Pl., p. C00). It, together with 11. fuscata, Audr., was transported to Europe in 1789 (Paxton's Bol. Dic.) and thenee to North America, and is now cultivated in tho middle States. Of the Japanese magnolias, M. Liolus, DC., and the purple-flowered I. oborata, Thim., were met with by Kacmpfer in 1690. They were introduced into England in 1709 and 1804 respectively. The species 1\%. pumiln, Andr., the dwarf magnolia, from the mountains of Aniboyna, is nearly evergreen, and bears delicionsly scented flowers. It was introduce in 1786. The Indian speceies are three in number, M.globosa, II. f. et T., allied to M. conspicen of Japan; M. spherocarpa, Roxb., and the most magnificent of all magnolias, 11 . Campbellii, II. f. ct T., which furns a conspicuous feature in the scenery and vegetation of Darjiling. It was discovered by Dr Griffith in Phutan. It is a large forest tree, abounding on the outer ranges of Sikkim, 80 feet high, and from 6 to 12 feet in girth. The flowers are 6 to

10 inches across, appearing before the leaves. They rary from white to a dee], rose culour (1Iook. fill, Ill. Hlim. Pl., pls. iv. and v.).

The first of the American species brought to Europe (in 1688, by Banister) was M. gleauca, L. It is found in low situations near the sea from Massachusetts to Louisiama, -ninre especially in New Jersey and Carolina. In 171? Catesbry visited Virginia and found 11.armminaia, L., the so-ealled cucumber tree, from the resemblance of the youn" fruits to small cucumbers. It rauges from Pennsylvanin to Carolina. The wool is yellow, and used for bowls ; the Howers are rather small. It was introduced into Eagland in 1730. ELe also found M. umbrella, Lam. (tipetala, L.), called the umbrellin tree. The flowers are very large, white, aud highly scented. It was brought to England in 175i. IV. pyrumidula, Bart., discosered by Bartrant in 173 , is a native of the western parts of Carolina and Ceorgia. The most beautiful species of North Aneries is M. grumlifora, L., diseovered by Catesby in 1719 in South Carolina and Florida, and introduced into England in $\mathbf{1 7 3 1}$. It grows a straight trunk 2 feet in dianneter, and upwards of 70 feet high, bearing a profusion of large powerfnlly lenon-scented creamy-white flowers. In England it is enstomary to train it agaiust a wall; and the original species is surpassed by the Exmouth varieties, which originated as seedlings at Exeter from the tree first raised in England by Sir John Colliton, and which flower much more freely than the parent plant. The remaining North-American species are 1. auriculata, Lam., M. macrophylla, Michx., and M. cordata, Micbx. The Mesican species is M. mexicana, DC. The tulip tree, Liviodendron tutipifera, L., frequently cultivated in England, is also a member of the same fanily. It is the sole species, and is a native of North America.
For a description of tho principal species of magnolia under cultivation see Hemsley's Handbooz of Hardy Trees, \&c., p. 24; Loudon's Arborctam, vol. i. p. 260.
magnus, Heineich Gustay (1802-18i0), an eminent German chemist and physicist, was born at Berlin Mlay 2, 1802. He early showed a stroug seientific bias, which was well fostered and strengthenerl by his education. Six years of thorongh study at Berlin university were supplemented by a year's course at Stockholm in Derzelius's laboratory (1828). After some time spent in Paris under Gay-Lussac and Thénarà, Magnus settled at Berlin in 1831 as lecturer on techanlogy and physics in the university. In 1834 ho was elected extraordinary and in 1845 ordinary professor of these subjects. He died April 4, 1S70. His numerons papers, which appeared chiefiy in Pugycndorffs Amaten ard in the publications of the Berlin Aeadeny of Sciences, cover a wide range of chemical and plysical subjects. His first memoir, published in 1825, white he was yet a stulent, was a discussion of the spontancous inflammability of finely di:ided iron, niekel, and cobalt. From 1827 to $18: 3$ ho was occupied mainly with chemical researches, which resulted in the discovery of sulphovinic, ethionic, and isethionic acids and their saits; and, in conjunction with Ammermüller, of periodic acid. The absorption of gases in blood (1837-45), tho expansion of gases by heat (1841-44), tho rapour pressures of water and various solutions (1844-54), thermo-electricity (1851), clectrolysis ( 1856 ), induction of currents ( $1858-61$ ), conduction of heat in gases (ISG0), and polarization of hent (1866-68) are some of the many subjects of whieh he treated. From 1861 onwards he devoted much attention to the still vexed question of diathermancy in gases and vapours, especially to the behaviour in this respect of dry and moist air, and to the thernal effeets produced by the condensation of moisture on solid surfaces. Many of his papers were translated and published in the Philosophical Mayazine.

MaGNUSSON, Arai (1663-1730), a scholar to whom we are largely indebted for the preservation of the old Icelandic literature, was born in the west of Iceland in 1663. In his youth be resided for a time at Hvamm, then the resideace of his mother's father, Ketil the priest, who was a well-known copyist of manuscripts. In 1683 he cane to Cupenhagen, aud was employed by Bartholinus at first as a copyist, and afterwards to investigate the monuments aud ancieut customs of Norway. In 1697 he was appointed secretary of the archives of the kingdom. Before this he had begun to collect Icelandic manuscripts, his carlicst acquisition (IIulda) being in 1687. From that time he steadily perserered, but his great acquisitions were chicly made in Iceland, whither he went in comexion with the royal survey in 1702-12. The old and important manuscripts were ly that time falling into neglect, and it is more than probable that without Arni's intervention the greater part would have been lost to us. On his return from Iceland he was appointed professor of history and Danish antiquitics in the university of Copenhagen. He is said never to have recovered the shock caused by the mischief done to his library by the great fire of Copenhagen in 1:28. ITe himself had never the courage to ascertain exactly what he had lost; but it appeared afterwards that scarcely any MS. of real importance had perished. 'On his death on Cth January 1730, he bequeathed his property to the university of Copenhagen for the purpose chielly of publishing Icelandic manuscripts (Arna-Magnæan Bequest). The first volume published under the bequest was Njala, which appeared in 1752, and was succeeded by a number of valuable publications of the same class. Arni left behind him no literary work of any consequence, and his notes and historical matcrial were mostly destroyed in the conflagration. The signal service which he rendered to Icelandic literature lay in his judicious and extensive collection of the old manuscripts, and investigation of their history so far as attainable, at a time when they were rapidly being superseded and disappearing through neglect.
MAGO was one of the most common Carthaginian names, borne among others by the reputed founder of the military power of Carthage, and the Punic admiral in the war with the elder Dionysius (see Carthage). The most famous of the name was the youngest of the three sons of IIamilcar Barca. He accompanied his brother Hannibal on his expedition into Italy, and held inuportant commands in the great victories of the first three years. After the battle of Cannæ he marched through southern Italy and sailed to Carthage to report the successes gained. He was about to return to Italy with strong reinforcements for Hannibal, when the Government ordered him to go to help his other brother, Hasdrubal, who was hard pressed iu Spain. He maintained war there with varying success in concert with the tro generals lrasdrubal, until, in 209 b.c., lis brother marched into Italy to help Hannibal. Nago remained in Spain with the other Hasdrubal. In 207 he was defeated by M. Silanus, and in 206 the combined forces of Mago and Hasdrubal were scattered by Scipio in the decisive battle of Silpia. Mago maintained himself for a long time in Gades, but nfterwards received orders to carry the war into Liguria. He wintered in the Balearie Isles, where the fine harbour Portus Magonis, Port Mahon, still bears his name. Early in 204 he landed in Liguria, where he maintained a desultory warfare till in 203 he was defeated in Cisalpine Gaul by the Roman forces. He received orders soon after to return to Carthage, but on the rogage home he died of wounds received in the battle.
The name of Mago-but which Mago is uncertain-is attached to a great work on agriculture which was brought to Roma and tranglated by order of the seuate after the
aestruction of Carthage. The book was regarded as a atandard anthority, and is often referred to by later writers.

MAGPIE, or simply PaE (French, Pie), the prcfix being the abbreviated form of a human name (Margaret ${ }^{1}$ ) applied as in so many other instances to familiar animals, as this bird onco was throughout Great Britain, though of lato years almost exterminated in many parts, and now nearly everywhere scarce. Its pilfering habits have led to this result, yet the injurics it causes are unquestionably exaggerated by common report; and iu many countries of Europe it is still the tolerated or even the cherished neiglobour of every farmer, as it furmerly was in England if not in Scotland also. There is ample evidence ${ }^{2}$ to prove that it did not exist in Ireland in 1617, when Fynes Morison ${ }^{3}$ wrote his Itinerary, and that it had appeared there within a hundred years later, when Swift mentions its occurrences in his Journal to Stella, under date of 9th July 1711. . is now common enough in that country, and there is a widespread but of course unfounded belief that it was introduced by the English out of spite. It is a species that when not molested is extending its range, as Wolley ascertained in Lapland, where within the last century it has been gradually pushing its way along the coast and into the interior from one fishing-station or settlcr's house to the next, as the country has been peoplcd.
Since the persecution to which the Pie has been subjected in Great Britain, its habits have undoubtedly altered greatly in character. It is no longer the merry, saucy hanger-ou of the homestead, as it was to writers of former daya, who were constantly alluding to ita disposition, but is become the suspicious thief, shunning the gaze of man, and knowing that danger may lurk in every bush. Hence opportunitics of observing it fall to the lot of fem, and most persons know it only as a curtailed captive in a wicker cage, where its vivacity and natural beauty are lessened or wholly lost. At large few European birds possess greater beauty; the pure white of its scapulars and inner web of the tighatfeathers contrasting vividly with the deep glossy black on the rest of its body and mings, while its long tail is lustrous with green, bronze, and purple reflexions. The Pie's nast is a wonderfully ingenious structure, placed either in high trees or low bushes, and so massively built that it will stand for years. Its foundation consists of stout sticks, turf, and clay, wrought into a deep, hollow cup, plastered with earth, and lined with fibres; but around this is erected a firmly-interwoven, basket-like outwork of thorny sticks, forming a dome over the nest, and leaving but a single hole in the side for entrance and exit, so that the whole structure is rendered almost impregnable. Herein are laid from six to nine eggs, of a pale bluish-green freckled with brown and blotehed with ash-colour. Superstition as to the appearance of the Pie still survives even among many educated persons, and there are several versions of a rhyming adage as to the various turns of luck which ita presenting itself, cither alone or in company with others, is supposed to betoken, for some of these versiona contradict one another in details, though all agree in this that the sight of a single Pie unquestionably presages sorrow.
The Pie belongs to the same Family of birds as the Crow (vol. vi. p. 617), and is the Corvus pica of Linnæus, the Pica caudata, $P$. melanoleuca, or P. rustica of modern
1 "Magot" and "Madge," with the same origin, are names frequently given in England to the Pie; while in France it is commonly known as Margot, if not termed, as it is in some districts, Jaquelle.
${ }^{2}$ A compendious summary of this will be found in Yarrell's British Birds, ed. 4, ii. pp. 318-320.
${ }^{3}$ His predecessor Derricke, in 1578 , said :-

[^120]ornithologists, who lave recogaized it as furming a distinct genus, but the number of species thereto belonging has been a fruitful source of discussion. Examples frour the south of Spain differ slightly from those iulabitlag the rest of Europe, and in some points more resemble the P. mauritanica of north-western Africa; but that species has a patch of bare skin of a fine blue colour behind the eye, and much shorter wings. No fewer than five species have been discriminated from various parts of Asia, extending to Japan ; but only one of them, the P. leucoptera of Turkestan and Tibet, has of late been admitted as valid. In the west of North America, and in some of its islands, a Pie is found which extends to tho upper valleys of the Missouri and the Yellowstone, and has long been thought entitled to specific distinction as P. hudsonia; but its claim thereto is now disallowed by some of the best ornithologists of the United States, and it can hardly be deemed even a geographical variety of the Old-World form. In California, however, there is a permanent race if not a good species, $P$. nuttalli, easily distingnishable by its yellow bill and the bare yellow skin round its eyes; and it is a curions fact that on two occasions in the year 1867 a bird apparently similar was observed in Gruat Britain (Zoologist, ser. 2, pp. 706, 1016).
(土. N.)
MAHABALESHIVAR, a hill station in Satára district, and the principal sanatarium in the Bombay presidency, India ( $17^{\circ} 58^{\prime}$ N. lat., $73^{\circ} 42^{\prime}$ E. long.), occupies the sumamit of a range of the Western Ghits, with a general elevation of 4500 feet above sea-level. It was established by Sir John Malcolm, the governor in Bombay in 1828, who obtained the site from the rájí of Satára in exchange for another patch of territory. The superior elevation of Mahábaleshwar renders it much cooler than Mátherán ( 2460 feet), but its heavy rainfall (about 240 inches) makes it almost uninhabitable during the rainy season. It forms the retreat usually during spring, and occasionally in nutumn, of the governor of Bombay, the commander-in-chief of the Bombay army, and the chief officers of their establishments, and has the usual public buildings of a first-class sanatarium. The population was returned in 1872 at 2759.

## mahabharata. See Sanskrit Literature

maHÁNADI, or Mafanudy ("The Great River"), a river of India, rising in $20^{\circ} 10^{\prime} \mathrm{N}$. lat., $82^{\circ}$ E. long., 25 miles south of Ráipur town, in a wild mountainous region of the Central Provinces. At first an insignificant stream, it flows in a tertuous easterly course through the hills in a rocky bed until it reaches Dholpur in Orissa. From this point it rolls its unrestrained waters straight for the outermost line of the Eastern Gháts. This mountain line it pierces by a gorge about 40 miles in length, overlooked by hille, shaded by forests, decp and tranquil, and navigable at all seasons. It pnurs down upon the Orissa delta at Naraj, about 7 miles west of Cuttack town; and after traversing Cuttack district from west to east, and throwing off numerous branches (the Kátjuri, Paika, Birúpá, Chitartalá, dc.), it falls into the Bay of Bengal at False Point by several clanncls.
The Mahainadi has an estimated basin of 43,800 miles, and its rapid flow renders its maximum discharge in time of flood secend to that of no other river in India. During unusually high floods $1,800,000$ cubic feet of water pour every sceond through the Narij gorge, one-half of which, uncontrolled by the elaborate embankments, pours over the deita, filling the swamps, inundating the rice-fields, and converting the plains into a boundless sea. In the dry wcather the discharge of the Mahinadi dwindles to 1125 feet per second. Eforts have been made to husband and utilize the vast wator supply thrown upon the Orissa delta during eensons of flood. Each of the three branches into which the parent stream splits at tho delta head is regulated by a weir. Of the four canals which form the Orissa irrigation aystem, two take cff from the Biniphi weir, and one, with its braneh, from the Mahánadi weir. On the 31st Decernho: 1868 the Government toek over the whole canal rooks from
the East Iudian Irigigation Company, at a cost of $£ 941,368$, since which time the gradual prosecution of the Orissa scheme to completion has been sanctioned. The canals thus taken over and since completed, or carried to an adranced stage of construction, are the High-Level Canal, the Ketriáyaría Canal, the Tàldandi Canal, and the Máchhgion Canal, with their distributaries, designed to irrigate a total of $1,600,000$ acres.

MAHANOY CITY, a post borough of the United States, in Mahanoy township, Schuylkill comnty, Pennsylvania, lies at a height of 1211 fect above the sea, 56 miles north-east of Harrisburg, with a station both on the Lehigh Valley and on the Philadelphia and Reading Railway. It was founded in 1859, and owes its existence to the great anthracite mines in the neighbourlood. Two public halls, a public library, two weekly newspapers, and the increase of its population from 5533 in 1870 to 7181 in 1880, betoken its prosperity.

MaHaseer, or Mahseer (Barbus mosal), a kind of barbel, abundant in the rivers of India, especially in pools of the upper and more rapid streams where they issue from the mountainous part of the country. It is one of the largest species of the family of carps, attaining to a length of from 3 to 5 feet, and exceeding sometines a weight of 70 jb . Its body is well-proportioned, rather elongate, and somewhat like that of the European barbel, but covered with very large scalcs, of which there are only twenty-five or twenty-sceven placed along the lateral line; the dorsal fin is armed with a long and strong spine, and the mouth provided with four slender and short barbels. The lips are sometimes produced into fleshy lobes. To the fisherman in India the mahaseer affords the same kind of sport as the salmon in the British Isles, and it rivals that fish as regards size, strength, and activity. Its flesh is likewise much esteemed.

MAHDI. i.e., "lhe who is guided aright," the third caliph of the house of "Abbás (seo Mohammedan Empire). The name of Mahdi is also that which the Shïite Mohammedans give to their Messiah, the last of the Imáms of the house of 'Ali. It was under the name of al-Mahdi that Mokltár proclaimed 'Ali's son Molammed as the opponent of the caliph'Abd al-Malik, and, according to Shahrastani, p. 111, the dectrine of the Maldí, the lidden deliverer whe is one day to appear and fill the oppressed world with.righteous. ness, first arose in counexion-with a wild notion that this Mohammed had not died but lived concealed at Mount Raḍwá, near Mecca, guarded by a lion and a pantler. The hidden Imám of the common Shitites is, however, the twelfth Imám, Moḷammed Abu'l-Kásim, who disappeared mysteriously 879 A.D. The belief in the appearance of the Mahd readily lent itself to imposture. Of the many pretendants to this dignity known in all periods of Moslem history downsto the present day ${ }^{1}$ the most famous was the first caliph of the Fatimite dynasty in North Africa, 'Obaid-allah al-Mahdi, who reigned 909-934 A.D. From him was named the capital of the dynasty, the once mighty city of Mahdíya, the port and entrepôt of Kairawán (see Mohammedan Empire under the rcign of Moktadir). Another great historical movement, headed by a leader who proclaimed himself the Mahdi (Moḷammed ibn Abdallah ibn Túmrut), was that of the Almoriades ( $q . v$. ).
MAHE, a French settlement and town, in the Majabar district, Madras, India, is situated in $11^{\circ} 41^{\prime} 50^{\prime \prime} \mathrm{N}$. lat. and $75^{\circ} 34^{\prime} 25^{\prime \prime}$ E. long., to the south of the river Mahé, with an area of 1445 acres. It. is tho only French possession on the west coast of India, and is in charge of a chef-de-service, subordinate to the governor-general at Pondicherri. It is now a decaying place, with most of its chief buildings

[^121]picturesquely situated closo to the river, mouth. Thie population in 18 il was 8192 . It contains a Roman Catholic chapel, a school, and a Eritish pest-nfice; and a long wooden bridge maiataiaed by the British Government gives access to the British territory beyond the river.

MAHI KiNTHS, The, a group of native states forming a political ageney uoder the Government of Bombyy, India, lying between $23^{\circ} 14^{\prime}$ and $24^{\circ} 28^{\prime} N$. lat. and $72^{\circ} 40^{\prime}$ and $74^{\circ} 5$. E long., with an area of abnut 4000 square miles, and an estionated population of 447.056 . It is bounded on the N.E. by the Lajput states of Udaipur and Dunyarpur, on the S.E. by Rewa Kinnthá, on the S. by IFaira distriet, and on the W. by the native states of Baroda and the Pálanpur ageney. The Mahi Kanthat territory is dirided amoug a number of chiefs, of whom the raja of Edar is by far the most inportant. In May IST 7 these chiefs were classified in seven divisions, according to their importance and the exteat of their jurisdiction. There are tro states of the scoond class, three of the third, uine of the fourth, vine of the fitth, fourteen of the sisth, and fourteen of the serenth class. The entire revenues amount to about $£ 110,000$.
Matidut of Grazax (971-1030), known also as Malmúd, son of Subuktigin, was born October 2, 971. His fame rests chiefly on Lis successful wars, in particular his numernus invasions of India. His military eapacity, inherited from his fatber, Nasir-udd-din Subuktigin, was strengthened by youthful experience in the field. Subuktigin, a Turki slave of Alptigín, governor of Khorásán under Abd' ul Malik Núh, king of the Samani dynastỵ of Dokhára, early brought himself to notice. He was raised to high office in the state by Alptigin's successor, Abin Ishak, and in 366 A.I. ( 977 A.D.), by the choice of the nobles of Ghazni, he became their ruler. He soon began to make conquests in the neighbouring countries, and in these rars he was accompanied by his young son Mahmúd. Oa one occasion, when Nahmuld was fourteen years of age, his advice witi respect to a military operation in the Lills was approved and adopted by the generals. Before he had reached eren this age he encountered in two expeditions under his father the Indian forces of Jaipal, raja of Lahore, whoar Subuktigín defeated oa the Punjab frontier.

In 904 Jahmud was made gevernor of Khorísinn, with the title of Saif-ed-daulah ("Sword of the State"), by the Sámáni emir, Abd’ ul Malik Nüh. Two years later, his father Subuktigin died in the neighbourhood of Balkh, baving declared his second son, Ismail, who was then with him, to he his successor. As soon as Ismáil had assumed the sovereignty at Balkh, Mahoúd, who was at Nishápur, addressed hior in friendly terms, proposing a division of the territories held by their father at his death. Ismail rejected the proposal, and was immediately attaclied by Mahmuid and defeated. Retreating to Ghazni, he there yielded, and was imprisoned, and Mahmúd obtained undisputed power as sovereign of Khorásín and Chazui (997).

The Ghaznari dynasty is sometimes reckoned by native historians to commence with Subuktigin's confuest of Bust and Kusdir ( 9 78). But Subuktigin, throughout his reign at Ghazai, continued to acknowledge the Samani suzerainty, as did Mahmid also, until the time, soon after succeeding to his father's dominions, when he received from the caliph of Baghdad, A1 Kidir Billah, a khilat or robe of honour, with a letter recognizing bis suvereignty, and ennferring on bin the titles Jamin-el-rlantale (" Right Hanl if the State"), and Amin-ul-Millat ("Guardian of the Fith"). From this time it is the name of the culiph that is inscribed on Mahmúd's coins, together with his own new titles. ${ }^{1}$ Prericusly the name of the

[^122]Simáni sorereign, Mfansưr bin Núh (stucessor of $A$ bd' ul Malik) is givea along with his own furaner title, Saif-edIaulai Mahmid. The earlicst of these of the new form gives his name Mahmúd bin Subuktigío. Therealter his father's name does not appear on his coios, but it is insrribed again on lis tomb.
The new henours received from the calipn gave fresh inpulse to Mahmúd's zeal on behalf of Islam, and he resolverl on an annual expedition against the idolaters of Iadia. He could not quite carry out this intention, but a great part of his reign was occupied with his Indian eanpaigas. In 1000 A.v. لho started on the first of these expeditions, but it dues not appcar that on this oceasion ho weat farther than the hill country near Peshawar. The hostile attitude of Khalaf ibn Ahmarl, governor of Sistín, ealled Mahmíd to that provinco for a short time. Ite was appeased by Khalaf's speedy submission, together with the gift of a large sun of money, and further, it is said, by his subdued opponent addressing him as sultin, a title new at that time, and by which Mahnited contmued to be callerl, though he did not furmally adopt it, or stamp it on his enins. Four years later kihala, incurring Nahmud's displeasure again, mas imprisoned, and his property conficcated.

Mahmúd's army first crussed the Inrlus in 1001, opposed by Jaipâl, raja of Lahore. Jaipal was defeated, and Malımurl, after his return from this expedition, is said to have talken the distinctive appellation of Cihazi ("Valiant for the Faith"), but he is rarely so called. ${ }^{2}$ On the next oceasion (1005) Mahunud advanced as far as Bhers on the Jhehum, when his adversary Anang-pal, son aud successor of Jaikil, fled to Kashmir. The following year saw Nahuúd at Multan. Wher he was ia the Punjab at this time, he heard of the invasion of Khorisisin by Ilak Khan, ruier of Transoxiana (whose daughter Mahnuúd had narried). After a rapid march back from India, Mahmind repelled the invaders. Ilak Tiban, haviog retreated across the Oxus, returned with reinforcements, and took up a position a few miles from Lalkh, where be was signallv defeated by Mahméd.
Tro years had elapsed since Lis last visit to India when Malmud again entered the Puajab (1008), this time for the express purpose of chastising Sewah Pal, who, haring becnome a Mussulman, and been left by Mahmíd in elarge of Multan, had relapsed to Hinduism. The Indian campaign of the following year (1009) was a notahle one. Near the Indus Mahmúd was opposed again by Anang-pal, supported by perverful rajas from other parts of India. After a serere fight, Anang-1,hl's elephants were so terrer-struek by the fire-missiles flung amongst then: by the invaders that they turned and fled, the whole arriy retreating in confusion and leaving Mabmúd naster of the field. ${ }^{s}$ Mahmúd, after this victory, pnolied on through the Punjab to Nagar-két (Kangra), and earrieci off much spoil from the liindu temples, to enrich his treasury at Ghazni. In 1011 Mabmid, after a short campaign against the Afghans under Mohammed ibo Surr in the hill country of Ghor, marched again into the Puajab. The next time (I014) he advanced to Thancisar, another noted stronghold

[^123]of Hinduism, between the Sutlej and the Jumna. Having now found his way across all tho Punjab rivers, he was induced on two subsequent occasions to go still farther. But first be designed an iuvasion of Kashmir (1015), which was not carried out, as his progress was checked at L.oh-kit, a strong hill-fort in the north-west of the Punjab. And then beforenindertaking lis longer in road into Hindustan he had to march north into Khwarizm (Khiva) against his brother-in-law Mamún, who had refused to acknowledge Mahnuud's supremacy. The result was as usual, and Mahmád, having comnitted Khwárizn to a now ruler, one of Mamun's chief officers, returned to his capital. Then in 1018, with a very large force, he proceeded to India again, extending his inroad this time to the great Hindu cities of Mathra on the Junma and Kanauj on the Ganges. To the glory of reducing the one and receiving the subinission of the other ho added, as was his custom, tho further satisfaction of carrying back great stores of plunder from both to his own country. Three years later le went iuto India again, marching over nearly the same ground, to the support, this time, of the raja of Kananj, who, laving inade friendship with the Nohammedan invader on his last visit, had been attacked by the raja of Kalinjar. But Mahmúd found be had nut yet sufficiently subdued the idulaters nearer his own border, between Cabu! and the Indus, and the campaign of the year 413 (102id A.D.) was directed against them, and reached no farther than Peslawar. Another march into India the following year was made direct to Gwalior.
The next expedition (1025) is the most famous of all. The point to which it was directed was the temple of Somnath on the coast of the Gljerit pcuinsula. Aiter an ardnous journey by Multan, and throngh part of Rajputana, he reached Somnath, and met with a very vigorous but fruitless resistance on the part of the Hindus of Gujerit. Moslcm feet soon trod the courts of the great temple. The chief object of worship it contained was broken up, and the fragments kept to be carried of to Ghazni. The story is often told of the bollow figure, cleft by Mahmúd's battleaxe, pouring out great store of costly jewels and gold, But the idnl in this Sivite temple was only a tall blook or pillar of hewn stone, of a familiar kind. The popular legend is a very natural one. Malnuxd, it was well hnown, mado Hindu temples yield up thicir most precious things. He was a detormined idol-breaker. And the stone block in this temple was enriched with a crown of jewels, the gifts of wealthy worshippers. These data readily give the Somnath exploit its more dramatic form. For tie nore recent story of the Somath gates see Chrazst, vol. x. p. 560 .

After the sucecsses at Somuath, Mahmúd remained some months in India before returning to Ghazni. Then in 1026 he crossed the Indus once more into the l'mjab. His brilliant military carect closed with an expedition to Persia, in the third year after this, his last visit to India. The Indian campaigns of Mahnuid and his father were almost, but not altogether, unvarying successes. The Moslem historians tonch lighlly on reverses. And, although the ammals of Rajputana tell how Subuktigin was defeated by one raja of Ajmír and Nahmund by his successor, the course of events which followed shows how little these and other reverses affected the invader's progress. Mahnuid's faiture at Ajmir, when the brave raja 13 isal-deo obliged him to raise tho siege but was himself slain, was when the Moslem army was on its way to Somnath. Yet Mahmind's Indian conquests, striking and importaut in themselves, were, after all, in great measure barren, except to the Ghazni treasury. Nahmúd retained no possessiuns in India under his own direct rule. But after tho repeated defeats, by tiis father and Limself, of two successive rajas of Labore, the conqueror assunned the right of nominating
the governors of the Punjab as a dependency of Cibazni, a right which continued to be exercised by deven of his successors. And for a time, in the reign of Masaud II. (1008-111-1), Laliore was the place of residence of the Ghaznavi sovereign. Certain silver coins of Mahnuid's reign bear inscriptions in Sanskrit claracters as weli as Arabic, betukening sovereignty in India. They are dated 418 and 119 A.us, the two years inmediately following his last visit to the Punjab, and are struck at a place called by his name, Mahmudpur, suppwised to be Lahure. There are also copper coins struck at Lahoro (now retaining legible dates) bearing Mabnúd's name and the calijh's, in Arabic characters only. Malmúd's coins are numerous and historically important. They were issucd from mints at Nisábur, Hirit, Ghaznah (a common alternative form of the nane), Farwin, aud Balkh, besides Malımúdpur and Lalore, just mentioncd. Mahmud died at Ghazni in 1030, the year following his expedition to Persia, in the sixty-first year of his age and thirty-third of his reign.
Miahnid stands conspicuous for his military ardom, liis ambition, strong will, ןerseverance, watelifulnuss, and cuergy, combined with great courage and unbounded self-relinace. But his tastrs were not exclusively military. His love of literature bronght men of learning to Chazni. His açuaintance with Noslem theology was recognized by the learned doctors. Mahmid is accused of avarice. It bas been said that the prospect of booty was as strong a motive power in these sepeated invasions of lulia as his love of military glory and desire to shinc as a champion of the faith. An illustration commonly given of his want of liberality is his treatment of the poet Firdonsi. Delighted with a portion which was read to him of the poct's metrical romance matrating the deeds of the early kings of Persia, Malnnuid lresented hinu with a thonsand dinntus, one for each couplet, with an impliel promise, or at least expectation on the part of the anthor, of payment on the sume scale for the rest. The completed Sháh Avimakh, jresented in due course, contained no jess than sixty thousand couplets, and the reward this time was given in dirlicms instead of dindirs. Firdonsi retired in disgnst to his native place, Tiis, and satirized the sultan. At a later time, it is said, Nalmuid sent him the laryer sum; but the poet died just before it arrived. Malmuid had the general reputation of giving liberal and discerning ellcourarement to learned and literny men. Anong those who took up their abode at Ghazni in his time, the most noted, after Firilonsi, were the poet Unsmi of Dalkh, whose complositions were largely flevoted to the praise of tho sultan Mahmid ; another poet, As.juli of Merv, who wrote a grand ode on the Somath expedition ; El Ctthi of Khorisin, author of the Killib-i- Yannime, a history of Suluktigin and of Malminil (to about the midlle of his reigu); and the acconylished historian, Abú Rilhan, culled All lirinin, antlor or the Tarikht al Hind, as well as of a number of scientific works. 'The suitan established large educational institutions at Glazani
Mahmuid also foume time to bestow attention on other arts of pence, and did wot neglect his capital and the country a:omind. Large sums were devoted to implortant pmblic works. The building of the great Jama Masjid of Chazni is described by El Utli in admiring terms. A stlendid palaco which yalumíd built induecal wealthy nolles at Gliazni to erect great manisions for themsclves. Two fine towers or minarets at Chazni, 140 feet in height, hearing Salmind's name (thongh one is said to have been built by his successor) have attracted tho attention of trayellers. They are of a renarkable construction, the lower pait with a zigzag or starshapeil outline, the upper fart rotul, like tho thisi and fourth stories of tho Kimb Minar at Delli, built two centuries hater. Like the Kuth pillar tuo, they are isolated, and may, like it, lave served ns the miniarets for a serarate mosquo or mosyus. The dann called the Band-i-Siltein, which Malmuil constructed to Form an artifieial lake for irrigation, aplyears to have been a really great and substantial work.
Malnoúd, besides being markell by smaill-por, haid an iill. favourcd countenance, and knew it. Courtiers met his allusions to his personal appearance by tho familiar complimentary remanks. about in ward graces moro than counterbalancing outwad defeels. Ho hiniself is snid to have obsetvel, after looking in the glass, that he saly so many faults in himselt he was rady to cxctuse those of uthers.
Maluniu's tomm stanus in a garden a short dist nce from Ghazni, called Ransat-i-Sult dinc ("the sultan's tomb," or "garden "-the word means both). On eno of the minarets is an insicription which gives all his titles. On the massive tombstone within the building ho is nameal more brietly Nizim-el-din Abn'l Kisim Malmmid, son of Suluktigin. He was succerded by his son Muhammad, who wa soon dispriaced by his more vigurons brother Musiud

The principal listories of Mahmúd's reign are- Kiláb-i- Tament Utbi); Tarikh-uss-Subukifoin (Baihaki); 7 abakdl i Nasiri (Minháj el-Sirij); Kauzat-qes-Safa (Mir lihond); Mabib-us-Siyar (Khoudamir). Seo Elliot, History of India; Elphinstone, IIistory of Tndia; Jour. Roy. Als. Soc., vols, ix., xvii. ; Jour. As. Soc. Jingal, rol. xii. ; As. Iics., vols. xri., xrii.
(R. W"L".)

MAHOGANI, a familiar dark-colonred wood largely used for houschold furniture, and supplicd by a large treo indigenous to Cemtral America and the Antilles. It mus originally receired frou Jamaica; 521,300 feet were exported fron that island in 1753. Sivielenia Mahogani, L., is the solo species of the genus of the order Meliacere (Benth. and llook., Gen. Pl., i. 338). It bears imparipinnate leares, like those of the ash, and panicles of small pentamerous floters with 10 monadelphous stamens. The fruit is a pear-shaped woody capsule, with many winged secds. The dark-coloured bark has been considered a febrifuge, and the seeds wero uscel by the ancient Aztecs with oil for a cosmetic, but the most valuable product is the timber, first noticed by tho carpenter on board Sir Walter Raleign's ship in 1595 , for its great beanty, hardness, and durability. Dr Gibbons bronght it into notice as well adapted for furniture in the early part of the 18 th century, and its use as a cabinet wood was first practically cetablished by a cabinetnaker named Wollaston, who was employed by Gibbons to work up some mahogany brought to England by his brother. Siace its introduction no wood has been more generally used for cabinet-making purposes, and none possesses like advantages of combined soundness, large size, uniform grain, durability, beauty of colour, and richness of figure.

In the trade the rood is generally classified under the two heads of Spanish Mahogany snd IIonduras Mahogany.or Baywood. The former comprises the rich, solid, and heary yarieties, susceptible of a high degree of polish, and frequently showing rich mavy figuring, in which case the wood is esormously enhanced in vaiue, sud nscd only in the form of vencers. Under the name of Honduras mahogany or bayrood is cmbraced the light open-grained aud plain classes of mahogany, uniform in colour, and valuable for tho ease with which they can bo trorked for an endless variety of useq where sound straight timbcr, free from all tendency to warp, is required. By importers, however, several classes of mahogany are recognized. The original Spanish mahogavy is the produce of the island of San Domingo, whence only small supplies now come, aud these mostly in logs of not more than 8 to 10 feet in length by 12 or 13 inches in thickness. Cnba mahogany is in richness of Ggure and other properties little inferior for ornamental purposes to San Domingo wood, while it possesses the advantago of being obtained in logs up to 35 feet long and 2 feet square in cross section. Squared Honduras logs are sometimes obtained 40 feet long and 2 feet thick, and, although the wood is generally plain in character, richly figured logs are occessionally got. It appears that the Honduras wood obtained in the north, near the Mexican boundary, is, much more riçh, denso, and sulid than the soft swamp-grown timber, which commonly goes by the name of Honduras or baywood. In Mexico the mahogany tree attains its greatest dimensions, and thence logs squared to 40 and even 48 inches are sometimes obtained, whilst the common size of logs varies betreen 15 inches and 3 feet. The Mexican wood is cut into lengths of from 18 to 30 feet, for convenience of shipment, and, while in general the wood is plain and somewhat soft in the core, the produce of some prorinces, Tabasco especially, is firm, solid, and not unfrequenily richly figured. Occasionally the wood which has been floated in tropical seas is found to be badly "wormed" or attacked by marine borers. The cutting, squaring, and shipment of the wood in the tropical regions which are its home are conducted under circumstances of great difficulty. "The tree has recently been introduced into the north-west prorinces of India under rery farourable conditions, and its successful cultivation there is likely to prove a matter of considerable economic importance. Mahogany is included smong the secoud-class woods in Lloyd's list for ship-building purposes ; it is a good dcal employed in internal joiner work both in ships and hooses; it is a favonrite turnery wood, and is equally preferred by wood-carvers. The imports of mahogany into the United Kingdom during 1831 were 42,412 toms, of an estimated value of $£ 390,418$, fully one-half of which came from Mexico.

## MaHOMET. See Mohamed.

MaHONY, Frasicis (1804-1866), "Father Prout," Roman Catholic priest, scholar, journalist, song-writer,
and humorist, was born at Cork of a respectable middleclass family in 1804. His classical education was chiefly obtained at a Jesuit college at Amiens, and nfter studying theology at Paris he received clerical ordination, and served in Switzerland and Ireland. He theu came to London, and officiated for same time in the chapel of the Bararian Legation. While there he fell in with the coterie of wits and men of letters who were then engaged on Fraser's Mragazine, and, soon finding their society and pursuits more congenial to him thau those of the Romish priesthood, he, about 1831, began to contribute his celobrated Prout papers to Fraser. These consist principally of translations of well-known English bonge into Latiu, Greek, French, and Italian verse, which ho humoronsly represents as being the true originals from which the English authors had merely plagiarized them. The songs of France, and those of modern and ancient Italy (including among the latter many most felicitous renderings of Horace's odes), were then given in English versions, accompanied by a running commentary full of queer lumour and often acnte criticism. Prout's translations have been universally admired for tho extraordinary command which they display of the various langnages into which his renderings are made, and for their spirit and freedom both of thought and expression. Perhaps, however, the wonder at his polsglott learning has led to less attention thani is deserred being paid to the remarkable excellence of many of his English versions of French and Latin odes. In happy abandon they are often almost unequalled, and most of them have all the nnfettered character of original compositions. It might have been expected that with his great gift of poetical expression he would have left behind him more of what was exclusively his own. What he has given us 10 this line tends chielly to show that with all his sarcastic and cynical wit his genius had also its tender, serious, and sentimental side. His "Bells of Shandon" have always been greatly admired; and "The Mistletoe," "The Redbreast of Aquitaine," "The Lady of Lee," and the "Legend of Arethusa" are not without a certaia 日reetness and beauty. In 1846 Mahony became "own correspondent" at Rome to the Dai'y News, and his letters from that capital gave very virid picture3, and contain much valuable and interesting information, of the first years, so full of liberal promise, of the reign of fius I.I. The last twelve or fifteen years of his life were spent at Paris, from which he supplied the Globe with a series of piqnait letters on the incidents of the day. Hia death took place in May 1866. Mahony mas not less distinguished as a conversationalist than as a writer. He had great stores of very various knorledge, had seen much of the world, and hud a quick power of repartee and no end of sharp cynical wit. It is difficult to suppose that he conld ever have been in his true place ss a priest of the Roman Catholic Church. Bohemian вs he was, however, he never separated himself from it, or seems to hare lost his attachment to it; and it is creditable to his character that, though living much umong scorners and indifferentists, he mould never snffer injurious reflexions either upon his charch or upon Christinnity to pass rithout sharp rebuke.
The Religues of Father Prout were collected from Frascr's Magazine and published in two handsome volurnes in 1836, a comsiderably enlarged edition appearing in 1860 . A biographical notice of him by his friend Mr Sheehan was prefixed to the Bentley Ballads; aud many additional details were given, with a considerable amount of his fugitive work contributed to the Daily Nicuts and the Globe, edited by Mr Blanchard Jerrold, in the Final Reliques of Father Prout, published in 1876.

MAHRATTAS. The Mahrattas inhabit that portion of India which is known by the ancient name of Mahàrâshtra (Sanskrit for the great kiagdom or region). This large tract, cxtending from the Arabian Sea on the mest to the
satpua mountains in the north, comprises a good part of western and central India, including the modern provinces of the Concan, Klandesh, Berar, the British Deccan, part of Nagpur, and about half the Nizam's Deccan. Its area amounts to about 120,000 square miles, and its population to about 12 millions of souls, or 100 to the square mile. The population bas increased greatly in the 19th ceatury under British rule; but there had been much decreaso during the 17 th and 18 th centuries owing to war and devastation. Frightful depopulation occurred from the famine which was at its beight in 1400 A.D., and was called the Dûrga Déví or the goddess of destruction. Much mortality was also caused by famine between I801 and 1803. There was probably a period of high prosperity during the first centuries of the Christian era, under a number of petty indigenous sovereigns, among whom these wide territories had become parcelled out before the first iavasion of the Decean by the Moslems about 1100 .

The etymology of the word Mahratta (or Marhatta, as it is written in the vernacular) is uncertain. The name does not indicate a social caste, or a religious sect; it is not even tribal. It einbraces the people of all races who dwell in the region of Maharâshtra, both high-caste and low-caste Hindus; it is applied, of course, to Hindus only. Thus there are Mahratta Bralımans, next Mahratta Kumbis or cultivators, and Mahratta Rajputs or warriors, though the latter have but a small infusion of real Rajput blood. The Mahrattas, then, are esseotially Hiadus in religion and in caste ordinances, not differing in these respects from the IIindus in other parts of India. They lave a language of their own, called the Mahratti, a dialeot of the Sanskrit, -a copions, flexible, and sonorous tongue.

But the Mahrattas have always been a separate nation or people, and still regard themselves as such, though nowadays they are almost all under British or Mohammedan jurisdiction; that is, they bolong either to British India or to the Nizam's Dominions. A few states or principalities purely Mahratta,-such as Kolhapur and some lesser states clustering round it in the southern Deccan,-still survive, but they are under close supervision on the part of the British Government. There are indeed still three large native states nominally Mahratta, namely, that of Sindhia near the borders of Hindusten in the north, that of Holkar in Malwa in the heart of the Indian contiaent, and that of the gaekwar in Gujerat on the restern coast. But in these states tho prince, his relatives, and some of his ministers or emplayés only are Mahrattas; the nobility and the mass of the people are not Mahrattas at all, but belong to other sections of the llindu race. These states then are not to be included in the Mahratta nation, though they have a share in the Maliratta history, and are conceraed in the extrancous achievements of that people.

In general terms the Mahrattas, as above defined, may be described under two main beads, first the Brahmans, and sceondly the humble or low-easte men. The Mahratta Brahmans possess, in an intense degree, the qualities of that famous caste, physical, intellectual, and moral. They have generally the lofty brow, tho regular features, tho spare upright figure, tho calm aspect, the commanding gait, which miglit be expected in a race maintained in great purity yet upon a broad basis. In modern times they have proved themselves the most ablo and ambitious of all the Bralimans in the Indian empire. They are notably divided into two sections-the Concanast, coming from the Concan or littoral tract on the west coast below the Western Gbát mountains, and the Dishast, coming from the uplands or Deccan, on the east of the mountains. Though there have been many distinguished Dishasts, yet the most remarkablo of all have been Concunasts. For instance, the peshwas, or heads of the Mabratta confedera-
tion whicu at one time dominated nearly all India, were Concanast Brahmans. The birthplaces of these persons are still known, and to this day there are sequestered villages, nestling near the westera base of the Ghats, which are pointed to as being the ancestral homes of men who two centuries ago had political control over the Indian empire.

Apart from the Brabmans, the Mabrattas may be gene rally designated as Sindras, or men of the humblest of the four great castes intn which the Hindu race is divided. But, as indicated above, the upper classes among the Mahrattas claim to be Kshattriyas or Rajputs. They probably are aborigines fundamentally, with a mixture of what are now called the Scythian tribes, which at a very early time overran India. They have but a slight admixture of the Aryans, who victoriously immigrated from Central Asia and established the Hindu system.
These ordinary Mahrattas, who form the bacsoone of the nation, have plain features, an uecouth manner, a clownish aspect, short stature, a small but wiry frame. Their eyes, however, are bright and piercing, and under excitement will gleam with passion. Though not powerful physically as compared with the northern races of the Punjab and Oudl, they have much activity and an unsurpassed endurance. Born and bred in or near the Western Ghat mountains and the numerous tributary ranges, they have all the qualities of mountaineers. Among their native hills they have at all times evinced desperate courage. A way from the hills they do not display remarkable valour, except under the discipline which may be supplied by other races. For such organization they bave never, of themselves, shown any aptitude. Under civilized authority, however, they are to be reckoned among the good soldiers of the empire. In recent times they enter military serviee less and less, betaking themselves mainly to cultivation and to the carrying business connected with agriculture. As husbandmen they are not remarkable; but as graziers, as cartmen, as labourers, they are excellent. As artisans they have seldom signalized themselves. save as armourers and clothweavers.

Those Mahratras wao dwell in the extrenc west of Mahàrâshtra, within the main range of the Western Ghats, and in the extreme north of Maharâshtra near the Sâtpura mountains, are blessed with unfailing rainfall and regular seasons. But those who dwell at a distance from these main ranges, or among the lower or subsidiary ranges, are troubled with variable moisture aod uncertain seasons, frequently, too, with alternations of drought and of flood. Periodically they are afflicted by scarcity, and sumetimes by severe famine. They have within the last half century largely extended their area of cultivation. Their industry, which is chiefly agricultural, has grown apace. Their tendency is undoubtedly to increase in numbers; and, despite occasional depopulation from disasters of season, they have increased considerably on the whole. But in some districts, owing to the famine of 1877, and the sickness which ensued when excessive rainfall followerl the drought, the population has been stationary, while in others it has actually retrograded because epidemics and plagues of vermin were added to the misfortunes of season.

Among all tho Mahrattae the land is usually beld on the tenure technically known as "ryotwari." This tenure is now established under the British Government by surveying and assessing operations comprehended under the official term "scttlement." It practically means peasant proprietorship. Tho proprietor, or ryot, is a cultivator also. His holding may be on the average 20 or 30 acres, divided into small fields. Of these fields he cultivates some, himself working at the plough, and his family weel. ing and cleaning the soil. He will also bire labour, and thus the farm-labourers become a considerable class. He
mays to the Government direct the !ayd any whinh is
assessed on his holding for the long term of thirty years, so assessed on his holding for the long term of thirty years, so
that he may have the bencfit of his improvements. His property in the land is absolute ; it descends according to the Hindu law of inheritance; it can be sold or otherwiso transferred by private arrangement; it is pledged or mortgaged for debt, ond money is largely burrowed on its socurity. It is liable to sale for default in regard to land revenue ; and Government as a creditor bas the fret claim. T. Lus, as a peasant proprietary, the Nahrattas are in the best possible position, and have been so for nany years since the completion of the British settlenent. Their only fsalt is a disposition to live beyond their humble means. They hare thus been of late years led into ciebt, which has proiuced disputes betreen them and the money-lenders, ending bometimes in agrarian disturbance.

In the Concan there are some superier proprietors termed Khotes. With this and perhaps some other exceptions, notably that of Nagpur, there are not in the Mabratta country many large landlords, nor many of the superior tenure-holders whose position relatirely to that of the peasantry has caused much discussion in other parts of India. There are indeed many Mahratta chiefs still resident in the conntry, members of the aristocracy which formerly enjoyed much more wealth ond power than at present. They are sometimes in the position of landlords, but often they are the assignees of the land revenue, which they are entitled under special grants to collect ior themselvea instead of ior Government, paying merely a emall sum to Government by way of quit-rent. Under them the cultivators are by British arrangements placed in the position of peasant proprietors. The village con:munity has alxays existed as the social unit in the Mabratta territariss, though with less cohesion among its members than in the rillago communities of Hindustan and tio $\rightarrow$ Punjab. The ancieat ofices pertaining to the village, as those of the beedman (patel), the village accountant, de. are in wratien cader throughout the Mahratta country.

Tha Makratts peasantry possess manly fortitude under suffering anz misfortune. Though patient and goodtempered 2.7 the main, they have a latent warmth of temper, and if oppressed beyond a certain endurable limit thes would fieresly tarn and rend their tormentors. Cruelty nlso is an element: in their character. As a rule they are orderly "and lan-abidine. but traditions of plunder have been handed down so them from early times, and mauy of the:n rotain the predintory instincts of their forefathers. The neighbourhon? of dense forests, steep hill-sides, and fastnesses hard of access offers extraordinary facilities to plunderers for sereening themselves and their booty. Thus gang robbery is ant to break out, gains head with rapidity, and is supyressed riti: difficulty. In tine of peace it is kept under, but during war, or whenever the bands of civil order are loosezed, it becomes a cause of anxiety and a source of daiger. The women bave frankness and strength of character; they work hard in the fields, and as a rule evinse domestic virtue. Conjugal infidelity, however, is 3 t unknown among them, and here, as elsewhere in india, leads to bloodshed.

The そeasantry preserse a grave and quiet demeanour, bet they have their humble idens of gaiety, and hold their gataring3 on occasions of births or marriages. They frequestly beguile their torl with earols. They like the gossiping and bartering at the rural markets and in the larger fairs, whith are sometimes beld in strikingly picturesque localities. They are utterly superstitious, and will morship with hearty veneration any being or thing whose destructive agency they fear. They will even speak of the tiger with honorific titles. They are Hindus, but their Hinduism is held to le of a non-Aryan type. They are
sincercly derout in religion, and feel an awe regardine "tac holy Brabmans," holding the life aud tho person of a Brahman sacred, even though he be a criminal of the decpest dye. They of course regard the corv as equally sacred. There are two principa! secis among the nudern Hindusthose who folluw Vishma, and those who follow Sira The Nehrattas generally follow Siva and his wife, a dread godiess k:aown uoder many names. The Malratta war. ers, "Hur Hur Mahadeo," which used to be heard above the din of battle urging the soldiers to onset with victorious Elan, referred to Si\%a. All classes ligh and luw are fond of the religious festirals, the principal of rhiel., "the Dasserah," occurs in Oetober, when the first harvest of the year has been secured and the second crops sown. This has alwass been beld with the ntmost ponp and magnificenee at every centre of Mahratta wealth and power. The people frequently assemble in bowers and arbours cor. structed of leafy boughs to hear "kathas" recitcd. Thes: recitations are partly religious, partly also romantic and quasi-historical. After them national resolves of just re sistance or of aggressive ambition have often been formed

Apart from the Maliratta Bralmans, as already mertioned, the Malratta nobles and princes are not generally fine-looking men. Their appearance, notwithstanding je wel. lery and rich apparel, is still that of peasants. There certainly are some exceptions, but there is general truth in what was once said by a high authority to the effect that, while there will be something dignified in the lumbless Râjput, there will be something mean in the highest Maliratta. Bluff good-nature, a certain jocoseness, a humour pungent and ready, though somewhat coarse, a hot or even violent disposition, are characteristics of Mahratta chieftains. They usually show little aptitude for business or for sedentary pursuits; but, on the other hand, they are born equestrians and sportsmen. As a rule they are not moderate in liviog, and nre vot unfrequently addicted to intemperance. Instances of licentiousness and debauchery have always been found among them. They have generally sprung from a lowly orign, and they have been proud of this fact eren after attaining greatness. Fo: iastance, three Mabratta chiefs, each of whom established a large kiogdom-Sindhia, Holkar, and the gackwardeclared the lowliness of their birth. Holkar was the descendant of a shepherd; Sirshua boasted of haviog begun lifo by keoping his mater's slappers; and by his very title the gaekwar perpetuates the memory of his progenitor having tended the cor" (gae) Mahratta ladies and priaesses lave often taker a. prominent part 10 public affairs and in dynastuc irtrigues; in some instances their conduct has been of the highest type, in others their influence has been exertcd for evil.

Though they lave produced some poetry, the Mabratta: have never done much for Oriental literature. Nor have they been distinguished in industrial art. Their nrehi. tecture 10 wood, however, was excellent; and the teak forcsts of their conntry afforded the finest tumber for building and for carving. They had nlso much skall in the construction of works for the suppiy of dranking water on a large scale, and for irrigation.
On the whole the Ma hrattas will hardly be regarded by Europeans ns being among the most interesting of the Indian races. The admirable IIstory of the Mahrallas, by Captain Grant Duff (1826), may possibly awaken enthusiasm, as written under personal aurantages and with a liviog knowledge which will uever again be possessed by a historian of the later Mahratta times. At all ceents, a strange interest gathers itseif around the Maliratta history.
In the first place the Mahratta country is for the most part strategically important as well as highly picturesque. Some parta of the Decean are indeed almost irretrievably ugly. The strectches of low hill lave long leen disforested, and even laid bare of lesser vegetation, and the champaign tracts are treeless as far as the cyo cal reach. Still much of the Naliratta country lies in the bosonn
or rear the skints of mountains, The geolocieal formations may be popularly deseribed as consisting of trap, Lasalt, and indurated lava in magnifieent layers. The black precipiees, searped for thousands of feet, and striped with marks of the layers, are superb. The summits, though generally flat with horizontal outlines, are ofteu broken iuto towers and cones. The vapours from tho Arabian Sea are propelled by the south-west monsooa against these mountaia tops, and produec an excessive rainfall. Hence arise a luxuriint vegetation and the surprising spectacle (at certain seasons) of ascades tumbling down the jerpendicular flanks of the mountains. The foresta havo suffered during ages from wasteful eutting; but of late years a system of conservancy has been established, and nany great forests remain.
The mountains stand in the midst of a fertile and populous country; on both sides of them are rich valleys, cultivated plains, aumerous villages, and large towns. Thus insurgents or warriors aad here a complete military base, with sources whence supplics could be drawn, and stronghokds for organizing power or for securming refuge. This hill country las been regarded by strategists as one of the strongest, in a nilitary aense, to be found in India. It extends over nearly 5.00 miles from north to south, and Jas at least twenty fortresses which in uncivilized warfare were virtually impregnable if resolutely defendel, and which, though of eourse nnble to resist a scientific attack in these times, would yet prove difficult of approach. Sereral of these are surronnded with historic craditions. In former times there was no road worthy of the namo cross these mountains. No means of passage cxisted save steep rugged pathrrays for footmen and pack a nimals. Within the last generation the British Government lias, in Oriental phrase, lifted ap the veil of these mountains, piereing them with well-made roads and with railways. There are now seven of such roads, and two lines of railway open, a third being projected. Guns aud troops as well as goods and produce can now be moved up and down these onee impassable mointains.
It is the range of the Western Ghats whieb enablel the Mahrattas to rise against their Mohammedan conquerers, to reassert their Hindu nationslity against the whole power of the Mogul empire, and to establish in its place an empire of their own. It is often held that in India British couquest or ammexation sneceeded Mohammedan rule; and to a considerable extent this was the case. But, on the other liand, the principal power, the widest sovereignty, which the British overthrew in India was that of the Mahrattas.
During the earlier Moslem invasions in 1100 and in subsequent years, the Mahrattas do not seem to have made much resistance. They subnitted to several Mohammedan kings under the ehanging circumstances of those times. They were despised by their conquerors, and were ealled "mountaiu rats" in derision. It was against the MIohammedan king of Bijapur in the Deccan that Sivaji, the hero of Maliratta history, first rebelled ia 1657. Sivaji and his fighting officers were Mahrattas of humble caste, but his ministers wero Mahiatta Bramans. When the Magul empire absorbed that kingdom he defied the emperor. Ile imparted a self-reliant enthnsiasm to his countrymen, formed them into an arny, and organized them as a political community; his mountaineer infantry, thongh limited in numbers, proved desperately courageons; his cavalry was daring and abiquitous. Having once overcome the ILindus in almost all parts of India, often alter leroic resistance, the Moslems had not for centuries met with any noteworthy uprising. Sivaji, horrever, planaed their expulsion, and before the end of his restless life made mueh progress in the excention of that design. The new Mahratta stato which he founded was maintained under rarious ricissitudes after lis death. Still Mahratta resistance, oneo aroused by him, was never extinguished, and the imsperial resources were worn out by ceaseless though wam efforts to quell it. Tho great Mognl emperor's impoveriched and enfeebled suceessor was fain to recognize the Mahratta state by a formal instrument. The Mahratta king, a descendant of Sivaji, was a roi fainénut, and the arrangement was negotiated by his Brahman minister, whose official designation was the peshrra. The office of peshma then becane hereditary in the minister's family; sod grew in importance as tho Mahratta kingilom rose, while the ling sunk into the condition of a mppet. Thus the Mahratta power weas consolidated throughout nearly the wholo of Maharashtra uader the Erahman péshwa as virtual sovereign, with his eapital at Pooua, while the titular. Mahratta raja or ling had his coust at the neighbouring city of Sattara. Despite his politienl importanee, however, tho raja was still venerated as the descendant of Sivaji.
Then sereral ehiefs carred out principalities of their orn from among tho ruins of the Mlogul empire. Thus Raghoji Bhôncla established himself in the traets lying uuderneatia the southern baso of the Satnura range (namely, Nagpur and Berar), overrans Orissn, and entered Bengal. Dammaji Gaekwar descended from tho Western Ghits unon the alluvial plains of Gujerat around Baroda; Takaji Holkar subdued the uplands of Malwa beyond the Vindhys range on tho north bank of the Nerbutda ; ant Madarji Sindhia obtaingel possession of larco tracts immediately south of Agrasand Delhi, marched into IIiadustan and became virtually tho
master of the Mogul emperor hinself. Princes of Siraji's onn family founded a dominiou at Tanjore, in the rich delta of the Kaveri south of Madras.

But these principalities, thongh really independent respecting internal administration, and making war or peace with their neiglo. bours aceording to opmortnnity, yet owned aflegiance to the pèsliwa at Poona as the head of tho Nlabratta body. On stato oceasions heads of prineinalities nould risit Poona by ray of acknowledging the sujeriar position of the pesbra. On the other hand tive pestiwa was eareful to obtain the sanction of his nominal sovereign at Sattara to every important aet uf state. Thus a confederation was formed of which the Brahman peshwa or head was at Poona, governing the adjacent territories, while the members, itlonging to the lower castes of Mahrattas, were scatiered throughout the continent of India. Such was the Mahratta empire which supplanted the Mogul empire. The Mahratta porer grew aud prespered tilt it embraced all India with eertain exceptions. Its culminating point was reached about 1750 , or about a century after Sivaji first rebelleel agniast his Mohammedan sovereign.

Its armies deew soldiers from all parts of India. The infantry was not of good quality; but its cavalry was really an enormous foree, mmbering fully a handred thousand in all. The horsemen were splendidly audacious in riding for long distances into the heart of a hostile country, without support, stribing some terrific blows, and then returning rapidly beyond reach of pursuit. They could truly boast of having watered their horses in every Indian river from the Kaveri to the Indus. If attacked, however, in a competent manner they would not stand; and afterwards, ia confliet with the British, whole masses of them behaved in a dastardly manner. As their ambition grew, the chiefs began to organiza their troops after the system learnt from the Enghsh and French, In this way several Frenehmen-De Baigne, Perron, and othersrose in the Mahratta service to a position dangerous to the British. But the new system was unsuited to the Mahratta genins; it hampered the meteoric movements of the cavalry, which was obliged to manceuvre in combination with the new artillery and the disciplined battalions. Mahratta elders hence uttered predictiona of military disaster which were in the end more than fulfilled.
While the Mahrattas collected vast. quantities of treasure and valuables, the ordinary revenue of the confederation hardly exceeded ten miltions sterling annually. Large smounts, however, vere drawn by fendal tenure-holders, whieh never appeared in the publie aceounts. The area and population under the dominion or the control of the confederation could hardly bave been less than 700,000 square miles and 90 millions of souls.

The rapid and amazing suecess of the Mlaliratta confederation renderel it the largest Hindu sovereignty that ever existed in India. But it lacked the elements of tine greatness. If wa founded by plundering expeditions, and its subsequent existenco was tainted by the baseness of this predatory origin. With the exception of the peshwas, its chiefs were little more than freebooting warriors, for the most part rude, violent, and unlettered. Their custom was to offer their neighbours or vietims the alternative of paying "ehauth," that is, one-fourth of the revenue, or being plundered and ravaged. Thus the Mahratta chonth came to lave an ominons signifieance in Indian history. Desultory efforts were made to establish a ciril government; but in the main there was no administration formed on statesmanlike principles. The pèshwas, on the other band, as Brahmsns, were men of the highest edueation then possible in India. But they were absorbed by the direetion of military and political comhinations, and by intrigues for the preservation of their own potrer ; and, even allowing for all this, they failed to evince the civil capacity which might lave been antieipated. White several displayed commanding abilities, and somo possessed many virtues, one only attempted to conduet ma administration in an enlightened manner, and ho died prematurelt.
There wero at the same time powers existing in India to keep t'is Malırattas ia check, and it has just been mentioned that some parss of Iadia rere excepted from their depredations. The Englief power was rising at ćaleutta, Madras, and Bombay. The nascert Sikh power prevented Mahratta incursions from being permanens: snecessful in tho Punjab. As the Magul empiro brare ur, some separato DIohammedan porers rose upon its ruins. The nizans of the Decean established himself at H:ulcrabad, comparatively neas tho headquarters of tho peslexe. Hyder Ali was proclaimed sultan of Mysore in tie south. Ahned Shah Abdali burst upon India from Argnanistan. The Mahrattas bravely encountered him at Panipat near Delli in 1761, and were decisively defeated. Tho defent, howrever, did not essentially shake the Mahratta empire. It wos collision with the English that broke that wonderful fabric to pieces.

The first collision with the English oceurred in 1;80; it arose from e disputed suecession to the peshwaship. The Englisly Government at Bombay supported one of the claimants, aud the affair became eritical for tho English as well as for the Mahrattas. 1t was at this conjuncture that Warren Hastings displayed his political genius and rendered sigasl serrice to his compery.
 prave difficultiee with some of the principal nembers of the Mahratta confederation, namely Sindhia, Holkar, and the Bhensla raja of Nagpur. Ho therefore placed himself under British protec. tion, and this lod to the great Jahratta war, in which the Marquis Wellosley displayod those talents for military and political combination whiah have rendered him illustrious. It was during the campaigns which ensned that Gencral Arthur Wellesley defeated Holkar nnd the Bhonsla raja at Assayc, and General Lake won the victories of Farrukhabad, Dig, and Laswari over Sindhia and Holkar. The threc confederates, Sindhia, Holkar, and the Bhonsla, concluded peace with the British Government, after makiug large sacrifices of territory in favour of the victor, and submitting to British contral politically. Thus the Mahratta cmpire was broken up. 1t was during these events that: the British won the province of Orisss, the old Hindustad now known as the North-Western Provinces, and a part of the western coast comprising Gujerat.
The third callision came to pass between 1816 and 1818, through the conduct, not only of the confedcrates, but also of the peshura himself. During the previous war the peshwa had been thic protege and ally of the British; and since the war he had fallen more completely than before under British protection and guidance, British political officers and British troops being stationed at his capital. He apparently felt encouraged by circumstances to rebel. Holkar and the Bhouslas committed hastile acts. The predatory Pindaris offered a formidable resistance to the British troons. So the peshwa ventured to take part in the combination against the British power, which eveu yet the Mahrattas did not despair of overthrowing. After long-protracted menaces, he attacked the British at Kirki, lut failed utterly, and fled a ruined man. Ultimately he surrendered to Sir Jolin Malcolm, and was sent as a state pensioner to Eithûr, near Carnpur. Thus the last restige of the Mahratta empire disappeared. The British, howerer, relensed the raja of Sattara from the captivity in which he had been kept during the peshrra's time, and reinstated him on the throne. Owing to these events the British Government became possessed of the Concan and of the greater part of the Deccan.

It remains to mention briefly the fortunes of each remaining member of the once imperial confederation. The principality of Sattara was held to have lapsed in 1849 by the death of the raja without lineal heirs, and was annexed by the British Government. The Bhonsla raja of Nagpur and Berar was obliged to surrender Berar to the nizam, as the ally of the British, in 1803. Berar then remained under the nizam till 1854, when it came under Britisl2 administration, though it is still included in the nizam's dominions. The raja of Nagpur dicd without lineal heirs in 1853, and his territory, being held to hare lapsed, was mnnexed to the British territories. The house of Holkar has, during the last sixty yesrs, remaived faithful to its engagements with the British Government, and itg nesition as a feudatory of the empire is well maintaioed. In Sindhia's territory, by reason of internal feuds, the British had to undertake measures which were successfully terminated after the battles of Maharajpur and Panniar in 1843. But on the whole the house of Sindhia has remained faithful Sindhia himself was uctively loyal during the war of the mutinies. The guekwar gradually fell under British control towards the close of last century, and his honse has never cngaged in hostilities with the British Government. The gaekwar Khande Rao signalized himself by loyalty during the war of the mutinies. His successor, Malhàr Rao, has recently been deposed by the British Government on account of gross maladministration. The ex-pèshwa lived to old age at Bithorr, and died in 1851. His adopted son grew up to be the Nana Sahib, of infamous memory, who took a leading part in the war of the matinies.
(R. T.)

MAHZOR (רְMp), or Marazor, ${ }^{1}$ as some write the word (from the root in, to to go round, to return), signifies a cycle. The term is used by the Jerra in a threefold sense :-(1) astronomically, as Mahzor Fiatan for the cycle of nineteen years, Mahzor Gadol for that of twenty-eight years, Mahzor Gadol lallebanah ${ }^{2}$ for the Metonic cycle; (2) liturgically, for the "Larger PrayerBook," whether in its narrower or its wider meaning (see below); and (3) ritually, for a book containing religious laws and directions, as, for example, Mahzor Vitri by R. Simhah b. Shemuel of Vitri-le-Français, Malzor Rabbenu Tam by R. Yánkob b. Meir of Rameru, \&c. Is the first sense the plural is either Mahazoroth, ${ }^{3}$

[^124]or Mah:orim, ${ }^{4}$ or Mahasorin; ${ }^{5}$ in the second and thira it is exclusively Mahzorim. As most ancient prayerbooks contain more or less fully elaborate "tables," cxlibiting calendar matter, in coubexion with the fixing of feasts and fasts and of the lescons from the Pentateuch and the Prophets, we cannot be in doubt as to the true canse of the application of the word Mahzor to the "Larger Praycr-Book." It is not applied because it is the equivalent of the Syriac ?udra, as some think, but simply because Afalzor is the equivalent of the Grock cyclos (кúкスos). ${ }^{6}$

The Mfahzor, meaning prayer-book, is capable of division from different points of view. Aecording to ita contents We may divide it into two parts,--the Smaller and the Larger. The Smaller Mahzor containg the ordinary prayeris, together with the poetical insertions and the lessons from the Pentateuch and the Prophets used on the Vamim Noraim, or "Awe-inspiring Days" (i.e, New Year and the Day of Atonement), and those used on the lamim Tobiön, the three principal festivals (Passover, Pentecost, and Tabernacles). The Larger Mahzor is, indeed, the only one which really deserves this name, since it embodies the ordinary prayers, together with the poetical insertions for the whole year, and the lessons from the Pentateuch and the Prophets for all feasts and fasts and the other extraordinary occasions. According to its various "uses" the Mahzor may be divided into the Rabbanite and the AntiRabbanitc. The Anti-Rabhanite Mahzor comprises the Karaite, ${ }^{7}$ used by the so-called Karaites, or Scripturalists, inhabiting Russia (especially the Crimea), Galizia(Austrian Poland), Egypt, Palestine, \&c., and the Scmi-Karaite, adopted by the so-called "Reformed Jems" of England, in reality the "Congregations of British Jerss" of London, Manchester, and Bradford. ${ }^{8}$ The Rabbanite Mahzor may be divided into that of the Ashkenazim, the Sepharadim, and the Italiani. The Italian Mahzor, though embodying large Ashkenazic aud Sepharadic elements, is yet a distinct "use." It branches out at home into three subdivisions(1) the Roman, ${ }^{9}$ (2) the Neapolitan ${ }^{10}$ (now extinct), and (3) the Italian proper; ${ }^{11}$ and abroad into (4) the Greek Rites of Kaffa, ${ }^{2{ }^{2}}$ Crete, \&c. (Crete having rery early received * large influx of immigrauts from Fratee and Germany, but chietly from Italy), and (5) the Romanian, ${ }^{13}$ i.e., the "use" obtaining, among others, at Constantinople and other Byzantine cities. The Italians who, long before the year 1000 , had given Jewish learning and poetry, not merely to

[^125]8 For the sake of completeoess we may mention the term "Mahazor to," which occurs in the Massoreth. It is not so called, as some bare thonght, because the Mahzor Titri (or, indeed, aoy other Mahzor), ever gave the text of the whole Bible. The Mchatorto was a pattern codex of the Bible, and got its name siniply from its containing the cycle of the sacred Scriptures, -the Law, the Prophets, and the Hagio grapha. It (or a similar codex) is also sometimes called Mahazoro Rubbo, in contradistioction to smaller codices, which contained anly some part of the Bible. It should be also borne io miod that the Babylonian Jews ',(as we are distipetly told of those of Nehardea) used in olden times to read on Sabhaths in the synagogue not merely; as noradays, the Pentatench and portions of the Prophets, but, io the afternoon service, portioos of the Hagiographa also (T. B., Shabbalk, 116b).

7 See Daily and Festival Prayers, in 4 rols., Tenice, 1528-29, 4to in 3 rols., Kale, 1806,410 ; in 4 vols., Eupatoria, 1836,4 to; do., Viensa, 1854, 8 vo.
${ }^{8}$ Forms of Prayer, \&c., in 5 rols., London, 1841-43, ${ }^{\text {Qro. }}$
9 Soncinati, Soncino, Casal Maggiore, 1485-86, Bologna, 1540, bnth ia folio.
${ }^{10}$ Cambridge MS. Add. 491.
${ }_{11}$ Prayers, \&c., Venice, $1545,16 \mathrm{mo}$, \&c.
12 Cambridge MS. Add. 542.
${ }^{13}$ Prayers for the Whole Year, \&c., in 2 vola, Venice, 1517-49, folio; Constantinople, 1573-76, folio. The copies of both editiona in the Cambridge University Library are, so far as $\pi \mathrm{Cl}$ know, the finest to be found in England.

Germany, but to the whole Foman empire, received in the 14th century numerous immigrants from northern France, ${ }^{1}$ in the 15 th century from Spain and Portugal, and at all times from Germany. The "uses" of these imnigrants are practically preserved side by side with the native Italian to this day. The pure Sepharadic Ritual ${ }^{2}$ represents, in the first instance, of course, the "use" of the Jews formerly inhabiting Spain and Portuga?, who now form the minority in Ilamburg, Amsterdam, Manchester, London, Paris, Vienna, Budapest, Temesvír, Semlin, Bucharest, Venice, Rome, and some other Italian and Greek cities, as also in Canada and the Uniterl States, and the majority in India, Persia, Morocco, Leghorn, Corfu, Belgrade, all Bulgaria, Constantinople, Palestine, Egypt, South Arabia, and other parts of the Turkish empire, in the French possessions in Africa, and in the south of France. Some of these, although characteristically Sepbaradic, are distinct enongh to claim a ritual of their own, as those of "Catalonia," ${ }^{3}$ Algiers, ${ }^{4}$ Tunis, ${ }^{5}$ Tripoli, ${ }^{6}$ Tlemeen, ${ }^{7}$ Ceylon and Coctsin in India, ${ }^{8}$ the Comtat in France, ${ }^{9}$ and Provence, as a whole, in bygone days. ${ }^{10}$ Tho "use" of the Ashkenazim," i.e, of the najority of the Jews inhabiting Germany, the Austrian states, Hungary, Russia, Denmarls, Sweden, 'France, Belgium, Hulland, the British empire (India excepted), the United States, \&c., branches out into two rituals, the German proper ${ }^{12}$ and the Polish. This latter Iras some differences of use betreen Great Poland and Little Poland. ${ }^{13}$ The Gernan proper bad in times past the separate rituals of Worms and other cities in the ems sire, which are all now extinct. Those of Frank-fort-on-the-Main and of other towns are not sufficiently marked to deserve separate notice. It should, however, be mentioned that there are scattered everywhere, botlo at homo and abroad, "Reformed congregations," whose sëparate uses and practices are more or less an imitation of the "Temple " (Reformed congregation) of Hamburg. ${ }^{1!}$

[^126]Some of these have only introduced choirs, others have introduced irstrumental music, and others again have considerably curtailed nut merely the poetical insertions, but the ordinary prayers themselves, and have introduced bymns and prajers in the vernacular.
(S. M. S.-s.)

MAI, Angelo (1782-1851), cardinal, well known as the discoverer and editor of numerous ancient texts, was born of humble peasant parentage at Schilpario, a mountain village in the province of Bergamo, Lombaidy, on March 7,1782. For the excellence of his early education; received at Bergamo, he was indebted to a Jesuit priest named Mozzi, whom the suppression of the order had caused to settle in the neighbourhood. He afterwards accompanied Mozzi to a college at Culorno, in the duchy of Parma, where the Jesuits had been permitted to re-establish themselves; and there he entered the noviciate of the society in 1799. In 1801, after the brief which restored the Jesnits to the Two Sicilies had been granted, he was removed to Naples as teacher of classics in the college there. Next, after conspleting his theological studies at the Colleginm Romanom, he lived for some time at Orvieto, where he was admitted to priestly orders, and was engagerl partly in teaching and partly in the palæographical studies for which he had already manifested a strong partiality. The political events of 180 S necessitated his withdrawal from Rome (to which he had meanwhile returned) to Milan, where he assumed the functions of a secular priest, and in 1813, through the influence of Mozzi, was made custodian of the Ambrosian library. He now threw himself with characteristic energy and zeal into the business of carcfully exploring the numerous and valuable MSS. committed to his charge, and in the course of the next six years was able to restore to the world a considerable number of long-lost works. With the full approval of all concerned he now withdrew from his connexion with the Society of Jesus, and in 1819 he was invited to Rome as chief keeper of the library of the Vatican. Soon after his installation there he found the palimpsest from which he edited the De Republica of Cicero ; this, probably the most important work of bis life, was followed by the publication of a vast number of fragments of Creek and Latin fathers and historians. In 1833 Mai was transferred from the office of Tatican librarian to that of secretary of the congregation of the Propaganda; on February 12, 1838, he was raised to the dignity of cardinal. In this rank he successively discharged the functions of prefect of the congregation for the supervision of the Oriental press, prefect of the congregation of the council of Trent, and cardinal librarian of the Roman Church. He died at Castelgandolfo, near Albano, on September 9, 1854, bequeathing his valuable private library at lalf its estimated value to the Vatican, the proceeds to be applied to the relief of the poor of his native village.
To the period of his Milanese activity belong NT. T. Ciecronis trium oralionzm, pro Scauro, pro Tullio, pro Flucco, partes inditer (1814, from a palimpsest containing the poems of Sclutius); M. T. Ciecronis trium orationum, in Clodium ct Curioncm, de arc alicno Milonis, ile rege Alexandrino, fiagnenta inctita (1814, flom a MS. Sntaining a Latin translation of the Acla of the conncil of Chalcedon); M. Corn. Frontonis opera inectita, cam cpistolis, item inclitis, Antorini Pii, Mrarci Aurclii, Lucii I'cri et Appiani, recnon aliorum reterum fragmentis (1815) ; portions of cight speeches of Quintus Aurclius Symmachus, fragments of 1'lautus, the oration of Isxus Do hercditate Clconymi, the last mine books of the Antiquitics of Dionysius of 1Ielicarmassus, and a number of other cditorial labours. Mr. Tullii C'iccronis de Fepublicr que supcrsune nppeared at Rome in 1822 ; Scriptorum IFcterum nova collcclio, o Faticanis codicibus calita ( 10 vols. 4to), in 1825-35; Classicornm Auctoram Collctio c Vaticanis codicibus cllite ( 10 vols. $8 v o$ ) in 1823-38; Spicilegium Liomanum ( 10 vols. 8vo) in 1839-44; and Patrum nova Bibliotheca ( 6 vols. 4to) in 1815-53. Wis cdition of the celebrated Codcx Vaticanus, completed in 1838, but not publishad (ostensibly on the grount of inaceuracies) till four ycars after his death (1858, 5 vols. 110 ). is unsatisfactory and las been superseded
by the subsequent magnifiecnt clition of Yercellono and Cozza (Rome, 1868), which in turn leaves much to be desired. Gencmally sneaking, it may be said that the services rendered to seholarship by Anai (great though they were) were merely those of a lahorious and perscvering pioneer; as a textual critic he does not rank high, either for sagacity or for accuracy.

MAIA was the eldest and farest of the Pleiades, the seven daughters of Atlas and the Oceanid Plcionc. Iter name marks ber as the "fruitful mother"; and the seven sisteris have no individuality except as the mothers of famons familics. They were all born on Mount Cyllene in Arcadis, and are sometimes called mountain goddesses. In a cave of Cyllene, in the darkness of night, Maia became by Zens the mother of the god Ifermes. Maia bears one of the most characteristic names of the Phrygian mother, Cybele or Ma, the godrless whose hore is on mountains and in caves; and in a common class of rotive relicfs Hermes-Cadmilus is represented as a youth bearing a vase standing beside the throne on which Cybele sits. Maia was also an epithet of the Bona Dea, who is a form of Cybele, in Romc. Seo Conze, "Hermes-Cadmilos," in Arch. Zis, 1880 .

MAIDENHEAD, a municipal borough and raarkettown in Berkshire, Eagland, in the diocesc of Oxford, 22? miles from London, $13 \frac{1}{2}$ from licading, and 6 from Windsor. It was formerly called Maidenhythe, a wharf for timber and a wooden bridge across the Thames laving cxisted there from very early times. In 1353 Elward III. incorporated a guild to keep the bridge in repair. In 1400 the duke of Surrey and the followers of Richard II. held the bridge against the new king. Henry IV., and at mightfall made good their retreat. In July 1617 a meeting took place at the Greyhound Inu between Charles I. and his three children. The chureh, dedicated to St Andrew and St Mary Magdalene, was originally founded by Margaret of France in 1270 , and it was rebuilt on the same site in $172 t$; but in 1820 it was entirely taken down, and a new church was erected at the east end of the High Street. A churels dedicated to St Luke was erected in 1867, and enlarged in 1869 . The town contains a small town-hall, a large hall recently erceted for concerts and lectures, schools, almbouses, and Poman Catholic, Wesleyan, and Baptist places of worship. There are numerous charities for the education and maintenance of poor persons. The principal trades are in malt, meal, and timber. A fine stone bridge across the Thames was erected at a cost of $£ 20,000$ in 1772 , connectinct Berkshire with Buckingham. enta scenery around Naidenhead is extremely picturesque, and several noblemen's seats are in the neighbourhood. Population in 1871, 6173 ; in 1881, 8210.

MAIDSTONE, a municipal and parliamentary borough, and the county town of lient, England, situated almost midway between London and Dover. It lies principally on the eastern bank of the rirer Medway, the modern part spreading over the western slopes of a picturesque valley, which is intersected and environed by orchards and bop gardens. Although antiquaries have conjectured that Maidstone mas a military station of the Romans, few Roman remains hare been found in the meiglibourhood. The Saxon spelling of the name was Meluegestun, "Mredway's town." The manor, valued in Domesuay Book at $£ 35 \overline{5}, 10$ s., had from a very carly period belonged to the sec of Canterbury. Archbishop Boniface in 12G0 established a hospital bere for poor pilgrims, the chapel of Which, with modern additions, is again used for public worship. The parish church of St Mary, which had c-isted from Norman times, was demolished in 1395 by Archbishop Courtenay, who crected on the site thereof the prescnt church of All Saints; he also, at a short-distance, frunded a college of secular canons, the ruins of which are an iateresting specimen of 14 t $\downarrow$ ceatury architecture.

From the reign of Jolm until the Fieformation the areh. bishons had hore a residence, at which Stafford and Courtenay died; Lut the existing building linown as the palace dates chiefy from Elizabettan times. The reatory, with the manor, passed into lay hands at the Reformation: and, having been a perpetual curacy for three Luindred and twenty years, tho livirg became a vicarage in 186G. Nil Suints is one of the largest prish churches in the kingdom, and contains, besides many excellent monments, the richly carved sedilia and the twenty-cight oak seats used by the collegiate priests. The parish has, since 1837 , been divided into nine ecclesiastien districts, each with a church. The grammar school was founded in 15:9, ane endowed with the estates of the local Corpus Christi fraternity, then rlissolved; the hall in which the guild assombled still remains. Broadcloth and linen thread, introduced by Dutch settlers, were at one time manufactured here; but brewing and papermaking have long stiperseded these industrics. Of the barges trading on the JLedway, about sinty belong to Maidstone wharfingers. The river is crossed by a stone bridge of three arches, completed in 1870 . a museum, with puLbic library attached, was opened in 1858. The enclowed claritics yicld an armual income of $£ 3000$. Since the herinning of the 17 the century the Kient assizes liave generally been bekd at Maidstune. From Saxon times down to 1830 condemned malefaetors were executed, and all the great comity meetings were held, on Penenden Heath, a common situated about a mile north-east of the town, and recently enclosed by the corporation. The area of the mnnicipal horough is 4008 acres, of the parliamentary borough 4576 acres. T'Le population has steadily increased during the present sentury; in 1801 it was 5027 , in 1881 29,632.

With gencral history Maidstone has been intimately associnted. Wat Tyler broke into the prison, liberatel John ball, the rebel pracher, and committed other depreclations. Several of the leating inhabitants joined Jack Cade's rising. Sir Thomas W'aatt, who resided at Allington Castle, now an ivy-e?ad ruin a mile atul a half north of the town, raised the standard of rebellion at Maidstone on 25th January 1554. As a panishment for their complicety with Wratt, the burgesses were for the next five years derrived of their charter of incorporation. The rising of the Kentish royalists in 1643 collapsed at Maidstone, where, on the lst June, Fairfax, after five lours' oustinate fighting, eaptured the town at midnight. Anciently governei by a poitreve, Maidstone was first incorporated by Edward VI., and since the beginning of Elizabeth's reign it bas sent two representatires to parliament. Andiew Broughton, one of its mayors, as elerk of the court which tricel Charles l., read the fatal sentence to the king.

Sce lunssell's Mistory of Jraidstonc, and Poste's History of the C'ollege of $A 1 l$ S'aints.

MAIMANSINH, or MYMENSING, a district in the lieti-tenant-gorernorship of Eengal, India, lying between $23^{\circ} 50^{\circ}$ and $25^{\circ} 25^{\prime}$ N. lat., and $59^{\circ} 43^{\prime}$ and $91^{\circ} 18^{\prime} \mathrm{E}$. long., with an area of $0: 87$ square miles, is bounted on the $\mathrm{N}^{\top}$. by the Gitro llills, on the E. by Sylhet, on the S.E. by Tipperah, on the S. by Dacca, and on the W. by the river Jamuni, which separates it from Pabna, Bogra, and Tangpur districts. It is, for the most part, level aud open, covered with well-cultivated fields, and intersected by numerourivers. The Madhupur jungle is a slightly clevated tract, extending from the north of Dacea clistrict into the beart of Maimansinh, almost as far as the Brahmaputra; its average beight is about 60 feet above the level of the surrounding country, and it nowhere cxceods 100 fcct. The jungle contains abundance of sal, valuable both as timber and for charcoal. During the cold season the open parts of the jungle afford grazing grounds for cattlc. The only other clevated tract in the district is on the southern border, where the Susang hills rise. They are for the must part covered with thick thorny jungle, but in parts are barron and rocky. The Jamunt forms the western boundary of Jaimensiniu for a course of 94 miles. It is
navigablo for lare bouis throughont the year ; and during the raing season it expands in many places to 5 or 6 miles in breadth, overflowing a considerable portion of lowlying land. The Drahmaputra enters Maimansinh at its north-western corner near Kiarabari, and flows south-east and soutle till it joins the Meghnit a little below Bhairab Bizair. The gradual formation of chers aud bars of sand in the upper part of its course has diverted the main volune of mater into the present chancl of the Jamuna, which has in consequence become of much more importance than the Eralmaputia proper. The Meghni only flows through the south-east portion of the district for a short distance. The eastern and south-eastern parts of the district abound in marshes. The wild animals include tigers, lcopards, deer, bears, elephants, and an occasional rhinoceros. Small game is abmant.
The census of $187^{2}$ retnmed the population of Namansinh at 2,349,917 (males, $1,187,96: 2$; and fenales, $1,161,055$ ), - MLolammedans numbering 1,519,635; Jindus, 817,963; Cluristians, 124. Of alooriginal tribes the noot numerous are the Hajongs ( 24,936 ) and Giros ( 10,997 ). The semi-Hinduized aborigines number in all 205,592 , of whom more that one-half are Chantals $(123,262)$, the most numerous caste in the district, emploged as cultivators, fishermen, labourers, and meninl serrants. Among high-caste Hindus, Bráhnans number 33,414 . Five towns contain upwards of 5000 inhabitants :-Maimansinh or Nasiribid, 10,068; Jamalpur, 14,302 ; Kisorimanj, 13,637; Sherpur, 8015 ; and Dhanikhold, 6730. U'likandi or Bhairab Bizál, althongh with only a popthation of 1500 , is the most important commercial mart, "ith a large trade in jute and a well-supplied cattle-market. Rice, of which three crops are raised ammally, forms the staple food crop of the district. Other agricultural prodnets are wheat, oats, maizc, pulses, linsecd, mustard, til, indigo, tobacco, sugar-tane, pin, and jute. The last constitutes the chief conmercial staple. Mainnansinh suffers occasionally from blights and floods, but never to any serious extent. The chief imports are piece goods, raw cotton, wheat, betel nuts, chillies, sugar, and cattle; the cxports consist of rice, jute, indigo, reed-mats, hives, brass and copper utensils, cheese, ghe, \&c. Tobacco and muslins are also exported to a small extent. Besides a little inuslin, the only manufactures are coarse silk cloth, sitalpati inats, cheese, and ghk. A part from the rivers, means of communication are afforded by about 146 miles of good and 124 miles of inferior roads. Although the general revenue ( $£ 166,938$ in $1880-51$ ) has more than doubled in seventy-fire years, the land revenue lias remained almost stationary; in 1880-81 it was only $£ 75,226$, excise amonnting to $£ 23,652$, and stamps to $£ 43,680$. Education in $1572-73$ was afforied by 173 state-sup. ported schools attended by 6372 pupils, besides 71 unaided schools, with 2425 pupils. Except towards the ciose of the rainy season, the climate is fairly liealthy. The average ammal rainfill is 105 inches.

MAIMPOURG, Louts (1610-16S6), a French listorical writer, was born at Nancy in 1610. At the age of sixteen he entered the Socicty of Jesus, and after completing his theological studies at Fome he became a classical master in the Jesuit college at Rouen. Ifc afterwards devoted himself to preacling, but with only moderate success. After having taken some part in minor controrersics he therew himself with energy into the dispute which had arisen as to the Gallican liberties; for his Traitê historique sur les prérogatives de l'Église de Rome (1682) He was by command of Inmocent İI. expelled from his order, but rewarded by Louis XIV. with a residence at the abbey of St Victor, Paris, and a pension. He died on August 13, I686. His numerous works (exhanstively enumerated in the Biographeie Gencrale) include histories of Arianism, the iconoclastic controrersy, the Greek schisun, Lutheranism, Calvinism, and of the pontificates of Leo I. and Gregory I.; they are inere compilations, written indeed in a very lively and attractive style, but inaccurate tliroughont, and wherever matters of controrersy are touched on, specially untrustworthy.

MAIMONIDES (1135-1204). Among the great men to whom Mohanmedan Cordova ${ }^{1}$ has given birth-and

[^127]these are not a few-stre greatest is unquestionally Rab bents Mosheh b. Maimun - Haddayjan. ${ }^{3}$ Like the lives of so many great men, that of this "last of the Ciconime as regards time and the first of them as regards wurth" is surronnded by a halo of fables, some of which, though fictitious, are instructive in many respects, whilst others are telling in dramatic effect and touching in the eatreme. Some of these fables, however, are merely amusincr, whilst others are simply ridiculous. ${ }^{5}$ The present article confines itself to facts and a few criticisms founded on them.
"Rambam," or Maimonides, was born March 30, 1135 , and died at Cairo, December 13, 120t; consequently he did nut quite attain the age of screnty, ${ }^{6}$-a short space of life, when tre take into consideration all the work he did for his contemporaries and all the works he left 10 posterity.

Like many other great and conscientious rabbis of all times, who considered it a sin to make of religions learning a means of gaining bread, Maimonides adopted the medical profession. That he must have greatly excelled in it is not merely known by the medical works he composed, but is best testified to by the fact that, although a Jew (and the times and the country be lived in were certainly not more tolerant than ours), he held the lucrative and important office of court-physician to Saladin of Egypt.

Maimonides was master of Greek-Arabic philosophy, as may be seen from his Technical Terms of Laric, ${ }^{7}$ his Guide, and his other works. That he was a nathematicion and astronomer of no mean standing appears from the $M$ ramar Héibbur ${ }^{8}$ (calculations of the calendar, which he wrote at the age of twenty-Lwo), the Hilekhoth Fichlush Halodesh (in the book Zemannim of the Misknek Torah), and the commentary on T. B., Rosh Hasshanch. That le was a great Talmudist we know from his commentary on the Mishuch and his chef-d'cuvre the Mishneh Torah. That be was, as philosopher and theologian, a profound thinker we know from his Guide of the Perplexed and hns other works. To sum up in a few words the merits of Maimonides, we may say that, with all the disadvantages of the times in which he lired, he was the greatest theologian and philosopher the Jews ever produced, and one of the greatest the world has seen to this day. As a religious and moral character be is equalled only by a few and surpassed by none.

The works of Maimonides were composed by lim partly in Hebrew and partly in the vermacular Arabie,-a portion of the latter eing translated into Hebrew by himaself.

## 1. IF oriks composed by Maimonides in Hebrece.

1. Fishareh Gorah, i.c., the systemntic codification of the whole of the Jewish lavy, as it is to be found in the Bible, the Mishonth, Toscyhta, Mekhitta, Siphra, Siphre, both Talmudim, the Shecleoth, Malakhoth Gedoloth, the Response of the Giconim, the Hilchhoth,


[^128] fixed, and his father"s name with " $\mathrm{B}^{\prime \prime}$ (for son of) pretixed, the duws
call him liaidBali ; among Christians he is, more Graco, calleal Maimonides, from his futher's name Vamuen or Maimen.
${ }^{3}$ See end of the commentary on the Mishnah ("Ani Mosheh bar Maimun Haddayyan ").
*So Maimonides is designated by the fanous Enbonet Aluam or Y'edit'jah Mappenini Bederesi, i.e., of Beziers) at the end of his Dekinath Olan.
s Whoever wishes to know more of these fables may gratify his desirc, if ho linows Rabbinic, by reading Ibn Yaliya's Shalshelsth Hakikabatah; it he understands German, hy reading Jost's Geschichte ; and if he understands only English, by reading Benisch, Tico Lectures, S.c., London, IS47, 8vo.

6 Note at the end of the author's commentary on T. B., Rosh Hasshanah, by his grandson R. David (IIallcbanom, ii. p. 60).
7 This work was translated from the Arabic into Hebrew by R. Mosheh Ibn Tibbon, and printed for the lirst time at Venice, 1550 , 4to. The third edition (Frankfort-on-the-Oler, 170 t, tto) has a commentary by Mendelssolin.
${ }^{8}$ Sce the collection Dibere Walitamin (Mctz, 1\$49, 8vo), 13. 23. The translation is lig li. Mosheh Jon Tillums.
books, with a view to which fact and to the an :...or s namo (.Moshch) mbuiring and grateful posterity called it, from Deut. xxxiv. 12, Hayynel Ifahazakah, -a title which has colipsed, if it has not actually superseded, that giren to it by the author himself. Great las been the success of this work. If Maimonides has not succeeded in superseding by it tho Babylonian Talmud (as some think was his purposel). he has certainly succeeted (rrobably against his will) in making if it a second Talmul of babylon in the Tolmudic acceptation of this term. ${ }^{2}$ The Mishuch Torah has become an arena of endless, though happily bloodless, strife. It is to this doy a place of touruament for all Talmudists. The hundreds of folios on Rabbinic literature, writen since the author's time, constantly draw the Rambom, ${ }^{3}$ matiarally or artuficially, finto the discussions they contain. To clear up a difficult fambom, or to "unswer a Rambam," i.c., to remove an apparent difficulty in tha Mishnch Torah, is the great test of tho fituess or learuing of a rabbi to this day. Noreover, all Sepliaradim have received its dicla, thongh only cum grano, whilst the congregations of Arabia (as those of lemen and others) not only live absolutely occording to its teachings, bnt have actually neglected the study of tho I'almudim through it. The work itsulf is to be found in MS. in wumerous libraries (probably one of the oldest J]SS. lying in tho University Library of Canbridge, Add 1564). Printed editiuns are also numerons, some without "strictures" (Irassagoth) and without a commentary, others with tho "strictures" of the great rabbis of the little town of Pesquiers (in Provence), others with commentaries varying from four to eimht, and erea wore. The earliest edition, which has neither place nor date, appeared somewhere in laty, about 1480; the second at Sonciuo, 1490 ; tho thind at Coustantinople, 1509; tho fourth, fifth, sixth (with the Scpher Hammisroth, \&e.), and serentl editions at Venice, 1524, 1550, 1550-51, and 1574-75 respectively; the eighth (with the Antichristiona) at Amsterdam, 1702-3, all in folio; the most recent and incomplete edition being that of Leipsic, IS62, 8ro. The Mishnch Toreh stands, and has stood for centuries, even among non-Jews, in such respect that "parts of books" (Inalakholh) have been remilered into other laugunges, notably into Latin. Extracts from this work have been trauslated into English by the late H. H. Bernard of Cambridgo (Cambridge, 1832, 8ro) and E. Solowejezik of Poland (London, 1863, 8ro).
2. Commentary on the treatise of Rosh Hasshurrah according to the Bobylonian Talmud. We know from Maimonides himself that he commented on almost the rinole of the second, third, and fourth Scilarim and on ono treatise (IIullin) of the fifth Seder of tho Babylonian Talinud. But of all this none but his Fosh Hasshanah dias been preserved. This commentary is extant in four गlSS., one of which, lowerer, is a mere transcript, whilst two of the others are imperfect. The only edition existing (Hallebanon, ii. p. 61, \&c.) is from these imperfect MSS. The one perfect MS. copy known to us is preserced in the University Library of Cambridge: $\Delta d d$ 494).
3. Some of the allmerous letters ascribed to Maimonides. These are inextricably mixel up both mith letters written by him in Arabic and translated by athers into Hebrew, and with letters aduressed to him by others.
4. Religious poctry. There is a short liturgical piece (it is recited on the first day of New Year by the Arabic-speaking Jews of Algiers, Tunis, \&c.) which begins Eth Sha'arc fateon, and "hich bears the acrostic Aui Moshch biribli Maimon Hazah. It is an "Aleciah." But because there is a composition of the same 1:ature and beginning, but of greater length and by another author ('Abbas Yehudah Shemuel), this is, in contradistinction, called ivedah Kctannah. Sinco the name of Moshch, horerer, is common among all Jems and that of Maimon among those of the ifaghrib (seo Schiller-Szinessy's Cambridre Catalogice of the Hebrero Nanwerivts, i. P. 28, note 2), this little poem may, perhaps, belc.g to another (and inferior) rabbi of this name. If it really does belong to our Maimonides, tre have a key to his contempt for the 1 lturgical poets. ${ }^{3}$ Being a poor poet himself, he judged theu 3y his own merits, or rather demerits.

## 11. IVorkis composed by Maimonides in Arabic.

1. The commentary on the whole Mishnah. The author began this work whilst yet in Spain, continued it on his light through Morocco, and fioished it at his ease at Fostat (Cairo). The merit of this work is that the author explains therein the Mishnah in a rery lucid and brief way; and, having privately digested the Talmudical controversies regarding each paragraph, he gives the result

[^129]of it in the lecision of the Ilalatiknh. But this rork has also its demerits. (1) It is oceasionally incorrect in itself. (2) Being to most Talnudists accessible only in a translation, which they cannot gange, tho smallest clerical crror prajuces confusion. (3) Nor were all the translators equally qualitied for their task. Some were gooil Talmudists, but indifferent Aralic ssholars; some were good Talmudists and gooll Imbic scholara, but :1nt fine Ilebraists. (For the translators see Schiller-Szinessy, all supra, ii. np. 16, 17.)
2. The Scyher Hanmistoth is a preliminary to the author's masterpiece, the Mishuch Torah. This small but important work lias been twice translated, -first by R. Mosheh b. Shemuel b. Xelhudali ibn Tibbon (Tabbon 9), and e:zondly by R. Shelomoh b. Yoseph Ibs diyutb. The former translation is known by printed editions ${ }^{\text {a }}$ and the latter by MSS. Ibn Aiyúb's, though less known, is the more correct translation. There is a copy of it in the Uuiversity Library of Cambrilfe (Add. 676, 2).
3. But the most important and most learned and to us the most interesting of Maimonides's Arabic works is the Guide of the Pcrplexed (Dalilatn '1-ILiirin in Arabic, and Morelo Hanncbothim in IIebrew). It is the result of deep researcli in Bible add Dlidrash on the one hand and in Greek philosoply, as interpreted by Aristotle and his follorere, together with varions religious swstems, on the other. The prrpose of its comprosition and publication was to reconcilo Jewish theolory with refined heathen philosophy. Maimonides deservedly hefi Aristotle in rery high estimation; his traducers, howerer, said that he placed him in the Guide next to, if not abore, Mloses. Nu Monder, then, that religious Jews of a certain type in the nuthor's lifetime took offence both at the beok and thic author. But serious warfare broke ont only after Mainionides's death, which raged for more than a full century; and is nut entirely extinguished even at this day: Ilis followers, chicfly io lrovence at the end of the 13th and tho begiuning of the 1 thi contury, some of whom lad ouly cyes for the master's negations and jione for his atfirmations, declared the whole listory of the Dible to bo mere symbolism. Abraham was, according to them, the Morphe, Sarah the Hyle, and so forth. ${ }^{7}$ These absurdities were considered by the religious as highly irreligious, and provoked active opposition and even excommunication. These, in then turn, prevoked again the strong remoustrauce of the inoderate middlo party and the ultimato excommunication of the excom. municators by the excommunicated. But long before that time the Guide had been r,ublicly birned,--an act quite un-Jewish, but in mmson with au age which had nore faith than knowledge, and which, dwelling in darkness, hateel the light. People in our days camot understand this; they cannot understand the fierce opposition to the Guide, and much less the attachment to it. 'Ihey ask, Is this the great work of the great Maimonides? 'These ex. planations of the Scriptures we have long ogo outgrown, and the philosophy it contains is not rorthe mention by the side of that on Schelling, Fichte, and Hegel t. But the fact is thet, ii one wishes to form a proper estimate of this work, he must not cuerely read in. but earnestly study it. Then again, its contents must be riewed bistorically, i.c., both in connexion with the theological and philo. sophical systems of past ages and with the influence it has cxercised uninterruptedly from the time of its appearance down to almost our orn days. ${ }^{8}$ Isolated portions of it may have become antiquated. The symbolism of the Pentateuch and the meaning of the words of the prophetic books and Hagiograplia may be clearer to us than they were in the author's time, by reason of our discoveries in science, our progress in philology, and our knowledge of history. Our knowledge of Greek philosophy may be much greater thon Maimonides's mas, oring partly to our acquaintince with the original writings of Aristotie and others, accessible to Maimonides only through a trans. lation of a translation, and partly oring to our collation of numerous MSS., by which the errors are rectitied of the copies from which the first translators made their version,-a rectification by which parts of the foundation and of the superstructure of the Morch go down at one and the same time. But, when all this is considered, che ciulde still remains a great work,-a product. indeed, of the Middle Ages, but truly immortal. ${ }^{9}$

6 The first edition appeared without place and date, bot Constantu. rople about 1516, sto.
${ }^{7}$ Sce Schiller-Szinessy, Crialogu, \&ia, 1. p. 258, notes 1 and 2.
${ }^{8}$ Moses Mendelssohn, for example, became one of the greatest philosophers of bis day through studying the Jforeh
${ }^{2}$ This book was till within the last few years known only through the translation of $R$ shemuel b. Fohudah lun Tibbon, which has been printed numerous times, the editio princep being without place or date, but somewhere in Italy (Bologna !) beíve 1480. There is, bow. ever, also another translation from olden times in existence. It is by the famous R. Yehudah Al-IIarizi, and bas been edited by Schlossberg (i., Loudon, 1851 ; ii. and iii., Vienna, 1874 aud 1879 respectively. all in 8 vo ). The late S. Monk has, however, surpassed in correctness both his predecessors in his Guide des Egares, which contains tho Arabio original with a Fredch translation. It apneared at Paris 1850-66. iu 3 rol3. Ev6


4. Responsa and other letters (Tcshuboth Shacloth ve-Iggcroth). These do not beloag exelusively to Mainonides. Tho first edition came out without place or date, but at Constantinople abont 1520, folio.
5. Response (printed under the title Pcer Ifaddor) trauslated by R. Mordekhai Tammah, Ansterdan, 1765 , 4to.
III. Works composed by Maimonides in Arabic and transtatcel into Ifchrew by himsclf.

1. The commentary on the Mishnah of the whole Scder Tohoroth. As is well kaown, the translation of this Seder has been hitherto regarded as anonymous. But the writer of this article has shown in the Canbridge Catalogice, ut supra, ii. p. 17, note 2, the high probability, amounting to a moral certainty, that nobody else conld have been, and that Maimonides himself must have been, the translator of this Secter, which more thaa any other demanded the three necessary qualifications of a good translator.
2. The letter on tho sanctification of the mame of God (Iggercth IIasshomad, or Mraanarer Killdush Ifasshem ${ }^{1}$ ). Although the proofs which one can adduce for the translation by the author hianself of this treatise are not so telling as those in the case just mentioned before, the moral ecertainty is not less. The treatise details (1) how much a Jew may yield, and how much he must resist, if forced to embrace another religion, and (2) that Mohammedavisn. is not a heathenish religion. It is geuerally hehl, though not quite conclusively proved, that Mamonides wrote this treatise pro domo suc, he and his family having been themselyes foreed to embrace Mohamacdanism during tho persecution by Ibu Tannut. It ought to be borae in mind that the Jews generally look upon Christianity and Mohamnedanista as having each takeu a large share in their nother's (Judaism's) imheritance, and that, whilst tho former looked more for her nooral, the latter coveted her doctrinal possessions. Siace morality, however, consists more in negatives than positives, and siace doctrines are more openly chatlenged and opealy avowed than morals, the Jews hare always manifested less repugnance to profess, under $\eta^{\text {resssure, Mohamaned- }}$ anisns than Christianity.
There are other works boths in Hehrew and in Arabic exfant by our author. These relate mostly either to ritual alfairs, and consist of letters to various rabbis, and colle ges of rablis, notally in the south of France, to congregations in Yemen and elsewhere, or to medical matters, and consist of slort treatises, sueh as aphorisms, \&e., but do not come mp in interost to the great works already natacd.
(S. M. S.-S.)

MAINE, a province of France, was bonaded on the N. by Normandy, on the W. hy Brittany, on the S. by Anjou and Touraine, and on the E. by Orleanais; along with the northern part of Anjou it is now represented by the departments of Sarthe and Mayenne. Tosether with a portion of Perche which was conterninous with it on the northeast, and the conntship of Laval on the west, it constituted a great military government, of which Lo Mans was the capital. Beforo the Tonian conquest Maine was held by the Aulerci Cenomani, whence probably its name. Le Mans, a great city, was connected by tho conquerors by good roads witl Chartres, Orleans, Vendôme, Tours, Angers, Jublains (capital of the Aulerci Diablintes, inbabiting the western portion of Maine), and Sécs. Under the later Cæsars the Cenomani became almost independent, and joined the Armorican republic. Christianity was first introduced in the 3d century by St Julian, first bishop of Le Mans. Down to the time of Hugh Capet the bishops were the real rulers of the country; but in consequence of the incursions of the Northmen, who came up the Sarthe and Nayenne, the erection of strongholds became necessary, and IIugh Capet mado the comesthip of Maine hereditary in the person of Hugh I. Ono of the descendants of the Jatter, Count Herbert, haviag acknowledged the suzerainty of William, duke of Normandy, the people of Le Mans availed themselves of the absenco of the Conqueror in England to rise agaiust him, and were ultimately successful in gaining their freedon. Maine becamo united mith Anjon by the marringe of its heiress with Fulk of Anjon, father of Geoffrey Plantagenct. Heary II. of England, the son of Geoffrey, was born at Lo Mans. On the confiscation of the estatcs of King John, Maino passed to Philip, Augustus of France; by .Louis IX., the grandson of

[^130]Philip, it was handed over in 1245 to Charles, count of Provence, afterwards king of Naples; and in 1328 it was reunited to the domains of the crown by Philip of Valois, who was count of Mainc. It was again separated by his grandson Louis of Anjou, the brother of King Charles V. During the Hundred Years' War, Maine was a continual battlefield ; the English were at last driven out by Dunois, who took possession of Le Mans in 1447. In 1481, on the death of Charles of Maine, the last scion of the house of Anjou, Maine was again united to the French crown by Louis XI. The province suffered much during the wars of relision; its strong places were dismantled by Henry IV. and Richelieu. At the Revolution the troops of La Vendée entered Maine, and took possession of Laval, Mayenne, and Le Mans at the end of 1793 ; after they bad been defeated by the republican forces under Marcean and Westermann, their place was taken by the Chouans; and the pacification of the province, begun by General Hoche, was not completed until 1800. Towards the close of $18 \% 0$ the second army of the Loire, retreating before the Prussians, was reformed in Maine, and in the neighbourhood of Le Mans one of the last great struggles in the Franco-German war took place in January 1871.

## MAINE.

IIAINE is the mortheastern State of the Union. It lies between $43^{\circ} 4^{\prime}$ and $47^{\circ} 27^{\prime} 33^{\prime \prime}$ north latitude and between $66^{\circ} 56^{\prime} 48^{\prime \prime}$ and $71^{\circ} 6^{\prime} 41^{\prime \prime}$ longitude west from Greenwich. Its extreme length, north and south, is 302 miles and its greatest width is 285 . Quebec bounds it on the north, New Bronswick on the east, the Atlantic ocean on the south, New Hampshire and Canada on the west. It has an area of $33,500 \mathrm{square}$ miles; about 4,000 square miles are water. Maine was settled in 1621, and admitted as a State into the Union in 1890. It is the largest of the New England States.
Topogrophy.-The surface of Maine is much diversified. The Apralachian Chain crosses the northern part of the State, rmoning through Aroostook and Piseataquis eomnties, forming part of the boundary line, on the west, between Maine and tuehec. The mountains do not form a continuous chain, but appear in patches or isolated peaks. This is the "lake region" also of Maine. The coast is for several miles inland low, flat and marshy, usually unfit for cultivation. Noum Agamenticus, Mt. Desert and the Camden ILills are exceptions, and present a rugged shore. Mount Agamenticus is 670 feet ahove the sea level, Camden llills, on the P'enobscot River, abont 1,500 feet, and Mt. Desert 2,800 fect. The morthern portion of the State, from the Appalachian Mountains, slopes gradually down to the valley of the St. John River, which for some distance is the honntary between Mane and New lbrunswiek.

Coast.-Maine is deeply ent and indented by bays and inlets, which gave ber a coast line of $3,50 \%$ miles. The actual coast line, however, measured in a straight line wouk be 2at miles. This shoreland is remarkable, heing battered and frayed by sea and storms, and worn by Arcite currents, and as Dana suggests, by glaciers, which plane off the shore, making these innumerable ford valleys. At an arerage distance of about three miles from the main hand stretches a chain of more than 300 islands. This roast line in its stretch of sea line, its beauty of sea and land, of island, inket, bay, river and harbor, surpasees any other equally extensive portion of the Atlantic coast, and has been eompared by travelers of different countries with the fimed archipelago of the Aigean Sea.
These ishands, on the west, are how, wooded and grassy to the wather's edge, hitt rising castward, through bohder ones, culminate in the crowns and elitls of Mt . Desert, and the still more rugged istand about Goddy Ilead. Behind these are harbors and river months, emwenient and spacions enongh to tloat the navies of mations. Fomes sound is probally the most
commotions and advantagerns positic for a naval station for the linterl Ntates on the whole Athantie coast.
lu latis) an aliort was made to draw the attention of the government to this important fact.

Mountains.- Mt. Katahlin is the highest point in Maine. It is in the center of the state, and 5,3s.5 feet high. Nount Abraham, in l'ranklin comety, is 3,400 feet high. Mars 11 ill marks the entrance of the Appatachian Dountains into Maine, from New Brunswick; Mt. D'lue, Mattatuck, Sindthenek and ligelow are prominent praks of the range. Maine, however, shomble bensiderel hilly rather than mountanons, and rolling rather than rough. The higher peaks are not wooled on the tops and are nisulty conical in shape. The comery to the north of the Aprabachian D'eaks slopes genty to the northeast. The highest part of the state is the region of the White Montans, where the extreme eleration is alont ", 000 fect. From this it falls ofl to about (ion) feet on the cast. The somthern part of the state slopes to the somth from the Appalachian Mountains, so that it may be said that there are two general dranage stopes. The comse of the rivers in the morthern part of the state is mortheast, following the general direction of the land slope and ruming at right angles to the strata of the roeks, as di, also the larger rivers somh of the Appatachian watershed. The rivers in the sonth flow to the suntheac. The peculiaritios of the rivers of Mane lic in the fact that all those which tlow towart the ocean have hroad valleys, and either find their somree in lakes or spread themselves out into sueh bodies of water. The lakes are usually finnd in gromps and are drained by the principal rivers or their tributaries.

The I'enokeot liver is one of the chief rivers of Mane; with its tributaries it drains one-third of the entire area of the state. D'amadumeook, Clesunconk, Caribon, and a great many lakes find their outlets through this river. The saco liver rises at the alitude of 1,490 feet, and drains several lakes, emptying itself into the Saco Bay. The Moosehead Lake, and along chain of smaller lakes discharge their waters throngh the Kemnetrec River, which flows nearly south, through a broad valley, and finally empties throngh several mouths into the orean. The St. John liiver, in the north, lass mearly a humbed lakes of varying size for which it is an outlet. The total water area of the state is 5,500 sinure miles. lndeet, the water power of Maine is mighty and exhanstless. It is nseful, avaitable, controllable and constant. The land, after many vicissitudes of clevation and sulsidence from the oeean tevel, by one of which (aceording to lana, lsi5) the Labrator current was turned aside by the ehsing of the straits of Betlisle and a moion of Newfomdland with the continent was eflected, lifts to a mean elevation of tho feet ahove sea level more than 1,600 lakes. Wahter Welk, in his "Water Power of Maine," estimates that the great rivers in their descent to the sea fieh a gross tutal of $6,600,000$ horse power-a power equal to $80,000,000$ men.
lakkes nud Harbors.-The mometains, seattered as they are and forming un really continnons, chain, affored abondant and extensive basins for the waters to spread out in wide bolles or lakes. These lakes cover an area of ahout 2,300 square miles, and form one of the pleasant and distimgni-hing teatures of this New England State. Their mean elevation is 600 feet above sea level. Langeley Lake is 1,511 feet abose, and is the sonree of the Androseoggin River. Monsehcad Lake, chinef souree of the kennchee River, has an elevation of nver 1,000 feet. This lake is the largest in Maine. Mis length is 3 3i) miles, taken at the extreme points, and its width 10 miles. The S.s. John Rirer linds its source in Chamberlain Lake, ! 125 feet above the sea. Most of the lakes lie in the vast counties of Piscataynis and Aroostonk. They are as yet ouside the line of civilization, in the heary timbered regions and forests. They are nearly all connected with the great rivers of the State, forming a mot complete drainage and irrigation system.

As might be expreeted in the deeply indented enast, there are a great many good hays and harhors. Among then are ('aseo, Nacu, Sheepsentt, I'iscataqua, J'enohsent. P'assamaqnodly, Machias, Quohog, Freuhman's, he-himel Mt. Desert, Museongris, Kennebme Port, and many othens all along the enast. There are fourteen customs districts in Maine. There is quite a large amonnt of foreign trade, both of expurts and imports, and trade with New Brunswick and Canala and the coastwise trade with the states south.

Ger'ogy, Minerals and Soil.-The many geolopical disturb-
anees to which Haine has heen subjected, the mhearals, foldings and faults in the rock strata, make it an exceedingly interesting sitate, from a grologieal joint of view. 1)ana (p). 561.
 shell heans, aud the qualog and orster of Maine. The formations of Alane are among the oldest, helonging to the Eozoic and silurian freriods. The strata whieh have been tilted up in every puition are of the erystalline metamorphie roks. Fossiliferons rucks owenr in, some paces in the interior, and among the Pliscene clays, which are found bencath the drift, near the seat. Much of the state has been scattered over with this drift from bassing ghaciers.

There is a left of granite ruming the entire length of the seacoast. where are fouml many tine granite quarries. (iranite also forms the principal unturop in the western part of the State. In the region of l'asamagundly lay are fount onterops of the ofd red sandstone. I rgiliaceons slate, useful for rooting or for writing slatre, are found along the Piscatapuis River. Wetwern the Kanmedre and Penoheot Riven are found ledgex of mathle, fit for building purposes, and among trap dikes in the shate, fuarries are formed of galena and red hematite. There is also a bed of hematite in Aroustook county, aml iron of very pure variety is foumd in quantities sufficient for industrial jurposes near the Katahatin Mountain. In the region of the larger lakes there are frequent outcrops of the Devonian and lower (arboniferons strata. Syenite necurs along the coast, exhibiting itself in many beautiful varictic's. The gramite on the eoast is much fincr and more fitted for working, ass an general rule, than in the west. It oceurs in a!t combinations, making all colors and varieties. The ingredients, fellijar, quartz and mica, oecasionally oceur in reins or mixet so erarsely in the granite that the $y$ are easily separable. limemtune is fonm in the interior and in the north, in the Aroontook region. Many of these crrstalline limestones are thed for making lime and are found to be immensely valuable. The prineipal minerals of Mane are thus found to be of economic value to the state and form a great source of wealth. They are gramite, limestone, slate, marble, galena and iron. The precions minerals are very rare. fold has been found, but not in quantities suffieient for mining. Several colors of tourmaline are found, also garnets and beryl.

The trift from glacial action spreads over the entire State and forms the bedy of the soil, which in consequence is rocky and generally sterile in the mountain regions; the valleys, however, are fertile. In the northern part of the state are swamps lilled up, with a heavy growth of ecdar trees. The seacoast is also sterile and does int repay eultiration. Ibout three-fifths of the state is yet covered with forests. But the lake beals and river hottoms are fertile and quite rich in alluvial soils. Clays of the "( hamplain epoch"" are found in the south of Maine; these contain fossils which indieate that Maine had once a much colder climate than now, as the fomms of life here represented are fombl at the present time only in Aretic seas.

Climute-The climate is nsually favorable to life, the sea winds bring salubrions airs, ant the drainage banishes malarial taints.

The decided change of elimate between the region north of Cape tod and that south of it is often noticed. The cape, in fact, appears to be the index of the dividing line of two zones.

The nature of the climate of Mane inclines nore to the countries north of it than to the States south of Cape C'od. The reason given by Pr. Kohl is that the Arctic current braneles oft and circulates in the gulf of llaine, while the warm gal. stream temper the airs of tho more southerly New England shores. The summer heats are timpered by the sea breezes and the worth winds. The extremes of heat and eold are about $100^{\circ}$ in smmaser and $30^{\circ}$ below zero in winter. The a areage summer heat is $6.2 .5^{\circ}$, winter $20^{\circ}$. The prevailing disease is that connceten with the respiratory organs. Twenty-seven per cent. of the whole mortality is the result of this disease in some form.

Government. - The goveruor of the State is ehosen by a majority of the votes. Ilis term of office js fortwo years. When no eleetion occurs, the house of representatives sends up iwo names to the senate and the senate elects the governor. No person holding any office under the United states can hold the office of governor. ITe must be a citizen of the L'nited States, fire years a resident of the state and at least thirty years old at the time of election. In ease a racancy occurs, the president of the senate becomes governor. The governor is assisted by a enuneil of twelve, and they with the governor appoint the judicial officers. exeept judges of probate, manicinal and police
sourts. The governor nominates the coroners, suljeet to confirmation by the enumbil. The legislative department eonsiste of a senate and house of repuesentatives, senators are elected ammally. They must be at least twenty-five yeass wh, eitizens of the [uited states and for one year vitizens of the State and three months resident of their distriet. Representatives must be at least twenty-one years old. Thore are thirtyone senators and 131 representatives. 'The judiciary department consists of a supreme court of eight members, appointed by the governor for seven years; one julse of ('umberland cominty, appointed ly the governor for seron vearm a judge of probate court, one for cuth court, elected by the poople fir four years ; a judgen of muncipal and police conrte, el eeted ly the perple for four years; justices, whone jurisdietion does not exreed $\leqslant=0$, are appointed l) the conncil and governon for susen vears. Every male ritizen of the I'nited States twenty-one years of age or overand for three months a resident of the statu, cin he an eleetor in the town where his rewidence is established, except papers, Indians not taxed and proms under gnardianship.

| Population by Countles. | 1890. | 18.50. | 18\%0. |
| :---: | :---: | :---: | :---: |
| The State | 6fil.0N\% | 1515.1045 | 626.115 |
| Androscoggln. | 4.5.014 ${ }^{\text {c }}$ | 45.04: | 35.8 bili |
| Aroostook | 4?, 5.59 | 41,900 | 20,609 |
| (insaberland | (9)]. 9.19 | Nti. 359 | 82.1021 |
| Erauklia | 17,15.3 | 1s.101) | 15, $\mathrm{N} \times 17$ |
| Hancock | 37.312 | :28,129 | $34,4!6$ |
| Kennebec. | 57.1012 | 53.453 | 53.203 |
| Kıox. | 31.17:3 | ?2, 863 | 30. 5148 |
| Lincoln | 21,9\%16 | 24,821 | 25,547 |
| Oxiord | 31) 5.84 | 82,627 | 83.488 |
| Jenobscot |  | 70,476 | 75,158 |
| Hiscatsquts | 16, 130 ${ }^{\text {d }}$ | 14.8.2 | 14,4t)3 |
| Sagataboc. | 19,4.5 | 13,272 | 18, 8 (0) |
| tomerset.. | 32.527 | 3*, 3 \% ${ }^{\text {a }}$ | 34.611 |
| Valito. | 4759 | 32,463 | 31,522 |
| Washiogton. | 44,4142 | $44.4 \times 4$ | 48,313 |
| york | 62, 529 | 62,257 | 60.17 .4 |

The population of the landing eitics for 1890 was:

| Ai•burn | 10.527 | Brunswiek | 6,01 2 |
| :---: | :---: | :---: | :---: |
| Aoyista | 10.201) | Culais | 7,2,010 |
| Buagor | 19, 103 | 1,twiston | 21,701 |
| Bath. | 8.213 | Portlund | 36,125 |
| Hellast | 5,291 | toorkland | K.171 |
| Hludeford | 14.443 | saco | 7,075 |

Elurntion.-Acrording to the law of 1887 , all children be:ween the ages of eight and fifteen yomsare required to attend folond each year for at least if wheks. Children who have been furnished for a like period of time with instruction equal to that of the publiceschonls, are exenpt from the repuirements of the law. 'The high sohools are lweoming move and more an essential part of the public schomb system, and they are already doing a wry important work in firnishing a large and constantly increasing number of teathers fore the common shouls. The shewl fumds are divided among the sehools in proportion to the mmber of pupils in earh distriet; in this way, thinly populated districts receive ouly money chongh of maintain a school for a very short time, while proulous districts are the favored ones and receive almost more than they need. The legislature of 1 sis? enacted that after Augnst list, 1890, the pupils should be furnished with text-books at the expense of their respuetive towns. (ities and towns were authorized hy the same lagislature to, ratise money to simport evening schools.

School une for freatiecdaoce 1 s

$$
\begin{aligned}
& \text { combuntiory atconilanioc. } \\
& \text { dlatribution of funts. }
\end{aligned}
$$

4-2t
6-16
$4=21$
The selool revenne for $18,5-1588$ was $\$ 1,067,2.26$ raised frons the following somrces: From permanent funds and
 $\$ 676,034$. The expenditures for the year were as follows: low sites, lmildines, fumiture, libraries and apparatus, \$133,7il]; salaries of superintendentw, $\$ 33,2 \times 7$ : salaries of teachero, si-10, 000 ; other expenses, $\$ 331,850$. The valuation of all sehool property for 1 sisf-158\% was $\$ 233,549$, sč: value per capita of total pupulation, sab5, There are flombishing evenug sehonls at Bithleford, Lewiston and Waterville. The total enrollment for Ims 7 -ISk. was about s00, emplaying I! teachers. There are in Maine live publie normal sehoobls.


There are two colleges fur the higher instruction of women, one at Itering and one at Kent's Ilill. The former is under the direction of the I niveralists; the Weslevan Seminary, at Kents 11 ill, under the direction of the Methodist Fpiscopal Churcls. The number of women in attendance upon these two colleges for 1808 was 436 . limh oflleges are authorized by law to ennfur degrces, and there were 127 degrees conferred it the emme for this year. Wistbrok (ollege was ehartered in Is:31, and Daine Whenleyan College in 1821. There are three eolleges of liberal arts: Bowdoin ( $n$ llege (Congregational), from which Lungfellow and Hawthorne were graduated; Bates Collage (Free Baptist) ; 'ollyy l'niversity (Baptixt). Buwloin was chartered in $15: 4$, lmt did not nuen till the year 1802 ; ('olly was chartered in 1820 , thongh the mivervity was opened Iwo years before. Bates College and Colby Univenity are cowheational.
Number of eollege students from Maine, 1887-12sis, was 497; lipulation of college age, $16-22$, to one college student, was
The Maine State (ollege of Agriculture and the Meehanical Arts was endowed ivider the national laml grant act. There wre in $185 \%-185^{\circ}, 1: 31$ students. A large per tent. of these were engaged in practical work. The charter was issued in $1 \times 6.5$, and the college opened at Orono in 1s68. It has a library of 5,1000 whumes, and melentifie apmatus valned at $\$ 17,500$. The grommes and building are valued at $\$ 175,000$, and there are \% 231,300 invested in permanent funds, the income of which amount. $10 \$ 11,500$. There were 135 pupils in attendance upon the Maine State licform Selool for 1ssi-1sss. There is also a selool for the deaf at Porthant. A thenlogieal seminary at Bangor is open to students of all denominations, though under Congregatomal anspices. The Merlical Schonl of Mane is really a department of Bowloin (ollege.

Agriculture and Other Industries.- Igriculure is the most extensive occupation still followed in the State. There are broad fields yet to be taken np, for the rich resources of Maine stretch as far inland as the whole sweepi of the shore. There are no richer grain fields prohahly in all the western prairies than on the Aroostook highlands. "There are in Maine s 3,000 farmers. There are 64,310 farms, embracing $1,564,1: 36$ aeres of tillage. Tutal area of farms, $6,552,575$, valued at $\$ 102,357$,615. There were in 1890 in Maine:

| Live stuek. | Namber. | Valne. |
| :---: | :---: | :---: |
| Oxen and other cattle | 157.345 | 83,739,024 |
| Sheri | 542.248 | 1.5.113.420 |
| swiue | 79,043 | (itit, 913 |
| Milah eows. | 17.5,949 | 7.304 .168 |

The following shows the value and quantity of farm products for 18s.

| Farm Products. | . c [rage. | Production. | Home Value. |
| :---: | :---: | :---: | :---: |
| Corn | 24.717 | 1,031.000 lut. | 85.9.273 |
| Muy, lins. | 1,311, 174 | 1,239.791 torss. | 13.417.0303 |
| Potatoes, 1848 | 71,751 | $7 \mathrm{NH} \mathrm{LO}, 00 \mathrm{bu}$ | 3, (i2 2,541 |
| Wheat, $18 \times 5$. |  | 6idio.ild bu, | ........ ... . |
|  |  | 2.205.57. 21. | .... |
| Rye, int |  | 212, 2 man hm. |  |
| Buckwhent |  | 2s? , 70t but. |  |

Cirunite Indmstry.-The granites of Daine are as varied in color as they are in the nature of their workine. The red granite is found at Jonesloro, lien Heach ond Alt. I Rexert; the Dlack gramite is foumel at somth 'Thomaston and Vinalhavom; white granite is gumrred at Wibloboro', North Jay, Lineolnville and Friendship: the most prominent quarrics of gray granite are at Ilurrieane lsle, Vinalhaven, Ni. W"aldo, Somes'sonnd and West Sullivan. In the state there are in rommd numbers, 1,000 men cmployed in the granite industry. The wages paid averace from 1.5 To de cents promb the total capital invented in granite workis in lisis was \$ $\$ 01,000$. The grass produets were valued at $\$ 1,39 \times 101$.

The Lime. Indusiry.-Limestone formations of an uncertain ape underlie the larger portion of N゙nox and Waldo connties Chalngienlly spaking the rocks in this portion of Maine are probably among the oldert of any in the known world. They lie between strata of taleose, mionceons and argillaceoms slates.
In ] F33, sammel Widdo linst erected a lime kiln and burnt lime for the bu:ton market This was the eommencement of
an industry on which to-day the preople of Kinox conatr, in a great measure, depend for their prosperity. The problued is promonned the hest for nearly all purposes for which lime is used. The lime industry is carried om in the city of liockland and the towns of Thomaston and (amblen. The lattor fuarries rum north and sonth; they are one amd one-lialf miles in length, and a hundred and fifty to fwa hundred feet in width, and lifty to one handred and fifty feet in depth. In 1 sss, there ana in Kunx county 92 patent kilns, which produced $1,800,-$ 000 wisk of time, and in this production the kitus consumed 85,000 eurds of wood, valued at $\$ 1.50$ a cord. 460 compers were required to furnish casks for the kilns of knox comuly in 18ss. The average price per cask of lime is 97 cents. Mircetly and indiredly enployment was given to about 3,000 men. Orer three quarters of a million of dollins are cmpluyed in these works. Mnine has 41 ship, yards in operation. cmploying 1,9 it warkmen.
 of vessels that have tween built are goberally of large tonmage,
many of them schooners of more than 1,010 tons. The prospect of many of them schooners of more than 1 , on tons. The pospect of
inercused activity in this fmportant Mine findistry is enconragIncrused activity in this important Maine fidnstry is enconrag-
ing. Another prominent industry of Maine is the cutting and ing. Another frominent indnstry of Mande is the conting and
shinning of ice. It is used forballast in vessels, and the shinnent ofit south costs but little. Amang her other industries Maine has:

| No. |
| ---: |
| 52 |
| 24 |
| 843 |
| 83 |
| 93 |
| 261 |
| 4,481 |

Besides these are 76 Inundry and machine shops; 46 carriage and wagon factaries; 18 fruit and vegetable canning establishments ; 48 printing and publishing bouses; furniture, iron and steel, saddlery and harness, starch, sugar and molasses, clotbing, brick and tile, meat-packing and other establishments.
The total number of stesmi craft amounts to 112. with a tonnage of $16,991.66$. valued at $\$ 1,135,700$. These boats employ 824 persons 8. their crews.
Fisherics of Maine. - The fisheries of Maine constitute one of the oldest and most valuable interests of the community. Pring in 1603 and Weymonth in 1605 both foresaw the uncommon advantages here afforded for fishing and trading. In 1614 Capt. John smith carrled 47,000 dried fish from Monhegan home to England. The Plytnouth calony, finding the fisheries in this section of the coast much more productive than those further south. purehused them in 1628 of Manquim, sagamore of Kennebec: As the population increased, the fishing industry was made subject to more systematic creased, the fishing industry was made smbect io moresystematic arrangements aud regular business forms. ocen lastinnolson of the inserves that fishing was the most ammon ocenpation a the inhabitants. The fisheries of Maine contimallygrew into a busiuess
of magultude and importance. During a term of nearly 100 years of war with the Indians, the chief dependence of the people was apon the fisheries. In 1684 a duty tax was put upon the fishermen for purooses of revenue. At present Maine ranks second in the list of states in ber catch of fish. The salt water fish taken are the cod, mackerel, halibut, herring, haddock, bake and pollock. The catching and cariag for these fish give employment to about $13,-$ are piveg and bass. At Eastport there is a thriving sardinecanuing establishment. Maine also does the lulk of the lobster eanning in the United states. There are hatcheries at Orlaudandat firand the United streates. Sea salmon eaga can be obtained for propagation lake stream. Sea salmon eggs can be obtained or propagation
from the Penobscot River. As this is the only river on tlic whole Arom the Penobscot River. As this const where these cags can hrocured. Maine. MassachuAthantic const where these eges canlie procured. Mande. Massachu-
setts, New 11 amphire and Connecticnt have formed an aspociasetts, New thamphire and connecticut have
tion with the United States for procuring these eges. whichare distributed among the different States. From these hatcheries many of the rivers and lakes are being sipplied with fish. suchas the lake salmon, sbad, bass, alewives and smelts. There has been considerable interest taken in this industry, and the lower lakes, ponds and rivers are being rapidly replenished.
There were in Maivein:

| 1860 | 472 mile | railroads. |
| :---: | :---: | :---: |
| 1870 | 7 TS |  |
| 18.50 | $1.645 \%$ | ** |
| 1885 | 1.135 | " |
| 1886 | 1.119 | " |
| 1887. | 1.182 | " |
| 1888. | 1,321 ${ }^{\text {¢ }}$ | $\because$ |
| 1889 | 1.341 | " |
| Leagth of Hue operated io 1888, 1.160 miles. |  |  |
| Capital stack. |  | \$19.128, 850 |
| Funded debt |  | 29,12x,692 |
| Total investinent |  | 49.215.494 |
| Cost of railroads and equipments |  | 46.4117 .849 |
| Earuings from passengers.. |  | 2.279,501 |
| Earnings from freight |  | 3,14.4.403 |
| Earnings from all sources. |  | 5.660,302 |
| Net earnings. |  | 1.702,8\%2 |
| Interest paid on bonds |  | 1.129.667 |
| Interest paid on stock. |  | 842.668 |

Forests. - The great forests of Maine, whicb long covered the central and northern portions of the State with a beavygrowth of pine, spruce, bemlack, fir and the common deciduons trees, are fast being turned intolumber. The lumber business. which was once the
great industry of Muine has fallen off so that it 15 now more than "qualed in the state ly the sfinle and compuratively recent industry of cotion manufacture. In the esstern part of the state the white cedar is quite common. White and black oak, hard and soft maple, heech, cherry, ash are found in ubundant growtb. In the south. chesthut, white and black walnut are fomd, while basswood and poplar are common to all portions of the State. The grest. northern region of the Aroostoak and incstaquis is the princinal region for limber at the present time. For business purposes the sprnce, hemlock and cedar form the staples. Great
quantities of lumher come down the lenobeot River to Bangor, which is the chief shipping port for lumber in Maine.
saring.s Fanks.-The number of savings lunka and institutione for saving at the close of the year 1859 was fitty-five.
Total deposits.
bepositors
Average to each
lucrease of deposits
lnerease of depositors
Total reserve fund
$\$ 43.977 .0 \times 5$

Increase during the year 132.192
$\$ 332.68$ 7.630
1.20 .935
 Assets in real entate annum. Loans on mortgages of real cstate $\$ 1,0 \wedge 1.481$
$6,1 i 50.055$
Nine trmst compantes have a eaplal stock paid in of $\$ 76 \pi, 300$; their totul deposits nmount to $\$ 1,552,125$
Twenty lonn and buidding associntions have a espital of $\$ 319,042$. This amonnt is diviled among 3.381 sharelolders; 492 are borrowers and 2.869 are non-borrowers or investors. The 492 borrowers recelved loans to the amount of $\$ 327,956$, an average loan to each of $\$ 676.5 \mathrm{~s}$.
Pruhibition in Maine.-The Prohibition party has existed as a local or state organization for many years, and a number of Statea have experimented with prohibitory laws. Local temperance sentiment was first organized into a State party in Maine in 1hs6, through the efforts of Neal Dow. The legislature of thls State passed a bill in $1: 16$ forbidding the traflic it limpors, but this praved su imperfect in detail that it conld not be "nforced. Another attempt was made in 1851 , when the fumons "Maine liguor law "was tempt was mate is sthll in force in that state, and in $188+$ its specifications were put in the form of a canstitutional nmendnuent, snd adopted by a large popmlar majority. The "Maine law" in substance provides that : The sale of all intoxicating liynors shall be controlled exclusively by a special agent, appointed by the state: sad he shall superintend their lawfil sale for medleinal, mechanical and manufacturing furposes. All ather persansare prohibited from selling nuy liquors, except unsdulterated cider and wine, and from manufacturing the same for nnlawful snle. The authorfzed commissioner vinlating the law shall be fined not less thnn \$ 3 and imprisoned for not more than three months. A common seller shall be fined not less than $\$ 100$ nor more than $\$ 250$, with imprisonnent for from three to four months. Anyone receiving 8 n injurs from an intoxicated person may sue the one who sold the linuor. The lessee or owner of the saloon is also liable. A person linuar. The lessee or owner af ine salon thalso hable. A person
convicted ni keeping a saloon is liable the pumbment of a ine convicted of keeping a sarisonis costs, or imprisonment for three months, with siz months' additional imprisomment for each subsequent offense. A person convicted of being intoxicated is liable to a fine of $\$ 10$ or one mouth's imprisonment for the first offense sud a fine of $\$ 20$ and tbree months' imprisonment for the second. Vnadnlterated cider in quantities nat less than five gallons may be sold, but no cider in smsll quantities, wine, beer, ale, porter, or malt liquars of any kind. Al. Intoxicating liquors of this mature found, which to the town, and fre, are contrabsnc goods, and. The state comnissioner is allowed 7 per eent. eommission for his sales, and is put under $\$ 10,000$ bonds ta the State. The State commissioner and municipal ufticers are prabibited from selling liquor to any minor, soldier. Indian or intoxicated person, or to any person of whose intemperate inelinations be has been informed by friends or officers. It is made the duty of sheriffs and county attorneys to see to the enforcement of these laws.
Statistics show that during the fear 1875 , in the supreme conrt alone. there were 276 convictions, 41 commitments to jail, and $\$ 30,-$ kas collected in fines under these laws, more of each than in any other year, and four times as mazy convictions and ten times as many fines as ju lxib, when the general enforcement of these law" was resumed after the close of the war. It is slgnificant also the during these nine or ten years of gradually facrensing effielency uf the enforeement of the laws against saluons, the number of co victs in the state prisou has fallen off more than one fourth. TiN present law is cffective against the crime ratber than effective in raising the moral sintiment. It works to the suppression of tire they are intended to prevent. Governor Chamberlain said of the ${ }^{\circ}$ cfficlener, that the laws against intoxicating liquors are as we. executed and obeved as the laws against profanity, nuchastity an executed and obeyed as the laws against profanity, nuchastity an
murder. As a rile, the Probibitionists are кatisfied with this e. murder. As a rule, the Prohibitionists are katisfied with this e-
fiejucy, but not with the sumfency of the legislation. The cans fieincy, but not with the sumicicy of the legislation. The cans
of temperance bas becu greatly aided by the "laine law," and th? of temperance bas been greatly aided by the "Main
progress bas been as grent as conld be expected.
pragreas bas been as gremt as contide doiarected, not only poetic fanc, and dreams of emplre, but of the earliest actual colonies and set thements, uron which more than one kingdom of the Old Worl based it. title to the New. The region between the l'iscataquis and Penobscot was especially attractive to the early explorers, on ac count of its heauty of shore, sea, islands, tivers and barbory Theret visjted it 1 a 15016 and Weymouth in 1605 . English, Freneh Spanish, Portuguese, Dutch aud ltalian ships were accustomed to rendezvons abont Pemaquid and Monhegan. They sought a warta the Indies at first: then they songht gold, fish and furs, and finally to bring the land under the band of eivilization. England fornea.l a hundred cears allawed this conntry to pass from her thonglit a hundred fears allawed this conntry to pass from her colonie a Her interest was fitinl and manifested chiefly by individuals, vis Her interest was fitinl and manifested chiefly by individuals, iho it was the early settlement in this territory which eonfirmed for on Plymouth sands, English settlements were established at vari
ous moints on the shores of Maine. It was at Pemaquid that Samoset learned the Innguage of the Euglish, sn that be was ahle to suy to the i"lymnuth colony as they landed, "Much welcome, English food in that bitter winter. the tirst incorporated city of dmerian whs within the limits of Maine-the city of feorginan, fonneled in 1641, on the site of the present town of york. Maine was at one time a connty palathe presd is the only portion of America which time a county pananter, nind is the only
The history of Maine naturally groups itself in two genern divisions: 1. Maine as n province; 1. Maine ns impepentent
The eyes of knropeans in previous centurien had been drawn to Ahis land, and Thorwald, Eriek's son, in loot, Innted in the finlf of Malne to seek a dwelling phace. Later three vessels with 160 per aons landed to make a settlement. But this settlement became extinet, and the land relapsed into the shadow, so that columbus fracically made the dlacurery of an muknown world four or fire great oprortumities aforited by the discovery of America. In 1550 André Thevet, it Frenchman, visited l'enobseot bus. In fibll-5-f Dte Monts mad Champlaln made a carefal study of Caseo bay mad saco. settements were made at at. I esert and in the lower l'e notacot region, whifli had thmir hoadquarters at castine. In this way France had good preteusis of claint to two thirds of the fres ent state of Matico In dious, Nartin Priny, an Finglishmane, made the islands In lenobsent hay, which he maned Fox ishands, suiler
 Cattain Weymonth pursned the sume conrse and object. On the 17th of Angust, f607, u company minder (ieorge Pophamand Raleigh (iilbert, from 'lymonth, Jing.: innded at the moluth of the Kennebec rlver. The severe wluter that followed was the means of breakiag up ata destroying this first linglish colony in Mnine. But the fuet of the existence at ane time, If for a very short period, of an English settlement in annewhs enough toustablish the title of England as agatast france ln the whole New England territory, The Freneh elaim to Amerier was fonnded, 1 st , on the voyage of Verrn\%zann, 1501 , who first diseovered the cinlf of Maine, and crilled the country sew framee; 2d, on the grant of Henry IV., 1603, to De Monts, and on the voynge and orcuphthon of the country under be Monts und Chanplaln. The English title was defended on the charter of link, and on consequent ocenpation by Popham tieorges on the voyages and landing of (iosnold, Priny and Weynomth, and 01 the discovery of Cabot. The great question between the English hud Frenchins to the right of possession turned on the occupancy of America under charter. The charter to be Monts had been granted in liv: by the Freach. England made the Virginia charter in divit. But the charter of De Nonts had been revoked in lun, and the English cinimed that the settlement made under the phurter of $16 \%$ at hennebec gave them uadisputnble right, so that the English claim to America fioally came throngh Maine. Gir Ferdimando cicorges never swerved from his great thonght of Malue. ThMarch, 1615 , he set sail again from England, but was driven back. On the 24 th of Jne he renewed his voyage, but was again frustrated. Fet before the Puritnus set foot on Jissachusetts bay, the Pilgrims had been made welcome to establish themselves, or rather theirsetthements nad tradiag posts, at Pentagoet in loed and at Kenaebee in then. They had agrant of a million and a half of acres, over which John Alden was chief. The cneronchments of the French on Pentagoet gave Miles Stnmdish occasion to use his atrong sword. In $16 \pm 0$ a charter was granted the territory from the fortiech to the forty-righth degree of north latitude; that is, from the Intitude of Philalelphin to the bay of Chaleur, and through the mainland fromorean tooceau, to be known as the New England In America. Augist 10, 1622 , a patent was given to Gcorges and Mason, conveying to them the conntry between the merrimac and Kennebec to the farthest head of said rivers, and fio miles inland, corether with all the islands and islats within sive leagues of the ghore, which the indenture states "They intend to call the Province of Maine." In 1629, (icorges and Mason divided their territory. Mason took the western portion between the Merrimac and the Piseatnqua, which he named New hampshire, mind Georges took the pest. from the liscataqua to the Sagndahoe, which ten years asterward received the name of Maine. It is commonly shid "Maine is the danghter of Musinelusetts;" the reason for this is that Massahnsetts was the stronger party
The dreat Conncil of New lingland, having eneountered many vexations, agred to surrender its charter in lias, had detenmined
to divide its territory into night provinces, two of which were within the preqent limits of Mnine. The region hetweern the St Crolx and the Kenmebec, alreaty elaimed hy the French, was to be given to Sir William Alcxander, earl of Stirling, and was to be called the country of Cunada. This extended to thest. lanwrence. The coast from the $\mathcal{K}$ emmebec to the l'iscatnqua, und extending to miles into the mainland, was assigned to Georbes und Masou, and by them named New somersetshire. In 1636 , William (ieorgeasct up a court at Suco. This was the first organized government in the State of Mane. Amidst distractions of the thmes tn old England
 menand encroaching liritans, Georges in 10,37 succeeded in obextraordiunry evergiven to a subject 111 modern ilmes. It confimed the old boundaries, the Plscathqua and singaboce, extending 120 miles, however, foland, and was now and for the first time, and by charter, named the Prorince of Maine, so enlled becanse of the distinetion between the main aud the lislands yo much frefuented along the shore.
The polltical status of this province was that of a palatinate, of Which Georges was lord pulatine. Massuebusetts began towneronch fittle by little on the province of Malne, till in litiza sbe had galned sostrong a hold, nud so many of the penple of the prostuce had put thenrelyes hoder her protectlon, that mhe felt justifed in send ing a mamatory uldress to all the people of Mnine, revulitug them to ghe ohritime to her laws. Tronble arose, which wns settled n 1 tiri by the king in combell decharing that the north line of the Masshehusatts colong sas three milles from the morth bunk of the Morrimac at its mnith. Anasanchasetts then purchased for 11 , 2io the frovince of Malne, or sw much of Malne at feorges the cone
ered, from the liscatarna to the Sagadahoc, and $1: 0$ miles lanek
from the sea. In 1681 the Massachusetts charter was annulled, and she loosened her hold somewhat on Maine. The aubsequeat charter of William and Mary did not restore former rights und titles, nind lid not even confirm the equitable claima of Massuchusetts to Nuine. In fact, this charter did not put Maine under Massachusetts as a province or dependency at all, but made it a constituent part of the new royal province. In 1665 Massachusetts had estahished a local colurt in all the towns. It is also of interest to note that the last act of the old Maine provioce before she lost her
nume in Masshchusetts Bay wns, on Jnly 15,1690 , to pasa a law, "That from henceforth there shall not be auy rum or other strong liquor
still enrlier "Jiqnor law" had been in force in maine, issued hy the inke of York, Suptember 11, 1677. In thre Fremeh and Indinn wars, Maine was na exposed frontier for nearly a cantury. lo fact, she was so phtriotic in these struggles in the employment of men and menns that her territory was almost depopnlated.
There is oodonbt that the one thing which nitnched Maine to Sew lighand und led her to cast in her lot with the fortunes of free Americn wns the influence of a Congregationhl-chureh system. politienl and religious divisions being nt that tione sonenrly coincidenc, the Puritan aud lilgrim ehurehes have had un honored place in the march of politicn freedom. D'Aulney and La Tour Datch had effected a lodgment on Penobscot hay in 1676, but the English had driven them away. There were Dutch, German, scoteh, Irish umb French settlements nlso in the province. Almost a century of wars borne ly the different colonies had knit then the
gether. The brant of these frontier wars fell unon Mnine the fleet which took loort Roxal was manned ehicfly here, and commanded by her son, Sir William lhipps. At the siegeo Louisburg the whole English armament nearly were men of Maine. which wha conducted hy Sir William Pemperell, Maine wns also refresented on the Ileights of Aloraham. Such was the draught on her in these French wars that Massachusetts had, at one time, to send one humared men to garrison her forts. But when the denrly defender liherties of the colonies were threatenced by the mother country herself, Mnine whs among the very first to come to their defense. "Onr swords have not growu rusty." shid the towne of Gorhnm, "We offer our lives a sucrifice in the glorious canse of liberty," were the words of Kittery iu 1773. two yenrs before hex-
iogton and Coneord. Soon after, the patriots of Machins, under the O'Briens, boldly attacked the king's ship, the Margaret ta, and after a sharpengagement the British flag was strack for the first time on the ocean to Americans. In that war for independence Maine, drained as she was by the French and Indian wars, lost lic debt that fell upon her was greater in proportion to her wealth and jopulation than her share in the cost of the war of the rebellion.
Had not Maine heen iocorporated with the rest of New England the great strategic adrantages of her position, wonld have seized upon the territors nad overawed the inhahitunta, and when at lasa lines were drawn they would bave included that dukedom of Vork bonnded hy the Kemebec, or the castern boundary of the Enited States wonld have been the Piscataqua. This charter of 1691 gave
to Massachasetts Bay colony all the territory east of the St. Croix River and Nova scotia, and Maine becnme a constituent part oi Massachusetts, as much as Plymouth or Boston. When indejendence of England was declared. Massachnsetts and Maine were spoken of as one. For the better administration of maritime affuirs, Congress in 1779 made Maine f separnte district, with a United tates court and officers as at the present time
Early in 1745 public meetings were beld and conventions called to eonsider the expediency of a separation from Massachusetts, the ginning. The growth of the state also incrensed the from the be separation. From a population of five thousand at the beginning of the century, she had advanced to more than seventy-five thousand iulitio and at the close of the cutury her population exceeded a hundred und fifty thousaud. The war of 1812 brought many changes. Maine ngain contributed ber aid th the country agninst
Great Britain. The English directed Several of their attacka against this coast, which was poorly defended. The sea fight off seguin was a creditable one to our navy; and a gallant enterprise in capturing a British privateer off Bristol redouocied to the credit of that neighborhood. Naine was then pre-enineatly a commercinl state; her shipping amounted to 150,000 tons a year; her ex were liable to imprisonment uader the embargo act of 180s. The war and the embingo incrensed party feeling. The patriotic spirit prevalled, and the majority sustamed the fovernment. The war stimulated local industries. The manufacture of woolen, cotton, glassand metal atarted up all over the state. When the warcensed and forelgn goods came in, the home industry was ruincd. There Was no longer fr demand for her agricultumal prodncts, and the result was that the discournged farmers rushed to the West. Thls was known as the "Ohio Fever" of $1815-1 s h$. Wy which the state had now hecome a party issue, the Federalists adhering to Nation chnserts, the kepublicans contending for independence.
In 1200 the point was carried, and the connection which was be gun in vinlence, hut has contimued for 130 years in growing goodWill, wha ended, aud Mafne was admitted as a state to the Union. That portion of the state north of ficorges palatiuate way never subject of grant to any party. The the, therefore, was veated di and whe virtual!y transierred to Mance on her mlmiswion to the Union. For matyy years there was, howeser, a contest as to the

[^131]northern and northeastern bonndary. The result, though unsatisfactory to England, was Jelt by Maine to be for the advantage of tbe (inleed States ut the *x]ense of Maine. The United states recelved a tract on Lakem ("hamplain and superior, and Maine the merely nomajnal sunz of $\$ 150,000$. The papmlation of the new State was
 -iln of mokto lahbitatis. Hrom that time there was a talling off In the rate of increant. Juine Was as urompt to respond to the nall for nid when the war for the "nion brake ont as she had been Ahen her own liferties were threstersed In 1776. sevents-five thousand meat ansin irel the summons of the fresident on aen aud lund, uml one-qhi a of that number went nut to die. The stata
 diers and suilors. The finited states. in eonslderation of this fter, patd hack over som, om on the amonint, whleh Maine ajrijed as
 rlty. Dajue also provided for her disabled sullors and saldierabo rlty. Maite also provided for her disabled sullors and soldiers hy
prnsions Ior them or Jor their tamilies.
MatNe DE biran, Frangois-Pierre-Gontilier (1766-1824), a distinguished 1.hilosopher of France, the Fon of a physician, was boru at Bergerac November 29, 1766. After studying with distinction under, the doctrinaires of Perigueux, ho entercd the life-gnards of Louis XVI., and was preseut at Versailles on the notable 5th and 6th of October 1789. On the bre:king up of the garde du corps, Maine de Biran retired to his patrimonial inkeritance of Grateloup, ncar Bergerac, where his sequestered residence and limited income preserved him from the horrors of the Revolution. It was at this period that, as he says himself, he "passed per saltum from frivolity to philosophy." The forced leisure of this fearful time decided the vocation of his life. He combined, in a more than ordinary degree, subtle sensitiveness to external influences with singular acuteness in surveying and analysing internal phenomena The modes of the mind and their organic causes or conditions were alike submitted to his scrutiny. He began his philosophical studies with psychology, and he made psychology the study of his life. When the Reign of Terror was succeeded by calmer days, Maine de Biran was called to take part iu the administrative and political affairs of his country. After his exciusion from the council of the Five Hondred on being auspected of royalism, he took part with his friend Lainé in the commission of 1813, which gare expression for the first time to direct opposition to the will of the emperor. After the Restoration he held the office of treasurer to the chamber of deputies, and habitually retired during the autumn recess to his native district to pursue his favourite study. He died 16 th July 1824.
Maine de Biran's philosophical reputation has suffered from two causes-the obscure, laboured quelity of bis style, and the unfortanate mode of publication of his writings. In all his mork there is evidence of thereagh origiaality of thinking, but in the expression of his thoughts this rery originglity is so far a disadvantage in that it imposes on him a mode of exposition little calculated to attract and retain the attention of a reader. During his life, mereover, but few, and these the least characterlstic of his works, rere formally published. An essay on habit (Sur t'Influcnce de r'Habithde, 1803), a critical review of Laromiguiére's lectures (1817), and the philosophical portion of the article Leibuitz in the Biographic Universelle (1819) appeared during his lifetime. A long memoir on the analysis of thought (Sur la Decomposition de la Pensée), crowned by the Institnte in 1805, was sent to press, but, for somo reason, was not finally printed. His manuscripts, rery large in quantity, were not made aceessible in their entircty to Consin when that writer desired to prepare a collective edition of De Biran's works. In 1834 the rritings above enumerated, together with the important essay entitled Nouvelles considerations sur les rapports due physique el du noral de l'homine, were published by Cousin, and in 1841 there mere added turee volumes by the same editor, nuder the title CEuvres philosophiqucs de Maine de Biran. The mannscripts frem which Consin had prepared this edition were, however, in a mest imperfect condition, snd it was known that some memoirs to which De Biran attached the greatest importance were still in obscurity. In 1845 a large mass of manuscript was placed by De Biran's son in the hands of F. M. E. Naville. The labour of preparing these for publication, interrupted by the desth of Naville in 1846, was centinued by his son, E. Naville, and completed, with the ail of M. Debrit, in 1859. The EEvcres inedites de M. de Einar, 3 vols., rendered it possible for the first time to obtain a connected riew of a rery remarkablo monument of philosophical development. In these volumes the most important work is that entitled Escai sur lis fondements de la psychologie et sur ses rapnorts aveo l'diučo de
la nalure, which represcuts the completest stage of De Biran'e thiuking. A later etage is represented by the fragments of a projected work catitled Nouvcaux Essais d'Anthropologie, in which the psychology of the carlier treatise is developed in the direction of a somewhat mysticsl metsphysic.
De Biran's first cssays in philosophy were written arowedly from the point of viery of Locke and Condillac, bet oven in them he was brought to simealize the essential fact on which his later speculation turns. Dealing with the formation of habits, he is compelled to noto that passivo impressions, howerer transformed, do not furnish a comploto or adcyuate explanation. With Laromiguière he distinguishes attention as an active effort, of no less impertance than the passive receptivity of sease, aud with Batler distinguishcs passively forned customs from active habits. Prolongen meditation. cridenced in the oceasional writings, prize esssys, and the liko of tho subscquent jears, brought him to the fer-reaching couclusion that Condillac's notion of passive rcceptivity as the one source of conscious experience wiss not only an error in fact but an error of metthod,-in short, that the mecluancal mode of viewing consciousness as formed by external influcnce was fallacious and decentive. For it he proposed to substitute the genctic method, whereby human coascious experience might he exhibited as growing or developing from its essential basis in councxion with external conditions The essentia! lusis he finds in the real consciousncss of self as on active stiving 10 wer, and tho atages of its develepment, correspending to what one nay call the relative importance of the external conditions and the reflective clearness of self-consciousness, be designates as the affective, the perceptire, and the reflectire. These starccs are characterized mith inuch akill and psychological acntencss, and in connexion therewith De Birsn treats mest of the obscure problcus wbich arise in dealing with conscious experience, such 6s the mode by rhich the organism is coguized, the mode by which the organism is distinguished from extra-organic things, sud the nature of those general ideas by which the relations of things are known to us-cause, pormer, force, \&c. His riews are always suggestive, and the best recent psychology in France is but a reproduction of some of them.
In the latest stage of his speculation De Eiran distinguiches the animal existeace from the human, under which the three formis above noted are classed, and both from the life of the spirit, in which human thought is broaght into relation with the supersensible, divino systern of things. This stage, as a bove said, is left imperfect Altogether De Biran's work presents a very remarkable specimen of decp metaphysical thinking directed by preference to the psychological aspect of experience. It is almost a solitary instanco of $3 n$ elfort to treat psychelogy in a wide and philosophical manner.
The Guvres inedites of De Biran by Naville contain on introductory study. Specisl monographs on him are-Mertcu, Etude critique sur Maine de Biran, 1865 ; E. Naville, Maine de Biran, as ric et ses pensés, 2d cd., 1874; Gerard, Maire de Biran, essai sur sa philosophic, 1 si6.

MAINE-ET-LOIRE, a western department of France, lying betreen $47^{\circ}$ and $47^{\circ} 50^{\circ} \mathrm{N}$. lat., and between $15^{\circ}$ E. and $1^{\circ} 20^{\prime} \mathrm{W}$. long., consists of the southern portion of the former province of Aujou, and is bounded on the $N$. by the departments of Mayenue and Sarthe, on the E. by Indre-et-Loire, on the S . by Deux-Sevres and Vendéc, on the IV. by Loire-inférieure, and on the N.W. by Ille-etVilaine. The extreme length from nortl-east to southwest is about 78 miles; the breadth from north to south ranges from 25 to 50 miles, and the area is 2750 square milcs. The capital, Angers, lies 162 miles south-west from Paris. The department is made up of twe distinct regions, the line of demarcation running from south-east to north-west, and passing through Angers; that to the south consists of granites, felspars, and a continuation of the geological formations of Brittauy and Vendée; to the north, on the contrary, schists, limestone, and chalk prerail. The gencral elevation of the latter region is but simall, and none of its eminences exceed 330 feet in height; the former, on the contrary, has a surface richly varied rith deep winding valless clothed with woods and thickets, though the highest points are under 700 feet. The departnient belongs catirely to the basin of the Luire, which traverses it from east to west by a valley rarying in breadth from about 1 to 5 miles; the bed is wide but shallow, and full of islands, the depth of the water in summer being at some placea little more than 2 feet. The floods which occur are sudden and destructive.

The chicf affuent of the Loine within the department is the Maine, formed a little above Angers by the junction of the Mayenne and the Sarthe (the latter in turn having previously received the waters of the Loir). All three tirers are navigable. Other tributaries of the Luire are the Thouct (with its tributary the Dive), the Layou, the Etre, the Divatte on the left, and the Authiou on the right. The latter, which has a course paraltel to that of the Luire, has been supposed, but erroncously, to occupy on ancient bed of that river. The Mayenne is joined on the right by the Ondon, which can be nuvigated below Segre. The Erdre, which joins the Loire at Nanles, and the Moine, a tributary of the Sevre-Nantaise, both take their rise within this department. The climate, which is very mild, shares the characteristics both of the Sequavian and of the Armorican districts. The mean annual temperature of Angers is $3^{\circ}$ Falur. above that of Paris; the rainfall at the same place is only $18 \cdot 64$ inches, but rises to 23.6 inches farther down the river, and $2 \pi \cdot 7 \overline{5}$ as the sea is approached. Notwithstanding this deficiency of rain, the frequent fogs, combined with the pecnliar nature of the soil in the southeast of the department, produce a degree of moisture which is highly favourable to meadow growths. The winter colds are never serere, and readily permit the cultivation of certain trees which canuot be reared in the adjoining departments.

Of the cntire area more than ome-lale is arable; one-tenth is occupied by mendows; and considerably smaller areas arc occupied by woods, vineyards, and heath respectively. Oxen nuniber 225,000 , Tigs 100,000 , and sheep 08,500 ; these figures represent a ronsiderable commercial activity, as most of the animals are purrhased out of neighbouring departments for the purpose of being fattened. Cholet alone exports ammally $100,000^{\circ}$ cattle, 150,000 or 200,000 sheep, and 25,000 or 30,000 pigs. The number of horses in the department is 55,000 , chiefly of a race much used for light cavalry oervice. The cavalry scliool is at Saumur within this departmeut. The production of cereals is in excess of the consumption ; there ore extensive areas in the valleys of the Loirennd Sarthe under hemp, and linseed and colza oil are produced in nuantity. The legumes of Saumur and Angers are specially prized. The wine of the department ( $14,000,000$ gallons in 1880) is fairly good, nod the white wine of Saumur is exportel nond sold as sparkling champagne (about $6,000,000$ bottles yearly). Cider is produced, ind large quantities of apyles, pears, and plums are exported to the markets of Paris, England, and liussia. Floriculture is an important industry, and the forests of oak and beech abound in game (stag, roebuck, witdboar). Near Aagera are slate quarries in vihich 3250 workmen are enployed; and the "Layon-et-Loire" coal-bel produced in 1881 15,288 tons of coal and anthracite, which, however, did not supply the demand of the department. There are sandstone quarries in the arrondissements of Saumur and Baugé. Cholet, the chief manufacturing town, is famous for its pockethandkerchicfs ; it has alao wravufactures of linen cloths, flamela, and cotton stuffs, worsted and cotton thread factorics, and bleaching works. Similar manufactures are carried on at Angers; the speciality of Saumur is the making of enamels and benda, in which it employs 600 workmen, producing goods to the ammual value of $1,500,000$ francs. The population of the department was 517,258 in 1876, being on increase of 141,714 since 180]. There are five arrondissements, - Angers, Baugé, Cholet, Saumur, and Segré. Tho zapital is Angers.
mainpurf, or Mynpooree, a district in the lieutenantgovernorship of the North-Western Provinces, India, between $26^{\circ} 52^{\prime} 30^{\prime \prime}$ and $27^{\circ} 30^{\prime} \mathrm{N}$. lat., and $78^{\circ} 27^{\prime} 45^{\prime \prime}$ and $79^{\circ}{ }^{\circ} S^{\prime} 30^{\prime \prime}$ E. long., is bounded on the N. ly Etah, on the E. by Farrukhibid, on the S. by Etawah, and on the W. by Muttra and Agra, and has an area of 1697 square miles, of which 949 are cultivated, and 190 cultivable. It consists of an almost unbruken level plain, intersected by small rivers, but unvaried by any greater elevations than a few undulating sand ridges. It is wooded throughout with mango groves, and isolnted clumps of bábul trees oceasionally relieve the bareness of its saline usar plains. On the snuth-western boundary the Jumna flows in a deep alluvial bed, sometimes sweeping close to the high bauks which overlangs its salley, and at uthers leaving room for
a narrow samp of furile sula between the river and the upland plain. From the low-lying lands thus formed : belt of ravines stretches inland for some 2 miles, often covered with jungle, but affording good pasturage for eattle. Moving north-eastward from this poinf, one reaches in succession the small rivers Aganga, Sengar, Rind, Isan, and Kisli Nadi, most of which supply water to a smal! tract on either side, besides giving origin to rich deposits of eultivable silt. The Etawah and Cawnpur branches of the Ganges canal intersect the district for irrigation pmposes, and the Lower Cianges camal, when completed, will furnish additional facilities ia the same direction.
The census of 1872 returned the population of the district at 765, 783 (males, 426,955 ; lemales, 338,828 ). The Hindus numbered 724,663, Muhammedans 40,965, Christians 85. Among ligh-caste Hindus, the Bráhmans aumber 67,0i2, and form a wealthy landholding class. Rajputs are returned at 60,155, amongst whom the Chauhans form the largest clan. They have long formed the aristocratic elass of the district, and in 1872 owned 44 per cent. of the total area. Much of their bereditary property is, however, passing out of their hands into those of merchants and traders. Of the lower castes, the most important are the Ahirs, numbering 123,358, who own over 12 per cent. of the soil. For many centuries this tribe consisted of lawless robuer hordes, who helel the fastucsses of the Jumna rariues; and, thongl they have now been reduced to a comparatircly industrial life, they still continue to atford tho local authorities much trouble and anxiety. The Chamars, 103, 193 in number, are mere hewers of woorl and drawers of water for the landholding classes, who hole them in a condition of absolute serfdom under native rule. Other important Hindu tribes are Káchhis ( 72,898 ), Lodlia's ( 53,658 ), Gadariyas ( 23,047 ), and Kahars ( 25,273 ). The Mosiems are for the most part pror and without social influence. Only four towns in the district contaiua population exceeding 5000: Mäinpurí, 21,117; Shikohábád, 10,069; Bhongåon, 6271 ; and Karlál, 5574.

Miinpuri is one of the districts where the question of female infanticide has long eugaged the attention of Government, and cven as late as 18 i2 this practice was so common as in a great measure to account for the large preponderance of males in the geneml population. In 1842 measurea were first introduced for the supervision of the Clauhín Rajputs and Phatak Ahirs, amond whom the practice was most common. Every female birth had to be duly' reported and authenticated, together with a subsequent report on the child's health. Illness bad to be immediately announced to the police, who held an investigation. These rules remained in force until supplemented by those of the In fanticide Act of 1870. In 1843 there was not a single female child among these tribes; in 1847 there were but tro hundred and ninety-nine. In 1851 a convention of the leads of clans was beld, when a body of rules was drawn up and subscrilied to, but they were never observed. In 1865 a census of the Chauhin and Phitak villages was held, when six of the former were found without a single temale infnot. In some cases a daughter had never been known in tho village. In 1870 it mas found necessary to impose more stringent rules, and a special Infanticide Act was passed by the viceregal council. Inquiries instituted in comexion with the census of 1872 revealed the fact that many other tribes than the Chanháns and Phataks were implicated in the mactice. In 187\%, althougl a large proportion of the conmunity herl so far reformed in this respect as to le exempted from the special supervision provided by the 1nfanticide Act, there were still two bundred and soventy-six villages on the "proclaimed list" under the surveillance of a specially orgauized police, maintained ly a tax levied on the guilty communities.

In Mainpuri almost every acre of a ailabue soil is unaer tilage. The total area under cultivation at the date of the last settlement was 607,991 acres. K7arif or rain crops included cotton, 43,901 beres; joar, 120,497; bajra, 74,028; iudigo, 5369: with a littlo uraize, zice, hemp, \&c., making up a sotal of 299,850 acres. Rabk, or spring erops were the following :-wheat, 105,488 acres; barley, 60,443; whent and barley mixed together, 66,488; with gram, poppy, \&c., making a total of 232,376 acres. Therc were also $17,5=3$ acres under sugar-cane. Of the 607,360 acres cultivated in 183t, 337,726 wero uniirigated, $1 \mathrm{S0}, 415$ were irrigated hy private indiviluals, and 39,219 by Government. Two-thirds of the land is held by temants with rights of occupancy, and oacethird bs tenauts-at-will. Mainpuri sutfers little from lloods or blights. but in former years it used to be severely sfficted by drought. The menus of commumeation, added to the large and increasing irrigatiou systen, aro now probably sufficient to protect the district from extreme distress in years of damine.

The district trade is alnost entirely of a rural character. The chief exports are cotton, grain, iudigo, ght, nad miscelladeous :"゙icultural produce ; whic metals, Englisb 1 iece goode, sugar,
fedlar's wres tolacco, and rice are imported. Cotton thread is largely manufactured, and there is some trado in bangles, hukis or pipes, inlaid wood-nork, and other lancy articles. Saltpetre is refined at several factories. The district is thoroughly supplied with land and water communiontions. Good metalled roads connect all tho priocipal towns and villages; the East ludian Railyoy ruas for 23 miles through tho south-western nnglo; the navigable branch of the Ganges canal intersects the central plateau; and the natural highway of the Jumna skirts the district to tho sonth.

The gross amonnt of assessmeut in 1880-81 was $£ 115,132$. Education was afforded in $1880-81$ by 151 schools with- 4146 pupils. Tha elimate is hot but not excessively sultiy daring the summer nonths, and damp or forgy during the cold weather rains. The average nnnual rainfalf for the five years ending 1870-71 was $32 \cdot 20$ inches. The chief endemic disease is malarial fever.
Sliinpuri nnciently formed part of the great kinglom of Kananj, and after tho fall of that famous state it was diviled into a number of petty principalities, of which Raprinnd Bhongion were the chirf. In $119 \pm$ Ripri was made the seat of a Moslem governor. Mainpuri fell to the Mnghals on Bábar's invasion in 1526, and, although temporarily wrested fron them by the short-lived. Afghin dynasty of Sher Shah, was again occupied by them on the reiostatement of Humayun after the victory of Panipat. Like the rest of the lower Doáb, Mainpuri passed, towards the end of the last century, into the power of the Malirattas, and fimally became $n$ portion of the province of Oudh. When this part of the country was ecded to the British in 1801, Mainpuri town became the beadquarters of the exextensivo district of Etawah, which was in 1856 reduced by the formation of Etah and Máinpurí into separate collectorates. On tho ontbrenk of the nutiny in 1857, the regimeut stationed ac Máinpuri revolted, nad attacked the town, which was successfully defended by the few Europeans of the station for a reek, until the arrival of the Jhinsí mutincers made it necessary to abandon the district.

Mánport, the chief town and headquarters of the abore diatrict, is situnted in $27^{\circ} 14^{\prime} 15^{\prime \prime} \mathrm{N}$. lat., $79^{\circ} 3^{\prime} 5^{\prime \prime}$ E. long., and had a population in 1872 of 21,117 , viz., Hindus, 17,596; Muhammedans, 3435; Christians and "others," 146. The town consists of two separate portions, Máinpurí proper and MukLamganj; the former traditionally dates from the prehistoric period of the Mahabharata, while the latter was founded by Rájá Jaswant Sinh in 1803. Holkar plundered and burned part of the town in 1804 , but was rejulsed by the local militia. Since the British occupation the population has rapidly increased, and mauy improvenents have been carried out. The Agra branch of the Grand Truuk Road runs through the ceutra, and forms a wide street lined on both sides by ahops, which constitute the principal bazaar. Besides the asnal Government offices, \&cc., in the civil station, the dhief buildings are the police station, opinm warehouses, jail, post-office, dispensary, two large achools, American Presbyterian mission, church, reading-rooms; there are two public gardens. The town carries on a considerable trade in cotton, indigo seed, country produce, and iron; and there is a manufacture of wooden articles inlaid with wirc.

Maintenon, Françoise d’Aubigné, Marquise de (1635-1719), the second wife of Louis XIV., and naacknowledged queen of France for the last thirty years of his reign, was born in a prison at Niort on Norember 27, 1635. Her father Constant d'Aubigné, was the son of Agrippa d'Aubigné, the famous friend and general of Henry IV., and had been imprisoned as a Hugnenot malcontent, but her mother, a fervent Catholic, had the child baptized in her religion, her sponsors being the Duc do la Rochefoucanlu, father of the author of the Maxims, and the Comtesse de Nevillant. In 1639 Constant d'Aubigné was released from prison and took all his fanily with him to Martinique, where he died in 1645, after having lost what fortune remained to him at cards. Madame d'Aubigne returned to France, and from aheer poverty unwillingly yielded her danghter to her sister-in-lam, Madame de Villette, who made the child very happy, but, nofortunately for her, converted or pretended to convert her to Protestantism. When this was known, an order of atate was issued that ahe should be entrusted to Madame
de Nenillant, her godmother. Every means, every indignity eveo, was now used to convert har back to Catholicism, but at the last she only yielded on the condition that she need not beliere that the sonl of Madame de Villatte was lost.: Once reconverted, ahe was neglected, and sent hume to live with her mother, who had only a amall pension of 200 livres a year, which ceased on her death in 1650. Thé Chovalier de Meré, a man of some literary distiaction, who had made her acquaintance at Madaun de Nenillant's, discovered her penniless condition, and introduced his "young Indian," as be called her, to Scarron, the famous wit and comic writer, at whose house all the literary aociety of the day assembled. The wit, who was of good legal family, and had a kind heart, twok a fancy to the friendless girl, and offered either to pay for her admission to a convent, or, though the was deformed and an invalid, to marry her himself. She accepted his offer of marriage, and became Madame Scarron in 1651. For nine years ahe was not only his most faituful nurse, but an attraction to his house, where she tried to bridlo the licence of the conversation of the time. On the death of Scarron in 1660, Anue of Austria continued his pension to his widow, and cren increased it to 2000 livres a year, which cnabled her to entertain and frequent the literary society her husband had made her acquainted with; but on the queen-mother's death in 1606 the king, in spite of all the efforts of her friends, refused to continue her pension, and she prepared to leave Paris fur Lishon as lady attendant to the queen of Portugal. But before sho started, ahe met Madame de Montespan, who was alrendy, though not arowedly, the king's mistress, at the Hôtel d'Albret, and the lady in question took such a fancy to her that she obtained the continuance of her pensinn, which put off for ever the question of going to Portugal Madame de Montespan did yet more for her, for when, in 1669, het first child by the king was born Madame Scarron was established tith a large income and a large staff of servants at Vaugirard to bring up the king's childreu in secrecy as they were born. In 1674 the king determined to have his children at court, and their governess, who had now made sufficient fortune to buy the estate of Maintenon, accompanied them. The king had now many opportunities of seeing Madame Scarron, and, though at first he was prejudiced against her, her even temper abowed so advantageonsly against the storms of passion and jealousy exhibited by Niadame de Montespan that she grew stendily in bis favour, and had in 1678 the gratification of having her estnte at Maintenon raised to a marquisate, and herself entitled Madame de Maintenon by the king bimself. Such favours brought down the fury of Madame de Montespan's jealousy, ond Madame de Maintenon's position was almost uneudurable, until, in 1680, the king severed their connexion by making the latter aecond lady in waiting to the dauphiness, and 8000 after Madame de Montespan left the court. Tha new "amis" used her influence on the side of decency, and the queen openly declared sha had never been ao well treated as at this time, and eventually died iu Madame de Maintenon's arms in 1683. The queen's death opened the way to yet greater advancement; iu 1684 she was made first lady in waiting to the dauphiness, and in the winter of 1685 , or, Voltaire says, in January 1680, she was privately married to the king by Harlay, archbishop of Paris, in the presence, it is believed, of Père la Chaise, the king's confessor, the Marquis de Montchevrenii, the Chevalier de Forbin, and Bontemps. No written proof of the marriage is extant, but that it took place is nevertheless certain. Her lifo during the thirty years of ler aecond married life must be atudied from mora than one side, and can be so fully from her letters, which are masterpieces even of an age
when Madame de Sevigné wrote, and of which - many authentic examples are extant. As a wife she is wholly admirable; she had to entertsin a man who would not be zmused, and had to submit to that terribly strict court etiquette of absolute obedience to the king's inclinations which Saint-Simon so vividly describes, and yet be always cheerful, and never complain of weariness or illheaith. Her politicsl influence has probably been overstsicd, but it was suprems in matters of detail. The ministers of the day used to discuss and arrange all the business to be done with the king beforehand with her, and it was all done in her cabinet and in her presence, but the king in more jmportant matters often chose not to consult her. Such mistakes as, for instance, the replacing of Catinat by Villeroi may be attributed to her, but not whole policies, -notably, according to Saint-Simon, not the policy with regard to the Spanish succession. Even the revocation of the edict of Nantes, and the Dragonasdes have been laid to her charge, but there can be no doubt that. in spite of ardent Catholicism, she retained a liking for hor fsther's religion, and opposed, if not very vigorously, the cruelties of the Dragonnades. She was probably afraid to say much, or peril her great reputation for devotion, which had in 1692 obtained for her from Innocent XII. the right of visitation over all the convents in France. Where she deserves blame is in her use of her power for personal patronage, as in compassing the promotions of Chamillart and Villeroi, and the frequent assistance given to her brother Comte Charles d'Aubigné. Her influenco was on the whole a moderating and prudent force, and the king, when he wanted her advice, used to say, "Qu'en pensez votre Solidité?" or "Consultons la Raison." Her social influence was not as great as it might have been owing to her holding no recognized position at court, but it was always exercised on the side of decency and morality, aud it must not be forgotten that from her former life she was intimate with the literary people of the day, and never deserted her old friends. Side by side with this public life, which woaried her with its shadowy power, occasionally crossed by a desire to be recognized as queen, she passed a nebler and sweeter private existeace as the foundress of St Cyr. Madame de Maintenon was a born teacher ; she had so won the hearts of her first pupils that they preferred her to their own mother, and was similarly successful later with the young and impetuous Duchesse de Bourgogne, and she had alwaye wished to establish a home for poor girls of good fsmily placed in such straits as she lrerself had experienced. As soon as her fortunes began to mend she started a small home for poor girls at Ruel, which she afterwards moved to Noisy, and which was the nucleus of the splendid institution of St Cyr, which the king had endowed in 1686 at hor request out of the funds of the Abbey of St Denis. She was in hor element there. She herself drew up tho rules of the institution; sho exsmined every minute detail; she befriended her pupils in every way; and her heart oftea turned from the weariness of Versailles or of Marly to her "little girls" at St Cyr. It was for the girls at St Cyr that Racine wrote his Esther and his Athalie, and it was because be managed the affairs of St Cyr well that Chamillart became controller-genoral of the finances. The later yesrs of her power were marked by the promotion of her old pupils, the children of the king and Madame de Montespan, to high dignity between the blood royal and the peers of the realm, and it was doubtless under the influsnce of her disliko for the Duc d'Orleans that the king drew up his will, leaving the personal care of his successor to the Duc de Maine, and hamperirg the Duc d'Orleans by a council of regency. On or even before her husband's death sho retired to St Cyr, and had tho chagrin of seeing all her plans for tho adrancement of tho Duc do Maine
overthrown by means of the parlement of Paris. However, tho regent Orleans in no way molested her, but on the contrary visited her at St Cyr, and continued ber pension of 48,000 livres. She spent her last years at St Cyr in perfect seclusion, but an object of great interest to all visitors to Franco, who, however, with the exception of Peter the Great, fonnd it impossible to get an audience with her. On April 15,1719, she died, and was buried in the choir at St Cyr, bequeathing her estate at Maiutenon to ber niece, the only daughter of her brother Charles, and wife of the Maréchel de Noailles, to whose family it still belongs. Such was the life of the extraordinary roman who kept till the last the heart of Louis XIV., msrked by a virtue almost amounting to prudery, in strong contrast to the generations which preceded and followed her, by a love of power, and a use of it which csn indeed be excused by her early life, but which was not exercised for the good of France, and by a religious devotion which was narrow, if not violently fanatical, but sweetened throughout by her ardent love for her "little girls," whom she had saved from the difficulties of life, and whom she loved with all a motherss love.

La Beaumelle published the Lettres de Madamo de Maintenon, but much garbled, in 2 vols. in 1752, and on a larger scalo in 9 vola. in 1756. He also in 1755 published Némoires de Nadame ds Maintenon, in 6 vols., which caused him to be imprisoned in the Bastille. Next must be noted Madame de Maintenon peinte par elle méme, by Madame Suard, 1810 ; Histoire de Mradame de Mrain. tenon, by Lafont d'Aussonne, 1814 ; Lettres inédites de DFadame de Maintenon et la princesse des Ursins, 1826, reviewed by SainteBeuve, Causeries du Lundi, vol. v.; and Histoire de Madame do Maintenon, by the Duc de Noailles, 1848-58. All materials for her life have, however, been superseded by Théophile Lavallée'e Histoire do St Cyr, reviewed in Causeries du Lundi, vol. viii., and by his edition of her Lettres historiques el \&diffantes, \&c., in 7 vols., and of her Correspondance Generale, in 4 vols., which latter must, however, be read with the knowledge of meny forged letters, noticed in P. Grimblot'e Faux Autographes de Madame de Main. tsnon. Saint-Simon'e fine account of the court in her day and of her career is contained in the twelfth volume of Chéruel and Regnier's edition of his MÉmoires.
(H. M. S.)

MALNZ, or Mentz (in French, Mayence), the largest town in the grand ducky of Hesse-Darmstadt, one of the strongest fortresses in Germany, and formerly the seat of an archbishop and elector, is situated on a rising ground on the left bank of the Rhine, nesrly opposite the influx of the Msin. The fortifications, which consist of three enceintes with a series of outlying forts, embrace the small town of Castel on the opposite bank, and have recently boen widened so as to admit of a lsrge extension of the town. Mainz is connected with Castel by a bridge of bonts, and the Rhine is also spanned there by a railway bridge. The interior of the town consists chicfly of narrove and irregular streets, but the oldest part of all, to the west, was almost entirely destroyed by the explosion of a powdermagazine in 1857, and has been rebuilt in a much improved style. There are also several handsome modern strects on the side next the Rhine, which is bordered by a fine quay, upwards of 300 feet in breadth. To the south lies the Neue Anlage, a park laid out on the site of the chatead of Favorito, whero the duke of Brunswick signed his famois manifesto to the French people in 1792. The prinoipal object of historical and architectural interest in Mainz ia, the grand old cathedral, an imposing Romanesque edifice with numerous Gothic additions and details. It wad originally arected between 975 and 1009 , but has since. been repeatedly burned down and rebuilt, and in its presen form dates chiefly from the $12 \mathrm{th}, 13$ th, and 14 tb centuries. Tho largest of its six tuwers is 300 teet in height. The whole building was restored by order of Napoleon in 1814, and another therough renovation has bsen recently in progress. The interior contains the tombs of Bonlfacr, the first archbishop of Mainz, of Frauedob the minnesinger,
and of most of the archiepiscopal eleetors. Mainz possesses other eight Roman Catholic churches, the most noteworthy of which are those of St Ignatius, with a finely painted seiling, and St Stephen, built in 1318 , and restored after the explosion of 1857 . The old electoral palace, erecterl In $162^{2}-78$, now contains valuablo collections of Roman and Germanic antiquities, a picture gallcry, and a library of 130,000 volumes, including several productions of Gutenberg, Fust, and Schöffer. Among tho other principal buildings are the palace of the grand-duke, built in 1731-39 19 a lodge of the Teutonic Order, the theatre, the arseaal, the Government house, the commandant's resideace, and several fine private honses. A haodsome statuc of Gutenberg, by Thormaldsen, was erected at Mainz in 1837,


## Plan of Mainz.

1. Ca:hedml. 9. Palace. 3. Courts of Justice. 4. Town-Jouse.
2. Theatre. 6. Gutenberg'sMonnment 7. Schlller's Monument. 8. Neubrunnen.
3. Government House. 10. St Stephen's Church. 11. Action Becihouse. 12. Eichelstcin.
and the town is also embellished with a statue of Schiller and two architectural fountains. Majaz still retains many relics of the Roman period, the mest important of which is the Eigelstcin, a monameat believed to hare been erected by t'ie Roman legions in bonour of Drusus. It stands witi.n the citadel, which occupies the site of the Roman castrum. A little to the soutb-west of the town are the remains of a large Roman aqueduct, of which upwards of sixty pillars are still staoding. The educational and scientific institutions of Mainz include 20 episcopal semi.ary, a gymnasium, a society for literature and art, a mus:.al society, and an antiquarian society, the fine cellection of which has been mentioned above. The university, founced in 1477, was suppressed in 1791.

The site of Mainz would seem to mark it out naturally as a great centre of trade, but the illiberal rule of the archbishons and its military importance seriously hampered its commercial and indrstrial development, and prevented it from rivalling its neighbour Fraakfort. It is nor, howerer, the chitef emporium of the Rhenish mine traffic, and also carrics on an extensive transit trade in grain, timber, flour, and oil. The natural facilities for carriage by water are suphlemented by seven railways. The principal manufactures of Maiaz are leather goods, furniture, carriages, chemicals, musical instruments, and carpets, for the first
two of whieh it has attained a wide reputation. Mainz is the scat of the adıninistrative and judicial authorities of the province of Rheinhessen, and also of a Roman Catholic bishol). The population in 1880 amounted to 61,322 , including a garrison of abont 8000 men. Fully two-thirds are lioman Catholics. Castel has about 5000 inhabitants.

Main?, one of the oldest cities in Germany, was originally a Celtic settlement. Its stratcgic importance was early recognized by the Romans, ani in 13 b.c. Drusus, the son-in-law of Augustus, crected a fortified camp (castrim) there, to which a smaller castellum (the modern Castel) on the opposite bank was afterwards added. The Celtic name became Latinized as Maguntiackm or Moguntiacun, and a torm, Baguntia, gradually arose, which became the capital of Germania Supcrior. In the "Volkerwandernngen," or migrations of peoples during the gradual dissolution of the Roman empire, Mainz was destroyed on different occasions by the Alemanni, the Vandals, and the Huns ( $\mathbf{5 5}$ I A.D.). Christiauity seems to have been introduced at an carly period, and soon afterits recovery from the last of these calamities wo find it the seat of a bishop. In the middle of the Sth century, under Boniface, the seo became an archbisbopric, to which the primacy of Germany was annexcl. Charlcmagne built a bridge here and granted the town important privileges, and in the following centuries it wns the seat of scveral diets and ecclesiastical councils. In 1254 Mainz was the head and mainspring of the league of Rhcuish tomns, and had attained to sucls a pitch of commereial prosperity that it was known as the "Goldenc Mainz." Soon after this time it is belicved that the population uas as numereus as at the present day. In 1462, during the strife between the rival archbishoss Diether ron Isenburg and Adolplz ron Nassau, Mainz eapeused the canse of the former, but was taken by tha latter, who had the support of tho cmperor, lost its imperial privilcges, and was henceforth subject to the archbishons. Many of its citizens were driven into cxilc, and carricd into other lands a knowledge of the art of printing, whicla had beca invented at Mainz by Cuterberg in 1440. In the Thirty Ycars' War Mainz ras occupied by the Swedes and the Freach, In 1792 it cnthusiastically welcomed the principles of the Frencls Revolution, and opened its gates to the Republican troops under Genersl Custine. It was recaptured in the follewing year, but was ceded to France by the peace of Campo Formio in 1797. In 1814 it was restored to Germany and handed over to the grand-duchy of Hesse, remaining, however, a fortress of the German Confederation, garrisoned in common by Prussian, Austrian, and Hessian troops. Since 1871 it has been a fortress of the German empire.

For further information consult Schasb, Geschichee der Sladt Mrtinz, 1841-44; K. Klein, Mainz und scine Ungcbungen, 1868; Bockenheimer, Beil'äge zur Geschichec der Stadt Mainz, 1874, and Mainz un:l U'mgebungen, 1880; Werner, Der Dom von Mrainz unc scine Denkmäler, 1827-36.
(J. F. M.)

MAISTRE, Josepa DE, diplomatist and polemical, writer was born at Chambéry on the 1st April 1754, and died at Turin on the 26th February 1821. The family was an ancient and noble one, enjoying the title of connt, and is said to have been of Languedocian extraction. The father of Joseph was president of the senate of Savoy, and held other important offices. Joseph himself, after studying at Turin, receised various appointments in the civil service of Saroy, fually becoming a nuember of the senate. In 1786 he married Françoise de Morand. TLo invasion and annexation of Savoy by the French Pepublicans made him an exile. He did not take refuge in that part of the kiag of Sardinia's domains which was for the time spared, but betook himself to the as yet neutral territory of Lausamne. There, in 1796, he published his first important work (he had previously written certain discourses, pamphlets, letters, \&ec.), Considérations sur la France. In this he developed his views, which were thoso of a Legitimist, but a Legitimist entirely from the rellgious and Roman Catholic point of view. The philosophism of the 18th century, as shown in its political views, or rather the second as a consequence of the first, was Joseph de Maistre's life-long object of assault.

After the still further losses which, in the year of the publication of this book, the French Revolution inflicted on Sardinia, Charles Emmanuel summoned Joseph do Maistre to Turin, and he remained there for the brief space during which the king retaincd a remnant of territory on the maialand. Then he went to the island of Sardinia itseli.
and Leld office at Cagliari. In 1802 he mas appointed eavoy extmordinary and miaister plenipotentiary at St Petersburg, and journeyed thither the next year. Although his post was no sinccure, its duties were naturally less engrossing than the official life, with intervals of uneasy exile and travelling, which be had hitherto known, and his literary activity was great. He only published a single treatise, on tho Principe générateur des Constitutions; but he wrote his best and most famous works, $D$ e $P$ upe, $D e$ $l$ 'Eglise Gallicane, and the Soirées de S't Pétersbourg, the last of which was never finished. Du Pupe, which the second-named book completes, is a treatise in regular form, dealing with the relations of the sovereign pontiff to the church, to temporal sovereigns, to civilization generally, and to schismatics, especially Anglicaus and the Greek Church. It is written from the highest passible standpoint of papal absolutism. The Soirées de St l'étersbourg, so far as it is anything (for the arrangement is somewhat desultory), is a kind of theodicée, dealing with the fortunes of virtue and vice in this world. It contains two of De Maistre's most famous pieces, his panegyric on the executioner as the founclation of social order, and his acrimonious, and in part unfair, but also in part very damaging, attack on Locke. The, Du Pape is dated May 1817; on the Soirées the áuthor was still engaged at his death. Desides these works he wrote an examination of the philosophy of Bacon, some letters on the Inquisition (an institution which, as may be guessed from the remarlis just noticed abont the executioner, was no stumbling-block to him), and, earlier than any of these, a translation of Plutarch's "Essay on the Delay of Divine Justice," with somewhat copious notes. After 1815 he returned to Savoy, and was appointed to high office, while his Du Pape made a great sensation. But the world to which be had returned was not altogether in accordance with his desires. He lad domestic troubles; and chagrin of one sort and another is said to lave had not a little to do with his death by pavalysis at no very advanced age. Most of the works mentioned were not published till after his death, and it was not till 1851 that a cullection of Lettres et Opuscules appeared, while even since that time fresh matter has been published.

Joseph de Maistre was one of the most powerful, and by far the ablest, of the leaders of the Neo-Catholic and nnti-revolutionary movement. Tho most remarkable thing ahout his standpoint is that, layman as ho was, it was entirely ecclesiastical. Unlike his contemporary Bonald, Joseph de Maistre regarded the temporal monarchy as an institution of altogether inferior importance to the spiritual primacy of the pope. He was by no means a pelitical absolutist, except in so far as he regarded obedience as the first of political virtues, and be seldom loses an opportunity of stipulating for a tempered monarchy: But the pope's power is not to be tempered at all, either by councils or by the temporal power or by national churches, least of all by private judgnient. The peculiarity of Joscplu de Maistre is that he supports his conclusions, or if it be preferred his paradoxes, by the hardest and heaviest argument. Although a great mastor of rhetoric, he never makes rhetoric do duty for logic. Lvery now and then it is possible to detect fallacies in him, but for the most part he has succeeded in carrying matters luack to those fundamental differences of opinion which hardly admit of argument, and on which men take sides in consequence cbiefly of natural bent, and of predilcetion for one state of things rather than for another. The absoluto necessity of order may be said to have been the first priaciple of this thiaker. He could not conceive such order without a single visible authority, reference to which should settle all dispute. He saw that there could be no such temporal head, and in the popo bo thought that he aaw a spiritual substitute. The anarchic
tendencies of the revolution in politics and religion were what ofecnded him. It ought to be added that ise was profoundly a nd accurately learned in history and philosophy, and that the superficial bluaders of the 18th century philnsoples irritated him as much as their doctrines. T's Toltaire in particular he shows no mercy.

A good and complete edition of Do Daistre has yet to appear. Of the two works named as his masterpieees, Du Pape is to be found in the Bibliotheque Crarpenticr, and the Soirets de St Peters. bourg is printed in two volumes, the fifteenth edition, so-calted, bearing date Lyons, $18 \% 8$.
(G. SA.)

MaISTRE, Savier de, the jounger brother of Joseph, was born at Cliambery in October 1763, and died at St Petersburg on the 12th June 1852. Ife served when young in the Piedmonteso army, and wrote his Foyage culour de met Chambre mhen he was in garrisos at Turin. Thia, a delightful fantasy piece mhich may have owed somethiag to the example of Steme in its conception, but which is quite original in esecution, be showed to his brother Joscpl, and on his approval it was published at Turiu in li9t. Xavicr, however, shared the politics and the loyalty of his brother, and the annexation of Savoy, followed as it was at no long date by the extiuction of Piedmontese independence, made him quit his country. He served in the victorious Austro-Russian campaign in which Suwaroft performed such wonders, and accompanied the marshal to Iiussia. For a time he was in very reduced circumstances, and is said to have supported himself by painting. But on his brother's arrival in St Petersburg he was introduced to the minister of murine. He was appointed to several posts in the capital, but also saw active service, was wounded in the Caucasus, and attained the rank of major-general. He married a Russian lady and established himself in his adopted country, even after the overthrow of Napoleen, and the consequent restoration of the Piedmontese dynasty. For a time, however, be lived at Naples, but he returned to St Petersburg and died there. He was only once at Paris (in 1839), when Sainte-Beuve, who has left some pleasant reminiscences of him, met him. Besides the Voyage already mentioned, Xavier do Maistre'a works (all of which are of very modest dimensions) are $L_{0}$ Lépreur de la Cité d'Aoste, a touching little story of human misfortune, Les Prisonaiers du Caucase, a powerful sketch of Pussian character, La Jeune Siberienne, and the Expédition Nocturne, a sequel to the Foyage autour de ma Chambre. But his Voyage is, with the Lépreux, his title to fame. Both have a certain rescmblance to Sterne, the first in its quaintness and desultory arrangement, the second io its sentiment. Xavier de Maistre is, however, much less artificial than his forernmer, especially in his pathos, and he is also much better bred. His style is of remarkable ease and purity. The works of Xavier de Maistre, with the exception of some brief chemical tractates, are usually priated in a single volume, which figures in the collections of Charpentier, Garnier, icc.

MAI'LAND, a town of Australia, in New South Wales, 93 miles north of Sydney, in the valley of Hunter river, and commmucating with Newcastle and Port Hunter both by steamboat and railway. It consists of two distinct municipalitics-East Maitland, incorparated in 1862, and West Maitland, in 1863. The former, which is the seat of a lioman Catholic bishop, contains a court-Louse, a large prison, and a mechanics' institute; the latter a courthouse, an excellent hospital (Campbell's Hill), a school of arts with a considerable library, a benevolent asylum, n theatre, and a Dominican nunnery. The district is a ricin agricultural country, growing maize, barler, onts, wheat, tobacco, grapes, and oranges; coal and shale are recularly worked near the town; and a good trade is carricd on aith the interior townships. The inbabitants number 7881. East Maitland having 2500 aud Weat Maitland 5381.

MATLLAND, Johy (16̄14-1682), earl and aftermards duke of Lauderdzle in the peerage of Scotland, was a greatgrandson of Sir Rictard Matcland (q.v.). In early life ${ }_{3}$ Presbyterian, he attended the Westminster Asscmbly in 1643 as as elder of the Church of Scotland; snd he was a party to the surreader of Charles I. to the Eoglish arny in 1645 . Soon afterwards, changing his prlitics, he became a zealous supporter of the royal cause, wind promoter of the Engagement for raising forces for tho king's rescue. He was taken prisoner at the battle of Worcester; and, on being set at liberty in 1660, he repaired to the Hague and accompanied Charles [I. to Scotlsnd. From 1663 he was virtually ruler of Scotland,-at first moderate in his counsels, but aftersards severe in his measures against the Corenanters. In 1672 he was made duke of Lsuderdale and a Koight of the Garter; and he had also an Euglish peerage ceaferred on him (with the title of earl of Guildford) in 1674. One of the administrative council known as the "Cabal," he eventually fell into disgrace, and died in 1682. His dukedom and English honours expired with him; the earldom of Lauderdale passed to his brother Charles, aad is still in possession of his descendants. The voluminous correspondence of Lsuderdale, which is still extant, shows that, in addition to a remarksble power over men of all classes, great watchfulness and resolution, and very clear ideas of what was needed to keep Scotland peaceful and io a state of usefulness for farther ends, he was possessed of no slight learning.
maitland, Sir Richard (1496-1586), an early Scotish lawyer and poet, was born in 1496. His father, William Maitland of Lethington and Thirlstane, fell st Flodden; his mother was a daughter of George, Lord Seton. He stadied law at the university of St Andrems, and afterwards in France. He was in 1552 one of the commissioners to settle matters with the English about the debatable lands on the borders, and about that time had the inonour of knighthood conferred upon him. In 1554 he was made an extracrdinary lord of session. About 1561 he seems to have lost his sight, but this did not render him incapable of atteading to public business, as he mas the same year admitted an ordinary lord of session by the title of Lethington, aad in 1562 was nomitated lord privy seal. He resigned this latter office in 1567, in favour of John, prior of Coldingham, his second son, but he sat on the bench till he attained his eighty-eighth rea:. He was an amiable and accomplished man, snd died in 1586, aged oinety, after having been employed in public offices for upwards of seventy years. His eldest son, William, forms the subject of next article. His second son, John, was a lord of session, and was made a lord of parliament in 1590 , by the title of Lord Maitlsnd of Thirlstane, in which he was succeeded by his son John, also for same time a lord of session, who tras created earl of Lauderdale in 1624. The latter was the father of John Maitland, duke of Landerdale, noticed nbove. One of Sir Richard's daughters, Mary, assisted her father in his studies, and also wrote verses.
Tho poems of Sir Richard Maitland, none of them lengthy, aro someewhat satirical, and are principally directed againat the aboses of is time. He muat, however, be regarded as the industrious collector ind preserver of many pieces of ancient Scottish poetry. These were sopied into two large volumes, one in folio and snother in quarto, the former written by himself, and the latter by his daughter. After being in the possession of his descendant the duke of Lauderdale, these volumes were purchased at the sale of the duke's library by the celebrated Samuel Pepys, who was one of the first ;ollectors of raro books in England. . They have since been prreerred iu the Pepysian Library, Magdalone College, Canbridge. They lay there unnoticed for many years till Bishop Percy pubGished one of the poems in bis Ireligucs of English Poetry. Several of the pieces were then transcribed by John Pinkerton. Who afterwards publighed them under the title of Ancient Scoltish Pocms. ent:prising Pieces written from about 1420 till 1586 , woth Notes and
a Glossary, 2 rols. 8ro, London, 1786. Sir Richard left in mana script a history of the family of Scton, and a volune of legal decisions collected by him belween the years 1550 and 1565 . Both are preserved in the Advocates' Library, Edinburgh, and the latter work is still unpublished. The Poems of Sir Richard Maitland were printed in 1830 by tho Maitland Club, a literary society, founded in Glasgow in 1828, which took its name from him. The MS. used for the purpose was one preserved in the Drummond collection in the library of the university of Edinburgh. It seenis to lave been written shortly before the year 1627, when it was presented by Drummond to the library. In 1829 there was also printed for the club The History of the House of Seytoun to the year 1559, with a continuation to 1687 by Alexander, Viscount Kingston.

Maitland, William (c. 1525-1573), best known in Scottish history by the name of his father's estate of Lethington, near Haddington, where be resided, was the eldest son of Sir Richard Maitland, noticed above. Bern about 1525, nnd partly educated in France, he was at an early age initiated ioto public life. He was made secretary of state by Mary of Givise in 1558 ; but the favour with which he regarded the views of the reforming party soon exposed him to the queen mother's resentment. He became one of the "lords of the congregation," and was also one of the Scottish commissioners who negotiated with Queen Elizabeth regarding the terms on which she would agree to aid the Reformers. Soon after Mary's arrival in Scotland, he was employed in tro embassies to England, and was made first an extraordinary and then su ordinary lord of session. He had a controversy with Knox, whom he accused in the General Assémbly of 1564 of teaching seditions doctrine. He went again to England as ambassador to notify the queen's marriage to Darnley, and was implicated both in the conspiracy against Rizzio and in the Kirk of Field trogedy, though he was also n member of the secret conncil at which the depositions of Daraley's murderers were taken, and signed the act of council accusing Mary of being the author of the crime. He fought against the queen at Langside, but at the conference at York identified himself in a measure with her interests. At the instance of the regent Murray he was in 1569 arrested as a participant io the kiog's murder, and would have been brought to trial but for a ruse of Kirkcaldy of Grange, who, as commander of Edinburgh Castle, convcyed him thither as a prisoner. The two principal representatives of Mary's cause, Lethington and Grange, who may be described as the forlorn hope of the captive queen, held the castle of Edinburgh for some time against the regent Morton and an English force; and, when snrrender became a matter of necessity, they made their oubmission, not to the regent, but to tho English queen. Kirkcaldy was executed; but Msitland died in prison, it was generally believed of poizon administered by his own hand, on 9th June 1573. "Secretary Maitland" was a man of great learning and power of repartee, wanting in integrity, but skilled in intrigue, and reputed the most accomplished and most versatile statesmen that bis country has produced; in the opinion of his contemporaries his capacities were too great for the narrow sphere of Scottish politics.

MaitTAire, Michel (1668-1747), bibliographer and editor, was a native of France, and was born in 1668 . On the revocation of the edict of Nantes his parents, who were Protestants, removed to England, where he was educated at Westminster and at Christ Church, Oxford, graduating in 1696. From 1695 to 1699 he taught in Westminster School, but afterwards devoted himself exclusively to private teaching and editorial work. He died on August 4, 1747.

Maittaire was a great lover of books, but no critic; and his numerous editions take rank only as compilations. His works in. ${ }^{\text {. }}$ clude De Græャx Linguæ Dialectis; '1706; Slephanornm Historia, vilas ipsorum el libros complectens, 1713 ; Historia Typographorum

Khiquot Parisicnsium, vites et libros complectens, 1717; Annales Typographici, 9 vols. 4 to, The Hague, Amsterdan, and London, 1719-41; Marmora Oxonicnsia, 1732; ellitions of a largo number * Latin authors (Lucretins, Phredrus, Sallust, Terence, \&c.), as well as an edition of Anacreon ( 1725 ) and Miscllance Gracorum aliqune scriptoruln Carmina, 1722.

Maize, or Indian Corn, Zea Mays, L., from 乡ea or乌̧có, which appears to have been "spelt" (Triticum spelta, L.), according to the description of 'Clicophrastus, is of the tribe Phalarilex of the order Graminex or grasses. It is unknown in the native state, but is nost probably indigenous to tropical America (Endlicher, Gen. P1., No. 742). Small grains of an unknown variety have been found in the ancient tombs of Peru. Sonafous, however (Histaire naturelle du Maïs), quotes authoritics (Bock, 1532, Ruel and Fuchs) as believing that it came from Asia, and maize was said by Santa Rosa de Viterbo to have been brought by the Arabs into Spain in the 13th century. A drawing of maize is also given by Bonafous from a Chinese work on matural history, Li-chi-cclin, dated 1562, a little over sixty years after the discovery of the New World. It is not figured on Egyptian monuments, nor was any mention made of it by Eastern travellers in Africa or Asia prior to the 16 th century. On the authority, however, of Mr J . Crawford, who resided for nine years in Java, Bonafous says it had been cultivated from a very ancient period in the Asiatic islands under the equator, and that it was received thenco into China, and so passed westwards into India and Turkey, hence its name of "Turkey corn," under which title Gerard in 1597 figured and described seven kinds, as well as one called "Corne of Asia." Eoth Gerard and Bonafons think that it first came from the East, 'but that on the discovery of America it was reintroduced into Europe from that country. The former ohserves:-"These kinds of graine were first brought into Spaine, and then into other provinces of Europe ont of Asia, which is in the Turkes Dominions; as also out of America and the Ilands adioyning from the East and West Indies and Virginia, \&c." Humboldt and others, however, do not hesitate to say that it originated solely in America. It had been long and eztensively cultivated there at the period of the discovery of the New World. The plant is monoerious, producing the staminate (male) flowers in a large fc:ithery panicle at


Fig. 1.-Male.


Fic. 2.-Male.

Uhe sumnit, and the (female) dense spikes of flowers, or "oobs," in the axils of the leaves below, the long pink styles langing out like a silken tassel. They are invested by the sheaths of leaves, much used in packing oranges in South Europe, and the mere deli ato ones for cigarctes
in South America. The accompanying figures are after Nees vou Esenbeck, Gen. Pl. Fl. Germ. Fig. 1 shows a branch of the terminal male inflorescence. Fig. 2 is a single spikelet of the same, containing two florets, with the three stamens of one only protruded. Fig. 3 is a


Fig. 3. - Fenale.
spike of the female inflorescence, protected by the sheaths of leaves, -the blades being also present. Usually the sheaths terminate in a point, the blades being arrested. Fig. 4 is a spikelet of the female inflorescence, consisticg of two outer glumes, the lower one ciliated, which enclose two florets,-one barren (sometimes fertile), consisting of a flowering glume and pale only, and the other fertile, containing the pistil with elongated style. The mats of styles from the whole spike is pendulous from the summit of the sheaths, as in fig. 3. Fig. 5 shows the fruit or grain.


Fig. 4.-Female. More than three hundred varieties are known, which differ more among themselves than those of any other cereal. Some come to maturity in two months, others require seven months; some are as many feet ligh as others are inches; some have keruels eleven times larger than others. They vary similarly in shape and size of ears, colour of the grain, which may be white,
 yellow, purple, striped, \&c., and also in physical characters and chemical composition,-in short, in all those characters in which the different species of a genus differ among themselves. The varicties grown most abundantly in the United States may be roughly grouped into four great classes. The "Flint" varieties are most common east of Lake Erie and north of Maryland, and the "Dent" varieties are the common ones west and south of these points. The "Horsetooth" varieties are grown extensively only in the south, and there they are grown along with the dent. These threo classes pass into each other ly every gradation, and the grain from all is similar in chenical composition. The "Sweet" varieties are not grown for the ripe grain, but for boiling corn, and that the stalks may serve as "corn fodder." "Green corn" was an important food with the native Indians. Many of the tribes' celcbratéd its season with religions ceremonies and festivals. In the large cities of America "green corn" is a table lusury, bat in the smaller towns and country districts it is an important article of food. Chemical analysis, as well as common experience, shows that this is a very nutritious article of food, leing richer in albuminoids
than any other cereals when ripe (calculated in the dry 'reight). It is espable of being grown in tho tropics from the lerel of the sea to a height equal that of the Pyrenees, and ia the sonth and middle of Europe, but it caunot be grown in England with any chance of profit, except perhaps as fodder. Frost kills the plant in all its stages and all its varieties; and the crop does not flourish well if the nights are cool, no matter how favourable the other conditions. Consequently it is the first crop to disappear as one ascends into the mountain regions, and comlaratively little is grown west of the great plains of North America. In Brittany, where it scareely ripens the grain, it furnishes a strong crop in the autuma upon sandy snil where clover and lucern will yield but a poor produce. It prefers a deep, rich, warm, dry, and mellow soil, and hence the rich bottoms and fertile prairies of the Mississippi basin constitute the region of its greatest production. 1llinois leads in total amount, producing in 1879 nearly 326 millions of bushels, or 105 bushels per head of population. The region of ehief production in the United States may be described as a rude ellipse 900 miles long from east to west by 600 miles ride, with Springfield (the capital of Illinois) as its centre. This region produces annually from 1000 to 1400 millions of buskels, or searly three-fourths of the total crop of the country.

As en article of food, maize is one of the most extensively used grains in the world. Although rich in nitrogenous matter and fat, it does not make good bread. A misture of rye and corn meal, bowever, makes an excellent coarse bread, formerly much nised in the Atlautic States, and a similar bread is now the chief coarso bread of Portugal, aud some parts of Spain. When the barder "diint" varieties are roasted, the grains "pop," the skin bursts, and the whito interior swells up, emittiug a pleasant odour. It is either baked into cakes called tortilla by the Indians of Yucatan, or made into a kind of porridge, ns in Ireland. Whea deprived of the glaten it constitutes oswego, maizena, or corn flour (see Letheby's Lectures on Food, p. 19; and Foods, by E. Smith, 156). Maize contains moro oil than any other cereal, ranging from $3 \cdot 5$ to 9.5 per cent. in the commercial grain. This is one of the factors in its value for fattening, purposes. In distilling and somo other processes this oil is separated and forms nn artiele of commeree. When maize is somn broadeast or closely planted in drills, the ears may not derelop at ull, but the stalk is ricler in sugar and sweeter, and this is the basis of growing "corn-fudder." The amount of forago that may be produced in this way is enormous; 50,000 to 80,000 th of green fodder are grown per acre, which makes 8000 to 12,000 to as field-uured. Sugar and molasses bare fron time to time been manufactured from the corn stalks, but at present this manufacture is not commercially successful.
In the treeless western prairies maize is often grown fur fucl, as in many places fuel can be procured so cheaply in no other may. A hundred bustels of ears is equal in heating porerer to a cord of the best hard mood, and may be grown for a price less than a cord of hard wood brings in the large cities. The nse of corn in the industries, as the raw naterial for the manufacture of alcohol, whisks, starch, glucose, oil, and various food products, increases year by year, with the iuerease of facilities for production and the increasing applications of chemistry to the arts.
For finler details sce a paper ly Professor W. H. Hererer, Yale Coli, Conn., frem which some of the above details are talken, as weil as the Special Report on Corral Produlucs, Washington, 8882 , and the 3sth Annual Report of the Cew Yorl State Agricultural Societ5, 187 s .
(G. H.)

MẢJLith, Jisos or Joby, Couxt (1786-1855), Hungarian historian and poot, was born at Pest on the 5 th of Octover 1786 . First educated at home, be sabse-
quently studied phoosopty at Eger (Erlau) and law at Györ (Taab), lus father, Count Juseph Majláth, an Austrian aminister of state, eventually obtaining for him au appointment in the public service. Tho weakaess of his eyesight laving rendered it necessary for hiam a fer years later to resign the Government secretaryship to which he had been promoted, Majlath turned his attention to litera. ture, especially deroting himself to historical research, and tho translation into Gierman of Magyar folk-tales, and of selections froan the works of the best of lis country's native poets. Moreover, as on original lyrical writer, and as an enitor and adapter of old German poems, Majlith showed considerable talent; and, in general, his activity as an author was remarkable, his various literary productions in German and Hungarian emounting together to more than sixty volumes. During the greater part of his life he resided either at Pest or Vienna, but a ferr years before his death he removed to Munich, where he fell into a state of destitution and extreme despondency. Seized at last by a terriblo infatuation, he and bis daughter Henriette, who had long been his constant companion and amanuensis, determined to put an end to their dependent position by drowning themselves in the Lake of Starnberg, a ferw miles south-west of Munich. This fatal resolution was carried into effect on the 3d of January 1855.

It is generally admitted that in his great historical treatises Count Majlath has failed in a critical discrimination between the merely mythical or poetical and the true historical element, -the former not unfrequently being allosred to unduly influence and obscure the latter. The political tendency of his writings, moreover, has been oljected tn. especially by his orn countrymen, as being too conservative and over-favourable to Austria. Of his historical works the most important are the Geschichte der Magyaren (Vienna, 1828-31, 5 vols.; 2d el., Ratishon, 1852-53), and his Geschichec des österreichischens K"aiscrstuals (Hamburg, 1821-50, 5 rols.). Specially noteworthy among his metrical translations from the IIungarian are the Magyarische Gedichte (Stuttgart and Tiibingen, 1825) ; and Himfy's auserlesene Liebcslicder (Pcst, 1829; 24. ed., 1831, see Kisfaluyr, Sixdor). A valuable contribution to folk-lore appeared in the Jagyarische Sagen, Ma"chen, und Erä̈hlungeì (Erunn, 1825; 24 ed., Stuttgart and Tiibingen, 1837, 2 vols.).

## MaJOLICA. See Pottery.

MAJOR, or Matr, Johs (c. 1470-1550), a theological and historical writer, was born at the rillage of Cleghorn, near North Berwick, Scotland, about the jear 140 . After a shurt period speat at Cambridge, he entered the university of Paris in 1493, stndying successively at the colleges of St Barbe and Montaigu, and graduating as master of arts in 1496 . Promoted to the doctorate in 1505 , he lectured in philosophy at Montaigu College for sume time, and had seremal distinguished auditors. From 1518 to 1522 he held the office of .priocipal in the university of Glasgow, Juhn Knox being among the mumber of those who attended his lectures there; he was afterwards removed to St Andrews, where George Buchanan was one of his pupils in 1525. He eppears again to heve returned to France for some time, but we find him once more at St Andrews in 1530, where he was head of St Salrator's College from 1533 uatil his death, which took place about 1550 .
He trote In Libros Sententiarum commentarius, Paris, 150919 ; De Historia Gent is Scotorum libri sex, Paris, 1521 ; Comnentarius in Physica Aristotelis, Paris, 1520 ; and In Quatuor Evan. gelia Expositiones Luculenta, Paris, 1520. By Knox he is spoken of as having been in his day an oracle in religious matters; and it has been conjectured that both the great Reformer and Buchanan were largely indcbted to him for their advanced opiaions on political and ecclesiastical questions. His writings do not nowr, however, possess any inter : or importance apart from this circumstance; and even Buchanan lias allowed himself to speak of his old preceptor as "Joannes solo cognomino major."

## Majorca. See Balearic Islands.

IiAJORIANUS, Julies Valeries, emperor of the West from 457 to 46 l, was the successor of Avitus. He
had been a distinguished soldier under Aetius, and also after the death of that general ; for his eiection to the purple he was indebted to the powerful Count Ricinier, patrician of Rome. To put a stop to the harassing incursions of the Vandals he, in 455 , resolved to lead on expedition against Genseric himself; for this purpose ho got together a large army, composed chiefly of barbarians, and, passing the Alps in November 458, made Lyons, and afterwards Arles, his headquarters until the preparations for the invasion of Africa bad been completed. Having during his stay in Gaul succeeded in pacifying Theodoric, he, in the beginning of 460, crossed the Pyrenees for the purpose of joiuing his armament at Carthagena. Genseric, however, after all overtures for peace had been rejected, succecded through the treachery of certain officers in surprising the Roman fleet, most of the ships being either taken or destroyed. Majorianus returned at once to Gaul, where he made peace with Genseric in the following year. Soon afterwards, while at Tortona in Lombardy, he was surrounded by partisans of Ricimer, and compelled to abdicate (August 2, 461). He died, most probably by violence, five days afterwards, and was succeeded on the throne by Severus. He was the author of several laws, which, "remarkable for an origival cast of thoug't and expression, faithfully represent the character of a sovereign who loved his people, who sympathized in their distress, who had studied the causes of the decline of the empire, and who was capable of applying (as far as such reformation was practicable) judicions and effectual remedies to the public disorders" (Gibbon, Decline and Fall, chap. 39).

MAKALLA, or Maculla, a port on the south coast of Arabia, in $14^{\circ} 31^{\prime} \mathrm{N}$. lat. and $49^{\circ} 13^{\prime} \mathrm{E}$. long. The town, which appears to be of no great antiquity, is described by Wellsted as built on a low projecting point, with many lofty and substantial houses, and a suburb of huts, chiefly inhabited by slaves, Somalis, and Arab sailors, on the slopes leading up to a lofty chalk-hill (Jebel el-Kíra) which werhangs the town. The Arab inhabitants are of the Beni 'Isí tribe. The Sumali traders do not settle permanently in Makallâ, but they form an important element in the population. There are also Indian residents (Banians). The harbour is good, and the town, which may be regarded as the port of Hadramaut, rose during the decline of Aden to the rank of the chicf emporium between India and the Somali coast. It still exports, among other productions of Hadramatit, tobaeco, mother-of-pearl, and incense to Jeddah and shark fins to India, but has lately declined in the general transformation of the charaster of the Eastern trade. Aceording to the latest Arabic accounts (seo Badger in the Acadeny, March 4, 1882), the town contains about a thousand honses. Makallî is governed by a prince or nakitb who is estecmed one of the chicf minor potentates of that coast. The present prince Salaly el-Kicsidi has made himself quite independent of the surrounding Bedonins, and is even seported to havo mado conquests in the interior.
MaKKALil. Abu'l'Abbâs Aḷmed ibn Molammed elMakkari, Arabic historian, was born at Tilimsinn (Tlemcen) in Algeria, towards the close of the 16 th century, and studied at Fez, where ho remained occupied with literary pursuits till, for some unknown cause, be was driven into exile and, after visiting \#lecea, settled in Cairo. In 1625 he came to Damascus after a pilgrimage to Jerusalem. Warmly received by the seholars there, lie delivered leclures on the traditions of the Propbet, and in the evenings entertained his friends with stories of the glories of Moslem Spain, i subject of interest to all Arabs, and especially to those of.Syria. Ilis friends made him promise to reduce his uarrative to writing, and on returning to Cairo lo
devoted three years to this task. He had divorced his wife and made other preparations to settle definitively in Damascus when death overtook him in 1631.
Makkary's great work, The Ereath of Pcrfunc from the Branch of Grecn Audnlusia, and Memorials of ils Vizier Lisin cl-Din ibn cl Khatib, consists, as the name indicates, of two parts. The first is a general history and description of Nlohammedan Spain, mainly in the form of analecta from a number of anthors, with many verses interspersed. This juart, which is of great historical value, was publishod in an (ineomplete) English version by P. de Gayangos (London, 1840-43) and in Avaloie by Wright, Krehl, Dozy, and Dugat (Auctectes sur l'histoive et la litterature des Arabes d'Espagne, Lej'den, 1855, 1856, 1858, 1861). An edition in four volumes, publisled at Cairo (1863), contains also (in vols, iii. and iv.) the life of the faınous statesman aud author Lisán el-Din, vizier of Granada (ob. 13i4). Further references to literature alo given by Pertscl, Arab. IIdschr. au Gotha, No. 169\%. Among other works of Mlakkaıi a commentary on the molegomena of Ibn Klaldun is mentioned (H. Ǩh., 8043).

MAKÓ, a corporate town of Hungary, and capital of the trans-Tisian county of Csanad, is situated near sha right bank of the Maros, about 15 miles east-south-east At Szeged, in $46^{\circ} 13^{\prime} \mathrm{N}$. lat., $20^{\circ} 28^{\prime} \mathrm{E}$. long. The town consists of the three wards of Bujåk, Szent-Lörincz (SaintLawrence), and Ujvirns (New Town), and has, besides the usual official buildings connected with the administration of a county, Toman and Greek Catholic, Lutheran, ind Calvinist churches, and a synagogue; also an elegatt (Calvinist) gymnasium, the bishop of Csanad's palace and gardens, royal and circuit courts of law, barracks, tas and salt offices, a timber trading agency, a manufactory of agricultural implements, and numerous mills. The surrounding country is fertile. The communal lands are extensive, and afford excellent pasturage for horses and sheep, as also for large herds of horned cattle, for the size and quality of which Mako bas obtained a higb repute. An abundance of fish and aquatic fowl is supplied by the Maros, the water of which river is used also for drinking purposes, that from the wells being unpalatable. The town is protected from inundations of the Maros by a powerful dike, but the commune nevertheless sometimes sufiers during the spring floods (see Hungary, vol. xii. p. 333). The population, which is cbiefly agricultural, amounted in 1880 to $30,077,{ }^{1}$ mostly Magyars by nationality. A great part of the business of the town is in the hards of Jews.

MAKRiZI. Taki el-Din Ahmed ibn 'Ali el Makrizi ( $1364^{2}-1441$ ), one of the most meritorious of Arabic historians and archæologists, was descended on both sides from families of scholarly distiaction. His hereditary surname of Makrizi, by which he is usually known, was derived ifon Makriz, a suburb of Da'lbek, with which town his paternal ancestors had been connected. Taki el-Dín himself was born in Cairo, aud spent his life mainly in Egypt, where he was brought up as clerk in a Government office, and at a later date he became Mohtesib (a sort of police officer in charge of the markets) for Cairo and northern Lgypt, and afterwards inspector of the Kalinesf fuindation at Damascus. IIe declined the post of cadi in the latter town. He was, however, mainly engrossed in scholarly pursuits as a traditionist and a jurisconsult, but especially as an indefatigable student of history. He is reproachel by his contemporaries for a somewhat inordinate zeal in theolugical controversy, but otherwise passed a quiet and uneventinl life. Makrizi's literary activity was very great; be was not a man of original power, and his books arc largely compilations, in which he is not always scrupulous in naming the sources to which he is indehted, but liis learning wns vast, his observation accurate, and his

[^132]judgment sagacious. His most important work is the historical and topograpaical description of Egypt (EL-
 an edition in 2 vols. folio has appeared at Bullak ( 1270 A.H., 1854 A.D.). This is in many respects a monumental work; the elaborate description of medixval Cairu is of unique interest. ${ }^{1}$ It has enjoyed a great reputation, having even been translated into Turkish.

Besides this work Makrizi wrote a variety of other hooks bearing on Egypt. The unfinished Mukafici is a vast alphabetical cyclopxdin of Egyptian biography ; thee volumes of the anthor's autagranh aro at Leyden (Deccexx of the printed catalogue), and one is at Paris. He also wrote three works on the history of Egypt under the Moslems. An iunperfect copy of the second in the author's autograph, containing the history of the Fatimites, is at Gotha (Pertsch, No. 1652 ; Kosegarten, Chrcst., p. xvii.), wbile the third (history of the Ayyubite nud Mameluke sovereigns) has been in great part translated by Quatremère (Histoirc des Sultans Aramlouks de l'Eyyptc, 2 yols., 1837-45). Of a bingraphical dietionary of Makrizi's contemporarics one autograph volume is preserved at Gotha (No. 1771). A number of minor works of our author are known in Enrope in MS., aml several have been published, viz., on the Mosloms in Ahyssinia, by Rink, 1797 ; on Mohammedan Coinagc, by Tychsen, 1797, and French translation by Dn Sacy, 1797 ; on Arab Wcights and Measures, by Tychsen, 1800; on the Arabic Tribes that Migrated to Eyypt, by Wuestenfeld, 1847 ; History of Hadramaut, by Noskowy, 1866. Of a great work on the earliest history of the Arabs part at least is still known in Egypt.

Fer further details as to Makrizi and his writings see the contemporary biographies published by De Sacy (Chrest. Arabc) and Hamaker (Spec. Cat. Cod. Lugd. Dat.), and the introduction to Quatremere's work alrearly nanied.

MALABAR, a district in the Madras presidency, Indit, hetween $10^{\circ} 15^{\circ}$ and $12^{\circ} 18^{\prime} \mathrm{N}$. lat., and $75^{\circ} 14^{\prime}$ and $76^{\circ} 52^{\prime}$ E. long., is bounded on the N. by South Kinnara, on the F. by Coorg, the Nilgiri hills, and Coimbatore district, on the S. by Cochin and Travancore states, and on the W. by the Arabian Sea. The extreme length is 145 miles, while the breadth varies from 25 miles in the north to 70 miles in the south ; the area is 5763 square miles. Malabar is singularly diversified in its configuration; from the eastward, the great range of the Western Ghats, only interrupted by the Palghat gap, looks down on a country broken by long spurs, extensive ravines, dense forests, and tangled jungle. To the westward, gentler slopes and downs, and gradually widening valleys closely cultivated, succeed the forest uplands, till, nearer the seaboard, the low laterite table-lands shelve into rice plains and backwaters fringed with cocoa-nut palms. The coast ruus in a south-easterly direction, und forms a few headlands and small bays, with a natural harbour in the south at Cochin. In the south there is considerable extent of table-land. The mountains of the Western Ghits run almost parallel to the coast, and vary from 3000 to 7000 feet in height. One of the most striking features in the country is the Palghat gap, a complete opening in the Western Gháts some 25 miles across. The chief rivers are the Belispatam, Kota, Mahe, Beypur, Kadelundi, and Ponáni. One of the most characteristic features of Malabar is an all but continuous chain of lagoons or backwaters lying parallel to the coast, which have been formed by the action of the waves and shore currents in obstructing the waters of the rivers. Of these backwaters the most important are the Kavai and Beliapatam in the north, the Payangadi, Quilandi, and Elatur in the middle, and the Chetraii and Kodungalúr in the south. Connected as they are by artificial canals, they form e cheap and abundant means of transit ; and a large local trade is carried on by inland navigatiou. Fishing and fishcuriug is an important

[^133]industry, the value of the exports of salt fish to Ceylon being about $£ 20,000$ per ammm. Tho forests are extensive and of great value, but they are almost entirely private property: The few tracts which are conserved have come into (lovemment hauds by escheat or by contract. Wild animals include the elephant, tiger, panther, hison, samblar, spotted deer, log, Nílgiri ibex, liyæna, and bear. Small gams is very abundant.
The census of 1872 returned the population of the district at 2,261,250, namely, Hindus, 1,637,914; Mohanmelaus, 581,609; Eurnpeans, 2579 ; IMunsians, 5409 ; Jative Christiuss, 32,280 ; Jains, 31; and "othcrs." 1428 . The Moplás or Mapilas, who form a leading section of the Mohamundans, are the deseendants of Malayalan converts to 1slim, manly confined to tho coast tract. They aro fanatical and bigoted, nud their outlages, partly fanatical and partly agravian, have for long been a distinct feature in Malabar history. Many of these outtreaks lave necessitated the nse of European troops for their suppression. A few Syrian Chris. tians are found in the soutl2 of the district, where they have one church. - The Roman Catholics have several churches and villames, the chicf occupation of the people being fishing and cultivating vegetables. The existing Roman Catholic mission dates from 1656 , having been founded by tho Carmelites. The Protestant Basel mission, establisherl in 1830, has founded churches and schools at Calicut, Canuauore, Tellicherri, nud Palghát, with branch establishnents at Clombla and Todakel. The native Christian population is steadily increasing, mainly throngh the conversion of low-easte: Hindus, who gain in social prosition by the change. The five largest towns, which are all municipalities, are Calicut, the capital, popula. tion 48,338; Palclát, 31,115; Tellicherri, 20,479; Coehin, 13,588; and Cannanore (Knuanir) town and cantoninent, $10,265$.

In 1880-81 926,359 acres were muder cultivation, nul 2,869,965 wero returned as cultivnble. Fice, which occupied 550,281 acres in 1881, forms the principal food crop, but it is also largely imported from neighbouring districts. Other crops are cholam, ragi, chama, gingelly sced, castor-oil seed, gram, coffec, pepper, ginger, arrowroot, cardamoms, chillies, onions, cocoa-nut, areca mut, cinnamon, \&c. Cocoa-nut gardens form one of the greatest sources of commercial wealth; the value of the exported produce from Madras in 1880-81 was £141, 800 , eliefly from Malabar, this being a decrease of 18 per cent. on the year yreceding. Pepper and spices yield over a quarter of a million. As a rule, the peasantry are well off and free from delt. The disirict is not liable to blight flood, or drought. When, howerer, the neighbouring districts to the east sulfer from scareity, Malabar, whieh ordinarily imports graiu, is nflected by the prevalence of high prices.
The district is farly supplied with means of communication, and possesses 400 miles of good metalled roads, besides minor cart tracks. The water comnunication provided by the backwaters and their canals has nlready been referred to. The Madras railway thaverses the southern part of the district for a total distance of 89 miles from Wralliar to Beypur. Except cloth weavingo and the making of tiles, bricks, \&c., at the mission sfations at Calicut and Cannanore, and thic weaving of coarse cotton eloths and mats at Palghat, there are no local manufactures worthy of mention. The weaving of calico, which derived its name from Calicut, scems to have altogether died out; while unsuccessful attempts bave been made to manufacture canvas at Beypur and silk at Palghat. The piucipal seats of commerce are Calicut, Cannanore, Tellicherri, Cochin, Palghat, and Badagara. In 187677 the value of the imports (which were abnormally increased by tho famine demand for rice) amounted to $£ 1,765,200$, of which $£ 1,118,000$ was for rice ; exports $£ 2,466,000$, of which $£ 960,000$ represented coffee. European banks are represented at Calicut, Cochia, and Tellicberri.
The revenue has largely increased of late years. Iu 1880-81 the land revenue amounted to $£ 176,062$, and the gross revenue to $£ 332,628$. The number of pupils connected with the various selsools at the same date was 20,971 . The principal educational institutions are the provincial school at Calicut, the mission school at Tellicherri. the Palghát high school, and the "Kerala Vidya Sala," recently established by the zamorin, for the instruction of the young noblemen of his family and of other influential personsin tbe district. Nearly one hundred schools are exclusively confined to Moplás. There are several printing presses at Calicut and Cochin, and at the latter port are prublished two English and two Malay: alam newspapers. The climate of the district is, on the whole, healthy; the rainfall is heavy, averaging 120 inches a year, of which about 30 inches fall in Iune, July, and August. The temperature varies from $60^{\circ}$ in December to about $92^{\circ}$ in the hot weather in May. The priucipal diseascs are small-pox, dysentery; and fever.
MALACCA. The town of Malacea lies on the south west coast of the Malay Peninsula, in $2^{\circ} 14^{\prime}$ N. lat. and
$102^{\prime} 12^{\prime}$ E. long. It is situated on a small river bearing its namo, which separates it into two parts. That on the right bank is occupied by the old Dutch town, and that on the left by the business quarter, which is connected with the forater by a small brid..., and is chiefly inhabited by Chinese and native traders. The ricw of Malacca from the harbonr is picturesque and pleasing to the eje. From Flagstaif Hill on the left-whose slopes are always of a bright enerald green-to St Juhn's Hill on the right, on which stand the ruins of the old "Dutch redoubt,"-hidden in a mass of wild vegetation, - stretches for a distance of about half a mile a row of spacious dwelling houses belonging to European and wealthy Chinese and Arab residents. These louses are roofed with neat red tiles, and have windows opening to a stone verandah facing the sea. Each house is surrounded by a large "compound," laid out with a llower garden in front and a "plantation" or orchard at the back. Adjoining this European quarter lies a large suburb of natipe and other dwellings alnost concealed in a dense forest of beautiful fruit trees. Dehind this we see a prominent green bill, formerly used as a fort, and now as a Chinese burial-ground, and beyond this the horizon is hemmed in by a long chain of the Briong and Rumbow Hills, while far in the extreme east rises the jagged cona of Mount Ophir, blue as sapphire in the distance.
Since the destruction (in 1807) of the old Portuguese fort erected by Albuquerque, the "antiquitios" of Malacca are reduced to a mero name. At the foot of Flagstaff Hilt, however, are the remains of the massive mall which sarrounded the lill, with an arched and carved gateway. On the sumnit of the bill, where a fine view is had of the larbour and the Water Islands, are the ruins of the first Christian church planted in Malayan territory, and also a portion of the old convent. At the back of this hill to the right may be noted the barracks, hospital, and conviet lines, and passing under some fine "ansana" trees-the shady clms of the East-we reach the garden of the old Dutch stadthouse, and then a green square, facing which are the conrt-house and other Goverament building3, and the ofd Dutch cluurcb. All these buildings have sloping roofs covered with small square tiles after the Dutch style of architecture of the 16 H century. This is quite a unique example of Dutch domestic architecturo in the East, and several of the adjoining streets still bear therr Dutch designation, as "Heren Straat," "Jonker Strant," \&c. The stadthouse is approached by a fine flight of stone steps, forming a covered way to the upper rooms. These are occupied by the governor of the Straits Settlements and the judge during their annual or biennial visits, and those in the lower story are used as Gorernment offices. Froal the interesting ruins of the Dutch redoult on St John's Hill an extensive view may be bad of the country running around and to the north and south of Malacea. Its general aspect in the immediate vicinity is that of a flat country covered with luxuriant "dusnons" or plantations of fruit trees, and extensive forests of tall timber; beyond this is an open country, interspersed with extensive plantations of tapioca, which at a distance resemble fields of clover; then follow rice-Gields, and marshes or fens, and at the foot of the lills patches of virgin forest, the whole being walled in by a range of blue liills. The climate of Malacea is very healthy, and the thermometer in the slate ranges from $72^{\circ}$ to $84^{\circ}$ or even $90^{\circ}$ Fahr. The population, which is not very large, consists oi Malays of the surrounding countries, of Malacea Fortuguese (the mixed deecendants of early Portuguese settlers), of Chinese proper and a large number bern of Malay mothers. There is also a sprinkling of natives of India and of Arabs. The Nalacea Portuguese employ themselves as fishermen, servantz, and eleriss; the rest
aro chiedy engaged in agoricultural and commereal pursuits.
In consequener of its shallow harbour, Malacea has been complately outstripped as a seaport by Singapore and Penang, thongh it still carries on a brisk trade with the surrounding countries in Malacea cnnes, stuffed birds of beautiful plumage, poultry, and large quantities of the most luscious frnits. The iuport and export returns show a large apparent increase in the traile, - the imports in 1880 amounting to $\$ 3,817,848(£ 812,308)$, and the exports to $\$ 3,634,640$, as against an aterage of $\$ 2,505,175$ and $\$ 2,57 \overline{7}, 020$ respectively for 1869-i2 ; and, though Dalacea has been a drag on the revenuc of the colony gencrally", a marked increase is shonn in the principal items of revenue, riz., in land reuts, tenths in padds, tapioca, and fruits, royalty on timber, and survey fees. In 1880 the revenue was $\$ 182,323$, and the expenditure $\$ 174,333$, while the income and expenditure of the municipality in the same year wero $\$ 22,428$ and $\$ 18,899$ respectively. The Government is improving tho drainage of the country by clearing its natural water course. The municipality has no debts, and the general progress of the scttlement during the year cnding 1880 must be regarded as satisfactory, with an increase under almost every leading of revenue that bids lair to continuc.
See C. A. Caneron, Our Tropical Possessions in Malayan India, and Papcris Riclating to H. N. Colonial Possessions, 1879-1881.

MALACHI. According to the title (Mal. 1. 1) the last book of the minor prophets contains the word of Jehovab to Israel by the land of Malachi. The word "por may either be an adjectire, "angelic," or may signify "the angel (messenger) of Jehorah." In either case it scems a strange (though lardly on impossible) name for a man to bear, and from she time of the Septuagint, which translates " by the hand of His messenger." it has often been donbted whether Malachi is the real name of the author, or oaly an cpithet assumed hy himself, or attached by the collector to a work which he found anonymous (so Ewaid), with reference to iii. 1. ${ }^{1}$ A Hebrem tradition given in the Targum of Jonathan, and approved by Jerome, identifies Malachi wish Ezra the priest and scribe; but, though this opinion is ingeniously supported by reference to ii. 7 , where the priest and custodian of the law is called the messenger of Jehovah of hosts, it is unlikely that Ezra's name would have been lost had he been the real author. ${ }^{2}$
The tradition, however, may at least be taken as implying the perception of a real affinity betreen the prophet and the great restorer of the law. The religious spirit of Malachi's prophecy is 'that of the prayers of Ezra aud Nehemiah. A strong sense of the unique privileges of the children of Jacob, the objects of electing love (i 2), the children ait the Divine Father (ii. 10); is combined with an equally strong assurance of Jelovalh's righteousness amidst the many miseries that pressed on the unhappy inhabitants of Judæa. At an earlier date the prophet Haggui had taught that the people could not expect Jchorah's blessing while the temple lay in ruins. In Malachi's time the temple was built (i. 10) and the priests waited in their office, but still a curse seemed to rest on the nation's labours (iii 9). To Malachi the reasen of this is plain. The "law of Moses" was forgottea (iv. 4 [iii. 22]); let the people return to Jehovah, and He will return to them. It was vain to complain, saying, "Every one that doeth evil is good in the eyes of Jehovah," or "Where is the God of judgment ?"-rain to ask "Wherein shall we return "" Obedience to the law is the sure path to bless$\operatorname{ivg}$ (ii 17-iii. 12).

[^134]It is not oasy to say whether the law to which Malaelii recalls the people is that which was established by the covenant taken under Ezra, or whether the prophet wrote before that event. It is a least the Deutcronomic law that is most familiar to him, as appears from his use of the name Iloreb for the mountain of the lare, and the Dentern nomic phrase "statutes aod judgments"1 (iv. 4), from his langmage as to tithes and offerings (iii. $\varepsilon, 10$, connp. Dent. xii. 11, xxvi. 12), ${ }^{2}$ and especially fron his conception of the pricsthood as resting on a covenant with Levi (ii. $+s_{2}$.). The abuses of which he particularly complains are such as were found rampant by Ezra and Nehemiah,-marriage with forcign women (ii. 11, comp. Era ix, Nch. siii. 23 $\varepsilon_{2 \text {., }}$ Deut. vii. 3) and failure in payment of sacred dues (iii. $\varepsilon$ si., cump. Ňch. x. 34 s\%, xiii. 10 sq., Deut. axri. 12 sq.). Add to this that the position of the priests had fallen into contempt (ii. 9), and that the oral law is still one of their clief trusts (ii. $6 s \%$ ), and we shall be disposed to conclude that, if Malachi's work did not precede the reformation of Ezra, it must lave fallen very little later, and before the new order wha thoroughly established. ${ }^{3}$ 'The prophecy of Joel shorrs the netr theocracy in much fuller derelopment.
The object of Ezra and Neheminh was to establish the law by means of the organs of gorernment under warrant from the Great King. Jalachi looks for reformation in another direction. He calls the people to repentance, and he enforces the call by proelaining the approach of Jehovah in judgment agininst the sorcerers, the adulterers, the false swearers, the oppressors of the poor, the orphan, and the elranger. Then it skall be seen that He is indeed a God fî righteous judgment, distinguishing betreen those that serre Him and those that serse Him not. The Sun of nighteousness shall shine forth on those that fear Jehovah's name; they shall go forth with joy, and tread the wicked under foot. The conception of the day of final decision, when Jehorah shall come suddenly to His temple (iii. 1) and confound those who thiak the presumptuous godless happy (iii. 15), is taken from earlier prophets, but it receives a special character from $\approx$ application of a thought based on Isa. sl. 3. The dey of Jelovah would be a curse not a blessing if it found the nation in its present state, the priests listlessly performing a fraudulent sersice (i. 7-ii. 9), the people bound by marriage to heathen women, while the tears of the daughters of Tsrael, thrust aside to make way for strangers, cover tne altar (ii. 11-16), all faith in divine justice gone (ii. 17, iii. $1 \pm$ sq.), sorcery, uncleanness, falsehood, and oppression rampant (iii. 5!, the house of God deprived of its ducs (iii. $\bar{\delta}$ ), and the true fearers of God a little flock gathered together in prirate exercises of religion-(perhaps the germ of the later synagogue) in the midst of a grodless nation (iii. 16). That the day of Jehorah is delayed in such a state of things is but a new proof of His unchanging love (iii. 6), which refuses to consume the sons of Jacob. Neantime He is about to send His messenger to prepare His way before Him. The

$$
2 \text { Inalachi had the law of Deuteronomy in its present historical }
$$ frame-work (the opening chapters), according to which all "the laws and statutes" anart from the Decalogue were given to Moses for Israel upon Moreb. This description would not hold good of the priestly legrslatton, bich sccordingly is herdly contemplated in Asi. iv. 4.

" Malachi indeed assumes that the "whole tithe"-the Deuterosemic phrase for the tithe in which the Levites shared-is not etered in each township, but brought into the treasury at the temple. But this was s modifieation of the Denteronomic lew maturally called for uader the circumstances of the return from Babylou, and Neh. $x$. and ziii. produce the impressiou that it was not introduced for the first time hy Ezra and Nehemial, thoung the collection of the tithe was enforced by them.
"As the "governor" in $\mathfrak{i} . S$ is hardly Sehemish, Fobher and other recent writers think nit the pernol between Nehemiah: tirst and second visit to Jerasalem. When the evils complained of Ly the prophet broke
prophet Elijah must reanpear to bring bacts tha beaita of fathers and children before the great and terrible day of Jehorah come. Elijah was the adrocate of national decision in the great cencerns of Israel's religion; and it is such decision, a elear recognition of what the service of Jehowah means, a purging of His professed worshippers from hypocritical and half-Learted service (iii. 3) that Malachi with his intense religiuus cermestoess sees to be the only salvation of the mation. In thus looking to the return of an ancient prophet to do the werl for which later 1rophecy is too weak, Malachi uncousciously sigualizes the decay of the order of which he was one of the last representatives; and the somewhat mechanical measure which te applies to the people's sins, as for example when Le teaches that if the sacred dues were aightly paid prosperous seasous would at once return (iii. 10), Leralds the advent of that systent of formal lecralisna which thought that all religious daty could be reduced to a systen of set rulcs. It was left to a greater Teacher to show that $L_{y p o c r i s y ~ a n d ~ v a i n ~ r e l i g i o n ~ n i g h t ~ c o e s i s t ~ w i t h ~ P h a r i s a i c ~}^{\text {and }}$ exactness in the obserance of the whole letter of the law. Tet Malachi himself is no mere formalist. To him, as to the Deuteronomic legislation, the forms of legal observance are of value only as the fitting expression of Israel's peculiar sonship and service, and be shows bimself a true prophet wheu he contrasts the worthless ministry of unwilling priests with the pure offering of prayer and praiso that rises from all corners of the Hebrer dispersion (i. II), or when be asserts the brotherhood of all Israelites under their one Father (ii. 10), not merely as a ground of separation from the lieathen, but as iucoosistent with the selfish and cruel freedom of dirorce current in his time. It is characteristic of later Judaism that an arhitrary exegesia transformed this anticipation of the doctrine of marriage laid down in the gospel into an express sanction of the right of the husband to put a way his wife at will.4
The style of Malachi, like bis argument, corresponds in its generally prosaic character to that transformation or decay of prophecy which began with Ezekiel ; and Lwald has rightly called attention to the fact that the conduct of the argument alreadj shows traces of the dialectic manner of the schools. Yet there is a simple dignity in the manner not unworthy of a prophet, and rising from time to time to poctical rhythm.
The exegetical helps to the study of Malachi are mainly thesameas have been already cited in the article HACGAI. Peference may alsobo made to the lengthy commentary of Reimke (Roman Catholic), 1s:56; to 11. Singer, Jralcachi, cine cregetische Studie, 1867 ; and among oller commentaries to that of Pococke (2d ed., 1692). (W. F. S.)
MALACHITE, an ore of copper, presenting in its firer varieties a beautiful greeu colour which has led to its use as an ornamental stone. It is chemically a bydrated basic carbonate of copper, and appears to have been formed io most cases by the action of meteoric agencies on native copper, red cxide of copper, copper pyrites, and other ores. Upon these minerals the malachite frequently forms an incrnstation. Although occasionally found in erystals belonging to the monoelinic system, its usual mode of oceurrence isin stalactiticandstalagnitic forms,-frequently witha a globular, boiryoidal, or manmillated surface; whila in other cases it forms compact and even earthy masses. The stalagmitic varieties display, when fractured, a beauti. ful internal stracture, being 2nade up of concentric zones of light and dark tints; and it is upon this structure that much of the beauty of polished malachite depends. - The colours include various shades of apple-green, emerald-

[^135]green, and verdigris-green. Certain varieties of the mineral exhibit, when fractured, a finely fibrous texture and soft silky lustre. The name malachite is derived from $\mu \mathrm{a} \lambda \mathrm{ax} \dot{\mathrm{n}}$ (the mallow), in allusinn to the resemblance of the colour of the mineral to that of mallow leaves. Malachite was probably one of the green minerals described by Theophrastus under the general name of $\sigma \mu$ úpayoos, or emerald. It is believerl to bave been the smaragtus medicus of Pliny, while the nolochitis of that author does not appear to have representerl our modern malachite. Malachite is a mineral of rery wide geographical distribution, being found more or less abundantly in the upper part of most deposits of copper ore. The finer varieties, such as lend themselves to purposes of ormament, are, however, found ouly in Siberia, in Australia, and at Bembe on the west coast of Africa. Probably the finest deposits in the world were those discovered some years ago in Priuce Demidoff's mines at .Nijni Tagilsk, in the gavernment of Ekaterinburg, on the Siberian side of the Ural mountains. The mineral is bighly prized in Russia for use in mosaic work, and for the manufacture of vases, sauff-boses, and other small ornaments. Magnificent examples of malachite work, in the shape of mantelpieces, folding doors, tables, chairs, and other articles of furniture, lave necasionally been executer. Such objects are vencered with thin slabs of malachite ingeniously fitted together so as to preserve the pattern, and having the interspaces between the component pieces filled up with a cement formed of small fragments of the malachite itself. The mineral is strun iato slabs, ground smooth with emery, and finally polished with tripoli. Although its degree of haydness is only from 3.5 to 4 , it takes an excollent polish. It is rather denser than marble, its specific gravity being 3.7 to 1 ; but it is mnch more difficult to work, in consequence of its tendency to break along the planes of deposition. Nalachite is necasionally used for cameowork, but not with great success; some fine antique cameos in malachite are, however, known. The mineral las also been ground to powder, and used as a pigment under the name of mountaingreen. The coarser masses are estensively used as ores of copper, malachite containing about 55 per cent. of metal. The mineral called azurite or chessylite, a hydrated basic carbonato of copper closely resembling malachite, saro in colour, is occasiumally known as blue malachite.
Malachy, St (c. 1094-1148), otherwise known as Maelmaerlog Ua Morgair, fur some time archbishop of Armach, and afterwards papal legate in Ireland, was born of noble parentage at Armighl about the year 1094, early gained a high reputation for sanctity, and was ordained to the pricsthood at the age of twenty-five (thirty being at that time, according to his biographer St Bermard, the canonical age). For some time he was employed as vicar by Archbishop Celsus or Ceallach of Armagh, and in this capacity was successful in effecting throughout the diocese many important reforms in the direction of inereased conformity with the usage of the Church of Rome; afterwards lie undertunk the government of the deeayed monastery of Bangor or Benchor, in what is now known as county Down, and made it a flourishing scmioary of learning nud piety: When thirty years of age ho was chosen and ennsecrated bishop of Connor; after the sack of that place by the king of [7ster he withdrere into Munster and built the monastery of Ibrac. Meanwhite lie had been designated by Celsus (in whose family the sco of Armagh bad been hereditary for many years) to succeed hin in the archbishopric; reluctantly but dutifully in the interests of reform ho necepted the dignity, and thus became involved for some jenrs in a struygle with the so-called heirs. Inaving finally settleal the diocese he, as had been previously stipulated ly limself. was permitt:? tu return to his former diocese,
or ratuer, it baving in the meanwhile been divided, to the smaller and poorer portion of it, the bishupric of Down where he reorganized a honse of regular clergy. In 113 s he sct out from Ireland with the purpose of soliciting frum the pope the pallium for the archbishop of Armagh; or his way to Rome be visited Clairvaus, and thus began a life-long friendship with St Bernard, who survired to write his biography. Malachy was received by Innocent II. with great honour, and made legate in Ireland, though be did not at onee obtain the pallium; on his way bomeward he revisited Clairvaux, aud took with him from thence four mernbers of the Cistercian order, by whom the abbey of Mellifont was afternards founded in 1141 . For the next eight years after his return from Home Malachy was active in the discharge of his legatine duties, and in 1148 he reccived from the bishops of Ireland a commission to return to Rome and make fresh application for the pallinm: he did not, however, get beyond Clairvaux, where he died on November 2, 1148. The object of his life was realized four years afterwards, in 1152, during the legateship of his successor (see Ireland, vol. xiii. p. 255). Malachy was canonized by Clement IV.
MALAGA, a maritime province of Span, one of the eight mudern subdivisions of Andalucia, is bounded on the W. by Cadiz, on the N. by Seville and Cordora, on the E. by Granada, aud on the S. by tife Meriterranean, having an area of 2823 square miles, and a population (1877) of 500,231 . The rise from the sea is rapid, and the average elevation of the province is considerable, Of the numerous sierras may be mertioned"that of Albama, separating the province from Granada, and at one point rising above 7000 feet; its westrard continuation in the Sierra de`Abdalajis and the Axarquia betreen Antequera and Malaga; and not far from the Cadiz boundary the Sierras de Ronda, de Mijas, de Tolox, and Bernicja, converging and culminating in a summit of nearly 9500 feet. The principal river is the Guadalhoree, which rises in the Sierra de Albäma, and nfter a westerly course past the vicinity of Antequera, bends southrard through the wild defile of Peñarrubin and the beautiful vega or vale of Malaya, falling into the sea near that city. The only other considerable stream is the Guadiaro, which has the greater part of its courso within the province, and flows past Rondn. The mountains are rich in minerals, 一lend, nickel, and (in the neighbourhood of Marbella) iron being obtained or obtainable in large quantities. There are much frequented warm springs of sulphuretted bydrogen at the baths of Carratraca. Though the methods of agriculture are for the most part rude, the yield of whent in good seasons is considerably in excess of the local demand; and large quantities of grapes and raisins, oranges and lemons, figs and almonds, are ammully exported. The oil and wines of Malaga are also highly estecmed ; and in recent years, especially since the phylloxera invasion, the growth of the sugarcane has develnped into a considerable industry. In 1880 the total production of wine within the province was estimated at about $5,250,000$ gallons; of this ainount about $1,575,000$ gallons were exported ( $1,000,000$ gallons to Great Britain and tho continent of Europe, and the remainder chiefly to South America and the Spanish colonies). In 1879 about $1,400,000$ gallons of olive oil were experted, chiefly to tho Baltic. The sugar produced in 1580 was calculated to amount to about 5650 tons. The interual comnunications of the prorince are in many parts, owing to the broken nature of the surface, very defective; it is traversed, however, from north to sonth by the Cordova-Malaga Railway, which sends off a brancl, recently made continuous, from Bobadilla to Granada The only towns with a population exceeding 10,000 are Malacz (the capital), Antequera, Monda, and Viclez Malagno.
malaga, the capital of the abore provinee, and, next ! means of lighters. New harbour works mere begun in to Barcelona, the most important seaport of Spain, is finely situated on the Mediterranean coast, at the southern base of the group of hills known to history as the Axarquia, and at the eastern extremity of the fertile rega of Malaga ( $36^{\circ} 43^{\prime}$ N. lat., $4^{\circ} 25^{\prime} \mathrm{W}$. long.). The population in 1877 was 115,882 . In the elearness of its sky, which a cloud rarely obscures, and the beantiful sweep of its bay, Malaga las sometimes been compared to Naples. the climate is one of the mildest and most equable in Europe, the mean anaual temperature being $66^{\circ} \cdot 7$ Fahr. ( $55^{\circ} 6$ in minter, $80^{\circ} 4$ in summer) ; the yearly nverage of rainy days is thirty-nine, and the rainfall is slightly under 16 inches. The town lies priacipally on the left bank of a mountain torrent, the Guadalmedina ("river of the eity") ; the streets near the sea are spacious and comparatively modern, but those in the older part of the town, There the buildings are buddled around the ancient citadel, are narrow, winding, and often dilapidated. There are various squares or plazas and public promenades: of the former the most important are the Plaza de Riego


Plan of Malaça.

1. Calhedrul. 1 2. Custom House. 1 3. Pison. 1 \&. Hospitul.
(containing the monument to General Torrijos, who, along with forty-eight others, was executed in Malaga in 1831) and the Plaza de la Constitucion; adjoining the quay is the fine Paseo de la Alameda. The torn has no public buildings of commanding importance arelitecturally or historically. The cathedral, on the site of the ancient mosque, was begun about 1528, in the Creeco-Roman style ; after the works had been once and again interrupted and resumed, it was completed to its present state in the 18th ceatury, and is in consequence au obtrusive record of the degeneration of Spanish architecture. The woodsork of the choir, however, is worthy of atiention. The elurch of El Cristo de la Victoria contains some relies of the siege by the "Catholic kings." Of the old Moorish "Atarazanas" or arsenal only a single horse-shoe gaterray now remains, the rest of the site being chiefly oceupied by an iron stracture used as a meat and provision market; the "Alcazaba" or citadel has entirely disappeared. The costle of Gibralfaro, on a bold cminence to the north-east, dating from the 13th century, is still in fairly good preservation. The harbour, which in the beginniug of the present century was deep enough to float a line-ofbattle ship, has in recent years bsen permitted to silt up, so that it is not now safe for vessels draming more than 18 feet to enter. These are consequently obliged to lie in the roads outside, and receive and disclarge eargo by

1880, but from time to time have been suspended, and only some 280 yards of the new eastern mole (about onefourth of the intended length) lave been constructed in October 1882. The trade of the port is cliefly in the prodicts of the province,-lead, wine, raisins, oranges, lemons, figs, and esparto being the staples. The most active period is froni the middle of August to the end of October. In 1880 the total quantity of muscatel raisins exported was estimated at $1,864,000$ boxes (of 2.51 beach ), 35,500 frails (uf 25 Hb ), and 15,000 barrels (of 50 Ib ); of this amount more than half was sent to the United States of America, and the remainder to other countries (ehiefly Great Britain, France, and Germany). In the same year 50,000 boxes of lemons and 21,500 boxes of oranges were shipped, besides 20,000 barrels of muscatel grapes. The wine exported in 1879 was only $1,400,000$ gallons ns against $3,108,000$ in 1878 ; the lead 310,251 cwts. as against 481,021 ewts in 1878 . The olive oil is sent chiefly to the Baltic. The principal imports are coal ( 41,822 tons in $187 \hat{c}$ ), codfish, timber, pig-iron, hardware, machinery, and rails.

Malaga is the Máдана of Strabo (iii. 156) and Ptolcmy (ii. 4, 7), and the Malaca fxderatorum of Pliny (iii. 3). The place seoms to have been of some importance even during the Carthaginian period ; under the Romans it became a municipium, and under the Visigoths an episcopal see. After the battle of Guadalete it passed into the possession of the Arabs, and soon came to be regarded as one of the most important cities of Andalucia. It was attached to the caliphate of Cordoba, but on the fall of the Omayyad dynasty it became for a short time the capital of an independent kingdom; afterwards it was dependent on Granada. In 1487 it was taken and treated with great harshness by Ferdinand and Isabella after a protracted siege. In 1810 it suffered much from the Frencl general Sebastiani.

MALARIA, an Italian colloquial word (from mala, bad, and aria, air), introduced into English medical literature by Macculloch (1827) as a substitute for the more restricted terms marsh miasm or paludal poison. By very general consent the word is understood to mean an actual poisonous substance existing as a separate entity, and giving rise to the definite unhealthy condition of body known by a variety of names, such as ague, intermittent (and remittent) ferer, marsh fever, jungle fever, hill fever, "fever of the country," and "fever and ague." By a figure of speeel, the name of malaria is often applied to the disease itself; strictly speaking, the effeets on the human body are "malarial fever," or manifestations of the "malarial process." The existence of a specific malaria-poison is a pure hypothesis; and it has been attempted by a respectable miaority to dispense with the hypothesis of an actual poisonous agent, and to find the cause of intermittents and remittents iu the excessive and sudden abstraction of heat through damp and cold after sunset fiom the bodies of individuals who had previously endured great solar heat. In either view, the unknown cause of ague is denoted with sufficient etymological accuraey by the roord malaria.
A single paroxysm of simple agne is much the same in all countries, temperate, subtropical, or tropical. It may come upon the patient in the midst of good health, or it may be preceded by some malaise. The ngue-fit begins with chills proceeding as if from the lower part of the back, and gradually extending until the coldness overtakes the whole body. Tremors of the museles, more or less violent, aecompany the eold sensations, beginning with the muscles of the lower jaw (ehatteriog of the teeth), and extending to the extremities and trunk. The expression has meanwhile changed: the face is pale or livid; there are dark rings under the eyes; the features are pinched and sharp, and the whole skin shrunken; the fingers are dead white, mnd the nails blue. All those symptoms are referable to spasmodic constriction of the small surface arteriee, the pulse at the wrist being
itself small, hard, and quick. In the iuterior organs there are indications of a compeasating accumulation of blood, such as swelling of the spleen, engorgement (very rarely rupture) of the heart, with a feeling of oppression in the chest, and a copious flow of clear and watery urine from the congested kidneys. The body temperatare rill lave risen suddenly from the normal to $103^{\circ}$ or higher. This first or cold stage of the paroxysm varies much in length; in temperate climates it lasts from one to two nours, while in tropical and subtropical countries it may bo slortened. It is follored by the stage of dry heat, which will be prolonged in proportion as the previous stage is curtailed. The feeling of heat is at first an internal oae, but it spreads outwards to the surface and to the extremities; the skin becomes warm and red, lut remains dry; the pulse becomes softer and more full, but still quick; and throbbings occur in exposed arteries, such as the temporal. The spleen continues to enlarge ; the urine is now scanty and high-coloured; the body temperature still rises (up to $104^{\circ}$ or $105^{\circ}$ or eren higher); there is considerable thirst; and there is the usual intellectual unfitness, and it may be confusion, of the feverish state. This period of dry heat, having lasted three or four hours or longer, comes to an end in perspiration, at first a mere moistness of the skin, passing intossreating that may be profuse and even drenching. Sleep may overtake the patient in the midst of the sweating stage, and he a makes, not without some feeling of what he has passed through, but on the whole well, with the temperature fallen almost or altogether to the normal, or it may be even below the normal, the pulse moderate and full, the spleen again of its ordinary size; the urine that is passed after the paroxysm deposits a thick brick-red sediment of urates. The three stages together will probably have lasted six to twelve hours. The paroxysm is foltowed by a definite interval in which there is not only no fever, but even a fair degree of bodily comfort and fitness ; this is the intermission of the fever. Another paroxysm begins at or near the same hour next day (quetidian ague), or the interval may be forty-eight hours (tertian ague), or seventy-two hours (quartan ague). It is the general rule, with frequent exceptions, that the quetidian paroxysm comes on in the morning, the tertian about noon, and the quartan in the afternoon. Another rule is that the quartan has the longest cold stage, while its paroxysm is shortest as a whole; the quetidian has the shortest cold stage and a long hot stage, while its paroxysm is longest as a whole. The point common to the varions forms of ague is that the paroxysm ceases about midnight or early morning: Quotidian intermittent is on the whole more common than tertian in hot countrics; clsewhere the tertian is the usual type, and quartan is only occasional.

If the first paroxysm should not cease within the twenty-four hours, the fevcr is not reckoned as an intermittent, but as a remittent.

Remittent is a not unusual form of the malarial process in tropical and sultropical countries, and in some lecalities or in some scasens it is mere commen than intermittent. It may be said to arise out of that type of intermittent in which the cold stage is shortened while the hot stage tends to be prolonged. A certain abatement or remission of the fever takes place, with or without sweating, but there is no true intermission or ioterval of absolute apyrexia. The periodicity shows itself in the form of an exacerbation of the still coutinuing fever, and that cxacerbation may take place twenty-four lours after the first onset, or the interval mag be only half that period, or it may be double. A fever that is to be remittent will usually declare itself from the outset: it begins with chills, but without the shivering and shaking fit of the intermittent; the hot stage soon
follows, presenting the same characters as the prolonged hot stage of a quotidian, with the frequent addition of bilious symptoms, and it may be even of jaundice and of tenderness over the stomach and liver. Towards morning the fever abates; the pulse falls in frequency, but does not come down to the noraal; beadache and aching in the loins and limbs become less, but do not cease altogether; the body temperature falls, but does not tonch the level of apyrexia. The remission or abatement lasts generally throughout the morning; and about noon there is an exacerbation, seldom ushered in by chills, which continues till the early morning following, when it remits or abates as before. A ratient with remittent may get well in a week, under treatment, but the fever may go on for several weeks ; the return to health is often announced by the fever assuming the intermittent type, or in other words, by the remissions touching the level of absolute apyrexia. Remittent fevers (as well as intermittents) vary considerably in intensity; some cases are intense from the outset, or pernicions, with aggravation of all the symptoms-leading to stupor, delirium, collapse, intense jaundice, blood in the stools, blood and albumen in the urine, and; it may be, suppression of urine follewed by convulsions. The severe forms'of intermittent are most apt to occur in the very young, or in the aged, or in debilitated persons generally, Milder cases of malarial fever are apt to become dangerous from the complications of dysentery, bronchitis, or pneumonia. Severe remittents (pernicious or bilions remittents) approximate to the type of yellow fever, which is conventionally limited to epidemic outbreaks in western longitudes and on the west coast of Africa. Blood in the urine has been described by several recent writers as distinctive of a form of bilious remittent occurring at a number of malarious localities in the tropical zone of both henispheres. The remittent type occurs wherever and whenever the malarial conditions are severe; when it has appeared in colder climates, it has usually been at the height of an epidenric of intermittent. With all the foregoing statements, it shonld be borne in mind that anomalies are frequent.

Of the mortality due to malarial disease a small part only is referable to the direct attack of internittent, and chiefly to the fever in its pernicious form. Remittent fever is much more fatal in its direct attack; it often kills in the first few days, accordiag to its initial intensity or the severity of the complications. But probably the greater part of the enormous total of deaths set down to malaria is due to the malarial cachexia. The malarial cachexia may be either the sequel of one or more actual attacks of fever, or it may arise iasidicusly in those who inhabit a malarious district and have never experienced the sharp paroxysms of fever. In the latter case, malaria is almost as much an ethnological as a pathological factor. The dwellers in a malarious region like the Terai (at the foot of the Himalayas) are miscrable, listless, and ugly, with large heads and particularly prominent cars, flat noses, tumid bellies, slender limbs, and sallow complezions; the children are impregnated with malaria from their birth, and their growth is attended with aberrations from the normal which practically amount to the disease of rickets. The malarial cachexia that follows definite attacks of aguc consists in a state of ill-defined suffering, associated with a sallow skin, enlarged spleen end liver: and sometimes with dropsy.

Nearly allied to the malarial cachexia is the so-called state of masked ague. Many common ailments have been set down to inalaria, witheut snfficient reason; but there is hard!y ony doubt that intermittent paroxysms of neuralgia, especially of the supra-orbital nerve (brotr-agze) and of the infra-orbital (fic douloureux), are often malarial in origin. These non-febrile effects are apt to follow
exposure to malaris; they occur (not exclusively) in those who have had ferer and ague; they are sometimes accompanied by suggestions of the cold, and hot, and sweating stages of the true paroxysm; and they of ten jield to the great anti-malarial remeds, quinine. Such patients lave the general ill-health and suffering, as wall as the pallos, of the malarial cacheria

The morbid anatomy of malarial fevers is chiefly confined to congestiona and enlargements (with teatural changes) of the spleen and liver. One of the most salient pathological factis is tho occurrence of black pigment in the blood, and deposits of it in the spleen, liver, and other parts. The malarial process sometimes leads to ulceratinns and sloughing of the mucous membrane of the great iatestine, not distinguishable from those of dysentery. The malarial fever of Rome is often essociated with more or lass of swelling and, it may be, even ulceration of the lymphatic follicles of the small intestine, as in typhoid fever; the same anstomical condition was associated with much of the melarial fever of the American Ciril War (typho-malaria).

Geographical Distribution and Prevalence.-Malaris has been estimated to produce one-half of the entire mortality of the bumen race; and, inasmuch as it is the most frequent cause of aickness and death in those parts of the globe that are most densely populated, the estimate may be taken as at least rhetorically correct.

In the British Islands, sporadic cases of ague may occur anywhers; but malaris is not now endemic except in a fer localities, among which may be mentioned certain parishes on the Esser side of the Thames estuary. In France there are several districts that are still notoriously malarious. In the interior these are chiefly found in the valley of the Loire (Sologne) and of its tributary the Indre (Brenna), ond also in the valley of the Rhone, more particularly near the confluence of the Saine (Dombes, Bresse). France has two greqt coast regions of malaria, -the one on the Atlantic seaboard, from the estuary af the Loire to the Pyrenees, with especial intensity in the Charente, and the other on the Mediterranean coast, from the Pyrenees to the Rhono delta. The most considerable malarious district of Switzerland is in the Thone valley from Sion to the Lake of Genera. In Germeny, the upper valley of the Ihine and the sources of the Danuba have a certain character for malaria; but it is chielly on the western sezboard of Schlessrig. Holstein and in tho moors and marshes of Oldenburg, Hanover, and Westphalia that the disease is endemic. Scarcely any prorince of Holland can be said to be quite free from it, while Gröningen, Friesland, and Zealand (with brackish marshes) are the most unhealthy. The parts of Belgimm that are a!nost or altogether exempt are the high-lying districts of Braoant, Namur, and Liége. In Sweden, malaria is endemic in the central depression of the conntry (especially on the shores of Lake Wener), and it has of late years spead northraards in epidemic outbreaks. For the countries of southern and eastern Europe (Spain and rertugal, Italy, Hungary and other Danubian states, Tarkey, Greece, southern Russia), the language used to describe the preralence of malaria has to be pitched in a somerrhat higher key. There are certain pestilential cistricts of those countries where almost the half of the population suffers from ague, and there are even limited areas which are too malarious to be inhabited. The lower basin of the Danube (from above Vienna to the Black Sea), and the basin of its tributary the Theiss, are in the first rank. Both sides of the Adriatic bave malarious localities, the chief being the delta of the Po and the Gulf of Comaccio; anoug other unlealthy parta of Italy are the strip of coast from Fisa to Civita Yecchia (Maremma), the

Roman Campagna, the Pontine Marshes, the neighburhood of Capua, and the Neapolitan and Calabrian coasts. Sicily is highly malarions, both in the plains and in the higher districts; and that is equally the character of Sardinia, Corsica, and the Balearic Isles. Greece, the Ionian Islends, and Crote taka a high place amoog European malarions countries; there are also namerons unhealthy localities on the shores of the Caspian and Black Seas and in Asia Minor. For countries in beth hemispheres situated batween $35^{\circ} \mathrm{N}$. and $20^{\circ} \mathrm{S}$, to describe the prevalence of malaria in detail would be practically to give the mhole geography within those latitudes. The regions of special intensity are the west coast of Africa, the American seaboard (sith the West Indies) from the Gulf of Mexico to Pernambuco, parts of Iadis (the Terai, the Doab, the Sunderhunds), parts of Sumatre, of Java, and of Bornea Gibraltar, Malta, Aden, Singapore, and Manila enjoy a comparative immanity from fever; the healthicst islands of the West Indies are Barbados, St Vincent, and Antigur.

In England, the fen district of the eastern counties, Romney Marsh in Kent, and the marsh district of Somerset have in great part ceased to be malarious within recent memory; and there has been a proportionate improsement, through drainage, in most parta of Holland, in aome of the malarious districts of France and Italy, and in Algiers. Portsmouth in Englnnd and Rochefort in France are examples of torns that hare entirely lost their evil repute fir malaria; and there are many towns in the United States, 25 well as in the East, which are much less malarious than thes used to be. Wherever malarial fercrs have become less frequent, they hare also become milder in type. On the other hand, malaria has become inteuse where it was formerly unimportant or altogether unknown. It is incredible that the Roman Campagna could have been ao malarious at the time of the empire as it is nom ; places on the coast, such as Ostia and Palo (Alsium), which are now almost uninhabitable in summer, mere then the farourite summer resorts of the rich; while the Campagne, which is now almost entirely given up to pesturage, was not only deasely populated, but was eren specially commended as salubrious. In North Airica, Asia Minor. and the East, malaria has taken possession of the ruined sites of ancient cities, and of large tracts of land that must hare been at one time highly cultivated, but are now treeless, barreu, and sometimes marshy. Of recent years malaria has appeared in Réunion and Mauritius, and it has reappeared in Connecticut ; in the troo islands the associated circunstances are somewhat complicated, but they relate to changes in the cultirated area. The reappearance of ague in New England and the recent appearance of a form of masked ague in Ner York and elsewherc are at preseat unaccounted for. Enrthquakes were said by older writers to bare brought malaria to a locality; a recent and well-authenticated instance is that of Ambuyna in the Moluccas, which Las become strikingly unbealthy since the earthquakes that occurred in it in 1835.

Among the numerous military enterprises into whose records malaris enters largely, may be mentioned thic expedition agaicst Carthagena (1741), the Walcherca expedition (1810), and the capture of Rangoon (1824). Ficcent enterprises in which malarial ferer has been a great factor ase the expedition against Achin by the Dutch (1873), the occupation of Cyprus by the English (1878), and the subjugation of Tunis by the French (1881). Schemes of colonization, such as the Darien scheme ( $1 ; 01$ ), have sometimes been frustrated by malaria. Of historical personages, James L and Cronwell died in Londou of inalaial fever, the latter of a pernizions tertian.

There iuse becn numernus historical epidemics of inter-
finittent'and remittent fever, from that of 1557-53 (which spread sover all Europe) dorn to that of 1872, which prevailed sinultaneously in Enrope, North America, and southern India. The epidemic or pandemic prevalence of intermittent and remittent fever in certain years probably finds its explanation in the meteorology of those years, bnt no uuiform law has been discovered. Whenever malaria has settled endemically in a new locality, there had been epidemics coming aud going for some time previously.

Nalarious Localities.-The most malarious localities are the deltas and estuaries of rivers (Gangcs, Eupbrates, Po, Mississippi, Orinoco), low-lying country that is apt to be inundated (Danubian states), tropical or subtropical forests in which there is a moist atrosphere, with stagna. tion of the air and rank vegetation (jungles), tracts of luad that have beea clcared of trees and have gone out of cultivation, being in more cases dry than wet (Roman Campagna, Tuscan Marcmma, many parts of Persia, Asia Ninor, and North Afric2, including the sites of rained cities), inland swanps and marshes (Pontiue Marshes), and situations on the coast where the tidal and fresh water join to form brackish marshes (mangrove. swamps of the West Indian, Central American, Brazilian, and West African coasts). The mangrove is associated with the most pestilential localities; it springs "like a miniature forest out of the greasy nud-banks, the bright green colour of the bushes reninding one of the rank grass in a cburchyard" (C. Darwin). In all those localities there is a soil, usually wet but sometimes dry, rich in the products of vegetable decay; the soil has been cither deposited by rivers and tides, or it has formed on the spot out of the undisturbed accumulation of decaying vegetation season after season orer a long period. There is, however, a second great class of malarious localities, distinguished by characters that are to some extent the opposite of the foregoing. These are barren rocks (Ionian Islands, Hong Kong, parts of Baluchistan, De Los Islands near Sierra Leoue) ; high table-lands moro or less barren (Deccan, Mysore, Persia, New Castile); mountainous regions (Andes, Rocky Mountains); prairies of North America and savannas of Venezuela and Brazil; sandy plains (North Africa, Rajputan3, Sindh). A somewhat exceptional locality for malaria is on board shipat sea; there are several well-authenticated instances of epidemic outbreaks at sea, in most cases referred to the putrid bilge-water, and in one case to a cargo of ret deals from the Baltic.

There are several lucalities whose exemption from malaria has been thought remarkable. Anong these, Singapore has long been noted; other instances are the Amazon (as compared with its tributaries and with the Orinoco), the pampas of the La Piata and the Parana, marshy parts of Australia, New Zealand, and New Caledonia, and the marshy Bermudas. The explauation given of the excmption of Singapore, where many of the supposed malarial conditions are present, is that the range of temperature (diurnal and annual) is suall ; the explanation for the Amazon is that a wind constautly blows up the river from the sea (not reaching the side streams), which serves to equalize the day and night temperature aud to obviate the nocturnal radiation of heat.

Malarious Seasons.-In temperato clinates autumn is the season when malaria prevails most. "In the autumn, and after the harvest has been gathered, when the ground is covered with its debris, when the rain falls in torrents and when the sular licat has acquired its greatest intensity, ull the conditions of greatest quantity of vegetable matter, of moisturn, and of highest temperatire are united, so that the season whiçh realizes the hopes of the husbandman is the period of pestilence and of his greatest danger"
(R. Williams). In the equatorial regions of the East Indies, Africa, and America, the rainy seasun (Niay to July or August) is most unhealthy, and ospecially the time of commencement of the rains and the time of cessation; on the west coast of Africa the months of February, March, and April, which are the hottest months of the jear, are at the same time the most healthy. But while autunn and the time of the rains are the malarious season for those localities that are distinguished by wet soil, rank vegetation, \&c., it is summer, or the time of extreme heat and drought; that is the unhealthy scason for the localitics distinguished by dryness of the soil and ofteu by barrenness. The hill fever of the Deccan and Mysure is oftem most prevalent and most severe in the huttest and driest seasons; in Algeria there is most fever when the country is parched to a desert. The malarial season in the Tuscan Maremma is from June to the middle of Septenber. In' military experience it has frequently happened that malaria has attacked the troops in the hottest weather after cainping in the dried-up water-courses of uplands, or in parched meadows and sandy lovels that are apt to be flooded only in winter.

Conditions of Origin.-In all localities and at all seasons, it is at or after sunset that the malarial influence prevails, and it tells most when a cold night follows a hot day. Perlaps the most cunstant fuct relating to malaria is that it goes with watery exbalations and with the fall of dew. On wet soils, and over marshes, bramps, and jungles, the aqueous vapour condenses as the air cools; while on dry surfaces the rapid radiation of heat causes a heavy der-falil. The occurrence of malaria on lare rocks, parched uplands, and treeless tracts of dry fallow land may have several associated circumstances; but that which bas been most uniformly observed in such localities is great dinrnal range of temperature, with rapid radiation of beat after sunset, and copious fall of dew. The "hill ferer " of Mysore occurs among bare rocks and stones and brown earth; at the hottest season (March to June) the diurnal range of the shade temperature may be $20^{\circ}$ to $30^{\circ}$, while the rocks in the sun may show a surface temperature up to $220^{\circ}$, and undergo a rapid cooling after sunset. The most nalarious locality at all times of the year on the Orinoco is around the great cataract, where the banks of the river for some distance are covered with bare black rocks piled to a conosiderable height; the rocky sinlistance and the black surface combine to produce the greatest absorption of lieat and the most rapid radiation, and the rocks there, as well as in other parts of South America and in India, are credited by the natives with giving off poisonous exhalations which cause the fever. Among the conditions of origin the predisposition of the buman strbject takes a prominent place. Those who have been habituated to cxtreme heat, and are on oceasion exposed to cold and damp, are likely to acquire intermittent or remittent fever; and those who are poorly clad, housed, and fed are most likely: Fires at night in 8 malarious locality are a well-known protection from fever; the cover of trees (preventing the radiation of heat) is also a protection. Those who have had aguc before are liazle to have it again on exposure in a malarious locality, or to chill anywhere.

Dificsion of Malariu.-On the hypothesis that malaria is a poisonous substance, it is permissible to speak of its diffusion. It acts for the most part only within a few fect of the ground; in the East Indics the raising of dwellings on piles serves to lecep off, or at least lessen, the liability to fever, aud the Indians in Suuth America escapo it by sleeping in tho brancles of trees. Althengh it is not known to act beyond a few feet from the carth's surface, it may produce fever in localitics situated at a height of 7000 to 9000 feet above the sea-level. It sometimes acts
at a distance from its supposed place of origin. Thus, it it is sald to have caused fever on board ships lying 2 or 3 miles off a malarions shore, although it is more usual for ships at even a short distance from the shore to escape. In West Indian experience it has been known to render the high limestone ridge more unhealthy than the swamp at its foot, and a similar experience has occurred on the Kentish shore of the Thames estuary, and at other parts of the Euglish (Channel) coast. There are instances where it has, so to speak, travelled along a narrow valley from su unhealthy marsh to a salubrious situation. Although a still night is most favourable to its production, there is a popular opinion that it is carried by the wind. In many malarious localities there is a definite "ague line," beyond which the noxious influence is not felt. A belt of trees, or eren a wall, will "keep it off." It clings to those surfaces that aro most easily bederred. Situations to wind rard of in malarions stramp are usually reckoned safe,

IIypolhesis of Malaria. - Malaria is known only by its effects on the animal body; the effects, although they vary much in iutensity, are uniform, definite, or specific, and are characterized by a truly remarkable periodicity. The oldest and most prevalent hypotbesis of malaria is that it is a specific porson generated in the soil. Perhaps not every soll is capable under circumstances of causing malaria, but it is difficult to assign limits to its potential presence. There are seemingly well-authenticated cases of malarial disease appearing during the making of railway cuttings, canals, and other excarations in places where malaria had not previously been known; and there is sufficient evidence that malaria has appeared in the track of cultivation in the western States of America, and that it follows on the upturning of rirgin soil, and even of soil that has been long fallow. Attempts have been made, without success, to separate a malarious poison from the gases generated by swamps, or from the air of malarious localities. Still more frequent and elaborato attempts have been made to discover the hypothetical poison among the numerous ninute vegetable organisms that occur in the soil of malarious (and non-malarious) places; and these also hare hitherto yielded wo solid result. Another hypothesis is that malaria is a "telluric intoxication," generated by the vegetative power of the soil when that power is not duly exlausted by plant growth. Lastly, there is an hypothesis that malarial fevers are cansed by the excessive and suddeu abstraction of heat from the body unider the influence of cold and damp, and that the specific effects of the nocturnal chill, amounting to intermittent and remittent fever, are most usual and most marked in hot climatcs because of the antecedent ex. posure of the body to great solar heat.

Remedies. - Cinchona or Peruvian bark (with its alkaloid quinine) is a remedy universally applied with good effect in the trestment of malarial fevers The treatment is usually commeaced during the first intermission or remission. There is no good evidence that the taking of quinine wards off the attack of malaria. The extent of cinchona planting in southeru India, Ceylon, Jamaica, and elsewhere is the best measure of the value of quinine as a remedy, and more particularly as a remedy for agae. Arsenic has proved one of the most efficient substitutes for quinine. The dwellers in malarious localities have found in opinm - palliative of the misery induced by the malarial cacheria.

Literalure.-Hirsch, Geographisch-historische Pathologie, 2d ed., Stnttgart, 1881, pt i sec. 7 (the bisliographical references appended to Hursch's chaptar on malaris inclnde apwards of cight hundred names) ; W. Ferguson, "On the Nature and History of the Marsh Poison," Trans, Noy. Soc. Edin, ix., 1823 (omitted by Hirsch; was the first to dwell npon the fact that malaria is often associated with heat and dronght, and elevated rocky lccalities); Macculloch, Milaria, an Essay, se., Loudon, 1827 ; Robert W'illiams, Morbin Poisons, London. $1 \$ 36-41$, rol, ii., chnpter on "Paludal Diseases";

Colin, Traite des fieres intermilleales, Parls, 1870 (expounds the thicory of "intoxication tellurique"); C, F. Oldham, W'hat is Malaria? and Why is it most Intensc in Hot Climates? London, 1871 (a comprchensive reviers and acute criticismo of establisbed facts and current theorics, mith the motive of showing that there is no slucifie malarial poison) ; Morehead, Clinical Researches o\% Disease in Indie, London, 1856, vol. i. (for synuptoms, diagnos18, and treatment of intermittent and remittent fevers) ; l'ayrer, Climate and Fcrers of Iudia. London, 1882 (both general and clinical).
(C. O.$)$

MALAȚTA, less correctly Malatiqarg, the ancient Melitene of Cappadocia, a town of Kurdish Armenia ia the vilaget of Diarbekir, about 8 miles to the south-west of the Euphrates below the confluence of tho Tokhma-sv, and about half way between Baghdad and Coustantinople, on a routo which for ages has been one of the most important in that part of Asia, Asbuzi or Aspuzi, a place about 5 miles distant, which was formerly inhabited by the people of Malatia during the summer only, has become the permanent residence of a large part of the popalation (about 20,000, incleding both), but Malatis proper remains tho administrative centre of the sanjak, The remains of the ancient town are mach dilapidated,

In the time of Strabo (xii. 537) there wos no torm in the district of Melitene. Under Titos the place became the permanent statian of the 12th legion; Trajan raised it to a city. Lying in a very fertule country at the crossing-point of important rontes, it grew in size and importance, and was the capital of Armenia Miner or Sccunda. Justinian, who completed the malls commenced by Anastasius, made it the eapital of Armena Tertia; it was then a very great place (Procop., De LEd., iii. 4). The tovn was burnt by Chosroes on his retreat after his great deleat there in 577. Taken by the Saracens, retaken and deatroyed by Constantine Copronymus, it was presently recorered to Islam, and rebuilt under MLansúl ( $757-58$ A.D.). It again changed hands mere than once, being reckoned among the frontier towns of Syria (Istakhry, p. 55, 62). At length the Greeks recovered it in 934, and Nicephorus II., finding the district much wasted, enconraged the Jacobites to settle in it, which they did in great numbers. A convent of the Virgin, snd the great church which bears his name, were erceted by the bishop Ignatius (Isaac the Runner). From this time Malatia continued to be a great seat of the Jacobites, and it was the birthplace of their famous maphrian Barhebræus (or Abulfaragius), At the commencement of the 11 th century the tomn was said to number 60,000 fighting men (Assem., Bib. Or., ii. 149; comp. Barbeb., Chr. Eccl., i. 411, 423). At the time of the first crusade, the city, being hard pressed by the Turks under lbn Danishmend, was relieved by Baldwin, after Bohemund had failed and lost his liberty in the attempt. But the Jacobites had no canse to lere Byzantium, and the Greek govervor Gabricl wa9 so cruel end fathless that the townsmen were soon glad to open their gates to thn Danishmend (1102), and the city subsequently became part of the realm of Kilij Arslan, sultan of Iconium.

Malay Peninsula, Malacca, or Tánait Maláyu ("Malay Land"), the sonthernmost region in Asia, attached to Further India by the isthmus of Kra, in $10^{\circ} \mathrm{N}$. lat., whence it projects for about 600 miles, first south, then south east parallel with Sumatra, to. Capo Ramúnia (Romania) in $1^{\circ} 23^{\prime} \mathrm{N}$., within 95 miles of the equator ; it raries in width from 45 miles at the isthmus of Kra, and again at Talung in $7^{\circ} 30^{\prime} \mathrm{N}$, , to 210 at Perak in $5^{\circ} \mathrm{N}$, and 150 at Selángor, $3^{\circ} 20^{\circ} \mathrm{N}$. The area is about 70,000 square miles, with a population of at least 650,000 . $^{2}$ The peninsula, which is washed on the west by the Bay of Bengal and Malacca Strait, on the east by the Gnlf of Siam and China Sea, belongs geographically and ethnically rather to the eastern archipelago than to the Asiatic continent. Hence, whenever the proposed canalization ${ }^{2}$ of the isthmus of Krá is carried

[^136]PLATE VI.


out, this region will fall into its natural position as one of the great islands of Malaysia. In a wider sense the peninsular formation begins properly at the head of the Gulf of Sianı, about the parallel of Bangkok. But this northera section between $10^{\circ}$ and $13^{\circ} 30^{\prime} \mathrm{N}$. being comprised withia the limits of Siam proper and British Burmab, is not usually iocluded in Malacca, whose political frontier towards the north-west is thus traced by the lower cuurso of the river Pakshan, which there separstes it from Tenasserim, the southeraroost division of British Burmah. But east of that river there is no natural or political froatier towards Lower Siam, which eorbraces all the land as far south as the river Muda on the west coast in $5^{\circ} 33^{\prime}$ N., and on the east side as far as the state of Tahang in $4^{\circ} \mathrm{N}$. The seaboard, which is generally flat and overgrown with mangroves for 5 or 6 miles inland, is fringed with numerous islands and iasular groups, of which the chief are Salanga (Junk Ceylon), Langkawi, and Pulo Penang on the west side; Singapore, Batang, and Bintang at the southern extremity; Tantalem and Bardia on the east coast. All these islands, which may have a total area of gome 5000 square miles, seem to have originally formed part of the mainland, of which they mey be regarded as scattered geological fragments.
Although knowa to Europeans since the beginning of the 16 th century, and nowhere more than 100 miles from the sea, the interior still remains one of the least known laads in Asia. D'Souza's large map, prepared in 1879 for the British Governmeat, is still in many places almost a complete blaak; the mountain ranges are traced only for ahort distances, chiefly on the west side below Kedah; the river courses aod political boundaries are often merely conjectured, while the elevation of some of the highest pqaka is absolutely unknown. Accurate surveys; howevcr, have since then been msde, especially by H. S. Deanc in the Perak and Selangor states, by D. D. Daly in most of the British native states, ${ }^{1}$ by Dru in the extreme north, and by others in the extreme south about the Endau river basin and at several other poiots, from which a rough idea may bo formed of the general orographic and geological features and hydrographic systems. The surface seems to he everywhere essentially mountainous, and considerably more elevated than had till recently been supposed. The land is traversed in its entire leagth by a somewhat irragular and ill-defined backbone, forming a southern continuation of the Arakan and Tenasserim ranges, but here falling to e mean elcvation of perhaps 3000 fect, and constituting a distinct water-parting between the streams flowing east aod west to the aurrounding seas. The aurface is further varied by numerous spurs and detaclied ridges running mainly north and south, besides isolated masses often vying in elevation with the central ranges. Little apace is thus left for upland plateaus, broad valleys, or lowland alluvial plains of any extent, ex'cept about Tringganu and Pahang on the east, and Selángor on the west aide. The highest ascertaiacd altitudes are the Titi Bangaa range ( 7000 feet), between Kedala and Perak; the Gunoog Inas ( 5000 ) ascended in 1881 by Deane; the Guaong Bubu ( 5650 ), and Guoong Ulu Tumulang (6435), uear the right and left banks of the Perak river; the

[^137]Sum range ( 6000 to 7000 ) in south-east Perak; the Gunong Rajah (6500), in the maia range; a peak ( 7000 ) in the Eodan river basin, nearly double the height of Gunnig Ledang, or Nount Ophir (3849), bitherto supposed to be the highest point in the extreme south. But an unesplored ridge towards the west frootier of Kelantan, with a probable elevation of 8500 or 9000 feet, is taken by Miklucho Maclay as the culmiating laad of the whole peninsula. These mountains are scarcely anywhere traversed by rccognized beaten tracks, the natural passes between thie eastern and western watersheds being still mostly ove.grown by dense jungle. Deane, however, came upon a forest path acrnss the naain water-parting from Kedah to Patíni, and a route is said to lead from the Bernam river basio across the maio axis to Pabang on the east side.

Owing to the formation of the land, the rivers, although numerous, are necessarily of short length, and, as their mouths are generally obstructed by bars and coral reefs, they are on the whule more useful for irrigation than as water highways. Nevertheless some are navigable by light craft for considerable distances, and in 1881 Deane steamed up the Bernam between Perak and Selángor to Kampong Chankat Bertibam, 76 miles from the coast. He proceeded by boat thence for 9 miles to Simpang, where the stresm divides and shallows. For about 80 miles it is 10 to 17 feet deep, while the Perak, with its chief tributaries, the Plus, Kinta, and Batang Padang, presents a total navigable waterway of perhaps 200 miles. The Perak on the west and the Pahang on the east slope are by far the largest river basins in the peniosula, each draining an area of 5000 to 6000 square miles. The other chief streams áre the Selángor and Klang on the southwest coast, the Johor facing Singapore, and on the east side the Endau, Kelantan, aod Patáni.

As far as has been ascertained, the main geological formations would appear to be Lower Devorian sandstones and unfossilized clay slates, with a basis of grey stanniferous granite everywhere cropping out. Although no trace has been found of recent volcanic action, there are several isolated and unstratified limestone masses from 500 to 2000 feet high, of a highly crystallized character, with no fossils of any kind. Earthquakes also are frequent, while numerons bot springs attest the preseace of still active igneous forces beneath the surface. In the south porphyry occurs, associated with granite and clay ironstone; and laterite, resembling that of the Malabar coast, abounds, especially along the west slope. The rich stanniferous granites forming the backbnoe of the peninsula render this region the most extensive storebouse of tin in the world. Vast deposits of tin ores, sometimes associated with gold and silver, ${ }^{2}$ occur almost everywhere, and are continued in the neighbouring islands as far south as Banca on the Sumatrs coast. ${ }^{3}$ Gold, whence the land was known to the ancients as the Aurea Chersonesus, is also found in considerable quantities, either disseminated in quartz or in alluvial deposits, especially about Mount Ophir, in Pabang, Gomichi, Tringgannu, and Kemámav. The total yield has amounted in zome years to 25,000 and 30,000 ounces. Iron ores abound especially in the south, and coal has recently been found in the isthmus of Krá conveniently situated for the future ship canal across the peninsula.

The clinate, everywhere moist and hot, becomes

[^138]oppressive and eren malarious along the low muddy banks of the coast streaus. Higher ulp, althing h cooler, it is not always more healthy, and the uplands, especially about Mount Ophir, have the reputation of being extremely dangerous to Europeans (Wallace). Yet the mean tenperature, thanks to the general cleration of the land and the prevailing sea-breczes, is much lower than that of many Asiatic lauds lying mach farther from the oquator. While the glass rises norimally on the Makrín coast and in the Persien Gulf to $110^{\circ}, 120^{\circ}$, and eren $125^{\circ}$ Fihr., the mean suinmer range in the peninsula scarcely exceeds $90^{\circ}$, friile at an altitnde of 2500 feet it is uuder $70^{\circ}$ for the Wi_ole year. There is strictly speaking no winter, nor a distinctly marked rainy season, the alternate north-east ayl south-west monsoons distributing the moisture over the cast and west slopes throughout most of the year. The average number of rainy day's is about one lundred and minety, and the mean rainfall frem 100 to 130 inches. The west coast is exposed to sudden squalls of shert duration, known as "Sumatras" from the direction whence they blow, while the opposite side is often visited by tornadees during the monscons.
Except in seme limestone tracts, especially in Perak and Kedah, the soil is generally poor, and the country, which may be described as of comparatively recent formation slowly undergoing decomposition, is incapable of growing sufficient rice eveu fer the local demand (D. D. Daly). The laad, however, is almost everywhere clothed with a magnificent trupical regetation, in which the most conspicuous and useful plants are the gutta-percha (here first discovered), the camphor tree, ebony, sapan, ratan, eagle wood, bamboo, nibung, and nipa palm. Unfortunately the work of reckless destruction has already commenced, and the Chinese miners have in many places cleared extensive tracts, cutting down the finest trees to serve as fuel for smelting the tin ores. Of fruits the most characteristic are the durian and mangasteen ; and of cultivated plants the most common are rice, the sugar-canc, cotton, tebacco, yams, batata, cecoa and areca palms. Tea and coffee might be successfully cultivated along the slopes of the Perak and Selángor rivers (Deane). A species of climbing indigo and the wild natmeg are indigenous, and the true nutmeg, cinnamon, and clores hare long been iatroduced, and thrive well (Newbold).
The fauna of the peninsula, which is unusually rich, is allied, like the fiora and the inhabitants, rather to that of the Eastern Archipelago than the mainland. Here are the one-herned rhinoceros, Malay tapir (tínair), elephant, and hog, all of the same species as those of Sumatra. Here is also a small bear (bruangh), found elsewhere ouly in Borneo, as well as the Sunda ex of Java, besides two kinds of bison said to be peculiar to the "peninsula (Crawfurd). On the other hand, the Asiatic tigor las extended his range thiroughout the whole region, even crossing over to Singapore and other adjacent islands. Of quadrumanes there are no less than oine species, including the chimpanzee (Simia troglodyles), the knkang (Lcmur tardigradus), the black and white unka, but apparently uot the orang-outan, slthough the word is in common use amoog the Nalays, whe often apply it in its uatural sense to the Sakai and other wild tribes of the interior. Of birds perhaps the most characteristic are the rhinoceros hornbill (Buceros), the bangu or Jsvanese stork, the argus and peucilled pheasints, birds of paradise (Paradisea regir and $P$. gularis), myna or grackle (Gracula religiosa), murci or dial bird (Gracula saularis), the humming bird, besides kiugfishers, flycatchers, doves, and pigeens in endless variety. The islands are frequented by the Mirunto esculenta, or swallow that builds edible nests. The forests swarm with coleoptera, lepideptrea, sad other insects, including the
magnificont butterlyy Ormethoptera Brookeana, till recently supposed to be peculigr to llorneo (Deane). The surrounding waters are intabited by the halicore, or "mermaid," a sironian whoso Mahy name dryong has been corrupted to dugong in our natural history books.

Politically the peninsula is partly held directly by Siam and Great Britain, and partly divided anoong a number of petty Malay states, cither tributary to or in treaty with those paranount powers. The Siamese territory and states embrace the whole of the northern section southwards to $5^{\circ} 35^{\prime}$ N., and thence on the east side as far as the southern frontier of Tringganu in $4^{\circ} 35^{\prime} \mathrm{N}$. A line drawn from this prarallel on the east coast across the peninsula nerth-westwards to Kedah on the west coast will thus mark the southern limits of all the land directly or indirectly subject to Siam. The rest of the peniasula is occupied by the British possessions grouped under the collective name of the Strats Settlements ( $q \cdot v$. ), and by the more or less independent Malay states proper, which may be regarded as forming part of the Fritish systea. Subjoined is a table of all the pulitical divisions of the peniasula :-

## Siamesc rolitical Systcm.

Ligor, Sengora. These two provinces of Lower Siam proper connlyise the isthmus of Era between $7^{\circ}$ and $10^{\circ} \mathrm{N}$., with a coast-1ino of 240 miles on the east and 260 on the west side; arca perhaps 17,000 square miles ; population, 50,000 ( (3):
Kcdah, between Lizor and Perak, $7^{\prime}$ to $5^{\circ} 35^{\prime}$ N., with 120 miles on west coast; a area, 3600 square miles ; popubetion, 30,000 .
Patani or Raman, betweeu Sengora and Kelantan, $7^{\circ}$ to $5^{\circ} 30^{\prime} \mathrm{N}$., with const-line on cast side 50 miles; arca, 5000 square miles; population, 30,000 .

Kelantan, between Patáni and Tringginu, $6^{\circ}$ to $4^{\circ}$ N., 60 miles coast on east side; area, 7000 square niles; population, 20,000 .

Tringgámu with Kemáman, between Kelantan and Pahang, $5^{\circ} 30^{\prime}$ to $4^{\circ} \mathrm{N}_{\mathrm{N}}$, with 80 miles coast-line on the east side; area, 6000 square miles; population 50,000 (?).

## British Folitical System.

Perak, between Kidah and Selangor, $5^{\circ} 30^{\prime}$ to $4^{\circ}$ N.; with 80 miles coast-line on west side; area, 6500 square miles; population, 30,000 .
Selangor with Kalang, between Perak and Malacea territory, $4^{\circ}$ to $3^{\circ} \mathrm{N}$., with 120 miles coast- Line on west side; papulation, 15,000 , Johór, southeru extremity of the peninsula from $2^{\circ} 40^{\prime} \mathrm{N}$. to Cape Romania; area, 10,000 square miles ; population, 20,000 .
Pahang, between Johór and Tringgánu, $3^{\circ}$ to $5^{\circ}$ N., 90 miles coast on east side ; area, 3500 souare miles; population, 20,000 .
Jelèhu, Sungei Ljong, Sri Mlenanti, Jumpoi, Johól, Rambau, Jolai, Segarmat or Mloar. These inland states, lying between $2^{\circ}$ and $4^{\circ} \mathbb{N}_{\text {i, formerly }}$ constituted with Kaning (Malacca territory) the so-called Negri Sambilan, or "Nine Lands," governed by panghuilus or chiefs, feudatory frst to the sultans of Nalacca and then to those of Johor. It is now proposed again to consolidato them in ove state under the suzerainty of or in alliance with Great Eritain. They lie surrounding Malacca territory, betreen Job or on the cast, Palaing on the north, and Selangor on the west and rorthwest. Total area probahly not more tban 5000 square miles; popalation, 50,000 (?). The more important are Rambau (Linggr river basin), Segamat (MIoar river basin), Johbol (uorth from Jount Ophir), and Sungei Ujong (Lángat river basin).
Straits Settlements: parts of Perak, Malacea, Pulo Penang, and Singapore; total area, 1445 square miles; population (1881), 314,000 .

Exclading the Chinese, Klings, Bugis, and other more recent arrirals, the inhabitants of all these states beleng to threo distinct stocks-the Tai (Siamese), Malay, and Negrito. The Siamese of pure blood occupy the extreme north with ecattered communities as far south as the town of Sengera ( $\left.i^{\circ} 10^{\prime} \mathrm{N}.\right)$. A mixed Malayo-Siameso people, commonly known as Samsams, form the bulk of the pupulation in the lower pates of Liger and Sengora, and in the north of Kedab. Although entirely assimilated to the Siamese in speech, customs, and religion, these Samsaris appear to be allied physically much more to the Mslay than to the Tai steck. Yet their national sympathies seem to be altogether with the dominant race, and the people, especially of Liger, hare during the preseat century
ecalunsly co-operated rith the Siamese in their persistent efforts to subdue the Malays of the neighbouring states. ${ }^{1}$

All the rest of the peniusula, from about $7^{\circ} \mathrm{N}$. to Cape Romania, may be regarded as essentially " Jalny land," as it is in fact called by the people themselves. But whether the Jalays are here indigenous, or intrulers from Sumatra, is a question still warmly discussed by ethuologists. Thuse, howeser, who support the latter ricw by appealing to the undoubted historic nigrations of civilized Malays from Menangkabo or Pulcubang in the 1 inth century, or eren to still earlier arrivals from Java, do nut understand the point at issue. For the peninzula is occupied, not only by these civilizen Oran.s Malayu of cultured speech, Mobammedans and mustly no doubt originally from Sumatri, but also by the Orang Denna, that is, "men of the soil," or aborigines, of Malay stock and of rude Malay speech, nature worshippers, and settled here from prehistoric times. Similar uncultured Malay tribes, such as the Orang Kubn of Palembang, are no doubt also found in Sumatra. Dut it is unlikcly that any of these people erer crossed the shallow intervening Straits of Jalacea, which were probably dry land when the race was gradually diffused over the common aren. Whether the migration proceeded eistwards or westwards is ther efnere a point which cannot be determined pending the settlement of the further and breader question of the origin and dispersion of the Malay race itself. If the Jalays are a branch of the Mongol stock, as many Lold, then the Oraug Beuna must have passed through the peninsula southwards to the archipelago at a time when nost of it still formed part of the Asiatic mainland. But if they originated in the archipclago itself, as others maintain, then the stream of migration must hare been re rersod.

In any case the Orang Benua are not the only aborigines in the peniasula. Fur the most recent research bas fully confirmed the somewhat mague statements of earlier writers regarding the presence in this region of a Negroirl element dificring fundamentally from the IIalay type, and apparently to be affiliated to the Negrito of the Audaman Islands and Philippines. "Purely anthropological observations and considerations lead one to accept the suppositiou of a 'Melanesian' element (a remnant of the original race), which through intermixture with the Malays is being mure and more supplanted. . . . . In the mountains of Pahang and Kelantan as fat as Sengora and Ligor, I lave discorered a Melanesian ${ }^{2}$ population. This people undoubtodly belongs to the Melinesim stock" (Miklucho Jaclay in Ethnologische E.ccursion in Johor). ${ }^{3}$
The Malay and Negrito aborigines are collectively known to the civilized MEalays as Semang and Sakei ${ }^{4}$ respectively, although nuch confusion seems to have arisen in the use of these terms, nor is this surprising, seeing that the two races themselves, whu have been in contact for ajes, have become largely interningled and assimilated in customs, and even in speech. The original Negrito dialects, which Maclay has compared with those of the Philippines, are everywhere yieldiner to the Malay, which is spoken throughout the poninsula with little dialutic variety as far

[^139]as $6^{\circ}$ and $7^{\circ} \mathrm{N}$., where it is replaced by Siamese. The aborigines, who are said not to number altogether more than some 10,000 , are divided into a great many tribes, of which the best known are the Jakuns, widespread in the south, the Udai, Dasisi, Sabinba, Mintira (Mantra), and IIta. All are in a very low state of culture, holding aloof from the settled populatims, living entirely on the chase, and pursuing the gaine with poisoned arrows. It is noteworthy that even the more or less civilized Malays, especially of Fambau and uther inland states, still hold to the tribal organization, the very names of many of their tribes, such as the Anu's Achi ("children of Achis") and Sri Lummah ILenangkaja:l, betraying their comparatirely recent migration from Sumatra.

Other ethnical elements in the neninstla are the Bugis from Celebes, formerly poweriul on the west coast ; the "Moors" (Arabs), now most!y absorbed by the civilized Malays; the Klings ${ }^{5}$ from Iodia, chieqf traders in the seaports, tie Topas (Topazio), Lalif-caste Portuguese Clristians, still numerous especially in Jalacca territory, a ferw Europeans, Battas, and African slaves; and, lastly, the Chivese, by far the most numerous of all, who are gradually converting the Malay peninsula iato a second China. They have alrealy monopolized the mining and agricultural industries, as well as the retail trade and local shipping.
Although vamuely kinown to the ancients as the Aurea Chersonesus, and eren by them already described as a "Pegio Latronum," or pinatical land, the Jlulay peninsula possesses no historic traditions oarlier than the 13th century. According to the native mriters the first settlement was made at Singa-pura, or the "Lion City," abont 1250 by emigrants from the banks of a river Maláru in Sumatria Expelled from Singapore by the Javanese king Majapábit, the colonists founded the city of Jalacea on the sourt-rest coast of the mainland in 1253. From this point the cultured and Mohamnedar Malays of Sunatra are supposed to have rapidly spread over the whole peninsula, nhere they had already established a number of petty piratical states, when the Portiguese under Alluquerque reached Malaysia and reduced Malacea in 1511. Being thus, so to say, taken on the flauk by the Europeans, while their progress northwards was barred by the Siamese continually pressiog forward from Indo-China, the Malays of the peninsula, ever prose to piracy and larlessness, bare remained in a more or less unsettled state almost down to the present time. The Portuguese beld Malacea for one hundred and thirty years, when they were supplanted in $10: \% 1$ by the Dutch, who rielded in 1795 to the English, and finally in 1524 surtendered all their possessions on the mainland to Great Britain in exchange for Bencoolen in Java. Peuang and Singapore had already been occupied by the British, who, hy the suppression of piracy and the old monopolies, the proclamation of frce trade priuciples, the example of a wise aduinistration and treaties with the surrounding statcs, have gradually laid a solid fommation for the future prosperity of this distracted layd.
(A. H. K.)

MALATS (Orang Malayu, "Malas Men"), the dominant people in Malacca and the Eastern Archipelago (hence often called Malaysia), where they are diversely intermingled with other races, and where they have represented the local cultured element for over two thoussud years. The IJalays proper, that is, those who call themselves by this name, ${ }^{6}$ who speak the standard Malay language, and who possess a common sentiment of racial unity, are fonnd in compact masses chiefly in the Malay peninsula as far north as $8^{\circ}$ or $9^{\circ} \mathrm{N}$. lat., in the adjacent islands of Penang, Bintang, Lingen, \&c., and in Sumatre, of which they occupy fully one half, mainly in the south, along the cast coast, and ou parts of the west coast. In these lands

[^140]alone they are really indigenous, and regard themselves as the aboriginal population. Elsewhere they are met in scattered communitics chicfly round the coast of Borneo, in the Sulu Archipelago, in Tidor, Ternate, and some other members of the Molucce group, where they are beld to be intruders or immigrants from Sumatra.

Long considered as an independent division of mankind, the Malays are now more generally affiliated to the Mongol stock, of which A. R. Wallace, De Quatrefages, and other emincut naturalists regard then as a simple variety more or less modified by misture with other elements. "The Malayan race, as a whole, undoubtedly very closely rosembles the East-Asian populations from Siam to Manchuria. I was much struck with this when in the island of Bali I saw Chinese traders who had adopted the costunne of that country, and who could then hardly be distinguished from Malays; and, on the other hand, I have seen natives of Java who, as far as physiognomy was concerned, would pass very well for CLinese."1 In fact, the typical Malay can scarcely be distinguished anthropologically from the typical Mongolian. He is described as of low stature, averaging little over 5 feet, ${ }^{2}$ of olive-yellow complexion inclining to light brown or cinnamon, brachycephalous, with somewhat flat features, high cheek bones, black and slightly oblique eyes, small but not flat nose, dilated nostrils, mouth wide but not projecting, bands and feet small and delicate, legs very thin and reak, coarse black hair. always lank and round in section, scant or no beard. ${ }^{9}$

The departure from this description so frequently noticed in the archipelago must be attributed to intermisture with the black Papuan stock in the east, and with a distinct pre-Malay Cancasic element in the west. The presence of this "Indonesian" element, as it is called by Dr Hamy, may now be regarded as an ascertained fact, the recognition of which will help to remove many of the difficulties hitherto associated with the natural history of the Malay race. It at once explains, for instance, the apparent discrepancy between the foregoing description of the ordinary Malay and that of the Battar, Orang Kabu, and many other Sumatran and Bornean peoples described as tall and robust, with regular features, symmetrical figure, light complexion, brown and wavy lair, and general European appearance. ${ }^{4}$
These considerations also enable us to fix the true centre of dispersion of the Malay race rather in Malacca than in. Sumatra, contrary to the generally recuived opinion. If they are to be physically allied to the Mongol stock, it is obvious that the earliest migration must have been from High Asia southwards to the peninsula, and thence to Sumatra, possibly at a time when the island still formed part of the mainland. The national traditions of a dispersion from Menangkabo or Palembang in Sonth Sumatra must accordingly be understood to refer to later movements, and more especially to the diffusion of the civilized Malay peoples, who first acquired a really national development in Sumatra in comparatively recent times. From this point they spread to the peninsula, to Borneo, Sulu, and other parts of Malaysia, apparently since their conversion to Islam, although there is reason to believe that other waves of migration must have reached Further India and especially Camboja, if not from the same region at all events from Java, at much earlier dates. The impulse to these earlier movements must be attributed to the intro-

[^141]duction of Inaman culture through thə Hindu and Buadhist missionaries, perhaps two or three centurics before the Christian era. Drring still more remote prehisturic times various scctions of the Malay and Indonesian stocks were diffused westwards to Madagasear, where the Hovas, of undoubted Dalay descent, still hold the political supremacy, and eastwards to the Philippines, Formosa, Micronesia, and Polynesia. This astonishing expausion of the Malaysian pcoples thronghout the Oceanic area is sufficiently attested by the diffusion of a common MalayuPolynesian speech from Madagascar to Enster Island, and from Hawaii to New Zealand. Sce Polynesia.

The Malays proper have long been divided aocially into three distinet groups, - the Orang Benua, or "Men of the Soil," that is, the uncivilized wild tribes; the Orang-laut, or "Mcn of the Sea," that is, the semi-civilized floating population; and the Orang Maldyue, or "Malay Men," that is, the civilizen Malays with a culture, 8 literature, and a religion. The Orang Benúa, called also Orang Gunung, or "IIighlanders," and sometimes even Orang-utan, or "Wild Men," constitute the aboriginal Malay element, the "raw material," so to say, of the race, whiel has hitherto remained wholly unaffected by foreign inlluences, and whicl is still grouperd in small tribes at a very low stage of culture, living nearly exclusively by the chase, and almost destitute of all social organization. They are found chiefly in the moro inaccessible weoded uplande of Malacea and Sumstra, in the former region more or less intimately associated for ages with the Negrito tribes, and in the latter island apparently the sole occupiers of the land from the first. Intermediato between the Orang Benía and Orang Malayu are the Orangiant, the "Sea Gipsies" of English writers, who still occupy the same low social position that they held when the Portuguese first reached Malaysia. They were then described by De Barros under the name of Cellates, or "people of the Straits" as "a vile people drelling more on the sea than on the land," and "living by fishing and robbing"; and this description is still largely applicable, although piracy is now all but suppressed in the Eastern waters. The Bajau and Nillanau of the Sulu Archipelago and neighbouring coast lands also belong to this class of sea nomads. Lastly, the Orang Malayu are that section of the race which, under the iufluence first of the Hindus and then of the Arabs, has developed a national life and culture, and which has founded more or less powerful jolitical states in various parts of the archipelago. But here again it is necessary to distinguish between the civilized Mlalays proper, and the other civilized branches of the rsce, to whom the term Nalay is never applied, and who speak languages which, while belonging to the common Malay linguistic family, differ greatly from the standard Malay speech. The chief divisions of all these cirilized communities are as under:-

Orang Maláyu: Mlenangkabo, Palembang, and Lampong in Sumatra; petty statcs of the Malay Peninsula; Borneo; Tidor; Ternate.

Sumatran group: Achinese, Rejangs, Passumahs.
Javanese group: Javanese proper, Sundanese, Msdurese, Balinese. Celebes group: Bugis, Mangkassara, and others.
Pbilippine group : Tagalas, Bisayans, Bicol, Sulu, and others.
Outlying groups: Hơvas of Madagascar, Formosan Islanders.
In all these the distinetly Malay physica! type decidedly pre. dominates, whereas elsewhere in the archipeiago the so-called Malays are often rather "Indonesians," in whom the distinctly Caucasic physical type predominate9. Such especially are the Battas and Orang Kubu of Sumatia, the Nias and Mentawey islanders, the Kayans, and many of the lyak tribes of Borneo. ${ }^{3}$
In their temperament no less than in their festures the Malays still betray their Asiatic origin. They are described as of a taciturn, undemonstrative disposition, little given to outward manifestations of joy or sorrow, yet extremely courteons towards each other, and as a rule kind to their women, children, and domestic animals. Slow and deliberate in speech, neither elated by good nor depressed by bad fortune, normally impassive and indolent, they are neverthelcss capable of the greatest excesses when their passions are roused. Under the influence of religious excitement, losses at gamb. ling, jealousy or other domestic troubles, they are often seized by the so-callcd "amok" fever, when they will rush wildy through the crowded streets armed with their sharp krisses, cutting down all who cross their prath with incredible fury and without the least discrimination. Amongst the practices and propensities which connect them with the Mongoloid inhabitants of lndo-China the most striking are pile-building, especially in Jara and Borneo; cock-fighting, universal throughout the archipelago; a pronounced taste for putrescent fish, with a corresponding dislike of milk ; headhunting (Borneo and Celebes); large ear-ornaments, greatly dis. teading the lobe; husband entering the wife's family, and father
r See Carl Bock'a Head-Hunters of Bormeo, p. 59.
exelanging his own for his clikid's name; counting by mumeral anxiliaties, such as prebble, chics, $\log$, monatain, feather, \&c., according to the nature of the object. ?

The race is on the whole of a sluggish intelioct, inferior in natural intelligéuce even to the surrounding Papúan populations. In Montano tells us that in the girls' school at Malacea, conducted by the Roman Catholic sisters, the Chinese children take the first, the Mantras (aborigines) the second, and the Malays the last place in order of capacity. ${ }^{2}$ Unaided ly foreign influences they never attained a higher eniture than that of the "Sua Gipsies" ; and for their letters, most of their arts, and their religions they are indebted either to the llimius or the Arabs.
(A. H. K.)

## Malay Language and Literalure.

The Malay languacm is a member of the Malayan section of the Malayo- Folynesian class of languares, but it is by no means a representativo type of the section which has taken its name from it. ?lie orea over which it is spoken comprises the peninsula of Nalacca with the adjacent islands (the Rlio-Lingga Archipulago), the greater part of the coast districts of Sumatra and lioneo, the seaports of Java, the Sunda and T3anda Islauds. It is the general mediusi of communication throughout the arelipelaro from Sumatra to the Philippine lslands, and it was so upivalds of threo hundred and fifty years ago when the Portuguese first appeared in those parts.
There are no Malay manuseripts extant, no monumental recorls with ingeriptions in Malay, dating frum before the spreading of 1 slam in the archipelago, about the chil of the 13 th century. By some it has been argued from this fact that the Dlalays possesseil ne kind of writing prior to the introduction of the Arabic elphabet (W. Kobinson, J. J. de Hollamer) ; whereas others have maintained, with greater show of probahility, that the Malays were in possession of an ancient alphabet, and that it was the same as the Rechang (Marsclen, Friederich), as the Kawi (Van der Tunk), or most like the Lampong (Kern), -all of whiel alphabets, with the Battak, Bugi, and Macassar, are ultimately traceable to the ancient Cambejan characters. With the Molammedan conquest the PersoArabic alnhabet was introduced among the Malajs; it has continuer] ever since to be in use for literary, religious, and business purposes. Where Javanese is the principal language, Malay is sometines found written with Javancse characters; and io Palenluang, in the Mĕnangkabo country of Nidule Sumatra, the Rechang or Renchong characters are in general use, so called from the sharp and pointed knife with which they are cut on the smooth side of bambee staves. It is only since the Dutch have established their aupremacy in the archipelago that the loman character has eome to be largely used in writing and printing Malay. This is also the ease in the Straits Settlements.
By the simplicity of its phonetic clements, the renularity of its grammatical structure, and the copionsuess of its nautical vocabulary, the Malay language is singularly well-fitted to be the lingua frencas througliout the 1 ndian archipelago. It possesses the five vowels $a, i, u, c, o$, both short and long, and one frure diphthong au. Its consonants arc $k, g, n g, c h, j, n, l, d, n, p, b, m, y, r, l$, $u, s, h$. Long vowels can only occur in open syliables. The only possible consonantal nexus in purcly Malay words is that of a nasal und mute, a liquid and mute and vice versa, and a liquid and nasal. Final' $k$ and $h$ are all but suppressed in the utterance. Purely Arabic letters are only usel in Arabic words, a great mumber of which have been received into the Malay vocabulary. But the Arabic eharacter is even less suited to Malay than to the other Eastern languages on which it has been foisted. As the short vowels are not noaked, one would, in secing, c.g., the word bntng, think lirst of bintang, a star ; but the word might also mean a large scar, to throw down, to spread, rigid, mutilated, eneeinte, a kind of cucumber, a relloubt, aecordingea it is pronemnced bantang, banting, benlang, buntang, buntung, bunting, bonterg, benteag.

Malay is essentially, with few exceptions, n dissyllabic language, and the syliabic accent rests on the prnultimate unless that syllable
 Nothing in the form of $n$ root word indicates the grammatical category to which it belongs ; thus, kisih, kindness, affeetionate, to love ; ganti, n proxy, to exchange, instend of. It is only in derivative words that this vagueuess is avoidel. Derivation is effected by infixes, prefixes, affixes, and redmplieation. Intixes occur more rarely in Malay than in the cognate tongles. Exaniples aregàruh, a mubling noise, gumūruh, to make such a noise ; tunjuk, to point, telunjuki, the forefinger ; chüchuki, to pieree, cherichuik, a stockade. Tlıe import of the pretixes-mé (inčug, měn, mĕn,
 allixes-an, kan, i, lalı-will best appear from the following oxamples: root word ajar, to teach, to leara ; memgajar, to instruct (expresses an action); bxlajar, to stuly (state or condition); měngajäri, to iostruct (some one, trans.) ; méngajarkan, to instruct (in somethiog, causative); prengajar, the instructor ; pelijar, the

[^142]rearner ; pragujäran, the lesson taught, also the school ; pelajāran' the lesson learnt ; diajar, to be learnt ; lèrajar, learnt ; terajurkan, tanglht; třajāri, instructed; [përāja (from rajja, prince), to recognize as prince ; perajäkar, to crown as prince; karajāan, ruyalty]; ajerkcanlah, teach! Examples of reduplication are-ajar-ajar, a satioted person; ajar-berrajar (or belajar), to be learning and teaching by turns; similarly there are forms like ájar-méngajar, beräjar-
 lírbélajavikan, pèrběläjarkan, \&c. Altogether there aro upwards of a lunilred possible derivative forms, in the idiomatic use of which the Malays exhilit much skill. See especially H. vor Dewall, De rormucranderingen der Maleische taal, Batavia, 1864; and J. I'ijuapluel, Malcisch-Mollandsch Woordenbock, Amsterdam, 1875, "Inleiding." In every other respect the langnage is characterized lhy great simplicity aud indefiniteness. There is ne infexion to distiuguish munber, gender, or case. Number is never indicated when thic sense is obvions or ean be gathered from the context; otherimse plurality is expressed by adjeetives such as sagāla, all, and bā̄al., many, more rarely by the repetition of the neun, and the indefinite singular by sa or sätu, one, with a class-word. Gender may, if necessary, be distinguished by the words laki-lakiz, male, and perampuuan, female, in the ease of persons, and of jantan and betina in the case of aninials. The genitive case is generally indicated by the position of the word after its governing noun. Also adjertives and demonstrative pronouns have their places after the noun. Comparison is effected by the use of particles. Instead of the personal pronouns, both in their full and abbreviated forms, conventional nouns are in frequent use to indicate the social position or relation of tho respective interlocutors, as, e.g., hamba tuan, tha master's slave, i.c., I. These nouns vary according to the different localities, Another peculiarity of Malay (and likewise of Chinese, Shan, Talaing, Burnese, and Siamese) is the use of certain classvords or coeflicients rith numerals, such as orang (man), when speaking of persons, ekor (tail) of animals, kexping (piece) of flat things, $b i j i$ (seed) of roundish things; e.g., lima biji celor, five eggs. The number of these class-words is considerable. Malay verbs have neither person or number nor moed or tense. The last two are sometimes indicated by particles or auxiliary verbs; but these are generally dispeused with if the meaning is sufficiently plain without them. The Malays avoid the building up of long sentences. The two main rules by which the order of the words in a sentence is regulated are-subject, verb, object; and qualifying words follow those which they qualify. This is quite the reverse of what is the rule in Burmese.
The history of the Malays amply arcounts for the number and variety of foreign ingredients in their language. Hindus appear to have settled in Suniatra and Java as early as the 4th century of our era, and to have continued to exercise sway over the native popula. tions for many centuries. These received from them into their language a very large number of Sanskrit terms from which we can infer the nature of the eivilizing influence imparted by the Hindu rulers. Not only in words concerning commerce and agriculture, but also in terms connected with social, religious, and administrative matters, that influence is traceable in Malay. See W. E. Mawvell, Manual of the Malay Language, 1882, pp. 5-34, where this subject is treated more fully than by previous writers. This Sanskrit element forms such an integral part of the Malay vocsbnlary that in spite of the subsequent infusion of Arabic and Persiar words adopted in the usual course of Mohammedan conquest it has retained its ancient citizenship in the language. The number of Portuguese, English, Duteb, and Chinese words in Malay is not considerable; their prosence is easily accounted for by political or commercial contact.

The Malay language abounds in idiomatic expressions, which constitute the chief difticulty in its acquisition. It is sparing in the use of personal pronouns, and prefers impersenal and clliptical diction. As it is rich in specific expressions for the various aspects of certain ideas, it is requisite to employ always the rost appropriate tern suited to the particular aspeet. In Maxwell's Manual, pp. 120 sq., no less than sixteen terms are given to express the diflerent kinds of striking, as many for the different kinds of speaking, eighteen for the rarious modes of carrying, \&c. An unnceessary distimetion has been mado between High Mfalay and Low Malay. The latter is no separate dialect at all, but a mere brogue or jargon, the medium of intercourse between illiterate matives and Vuropeans too indolent to arply themsel ves to the acquisition of the language of the people; its vocabulary is made up of Malay words, with a conventional admixture of words from other languages ; aod it varies, not only in different localities, but also iu proportion to the individual speaker's acquaintance with Malay proper. The ase is different as regards the term Jaut as applied to the Malay language. This has its origin in the mames Great Java ond Lesser Java, by whieh the medireval Java and Sumatra were called, snd it accordingly means the language snoken alone the censts of the two great ulancis.
Malay is probably spocen witn grestest purity in tbe Rhio:Lingera Archipelago and to the indenendent states of 「erak aad

Kedah, on the restern coast of tie perinsula of Malacea. In other states of the peuinsula (Johor, Tringganu, lielantan) dialectical divergencies both as to pronusciation and the use of worls have been noted. The inost important and the most interesting of all the Malay dialects is that of Menanglabo (Menangkarhan) in tho residency of Padang and in CVpler Jambi, in Central Sumatra. It abounds in diphthongs, and prefers rocalic to consonantal terminations, thus chanring final $a l$ and ar into $a$, it and ir into iye, ul and ar into uwe, as and at into $c^{\prime}$, us into uuc ; final a mostly pesses into $\bar{\delta}$, so that for sudari and suclegar they say suderiō, sudego ; the empliatic -lah is turne into - malah or malah hd; the prefixes
 Among other changes in proninciation. may bo nated urang for orang, mungko for maka, lui for lagi; they usa nan for yan7, na' for hendak, deh for oleh, ba' for bugai, peti for pergi, ko' for jikalan, Rc. In some districts of Minangliabo (Palembang, Lebong) the lienchong eharacter is in general use in mriting this dialect, for which purpose it is far betier suitel than the Arabic. As early as 1822 a soull tract on the customs and traditions of Moko-Jioko, in this diclect, was printed witla a translation at leneoolen. But it is only in recent years that the Dutch lave commenced to pay thie dialect the attention it deserves, by publishing texts, with transliteration and translations, and supplying other materials for it investigation. See the Iransactions and Jourrnal of the Asiatic Societies of Batavia and tho Hague, the Indische Gids, and more especially the philolonical purtion, by A. L. van Hasselt, of MiddenSumatrc, iii. 1 (Lejden, 15S0), where olso the best and fullest account of the Renchong charaeter is to be found. Of otlier Malay dialeets in Sunnatra, only the one spoken at Achih (Achin) descrves mention; in Java the Batavian dialeet sliows the most marked peenliarities. The numerons and greatly divergent dialects spoken in the Molucea Islands valuable information on which las been supplied by F. S. A. de Clureq, G. W. W. C. van Hoevell, and A. van Ekris) and in Timol difer so materially from the Malay of the peninsula and of Menangkabo that they cannot be called Malay dialects at all ; rhereas the Malay sjoken in some parts of the Ninahassa (Celebes) scarcely differs from Malay proper.

There is no grammar of Jialay by a native writer with the sola excention of a small tract of 70 1rages, catilled Bustäur 'lkätibin, by Rāja dii Hajij of Rhio, which was lithographed in the island of Pcnengal in 1857. A. Pigafetta, who accompanied Magellan in lis first voyage round the globe, was the first European whose rocabulary of Malay words ( 450 ) has come dorn to us. Next in the field were the Dutelh, who provided a medium of iutereaurse betreen their traders and the Malays. F. Houtman's 7ocatulary and Conversations, in Dutch, M/alry, aud Malajnisy, appeared at Amsterdam in 1603; aud it may be noted that the Malay spoken in those days does not appear to have materislly altered since. The same dialogues appeared in English and Malay in 1614. Since then annerous grammars, dictionaries, and conrersation books have been brought out by English and Duteh mriters. As the best helps at present available for the study of Malay may be recommended W. F. Maxwell's Manual of the Malay Language, London, 1852 (especially raluable for its fuli treatment of the ilioms); P. Farre, Grammaire de la languc Malaise, Vienna and Yaris, 1876 ; and Dictionmaire Mralois- Franfais, ib., 1875,2 vols. Dietionnaire Francris-1/alais, ib., 1880,2 rols.; J. J. de Hollander, Mrendleiding bij de beocfoning der Maleische taal en letlerkunde, Breda, 1882 ; J. Pijnappel, Malcische Spraakkunst, Hague, 1866 ; and Mrleisch-Mollandsch Wroordenboek, Amsterdam, 1875. The printing of Too Dewall's Dietionary, edited by H. N. van der Tunk, is still in progress at Batavia.

Literalure. -Thero are two kinds of Malay popular liternturethe one in prose, the other in poetry. The former comprises the prorerbs, the latter the "pantuns." "Agrieulture, bunting, fishing, boating, and wood-craft are the oceupations or aceomplishments which furnish most of the illustrations, and the number of beasts, birds, fishes, and plants named in a collection of Malay proverbs will be fond to be considerable" (W. E. JIaxwell, Malay Proverbs). H. C. Klinkert published a collection in the Bijdragen tot de taalkiunde ran N. I. (Journal of the Asiatic Society of the Hague) for 1866, pp. 39-87. See also J. Habbema on the Jenengkabo proverls, in vols. xxv. and xxvi. of the Batavian Tijdschrift, and Farre's Dictionnaire Malais-Frangais, passim. The pantuns are improvised poenns, generally (thongh not necessarily) of four lines, in which the first and third and the second and fourth rhyme. They are moatly love poems; and their chief peculiarity is that the ${ }^{\circ}$ meaning intended to be conveyed is expressed in the seoond couplet, whereas the first contains a simile or distant allnsion to the second, or often has, beyond the rhyme, noconnexion with the second at all. The Malays are fond of recitiog such rhymes " in alternate contest for several hours, tho preceding pantun furnishing the eatchword to that $\pi$ hich folloms, until one of the parties be silenced or vanquished." See T. J. Newbold, Account of the British Settlements in the Seraits of Mralacea, vol. ii. 346 ; Klinkert in the Bijilragen for 1858 , pp. 309-70; L. K. Hannsen in the Tijdschrift, rol. xxi. pp.
$480-533$ (Menangkabo). If the Malays have lept entirely aloof
from the influenees of Islam in this the most characteristae part of their literature, they bavo almost equally preserved their independence in the other departments. Jet that this may be consideral entirely to their credit; for, if they had endeavoured to infuse into their writings some of the spirit of Arabic and Persian historiograjhy, poetry, and fiction, it could not but have benefited the charaeter of otheir own literary productions. As it is, their histories and chronicles are a strange motley of truth and fiction ; their poems and novels lack collerence and imagination, and are siugularly monotonous and devoil of that spirit of chivalry which pervades tha corresponding branches of literature amonr the leadiag antioas of Islam. As Jlalay copy ists are much given to making orbitrary changes, it happens that no two MSS. agree, and that of many a popular work different recensions exist, which, moreover, often go by different zames. This circunstance greatly tends to increase the difficulties of editing Malay texts. Works on specially Nohammedan subjects (theology, law, ethies, mysticism) are of course only imitations of Arabic or Persian originals ; there are elso numerous novels and poenis treating of purely Mohammedan legends. But not only is there traceable in many of these a slight nudercurrent of Hinduism and even pre-Hindnism; the Malays possess also, and indiscriminately read along with their Jlohammedan books, quite as many works of fiction of purely Hindu origin. Tho want, however, of political cohesion, and of a national spirit amang tribes so scattered as the Jalays are, which could have favoured the growth of a national epic or national songs, sufficiently accounts for the absence from their literature of any productions of this class, such as exist in Bugi and Jraeassar literature. The most populan of their poetical productions are the Shai ir Kin Jambühan, Sha'ir Lidāsāri, She'ir Jauhar Mānikam and Sha'ir 'Aldu'lmulūk, all of which have been printed. Among the prose works there are various collectious of local laws and customs (undang-undang), chronicles (such as the Sajarat malayu), books on ethies (the best are the Makola sagāla raja-rāja, and the Bustāntissatatin, and a very large nuober of works of fiction and legendary lore, some of which possess minch descriptive power. They all bear the title Hikayat, and the following are the best-known: H. Hang Tiüh, H. Hanzah, II. Ismã I゙atim, II. Jımjumah, H. Bakỉtiyär (Südah Bakhtin, Ghulān), H. Simiskin, H. Sultān lbrūhin, If. Sri Rama, H. Pondiux lima. Several of these and many other works.dot nentioned bere have appeared in print (with or withent traoslation) chiefly in Holland, Batavia, and Singapore, and extracts have been given in the various Malay chrestomathies by Dulaurier, De IIollander, Niemann, Van der Tumk, Graslutis, and in Marsuen's Malay Grammar. The best recent Malay writer was 'Abdullah ibn - Abulelkudir Minnshi of Singapore, who died, it is said of poison, at Meeca, some eight and twenly years ago. His allobiography, "journey to Kelantan," and "pilgrimage to Ilecea" are patterns of Malay style, though the author's contact with educated Europeans is traceable in them, while his translation (from the Tamil version) of the Panchatanisa is free from such influence.

Jalay literature is fairly represented in England in the British Museum, the India Office, and the Royal Asiatic Society, and descriptive eatalogues of the Malay MSS. in each of these libraries are available. See Niemann in the Bijdragen, iii. 6, p. 96-101; Tan der Tuuk is Tijdschrift roor Ned. Indiê for 1849, i. n. 385-400, and in the Journal of the Royal Asiatic Socicty, Dew series, ii. P. 85-135. Au account of the Leyden collection, by J. Sijnappel, is given in the Bijdragen, iii. 5, p. 142-178. The finest collection of JIalay MSSS., upwards of 400 volumes, is in the library of the Asiatic Society of Batavia. Seo L. W. C. ran den Berg, Terslag wan ecne verzamelinn Malcischc, dec, handsehriflen, Batavia, 1877. If it had not been for the Joss, by fire, on their Jassage froun India, of three hundred Nalay MISS., the property of the late Sir T. S. Raffles, England would now boast of the largest assemblage of Malay MSS. in the world. Oa Malay literatare in gentral conipare G. H. Werndly, Maleiscke Spraakiunsl, Amsterdam, 1736, pr. $227-357$; E. Jaequet in the Nouvecus Journal Asiatigur, vol. ix. (1832), pp. 97-132, and 222-258; T. J. Newbold, Brilisk Settements in the Strails of Nalacca, 1839, vol. ii. pp. 215-368; E. Dulaurier, Mémoire, lellees, et rapports, Faris, 1843 ; J. J. da Hollander, Mandleiding bij de beofening der Maleischo laal on letecrkumde, Hreds, 1882, pp. 277-388; and G. K. Niemann, in Bijdragen, iii. 1 (1866), गp. 113-46, 333 sq.
(R. R.)

MALCOLMI, Sir Jorn, C.C.B. (1769-1833), soldier, diplomatist, administrator, and author, was born at Burnfoot of Esk, near Langholm, Dumfriesshire, Scotland, on May 2, 1769. At the age of twelve he receired a cadetship in the Indian army, and in April 1783 Lo landed at Madras, shortly afterwards joining his regiment at Tellore. In 1792, having for some time devoted himself to the study of Persian, he was appointed to tho staff of Lord Corawallis as Persian interpreter, but two years afterwards mas compelled by ill-health to leave for

England. On his return to India in 1796 be became military secretary to Sir Alured Clarke, commander-inchief at Madras, and afterwarls to his successor General Harris; and in 1798 he mas appointed by Lord Wellesley assistant to the resident at ITyderabad. In the lastmentioned calacity he highly distinguished himself by the manner in which he gave effect to the difficult measure of disbanding the French corps in the pay of the nizam. In 1000 , under the walls of Seringapntam, began his intimacy with Culonel Arthur Wellesley, which in a short time ripened into a lifelong friendship; in the ceurse of the same year he acted as first secretary to the commission appointed to settle the lyysore government, and before its close he was appointed by Lord Wellesley to proceed as envoy to the court of Persia for the purpose of counteracting the policy of the Frenct by inducing that country to forma a British alliance. Arriving at Teheran in December 1800, he was successful in megotiating fasomrahle treaties, both political and commercial, and returned to Bembay by way of Eaghdad in May 1801. He now for some time held the interini post of private secretary to Lord Wellestey, and in 1803 was appointed to the Mysore residency. At the close of the Mahratta war, in 180t, and again in 1805, he negotinted important treaties with Sindhia and Holkar, and in 180G, besides seeing the arrangements arnsing out of these alliances carried out, he directed the difficult work of reducing the imneuse body of irregular native troops. In 1808 he was again sent on a mission to Persia, but circumstances prevented him from getting beyond Bushire ; on his reappointment in 1810, he was successful indeed in procuring a favourable reception at court, but otherwise his embassy, if the information which be afterwards incorporated in lis works on Persia be left out of account, was (through no fault of his) mithout any substantial result. He sailed for England in 1S11, and shntty after his arrival in the following year was knighterd. His intervals of leisure be devated to literary work, and especially to the composition of a IIstory of Persic, mhich was published in two quarto volumes in 1815 . On his return to India in 1817 he was appointed by Lord Meira his political agent in the Deccan, with eligibility for military command; as brigadier-general under Sir T. ILislop he served against the llahrattas and Pindharis, and took a distinguished part in the victory of Mehidpur (December 21, 1817), as also in the subsequent work of following up the fugitives, determining the conditions of peace, and setting the country. In 1821 he returned once more to England, where he remaincd until 182T, wher he was appointed to the Sombay government. His influence in this office was directed to the promotion of various economical reforms and useful adninistratise measures. Leaving India for the last time in 1830 , he shortly after his arrival in England cotcred parliament as member for Launceston, and was an active opponent of the Reform Bill. He died of paralysis on May 30, 1833.

Besides the werk mentioned above, Sir vonn Maleonn published Sketch of the Polilical II istory of Imdia since . . 1784, in 1811 and 1826; Skech of the Sikhs, 1812 ; Obscreations ont the Disturbances in the Madras Army in 1S02, 1812 ; Persia, a Poem, annuymous, 1814; A SICmoir of Contial Iudia, 2 rols., 1823; and Slecthes of Persin, anonymons, 1827. A posthmmons work, life of Roberi, Lord Clire, appeared in 1836 . See Life and Corresponesence of Major-Gcneral Sir John Malcoln, G.C.L., by J. W. liaye, 2 vols., 1856.

MALDAII, a district in the lieutenant-governurship of Bengat, India, betweerı $24^{\circ} 29^{\circ} 50^{\prime \prime}$ and $25^{\circ} 32^{\prime} 30^{\prime \prime} \mathrm{N}$. lat., and $87^{\circ} 48^{\prime}$ and $85^{\circ} 33^{\circ} 30^{\prime \prime}$ E. long., the Ganges river forming the continueus west and south-west boundary. The administrative headquarters are at English Rizizir. The district of which the area is 1813 scanare milss, is
divided into tro almost equal parts by the Mahánandí river, flowing from north to south. The western tract between the Mahananda and the main stream of the Ganges is a low-lying alluvial plain of sandy soil and grent fertility. The eastern half is an elevated region broken hy the deep ralleys of the Tangan and Purnâblábá rivers and their small tributary streanis. The soil of this district is a hard red clay; and the whole is overgrown with thoruy tree jungle known as the kitil. Agricultural prosperity; centres on the Mahávandá, there mango orchards and high raised plots of mulberry land extend continuonsly along both banks of the river. The Ganges nnwhere intersects the district, but skirts it from its north-western corner to the extreme south. The Malánand flows in a deep welldefined channel through the centre of the district, and joins the Ganges at the sonthern corner. Its tributaries are the Kalindri on the right, and the Tángau and Purnábhába on the left banis.

The population in 1881 was 710,310 ( 347,055 males and $363,255^{\circ}$ femules). lit 1872 the mumber of inhabitants was 671,974,$3 \overline{5}, 276$ Hindus, 30 -, 460 Mohammedans, 9195 aborigines, and 43 Clnistians. The male adnlt agriculturists mumbered 134,358. Only two tows then contained upwards of 5000 inlabitants, Viz., English Bazár or Angrazábad, 12,859, and Maldalı, 5262. The most inportant centres of commerce are Haiatpur on the Ganges, and Rolanpur on the Pumibhabi, just above the cond fluence of that river will the Mahanandin Rice constitutes the staple crop, and ocerpies about 53 per cent. of the total cnltivated food erop area. The miscellaneons crops include indigo, mulbery, and mangoes. Tlie average rate of rent may be put at orer 4 s . an acre. There is lietle tlat is peculiar in the land tenures of the district, except the existence of several large rent-free estates, granted as endowments to Mohammedan fakirs. Anong cultirating tenures, the hal hasild deserves notice, umder which the ammal rent ravies accorling to the nature of the crop raised. This tenure is most common in the backward parts of the district, and one of its incidents is that it allows a certain proportion of the village lands to lie fallow. Maldal is liable to some extent to the ealamities of llood and drought; but the means of consinunication by rver are sufficiently ample to prevent scarcity from intensifying into acute distress. The tiro staple namufactures are silk and cotton. Bross ware of excellent quality is mannfactured at Nawábganj, and paper in certan villages. The primcipal exports are rice, silk, indigo, brass ware, and mango fruit. The imports comprise cotton cloth, salt, sugar, spices, and betel-13ts. The net revenue of the rlistrict in $1880-\$ 1$ amounted to $£ 60,674$, of which £37,993 was derived from the lam! tax, and £11, 538 from excise. Elucation was afforded in 1872 by 170 schools, nttended by 4207 pupils. The average annual rainfall of the district is returned at $54 \% 5$ inches. The chief epiclemic diseases are malarions fever, cholem, and small-pox.
Maldah supplied two great cajitals to the early Mohammedans kings of Bengal ; and the sites of Gaur and Panduah exlibit tho nost interesting remains to be found in the lower Gaogetic valley. See G.iUR, rol. x. p. 112 sq. The connexion of the East India Company with Maldah tates from a very early period. As far back: as 1686 there was a silk factory there. In 1ifo English Bizar was fixed upon for a commercial residency, the bnildings of which at the present day form both the [ublic offices aud private residenee of tho collector.
malden, a city of the United States, in Midulesca county, Massachusetts, situated on the Malden river, 5 miles north of Boston. Nalden was settled in 1634, being then known as the rillage of Mystic Side. It was incorporated as a tern under the name of "Mauldon" in 1649, and became a city in 1882 . It is a place of considerable industry, piroducing india-rubler boots and shoes, leather, 12sts, sandpaper, ic. There are Turkey red dye-works; and the U. S. Gnvernment has a depot where large quantities of saltpetre art stored. Judson, the apostle of Burmah, was born in the town in 1788. The population has increased from 7367 in 1870 to 12,017 in 1880.

MALDIVE ISLANDS, a remarkable archipelago in the Indian Occan, the northern extremity of which is $i^{\circ}$ west of Ceylon, and which extends in length from north to south, from $\sigma^{\circ} 7^{\prime} \mathbb{N}$. lat. to $0^{\circ} 42^{\prime} \mathrm{S}$, a sprace of 540 British nuiles (or about as far as from Kirkwall in Orkney to Dever), and is limited in width by the meridians $7 ?^{\circ}$
$27^{\prime}$ and $73^{\circ} 50^{\circ} .^{3}$ The strange appearance which this group assumes in the old maps of the 16 th and 17 th centuries (see fig. 2, from Mappemonde, cited on p. 329) is entirely inaccurate in detail, but hardly so singular as the reality exhibited by modern surveys.

The archipelago is in some respects one of the most distinctly typical examples of a great aggregation of coral islands; indeed the technical name adopted by modern science for the annular coral formation which they exhibit (viz., atoll) has been taken from the language of these islands. ${ }^{2}$ For Mr Darwin'a theory of auch formations see vol. ri. p. 378. Objections to this have recently been raised by Mr John Murray, but these do not affect the description. ${ }^{3}$

The Maldive archipelago in plan may be compared to a chain suspended from a peg, each link of which chain is an irregularly elliptical claplet of islcts, the greater axcs of these quasi-ellipses varying from about 90 miles downwards. Taking separately any one of these chaplets (or atolls), we now know it to be the nearly level summit of a submarine table-mountain, rising abruptly from the unfathomable ocean, and approaching the surfiace within a distance which varies in different atulls from 20 to 45 fathoms. The quasi-elliptical margin of the atoll is fringed, and the central expanse of its area is more or less sparsely studded, "with oval basins of coral-rock just lipping the surface of the sea, and each containing a lake of clear water" (Darwin). These small aval basins, or ring-shaped reefs nud islets, are in fact essentially miniatures of the atoll itself.

The general impression made by the Maldive atoll is riridly dramn by the French adventurer Pyrard de la Val (1602-7):
"Each atollon is detached, aud contains within it a great multitude of small islamls. It is a marrel to see one of these atollons, compassed all round by a great bank of stone, insomuch that no art of man could $s n$ well enclose with walls an equal space of ground. . . . . Looking from the middle of an atollon you see all round you that great bank of stone encircling the isles and defending thern against the violence of the sea. And it is a fearful thing even for the boldest to draw ncar this bank and see the waves come on and break furiously all round . . . . so that you sce all round you as it were a whitened wall."

Though the barrier reef, or banc de pierre, of which Pyrard speaks, exists in most of the atolls, there is none in the most northerly of the great atolls (Tiladummati and Milladummadu, two divisions of one ntull). In this there are broad and safe narigable channels, from 1 to 2 uniles wide, between all the islands forming the chaplet. A ressel can enter the atoll by any one of these chanmels, and steer within it in any direction, anchoring anywhere on a sandy bottom in 20 to 25 fathoms. In the more southerly atolls entrance channels are only found at occasional intervals, though in all they are pretty numerons. Thus in Suadira, the most southerly of the large atolls ( 50 miles from nortl to south, 36 miles from east to west), which has a barrier reef on great part of its contour, there are forty-two channels by which a ship cau enter the lagnon.

It is observed that in the double part of the chain of atolls the openings are most numerous on those sides which are in juxtaposition. Thos on the three atolls of

[^143]

Maldive 1slands. Fig. 1, Admy. Chart ; Fig. 2, Map of cir. 1555.

Ari and North and South Nilandu there are on the inver or eastern side seventy-three deep-water channels through the barrier, on the outer or western side only twenty-five; whilst on the atolls of South Mâlé, Felîdu, and Mulaku, which lie facing the three former, there are on the inner or western side fifty-six deep-water openings, and on the outer or castern side only thirty-seven. Thesc differences are doubtless due to differences in the action of the sea caused by the juxtaposition of the two rows of atolls, and analogous facts are observed elsewhere iu atolls exposed to trade-winds.

Immediately outside of the great chaplets or atells the figures of the soundings rise suddenly. Thus at Ihavandiffulu (Heawandoo of charts), the most northerly atoll, close to the margin of the reef tho line gave 50 and 60 fathoms, and at 300 yards distance there was no bettom with a 300 -fathom line. And this sudden increase of depth applies to the deep channels between the atolls as much as to the ocean east and west of them.
We have spoken of the small reefs, which fringe the atolls and dot their area, as also ring-shaped. This is the type, but it is not universal. The charts show that where the channels or breaches through the marginal reef of the atoll are few or narrew there are no miner annular reefs (e.g., in Suadiva); where the channels are somewhat broader, the intercepted portions of reef are annnlar, but not the reef in the central area; where the channels are broadest, almest every reef throughout the atoll is mere or less perfectly annular. The depth of the lageon within these rings is generally 5 to 7 fathoms, but sometimes, as in Ari atoll, it reaches 12 fatkoms. The onter margin of the rings is bordered with living coral, within which is a flat surface of coral-rock. On this flat, sand partially indurated, and fragments of coral, \&c., have accumulated, and been cenverted into islets clothed with vegetation. Such islets sometimes fill the whole ring of reef, and sometimes are mere strip 3 occupying a segment of it. Obviously the whole aggregate of actual dry land in such an archipelago is infinitesimal compared with the area of the atells. The highest part of the islands is generally about 6 feet above water. Meresby feund the surface-sand usually about 3 feet thick, the upper part partially mixed with vegetable matter so as to form a light soil ; below this a white compact sand, and then a soft sandstone 2 feet thick ${ }_{z}$ below which it softened to sand again, and fresh-water appeared.

All the islands of any extent are well clothed with wood, including many fine large trees and the ordinary shrubs of the Ceylon coast-jungle; where the jungle has been cleared, grass grows luxariantly. But the cocea-palm is the charneteristic tree; and, low as the islands are, being cevered with these, they can bo seen from a masthead at 15 miles. The appearance they present is that of a tuft or line of trees rising out of the water.

A goed deal of vicissitude seems to go on in the formation of new islets and decay of old ones, of which our survey-officers met with various instances.

All the inhabited islands, and somo besides, afford fresh water. But the quality of water varies; nnd it is not uncemmon to sco two wells within a few fect of each other, one brackish and the other excellent. None of the wells are more than 6 feet deep.

The whele archipelago has from the carliest reports of it tormed a little kingdom. Physically the number of atolls may be reckoned as nineteen, besides some solitary islands; but administratively these are grouped into thirteen, and tho torm atoll has been transferred to this division. We give in the following table the list of these (political) atolls, in a secend column the spelling of the marine charts, and in a third the list of atolls as given by l'yrard do la Val, in the beginaing of the 17 th century.

| Names of Atolls. | As in Morcsby's Charts, 1837. | $\begin{gathered} \text { As in Pyrard de la } \\ \text { Val. } \end{gathered}$ |
| :---: | :---: | :---: |
| 1. Tilladummatî. | Tilla Dou Matte. | Tilla don matis. |
| 2. Diladummadulu, ${ }^{1}$ or Miladummadu. | Milla Dou Madou. | $\left\{\begin{array}{c}\text { Milla doue ma- } \\ \text { douc. }\end{array}\right.$ |
| 3. Fâdiffolu. | Paddipholo. | Padypolo. |
| 4. Malosmadulu. | Mahlos Mahdou. | Malos madou. |
| 5. Mâlé. | Mālé. | Malé Atollon. |
| 6. Ari. | Ari. | Ariatohon. |
| 7. Felidu. | Phah-Lee-doo. | Poulisdous. |
| 8. Minlaku. | Moloque. | Molucque. |
| 9. Nilandu. | Nillandoo. | Nillandous. |
| 10. Kolumaḍulu, or Kolumandu. | Collomandoo. | Collomadous. |
| 11. Haddunınatî. | Adou Matte. | Alou matis. |
| 12. Surâdiva, or Huvâdu. | Suadiva, or Hocalı. doo. | \} Souadou, |
| 13. Addu, whicl in. cludes the island of Fua Mulaku. | Addoo (and Ploon Moloku Island). | $\left\{\begin{array}{l}\text { Addou and } \\ \text { Pous Mol- } \\ \text { lucque. }\end{array}\right.$ |

The list from Pyrard shows that the division in the beginning of the I7th century was identical with what it now is. But we may gather that it is substantially of much greater antiquity, from the statement of Ibn Batuta (c. 1343), who says the islands were divided into akilim. ( $\kappa \lambda i^{\prime} \mu a \tau a$ ), each under a governer. He mentions eleven of these :-Bâlibûr, Kanoalûs, Mahal, Tilâdíb, Karâîdu, Tîn, Tiladummati, Hiladummati, Barídú, Kandakal, Mulûk, -of which indeed the names of only seven, viz., (1) Tiladummati, (2) Heladummati, (3) Bâlibûr, (5) Mahal, (7) Barîdu, (8) Mulûk, (12) Suweid, can be identified with those of the existing divisions. But anether, Karầdu, no doubt represents Karadiva, a well-known selitary island nerth of Mâló atell; Kandskal is an island of the Miladummadu atell, called in the charts Condaicoll; Tîm appears near the north of Tilladummati as Oteim ; and the three-Kannalas, Kandakal, and Tîm-are presented prominently as the islands Camdalus, Camdicall, and Otime in the Mappemende made for Henry II. of France (c. 1555, see Jomard's Facsimiles, livrn. vi., copied in fig. 2 supra; and compare Portolane of 1570, cepicd in Mr Birch's translation of Albuquerque's Commentaries). Possibly, therefore, the Meerish traveller had substituted true names of islands which he remembered for the names of atolls which ha lad forgotten.
The Maldives are inkabited by a people of old civilization, professing Islam, and ruled by a sultan of ancient lineage. What the number of islunds may be we cannot say. They are popularly estimated at 12,000 , as appears by the ancient style of the sultan as "king of 12,000 islands and 13 atolls." (See also Marco Polo, 2d ed., 1875, ii. 417-19.) Those marked with names in the British survey amount to 602 , and the inhabited islands to 178. The men are of a darkish copper colour, short stature ( 5 feet 2 inches), and poor physique, but oval contour of fuce, pleasing expressien, and large bright eyes, suggesting resemblance to both the Singhalese and Malabar peeple. Tho women are fairer than the men, with regular features and clean healthy aspect. A few of the peeple bear signs of African misture, casily accounted for; and probably the blood of the small communities has been tinged by the oceasional settlement of other forcigners. The people are decidedly nnwarlike; and there is hardly any crime of violence among them. They are said to be lax in morals and conversation; bub otherwise their character and dispositien have farourably impressed visitors. Though suspicieus of strangers, they are hospitable; and among themselves they are kindly, and affectionato to their kindred and in attendance on the sick. They are rery clcanly in person

[^144]and domestic kibits. The population has been guessed in some books at 200,000; almost certainly one-tenth of that number would be an ample estimate. Moresby states the papulation of 9 S islands, and the aggregate is 11,310 . In tho same proportion 178 islands would give 20,543 ; but the aggregate quoted includes the ling's Island, which is much above the average in population.

The language is undoubtedly a dialect of Singbalese approaching the old E!u, but indicating a scparation of ancient date, and it is more or less Mohammedanized. Nothing at present cau be said of crrammar. But Mr Albert Gray has drawn out in parallel columns the Maldivian words given by Pyrard with the modern Singhalese equivalents (see Jour. Roy. As. Soc., quoted at end). A cursory analysis of the list (which contains 275 words) gives the fullowing result:-


Combining 1, 2, and 7, we have 61 per cent. of mords of Singhalese or Sanskrit origin. And an analysis by Mr Bell of one of the sultan's letters to the Ceylon Government gires 65 per cent. of such werds.

The origin of the name Mal-diva or Mildiva is obscure. Diva is a familiar word in the Indian prakrits (Sansk., dvîpa; Pali, dîpo) for an island. By a form of this word the people formerly designated themselves and their country, and this survives in letters of last century from the sultan to the Ceylon Gorernment, in which he designates his kingdom as Divehi Rajje, and his subjects as Divehi mîhun, "island people." There is a very old cxample of this use in Ammianus Marcellinus, whn, in reference to the alleged excitement in the East at the accession of Julian, says that missions were prepared "ab usque Divis et Serendivis," from the people of the Divas and of Serendiva or Ceylon. And this is the name Diva or Dîba-jüt (Pers. pliral form) by which these islands are described by the early Arabian geographers. The first literary use of the whole name is Ibn Batuta's Dhîbat-al-Mahal (14th century), an Arabized form, sometimes used (Mahal-dil) by the people now, though the proper form seems to be Male. Malédiva may possibly, as Bishop Caldwell (comp. Grammar, 2 ded., Introd. p. 28) and others hare suggested; hare meant the "islands of Male" or Malabar. On the other hand Mála (Sansk.), "a chaplet" or "row," is not an impossible etymology considering how naturally the word "chaplet" oecurs in the endearour to describe an atoll. But these are conjectures. Under the sultan (who styles himself on coinage "Lord of Land and Sea") there used to be six recognized viziers or councillors (but this system is now obsolete), besides a chief of law and religion called fandiari. Over each of the thirteen atolls is a king's agent, called atolu-veri, who collects the revenue. This official is often one of the royal family, or a vizier's son, and often resides at Mâlé, employing a deputy. On each island is a headman called rarhu-veri. There is also on each island containing forty inhabitants a kutibu (Ar., Kütib, "scribe"), who acts as judge and minister, celebrating marriages, \&c. Pyrard calls him the curé.

Some of the oldest accounts of these islands represent them as always governed by a woman,-a notion which probably arose among the Mohammedan visitors from fiading that female heirs were at precluded from succes. sion. Just the same notion was held about Achîn in the 17th century, because there chanced to reign there several ferazle suvereigns in succession (see vol, j. p. 97). We
do find females nominally reigning on the ILaldives on tiro of the rare occasions when we lave glimpses of their state, viz., in the time of 1 bn Eatuta, and again in the last century.

Islam is universally professed by the people, nor is there tradition of any other religion, though there are a variety of J'agan superstitions and some doubtful traces of Buddhism. Thus the Boltice (or pippal), so sacred among the Buddhists of Ceylon, is still cherished near mosques. Pyrard de la Val was informed that the conversion to Islam took place two centuries at most before his time, i.e., about 1400 . Eut, unless there was a decay and revival, we know this to be wrong, as the islanders were Mohammedan in the timo of Ibn Datuta (1343). And this traveller tells that the father of one of his wives in the islands had for his grandfather (though the word used may mean "ancestor" only) the Sultan Dâûd, who was grandson of Ahmed Shanî-râza, the first king who adopted Islam. Accepting the meaning of "grandfather," this would carry the conversion back to about 1200, a probable epoch, for about that time there was a considerable outburst of missionary zeal in Islam, which led to the conrersion of the coast states of Sumatra, \&c. Ibn Batuta records an inscription on the Jami Mosque of the King's Island which ran:"Sultan Ahmed Shanû-râzah embraced Islanı at the liands of Abu'l Larakât the Berber from the West"; but no date is given.

We lave mentioned the occurrence of the name Divi in Ammianus. At an earlier date Ptolemy rotices the numerous islands lying i•: front of Taprobane, alleged to number 1378. It is possible also that the Maniols of the same geographer may constitute a duplicate indication of the Maldives. For in the gossip of Palladius about India (sce C. Muller's Pserdo-Callisthenes, 1. 102) this name Maniolx is applied to a group of islands, 1000 in number, that lay near Taprobane, and respecting which the old fable of the magnetic rock was current, which Ptolemy also connects with the Maraiolx.
Cosinas ( $c .545$ ) shows distinct knowledge of the Maldives (without naming them) as numerous closeset small islands round Siclediba or Taprobane, in all of which were found cocon-nuts and fresh water. l'assing next to the Arabian notices translated by lienandot and Reinaud, which date from S51, and to the work of Mas'indi in the next ceutury, we find tolerably correct accounts of the Dibas, said to be 1900 in number. Al Birûni's account ( $c$. 1030) of the islands is marked by his usual perspicacity and acenracy. The Divas are islets which form themselves in the sea, appcaring like a ridge of sand, extending and uniting till they present a solid aspect. But also with time some decompose and melt away in the sca, whilst the inhabitants transfer their cocoa-trces and possessions to an island which is waxing instead of maning,-circumstances corroborated by modern observation.
All the old anthors speak of coir (the fibre of the cocoa-nut husk) as one of the staple products of these islands, and the importance of this article for marine equipment led the Portuguese abont 1519 to cstablish a factory on the Maldives. João Gomez, the head of the settlcolent, was at first well received, but his arrogant and violent conduct gave great offence to the BIohammedan traders from Cambay, who brought an armed Hotilla against the Portuguese and put them all to death. The Portuguese sereral times rencired the attempt to establish themsel res on the islands, and maintained a garrison for some time, but these endearours liad no permanent result. The islanders were also freqnently subject to raids af the linnds of the Mopla pirates of Malabar, and sometimes also, it would seem, to maltreatment from the crews of Eurojean ressels. The MIS. diary of Mr (afterwarda Sir Willian) Hedges, who passed tirrough the Maldires in 1685, says: "Wo putt ont a picce of a Red Ancient to appear like a Moor's Yessell : not judging it safe to be known to be English; Our Nation lharing lately gott an ill Nanie by abusing yc Inhabitants." Such circumstances probally led the islanders to place themselves in relation with the rulers of Ceylon; and in 1645 occurs the first record of the embassy from the sultan of the Malclives to the Dutch governor at Colombo, which has continned to the present day, under Dutch and Engiish, to arrive annually, bringing some poor offaring, as a vagne token of homase and claim of protection. The last political troulle of which we have notice occurred in the niddle of last century. In 1753 the clicic minister conspired to land over the islands to the Ali raja of Cannanore. A Mopla force occupied Dlâlé, and carried of the sultan. The traitor himself was rewarded by heing thrown ints the sca. The oppression of these foreigners made the islanders rise and expel them. The sultan never returned, and a minister whe

kaid ruled on his belale assumed the kingdom in 1760. In 1754 Dupleix occupied Dlale with a small French detachment. which reniained several years. In 1811 the sultan wrote to the governorgeneral (Lord Dlinto) to complain of the violent conduct of the otticers of a ship under British colours which had been wreeked on the islands. Lord Minto sent back a courteous auswer mith presents. There have been no other events during the British rule in Ceylon, and the last sultan, DIohammed Dloidin, reigned sithout dispute from 1835 to 1882.
We have only three substantial accounts of the Maldives from actual residence:-(1) that of the Moor lbn Batuta, whe lived upon them more than a year (1343-44), and filled the office of cadi; it contains much curious detail; (2) the narratiro of François Pyrard de la Val, a Freuch adventurer on board a ship of St Malo, which was wrecked on a reef of the Malosmadulu atell in 1602, and who was detained five years on the islands, -a book of the grcatest interest and accuracy, and by far the best account of these islands in existence; ( 3 ) a memoir by twe officers of the Indian nevy, Lieut. Young and Mr Christepher, who had been emploged Sa the survey of the islands under Captain N. Dloreshy in 1834-35, and who volunteored to remain behind at Diale, in order to acquire a knowledge of the languago, custors, \&c., of the inhabitants, a laudable effort, but the restit of it was marred somewhat by the illness which prostrated both efficera.

The sultan's residence and the capital of the kingdom is the island of Mâle, which lies near the middle of the archipelago on the east side. It is about 1 mile long by milo wide, and cortains a population approaching 2000 . it has been at one time encompassed with walls and bastions, but these continue in repair only on the north and west. On the rorth too is an old fort, apparently of Portaguese construction, with a few old guns. On the north and west sides also advantage bas been taken of the encircling reef as the base of a wall which has been built up so as to form the lagoon into a harbour for small craft, hiaving a deptù of 6 to 12 feet, and a width of 150 yards. The town is laid out in long regular streets at right angles, shaded with trees; the houses are in "compounds," with high feaces excluding the street, and are surrounded with fruit trees and flowers. The sultan's palace, a large uppersoomed house, occupies with its appurtenances an area of $\frac{1}{4}$ square mile, enclosed by a skallow ditch now choked with vegetation. The houses generally are large cottages of about 28 feet by 12 , formed of substantial wooden frame, with peaked roofs thatched with cocoa-leaves; the walls are matted with cocoa-leaves, but sometimes planked. There are sereral mosques, and at least one minaret, about 40 feet high, for the call to prayer. Stone-built houses, common in Pyrard's time, nre so no longer; there is now but one. There aro marked diatiactions of rank among the people. At least six classes (wo bardly know whether to call them castes) are recogaized, of whom the tro highest form a pure aristocracy. The sixth class, called Kallo ("black" 3 ), consists of the common peoplo generally, of whom the toddy.drawers are regarded as the lowest.

The employments of the common people are fishing, gathering cocoa-nuts and cowrics, weaving, and toddy-drawing. Women beat the cocoa-fibre and twist it into yarn, make mats, prepare breadfruit by slicing and drying in the sun, spin and dye cotton thread, make sweetmeats of cocoanut and palm-sugar. Women are not secluded or veiled as in typical Moslcm countries.

Rise, the staple of food, is imported. Other chief food is fish (chiefly dried bonito), breadfruit prepared in various ways, cocoa-nut, and a ferv fruits and vagetables. There are a fow sheep and cattle on Maló island, which are occasionally slaughtered.

From the earliest notices the production of coir, the collection of cowries, and the weaving of excellent textures on these islunds hare been noted. This last, and that of fine mats are the only manufactures in which skill is shown. The mats seem to be now produced only in Suadiva atoll; the cloth chiefly, but not sclcly, in Malosmadulu atoll.

The chief exports of the islands. besides coir and cowriea
(a decreasing trade), arc cocoa-nuts, comma (i.e., cocoa-unt husk), tortoise-shell, and dried bonito-fish. An enormous amount of this last mas formerly carried to Ceylon and Sumatra, the latter being supplied by traders who came from Chittagong. It has been known over the East from time immemorial as koboli-mâs, a corruption apparently of the Maldivian kalù-bili-mas, "black bonito fish," sometimes forther corrupted to gomulmutch.

Native vessels of 80 to 200 tons burthen make annual trips to Calcutta towards the end of the south-west monsoon, returning with the northeast monsoon in December. After leaving the Maldives they sight no land till Jagannâth. They carry thither the articles named above, and bring back rice, cotton stuffs, and sundries. These long voyages are not confined to the craft of the capital. Moresby, in 1834-35, found that a small island in the North Nilandu atoll sent annually to Bengal five or six boats of 80 to 100 tons each. On the same islard there was a kind of navigation school, and the natives made and repaired some kiod of nantical instruments. The old cash of the Maldives was the curious larin or "fshhook money " made of a bent rod of silver. This bas been long replaced by coins of base metal bearing the ec.me name. The Anglo-Indian rupee is current for larger payments, and cowries are still used to some oztent.
Two alphabets are known on the islands (besides the Arabic, which appears on tombstones and in other iuscriptions). The first is an ancient alphabet, known as Diveli Hakura, "island letters." This in 1835 still survived iu the sonthern atolls, and orders for these ware written in it. It is written, like all the Indian alphabets, from left to right, and is evidently (by comparison with plate xvii. in Dr Burnell's Elements of South Indian Palaography) a form (with additional letters) of the old Tamil character (700 to 1300 A.D.) called in Malabar Vat!eluttu, or "round haud." ${ }^{1}$ The modern Muldive writing, called Gabali Tana, is usually ${ }^{2}$ written from right to left, like Arabic. It is said to have been introduced in the 16th century, and has gone through eeveral rariations. Some of the letters are modified from the Arabic character, and nine of them are the Arabic numeral digits. On the othcr hand numerals are represented by letters of the alphabet The former system of reckoning was duodecimal. but this is dying out.

Nothing is accurately known of the flora of the islands, and Kew possesses no illustration of it. Among larger trees are mentioned the banyan, pippal, breadfruit, tamarind, and a large tree called kandu, affording a very light wood used for rafts, floats, dec. ; also species of pandanus. The castor-oil tree is abundant, though not used. The cocoa-nut of the islands, though of fine quality, is very snall, not much larger than an orange. The tree itself furnishes the only indigenous wood used for boatbuilding. The dumbari (Calophyllum inophyllum) and kuradi (Pemphis acidula) are used in minor wood-work. A tuber, grated and steeped in water to remove its acridity, is made into flour,-perhaps a Colocasia, which Iba Batuta mentions (al-kalakās) as used to make a kind of vermicelli. They have also sweet potatoes, pine-apples, pomegranates (bearing fruit throughout the jear), plantains, and most of the other tropical or subtropical Indian fruits, chillies, a few areca trees, \&c. The doublc cocoa nut of the Seychelles Islands (fruit of Lodsicea Sechellarum) used to be cast up on the islands, and was believed to be a submarine pro-

[^145]duction, -hence called the sea cocon-nut. It was valued for imaginary qualities, and exported to India. The Portuguese long beliered it to be a product of these islands, and called it the Maldive cocoa-nut.

Animals are fer. Those named are rats, numerous and destructive, which climb the cocea-trees and derour the kernels; the large bat called in India "flying fox," also said to destroy many small cocoa-nuts; tortoises; a small snako said to be barmless, \&c. Domestic animals are rare ; a few goats and cattle are reared on Mâlé.

The climate is not oppressire or disagrecable, but is very unlealthy for strangers, whether Asiatic or European. Ibn Batuta says every visitor was attacked by riolent feser; Pyrard says the same; and this was substantially the experience of the survey officers and crews in 1834-35. The native crews also suffered much from the disease called beri-beri (which has dropsical symptems, and is often fatal) and from violent borel-complaints.

A complete report on the Maldires has recently been prepared by Mr M. C. P. Bell of the Ceylon civil serrice, who has visited the islands, and this is now being printed at Colombo. Mr Bell' kindly enabled the present writer to see a copy before this artiele went to press, and inany valuable faets hare been added from it. Other materials used bare been-Darwin, The structure and Distribution of Coral Recfs, 1842; Voyage vel Trancois Pyrard de lit $\Gamma^{\circ} \alpha l$, Paris, 1679 (prerious editions $1611,1615-16,1619$ ) ; $\Gamma^{\text {Ooyngos }}$ c'lon Datooltah, trans, of Defrénéry and Sangninetti, tonl. ir., Paris, 1858; Hamilton, Desc. of Hindostan, ii. 299 : Sloresby, Naut. Directions for the Mildira Islands, \&c., 1840 ; Young and Chris. topler, in Trans. Bomb. Gcog. Soc,, vol.' i. pp. 51-86; also see ibid. p. 102 and p. 313; Trans. Rey. Geog. Soc., rol. ii. pp. T2-93; also pol. ₹. p. 398; Jour. As. Soc. Bengal, wol. r. p. $\hat{94}$; Jour. Iloy. As. Soc., rol. ri. rp. 42-i6; ;ibid,, new serics, roL. x. pp. 173-209 (paper by Mr Albett Gray), \&c.
(H. Y.)

MALDON, a municipal and parlianentary berough and seaport town of Essex, England, is situated on an acclivity rising from the south side of the Blackwater, 44 miles east-north-cast of Londou and 16 south-west from Colclester. It consists priacipally of one main street with serealal cross streets at right angles. The church of All Saints, dating from 1056, is a spacious edifice consisting of chancel, nare, and aisles, with a triangular tower at the west cnd surmounted by an hexagonal spire. The church was restored in 1867, and new windows nere added in 1877. St Mary's Church is also of very early origin, and was restered in the 17 th century. The other public buildings are the grammar school, founded in 1547; the town-hall, formerly D'Arcy's tower, built in the reign of Heary, VI. ; and the public-hall, 1859. There are manufactures of.crystallized salt, as well as breweries, iron fonndries, and some shipping. The population of the municipal borough ( 350 S acres) in 1871 was 5586 , and in 1881 it was 5476. That of the parliamentary borough ( 5177 acres) in the same years was 7151 and 7128.

Maldon, which is a very ancient tornn, is supposed to lave received its name, meaning "cross hill,", from a cross at one time frected on the eminence. From remains found in the neighbourhood there is no doubt that the place was of some importance in the time of the Romans, but the supposition that it was Canulodu:um is not sufficiently established. Ou the western side of the town there are also traces of a large camp, but whether the work is of Roman, Saxon, or Danish origin it is impossible to say. The oldest bistorical mention of the town is in 913, when Edward the Elder encanped near it to impede the progress of the Danes. The town received its first charter from Henry II., and in 1553 it mas incorporated by Queen Mary. From the time of Edward III. it returned two members to parliament, but since 1867 only one member.

MALEBRANCHE, Nicolas ( $1638-1715$ ), a well-knorn disciple of Descartes, was the youngest child of Nicolas Malebranche, secretary to Louis XIII., and Catherine de Lauzon, sister of a riceroy of Cabada, and was born at Paris on August 6, 1638. Of an extremely feeble constitution and somerwat deformed habit of body, he received his clementary education in Latio and Greek from a domestic iutor, and only left home when sufficiently adranced to
enter unon a course of philosophy at the College de la Marcle, and subsequently to stady theology at the Sorbonuc. He had resolved to enter the church, but his retiring and studious disposition led hin to declive a stall in Notre Dame, and in 1660 he joined the Congregation of the Oratory., Both his ceclesiastical superiors aud himself appear to hare experienced considerable difficulty for some time in ascertaining what his special talents were, if they cxisted at all. He was first adrised by Père Lecomte to devote himself to ecclesiastical history, aud he accordiogly set about a laborious perusal of the marks of Eusebius, Socrates, Suzomen, and Theodoret, but it was found that "the facts refused to arrange themselves in his mind, and mutually effaced one anether." Aftermards Richard Simon undertook to teach him Hebren and Diblical criticism, butrwith no better success. At last haring accidentally, in 1664, fallen upon ene of the merk 3 of Descartes (the Traite de l'Homme), Malcbranche mas forthwith alive to his true rocation. So overporered was he by the novelty ard luminousness of the ideas, and by the solidity and coherence of the priuciples of his author, that (it is said) he was repeatedly compelled by violeut palpitatious of the heart to lay aside his reading. Malebranche was from that hour consecrated to philesophy, and especially to that of Descartes; and after ten years' study of the works of his master he produced, in 1674, the famous Recherche de la Térité, which was followed at intervals by other works, both speculative and controrersial, the tities of which are given belor. Like most of the great metaphysicians of the 17 th century, Malebranche interested bimself also in questions of mathematics and natural philosophy, and in 1699 he mas admitted an honorary member of the Academy of Sciences. During his later ycars bis society ras much courted, and he received many risits from foreigners of distinction. His death took place on Octeber 13,1115 ; according to Steck, the biographer of Berkeley, it was hastened by an excited metaphysical argument into whick be had been drawn in the course of an interview sought by that philosopher. For a critical account of Malebranche's place in the history of philosophy, sce Carteslantsar (rol. r. p. 143 sq.).
The following is a list of his principal works:-De la Recherche de la Verite, out lon tratte de la nature de lesprit de l'homme, de de $l^{\prime}$ 'usage quil' en doit faire poury eviter locreur dans les sciences (16it, 6th ed. 1712; Latin translation by J. Lenfant at Genera in 1655; two English translations, the second by Taylor in 1712 ; transln. tions also into German, Dutch, and modern Greek); Convcersations Chrelichncs, duns lesquailes on justifce lo Virite de lo Religion et de le Morale de Jesus Clirist (1676, and frequently); Traite dc la Nature ce de la Grace, 1680; Méditations Chréticnnes et Milapher. sigucs, 1683; Traite th la ATorale, 1684 ; several polemical roriss against Arnauld from 1684 to 1688; Entreliens sur 7 a Metaphysique ct la Religion, 1688; Traite dè l'Amour de Dicu, 1697; Entretien dun Philosopphe Cluéticn et Cum P'i.ilosephe Chinois sur Texistenec ct la naturc do Dicu, 1708; Reffexions sur la Preinotion Physique, 1715. A conrcnicnt edition of the Eurres choisies de Nalebranche, in tro rolunes, with au introduction, was published by Jules Siman in 1846.
miler hotla, a natire state in the Punjab, India, situated betreeu $30^{\circ} 2 t^{\prime}$ and $30^{\circ} 41^{\prime} \mathrm{N}$. lat., and betreen $75^{\circ} 42^{\prime}$ and $75^{\circ} 59^{\prime} 15^{\prime \prime}$ E. long., with an estimated area of 165 square miles, and an estimated population of 91,560. The clief products are cotton, sugar, opium, aniseed, tobacco, garlic, and grain. The gross reveave is
 receives a compensation of $£ 250$ per annum in perpetuity from the British Government, on account of loss of revenue caused by the abolition of customs duties. Naler Kotla town is situated 30 miles south of Ludbiána.
The nawáb or chief is of Afghán descent; his family origunally rame from Cabul, and occupied positions of trust in Sirhind under the Muglaal cmperors. They gradually beame inderendent as the Mughal empire sank into decay in the course of the 18th centr

In Gencral Lake's campaign ngainst Holkar in 1805 the nawrab of Máler Kotla sided with the British. After the suljugation and fight of IIolkar, the English Covernment succeeded to the power of the Mahrattas in the districts between the Sutlej and the Jumna; and in 1809 its protection was formally extended to Máler Kotla, as to the other cis-Sustlej states against the fornidable encroachments of hanjit Sinh. In the campaigns of 1806, 1807, and 1808 Ranjit Sinh had made considerable conqueats across the Sutlej; in 1808 he marched on Máler Kotla, and demanded a ransom of $£ 10,000$ from the nawib. This led to the interference of the British, whe addressed an ultimatam to IRanjit Sinl, declaring the cis-Sutlej atates to be under British protection. Finally the rijai of Laboro submitted, and the nawáb was reinstated in February 1809.
halesherbes, Ciretien Guilla ume de Lamoignon DE (1721-1794), minister and afterwards counsel for the deferice of Louis XVI., came of a famons legal family, and was born at Paris on December 6, 1721. He too was destined for the legal profession, much to the surprise of Marcel, the famous dancing master, who declared that his pupil would never be abla to dance well enough to be a eoldier or a lawyer, and must therefore be a priest. The young lawyer soon proved his intellectual capacity, when he was appointed president of the cour des aides in the parlement of Paris in 1750 on the promotion of his father to be chancellor. One of the chancellor's duties was to control the press, and this duty was entrusted to Malesherbes by his father during his eighteen years of office, and brought him into connexion with the public far more than his judicial functions. To carry it out efficiently he kept in communication with the literary leaders of Paris, and especially with Diderot, and Grimm even goes so far as to say that "without the assistance of Malesherbes the Encyclopédie wonld probably uever have been published." Though he met with abuse from all sides, there can be no donbt that it was the eminently judicious manner in which he carried out his objectionable duties which laid the foundation of his subsequent popularity. In 1771 ho was called upon to mis in politics; the parlements of France had beeu dissolved, and a now method of administering justice devised by Maupeou, which was in itself commendabis as tendiog to the better and quicker administration of justice, but pernicions ns exhibiting a tendency to overcentralization, and as abolishing the hcreditary "nobility of the roive," which, with all its faults, had fron its natare preserved some independence, and been a check on the royal power. Malesherbes presented a strong remonstrauce against the new eystem, and was at once banished to his country seat at St Lucie, to be recalled, however, with the old parlement on the accession of Louis XVI., and to be made minister of the maison $d u$ roi in 1775 . He only held office nine months, during which, however, he directed his attention to tho poliee of the kingdom, which came under his department, and did much to checls the odions practice of issuing lettres de cachet. On retiring from the ministry with Turgot in $\mathbf{1 7 7 6}$, he hetook himself entirely to a hapry country and domestio lifo. Ho had always been an enthusiastic botanist ; his avenue at St Lucio was world famous; he had written against Buffon on behalf of tho botanists whom Buffon had nttacked, and had been elected a member of the Académio des Sciences as far back as 1750. He was now olected a member of the Aendénio Française, and everything seemed to promise a quiet and peaceful old ago spent in the bosom of his family and occupied with scientific and literary pursnits, when the king in lis dificultios wished for the support of his name, and summoned him lack to the ministro in 17S7. Again he held office but a short time, but returned to his country life this timo with a feeling of insecurity and disquiet, and, as the troubles increascd, retired to Switzerland. Nevertheless, in December 1792, in spite of the fair excuse his old age and long retirement would havo given him, ho voluntarily left his ssylum and undertools with Tronchet aud

Desèze the defonce of the king oefore the convention, and i was his painful task to break the news of his condemnatior to the king. After this effort he returned once more to the country, but in December 1793 he was arreated with his daughter, his son-in-law MI. de Rosambô, and his grandchildren, and on April 23, 1794, he was guillocined, after having seen all whom he loved in the world executed before his eyes for their relationship to him. Malesherbes is one of the sweetest claracters of the 18 th century; though no man of action, hardly a man of the world, by his charity and unfeigned goodness he became one of the most popular men in France, and it was an act of truest self-devation in him to sacrifice himself for a king who had done little or nothing for him. With reason does his statue stand in the hall of justice at Paris, for be is the greatest representative of that noble independence which should prevent any thought of self when a counsel is pleading his client's cause, however perilous such advocacy might be.
There are in priut neveral seientific rorks of Malesherbes of varying value, of which the most interesting is his Obscructions sir Buffon of Daubenton, written when lhe was very young, and publislied with \& notiee by Abeille in 1798. There exist also his MEmoize pour Lenis XVT., his Ménoive sur la libcrté de la prasse, published 1809, and extraets from his remonstrances, publisbed as CEurcs choisies de Malesherbcs in 1809. For his lifo should be read the Notice historique of Dabois, the Eloge historique of Gaillard, and tho interesting Essai, in 2 vcls., 1818, of Boissy d'Anglas. There are also many elogcs on him in print, of whieh the best. known is that of M. Dapin, which is interestingly reviewed with much light on Malesherbes's control of the press by Sainte-Beuve in the seeond volume of the Causcries du Landi.
malherbe, Trançors de (1555-1628), poet, critic, and translator, was born at Caen in 1555. His family was of some position, though it seems not to have been able to establish to the satisfaction of heralds the claims which it made to nobility older than the 16 th century. The poet was the eldest son of another François de Malherbe, conseiller dur roi in the magistracy of Caen. He himself was elaborately educated at Caen, at Paris, at Heidelberg, and at Basel. At the age of twenty-one he entered the household of Henri d'Angoulême, grand prior of France, the natural son of Henry II. He served this prince as secretary in Provence, and married there in 1581. It seems that he wrote verses at this period, but, to judge from a quotation of Tallemant des Réaux, they must have been very bad ones. His patron died when Malherbe mas on a visit in his native province, and for a time he had no particnlar employment, though by some servile verses he obtained a considerable gift of money from Henry III., whom he afterwards libclled. He lived partly in Provence and partly in Normandy for many years after this event; but very little is known of his life during this period. It was in tho year parting the two centuries ( 1600 ) that he presented to Marie de' Medici the first of his remarkable poems. But four or five years more passed before his fortune, which had hitherto been indifferent, turned. He was presented by his countryman, the cardinal Du Perron, to Henry IV.; und, though that cconomical prince did not at first show any great eagerness to entertain the poet, he was at last summoned to court and endowed after one fashion or another. His father died in 1606, and be came into his inheritance. From this time forward he lived af court, corresponding affectionately with his wife, but seeing her only twice in some twenty years. His old age mas saddened by a great misfortune. His son, Marc Antoine, a young man of promise, perished iu one of the frivolous but desperato duels which, common at all periods of French history, were nover moro frivolous or more desperate than in the 16 th and the early 17 th centuries. Marc Antoine do Malherbe fell in 162G. ITis father used lis utmost influence to have the guilty parties for more than one were
concerned, aud there are gronnds for thiuking that it mas not a fair duel) bronght to justice. But he died before the suit was decided (it is said in consequence of discase caught at the camp of La Rochelle, whither he had gone to petition the king), at Paris, on the 16th of October 1028, at the age of seventy-three.
The personal character of Maluerbe ras far from amiahle. He was an obstinate solicitor of favours from the great, o morose and bearish companion to his cquals, a loose liver at a time of life when loose living is especially unbecoming if not especially blamcable, a jcalous and unfair critic; but he excreised a great and caduriag effect upon French literature, though by no means a wholly beneficial one. The lines of Boileau beginning Enfina Malherbe vint are rendered only partially applicable by the extraordinary ignorance of older French puetry which distinguished that peremptory critic. But the good as well as bad side of Mallicrbe's theory and practice is excellently described by iiis contemporary and superior Regnier, who was animaterl ugainst him, not merely by reason of his own derotion to lionsard, but becanse of a brutal act of discourtesy of which Malluerbe had been guilty torards Reguier's unclo Desportes. These aro the lines :-
"Cependazt leur savoir ne s'étend aullement
Qu'a régratter un mot douteuse au jugement,
Prendre garde qu'un qui ne heurte unc diphthonguc.
Épier si des rers la rim6 est brère ou longue.
Ou bien si la rojelle à l'autre s'unissant
Nie read point a l'oreilie un vers trop languissant.

C"est proser de la rime et rimer de la prose."
This is perfectly truc, and from the time of Nalherbe dates that great and deplorable falling off of French poetry in its more poetic qualities, which was not made good till 1830. Nevertheless the critical and restraining tendency of Nallerbe was not ill in place after the lusuriant importation and innoration of the Pléiade; and if he had confined himsolf to preaching greater technical perfection, instead of superciliously strikiag his pen through the great works of his predecessors, he would have deserved wholly well. As it was his reforms helped to claborate the kind of verse necessary for the classical tragery, and that is the most that can be said for him. His own poetical work is scanty in amount, and for the most part frigid and devoid of inspiration. The beautiful 'Consolation à Du Perrier; in which occurs the famous line-

## Et, rose, elle a vicu cenque vivent les roses-

the odes torMarie de' Medici and to Lonis XIII., and a few other pieces comprise all that is really worth remembering of him. His prose work is much more abundant, not less remarkable for care as to style and expression, and of greater positive value. It consists of some translations of Livy and Seneca, and of a very large number of interesting and admirably written letters, many of which are addressed to Peiresc, the man of science of whom Gassendi has left a delightful Latin life. It contains also a most curious commentary on Desportes, in which Malherbe's minute and carping style of verbal criticism is displayed on the great scale.
The chief anthorities for the biography of Malherbe are the Vic te Mulherbc of his friend and pupil Racan, and the long Historictc which Tallemant des Reaux has devoted to him. The standard edition is the admirable one of M. Ludoric Lalanne, 5 rols, Paris, 1862-69. Of the poems only, there is an excellent and handsome ${ }^{1 i t t l e}$ issue iu the Nourclle Collcection Jannet; Paris, 1874.
(G. SA.)

## Malines. "See Mecblan。

MALLANWAN, a town in Hardoi district, Oudh, India, situated on the Hardoi and Unas road, in $27^{\circ} 2^{\prime} 10^{\prime \prime} \mathrm{N}$. lat. and $80^{\circ} 11^{\prime} 30^{\prime \prime}$ E. long., with a population in 1869 of 11.6T0. Under native rule the town possessed edossderai.e political importance, and upon the British
anuesation of Oudl it was selected as the civil headquarters of the district, but mas abandoned in favour of Hardoi town on the reoccupation of the province after the mutiny. The town has now but little trade, and a deserted indigo factory occupies the site of the old fort. Saltpetre and brass utensils are manufactured.

MALLEMUCK, from the German reudering of the Dutch Mallenzugge (which oriminally meant smull fies or midges that madly whirl round a light), a mame given by the early Dutch Arctic voyagers to the Fumara (yol. is. p. $817^{1}$ ), of which the English form is nowadays most conmmonly applied by our sailors to the smaller Albatroses, of about the size of a Goose, met with in the Southera Occan-corrupted into "Molly Mawk," or of herwise modificed. There is some difference of opinion as to the number of species of small Albatroses, and it is unfortunate that the results of the voyage of the "Clallenger" do not clear up the doubts that have been expressed. Three species bave beeu described and figared, the Diomedea melarophrys and $D$. chlororkynchus for a long while, while the third, D. culminata, was discriminated by Gould (Proc. Zool. Sociery, 1843, p. 107), who bas stated that the difference between it and the second is so apparent that he had no difficulty in distinguishing them on the wing. Captain Hutton, on the other hand (ILis, 1865, p. 283), considers all three to be specifically identical. Others, as appears by the Report on the Birds of the "Clallenger" voyage (pp. 148, 149), while rcgarding D. melanopherys as distiact, would seem to unite $D$. Culminata with $D$. chlororhynchus. The firsi of these birds, says Gould, is the commonest epecies of Albatros inhabiting the Southern Ocean, and its gregarious babits and familiar disposition make it well known to esery voyager to or from Australia, for it is equally common in the Atlantic as well as the Pacific. The back, wings, and tail are of a blackish-grey, but all the rest of the plumage is white, except a dusky superciliary streak, whence its nanie of Black-browed Albatros, as also its scientific epithet, are taken. The bill of the adult is of an oclireous-yellow, while that of the young is dark. This species (supposing it to be one) is said to breed on the Falkland Islands and on Tristan da Cunha, but the latter locality seems questionable, for, according to Carmichael (Trans. Lizn. Soc., xii. p. 490), D. chlororhynchus is the bird of this group there found ; while Professor Moseley (Notes of a Naturalist, p. 130) calls it $D$. culmincta. ${ }^{2}$ Whaterer it may be, the excellent observer just named describes it as making a cylindrical nest of grass, sedge, and clay, with a shallow basin atop and an overhanging rim -the whole being about 14 irches in diameter and 10 in height. The bird lays a single white egg, which is held in a sort of pouch formed by the skin of the abdomen, while she is incubating. A few other details are given by him, but his visit was too hurried to enable him to ascertain the more important and iateresting points in the economy of this Albatros which were neglected by his predecessor, Carmichael, during his four months' sojourn in 1S16-17. D. culminata is said by Gould to be more plentiful in the Australian seas than elsewhere, numbers coming under his notice between Launcestoniand
I It was there erroneonsly stated that Mallemreele was a Dutch word, which it is not ; and the correct German form, as given by Friderich Martcus (Spitzbergische oder Groenlandiscke Reise Desehreibung, Hamburg, 1675, 4to, r. 68), is Mallemucke. The anonyinous translation of this voyage, ander the title of An Account of several lale Voyages and Discorerics to the South and Forth, published in Londor in 1694 ( $p, 93$ ), was probably the means of the name hecoming known to Ray, in whose Synopsis methodiea Avium, published in 1713, it appears ( p .130 ) as Mallemuck, and thereafter bept its flace in Englisb ormithological works.

2 Mr Sclater with commendable caution assigns no specicic name to the eggs of the Diomedea found breeding on this island and ito neighbour (Report, dcc, ul supra, p. 151).

Adelaide, and beiug also frequently obserred by uim beireen Sydney aud the northern oxtremity of Neew Zealand, as well as in the sanne latitude of the Indian Ocean. Ho describes its bill as having the greyish--ellow ridge broad and \#lat, while that of $D$. cllororrlyncthus is laterally compressed and the ridge round. All these birds seem to have much the same habits.
(A. ㄷ.)
mallet, Paul Hexri ( $1730-1807$ ), born in Geneva in 1730 , and educated there, became tutor in the family of the count of Calenberg in Sazons. In 1752 he was appointed professor of belles lettres to the academy at Copenhagen, but as the French language was then hittle known in Denmark he liad but ferv students. He was naturally attracted to the study of the ancient literature anil history of his adopted country, and in 1755 he published the first fruits of his researches, nnder the title -Introduction à l"listoire de Danemarrclo oir l'on traite ide la religion, des maxurs, des lois, et des ussages des anciens Danois. $\Lambda$ second part was issued in 1756 , more particularly relating to the ancient literature of the country, and bearing the title-Monuments de la mylloologie et de la poosie des Celles, el particulièrement des anciens Scandinares. In the same year a translation of tho work appeared in Danish. This is the work by which the author is best known in Britain. Thuagh intended only as a preliminary dissertation to the formal history of Denmark, by which it was followed, it has all the nerits of au independent worls, complete in itself, and presenting a general view of the civilization and culture, religion and customs, of the Scandinavian nations. A trauslation into English, with notes and preface, by Bisiop Percy, was issued in 1770 under the title of Novtherra Antigutities (republisked with additions in 1847). It had 2 wide circulation, and attracted mucla attention on azcount of its being the first (though a very defective) trauslation into French of the Edda. Mallet's dissertations and notes are vitiated by untenable theories as to the racial affinities of the early inhabitants of Scandinuvia; but, judged by the standards of its time, his worls was of great merit and asefulness. Its publication attracted the notice of the king to its author, and he was chosen as preceptor of the prince of Denmark. In 1760 he returned to Genera, and became professor of history in his untive city. While there to was requested by the czarina to undertake the education of the heir-apparent of Russia (afterwards the Czar Paul r.), but declined the honour. An invitation more congenial to his tastes led to his accompanying Lord Mountstuart in his travels through Italy and thence to England, where he was presented at court and commissioned to writo the bistory of tho house of Brunswick. He had previously received a similar commission from the landgrave of HesseCassel for the preparation of a history of the honse of Hesese, and both works were completed in 1785 . The quietude of a literary life was rudely broken by the shock of the Revolution, to which he was openly hostile. His leanings to the unpopular side were so obnoxiuus to his fellow-citizens that he was obliged to quit lis native country :a 1792, and remained in exilo till 1801. He died at Geneva, sth February 1807.

4 memoir of his life und writings by Simonde Sismondi was ablished at Gencra in 1807. Besides tho Introduclion to the Ifislory of Demmark, his principal works are-Mistoire de Daucmarch, 3 vois., Crteri:igen, I75s-77; Mistoire de la maison de Hese,
 1767-85; Hictoire de la maison et des eltals de Acecticntourg, $1790^{\prime}$; Histui'c des Suisscs ou Ifelvelicus, 4 vols., Gcnera, 1 SO3; Mistour àc la Liguc Ifansécelique, 1805.
MaLLOW, botanically Malra, tho typical genus of Malvecece, enizacing about sistenn species of annual aud arennial hertinceous plants, widely distributed throughout the northern hemisphere. The mallows possesm the reniforen
ono-celled anthers which distinguish the Malvacese from all other dichlamydeous exogens. The petals also are united by their baso to the tube formed by the coalesced filaments of the stamens. The special characters which separats the genus Mfulva from others most nearly allied to it are the involucre, consisting of a row of three separate bracts attached to the lower part of the true calyx, and the numerous single-seeded carpels disposed in a circle around a central axis, from which they become detached when ripe. The fowers are mostly white or pinkish, never yellow, the leaves radiate-veined, and more or less lobed or cut. Three species are natives of Britain. The musk mallow (ILulva moschata) is a perennial herb with five-partite, deeply-cut leaves, and large rose-coloured flowers clustered together at the ends of the branched stems, and is found growing along hedges and borders of fields, blossoming in July and August. It owes its namo to a slight musky odour diffused by the plant in warin dry weather when it is kept in a confined situation. The round-leared mallow (Mctva rotzondifolia) is a creeping annual, growing in waste sandy places, with roundish serrate leaves and small pinkish-white flowers produced in the axils of the leaves from June to September. It is common throughout Europe and the north of Africa, extending to western Asia. The common mallow (Malva sylvestris), the mauve of the French, is an erect biennial plant with long-stalked roundish-angular serrate leares, and conspicuous axillary reddish-purple flowers, blossoming from May to September. Like most plants of the order it abounds in mucilage, and hence forms a favourite domestic remedy for colds and various other complaints affecting the mucous membrane. The aniline dye called mauve derives its name from its resemblance to the colour of this plant..
The marsh mallow (Althæa officinatis), the guinauuvc of the French, belongs to another genus having an involucre of numerous bracts. It is a native of marshy gromad near the sea or in the neighbourhcod of saline springs. It is an ereck perennial herb, with somewbat moody stems, velvety, ovate, acute, unequally serrate leares, and delicate pink showy fowers blooming from July to September. The flowers are said to yield a good deal of loney to becs. The root is used in medicine as a demulcent, on sccount of its containing more mucilage than the common mallow. It is supposed to form a chief ingredient in the well-known palc de guimauve lozenges. The marsh maliow is remarkable for containing asparagin, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}$, which, if the root be long lept in a damp place, disappears, butyric acid being dereloped. The root also contains about 25 per cent. of starch and the same quantity of mucilage, which diliers from that of gum arabic in containing one moleculo less of water and in being precipitated by nentral acetate of lead. The marsh mallow is far more largely uscd on the Continent than in England.

The mallow of Scripture, Job xxx. 4, has been sometimes identified with Jew's mallow (Corchorks olitorius), but more plausibly (the word Dimplying a saline plant) with Atriplex Hatimus, or sea orache. In Syria the Hatimus was still known by the name dlullek in the time of Ibn Bcitar: Scc Bochart, Ificroz., iii. IG.

MALLOW, a municipal and parliamentary borough, market-town, and watering-place io the county of Cork, Ireland, is situated on the Blackrater, 150 miles southmest from Dublin, and 20 north from Cork. Tho town owes its prosperity to its beautiful situation io a fine valley surrounded by mountains, and to its tepid mineral spring, which is very effeacious for geneal debility and for scorbutic and consumptivo complants. A spa-house with pump-room and baths was erected in 1828. Besides the parish church in the Latur English style, erected in 1818, the principal buildings of the torn are the court-house, the rork-house and infirmary, and tho briderscll. There ara a manufactory of mincral water, a condensed-milk manufactory, corn-milis, and tanneries. Mallow received a charter of incorporation from James I. The population of the borough in 1871 was 4165 , and in 1SS1 it was 4437.

MALXIESBURY, a parliamentary borough and markettown of Wilts. England, is finelv situated od bu emiacace
almost surrounded by the Lower Avon, and on a branch of the Great Western Railway, 92 miles west of London. Of the Benedictine house which was founded in the 7 th century, and in the reign of Edward III. rose to the dignity of a mitred abbey, little more than the navo and side aisles of the conventual church now remain; this at the dissolution was changed into a parish church, instead of the old church of St Paul's. There are a townhall, national and endowed schools, and several almshouses. In the market-place there is a richly ornamented octagenal sross supposed to date from the reign of Henry VIII. The industries include the manufacture of ribbons and pillow lace, brewing, and tanaing. The population of the town in 1871 was 3142 , and of the parlianientary borough (which comprises an area of 21,772 acres, mostly rural) 6879 . In 1881 the numbers wero 3133 and 6866.

Malmesbiry is supposed to have been a Britisli town, and also a Iomar settlement. A castle is known to have existed there as carly as the 7 th contury, at which time the monastery was also founded. It received its first cliarter from Edward the Elder, which was confirmed by Atlelstan. The charter granted to it by Charles I. has undergone various modifications, and at present it is governed by a high steward, an aldernan, and twelve capital burgesses. From the reign of Edward I. the town sent two members to parlinment ; since the Reform Act of 1832 it has returned only onc. During the civil war it was twice captured by the parliamentarians and once by the royalists. Malmesbury is the birthplace of the philesopher Hobbes. Athelstan was buried at Nalmesbury, butt the Gothic canopy in the church called his tomb dates from the 16 th century.

MALMESBURY, James Harris, Earl of (1746-1820), the best-known English diplomatist of the latter half of the 18 th century, was born at Salisbury on April 21, 1746. He was the son of James Harris (q.v.), the author of Hermes, aud, what was inportant for his son's future success, M.P. for Christchurch, a lord of the treasury under George Grenville ( $1763-65$ ), and comptroller to the queen (1774-80). Educated at Wiuchester, Oxford, and Leyden, the younger Harris was intended for diplomacy. In 1768 he became secretary to the British embassy at Madrid, and in 1770 be was left as chargé d'affaires at that court on the departare of Sir James Gray until the arrival of George Pitt, afterwards Lord Civers. This interval gave him his opportunity; he discovered the intention of Spaiu to attack the Falkland Islands, and was instrumental in thwarting it by putting on a bold countenance. As a reward he was appointed minister ad interim at Madrid, and in January 1772 minister plenipotentiary to the court of Prussia. His success was marked, and in 1776 he was trarsferred to the court of Russia. At St Petersburg he made his reputation, for he managed to get on with Catherine in spite of her predilections for France, and stecred adroitly through the accumulated difficulties of the first Armed Neutrality. In 1782 Sir James Harris (he was now a Knight of the Bath) returned home from illhealtin, and was appointed by his friend Fox minister at the Hague, an appointment confrmed after some delay by Pitt, which he took up in July 1784. He did very great service in furthering Pitt's policy of maintaining England's influence on the Continent by the arms of her allies, and held the threads of the diplomacy which euded in the king of Prussia's overthrowing the republican party in Holland, which was inclined to France, and re-establishing the prince of Orange. He was in recognitien of his services created Lerd Malmesbury of Malmesbury in the county of Wilts, and permitted by the king of Prussia to bear the Prussian eagle on his arms, and by the prince of Orange to use his motto "je oasintieudrai." In 1789 he returned to England, and took an anxious interest in politics, which ended in bis seceding from the Whig party with the duke of Portland in 1793 , in which year he was sent, but in rail, to try to keep Prussia true
to the first coalition against France. In 1794 he was sent to Brunswick to solicit the hand of the unfortunate Princess Caroline fer the prince of Wales, to marry her as proxy, and conduct her to her husband in England. In 1796 and 1797 he was at Paris and Lille vainly negotiating with the French Directory. After 1797 he became partially deaf, and quitted diplomacy altogether; but for his long and cminent services he was in 1800 created earl of Malmesbury, and Yiscount Fitzharris, of Heron Court in the county of Hants. He now became a sort of political Nester, consulted on foreign policy by successive foreign ministers, trusted by men of the most different ideas in political crises, and above all was the confidant, and for a short time after Pitt's death almost the political director, of Canning. Younger men were also wont to go to him for advice, and Lerd Palmerston particularly, who was his ward, was tenderly attached to him, and owed many of his ideas on foreign policy directly to his teaching. His later ycars were free from politics, and till his death in 1820 he lived very quietly and almost forgotten. As a statesman, Malmesbury had all influence among his contemporaries which is scarcely to be understood from his writiogs, but which must have owed much to personal charm of manner and persuasiveness of tongue; as a diplomatist, he seems to have deserved his reputation, and ehares with Macartney, Auckland, and Whitworth the credit of raising diplomacy from a profession in which only great nobles won the prizes to a career opening the path of honour to ability.
Malmeshury dil not publish anything himself, except an acconut of the Dutch revolution, and an edition of hisfather's works, but his grandson the third earl published four volumes of his diaries and corrospondenco from 1768-1807, and afterwards two volumes of letters to and from his family and friends.

MALMESBURY, William of, an historical writer of tne 12th century, the date of whose birth is usually assigned to the year 1095, but may with more probability be placed some twenty years earlier. It may reasonably be conjectured from his own statement ("utriusque gentio sanguinem traho") that he was the son of a Nerman father and an English mether; ho undoubtedly represents the fusion of the two races, altheugh his sympathies as a writer are unmistakably on the side of the conquerors. He received bis early education at the ancient Benedictine abbey at Malmesbury, and he speaks of Alduelm, bishop of Sherbornc, the great benefactor and second founder of that house, who died in 709, as his "lord and patron," to whom he was indebted both for his life and his learniog (Gesta Pont., sec. 273). The earliest known incident in his personal history is the fact, which he himself records, that he assisted the abbot Godefrey in collecting books to form the first library of the abbcy. William himself subsequently became the librarian, and was also precentor of the abbey; in 1140 he received the offer of the abbacy, an henour which he declined, probably from a desire to secure as much leisure as pessible for study. In his later life he was honoured by the particular friendship of Robert, carl of Gloucester, a natural son of Henry I., and a distinguished patron of learned men and letters. In politics he was a warns partisan of the empress Matilda agaiost Stephen, and he was present at the council of Winchester convened by her supporters in 1141. His death is supposed to have occurred in or after 1142.

Printed Works. - Williarn's earliest important work was the Gesta Regum Anglorum, which he dedicated to bis patron, the eard of Gloucester. It was originally completed in 1120 , but subsequently broumht down to 1128 . It extends from $449 \mathrm{~A} . \mathrm{D}$. to the tirenty. eighth year of the reign of Henry I., and is a record of the highest value, preserving from unknown sources numerous facts wbich would otherwise be lost to us. In 1125 William conipleted his Gesta l'ontificum Anglorum. He himself tells us that the pro: duction of this work cost him especial pains, but that the material for its composition was neither so abundant nor so easily reducible
© consisteney as that for the Gesta Regum. The work may be regarded as the main source for our early eeclesiastical history, and constitutes the basis of later productions relating to the same subject at the same peried. It is divided into five books, the bishops being grouped noder their respectire sces, and the chice monasterics nuder their jurisdiction being also noticed, sometimes at considerable length. The fifth book is maioly occupicd by the life of St Aldheln, and includes numerous details of interest not given in the carlicr life by Faricius. The Geste Pontificum is likewise brought by further additions down to the year 1140. William's last work Fas a continuation of the Gesta Regum under the title of II istorice Novella. It concludes abruptly with the cscane of Matilda from Oxferd when besieged there by Stephen in 1142, and the manner of its termination suggests that the narmative was broken off by the death of the writer. Like 1lac Gesta Ficenum, the IIstorict is delicated to the dulie of Glousester, whose doings in behalf of his sister Matilda are described in such a way as to make him in a great measure the central figure of the narrative. Other printed writines of William are an account of the chnreln of Glastonbury (included aloug with the life of St Alulhelm in Gale's Scriptores $X V$.$) , and a life of St Wulstan, of which a$ considerable portion is givell is the second volnme of Wharton's Anglia Sacerc. The best text of the Geste Regum and the IIstoric Novella is that fiven by Sir T. D. Ilardy in the edition published by the English Ilistorical Society in 1840; the text in Savile's Scriptores is fanlty in the extreme. The Gcsta Pontificum was edited for the Rolls Series, in 1870 , by Mr N: E.S. A. Hamiltan, from a manuscript which he was the first to identify as the antograph of William himself

Extant Works Unprintecl. Among theso are Mirctles of the Virgin Mary; Miracles of St Andrew; Lifc of St Dunstan ; a compend of the commeatary on the book of Jeremial attributed to Paschasius Radbertus; an abridgment of the treatise by Amalarius on Sacred Offices; Lives of the English Saints ; and an epitome of the IIstory of IIaymo of Fleury, together mith other abridgments or transeripts of historical and legal writers, -this last being an autograph preserved in the Bodleian, where, or at the British Museum, the other manuscripts are also to be found.

Lost Work's. - Among these are a Life of St Patrick; a metrieal Life of St AElfgive; the Miracles of St Benignus; and the Litlle Chronicle, in three books (of which a supposed fragment is preserved at the Lritish MLnseum, Lansdowne MS. No. 436). The work which we have probably most cause to regret is the llinerivium Joliannis Abbatis, or account of the journey of Join, abbot of Malmesbury, to Rome in 1140. This was written by William from the oral aecount which he raccived from Peter Baldwin, Joln's companion. A iew extracts art owen by Leland in his Collectanco, iii. 272.

Malnesluny's merits as au historian are of a very ligh order. He labours, it is true, uuder the defect of being bnt imperfectly acquanted with English institutions, and haviog but little sympathy with the Euglish race, while he occasionally evinces a Norman contempt for the English language. His habitual carelessoess in chronology is also at times cxtremely perplexing, and his narrative of facts is alloyed with romantic details which scrve to excite dis. trust with respect to lis general eredibility. But, rotwithstanding these foults, he is entitled to rank as an authority (in relation to the period of which he treats) with Bede and Matthew Paris. He is again the first of our historical writers in whom the critical fuculty is to any extent discernible, and the comparisons which he oceasionally iostitutes between two different and diserepant accomen of the same evcuts form a notewortly feature in his mode of treatment. The pains and judgment which he cmploys iu the arrange. ment of his materials arc also often no less conspienous than his industry in collecting them.

MALMÖ, a seaport tow: of Sweden, inferior only to Stockholm and Gothenburg in inportanee, is the eapital of the linn or province of Nfalmölus, and stands on the eastern shore of the Sound, opposite Copenhagen, from which it is 16 milcs distant. The town, whieh is built on a level plain, formerly had strong fortifications, of which all that now remains is the eitadel, where the earl of Bothwell was imprisoned for some time after 1573; it is at present used as a honse of correction. In the large ecntral square (Stortorg), which is planted with trees, stands the townball, a brick and sandstone structure in tho Fenaissanee style; it contains the handsome Knutssal, or former council chamber of the guild of Canute. The principal ecclesiastical buildings are the chareh of Si Peter (Petrikyrka), begun in 1319, nod tle Gcrman chureh (Tyskakyrka). The Larbour in the north-west has recently been deepuned, and admits ressels drawiog is feet of water; thicre is daily communication by steames with

Copenhagen, aud also at regular Intervals with Stockholm, Gothenburg, Lübeck, dc. The trade of the port is considerable, the exports iocluding timber, Erod, tar, oil-eake, and bones, while the imports coasist chiefly of wine, saltfish, salt, and coal. There are a number of manufactures, that of glores being the specialty. Malmö is connected with Stoekholm by rail. Population in $1878,35,626$.
Malmë (Malmhauge, Malmes, Malmöye, Malmoughe), sometimes called "Ancoua Scanorum" or "Ellenbogen," first appears in history about the middle of the 13 th century. During the Hanseatic period it was the most important commereial town on the Sound, but in the 16 th and 17 th ceaturies greatly lost ground owing to the decay of its herring fisheries and the rise of its rival Copenhagen. Its modern prosperity is largely due to the euterprise of Frans Suell, one of its merchants, who first constructed the harbour, which has more than once been cnlarged subsequently.

MALORY, Sir Thomas, the author or compiler of the Norte Darllur, was born most probably about the year 1430. From his own words he is known to have been a knight, and his description of limself as "a servant of Jesu both day and night" has led to the inference that he was also a priest. On tho authority of Leland the antiquary he is believed to lave been a Welslman. The name appears in a variety of fornis, including those of Maillorie and Maleore. In the prefaee to the first edition of the Morte Darthur C'aston speaks of the work as printed by himself "after a copy unto me delivered, which copy Sir Thomns Malorye cid take out of certain books of French, aud reduced it into English." Malory himself tells us that he finished the book in the ninth year of Edward IV. (c. 1470). For the place of the Morte Darthur in the literary history of the Arthurian legend, see Arthur, Geoffrey of Monnotth, Grail (Holy), de.

MaLPiGHI, Marcello (1638-1694), of Bologna, was one of the frst to apply the microseope to the study of animal and vegetable structure; his discoveries are so numerous and important that he may be considered to be the founder of microscopic anatomy. Shortly before his death, he drew up a long account of his academical and scientific labours, correspondence, and coatroversies, and committed it to the charge of the Royal Society of Londoa, a body with which he had been in intimate relations for more than twenty years. The autobiography, along with some other posthumous writings, was published in London in 1696, at the cost of the Society. The personal details left by Malpighi are few and dry. His arrative is mainly occupied with a summary of his scientific contributions and an account of his relations to contemporary anatomists, and is entirely without graces of style or elements of ordinary Luman interest. He was born in the country, about 20 miles to the north of Bologna, ou the 10th of March 1628. At the age of seventeen he began the study of the Aristotelian philosophy, and continued it for four years; it appears from another statement that he was in the habit of amusing himself with the microseope during this period. Owing to domestie circumstances, it became neeessary for lim, in 1649, to clioose a profession, and lie elected to study medieine; after four years study at Bologna he graduated there as doctor. He at once applied to be admitted to lecture in the university, but it was not till after three years ( $16 \overline{0} 6$ ) that his request was granted. A few months later he was appointed to the chair of theoretical medieiuo at Pisa, where le enjoycd the friendship and countenance of Borelli. At the end of four years he left Pisa, on the ground of ill-health, and returned to Bologna. A call to be professor primarius at Mcosina (procured for him through Borelli, who had in the meantime become professor there) indueed him to leave Dologna in 1662. His engagement at Messina was for a term of four years, at an annual stipend of 1000 scudi. An attempt was made to retain him at Messina beyond that
period, but lis services were securcd for has natire university, and he srent the next twenty fire jears there. In 1691, being then in his sixty-fourth year, and in failing health, be removed to Reme to become private physician to Pope Inoocent XII., and he died there of apoplexy three years later. In the potrait prefixed to his autobiography, the features are those of the phlegmatic type. His addiction to the microscope brought him into conflict with the respectabilities of the medical profession, including two of his colleagues at Bologna, whose names have been preserved from oblivion; it rras felt by those who affected to watch over the future welfare of medicine that the study of microscopic anatomy was adverse to the true interests of medical practice, and that feeling is said to have found expression in a duel that was fought between the brother of Malpighi and a near relative of one of his conservative colleagues, in which the Iatter combatant was killed. Amid such incidents was the fruitful microscopic era of medical and biological science ushered in.

The compound microscope (invented in the Netherlands) had been used in ltaly (Rome) to study the parts and organs of the bee as early as 1625, and it was employed by Malpighi and by his contemporarics Hooke (botanist) and Leeuwenhoek; the illumination of the objects was always direct, the mirror being a much later addition, and the tube was of unwicldy length. Owing to the inability to overcome spherical and chromatic aberration in compound lenses, the simple microscope came again into common use, and continued to be the chief instrument in the study of minute anatomy until the introduction of fint-and-crown glass lenses by Englisl opticians about a century later. It was Malpighi's practice to open animals alive, and some of his most striking discoverics were made under those circumstances. Although Harvey had correctly inferred the existence of the capillary circulation, he had never sean it; it was reserved for Malpighi in 1661 (four years after Harvey's death) to see for the first time the marvellous spectacle of the blood coursing through a network of small tubes on the surface of the lung and of the distended urinary bladder of the frog. We are enabled to measure the difficulties of microscopic observation at the time by the fact that it took Malpighi four years longer to reach a clear understanding of the corpuscles in the frog's blood, although they are the parts of the blood by which its movement in the capillarics is made visible. His discovery of the capillary circulation was given to the world in the form of two letters De Pulnonibus, addressed to Borelli, published at Bologna in 1661 and reprinted at Leyden and other places in the years following; the letters to Borelli contained also the first account of the vesicular structure of the human lung, and they made a theory of respiration for the first time possible. The achievement that comes next both in importence and in order of time was a demonstration of the plan of structure of secreting glands; against the curreat opinion (revircd by Ruysch forty years later) that the glandular structure was essentially that of a closed vascular coil from which the secretion exuded, he maintained that the secretion was formed in terminal acini standing in open communication with the ducts. The name of Malpighi is still associated with his discovery of the soft or mucous character of the lower stratum of the epidernis, of the rascular coils in the cortex of the kidney, and of the follicnlar bodies in the spleen. He was the first to attempt the finer anatemy of the brain, and his descriptions of the distribution of grey matter and of the fibre-tracts in the cord, vith their extensions to the cerebrum and cerebellum, are distinguished by accuracy; but his microscopic study of the grey matter conducted him to the opinion that it was of glandular structure and that it secreted the "vital spirits." At an carly period he applied himself to regctable histology as an introduction to the more difficult study of the animal tissues, and he was acquainted with the spiral vessels of plants in 1662 . It was not till 1671 that he wrote his Anatome Plantarum and sent it to the Royal Society, who published it iu the following year. An English work under a similar title (Anatomy of Vegctables) had been puhlished in London a fers months earlier, by Nehemiah Grew; so that Malpighi's priority as a regetable histologist is not so incontestable as it is animal Listu:ng]: The Anatome Plantarum contained an appendix, obscrectiones de ove incuoaís, wl ich gave an account (with good plates) of the developweut $n$ \& the chick (especially of the later stages) in mauy points, wore conn lete than that of Harvey, althourh the observations wery needless:'y lessened in ralue by being joined to the metaphysical notion of "prrede':ineation" in the undeveloped orum. His works are - Dc pulmonibus : Epistolx dux ad Borcllium? $\mathrm{Bologna}, 1661$ (went through several editions) ; Epistolæ anatomicæ Mrarc. Malpighii et Car. Fracassati, Amsterdam. 1662 (on the tongue, brain. skin. cmentue. \& \& O ) ; Re

Fisccrum Structura: excrcitatio anatonica, London, 1669; Anatme Plantarum, cum appendice obscriationes de ovo incubato continend;, London, 1672 (other cditions in 1675 and 1679); De Stractura Giandutarum conglobatarum, London, 1689; Opcra posthuma, et vitae a scipso scripta, London, 1697 (another edition, with preface and additions, was published at Amsterdam in 1700). An edition containing all his works except the last two was published in London in 1687, in 2 vols. folio, with portrait and plates.

MALSTATT-BURBACH, a town in the district of Treves, Prussia, is situated on the right bank of the Saar (Sarre), almost contiguous with the town of St Johann, and separated from Saarbrücken by the river. It lies in the midst of an important coal-mining aud industrial district, and is itself little more than a long and narrow row of manufactories and workmen's houses. The largest factories are engaged in the production of iron, steel, and cement, one iron-work employing nearly 2000 men , and producing 285,000 tons of raw aud manufactured metal annually. There is a large wharf on the river for the export of coal. At the census of 1880 Malstatt-Burbach contained 13,158 inhabitants.
Malstatt is of very ancient origin, and received municipal righta in 1321. These, however, were afterwards resigned to the newer town of Saarbricken, and in 1818 Malstatt and Burbach were two small villages with a joint population of only 822 . About the middle of the century the population began to increase rapidly, in consequence of the development of the mining industry of the district and the extension of the railway system, and.in 1875 the two rillages were united to form a town. In 1870 MalstattBurbach was cannonaded by French troops under the command of Napoleon III.

MALT is the grain of any cereal artificially germinated so as to induce certain changes in the constitution of the seed, epecially a conversion of a portion of the starch into sugar. The varieties of grain usually employed for malting are barley and bere or bigg, and the processes of preparing the substance are fully explained under Breming (rol. iv. จ. 266).
The specific effect of the malting of grain is to transform by the process of germination a proporticu of the starch into soluble sugar and destrin. These changes are effected by the agency of a peculiar nitroge=ous ferment, diastase, which exists in the grain, but which is increased in amount during the germination. The precise sequence of changes, and the exact nature of the new chemica! compounds evolved, are still matters of some doubt. It is clearly established that the ferment of barley is incapable of transforming the starch on which it operates entirely into sugar, the ultimate products of the action being partly dextrin and partly sugar. The relative proportions of these bodies evolved by fermentation from starch have been matter of dispute, some holding that from three molecnles of starch there are evolved trio molecules of destrin and one of eugar, while others affirm that the yield is two of sugar and one of dextria, and a third party hold that for each molecule of sugar there is one of dextrin produced, thus :-

$$
\underset{2 \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}}{\text { Starch. }}+\mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{19} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5} .
$$

These statements, however, are based on the assumption that the sugar which results from the fermentation of germinating barley is ordinary grape sugar or dextrose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$; but it has been dembnstrated, first by O'Sulliran, that it is a form of sugar possessed of peculiar properties to which the name maltose has been given. Maltose, according to O'Sullivan, is isomeric with cane sugar, $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{13}$, but Märcker considers that its constitution should be represented"bv $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{15}$, and that the equation is a3 follows :-

$$
\begin{gathered}
\text { Starch. } \\
4 \mathrm{C}_{6} \mathrm{H}_{20} \mathrm{O}_{5}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{17}+\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5} .
\end{gathered}
$$

Jaltose possesses the power of reduciog Febliug's solution
(cupric oxide) only to the cxtent of 63 per cent. as compared with dextrose, but its power of right-handed polarization is three times as great $=+154^{\circ}$. According to Dubrnnfaut the efficient ferment in barley is maitin, a much more richly nitrogenous and active body than disstase, which he considers to be only a product of the decomposition of maltin.

By the processes of malting 100 parts by weight of barley yield about 80 of kiln-dried malt and 2 to 3 of dried radicle and plumule called "malt dust." The progressive modification in composition is shown in the accompanying table of analyses extracted from the repert presented by Mr (now Sir) J. B. Lawes to the Buard of Trade "On the Relative Value of Unmalted and Malted Barley as Food for Stock, 1866,"-an inquiry which resulted in showing that the adventages claimed for malt as a feeding material were largely illusory:-

|  | 容 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sugar | $2 \cdot 5 \mathrm{C}$ | 1.6 | $8 \cdot 16$ | 10-19 | 11.67 | 12-14 | 11.01 | 11.35 |
| $\left.\begin{array}{c}\text { Starch, dextrin, and } \\ \text { fat................ }\end{array}\right\}$ | $80 \cdot 42$ | 81.12 | 74.72 | 72-16 | 70.73 | 70.09 | 72.03 | 43.68 |
| Albumenolds............. | 9-83 | 9.83 | $9 \cdot 89$ | $10 \cdot 14$ | 10.27 | 10.39 | $9 \cdot 93$ | 26.90 |
| Fibre.. | $4-69$ | $5 \cdot 22$ | 4.96 | $5 \cdot 18$ | 4:93 | 5.03 2.35 | 4.84 | $9 \cdot 67$ |
| Ash.............. | 2.50 | $2 \cdot 97$ | $2 \cdot 27$ | $2 \cdot 23$ | $2 \cdot 35$ | $2 \cdot 35$ | 2.17 | $8 \cdot 40$ |
| Water in Fresh ......... | 17.64 | 42.70 | 41.87 | 41.65 | 40.71 | $40^{-41}$ | 6.66 | 11.73 |

Since the article Brewing was written the malt tax then in force in the United Kingdom has been repealed, and in its place, under the provisions of the Inland Revenus Act 1880 ( $43 \& 44$ Vict. cap. 20), an equivalent duty on beer has been substituted. By that enactment numernus modifications have been made practicable in the use of malt for feeding and other industrial purposes, and much greater latitude has been given to brewers in the selection and use of raw materials for the manufacture of the beverages hitherto known as malt liquors. Taking as the unit of inessurement the bushel of malt, which is defined by statute as cquivalent to 42 lb of malt or corn of any description, or to 28 Ib of sugar, the malt duty, which under the provisions of the repealed statutes amounted to 2s. 7 d., with 5 per cent. additional, has been transformed into a beer duty of 6s. 3d. charged upon every 36 gallons of wort of a specific gravity of 1057; and every brewer is dcemed to have brewed 36 gallons of worts of that gravity who has nsed 2 bushels of malt in brewing. In the case of brewers for sale, should the quantity of worts produced and the specific gravity of such worts oxceed by more than 4 per cent. the quantity and gravity above specified, the duty is charged for the excess over and above such 4 per cent. Brewers for domestic use and for the use of their own farm labourers are excmpt from duty when the annual value of the house occupied by the brewer is not more than $£ 10$, and all brewers for domestic use who occupy houses exceeding in value that amount, and who consequently are subject to the beer tax, must brew their beer on their own premises only.

The malt tax, which in reality was a duty on raw grain, had long been regarded as a grievous impost, and its repeal was systematically agitated for by the agricultural interest. Tha tax, it. was alleged, operated injurionsly on the oultivators of barley, and prevented stockholdors from lreely using malt for the feeding of cattle and of cwes at the lambing season, \&e. On tho part of bremers it was raintained that the operation of the tax restricted them to the use of the heaviest and most expensive classes of barley alone; and that they were consequently precluded from using many varicties of grain and saccharine materials which under other conditions they miglit employ with
advantage both to themselves and to the consumers of beer. No sooner, however, was it proposed by the Government to effect the change so long clamoured for-not indeed the entire abolition of taxation on malt liquors, but the freeing of a ram material from fiscai impost-than the agricultural community discovered they had made a mistake, and that. while it was really the beer drinker who paid the malt tax, its operation had rather tended to give the British barleygrower a monopely of the trade in that raw material, and to artificially enhance the value of the heavier qualities of the grain. Further it was found that the idea of using malt for feeding purposes to any considerable extent, a right which stockholders already possessed under the provisions of the "Gladstone Act" (27\&28 Vict. cap. 9) was entirely illusory; and as a matter of fact no demand has arisen for malt for such purposes. On the other hand, the freedom of choice as to raw materials which the Inland Revenue Act 1880 has given to brewers has not becu: without influence on the industry, although the merlifica. tions have up to this time been by no means so numerous and important as had been anticipated. Barley continues. to be the principal, and, supplemented by sugar, almost the only, raw material of wort; but brewers no longer have any interest in confining themselves to the heaviest and plumpest growths, and consequently much light foreign* grown. barley is now used. It was also expected that raw grain, and particularly maize, would be largely used with malt in the mashings, especinlly as a method had been devised and patented by Mr R. Blair Robertson of Clasgow for removing the germ of that grain, which contains a peculiar acrid oil, and which communicates a bitter unpleasant flavour to the wort in which it may be infused. To a limited extent a "maize beer," in which one-third part of Rohertson's patent prepared maize is mashed with two-thirds of malt, is being brewed with quite satisfactory results, but the mixture does not appear to have com mended itself generally to the trade either ou the score of quality or of cheapaess.

Malt is also the raw material from which the whisky of Scotland and Ireland is principally distilled, and it is the source of the greater part of the best qualities of table and pickling vinegar. Chiefly on account of the great solvent power over starch possessed by the diastase or maltin it contains, malt is extensively used ns a combination in prepared farinaccous food for infsats, and in the form of a malt extract it possesses considerable reputation in pharmacy.

MALTA is the chief island of the Maltese group, con- Finte 111 sisting of Malta, $35^{\circ} 50^{\prime}$ N. lat. and $14^{\circ} 30^{\prime}$. E. long., Gozo, $36^{\circ} 5^{\prime} \mathrm{N}$. lat. and $14^{\circ} 10^{\prime}$ E. long., Comino, which lies between them, and the two islets Cominotto and Filfla, a crown colony, and one of the Mediterranean possessions of Great Britain. Malta is $17 \frac{1}{4}$ miles long by $9 \frac{1}{4}$ broad, containing an area of about 95 square miles (about tro-thirds the size of the Isle of Wight), and Gozo is 9 miles long by 5 wide, with an area of 20 square miles. The islands lis directly south of Sicily, distant from 55 to 60 miles, near the centro of tho Mediterrancan basin; where they appear as the remains of an ancient chain of islends, much worn and still wearing away by the sea. Gozo, which has tho same general character as Malta, possesses more moisturo and richer soil, and therefore more verdure. A cluster of single hills, remarkable for their steeply conical shape, on one of which stands Rabato, the principal village, is near the middle of the islant. Along the northern aud castern shores of Malta the coast-line is frequently broken by deep indentations and bays (St Paul's, St George's, and St Julian's Bays) ; on the peninsulas in and round the most remarkable of these Valctta and its fortifications are built. The genlogical formatiou is late Eocene, the prevailing rocks being white, grey, reddish, or yellow saudstone, with
some beds of marl and coral limestone, in many parts abounding iu fossils. The surface of the country is diversified by valleys and steep hills; there is little water, and no river, brook, or lake exists on any of the islands. The lighest point of Malta is near Casal Dingli, about 750 feet abore the sca to the south; a little farther north lics the ancieut capital, Citta Vecchia, upon another steep height; rest of these lies the range of Bingemma Hills running north-east to soutli-west; from this higher ground the island slopes somewhat tomards the north-west. On the west and sonth the cliffs rise sheer from the sea to a lieight of 300 or 400 feet; on the north tho rock in many places shelves to tho water's cdge, thongh the harbours of "Valetta and the rocks whers the apostle Paul was wrecked are an exceptiou to this. At the east end is the large harbonr Marsa Scirocco, into which the south-east sirocco blows with full force. The general appearance of the land is bare, owing to the rant of woodland, and also to the use of stone walls ns enclosures for the fields, which in the east of the island are smaller than in the west. The dark foliage of the carab and the singular masscs of the prickly pear are, horrever, very marked in the landscape, which with its contrasts of blue sea runaing into the brown and jellors land, heightened by whatever of green may be, is of fascinating beauty under the effects of morning light and setting sun. The land is closely cultivated; often the soil is terraced on the sides of the liills as a safeguard against the minter rains. The soil is in many places extromely thin; it is, however, so fertile that it produces tro and sometimes three crops in a year. Large quantities of early potatoes grown for the English market, corn sufficient to supply the island for four months of the year, cotton, priacipally for home use, and a finc red-Howering clover, called sulla, are the chief crops; excellent honcy is obtained from Gozo; uranges and figs come to great perfection. Goats abound, but few cows are kept; the mules and asses are finc; cattle and sheep for batcher meat are imported from Barbary. Fish is good and abuadant. The flowers of Malts are famous; Cicero mentions the cashions stuffed with roses used by Verres, and many a lovely garden is hidden behind the high stone ralls. The interesting flora of the islands approaches that of Africa (to which continent the old geographers considered them to belong, as the French do still), iacluding the palm, cactus, and other subtropical plants. The scanty fauna is for the most part European; the Maltese dog is mentioned by Strabo and other ald writers; a few still remain, though not wild. Of birds there are about ten or trelve indigenous species, but a large number of migratory birds pass or rest here. The rarine plants and animals also offer a rich fund of material to the student.

The wiuter climate is temperate and healthy, the thermoneter ranging from $51^{\circ}$ to $71^{\circ}$ Fahr. between October and May. In the summer months the heat is almost tropical ; from July to the end of October it ranges between $80^{\circ}$ aud $90^{\circ}$. Snow is unknown, but hail occurs in minter, and much rain usually falls betreen December and February. The northerly winds are bracing, but the soutleast wind, called the sirocco, which brings the warm air from the African deserts, and then takes up tho salt sea mists, is very deleterious; it occurs suddenly, chiefly in Angust and September, occasionally in the spring, and fortunatciy lasts usually but a few hours. The "gregale" ("eurokylon" of Acts xxvii. 14) is a strong morth-east wind which occasioually blows in the winter months with great fury and force for trro or three days together, especially in November and February, rendering it dangerons to cross the harbour, sometimes teariag up stone ralls and landing-steps, and otherwise doing muc? damage.

The Maltese are a strong well-formed race, the mou dark, haudsome, and lithe, tlie women with black eyes and fine hair and an easy carriage; as in other Eastern nations, the working classes grow old at a comparatively early age. They are a clicerful, good-humeured, and industrions people, sober and abstemions, though quick-tempered and addicted to the use of the knife. Bread or pasta, with a few olives, a little oil, or milk cheese, foras the chief support of the poor, who seldom or never eat meat, and drink but little of the light wine of the conntry. The gentry hare a large admisture of Spanish, Italian, and French, but amorig the people in geaeral the Arab race and character predominate, influenced by contact with Sicily. Of the native language 70 per cent. consists of Arabic words, the rest being chiefly a corrupt Italian ; that spoken in Gozo is the purest Maltese. The festivals and ceremonials of the Roman Church are kept up to an extraordinary degree, together with a few that seem to be derived from the Greek Charch. The perpetual ringing of monotonous church bells, and the peculiar method of striking time, are relics of South Italian customs.

Malta is divided into tmenty-six casals or village districts, Gozo into nine ; some of the viilages are large and populous, each haring its church, often large and handsome. Near the middle of the island, on sharply rising ground, stands the ancient capital, called Civitas Melita by the Fomans and oldest writers, Medina (i.e., the city) by the Saracens, Notabile ("jocale notabile, et insigne coronit regix;" as it is called in a charter by Alphonso, 1428) under the Sicilian rule, and Citta Vecchia (old city) by the kaights. The cathedral, orertlirown by an earthquake in 1693, but rebuilt, stands on the reputed site of the house of Publius, Panl's friend; many Maltese gentry lire in this tama, and the English utilize some of the buildings. The Roman remains and catacombs of Citta Vecchia must not be forgotten. Since 1570 the clief town has been Valetta, -a city built on, a ridge of rock (Mount Sceberras) which runs lilie a tongue into the middle of a bay, which it thus divides into two great larbours, subdivided agaia by three other peninsulas into creeks. On two of these peninsulas, and at their base, are built the aggregate of towns called the Three Cities, part of mhich (cromu up under the old Fort St Angelo) is much older than the coming of the bnights, and is called Vittoriosa in commenoration of the siege of 1565 . Valetta, including the suburb Florian, is about 2 miles long and $\frac{3}{4}$ mile ride; Fort St Elmo, with a lighthouse, stauds on the point; the summer suburb Sliema lies on the point which eucloses the west or Marsamusceit larbour ; Fort Ricasoli on the opposite point enclosing the east or grand harbour. The streets of Valetta, pared with stone, run along and across the ridge, and end on each side torards the water in steep flights of steps. Many of the houses, which are of stone throughout, with flat roofs, are large and luxuriously built; mooden covered balconies project from the tiodows and gire a peculiar aspect to the streets. There are sereral fine public buildings, as the governor's palace, the new opera-house, the public library, the auberges or lodges of the knights, especially the Auberge de Castile, the Eaglish church built by Queen Adelaide and others. Roman Catholic churches in Valetta are very numerous: the cathedral of St Johp is famous for its rich inlaid marbles, its Brussels tapestries, its roof painted by Matteo Preti (1661-93), and the picture by Caravaggio, the Decollatiou of John the Baptist. The hospital of the knights contains one of the longest rooms in Europe, 503 feet in length, withont a ceutral support. The extensive bagnios under the rock, formerly occupied by the slaves of the knights, are now used for naral stores. The knights strengthened Valetta and its harbours by bastions, curtain-walls, lines,
old forts, tomards the s^a, tomards the land, and on erery available puint, takiag adrantage in every particular of the natural rock and of the marvellous advantages of situation, rendering it then almost impreguable. The work of fortifying the place with modern armament is carried on by the British Government, whicil possesses there the finest naval hospital in Europe, a military prisen, and other necessary institutions, including immense subterranean stores of grain. New sabitary and water works and dwellings for the over-crowded poor have lately becn undertaken by the local authorities. The city is clean and well-regulated, gay with the motley turong of all nations that continually come and gn, and presenting many features common to the East; the influx of winter visiters attracted by the mild climate and social gaicties has of late years proved a source of wealth to the inhabitants. A railroad from Valetta to Citta Vecchia, the first in the island, is now nearly completed.
The importance of Malta lics, as of old, in its harbenrs, which render it a splendid port of call, repair, or refuge, as well as a fine naval station, in its capabilities as a deput for coals and stores, in its hospitals, and in its strength as a military station. Its pusition in the Mediterranean is of the utmast value towards keeping a clear highway to the East and to India. During the eighty-two years of British. occupation the population, trade, and produce have largely increased. The gavernment, created by royal letters patent of 11 th May 1849 , consists of a council of eighteen members, eight elected by the Maltese (about tro thousand three huadred electors), nine chosen by the crown, and the governor, with a salary of $£ 5000$, who is usually a military officer. To these were added by letters patent of May 1881 an executive council of three nembers to advise and assist the governor. The council have powers to make laws and to rote money; this last was restricted by the British Government in 1875 , leading to a protest in the folloring year by the elected eight. The goverament of the islands presents peculiarities owing to the combina. tion of military and civil duties. Several recent inquiries on taxation, education, \&c., have led to important changes durine the last two years. The consolidated revenue is at tho disposal of the crown through the governor and council ; Malta is self-supporting, costing the imperial exchequer little beyond the military and naval cstablishments, aud even contributing $£ 5000$ annually towards the former. The revenue arises cliefly from import duties (of which a large proportion acerucs from $n$ tax of 10 s. a quarter upon grain) and tonnage dues.

$$
\begin{array}{rc} 
& \text { Revenue. } \\
1879 \ldots \ldots \ldots \ldots \ldots 18,794 & \text { Expendlure. } \\
1880 \ldots \ldots \ldots \ldots \ldots .190,661 & 169,318
\end{array}
$$

The tonnage of ressels entering and clearing equals that at Gibraltar; in 1878 it ammonted to $6,503,859(5,660,046$ of which was for British vessels), and in 1850 it was $6,147,234$. In 1879 the value of imperts actually landed was $£ 794,565$, and of exports $£ 216,050,-a$ ralue of about $£ 18,700,000$ merely touching at the pert. The figures fluctuate ; in the following year they fell considerably. In 1837 the revenue was but $£ 95,600$, while but one sleamship, of 137 tons, entered the harbour ; in 18792891 steamers, with a tonnago of $2,781,806$ entered. In the naval yard numerous vessels are repaired yearly; in 187677 theso amounted to 39 irenclad and other ships and 43 smanler vessels. One arm of the harbour is dievoted to a coaling station, where enurmons quantitics of coal are annually imported and sold ( 384,272 tons in 1880). The British Mediterranean fleet is stationed there for six months of the year, the strength of the naval forces being usnally about 5000 men. The strength of the military in the island is usually about 6500 ; the largest garrisan in any Rritisilı colony.

The population, which in 1837 was 115,570 , was 154,892 in 1880 , exclusive of British troops and their families, about 24,000 being English aad forcigners; it is rapidly increasiog, and is unequally distributed, the greater part being settled in the large casals or villages on the eastern half of Malta, ineluding the deasely populated Valetta; large tracts to the west are bare and but sparsely inhabited; abont one-third of the island is rocky and uncultivated. Malta has now 1510 inhabitants to the square mile, Gozo 962. In 1879 there were 9868 children (abont tro-fifths of these at school age) attending elementary schools, in. cluding 768 students at the university and two lyceums; in 1880 the total was 9595 . All the casals of Malta and Gozo (with bat one or two exceptions), besides Valetta and the Cities, have schools, which are now placed on the same system as the board schools in England; great efforts are being made to extend the acquisition of the English language, which till recently was neglected in favour of Italian. The director of public education, besides the elementary, has under his care several secondary schools, two lyccums in Vittoriosa and in Valetta, and the university (founded by the kights in 1768 ), with faculties of philosophy and arts, law, medicine, and theology. 'In Valetta is a large public library founded by the knights in 1760, containing 48,000 volumes, open free daily; ; in Gozo is a smaller one.

History and Autiquilies.-MIalta (Metita), with its sistel Gozo (Gautus or Gauclus), has from time immemorial been a place of importance to whatever race wished to liold the highway of the Mediterrancan, whether Pherician, Punic, Joman, or Arab. Thus even the stories of Homer have a semblance of truth, for the Ogygian islo whero Ulysses took refuge has been supposed to bo Malta of Gozo, in both of which tradition (born of the poem) yet points out the grottoes of Calypso. The earliest inhabitants of whose presence we have any actual trace aro the Phœnicians, from whom we lave several important inscriptions which tell of them and their temples, several curious images believed to belong to their worship, and many specimens of their pottery and glass, chiefly found in tombs, some bearing Phonician charneters and potters' marks. Sepulchral caves and clusters of rock-hewn tombs, especially those in the hills of Bingemma, in several of which terra cotta sarcophagi have been found, are referred with reason to a Phonician or a Punic origin; Caruana's lieport gives a list of these in eight places, distinguishing theu from numerons Greck and Christian catacombs Which also exist in the islauds. The most remarkable remains are three rough stone erections, one in Gozo (Torre dei Giganti), and two in Malta, about a mile ajart (Hagiar lim and Mnaidra), which mainly consist of several apsidal chambers side by side, the walls of which are built of enormous horizontal and upright stones. In Malta the ruins show evidence of much skill in stone-cutting; tho entrances to the chambers consist of three large slabs of stone in flace of doorpost, eacla smaller than and at a little distance from the one outside it ; scveral have irell-shaned holes for ropes or other fastening ; other slabs lave sharply-squaled holes and sleltres ent in the solid stone; others again are ormamented with "pit-markings" or little depressions cut evenly all orer the surface of the stone. A table or altar is also fonmel in some of tho rooms, a messise slab of stone supported on an upright formed like the trunk of a tree; in one case the two ends of the slab are carefully mortised into tho walls at each side, tho chamber beil.g rery small, and apparently intended specially for its reception. Hagiar Kina was excarated by the Covernment in 1840, when considerable traces of the action of fire were found on some of the walls, as well as buried ashes. In other rooms were found quantities of boues, many fragments of pottery, lamps, bowis, \&c., nine images, and a small ormamented altar (Archarol., vol, xxix. p. 227). The ruins in Gozo were excarated about $18: 7$ (Archxol., vol. xxii. p. 294). All thesc buildings stand on commanding positions, light on the side or the shoulder of stcep hills. They lave been usually considered Phonician temples and, on comparison of them with what is known of the great teruple of Nelkart at the south-enst corner of Maltn, the presumption is strong that these too were built by the samo race, at sopno very early period. The bilingual inseription found there belongs to a later age, the Greco-Punic time, to which Greek coins found in botl: islands and a few other remuins bear evidence. It is probable that the islands slarel in some degree the varying fortuncs that followed on the wars in Sicily, which took place as Greck drove out Phonician, as Carthagininn drove out Creck and tried to regain tho ancient possession of the mether-land, as finally lome conquered a1\%. During the First ['uuic War \{20t-2t1 D.c.) Malta scems to harf
been conquered and reconquered more than once (Orosius, iv. c. 8). In the Second Punic War tho Carthaginians, under Ilamilaar, son of Gisco, gave it up to Titus Sempronius, 218 B. C. (Livy, xxi. 51).

In the pursuit of manufactures and commerco Malta had attained a high degrce of prosperity under the Phonicians, which still existed under the Romans of the Augustan age. It was especially fanous for its textile fabrics (probably of cotton, which is grown sud spun there to this day); the Sicilian pretor Verres sent there for women's woven garments. The inhabitants were rich, and there wero many artificers of all kinds. Ovid speaks of it as a fertile island (Fast., jii. 567). The remains formerly existed (unfortunately now for the most part dispersed or destroyed) of several fine Greco-Roman temples, such as the temple of Juno spoken of by Cicero and Valerius Maximus, whose ornaments and fine ivories and carved figures of Victory tempted more than one sucrilegious robber; tho temple of Proserpinc, which we learn from an inseription was repaired by Chrestion, a freedman of Augustus, procurator of Malta; and the temple of Apollo at the chief town Melita, which with a theatro shared tha munificence of a wealthy Maltese under tho Antonine rule; these and the ruins of a princely Roman drelling with mosaics, system of water supply, \&e., at the same place, are but a few signs of the luxury enjoyed in the island.s. Diodorus noticed the beauty and adornment of the houses in Nlalta in his time, a fer years after the sbipwreck of St Paul. Ono of the islanders mas a friend of Cicero, who had thoughts of retiring there himself. A mole and important harbour works, discovered a few years ago, show that the Romans were not behind in strengthening the natural advantages of the islands for shelter. Inscriptions recording municipal institutions there date from the time of Hadrian ; how much earlier they possessed them is unknown. Before then we hear of Chrestion the procurator mentioned above, and a Roman governor under Augustus, Lucius Castricius, styled $\pi \rho \bar{\omega} \tau o s \mathrm{Me}_{1}$ Tal $\omega \nu$, "chief man of the Maltese" (Caruana, 1882, p. 134; 1881, pp. 20, 21), just as, lialf a century later, Publius rras mpốtos $\tau \hat{\eta} s$ $\nu \dot{\eta} \sigma o v^{\prime}$ "chief man of tha island" (Acts xxviii. 7) ; all these were protably concerned in the loral government. The Romans retained the Maltese group for many centuries. At tha division of the empise in 337 A.D. it passed with Itajy, Illyria, and Africa to Constans; after the reunion, and the final division after the death of Theodosius in 395, Malta, as one of tha isles of the Mediterranean, remained with the empire of the East. History has but little to mention regarding it during those early times, except that event of ever-living interest, the shipwreck of St Paul, $58 \mathrm{~A} . \mathrm{D} .$, which it is now well-ascertained took place in a bay on the north side of Malta. The alleged conversion of the Maltese to Christianity following the three months' stay of the apostle and his companions may be a fact ; Chrysostom refees to it (Hom. 54 on Acts). Many Christian monograms and inscriptions hava been found, ranging from the 2d to the 9 th century; and the tombs and subterranean cemeteries mear Citta Yecchia are said to be arranged like the Christian cemeteries of subterranean Rome (Caruana, 1881, p. 18). Tradition says these were used as hiding-places in tinies of persecution ; it is certain that Ptolenny at the end of the $2 d$ century notes the famous temples of Hercules and Juno as still in existence; the old religion and tho new must have gone on side by side for a long time. After a time Malta mas made a bishopric ; according to R. Pirrus (Sicilia Sacra, Melitensis Eccl. Not. vii., s.x. "Lucillo") it was, though considered part of Africa, subject to the bishop of Palermo (in 6 th century primate of Africa); we find Gregory the Great dealing with a contumacious bishop of Maita and directing the bishop of Syracuse and others to depose him, and to aid the sucecssor appointed in his Flace (Greg., Epist., ii. 44 ; ix. 63 ; .x. 1).
The Saracens did not gain possession of Malta without a struggle of many years; they invaded it three times, in 828,836 (when it appears to have been chiefly Gozo that suffered), and finally in 870, when the inhalitants of Mclita, having massacred the Greek (Byzantine) garrison of 3000 , opened their gates to the invaders. The Arabs are said to have destroyed part of the city so as to bring the fortifications within smaller compass, rendering it more easy to defend, and to have clanged its name to Medina (great or chief eity. In a suburb just outside the present walls there was discovered in 1881 a burial-placc containing numerous Arab coffins, overlying the remains of the Roman palace mentioned abore, which was thus finally ruined and eonccaled by the conquerors. It is known that they built a fortress in 973 , at the puint of MTount Sceberras where Fort St Elmo now stands. A feiv coins are preserred, but otherwise very little record remains of the Arab dominion, which lasted about two hundred and twenty years; no more Christian bishops are known until after that time, but tradition asserts, not mithout probability, that some of the original natives remained in eertain villages and some Greeks in the capital, among whon were Christians.
The Norman knights, who brought their conquering arms into Apulia, Calabria, and sicily, and even sent ships to Byzantium, were probably the first $t$ bring a Teutonic race and influence into Mlalta. Throngh somewhat uncertain dates it appears that Roger 1. (youngest son of Tancred, and brother of Guiscard) about io9

Ianded in the island and levied tribnte, and 'ibat about 1127 Roger Il., this not being paid, set sail with a flect, tock Medina, then governed by a gaito, ffaimono, and after sctting free all the Christians and cxacting a large sum in moncy, mulcs, and horses, completed tho conquest of Dlalta and Goze. Walter, bishop of Malta, whose name is found as wituess to a document of 1090, is believed to have been now appointed by liomer 1., and consccrated by the pope. A suecession of Christian bishops, endowments and buildings made, tithes granted, \&c., testify to the restoration of the church in the islands, while they sharcd with Sicily the feudal laws and administration newly established under the Norman rule. In 1193 Malta as a county gavo a title to Margarito Brundusio, grand-admiral of Sicily, aud three successive counts of Malta followed. After the Norman prinecs lad possessed the islands about a century, the kingdom of the Two Sicilies, and the Maltesa islands with it, passed in 1194 to the emperor Ilenry V'J., in professed right of his wife Constance, danghter and beiress of Roger 11. In 1223 a Maltese named Henry or Arrigo is stated to have been grand-admiral of Sicily (Pirrus, 1. 906 ; Dliege, ii. 38). He is probably the same as the distinguished Henry, count of Malta, who with three hundred Maltese youths in 1205 carned the favours of the Genoesa by brilliantly taking two forts in Tripoli (Caffarus, Anv. Genuenses, in Dluratori, t. Vi.), and who took part also in the fourth crusade. No traces of the crusades, however, havo been found in these islands, althouglt it is probable that their leaders would not neglect the adpantages of Maltese ports and sailors.

Henceformard Malta, as a fief of Sicily, follomed the fortunes of that country. The Maltese seem to lave taken no part in tho Sicilian Vespers (1282), but to have held out for Charles of Anjon until Peter of Aragon, crowned king of Sicily, August 1282, won a battle at sea against the French, attacked Notabile and the forts, and thus obtained possession of the islands. For nearly two hundred and fiftr years the Spanish house, through fourteen lings of Aragon, bore rute over Sicily and Malta. In 1391 the countship was erected into a marquisate, which lasted two years only. In 1427 a swarm of Moors ( 18,000 ) ravaged Malta and Gozo, but were not able to take the city Notabile ; yet the people, though aflicted by the plague in 1431 -as not unfrequently at other times-were able to sally forth to conquer Gerbi on the coast of Africa in the following year. The king at this time (1432) authorizcl the demolition of the old castle at Notabile, built three hundred and fifty years before, and gave the ground on which it stood to the town ; but the fortifications of the island were strengtheued (1466), the chief stronghold in the 15 th century being the fortress of St Angelo. The inlabitants, addicted to fighting at sea, were forbidden from 1448 to 1494 to send out armed corsair ships, in order it is said to relain those capable of defence in tie islands, the population of which was at the beginning of that period very scant. The Jews were expelled from Nlalta by the same edict of Ferdinand, in 1492, which turned them out of Spain. By 1514 the population of Malta liad doubled; the two islands together contained 22,000 inhabitants (Miège, ii. 81). They frequently attacked the Moors on the mainland, and suffered reprisals themselves as late as 1526 . Their last king of the Spanish house, the emperor Charles V., in 1530 granted Malta and Gozo (with the city of Tripoli) as a noble and free fef to the knights of St John of Jerusalem, still retaining, however, the suzerainty, by the homage of a falcon annually to be gisen by the knights.

Malta thus during many centuries occupied the position of a feudal fief of Sicily; her laws and her church date from the times of the Normans, and both develnped as in other feudal governments. The progress of ber political independence iu the 15 th ecntury, especially under Alphonso I. and John 1., has been shown by the historian Nliege; the history of the relations betwcen Malta and the monarchs of Sicily affords an interesting example of feudal obligations with their attendant difficulties. That these fostered a spirit of liberty and independence in the people, and must have tended largely to the prosperity of the islands, is shown by numerous diplomas of the Aregonese suzerains proscrued in the archives at Malta (Eton's Authentic Natcrials, 1803, P. 105 sq.), where it is seen that the inhabitants acquired many lrivileres and were also able to pay on emergency considerable sunss of money to increase and preserve their privileges. Thus in 1423, only a century beforo the knights came, they paid 30,000 florins of gold to Eing Alphonso in order to sccure their tenure by the crown of Sicily withont any middle-lords, being the second time they thus bought back thefr island rights (Eton, P. 84). These tbings are to be noticed, because, as has been complained, the knights unjustly depreciated the value and advantages of the islands, in order the more readily to obtain the grant from Charles V. Under the kings of Sicily, Notabile was a universitd or commune, with its popular council and jurats, a captain-justiciar representing the rights of the crown; in other words, sfalta was a republic governed by its own laws; the principal magistrate was nanied by the king out of three persons proposed ty the consilio popolarc, and was liable to dismissal on complaint by t're people. The king potected the island and is
roturn the Baltese toek a share in his wars. When the knights took pessession the Maltese stipulated that each grand master on entering office should take oath to maintain their ancient rights and liberties (Eton, pp. 38, 85, 101). The knights began by deceiv. ing the Maltese candidates for almission into their ranks. 'I'heir rule, at hrst conciliatory, seon became despatic; in time the overshadowing power of a rich military organization encroached upon the constitutional government, corruption brought the officials under the control of the knights, and the people lost their Iiberties, though the material presperity of the islands was in many ways heightened.

For the histery of the order of St Jehn see St Jonn (FNiguts OF). Twenty-eight successive grand masters, from Lisle d'Adam to Hompesch ( 1530 to 1798), held the islands. Lisle d'Adam established his convent and hospital in the Borgo, a city that had grown up on the coast aear the castle St Angelo, opposite the ancient fort St Elmo. In 1541 was made the first survey for the fortification of Valetta. Ten years later the Turks, led by their famous aaval commander Dragut, ravaged Goze, and made an attempt upon Malta which failed. The knights, already famous for their power at sea, were soon engaged in much skirmishing warfare against the pirates and Turks, winning success and riches, and the gratitude of Christian nations. In 1565, after elght years of threatening prepara* tions, during which the knights had been strengthening and fortifying their island, the Turks besicged them with an immense force; they defended themselves with such valour that at took a month to reduce Fort St Elme, and in rather over two months more the Turks, whose "urther advance was successfully resisted, were forced to retirc, leaving the knights free to build their new city Valetta and its fortificatious. The admiration and gratitude of Catholic countries fer this service to Christendom showed itself an liberal donations towards these works; large sums were also rased from the possessions of the order ; and Valetta, the first stone of which was laid on 26 th March 1566 , in four years rose upon the ridge of rock, "a city built by gentlemen for gentlemen," as it las been well describel, - the original design of which, the cutting down the rock to a level platform, had only suffered from the continual fear of molestation by the Turks while building.
The arder, now firmly established in their island, continued to carry out their mission, that of keeping the Mediterranean clear from Turkish and Moorish pirates, and of protecting Christendom against the infidels. Numerous sea-fights took place during the 16 th and 17 th centuries, many of them undertaken more to make up for the neglect of some of the grand masters to sulply the islands with corn, by seizing upon 'Turkish stores, than for any hetter reason. Valetta becamo in consequence "a vast slave mart." In 1614, under G. M. Vignacourt, an aqueduct was constructed at a cost of $£ 13,000$ to bring water te Valetta from springs near Citta Vecchia, a work of immense value, and still in use. But the work of fortifying Malta occupied a large share of money anil attention, and was carried on without relasation by many of the grand masters, down as late as the building of Fort Tigne in 1793. Besides tho great lines and forts in and round Valetta, the knights have left their mark all over the islands: they made good roads, improved Citta Vecchia, built watch-tewers rennd the coasts, and erected towers, country palaces, and gardens. They also established and continually carried on, at Notabile and Valetta, their hospitals for the sick and wounded. In 1768 the Jesuits, having given much trouble, were expelled and their property confiscated. Danger from rebellion twice threatened the knights-in 1722, when the slaves were helieved to be in communication with the Turks, and frem 1773 to 1775 , when both peeple and priests were wreught upon by oppressien and misgovernment, which, only mitigated for a time by the better measures of G. M. Rohan, led to the weak and disorganized condition of the order tlant ended in its overthrow. In June 1798 , the pos. sessiens of the erder in France having already been seized liy the republicans, Bonaparte on his way to Iigypt landed with a large force in a bay behind Valetta; no resistance was made, and in a few heurs the French were in possession of the whole of Goze and Malta except the town of Valetta and one little fort. In four days more, without bombardment, the order liad surrendered Valetta and practically ceased to exist. Bomaparte stayed six days, laying down lar's and regulations with a high hand, and collecting plunder from churches \&e. He left Vaubois in charge, but in less than three months the Maltese had revolted from the tyramy of their new masters, and Vanbeis inside Valetta with 6000 men sustained a siege and blockade lastiug two years, during which time Portuguese, Neapolitans, and a small force of English assisted the Maltese. Sir Alexander Ball commanded in the name of the Sicilian king, aud was putat the head of their National Council by the Maltese. On 4th September 1800 Vaubois surrendered, and the Malteso (who lost $20,000 \mathrm{men}$ ) put themselves and their islands under the protection of the English, -runion to the crewn of Sicily, which they bad sought, being ne longer thought of. The treaty of Amiens (1802) provisled that the islands should be restored to the order of St John, obvieusly to the advantage of Frauce, but repugaant to
the Maltese. War breaking out again, the islands remained in the hands of England till in $181 \pm$ they "sere secured to lier by the treaty of Paris (Art. 7), under which she still holls them.
See Kenrick's Phoenicia. 1855 ; A. A. Caruanås firparts on Phenician and Foman Antiquites in lfalia, 1541 and 1882 ; Jumes Smith. Lir yaje and Shipwo ect
 C. Quiutin, Insulz Meltie descriplio, 1536 ; G. W. von Strulbure, Reyse nach der Ansel Afalla, 1f32: 1. Gregorio, Consuderazioni sopra la Storia di Sicilia, 1839: Ansel Aralla, lije; H. Gregorio, Cunsuderazioni sopral a Storia di Sicilia, 1839: F. A. C. Davalos. Tableau Mstorique de Jlalle 1816: Elon, Authentic Nalerials for History of Jalla, 1802 ; Houel, loyage Pilloresque, vol. iv. 1781 ; G. P. Badger, Descriphon of Jlalla and Gazo, 1s58: G. N. Godwin, Guide to und Natural History of Maltese 1slands, 1880; Whitwosth Polter, History of Knights of Sfalta, 18j3: A. Bigelow. Travels in Malla and Sicily, 1831; 1. Miege, Histaire de Balte, 1840: Parliumentary Papers-leports by Mr Rowsell on "Taxation and Expediture of Malt"," 1878 , by Sir P. Julyan on "Civil Establishments," 1880, and SIr Fseman on the "Fducutloual System," 1850 (ihe lase two deal with the questlon of languge); F. Vella, Bfaltese Grammar for The use of the Eng'ish, 1831; Matta Penny Blagazine, 1839-41; J. T. Mifsud, Riblioteca Mallese, 17fit. Brydone, Teo: ge, John Dryden, jun., W. Tallack, Rev, H. Seddall, Boisgelin, Rev. W. K. R. Bedford, W. H. Bartlett, St Priest, Misgr. Bres, and $F$. Lacroix have also written on Malta. lor natural sclence. sce the works of Dr A. L. Adams, Professor E. Forbes, Csplain Spratt, Di' G. Gula, C. A. Wright, and Wood s Tourist's Florc.
(L. T. S.)

MALTE-BRUN, Conrad, a distinguished geographer, was born August 12, 1755, at Thysted in Denmark, and died at Paris, December 14, 1826. His real name was Malte Conrad Bruun, and it was nut till he selted in France that he became known by the more fanniliar form. While a student at Copenhagen, he made himself famous partly by lis verses, but mucli more by the violence of his political pamphletcering ; and at length, in 1800, the legal actions which the Covernment authoritics had from time to time institnted against him culminated in a sentence of perpetual banishment. The principles which he had advocated were those of the French Revolution, and, though he at first sought asylum in Sweden, before long he found liis way to Paris. There he looked forward to a political career; but, when Napoleon's personal ambition began to unfold itself, Malte Brun was bold enough to protest, and to turn elsewhere for employment and adrancement. He was assuciated with Mentelle and Herbin in the compilation of their Géographie mathématique .. de toutes les parties du Monde (Paris, 1803-7, 16 vols.), and. before many years he was recognized as one of the best geographers of France. He is remembered, not only as the aulhor of six volumes of the learned Précis de géographie universelle, continued after his death by other hands, but also as the origimator of the Amades des Soyages (1808), and the principal founder of the Geographical Society of Paris.

MaLTHUS, Thomas Robert (1766-1834), the scientific expounder of the principle of population, was born in 1766 at the Rookery, a small estate owned by his father in the county $n f$ Surrey. His father was a gentleman of good family and independent fortune, - a man of considerable culture both in literature and philosophy, the friend and correspondent of Rulusseati, and one of his executors, one, tuo, who showed no little interest in those social problems in which his son was to be an original inqurrer. Young Malthus was never sent to a public seliool, but received lis education from private tutors, who were themselves men of some distinction. In 1784 he was sent to Cambridge, where he was ninth wrangler, and becane follow of his own coilege (Jesus) in 1797. The same year he received orders, and undertook the clarge of a small parish in Surrey, still, however, retaining his fellowslip. In the following year be pablished the first edition of his great work, An Essay on the Principle of Population as it affects the Future Improvement of Socicty, with remarks on the -speculations of $31 r$ Godwin, MF. Condorcet, and other uriters. The work excited a good deal of surprise as well as attention ; and with characteristic thoronghness and love of truth the author went abroad to collect materials for the verification and more esbaustive trentment of his views. As Britain was then at war with France, only the northern countries of Europe were quile open to his researth at that time; but duriog the brief peace of Aniens Malthus
contiaued his inrestigations in France and Switzerland. The result of these praisemorthy labours appeared in the greatly enlarged and more mature edition of his work, which was published in 1803. In 1805 Malthus married happily, and not long after was appointed professor of modern history and nolitical economy in the East India Company's College at Haileybury. This situation he retained till his death in 1834. Malthus mas one of the most amiable, candid, and cultured of men. In all his private relations he was not only without reproach, but distinguished for the beauty of his character. He bore the popular abuse aud misreprcsentation without the slightest murmur or sourness of temper. The aim of his inquiries was to promote the bappiness of mankind, which could be better accomplished by pointing out the real possibilities of progress than by indulging in rague dreams of perfectibility apart from the actual facts whici condition human life.

Malthus's Essay on Population grew out of some discussious which he had with his father respectiog the perfectibility of society. His father shared the theories on that subject of Condorcet and Godwin; aud his son combated them on the ground that the realization of a happy society will alnays be bindered by the miseries consequent on the tendency of population to increase faster than the means of subsisteace. His father was struck by the weight and originality of his views, asked him to put them iu writing, and then recommended the publication of the manuscript. It was in this way the Essay saw the light. Thus it will be seen that both historically and philosophically the doctrine of Malthus was a corrective reaction against the superficial optimism diffused by the school of Rousseau. It was the same optimism, with its easy methods of regenerating society and its fatal bliudness to the real conditions that circumscribe human life, that was responsible for the wild theories of the French Revolution and many of its consequent excesses.

The Essay on the Principlo of Population will best be considerci under tro heads:-(1) the principle itself, with the arguments and illustrations by which it is supported; and (2) remarks on its origin and its applications.
I. The principle itself. The idea with which Nalthus starts is the improvement of society. In an inquiry concerning the improvement of society there are two things to be done, -(1) to investigate the causes that hare hitherto impeded the progress of mankind to happiness, and (2) to examine the probability of the total or partial remoral of these causesin future. Waiving the considera. tion of such atr immense field of thought, Malthus restricts himself to the examination of one grcat cause intimately connected with human mature and its effects on society, which, though operating since the commencement of society, has been little noticed by writers. This canse is the constant tendency in all animated life to iocrease beyond the nourishment prepared for it. Throughout both the animal end vegetable kingdoms, nature has scattercd the seeds of life abroad with the most profuse and liberal hand. Life on this planet is so prolific that, if allowed freo roons to derelop itself, it would fill millions of worlds in the course of a ferr thousand sears. There is only one limit to the indefinite increase, and that is necessity. In plapts and irrational animals, which are impelled by blind instinct untroubled by doubts about providing for their offspring, the problem is simple; in their case increase is checked ouly by want of room and nourishment. As regards man, whose equally powcrful instinct is controlled by reason, the question is more complicated. In his case, increase must either be checked by preventive restraint, which too frequently produces vice ; or a constant check, from the difficulty of aequiring food. must be in operation.

That population tends to increase berond the means of subsistence is obrious in tro ways, - (1) from a comparison of the natural increaso of population, if left to exert itself with perfect freedom, with the arailable increase of subsistence nnder the most farourable conditions, and (2) from a sericw of the different states of society in which man has existed. Under the first head, Malthus considers it a safe calculation that population, when unchecked, goes on doubling itself every trrenty-five rears. It lias even been calculated that it may double itself in about thirteen years; that proinetion has actually. occurred for short periods in more countries the's one. Maltbus, kow?res. contents himself with the more
moderate rate, namely, that population, Whea unchecked, doubles itself every tuenty-Give years, or increases in a geometrical ratio. If 80 , how is the rate of increase of the means of subsistence to be estimated? If we take a limited area, no improrement in developing the resources of the soil will keep pace with the unehecked increase of pepulation. We may allow that, through the great improvements of agriculturo in Great Britain, the average produce of the islaud could be doubled in the first twenty-five years; but in the next twenty-five it is impossible to suppose that the produce could be quadrupled. The utmost tre can allow is that the produce might be increased every twenty-fire jears by a quantity equal to what it at present yields. If we apply this supposition to the whole earth, we shall assume an increase much greater than any possible exertions of mankind could effect. $\mathrm{On}_{2}$ the whole, then, in the present average state of the carth, the meads of subsistence conld not be made to increase faster than in an arithmetical ratio. TVith such a disproportion betwreen the ratio of increase of population and of the means of subsistence, population can be kept down to the lerel of the mcans of subsistence only by the strong larr of necessity operating as a check on the greater porrer. In fact; the ultimate check to population is the rant of food ; but this ultimate check is never the immedinte check, except in cases of actual famine. The immediate check consists of all those cus. toms and all those discases which are generated by a scarcity of food, and all the causes indcpendent of the scarcity which tend to weaken and destroy the human frame. These checks are cither preventive or positive; aud the former consist either of moral restraiut or of vice, nlirays so pernicious to society. The positive checks are extrensely various, including everything that contributce to shorten the natural duration of buman life. "Under this head may be enumerated all unwholesome occupations, severc labour add exposure to the scasons, extreme porerty, bad nursing of children, large towns, excesses of all kinds, the whole train of common diseases and epidemics, wars, plague, and famine." The checks of all kinds may be reduced to three heads-moral restraint, rice, and misery. This theoretical exposition of the checks to poptlation Malthus supports and illustrates by an exhaustive examiontion of the checks which have operated or still operate in the various countrics and states of society from the brutal and recolting practices prevalent amoug the sarages of Tierra del Fuego and Australia to the moral self-control of the highest nations. It is nat a pleasant picture, but it is merely a presentation of historical and statistical facts for which Malthus is in no way responsible. Thronghout his entire exposition he does not theorize, but scels only to systematize and elucidate facts which cannot be contro. rertel, belonging as they do to the history of the world. The only notable exception is his attempt to cxpress in mathematical language the possible increase of the means of subsistence. The couditions determining such increase are too rague and various to be calculated in such a way. On this point Malthus is not follorred by subsequent economists, and it is not essential to his principle. At the same time, in spite of its unsoundness, it does help us to realize the disproportion betrecu the possible increase of population and the means of subsistence.
II. What remains to be said of tho Essay on the Principle of Populution may be embraced in the folloring notes. (1) Origin of the principle. The population question las always had a great influence on the development of mankind. In the most harbarous nations the problem of preserving the balance betreen food and population must alirays have been a pressing one, and has led to some of their cruellest and most immoral customs. The more theoretic consideration of the question has a large place in the political treatises of Plato and Aristotle. Just before Malthus's time it had been tonched by such writers as Beujamin Franklin (Otserrations concerning the Incrcase of Mankind), Hume (Populousness of the Ancient Nations), Wallace (On the Niumbers of Mrankind in Ancient and Modern Times), Townshend (Trarels in Spain), not to mention many other modern writers of less recent date. (2) The remedy for over-population usually proposed is emigration. No doubt there are immense fertile areas yet unpeopled. But the diffi cuity of transferring the surplus population, and espccially of conresing surplus capital to these regions, and of co-ordinating the tro, is a point that must not be overlooked. In spite of the great derelopment of steam as a means of emigration, it remains a fact that population teuds to excess in many of the most important centres of the rorld. Besides, emigration is only a postpouing of the difficulty. In another century even the Mississippi ralley will be well stocked. (3) Relation of Malthus to Darwin. In his book Animals and Pianls under Domestication, vol. i. Po 10, Darwin expressly acknomledges his indebtedness to Malthus in thinking out his cardinal principle of natural selection. After the study of domestic productions had giren him a just idea of the power ef selection, he sam, "on reading Malthus On Population, that naturat selection was the ineritable result of the rapid increase of all organie beings." (4) Poor-larr reform. The reformed poor latr of 1834 was a real triumph of Malthus's teaching. The effect of the old poor law ruas to ercourage population by relievidg the labouring classes of
the due responsibility of supporting themselves and their fanilics. Ly discouraging foresight, aelf-control, and the spirit of aelf-reliant independence, it demoralized tho working man. The great aim of the new poor law was to emphasize the duty of self-support and tho responsibilities of parentage. (5) Relation to modern politics. Some of tho greatest difficulties in contemporary politics can be correctly understood only in the light of the principle of population. The most striking example of this is India, where, uuder the good government of England, tho old and unhappy checks to popalation, sueh as war, famine, pestilence, and religious self-immolation, have been removed. As there has beeu no proportionate improvement in agriculture, and in the ethical development of the people, population has increased beyond the means of subsistence, and there prevails a tendency to chronic poverty, a very low standard of living, a general misery, and an unsatisfactory social noorale, which correspond badly with the high European civilization under which such a atate of things is maintained. (6) It is only due to the memory of a gooll man, whe was a siucere lover of truth and of the progress of humanity, that we shonld emphasize the fact that Malthus is in uo way respousible for the immoral theories popularly connected with his name. Apart from such increose in the means of subsistence as may be attained by emigration and improved agriculture, Mtalthus approved of only one method of solving the population question, namely, moral gelfrestraint. His aingle precept is "Do uot marry till you have a fair prospect of supporting a family." The greatest and higllest moral result of his principle is that it clearly and emphatically teachea the rcsponsibility of parentage, and declares the sin of those who bring human beings into the world for whose physical, intellectual, and moral wellbeing no satisfactory provision is made.
Ressides his great work, Malt'us wrote Observotions on the Effect of the corn Laws; An Inquiry into the Nature and Progyess of Rent; Principtes of potitical Eranomy; and Definitions in Political Economy. His vlews on rent were of real
importance. For his life see Slemoir by his frient Dr Drter, bishop of Chichester Importance. For his life see Memoir by his frientl Dretter, bishop of Chichesster
(prefised 10 2d edituon, 1836 , of thic Principtes of Poluical Economy). (T. K.)

MALTON, a parliamentary borough of Yorkshire, Eng. land, which includes Old Malton and New Malton in the North Riding, and the parish of Norton in the East Riding. New Malton is situated on an cminence on the right bank of the Derwent, 22 miles nerth-east of York and 213 north of London. Old Malton lies about a mile to the north-east, and a bridge across the river connects New Malton witl Norton. New Malton, which is a market-town, consists of several weil-built streets radiating from the market-place. The church of St Nichael is a fine building in the Late Norman atyle; the church of St Leonard, of mixed architecture, with square tower and spire, has three Norman arches and a Norman font; the west doorway of the church of St Mary at Old Malton is onc of the finest specimens of Norman in England. In Old Malton there is a grammar schnol founded in 1547, and also the remaias of a priory oi Gilbertine canons, fourded in 1150 . New Malton possesses a town-hall and a corn exchange. The town has sulre shipping tradc, and alse iron and brass foundries, agricultural implement yorks, corn milis, tauneries, and breweries. In the neighbourhood there are lime and whinstune quarries. The population of the parlianentary borough (area 6855 acres) in 1871 was 8168 , and in 1881 it was 8750 .
Malton was a Roman station, and various Roman remains have been found in the neighbourhool. The old castle, built by the De Vescis in the time of the Normans, was demolished by Henry 11. In the reign of Stephen the town, while occupied by the Scots, was burned down by Thurston, archbishop of York, and on being rebuilt it was named New Milton. The borough aent memhers to parliament as early as tho reign of Edward I., but for some years previous to 1640 the privilego was in aheyance. Since 1868 only one miember has been returncu.
Maltzan, Heinrich I. E. H. Freiherr [Baron] von (1826-1874), African and Oriental traveller, was born in tho vicinity of Dresden, and studied law at Jena, but on account of ill-health spent much of his time from 1850 ia travel. Succeeding to his father's property in 1852 , he extended the range of his jouraeys to Morocco and other parts of the Maghrib, and before his return home ia 1854 had also visited Egypt, Palestine, and other couatrics of the Levant. In 1856-57 he was again in Algeria; in 1858 he reached the city of Moroceo; and in 1860 he succeeded in performing the pilgrimage to Mecca, which Lo afterrards
aescribed in his book Meine Wallfahrt nach Mecca, but had to flee for his life to Jeddah without visiting Medina. He then visited Aden and Bombay, and after some two years of atudy in Europe agaia began to wander through the ceasts and islands of the Mediterranean, repeatedly visiting Algeria. His first book of travel, Theree Years in the North-- West of A frica, appeared ia 1863, and was followed ly a variety of works and essays, popular and acientific, till a little before his death at Pisa in 1874, when he put an end with his own hand to neuralgic pains which had tortured him for years.
Maltzan's last book, Resse in Arabien (1873), is one of his mooat nseful contributions. It coutains, like his other works, zome lively deseription, but is chiefly valuable as a digest of mueli information abont little-known parts of South Arabia collected from natives during a residence at Aden in 1870-71. Among his other services to science must be noticed his collection of Punic inscriptions (heice in Tunis und Tripolis, 3 vols., Leipsic, 1870), various collections on Arabic dialects (Z. D. M. G., various dates), and the editing of Von Wrede's remarkable journey in Hadranaatt (1S73).
MALUS, ETienne Louis (1775-1812), the discoverer of the laws of the polarization of light by retlexion, born at Paris on the 23d of June 1775, was the ann of Anne Louis Malus du Mitry, and of Lovisa Charlotte Desboves, lis wife. His father, who had a place in the treasury of France, gave him at home an excellent education in mathematics and in the fine arts, as well as in classical literature, and he then studied with distinction in the school of military engineers; but, being regarded as a suspected person, probably on account of the situation held by his father, he was dismissed from the school without receiving a commission, and obliged to enter the army as a private soldier. Being employed upon the fortifications of Dunkirk, he was seva distinguished by. M. Lepère, the director of the works, as superior to his accidental situation, and was selected as a member of the Ecole Polytechnique then to be established under Monge, who immediately chose him as one of thie twenty who were to be instructors of the rest. Int this institution, which at that moment was the only refuge of the acieuces in France, he passed threo ycars, giving special attention to the mathematical theory of optics. From the École he was admitted into the corps of engineers, and served in the arony of the Sambre and Mense; he was present at the passage of the Rhine in 1797, and at the affairs of Ukratz and Altenkirch. - In Germany he fell in love with the daughter of Koch, the chancellor of the university of Giessen; and he was on the point of marrying her when he was obliged to join the Egyptian expedition. He remained in the East, and saw much service till the capitulation with the Eaglish, when he returned to France (October 1801), and hastened to Germany to fulfil his engagement. His fidelity was rewarded, during the eleven years that he survived, by the most coustant and affectionato attention on the part of his wife.

Though his health was much broken by the enstern campaign, Malus was still able to combine the pursuit of his favourite sciences with his official duties in superintending the construction of works at Antwerp aud at Strasburg; and upon occasion of a prize question proposed by the Institute he undertook the investigation of the extraordiaary refraction of Iccland crystal, which the experiments of Dr Wollaston had previously shown to agree very accurately with the larss laid down by Huygens ; and, besides coapletely confirming all Wolla, ton's results, he had the good fortune greatly to cxtend the Huygenian discorery of the peculiar modification of light produced by the action of such erystals, which Newton had distinguishod by the name "polarity," and which Malus now found to be produced in a rariety of circumstances, independently of the aetion of crystallized
bodies. It seems natural to suppose that the jurestigatiou of the laws of the interual reflesion of light at the second surface of the crystals must have led hin to the discorery of the effects of oblique reflexion in other circumstances ; but, accurding to Biot, Malus's first observation of pclarization by reflexion was die to the accidert that he chanced to look through a quartz crystal at the image of the sun reflected from the windows of the Luxemberg. The ralue of his discovery was acknowledged by his election as a member of the Institute, by the arrard of the Rumford medal of the Royal Society of London, and by military promotion. Malus died on the 24th of February 1812 , universally regretted by the lovers of science in all countrics, and deeply lamented by his colleagues, who said of hinn, as Newton did of Cotes, that if his life had been prolonged we should at last "Lave knowu something " of the laws of nature.

Malus's first publication appears to have leen a paper "On an unknown Branch of the Nile," in the first volume of the Decade Egyptiennc. A mathematical "Traite d'Optique," presented to the Institute before the completion of his experinients on double refraction, was published in the Mémoircs 2 r. it l'Institut, vol. ii., Paris, 1810. His more important discoveries were first made known in the second volume of the Memoircs d'Areucil, Paris, 1809, Svo; and again, in the "I'heory of Dmble Refraction," Mín. pr. a l'Inst." rol. ii., a paper which obtained a prize on the 2d of Jannary 1810. See Delambre, M. Inst., 1816, p. xxvii.; Biot, in Biographic Üniverselle, xxvi., Paris 1820.

MALVASIA (from the Greek Monembasice, i.e., the city of the single appreach or entrance; the Italian Nrepoli cli Malvasia, the Turkish Mengeshe or Beneshe), one of the principal fortresses and comrnercial centres of the Levant during the Middle Ages, still represented by a considerable mass of ruias and a town of about 1000 inhabitants, stoorl ou the east coast of the Morea, contiguous to the site of the ancient Epidaurus Limera, of which it took the place. So extensive was its trade in winc that the name of the place became familiar throughout Europe as the distinctire appellation of a special kind-the Italian Malvasia, Spanish Malvagia, French Malvoisie, English Malvesie or Mralmsey. The wine was not of local growth, but came for the most jart from Tenos and others of the Cyclades.

As a fortress Malvasia played an important part in the struggles between Byzantium, Venice, and Turkey. The Byzantine emperors considered it one of their most valuable posts in the Morea, and rewarded its inhabitants for their fidelity by unusual privileges. Phrantzes (lib. iv. cap. xvi.) tells how Mauricius Tiberius made the city (previously dependent in ecelesiastical matters on Corintl) - metropolis or arehbishop's see, and how Alexius Comnenus, and more especially Andronicus Palæologus, gave the Monembasiotes freedom from all sorts of exactions throughout the empire. In 1147 Malvasia bade defiance to tho Normans, and in 1205 obliged Villehardouin, after a four years' siege, to swear to preserve its liberties and privileges (Fallmerayer, i. pp. 408-409). It was defended against the Turks by Manuel Palroologus in 1460. In 1689 it was the only town of the Morea which held out against Morosini, and Cornaro his successor only succeeded in reducing it by famine. In 1715 it eapitalated to the Turks, and on the failure of the insurrection of 1770 the leading familiss were scattered pbroad. As the first fortress which fell into the hands of the Greeks in 1821, it became in the following year the scat of the Girst natioual assembly.
1 See Curtlus, Pelononnesns, ii. pp 293 and 329; Castellan, Lettres sur la Morée (1808) f(1- a plan; and Valiero, Iitist. della guerva di Candia (Venice, 1679) for jetalls as tu tive fortress.

MALVERN, Great, a watering-place of Worcestershire, England, beautifully situated on the castera slope of the Malvern hills, 8 miles south-west by south of Worcester, nind 120 north-west by west of London. The torn is lrregularly built, but there are many villas, and on account of its fine situation in the ceutre of the Chase of Malrern, its pure air, and its chalybeate and bituminous eprings, it is much frequented by summer visitors. At Malvern A hermitage was cndewed by Edward the Confessor, which after the Conquest was changed into a Bene-
dictine priory. Of the buildings, which date from 1083, there still remain the abbey gate, and also the church (partly rebuilt in the reign of Henry VII., and restored since 1861), a very fine structure, Norman and Perpendicular, with square embattled tower. There is a proprietary college, founded in 1863. At Little Malvern, about 3 miles south of Great Malvern, there was a Benedictine priory, founded in 1171 , upon the site of which the dwell. ing-house of Malvern Court has been erected, preserving the tower and chancel of the old priory church. At Mal. vern Wells, 2 miles south of Malvern, is the celebrated "Holy Well," the water of which is of perfect purity: The population of Malvern in 1871 was 5693 , and in 1881 it was 5847.

MÁLIVA, an historical province of Central India, roughly coesteusive with the western portion of the Central India agency, is bounded on the N. by Hindustan Proper, on the E. by Bundelkhand, on the S. by the Deccan, and on the W. by Rájputána. It consisis of anz upland region, with many fertile valleys, included within the main rivers of the Ganges, the Són, the Chambal, and the Nerbudda. In prehistoric times the capital was the ancient city of Ujain (Oojein), associated in Hindu legend with the great king Vikramaditya, the date of whose accession (57 в.c.) has given the "Samvat" era to all India. The Nohammedan chrouicler Ferishta describes Nálwá as the kingdom of an independent rajá, when Mahmúd of Glazmi invaded India in the beginning of the I Ith century. It appears to have first fallen into the lands of the Moslems about 1309, during the reign of the Delhi emperor Aladud-din. When the Tughlak dynasty was weakened by the repeated attacks of the Mughals, their riceroy in Málwá succeeded in establishing his independence. The first Muslem king of Málwá was Diláwar Khín Ghori, of Aighín origin, who ruled from 1387 to 1405 , and placed lis capital at Mandu. He was succeeded by his son Hoshang Ghori, to whom are attributed most of the magnificent ruins still to be seen at Mandu. In 1526 the Ghori dynasty came to an end, being overthrown by Bahádur Sháh of Guzerât; and in 1570 Málwá was, on the conquest of Guzerát by the emperor Akbar, incorparated in the Mughal dominions. On the decay of the Delli empire in the 18 th century, Málwá was one of the first provinces to be overrnn by the Malirattas. In 1737 the peshwa exacted chauth or one-fourth of the revenue? and at a later date the two great military chiefs Sindhia and Holkar carved out for themselves kingdoms, which their clescendants still retain. But the Mahrattas set up 110 organized government, so that Málwá, besides its native population of predatory Bhils, became the refnge of all the mercenary bandits of the peninsula. In the beginning of the present century, the depredations of these bandits or Pindaris led to what is sometimes known as the fourth Mahratta war of 1817 , under the governor-generalship of Lord Hastings. As the result, the Piudáris were extirpated; and under the rule of Sir John Malcolm the Bhils were tamed, and the jungles were cleared of wild beasts. Many of the Bhils have been enlisted as British soldiers; and the headquarters of the Mánof Bhil corps is at Sardaipur. At the present day Málwá is best known as giving its name to the opium which is annually exported from Bombay to the amount of about 37,000 chests.

MAMELUKE, a corruption of the Arabic Mamluk (Memlook), a slave. The name of Mamelukes has passed into history from the body-guard of Turkish slaves first formed in Egypt under the successors of Saladin, who ultimately usurped the supreme power. For the history of the Mameluke sultans and Mameluke beys, see EGYPTs vol. vii. p. 755 sq.,

## MAMMALIA

MAMMALIA (Freuch, Mammifêes; German, Süugethiere) is the name invented by Linurus (from the Latin, mamma), and now commonly used by zoologists, for one of the classes of vertebrated animals, which, though the best known and undoubtedly the most important group of tho auimal kingdon, has never received any generally accepted vernacular designation io our Isnguage. The unity of structure of the animals composing this class, and their definite demareation from other vertebrates, were not recognized until comparatively modern times, and hence no word was thought of to designate what zoologists now term a mammal. The nearest equivaleats in common use are "beast" and "quadruped," both of which, however, cover a different gronnd, as they are often used to inclade the larger four-footed reptiles, and to exclude certain undoubted mammals, as Man, Bats, and Whales.
The limits of the class as now understood by zoologists are perfectly well defined, snd, although certain forms still existing on the earth ithongh not those mentioned above as excluded by the popular idea) are of exceedingly sberrant structure, exhibiting several well-marked characters which connect them with the lower vertebrated groups, common consent retains them in the class with which the great proportion of their characters ally then, and nitherto no traces of any species showing still more divergent or transitional characters have been discovered. There is thus a great interval, not bridged uver by any known forms, recent or extioct, between mammals and other vertebrates.
In the gradusl order of evolution of living beings, mammals taken sltogether are certaiuly the highest in orgauization, as they wore prabably the last to appear on the earth's surfsce, though this must bo said with some reservation, pending further knowledge of the early history of the class of birds. But, as in speaking of all other large and greatly differentinted groups, this expression must not be understond in too limited a sensc. The tendency to gradual perfection fnr their particular station in life, which all groups manifest, leads to various lines of specualization, or divergence from the common or general type, which may or may not take the direction of elevation. A too complex and sensitive condition of organization may in some circumstances of life be disadvantageous, and modification may then take place in a retrograde direction. In mammals, as in other classes, there are low forms as well as high forms, but by any tests that can be applied, especially those based on the state of development of the central nervous system, it will be seen that the average exceads the average of any other class, that many species of this class far excel those of any other in perfection of atructure, and that it contains one form which is uncuestionably the culwinating point yet arrived at amongst organized beings.

With regard to the time of the first appearance of mammals upon the earth, the geological record is provokingly imperfect. At the commeacencut of the Tertiary period they were abundant, and slready modified into nost of the leading types at present existing. It was at one time thought that they first came into being at this date, but the discovery of fragments of numernus small spacies has revealed the existence of some forms of the class at varinus perinds throughout almost the whole of the age of the depasition of the Sccondary rocks. This subject will be reverted to later on.
It hardly need be said that mammals are vertebrated aninals, and possess all the characteristics common to the
uembers of that division of the animal kingdom. They are separated from the Ichthyopsida (fishes and amphibis) and agree with the Sauropsida (reptiles and birds) in the possession during their development of an amnion and allantois, and in never having external branchix or gills. They differ from reptiles nad resemble birds in being warm-blooded, and having \& heart with four cavities and a complete donble circulation. They differ from both birds and reptiles in the red corpuscles of the blood being nucleated and, with very ferv exceptions, circular in outline; in the lungs being freely suspended in a thoracic cavity, separated from the abdomen by a complete muscular partition, the diaphragm, which is the principal agent in inflating the luugs in respiration; in having but one aortic arch, which curves over the left bronchus; in the skin being more or less clothed with hair, and never with feathers; in the greater perfection of the commissura system of the cerebral hemispheres, which has either $\varepsilon$ complete corpus callosum, or an incomplete one associated with a very large anterior commissure; in laving uo syrinx or inferior vocal organ, but a complete larynx at the upper end of the trachea; in having a mandible of which eash ramus (except in very early developmental conditions) consists of a single bone on each side, articulat. ing to the squamosal, without the intervention of a quadrate bone; in having a pair of laterally placed occipital condyles instesd of one median oue; and in the very obvious character of the female being provided with mammary glands, by the secretion of which the young (produced aliva and not by means of externally hatched eggs) are nourished for some time after birth.

In common with all vertebrated animals, mammals lave never more than two pairs of limbs. In the great majority of the class both are well-developed and functional, and adapted for terrestrial progression, as the larger numbel of mammals live ordinarily on the surface of the earth. They are, however, by no means limited to this situation. Some species spend the greater part of their lives benesth the surface, their fore limbs being specially mndified for burrowing; others nre habitually arboreal, their limbs being fitted for climbing or hanging to boughs of trees; some are as serial as birds, the fore limbs being developed into wing 3 of a special character ; others are as aquatic as fishes, the limbs assuming the form of fins or paddles. In many of the latter the hinder extremities are either completely suppressed, or present only in a rudimentary state. Io no known ranumsl are the fore limbs absent.
The hinder extrenity of the axis of the body is usually prolonged into a tail, which may be a mere penden\& appendage, or modificd to perform various functions, , grasping boughs in climbing, or even gathering food, in the case of the prohensile-tailed Monkeys and Opossums swimming in the Cetacea, and acting as a flap to drive away troublesome insects from the skin in the Ungulata.

## general anatomical characters of the mammalia.

## Tegumentary Strectures.`

The esternal surface of the greater number of memoers of tho class is thickly clothed with a peculiarly modified form of epidernis, commọnly called hair. This consiste of hard, elongated, slender, cylindrical or tapering, filiform, unbranched masses of epidermic material, graming from a short papilla sunk at the bottom of a folliclo in the derm or true skio. Such hairs upon different parts of the eame
animal, or upon different animals, assune various forms, and are of various sizts and degrees of rigirlity, -as seen in the delicate soft velvety fur, of the Mole, the stiff bristles of the Pig, and the spines of the Hedreliog and Porcupine, all modifications of the same structures. These differences arise mainly from the different arrangement of the constituent elements into which the epithelial calls are modified. Each lair is composed usually of a cellular pithy internal portion, containing mach air, and a denser or more liorny cortical part. In some animals, as Deer, the substance of the hair is almost eutirely composed of the medullary or cellular substance, and it is consequently very easily broken; in uthers the horny part prevails alnost exclusively, as in the bristles of the Wild Buar. In the Three-toed Sloth (Bradypus) the hairs liave a central horny axis and a pithy exterior. Though generally acarly smooth, or but slightly scaly, the surface of some hairs is strongly imbricated, notably 30 ia some Bats, while in the Two-toed Sloth (Cholopus) they are longitndinally grooved or fluted. Thongh usually more or less cylindrical or circular in section, they are often elliptical or flattened, as in the curly-haired races of men, the terminal portion of the hair of Moles and Shrerse, and conspicuously in the spines of the Rodents Xerus and Platacanthomys. Hair having a property of mutnal cohesion or "felting," which depends upon a roughened scaly surface and a tendency to curl, as in domestic Slieep (in which animals this property has been especially cultivated by selective breeding), is called "wool."

In a large number of mammals lairs of one lind only are scattered pretty evenly over the surface, but in many there are two kinds, one longer, stiffer, and alone appearing on the surface, and the other shorter, finer, and softer, constituting the under fur, analogous to the down of birds. In most cases hars of a different character from those of the general surface grow in special regions, forming ridges or tufts on the median dorsal or ventral surface or elsewhere. The tail is very often completed in this way by variously disposed elongated hairs. The margins of the eyelids are almost always furnished with a special row of stiffish hairs, called cilix or eyelashes, and in most mammals specially modified hairs, constituting the vibrissw or whiskers, endowed, through the nbundant nerve supply of their basal papillæ, with special tactile powers, grow from the lips and cheoks. In some mammals the hairy covering is partial and limited to particular regions; in others, as the Hippopotamus and the Sirenia, though scattered orer the whole surface, it is extremely short and scanty; but in none is it reduced to so great an extent as in the Cetacea, in which it is limited to a few small bristles confined to t're neighbourhood of the lips and nostrils, and often only present in the young or even foctal condition.

Some kinds of hairs, as those of the mane and tail of the Horse, appear to persist throughout the life-time of the animal; but more generally, as in the case of the body hair of the same animal, they are shed and renewed periodically, generally annually. Many mamnals have a longer hairy coat in winter, which is shed as summer comes on ; and some few, which inhabit countries covered io winter with snow, as the Arctic Fox, Variable Hare, and Ermine, undergo a complete clange of colour in the tro seasons, being white in winter, and grey or brown in summer. The several species of Cape Mole (Chrysochtoris), tho Desmans or Water MLoles (ilyogale), and Potamogale relox are remarkable as being the only mammals whose hair reflects those iridescent tints so common in the feathers of tropical birds.

The principal and most obvious purpose of the hairy covering is to protect the skin against external influences, especially cold and damp. Its function in the hairless

Cetacea is supplied by tho specially modified and thickenert layer of adiposo tissue beneath the skin called " blubber."

True scales, or flat imbricated plates of horny material, covering the greater part of the body, so frequently occurring in reptiles, are found in one family only of mammals, the Mandx or Pangolins; but these are also associated with hairs growing from the intervals between the scales or on the parts of the skin not covered by them. Similarly imbricated epidermic productions form the covering of the under enrface of the tail of the lying Rodents of the genus Anomalurus ; and flat scutes, with the edges in apposition, nnd not overlaid, clothe botls surfaces of the tail of the Beaver, Rats, and others of the same order, and also of some Insectivores and Marsupials. The Armadillos alono have an ossified exoskeleton, composed of plates of true bony tissue, developed in the derm or corium, and covered withscutes of horny epidermis. Other epidermic appendages are the horns of Ruminants and Rhinoceroses, - the former being elongated, tapering, hollow caps of hardened epidermis of fibrillated structure, fitting on and growing from conical projections of the frontal bone, and always arranged in pairs, while the latter are of similar structure, but without any internal bony support, and situated in the medinn line. Callosities, or bare patches covered with hardened and thickened epidermis, are found over the ischial tuberosities of many apes, the sternum of camels, on the inner side of the limbs of the Equida, the grasping under surface of the tail of prehensile-tailed monkeys, \&c. The greater part of the skin of both species of one-horned Asiatic Rhinoceros is immensely thickened and stiffened by increase of the tissue both of the derm and epiderm, constituting the well known jointed "armour-plated " hide of those animals.

With very few exceptions, the terminal extremities of the digits of both limbs are more or less protected or armed by epidermic plates or sheaths, constituting the various forms of atils, claws, or hoofs. These are nanting in the Cetacea alone. A perforated spur, with a special secreting gland in connerion with it, is found attached to the hind leg of the males of the two species of Monotremata, the Oruithorhynchus and Echidna.

Besides the universally distributed sebaceons giarnds connected with the pilose system, most mammals have special glands situated in modified portions of the integument, often involuted to form a shallow recess or a deep sac with a narrow opening, situated in parions parts of the surface of the body, aud which secrete odorous substances, by the aid of which individuals appecr to recognize one another, and which probably afford the priucipal means by which wild animals are able to become atrare of the presence of other members of the apecies, even at great distauces. Although the commencenent of the modifications of purtions of the external covering for the formation of special secretions may be at preseat difficult to understand, the principle of natural selection will readily explain how such organs can become fixed aud gradually increase in development in any species, especially as there would probably be a corresponding modiûcation and increased gensibility of the olfactory organs. Such iadividuals as by the intensity and peculiarity of their scent had greater porser of attracting the opposite sex would certainly be those most likely to leave descendants to inherit and in their turn propagate the modification.

To this group of structnres belong the suborbital gland or "crumen" of Antelopes and Deer, the frontal gland of the Mintjak and of Bats of the genus Phyllorhina, the submental gland of the Cherrotains and of Taphozous and some other Bats, the post-anditory follicle of the Chamois, the temporal gland of the Elephant, the lateral glands of the Musk-Slirew, the lumbar glaud of the Peccary, the inguinal
slands of Antelopes, the preputial glands of the Musk Dece and Deaver (both so well known for the 'se made of their powerfully odorous secretion in medicine and perfumery) and also of the Swine and Hare, the anal glands of Carnivora, the parineal gland of the Civet (also of commercial value), the caudal glands of the Fox-and (Goat, the gland on the humeral membrane of Bats of the genus Saccopteryx, tho post-digital gland of the Rhinoceros, the inter-digital glands of the Sheep and many Ruminants, and numerous others. In some of these cases the glands are peculiar to, or more largely developed in, thie male; in others they aro found equally dercloped in both sexes.

## Dental System.

The dental system of mammals may be considerell rather more in detail than space nermits for some other portions of their structure, botis on account of the important part it plays in the economy of the animals of this class, and of its interest to zoologists as an aid in classification and identification of species. Owing to the imperishable nature of their tissues, teeth are preserved for an indefinite time, and in the case of extinct species often offer the only indications available from which to derive an idea of the characters, affinities, and habits of the animal to which they have belonged. Hence cyen their smallest modifications have receired great attention from comparative anatomists, and they have formed the subiect of many special monographs. ${ }^{1}$
Teeth are present in nearly all mammals, and are applied to yarious purposes. They are, however, mainly subservient to the function of alimentation, being used either in procuring fool by seiziug and killing living prey or gathering and biting off portions of vegetable material, and more indirectly in tearing or cutting through the hard protective coverings of food substances, as the husks and shells of nuts, or in pounding, crushiag, or otherwise mechanically dividing the solid materials before swallowing, so as to prepare them for digestion in the stomach. Certain teeth aro also in many animals most efficient reapons of offence and defence, and for this purpose alone, quite irrespective of subserviency to the digestive process, are they developed in the male scx of many herhivorous animals, in the females of which they are absent or rudinentary:
Teeth belong essentially to the tegumentary or dermal system of organs, and, as is well seen in the lower vertebrates, pass by almost insensible gradations into the bardened spines and scutes formed apon the integument covering the outer surface of the body, but in mammals they are more specialized in structure and limited in loeality. In this elass they are developed only in the guns or fibro-mncuns membrane covering the alveolar borders of the upper and lower jaw or the premaxillary and maxillary bones and the mandible. In the process of development, for the purpose of giving them that support which is needful for the performance of their functions, they almost always become implanted in the bone,-the osseous tissue growing ap and moulding itself around the lengthening root of the tooth, so that ultimately they become apparently parts of the slecleton. In no mammal, however, does ankylosis or bony union between the tooth and jaw normally take place, as in many fishes and reptiles, -a vascular layer of eunnectivo tissue, the alveolo-dental membrane, always intervening. ${ }^{2}$

[^146]The presence of two or more roots, frequently met with in mammals, implanted into corresponding distinct sockets of the jaw, is peculiar to animals of this class.

The greater number of mammalian teeth when fully formed are not simple and homogencous in structure, but are composed of several distinct tissucs.

1. The pulp, a soft substance, consisting of a very delicate gelatinous conncetive tissue, in which numerous cells are imbedded, and abundantly supplied with blood-vessels and norves, constitutes the central axis of all the basal part of the tooth, and affords the means by which the vitality of the whole is proserved. The nerves which pass into the pulp and endow the tooth with sensibility are branches of the fifth pair of cranial nerres. The pulp occupies a larger relative space, and performs a more important purpose in the young growing tooth than afterwards, as by the calcification and conversion of its onter layers the principal hard constituent of the tooth, the dentire, is formed. In teeth which have ceased to grow the pulp occuplies a comparatively small space, which in the dried tooth is called the pulp cavity. This communicates with the external surface of the tnoth by a small aperture at the apex of tho root, through which the branclies of blood-vessels and nerves, by which the tooth reccives its nutrition and sensitiveness, pass in to be distributed in the pulp. In growing teeth the pulp carity is widely open below, while in advanced nge it often becomes obliterated, and the pulp itself entirely converted into bone-like material.
2. The dentine or izory forms the principal constituent of Ientine. the greater number of teeth. When developed in its most characteristic form, it is a very hard but elastic substance, white, with a jellowish tinge, and slightly transluceut. It consists of an organic matrix, something like but not identical with that of bone, richly impregnated with calcareous solts (chiefly phosphate of lime), these constituting in a fresh human tooth 72 per cent. of its weight. When subjected to microscopical examination it is scen to lee everywhere permeated by nearly parallel branching tubes which run, in a slightly curving or wavy mauner, in a general dircction from the contre towards the free surface of the tooth. These tubes communicate by open mouths with the pulp cavity, and terminate usually near the periplery of the dentine, by closed ends or loops, though in Marsupials and certain other mammals they penetrato into the cuamel. They are occupied in the living tooth by soft gelatinous fibrils connected with the cells of the nulp. A varicty of dentine, permeated by canals containing wlond-wessels, met with commonly in fishes and in some few mammals, as thas Mcgatherium, is called vasodentine. Other modifications of this tissme occasinnally met with are called osteo-dentine and secondary dertine, the latter being a dentine of irregular structure which often fills up the pulp cavity of old amimals.
3. The cramel constitates a thin investing layer, consplete or partial, of tho outer or exposed and workin: surface of the dentine of the crown of the teeth of most mammals. This is the hardest tissue met with in the animal bods; containing from 95 to 97 per cont. of mineril substances (chictly phosphate and some carbonate of lime, with traces of fluoride of calcium). Its ultimate structuro consists of prismatic fibres, placed generally with their long axes at right angles to tho frecesurface of the touth. Enanel is ensily distingnished from dentine with the naked cye, by its clear, bluisl-white, translucent alpearance.
4. The cementune or cruster petrose is always the most externally placed of the hard tissucs of which tecthe are comprosed, as will bo understood when the mode of derelop. ment of these nrgans is considered. Tt is often only found as a thin layce upon the surface of the ront, but sometimes, as in the complex-crowned molar tecth of the Horso and

Elephaut, it is a structure which plays a very inapurtant bart, covering and filling io the interstices between the olds of the enamel. In appearance, histological structure, and chemical composition it is closely allied to osseous :issue, containiog lacunæ and canaliculi, though only when $t$ is of considerable thickness are Haversian canals present n it.

Development of the Teeth. -The two priucipal constituents If the teeth, the dentine and the enamel, are developed from the two layers of the buccal nucons membrane, the dentine from the submucous, the enamel from the epithclial layer. 'The latter dips down into the substance of the gua, and forms the enamel organ or germ, the first rudiment of the future tooth, which is constaatly present even in those animals in which the enamel is not fonnd as a constituent of the perfectly-formed tooth. Below the mass of epithelial sells thus embedded in the substance of the gum, and remaining connected by a narrow neck of similar structure with the epithelium of the surface, a portion of the vascnlar submucons areolar tlssue becomes gradually separated and lefined from that which surrounds it, and assumes a distinct form, which is that of the crown of the future tooth, - a single cone in the case of simple teeth, or with two or more eminences in the complex forms. This is called the dental papilla or dentinc germ, and by the gradual conversion of it tissone into dentine the bulk of the future tooth is formed, the uncalcified central portion remaining as the pulp. The conversiou of the papilla into hard tissue comineaces at the outer surface of the apes, and gradually proceeds downwards and inwards, so that the form of the papilla exactly determines the form of the future dentine, and no alteration either in shape or size of this portion of the tooth, when once calcified, can take place by addition to its onter surface. In the meanwhile calcification of portion of the cells of the enamel organ, which adapts itself like a cap round the top of the dentinal papilla, and bas assumed a somewhat complex structure, results in the formation of the enamel coatiog of the crown of the tooth. While these changes are taking place the tissues immediately surrounding the tooth germ become condensed and differentiated into a capsule, which appears to grow up from the base of the dental papilla, and encloses both this and the enamel germ, constituting the follicle or tooth sac. Liy the ossification of the inner layer of this follicle, the cementum is formed. This substance therefore, unlike the dentine, increases from within nutwards, and its growth may therefore be the cause of considerable modification of form and enlargement, especially of the roots, of certain teeth, as those of Seals and some Cetacea. The delicate homogeneous layer which coats the enamel surface of newiy-formed teeth, in which comentum is not found in the adult state, and known as Nasmytb's membrane, is considered by Tomes as probably a film of this substance, too thin to exhibit its characteristic structure, thongh by others it is believed to be derived from the external layer of the enamel organ. The homology of the teeth with the dermal appendages, hairs, scales, and claws bas already been alluded to, and it will now be scen that in both cases two of the primary embryonic layera are conceraed in their development, the mesoblast and epiblast, althongh in very different proportions. In the hair or nail the part derived from the epiblast forms the principal bulk of the organ, the mesoblast only constituting the papilla or matrix In the tooth the epiblastic portion is limited to the enamel, always of relatively small bulk and often absent, while the dentine (the principal constitnent of the tooth) and the cementum are formed from the mesoblast.
When more than one set of teeth occur in mammals, those of the second set are developed in a precisely similar aanner to the first, but the enamel germ, instead of being
derived directly from an independent part of the orat epithelium, is formed from a buddiog not of the neck of the germ of the touth succeeded. In the case of the true molars which have no predecessors, the germ of the first has an indepondent origin, but that of the others is derived from the neck of the germ of the tooth preceding it in the series. The foundations of the permanent teeth are thus laid as it were almost simultancously mith those of their prodecessors, ulthough they remain in many cases for years before they are developed into functional activity.

Although the commencement of the formation of teeth takes place at an early period of embryonic life, they ard in nearly all mammals still cooceaied bencath the gum at the time of birth. The period of cruption, or "cutting" of the teeth as it is called, that is, their piercing througt and rising above the surface of the mucous nembrane, varies much in different species. In some, as Seals, the whole serics of teeth appear almost simultaneonsly : but more often there are considerable intervals between their appearance, the front teeth usually coming into place first, and those at the back of the mouth 2 t 2 later period. ${ }^{1}$

General Characters.-The sinplest form of tooth may be rurns -n cxemplified on a large scale by the tusk of the Elephant tweth.
(fig. 1, I.). It is a lanrd mass almost entircly composed of dentine, of a conical shape at first, but during growth becoming more and more cyliodrical or uniforin in width. The enamel covering, present on the apex in its earliest condition, sonn disappears, but a thin layer of cementnm covers the circumference of the tooth throughout life. On section it will be seen that the basal portion is bollow, and contains a large conical pulp, as broad at the base as the tooth itself, and deeply imbedded in the bottont of a recess or sucket in the upper maxillary bone. This pulp continues to grow during the lifetime of the animal, and to be converted at its surface into dentine. The tooth therefore continually elongates, but the use to which the atimal subjectsit in its natural state canses the apex to wear away, at a rate generally propertionate to the growth at the lase, otherwise it would become of inconvenient length and weight. Such teeth of indefnite growth are said to be "rootless," or to have "persistent pulps."

One of the corresponding front teeth of man (fig: 1, II. and III.) may be taken as an example of a rery different condition. After its crown is fully formed by calcification of the germ, the pulp, though continuing to elongate, begias to contract in diameter; a neck or slight constriction is formed; and the remainder of the pulp is converted into the root (or fang), a tapering conical process which is imbedded in the alveolar cavity of the bone, and has at its extremity a minute perforation, through which the vessels and nerves required is maintain the ritality of the tooth enter the pulp cavity, very different from the widely open cavity at the base of the growing tooth. When the crown of the tooth is broad and complex in character, instead of baving a single rout, it may be supported ky two or more roots, each of which is implanted in a distinct alveolar recess or socket, and to the apex of which a branch of the common pulp cavity is continned (fig. 1, IV.). Such teeth are called "rooted teetb." When they have once attained their position in the jaw, with the neck a little way above the levcl of the upper margin of the alveolus, and embraced by the gum or tough fibro-vascular membrane which covers the alveolar border, and having the root fully formed, they can never increase in length or alter their position. If they appear to do so in old age it is only in consequence of absorption and retrocession of the surrounding alveolar margina. If, as

1 See the conclusion of the article Digestive Oroans, vol. vii. p. 233 sq. , for a more detailed and illustrated account of the structure and development, pspecially of the buman teeth.
often happens, their surface wears away in mastication, it is never renewed. The open cavity at the hase of the imperfectly developed rooted tooth (fig. 1, II.) causes it to resemble the persistent sondition of the rootless tnoth. The latter is therefore a more primitive condition, the formation of the root being a completion of the process of tooth development. Fuactionally it is, however, difficult to say that the one is a higber form than the other, as they both eerve important and different purposes in the animal economy.

As is almost always the case in nature, intermediate conditions between these two forms of teeth are met with. Some, as the molars of the Horse, and of many Rodents, aro for a time rootless, and have Fia. 1.-Dhagrannuatic Sections of variums forms of
 producing a very development, with ruot imperfectly tormed, and pulp long crown with parallel sides, the summit of which may be in use and beginning to wear away while the base is still growing, but, ultimately the pulp contracts, forms a neck and distinct roots, and ceases to grow. The canine tasks of the Musk Deer and of the Walcus have persistent pulns, and are open at their base until the auimal is of advanced age, when they close, and tho pulp ceases to be renewed.

The simplest form of the crown of a tooth is that of a cone; but this may be variously modified. It may be flattened, with its edges sharp and cutting, and pointed at the apex, as in the laterally compressed premolars of most Carnivora, or it may be chisel- or awl-shaped, with a straight truncated edge, as in the human incisors; or it may be broad, with a flat or rounded upper surface. Very often there is a more or less prominent ridge eucircling the whole or part of the baso of the crown just above the neck, called the cingulum, which serves as a protection to the cdge of the gum in masticating, and is best developed in thesheating and insectivorous animals; in which the gums are liable to be injured by splinters of bone or other hard fragments of their food. The form of the crown is frequently rendered complez by the development upon its surface of elevations or tubercles called cusps, or by ridges usnally transverse, but sometimes variously curved or folded. When the crown is broad and the ridges greatly developed, as in the molara of the Elephant, Horse, and Ox (fig. I, V.), che interspaces between them are filled with cementum,
which supports them and makes a solid compact mass of the whole tooth. When such a tooth wears away at the surface by friction against the opposed tooth of the other jaw, the different density of the layers of the substances of which it is composed-enamel, dentine, and cementumarranged is characteristic patterns, canses them to wear unequally, the hard enamel ridges projecting beyond the others, thus giving rise to a grinding surface of great mechanical advantage.

Succession of Teeth.-The dentition of all mammals con:' sists of a defuite set of teeth almost always of constant and determinate number, form, and situation, and, with few exceptions, persisting in a functional condition throughout the natural term of the animal's life. In many species these are the only teeth which the animal ever possesses, -the set which is first formed being permanent, or, if accidentally lost, or decayiog in extreme old age, not being replaced byothers. These animals are called Monophyodont. But, in the larger number of mammals, certain of the teetb are preceded by others, which may be orly of a very transient, rudimentary, and fuoctionleas character (being in the Seals, for example, shed either before or within a few days after birth), or may be considerably developed, and functionally occupy the place of the permanent teeth for a somewhat lengtheaed period, during the growth and development of the latter and of the jaws. In all cnses these teeth disappear (by the absorption of their roots and shedding of the crowns) before the frame of t:e enimal has acquired complete maturity as evidenced by the coalescence of the epiphyses of the osseous system. As these teeth are, as a general rule, present during the period in which the animal is nourished by the milk of the mother, the name of "milk teeth" (French dents de lait, German Milchzilhue) has been commonly accorded to them, although it must be understood that the epoch of their presence is by no menns necessurily synchronous with that of lactations Animals which posscss such teeth are called Diphyodont. No mammal is known to have more than two sets of teeth; and the definite and orderly replacement of certain members of the series is a process of quite a diferent nature from the indefnite succession which takes place in all the teeth continuously througlout the lifetime of the lower vertebrates.

When the milk teeth are well developed, and coutioue in place during the greater part of the animal's growth, as is especially the case with the Ungulata, and, though to a less degree, with the Primates and Carnivora, their use is obrious, as taken all together they form structurally a complete epitome on a small scile of the more numcrous and larger permanent set (sce fig. 3), add, consequently, are able to perform the same functions, while time is allowed for the gradual maturation of the latter, and especially while the jaws of the growing animal -are acquiring the size and strength sufficient to support the permanent teeth. Those aninals, thercforc; that-liave a well-developerd and tolerably persistent set of milk teeth may be considered to be in a higher state of development, quoad dentition, than those that have the milk tecth absent or rudimentary.
it is a very gencral rule that individual tecth of the milk and permanent set have a' close relationship to one another, being origiaally formed, as mentioned above, in exceedingly near proximity, and with, at all events as far as tho enamel germ is concerned, a direct connexion. Moreover, as the latter ultimately come to occups the position in the alveolar border temporarily held by the former, they are spoken of respectively as the predecessors or successors of each other. But it must be understood that milk teeth may be present which have no successors in the permanent series, and, what is far more general, permantent tecth may have no predecessors in the milk series.

The complete series of permanent teeth of most mammals forms a complex machine, with its several parts adapted for different functions,-the most obvious structural modification for this purpose being an increased complesity of the individual components of the series from the anterior tormards the posterior extremity of such series. Since, as has just beeu said, the complete series of the milk tecth often presents structurally and functionally a similar machine, but composed of ferer individual members, and the anterior of which are as simple, and the posterior as complex, as those occupying corresponding positions in the permanent series,-and since the milk teeth are only developed in relation to the anterior or lateral, never to the most posterior of the permanent series,-it follows that the binder milk teeth are usually more comples than the teeth of which they are the predecessors in the permanent aeries, and represent functionally, not their immediate successors, but those more posterinr permanent teeth which have no direct predecessors. This character is clearly seen in those animals in whish the various members of the molar se:ies are well differentiated from each other in form, as the Carnivora, and also in Man.

In animals which have two sets of teeth the number of the teeth of the permanent series which are preceded by milk teeth varies greatly, being sometimes, as in Marsupials and some Rodents, as fert as one on each side of each jar, and sometimes including the larger portion of the series.

Although there are difficulties in some cases in arriving nt a satisfactury solution of the questiod, it is, on the whole, safest to assume that when only one set of tecth is present, these correspond to the permanent teeth of the Diphyodonts. When this one set, is completely dercloped, and $r \in$ mains in use throughout the animal's life, there can be no question on this subject. When, on the other hand, the teeth are rudimentary and transient, as in the Whalebone Whales, it is possible to consider them as representing the milk series; but there are weighty reasons in favour of the opposite conclusion. ${ }^{1}$

General Arrangenzent, Homologies, and Notation of Teeth of Mammats. -The teeth of the two sides of the jaws aro always alike in number and character, except in cases of acsidental or abnormal variation, and in the ono remarkable instance of constant deviation from bilateral symmetry among mammals, the tusks of the Narwhal ísec fig. 49, p. 398), iu which the left is of immense size, and the right rudimeutary. In those animals also, as the Dolphins and some Armadillos, which have a very large series of similar teeth, not always constart in number in different individuals, thero may be differences in the two sides; but, apart from these, in describirg the dentition of any mammal, it is quite sufficient to give the number and characters of the teeth of one side only. As the teeth of the upper and the lower jaws worl against each other in masticating, there is a general correspondence or harmony between them, the projectivns of one series, when the mouth is closed, fitting into corresponding depressions of the other. There is also a geueral resemblance in the nuraber, characters, and mode of succession of both series, so that, although individual teeth of the upper and lower jaws may nut be in any strict sense of the term homologous parts, there is a grat convenience in applying the same descriptive terms to the one which are used for the other.
The simplest dentition as a whole is that of many species

[^147]of Dolphin (fig. 2), in which the crowns are single-pointed, slightly curved cones, and the roots also single and tapering, and all alike in form from the auterior to the posterior end of tho series, though it may be with some slights difference in size, those at the two extremities of itse


Fio. 2.-EPper and Lower Teeth of one slde of the Mnuth of a Dolphin (Lagenorhynchus), as an example of the homedoat type of dentilon. The bone cover Ing the outer stile of the ruots of the teeth hat beta removed 10 show they simple character.
series being rather smaller than the others. Such a den. tition is called Homodont, and in the case cited, as the teeth are never changed, it is also Monophyodont. Such teetla are adapted only for catching slippery liviog prey, as fish.
In a very large number of mammals the teeth of different parts of the series are more or less differentiated in character, and have different functions to perform. The front teeth are simple nud one-rooted, and are adapted for cutting and seizirg. They are called "incisors." The back teeth have broader and more complex crowns, tuberculated or ridged, and they are supported on two or more roots. They crnse ar grind the food, and are heuce called "molars." Many animals lave, between these tivo sets, a tooth at each corner of the mouth, longer and more poiuted thas the others, adapted for tearing or stabbing, or for fixing straggling prey. Fron the eonspicuous development of such teeth in the Carnivora, especially the Dogs, they have received the name of "canines." 1 dentition with its component parts so differently formed that these distinctive terms are applicable to then is called Heterodont. In most cases, though by no means invariably, aumals with Heterodont dentil.Jn are also Dipluyodont.
This general arrangement is extremely nbvious in' a considerable number of mammals ; and closer exauiuatien shows that, under very great modifications in detail, there is a remarkable uniformity of cssential characters in the dentition of a large number of members of tho class belonging to different ordors and not otherwise closely allied, so much that it has been possible (chiefly through the researches of Professor Orent) to formulate a common plan of dentition from which the others have been derived by the alteration of sume and suppression of other members of the series, and occasionally, but very rarely, by addition. The records of paleontology fully confirm this view, as by tracing back many groups now widely separated in dentül characters we fina a gradunl approximation to a common type. In this generalized form of mammalian dentition (which is best exemplificd in the genera Anoplotherium and Homalodontotherium) the entiro number of teeth present is 44 , or 11 above and 11 below on each side. Thoso of each jaw are placed in continuous series without intervals between them; and, although the anterior teeth are simple and single-rooted, and the posterior teeth complex and with several roots, the transition betreen the two kinds is gradual.
Iu dividing and grouping such teeth for the purpose of description and comparison, more definite claracters are required than those derived merely from form or function. The first step towards a classification has been made by the observation that the opper jaw is composed of two bones, the premaxilla end the masilla, erd thet the suture between thicse bones sejarates the
three anterior teeth from the others. These three teeth then, which are implanted by their roots in the premaxilla, form a distinci group, to which the name of " 1 ncisur." is applied. This distinction is, however, not so important as it appears at first sight, for, as mentioned when spaking of the development of the teeth, their comerion with the bone is only of a secondary nature, and, althougb it happens conveniently for our purpose that in the great majority of casc3 the segmentation of the bone coincides with the interspace between the third aui fourth tooth of tho series, still, when it does nut happen to do so, as in the case of the Mole, we must not give too much weight to this fact, if it contravenes other reasons for determining the homologies of the tecth. The eight remaining teeth of the upper jaw offer a natural division, inasmuch as the posterior three never have milk predecessors, and, nlthough some of the anterior teeth may be in the same case, the particular one preceding these three always has such a predecessor. These three then are grouped apart as the "molars," or "true molars," as some of the teeth in front of them often have a molariform character. Of the five teeth between thes incisors and molars the most anterior, or tuat which is usually situated close behind the premaxillary suture, almost always, as soon as noy departure takes place from the simplest and most homogeneous type, assumes a leugthened and pointed form, nad is the tooth so developed as to constitute the "caniue" or "laniary" tnoth of the Carnivora, the tusk of the Boar, \&c. It is customary therefore to call this tooth, whatever its size or form, the "canine." $\mathrm{T}^{1}{ }^{1}$ e remaining four are the "premolars" or "false molers" "nhis system of nomonclature has been objected to as being artificial, and in many cases not descriptive, the distiuction between premolars and canine especially being sometimes not obvious, but the terms are now in such gencral use, and are so practically convenient-especially if, ns it is best to do in ail such cases, we forget their original signification, and treat them as arbitrary signs-that it is not likely they will be superseded by any that have been proposed as substitutes for them.

With regard to the lower teeth the difficulties are greater, owing to the absence of any suture corresponding to that which defines the incisors abore; but, as the number of the teeth is the same, as the corresponding teeth are preceded by milk teeth, and as in the large majority of cases it is the fourth tooth of the series which is modified in the same way as the canine (or fourth tooth) of the uppor jarr, it is quite reasoaable to adopt the same divisions as with the npper series, and to call the first three, which are implanted in the part of the mandible opposite to the premaxilla, the incisors, tho next the canine, the next four the premolars, and the last three the molars. It may be observed that when the mouth is closed, especially when the opposed surfaces of the teeth present an irregular outline, the corresponding upper and lower teeth are not Lsactly opposite, otherwise the two series could not fit into one another, but ns a rule the points of the lower tecth shat into the interspaces in frent of the corresponding teeth of the upper jarr. This is seen very distinctly in the canino tecth of the Cernivora, and is a useful guide in determining the homologies of the teeth of the two jaws. Objections have certainly been mado to this view, because, in certain rare cases, the tooth which, according to it, would be called the lower canine has the form and function of an incisor (ns in liuminants and Lemurs), and on the other hand (as in Orcodon, an extinct Ungulato from North America) the tooth that would thus be determined as the first premolar has the form of a canine; but ii should not be forgotten that, as in all such cases, definitions derived from sirn. and functiou alone are quite as open to
objection as those derived from position and relatlon to surrounding parts, or still more so.


Fig. 3. - yilk and Formanent Dentition of Opper (T.) and Lower (11.) Jaw of the Dor (Cans familiaris), with the symbols by which the different taath are commonly designated. The third upper molar (m3) is the only tooth Fanting in this animal to complete the typical lieterodont mammalias dentition.
For the sake of brevity the complete dentition, arranged nental
according to these principles, is often described by the fol- formula. lowing formula, the numbers above the line representing the teeth of the upper, those below the line those of the lower jaw : - incisors $\frac{3-3}{3-3}$, canines $\frac{1-1}{1-1}$, premolars $\frac{4-4}{4-4}$, molars ${ }_{3}^{\frac{3}{3-3}}=\frac{11-11}{11-11}$; total 44. As, however, initial letters may be substitated for the names of each group, and it is quite unneressary to give more than the numbers of the teeth on one side of the mouth, the formula may be conveniently abbreviated into-

$$
i \frac{3}{3}, c \frac{1}{1}, p \frac{4}{4}, m \frac{3}{3}=\frac{11}{1} ; \text { total } 44 \text {. }
$$

The indivilual teeth of each group are always enumerated from before backwards, and by such a formula as the following-

$$
\frac{\frac{11, i 2, i 3, c, p 1, p 2, p 3, p 4, m 1, m 2, m 3}{1} \frac{1, i 2, i 3, c, p 1, p 2, p 3, p 4, m 1, m 2, m}{3}-}{}
$$

a special numerical designation is given by which each one can bo indicated. In mentioning any single tooth, such a sign as ${ }^{m 1}=$ will mean the first upper molar, mil the first lower molar, and so on. The use of such signs saves muah time and space in description.
It was part of the vien of the founder of this system of dental notation that at least throughout the group of nammals whose dentition is derived from this general type, each tooth has its strict homolioguo in all species, and that in those cases in which fereer than the typical iumber are present (as in all existing manmals except the genera Sus, Gymenura, Talpa, and Myogale) the teeth that are missing can be accurately defined. According to this view, when the number of incisors falls short of three it is assumed that the absent ones aro missing from the outer and posterior end of the serics. Thus when there is but one incisor present, it is $i I_{\text {; }}$ when two, they are $i l$ and $i$ 2. Furthermoro, when the premolars and the molars are below their typical number, the nbsent tecth are missing from the fore part of the premolar serics, and from the back part of the molar series. If this were invariably so, the labours of those who describe teeth would be greatly simplified; but there are $2: \mathrm{mfortun}$. ately so many exsentions that a close scrutiny into tha
situation, relations, and derelopment of a tooth may be requirc I before its nature can be determined, and in some cases the evidence at our disposal is scarcely sufficient for the purpose.

The milk dentition is expressed by a similar formula, al for deciduons being commonly added bcfore the letter expressive of the nature of the tooth. As the threc molars and (almost invariably ${ }^{1}$ ) the first premolar of the permancat series have no predecessors, the typieal milk dentition would be expresscd as follows-di $\frac{3}{3}, d c \frac{1}{1}$, din $\frac{3}{3}=\bar{\zeta}=2.3$. The tecth which precede the premolars of the permanent scries are all called molars in the milk dentition, althongh, as a general rule, in form and function they represent in a condensed form the whole premolar and molar series of the adult. When there is a marked difference between the premolars and molars of the lermanent dentition, the first milk molar resembles a premolar, and the last has the characters of the posterior truc molar.

The dentition of all the animals of the orders Prinates,

Lecep
tions
drom
seneral-
pert
sipe. Carnivora, Insectivora, Chiroptera, and Ungulata can elcarly bs derived from the above-described generalized type. The same may be said of the liodents, and even the Proboscidca, though with greater modification, at Jcast in the existing members of the order. It is also apparent in certain extinet Cetaceans, as Zeuglodon and Siqulloclon, but it is difticult to find any traces of it in cxisting Cetacea, Sirenic, or any of the so-called Eifentata. All the Marsupials, different as they are in their general structure and mode of life, and variously modified as is their dentition, present in this system of orgaos some deep-lying common characters which show thicir unity of origin. The generalized type to which their deatition can be reduced presents considerable resemblance tis that of the placental mammals, yet differing in details. It is markedly beterodont, and susceptible of division into incisors, caniues, prenolars, and molars upon the same principles. The whole number is, however, not limited to forty-four. The incisors may be as numerous as fire on each side, and are almost always different in number in the upper and the lower jaw. The premolars and molars are commouly seven, as in the placental mammals, but their arrangement is reversed, as there are four true molars and three premolars; and finally the milk dentition of all known Marsupials, existing or extinct, is (if not entirely absent) limited to a single tooth on each side of each jarr, this being the predecessor of the last permanent premolar.

In very few mammals are teeth entirely absent. Even in the Whalebone Whales their germs are formed in the same manner and at the same period of life as in other mammals, and even become partially calcified, but they never rise above the gums, and completely disappear before the birth of the animal. In some species of the order Eilentata, the true Anteaters and the Pangolins, no traces of teeth have been found at any age. The Monotremata are in like case, although the Omithorhynchus has flattened, ridged, horny plates at the back of both jarrs, whicl answer the purpose of molar teeth.

Modifications of the Tceth in Relation to their. Functions. -The principal functional modifications noticed in the dentition of Nammalin may be roughly grouped as (1) piscivorous, (2) carnivorous, (3) insectivorous, (4) omnivorous, and (5) herbivorous, each having, of course, numerous variations and transitional conditions.

1. The essential characters of a piscivorous dentition are best exemplified in the Dolphins, and also (as modifications of the carnivorous type) in the Seals. It consists of an

[^148]elengated, rather narrow mouth, wide gape, with numerous subequal, conical, sharp-pointed, recurred teeth adapted simply to rapid!y scize, but not to divide or masticate, active, slippery, but not powerful prey. All animals which feed on fish as a rule swallow and digest then entire, a process which the structure of prey of this nature, especially the intimate interblending of delicate, sharp-pointed bones with the muscles, renders very advantageous, and for which the above-described type of deatition is best adapted.
2. The carnivorous type of dentition is shown in its most perfect developmeat among existing mammals in the Felidx. The function being here to seize and kill struggling animals, oftea of large size and great muscular power, the canines are immonscly developed, treachant, and piercing, and are situated wide apart so as to give the firmest hold when fixed in the rictim's body. The jaws are as short as is consistent with the free action of the canines, so that no power may be lost. The incisors are very small, so as not to interfere with the penetrating action of the caoines, and the crowns of the mular series are reduced to scissor-like blades, with which to pare oft the soft tissues from the large bones, or to divide into small pieces the less dense portions of the bone for the sake of nutriment afforded by the blond and marrow it contains. The gradual modification between this and the two following types will be noticed in their appropriate places.
3. Io the most typical insectivorous auimnls, as the Insect Hcdgehogs and Shrews, the central incisors are elongated, vorons pointed, and project forwards, those of the upper and lower jaw meeting like the blades of a pair of forceps, so as readily to secure small active prey, quick to elude capture, hut powerless to resist when once seized. The crowns of the nolars are covered with numerous sharp. edges and points, which workiog against each other, rapidly cut up the hard cased insects into little pieces, fit for swallowing and digestion.
4. The omoivorous type, especially that adapted for the Cmniconsumption of soft vegetable substances, such as fruits of 8 crous various kinds, may be exemplified in the deotition of Man, of most Monkeys, and of the less modified Pigs. The incisors are moderate, subequal, and cutting. If the canines are enlarged, it is usually for other purposes than thosc connected with food, and only in the male sex. The molars have their crowns broad, flattened, and elerated into rounded tubercles.
j. In the most typically herbivorous forms of dentition, Eerhias seen in the Horse and Kangaroo, the incisors are well vorons. developed and trenchant, adapted for cutting off the herbage on which the animals feed; the canines are rudimeotary or suppressed ; the molars are large, with broad crowns, which in the simplest forms have stroag transverse ridges, but may become variously complicated in the higher degrees of modifeation which this type of tooth assumes.
The natural groups of mammals, or those which in our present state of knowledge we hare reason to believe are truly related to each other, may each contain examples of more than one of these modifications. Thus the Primates have both omairorous and insectivorous forms. The Carnivora show piscivorons, carnivorous, insectivorous, and omnivorous modifications of their common type of deatition. The Ungulata and the Rodentia bave among them the omnivorous and varions modifications, both simple and comples, of the herbivorous type. The Marsupialia exhibit examples of all forms, except the purely piscivorous. Other orders, more restricted in oumber or in habits, as the Proboscidea and Cetacea, naturally do not show so great a variety in the dental structure of their members.
In considering the taxonomic value to be assigned to
the modifications of teeth of mammals, two principles, often opposed to cach other, which have been at work in producing these modifications, must be held in view:-(I) the type, or ancestral form, as we generally now call it, characteristic of cach group, which in most mammals is itself derived from the still more generalized type described nbove; and (2) variations which have taken place from this type, generally in accordance with special functions which the tceth are called upon to fulfil in particular cases. These variations are sometimes.so great as completely to mask the primitive type, and in this way the dentition of many animals of widely difierent origin has come to present a remarkable superficial resemblancc, as in the case of the Wombat (a Marsupial), the Aye-Aye (a Lemur), and. the Rodents, or as in the case of the Thylacine and the Dog. In all these examples indications may generally be found of the true nature of the case by examining the earlier conditions of dentition; for the characters of the milk teeth or the presence of rudimentary or deciduous members of the permanent set will generally indicate the ronte by which tho specialized dentition of the adult has been derived. It is perhaps owing to the importance of the dental armature to the well-being of the animal in procuring its sustenance, and preserving its life from the attacks of enemies, that great changes appear to have taken place so readily, and with such comparative rapidity, in the form of tlese organs, changes often accompanied with but little modification in the general structure of the animal. Of this proposition the Aye Aye (Chiromys) among Lemurs, the Walrus among Seals, and the Narwhal among Dolphins form striking examples; as, in all, the superficial characters of their dentition would entirely separate them from the animals with which all other evidence (even including the mode of development of their teeth) proves their close affinity.

## The Skeleton.

The skeleton is a system of hard parts, forming a framework which supports and protects the softcr organs and tissues of the body. It consists of dense fibrous and cartilaginous tissues, of which portions remain through life in this state, but the greater part is transformed during the growth of the animal into bone or osseous tissue. This is characterized by a peculiar histological structure and chemical composition, being formed. mainly of a gelatinous basis, strongly impregnated with salts of lime, chiefly phosphate, and disposed in a definite raanner, containing numerous minute nucleated spaces or cavities called lacunæ, connected togetther by delicate channels or canaliculi, which radiate in all directions from the sides of tho lacunæ. Parts composed of bone are, next to the teeth, the most imperishable of all the organs of the body, often retaining their exact form and internal structure for ages after every trace of all other portions of the orgnnization has completely disappeared, and thus, in the case of extinct animals, affording the only means of attaining a knowledge of their characters and affinities. ${ }^{1}$

In the Armadillos and their extinct allies nlone is an ossified exoskeleton, or bony covering developed in the skin, present. In all other mammals the skeleton is completely internal. It may be described as consisting of nn

[^149]axial portion belonging to the head and trunk, and an appendicular portion belonging to the limbs. There are also certain bones called splanchnic, being developed within the substance of some. of the viscera. Such are the os cordis and os penis found in some mammals.

It is characteristic of all the larger bones of the Mfam: matice that their ossification takes its origin from several distinct centres. One near the middle of the bone, and spreading throughont its greater portion, constitutes the diaphysis, or "shaft," in the case of the long bones. Others near the cxtremities, or in projecting parts, form the epiplyses, which remain distinct during growth, but ultimately coalesce with the rest of the bone.

The axial skeleton consists of the skull, the vertebral column (prolonged at the posterior extremity into the tail), the sternum, and the ribs.

In the skull of adult mammals, all the bones, except the lower jaw, the auditory ossicles, and the bones of the hyoid arch, are immovably articulated together, their edges being
the spinal cord. It consists of a basal axis, continnous serially with the axes or centra of the vertebre, and of an arch above, roofing over and enclosing the cavity which contains the cephalic purtion of the central nervons systenn (see fig. 4). The base with its arch is composed of three segments placed one before the other, each of which is comparable to a vertebra with a greatly expanded neural arch. The hinder or occipital segment consists of the basi-occipital, ex-occipital, ard supra-occ pital bones; the middle segment of the basi-sphenoid, alt-sphenord, and parietal bones; an. $l$ the anterior segment of the presphenoid, orbito-sphenoid, and frontal boues. The axis is continued forwards into the mesethmoid, or septum of the nose, around which the bones of the face are arranged in a manner so extremely modified for their special purposes that anatomists who have attempted to trace their serial homologies with the more simple portions of the axial skeleton have arrived at very diverse interpretations. The claracteristic form and structure of the face of manmals is mainly dependent upon the size and shape of (1) the orbits, a pair of cup-shaped carities for containing the eycball and its muscles, which may be directed forwards or laterally, placed near together or wide apart, and may be completely or only partially encircled by bone; (2) the nasal fossre, cavities on each side of the median nasal septum, and forming the passage for the air to pass between the external and the internal mares, and containing in their upper part the organ of smell; (3) the zygomatic arch, a bridge of bone for the purpose of muscular attachment, which extends from the side of the ince to the skull, overarching the temporal fossia ; (4) the roof of the month, with its alveolar margiu for the implantation of the upper teeth. The face is completed by the mandible, or lower jaw, consisting of two lateral rami, articnlated by a hinge joint with the squamosal (a cranial bone interposed between the posterior and penultimate segment of the brain case, where also the bony capsule of the organ of hearing is placed), each being composed of a single solid piece of bone, and united together in the middle line in front, at the symphysis, -which union may be permanently ligamentous or become completely ossified. Into the upper border of the mandibular ranii the lower teeth are implanted.
In only those species in which the brain bolds a large relative proportion to the rest of the body, as in Man and the smaller species of the Primates and sume other orders, does the external form of the skull receive much impress from the real shape of the cavity contaiping the brain The size and form of the mouth, and the modifications of the jaws for the support of teeth of various shape and number, the ridges and crests on the cranium for the attachment of the muscles necessary to put this apparatus in motion, outgrowths of bone for the enlargement of the external surface required for the support of sense organs or of weapons, such as horns or antlers (which outgrowths, to prevent undue increase of weight, are filled with cells containing air), cause the principal variations in the general configuration of the skull. These variations are, however, only characteristically developed in perfectly adult animals, and are in many cases more strongly marked in the male than the female sex. 'lhroughout all the later stages of growth up to maturity the size and form of the brain case remain comparatively stationary, whils the accessory parts of the skull rapidly incrense and take on their distinctive development characteristic of the species.

The lyoidean apparatus in mammals supports the tongue and laryne, and consists of a median portion below, the basi-hyal, from which two pairs of kalf arches, or cornua, extend upwards and outwards. The anterior is the most important, being connected with the periotic bone of the
cranium. It may be almost entirely liganentous, but more often lans several ossifications, the largest of which is usually the stylo hyal. The posterior cornu (thyro-liys!) is united at its extremity with the thyroid cartilage of the larynx, which it suspends in position. The median portion, or basi-hyal, is sometimes, as in the Howling Monkeys, enormously enlarged and hollowed, admitting into its cavity nn air-sac connected with the organ of voice.
Tho vertebral column consists of a scries of distinct bones called vertebre, arranged in close connexion with cach other along the dorsal side of the neck and truak, and in the median linc. ${ }^{1}$ It is generally prolonged posteriorly beyond the truak, to form the axial support of the appendage called the tail. Anteriorly it is articulated with-the occiptal region of the sknll. The number of distinct bones of which the vertebral column is composed varies greatly among the Mammalia, the main rariation beng duc to the elongation or otherwise of the tail. Apart from this, in most mammals the number is not far from thirty, though it may fall as low as twenty-six (as in some Bats), or rise as high as forty (IIyrax and Cholopus). The different vertebre, with some exceptions, remain through life quite distinct from each other, though closely connected by means of fibrous structures which allow of a certain, but hnited, amount of motion between them. The exceptions are the following :-near the posterior part of the trunk, in nearly all manmals which possess completely developed hinder limbs, two or more vertebre becoms ankylosed together to form the "sacrum," the portion of the vertebral column to which the pelvic girdle is attached; also, in certain species of Whales and of Armadillos, there are constant cssific unions of certain vertebre of the cervical region.

Although the vertebre of different regions of the column of the same animal or of different animals present great diversities of form, there is a certain general resemblance among then, or a common plan on which they are constructed, which is more or less modified by alteration of form or proportions, or by the addition or suppression of parts to fit them to fulfil their special purpose in the economy. An ordinary or typical vertebra consists in the first place of a solid piece of bone, the borly or centrum (fig. 5, c), of the form of a disk or short cylinder. The bodies of contiguous vertebre are connected together by a very dense, tough, and elastic matcrial called the "intervertebral substance," of peculiar and complex arrangement. This substance forms the maia, and in sorae cases the only, union between the vertelre. Its. elasticity provides for the vertcbre always returning to their
 normal relation to each other and to the column generally, Fio 5.-A nterior surfacc of Human when they have been dis- boody or centrum ; nc, neurai
 action. A process ( $p$ ) arises of the arch; t, transverse process; action. A process ( $p$ ) arises az, anterior zygapophysas. on each side from the dorsal surface of the body. These, meeting in the niddle line above, form together an arch, surmonnting a space or short canal (nc). As in this space lies the posterior prolongation of the great cerebrospinal nerrous axis, or spinal cord, it is called the neural canal, and the arch is called the neural arch, in contradistinction to another arch on the ventral surface of the

[^150]body of the vertebra, called the hæmal arch. The last is, however, never formed in mamnals by any part of the vertebra itself, but only by certain distinct bones placed more or less in apposition to it-the ribs in the thoracic, and the "cherron bones" in the caudal region. In most cases the arch of one rertebra is articulated with that of the next by distinct surfaces with synovial joints, placed one on each side, called "zygapophyses" (z), but these are often entirely wanting when Hexibility is more needed than strength, as in the greater part of the candal region of long-tailed animals. In addition to the body and the arch, there are certain projecting parts called processes, chiefly serving for the attachment of the numerous muscles which move the vertebral column. Of these two are siugla and median, -the spinous proeess or neural spine, or neurapophysis ( $s$ ), arising from the middle of the upper part of the arch, and the hypapophysis from the under surface of the

V. 6.-Side View of the First Lumbar Vertebra of a Dor (Cinia familiaris). $s$, spinous process; $\sqrt{2}$, anterid zygapophysis; pz, posterior zjg. apopliysis ; $\dot{m}_{\text {, }}$ metapoplıysis: $a_{2}$ anapophysis; $i$, transverse process. body. This, however, is as frequently absent as the former is constant. The other processes are paired and lateral. They are transverse processes ( $t$ ), of which there may be two, no upper and a lower, in which case the former is called, in the language of Owen (to whom we are iudebted for the terminology of the parts of rertebre in common use), "diapophysis," and the latter "parapophysis.". Other processes less constantly present are callod respectively "metapophyses" ( $m$ ) and "anapoplyses" ( $a$ ).

The vertebral column is divided for convenience of deseription into five regions, the cervical, thoracic or dorsal, lumbar, sacral, and caudal. This division is useful, especially as it is not entirely arbitrary, and in most cases is capable of ready definition; but at the contiguous extremities of the regions the characters of the vertebre $x$ one are apt to blend into those of the next region, either jormally or as peeuliarities of individual skeletons.
The cervical region constitutes the most anterior portion of the column, or that which joins the cranium. The vertebre which belong to it are either entirely destitute of movable ribs, or if they have any these are small, and do not join the sternum. As a gencral rule they have a cousiderable perforation through the base of the transverse process (the vertebrarterial canal (fig. 7, $t$ ), or, as it is sometimes deseribed, they hare two transverse processes, superior and inferior, which, meeting at their extremities, enclose a canal. This, however, rarely applies to the last vertebra of the region, in which only the upper transverse process is usually de- Fic. T.-Anterinn: Surface of Stath veloped. The transverse process, moreover, very often вends down near its catremity a more or less
 spinous process; az, anterior zygopopliysis; $v$; vertebrarterial 2ykapopliysis; v, vertebrarterial cinal: $f$, transverso process ; $f$ fo, compressed plate (inferior lamella), which, being considered to be serially homologous with the ribs of the thoracic sertebrea (though not developed antogenously), is often called the "costat" or "pleurapophysial" plate. This is usually largest on the eixth, and altogether wanting on tho seventh vertobra. The first and second ecrvical vertebra, called resplectively "atlas" and "axis," are specially modified for the function of supporting and permicting the fre move-
ments of the heau. They are not united together by the iatervertebral substance, but connected only by ordinary ligaments and synovial joints.

The cervical region in mammals presents the renarkable peculiarity that, whatever the length or flesibility of the ncek, the number of rertebre is the same, viz., seren, with only three known exceptions, the Manatee and Hoffman's Two-toed Sloth (Chaloepus hoffmanni), which both have but six, and the Three-toed Sloth (Bradypus tridactylus), which has nine, though in this case the last two usually support movable ribs, though not sufieiently developed to reach the sternum.

The darsal (or thoracic, as it would be more correctly termed) region consists of the vertebre which succeed those of the neck, having ribs movably articulated to them. These ribs arch round the thorax,-the anterior one, and most usually the greater number of those that follow, being attached below to the steraum.

The lumbar region consists of those vertebre of the lumbar trunk in front of the sacrum which bear no movable ribs, vertetrie. It may happen that, as the ribs decrease in size posterierly, the last being sometimes more or less rudimentars, the step from the thoracic to the lumbar region may be gradual and rather undetermined in a given species. But most commonly this is not the case, and the distinction is as well defined leere as in any other region. As a general rule there is a certain relation betmeen the number of the thoracic and lumbar vertebre, the whole number being tolerably constant in a given group of animals, and any increase of the one being at the expense of the other. Thus in all known Artiodactyle Ungulata there are 19 dorso-lumbar vertebre; but these may consist of 12 dorsal and 7 lumbar vertebre, or 13 dersal and 6 lunbar, or 14 dorsal and 5 lumbar. The smallest number of dorso-lumbar vertebre in mammals occurs in some Armadillos, which have but 14. The number found in Man, the higher Apes, and most Bats, viz., 17 , is exceptionally low 19 prevails in the Artiodactyles, nearly all Marsupials, and very many Rodents; 20 or 21 in Carnivora and most Insectivora; and 23 in Perissadactyla. The lighest and quite exceptional numbers are in the Tro-toed Sloth (Cholopus) 27, and the Hyrax 30. The prevailing number of rib-bearing vertebre is 12 or 13 , any rariakion being generally in excess of these numbers.

The sacral region offers more difficulties of definition. Taking the human "os sacrum" for a guide for comparison, it is generally defined as consisting of those vertebre between the lumbar and caudal regions which are ankylosed together to form a single bone. It happens, however, that the number of such vertotue varies in different individuals of tho same or nearly allied species, especially as age advances, when a certain number of the tail vertebres generally become incorporated with the true sacrum. Other suggested tests, as those vertebree which have a distinct additional (plenrappophysial) centre of ossification between the body and the ilium, those to which the ilinm is directly articulated, or those in front of the insertion of the ischiosacral ligaments, being equally unsatisfactory or unpractical, tho old one of ankylosis, as it is found to prevail in the average condition of adnlts in each species, is used in the enumeration of the vertebre in the following pages. The Cetacea, having no iliac bones, have no part of the vertobral colunn modified into a sacrum.

The caudal vertebre are those placed behind the sacrum, and terminating the vertebral column. They vary io number greatly,-being redneed 'to 5,4 , or cren 3 , in a most rudimentary condition, in Man nnd in some Apes and Bats, and being numerous and powerfully developed, with strong and complex proeesses, in many mamıals, especialiy among the Edentata, Cetacen, and Marsupialia. .The
!:ighest known number, 46 , is possessed by the African Long-tailed Manis. Cunnected with the nuder suriace of the caudal vertebre of many, mammals which lave the tail well developed nre certain bones formed mopre or less like an inverted arch, called chevron bones, or by the French os en $V$. These are always situated nearly opposite to an inter. vertebral space, nid are generally articulated both to the vertebra in front and the vertebra behind, but sometimes chielly or entirely either Fro. 8.-Anternor Surfuce of Fourth Caudn to one or the other. Vertebra of Porpoise (Phoczna communis).
The sternum of mam.
 transverse prucess; $h_{1}$ chevion bone. mals is a bone, or geuerally a series of bones, placed longitudinally in the mesial line, on the inferior or ventral aspect of the thorax, and connected on each side with the vertebral column by a series of mare or less ossified bars called "ribs." It is present in nll mammals, but varics much in character in the different groups. It usually consists of a serics of distinct eegments placed oue before the other, the anterior being called the presternum or "manubrium sterni" of hnman anatomy, and the posterior the xiphisternum, or xiphioid or ensiform process, while the intermediate segments, whaterer their number, constitute the mesosternum or "body." In the Whalebone Whales the presternum alone is develuped, and but a single pair of ribs is attached to it.

ic. 9.-IIuman Sternum and Stemul Ribs. $p s$, presternam; $m s$, mescstertum ; $z s$, xiphisternum ; $c$, polnt of attachment of clavicle; 11010
The ribs form a-scries of the cartilaginons sternal libs.
long, narrow, and more or less flattened bones, extending laterally from the sides of the vertebral column, curving downwards towards the median line of the body below, and mostly joining the sides of the sternum. The posterior ribs, however, do not directly articulate with that bone, but are either attached by their extremities to the edges of each rib io front of them, and thus only indirectly join the sternmo, or else they are quite free below, meeting no part of the skeleton. These differences have given rise to the division into "true" and "falss" ribs (by no means good expressions), signifying those that join the sternum directly and those that do not; and of the latter, those that are free belorr are called "floating" ribs. The portion of each rib nearest the vertebral column and that nearest the sternum differ in their characters, the latter being usually but imperfectly ossified, or remaining permanently cartilaginous. These are called "costal cartilages," or When essified "sternal ribs."

In the anterior part of the thorax the vertebral extremity of each rib is divided into two parts, "head" and "tubercle"; the former is attuched to the side of the borly of the vertebra, the latter to ite transverse process ; the
former attachment corresponds to the interspace between the vertebre, the head of the rib commonly articulating partly with the hinder edge of the body of the vertcbria antecedent to that which bears ils tubercle. Hence the bedy of the last cerrical vertebra usually snpports part of the head of the first rib. In the posterion: part of the series the capitular and tubercular attachments commoniy cnalesce, and the rib is attached solely to its corresponding vertebra. The number of pairs of ribs is of course the
 samo as that of Fto, 10.-Stemam and atrongly oss!ded Sternal Ribs of the thoracic vertebrie.

The appendicular portion of the framework consists, Appea when completely developed, of two pairs of limbs, anterior dicula, and posterior.

The anterior limb is present and fully developed in all Anteris manmals, being composed of a shoulder girdle and three liniu. sogments belonging to the limb proper, viz., the upper arm or brachium, the fore-arm or autibrachinm, and the hand or manus.

The shoulder girdle in the large majority of mammals is Shoulde? in a rudimentary or rather modified condition, compared girdle. to that in which it exists in other vertebrates. In the Monotreniata (Ornithorlynnchus and Echidna) alvue is the ventral pertion, or coracoid, complete and articulates with the sternum below, as in the Sauropsida. In ali other mammals this portion, though ossified from a distinct centre, forms only a process, sometimes a scarcely distinct tubercle, projecting from the anterior border of the glenoid cavity of the scapula. The last-named bone is always well developed, generally broad and flat (whenee its veruacular name "blade bone"), with a ridge called the "spine" on its outer surface, gencrally ending in a free curved process, the "acromion." As the scapula affords attachment to many ${ }_{\text {}}$ of the muscles which act upon the anterior limb, its form and the development of its processes are greatly modified according to the uses to which the member is put. It is most reduced and simple in character in those animals whose limbs are mere organs of support, as the Ungulates, and most complex when they are also used for grasping, climbing, or digging. The development or absence of the clavicle or "collar-bone," an accessory bar which connects the sternum with the scapnla and steadies the shoulderjoint, has a somerwhat similar relation, though its complete absence in the Bears slows that this is not an invariablo rule. A complete clavicle is found in Man and all the Primates, in Chiroptera, all Insecivora (except Potamogale), in many Rudents, in most Edentates, and in all Marsupials, except Peramcles. More or less radimentary claricles (generally suspended freely in the muscles) are fonnd in the Cat, Dog, and most Carnivora, Myrmecophaga, and some Rodents. Clavicles are altogether absent in most of the Ursidx, all the Pinnipedia, Manis amnng Edentates, the Cetacea, Sirenia, l'roloscidea, all Ungulates, and some Rodents.

The prosimal segment of the limb proper contains a single bone, the hamerus, and the second segment two
bones, the radius and the nlna, placed side by side, articnlating with the humerus at their proximal, and with the carpus at their distal extremity. In their primitive and unmodified condition theso bones may be considered as placed one on each border of the limb, the radius being preaxial or anterior, and the ulna postaxial or posterior, when the distal or free end of the limb is directed outwards or away from the trunk. This is their position in the earliest embryonic condition, and is best illustrated in adult mammals in the Cetacea, where the two bones are fixed side by side and parallel to each other. In the greater number of mammals the benes assume a very modified and adaptive position, usually crossing each other in the forearm, the radius in front of the ulna, so that the preaxial bone (radius), though external (in the ordinary pesition of the limb) at the upper end, is internal at the lower end; and the hand, being mainly fixed to the radius, also has its preaxial berder internal. In the large majurity of mammals the bones are fixed in this position, but in some few, as in Man, a free movement of crossing and uncrossing-or pronation and supination, as it is termed-is allowed between them, so that they can be placed in their primitive parallel condition, when the hand (which moves with the radius) is sairl to be supine, or they may be crossed, when the hand is said to be prone.

In noost mammals which walk on four limbs, and in which the band is permanently prone, the ulna is much redured in size, and the radius increased, especially at the upper end; and the articular surface of the latter, instead of being confined to the external side of the trochlea of the humerus, exteads all across its anterior surface, and the tro bones, instead of being external and internal, are onterior and pesterior. In many hoofed or ungulated mammals, and in Bats, the ulna is reduced to little more than its upper articular extremity, and firmly ankylosed to the radius,-stability of these parts being more essential than mobility.
The terminal segment of the anterier limb is the hand or mianus. Its skeleton consists of three divisions:-(1) the "carpus," a group of small, more or less rounded or angular bones with flattened surfaces applied to ono another, and, though articulating by synovial joints, having scarcely any motion between them; (2) the "metacarpus," a series of elengated boues placed side by side, with their proximal ends articulating by almost immovable joints with the carpus; (3) the "phalanges" or bones of the digits, usually three in numDcr, to each, articulating to one nother by freely morable hingejoints, the first being connected in like manner to the distal end of the corresponding metacarpal bone.

To understand thorongly the arrangement of the bones of the arpus in mammals, it is necessury to study their condition Fio. 11.-Dorsal surfoce of the in some of the lower vertebrates. Micht Manus of a Water Tortolse Fig. 11 represents the manus in onc of its most completc and at tho same time most generalized forms, as scen in one of tho Water Tortoises (Chelydra serpeniina). The carpus consists of two principal rows of bones. The upper or proximal row contains three bones, to which Gegenbaur has applied thi ierms radiale ( $r$ ), intermedium ( $i$ ), and ulnare ( $u$ ), the first being on the radial or preaxial side of tho limb. The
lower or distal row contains five bones, called carpale 1 , $2,3,4$, and 5 respectively, commencing on the radial side. Between these tro roms, in the middle of the carpus, is a single bone, the centrale (c). In this very symmetrical carpus it will be observed that the radiale supports on its distal side two bones, carpale 1 and 2 ; the intermedium is in a line with the centrale and carpale 3, which together form a median axis of the hand, while the ulnare bas also two bones articulated with its distal end, viz., carpale 4 and 5. Each of the carpals of the distal row supports a metacarpal.

In the carpus of the Nammalic there are usually two additional bones developed in the tendons of the flezor muscles, one on each side of the carpus, which may be called the radial and ninar sesamoid bones; the latter is most constant and generally largest, and is commonly known as the pisiform bone. The fourth and fifth carpals of the distal rows are always united into a single bone, and the centrale is very often absent. As a general rule all the other bones are present and distinct, though it not unfrequently happens that one or more may have coalesced to form a single bone, or may be altogether suppressed.

The following table shows the principal names in use for the various carpal bones,-those in the second column being the terms most generaily employed by English anatomists :-

| Radia | -Scaphoid | - |
| :---: | :---: | :---: |
| Interm |  | L |
| Uluarc | -Cuneiform | -Triquctrum, Pyra |
| Centrale | Central | - Interncdium (Curier). |
| Carjale 1 | - Trapezirm | - Mruttangul |
| Carpale 3 | - Trapezoid | - Multangat |
| Carpale 3 | $r=$ Magnum | -c |
| Carpate ${ }^{4}$ Caryale 5 | - Unciform | - Hamatum, Uncinatu |

The metacarpal bones, with the digits which they Metasupport, are never more than five in number, and are carpus described numerically-first, second, \&c., counting from and the radial towards the uluar side. The digits are alse phanges sometimes named (1) the pollex, (2) index, (3) medius, (4) annularis, (5) minimus. Oue or more may be in a rudimentary condition, or altogether suppressed. If one is absent, it is most commonly the first. Excepting the Cetacea, no marnmals have more than three phalanges to each digit, but they may occasionally have fever by suppression or ankylosis. The first or radial digit is an exception to the usual rule, one of its parts being constantly absent, for, whilo each of the other digits has commenly a metacarpal aud three phalanges, it has only three bones altogether; whether the missing one is a metacarpal or one of the phalanges is a subject which has occasioned much discussion, and has not yet been satisfactorily decided. The terminal phalanges of the digits are nsually specially modified to support the nail, claw, of hoof, and are called "ungual phalanges." In walking, some mammals (as the Bears) apply the whole of the lower surface of the carpus, metacarpus, and phalanges to the ground; to these the term "plantigrade" is applied. Many others (as nearly all the Ungulata) only rest on the last onor two phalanges of the toes, the first phalanx and the metacarpals being vertical and in a line with the fore-arm Theso are called "digitigrade." Iutermediate conditions exist between these two forms, to which the terns "phalangigrade". (as the Camel) and "subplantigrace," (as in most Carnivora) are applied. When the weight is borne entirely on the distal surfiae of the ungual phalanx, and the horny structures growing around it, as in the Horse, the mode of progression is called "unguligrade."

In the Chiroptera the digits aro enormously elongated, and support a cutaneous expansion constituting the urgan of flight. In the Cetacea tho manus is formed into a
paddle, being cosered by continnous integument, which conceals all trace of division into separate digits, and without sign of nails or claws. In the Sloths the manns is long and very narrow, habitually curved, and terminating in two or three pointed curved claws in close apposition with each other, incapable, in fact, of being divaricated, so that it is reduced to the condition of a hook, by which the animal suspends itself to the boughs of the trees among which it lives. These are only examples of the endless modifications to which the distal extremity of the limb is subjected in adaptation to the various purposes to which it is applied.

The posterior limb is constrneted upon a plan rery similar to that of the anterior extremity. It consists of a pelvic girdie and three segments belonging to the limb proper, viz, the thigh, the leg, and the foot or pes.

The pelvic girdle is present in some form in all nammals, though in the Cetucea and the Sirenia it is in an exceedingly rudimentary condition. In all mammals except those belonging to the two orders jnst named, each lateral half of the pelvic girdle consists essentially, lake the corresponding part of the anterior limb, of a flattened rod of bone crossing the long axis of the trunk, laving an upper or dorsal and a lower or ventral end. The upper end diverges from that of the opposite side, but the lower end approaches, and, in most cases, meets it, forming a symphysis, without the intervention of any bone corresponding to the sternum. The pelvic girdle differs from the shoulder girdle in leeing firmly articulated to the vertebral column, thus giving greater power to the hinder limb in its fuaction of supporting and propelling the body. Like the sboulder girdle, it bears on its outer side, near the middle, a cup-shaped articular cavity ("acetabulum "), into which the proximal end of the first bone of the limb proper is received. Each lateral half of the girdle is called the "os innominatum," and consists originally of three bones which unite at the acetabulum. The "ilium" or upper bone is that which articulates with the sacral vertebre. Of the two lower bones the anterior or "pubis" unites with its fellow of the other side at the symplyysis; the posterior is the "ischium." These two form two bars of bone, united ,nbove and below, but learing a space between them in the middle, ifled only by membrane, and called the "thyroid" or "obturater" foramen. The whole circle of bone formed by the two innominate bones and the sacrum is called the pelvis. In the Monotrenzata and Marsupialia, a pair of thin, flat, elongated bones called epipubic or marsupial bones are attached to the fore part of the pubis, and project forward inte the muscular wall of the abdomen.

The first segment of the limb proper has one bone, the femur, corresponding with the humerus of the upper limb. The second segment has two bones, the tibia and fibula, corresponding with the radius and ulan These bones always lie in their primitive unmodified position, parallel tn each other, the tibia on the preaxial and the fibula on the pestaxial side, and are never either permanently crossed or capable of any considerable amount of rotation, as in the corresponding bones of tixe iere limb. In the ordinary walking position the tibia is internal, and the fibula external. In many mammals the fibula is in a more or less rudimentary condition, and it often ankyloses with the tibin at one or both extremities. The patella or "kaeecap" is found in an ossified condition in all mammals, with the exception of scome of the Marsupialia. It is a large scsamoid bone develoned in the tendoa of the extenser muscles of the thigh, where the tenden passes over the front of the knee-joint, to which it serves as a protection. There are frequently smaller ossicles, one or tro in vumber, situated behind the femoral condyles, called "fabell.e."

The terminal segment of the hind liarb is the foot or pes. Its skeleton presents in maxy particulars a close resemblance to that of the manns, being divisible into three parts:-(1) a group of shert, more or less rounded or square-shaped benes, constituting the taisus; ( 2 ) a series of long benes placed side by side, foruing the metatarsus; and (3) the phalanges of the digits or toes.

The bones of the tarsus of many of the lorer leertchrata closely resemble both in number and arrangement those of the carpus, as shown in fig. 11. They have been described in their most geaeralized condition by Gegenbaur under the names expressed in the first column of the following table. The names in the second column are those by which they are most gencrally known to English anatomists, while in the third columa some synonyms occasionally cmployed are added

Tibiale
Intcranclium
Finutare
Contrate
Tarscr 1
$=$ Astragalus

- Talus.
- Calcaneum = Os calcis.
= Navicular = Scaphoideum.
$=$ Internal cunciorm $=$ Entocuncifornc.
Tarsalc $3=$ Extcrnal cuneiform $=$ Ectocunciforme.
Tarsalc 4
Tarsale 5
$=$ Cuboid.

The benes of the tarsus of mammals present fewer diversities of number and arrangement than those of the carpus. The proximal row (see fig. 12) always consists of two bones, the astragalus ( $a$, which probably represents the coaleseed scapheid and lunar of the hand) and the calcaneum (c). The former is placed more to the dorsal side of the foot than the latter, and almost exelusively furnishes the tarsal part of the tibio-tarsal or ankle-joiat. The ealcaneum, placed more to the ventral or "plantar" side of the foot, is elongated backwards to form a more or less prominent tuberosity, the "tuber calcis," to which the tendon of the great extensor muscles of the foot is attached. The navicular bone $(n)$ is idterposed between the proximai and distal row on the iuner or tibial side of the fuot, but on the outer side the bones of the two rows come into contact. The distal row, when complete, consists of four boves, which, beginning on the inner side, are the threo cuneiform bones, internal ( $c^{1}$ ), middle ( $c^{2}$ ), and external ( $c^{2}$ ), articulated to the distal surface of the navicular, and the cuboid (cb), articulated with the calcaneum. Of thess the middle cuneiform is usually the smallest in animals in which all five digits are developed; but when the hallus is wanting the internal cuneiform may be iudiment. ary or altagether absent. The three cuneiform bones sup, port respectirely the first, second, and third metatarsals, and the cuboid supperts the fourth and fifth; they thus exactly correspond with the four bones of the distal row of the carpus.

In addition to these constant tarsal bones, there may be supplemental or sesamoid bones:-one situated near the middle of the tibial side of the tarsus, largely developed iu many Carnivora and Rodentia; another, less frequent, on the fitular side ; and a third, often developed in the teudars
or the plantar aurface of the tarsus, is especially large in Armadillos. There is also nsually a pair of sesamoid bories on the plantar aspect of each metatarso-phalangeal articulation.
The metatarsal bones never exceed five in number, and the phalanges follow the same numerical rule as in the manus, never exceeding three in each digit. Moreover, the first digit, counting from the tibial side, or hallux, resembles the pollex of the haud in almays haviag one segment less than the other digits. As the function of the hind foot is more restricted than that of the hand, the modifications of its structure are less striking. In the Cetacea and the Sirenia it is entirely wanting, though in some members of the first-named order rudiments of the bones of the first and second segment of the limb have been detected.

## Digestive System.

The search after the purpose which every modification of structure subserves in the economy is always full of iuterest, and, if conducted with due caution and sufficient knowledge of all the attendant circumstances, may lead to inaportant generalizations. It must always be borne in mind, however, that adaptation to its special function is not the only cause of the particular form or structure of an organ, but that this form, having in all probability been arrived at by the successive and gradual modification of some other different form from whieh it is now to a greater or less degree remuved, has other factors besides use to be taken into account. In no case is this principle so well seen as in that of the organs of digestion. These may be considered as machines which have to operate upon alimentary substances in very different conditions of mechanical and chemical combination, and to reduce them in every case to the same or preciscly similar materials; and we might well imagine that the apparatus required to produce flesh and blood out of coarse fibrous vegetable substances would be different from that which had to produce exactly the same results out of ready-made Hesh or blood; and in a very broad senso we find that this is so. If we take a large number of carnivorous animals, belonging to different fundamental types, and a large number of herbivorous animals, and strike a kind of average of each, we shall find that there is, pervading the first group, a general style, if we may use the expression, of the alimentary organs, different from that of the others. There is a specially carnivorous and a specially herbivorous modification of these parts. But, if function were the only element whieh has guided such modification, it might be inferred that, as one form must be supposed to be best adapted and most perfect in its relation to a prarticular kind of diet, that form would be found in all the animals consuming that diet. But this is far from being the caso. The Horse and the Ox, for instance,-two animals whose food in the natural state is precisely similar,-are yet most different as regards the atructure of their alimentary canal, and the processes involved in the preparation of that food. Again, the Seal and the Porpoise, both purely fish-eaters, which scize and swallow and digest preciscly the same kind of prey in precisely the same manner, have a totally different arrangement of the alimeutary canal. If the Seal's stomach is adapted in the best conceivable nanner for the purpose it has to fulfil, why is not the Porpoise's stomach an exact facsinile of it, and vice versa $\}$ We can only answer, the Scal and Porpoise belong to different natural groups of animals, formed on different prinitive types, or descended from differently constructed ancestors. On this principle only can we account for the fact that, whereas, owing to the conparatively small variety of the diffcrent alimentary suistances met with in nature, few modifications would
appear necessary in the organs of digestion, there is really eudless variety in the parts devoted to this purpose.

The digestive apparatus of manmals, as in other vertebrates, consists mainly of a tube with an aperture placed at or near either extremity of the body,-the oral and the anal orifice,-with muscular walls, the fibres of which are so arranged as by their regnlar alternate contraction and relazation to drive onwards the contents of the tube from the first to the last of these apertures. . The anterior or commeacing portion of this tube and the parts around it are greatly and variously modified in relation to the functions assigned to them of selecting and seizing the food, and preparing it by various mechanical and chemical processes for the true digestion which it has afterwards to undergo before it can be assimilated into the system. For this end it is dilated into a chamber or cavity called the mouth, bordered externally by the lips, usually muscular and prebensile, and supported by a movable framework which carries the teeth,-organs the structure and modifications of which hare been already described. The roof of the mouth is formed by the paate, terminating behind by a muscular, contractile arch, having in Man and some few other species a median projection called uvula, beneath which the mouth communicates with the pharynx. The anterior part of the palate is composed of mucous membrane tightly stretched over the flat or slightly concave bony lamina which separates the mouth from the nasal passages, and is generally raised into a series of transverse ridges, which sometimes, as in Ruminants, attain a considerable development. In the floor of the mouth, between the rami of the mandible, and supported behind by the hyoidean apparatus, lies the tongue, an organ the free surface of which, especially in its posterior part, is devoted to the sense of taste, but which also by its great mobility, being composed almost eatirely of muscular fibres, performs important mechanical functions conneeted with masticatiag and procuring food. Its modifications of form in different mammals are very numerous. Between the long, extensile, vermiform tongue of the Anteaters, which is essential to the peculiar mode of feeding of those animals, and the short, sessile, and almost functionless tongue of the Porpoise, every intermediato condition is found. Whatever the form, the upper surface is always covered with numerous fine papille, in which the terminal filaments of the gustatory nerve are distributed.

In connexion with the buccal cavity is an extensive and Salisary complex glandular apparatus which pours its secretions iato glads. it-secretions which constitute the fluid commonly known as saliva. This apparatus consists of small glands embedded in the nucous membrane or submucous tissue lining the cavity of the mouth, and which are of two kinds (the follicular and the racemose), and of others in whieh the secreting structure is aggregated in distinet masses removed some distance from the cavity, other tissues besides the lining membrane being usually iuterposed, and pouring their sceretion into the cavity by a distinet tube or duct, which traverses the mucons membrane. To the latter alono the name of "salivary glands" is ordinarily appropriated, although the distinction between them and the smalles racemose glands is only one of convenienco for descriptt.". purposes, their structure being nore or less identical ; and, as the fluids secreted by all become mixed in the mouth, their functions are, at all events in great part, common. Under the name of salivary glands are commonly included -(1) the "parotid," situated very superficially on the side of the head, below or around the cartilaginous exterual auditory meatus, and the secretion of which enters the month by a duct (often called Steno's or Stenson's) which crosses the masseter muscle and opens into the upper and back part of the cheek; and (2) the "submaxillary." sttu-
ated in the neck, near or below the angle of the mandible, and sending a long duct (Wharton's) forwards to open in the fore-part of the floor of the cavity of the mouth, below the apea of the tonguc. Thesc are the most largely developed and constant of the salivary glands, bei, o met with in various degrees of development in almost all animals of the class. Next in constancy are (3) the "subliugual," closely associated with the last-named, at all events in the locality in which the secretion is poured out ; and (4) the "z5gumatic," found only in some animals in the cleek, just under cover of the anterior part of the zygomatic arch, its duct eutering the buccal carity near that of the parotid.

The most obrious function common to the secretion of these rarious glands, and to that of the smaller ones placed in the mucous membrane of the lips, the cheeks, the tonguc, the palate and fauces, is the meckanical one of moistening and softening the food, to enable it the more readily to be tasted, masticated, and swallomen, thongh each kind of gland may contribute in different manner and different degree to perform this function. The stilisa is, moreorer, of the greatest importance in the first stage or introduction to the digestive process, as it dissolves or makes a watery extract of all soluble substances in the food, and so prepares them to be furtlier acted on by the more potent digestive fluids met with subsequently in their progress through the alimentary canal. In addition to these functions it seems now well established by experiment that saliva serves in Man and many animals to aid directly in the digestive process, particularly by its power of inducing the saccharine transformation of amylaceous substances. As a general rule, in mammals the parotid saliva is more watery in its composition, while that of the submaxillaries, and still more the sublingual, contains more solid elements and is more viscid, so much so that some anatomists consider the latter, together with the small racemose glands of the cheeks, lips, and tongue, as mucous glands, retaining the name of salivary only for the parotid. These peculiar properties are sometimes illustrated in a remarkable degrec, as, for example, the great secretion of excessively riscid saliva which lubricates the toingue of the Anteaters and Armadillos, associated with enormously developed submaxillary glands; while, on the other hand, the parotids are of great size in those animals which habitually masticate dry and fibrous food.

After the preparation which the aliment has undergone in the mouth, - the extent of which varies immenscly in different forms, being reduced almost to nothing in such animals as the Scals and Cetaceans, which, to use the familiar expression, "bolt" their food entire,-it is swallowed, and is carried along the cesophagus by the action of its muscular coats into the stomach. In the greater proportion of mammals this organ is a simple saccular diatation of the alimentary canal, but in others it undergoes remarkable modifications and complexities. The lining of the stomach is thickly beset with tubular glands, which are generally considered to belung to two different forms, recornizable by their structure, and different in their function-the most aumerous and important secreting the gastric juice (the actire agent in stomachic digestion), and hence called "peptic" glands, the others concerned only in the elaboration of mucus. The relative distribution of these glands in different regions of the walls of the stomach varies greatly in different animals, and in many species there are large tracts of the mucons membrane which do not secrete a fluid hariog the properties of gastric juice, and often constitute more or less distinct cavities deroted to storing and perhaps softening or otherwise preparing the foud for digestion. Sometimes there is a great aggregation of glands forming distinct thickened patches of the stomach Trall. as io the Deaver and Koala, or ereu zollected in
pyriform pouches with a common harrow opening into the cavity, as in the Manatec and the curious African Rodent Lophyomys. The action of the gastric fluid is mainly exerted upon the nitragenous elements of the food, which it dissolves and modifies so as to render them capable of undergoing absorption, which is partly effected by the blood-vessels of the stomach, though the greater part passes through the pylorus, an aperture surrounded by a circular muscular valve, into the intestinal canal. Here it comes in contact with the secretion of a vast number of small glands called the crypts of Lieberkuhn, somewhat similar to those of the stomach, and also of screral special glands of a different character, namely, the small racemose, duodenal, or Brunner's glands, the pancreas, and the liver.

The intestinal canal raries greatly in relative lengtlo and Intestie capacity in different animals, and it also offers manifold caral peculiarities of form, being sometimes a simple cylindrical tube of nearly uniform calibre throughout, but more often subject to alterations of form and capacity in different pertions of its course,-the most characteristic and constant being the division into an upper and narrower and a lower and wider portiou, called respectively the smail and the large intestine, the former being divided quite arbitrarily and artificially into duodennm, jejunum, and ileum, and the latter into colon and rectum. One of the most striking peculiarities of this part of the alimentary canal is the frequeat presence of a diverticnlum or blind pouch, the caput cacum coli, as it was first called, a name geuerally abbreviated into "cæcum," situated at the junction oit the large and the small intestine, a structure presenting an immense variety of development, from the smallest bulging of a portion of the side wall of the tube to a huge and complex sic, greatiy exceeding in capacity the remainder of the alimentary canal. It is only in herbivorous adimals that the crecum is developed to this great extent, and among these there is a curious complementary relationship between the size and complexity of the organ and that of the stomach. Where


Fig. 13.-Diagrammatie Plan of the gencral arrangement of the Alimentary Canal in a typical Sammal. o, œesophagus: st, stomach; $p_{0}$ pylorus : sh, small intertine (alberevated) ; e, cxcum; ${ }^{\prime \prime} 1$,
large intestine or colon, ending in $r$, the sectum. the latter is simple the cæcum is generally the largest, and vice versc. Both cæcum and colon are often sacculated, a disposition cansed by the arrangement of the lungitudinal bands of muscular tissue in their walls; but the snall intestine is always smooth and simple-wailcr extermally, though its lining membranu often exhibits rarious contrivances for increasing the absorbing surface without adding to the general bulk of the organ, such as the nomerous small villi by which it is everywhere bcset, and the more obvious transwerse, longitudinal, or reticulating folds projecting into the interior, met with in many animals, of which the "ralvule connirentes" of Man form wall-known examples. Besides the crypts of, Lieberkuhn found throughout the intestinal canal, and the glands of Brunner confined to the duodenum, there are other structures in the mucous membrane, about the nature of which there is still much uncertainty; called "solitary" and "agminated" glands, the latter mure commonly known by the name of "Peyer's patches." These were formerly supposed to be secretory organs, which diseharged some kind of fluid into the intestine, but are now more generally considered to belong to the group of structures of sonewhat mysterious function of which the lymphatic and lactal
glands are members. The solitary glauds are found scattered irregularly throughout the whole intestinal tract ; the agminated, on the other hand, are always confined to the small intestine, and are most abundant in its lower part. They are subject to great variation in number and in size, and even in different individuals of the same splecies, and also differ in character at different periods of life, becoming atrophied in old age.

The distinct glands situated outside of the walls of the intestinal canal, but which pour their secretion into it, are the pancreas and the liver. The latter is the most important on account of its size, if not on account of the direct action of its secretion in the digestive process. This large gland, so complex in structure and function, is well developed in all mammais, and its secreting duct, the bile duct, always cpens into the duodenum or that pertion of the canal which immediately succeeds the stomach. It is situated in the right side of the abdomen in contact with the diaphragm and the stomach, but varies greatly in relative size, and also in form, in different groups of nammals. In most mammals a gaH-bladder, consisting of a pyriform diverticulum from the gall duct, is present, but in many it is wanting, and it is difficult to find the rationale of its presence or absence in relation to use or any other circumstance in the animal economy.

The descriptions of the livers of varous animals to be met with in treatises or memoirs on comparative anatomy are very difficult to understand for want of a uniform system of nomenclature. The difficulty usually met with arises from the circumstance that this organ is divided sometimes, as in Man, Ruminants, and the Cetacea, into two main lobes, which have been always called respectively right and Jeft, and in other cases, as in the lower Monkeys, Carnivora, Insectivora, and many other orders, into a larger number of lobes. Ameng the latter the primary division usually appears at first sight tripartite, the whole organ cousisting of a middle, called "cystic" or "suspensory " lobe, and two Jateral lobes, called respectively right and left lobes. This introduces confusiun in describing livers by the same terms throughout the whole scries of mammals, as the right and left lobes of the Monkey or Dog, for instance, do not correspond with parts designated ly the same name in Man and the Sheep. There are, moreover, conditions in which neither the bipartite nor the tripartite eystem of nonenclature will answer, which we should have considerable difficulty in describing without some more general system. In order to arrive at such a system it appears desirable to consider the liver in all cases as primarily divided by the umbilical vein (see fig. $14, u$ ) inte two segments, right and left. This corresponds with its develepment and with the condition characteristic of the organ in the inferior classes of vertebrates. The situation of this division can almost always be recognized in adult puimals by the persistence of some traces of the umbilical vein in the form of the round ligament, and by the position of the susjensery ligament.

When the two main parts into which the liver is thus divided are entire, as in Man, the Ruminants, and Cefacea, they may be spoken of as the right and left lobes; when fissured, as the right and left segments of the liver, reserving the term lobe for the subdivisions. This will involve no ambiguity, for the terms right and left lobe will no longer bo used for divisions of the more complex form of liver. In the large majority of mammals eacla segment is further divided by a fissure, more or less deen, extending from the free towaris the attached berder, which are salled right and left lateral fissures (fig. 14, rif and llf). When these are more deeply cut than the umbilical fissure (u), the organ las that tripartite or trefoil. like form just flolien of, but it is ensilv seen that it is really divided into
four regions or lobes, those included between the lateral fissures being the right and left central ( $r c$ and $l c$ ) separated by the umbilical fissure, and those beyond the Jateral fissures on each side being the right and left lateral lobes (rl and $l l$ ). The essentially bipartite character of the organ and its uniformity of construction throughout the class are thus not lost sight of, even in the most compliex furm3. The left segment of the liver is rarely complicated to any further extent, cxcept in some cases by minor or secondary fissures marking off small lobules, generaily incenstant and irregular, and never worthy of any special designation. On the other hand, the right segment is usually more complex. The gall bladder. when present, is al ways attached to the under surface of the right cential love, sometimes merely applied to it, in other cases deeply enbedded in its substance. In many cases the fossa in which it is sunk is continued to the free margin of the liver as an indent, or even a tolerably deep fissure $(f f)$. The portal fissure ( $p$ ), through which the portal vein and


Fjg. 14.-Diagtammatic Plan of the Inferior Surface of a .a ultilobed Lirer of a Mammal. The pustetior or attached border is uppermost. $u$, unibilical rein of the foetus, represented by the round ligament shi the adult, ljing in the um. bilical fissure: $d v$, the ductus venosus; $v i$, the infelior vena cais; $p_{1}$ the rena
 fortæ entcring the transverse fissure; "lf, the loft latcial fissume: olf, the
 Spigelian lube; $c$, the caudate lobe; $g$, the gall bladder.
hepatic artery enter and the gall duct ernerges from the liver, crosses this lobe transversely, near the attached border of the liver. The right lateral lobe always has the great vena cava (ec) either grooving its sufface or tumelling through its substance near the inner or left end of its attached border; and a prolongation of the Inbe to the left, between the vein and the portal fissure, sometimes a mere flat track of lepatic substance, but more often a 1 rominent tnngue-shaped prncess, is the so-called "Spigelian lobe "(s). From the under surface of the right Jateral lobe a pertion is generally partially detachicd by a fissure, and called the "caudate lobe" (c). In Man this is almest obsojete, but in most mammals it is of considerable magnitude, and has very constant and characteristic relations. It is connected by an isthmus at the left (narrowest or attached) end to the Spigelian lobe, belind which isthmus tho vena cava is always in relation to it, channelling through or grooving its surface. It generally has a peinted apex, and is deeply hollowed to receive the right kidnes; to the upper and inner side of which it is applied.

Considerations derived from the comparatively snall and simple condition of the liver of the Ungulates, compared with its large size and complex form in the Camivorn, have jed to the perhaps too hasty generalization that tho first type is related to a herbiverous and the latter to a carnivorous diet. The exceptions to such a proposition are very numerons. The fact of the great difference bet ween the liver of the Cetaceec and that of the Seals cannot be accounted fer by difference of labits of lifc. though it
perhaps may be by difference of origin, upon the supposition that the former are modifications of the primary branch of mammals from which the Ungulates, and the latter of that from wrich tho Camivora, are derived. ${ }^{1}$

## Circopitory, Absorbent, Respiratory, and Urinary Systems.

The blood of mammals is almays red, and during the life of the animal hot, having a nearly uniform temperature, varying within a few degrees on each side of $100^{\circ}$ Fahr. The corpuseles are, as usual in vertebrates, of two kinds: -(1) colourless, spheroidal, nueleated, and exhibiting amceboid movements ; while (2) the more numerous, on which lepends the claracteristic hue of the fluid in which they ure suspended, are coloured, non-nucleated, flattened, elightly biconcave disks, with circular outline in all known tpecies except the Cumels and Llamas, where they have ihe elliptical form characteristic of the red corpuscles of searly all the othier vertebrates, though adhering to the nammalian type in absence of nuclens and relatively small nize. As a rule they are smaller as well as more numerous han in other elasses, but vary considerably in size in lifferent species, and not always in relation to the magnitude of the animal, a Mouse, for instance, having 1s large corpuscles as a Horse. Within the limits of any aatural group there is, however, very often some such telation, the largest corpuscles being found among the large species and the smallest corpnscles among the small species of the group, but even to this generalization there are many exceptions. The transverse diameter of the red corpuseles in Man averages $\frac{2^{2}}{3200}$ of an inch, which is exceptionally large, and only exceeded by the Elephiant ( $\frac{1}{2 \pi 5}$ ), and by some Cetacea and E'dentata. They are also gencrally large in Apes, Rodents, and the Monotremata, and small in the Artiodactyles, least of all in the Cherrotains (Tragulus), being in 2'. javanicus and meminna not more

The heart of manmals consists of four distuct carities. two auricles and two ventricles. Usually the ventricular portion is externally of conical form, with a simple apex, but in the Sirenia it is broad and flattened, and a deep notch separates the apical portion of each ventricle. A tendency to this form is seen in the Cetacea and the Seals. It is characteristic of mammals alone among vertebrates that the right aurieulo-ventricular valve is tendinous like the left, consisting of flaps held in their place by fibrous ends (chordx tendinix) which arise from projections from the muscular walls of the ventricular cavity (musculi papilitre3). In the Monotremata a transition between this condition and the simple muscular flap of the Sauropsida is observed. In most of the larger Ungulates a distinct but rather irregular ossification is developed in the central tendinous portion of the base of the heart.
The orifices of the aorta and pulmonary artery are each guarded by three semiluaar valres. The aorta is single, nnd arches over the left bronchial tube. After supplying the tissues of the heart itsclf with blood by means of the coronary arteries, it gives off large vessels ("carotid") to the head and ("brachial") to the anterior extremities. Tho mode in which these vessels arise from the aorta varies much in different mammals, and the study of their disposition affords some guide to classification. In nearly all cascs the right brachial and carotid bave a common origin (called "innominate artery" in anthropotomy). The other two vessels may come off from this, as is the rule in Ungulates,

[^151]the conmon trunk conslituting the "anterior aorta" of veterinary anatomy; or they may be detached in various degrees, both arising separately from the aorta, as in Man, or the left carotid from the innominate and tho left brachial from the aorta, a very common arrangement, or the last two from a common second or left innominate as in some Bats and Insectivores. The aorta, after giving off the intercostal arteries, passes through the diaphragm into the abdomen, and, after supplying the riscera of that cavity by means of the gastric, hepatic, splenic, mesenteric, renal, and spermatic ressels, gives off in the lumbar region a large branch (iliac) to coch of the hinder extrenities, which also supplies tho pelvic vistera, and is continued onwards in the middle line, greatly diminished in size, along the under surface of the tail. In certain mammals, arterial plexnses, called retia mirabilia, formed by tho breaking up of the ressel into an immense number of small trunks, which may run in a straigbt courso farallel to one another (as in the limbs of Sloths and Slow Lenurs), or form a closely pracked network, as in the intracranial plexuses of Ruminants, or a snonge-like mass of convoluted vessels, as in the intercostals of Cetaceans, are peculiarities of the vascular system the meaning of which is not in all cases clearly understood. In the Celacea they aro obviously reeeptacles for containing a large quantity of oxygenated blood arailable during the prolonged immersion, with consequent absence of respiration, to which these animals are subject.
The vessels which return the blood to the heart from tho head and unper extremities usually unite, as in Man, to form the single rena cara superior or precaval vein, but in some Insectivores, Chiroptera, and Fodents, and in the Elephant, and all Marsupials and Monotrcmes, the two superior caval veins enter the right auricle without uniting, as in birds. In Seals and some other diving mammals there is a large renous sinus or dilatation of the inferior cava immediately below the diaphragm. In the Cetacea the purpose of this is supplied by the immense abdnoninal venous plexuses. As a rule the veins of mammals are furnished with valyes, but these are said to bo altogether wanting in the Cetacea, and in the superior and inferior cava, subclavian and iliac veins, the veins of the liver (bath portal and hepatic), heart, lungs, kidneys, brain, and spinal clord of other mammals. Many of the veins within the cranium are ineluded in spaces formed by the separation of the laminæ of the dura mater, and do not adnit of being dilated beyond a certain size; these are termed sinuscs. The portal circulation in manmals is limited to the liver, the portal vein being formed by the superior and inferior mesenteric, the splenic, the gastroepiploic, and the pancreatic veins. The kidney is supplied solely by arterial blood, and its veins empty their contents only into the inferior cava.

The absonbent or lymplatec system or vessers is very Lymcompletely developed in the Manmalia. Its ramifications phatic extend through all the snft tissues of the body, and con. vessels, vey a colourless fluid called lymph, containing nucleated corpuscles, and also, during the process of digestion, tho chyle, a milky floid taken up by the lymplatics (here called lacteals) of the small intestine, and pour them into the general vascular system, where they mix with the venous blood. The lymphatic vessels of the hinder extremities, as well as those from the intestinal canal, unit in the abdomen to form the "thoracic duct," the hinde end or commencement of which has a dilatation called the receptaculum chyli. The duct, which is of irregular size and sometimes double, often dividing and uniting again in its conrse, or eren becoming plesiform, passes furwards close to the bodies of the thoracic vertebre, and empties itself, by an orifice guarded by a valve, into the great left brachiueephalic vein haring nreviously received the lymphatir
from the therax and the left side of the head and left anterior extremity. Those from the right side of the head and right anterior limb usually enter by a small distinct trunk into the corresponding part of the right brachiocephalic vein. The duct, and also the principal lymphatic vessels, are provided with valves.

Iymphatic glands, rarely met with in the Sauropsidn, are usually present in mammals, both in the gencral and in the lacteal system, the latter being called "mesenteric glands." They are round or oval masses, situated upon the course of the vessels, which break up in then and assume a plexiform arrangement, and then reunite as they emerge. No structures corresponding to the pulsating "lymphatic hearts" of the lower rertebrates have been met with in mammals.

Associated with the vascular and lymphatic systems are certain bodies, the functions of which are not properly understood, and which are usuilly, on acconnt of their general appearance, grouped together under the name of "ductless glands." Of these the "spleen" is the largest, and single, always placed in mammals in relation to the fundus or left end of the stomach, to which it is attached by a fuld of peritoneum. It is dark-coloured and spongy in substance, and has a depression on one side or "hilus," into which the splenic artery, a branch of the cœliac axis of tho abdominal aorta, enters, and from which the vein, which joins the portal system, emerges. It varies much in size and form in different manmals, being relatively very small in the Cetacea. It is sometimes almost spherical, but more often flattened, oval, triangular, or elongated, and xccasionally, as in Monotremes and most Marsupials, triradiate.' The " suprarenal bodies" or "adrenals" are two in number, each situnted cither in contact with or at a short distance in front of the anterior extremity of the kidney. They are abundantly supplied with nerves, and are much larger relatively in early than in adult life. The "thyroid body," or rather bodies, for there are generally troo, though in Man and some other species connected ay an isthmus passing across the middle line, are constant in mammals, though ouly met with in a rudimentary con. lition, if at all, in other vertebrates. They are situated in the neek, in contact with the sides of the anterior extremity of the trachea. The "thymus" lies in the antexior part of the therax, between the sternum and the great vessels at the base of the heart, and differs from the thyroid in being median and single, and having $\Omega$ central eavity. It attains its greatest development during the period of lactation, and then diminishes and generally disappears before full growth is attained.
liespiratory Organs.-Mammals breathe occasionally through the month, but usually, and in many cases exclusively, through the nostrils or nares. These are apertures, always paired (except in the toothed Celacea, where they unite to form a single external opening), and situated at the fore part of the face, generally at or bencath the ead of the muzzle, a median prominence above the mouth. This is sometimes elongated to form a probescis, to the extremity of which the nostrils are carried, and which attains its maximum of development in the Elephant. In the Celacea the nostrils are situited at a considerabledistance behind the anterior end of the face, upon the highest part of the head, and are called "blow-holes," from the peculiar mode of respiration of these animals. The nostrils are kept open by means of eartilages which surround their aperture, and which many animals lavo tho porver of noving so as to canse partial dilatation or contraction. In diving animals, as Seals and Cetacea, they can be completely closed at will so as to prevent the entrance of water when beneath the surface. The passage to which the nostrils lead is in most mammals filled by a more or less
complex sieve-like apparatus, formed of the convoluted turbimal bones and cartilages, over which a moist, vascular, ciliated mucous membrane is spread, and which intercepts particles of dust, and also aids in warming the iuspired air before it reaches the lungs. In the Proboscidea, in which these functions are performed by the walls of the long tubular proboseis, this apparatus is eutirely wanting. The narial passages have the organ of smell situated in their upper part, and communicate posteriorly with the pharynx, and through the glettis with the "trachea" or windpipe, a tube by which the air is conveyed to and from the lungs. The permanent patency of the trachea during the varicd movements of the neek is provided for by its walls being stiffened by a series of cartilaginous rings or hoops, which in most mammals are incomplete belind. Having entered the therax, the trachea bifurcates into the two brenchi, one of which enters, and, dividing dichotomously, ramifies through, cach lung. In some of the Cetacea and Artiodactyla a third bronchus is given off from the lower part of the trachea, above its bifurcation, and enters the right lung.

The upper end of the trachea is modified into the organ Laryax of reice or "larynx," the air passing through which to and from the lungs is made use of to set the edges of the "vocal cords," fibrous bands stretched one on each side of the tube, into vibration. The larynx is composed of several cartilages, of which the "thyroid," the "cricoid," and the "arytenoid" are the principal, moved upon one anotlier by museles, and suspended from the hyoidean arch. By alteration of the relative position of these cartilages the cords can be tightened or relaxed, approximated or divarieated, as required to modulate the tone and volume of the voice. A median tongue-shaped fibro-cartilage at the top of the laryns, the "epiglottis," protects the "gluttis," or aperture by which the larynx communicates with the pharynx, from the entry of partieles of food during deglutition. The form of the larynx and development of the vocal cords present many variations in different nembers of the class, the greatest modification from the ordinary, type being met with in the Cetacea, where the arytenoid cartilages and epiglottis are united in a tubular mamer, project into the nasal passage, and, being grasped by the muscular posterior margin of the palate, provide a direet channel of communication from the lungs to the externat surface. An approach to this condition is net with in tho Hippopotamus and some other Ungulates. © Nearly all mammals have a voice, although sometimes it is only exercised at seasens of sexual excitement. Some Marsupials and Edentates appear to be nuite mute.' In no mammal is there an iuferior larynx, or "syrinx, as in birds.

The thoracic eavity of mammals differs from that of the Sauropsida in being completely seprated from the abdomen by a rauscular partition, the "diaphagm," attached to tlie vertebral column, the ribs, and the sternum. This is much arched, with the convexity towards the thorax, so that when its fibres contract it is flattened and the eavity of the thomax increased, and when they are relased the carity is diminished. The lungs are suspended freely in the thorax, one on each side of the lieart, being attached only by the roet, which consists of the bronchns or air-tube, and pulinonary arterics and reins by which the blood is passed backwards and forwards betreen the heart and the lungs. The remaining part of the surface of each lung is covered by serous membrane, the "pleura," and, whatever the state of distension or contraction of the chest-wall, is accurately in contact with it. Inspiration is effected by the contraction of the diaphragm, and by the intercostal and other muscles clevating or bringing forward the ribs, and thas threwing tho stermun farther away from the vertebral column. As the surface of the lung must follow the chest wall, the organ
is itself expanded, and air rushes in through the trachea to fill all the minute cells in which the ultinate ramifications of the bronchi terminate. In ordinary cespiration very little muscular-power is expended, the elasticity of the lungs and surrounding parts being sufficient to cause a state of contraction and to drive out at least a portion of the air contaned in the cells, when the muscular stimulus is withdrawn. The lungs are sometines simple externally: as in the Sirenia (where they are greatly elongated) and the Cetacea, but they are more often divided by deep fissures into one or more lobes. The right lung is usually larger and more subdivided than the left. It often has a omall distinct lobe behind, wantine on the left side. and hence called lobulus azygos.

Most mammals have in connexion witn tne arr passages -ertain diverticuli or pouches containing air, the use of which is not always easy to divine. The numerous air sinuses sitiated between the outer and inner tables of the bones of the head, which in Man are represented by the antrum of Highmore and the frontal and sphenoidal sinuses, and which attain their maximum of development in the Indian Elephant, are obviously for the mechanical purpose of allowing expansion of the bone sarface without ioerease of weight. They are connected with the nasal passages. The Eustachian tubes pass from the back of the pharynx into the cavity of the tympanum, into which and the mastoid cells they alloiv air to pass. In the Equidx there are large post-phargngeal air sacs in comnexion with them. The Dolphins have an exceedingly complicated system of air. sacs in connexion with the nasal passages just within the nostrils, and the Tapir and Horses have blind sacs in the same situation. In the males of some Seals (Cystophora and Macrorkinus) large pouches, which the animal can inflate with air, but which at other times are flaccid, and which are not developed in the young animal or the female, arise from the upper part of the nasal passages, and lie inmediately under the skin of the face. These are very analogous, althongh not in the same situation, to the gular pouch of the male Bustard. The laryns lias frequently membranous pouches in connexion with it, into which air passes. These may be lateral and opening just above the yocal cords, constituting the sacculi laryngis, found in a Fudimentary state in Man, and attaining an eoormous development, reaching to the shoulders and axillæ, in some of the Anthropoid Apes; or they may be median, opening in front either above or below the thyroid and cricoid cartilages, as in the Howling and other Monkeys, and also in the Whalebone Whales and Great Anteater.
Gidness. Urinary Organs.-The kidneys of mammals are more compact and definite in form than in other vertebrates, being usually more or less oral, with an indent on the side turned towards the middle line from and into which the ressels and ducts pass. They are distinctly divided into a cortical secretory portion, composed mainly of consoluted tubes; and containiog Malpighian bodies, and a medullary. excreting. portion, formed of straight tubes converging towards a papilla, embraced by the commencement of the ureter or duct of the organ. The kidneys of some mammals, as most Monkeys, Carnivores, Rodents; de., are simple, with a single papilla into which all the renal tubuli enter. In others, as Man, there are many pyramids of the medullary portion, each with its papilla, opening into a division (calyz) of the upper end of the ureter. Such kidneys are, either in the embryonic condition only or throughout life, lobulated on the surface. In some cases, ns in Bears, Seals, and especially the Cetacea, the lobulatioí is carried further, the whole organ being composed of a mass of renules, loosely united by conncetive tissue, and with separate ducts, which soon join to form the common ureter. Iri all mammals except the Monotremes the ureters termi-
nate by slit-like valvular openings in the urınary bladder. This rcceptacle when filled discharges its contents through the single median urethra, which in the male is almust invariably included in the penis, and in the females of sonie species of Rodents, Insectivores, aod Lemurs has a similar relation to the clitoris. In the Monotremes, though the bladder is present, the ureters do not enter into it, but into the urogenital canal some distance below it, the orifice of the genital duct intervening.

## Nervous System and Organs of Sexse.

The brain of mammals shows a higher condition of organization than that of other vertebrates. The cerebral hemispheres have a greater preponderance compared to other parts, especially to the so-called optic lobes, or corpora quadrigemina, which are completely concealed by them. The commissural system of the hemispheres is much more complete, both fornix and corpus callosum being preseut in some form; and, when the latter is rudimentary, as in Marsupials and Monotremes, its deficiency is made up for by the great size of the anterior commissure. The lateral lobes of the cerebellum, wanting in lower vertebrates, are well developed and connected by a transverse commissure, the pons Varolii. The whole brain, owing especially to the size of the cerebral hemisnheres, is. considerably larger relatively to the bulk of the animal thau in other classes, but it must be recollected that the size of its brain depends upon many circumstances besides the degree of intelligence which an animal possesses, although this is certainly one. Man's brain is many times larger than that of all other known manmala of equal bulk, and even three times as large as that of the most nearly allied Ape. Equal bulk of body is here mentioned, because, in drawing any conclusions from the size of the brain compared with that of the entire animal, it is always necessary to take into consideration the fact that in every natural group of closely allied animals the larger species bave much smaller brains relatively to their general size than the smaller species, so that, in making any effective comparison among animals belonging to different groups, species of the same size must be selected. It may be true that the brain of a Mouse is, as compared with the size of its body, larger than that of a Man, but, if it were possible to reduce an animal having. the general organization of a Man to the size of a Mouse, its brain would doubtless be very many times larger; and conversely, as shown by the rapid dimiontion of the relative size of the brain in all the large members of the Rodent order, a Mousia magnified to the size of a Man would, if the general rult were observed, have a brain exceedingly inferior in volume. Although the brain of the large species of Whales is, 凤u commonly stated, the smallest in proportion to the bulk o, the animal of any mammal, this does not invalidate the general proposition that the Cetacea have very large brains compared with terrestrial mammals, as the Ungulata, of even the nquatic Sirenia, as may be proved by placing the brain of a Dolphin by the side of that of a Sheep or Pig, or a Manatee of equal general weight. It is only because the universally observed difference between the slower ratio of increase of the brain compared with that of the body becomes so enormous in these immense creatures that they are accredited with small brains.
The presence or absence of "sulci" or fissures on the surface of the hemisphere, dividing it into "convolutions" or "gyri," and increasing the supericies of the cortical grey matter, as well as allowiog the pia mater with its nutrient blood-vessels to penetrate into the cerebral substance, follow somewhat similar rules. They are related partly to the high or low condition of organization of the species, bat also
in a great degree to the size of the cerebral henuspnercs. in very small species of all groups, even the frimates, they are absent, and ia the largest species of groups so low in the acale as the Marsupials and Edentates they are found. They reach their maximam of development in the Cetacea.

The researches of palæontologists, founded upon studies of casts of the interior of the cranial cavity of extinct ferms, have shown that, in many natural groups of mammals, if not in all, the brain has increased in size, and also in complexity of surface foldings, with the adrance of time,-indicating in this, as in so many other respects, a gradual progress from a lower to a higher type of development.

The cuvelve pars of crania nerves generally recognized ia vertebrates are all usually found in mammals, though the olfactory uerves ara excessively rudimentary, if not citogether absunt, ia the Toothed Whales. The spinal cord, or continuation of the central norvons axis, lies in the canal formed by the neural arches of the vertebre, and gives off the compound double-rooted nerves of the trunk and the extrenities corresponding ia number to the vertebre, through the interspaces between which they pass out to their destination. The cord is somewhat enlarged at the two points where it gives off the great nerves to the nuterior and the posterior extremities, which from their interlacements soon after their origin are called respectively the brachial and lumbar plexuese. The ganglionic or sympathetic portion of the nervous system is well developed, and preseats few modifications.
Sease of The sense of touch is situated in the skin generally, but wuch. is arost acute in certain regions more or less specialized for the purpose by the presence of tactile papillæ, such as portions of the face, especially the lips and end of the snout, and the extremities of the limbs when these are used for other purpuses than mere progression, and the under burface of the end of the tail in some Monkeys. The "vibrisse" or long stiff bristles situated on the face of many mammals are rendered extremely sensitire to touch by the abundant supply of branches from the fifth nerve to their basal papilla. In Bats, the extended wing membranes, and probably also the large ears and the folds and prominences of skia about the face of some species, are so sensitive as to receive impressions even from the different degrees of resistancs of the air, and so enable the animals to avoid coming in cortact with obstacles to their nocturnal flight.

The argans of the other special senses are confined to tha head. Taste is situated in the papilla scattered on the dorsal surface of the tongue. The organ of smell is present in all mammals except the Toothed Whales. It consists of a runification of the olfactory nerves over a plicated, moist, mucens membrane, supported by folded plates of bons, placed on each aide of the septum nasi in the roof, or often in a partially distinct upper chamber of the nassl passuge, so arranged that, of the air passing inte the luags in inspira. tion, some comas.in contact with it, cansing the perception of any odorous particles with which it may be charged. Many mammals possess intense powers of amelling certain odours which others are quite unable to nppreciate, and the iofluence which this eense exercises over the wellbeing of many species is very great, especislly in indicating the proximity of others of the aame kind, and giving warning of the approach of enemies. The development and modification of the sense of small is probably associoted with that of the odorous secretion of the cutaneous glands.

The organ of sight is quite rudimentary, and even concealed beneath the integument, in some burreming Rodents and Insectivores, and is most imperfectly developed in the Platanista, or Freshwater Dolphin of the rivers of India. Is all other mammals the cyeball has the structure
cuaracteristic of the organ in the higher Vertebrata, con sisting of parts through which the rays of light are admitted, regulated, and concentrated upon the Eensitive expansion of the optic nerve liniag the posterior part of the ball. A portion of the fibro-vascular and highly pigmented layer, the choroid, which is interposed between the retiaa and the outer sclerotic coat, is in many mammals modified into a brilliantly coloured light-reflecting ourface, the tapetum lucidum. There is never a pecten or marsupium, as in the Sauropsida, nor is the sclerotic ever supported by a ring of flattened ossicles, as is so frequently the cass in the lower vertebrated classes. The eyeball is moved in various directions by a series of muscles-the four recti, two obliqui, and, except ia the higher Primates, a posterior retractor muscle called chonnoid. It is protected by the lids, generally distinctly separated into an upper and a lower movable flap, which, when closed, meet over the front of the eye in a more or less horizontal line; but sometimes, as in the Sirenia, the lids are not distinct, and the aperture is circular, closing to a point. In almost all mammals below the Primates, except the Cetacea, a "nictitating membrane" or third eyelid is placed at the inner corner of the eyeball, and works horizontally across the front of the ball withir the true lids. Its action is instantaneous, being apparently for the purpose of cleaning the front of the transparent cornea, a function which is unneccssary in animals whose eyes are habitually bathed in water, and which in Man and his nearest allies is performed by winking the true eyelids. Except in Cetacea the surface is kept moist by the secretion of the lacrymal gland, placed under the upper lid at its outer side, and the lids are lubricated by the Harderian and Meibomian glands, the former being situated at the inner side of the orbit, and especially related to the nictitating membrane, the latter in the lining membrane of the lids.

The organ of hearing is enclosed in a bony capsule Hearing (periotic) situated in the side of the head, intercalated between the posterior (occipital) and the penultimate (parietal) segment of the skull. It has, in common with other vertebrates, three semicircular canals and a restibule, but the cochlea is more fully developed than in Sauropsida, and, except ia the Monotremes, spirally convoluted. The tympanic cavity is often dilated belor, forming a smooth rounded prominence on the base of the skull, the tympanic bulla. The threa principal ossicles, the "malleus," "ineus," and "stanes," are always present, but variable in characters. In the Sirenia, Cetacea, and Seals they are massive in form, being in the first-named order of larger size than in any other nuammals. In the Cetacea the malleus is ankylosed to the tympanic ; in other mammals it is connected only with the membrana tympani. The stapes in the lower orders -Edentates, Marsupials, and Monotremes-has a great tendency to assume the columnar form of the corresponding bone in Sauropsida, its two rami entirely or partially coalescing. ${ }^{1}$ The tympanic membrane (drum of the ear) forms tho outer wall of the cavity. In the foetal state it is level with the external surface of the skull, and remains so permanently in a fow mammals, as the American Monkeys; but commonly, by the growth of the squamosal bene, it becomes deeply buried at the bottom of a bony tube (meatus auditorius externus), which is continued to the surface of the skin in a fibrous or fibro-cartilaginous form. In Whales, owing to the thickness of the subcutaneous adipose tissue, this is of great length, and is also extremely narrow. In most nquatic nud burrowing animals the meatus opens upan the surface by a simple aperture, but

[^152]in the large majority of the class there is a projecting fold of skin, strengthened by fibro-cartilages, called the pinna or auricle, or "external ear," of very variable size and shape, generally movably articulated on the skull, and provided with muscles to vary its position, as it belps to collect and direct the vibrations of sound into the meatus.

## Reprodective Organs.

In the male the testes retain nearly their primitive or internal position throughout life in the Monotremata, Sirenia, Cetacea, most Edentata, IIyracoidea, Proboscidea, and Seals, but in other orders they either periodically (as in Rodentia, Insectivora, and C'hiroptera) or permanently pass out of the abdomiaal cavity through the inguinal canal, forning a projection bencath the skin of the perineum, or becoming suspended in a distinct pouch of the integument called scrotum. All the Marsupials hare a pedunculated scrotum, the position of which differs from that of other mammals, being in front of, instead of behind, the preputial orifice. The presence, absence, or comparative size and number of the accessory generative glands-prostate, vesicular, and Cowper's glands, as they are called-rary much in different groups of mammals. The penis is almost always completcly developed, coasisting of two corpora cavernosa attached to the ischial bones, and of a median corpus spongiosum enclosing the urethra, and formiug the glans at the distal portion of the organ. In Marsupials, Monotremes, and the Sloths and Anteaters, the corpora carernosa are not attached directly to the ischia, and in the last-named the penis is otherwise of a very rudimentary character, the corpus spongiosum not being present. In many Marsupials the glans penis is bifurcated. In most Primates, Carnivora, Rodentia Insectivora, and Chiroptera, but in no other orders, an os penis is present.

Ovaries and oviduct.

In the female, the ovaries retain permanently their original abdominal position, or only descend a short distance into the pelvis. They are of comparatively smaller size than in other vertebrates, and have a definite flattened oral form, and are enclosed in a more or less firm "tunica albugenia." The oviduct has a trumpet-like, and usually fimbriated abdominal aperture, and is more or less differentiated into three portions:-(1) a contracted upper part, called in Man and the Ligher mammals "Fallopian tube"; (2) an expanded part with muscular walls, in which the orum undergoes the changes by which it is developed into the foetus, called the "uterus"; (3) a camal, the "vagina," separated from the last by a valvular aperture, and terninating in the urino-genital canal, or cummon urinal and genital passage, which in higher mammals is so short as scarcely to be distinct from the last. The complete distinction of the oriducts of the two sides throughout their whole length, found in all lower vertebrates, only occurs in this class in Monotremes, a prevailing mammalian characteristic being their moze or less perfect coalescence in the middle line to form single median canal. In the Marsupials this union only iacludes the lower part of the ragiaa; in most Placentalia it extends to the whole vagina and a certain portion of the uterus, which carity is then described as "bicornuate." In the higher manmals, as in Man, and alsa in some of the Edentates, the whole of the uterus is single, the contracted upper portion of the oriducts or Fallopian tubes, as they are then called, entering its upper lateral angles by small apertures. In certain lower forms of mammals the urino-genital canal opens with the ternination of the rectum into a common cloaca, as in other rertebrates; but it is characteristic of the majority of the class that the two orifices are more or less diatiact exterr ally.

Mammary glands, which secrete the milk by which the young are nourished during the first portion of theit existence after birth, are present in both scses in all mammals, thougl usually only functional in the femalc. In the Monotremes alone, their orifices are mere scattered pores in the skin, but in all others they are situated upon the end of conical elevations, called mammille or teats, Which, taken into the mouth of tho young animal, facilitate the process of sucking. These are always placed in pairs upon some part of the rentral surface of the body, but varying greatly in number and position in diferent groupz. In the Cetacea, where the prolonged action of sucking would be incompatible with their subaqueous life, the ducts of the glands are dilated into large reservoirs from which the contents are injected into the mouth of the young animal by the action of a compressor muscle.

Secondary sexual characters, or modifications of structure Secuns peculiar to one ses, but not directly related to the repro-ary ductive function, are rery goneral in mammals. They seruat almost always consist of the acquisition or perfection of charsome character by the male as it attains maturity, which is not found in the female or the young in either sex. In a large number of cases these clearly relate to the combats in which the males of many species engage for the possession of the females during the breeding season; others are apparently ornamental, and of many it is still difficult to apprebend the meaning. Many suggestions on this subject wrill, however, be found in the chapters devoted to it in Darrin's work on The Descent of Man and Selection in Relation to Sex, where most of the best-knomn instances are collected. Superiority of size and strength in the male of many species is a well-marked secondary sexual character related to the purpose indicated above, being probably perpetuated by the survivors or victors in combats transmitting to their descendants those qualities. whick gave them advantages orer others of their kind. To the same category belong the great development of the canine teeth of the males of many species which do not use thesc organs in procuring their food, as the Apes, Swine, Musk and some other Deer, the tusk of the male Narwhal, the antlers of Deer, which are present in most cases only in the males, and the usual superiority in size and strength of the horns of the Bovidx. Other secondary sexual characters, the use of which is not so obrieus, or which may only relate to orament, are the presence of masses or tufts of long hair on different parts of the body, as the mane of the male Lion and Bison, the beards of some Ruminants and Iats (as Taphosous melanopogon), Monkeys, and of Man, and all the variations of coloration in the seses, in which, as a general rule, the adult male is darker and more vividly coloured than the female. Here may also be mentioncd the presence or the greater development of odoriferous glands in the male, as in the Musk Deer, and the remarkable perforated spur rith its gland and duct, so like the poison-tooth of the venomous sernents, found in the males of both Ornithorhynchus and Echidna, the use of which is at present unknown.

Placenta. -The derelopment of the mammalian ovum, and the changes which the various tissues and organs of the body undergo in the process of grawth, are too intricate subjects to be explained mithout entering into details incompatible with the limits of this article, especially as they scarcely differ, excepting in their later stages, from those of other vertebrates, upon which, owing to the greatet facilities these present for examination and study, the subject has been more fully worked out. There are, howerer, some points which require notice, as peculiar to the mammalian class, and as affording at least some hints unon the difficult subject of the affinities and classification of the members of the group.

The nomishment of the foetus during intra-nterine life takes pace through the medium of cortain struetures, partly belonging to the fortus itself am\} partly belonging to the inmer pariotes of the uterus of the parent. These in their complete form constitute the complex organ called the "placenta," which serves as the medinm of communication betwren the mother and fortus, and in which the physiological processes that are concerned in the utrition of the latter take place; but, as we shall see, though a placenta, in the usual aecertation of the term, is peculiar to the mammalian class, it is not in all of its members that one is developed. The struetures to which we shall have especiall, to refer are the outer tunie of the ovim, to which, however formed, the term "chorion" is commonly applied, and two sac-like organs connected with the body cavity of the cmbryo, both formed from the splanehnie mesoblast, lined by a layer of the lypoblast. These are the " umbilical vesiele" or " yotk sae" and the " allantois."

The umbilieal veriche is a thin mombrane encosing the yolk, which by the doubling in of the ventral walts of the embryo beeomes gradually formed into a distinet sac external to the body, with a pedicle (the omphato-enteric duct) by which for a time a communiation is maintained between its cavity and the intestinal canal. In the walls of this sac bhod-vessels (omphalo-meseraic or vitelline) are developed in connexion with the vascular system of the embryo, through which, either by their contact with the onter surface of the walls of the ovum, or by the absorption through them of the eontents of the yolk sae, the nutrition of the embryo in the lower vertebrates chietly takes place. In mammals the umbitical vesiele plays a comparatively subordinate part in the nourishment of the Frotus, its funetion being generally superseded by the allantois.
The last-mamed sae commences at a very early period as a divertientum from the hinder end of the alimentary tract of the embryo. Its proximal portion afterwards becomes the urimary bladder, the contracted part between this and the cavity of the allantois proper constituting the urachus, which pasises ont of the body of the fortas at the umbilicus together with the vitelline duet. The mesoblastic tissue of the walls of the allantois soon beromes vascular; its arteries are supplied with fortal hood by the two hypogastric branches of the iliaes, or main divisions of the abdominal aorta, and the blood is returned by venous trunks which unite to form the single mbilical vein whiel runs to the under surface of the liver, where, part of it joining the portal rein and part entering the vena cava directly, it is brought to the heart. These are the vessels which, with their surrownding membranes, eonstitute the umbilical eord, the medium of communication between the foetus and the phacenta, when that organ is fully developed.
The nature of the fortal membranes of the Monotremata is not known. In the Marsupialien the ohservations made many yorars ung by l'rofessor Owen, unon the development of the kianguroo, have recently hemi confirmed by lor. II. C. Chmpman, ${ }^{1}$ but. Fuller investigations in different species and at different stages are wtill mueh to be desired. As far as is known, lif to the period of the very premature thirth of these animala the outer covering of the ovam or chorion is free from villi and not adherent to the aterine wnlls, for, thongh titting into the folds of the latter, it is perfectly and readily separable in its entire extunt from them. The umbilieal vesich is large, vaseukar, and adherent to a eonsiderable portion of the chorion, white the allantois is rolatively monll, and, though the usmat blood-vessels ean

[^153]be traced in it, it does not appear to contract any connexion with the ehorion, and therefore much less with the walls of the uterus, of such a nature as to constitute a phacenta. While in the uterus the nourishment of the fortus seems therrfore to be derived from the umbilical wesicle, as in routiles and birds, rather than irom the nterine walls by means of the allantoie ressels, as in the higher mammats. The latter verssels, in fact, play even a much less important part in thedevelopment of these animals, not only than in the ptacental mammals, but even than in the Sauropsila, for they ean seareely have the respiratory function assigned to them in that group. Pulmonary resuiration and the lacteal secretion of the mother very early supersede all other methods of providiug the due surnly both of oxygen and of food required for the development and growth of the voung animal. In this sense the Marsupials may be Gooked upon as the most typically "mammatian" of the whole class. In no other group do the milk-secreting glands play sueh an important part in froviding for the continuity of the race.

In the third primary division of the Mammalia, the socalled Placentalia, the umbilieal vesiele generally does not quite unite with the ehorion, and disappears as development proceeds, so that no trace of it cin be seen in the membranes of an advanced embryo; but it may persist until the end of intra-uterine life as a distinct sae in the umbilical cord, or tying between the allantois and amnion. The disappearance or persistence of the umbilical vesicle does not, according to our present knowledge, appear to be correlated with a higher or lower general grade of development, as might be presupposed. It is stated to have been found in dlan even up to the end of intra-uterine life, and also in the Carnivora, while in the C'ngulata and Cetacea it disanfears at an earlier age. In many, if not alk, of the Rodentia, Insectivora, and Chiroptera, it plays a more important bart, becoming adherent to a considerable part of the inner surface of the ehorion, to which it conveys blood-vessels, although vill do not appear to be developed from the surlace of this part, as they are on the portion of the ehoriou supplied by the allantoic vessels. These orders thus present to a certain extent a transitional condition from the llarsupials, although essentiatly different, in fossessing the structures next to be deseribed.
The suecial charaeturistie of the whole of the placental mammals constituting the majority of the class, is that the allantois and its vessels become intimately blenden with a smaller or greater part of the parieties of the orim, forming a structme on the outer surface of which vilk are developed and which, penetrating into comespmbing cavities of tha "decidua," or soit, vascular, hywrtrophied lining membrane of the uterus, constitutes the phaenta.. This orean may be regarded, as Profesor Thmers sats, both in its fmetion and in the relative armmement of its constituent textures, as a sperially modified sureting gland, the ducts of which arm represented by the extrmaties of the blood-vessels of the futal system. The bassange of material From the maternal to the fortal sysamen of wessels is not a simple pereolation or diffusion through their wals, but is oceasiourd by the artion of a layer of eells derived Irom the matermah or utnimestruetures, and interposed between the blood-vessels of the matrmal part of the plaeenta and those of the vilh eovering the chorion, in whith the embryonic vessels ranify.
The momerous monditications in the aletails of the structure of this organ relato to inermang the absorbing enmacity of the vessets of the chorion, and are brought ahout eithorby inereasing the eomplexity of the fortal villi nul maternal erypts owe a limited area, or by inerensing the area of the part of the chorion coverend by theptacental villi, or by rarions combinations of the two methods.

The first class of rariations bas giren rise to a distinetion into two principal kinds of placenta-(1) simple or non-deciduate, and (2) deciduate. In the former the foctal villi are received into corresponding depressions of the maternal surface, from which at tho period of parturition they are simply withdrawn. In the second or more complex form the relation is more intimate, a lajer of greater or less thickness of the lining membrane of tho uterus, ealled "decidua," becoming so intimately blended with the chorion as to form part of the placenta proper, or that structure which is cast off as a solid body at parturition. Ia other yords, in the one case the line of separation between the placeata and uterus at birth takes place at the junction of the feetal aad maternal structures, in the other through the latter, so that a portion of then, often of considerable thickuess, and containiag highly organized structures, is cast off with the formel: It has been thought that the distinction between these two forms of placentation is so important as to constitute a sufficiently valid basis for a primary division of the placental mammals into two groups. It has, however, been shown that the distinetion is one rather of degree than of kind, as intermediate conditions nay exist, and it is not improbable that in differeat primary groups the simpler, non-deciduate form may have beeome developed independeatly into one or other of the more comples kinds.
Apart from its intimate structure, the placenta may be met with of very raried general form. It may consist of villi scattered more or less regularly over the greater part of the surface of the eliorion, the two extremities or poles being usually more or less bare. This form is called the "diffused placenta," It is probably a primitive condition, from which most of the others are derived, although its existence must presuppose the absencs of the umbilical vesicle as a constituent of the chorionic rall. It is found at presnent in the Manis among Edentates, the Cetacea, Sirenia, the Perissodactyle Ungulates, and the Camels, Pigs, and Cherrotains among the Artiodactyles. Such placente are always non-deciduate. In the true Ruminants or Pecora, among the Artiodactyle Ungulates, the villi are aggregated in masses ealled cotyledons, with bare spaces between. Such a placentation is called "polycotyledonary:" In another modification the villi are collected in a more or less broad band encireling the chorion, leaving a rery largo portion of the tiso poles bare, constituting the "zonary placenta," eharacteristic of the Camivora, and also occurring io the Elephant, Hyrax, and Orycteropus. The fact of the form of the plaeenta of these three last-named animals agreeing together, and with that of tho Camivorc, does not, however, necessitate the ascription of zoological affinities, as the placenta of the Carnivora has been shown to be at Girst discoidal, and to become zonary by spreading rout the chorion in the course of development. In the other cases, although it must be admitted that the early stages have not been well observed, it is quite probable that it may be derived from a diffused placenta, in which the fcetal rilli have disappeared from a larger space than nsual of the two poles of the ovam.

In another form one pole only of the chorion is nonvascular, the placenta assuming a dome or bell shape, as in the Lemurs and the Sloths. The transition from this, by the gradual restriction of the vascular area, is easy to the oval or discoidal form of placenta of the Anteaters, Armadillos, and Primates. The ciscoidal placenta of the Rodents, Insoctivores, and Chiroptera, though shorring so much superficial resentablance to that of the last-mamed order as to bave coused them fornerly to be associated in one primary group, is now known to be developed in a nother manner, not by the concentration of villi froas a diffusid to a lanited area, but by retaining the area to
which it was originally restricted in consequence of the large surface of chorion occupied, as before mentioned, by the umbilical vesicle. To compeasate for the smallness of area, the comples or deciduate structure has been developed. We may conclude that, although the claracters and arrangement of the foctal structures may not have that extreme importance which has been attributed to then by some zoologists, they will forin, especially when more completely understood, valuable aids in the study of the natural afinities and evolution of the Mrammalia. ${ }^{1}$

## CLASSIFICATION OF THE NAMMALIA:

As stated at the commencement of this article, tite mammalian class, as at preseat known cither by existing or extinct forms, is completely isolated from all other groups of the animal kiogdom, but it is impossible to refrain from speculating as to its origin and nearest affinities. In arranging the classes of vertebrates in a liaear series it is customary to place them in the following order-Pisces, Amphibia, Reptilia, Ares, Mammalia,-an order which may possibly indicate the relative degree of elevation to which the most completely developed members of each class attain, though it would be a great mistake to suppose that such an arrangement expresses the true relationship of one to the other, and still less must it be imagined that in tho process of evolution any of the higher classes are necessarily derived directly from those nearest below them in this serial arrangement. On the contrary, some arguments recently set forth by Professor Huxley ${ }^{2}$ point rery strongly to the conclusion that, in looking among vertebrates for the progenitors of the Mammalia, we must pass over all known forms of birds and reptiles, and go straight down to the Amplribia. In addition to the characters derived from the conformation of the pelvis upon which the argument is primarily lased, the following reasons are given for this conelusion:-"The Amplibia are the only air-breathing Tertebrata which, like mammals, have a dicondylian skull. It is only in them that the articular element of the mandibular arch remains cartiaginous, While the quadrate ossification is small, and the squamosal extends down orer it to the osseous elements of the mandible, thus affording an easy transition to the mammalian condition of those parts. The pectoral areh of tho Monotremes is as much amphibian as it is saaropsidian; the carpus and the tarsus of all Sauropsida, except the Chelonic, are modifed away from the Urodele type, whilo those of the mammal are direetly reducible to it. Finally, the fact that in nll Suuropsida it is a right aortic arch which is the main conduit of arterial blnod leaving the heart, while in mammals it is a left aortic arch which performs this office, is a great stumbling-block in the way of the derivation of the Manmalia from any of the Sauropsida. Bat, if we suppose the earliest forms of both tho Mammatice and the Suntropsida to have had a common Amphibian origin, there is no difficulty in the supposition that, from the first, it was a left aortie arch in the one series, and the correspanding right aortic arch in the other, which became the predominant feeder of the arterial system."

There is so much in common between the very aberrant Monotremes, upon the structure of which the above conclusioas are nainly based, and all other known mammals that we eanuot but suppose they aro derived, perhaps at some remote period, from one stock, some of the predominating characters of which survive in the existing

[^154]classification.]
M A M M A L A

Monotromes, though lost in most other members of the class. 'These "I'rotothoris," as Proiessor Ituxley terms them, have in their turn probably been derived from the same sourco ns that in which the existing Ampluibia on the one haad and the Sutropsida on the other have had their origin. Tho great divisions of the lertelrata may be looked upon therefore as parallel, or rather diverging groupls, enelt tending towards its own specialization, not in any way in the light of ancestor and descendant. No further advance of the Sauropsidian typo, which has reached its highest perfection in the modern volant birds, would bring it nearer to the mammalian organization.
Restricting ourselves now to the class of mammals, as differentiated from other vertebrates, it will be unneeessary to repeat the oft-told history of the various attempts to express the provailing knowledge of their structure and affinitics in a systematic manner called a classification. The systems of Ray, Linmaus, Cuvier, Owen, MilneEdwards, Husley, and others mark successive epochs of that knowledge. A perfect arrangement of any group of animals ean only be obtained simultaneously with a perfeet knowledge of théir structure and life history, and from this, it need searcely be said, we are still very far removed. If, ns was formerly the case, elassifications could be confined to existing species, tho work, would be far less difficult. By the extinction of intermediate forms the surviving groups have mostly come to be much isolated, and their limits can bo readily determined and defined. The discovery of extinct species, which appears to be taking place at a constantly increasing rate, is by degrees breaking down these boundaries, and making definitions impossible, though at the same time it is throwing much light upon the aftinities and probable origin of nany groups now widely separated. A sourec of difficulty, and perhaps errer, which this advancing knowledge has introduced, arises from the necessity of determining the position and relation of so mathy forms by the bones and teeth alone, without any hope of deriving aid from all those other structures of whiel we avail ourselves in the case of recent nnimals. These considerations will show that any classifiention advanced at present must bo regarded as provisional. There are, howcver, some positions which seent to be so firmly established that it is very unlikely that we shall be dislodged from them by any further increase of knowledge, and which we should carefully distinguish from others wLich aro acknowledged to be doubtful, and adopted rather for convenience, owing to the necessity of having some arrangement, than as representing unimpeachable truth.

One of the most certnin and fundanental points in the classification of the Mammalia is, that all the animals now composing the class can bo grouped primarily in threo natural divisions, which, presenting very marked differentiating characters, and haring no oxisting, or yet certainly demonstrated extinct, intermediate or transitional forms, may be considered ns subclasses of equal value, taxonemically speaking, though very different in the numbers and importance of the animals at present conposing them. These three groups are often ealled by the names originally proposed for them by Do Blainville-(1) Ornithodelphia, (2) Didelphia, (3) Monodelyinia, -the first being equivalent to tho order Monotremata, the sceond to the Marsupialic, nud the third iacluding all tho remaining members of the class. Although actual palxontological proof is wanting, thero is much reason to believe that caeli of these, as nor existing, are survivors of distiact branches to which the earliest forms of nammals havo suecessively given rise, and for which hypothetieal branches Huxley las proposed the names of Prototheria, Metatheria, and Lutheria, ${ }^{1}$ names
${ }^{1}$ Proccedings of the Zoological Socicly, 1580, 1. 619.
which, being far less open to objection than those of Blainville, we shall here use as equivalents for the later.
The characters of the I'rotolkeria can only be deduced from the two existing families, as hitherto no extinct animals which can be referred to other divisions of this remarkable and well-claracterized group have been discovered. Theso two isolated forms, in many respects widely dissimilar, yet having numerous common characters which unite thom together and distinguish them from the rest of ihd MLammalia, are the Ornithorhmnchidx and the Echithieltr, both restricted in their geographical range to the Anstralian region of tho globe. Taken altogether they represent the lowest type of evolution of the manmalian class, and most of the characters in which they differ from the other two subclasses terct to connect them with the inferior vertebrates, tho Sauropside and Amphitia; for, though tho namo Ornethodedphice owes its origin to the resemblance of the structure of the female reproductive organs to those of hirds, there is nothing especially bird-like about them.
Their principal distinctive charaeters are thesc. The brain has a very large auterior commissure, and a very small corpus callosum, agreeing exactly in this respect witis the next group. The cerebral hemispheres, in Echidue at least, are well developed and convoluted on the surface. Tho anditory ossieles present a low grade of development, the malleus being very large, the inens small, and the stapes columelliform. They bave no true teeth, though the jaws of Ornithorlynchus are provided with horny productions, which funetion lly supply their place. The coracoid bono is complete, and articulates with the sternum, and there is a large "interclavicle" or episternum in front of the sternum, and connecting it with tho clavieles. There are also "epipubic" bones. The ovidnets (not differentiate久 into uterine and Fallopian portions) are completely d!stinct, and open as in oriparous vertebrates separately inio a cloacal chamber, and there is no distinct vagina. 'Sho testes of the malo are abdominal in position througheate life, and the vasa dcferentia open into tho cloaca; not into a distinct urethral passage. Tho penis, attached to the ventral wall of the cloaca, is perforated by a canal in the greater part of its length, but not at the base, which is open as in reptilcs and those birds which have suck an organ, and brought only temporarily in contact with the termination of the vasa deferentia, so as to form a seminal urethra when required, but never transmits the urinary secretion. This condition is a distinct advanec ou that of the Scuropsida in the direction of the more complete development of these parts in most of the other Jfammatic. The ureters do not open into the bladler, but behind it into tho dorsal wall of the genito-urinary passage. The mammary glands havo no distinot nipile, but pour out their secretion through numerous apertures in the skin. The early stages of the clevelopment of the young are not yet fully known, but they are produced in a very rudimentary condition, and appear neter to be mourishoe by means of an allantoic placenta.

Tho Metctheria or Didelphice are represented at present by numerous species, presenting great diversities of goneral appearance, structure, and habits, although all united by many essential anatomical and physiological charac!ers, which, taken altogether, give them an intermediate posi tion letween the Prototheria and the Futheria. In the structure of tho brain and tho presence of epipubic bones they agree with tho former, while in the structure of tho car bonos and the shoulder girdle and the presenee of teats on the mammary glands they resemble the latter, the reproductive organs belonging to meither one mor the other type,', but prosenting a special character representing in inter-: mediate grade of development. The ureters open into tho base of the bladder. Tho oviducts are differentiated into
uterine and Fallopian portioas, and open into a long and distinct vagina, quite separate from the eystic urethra. The penis is large, bnt its erura are not directly attached to the ischia. The spongy body has a large bifureated bulb. The young are born in an excerdingly radimentary condition, and are never nourished by means of an allantoic placenta, bat are transferred to the nipple of the mother, to which they remain firmly attarhed for a considerable time, nomrished by the milk injected into the mouth by conpression of the muscle covering the mammary gland. They are therefore, as previously remarked (see p. 369), the most typically mammalian of the whole class. The nipples are nearly alwers concealed in a fold of the abdominal iategument or "pouch" (marsupium) which serves to support and protect the young in their early helpless condition. The existing species of this group are entirely confined to the Australian region and the American continent, though in former times they had a more extended geographical range. The earliest mammals hitherto discovered appear (as far as the scanty evidence at j) resent obtainable permits any such conclusion to behazarded) to have belonged to this type, although it is reasonable to concluse that Prototherin (unless upoa the improbable supposition that the existing forms have resulted from a process of degradation), and perhaps Eutheria, were their contemporaries far back in the Mesozoic age.
The Eutheria, Monodelphia, or "placental mammals" (so called because the foetus is always nomrished while within the uterus of the mother hy means of aa allantoic placenta) include at present by far the greater proportion of the class. While the survicors of the other groups have probably been for a long time in a stationary condition, these have, as there is already good evidence to show throughout all the Tertiary geological age, and by infrence for some time before, been multiplying in numbers and rariations of form, and attaining higher stages of development and specializatioa in rarions directions. They consequently exhibit far greater diversity of external or adajtive modification than is met with in either of the other subclasses, -some being fitted to live as exclusively in the water as fishes, and others to emulate the aerial flight of birds.
To facilitate the study of the different component members of this large group, it is usual to separate them into certain divisions which are called "orders." In the main zoologists are now of accord as to the general number and limits of these divisions amoag the existing forms, but the affinities and relationships of the orders to one a nother are far from being understood, and there are very many extinct forms already discovered which do not fit at all satisfactorily into any of the orders as commonly defined.
Commeneing with the mosteasily distinguished, we may first separate a group called Edentata, composed of several very distinct forms, the Sloths, Inteaters, and Armadillos, which under great modifications of characters of limbs and digestive orgaus, as well as habits of life, have just enough in common to make it probable that they are the very specialized survicors oil an ancient group, most oi the members of which are extinct, but which the researches of palenatology have not yet revealed to us. The characters of their cerebral, dentaj, and in many cases of their reproductive organs show an inferior grade of organization to that of the generalits of the subclass. The next order, about the limits of which there is no difficulty, is the Sirenia, aquatic regetable-eating animals, with complete absence of hind limbs, and low cerebral organization, represented in our present state of knowledge by but two existing genera, the Dugongs and Manatres, and bs a iew extinct forms, whieh, though approaching a more gegeralized mammatian type, show no special characters allying them to any of the other orders. Another equally
well-marked and equally isolated, though far more mumerously represented and diversified order, is that of the Cetacea, composed of the varions Iorms of Whales, Dolphims, and Porpoises. In aquatic hubits, extermal fisl-like form, and absence of hind limbs they resemble the last, though in all other eharacters they are as widely removed as are any two orders among the Eutheria. The association by systematists of the Cetacea and Sirenia in oae group can only be made either in ignorance of their true structure, or ia an avowedly artificial system.

All the remaining orders aremore nearly allied together, the stejs by which they hare become modified from one general type being in most cases not difficult to realize. Their dentition especialls, however diversified in detail, alwn's responds to the formula already described (see p .353 ) ; and, although the existing forms are broken up into groujes in most cases easy of definition, the discoreries already madr in paleontology have in great measure filled up the gaps hetween them.

Very isolated among existiag Eutheria are the two species of Elephant constituting the order called Proboscidea. These, howerer, are now known to be the survicors of a large series of similar animals, Mammoths, Mastodons, and Hinotherin, which as we pass backwardsia time gradually assump a more ordinary or generalized 15 ep ; and the interral which was lately supposed to exist between eveu these and the rest of the class is partially bridged over by the discovers in American Eocene und early Miocene formations of the gigantic Dinocerata, evidently offshoots of the great group of loofed animals, or Enyulutn, represented in the aetual fauna by the Horses, Rhinoceroses, Tajirs, Swine, and Ruminants. Alnostas isolated as the Proloscidea among existing mammals are the few small species constitating the gonas Myrar, and ia their case palaontology affords no help at present, and therefore, pending further discoveries, it has been thousht advisable in most recent systems to give them the honomr of au order to themselves, under the name of Hyracuidea. But the number of extinct forms already kuown allied to the lingulata, bat not coming under the definition of either of the two groups (.1 tiodactyla and Perissodactyla) under which all existing sprecies range themselres, is so great that either many new orders must be made for their reception or the dufinition of the old order Cngulata so far extended as to receive them all, in which case both I'roboscidea and IIyracoidea might be included within it. Again the Rodentia, or gnawing animals-Rabbits, Rats, Squirrels, Porcupines, Beavers, \&e.-are, if we look only at the present state of the class most isolated. No one can doubt what is meant by a Rodent animal, or have any difficulty about detining it clearly, at least hy its dental characters; yet onr definitioas break down before the extinct South American Nesutherium, hali Rodent and half Ungulate, which leads by an easy transition to the still more truly Cngulate Toxodon, for the receptioa of whicli a distinct order (Toxodontia) lras been proposed. The Insertizom and the rarnicora agaia are at present quite distinet orders, but they merge into one another through fossil forms, and are especially connected by the large group of primitive Camizora, so abuudantly represented in the Eocene deposits both of America and Europe, to which Cope has given the mame of Creodonta. The transition froar the Insectivores to the Lemurs is not great, and, strange to say, however different thes now appear, the early forms of Lemurs are not easily distinguished from the primitive E'ngulates. The Bats or Chiroptera are allied to the Insectizora in all characters but the extraordinary modification of their anterior extremities into wings, but this, like the want of the hind limbs in the Cetacea and Sirenia, make such a clear distiaction between
them and all other mammals that, in the absence or any knowledge of intermediate or transitional forms, they can be perfectly separated, aud form as well defined an order as any in the class. Lastly, we lave the important and well-characterized group, called Primates, including all the Monkeys and Man, and the question is not yet solved as so horr and through what ferms it is linked on to the other groups. It is commouly assumed that the Lemurs are nothing more than inferive l'rimates, but the interval betiveen them in the netual fauna of the world is very great, and our knewledge of numerous extinct spccics recently. discovered in America, said to be intermediate in characters, is not yet sufficiently perfect to enable us to form a definite opinion upon the subject.

The distinctive characters of the generally recegnized orders of mammals, with on accourt of their subdivisiens und the principal forms contained in each, will be given further on.

## geographical distribution of mammalia:

The existing species of fer classes of the animal kingdem are better knewn than those of the Mammalia, and, owing to the comparatively limited methods of locometion or transport which most of them possess, the area of distribution of each species is more definite and restricted than in some other classes. In the articles Bieds and Distribution the varieus regiens into which natiralists have divided the earth's surface, according to the prevailing characters of its animal inhabitants, have been described, and in tho latter the main facts connected with the distribution of mammals have been treated of. In the account of each group contained in the ; resent article the particular circumstances relating to its geographical range will be mentiened. There is little therefore needed here, except a brief summary of the most important facts relating to this interesting subject.

As regards their distribution over the surface of the earth, mammals may be dividéd inte three groups according to their priccipal methods of lecomotion-(1) aerial, (2) aquatic, and (3) terrestrial.

1. Aerial Mfummals.-This group only comprises tne animals composing the single cider Chiroptera, which differ from all other mammals in the fact that their principal means of transport from place to place is by aerial fight, as in the majerity of birds and insects. Broad expanses of water, which ferm natural barriers to the spread of terrestrial mammals, are therefore no obstacles to their distribution; accordingly we find the general rule that mammals are not inhabitants of oceanic islands modified in their case. But even in this group, notwithstanding their exceptional powers of locomotion, different species, genera, and families inhabit very definite areas. Each zoological region of the carth has its characteristic Bats; and those of the New World aod of the Old World are, with very few exceptions, quite distinct. This subject will be noro fully treated of under tho order Chiropterc.
2. Aquatic Mammals.--Many mammals grouped for tho present purpose as terrestrial pass a great portion of their lives in broeks, lakes, or rivers, and, being dependent upon such waters for obtaining their subsistence, are necessarily eonfined to their vicinity; but the truly aquatic mammals, or those living constantly in tho water, and unable to move their quarters from place to placo ly land, are the orders Cetacea and Sircnia, with whicly may also be grouped the Seals, forming the Pinniped division of the order Carnivora.

For the marine Cetacea, animals mostly of large size and onderwed with pawers of rapid lecomation, thero aro obviously no barriers to universal distribution over the arface of tho earth covered by sca, except such as are
interposed by nncongenial temperature or absence of suitable fopd. Nevertheless it was thought some years ago that the fact of a Whale or a Dolphin occurring in a sea distant from that in which it had usually been found was sufficient justification fer consideriog it as a distinct species and imposing a new name upon it. There are now, however, so many cases known in which Cetaceans from the northern and sonthern seas, from the Atlantic and the racific Oceans, present absolutcly no distioguishing external or anatomical characters upon which specific determination can be based that the opposite view is gaining ground; and, as soma species are undoubtedly very widely distributed, almost cosmepolitan in fact, there seems little reason why many others should not be included in the same category. The evidence is satisfactory enough in those cases in which tho intermediate regions are inhabited by the same forms, the cases of "continuous areas" of distribution. In those in which the areas of distribution are apparently discontinuous, there may be more room for doubt; but it must not be fergotten that the negative evidence is here of much less ralue than in the case of land animals, as the existence of Cetaceans in any particular part of the ocean is most easily overlooked. The great Sperm Whale (Physeter macro. cephalus) is known to be almost cosmopelitan, inhabiting or passing tbrough all the tropical and temperate seas, altheugh net found near cither pole. At least three of the weli-Enown species of Rerqual (Ealxnoptera) of the British coasts are represented in the North Pacific, on the South American shores, and nenr New Zealand by species so closely allied that it $1 s$ difficult to peint out aoy valid dis. tinctive characters, though it may perhaps be desirable to wait for a mere complete cxamination of a large series of individuals before absolutely pronouncing them to be specifically identical. There is nothing yet known by which we can separate the " Humpback Whales". (Mega ptera) of Greenland, the Cape of Good Hope, and Japan. The same may be said of the common Dolphin of the European seas (Delphinus delphis) and the so-called $D$. baircliz of the North Pacific and D. forsteri of the Anstralian seas. The Pilot Whalo (Globicephatus melas) and the Psendorca of the Nerth Atlantic and of Nen Zealand are also precisely alike, as far as present kncwledge enables us to judge. Many other similar cases might be given. Captan Maury collected much valuable evidence about the distribution of tho larger Cetacea, and, finding Right Whales (Balena) common in both northern and southern temperate scas, and absent in the intermediate region, laid down the axiom that "the torrid zone is to the Right Whale as a sea of fire, through which be cannot pass." Heace, all cetologists have assumed that the Right Whale of the North Atlantic (B. biscayensis), that of the South Seas (B. australis;, and that of the North Pacifio ( B. japonica) are necessarily distinct spectes. The anato- $^{\text {a }}$ mical structure and cxternal appearance of all are, however, as far ns yet known, 'marvellously alike, and, ualess some distinguishing characters can be pointed out, it seems scarcely justifiablo to scparate them upon geograplical position alone; as, although the tropical scas may be usually avoided by them, it scarcely seems impossible, or even imprabable, that somo individuals of animais of such size and rapid powers of swimming may not have at seme time traversed so small a space of ocean ns that which divides the present habitual localities of these supposed distinct species. If identity or diversity of structural characters is not to be allowed as a test of species in these cases, as it is usually admitted to be in others, the study of their geographical distribution becomes on impossibility.
Although many species are thus apparently of snct wide oistribution. otiuers are certainly restricted; thus the

Aretic Right Whale (Batana mysturzus) has been conelusirely shown to be limited in its range to the region of the northern circumpolar ice, and ns corresponding species has boen met with in the southern hemisplere. In this case, not only temperature, but also the peculiarity of its mode of feeding, may be the cause. The Narwhal and the Beluga have a very similar distribution, thougl the latter oceasionally ranges farther south. The Hyperoodons are restricted to the Nurth Atlantic, never entering, as far as is jet known, the tropienl seas. Other species are expelusively tropical or austral in their range. One of the true Whalebone Whales (Heobalxua maryinata) has only been met with hitherto in the seas round Australia and New Zealand, a large Ziphioid (Zerardius amouxi) only near the last-named islands.
The Cetacea are not limited to the ocean, or eren to salt water, some entering large rivers for considerable distances, and some being exelusively fluviatile. One species of Platanista is catensively distributed throughout nearly the whole of the river systems of the Ganges, Brahmaputra, and Indus, aseending as high as there is water enough to swim in, but apparently never passing out to sea. The individuals inhabiting the Indus and the Ganges must therefore have been for long ages isolated without developing any definite distinguishing anatomical characters, for those by which the supposed P. indi was formerly separated from $P$. gangetica have been shown by Anderson to le of no constant value. Orcellu gluminalis appears to be limited to the Iramaddy river, and at least two distinct species of Dolphin, belonging to different genera, are found in the waters of the upper Amazon. It is remarkulile, howcver, that none of the great lakes or inland aeas of the world are, according to our present knowledge, inhabited by Cetaceans. A regular seasonal migration has been obseryed in many of tine oceanic Cetace, especially thoso inhabiting the North Atlantic, but further observations upon this subject are still mucl needed.

The great difference in the manner of life of the Sirenia, as compared with that of the Cetacea, causes a corresponding difference in their geographical distribution. Slow in their morements, and feeding exelusively upon regetable substances, mater-grasses, or fuci, they are confined to rivers, estuaries, or coasts where these grow, and are not denizens of the open sea, although of course there is a possibility of accidental transport by the assistance of oceanic currents aeross considerable distances. Of the three genera existing within historic times, one (Manatus) is exelusively confined to the shores of the tropical Atlantic and the rivers entering into it, individuals scarcely specifically distinguishable being found both on the American and the African side of the ocean. The Dugong (Halicore) is distributed in different colonies, at present isolated, throughout the Indian Ocean from Arabia to North Australia. The Rhytina or Northern Sea Cow was, for some time before its extinetion, limited to a single island in the extreme north of the Pacific Ocean.

The Pinnipeds, although capable of traversing long reaches of ocean, are less truly aquatie than the last troo groups, always resorting to tho land or to extensive icefloes for the purposes of breeding. The geographical range of each species is geterally more or less restricted, usually according to elinute, as they are mostly inhabitants either of the Arctic or Antarctic seas and adjacent tempers:ie regions, very few being found within the tropies. For this reason the northern and the southern species are for the most part quite distinct. In faet, the only known excention is the case of a colony of the Sea-Elephant (Macrorhinus leoninus), the general range of which is in the southern hemisphere, inhabiting the const of California Eren in this case a different specific name has been giren
to the northern form, but the characters by which it is distinguished are not of great importance, and prubably, ${ }^{1}$ except for the abnornal geographical distribution, would never have been discovered. The most remarkable circumstance connected with the distribution of the Pinnipeds is the preseuce of menbers of the order in the threo isolated great lakes or inland seas of Central Asiathe Caspian, Aral, and Baikal-which, notwithstanding their long isolation, have varied but slightly from species now inhabiting the P'olar Seas.
3. Terrestrial Jfummals.-One of the most important facts connected with the present distribution of terrestrial mammals, but one of which the cause is sufficiently obvious, is their entire absence, except where introduced by the direct ageney of man, from all oceauic islands, including even the great New Zealand group. Another, equally striking, but less easily explained, is the wery marked isolation as regards its mammalian fanua of the Australian region of zoologists. When onee the natrow neutral ground on the border line between this and the Oriental region is passed, there is not found, notwithstanding the vast extent of land it comprises, a single indigenons placental or monudelphous manmal, except a few specics of a single family (Muridx) of the very wide spread order Rodentia,-the Wild Dog or Dingo haring been in all probability introduced. On the other land, the members of the other two subelasses, the l'rutatheria or Ornithodelphia and the Metatheria or Didelphia, are almost entirely restricted to this region. It might have been said entirely, but for the presence of one family (Didelphidic) of the latter group in America.
The Eutheria or Monodelphia are distributed throughoat the remaining geographical regions, as descrihed in the article Distriettiox, and in many cases furm raluable indications by which the natural Loundaries of these divisions have been traced. Many anomalies, otherwise inexplicable in the present range of families and species, have been cleared up by the study of their distribution in former geological epuchs, a subject in relation to which the present facts of distribution should always be studied. There are ferw hes of evidence so conelusive as this in favour of the existing species being modified lineal descendants of those which have lived in previous times upon the earth. ${ }^{1}$

## history of the mamialia in past times

As already intimated, such knowledge as we yet possess of the bistury of mammals in past times is of rery recent growth, and is still extremely incomplete. The rery rapid adrances which hare been made in the last few years, especially in consequence of the explorations of riels fossiliferous beds in North America, have not only completely cbanged the present aspect of the science, but gire such promise for the future that any sketch which we miglit now attempt of this branch of the subject could only te regarded as representing a transient phase of knowledge. It will be well, however, to gather together in this place the leading facts now ascertaned trith regard to the most ancient forms, as, owing to the uncertainty of their relationship with any of the existing orders, they will be most conveniently treated of scyarately, while the ascertained facts relating to the geological history of the forms more nearly allied to those now living will be more appropriately described under the account of the difierent groups inta which the class miay now be divided.

[^155]
## Mammals of'tae Mesozoic Perlod. ${ }^{1}$

The hitherto discovered remains of mammals which existed anteriur to the Tertiary period all belong to creatures of very small size, the largest scarcely excceding the common Yolccat or Squirrel. Some ara known only by a few isulated teeth, others by nearly complete sets of these organs, and the majority by more or less perfect specimens of the rami of the lower $j$ jnm. It is a very curions circumstance that this part of the skeleton alone has been preserved in sucts a large number of instances. No complete cranium bas ever been fonnd, nor is there satisfactory evidence of the structure of the vertebral column or of the limbs of any single individual. The species nlrcady described from European strata amount to nearly thity, which have been arranged in fifteen genera. Of these by far the greater number have been found at a siagle spot near Swamage in Dorsetshire, in a bed of calcareous mud only 40 fect long, 10 feet wide, and avcraging 5 inches in depth. The marvellous results obtained byethe expleration by Mr S. H. Beckles, of this small fragment of the earth's surface show hy what accidents, as it were, our knowledge of the past history of life has been gained, and what may still remain in store where little thought of at present. A hed, apparently equally rich, has recently been diseovered in the Territory of Wyoming, Noath America, the contents of which are being made knomn by Professer Marsh.

1. Jfammats of the Tricassic Period.-The Rhætic formations, so named from the Rhwtian Alps of Ravaria, aro the highest beds of the Trias, and are situated above tho New Ied Sandstone, aud just below the Lins. In 1847 Professer Pleininger of Stuttgart, while assiduously sifting some sand from this formation, belonging to the Keuper of Diegerlach and Steinenbronu, discevered, among an immense mass of teeth, scalcs, and unrecognizable fragments of skeletons of fish and saurians, two minuto teeth, each with weld-defined, enamelled, tubercuiated crowns and distinct roots, plainly showing their mammalian character. These, the oldest known evidence of the class, were considered by their discoverer to indicate a predaceous and carnirorous animal of very small size, to which ho gnve the name of Micicrolestes antiquas. Subsequently Mr C. Micoro discovered in a bone bed of Ihextic ago filling a fissure in the mountain limestone at Holwell, near Frome in Somersctshire, varions isolated teeth with their crowns much worn, but apparently including both upper and lower melars and a canine, which are assigned by Professor Owen to Pleininger's genus Microlestes, and described specifically as M. monorei. Undor the name of Hypsisrymunpsis rhaticus Prof: Boyd Dawkins ${ }^{2}$ bas described a single tocth with two roots which be discevered in a Rhetic marlstono at Watchet in Somorsatshire, and which may bo even somowhat older than the last. Professor Dawkins finds the nearest analogne of this teoth among recent mammals in the large trenchant premolar of the Rat-Kangaroo or IIypsiprymnus (sec vol. xiii. p. 8.10, fig. 4), a resemblance not concurred in by Professer Owen, who refers it to the genus Nicrolestes. The minute size and wern condition of the tooth render it extremely difficult to form a decided opinion upon its characters, and therefore upon tho affinities of the animal to which it belonged.

Still more satisfactory evidence of the presence of mammals at a period at least as ancient as the Earepean Trias is afforded by the discovery of three nearly perfect

[^156]mandibular rami in tho Chatham coal-field of North Carolina by Dr Emmons, who, however, placed them as far back in age as the Permian, or altogether beyond ths Mesozcic stage, a conclusion not now received. Of this animal, called Dromatherium sylucstre, the complete dentition of the lower jaw is known, aud consists of three pointed incisors, separated by intervals, one canine, and ten molars, of which the first three wave simple sulcompressed crowns, and the remainder are multicuspid. The jaw figured by Dr Emmons ${ }^{3}$ is $2^{9} \sigma$ of an inkh in length. He considered it tu belong to a placental Insectivore, but the number of molar teeth exceeds that of any existing member of that order, and is only found in some Marsupials. It was associated in the same bed with thecodont reptiles.
2. Mammals of the Jurassic Feriod. - In the ascending order of geological age tho next remains of mammals havo been met with in the Lower Oolite at Stonesfield in Oxfordshire, where they are associated rith wing cases of insects, Plesiosaurs, Crocodiles, and Pterodactyles. From this bed several specimens luare been met with at various times, which have been placerl in three genera.
A. Amphitherium, Blainville, 1838 . The specimen (A. prevostii, see fig. 15) upon which this genus was founded, was discovered in 1812, and cramined in 1818 at Oxford by Cuvier, who prouounced it to be mammalian, and to resemble the jaw of an Opossum. This conclusion was afterwards disputed by $\mathrm{De}_{\mathrm{o}}$ Blainville and others, who


Fig. 15.-Lower Jaw and Teelh of aphitherium prevosti (twice nat, size). Irom uwen.
believed it to be reptilian, but the original determination is now generally accepted. ${ }^{4}$ Three rami of mandibles, all more or less perfect, aro now known. Tho leagth of tho jaw is rather less than an inch. It contains sixteen teeth, which, as defined by shape only, are-i $3, c 1, p 6, m 6$, so that if the upper jaw lud a corresponding namber


Fig. 16.-Lomer Jaw and Teeth of Phascolotherium bucitandii (nat. size in outline). From Owen.
there would be sisty-four tecth in all,- -a greater number than in any existing heteredont mammal, though equalled by some of the species from the Purbeck. The nearest approach to this number is in Myrmecobius among recent Marsupials. The incisors are rather leng and slender, the canines apparently not much larger than the incisors, all the premolars and molars two-rooted-the former with 2 single large pointed cusp and small basal cusp on one or both sides, the latter quinquecuspidate. The lower margin

[^157]of the angular process is slighty infered, and the mylohyoidgroove persisfent, as in some oi the existing Marsupiats and in Whatebone Whales. This groove, a remnant of that which origrimally lodges Meckel's cartitage, mistaken for a suture, was onee considered evidence of the reptilinn nature of these jaws. A sccond speeces is described as A. brolleripii ( 0 wen).
13. Phescolotherium, Owen, 1839. This is founded on a right ramus of the lower jaw, presenting the inner side to vicw. Its longth is $1+t$ inch. The number uf teetls resemble those of existing insectivorous mammals, being $i 3$ or $4, c \mathbf{1}, p$ and $m$ T, but not clearly defined from cach other, One suecies, I'. Uucklondii(fig, 16 ).
C.sitereognathus, Charlesworth, 185t. s. ooliticus (fig. 17) is founded on a fragment of a jaw of mi-

16. 17.-Stereognathus. Fortion of Jaw, embedded in Oolitic matrix (nat, size). From Owes. nutesize with three molar tecth in situ. The grinding surface is of quadrate form, of verylittle hright, and supports six subequal cusps. Its nffinities are quite problematical.
The freshwater hed previonsly alluded to, situated at Durdlestone Bay near Swanage, belongs to the Middle Purbeck series, intervening between the Middle Oolite and the IVealden. The first discoverey of mammalian bones was made in this spot by Mr. W. N. Rrodie in 1854, but the subsedurnt explorations of Mr S . H. Beckles have yiehded a surprising number of species. They are associated with mumerous sampians, insects, and froshwater shells, iss Palulinu, Planorlis, and Cyclus. No less than eleven grmera from this locality alone are fully deseriber in l'rofessor Owen's memoir. These may be grouped as follows:-
A. With teeth arranged on the insectivorous type. Mandibular incisors more than two; canines well developed; premolars and molars euspidate, seven or more:- (a) molars and premolars
 more than right, Fic. 1s.-Spalacotherium tricmppidens (twlec hat mostly twelve (Spa- घize), Purbeck beds. From Owen. lacolherinm, Amblotherium, Peralestes, Achyrodon, Peraspuctur, Peramus, Stylodon and Boloton-the last known only by the maxillars teeth); ( l $^{\prime}$ molars and premolars seven or eight (Triconoton aud Triacanthorlon). As any synopsis of
 the characters of these genera would be scarcely intelligible Fig̣. 19. - Jaw of Triconodon without minute descriptions and mordax (nat. size). From Owcu, refrence to figures, the reader who desires further information is reierred to the memoir cited above.
B. With a single, strong, pointed, slightly curved incisor, flaced close to the median line as in Fodents. No canime. Three or four compressed, tremelant, obliquely groored promolars, increasing in size from first to last, and two small molars with low multituberenlated crowns. Genus Plagiuztce, Falconer. This remarkable and highly specializerd type has been the oceasion of one of the most interesting discussions on the inferences which may be drawn as to the affinities and habits of an otherwise unknown animal from the structure of a small portion of its organization whish ocenrs in the annals of natural history, a discussion carricd on with great ability, ingenuity, and wealth of ilhustration on both sides. Dr. Falconer maintained that it was more nearly allied to the Rat-Kangaroo (Hypsiprymnus) than to any other existing
form, and that, as it is known that these animals feed upon grass and roots, "it may be inferred of Plagiaulax that the species were herbivorous or frugivorous. I can see nothing in the character of their teeth," he adds, "to


F10. 20.-Plagiaulax becciesii (twice nat. size). From Ower.
indicate that they were cither insect ivorous or omnivorous." Jrofessor Owen, on the other hand, from the same matrrials came to the conclusion that "the physiologival deductions from the abovedescribed characteristics of the lower jaw and treth of Plagiculax are that it was a carmivorous Marsupial. It frobably found its prey in the contemporary small insectivorous mammals and lizards, supposing no herbivorous form like Stcroognathus to have co-existed during the EPper Oolite period."


Fic. 21.-Planiaular minor (four times Dat. size). From Lycll. It is impossible here to give at any length the argumeuts by which these opposing views are respectively supported, but it may be indicated that the first-mentioned is strongly fountenanced by the considration of the following facts: -(1) all existing Marsupials may be dividect, as far as thair dentition is concerned, into two grouns-(a) those which have a pair of large more or less procumbent incisors close to the symphysis of the lower jaw, and rudimentary or no canines (diprotodont dentition; familics Phascolomyidx, Macropodiclir, and Phalangistidx), and (b) those which hare mmerons small incisors, and large pointed eanines (polyprotodont dentition; families I'eramelidre, Desyuridie, and Didelphille); (2) the vast majority of the former group are purely vergetable feeders, and almost all of the latter are carni and (3) Plagiaulat, so far as its structure is known, belongs obviously to the former group, and, as we have no sure basis for infcrences as to the habits of an unknown animal but the knowldge of the habits of such as are known, we have no grounds for supposing that its habits difiered from those of its structural congeners. ${ }^{1}$

That the two types of dentition sitill fond among Marsupials should have existed side by side in on remotio a furiod of time as that in which the lurbeek bone bed was dupositnd, and that one of these types should have already at tained so singnlar a degree of ciperialization, is one of the most remarkuble facts set revealed ly mammahan paleontolngy. Whether the terth of the upper jaw correspond also to the modern diprotodont type is a question of great interest, for the solution of which we must await future discormies, of which we have more hopesinee the amouncement by Professor Marsh of the existenep, in considerable numbers, of smail mammals in the American Jurassic formations of the liocky Mountains, which conform in all

[^158]their general cuaracters to those of the English Purbecks, some being even conisidered to be generically identical. Both polyprotodont and diprotodont types are represented, the latter by a species called by its discoverer Ctenacodon serratus, very closely allied to Plagiaulax.
It will be of very great interest to know the mode of succession of the teeth of those early mammals, as it may throw some light upon the question of the relation of the succession of teeth in mammals generally with the same process in the inferior classes of the Tertebrata. There is, lowever, as yet very little, if any, reliable evidence upon the sulject, but such as thero is rather points to the fact of an absence or very feeble development of the diphyodont condition, resembling that of modern Marsupials. If this is so, it may lead to the somewhat startling conclusion that in the transition from the lower vertebrate to the mammal, by whatever process it took place, the indefinite reproduction of the tecth of the former was lost, and that a monophyodont condition supervened, which was again superseded by the peculiar definite diphyodont mode of succession characteristic of the most highly organized tuammals.
There is nothing yet known in the structure of these sunall mammals of the Mesozoic ages of the world to connect them with the surviving representatives (the Monotremes) of the hypothetical Prototheria; but whether their position was among the Metatheria or Eutheria, or whether they represented gencralized forms from which both these branches have been derived, it is impossible at present to say. To avoid the difinculty of endeavouring to find places for them in any of the existing groups, Marsh proposes ${ }^{1}$ to found two new orders for their reception-Pantotheria for those of the polyprotodont or insectivorous type of dentition, and Allotheria for Plagiaulax and its allics. The former may be convenient, but it is scarcely advisable to separato the latter ordinally, as long as we continue to place Phascolomys and Thylacinus, Chironys and Lemur, Trichecus and Phoca in the same orders, for Plagiaulax and $A$ mphitherium do not differ in the characters of their jaws and teeth more than any of these examples, which show how much the dentition may be modified with comparatively littlo general diversity of structure.

This scanty evidence of mammalian life must bear a very small proportion to that which doubtless existed during the greater part of the vast Mesozoic period. The Cretaceons formations hare as yet yielded no trace of the presence of animals of this class; but the number and variety of species met with in the earliest Tertiary formations, when alroady clifferentiation into most of the existing leading divisions had taken place, strikiugly proves the imperfect state of our geological record during the immediately antecedent ages of the world.

CHARACTERS OF TIIE DIFFERENT OLDERS AND families and of tile principal forms of the manmalia.

## SUbclass Prototileria or ORNITHODELPHIA.

The principal distinguishing characteristies of this group have been already given (p. 371). They apply not only to the subclass, but of courso equally to the one order Monotrfanata, in which the few known members of the group are commonly associated. In addition to the more important characters enumerated above, the following,
1 "Notico of Jurassic Mammals ropresenting two N゙ew Orders," Amcricar Joumal of Science, xx., Suptember 1880. Accounts of further discoveries of forms allicd to Mlagiaulax, eomo surviving even to the carliest Tertiary period, are given by Cope in tho American Saturalist for November $1 \$ 81$ and Stay $1 \$ \$ 2$.
which are common to all existing species, may be meationed.

The dorso-thoracic vertebre are nineteen in number, and have no terminal epiphyses to their bodics. The transverse processes of the cervical vertebre are of autogenous formation, and remain suturally connected with the remainder of the vertebra until the animal is full-grown. Though in this respect they present an approximation to the Sauropsida (Reptiles and Birds), they differ from that group, inasmuch as there is not a gradual trassition fromt these autogenous transverse processes of the neck (or cervical ribs, as they may be considercd) into the thoracic ribs, for in the seventh vertebra the costal element is much smaller than in the other, indicative of a very marked separation of neck from thorax, not seen in the Siauropsila. The upper ends of the ribs are attached to the sides of the bodies of the dorsal vertebre only, and not to the transverse processes. The sternal ribs are well ossified, and there are distinct partly ossified intermediate ribs. The cerebral cavity, unlike that of the lower Marsupials or the Reptiles, with which they have so many structural affinities, is large and hemispherical, flattened below and arched abore, and about as broad as long. The cribriform plate of the ethnoid is nearly horizontal. The cranial walls are very thin, and smoothly rounded externally, and tho sutures become completely obliterated in adult skulls, as in Birds. The broad occipital region slopes upwards and forwards, and the face is produced into a long and depressed rostrum. The bony palate is prolonged backwards, so that the posterior nares are nearly on a level with the glenoid fossa. The mandible is without distinct ascending ramus; the coronoid process and angle are rudimentary, and the two halves are loosely connected at the symplysis. The fibula bas a broad, flattened process, projecting upwards from its upper extremity above the articulation, like an olecranon. In the male there is an additional, flat, curved ossicle on the binder and tibial side of the plantar aspect of the tarsus, articulating chiefly to the tibia, which supports in the adult a sharp-pointed perforated horny spur, with vilich is connecied the duct of a gland situated bencath the skin of tho back of the thigh, the function of which is not yet clearly understood. (A rudlmentary spur is found in the young female Ornithorkynchus, but this disappears when the animal becomes adult.) The stomach is subglobular, simple; the alimentary canal las no ileocrecal valve, or marked distinction between large and small intestine, but has a small, slender vermiforın cecum with glandular walls. The liver is divided into the usual number of lohes characteristic of the Mammalia, and is provided with a gallbladier.

Although agreeing in so many important cnaracters, the existing members of the group evidenily represent two very diverging branches, perhaps as far removed as are the members of some of the accepted orders of the Eutheria. It would, however, be encumbering zoological scienco with nerv names to give them any other than the ordinarily known family designations of Ornithorhynchidx and Echidnidl.

## Family Orxithomyschid.

Ono genus, Ornilhorhynchus, IBlumenbach, 1500. ${ }^{2}$ Cerebras nems. spheres smooth. Premaxillic and mnndible expanded anteriorly and supporting a horny beak something liko that of a duck, vorlered l.y a naked and very sensitive membranous expansion. The place of teeth supplied functionally by homy struetures, clongated, narrow, and sharp-edged along the anterior piart of the sides of the month, and broad, flat-topped or molariform behisd. Legs short, fitted for swimming; feet webbed, each with fivo well-leveloped toes armed with largo claws, and beyond which in tho fore feet the interdigital membrano is extended. Vertebra: C 7, D 17, L 2, S 2,

[^159]C 21. Acetabulum not perforated. Toncue not extensilo. Mucous membrane of sunall intestime cosered rith delicate, elose-set trailsverse fulds or silges. Tail rather short, broal, and depiessed. Eges very small. Fur close and soft. Ono species, O. curatinus (Shaw), O. paraloxies (Blum.), the duck-billed Platypus, or WiaterNole of the colonists, entiruly aquanc in habits, diving uith great facility, and burrowing in the banks of rivers. it fecds on water insects, small mollusca, and worms, and inhauits Australia aud Tasmania. See Orwithonniseats.

## Family Echidwids.

Cerebral hemispheres larger and well convoluted. . Facial portion of skull produced into a Jong, tapering, tubular rostrum, at the end of which the anterior nares are situated. Rami of niandible slender, styliform. Opening of mouth small, and placed belom the extremity of the rastrum. No laterally placed horny teeth, though the palate and tengue are furuished with snines. Tongue very long, vermiform, slender, and protractile. Lining membrane of small intestine villous, but without transperse folds. Feet not webbed, but with long strong cla ris fittel for scratching and burrowing. The hinder lect with the cnds of the toes turned outwards and backwarls in the ordinary position of the animal when on the ground. Tail rery short. Acetabulum with a large perforation, as in Birds. Calcaneal spurand gland of the male much smaller than in Ornifhorhynchus. Fur intermixen with strong, sharp-pointed spines. Terrestrial and fossorial in habits, feeding exclusively ou ants, and recalling in the structure of the mouth and rarious other parts rclating to the peculiar mode of life the true Anteaters of tho order Edentala.
I Recent discoveries have shewn that there are tro distinet forms of this farmily, which may even be considered of generie value.
${ }_{1}$ Echidna (Curier, 1797) or Tachyglossus (Illiger, 1811). ${ }^{1}$-Clams fire on each foot. Rostrum moderately developod and straight. Vertcbre: C 7, D 16, L 3, S 3, C 12 . Tougne tapering at the tip, the snines restricted to the basal portion. The best-known species is E. aculeata (Shaw), found in Anstralia and Tasmania. The specimens from the latter locality, with longer fur almost concealing the spines, lave been separated specifically under the name of $E$. setosa (Cuv.). Another species, $E$. lareesii (Ramsay), has lately been diseevered in southern Nerv Guinea. See Ecminyir

Acanthoglassus (Gervais). - Ungual phalanges and clatrs present only on the three middle digits of both fore and hind feet Rostrum much elongated and curred downwards at the end. Vertebree : C7, D17, L4, S $3, \mathrm{C} 12$. Tongne somewhat sjeon-shaped near the tir, and armed on its dorsal surface with three rows of recurved spines. Ono species: A. bruijn*i (Yeters and Doria) (fig. 22), from


Fig. 22.-Acanthoglossus bruignii. From Gervais.
the meantaineus regions of the northern part of New Gninea ; considerably larger than $E$. uculcatco. The external characters and osteolegy of this animal, ono of the most interesting of recent zoological discoveries, have been fully deseribed and figared by Gcrvais (Ostsographic des Alonotrimes, Paris, 1878).

Among bones of extinct Miarsupials of Pleistecene age from the Darling Domns, Mr Kreffe found a portion of a humerus of ant Echidna, considerably larger than the existing Anstralian species, which he has named E. oweni. ${ }^{2}$ Notwithstanding the strong presumption of antiquity of the aronotromateus type, derived frem its inferierity of structure, no fossil remains of earlier date, referable to it, or connacting it with the lower reatebrates on the one hand and the higher mammals on the other, have jct been discosered.

[^160]
## Subclass Metatheria or DIDELPHIA.

Altiongh the great diversity in external form, in many anatomical characters, and in mode of life of various animals of this section might lead to their division ioto groups equivalent to the orders of the Eutherta, it is more conrenient on the whole to adhere to the usual custom of treating them all as forming one order called Marsurialia, the limits of which are therefore equivalcut to that of the subelass. The more essentially distinetive ebaracters have been alrendy pointed out (i. 371). Thase may be more fully stated as follors.

The brain is generally small in propartion to the size of the auimal, and the surface folding of the cerebral hemispheres, though well marked in the larger species, is never very complex in character, and is absent in the snaller and medinm-sizen species. The arrangement of the folding of the iuner wall of the cerebrum difers essentially from that of ali knomn Eutheria, the hippocanpal fissure being continued formard above the corpus callosum, which is of rery small size. The anterior commissure is, on the other hand, greatly developed. ${ }^{3}$

There are always trno teeth, ionlanted in the psual manner in both jarss, and divisible, according to theit position and form, into incisors, canines, premolars, and molars: but they vary much in number and character in the diferent families. Except in the genus Pluscolomys, the number - of incisors in the upper and lower jams is never equal. The true molars are very generally four io number on cach side of each jaw. The chief peeuliarity in the dentition lies, homever, in the mode of succession. There is no vertical displacement and succession of the teeth, except in the cass of a single tooth on each side of each jaw, which is almays the bindermost of the premolar series, and is preceded by a tooth baring more or less of the characters of a true molar (see fig. 23), and is the only tooth comnarable to those


Fig. 23-Tecth of Cpper Tasw of Opossum (Didelahys rirginianc), all of whets ere unchanged, excent the third premolar, the place of which is occupied in the young unimal by a nolaiform touth, represented in the figure below tho line of the other tath.
called "milk tecth" in tho diphyodont Eutheria. In sorae cases (as in Hypsiprymnus) this tooth retains its place and function until the animal has nearly, if not quite, attained its full stature, and is not shed and replaced by its successor until after all the other teeth of the permanent series, including the posterior molars, are fully in place and use. In others, as the Thylacine, it is most rudimentary in form and size, being shed or absorbed before any of the other teeth hare cut the gum, and therefore quite functionless. It must further be noted that there are some Marsupials, as the Wombat, Koala, Myrmecobius, and the Dasjures, in which no such milk tooth, eren in a rudimentary state, has yet been discorcred, possibly in some cases from want of materials for observation at the right stage of development.

Epipubic or marsupial bones are present in both sexes of nearly all species. In one genns alone, Thylacinus, they are not ossified. The number of dorso-lumbar vertebres is always nineteen, although there are some apparent excentions caused by the last lambar being

[^161]modificd inte a saeral vertebra. The number of pairs of ribe is nearly always thirteen. The tympanic bone remains permanently distinct. The carotid canal perforates the basi-sphenoid. The lacrymal foramen is situated npon or external to the anterior margin of the orbit, and there are generally large vacuities in the bony palate. The angle of the mandible is (except in Tarsijes) more or less inflected. The hyoid bones have always a peculiar form, consisting of a small, more or less lozenge-shaned basi-hyal, broad cerato-hyals, witb the remainder of the anterior arch usually unossificd, and stout, somewhat compressed thyro-hyals. There are two anterior venæ cave, ${ }^{1}$ into each of which a "vena azygos" enters, In the male the testes are always contained in a scrotum which is suspended by a narrow poilicle to the abdomen in front of the penis. The vase deferentia open into a complete and contiuuous urethra, which is also the passace by which the urine escapes from the bladder, and is perfectly distinct from the passage for the frecos, although the anus and the termination of the urethro-sexual canal are cmoraced by the same sphincter muscle. The glans is often bifurcated anteriorly. In the female tho oviducts never unite to form a common cavity or uterus, but open separately into the vagina, which at least for part of its course is double. During the very short period in which the embryo is contained in the uterus, its nourishment seems to be derived from the umbilical vesicle, the allantoic ressels not reaching the surface of the chorion to form a true placenta. The mamme vary nuch in number, but are alrays abdominal in position, have long teats, and in most of the species are more or less enclosed in a fold of the integument forming a pouch or marsupium, though in some this is entirely wanting, and the newly-born, blind, naked, and belpless young, attached by their mouths to the tent, are merely concealed and protected by the hairy covering of the mother's abdomen. In this stage of their existence they are fed by milk injected iato their stomach by the contraction of the muscles covering the mammary gland, the respiratory organs heing modified temporarily, much as thcy are permanently in the Celacea, -the elongated upper part of the largns projecting into the posterior nares, and so maintaining a free communication betireer the lungs and the external surface independently of the mouth and gullet, thus averting the danger of suffocation while the milk is passing down the latter passage.
The existing species of Marsnpinls are, with the exception of one fanily (the Didelphilix), limited in geographical distribution to the Australian region, forming the chicf mammalian fauna of Australia, New Guiner, and some of the adjacent islands. The Didelphidx are almost purely neotropical, onc or two specics ranging northwards into tho Nearctic region. Fossil remains of members of this family have also been found in Lurope in strata of the Eoceno and early Mioceno poriod
In dividing the Marsupials into minor groups, it may bo observed that one of the noost obvious distinetive characters among them is derived from the form and arrangement of tho teeth. In certain specics, as the Opossums, Dasyures, and Thylacines, the iacisors are mumerous, small, and subequal in size and the canines large, as in the typical plaeontal Carniveres (fig. 2.4 ; compare with that of Lion, vol. xir. p. 680). To theso the term "polyprotodont" is applied, and they are all rare or less carnivorous in their habits. In others the zentral meisers are very prominent, and the lateral incisurs and canines absent or subordinate in fanction (fig. 2.5). These are cailed "diprotodent," and they are all whully or in great part regetable fecders.

[^162]In one group of these, the Wombais, there are but two incisors abure and the same number below; but all the others, including the Kangaroos, Koalas. and Phalangers


Fig. 24.-Front View of Skull of Danyurus ursinus, showfing polyprotodont ad carnlvorous dentlion (Proc. Geol. Soc. 18G8, 12. 313).
have two incisors below and as many as six above, three on each side, but of these the first or central pair is the most fully developed.
Though this division is extremely convenient, a difficulty in accepting it as narking a radical separation of the order into two primary stocks is caused by the Peramelidx, which combine a polyprotodont form of dentition with a peculiar structure of the hind feet, so exactly resembling that of some of the bestmarked diprotodonts, as the Kangaroos, that it is difficult to believe that it cau have been developed independently. Taking various combina
 tions of character
 into consideration, the existing Marsupials readily group themselves into six very natural familios, the characts which can be thus defined :-
A. Tceth rooted.
a. Polyprotodont. - Incisors numerous, small, subequal. Canincs larger than tho incisors. Molars with sharg tubereles.
a. Incisors $\frac{\pi}{4}$. Hiad feet with the four outer toes subequal, distinet, and a well-developed opposablo hallux. 1. Didelphider.
a. Incisors s. Hind feet with four outer tocs distunct, subcqual. Hallux small or rudimentary; rarely opjosable. 2. Dasyurida.
\%. Incisors ${ }^{\text {s. }}$. Hind feet long, narrow. Fourth too larger than all the others. Hallux rudimentary or absent. Second and third toes very slender and united in a common integument (syndactylous). 3. Peramelidia.
b. Diprotodont. - Incisors \&. Central upper and lower mneisors large and cutting Canines absent or small. Molars with bluntly tuberculated or transversely ridgal crowns. Hind feet synuactylous.
a. Hind limbs disproportionately targe, with feet ns ip Peramelidx. 4. Macropodida.
s. Hind limbis not disproportionately lnrge. Feet Lroad, with fonr sabenual outer toes, wi.il a large orposable hallux. 5. Phalangistidic
B. -All the teeth with persistent pulps." Incisors $\frac{2}{3}$, large, sealpriform, with enamel on the outer surface only. No canines. Hind feet with four sabequal outer toes; partially syadactylons and with rudin:entary hallux. 6. Phascolomyide.

## Family Didelpinde

Dentition: $i \mathfrak{j}, c\}, p \frac{\pi}{3}, m \frac{1}{5}$; total 50. Incisora very small and pointed. Cnnines large. Premolars with corapressed pointed crowns. Mofnrs with numerous sharp eusps. The third premolar preceded by a deciduous multicuspidnte melar, which remains in plaee until the nuimal is nearly adult. Limbs of mederate developinent, each with five complete and distinct toes, all of which are provided with short, compressed, curred, shary claws of nearly eqnal size, except the first toe of the hind foot or hallux, which is large, widely soparable from the others, to whicli it is opposed in climbing, snd termiastes in a dilated rounded extremity, without a nail. Tail generally long, partially naked and prehensile. Stemach simple. Cexcum of small or moderate size. Pouch in some complete, in others represented by two lateral folds of the abdominal integumont, partially covering the teats, while in some sll trace of it is absent. Vertebræ : C 7, D 13, L6, S 2, C 19-35.
The Didelphide, or true Opossums, differ from all other Marsupials in their habitat, being peculiar to the American continent. They are mostly esmivorous or insectivorous in their diet, and arboreal in habits. One slightly aberrant forn, with webbet hind feet, and squatic mede of life, constitutes the genns Chircyectes. The other numerous species are commonly included in the genas $D i$ delphys. See Opossum.

## Family Dasyerids:

Dentition: $i \frac{4}{5}, c \frac{1}{4}, p$ and $m$ numerous, variable. Incisors small; canines well developed; molars with pointed casps. Limbs equal. Fore feet with five aubequal tees with claws. Hind feet with the four outer teea well-developed, snd distinct from each other and beariog claws ; the first (or hallux) clavless, generally rudimentary, aometimes entirely wanting. Stomach simple. No cæcum. Predatory, carnivorous or insectirorous snimals, iahabitants of Australia, Tasmania, and the southern parts of New Guinea and some of the adjacent islands. The aberrant genus Myrmecobius, though clearly a member of this family, is so sharply distinguished froun all the others as to render a dirision into tryo subfamilics necessary.
Subfarnily Dasyurinø.-This comprises the more typical Dasyuriler, in which the prewolars and molars never exceed the normal number of seven on each sile of each jarr, and in which the tongue is not specially extensile.
Thylacinus.-Dentition: $i \frac{1}{3}, c \frac{1}{3}, p \frac{3}{3} ; n \frac{4}{5}-46$. Incisors small, vertical, the outer one in the upper jave larger than the others. Sumpit of the lower incisers, before they are worn, with a deep transrerse groore, dividing it into an anterior and a posterior cusp. Csnings long, strong, and conical. Premelars with compressed cromus, increasing in size from hefore backrards. True molars in general characters resembling those of Dasyurus, but of more simple form, the cusps being not so distinet nor sharply pointed. Milk


Fig. 26.-Thylaciue (Thylacinus cynocephalus).
molar very small, and shed bcfore the snimal lenves the mother's poneh. General form very Dog-like. Head elongated. Muzzle pointed. Esrs mederate, erect, iriangular. Fur ahort and closely applied to the skin. Tail of moderate length, thick at the base and tapering towards the apex, clethed with short hair. Hallux (including trie metacarpal hone) Wanting. Fertebre: C 7, D 13, L 6 , S 2, C 23. Marsupisl bones represented only by small' unossifici fibrn-eartilages.

The only known specics of this genus, T. cynocephatus, though sualler than a commion Wolf, is tho largest predaceous Marsupi.l at present cxisting. it is now entirely confined to the island at Tasmania, althongh fragments of benes and teeth found in caves afford evidence that a closely alliced species onco inhabited tho Austrslian mainland. The general colour of the Thylacine is gres. brown, but it has a serics of tranaverse black bands on the hinder part of the back srid loins, whence the narne of "Tiger" frequently applied to it by the colonists. It is also called "Wolf," and sometimes, though less apprepriately, "IIyæna." Owing to the haroe it commits among the ahecpfolds, it has been nearly exterminated in all the more settled parts of Tusmania, but still finds shelter in the almost impenetrablo rocky glens of the moremonatainous regioas of the island. The female produces four young at a time.
Dasyurus.-Dentition: $i \frac{5}{3}, c \frac{1}{2}, p, n \frac{2}{2} ;$; tntal 42 . Upper incisors nearly equal, and placed vertically. In the smaller spccies the first is slightly longer, narrower, and separated from the rest. Lower incisora nearly vertical in the larger, but sloping forwrids and upwards in the smaller species. Canines large and sharply peinted. Premelars, in the typical forms, with compressed and sharp-pointed crowns, and slightly developed anterior and posterior nccessory basal cusps. True malars with numerous sharp-pointed cusps. In the upper jaw the first three with crowns having a triangular free surface, the fourth small, simple, narrow, and placed transversely. In the lower jar the molars mora cempressed, with longer cusps; the fourth not notatly snaller than the others. Eara of moderate size, prominent, and obtusely pointed. Hallux rudimentary, clawless, or absent; its metatarsal bone always present. Tail generally long and well clothed with hair. Vertebre: C 7 , D 13, L 6, S 2, C 18-20. The true Dasyures are mestly inhabitants of the Australian continent and Tasmania, where in the ceonomy of nature they take the place of the smaller predaceous Camiwora, the Cats, Civets, and Weasels of other parts of the world. They hide theraselves in the daytime in holes among rocks br in hollow trees, but prowl about at night in search of the small livigg mammals and birds which constitute their prey. The species are not numerous, and divide themselves into tiro sections. (1) Dasyurus proper includos $D$. maculatus, sbout the size of a com. mon Cat, inhabiting Tnsmania and the sonthern part of Australia; D. viverrinus or maugci, Tasmania and Vietoria; D. gcoffroyi, South Australia; D. hallucatus, North Australis; D. albopunctutes, New Guinea. (2) Sarcophilus contains one species, D. ursinus, differing from the others in being a larger and heavier animal, with a disproportionslly large and broad head. Its tecth are relatively larger and more massive, and hence more crowded in the jaws; the premolars espeeially are scarcely compr issed but rather conical; the lower molars want a cusp placed ner $r$ the middle of tho inner border, found developed in different de, rees in all the species of the first sectioo. "This animal is peculisr to Tasmania, where it is comunonly known by the name of "Devil." Its prevaling colour is black, its size ahout that of an English Badger, and its disposition remarkably savage and voracious.

Phascogale. --'I'his genus (more properly Phascologale) comprises a considerable number of small Marampials, none of them exceeding a common Rat in size, differing from the true Dasyures in possessing an additional premolar, -the dentition be'ng $i t$ t $c t, p \frac{3}{3}$, $m \frac{4}{6}$; total 46, -and having the teeth generally deteloped upon an insectivorous rather than a carnirerous pattern, the upper middle incisors being larger and inclined forwards, the canines relatively smaller, and the molars with broad crowna, armed with priekly tubercles. The muzzle is piointed. Ears moderately rounded and nearly naked. Fore feet with fire anbequal tecs, with compressed, slightly curred pointed claws. Hind feet with the four outer toces subequal, with elaws similar to those in the fore feet; the hallux almost always distinet and partially opposable, though small and nailless, sometimes absent. The food of these snimala is almest entircly insects, which some pursue among the branches of trees, while others are purely terrestrial. They are found throughout Australia, and also in New Guinea and the Aru and some of the adjacent islands. Variations in the details of the deatition sad of the structure of the hind limbs, and in the leagth and arrange. ment of the hairy covering of the tail, have giren rise to several subdivisious which will probably be accepted as generic by most zoologists, although further investigations are required before theis limits can be very satisfactorily defined.
P. cristicauda, a species with a thiek compressed tail orna, mented upon ita apical half with a crest of black hair, differs from the othess by the very reduced size of the third premolar in thy npper and its complcte absence in the loreer jaw, thus forming an interesting transition in dentition towarda Dasyurus. It constitutes the genus Chertoccrcus of Krefft. - Another very aberrant form, P. lanigera, distinguished by the great elongation of the fore srm and hind foot, and the complete absence of hallux, is Antechinomys of the sume author. It is an elegant little terrestrial mouse-like animal, with large oval ears and long tail with the terminal part busly. Antichinus and Podabrus are nanics proposed for othes divisions of the grong.

Subfanily Myrmecobiinæ.-Molars and premolars exceeding the normal number of seven on each side. Tongne lang and extensile. Myrmecobius.-Dentition: $i \frac{4}{4}, c \frac{1}{2}, p 3_{3}^{3}, m \frac{3}{6}$ or 8 ; total 52 or 54, being the largest number of teeth in any existing Marsuninh. The distinction betwcon the molars and premolars is not certaia, as it is not founded on a knowledge of the surecession of the teeth, but on their form. The teeth are all small and (except the four posterior inferior molars) separated from each other by an interval. Head elongated, lut broad behind. Muzzle long and pointed. Ear's of moderate size, ovate, and rather pointed. Fore fect with five iocs, all having strong, pointed, compressed claws, the sceond, third, and fourth nearly equal, the fifth somewhat and the first considerably shorter. Hind feet with no trace of hallux externally, but the metatarsal bone is present. Tail long, clothed with long hairs. Fur rather harsh and bristly. Fenale without any trace of a pouch, the young when attaehed to the nipples being concealed only by the long hair of the abdornen. Vertebre: C 7, D 13, J.6, S $3, \mathrm{C} 23$.


Eig. 27.-Syyrmceobius fasciatus From Gould.
Of this singular genus but one species is known, Mr. fascialus, fouad in western and southern Australia, It is about the size of an Eatlish squirrel, to which animal its long bushy tail gives it aome resemblance; but it lives entirely on the ground, especially in aterile, aandy districts, feeding on ants. Its prevailing colour is chestnut-red, but the hinder part of the back is elegantly marked with broad, white, transverso bands on a dark ground.

## Family Peramelide.

Dentition: $i \frac{f}{f}, c \frac{1}{3}, p$ fi, 12 : total 48. Upper incisors small, with ahort, broad crowns. Lower incisors moderate, narrow, proclivous. Canines well dereloped. Premolara compressed, pointed. Molars with quadrate tuberculated crowns. Third premolar preceded by a very minuto molariform tooth, which remains in placo until the animel is nearly full grown. Fore feet with two or three of the middlo toes of nearly equal size, and provided with strong, sharp, slightly cursed claws; the other toes rudimentary. 1lind fect long and narrow; the hallux rudimentary or'absent; the aeconl and third tocs very slender, and united in a common integumeat ; the fourth very large, with a stout elongated conical claw; the fifth smalier than the fonrth (sco fig. 29). The ungual phalanges of tho largo toes of both feet cleft at their cxtremitica (as in Manis among the Edcntata, but in no other Morsupials). Ifead elongated. Muzzle long, narrow, and pointed. Stomach siaple. Crecum of moderato size. Poueit complete, gencrally opening backwards. Alono among Marsupials they havo no clavicles.

The Piramelide form a very distinct family, in some respects intermediate betwen the saroophagous Dasyurida and the phytophagous Macropodida. In dentition they rescmblo the former, but they agreo with tho latter in the peculiar structure of the hind fect. In tho construction of the foro fect they differ from all. other Marsupials. They may bo divided into three genera.

Peramelcs.-Anterior and posterior cextrenitica not differing greatly in derclopment. Fore feet with three middlo toes well dercloped, the third elightly larger than tho second, the fourth
somewhat shorter. provided with long, strong, slimhtly curved, lointed claws. First and fifth tocs very short and without claws. llind feet with hallux of onc or two phalanges, forming a distinct tubercle visible externally : the second and third toes very sleuder,


Fig. 2S.-l'crametes yumut. Wron Gouitl.
of equal length, joined as far as the ungual phalanx, but mith distinet elaws; the fifth intermediate in length. between these and the largely developed fourth tor. Fars of noderate or small size, ovate, pointed. Tail rather short, clothed with shert adpressed hairs. Fur short and harsh. Poucly opening backwards. Vertebrie: C 7, D 13, L6, S 1, C 17.

The animals of this genns, commonly called "Bandicoots" in Australia, are all small, and live eatirely on the ground, making nests composed of dried leaves, grass, and sticks in, hollow places. They are rather mixed feeders; but insects, wornis, roots, and bulbs constitute their ordinary diet. The various species are widely distributed over Australia, Tasmania, New Guinea, and several of the adjacent islands, as Aru, Kei, and New lreland, The best known are-P. fasciata, gunnii (fig. 28), myosurus, nasuta, obesula, and macrura from Australia, and P. doreyana, saffiayang and longicaude from New Gninea.

Macrotis.-Molar teeth curved, and with longer crowns and shorter roots than in the last. Hinder extremities proportinnally longer, and hallux represented only by a small metatarsal bonc. Muzzie much elongated and narrow. Fur soft and silky. Ears very large, long, and pointed. Tail long, its apical half clothed on the dorsal surface with lemo hairs. Pouch opening forwards. Vertebre: C $7, \mathrm{D} 13, \mathrm{~L} 6, \mathrm{~S} 2$, C 23.

But one species is known, M. lagotis, from western Australia. It is the largest member of the family, being about the size of the common Rabbit, to which animal it bears sufficient superficial resemblance to havo acquired the mame of "Nativa Rabbit" from the colonists. It burrows in the ground, but in other respects rescmbles the Bandicoots in its habits.
Charopus.-Dentition gencrally resembling that of Peramcles, but the caniues are less developed, and in the upper jav two-rocted. Limbs rery slender; posterior nearly twice the length of the anterior. Fore fect with the functiomal toes reduced to two, the sceond and third, of equal length, with closely united metacarpals and short, sharp, slightly curved, compressed claws. First toe represented by a minute rndiment of a metacarpal bone; the fourth by a metacarpal and two small phalanges without a clarr, and not reaching tho middle of the metacarpal of the third; fittin cntirely absent. Jlind foot long and narrow, mainly conplosed of the strongly devel. oped fourth too, terminating in a conical pointed nail, with a strong pad behind it ; the hallux represented by a rudimentary metafarsal ; the remaining tocs completcly dereloped, and with claws, but exeeedingly slender; the united second and third reaching a little way beyoud the netatarso-phalangeai articulation of the fourth; the fifth somewhat shorter. Tail not guite so long na the body, ancl corcred with short hairs. Ears large and pointed, and folded dern when the animal is at rest. Fur soft and loose. Pouch opening backwards. Vertebre: C7, D 13, L 6, S 1, C 20.

10. 29.-Skeletnn of Hind Foot of charopes casta notrs. e, os calces. a. astragalua cb, cubold: $n$, navicular; ${ }^{3}$, ec tnconelform; II and IIf, the conjolacd second and third digtes: IV. tha, large and only functional digit: $V$ the rudimentary fith digit. Compare ths foot with that or the Kangaroo vol. Nil. r. 839 .

Tho ouly known species of this genus, chiefy remarkable for the singulur construction of its limbs, is an animal about the size of a
smatl liat, foumd in the interior of the Australinn continent. Its Facral habits and food nppear to resemble thoso of the other


Fig. 30.-Chceropus castanotis. Fruin Gould.
Seramelids. It mas fust described as C. caudatus by Ogilby from a nutilated apecimen, but the specific ume was afterwards changed by Gray to castanotis.

## Family Macropodide.

The general characters of this family, and an account of the animals composing it, will be found in the article Kasoaroo, vol. xiii. p. 898 sq.

## Family Phalangistide

Dentition (except in the aberrant genus Tarsipes): $i \frac{3}{1}$, the first above strong, curved, and cutting, the other troo gencmally aomewhat smallor; the singlo lower incisor large, more or less proclivous; $c \frac{1}{1 \text { oro }}$, upper small or moderate, conical and harp-painted; lower ahsent or quite radimentary; $p_{1-3}^{\frac{2-3}{-3}}$, variable ; $m$ \% or $\frac{3}{3}$, with fonr obtuse tubercles. Limbs subequan. Fore feet with five distibct, subequal toes with claws. Hind feet, ahort and broad, with live well-devcloped toes; the hallux large, nailless and opmoanble; the second and third slender and united by a common integrament as far as the claws. Stomach simple. Crecum present (except in Tarsipes), and usually large. Pouch complete. Animals of small or moderate size nad arboreal halits, feeding on regctable or mixed diet, inhabiting Australia and the Papuan Islands. Excludiag Phascolarctos and especinlly Tarsipes, they form a very natural family. The latter is, however, evidently a modified form of the same general type, chicfly aberrant in the cbaracters of its alimentary organs, which are adapted for a peculiar mode of subsistence. It may constitute a distinct cuhfamily.
Subfamily Tarsipedinæ. -Teeth almost rudincntary and variable in number. Tongue long, slender, pointed, and very extensile. Cacum nbsent.

Tarsipcs.-This is named from some supposed resemblance of its foot to that of the Lemurine genus Tarsius; but it must be remarkel that it has none of the neculiar elongation of the calcancum and acaphoid so characteristic of that genus. Head rith elongated and slender muzzle. Nouth opening small. The tro lorer incisors are long, very slender, sharp-pointed, and horizontally placed. All the otber teeth are simplo, conical, minute, and placed at considerable aud irregular intervals npart in the jurrs, the nimber appearing to vary in different individuals and even on different sides of the two individuals. The formula in a specimen in tho Muscum of the Royal College of Surgeous is $i \frac{2-2}{1-1}, c \frac{1-1}{0-0}, p$ and $m \frac{3-1}{\frac{3}{2-3}}$; total 20. Rami of the mandiblo extromely slender, nearly straight, and without enronoid process or inflected angle. Fore feet with five melldercloped toes, with small, Mat, scale-like neils, not reaching to the oxtremity of the digits. Hind feet rather lonm and slender com. pared with that of the Phalangistine, with wall-developed opposallo and nailless hallux; second and third digita smdnctylous, with sharp compressed curred clarrs; the fourth and fifth free, aud with small flat mails. Fars of moderate size and rounded. Tail longer than the bods and head, ecantily clothed mith ahort bairs, prebeasile. Vert bre: C 7, D 13, L 5, S 3, C 24.
Of this singular gentis but one species, ?'. rostratus (fig. 31), is knom, a haut the size of a conmon Mouse. It inhabits western Australia, lives in trees and bushes, uses its tail in climbing, and feeds on loney, which it procures ly inserting its long tongue into the
blossoms of Mclaleucer, sc. One kept in confinement by $\mathbb{M r}$ Gouls? was also observed to eat flies.


## Fig. 31.-Tursipes rostratus. Fiom Gould.

## Sabfamily Phalangistinæ.

Teeth normal. Rudimentary lorer canines present. Tonguo of ordinary structure. No cheek pouches. Stomach and ascondmg colon simple. Cæcum loug, simple. Tail well-developed
A numerous group, varying in size from that of a Mouse to a large Cat, arboreal in their habits, and abundantly distributed throughout the Australian region. One section is distinguished by the posscssion of a flying membrane, or fold of skin, extending on each side of the body between the fore aud hind legs, forming when the limbs are extended a kind of parachute, ns in the Flying Squirrels, and also by a noa-prebensile tail. This includes the genera Tetaurus, Belideus, and Acrobata. The remainder have no such membranc, and have the tail more or: less prohensile, the under surface nt least of the apical portion leing baro. These ora the typical Phnlangers, or "Opossums" as they are commonly called in Australia (genna Phalangista), and their various modifientions, as Cuscus, Pscudochirus, and Dactylopsila. These vill be more full described in the article Plalanger.
Sabfamily Phascolarctinæ.-Tecth normal ; no rudimentary lower caninca. Tongua of ordiasty structure. Distiact cheek pouches. Stomach with a special ghand mear the cardiac orifice. Cæcum very long, and (with the upper portiou of the colou) dilated and pravided with numerons longitudinal folds of mucous membranc. In many anatomical clau. racters, especially - the possession of a special gastric gland, this group rescmbles tho Phescolomyidx, to which it obviously forms a transi. tion. ${ }^{1}$
Phascolarctos. -Denti-
 total 30 . Upper incisors crowded together, cylindroilal, the first much larger than the others, with a bevelled cutting edge (fig.25). Canine very amall; a considerable interval betweens it and the premolar, which is as long from before backwards bit not so broad as tbo true molars, and has is eutting edge, with a smaller parallel inner ridge. The molars slightly diminishing in size from the first to the fourth, with square crowns, each bearing four pyramidal cusps. The lower incisors are semiproclivous, com-

[^163]pressed and tapering, berelled at the ends. Premolars and molars in continnous scries, as in the unpe jaw. Fore feet with the two inner toes slightly semuated from and opposable to the remaining three, all withstrong, curved, and much commressel claws. Hind foot with the hallux placod very [ir lack, large and broad, the sccond and third (united) toes considerably smallew than the other two ; the fourth the largest. No external tail. Fur deuse and woally. Ears of moderate size, thickly clotheal with lung hairs. Vertcbre: C 7, D11, L 8, S2, C'E. kibs eleven pairs, a rare exception to tho usual number (13) in the Jrersupicelia.

There is but one species, the Koala or Native Bear of the Australian colonists ( $P$. cinercers), found in 'the soutli-castern parts of the Australian continent. It is about 2 feet in length, and of an ash-grey coour, an eacellent climber, aml residing geucrally in lofty Eucalyptus trees, on tho huls and tender shoots of which it feeds, though occasionally descending to the ground in the nimht.

## Kinslred Fossil lorms.

Here may tho noticed sereral genera of extinct Marsupials, the remains of which have been found in the post-'Tertiary deposits of Australia, which agroe with the Mracropodiele and the Phalangistidus in having ? incisors, those of the lower jaw very large and proclivous. As the whole of their structure, especinlly that of the hind feet, is not yet knorn, their precise affinities cammot be determined.
Diprotodon.-Dentition: $i$ sै, $c \frac{\hat{t}}{2}, p$ h, $m \frac{4}{4}$; total 23. The first upper incisor very largo ond scalpriform. True molars with promincat transverse ridges, as in Macropus, but wanting the longitudinal connecting ridge. Anterior and posterior limbs less disproportionato than in tho Kinngaroos. D. custralis is a gigantic animal compared with all existing Marsupials, surjassing a lhinoceroa in bulk.

Nolotherium. -Dental formula as in tho last, from which it differs chiefly in the incisor teeth, especially those of the lower jaw, being much smaller. The skull is short, with the zygomatic arches extremely broad. N. milchelli and incrme, both animals of great size, thotigh inferior to Diprotodon.

Thylacolco.-Dentition of adult: $i \frac{3}{4}, c \frac{\frac{1}{3}, ~}{} p \frac{3}{5}, m \frac{1}{2}$; total 24. First upper incisor much larger than the others; canine and first two premolars rudimentary. In the loter jaw there are also one or two small and early deciduons premolars; posterior premolars of both jaws formed on tho samo type as that of Mypsiprymners, but relatively much Jarger ; true molars mdimentary, tubercular. One species, $T$. carrifix. This animal presents a most anomalous condition of dentition, the functional tecth being reduced to ono pair

of largo cutting incisors situated close to the median line, aud ono great, trenchant, compressel premolar, on cach side above and helow: It was lirst deseribed os a carnivolous Marsupial, and named, in accordance with its presumed labits, "ns one of the f.llest and most destrmetive of predalory beasts;" but, as its aflinities aro certainly with tho Plualangislidx and Shecropodider, and its dentition completely unliko that of any known preclaccous auimal, this view has been called in question. ${ }^{1}$

[^164]
## Fumily Puascolomidde.

Dentition: c $\frac{1}{3}, p, p \neq m ;=24$. All the tecth with persistunt pulns. The iucisors large, scalnriform, with enamel only on the front surface, as in the Rodentio. The molars stronerly curved, forming from the base to the summit about a quarter of is circle, tho concarity beiag directed outwards in the unper and in"rards in the lower tueth. Tho first of the series (generally called "premolar," "hough it appears to have no milk predecessor) singlelobed; tho ather four composed of two lobes, each subtriangular in section. Limbs equal, stout, and short. Fore fect with five distinet toes, each furnished with a long, strong, and slightly curred nail, the first and fifth considerably shorter than the other three. Hind fort with a very short nailless hallux, the second, third, and fourth tocs partially united by integiments, of nearly equal length, tho fifth distinct and rather shorter; all four provided with long ond curved nails. In the ekeleton of tho foot, the second and third toes are distinetly more slender than the fourth, showing a alight tendency towards tho peculiar character so marked in the last threo familics. Tail rudinentary. Stomach simple, provided with a slecial gland situated near the cardiac orifice. Cocunt very short, wido, and with a peculiar vermiform appendage.

The speces of this fanily are few, and all contaiced in one genus, Phascolomys, with two well-markod sections, one containing tho Common and Broad-nosed Wrombats, $P$. vombal and phatyrhinus, tho other tho Hairy-nosed Wombat, $P$. latifrons. They are all terrestrial ant burrowing animals, generally slos in thicir morements, and harmiess in disposition; they feed on roots and other vegetablo substances, and inhabit the southern parts of the Aastralian continent, Tasmania, and the islands of Bass's Straits. See Wombar.
Bibliography of Jitr supialia.-G. IR. Waterlouse, Nat. ITist. of the Jammalia, roh 1. "Marsupiata," Lsi6; J. Conull, Sfammals of Anseralia, 1863; R. Owen, article "Marsupialia," in Cyctop, al A Anatomy and Pingaiology, and valions memotrs "On Extrinct Nammans of Austrnian in Philosophienl Transactions:' W. It. Flower, "Ou the Develodanene and Sucecssion of the Tectl/ trethe JIarsupialla," Phil. Trans., 1667.

## Subclass EUTHERIA on MIONODELPHIA.

The remaining mammals are included in the Eutheris, Placentalia, or Mononelpira, the learling characters of which haro been giren at p. 372. Their affinitios with one another are so complex that it is impossible to arrange them satisfactorily in any serial order. The Edentata may be taken first as standing in some respects apart from all the whers. The Sirenia and Cetacea are also somerriat isolated, having undergone most remarkable modifications, from the normal mammalian type. The Primates must be placed at the head of the series. The position of the others is quite arbitrary, as none of the hitherto proposed associations of the orders into larger groups stand the test of critical investigation, and palrontological researches have already gone far to show that they are all modifications of a common heterodont, diphyodont, nentadaciyle form.

## Order EDENTATA.

The name assigned to this group (which seme zoologists think ought rather to be ranked as a subclass than an order) by Cuvier is often ohjocted to as inappropriate, for though some of the members are edentulous, others hare very numerous teeth; and tho Linnean name Bruta is occasionally substitutod. But that term is quite as oljectionable, especially as the group to which Lion:eus apyliod it is by no means equivalent to the order as now understood, as the mames of the genera contained in it, riz., Elephas, Tricheclus, Prodypus, Myrmecophaga, Manis, and Dasypues, will indicatc. It contained, in fact, all the animals then known which are comprised in tho modern orders of Probosechia, Sireniiz, and Edentata, together with the Talrus, one of the Carnicora. If rotained at all, it should rather Leloners to the Probosciker, as Elephas stands first in the list of genera, and was probably in the ruind of Linneus when he assigned the name to the group. Cuvier's order ineluded the Omithorhumchers and Schidua, tho structuro of which was then imperfectly known, and which are now by common consent removed to an altogether diflerent section of the claze, but otherwise ita limits aro thoso now alopted. The name Edertata is 'so gencrally used, and its meauing so well understood, that it would bo very undesirable to change it now; in fact similar
reasuns might be assigned for ceasing to use nearly all the uther current erdinal designations, for it might he equally well objected that all the Carnivore arn not flesheaters, many of the Marsupialia have not pouches, and so forth.

If the tecth are not always alsent, they in variably exhibit certain imperfections, which are indeed almost tho only common characters which bind together the varions extinct and existing members of the order. These are-that they are homodont and, with the remarkable exception of the genus Tatusia, monophyodont ; they are never rooted but bave persistent pulps; they are almays deficient in one of the constituents which enter into the formation of the complete mammalian tooth, the enamel, and are never present either in the upper or lower jaw in the fore part of the mouth, the situation occupied by the incisors of other mammals. ${ }^{1}$

There is so great a difference in structure and habits between some of the existing animals assigned to this order that, beyond the negative characters just mentioned, there seems little to connect them. The Sloths and Anteaters, for instance, in mode of life, general conformation of limbs, structure of digestive organs, de., appear at first sight almosi as widely separated as any niammals. Palrontulogy bas, however, thrown great light upon their relations, and proved their real affinities. Perfectly intermediate forms have been discorered in the great Ground Sloths of America, which have the dentition and general form of the head of the Sloths, combined with the limbs and trunk of the Anteaters. It is highly probable that the existing members of the order are very much differentiaied representatives of a large group, the greater number of which are now extinet, and which have become so without ever attaiaing a higl grade of organization. The great dirersity of structure of the existing fanilies, the high degree of specialization to which many have attained, the paucity of species and even of individuals, their limited area of distribution, and their small size compared with known ancestral forms, all show that this is an ancient and a waning group, the members of which seem still to hold their own either by the remoteness and seclusion of their drelling-places, by their remarkable adaptation of structure to special conditions of life, or by aid of the peculiar defensive armature with which they ate invested. Their former history can, however, ouly be thus surnised, rather than read, at present; for, though we have antple evidence of the abundance and superior magnitude of certain forns in the most recent or post-Tertiary geological age, and in one part of the world, beyond this time, i.e., in the true Tertiary period, and in other parts of the rorld than America, the remains of animals of this order hitherto discovered are only fragmentars, giving a most imperfect idea of their nctual structure, and affording no indications which serve to connect them with any other branch of the class.
The existing members of the order readily group thenselves into five distinct families, the limits of which are perfectly elear. These are (1) Bradypodidx, or Sloths; (2) Mryrmccophagidie, or Anteaters; (3) Dasypodidx, or Armadillos; (1) Manidx, Pangolins or Scaly Anteaters; and (5) Orycteropodidx, Aard-varks or African Anteaters. The geographical distribution of these fanilies coincides with their structural distinction, the first three being inhabitants of the New and the last two of the Old World. It has been usual to arrange these families into two large grnups or suborders :-(1) the Phyllophaga, leaf-eaters, also callell Tierdigrade, containing the Bradypodide aloae; and ( 2 ) the Lintomophaga, insect-eaters, or Lermilingua, containing all the other families, from which sometimes the Orycteropodide are separated as a third suborder under the

[^165]namo of Iffodientia. Such an arrangement is, however, an ortificial one, founded on superficial resemblance. Tho bonds which unite the Manida to the Mympecophagidx are mainly to be found in the structure of the month, especially the extensile eharacter of the tongue, the great develntment of the submaxillary glands, and the absence of teeth.' These characters are exactly aunlogous to those found in the Echidna among Monotremes, the Woodpeckers amoug Birds, and the Chamxleon among Ieptiles,-the fact probably being that in countrics where 'Termites and similar insects flourish various distinet forms of vertebrates have become modified in special relation to this abundance of nutritious food, which conld only be made available by a peculiar structure of tho alimertary organs. A close study of the more essential portions of the anatomy of these animals ${ }^{2}$ leads to the belief that all the American Edentates at present known, howerer diversified in furm and babits, belng to a commion stock. The Bradypodidx, Megatheriidx, and Myrmecophagidxa are closely allicd, the modifications scon in the existing families relating only to food and manner of life. The ancestral forms may have been omnirorous, and gradually separated into the purely vegotable and purely animal feeders; from the former are developed the modern Sloths, from the latter the Anteaters. The Armadillos (Dusypoctidx) are another modification of the same type, retaining some generalized characters, as those - of the alimentary organs, but in other respects, as their defensive armature, remarkably specialized. The two Old-World families Manidx and Orycteropodidic are so essentially distinct, both from the American families and from each other, that it may even be considered doubtful whether they are derived from the same, prinary branch of mammals, or whether they may not be offsets of some other branch, the rearaining members of which have been lost to knowledge.

## Family Bradypodide.

Externally clothed with long, coaroc, crisp hair. Ifead short and rounded. External cars inconspicuous. Teeth in each jaw, subcylindrical, of persistent growth, consisting of a central axis of raso-dentine, with a thin investrnent of hard dentine, with a thick outer coating of cement ; without (as far as is yet known) any succession. Fore limbs greatly longer than the hind limbs. All tho extremities terminating in marrow, curved feet; the digits never


Fic. 33.-Skull of Two-toed \$loth (Cholares didactylus). From
exceeding threc in number, cucased for nearly their whole leneth in a common integument, and armed with long strong claws. Tait rudimentary. Stomach complex. No recuni. placenta decidnate, dome-like, comprosed of an aggremation of numerous discoidal lobes. Strictly arboreal is habits, vegetable fecders, and limited geographically to the forest regions of South and Central America Two gencra, Bradypus and Cholepus. Sce Slotin.

## Family Megatherides.

The members of this family are all extinct. Their characters, so far as is known from the well-preserved recauins ol many species found abundantly in deposits of Pleistocone age in
${ }^{2}$ Sce Procecdings of the Zoological Socicty of London, 1882, I. 358.
luth North and South America, were intermediate between those of the existing Bradypodidx and the Mymncoophagide, combining the head and dentition of the former with the structure of the vertebral c)lumn, limbs, and tail of the latter. Almost all the known anceies are of comparativele gigantic size, the smallest, Calodon escrivaneusis, exceeding tho largest existing Anteater, and the Negatherium being larger than a Phinoceros. The dentition is usually $\frac{8}{6}$ on each


side, as in the Sloths, bot in Calodon $\frac{5}{5}$. This genus, and in a still more marked degree Megatherium, differ from all the others in the details of tho structure of the teeth. They are very deeply implanted, of prismatic form (quadrate in transverse section); and the component tissues -hard dentiue (fio. 35, $d$ ), softer vaso-dentine ( $v$ ), and cementum (c)-are so arranged that, os the tooth wears, the surlaco alwaya presents a pair of transverso ridges, thus producing a triturating apparatus comparable to the "bilophodont " molar of Dinotherium, Tapirus, Manatus, Macropus, and others, though produced in a different manoer. In all the ather genera the teeth are more or less cylindrical, thonglı sometimes laterally compressed or even longitudinally groored on the sides, and on the grinding surface the prominent ridge of hard dentine follows the external contour, and is surrounded only by a thin layer of cementum, as in the existing Sloths. The genera of which the remains are Dest known are Mylodorr (fig. 37), Lestodon, Scclidotherium, Gryphotherizm, and Alegalonyr. In the last-named the anterior tooth of both upper and lowec jaws is large and removed by a considerablo interval from the others. Tho osteological characters of these genera have been fully described in the works of Cuvier, Owen, Burmeister, Leidy, Gervais, Reinhardt, and others.
No Eocenc Edentates have yet been found in America. In tho Miocene of ${ }^{\circ}$ the Pacific eoast of North America eomo remains lave been discavered, assigned by Marsh to the genus Moropus, tho idse po of a distinct farnily, the shoropide. There are two apecios, one about as large as a Tapir, and one nearly twice that size. In the Lower Plioceno, well-preserved remains of Edentates of very large size have been found at sereral widely separated localities in Idalio and California. Theso belong to the genus Morotherium, of which two species ore known. East of tho P.ocky Mountains, in the Lower Plioceno of Nobraska, a largo specics opparently of tho genus Moropus has beon discovered. None of these havo as yet been fully described or figured. Marsh belicves that North America was tho original homo of the Edentates, and that they apread to tho southern prtion of the continent towards the elose of the Tertiary period.

## Family Myrmecophagide.

Externally clothed with hair. No teeth. IIead elongated. youth tubular, with a amall tcrminal aperture, through which
the long, rermiform tongue, corcred with the riscill secretion of the enormons submaxillary glands, is rapialy protruded in feeling, and withdrawn again witl the admering garticles of aliment, which are then sucked into the phargnx. In the manus, the third toe is greatly developed, and has a lonst falcate clas; the others are reduced or suppressed. The pes has four or five suherjual digits with claws. Posterior dorsal and lumbar vertebre with additional interlocking zygapophyses. Tail long, sometimes lreheusile. Placonta dome-like or discoidal. The nnimals of this family are the "Anteaters" par excellence. They feedexclusively on animal substances, mostly insecto. One specics is terrestrial, the others nrboreal; none burrow in the ground. They aro all inhabitants of the Neatropical region.

Myrmecophaga. - Skill grcatly clongated and uarrow, its upper surface smooth and cylindriform. Anteriorly the face is produced into a long, tubular rostrum, rounded above and flattened below, and with torminal nares, and composed of the mesethmoid ossified for move than lalf its length, the vomer, the maxilix, and the long and narrow nasal bones, the premaxillw being extremely short and confined to the margin of the anterior nares. The zygomatic areh is incomplete, the stylilorm malar only articulating with the maxilla in front, and not reaching to tho very short zygomatic process of tha squamosal. The licrymal foramen is in front of the margin of tho orbit. Thereare no post-orbital processes to the frontals or any other demarcation between the orbits aud the temporal fosse. Palate ex-


Fio. 37. Skcleton of Jfylodon robustus (Ilefstocenc, South America). From Owen
tremely elongated, and produced backwards as far os the level of the external auditory meatus by the meeting in thie middle line of tho largely developed pterygcids. The glenold fossa a shallow oval fireet, with its long diameter from before back trards. Mandiblo very long and slender, with an exceedingly short aymphysis, no distinet coronoid process, and a slightly elerated, elongated, flattened, condylar articular surface. Vertebro: C 7, D 15-16, L 3-2, S 6, C 31. Clavicles rudimentary. In the manus, the first digit is very slender, the second also slender, with eompressed phalanges of nearly equal length. The third digit is immensely developed; thongh its proximal phalanx is extremely short, its manal phalanx is so long that the entire length of the digit exceeds thint of the sceond. Tho fourth has a long and rather slender metacarpal, and thre phalanges diminishing in size, the nngunl phanam being very sinall. The fifth lins the metacarpal nearly as long, but not ao stout as the fourth, and followed by tro small phalnges, the last rudimentary and conical. Claws are developed apon all but the fifth. In walking the toes are kept strongly flexed, and hnro their points turned upwards and inwards, the weight being supparted upou a callons pad over tha end of the filth digit, and by the dorsal surfaces of the third and fourth digits. The hind feet are ahort and rather broad, with five subequal claws, the fourth rather longest, the first shortest; the whole sole is placed on the ground in walking. Body rather compressed, clothed with long, coarse hair. Tail about as long as the body, and coveral with very long bair ; not preliensile. Ears small, oval, crect. Eyes very small. Stomach consisting of $n$ subglobular, thin-walled, cardiae portion, and $n$ museulne pyloric gizzard with dense epithelial lining. No ileocolie valve, and a short wido ill-defined caecum. Namme two, pectoral.

There is ono speeies, M. julcelm, the Great Anteater, or Ant Benr, measuring 4 feet in length without tho tail, and upraards of 2 feet in heiglit at the shonlder: 1ts prevailing colour is grey, with a broad black band, bordered with white, conmencing on tho chest, and massing obliquely over the shoulder, diminishing gradnslly in breadth as it appronches the loius, where it ends in a point

It is extensively distribut in the tronical parts of South and Eentral dwerica, frequenting low swamys savanmas, along the banks of rivers, and the depths of the humid forests, but is nowlere abunlant. Its foud consists mainy of termites, to obtain which it onens their nests with its prowe ful sharp anterior clans, and as the insects swam to the damaged 1 at of thic dwelling, it drans them into its mouth by means of its 1 , flexible, rapidly-moving tongue coverel with glutionens salivi The Great inteater is quite terrestrial in its lailits, beine ocver Euown io climb trees, nor does it barmow amierytound the the Armalillos. Though generally an inoffensire amima], when attacke i it can defend itself vigerously and effectively with its sabre-like auterior claws. The femalc bears but a siagle young at a birth.

I'cmandua. - This rents closely rosembles the lest in anatomical structure, but the heal is suoch less clongated, the fur is short and bristly, the tail, tapering, preliensile, with the under side througliont aud the whole of the terminal prortion naked and scaly. The stomach is similar to that of Jymmecophaga, but with the muscular pyloric gizzul not quite so strongly developed. There is a distinct


Fig. ôs.-Tamandua Anteatir (Trmumiza tetradacly? a). Elom Proc, Zoot, S.6, 1si1, pi, xlihi,
ileo-colic ralve and short ghobnlar cacum. The fore foot has a very large claw on the third toe, moderate-sized claws on the second and fourth, a very minute oue on the first, and nove on the fifth, which is entirely concealed within the skio. The hind foot has five subequal claws. Vertebre: C7, D17, L \%, S 5, C 37. There are very rudimentary claricles.

The Tamandua ( ${ }^{2}$. ta'radactyse) is mach smeller than the Great Anteater, and differs casentislly from it in its habits, being mainly arborcal. It is nn inhabitent of the dense primeval forests of South and Central dmerica As different individuals rary much in their colontion, it is powible that there may be more than one species. The usual colour is yellowish-white, with a broad black lateral band, covering nearly the whole of the side of the bouly:

Cycloturus. - The skull is much shorter even than in Tamandua, and is arcleel considerably in the lomgitudinal direction. It liffers from that of the other members of the family mainly in tho long canal for tho posterico nares uot being closed by bone below, as the greater mait of the palatines and the pterygoids do not meet in the millle bine. The mandible has a prominent, narrore, recurved coronail and a well-developell andular process; it is strongly decurved in front. Fevtebre: C 7,1 IG, L 2, S 4, C 40. Ribs remarkably broad and flat. Clavicles well developed. JIanus remarkably modified The third dinit is greatly developed at the expense of all the others; it has a stout short metacarpal and but two phalanges, of which the $r$ ost distal is large, compressed, pointed, and much curved, and bears a very strang hoot-like claw. The second digit has the same number of plalanges, and bears aclarr, but is very much more slender than the third. The fourth is representel only by tho metacarpal, and one neillcss phalaax, the first and fifth oaly by very rudimentery metacarnals. Tho pes is also completely modified into a climbing orgat. The hallux is rudimentary, consisting of $n$ metatarsal and ons phalanx, concesled beneath the skin, but tho otlecr four toes are subequal and mueli curved, with long pointed compresserl claws. The tuber calcanci is directed towards the fl intar surface, and prallel with it and extending to aoout doubla its length is a greatly elongated sesamoid ossicle. These torether extyport a prominent calcarine cushion to which the nails are oppoged in climbing. Slomach pyriform, with muscular wails, hut no distinet sizzard-like portion, as in the foregoing genera. Tho commencement of the colon providat with two small enen, resembling those of many Lirds, narrow at the base, and rather dilacel at their termiual blind ends, and communicating with the paneral carity by recy minute apertures. Tail longer than tho buity, tapering, bare on the under surface, and very prehensile. For soft and silky.

This genus has also but one speries certainly knomn, the Littlo or Tro-tocd Anteater (C. didedylus), nn animal not larger than a

Rat, of a mencial "Yellowicla colour; and exclusively arboreal in its havits. It is a native of the loottest farts of South and Central Americi.

## Fimily y distrondde.

The greater part of the shin strongly ...sified. On the back and sides the union of numaerous quadratr an polygocal scates forms a hard shield. usually cousisting of an enterior (scapular) and posterior (pelvic) soliu purtion (which ov ahang on cack side the jos'ts of the body they respectively cover. forming clambers into which the limbs aro withirannt, and a saiable number of rings between, connected by soft flexible skin so as to allow of curvature of the body. The top of the heat lias also $n$ similar shield (cenhalic), and the tail is astually eneased in bony rings or plates. This onter or exposed surfices of the limbs are protected by irregulat bony sentes, not united at their margins; but the skin of the imer surface of the limls and under side of the body is soft and more or less elothed with hair. Hairs also in many species project through apertures between the bony scutes of the lack. The ossified dermal plates are everywhere covered by a layer of horny epidemis. Teeth mumerolis, simple, of persistent growth, and usually monoplyodont, but in one genus (Tatusia) a succession of tecth has heen observed. Zugomatic ar h of skall momplete. Cervical vertebre with extremely short, broad, and depressed bodies. The atlas free, but the second and third, and often eeveral of the others, annjimsed together both by their bodies and arches. Lumbar vertebre with sccessory zygomatic processes, and rery large metapophyses, supporting the bony carapace. Claricles well developed. A third trochanter on the femur. Tibia and fibula ankylosed at their distal extremities. Fore feet with strongly develuped, curved claus, adapted for digging and scrateling, ilvee, four, or fire in number. Hind feet plantigrade, with five toes, all lrovided with mails. Tongue long, pointed, and extensile, though to a less degree than in the Anteaters. Submaxillary glands largely dercloped. Stomach simple. Placenta diseoidal, deciduate.

Th:o animals of this family are commonly called Armadillos, a word of Spanish origin, having referemeo to their armour-dikic coveling. The existiog srecies are all of small or moderate size. They are mostly, though not universally, nocturnal in their habits. They are omnirorous, feeding on roots, iasects, worms, rentiles, and carrion. They are harmless and inoftensive creatures, oftering no resistance when eanght, their principal means of escape from their cacmies being the extraordinary rapility with which tbey cau burrow in the ground, aud the tenacity with which they retain their hold in their subterramean retreats. Notwitlstandiag the shortness of their limbs they can run with great rapidity. Dost of the species are estecmed grood cating by the natires of the conutries in which they lire. They are all inhabitants of the open plains or the forests a: the tropical and temperate parts of South America, with the exception of one species (Tatusia peba), which ranges as far north as l'exas. Of the existing genera, Chtamydophorus stands apart from the rest in the formation of its external covering; but in all other respects Tatusia is the most aherrant form, exhibiting n different type of structnre of the fore feet, which in all the others shows modifications, though in very rarying degrees, of the same type

Subfamily Chamydophorinz. - In most anatomical claracters, especially the structure of the fore foot, this little group reseubles the Drsypodinas, but it difers remarlably "from all other known Armadilios, liviug or, extinct, in tho pectuliar modification of tho dermal armour.

Chlamydophorus. -Teeth $\frac{8}{8-9}$, aubcylindrical, somewhat compressed, moderate in size suraller at cach end (especially in front) than at the middle of thr series. Skull broad and rounded behind, pointed in front. Neuzzie subeylindrical aml depressed. A canspicuous rounded, rough promiaence on the frontal bone, just beforo each orbit. Tympanic prolongel into a tubular anditory meatos, curving upwards round the base of the zygoma. Vertebræ: C 7. D 11, L3 3. S 10, C 15. Upper part of head and trunk covered with foursided homy plates (with very small thin assifieations beneath). formises a shicli, free, and overhanging the sides of the trink, and attached only along the midule line of the lack. The plates are arranged in a seites of distinct transverse londs, about twenty in number between the occiput and the posterion truncated end, and not divided into solid thomeic and pelvic shiclds mitla movahle bands between. The hinder ent of the body is aloruptly fruncated and covered by a vertically-placed, strong, solil, bony shield, of ais oval (rrmsversely extended) form, covered by thin epidermic plates. This shield is lirmly nnkylosed by fre bony processes to the finder part of the polvis. Through a notch in the midule of its lower border tho tail passes out. The latter is rather short, cylinulical in its proximal half, and expanded and depressed or spatulate in its terminal portion, and covered with horny plates. The dorsal surfaces of the fore and hind feet are also covered with horny plates, The remainder of the limbs and under surface and sides of the body bencath the overlapping lateral partg of the dorsal shield are elothel with rather long, ver, soft silky lacir. Eyes and ears very small, and concealed by the hair. Extremitics shust. Fect larre, each
with five well-developol claws, those on tho fore feet very lons, slout, nul sulicompressed, the structure of the thigits being essentially tho same as those of Yenzerus and Priodons Nipples two, peetoral. Visceral nuatomy closely rescubling that of Dasymus, the ceecum being broad, short, amd bifud.
C. truncatzs. -Tha l'ichiciago, a small burrowing animal, about 5) inches long, inhabits the sandy plains of the western part of the Argentine Republie, espeeialiy the vicinity of Mendoza. Its horny covering is of a pinkish colour, and its silky hair snow white. It is rare, and its labits but little known. $A$ feeond speciea, C. reluad, fmm Bolivia, has been describel by Durmeister. It is of rather larger size, and lias the torsal shield attached to the skin of the back, as far as its edfe, insteal of only atong the median line.
Subfamily Dasypodine.- Fore feet usually with all five digits develoned aud with naits, thongh the lirst and fifth may be suppressed. Tho first and second long and slender, with thee normal number and relative lengtb of plailanges. The others stont, with short broad metacarnals, and with phalañes greatly rednced in length and generally in number by coalescence. The ungual phalanx of tho thind very large, that of tho others gradually. diminishing to tho fifth. Dasypus, as now restrieted, has the most normal form of mamus, but the modifieations so markedly developed in all the others (and culminatiug in Tolymentes) are foreshadowed, as it were, in it. Fars wide apmet. Mamme ono pair, pectoral.

Dasypus. - Tecth if or $\frac{8}{5}$, of which tho anterior in the npper jaw is usually inplanted in the premaxillary bone. The series of teeth extends posteriorly some distance behiod tho anterior reot of the zygoma, alnost level with the hinder edge of the palate. They are large, subeylindrieal, slightly compressed, diminsling in sizo tormals each end of the serics; the anterior two in tho mandible much smaller, and more compressed than the others. Cranisl portion of the skoll broad and depressed. Facinl portion triangular, broad in front and much depressed. Auditory bulla completely osaitiad, perforated on the inner side by the carotid cansl, and contisued externally into an elongated hony meatus auditorits, with its aperture directed mpwards and backwards. (In all the rentaining genera of Dasuporlinz the tympauio bone is a mere lialf ring, loosely attached to the cranimm.) Nandible with a high ascending ramns, brond transversely-placed condyle, and high slender coronoid process. Vertobix: C 7, D 11-12, L3, S 8, C 17-18. Head broad auil flat above. Dluzle obtuscly pointed. Ears of moderate size or rather small, placed laterally, far gnart. Body broad and denressed. Carapace with six or soven movable hands between the scipular and pelvic shields. I'ail shorter than tho body, taperiug, coverelt with plates forming distinct rings near tho base. Fore fect with five toes; the first much more slenuer than tho others, aind with 2 smaller ungual phalanx and nail; the secund, thougit the longest, alao slender. T'lo third, fourth, and fifth gradually diminishing in Jength, all arsacd with very strong, slightly curvel, compressed claws, sloping away from an elevated rounded inmer border to a sharp, outer, and inferior elge. Tho hind foot is rather short, with all live toes armed with stout, compressed, slightly curvel, obtuscly pointed clars, - the thirl tho lungest, the secoud vearly enual to it, the fourtli the next, the first and fith sloorter and mearly equal.
To this gemus belongs one of tho hest-known species of the group, tho Six-handed ArmadiHo or Enconbert (D. sexcinctus) of Brazil and l'araguay. A very similar species, D. rillosus, the Hairy Armadillo, replaces it south of tho Rio Plata. There aro also two rery small species, $D$. ecllerosues and $D$. mimulus, from the Argentine Sepublic and North Patagonia. The latter differs from the other three in having no tootll implanted in the prenaxillary bone.

Xicnurits. - Tecth of or ${ }_{8}^{3}$, of moderate size and subcylindrical. The most josterior pineed a littlo way lehind the anterior root of the zygoma, but far fiom thohindermumin ol the palatc. Cranium somowhat elonrated, omuch constricted behind the orbits, and immediately in front of tho constriction consilerably dilatal. Nandible eleuder; coronoid process very amall and sharp-pointed, sometimes obsolcte. Vertubro: C7, D 12-13, L5, S 10, C 18. ILead broad hehind. Eirs rather large and ronndel, vide apart. Movablo bands of carapace 12-13. Tail considerably shorter than the boty, and slender, corered with nearly naked skin, with but a few small, seattrech. dermal beny plates, chiclly on the under surface nul near tho apex. On tho fore foet tho first and second toes are Jong and slenter, with smatl claws and tho normal number of linalanges; tho other toes have but two phalanges; tho third has an immenso falcato chw ; tho fonrlis and fifth gimilar but smaller claws. The lind feet are comparatively small, with fivo toes, with small, triangular, blunt nails; the third longest, tha first ahortest. Tho best known species of this genus, the Tatomay or Cabassou, $X$. senicinctue, is, after Priodon giges, tho largest of tho group. It is found, though not abundantly, in Surinasn, Brazil, and Puramany. Others, $X$. hispidus and luguibris, lave been desoribod, but littlo is as yet kuown of them.

I'riodon. - Teeth variable in number, and gonerally differing on the two sides of each j.1w, usuall: from 20 to 25 on each side above and below, so that as meny as 100 may be vresent altogether, but
ns life advances the anterior teeth fall ont, and all traces of their alveoli disaprear. The senies extends as fat back as the hinder ellge of the anterior root of the 7.0゙goma. "lhey are all very small; in the anterior half of each series they wre strongly eompressed, having flat sides and a atruight freo edge; the posterior teeth are more cylindrical, witls tlat, t"uncated, free sulfaces. Vertelorx: C 7, D 12, L3, S 10, C 23. Head swall, elongated, conical. Lars molerate, ovate. Carapace with 12-13 movablo hasds. Tail nearly equal to the body in length, gradually tapering, elosely covered with quadrangular scales, armuged in a quincunx pattern. Fone feet with five toes, formed an the amme planas thoso of Xenurus, hut with the claw of the thind of still greater size, and that of the others, especially the fifth, proportionately reduced. Hind foot short and rounded, with five very short tocs, with short, brond, fint ohtuse nails The only known species, the Creat Armadidle ( $P$. gigas), is by far the largest of existing members of the family, measuring rather more than 3 feet from the tip of tho nose to the roet of the tail, tla tail leing about 20 inches long. It inhabits the forests of Surinam and Brazil. The jowerfal faleate claws of its fore feet enablo it to dis with great facility. Its fool consists chiefly of termites and other insects, but it is said to nttack and uproot newlymade graves for the purpose of devouring the flesh of the bodies contained in them.

Tolypeuics. -Tecth o or ${ }^{[8}$, rather large in proportion to the size of the skill, the hinder end of the series reaching nearly to the pestcrior sargin of the palate. Vertebra: C 7, D11, L3, S 12, C 13. Ears placel low on the sides of the licad, rather large, broedly ovate. Caramace with its scapular and pelvic shields very free at the sides of the body, forming large elambers into which-the limbs can bo readily withurawe. Only thrce movable bands. Tail short, conical, corered with largo bony tubereles. The fore fect formed on the same type as tho last, but the peculiarities carried out to a still greater extent. The claw of the third toe is rery long and falcate ${ }_{3}$ the first and fifth grently reluced and sometimes wanting. On tho lind foot the three roiddle toes have broad, flat, subequal nails, forming together a kind of tripartite Hoof; the first and fifth much shorter and with more compressed nails.

The Armadillos of this genua hare the power of rolling themselres up inte a perfect ball, the shield on the top of the leead and the tuberculated"dorsal surface of tho tail exactly fitting into end filling up the apertures left by tho notches of cither end of the carnace. This appears to be their usual means of defence Fben frightened or surpirsed, as they do not burrow like the other speciea. They run rery quickly, with a very peculiar हat, only the tips of the claws of the fore tact tancbing tho ground. Three apecies are described :- $T$. tricinctus, the Apar ; 2 . conurtes, the Matice; and T. murici.

Subfamily Tatusionce.-This contans but one genus, Talusitu. -Teeth $\frac{8}{8}$ or $\frac{7}{7}$, very small, subeylindrical. The firstand second snbcompressed, the last considerablr smaller than the others. They present the remarkable prenliarity (uainue among Edontatos, so far as


Fig. 89.-Giyplodon cluripes (Melstocenc, South Imerica). From Owen,
is yet known) of all being, with the oxesption of tho I: st, precelled by two-rooted milk teeth, which a:e not chanced untul the animad has nearly attained its fill size. Vertebre: $67, \mathrm{D},-11, \mathrm{~L} 5, \$ S_{0}$ C'20-27. Head narrom, with a long, zarros, subcylindrical obliquely-trnnuated snout. Ears ratlier large, ovate, and erect, piaced clase togother on tho occiput. Carapaco with sereus to mine distiuct movable bands. Body generally cloogated and narror. Tail moderate or long, gradually taperiog; its der mal plates forming very distinct rings fur the greater part of its length. Fore feet with four risilile toes, and a concealed elawless rudiment of the fifth. Ciars all long, slightly curred, and very slendor; tho third and fourih
subequal and alike, the fret and Iomth mueh shorter. Jlizh fect with five toes, all amed with strong, slighty-etured, conical, obtuscly. pointed mails. The third longest, then the second and fourth ; the first nusl fifth much shorter than the others.

This genns difiers from all the other Armadillos in liaring a pair of ingminal manmme, in adlition to the usula pectoral pair, anel in producing a large number (fnur to ten) of young at a birth, all the others barlug usually but one or two.

The Pela Amadillo, T. septencincto, is a well-known species, having an extensive range from Texas to Paraguay. It is replacel in the more sonthern regions of Soutl Anmerica by a smalice snecies, with shorter tail, the Mulita (T. hubbridu), so called from the resemblanee of its heail and ears to those of a mule. T. kappleri is - large siccies or variety from Surinam. ${ }^{1}$

Fossil remains of Dasypodida have been found by Lund and others in the eaves of Brazil in deposits of Pleistocene age. Some are attributable to existing geacra, but others are assigned to distinct unodifications of the type called Euryodon, Chlamydotherium, Eutatus, \&e. In the sanae region, but still more abundantly in the fluviatile deposits which cover the country in the neiglabourthood of Bnenos Ayres, are found the remains of one of the most remarkable forms of marnmals yet diseovered, the Glyptodous, or Ifoplophoritle (fig. 39). They dilfer from the existing Dusypodidx in their large size, aud in having the carapace composed of a solid piece (formed by the union of a multitude of bony dermal scutes) without any mevable sings, and in having also a ventral piece or plastrou. The facial portion of the skull is very short. A long process of the maxilary bone descends from the anterior part of the 2ygomatic arch. The ascending ramus of the mandible is remarkably high. The teeth are $\frac{3}{s}$ in all known species, all much alike, having two deep grooves or flutings on cach side, so as to divide them into three nearly distinct Ioves (fig. 40). The vertebral column isalmost cotirely ankylosel into a solid tube, but therc is a complex joint Fic. 40. -Tceth of cilyptoat the base of the meck, to allow the head don. Froin Owen. heing retracted within thic carapace. The limbs are very strong, and the feet short and broad, resembling exterrally those of an elcphant or tortoise. Many species of the family hare been described and ligured, esprecially by Burmeister (in the Annales del Musco publico de Buenos Aires), by whom five genera are recognized, which are tlums characterized:-
I. Four toes only on the posterior feet.
A. Four toes on the anterior feet, the pollex being absent. a. Cuirnss thin but inlexible.

1. Honlophorus:--H. cuphractus, H. ornatus, H. eोcgervs, H. puemilio.
b. The cuirass stronger, withi clefts between the scutes at the lower antero-lateral border, allowing of a certaiu amount of flexibility.
2. Penochthus:-P. tuberculatus, $P$, bullijer.
B. Both pollex and fifth digit of the manus absent.
3. Deedicurus:-D. gigantcus.
4. Five perfect toes on the posterior feet, and four on the anterior, the fifth digit of which is absent.
A. Tail elongated, with the riogs of the base smooth, and the cuirassed apex cylindrical or tubular. 4. Glyptudon:-G. clavipes, G. rctieutatus.
B. Tail short, the zings tuberculated, the point round and short.
5. Schistoplcurums:-S. clongatum, S. asperum, S. zaic.

## Famity Manide.

Covered externally (except the under surface of the body and inside of the limbs) with large imbricated horny seales, with scattered hairs growing in the intervals. No teeth. Tongue long, rermiform, and protractile. No accessory articular processes to the lumbar vertebre, but the anterior zygapoplyses largely developed aud very concive, completely embracing the semicylindrical surfaces of the posterior zygapophyses. Limbs short, with five

[^166]complete digits on each foot. Scaphoid and lunar bone of carpus united. Uicrus bicormuate. Placenta dillusell and non-dceidunte. The species are mainly terrestrial and fossorial, thonglı one is partially arbercal. All belong to the Ethiopian and Oricutal regions of the Uld Wors.

Manis.-Skull somewhat of the form of an clongated cone, with the samall end turned forwards; rery smooth and free from erests and ridges. No distinction between the orbits and temperal fossa. The zygomatic arch uswally inemplete, owing to the absence of the malar bonc. No distinct lacrymal bone. Palate long and narrow: The pterygoids extend backwards as far as the tympanies, but do not mest in the raidille line below. Ty'npanic ankylosed to the surrounding bones, and nore or less bullate, but not prodired into a tubular auditory meatus. Rami of mandible very sleuder and straight, withont any angle or coronoid process. From dear the anterior extremity of the upper edge a sharp, conical, tooth-like process projects uprrards and outwards. No clavicles. No thirel trochater to the femur. Ungual phalonges bifid at thicir terminations. Caudal vertebre with very long strong transverso processes and numerous chevron bones. Tonguc long, verniform, ilattened towards the tip. The retractor or sterno-glossal museles arise from the hinder extrenity of the immensely prolonged ensiform cartilage of the stemum. Stomach with thick, museular walls and liant membrane, and with a special gland near the mildle of the great curvature, consisting of a niass of complex secreting follicles, the ducts of which terminato in a common rificc. No excum. A gall-bladler. Head stnall, depressed, uarrow, pointed in front, with a very small mouth-opening. Eyes and pinma of ear very small. Dody clongated, narrow. Tail more or less elongated, convex above, flat underneath. The whole of the upper surfince of the head, the upper surface and sides of the boily, the whole of the tail, and the outer sides of the extremities covercd with large, overlapping, horny seales, with nsually a few stitl hairs groriug between and projecting begond them. The sides and under surface of the hean, the under surfaco of the body, and the inner sides of the linus without seales but with a rather scanty covering of lair. Limbs short. In walking the dorsal surface and outer sides of the phalanges of the two outer digits of the front feet alone rest on the ground, the points of the mails turninio uprards and inwards. The thisd toe the longest, with a powerful compressed curved claw, the second and fourth with similar but smaller claws, that of the pollex often almost rudimesitary. Hind feet plantigrade, with ballux very slort, and four other toes subequal, with noderate, curved, subcompressed nails.
The aninals of this genus, called Pangolins or Scaly Anteaters, are all of small or moderate sizc, terrestrial and purrowing, and feed mainly on termites. One snall African species climbs trees. They can roll thenselves up in a ball when in danger. Their pediliar elongated form, sloort limbs, long, gradua?ly-tapering tail, and sealy covering give them on a suncricial inspection morc the appearance of reptiles than of manunals. The spucies are not Dumerous, but may be grouped into three sections. (1) Manis proper. Tail considerably exceeding iu lenglt both head and hody. Scales not covering the dorsal surface of the manus. On fore fect the first toe exceedingly small, but with a distinct short nail ; second, fourth, and fifth subequal, with moderate compressed claws; third greatly exceeding the others, with a much larger faleate clar. Two specics, both frocn West Africa : M. Congicauilata (vertebre: C 7, D 13, L 5, S 3, C 46), anl M. trichsins (vertebre: C 7, D 13, $\mathrm{L} 6, \mathrm{~S} 3, \mathrm{C} 44$ ). (2) All the others hare the scaly covering of the fore limbs extending to the claws, aud the tail not exceeding the length of the head and body. On the fore feet the first and fifth toes are equal and very small, the second and fourth equal and longer, the third longest, but not so disproprtionately so as in the other sectiou. The tails of most of these are broad at the base and taper towards the extremity. They. constitute the genus Pholidolus of Gray, and include Mr. giganlea, West Africa, the largest species of the group, of which the head and body measure 2 feet 6 inches; and the tail the sanie. Vertebre: C 7, D 13, L6, S 4, C 28. M. pentadactyla, M. aurita, and M. jaranica, all of the Oriental region. (3) One very distinct species, M. ecmminchii, from South and East Africa, with the tail nearly as broad as the body for the whole of its length, and rounded at the end, constitutes the genus Sniulsia of Gray.

## Famity Onyctenopodide.

External surface scantily covered with bristle-like hairs, Teeth numerous, and of peculiar and complex structure, being traversed by a number of rarallel vertical pulp-canals. Lumbar vertebræ with no aceessory zygapophyses. Femur with a third trochanter. Fore feet without pollex, but all the otber digits well developed, with strong moderate-sized nails, snited to digging, the plantar surfaces of which rest on the ground in walking. Hind feet with five subequal toes. Mouth elongated and tubular. Tongue aubrermiform. Placenta broadly zonular. Feed on animal substances. Terrestrial and fossorial in labits. Limited to the Ethiopian region.

Oryectcropus. - The total number of teeth appears to be from
ciglit to ton in exch side of the upper, and eirght in the lower jaw ; but they nre never all in place at one time, as the smal! anterior zecth aro shed before the series is completed belinul. In the adnlt they mumber usually five on each side above and bulow, of which the first two are simple and compressed, the next two larger and longitndinally grooved at the sides, the most posterior simple nnil cylindrical. The structure of all these teeth is quite peculiar nomong mamals, though resembling that of some tishes. Thacir summits are romnded before they aro worn; their bases do not taper to a root, but are evenly truncated and continually growing. Erch tootl is made up of an aggregation of parallel dental systens, having a slender pulp zvity in the eentre, from which the dentinal tubes radiate outwards, and being elosely paeked together each system nssumes a polygonal outlino as seen in transverse section. No evidence of any vertical suceession of tectli las beeu dis. covered. Skull moderately elongated. The facial portion subcylindrical and slightly tapering. The zygoma complete and slender. The pelato ends posterionly in the thickened transuerse border of the palatimes, nnd is not continued baek by the pterygoids. The tympanie is ammlar, and not ankylosed to the surrounding bones. The mamlible is slender anteriorly, but rises high posteriorly, with a slender recurved coronoid, ind an ascending pointod process on the hinder edge below the condyle, which is sinall, oval, and looks forirards as mueh as upwards. Vertebre: C 7, D 13, L 8, S 6, C 25. The large number of lumbar vertebre is peenliar among Ldeniates. Tongue less vermiform than in Myranccophaga, being thick nnd flesliy at the base, mad gradually tapering to the apex. The salivary appuratus is developed much in the same manner as in that gemms, but the duct of the submaxillary gland has no reservoir. The stomnch consists of a large subglohlar eardiae portion, with a very thick, soft, and corrugated lining nembrane, and $n$ smaller muscular, pyloric part, with a comparatively thin and smooth lining. There is a very distinct ileo-cæenl valve, and a conside:able-sized cocum; also a gall-bladder. No pollex to the fore foot. All the other usual tocs well developed, with strong, subcompressed nails, fiatter on the hind foot. Ilcaed elongated, with a tubular snout, terminal nostrils, and small mouthopening. Fars large, pointed, erect. Tail nearly ns long as the body, cylindrical, very thick it the base, tapering to the extremity.

The best known species is the Capo Antenter (O. cotucusis), or "Aard-Vark" (Earth lig) of the Dutch colonists, from South Africa, an aninal mot altonther unlike a Pig in size and general appearance. It lives in burrows in the gronnd, and feeds chiefly on ants and other insects. $\Lambda$ sceond species, or well-marked local variefy 0 sefiopicus. iababits the north-eastern paits of Africa.

## Extiset Edfsizata of the Old Worily.

Certain remains, clicfly of bones of the limbs, found in Franco and Greece, and assigned to genera rallud Mracothcrium and Aneylotherium, united provisionally in the family Macrotheriide, indicate the existence of animals of large size inhaniting Europe during the Niddle Tertiary epoch; the characters of winch appear to indicate a generalized Edentate form or something intermedinte betweon tho Eicntate and Ungulatio. In the stricture of the phalanges they wost resembled the Manida, but there is some evidence that they possessed tecth. Some fragments from the Focene of Paris are still more doubtfully assirned by Gervais to the order.

Bibliography of Edentata.-No general work on tho ovier hns been mulisised but that of Ropp (Anal. Untersuchangen ziber die bidentafen, 21 cd., Rusi), now nenily out of date Amone numerous memoirs on speclat groups the followlug may be clted :-Myrmecophagided:-R. Owen, "Anitomy of Great Anteater," Trans. Zool. Soc., vol. Iv.; G. Ponchet, AR'm. swe le Grand Foumilier, 187 : W. A. Forbes, "Anat. of Grent Anteater," proc. Zoot. Sッc, 1882, p, 2s7. Mcgn-theridde:-R. Owen, Extinct Gigantic 'soth (1hyoron fobustus), 1842 : hu, $\because$ On the Stegarherlum," Phitos. Trans., 1851-56; J. Leddy, "Extinct Shath-tilue of North Amertca," Smithsonian Contrib. 10 Knootedge, vii., 1S55; 11. Eurmelster, Description de la Répubtique Argentine, t. Hil. Mnmmitères, 1879.-which con-
 Olyplodontidx: - Owen, Catafogne of Fossil Mamimals, Mus. Fioy. Coll. Surgcons, 1815: T. H. Huxicy, "Ostcol. of Glyptadon," Phil. Tiras. 1865: 11. Burmeister, Annales del Afuseo Publico de Buthos Ayres, and Discripl, de la Fipubligue Aryenfine, 1879. Dasypodide':-J. Mnric, "Antomy of Tolypeues." Trans. Linn. Soc., vol. xxx., 1874: A. 11. Garoil, Proc, Zoo!. Soc., 1878, For placentatin of Didentates sec W. Tumer, Trans, hoy, Soc. Edin., xxsif. (1873) 1 . 72 , and Jour. Anat, and Fhysoh, vols, vili, null x. A. Mitne-Elwards, Ann, Scicnces Not. (ot wil, p. 1; and for brain, F. Germis, "Formes ecrefrates des Filentes," Nouv. Areh. du Museum, tom. v.; W. Turner, Jour. Anatomy, 1. 313 (1867).

## Order Sifenia.

The purely aquatic liabits and Fishl-like form of the nnimals of this order caused them to be formerly confounded with the Cetacee, but a more intimate knowledge of their structure has slown that they really belong to a widely different type of the class.

The head is rounded and not disproportionate in size as compared with the truuk, frem which it is searcely separaled by nuy extermilly visible constriztion or neck.

Nostrils valvalar, separatc, and placed above the fore part of the obtuse, truncated muzzle. Eyes very small, with imperfectly formed eyelids, capable, however, of contraction, and with a well.developed niclitating membrane. Ear without any pima. Month of small or moderate size, with tumid hips beset with stiff bristles. General form of the body depressed fusiform. No dersal fin. Tail flattened and horizontally expanded. Fore limbs paddle-shaped, the digits being enveloped in a common cutaneous covering, though sometimes rudiments of uails are present. No trace of bind limbs. External surface covered with a tough, finely wrinkled, or very rugous skin, naked, or with fine hairs sparsely seattered over it.

The skeleton is remarkable for the massiveness and density of most of the bones of which it is composed, especially the skull and ribs, which must add to the specific gravity of these slow-moving animals, and aid in keeping them to the bottom of the shallow waters in which they dwell, while feeding on aquatic vegetables. The skult presents many peculiarities, among which may be indicaled the large size and backward position of the ruterior narinh aperture, a further modification of that met with in the Tapirs among Ungulates, and presenting some approach to that so claracterislic of the Cetaced. Tho masal bones are generally alsent in the recent forms, or are only found in a most rudimentary condition, attached to the cdge of the frontals, far away from thie middle line; but in some at least of the extinct species these bones, though small in size, are normal in situation nud relations. In very few other respects does the skull present nny resemblance to that of the Celaced. In the spinal column none of the vertebre are united together to form a sacrum, and the flat ends of the bodies do not ossify separately, so as to form disk-like epiphyses in the young state, as in nearly all other mammals. The anterior caudal vertebre have well-developed chevron bones. In one genus (Manctuss) there are only six cervical vortebre. There are no clavicles. The humerus has a small but distinct trochlear articulation at the elbow-joint. The two bones of the forearm are about equally developed, and generally ankylosed together at both extremities. The carpus is short and broad, and the digits five in number, with moderateiy elongated and flattened phalanges, which are never increased in number beyond the limit usual in the Mamalia. The pelvis is extremely rudimentary, consisting of a pair of bones suspended at some distanec from the vertebral columu. In no existing sprecies is there any traco of a hind limb, but in the cxtinct Hatitherium an acetabular depression and rudimentary femur have been discovered.

Two kinds of teeth, incisers and molars, separated by n wide interval, are generaily present. The former may be developed into tusks in the upper jaw, or may be quite rudimentary. The molars rary much in character. In one genus (Rytina) no teeth of any kind are prosent, at least in the adult. In all, the anterior part of the palate, and a corresponding surface on the prolonged symplysis of the loter jaw, are covered with rough horny piates of neculiar structure, which doubtless assist in mastication. The tonguc is small and fixed in position, with a surface resembling that of the plates just spoken of. The salivary glands are largely developed. The stomach is compound, being divided by a valrular constriction into two principal cavities, the first of which is provided with a singular glandular pouch noar the cardine end, and tho second usually with a pair of clongated, conical, cercal saes or diverticula. The intestinal camal is long, and with very muscular walls. 'There is a cecum, either simpte, conical, and with extremely thick walls, ns in Maticore, or bifid, aq
in. Manatus. The apex of the licart is deeply cleft between the ventricles. The principal arteries form very extensive and comples cifice mirabilis. The lungs are remarkably long and narrow, as, owing to the very oblique position of the diaphragm, the theracic eavity extends far back orer the abulomen. The epiglottis and arytenoid cartilages of the laryux do not form a tubular prolongation as in the Cetuceu. The brain is of comparatively small size, and the convolutions on the surface of the cerebrum few and shallow. The kidneys are simple. Testes abdominal. The uterus is bicornnate. The placenta (in the Dugong) is non-deciduate aud diffuse, the villi being seattered generally over the surface of the clarion except at tho poles. The nmbilical vesicle disappears carly. The mamme are two, and pectoral or rather post-axillary in position.
The Sivenia pass their whole life in the water, being denizens of shallow bays, estuaries, lagoons, and large rivers, but unlike the Cetucea aro not met with in the high seas, far away from the shore. Their food consists entirely of aquatic plants, eilher merine algen or freshwater grasses, napon which they browse beneath the surface, as the ierrestrial herbirorous mammals do upon the green pastures on shore. They are generally gregarions, slow and inactive in their movements, mild, inolfensive, and apparently unintelligent in disposition. Though oceasionally found stranded by the tide or wares, thero is no satisfactory evideneo that they voluntarily leave the water to bask or feed on the shore. The habit of the Dagong of raising its round bead out of water, and carrying its young under the fore fin, seens to have given rise, among the imaginative early voyagers in the Indian Ocean, to the legendary beings, half human and half fish, in allusion to which tho namo Sirenia was bestowed by Illiger on the order, though certainly the face of a Dugong, when closely inspected, does not bear the slightest resemblance to that of the mermaid of romance. The species now existing are rery fow, and there is reason to believe that the time is not far distant when they will all become extinct. One species, Rhytiza stelleri, of the North Pacific, was totally exterminated through the ageucy of manduring the last century; and the others, being valuable for their flesh as food, for their hides, and especially for the oil obtained from the thick layer of fat which lies immediately beneath their skin, rapidly diminish in numbers as civilized populations occupy the regions forming their natural habitat. The surviving species are confined to the tropical regions of the shores of both sides of the Atlantic and the great rivers which empty themselves into that ocean, and to the coasts of the Indian Oeean from the Red Sea to Nurth Australia. In the Miocene and early Pliocene epock Sirenians abounderl in the seas of Europe, and their. remains have been found in deposits of correspondiag periods of North America. Evidence las e?so been discovered of the existence of all animal of the gronp in the seas at the hottom of which the Eocene nummulitic limestone mountain ranges of Egypt were deposited.
The existing genera present such well-marked distin-guishing-characters that, if they alone were known, they might be placed in separate families; but, as in so many sitnilar cases, our knowlodge of the extinet forms, imperfeet as it is, goes far to bridge over the distinction between them.
Manctus. - Incisors ? ? rulimentary, conccaled bencesth the horny oral plates, and disuyicaring luefore maturity. Molars 112 , hut rarely more than $\frac{a}{8}$ present at oue time : the anterior teeth talli.ng lefore the posterior come into use ; similar in characters iro... berinnugg to end of the series; with square, enamelle id ciowns, tic grinding surface raised iato tuberculated transverse ridges. Thic
upper tecth mith two rialges and three rouls, the lower teeth mith an additional (posterior) ridge or talon and two roots. The ecrvical vertebia present the remarkable anomaly of being reduced to six in mumber, the usual vertebral formula heing $\mathrm{C} 6, \mathrm{D} 15$-18, L and C 2:-29. Rostrum of the skull, formed thy the union of the premaxillse in front of the antctior marial aperture, shorter than the fengtin of the aperture and searcely dellected from the basi-emnial nxis. Tail entire, rounded or shovel-shaped. Rudimentary uails on the forc limis. Cxenm bilid. Habitat the shores of, and the great rivers which cmpty themselves intn, the Atiantic within the tropics. The American and African fenms are generally consile eral to be distinet species (M. anstralis and M. scucgalensis), thongh they differ but litile from each otlice in anatomical characters and in habits. They are rather thuriatile thon maxine, aseending large rivers almost to their sources. Sec Manatre.

Iralicorc. - In the upper jaw a pair of large, nearly straight, tusklike incisors, directed downwards and forwards, partially conterl with cmamel. In the male they have persistent pulpis, and hevelled entting edges, which project a short distance from the mouth, Int in the female, though they remain through life in the alveolar cavity, they are not exscrted, and, the pulp cavity being filied with osteodentime, they soon cease to grow (as int the fenale Narwhal). In the young there is also a second small deciduous incisor on each sido above. At this are there are nlso bencath the homy plate which covers the anterior portion of the mandible four pairs of slender conieal teeth lodged in wido alveolar depressions. These become absorbed before the animal reaches maturity. The molars arc usually $\frac{5}{5}$, sometimes $\frac{8}{8}$, altogether, but not all in place at once, as the first falls before the last rises abore the gimin ; they are more or less cylindrical in section, except the last, which is compressed and grooved laterally, without distinction into crown and root, increasing in size from before backwards, with persistent pulps and no coancl. The summits of the crowns are tuberculated before wear-
of two small isauds in the North Pacifin, Behring's and the adjacent Copper Jsland, on the former of which it was discoveren by the ill-foted navigator whose rame the island hears, when, with his accomplished companion, the Cierman naturalist Steller, he was wrecked upon it in 1741. Twenty-seven years afterwads (1768), as is commonly supposed, the last of the race was killed, ${ }^{1}$ and its very existence would have been uniknown to science but for the interesting aecount of its anatomy and habits left by Steller, and the few more or less perfect skeletons which have recently rewarded the researches carried on in the frozen soil of the islands atound which it dwelt. Thre is no evidence at present of its havipg inhabited any other coasts than th nse of the islainds just natned, though it can harilly be supposed that its range was always so restricted. When first discovered it was extremely numerous in the shallow bays round Bebring's fsland, finding abundant nutriment in the large laminarie growing iu the sca. Its extirpation is entirely due to the Russian huaters and traders who followed mpon the tiack of the explorers, and who, upon Steller's suggestion, lived upon the flesh of the great, Sea-cows. Its restrictell distribution, large size, inactive holits, fearlessmess of man, and even its affeetionate disposition towarls its own kind when wounded or in distress, all contributed to accelerate its fimal extinetion.

## Extinet Sirenia.

The Niocene and anly Miocene seas of Earope abounded in Sirenians, to which the generic name of Hatitheritun was given ky Kaup. They had large tusk-like incisors in the upper jaw, as in the existing Dugongs, though not so greatly develophe. Their molar tecth were $\frac{\delta_{0}}{6}$ or $f$, interionly simple and single-rooted, posterinaly those nbove with three and those below with two roots, and with cnamelled and tuberculated or ridged crawns, in all which respects they more resemble those of the Manatee than of the Dagong. The anterior molars were deciduons. Some species at least had nasul bones, short, broad, but normal in position, thereas in all the existing gencra these bones are quite rudimentary. Another and still more important evidence of conformity to the general mammalian tyne is the better development of the pelvic ione, and the preseace of a small styliform femur articnlated to the acetabulum, althoogh no traces of any other part of the limb hare been discorered. These ancicut Sironians were thus, in denta], cranial, and other ozteologieal characters, less specialized than are cither of the existing spacies, and, it the intermediate links could be discovered, might well be looked upon is ancestral forms fron which the latter have been derived, but at preseut the transitional conditions have not been detected. So far as is yet known, when changes in the physical conditious of the Luropean seas rendered them unfitted to be the habitation of Sireminny, the ITalitherimm type still prevailed. If the existing Dugongs and Manatees are descended from it, their evolution must have taken place during the Pliocene and Mleistoceno enochs, the one in"seas to the east, the other to the west of the African continent, which has long formed a barrier to their intereommunication. Halitherium remains have been found in many parts of Gerninns, especially near Darnistadt, also in France, ltaly, Belgiun, Melta, the isthmus of Sucz \&e. Until Intely wone were knows from England, probnbly owing to the absence of beds of an age corresponding to thoso is which they are found on the European continent; Lut recently a skull and soveral teeth have been detented among tho rolled deliris of Mioceno formations, out of which the Red Cragh Suffolk is partially composed. The species are not. yet satisfactorily characterized. Some of them appear to have attained a larger size thon the existing Manatec or Dugong. One of theso from the l'lioceno of Italy and France, having but $\frac{5}{3}$ molar teeth, has been separated generically mader the name of Felsinotherium by Capellini, hy whom it has been fully described. A portion of a skull fomid in Belgium has been mamed! Crassitherium by Van Beneden; and some compressed teeth, somewhat similar to but larger than those of the Dugong, discovered in the department of Lot-et-Garonne, France, gave origin to the genus Rytiodus of E. I.artet. Of this more complete rennains have recently been described by Delfortrie. The rostrum is moro elongated thant in Halitherium, hut the skull is otherwise very similar, as are the molar toeth. The incisors are very large, exserted, strongly compressed, alnost sabre-like, rounded on the upper or onterior sarface, sharp below, concare on the extermal and convox on the inner side, and transwersely striated.
Fabhuccanthees of Brandt, from the Vienna basin, is also, according to Van Beneden, another form of Sircria, of which, however, the skull is not known. In varions Miocene and peeliaps Eucenc inarino formations of the United States of America remains of Sireuinos have been found, iout mostly in such a fragmentary condition that they afford at present little evidenco of the early history of tho group in that country. A more satisfactory discovery is that

[^167]of a nearly complete sliull and some bones from a limestone Tentiary formation in Jamaica. It is of smaller size than the Manatee, amd as far as the teeth are concerned, of a still more generalized chavacter than IIclitherium, the deatition being apparently $i_{i=3}^{s}, ~ c i, p^{s}$, an $\frac{2}{3}=45$. The incisors are small, not developed into tuskis the canines (wanting in all existing sirenians) are rather larger than the incisors, judging by the sockets; aud the molars are biloplodont, and covered with enamel. It lins leen clescribel by Professor Owen under the name of Prorcestomus simenoides. Unfortmately we have no knowledge of the geological antiquity of the formation in which it was embeduled. Lastly mut bs mentionce the Eothrium egyptiacum, Owen, founded on the cast of a brain, with a small. quantity of surrounding bonc, cliscorered in the nummulitic limestone of Eocene age of the Mokattam Fills, near Cairo. The brain is namower than in Manatues, and resembles that of Halitherium. This is of interest as the most ancient known evideace of any Sirenian whose age has been geologically determined.

The few facts as jet collected relating to the former history of the Sircnice leafe us 8 much in the dark as to the origin and aftinities of this peenliar group of anima?s as we were when we only knew tho living members. They lend no countenance to thoin association with the Cetacce, and on the other hand their supposed affinity with the Ungulata, so much favoured by modern zoologists, receives no very material support from them.
Bibliography of Sirenia.- J. F. Biandt, Symbolat Eivenologica, St Pctersburg, 3 fusciculi, 1846-61-65,- an exilaustive accuunt of the analomy, attinities, and Ittcrature of the group, with copious illustrations of the osteulogy of Rhyling. Anatomy of Dugong:-Everava Ilome, Phat. Trans., 18.0. P. 315; Owen, Proe
 ibias, vol, x. p. 137, 1575. Exhet Sirenia :-Gcivils, Journal de Zoulogie, tom. 1. p. $332,1852$.

## Order CETACEA.

This is perhaps the most distinetly eircumseribed and natural of all the larger groups into which the elass is divided.

The external form is Fish-like, the body being fusiform, passing anteriorly into the head withont any distinet constriction or neck, and posteriorly tapering off gradually towards the extremity of the tail, which is provided with a pair of lateral, pointed expansions of skin supported by deuse fibrous tissue, called "flukes," forming together a horizontally placed triangular propelling organ, notehed in the middle line behind.

The head is genernlly large, in some species attaining to even more than one-third of the entire length of the animal, and the aperture of the mouth is always wide, and bounded by stiff inmabile lips. The fore limbs are reduecd to the condition of flattened ovoid paddles, encased in a continuous integument, showing no external sign of division into fore arm and manus, or of separate digits, aud without any trace of nails. There are no signs of hind limbs visiblo externally. The general surface of the skin is smooth and glistening, and devoid of hair, although in many species there are a few fine bristles in the neighbomhood of the mouth, Which may persist throngh life or be present only in the young state. Immediately beneath the skin, and intimately connected mith it, is a thick layer of fat, held together by a dense mesh of arcolar tissue, constituting the "blubber," which serves the purpose of the hairy envering of other mammals in retaining the heat of the body. In nearly all species a compressed median dorsal tegnmentary fin is present. Tho eye is small, and is not provided with a nietitating membrane or true lacrymal apparatus. The extermal auditory meatus is a very minute aporture in tho skin sitnated at a short distance belind the cye, and there is no vestige of a pinna. The nostrils open separately or by a single crescentic valrnlar aperture, not at the extremity of the snout, but near the rertex.

Tho bones generally are spongy in texture, the caritics being filled with nil. In the vertebral culumn, the ecrviea! region is remarkably short and immobile, and the vertcbre, originally always seven in number, are in many species more or less fused togetieer into a solid mass. The odontuid process of the axis, when that bone is free, is usually very obtuse, or eren obsolete. None of the vertebre are united
together tu form a sacrum. The numbar and candal vertebre are numerous and large, nd, as their arches are not connecterl by any articular processes (zygapophyses), they are capable of a very free motion in all directions. The epiphyses at the ends of the vertebral bodies are very rlistinct thattened disks, not unitiog until after the animal has attained its full dimensions. ${ }^{1}$ There are largely dereloped clevron bones, the presence of which iudicates the distinction between the caudal and lumbar vertebre.

The skull is modified in a very peculiar manoer. The brain-case is short, broad, and higb, almost spherical 112 fact. The supra-occipital bone rises upwards and forwards from the foramen magnum, to meet the frontals at the verter, completely excluding the parietals from the upper region of the cranium. The frentals are expanded laterally to form the roof of the orbits. The anterior warial anerture opens upwards, and has in front of it a


Fic. 42.-A Secllon of the Skull of a Tomne Dolphin (Globicephalus meias). $\times \frac{1}{2}$. PM/x, premaxita; MIx, maxilla; ME, ossified portion of the mesctlimoid; an, anterior nares; Na, nasal; $I P$, inter-parietal ; $\mathcal{F r}$, frontal; $P a$, parietal; $\mathbb{S O}$, sopra-occipital: ExO, ex-occipital,
$B O$, basi-occipital; $S q$, squamosal; Per, periotic; $A S$, alisphenoid; $P S$, presphenoid ; $P$, BO, basi-occipital; $S q$, squamasal; Per, periotic; $A S$, alisphenoid; PS, presphenoid; $P$, inferior déntal canal ; c $c$, coronold process of mandible ; cd, condyle ; $a$, aagle; sh, stylo-ligal; bh, basi-hyal; th, thyro-hgal. From Osteology of Sfanmalia.
more or less harizontally prolonged rostrum, formed of the maxillæ, premaxillæ, vomer, and mesethmoid cartilage, extending forwards to form the upper jawor roof of the mouth.

There are no clavicles. The lumerus is freely morable on the scapula at the shoulder-joint, but beyond this tbe articulations of the limb are imperfect, flattened ends of the bones coming in contact with each other, with fibrous tissue interposed, allowing of scarcely any motion. The radius and ulna are distinct, and about equally developed, and much flattened, as are all the bones of the manus. There are four, or more conmmonly fire, digits, and the number of the phalanges of the second and third digits always exceeds the normal number in mammals, sometimes very considerablv; they present the exceptional character of having epiphyses at both ends. ${ }^{2}$ The pelvis is represented by a pair of small styliform bones placed longitu diaally, suspeaded below and at some distance from the vertebral column at the commencement of the caudal region. These appear to represent the ischia, as the crura of the

[^168]corpura cavernosa are altached to them. In some species, to the outer surface of these are fixed other small bones or cartilages, the rudiments of the hind linab.

Teeth aro generally present, but exceedingly variable in number. In the existing species, they are of simple, uniform character, all having conical or compressed crowns and single roots, aud are never preceded, by milk teeth. They are therefore homodont and monophyodont. In one group, the Mystacocetes, the teeth are absent (except in the fotal coudition), and the palate is provided with numerous transecrsely placed horay laminæ or "baleen." The salivary glands are rudimentary or absent. The stomach is multilocular. The intestinal cannl simple, and only in some species provided with a small cecum. The liver is very little fissured, and there is no gall-bladder. The rascular system is greatly complicated by arterial and renous plexuses, or retia mirclitic. The larynx is of pecular slape, the arytenoid cartilages and the epiglott's being much elongated, and together forming a tubular prolougation, which projects ioto the posterior nares, and when embraced by the soft $1^{12 l a t e}$ forms a coutinuous passage between the nostrils and the trachea, as in the Ungulates, but in a more perfect manner. The brain is large relatively to the size of the animal, very round in form, and with its surface divided by sulci into very numerous and complex convolutions. Tho kidneys are deeply lobulated. The testes are abdominal. There are no resicula seminales, nor os penis. The uterns is bicornuate, tho placenta nondeciduate and diffuse. The mammer are tro in number, and the nipples placed in depressions on each side of the rulra. The principal ducts of the gland are dilated during lactation into large reserroirs, into which the nillk collects, and from which it is injected by the action of a compressor muscle into the mouth of the joung animal, by which means the process of sucking under mater is greatly facilitated and expedited.

The animals of the order C'etacea abound in all knorra seas, and some species aro inhabitants of the larger rivers of South America and Asia. Their organization necessitates their passing their life entirely in the water, as on land they are absolutely helpless. They have, homever, to rise rery frequently to the surface for the purpose of respiration; and, in relation to the constant upward and downward morement in the water thus necessitated, their principal instrument of motion, the tail, is expanded horizontally, quite unlike that of a Fish, whose morements are mainly in straightforward or lateral directions. The position of the respiratory orifice or nostril on the highest part of the liead is very important for this mode of life, as it is the only part of the body the exposure of which above the surface is absolutely necessars. Of the numerous erroneous ideas connected with natural history, few are so widespread and still so firmly beliered, notwithstanding repeated expositions of its falsity, as that the Celacea spout out through their blowholes water taken in at the mouth. The fact is, the "spouting," or more properly" blowing,". of the Whale is nothing more than the ordinary act of expiration, which, taking place at longer intervals than inland animals, is performed with a greater amount of emphasis. The moment the animal rises to the surface it forcibly expels from its lungs the air taken in at the last inspiration, which of course is highly charged with watery rapour in consequence of the natural respiratory changes. This, rapidly condensing in the cold atmosphere in which the phennmenne is generally obserred, forms a column of steam or spray, which has been crroncously taken for
water. It ako often hapmene, especially when the surface of the ocean is acritumd into waves, that the animal commences its expiratory puff bofore the oritice has quite cleared the top of the water, nome of which may thus be driven upwards with the blast, tending to complete the illusion. In hunting Whalps the harpoon often pirees the fungs or air lossares of the unfortunate vietim, and then fountains of bood may be foreed high in the air through the howhoies, as commonly depicted in seness of Arctic adventure; but this is nothing more (allowance being made for the Whale's peruliar mode of breathing) than what always follows severe wounds of the respiratory organs of other mammals.

All the C'efacen are pretaceons, subsisting on living animal food of some kind. One genus alone (Orect) eats other warm-bloodel animals, as seals, and even members of its own order, both large and small. Many feed on fish, others on small floating erustaceans, pteropods, and medusar, while the principal staple of the food of many is constituted by the various species of cephalopods, Loligo and other Teuthidx, which must abound in some seas in vast mumber, as they form almost the entire support of some of the largest members of the order. In size the Cetacea vary much, some of the smaller IDolphius scarcely exceeding 4 feet in length, while others are the most colossal of all animals. It is true that most statements of their bulk found in general and even zoological literature are greatly exaggerated, but even when reduced to their actual dimensions (which will be mentioned under the respective genera) some of the existing Whales exceed in size that of any animal living eithor at present or in former times of which we have any certain evidence. With some exceptions, the Cetacea gencrally are timid inoffensive animals, active in their movements, and very affectionate in their disposition towards one another, especially the mother towards the young, of which there is usually but one, or at most two, at a time. Thej are generally gregarious, swimming in herds or "schools" (so termed by the whalers) oonetimes amounting to many thousauds in number; though some species have hitherto only been met with either singly or in pairs.

Relations of the sliffercnt Cetacea to each other and to other Mammals. - As before said, the Cetacea form a perfectly well-defined group, sharply separated from all other mammals, and with no outlying or doubtful forms at present known. Among the existing members of the order, there are two very distinct types, the Toothed Whales or Odontoceti and tho Balcen Whales or Mystacoceti, which present as many marked distinguishing structural characters ns are found betreen many other divisions of the Mammalia which are reckoned as ordors. The extinct Zeuglodon, so far as its characters aro known, docs not fall into cither of these gronss, but is in some respects an annectant form, and therefore must be placed, provisionally at least, in a third group by itself.

The Mystacocetes appear at first sight to be the most specialized and aberrant of the existing Cetacea, as indicated by the absence of teeth, the presence of baleen, and the form and size of the mouth; but, as we seo in other groups, vental characters, and all such as relate to the prohension of food generally, are essentially adaptive and conscquently plastic or pronc to rariation, and hence cannot well be relied upen as tests of affinity. In another character, also ndaptive, the lasity of the connexion of the ribs witle the vertebral column and with the sternum, and the reduction of that bone in size, allowing great froedom of expansion of the theracic cavity for prolonged immersion beneath the water, the Mystacocetes have passed beyond the Odontocetes in specialization. On the other liand, the greater symmetry of the skull. the more anteriar position. of the
external nostrils and their double pxternal orifice, the form of the nasal boncs, the presence of a distinetly dereloped olfactory organ, the mode of attachment of the periotic bone to the cranimm, the presince of a cucum and the regular arrangement of the alimentary canal, the more normal characters of the manus and the better development of the muscles attached to it, and the presence, in many species at last, of parts representing not only the bones lut the muscles and ligaments of a hind limb, ${ }^{1}$ all show less deviation from the ordinary mammalian type than is presented by the Odontocetes. Taking nll these charncters into consideration, it does not appear redsonable to suppose that fither type has been derived from the other, at all events in the form in which we see it now, but rather that they are parallel groups, both modifica in different fashions from common ancestors.
Among the Mystacocetes, in the especially distinguishing characters of the division, the Batanopterx, are less specialized than the Balxnx, which in the greater size of the head, the length and compression of the rostrum, the development of the balmin, and shortness of the cervieal region are exargerated forms of the type, and ret they retain more fully some primitive characters, as the better development of the hind limb, the pentadactylons manus, and the absence of a dorsal fin. Both forms are found distinct in a fossil state as far back as the early Plioceno age, but generally represented by smaller species thon these now existing. The Mystacocetes of the Miocene seas were, so far as we know at present, only Balanopteræ, some of which (Cetotherium) were, in the elongated lattened form of the nasal bones, the greater distance betreen the occipital and frontal bone at the top of the head, and the greater length of the cervical rertebræ, more generalized than those now existing. In the shape of the mandible also, Van Beneden, to whose researches we are chiefly indebted for a knomledge of these forms, discerns some approximation to the Odontocetes.

Amoug the last-named group there are several distinet types, of which that represented by Platanista, although in. some respects singularly modified, has been considered to present on the whole appresimations tomards the more normal and general type of mammalian structure. It is therefore interesting to find a similar form well represented among the earliest fossil remains of Cetaceans in Europe. Almost all the other members of the suborder range themselves under the two principal heads of Ziphioids (or Physeteroids) and Delphinoids. The former is an ancient and once abounding type, of which the Sperm Whalo (Physcter) is a highly specialized form. Among the latter, Globicephalus is a modified form as regards the structure of its anterior extremity, and Monodon as regards its dentition, while Delphinus with its rarious miner subdivisions may be regarded as the dominating type of Cetaceans at the present day; abundant in slightly differentiated species and abundant in individuals. They are in this respect to the rest of the crder much as the hellow-horned Ruminants are to the Ungulates.

The earliest Cetaceans of shose organization we hare anything like complete evidence are the Zeugledons of the Eocene period, ${ }^{2}$ which appreach in the structure of skull and tecth to a more generalized mammalian type than either of the existing suborders. The smallness of the cerebral cavity compared with the jarss and the rest of the skull they share with the primitive forms of many pther types. The forward

[^169]position of the anxial aperture and the length and Hatness nf the nasal bones, which distinguish them from all existing forms, wo must also suppose to be a character at one tinie common to all Cetaccars, thongh now retained (but to a less degrec) only by the Mystacocetes. Even Squalodon, which in its heterodont dentitiou so much resembles Zeuglodon as to hare been placed by some zoologists in the same genus, entirely differs from it, and conforms with the ordinary Dolphins in its essential cranial characters.
The origin of the Cetacea is at present involved in much obscurity. They present no sigus of closer affinity to any of the lower classes of rertebrates than do many other members of their own class. Indecd in all that essentially distinguishes a mammal from the oviparous vertebrates, whether in the osseons, nervous, reproductive, or any other system, they are as truly mammalian as any other group. Any supposed marks of inferiority, as absenco of limb structure, of hairy covering, of lacrymal apparatus, \&c., are obvionsly nodifications (nr degradations, as they may be termed) in adaptation to their special mode of life. The claracters of the teeth of Zeuglodon and other extinct forms, and also of the foctal Mystacocetes, clearly indicate that they lave boen derived from mammals in which the heterodont type of dentition was fully cstablished. The steps by which a land manumal may have been modified into a purely aquatic one are clearly indicated by the stages whieh still survire among the Carnivora, in the Otarix, and in the true Seals. A further change in the same directinn would produce an animal somewhat resembling a Dolphin, and it has beon thought that this may hare been the route by which the Cetacean form has been developed. There are, however, great diffeculties in the ray of this view. If the hind limbs had ever been dereloped into the very efficient aquatic propelling organs they present in the Seals, it is not cesy to imagine how they could have become completely atrophied and their function transferred to the tail. It is more likely that the Whales were derived from animals with long tails, which were used in swimning, eventually with such effect that the hind limbs became no longer necessary. The powerful tail, with its lateral cutaneous flanges, of an American species of Otler (Pteronura sandbachii) may give an idea of this member in the primitive Cetaceans. But the structure of the Cefacea is, in so many essential characters, so unlike that of the Carnivora that the probabilities are against these orders being nearly related. Eren in the sknll of the Zeuglodon, which has been cited as preseating a great resemblance to that of a Seal, quite as many likenesses may be traced to one of the primitive Pig-like Ungulates (except in the purely. adaptive character of the form of the teeth), while the eiongated larynx, ${ }^{1}$ comples stomach, simple liver, reproductive organs both malo and female, and foctal membranes of the existing Cetacea are far more like those of that group than of the Camivora. Indeed it appears probable that the old popular idea which affixed the name of "Sea-Hog" ${ }^{2}$ to.the Porpoise contains a larger element of trnth than the speculations of many accomplished zoologists of modern times. The fact that Platanista, which, as mentionod abore, appears to retain more of the primitive characteristics of the group than any other existing form, and also the somewhat related Inia from Suath America, are both to the present day exclusively fluviatile, may point to the freshwater origin of the whole group, in which case their otherwise rather inexplicable absence from the seas of the Cretaceous period would be accounted for.

[^170]
## Suborder MISTACOCETT,

the Bahesombea, or Ilhateboac Whalos.
Toeth never functionally developed, but always disappearing brfore the close of intra-utcrine life. Palate provided with plates of halcen or "whalebone." Skull symmetrical. Nasal hones forming a roof to tho aoterior nasal pnssages, which are directed upwards and forwards. Maxilla produced in front of, hat not over, the orbital process of the frontal. Lacrymal bones small and distinet from the jugal. Tympanic bone ankylosed with the periotic, which is attached to the base of the cranium by two stroug diverging processes. Olfactory organ distinctly developed. Rami of randible arched outwards, their anterior cnis mecting at on angle, and connected by fibrous tissue without any true symphysis. All the ribs at their upper extremity articulating only with the transverse proccsscs of the vertebree ; their capitular processes when present not articulatiog diroctly with the borlies of the vertarme. Sterumm composed of a single piece, a ad articulating ouly with a single pair of rilhs. N̄o ossilied sternal ribs. External openings of nostrils distinct from each other, loogitadinal. A short conical cecum.

These animals have, when in the foetal state, numerous, minute, calcified tecth lying in the dental groove of bath upper and lower jaws. They are hest developed ahout the middle of fictal life, alter which period they are absorbed, and no trace of them remains at the tince of tirth. ${ }^{3}$ The baleen or whalehone does not make its appearance until after birth. It consists of a serics of flattened horay plates, between three and four huadred in uumber, on each side or the palate, with a bare interval along the middlo line. They are placed transversely to the long axis of the palate, with very short intervals between then. Each plate or blade is somewhat triangular in form, with the base attached to the palate and the apex hanging downwards. The outer edge of the blade is hard and smooth, but tho ioner edge and opex fray ont into long bristly fibres, so that the roof ef the whele's nouth looks as if covered with hair, as deserikel by Aristotle. At tho inner edge of eacla principal blade are two or three much smaller or subsidiary blades. The brincipal blades are longest near the midille of the series, and gradually diminish towards the front and back of the moath. Tbe horay plates grow from a dease fibrous and highly vascular matrix, which covers the palatal surface of the maxillæ, and which scads out lameltar processes, one of which peaetrates the lase of cach blade. DIoreover, the free edge of these processes is corered with very long vascular thread-like papillie, one of which forms the central axis of each of the hair-like enidermic fibres of which the bledo is mainly composed. A traurerse section of fresin whalebone shows that it is made up of numbers of these soft rascular papitle, circular in outline, each surrounded by concentrically arranged cpidermic cells, tho whole hound together by other epidermic cells, that constituto tho smooth cortical (sa-called "cmauel") surface of the blade, which, disintegrating at the free edge, allows the individual fibres to become loose and assume the hair-like appearance before spoken of. These fibres differ from lairs in not being formed in depressed follicles in the enderon, but rather resemble the fibres cempos. ang the horn of the Rhinoceros. The whalebone in fact consists of nothing more than molified papillæ of the buccal mucous membrane, with an excessive and cornified epithelial dcreloproent. The blades are supported, and bound tugether for a certain distance frons their base, by a mass of less hardened epithetium, secreted by the surfece of the palatal membrano or matrix of the whalebone in the intervals of the lamellar processes. This is the "intermncdiate substance" of Hunter, the "gum" of the whalers Baleen varies much in colour in different species. In somo it is almost jet hlack, in others slate colour, horn coloor, yellow, or even creamy-white. In some the blades are variegated with longitudinal stripes of differcnt bues. It differs also greatly in cther respects, beiog ohort, thick, coarse, and stiff in some, and greatly clourated and highly elastic in those species in which it has attained its fullest development. Its function is to strain the water from the small marine molluscs, crustaceans, or fish npeu which the whales sabsist. In feeding they fill the immense mouth rith water contaioing shoals of these small creatures, and then, on their closing the jaws and mising the tongue, so as to diminish the cavity of the mouth, the water streams out tbrough the narrow intervals between the hairy fringe of the whaleboze blades, and escapes through the lins, lenving the living prey to be swallowed.

Our knowledge of the different structural modifications at

[^171]tnined by mombers of this important group of mammals, though largely increased of late years, is still imperfen.. Fiorracrly they swore all divided into liight Whales (Balanct) and Lorquals or Finwhales (Balenoptcra), the latter distinguished by their smaller heads, clongated and slender form, free cervical vertelure, tetradactylous unaus, and the presence of very conspicuous longitudinal furrows or folds in the skin of the throat and chest, and of a small adipose dorsal fin. Recent discoveries have, however, brought to light several forms holding a somewhat intermediate position, nud presenting combinations of characters not found in cither of the larger known sections. According to our present knowlenge the group is natumally divided into five very distinet genera. As these will be more fully described in the aiticle Wimale, it will be suflicient at present to iudicato their principal characteristies.
Bulanc.-Skin of throat smooth, not furrowed. No dorsal fin. Cervical vertebre united into a single mass. Pectoral limb short, broad, and pentadactylons. Head very large. Baleen very long and narrow, highly elastic and black. Scapula high, with a distinct coracoid anil coronoid process. This genus contains the well-knonn Creenland Right Whate (B. mysticetus) of the Aretic seas, the whalebono and oil of which are so mneli valued in commerce, and also other whales, distinguished from this by having lieads somevhat smaller in proportion to tho body, with shorter balecu, and a larger number of vertebre. Theso inhabit the temperato seas of both northern and southern hemispheres, and have been divided by zoologists into several species in accordanco with their geographical distribution, $-B$. biscaycusis of the North Atlantic, $D$. janonica of the North Pacific, B. austratis of tho Sonth Atlantic, anil B. antipodarum and noweselcombix of the South P'acific; but the differential characters by which they havo been seprated--external as well as anatomical-are se slight and so liable to individual rariation that it is not improballo that when they are better knom they will all come to bo regarded as forming but a single species.
Neobalana. - Known chiefly at present by the characters of the skeleton and balcen, which are wery different from those of all other nelhales, but said to combine absenne of plieations of the throat with the presence of a dorsal fin. The cervical vertebre are united. The mamis small, nayrow, and tetradactylous, wanting the pollex. Clhe ribs remarkably expaudel and flattened. The seapula very low and broad, with conipletely developed acromion and coracoid processes. Baleen very long, slender, elastic, and white. A single at present very rare species, il. murginata, from the Australian and New Zenland scas, is the sinallest of tho Whalebono Whales, being not more than 20 feet in length.
Rachiancetes. - This combines the small head, clongated form, and narrow peetoral fin of Balænoptere with the smoeth skin of the throat and absence of the dorsal fin of Balenc. The baleen is the slortest and coarsest of any of the gronp. Its ostcology is imperfectly known. One species, $I$. glaucus, the Grey Whale of the North Pacific.
Megaptera.-IIcad of molerate size. Baleen plates short and broad. Cervical vertebre free. Seapula with acromion and coracoill frocess absent or rudimentary. Skin of thront plicated. Dersal fin low. Pectoral lionb tetradactylous, very long and narrow, attaining about one-fourth of the length of the entire animal, the metacarpus and phalanges being greatly developed, and the latter very numerous. Animale of this genus, called "Humpbacks" by the whalers, are found in almost all aeas. They have been diviced into many species, but no satisfactory chararters have yet hees pointed out by which these can be distinguished from one another.
Balenoplerer, -llead small and flat, and pointed in front. Body loog and slender. Skin of throat plicated. A small falcate clorsal fin. Baleen short and coarso. Cervical vertebre free. Scapula low and broad, with a large acromion and coracoid proeess. Pectaral limb tetradaetylous, small, narrow, and pointed. This genus courains the various species of liorquals, lin-whales, Fib-backs, Finners, or Razor-backs, as they are vasiously called, some of which are found in almost every sea. Among them are the mos! mimantic of all animals, B. sibbaldii, which attains the length of 80 fect, and the small 13. rostrate, which does not exseed 30 . There are certainly fonr quite distinet modifieations of this genus, represented loy the two just mentioned, and by B. musculus and D. borcelis, all iahabitants of British seas, but the question whether almost identical forms lound in the Sonthern and Pacific Oceans are to be regarded as specifically identical or as distinet awoits the result of future researches.

## Suburder ARCII.EOCETI.

This grous is formed to inelado certain extinct Cetaceans, which are at present only known by more or less frngmestary portions of their skeleton and tecth, and whoso position and allinities are therefore still subject to doubt
In the anterior part of both jaws tho teethare sinuple, conical, or slightly compressel, and sharp.pointed. The first three in the upper jow ar: distinetly implanted in the premaxillary bone, and so may be teckoned as ineisors. The tooth which sucerents, or the chume, is also simple and cunical, but it does unt exceed the others
in size. This is fullowel by five tretb with two listinct reots, and compressed, pointell crowns, with denticulatedl cutting alses, "Whe dentation is therefore $i \frac{3}{3}, c \frac{1}{1}, p^{2}$ and $m \hat{\{ }-36$, resembling that of sorne Scals. ${ }^{1}$ Gencral torm of the skinll clongated and mush depressed. Liain cavity very small, and the skult betwecn it aull the orbits clonmated and marron. 'I'cmporal fossa very large. A strong sacittal crest. Fostrums long and narrow, dillerin! from that of ollier Cetaccans in the large cextent to which the fucinaxillae furm the sides of tho anterior extremity. Nasal bones elongated, flat, and narrow, the opening of the anterior nases being oret the midule of the elongatel compresed rostrum. All the ecrvical vertebre free. Tbe charanters of, the dorsal vertebion, and molle of articulation of the ribs, appear to have resembled those of Platanister rather than Balanne, Jhyseler, or Dclyhimus. Lumbar vertebre with elongated bodies. Chatacters of the limis not known With certainty:-

All tho known fossil remanns belonging to the nnimals of hlis group may be referred, provisionally at least, to the genus \%cugloden, so nainal because the first section of a molar tooth examinel was $t_{1}$ ken from the base of the crown, where it was hewiming to divide into the two rocis, and looked like two single tentl" "linked or yokel together" This mano was substituted by Owen for the carliur one Biasiloscmeres of liarlan, with the conscint of that anthor, on the mamnalinn nature of the animal being demonstated. ${ }^{3}$ Thu latter name is, however, still gencrally retainel by Anecrican zoologists. The remains laze hitherto bren found chifly in the Eocone formations of the States of Alabama, Louisima, Mississipmi, aml Arkansas, ami liave been assigned to several species. A purtion of a skull is recorded from the liarton Clay (Loccuc) of Hamplishire. England.

## Subordel: ODOVTOCETI,

## the Delmuriondea, or Toothect Whutes.

Calcified touth always present altur lirth ; generally mumerons, but sometimes a very linaited munber (in a few eases nonc) aro functionally developet No baleen. Lpper sufface of the skull more or less asymmetrical. Nasal bones in the form of nodules or flattened platcs, applied closely to the frontals, and a:ot forming any part of the roof to the narial passice, which is ilirected upwards aud backwards. Olfactory organ vulimentary or absent. Hinder end of the maxilla expandel and covering the greater part of the orbital plate of the frontal bone. Laciymal bove cither inserarable from the jugal, or, when distinct, rery large, and fornins part of the roof of the orbit. Tympanic bone not ankylosed with the periotic, which is usually only attached to the rest of the skinll ly ligament Rami of mandible nearly straight, much expandel in height posteriorly, with a wide fumacl-shapila areture to the deatal canal, and coming in contact in front by a flat surfice of variable length, but always constitnting a ture sympliysis. Several of the anterior ribs with well-developeel eapitular processes, which articthlate with the bodies of the vertebra. Stermum alonost always comIosed of serecial picces, placed une behind the other, with which scyeral pairs of ribs are always commetcel by the intewention of well-developed cartilaginous or ossified stepnal pibs. External respiratory aperture single, the two nestrils uniting brfore they reach the suface, usually in the form of a transverse subcre-rentic valvular aperture, situated on the top of the head. Dlaus always pentadactylons, though the first and fifth dixits are usnally viry littlo aleveloped. No cxeum, execpit in Plemenisict.

## Fumily Phtseteride.

No fimctrenal teeth in the upper jaw. Manilibular tecth rarious, often mach reduced in mamber. Bones of the craniun raised so as to foral an elevated prominence or crest behind the nares. Pterygoid bones thick, produend backrams, meeting in the middle line, and not insoluted to form the outer wall of tho prost-palatine air-siauses, bat simply hollowed on their outer sidf. Transwerse processes of the arches of the dorsal vertebire, to which the tubercles of the ribs are attached, ceasing abruntly near tho end of the series, and replaced by processes on the boly at a much lower level, and not on a line, or serially homolngnus with them, but serially homologons anteriorly with the heals of the sibs, and posteriorly with the transverse processes of the lumbar vertebrac. ( 1 a some genera, as Physecer, the two processes, "upper and lower on each side, are both present and well developed in the same vertebra in the region of Iransition. In others, as Ziphius anil Bcrerdins, they are not both developed on any single vertebra.) Costal cartilages not ossificd.
Subfamily Physeterinæ.-Numerous teeth in the mandible, which are not set in distinct bony alscoli, but in a long groovo

[^172]imperfectly dividd by partial septa, and held in place ly the strong, fibrous gum which surrounds them. No distinct lacrsmal lane, Crauium strikingly asymmetrical in the region of the narial apertures, in consequence of the lett opening greatly excecding the right in size.
Physeter. -Upper teeth apparently of uneertain number, rudimentary and functionless, being embedded in the gum. Lower jaw with from 20 to 25 tecth on each side, stout, conical, recurved, and pointed at the apex until they are worn, without enamul. Epper surface of the eranium concave: its posterior and lateral edfes raisel into a very high and greaty compressed sumicireular erest or wall. Zygomatic proesses of malar hones thick and uassive. Rostrum greatly elongated, hroad at the base and gradually tipering to the apex. [pper edre of the mescthmoid forming a ronghened irregular projection between the nariat apertures, inclining to the left side. Mandible exceedingly long and marrow, the symphysis being more than half the length of the ramus. Vertebre: $\mathrm{C} 7, \mathrm{D} 11$,


Fio. 43.-Skull of Sperm Whaie (Physeter macrocephaius).
L 8, C 24 ; total 50 . Atlas free; all the other cervical vertebre naited by their bodies and spines into a single mass. Eleventh pair of ribs radimentary. Head about one-third the length of the body; very massive, high and truncated, and rather compressed in front; owing its huge size and remarkable form mainly to the great accumulation of a peculiarly modified form of ndipose tissue filling the large hollow on the upper surface of the cranium and overlying the rostrum. The single blowhole is longitudinal, slightly sigmoid, and placed at the upper and anterior extrenity of the bead to the lelt side of the middle line. The opening of the mouth is on the under side of the head, censiderably belinid the end of the srout. Pectoral fin short, broad, and truncated Dorsal fin a mere low protuberance.
There is no certain evidence that more than one species of this genus exists. This is the Cachalot or Sperm Whale, P. macrocephalus, one of the most colossal of animals, quite equalling, if not exceeding, the Greenland Whalo in bulk. The length of the full-grown male is from 55 to 60 feet, but the female is stated nct to reach more than half that size. It feeds chiefly on cephalspods and fish, and is one of the most extensivaly distributed of Cetaceans, being met with, asually in herds or "schools," in almost all trepical or subtropical seas, but not occurring, except accidentally, in the polar regions. Those that appear occasionally on the British eoasts are solitary stragglers, usually, if not nlways, old males. The oil contained is the great cavity above the skull, when refined, yields "spermaceti," and the thick covering of blubber which everywhere envelops the body produces the raluable "sperm oil" of commerce; bence this animal has long been the subject of a regular chase, by which its numbers hava been grcatly diminished. The sulstance called "ambergris," largely used in perfumery, is is concretion fermed in the intesting of the Sperm Whale, and is found floating on the surface of the seas which they inhabit. Its genuiaeness is attested by the presence of the debris of the horny beaks of the cephalepods on which the Whales feed.
Kogia. - Teeth of the upper jasv absent or reduced to a rudimentary pair in front; in lower jav 9 to 12 on' each aide, rather loag, alender, pointed, and carved, Fith a coating of cnamel. Upper surface of the cranium concave, with thick, raised, posterior and lateral margins, massive and rounded at their anterior terminations above the orbits. Upper edge of the mesethmoid forming a prominent siguous ridge, constituting a kind of lengitudibal septum to the base of the great supra-cranial cavity. Roatrum not longer than the craniel portion of the aknll, bread at the base, and rapidly tapering to the apex. Zygomatic precess of the malar styliform. Mandible with symphysis less than half the length of the entire ramus. . Vertebra: C 7, D 13 or 14, L and C 30; total 50 or 51 . All the cervical vertebre united by their bodies and arches. External charaeters not well known, but, judging by the semewhat conflicting nccounts of those that have had an opportunity of observing them, the head is about one-sisth of the length of the body, and ohtusely pinted in front; the mouth small and placed far below the apex of the snout; the spiracle crescentic, and placed ohliquely on the
top of the head anterionly to the cyes, and to the left of the middle line; the pectoral fins are obtusely falcate; and there is a triangular dursal tin.

The history of this genus is a grood illustration of the difficulties in which the stuly of the Cetucen has heern involved by the superficial manner in which it has leen investigated. The first known example, a skull from the Cape of Goorlllope in the Paris Museun, Was desurind by 131 tinville under the name of Physeter breviceps. This was afterwards with good reason generically scparated by Gray. Cutil within a very few years ago only five other individuals had been met with, each of which had heen described unter a different specitie name (viz., grayi, macleayi, simus, flow ri, and potsii), and which are arranged by (iray in two distinct gonera. The most carefu exanimation of the description given of these specimens, or of the How numerons ostrologital remains available, fails to deteet any difiernows beyond those which may he attributal to age or sex; and bence, aecording to our present knowledge, these six supposed species must all wo included under ono manie, $K$. breviceps, an animal which appears to attain the leagth of 10 feet when adult, and has been met with nt various distant localities in the Southern Ocean, and also off the coast of Madms and in the North Pacific.

Subfamily Ziphiinæ.-Teeth of the mandiblo quite rudimentary and concenled in the gam, except one, or very rarely two, pairs which rany bo largely developed, especially in the male sex. A distinct lacrymal bonc. Externally the mouth is produced into a sleuder rostrum or beak, from above which the rounded eminemce formed by a cushion of fat resting on the cranium in front of the blowhole rises aomewhat abruptly. Spiracle or blowhele siagle, crescentic, median, as in tho Delphinidx. Pectoral fin small, ovate, the five digits all moderately well developed. A amall obtusely falcate dorsal fin situated considerably behind the niddle of the back. Longitudiual grooves on each side of the skin of the throat, diverging posteriorly, and nearly meeting in front. In external characters and hatits the animals of this group closely resemble each other. They appear to be almost exclusively fecders on various species of cephalopods, and occur either singly, in pairs, or in small herds. By their dental and osteological characters they art easily separated into four distinct genera.

Hypcroodon. - A small conieal pointed tooth at the apex of each ramus of the mandihle, concealed by the gum during life. Skull with the upper ends of the premaxillre rising suddenly behind the nares to the vertex and expanded laterally, their outer edges curving backwards and their anterior surfaces arching forwards and overlaag. ing the nares; the right larger than the left. Nasal bones lying in the hollow between the upper extremities of the premaxillæ, strongly concave in the middlo line and in front ; their outer edges, eapeeially that of the right, expanded over the front of the inver


Fio. 44.-Hyperoodon rostratus. From a spectmen taken off the coast of Scotland, 1882.
border of the maxilla. Very high longitudinal crests on the maxillæ at the base of the restrum, extending backwards almost to the nares, approsching each other in the middle line abovat sometimes compressed agd soleetimes so massive that their inner edges come almost in contact. Anteorbital notch distinct. Mesethmoid but slightly ossified. Vertebre: C 7, D 9, L 10, C 19 ; total 45 . All the cervical vertebre united. Upper aurface of the bend in front of the blowhole very prominent and rounded, rising abruptly from above the small, distinct snout.
Two species are known, $I I$. rostraties, the common Hyperoodon or Bottle-nose, and $H$. latifrons, both inhabitants of the North Atlantic, and attaining when ndult respectively the leagth of 24 and 30 feet.

Ziphius.- A single conical tooth of moderate size on each side of the mandible close to the anterior extrenity, and directed forwards and upwards. Skull with the premaxille immediately in front and at the sides of the aares expanded, hollowed, and with elevated lateral margins, the posterior ends rising to the vertex and curving forwards, the right being considerably more developed than the left; the conjoint asals forming a strongly propounced aym. metrical eminence at the top of the eranium, projecting forwards over tho mares, flat above, most prominent and rounded in the middle line in front, and serarated by a notel on each side fron the premaxille. Anteorbital netch not distinct. Restrum (seen from above) triangular, gradually tapering from the base to the apex ; opper and outer edges of maxille at base of rostrum raised into low roughened tuberosities. Mesethmoid cartilage densely ossified in adult age, aud coalescing with the surrounding bone of the rostrum. Vertebræ: C 7, D 10, L 10, C 22 ; total 49. \&Th three enterior cervical vertebre united the rest frec.

The type of this genus is $Z$. carimostris of Cuvirr, founded upon an imprectect skull pieked up in 1804 on thr Mentitrranean coast of France, and deseribed and figured in the ()ssemens fossiles under the impression that it was that of an extinct species. Many other individnals have, however, been sulsequently met with in various parts of the world, from the Shetland Islands to New Kealand, all referable to the same genus if mot to the same species; althourh, as is usial in such cases, they have montly been described nuder different names. Teeth, apparently of allied forms, are abundantly found in the Suffolk and Antwerp Crags.

Mesmplodon.' - A much compressed and pointed tooth in each ramus of the mandille, variously situated, hut generally at some distance hehind the apex; its point dircted mpwards, and often sompthat backwards, occasionally developed to a great size. Skull with the region around the nares as in /fyperoodon, except that the nasals are marrow and more sunk between the upuer ends of the

Brourdius.- Two morlerate-sized, compressed, pointed teeth on each side of the symphysis of the mandible, with their apices directed forwaris, the anteriur heiner the larger of the two and elose to the apex. Upuer ends of the premaxillse nearly symmetrical, moderatcly elevated, very slightly expanded, and not curved forward over the nares. Nasals broad, mansive, and roumbed, of nearly equal size, forming the vertex of the skill, thattened in front, most prominent in the middle line. Anterrlital notch distinct. Rostrum long and narrow. Mesethmoid only partially ossified. Small rugous eminences on the ont.r edge of the upper surface of the maxillie at base of rustrum. Vertelira : ('7, I) 1), I, 12, C 19 ; total 48. The three anterior cervicals ankylosed, the rest free and well developert.
The only known species, B, arnouxi, attains the length of 30 fect, and has hitherto anly been met with in the seas around New Zealand.


F10. 45.-JCcsopiodon bidens. From Ieinhardt.
premaxillax ; like those of IIyperoodon, they are concave in the middle line in front and above. No maxillary tuberosities. Anteorbital notch not very distinet. Rostrum long and narrow. Mesethmoid

- in anlult age ossified in its entire length, and coalescing with the surrounding bones. Vertebre : ( 7, I) 10, 1, 10 or 11, © 19 or 20 ; total 46 to 48 . Two or three anterior eervicals united, the rest usually frea.

Though mrying in form, the mandibular teeth of the different members of this genus agree in their essential structure, having a small and pointed enamel-covered crown, composed of true dentine, which, instead of surmounting a root of the ordinary character, is raised upon a solid mass of osteodentine, the continuous growth of which irvatly alters the form and general appearance of the organ as age alvances, as seen most strikingly in the case of M. layardi, where the long, barrow, Hat, strap-like teeth, curving inwards at their extremities, aetually meet over the rostrm, and must greatly interfere with the novements of the jaw. In one species (.M. grayi) a row of minute, conical, pointed terth, like those of ordinary bolphins, 17 to 19 in number, ar, present even in the adults, on eitch side of the middle part of the apper jaw, but embedded by their roots only in the gum, and not in hony alveoli. This fiet, with the frequent presence of rudimentary teeth in other species of this and the last genns in hoth upper and lower jaws, suggests the idea that the \%iphoids are derived from ancestral forms haring teeth of normal character in both jaws, but whose dentition


Fio. 46.-Sixull of Afcsoplodon densirostris.
nats berome gratly specialized. The existinur speries of this genus ar" widely distribisted in both northern and sonthern hemispheres, hut most frement in the lattor. 'The hest established are $1 /$. bidens, M. a bropars, M. di nsirostris, M. Inyardi, M. grayi, and M. hectori; but there is still much to be harnad with regard to their distinctive characters and gengraphical distribution. They were abundant in the later Miocene and blocene age, as attested by the frequeney witl which the most imperishable and easily recoprized portion of their structure, the long, cylindrical rostrmil of the skull, of more than ivory denseness, is found amome the rollod and watorworn frapments of animal remains which compose the well-known "fome-hed" at the hase of the lied "rase of suftolk. Numerons generie distinctions have mern fonmed bipon slight moditications of the form of these rostra, sumh ats (homziphius, I'lacuzijhins, Belemnoziphiux, dee., lont thase fath only lue consiohered as provisional until further knowlodge is ohtained of the strueture of the animals (4) which they belonget.

1 For the wers emmplicated symany of thits graus, Bee Trans. Zool. Soc., vul. vill. p. 208.

## Family Squaladontide.

Numerous extinet forms, chiefly known by teeth and fragments of crania, may be provisionally placed here, until more of their osteologicol characters shall be brought to light. They differ from all existing Cetaceans in having the teeth distinctly differentiated into groups, as in the Archeuceti, the posterior molars bemg two-rooted. The cranium, has, however, none of the distinguishing characteristics of the Zeuglodons, but essentially resembirs that of the Odontoceti, especially in the position of the anterior nares and form of the nasal bones.

The best-known are associated in the genus Squalodon. Dentition: $i \frac{3}{2}, ~ c \frac{1}{2}$, simple teeth of the molar series (premolars?) i, tworooted molars $7=15$; total 60. The double-rooted molars differ from those of Zeuglodon in having the denticulations of the crown confined to the posterior border, or at all events much less developed on the front ellpe. Very little is known of the structure of these animals, heyond the skull and teeth, fragments of which have been found widely distributed throughout the marine Diocene and Early Pliocene formations of Europe, especially in the Vienna hasin, many parts of France, and the Antwerp and Suffolk Crags. They have also been fonud in formations of corresponding age in North America and South Australia.

## Family Pi.itanistin.e.

Under this heading may be placed three very singular genera, which, though differing considerably from eaeh other, have several points in common, and do not altogether cone under the definitiou either of the Physeteride or the Delphinide, especially in the important character of the mode of articulation of the ribs with the dorsal vertebre, as the tubercular and capitular articulations, distinct at the commeucement of the series, gradually blend together, as they do in most ordinary mammals. The cervieal vertehre are all free. The lacrymal bone is not distinct from the malar. The jaws are long and narrow, with numerous teeth in both. The symphysis of the mandille exceeds half the length of the whole ramus. Externally the head is divided from the body by a slightly constricted neck. Pectoral limbs broad and truncated. florsal fin small or obsolete. Fluviatile or estuarine. There are three distinet geaera, which might 'almost he made the types of families, but is probahly more convenient to kerp them together.

Platanista. - Teeth about 38 on each side, set near together, rather large, eylindrical, and sharp-pointed in the young; in old animals aequiring a large laterally compressed hase, which in the posterior part of the series becomes irregularly divided into roots. As the conical enamel-covered crown wears away, the teeth of the young and old animals have a totally difterent appearance. The rostrum and dentigerous portion of the mandible are so narrow that


Fio. 47.- Platanisa gangetica. From Anderson.
the teeth of the two sides are almost in contact. Haxille supporting very large, incurved, compressed hony crests, which overareh the nares and hase of the rostrom, and alinest meet in the midule line aloove. $\begin{gathered}\text { rrbits very small and eve rulimentary, withont }\end{gathered}$ rystallime lens. lixtermal respiratury aperture longitudiaal, linear.
 prlvic bones. Dorsal fin represinted by a low ridere.
()ne specips, 1 '. graguficu, emtirely huviathle, heing extensively distributed throughout warly the whole of the river systems, not only of the Ganges, but of thi Brabmapmora and Julus, dsembling as high as there is water enongh to swim in, hut hever passing out to sea. It is quite blind, and feeds on small tish ant C'rustacea,
groping fur them mith its long snont in the nululy water at the bottom of the rivers. It attains the length of is feet.

Inia. -Teeth variable, from 26 to 33 on cach side of cacn jaw ; those at the posterior part with a distiuct tuberele at the inner sido of the base of the crown. Vertebre: C 7, D 13, I, 3, C 18 ; total 41. Transverse processes of lumbar vertebiee very broad. Sternum short and broad, ame consisting of a simgle segment ouly. Dorsal tin a mere ridge. The long cylindrical rostrum extemally furnished with scattered, stout, and crisp lairs. One species ouly is known, 1. geoffensis, about $S$ feet in length, inlabiting the upher Amazon and its tributary streams.

Pontoporia. -Teeth 50 to 60 on cacli side of each jaw, with a cingulau at the base of the crown. Jaws rery long and sleader. Vertebrx: C 7, D 10. L. $5, C 19$; total 11. Transverse processes of the lumbar vertebrae extremely broad. Sternum elongated, composed of two segnents, with follr-sternal ribs sttached. Dorsal fin rather small, triangular, pointed. External respiratory aperture transverse,


Fig. 43.-Tontoporia Uaincillii. From Durmeister.
crescentic. This genus conaects the last. two forms with the true Delphimidx. The only specics, $P$. Uainvillii, is one of tho smallest of the whole order, not exceeding 5 feet in length. It has only been met with at the mouth of the Rio do la Plata, near Buenos Ayres, and there is at present no evidence that it asconds into tho fresh waters of the 13rer.

## Frimily Delphinidas.

Teetlı usually pumerous in botb jaws. Pterygoid bones short, thio, cach involuted to forms with a process of the palate bone the outer wall of the post-palatine air-sinus. Symplysis of mandiblo short, or moderate, never excecding onc-third of the lenctl of the ramus. Lacryanal bone not distinct from the jughl. Transverse processes of the dorsal vertebse gradually transferred from the arches to the bodies of the vertebree without any sudden break, and hecoming posteriorly continuous serially with the transverse proresses of the lumbar vertebre. Anterior ribs attached to tho transverse process by the tubercle, and to the body of the vertebra by the head; the latter attachnent lost in the posterior ribs. Sternal ribs frmly ossifed. External respiratory aperture trans. verse, crescentic, with the horns of the crescent pointing forwards.

A very large group, closely united in essential characters but preseutiog great modifications in details. The different types are mostly so connected by intermediate or osculant forms that there are great difficulties in gronping them into natural subfamilies. Even the formation of well-defined genera is by no meaus satisfuctory in all cases.

Monodon.-Besides some irregular rudimentary reeth, the entire dentition is reduced to a single pair of teetly which lie horizontally in the maxilla, and which in the female remain permanently concealed within the alreolus, so that this scx is practically toothless, while in the male (see fig. 49) the right tooth usually remains similarly concealed and abortive and the lett is immensely developed, attaining a length equal to more than half that of the entire animal, projecting horizoutally from the head in the form of a cylindrical, or slightly taperiog, pointed tusk, without enamei, and with the surfaco marled by spiral grooves and ridges, running in a siaistral direction. (When, as occasionally happens, both tusks are developed, the Epiral grooves hare the same direction in each.) Vertebrm: C 7, D 11, L6, C 26 ; total 50 . Cervical rerion comparatively long, and all the vertebre distinct, or with irregular naions towards the middle of the series, the atlas and axis bcing usually free. Janus small, short, and broad; second and third digits nearly equal, fourth slightly shorter. Fo dorsal fin.

One species, Mr. monoceros, the Narwhal or Sea-unicorn, so called on account of the remarkable single, horn-like tusk of the male, which often grows to a length of 7 or 8 feet. It inhabits the Aretic Occan, where it is tolerably abundant and gregarious, fecding on various species of cephalonods, small fish, and crustaceans. It is rarely seen south of $65^{\circ}$ N. Jat.

Delphincputerus.-This genus is elosely allied to the last in external form, as mell as amatomical structure, differing only in the rery different character of the dentition. Tecth from $\frac{8}{3}$ to $\frac{3}{3} \frac{0}{0}$, occupying the anterior three-fourths of the rostrum and corresponding portion of the mandible, rather small, conical, and pointed when unworn, but ustually become obliquely tiuncated, separated by intervals considerably wider than the dianseter of the tooth, and implanted obliquely, the erowns inclining forwards especially in the upper jarr. Skull rather narrow and elongated, depressed. Premaxilla convex in front of the pares. Rostrum about equal in
iengtly to the cranial portion of the skull, triamgular, broad at the base, and gradually contracting towards the apex, when it is some. what curved downwards. Vertebra: C 7; D 11, L9, C 23; total 50. Cervical vertebric frec. Nanus broad, short, and rourded. ail the digits being tolerablj well developed, except the first. Anterior part of head rounded; no distinct smout No dorsal fio, but a low rilge in its jlace.

One species, D.lcucas (fin. 50 ), the Beluga, or White 11 hale, so called from its pure white colour, about 12 feet long, alundant in the Aretic seas, and cxtending as fur south on the American enast as the river St Lawrence, which it aseents for a considerable distance. On rare occasions it has been seen on the coast of Scotland.
In all the remaining genera of Delphi. nidx the cervical region of the vertebial column is rery short, and the first tro, and usually more, of the vertebre are firmly united.

Phocxnc, -Tceth $\frac{39}{18}$ to $\frac{25}{2} \frac{5}{5}$, sinall, oc. cupying nearly the whole length of the rostrun, with compressed, spade-shaped crowns, separated from the root by a constricted neck. Rostrum rather shorter than the eranium proper, broad at the base and tapering towards the apex. Premaxille raised into tuberosities in front of the pares. The frontal bones forming a somewhat squsre, elevated protuherance in the middle line of the skull lrehind the nares, rising altogether aboro the flattened nasals. Symphysis of mandible very short. Vertebre: C7, D 13, $L$ If, $C 30$; total 61 (subject to slight indiridual modifications). First to sixth cervical vertebræ, and sometimes the seventli also, coalesced. Manus of moderate size, ofal, slightly falcate; sccood and third digits nearly equal in Jength; fourth and fifth well developed, but shorter. Head short, moderately rounded in front of the blowhole. Dorsal fin (in the typical species) near the middle of the back, triangular ; its height considerably less than the length of the base; its anterior edge frequently firnished with one or miore rows of couical homy tubercles.
The common Porpoise or Porpus, $P$. connmunis, is the best known of British Cetaceans (see Porpolse). A species from Japan, P. melas, closely allied in osteological and dental characters, but which wants the dorsal fin, constitutes the genus Neomer is of Gray. It is entirely black in colour, and bas but 19 teeth, rather larger proportionally than those of $P$. communis, but of similar form.

Oreella. -Teeth $\frac{1 \frac{1}{2}}{2}$ to ${ }_{1}^{14}$, small, conical, pointed, rather closely set, and occupyiog nearly the whole length of the rostrum. Skull sub-globular, high. Rostrum nearly cqual in length to the cranial portion of the skull, tapering. Manus of moderate size, nol elongated, but somewhat pointed. All the bones of the digits broader than Iong, except .the proximal phalanges of
the iudex and third fingers. Head globular in front. Dorsal fin rather small, placed behind the middle of tho body. Two species, both of small sizeO. brevirastris, from the Bay of Bengal, and O. fuminalis, from the lrawaddy river, from 300 to 900 miles from the sea. Our present knowledre of the anatomy, geographical distribution, and habits of these interesting Cetaceans is almost entirely due to the researches of Dr J. Anderson. ${ }^{1}$

Orca.-Teeth about $\frac{13}{3}$, occupying nearly tho whole length of the rostrua, very large and stout, with conical recurved cromns, and large roots, expanded laterally and flattened, or rather hollowed, on the anterior and nosterior surfaces. Rostrum aboljt equal in length to the cranial part of the skull, broad and flatvened abore, rounded in front; premasillæ broad aod rather concave in front of the

[^173]nares, contracted at the middle of the rostrum, and cxpranding agaiu towards the apex. Vertebre: C 7, D 11-12, L10, C 23 ; total 51 or 52 . Bedies of the first and secend and sometinies the third cervical vertobre united; the rest free. Pcetoral fin very large, ovate, nearly as bread as long. All the phalanges and metacarpals hroader than long. General form of body robust. Face shert and rounded. Dersal fin near the middle of the back, very high and pointed.
The animals composing this genus are met with in almost all seas from Greenland to 'Tasmania, but the umber of species is still rery nncertaia. They are readily known, when swimming in the water, hy the high, orect, falcate dorsal fin, whence their commen Germana lame of Scluwcrt-fisch (Swerd-lish). By Eechlish sailors they are gencrally known as "Granupuses" or "Killers." They are


Fig. 50.-Beluga or Thite Whate (Delphinapterus levens). From a speetmen taken in tha iver St Lawrence, and cxhilited in London, 1877.
distingrished from all their allies by their great streagth and ferocity, being the only Cetaceans whicb habitunlly prey on warmblooded animals, for, though fish form part of their food, they also attack and devour Seals, and various species of their own order, not oaly the smaller Porpoises and Dolphing, but even full-sized Whales, which last they conibine in packs to humt down and destroy, as Wolves do the larger Ruminants.

Pscudorat. -Teeth about 10. Cramial and deutal chnracters generally like those of Orca, excent that the roots of the teeth are cyliadrical. Vertebre: C 7, D 10, L 9, C 24 ; total 50. First to frth or seventh cervical vertebre united. Bodies of the lumbar vertebra distinguished from those of the preceding genera by being


Fic. 51.- Crampus (Orea gladiator). From Ifunter.
nore elongatcu, the lengthl being to the riduth as 3 to 2. Pectoral fin of moderate size, narrow, and pointed. Dorsal fin situated near the middle of the back, of mederate size, folcate. Head in front of the blowhele high, aad compressed anteriorly, the snont truncated.

This genus was first known by the discorery of a skull in a subfossil state in a fen iu Lincolnshire, named by Prefessor Owen Phocena crassidens. Animals of appnrently the same species were aftervards met with in small herds on the Danish eoost, and fully described by Reinhardt. Others subsequnntly received from Tasmania were supposed at first to indieate a different specics, but comparison of a larger series of specimens from these extremely distant localitics fails to establish any characteristic difference, and indicates an immense range of distribution for a slecies apparently so rare. Its length is ahont 14 feet, and its colour eatircly black.
Gloticcphatus.-Teeth $\frac{8-12}{\mathrm{a}-12}$ confined to the anterior half of the rostrum and corresponding part of the mandille, small, conical, curven, sharp-pointed when unvorn, sometimes decidnous in old agc. Sknll broad and depressed. Hostrum and cranial portion abont equal in length. Upper surfaco of rostrum broad and flat. Premaxilla strongly concave in frout of the nares, ns wicle at the mildle of tho coatrum as at the base or wider, and very nearly or completoly concealine the maxillie in the nnterior half of this region. Vertebre: C 7, D 11, 1, 12-14, C 2S-29; total 58 or 59. Bodies of the auterior five or six cervical vertobreo united. Length of the bedies of the lumbar and anterior candal rertebree about equal to their width. Pectoral limb rery long and narroms, tho gecand digit the longest, and having as many aa 12 or 13 planauges, the third slorter (with 9 phalangea), the first, fourth, and fifth very short. Fore part of the head very round, in ennsequence of the grent developurent of a cushion of fat, placed on the rostrum of the akvll in front of the blowhole. Dorsal tin low and triangular, the lencth of its base conaiderably exceeding its wrrtieal height.
The trpe of this well-marked genus is G. melas, the Pilot Whale, Ca'ing Whale, or Grindhval of the Jiaroe islandors, which attains the length of 20 feet, and is of nearly uniform black colour, exeept the middlu of the under aurface, which is lighter. They are extremely gregrious, and, unlilie the liillers, are mild and inoffeusive
in disposition, feedilig priacipally on cephalonods. Their eminently seciablo character constautly Jeads to their destruction, as whers attacked thay instinctively rush together and blindly follow the leaders of the lierd. In this way many hundreds at a time aro frequently driven ashore and killed, when a herdenters one of the bays or fiords of the Faroe 1slands or nortl of Scotland. Animals of this well-marked genus aro found in nearly all seas, and their specific distiuctions are not yet made out. Specimens from the Anstralian coasts, where they" are generally called "Blackfish," are quito indistinguishable, cither by cxternal or osteological characters, From those of the North Atlantic.
Grampus. - Teeth none in the upprer jaw ; in the mandible few ( 3 to 7 on each side), and confiad to the region of the symphysis. Vertobre: C 7, D 12, L 19, C 30; total 88. Gencral external clar. acters much as in Globicephalus, but the fore part of tho head less rounded, and the pectoral fin less elongated.

But one species, G. griscus, is certainly known, abont 13 fect long, and remarkable for its great variability of colour. It has been found, though rarely, in the North Atlantic and Mediterranean. A skall from the Cape of Good Hope, which differs oligktly, from that of the abere, has been described under the pane of $G$. richardsoni.
Dolphinus. - Teeth very numerous in beth jaws, more than $\frac{2}{2} \frac{0}{S}$, occupying nearly the whole length of the rostrum, small, elose-set, conical, peinted, slightly curved. Rostrum more or leas elongated, and pointed in front, usually considerably longer than the cranial portion of the skull. Vertebre: C 7, D 12-14, 1 and C rariable; total 51 to 90. Pectoral fin of moderate size, narrow, pointed, somewhat falcate. First digit rudimentary, the second longest, third nearly equal, fourth and filth extremcly short. Externally the head shows a distinct heak or pointed snoust, marked off from the antenarial adipose elevation by a V-shaped groove. Dorsal fin rather large, triangular or falcate, rarely wanting.

This is a large and heterogeneous. genus, which probably ought to be divided, but, until more is known of the struetura of many of the species than is at present attainable from the scanty materials in our collections, it is impossible to fiame as system of sulbdivision upon a scientific basis. It seens preferable therefore, instead of introduciag dew names into zoolegy for groups founded unon trifling differences in tho length or width of the rostrum of the skull or the number of the teeth, which may or may not bo correlated with other mere important structural modifications, to keep provisionally at least tho Linnæan term Dclphinus for what remains of the family, after climinating the well-characterized genera previously described.
Tho true Dolphins, Bottle-noses, or, as they are more commonly called by seafariag people, "Porpoises," are found in considerablo abundance in all seas, and some speeies are loabitually inlabitants of large rivers, as the Amazon. They are oll among tbe smaller members of the order, none excecding 10 feet in length. Their food is chiefly fish, for the copture of which their long narrow beaks, anmed with numerous sharp-pointed teeth, aro well adarted, but some appear alse to devour crustaccans and molluscs. They are moaliy gregarious, and the agility and grace of their movemeats in the watcr are censtant themes of aclmiratiou to the spectators of the scene when a "school of Porpoises" is observed playing round the bows of $n$ vessel at sea. The type of the genus


Fig. $z_{2}$ - Common Dalphin (Detprinus delphis). From Reinhardt.
is the Commen Delphin of the Mediterranean (D. dclophis, fig. 52), also found in the Atlantic, and of which a closciy allied if not identical form is met with in tho Australian scas (D. fersteri) and in the North Tacific (D. bairdii). The Tursio (D. Lursio) is another British specics of larger size and heavier build, with larger and less numerons tecth; this ond several nllied forms probably constitute a natural subgroup. The Whito-beaked and White-sided Dolphins ( $D$ : albirostris ond leucoplcurks) of the North Atlantic, and severa. bthers from the South and Pacific Seos, with comparatively broand and ahort rostram to the skul! and very mumcrous ( 80 to 90 ) vertebre, constitute the gemis Lagchorkynchues of Gray. Others, rith long parrow rostinm, aro associated under the name of Sieno, one of which from the Clumese seus (D. sincusis) has but 51 vertebrat, This last is of a puro milk-white colour, but most of the species ary variegated with gloscy black, sarious shates of grey, and whitry the latter eliefly on the uneler parts of the hodys. One speeies ( $/$ ) promii) from the South seas is rcmarkuble for the absence of
dorsal fin. It constitutes the genus Leucorhamphus of I.illjebors, aul Delphinapterus of other authors; this last name, however, was originally bestowed on the lheluga, and should be retained for it.



 Foballen und subfosalica Celacrice Furopn'a," in Mcm. de l'Aoul. Imp, de ss. Felerm courg, ith eer, $t$ रx., 1Ais: and C, M. Scammon. Morine Nammals of the N. W.

## Omer insidetiford.

Terrestrial, rarely arboreal or matatorial, diphyodont, heterodont, placental mammals of small size, with plantigrade, or semiplantigrade, generally pentadactyle, unguiculate feet; with clavicles (except in Potumogule); with more than two incisors in the mandihb, and with enamelcoated molars having tuhereulated crowns and well-developed roots. The hody is clothed with fur, or protected by an armature of spines; the testes are inguinal or plnced near the kidneys, and are not received into a serotum, the penis is pendent or suspented from the wall of the abromen; the aterus is two-horned and with or without a distinct corpus uteri, the placenta diseoidal and decidnate; and the smooth cerebral hemispheres do not extend backwards orer the certhelium.
Representatives of this order are found thronghout the temperate and tropical parts of both hemispheres (except South America and Australia), und exhibit much variety both in organization and in habit. The greater number are cursorial, but some (Talpa, Chrysachloris, Oryzorictes) are fossorial, some (I'otamogale, Nectogale, Myogale) natatorial, and some (Tupaidir)arboreal, while the speeies of one genus (Galeopithecus) glide through the air like Wlying Squirrels; to the great majority, however, the term insectivorons is applicable, the aberrant Galeopithecus being alone phytophagous also, while Potamogale is said to feed on fish, and the different species of Moles live chiefly on worms. Notwithstanding the honogeneons nature of their food, much variety prevails in the form and number of their teeth, as will be seen when we come to consider the classification of the speeies. In many the division into incisors, canines, premolars, and molars may be readily traced, but in others, forming the great majority of the species, such as the Shrews, this is accomplished with difficulty. The dentition of the Insectirora may, however, be considered typical, since from it may he lerived, by modification, that of auy known specips of diphyodont placental Mammaliu. This typical dentition is especially noticeable in the genus G!!mmura, where the dental formma is $-i \frac{3}{3}, c \frac{1}{1}, p m \frac{\text { f }}{1}, m_{3}^{3}$; total 44 teeth. So also, in their general organization, these animals appear to have departed so little from what must have been the original mammalian type that, were it not for the apparently advanced character of their placentation, they might easily be considered the searcely modified descendants of the ancestors of all other orders of miphyodont placental mammals. Their study, therefore, affords the best introduction to that of this division especially.

In most Insertizora the cranial catity is of small relative size, and in none is the brain case elerated to any consid. erable extent abore the faceline. The facial part of the skull is generally much produced, and the premaxillary and nasal bones well developed. The zygomatic arch is usually slender or deficient, the latter being the case in most of the spresies, and post-orbital processes of the frontals are fouml only in Galeopithecidr, Tupaïle, and Macroscelulic. The number of dorsal vertebre varies from 13 in Tupuia to 19 in Centrtes, of lumbar from 3 in Chrysochloris to 6 in Tulpa aud Sorex, and of candal from the rudimentary vertelure of Ceuteles to the 40 or more
well-developed ones of Microgale. Not less variable are the characters of the vertehre: the spinous processes mas be very long in one species and short in another, though belonging to the same genus; in the Soricidic and in Mfyograte the neural arches of the cervieal vertebre are very slender; in surficilix also and in Commera the four anterior vertebrip develop large single hypapophwes, and in Gulropithecus the body of each supports posteriorly a pair of hypapophsial tuhercles. In Erinaceus, Myogale, and Talpa small oval ossicles are fonnd on the infurior surfaces of the lumbar interspaces. In Erinaceus, owing to the thickness of the cord in the cervical regiou and its abrupt termination, the diameter of the nemal eanal in the cervieal and first two dorsal vertebre greatly exeeeds that of any of thr succerding vertebra. The sternum is rariable, but genemally narrow, bilobate in front, and divided into seg. ments. The shonder-girdle presents remarkable adaptive morlifications, most expressed in Tulpa (see Mole), having relation to the nse of the fore limbs in burrowing; in the Golden Moles (Chrysochloris), however (vide infra), the forearm and manus alone become specially modified. In Fuleopithecus and Macroscelides the forearm bones are distally umted; in all other known Insectivora the radius and nlna are distinct. The manus has generally five digits, but in Rhynchocyon and in one species of Oryzorictes the pollex is wanting. In the true Moles (see Mole) it is extremels modified. The femur has, in most species, a prominent ridge below the greater trochanter presenting the characters of a third trochanter. In Galeopithecus, Tupaia, Centetes, IIemicentetes, Ericulus, and Solenoton the tibia and fibula are distinet, in all other genera more or less united together. The pes consists usually of fire digits (rarely fonr by reduction of the hallux), and in some, as in the leaping species (Macroscclides, Rhynchoc$y(m)$, the tarsal bones are greatly elongated. The form of the felvis, and especially that of the symphysis pubis varies within certain limits, which have been proposed by Leche as a basis for the classification of the families. Thus in Galeopithecidx, Tupaider, and Macroscelidie there is a long symphysis, as in Rodents; in Erinaceidr, Centetidex, and Potamogalidx it is short ; and in Soricidx, Talpidx, and Chrysochloridic there is none.
Space does not admit of even attempting a sketch of the interesting modifications of the museular system, which will be found fully described in the present writer's Monograph, referved to in the bibliograplif. As to the mervous system, it may be noticed that the brain throughout the species presents a low type of organization: in none do the cerebral hemispheres present any tiace of convolutions, nor do they extend backwards so as to cover the cerebellum; the olfactory lobes are large and project in front ; and the corpus callosum is short and thin. In the Hedgelogs (Erinacus) the spinal colunn ends abriptly opposite the third or fonrth dorsal vertebra in a slender filament; the dorsal and lumbar nerves, given off in front of this point, are carried backwards in two eompressed lundles occupying the suddenly narrowed simal canal as far as the sacrum.
Owing to the similarity in the character of the food, the truly insectivorons species, forming more than mine-tenths of the order, present littlo variety in the structure of the digestive organs. Exeept in falropithecus (zide infra) the stomaph is n simple, thin-walled sae; in some, as in Centetes and allied genera, the prloric and osophageal openings are very dose together; the intestinal canal has mueh the same calibre throughout, and varies from three (in the Shrews) to twelre times (in the IJedgehogs) the length of the head and body. In the arboreal genera Galeopithecus and Tupaia, and in the allied Macroscelidx, all of which prohably feed on regetable substances as well, most of the species possess a caenm. The liver is deeply divided in to
lobes, the right and left lateral being cut off by deep fissures; both the candate and Spigelian lobes are generally well developed, and the gall-bladder, usually large and globular, is placed on the middle of the posterior surfaco of the rigit central lobe.

In most of the species (Soricidx, Centetidx, Chrysochloridx) the penis is capable of being more or less completely retracted within the fold of integument surrounding the anus; in some (Galeopithecidx, Talluidx) it is pendent in front of the anus, while in others (Macroscelidx, Erinaceidx, Solenodontidx) it is carried forwards and suspended from the abdominal wall. In Centetina and Chrysochloris the testes lie immediately behind the kidneys, in others more or less within the pelvis. During the rut they become greatly enlarged, forming protrusions in the inguinal region. Except in Rhynchocyon the uterino cornua are long and open into a short corpus ateri, which in many species (Soricidx, T'alpidx, Centetidx, Chrysochloridx) is not separated from the vagina by a distinet os uteri. With the exception of Galeopithecus all Insectivora appear to be multiparous, the number of foetuses varying from two to eight in Erizaceus, and from twelve to twenty-one in Centetes. The position of the mammary glands and the number of the teats vary greatly. In Galeopithecus there nre two pairs of axillary teats, in Solenodon a single pair post-inguinal, but in most species they range from the thorax to the abdomen, varying from two pairs in Gymmura to twelve in Centetes. In Chrysochloris the thoracie nnd inguinal teats are lodged in deep cup-shaped depressions.
Odoriferous glands exist in many species. In most Shrews they occur on the sides of the body at a short distance behind the axilla, and their exudation is probably protective, as few carnivorous animals will eat their dead bodies. In both species of Gymnura and in Potamogale large pouches are situated on either side of the rectum, and discharge their secretions by duets, opening in the firstnamed genus in front of and in the latter within the margin of the anus. In Centctes racemose glands similarly situated discharge by pores opening at the bottom of deep pits placed at either side of the anus.

The integument is thin, but in many species lined witis well-dereloped muscles, whicla are probably more developed in the Hedgehogs (Erinaceidx) than in any other mammal ; in this family and in Centetidx most of the species are protected by spines implanted in the panniculus carnosus, and more or less replacing the fur of the upper surface of the body.

The Inscctivora are divisible into two very distinot suhorders, of which the first includes a single genns only.

## Suborner 1. Dermoplcra.

Upper and lower incisors compressed, multicnspidate, the lower deeply pectinato ; anterior and posterior limbs connected by a broad integumentary expansion forming n parachnte. Family I. Galcopilhccidx.

## Suborder II. Insccivora I'era.

Üpper and lower incisors conicsl, micnspidate or with basal eusps only, tho lower not pectiunte; limbs free, formed for terrestrial progrossion.

1. Upper true molars broad, multicuspidate, with more or less well-defined W-shaped crowns.
A. Syanplysis pubis long; intestinal canal generally with a crecum ; cerebral carity comparatively large.
a. Orbital ring encircled by bons; metatarsus moderate ; arboreal. Family 11. Tupaiüle.
b. Orbital ring not encirclell by bonc ; metatarsus greatly elongated; terrestrial. Family III. Macroscelidx.
B. Symphysis pabis short or nonc ; Intestinal canal withon:t crecum ; cerebral cavity small; skull without postorbital processes.
a. First and second upper molars with a central fifth cusp.
$a^{\prime}$. Tympanics annular, not forming bulle. Family iV. Erinaccila.
b. No eentral fifth cusp; crowns of the upper molars W-shaped.
$a^{\prime}$. Tympanics annular, not forming bullæ; no zygo. matic arches. Farnily V'. Soricidæ.
b'. Tympanics forming bulle; zygomatic arches developed. Family V1. Talpidx.
II. Upper true molars narrov, with V-shaped crowns.
$a^{\prime}$. Tympanics annular, not forming bulle; zygomatic arches imperfect.
$a^{\prime \prime}$. No clavicles. Family V11. Potanogalidæ.
$b^{\prime \prime}$. Clavicles well developed.
$\boldsymbol{\alpha}^{\prime \prime \prime}$. Skull constricted between the orbits; penis auspended. Family VIII. Solcnodontida. $b^{\prime \prime \prime}$. Skull mot constricted; peais nendent, retractible. Family IX. Ccntetidæ.
b.' Tympanics forming bulle; zygomatic arches welldeveloped. Family X. Chrysochloridæ.

## Family Galeopithecide.

The characters of the family are those of the suborder Dermoptcra, to which may be ndded that the orbit is nearly surrounded by bone, the zygomatio arches are well developed, the tympanics form bulle ossex, the ulna is distally united with the radius, the tibia and fibula sre distinct, the pubic symphysis is long, the penis is pendent, the testes are received into inguinal pouches, the mammo are axillsery, the uterns is two-horned, and there is a large erecum.
Galcopithecus ( $i \frac{2}{3}, c \frac{1}{4}, p m \frac{2}{2}, m \frac{3}{3}$; second upper incisors and canines with two roots), with two spleciss-G. volans nnd G. philippinensis. The former, the Flying Lemmr of Linnæus, distinguished from the latter by the form of the upper incisors, has a total length of nearly 2 feet. The long and slender limbs are connected by a broad intogumentary expausion extending outwards from the sides


Fin. 50 -Feet of Galeopithecus philippinonsis.
of the neck and body, and forming also s web between the fingers and toes as far as the base of the claws (fig. 53); the hind limbs are further connected by a similar expansion passing outwards along the back of the feet to the base of the claws, and, inwsrilly, involving the long tail to the tip, forming a tuse iuterfemoral membrane, as in the Bats.

The species of this family live in the forests of the Malay Peninsula, Sumatra, Borneo, and the Philippine Islands, where they feed chiefly on the leaves of trees, and probably also on insects. Their habits are nocturnal, and during the daytime they cling to the trunks or limbs of trecs head downwards in a state of repose. With the approach of night their season of activity commences, whon they may be occasionally seen gliding from tree to tree suppnrted on their cutaneous parachute, and hacy lave been noticed as capable of traversing in this way a space of 70 yards with a descent of only about sue in five.
Galcopitheches was referred by some of the older zoologists and anatomists to the Dats, and by othars (and even in lately published works) to the Lemurs, but Professor Peters's view (in which most subsequent writers agree) that it belongs to neither of these orders, and must be considered an aberrant Insectivore, appears to be undoubtedly the correct onc. Besides differing from the Bats altogether in the form of the anterior limbs and of the double-rooted outer incisors and canines, it also contrasts strongly with them in the presence of a large sacculated eeecum, and in the great length of the colon, which is so remarkably short in sll the Chiroplera. From the Lomurs, on the other hand, the form of the brsin, the character of the teath, the atructure of tho sknll, and the deciduate discoidal placenta at once separate it.

## Family Tlpandée.

Arboreal Inscctivora, with comparatively large brain case, orbits encircled with bone, nid woll-doveloped zygomatic arches. The malar bone is perforated ; the tympanics form bullo; the pubic aymphysis is long; the tibia snd fibuls are distinct, the metatarsus but little longer than the tarsus ; the molars are broad, with

W-slaped cusps ; and the intestinal canal has gencrally a short сæсиm.
The animala included in this family nre all arborcal. resembling Squirrela closely hoth in habits and in external form; they are divided into two genera having the same dental formula ( $i \frac{3}{3}, c!$, $\left.p m \frac{\pi}{3}, m{ }^{3}\right)$, but distinguished by the form of the skull. Tupaia, with nine species, is found in Indio, Burmah, the Malay Peninsula, Nicebars, Sumatra, Jara, and liornco. The species closely resenlle one another, differing cliefly in size and in the colour and length of the fur. Nearly all have long busliy tails, which still further


Fic. B4.-Pentail (Plilocertus lowii). X1. From Gray, Proc. Zool. Cor, 1818.
increase their resemblance to Squirrels. Thcir food consists of lasecta and fruit, which they usually seek for in the trecs, but also occasionslly on the ground. When feeding they often sit on their haunches, helding the food, after the manner of Squirrets, betwrin their foro paws. Ptileccrcus includes a single very interesting species, Pt. lowii, inhabiting Bornee, remarkable for its long tail, troothirds naked, having the terminal third furnished with a deuble fringe of long hairs. Its habits are probably similar to those of the Tupaias, of which it may be further noticed that they aloue among Inscctivora are day-feeders.

## Family Macroscelide.

Terrestrial Mnseclivora, with comparatively large brain case, welldeveloped zygomatic arches, and tympanic bulle; but the orbits are not encircled by bone, the malar is imperforate, and there are generally no pest-orbital pracesses. The pubic symphysis is long, the tibia and fibula united high up, the metatarsus much longer than the tarans, the miolars broad and quadricuspidate, and the intestieal canal has a large cexcim.
These leaping lnsectivores are easily distinguished by the great length of their metatarsal benes. All the species are African, and are divisible into twe genera:-
c. $i \frac{3}{3}, \mathrm{c} \frac{1}{1}, p m \frac{3}{3}, m \frac{3}{3}$ or $\frac{3}{3}$; forearm bones united below. Macrescelidcs.
b. $i \frac{2}{3}$ (or $\frac{f}{3}$ ), c $1, p m 2 \frac{3}{3}, m \frac{3}{3}$; forearm bones separate. Iihynchocyon.
Macroscelides includes ten species widely distributed throughout the African continent. All are closely related, resembling one another in general forms, and even ln the colenr of the fur. They fall into two greupa distinguished by the presence or absence of a small lower fourth molar. MF. cetradactylus (fig. 55), type of the subgenus Pctrodromits, differs frem all in the absence of the hallux. Of hhyrchocyor four closely allied apocies have been described, all from East Africa

## Family Erivaceide.

Terrestrial Inscetivora, with a small brain case, without postorbital processes, with slender (rarely imperfect) zygomatic arches, with a short pabic symphywis, and with the tibia and fibula united ubove. The tympanics are annular, not forming bulle; the intestine has no ceecum; the penia is carried forwards, and suspcuded from the wall of the abdomen; and the upere true molars have cach four prineipnl eusps and a small central fifth cusp very characteristic of the family.

Subfamily I. Gymnurinæ. - Candal vertebre numerous; palate bones completely ossificl: pelvis very narrow ; fur withont spines.
 and G. suille, from the Malay Tcnusuln and lndian Anelhipelago. The former hus tho njperrance of a lnrge Rat with a long hicad anel projecting nobile snont ; the latter, much smatler, with a short tnil on! small thind apper premolar, las leng been known unde. the name of $I$ y/lomys suillus, and elnssed with the Tutaiidx. Beth apecies present a very gencralized type of deatition, in this respecs ocenpying an almost cential pesition in the order.


Fig. 55.- Macroscelides i. etrodromus) teiradnety'us. $\times \frac{1}{\frac{1}{2}}$. From Pelers, Reise nach Mossandique.
Subfamily II. Erinaceinæ.-Candal vertebre rudimentary; palate bones with defecta of ossification; pelvis wide: fur with spincs.
 miliarly known as Hedgehngs) distributed throughont Europe, Africa, and the greater rart of Asia, but thoy have not been found in Niadagascar, Ceylon, Burmall, Sinm, tho Malay Peninsula and Archipclago, or Australia. All the species resemble one enother


Fsa. 4-Factal parls of Skulls of (A) Erinaceus curopreus and (B) E. grayi, rruch enlurged. bobson, Proc. Zow. \&oc., I8S1.
closely in the armature of spinea which invests the upper surfnce and side of the body ; and all possess the power of rolling thicm. selves up into the form of a ball protected on all sides by strong spines, the dorsal intugument being brought downwards anil
 the netion of special muscles (for description see Monograed of the

Inscelivora referred to in the bibliamraphy). The common Ilealgehorg ( $F_{5}$. curopzus) is tho most aberrant suecies, difering from all tho rest io the peculiarly slaped and single-reoted third incisors and first upper premolars (fig. $56, \lambda$ ), and in its very coarse larsh fur. Tho dentition of the long-eared North ludian form, $E$. grat $i$ (fig. 56, B), may be considered characteristic of all the ather specics, the only important differences being found in the variable size and position of the second upper prenolar, which is very small, external, and deciduous in the lndian specics $E$. micropus and pictus. The former species, limited to South India, is further distinguished by the absence of the malar bone. Of African species, E. diadcmatus, with long frontal spines, is probably the cominovest, and $E$. albiventris has been made the type of a separate genus on account of the total abseace of the hallux.

## Family Sourrde.

Tcrrestrial, rarely natatorial, Insectivora, with narrow elongated sknlls, rithout post-orbital processes or zygomatic arches. The tympanics are anvular, not forming bulle; there is no symphysis pubis; the intestine has no cæcum ; the tibia and fibnla are united; and the molars have well-developed W-shaped ensps.

The dentition is very claracteristic of the family; in all the upper front incisors are large, with a more or less prominent posterior basal cusp, and bctween these and the last premolar intervene a variable number of small incisors and premolars, among which the small canine cau be distinguished only by its position imonediately behind the premaxillary suture. The number of teeth in the mandible is alwasa trelve, and the single pair ol incisors are much ex. tended horizontally forwards, the caniae is the amallest tooth, and the single premolar is not much larger (see fig. E7).

the Shrews thus form a


Fic. s7.-bkill and Dentition of Sorex terge pacis. Alston, Proc. Zool. Soc. $187 \%$. very compact family, which in the knol the known species of Inscctivora, and of which the geographical distribution is coexteosive with that of the order. They liave been divided into aeveral geners (so-called) and anbgenera, depending chiefly on the sumber of the upper incisors and premolars, and on the colour of the teeth. The best arrangement appears to be tliat proposed by M. Alph. Milne-Edwsids, ss follows:-
A. Terrestrial ; feet witheut a border composed of stiff hsirs.
a. Teeth white. $\left\{\begin{array}{l}a^{\prime} .26 \text { teeth. }\left\{\begin{array}{l}a^{\prime \prime} . \text { Tail very short, coacesled. } \\ \text { 1. Anourosorex. } \\ b^{\prime \prime} . \\ \text { Tail moderately } \\ b^{\prime} .28-30 \text { teeth. } \\ \text { 2. Diplomesod.d. } \\ \text { 3. Crocidura. }\end{array} \text { long. }\right.\end{array}\right.$
b. Teeth more or ( $a^{\prime}$. Tail short ; cars small. 4. Blarina. lass brown $b^{\prime}$. Tail aod ears moderately long. or red. (5. Sorex.
B. Amphibions; feet with a border of stiff hairs.
a. Feet not $\left\{\begin{array}{l}a^{\prime} .32 \text { tceth; hairs of tail equal. 6. Ncosorcx. } \\ b^{\prime} .30 \text { teeth; tail fringel slong }\end{array}\right.$ melubed. $\left\{\begin{array}{c}b^{\prime} .30 \text { teeth; tail fringad along middle edge. } \\ \text { 7. Crossopus. }\end{array}\right.$ 8. Feet mebbed. 8. Nectogale.

Anoucrosorex inclndes A. squamipes, a Mole-like species, with very short cars and tail, from Tibet. Diplomesodon, with one species, $D$. pulchellus, from the Kirghiz steppes, though agrecing in the numbar of teeth, is Shrew-like in external form. Crocidura, 28-30 teeth, with about seventy species divided into four subgenera, comprises the greater number of white-toothed Old. World Shrewa, loviog a ronnd tail thioly clothed with a few hairs of unequal length. C. aranea and C. suaveolens of the continent of Europe, and C. indicus, tho Musk-Rat of India, are well-known examples. Sorex, the typical genns (sce SHREw), also divided into four atbgenera, with Blarina, includes sll the specics with brown tecth ond auguler uniformly heiry tail. Ncosorex includes the New-World and Crossopus (scc Surew) the Old-World amphibious species, having a fringe of atiff hairs along the sides of the feet, and Nectogale a very remarkable apecies from Tibet, $N$. elegans (fig. 58), distinguishad from all other Shrews by tha webbed coodition of the toes, and the presence of adhesive cushions on the under surface of the fect, which enable the animal to hold on to smooth stones at the bottom of rushing torrents.

## Family Talpide.

Fossorial, rarely natatorial, Insectivora, distinguished from the Soricide by the presence of zygomatic mehes and tympanic hulle ossem, and by the form of the teeth. The eyes are very small, in
some species covered with skin ; the cars are sliort and concealed by the fur: the fore limba sue fentrally more or less modified for discring ; there is no symphysis pubis; the intestine has no cæcum ; the tibia and fibula are united; and the micuspidate upper and lower front iocisors are not extended limizontally forwards


## Fto. 53:-Neclogale elegans. A. Diluc.Edwards, Mammif. Tibee.

This family, thongh thus easily distinguished, is, nevertheless, evidently closely related to the Shrews, with which such intermediate forms as those iocluded in the genera Urotrichus and Uropsilus connect it. In striking contrast with the Shrems, however, the distribution of the Moles is limited to the temperate rerions of Europe, Asia, and North Aurerica.

Subfamily I. Myogalinæ.-Clavicles sud humeri moderately elongated; manus without os falciforme.
a. $i \frac{\pi}{3}, c \frac{1}{1}, v m \frac{4}{4}, m \frac{3}{3}$; feet webbed; matatorial. Nyogalc. b. $i \frac{2}{2}, c \frac{1}{1}, p m m_{3}^{3}, m \frac{3}{3}$; feet narrow ; terrestrial. Uropsilus. c. $i \frac{2}{1}, c \frac{1}{1}, p m \frac{4}{3}$ or $\frac{3}{4}, m \frac{\pi}{3}$; feet wide; fossorial. Urotrichus.

Myogalc includes two very remarkable species, $M$. moschata sud Mr. pyrenaica. The former is by far the largest species of the

family, its total length beiog about 16 inches. Its long proboscislike anent projects far beyood the margin of the upper lip; the toes are webbed as far as the bases of the clars; and the long scaly tail is laterally flattened, forming a powerful instrumeot of propulsion when swimming. This species inhabits the banks of atreams and lakes in south-cast Russia, wherc its food consists of varions aquatic insects. Mr. pyrchaica, living in a similar mandar in the regien of the Pyrences, is rery minch smaller, bse a round
rall, and a proportionally longer snout Crotriehes, ritli $p m$, anil N゙cürobrichus (subg.), with ym $\frac{3}{3}$, arc represcnted by two small Molelike species, extcrmally resembling one another closely, from Japan and North America respectisely: Uf Uropsilus, $E^{-}$. soricipcs, from the borders of Tibet, is a very intoreating apecies, having the exterual form of a Shrew but tho skull of a Mole.
Subfamily II. Talpinæe (True Dloles). - Clavicles and bomeri very short and broad; manus with a large os falciforme.
A. Front upper incisors much larger than the second pair (New. World Moles).
 b. $i \frac{3}{2}, c \frac{1}{i}, p m \frac{3}{3}, m$ extremity of nose simple. Scapruus. c. $i \frac{2}{3}, c t, p m i, m$ 亲 $;$ extremity of nose wath anocndagus. Condybara.
B Front unper incisors scarcely larger than the second pair (Old-World Moles).
d. $i \frac{\pi}{2}, c_{1}, p^{2} \frac{4}{4}, m \frac{\pi}{3}$; manus as in C'rolrichus. Scaptonyx. c. $i \frac{5}{3}$ or $\frac{3}{2}, c \frac{1}{1}, p m \frac{4}{3}, i n \frac{3}{3}$; manus rery proad. Ialua.

Scaplonyx, with a single species S. fusicaudatus, frem west China, connects Urotrichus witls the true Bloles. Talpa includes seven species, of rhich the Common Blole is a familiar example. See Mole.

## Family Potamogalide.

Insectivora with a small brain case, without nost-orbital processes or zygomatic arclies, and with anaular tympanics not forming bullæe. There are no clavicles; the pubic bones are connected by a ligament, and there is no true symphysis ; the intestine has nocæcum ; the tibia end fibula are united low down; and the apper true molars hare broadly V-shaped cusps presenting characters intermediate between those of the preceding and succeeding familic


Fig. 60.-Potamogale velor. xt. Allman, Tians. Zool. Soc., vi., phi.
Polamagale, $i \frac{3}{3}, c \frac{1}{3}, p m \frac{3}{3}, m \frac{3}{3}$, with P. velox. This most interesting specics inhabits the banks of streams in west equatorial Africa, and its whole structure indicates an aquatic life. It is nearly 2 feet in length, the tail measuring about half. The long eylindrical body is contioned uninterruptedly into the thick laterally compressed tail, the legs are very short, and the toes are not webbed, progression through the water evidently depending wholly on the action of the powerful tail, while the linobs are folded lnwards and backwards. The niuzzle is broad and flat, and the nostrils are protected by valves. The fur is dark brown sbove, the extremities of the hairs on the back being of a metallic violet bua by reflected light, beneatlt whitish.

Geogalc, $i \frac{7}{2}, c \frac{1}{3}, p m \frac{3}{2}, m \frac{3}{3}$, with $G$. aurita, a small Mouse-like species from Madagascar, agrees closely with Potamogale in the general form of the skull and teetli; the tibia and fibula are distinct, but it is not known whether a clavicle exists or not, and the material at present available is insufficient to definitely fix the natural rosition of the species.

## Family Solenonontide.

Insectivora with a small brain case constricted between the orbits, and without post-orbital processes or zygomatic arches. The neuis is carried forwards and suspended from the abdomen; the testes are received into perineal pouches; the mammary glands are past-inguinal ; the uterine cornua end in cæcal sacs; the intestine has no crecum ; the tympanics are annular ; the upper true molars have $V$-shaped cromns; the symplysis pubis is short; and the tibia and fibula are distinct.

Solinodon, $i \frac{3}{3}, c \frac{1}{2}, p m \frac{3}{3}, m \frac{3}{3}$, with $S$. paradoxus and $S$. cubanus, from Hayti and Cuba respectirely, alone represents the family. These species, which differ chielly in the colour and guatity of the fur, have each a remarkubly long cylindrical snout,
a long naked tail, fect formed for running, and tle bodv clothed with long, coarse fur.

The position of the mamme quite lenind on the ourdects s unique among Inaccirorce. The ulper front incisors are much enlangal, and rith the atlipr incisors. cimines, nul [ 4 emolars closely resemule thoee of Nyognic; the second lower incisors are, as it


Fic. C1.-Solenodon cubanus. $\times 1$. Peters, Alh. Aliad. Berl.
Potamogaie, much larger than the anterior pair, and are deeply hollored out internally. While thus apparently showing relation. ship with the Talpida, the form of the crowns of the molar teeth condects them with the next family.

## Famity Cextetide.

Inscetivore with a small cylindrical brain case not constricted between the orbits, and without post-oroital processes or zygomatic arches The nenis is pendent and retractible within the fold of the integument surrounding the anus; the testes are abdoninal; the marmary glands are thoracic and ventral; the nterine cornus are terminated by the Fallopian tubes: the intestine has no cæcum; the tympanics are annular ; the molars have $V$-shaped crowas; tha pubic symphysis is short, and the tihia and fibula separatc or united. All the known species are limited to Madagascar.
Subfamily I. Centetinæ. -Tibia and fibula distinct; testes uear kidneys; fur with spines.


F10. 62.-Skull of Centetes ccaudatus (reduced).
 ccaudatus, the well-known tailless Ground-Hog of Madagascar, at tains a total length of from 12 to 16 inches, and is the largest known Insectivore. The adult males have exceedingly long canines, the extremities of the lower pair being received into pits in front of the npper canines. It is probably the most prolific of all manmala; as nany as twenty-one young are said to have been brought forth at a birth. The young have strong white spines arranged in langi. tudinal lines alonf the back, but these are lost in the adnlt ani mal, which is provided only with a nuchal crest of long rigil hairs. Hemicentetes, $i \frac{3}{3}$, with H. semispinosus and H. nigriceps, is dis. tinguished by the persistence of the third upper incisor, and by the form of the skull. The two species are very much smaller than C. ecaudatus, and the dorsal spines are retained io the adult state. Ericulus, $i \frac{2}{2}$, has $E$. sciosus, a remarkable Hedgehog-like species having the whole upper surface and even the short tail deasely covered with close-set spines. The facial bones are much shorter than in any of the preceding geuera, and the upper freat iucisors are elongated as in Erinaccus. Judging from the slifilit development of the cutancous miscles compared sith those of the ime

Helgeloge, it is probable that complete iavolution, as in the fatter anianals, docs not take place.


Subfamily 1i. Oryzorictinæ.-Tibia and fibula united ; testes Darar urethra ; fur without spincs.
Microgalc, $i \frac{3}{3}, c \frac{1}{4}, m^{\frac{3}{3}}, m^{\frac{3}{3}}$, includes M. longicaudata and $M$. cowani, small Mouse-fike species, the former witi a tail double the length of the head and body; teeth like those of $C$. eccurdatus, but, nring to the comparatively much sherter muzzle, not separated by ride spaces, and the last premolar and molars witt internal basal processes. Oryzorictcs contains 0 . hova and $O$. tetradactylus, the fatter distiaguished by the presence of fomr digits only in the manus, the three ianer having long laterally compressed fossorial claws. The general form of the head and body of the two speries known is that of a Nole. They burrow in the rice-fields, and do much damage to the crops.

## Family Carrsochloride.

Fossorial Inscclivora, with conical skulls not constricted between the orbits, with well-developed zygomatic arches and tympanic bulle, but withont post-orbital processes. The eyes are covered by the lairy integument, the ears short and concealed by the fur ; the internal generative organs and the crowns of therupper molar tceth are ns in Centctinx; the mammary teats are thoracic and inguinal, and placed in cup-shaped depressions; there is no pubic symphysis; and the tibis and fibula are united.
This family is evidently closely allied to Ccutctidx, occupying the same relative position with respect to that fanily that Talpidæ does to Soricide. Alt the species are fossorial, and restricted to south Africa. In all the forearin and manus are similarly modified for digging, but in a manner very different from that observable in Talpidx (see Mole).


Chrysochloris, $i \frac{4}{3}, c \frac{1}{2}, p m \frac{3}{3}, m_{3}^{\frac{3}{3}}$ or $\frac{2}{2}$, embraccs seven or cight ppecies. Those with in $\frac{2}{2}$, with a basal talon to the lower grinders, and without a prominence in the temporal fossa, have been placed in a aeparate genus Calcochloris by l'rofessor Mivart. Nearly all the species have the fur of the upper surface of a brilliant metallic fustre, varying from golden bronze to green and vioiet of different s bades.

## Fossil Insectivora.

Of fossil Insectivora no undoubted traces have been found in deposits carlicr than the Eocene. Amphidosothcrium, allied to Urotrichus, and Ncogymnurus nnd Protalpa, with relationships to Oymnura and Talpa respectively, have beca described from the lacustrine Eocene beds of Querey. Several genera wilh insectivarous affinities have been chnracterized by Cope ind Marsh from remains found in the Eocene of Wyoming, but these have been relegated to distinet suborders of a new order Bunodonta, of which Insecticorre is
considerell a suboriler mily. The Miocene ileposits of the south of France nud Germany have yicherl fossil forms of Entinaccidis (Amphcchinus, Galcrir, Tetrachs), of Soricilia (Sorcx, Mysarachne, Plcsiosorex), and of Talpidx (Limylus, Gctlospalax, Grotrypus, Hyporissus, Mryogalc). Uf the latter family Galcospalax has been characterized from the Plioccue of Norfolk; and remains of the common Hellgehog, nnd of some of the existing species of Sorcere, have been found in various post-Tertiary deposits.
Bibliogn aphy of Insestiporn, - Teters, Reike nach Mossambigne-Säugeth, 1852; Id." "Ueber dle Clussifcatinn der' Insectivora," Alonatso. AKad. Wiismmseh.

 Inscelivorous Mammals," Bull. Geol. anit Geog. Survel, U:S.A., W'eshngion, 1875 (Includes a general wiblingraply of the orice Jnsectivora) Dobson, Bfonograph of the Insectivora, Systematic and dnatomical, London, 1882 .

## Order CHIROptERA.

Volant mammals, having their fore limbs specialls modified for flight. The forearm consists of a rudimentary ulna, a long curved radius, and a carpus of six bones supporting a thumb and four greatly clongated fingers, between which, the sides of the body, and the hinder excremities a thin expansion of the integument (the wingmembrane) is spread out. The knee is directed backwards, owing to the rotation of the hind limb outwards by the wing-membrane; a peculiar elongated cartilaginous process (the calcaneum or calcar), rarely rudimentary or absent, arising from the inner side of the ankle-joint, is directed inwards, and supports part of the posterior margin of an accessory membrane of Hight, extending from the tail or posterior extremity of the body to the hinder limbs (the inter-femoral membrane). The penis is pendent; the testes abdominal or inguinal; the mammary glands thoracic and generally post-axillary; the uterus simple cr with more or less long cornua; the placenta discoidal and deciduate; and the smooth cerebral bemispheres do not extend backwards over the cerebellum. The clental series eonsists of four kinds of teeth-incisors, canines, premolars, nnd molars; and the dental formula never exceeds $i \frac{2}{3}, c \frac{1}{1}, p m \frac{3}{3}, 2 n \frac{3}{3}$; total 38 teeth.

The animals comprised in this order are at oneo distinguished by the presence of truc wings, and this peculiarity is accompanied by other modifications of hodily structure having special relation to aerial locomotion. Thus, in direct contrast to all other mammals, in whieh locomotion is chiefly effected by action from behind, and the hind limbs consequently greatly preponderate in size over the fore, in the Chiroptera the fore limbs, being the only agents in propelling the body forward during flight, immensely exceed the short and weak hinder extremities; the thorax, giving origin to the great muscles which sustain flight, and containing the proportionately (compared with other mammals) very large lungs and heart, is remarkably capacious, and the ribs are flattened and close together ; the shoulder-girdle is also greatly developed in comparison with the weak pelvic bones.

Linnæus included the Bats among the Primates, maiply on account of the number of their upper incisors, supposed to be always four, the thoracie position of the mammæ, and the peadent condition of the peais. Many other zoologists, taking into consideration also the placental characters and the form of the uterus, have followed him; but it is evident that the situation of the mamme is related to the necessarily central position of the joung during flight, the shortness of the uterine coruma, observable in so many species, to the generally uniparous gestation requiring less room, while the disenid deciduate placenta is equally present in and characteristic of the Insectiona, many species of which have also the penis pendent. Then, all these reasons for maintaining the Bats in such an exalted position being disposed of, we find in the low organization of their brain another proof of their inferior position in tha zoological se:llc, while furthermore, although they differ
wiuely from all other mamanals in external form, it is erident that this is but the result of special adaptation to anrial locomotion; aud, taking into account their whole bodily structure, ree are furced to admit with Professor fuxley that they may be regarded as exceedingly modified Insectivora.

So thoroughly, huwever, has this adaptation been carried out that of all animals the Bats are the least terrestrial, not one of them being equally well fitted, as most Birds and Insects are, for progression on the carth. This is due to the hind as well as the fore limbs being pressed into the service of nerial locomotion. The hind limb is so rotated outwards by the wing-membrane that, cortrary to what obtains in all other vertebrates, the knee is directed backwards, and corresponds in position to its serial homologue the elbow. When placed on the ground,


Fio. 65.-Skeleton and Volar Membranes of the Noctule Rat (Vesper ago mactan)
 porting $u m$, the wlag-membraoe ; $m$, $m$, metacarpal bones ; $p h^{\prime}$, first phalanx; $p h^{2}$, second phalanx ; $p h^{3}$,



From the first thoracic to the last lambar vertebra the spinal columu forms a single curve backwards, which is must pronounced in the lumbar region. The bodies of the vertebre are very slightly movable upon each otlier, aud in old individuals appear to become partially ankylosed together. The caudal vertebre are simple cylindrical bones without processcs; their number and length is extrenely variable even in clossly allied species; and the anterior vertebre are generally united to the ischial tuberosities. The development of these vertebre, in fuct, is intimately correlated to the labits of the animals, the long tail in the insectivurous species supporing and controlling the position of the large interfemoral membrane which appears not only to aid their rapid doubling motions when in pursuit of their insect prey by acting as a rudder on the air, but also to assist them in the capture and retention of the larger insects; in the frugivorous spccies, on the other hand, this is not required, and the tail is accordingly rudimentary or absent. In all Eats the presternum has a prominent keel for the attachment of the great pectoral muscles. In most species the ribs are much flattened, and in same partially ankylosed by their coatiguous margins.

Great as is the variability of the shape of the skull in Insectivora, it is still greates in Chiroptera, and evidently depends upon the much wider differences in the nature of the food of different species requiring curresponding modificatioas of the manducatory apparatus, so that estrenae modifications may be found in spec:es of the same family, as in the case of the Phyllostomidx. In some genera, howerer, as in Miniopterus, Furia, Mormaps (vide infra), the peculiar shape of the skull cannot thus be accounted for. As in the Insectivora, post-orbital processes are developed in same species only, as in the Pteropodid $x$ and in a few $N$ ycterid $x$ and Emballonuridx; in Pteropus leucopterus alone does a process from the zygomatic arch meet the past-orbital so as to com-
thereiore, the anmal rests on all fours, haring the knees directed upwards like a grasshopper's, while, in order to bring the foot into a position for forward progression, it is rotated forwards and inwards on the ankle. Walking under these circumstances is at best only a species of shuffle, and that this is fully recognized by the animal is evidenced by its great anxiety to take to the wing, or, if this beimpräcticable, to ascend to some point where it can hitch itself up by the claws of the hind-legs in its usual position when at rest.

The bones entering into the formation of the skeleton in Chiroptera are characterized by their slenderness, and by the great size of the medullary canals in those of the extremities. The rertebral column is short, and the rertebræ differ rery slightly in number and form throughout the species. The general number of the dorso-lumbar vertebre is 17 , whereof 12 are dorsal; the cervical vertebre are very broad, but short from before backwards (their breadth is due to the great transserse diameter of the spinal canal rendered necessary by the comparatively very large size of the spinal cord in this position, which, after giving off the nervous supply to the fore limbs and thorax, rapidly diminishes in size, and in the lumbo-sacral region is reduced to a fine thread). Except in the grent frugivorous Bats (Pteropodidix), the vertebre, from the third cervical backwards, are devoid of spinous processes, A characteristic feature in the general usteology of the order.
plete the orbital ring. Zygomatic arches, though slender, are nresent. in all except in some of the species of Phyl. lostomidx.

The milk teeth differ from those of all other mammals in that they in no respect resemble in furm those of the permanent series. They are very slender, with acutely pointed recurved cusps, and are soon shed, but often coexist for a short time with the permanent teeth when the latter are considerably elevated above the gum. In the family Rhinolophidx the milk teeth are absorbed before birth. The permanent teeth exhibit great variety in form, sometimes even in the same family, as in Phyllostomidx, whilst in other families, as in Rhinolophids, the resemblance between the dentition of spectes otherwise differing in many important respects is most remarkable. In all, however, they are provided with well-developed roois, and their crowns are acutely tuberculate, with more or less well-defined $W$-shaped cusps, in the insectirorous species, as in Insectivora, or variously hollowed out or longitudinally grooved in the frugivorous, $n$ s in some species of Phyllostomidx and in the Pteropodidx.

As might be expected, the shoulder-girdle varies rery slightly, having the eame office to fulfil in all species. The clavicle is very long, strong, and curved; the scapulæ large. oval, triangular, with a long curved coracoid process. Thu: humerus, though long, is scarcely tro-thirds the lengtil . i the radius; the ulva is rudimentary; its proximal extremil; .
which articulates with but a small part of the numerus, is ankylosed witi the radius; immediately beyond tho joint it is reduced to a very slender splint-like benc, which extends about as far as the middle of the radius. In all gpecies a detached sesamoid bone exists in the tendon of the triceps muscle, and is generally found in okeletons. The radius is very long, in some species as long as the head and body. The prosimal rew of the carpus consists of a single bone (the united scaphoid, lunar, and cuneiform bones), which, with the extremity of the radius, forms the radio-carpal joint; in the distal rew the trapezium, trapezoid, and os magnum vary much in size in the different families; the unciform appears to be the most constant, and the pisiform is generally very small. It will be necessary to again refer to this subject when dealing with the diagnostic characters of the suborders.

The manus is, in all the species, composed of five digits. The first, fourth, and fifth consist each of a metacarpal bene and twe osseous phalanges; in the second and third the number of phalanges is different in certain families. The first digit-the pollex-always terminates in a claw, which, with the prosimal phalanx, is most developed in the frugivorous species. In most of the opecies of the frugiverous Pleropedidæ the sccend digit is also previded with a claw, but in all other Bats this and the remaining digits are unarmed. In the genus Triznops alone a very beculiar short bony process projects from the outer side of the proximal extremity of the terminal phalanx of the fourth digit. The relative development of the digits and their phalanges will be specially treated of under each family.

As might be expected from the small size of the posterier limbs, the pelvic girdle is very weak. The iliac bones are long and narrow. In most species the pubic bones of opposite sides are very loosely united in front in males; in females they are widely separated; in the family Rhinolophidx alone do these benes form a symphysis. The eminentia ileo-pectinea develops in all species a long pectineal process, which in the subfamily Phyllorhinine alone is continued ferwards to the anterier extremity of the ilium (vide infra, p. 412), forming a preacetabular foramen which is unique ameng mammals. The acetabulum is small and directed outwards, añd slightly upwards, and with this is related the peculiar position of the hind limb described above as one of the chief characteristics of the order. The femur is slender and cylindrical, with a small head and very short neck, and scarcely differs in form throughout the species. The bones of the leg and foot aro more variable; in the subfamily Molossine alene is there a well-developed fibula; in all other species this bone is either very slender or cartilaginons and ligamentous in its upper third, or reduced to a small bony process above the heel, as in Megaderma, or altogether absent, as in Nycteris.

The foot consists of a very short tarsus, and of slender, laterally compressed toes, with much curved claws. The first digit is conposed of a metacarpal bone, a proximal and an ungual phalanx, and is slightly sherter than the other four toes, which have cach an additienal phalanx, except in the subfamily Phyllorhinine and in the nnomalous genera Thyroptera and Myxopoda, where all the toes have the same number of phalanges as the first 1 ligit, and are equal to it in length. In the very remarkuble genus Cheiromeles the first digit is thumb-like and separated from the others ; and in the Afolossi the first and fifth digits are much thicker than the intermediate tocs.

The muscular system, as might be expected, exhibits few atriking differences throughout the species. The mest noticcable peculiarities in the myology of the order consist, in the separated bands or slips inte which the platysma is
divided, and in the remarkable muscle termed oscipitopollicalis, whiche extends from the occipitai bone to the base of the terminal phalan:: of the pollex (see Macalistor. "Myology of the Chiroptera," Phil. Trans. Roy. S'c., 1872).

Althcugh, as above mentioned, the brain presents a 10 w type of organization, yet probably ne animals possess so delicate sense of tonch as the Chiroptera. It is undoubtedly this perceptive pewer which enalled the individuals deprived of sight, hearing, ana smell, in Spallanzani's well known experiments, to aveid the numerous threads hung across the rooms in which they were permitted to fly about. In the common Bats the tactile organs evidently exist, not only in the delicate vibrissx which spring from the sides of the muzzle, but also in the highly sensitive and widely extended integumentary structures entcing into the forma-: tiun of the wing-membranes and ear conchs, while in many other species, notably in the tropical Rhinolophine and Phyllostomine Bats, peculiar foliaceous cutaneous expan. sions surrounding the nasal apertures or extending backwards behind them are superadded (vide infra). These structures, collectively known as the "nose-leaf" (whence the term "leaf-nosed Bats"), have been shown by the present writer (who has traced their gradual development in' different species) to be made up partly of the extended and thickened marginal integument of the nostrils, and partly of the highly differentiated glandular eminences occupying the sides of the muzzle, in which, in all the commen Bats, the vibrisse are implanted.

In all species of leaf-nosed Bats, and especially in the Rhinolophidx, in which the nasal appendages reach their highest development, the superior maxillary division of the fifth nerve is of remarkably large calibre. The nasal branch of this nerve, which is given off immediately beyond the infra-orbital foramen, is by far the largest portion, the palpebral and labial branches consisting of a few slender nerve fibres only. This branch passes forwards and upwards on the sides of the superior maxillary bone, but soon spreads out into numerous filaments which pass into the muscles and integument above, and into the base of the nose-leaf. The nerve supply of the nose-leaf is further considerably augmented by the large nasal branch of the ophthalmic division of the fifth nerve.

While the many foliations, elevations, and depressions which vary the form of the nese-leaf alse greatly increase the sensory surface so abundantly supplied by the fifth nerve, and in rapid fliglt intensify the vibrations conveyed to it, the great number of sweat and oil glands which enter inte its structure perform an important function, analogous to that of the glands of the auditory canal in relation to the membrana tympani, in maintaining its surface in a highly sensitive condition.

The nasal appendages of Chiroptera, then, may be regarded as performing the office of an organ of a very exalted sense of touch standing in the same relation to the nasal branches of the sensory divisions of the fifth nerve as the anral apparatus to the auditory nerve; for, as the latter organ collects and transmits the wares of sound, so the former receives impressions arising from vibrations communicated to the air by appreaching objects.

In no order of mammals is the ear-cench so greatly devcloped or so variable in form ; in most of the insectiverous species the ears are longer than the head, while in some, as in the common Long-eared Bat (Plecotus auritus), their longth nearly equals that of the head and body. The form of the conch is very characteristic in each of the families; in most the tragus is remarkably large, in some extending nearly to the outer margin of the conch; its office appears to be to cause undulations in tho waves of sound, and so intensify and prolong them. It is worthy of
notice tiat in the only famly of insectivorons Eats wanting the tragus, the Iihinoloplutir, ihe anditory bulla osscra reach their greatest size, and the highly scusitive nasal appendiages their highest development; also in the group Molossi the ear-conch is divided by a promiucnt kcel; and the antitragus is remarl:ably largo in thnse species in which the tragus is minute (sce fig. GG, a). In the frugivoroas Eats, as miglit be expecterl, the form of tho ear-conch is very simple, and out slightly variable throughout the species.

In all Bats the ears aro extremely mobile, each mov-


 has been observed by the c, Motel Leclimed antitiagus writer even in the frugivorous Pleroportida, in which the peculiar vibratory movements woticed by Mr Osburn in Artibens perspicillatus may also be seen when the animals. are alarmed.
The opening of the mouth is anterior in most species, but in many it is inferinr, the extremity of the nose being more or less produced beyond the lower lip, so much so indeed in the small South-American species hynchonycter is rceso as to resemble that of the Shrews. The lips exbibit the greatest variety in form, which will be specially referred to under each family. The absence of a fringe of hairs is very characteristic of all fruit-eating Bats, and probably always distinguishes them from the insectivorous species, which they may resemble in the form of their teeth and in other respects.
The cesophagus is narrow in all species, and especially so in the sanguivorous Desnoodoutes. The stomach presents two principal types of structure, which correspend respectively to the two great divisions of the order, the Megachiroptera and the Microchiroptera; in the former (with the exception of IIarpyic) the pyloric extremity is more or less elongated and folded upon itself, in the latter it is simple, as in Insectivorca rera; a third exceptional type is met with in the sanguivorous Desmodontes, where the left or cardiac extremity is greatly elongated, forming a long narrow cacum-jike appendage. The intestine is comparatively short, varying from one and o half to four times the length of the head and body, being longest in the frugivorous, shortest in the insectivorous species. In Rhitopona microphyllum and Megaderma spasma only has a very small crecum been found.

The liver is characterized by the great size of the left lateral lobe, which occasionally equals half the size of the whole organ ; the right and left lateral fissures are usually very deep; in Megachiroptera (IIarpyia excepted) the Spigelian lobe is ill-defined or absent, and the caudate is generally very large, but in Jicrochiropterct, on the other hand, the Spigelian lube is very large, while the caudate is small, in most species forming a ridge only. The gallbladder is generally well developed and attached to the right central lobe, excopt in Rhinolophider, where it is commected with the left central.

In most species the hyoid hones are simple, consisting of a chain of slender, elcnrated, cylindrical bones connecting the small basi-lyoid with the cranium, while the pharynx is short, the lurynx shallow with feebly developed vocal cords, and guardet by a short acntely-printed epiglottis, which in some genera (IIarpyin, Vampyrus, e.g.) is alnost obsolete. In the EPponoghinori, however, we and a remarkzhle departure from the general type: the
pharynx is long and very capacious, the aperture of tho larynx far removed from the fances, and, oprosite to it, a canal, leading from tho narial chambers, and extending along the back of the pharynx, opens; the laryngeal cavity is spacions and its walls are ossified; the hyoid bono is



 Where they commmolente with the jhajus: s, thin menturamous scyumin ir injilille line between the ant crio pharympeal ases of oppoute slites; s.m, sternomastoid muscle seyarating the anterior from the fosterior sac.
quite uncounected, except by muscle, with the cranium; the ceratn-hyals and epi-hyals are cartilaginous and greatly expanded, entering into the formation of the walls of the pharynx, and, in the males of three species at least, supporting the orifices of a large pair of air-sacs communicating with the plarynx (see fig. 67).
In extent, peculiar modifications, and sensitiveness, tho cateneors system, reaches its higlicst development in this order. As a sensory organ its chief modifications in connexion with the external ear, and with the nasal and labial appendages, have been described when referring to the nervous system. It remains therefore to consider its relative development as part of the organs of flight.
The estent and shape of the volnt membranes iepend mainly on the form of the bones of the anterior extremities, and on the presence or absence of the tail. Certain modifications of these membranes, however, are met with, which evidently do not depend on the skeleton, but are related to the labits of the animals,' and to tho manner in which the wing is folded in repose.

The volar membranes consist of-(1) the "antebrachial membrauc," which extends from the point of the shoulder along the humerus and more or less of the forearm to the base of the thumb, the metacarpal bone of which is partially or wholly included in it; ('́) the "wing-membrane," which is spread out between the greatly clongated fingers, and extends along the sides of the body to the posterior extremities, generally reaching to the fcct ; and (3) the "interiemoral membrane," the most variable of all, which is supported between the extremity of the body, the legs, and the calcanez (see fig. 65).

The antebrachial and wing membranes are most developect in those species which are fitted only for aerial locomotion, and which when at rest hang with the body enveloped in the wings ; but in the family Emballonuriulx, eqpecially in the subfamily dolossinx (the species of which are, of all Bats, the best fitted for terrestrial progression), the antebrachial membrane is reduced to the smallest size, and is not devcloped along the forenrm, lenving also tho
thumb quite free, and the wing-membrane is very narrow and folded in repose completely under the foren.m. The relative development of the interfemeral membrane has been referred to above in describing the caudal vertebre. Its small size in the fragivorous and sanguivorous species, which do not require it, to which, iadeed, its presence would be actually iojurious as impeding their motions when searching for food as they hang suspended by their feet, is easily understood. Odorifer-
 ous glands and pouches opening on the surface apening on the surface Fic. $68 . \sim$ Frontal Sac and Nose. Lean in Male and of the outer skin are Fomale of Phyllorlizaa lacreata. Dubson,
developed in many species, but in most cases more so in males than in females, and so constitute very remarkable secondary sexnal characters. They will be referred to when treating of the peculiarities of certain species. (See also the writer's paper "On Secondary Sexual Characters in Chiroptera," Proc. Zool. Soc. Lond., $18 \overline{7} 3$, pp. 241-252.)
Space does not admit of entering here upon a special description of the respiratory, circulatery, digestive, urinary, and generative organs, which will be found fully treated of in the works neted in the bibliography of the order belerr, and therefore with the above short aceount of the general structure of the species we praceed to consider fheir classification and geegraphical distribution.
The Chiroptcra fall naturally into two subdivisions, which may be called auborders.

## Suborder I. MEGACHIROPTERA.

Frugivorous Bats, gencrally of large size, having the crowns of the molar teeth smooth, marked with a longitudinal groove; with the bony polate contianed behind the last molar matrowing slowly backwards; with three phalanges in the index finger, the third phalanx termiuated generally by a claw; with the sides of the earconch forming a complete ring at the base; with the tail, when ,resent, inferior to (not contained in) the interfentoral membrane ; with the pyloric extremity of the stomach generally much elongated; and with the Spicelian lobe of the liver ill-defined or absent, while the candate is well developed.
Frugivorous; limited to the Lropical and subtropical pauls of the Eastern Hemisphere.

## Family Pteropodide.

The characters of the single family are those of the suborder.
Epomophorus, $i \frac{2}{2}$ (or $\frac{1}{2}$ ) $c \frac{1}{2}, p m 2 \frac{f_{3}}{3} m \frac{1}{3}$; tail very short or nonc, when present quite free from the interfemoral membrane; eccoad finger with a claw; premaxillary bones united in front. The six specics includo some of the most remarkable forms of fruiteatiag Bata. They are strictly limited to the African continent aouth of the Saharo, and 'ere readily distinguished by their remark. ably large and logg head and very expansible, often pceuliarly folded, lips, and by the invariable white tuft of hair which adorns tho margias of the ears; most of the species also are provided with peculiar glandular pouches, situated in the iutegument of the side of the neck near the point of the shoulder. These ponehes are rudimentary or quita absent in females, thane presenting an interesting secondary sexual character. In the males they are lined with n glandular membrane, from which long coarse yellowish hairs arise, nnid, projecling from the month of the puaches, form conspicuons epaulet-like tufts on the shonklera, hence the gencric name. Another and even still more remarkable secondary sexual character lias been reecntly discovered by the wriler in the males of $E$. franqueti, comptus, presithes, and monstrosus. This consists in the presence of a pair of large air sacs exteuding outwards on cach side from the pharynx beneath the integument of the neek, in the position shown in fig. 67. These sacs ere evidently capable of being greatly distended at the will of the animal, and their inflation probably oceurs under the same circumstnnces that the wattles of male gallinaccous birds swell up, namely, when engaged in courting the femoles. Other remarkable conditions in which these Bats appear to differ from all other opecies, is in the peculiar structure of the hyoid bones and larynx, may be found described in detail in the Writer's paper in the Proccedings of the Zoological Socicty for June 1881. These Bats appear to live principally on figs, the juicy
contents of which their roluminons lips and capacions mouths enalule them to swallow without loss.

Plcropus, $i \frac{2}{2}, \in \frac{1}{3}, p m 2 \frac{3}{3}, 1 / \frac{2}{3}$, with forty-one species, inchudes more than half the Plcropodidx. All are of large size, and the nbsence of a tail, the Jong pointed muzzle, and the woolty fur covering the neek render their recognition easy. They are the "Flying Foxes" of Europeans in ladia, and one of the species, Pt. cdulis, inlabiting Java, measuree 5 fect across the fully extended wings, and is the largest known species of the order. The species resemble one another closely in dentition, and are mainly distinguished by the


Fic. 60.-llead of ficrupus personalus. Gray. form of the ears and quality of the fur. It. scapulatus, from north-east Australia, approaches the species of the second section of the family, the Macroglossi. in the remarkable narrowness of its molars and premolars.
The geographical range of the genus is very peenliar, extending from Madagascar and its islands through the Seychelles to India, Ceylon, Burmah, the Malay Archipelago, sonthern Japan, New Guinea, Australia, and Polynesia (except the Sandwich Islands, Ellice's Group, Gilbert's Group, Tokelau, and the Low Arehipelsgo). Of the islands inlabited some are very small and remote from any contincnt, such as Savage Island in tho South Pacific, and Rodrigucz in the lndian Ocean. Although two species inlabit the Comoro lslands, which are scareely 200 miles from the African coast, not a single species is found in Airica; yet in India, speparated by thousands of miles of almost nnbroken occan, a species exceedingly closely allied to the common Madagasesr" "Flying Fox" isabundant. The Malay Archipe? gao and Australia are their headquarters, and In some places they occur in countless multitudes. Alr Macgillivray remarks of $P l$. conspicillatus:-"On the wooded slope of a hill on Fitzroy Island I one day fell in with this Bat in prodigious numbers, looking while flying in the bright smashine (so nousual for a nocturnal animal) like a large flock of rooks. On close approach a strong musky odour became anparent, and a 'loud incessant chattering was heard. Many of thic branches were bending under their load of Bats, some in a state of inactivity, suspended by their hind claws, others scrambling along among the bouglis, and taking to wing when disturbed." Oynonycteris, dentition as in Pleropus, but with a short tail, and the fur of the back of the neek not differing from that of the back, with nine species, extends into Africa, but has not been recorded from Allstralia or Folynesia; otherwise its distribution accords with that of Pteropus. 'C. xgypticeca inhabits the chambers of the Great Pyranid and other deserted buildings in Egypt, and is probably the species so generally figured in Ezyptian frescos. Borcia, with one species, B. bidens, from Borneo, tiffers from Cynonyctcris in having two ubper incisore only.

Cynopterus, $i \frac{2}{2}$ or $\frac{2}{7}, c \frac{1}{3}, p m \frac{8}{3}, m \frac{9}{3}$, muzzle shorter and grooved Jike Ptcropus in front, tail and fur as in Cynonycteris, with seven species, is almost limited to the Oriental region. C. marginatus is very common in India, and extremely destructive to ripe fruit of every description. To a specimen of this Bat obtained by the writer at Calcutta uninjured was given a ripe banana, which, with the skin removed, weighed exactly 2 onnces, The animal immediately, as if famished with hunger, fell upon the frait, seizing it between the thumbs and the index fingers, and took large mouthfuls out of it, opening the mouth to the fullest extent with extreme voracity. In the space of three hours the whole fruit was consumed. Next morning the Bat was killed, and found to weigh one ounce, half the weight of the food caten in three hours. Indeed the snimal when eating scemed to be a kind of living mill, the food passing from it almost as fast as devoured, ond opparently unaltered, cating being, as it were, performed only for the pleasure of eating.


Harpyia, $i \frac{1}{4}, c+$
$\mathrm{pm}_{3}, \mathrm{~m} \frac{3}{3}$, preniaxillary benes well-developped ond nnited in front, facial bones much clevated above the margin of the jaw, nostrils tubular, body and limbs as in C?nopteris, inclutes two specics
of very remarkable pllysiognomy（as may be seen from fig． 70 ）， limited to the Austro－Malayan subregion．

Ccplealoles，$i \frac{1}{1}, c \frac{1}{5}$, pin $\frac{3}{3}, m \frac{3}{3}$ ，premaxillary oones not united in froot，nostrils simple，muzzle short，index finger without a claw， tail short，includes two species，having the same distribution as those of Harpyia；in both the wing－mombune arises from the centre line of tho back，to which it is attached by a longitudinal very thin process of the integument；the wings are yuite naked，but the back covered by them is wall clothed with hair．

Fotopteris，$i \frac{2}{3}, c$ 支，pm $\frac{3}{3}, m \frac{3}{2}$ ，index finger withont a claw， wings from the spine，tail long．With this genus we enter the second division of the family，the Macroglossi，which have the facial part of the skull mach proluced，the molar tecth narrow，and scarcely raised above the gum，sod the tongue exccedingly long， attenuated in the anterior third，and armel with long recurved papille near the tip．The single representative of the genus， N．macdonaldie，inlusbits the Fiji Islands，Anciteum Island，and New Guinca．It is at once distinguished from all other Bats of this family by the remarizable leng＇l of its tail，which is neatly as long as the forcarm．

Eonychris，$i \frac{a}{3}$, c $\frac{1}{3}, p m \frac{3}{3}, m \frac{3}{3}$ ，is also representel by a single species，$E$ ．spulæa，from the Farm Caves，Moulnein，Burmah， Which has somowhat the apporance of a Cynonyctcris，but the absence of a claw in the index finger and the presence of the claracteristic tongue anl teeth at once distinguish it．
－Macroglossus and Mclonyctoris，each with a sincle species，are coosely allied；the inlex finger in both has a claw，but the number of the teeth is the same as in Ennycteris．Naccroglossus minimus is the smallest known specins of the saborder；it is much smaller than the common Serotine Bat of Europe，and its forearm is scarcely longer than that of the Lonreeared Bat．It is nearly as common in certain parts of India as Cynopterns marginatus（compared with which it is propertionally equally destructive to fruit），and extends eastward through the Malay Archipelago as for as New Ireland， Where it is associated with Mclonycteris melanops，distinguished from it by its larger size and by the total absence of the tail．

## SUBORDER II．MICROCHIROPTERA．

Insectivorous（rarely frugivorous or sanguivorous）Bats，of com－ paratively small size，having the crowns of tlis molar teeth acutely tuberculated，marked by transverse grooves，with the bony palato narrowing abruptly，not continued backwards laterally behind the last molar；with one rudimentary plalanx（rarely two phalanges or none）io the index finger，which is never terminated by a claw；with the outer and inner sides of the ear－conch commencing inferiorly from separate points of origin；with the tail，whea present， contained in the interfemoral membrane，or appearing upon its opper surface；with a simple stomacli（except in Dcsmodontes）；and with the Spigelian lobe of the liver very large，the caudate lobe generally small．Inhabiting the tropical and temperate regions of both hemispheres．
The Bats included in this suborder are mainly insectivorons， though some are frugiporous，and two species are koown to be sanguivorous．They fall into five natural families，which may bo arranged in two groups or alliances as follows：－
I．Tail contained within the interfemoral membrane ；the middle】air of upper incisors never large，alnays separated from each other by a more or less wide space．I．Vespertilioninc Alliance．
a．Middle finger with two osseous phalanges only（except in Myxopoda aurita，Thyrovtera tricolor，and Mystacina tuberculata）．
$a^{\prime}$ ．First phalanx of the midule finger extended（in repose） in a line with the metacarpal bone
$a^{*}$ ．Nostrils opening in a depression on the upper surface of the muzzle，surrounded by foliaceous cutancous appendages．
$a^{\prime \prime \prime}$ ．Tragus none；premaxillary bones rudimen． tary，represented by thin osseous lamina suspended from the nasal cartilages in the centre of the space oetrren the caniaes． Rhinolophidx．
$b^{\prime \prime \prime}$ ．Tragus distinct；premaxillary bones cartila－ ginous or small，separsted by a space in front．Nyctcridx．
$b^{\prime \prime}$ ．Nostrils opening by simple crescentic or circular apertures at the extremity of the muzzle，not surrounded $h$－distinct foliaceous cutaneons appendages；premaxillary borres small，lateral， separated by a wide space in front；tragus distinct．Vespertilionidæ．
1I．Tail perforating the interfemoral membrane，and appearing on its upper surface，or produced considerably beyoad the truncated measbrane ；the middle pair of upper incisors generally large and close together．II．Emballonurinc flliance．
$u^{\prime}$ ．First phalanx of the middle finger folded（in repose） on the dorsal surfacc．of the metacarpal bonc．（exceut in Joctilio and Mystacina）．
$c^{\prime \prime}$ ．Nostrils opening by simple circular or valvular apertures at the extremity of the muzzlo，not surtounded or inargined by foliaccous cutancous appendages；tragus distinct．Emballonurida．
b．Middle finger with three well developed osseous phalanges； first phalanv of the middlo fuger short；nostrils in the front part of the cutaneous aasal appendages，or opening by simple apertures at the extromity of the muzzle ；chin with warts or crect entaneous ridges；premaxillary bones rell－developed，united in front．Phyllostomidie．

## I．Vfestertilionine Alliance．

## Family V゙espeutilionide．

In the above synopsis of the fannilies of Micrachiroptera the Vespertilionidx take the central position；and this is，inleed，the place really occupied by them in the suborder．This fanily includes the conmon simple－faced Bats of all countries，of which the well－known Pipistrelle and the Whiskered Bat（V＇cspcrtilio mustacinus）may be taken as familiar types，and its species number about 150，considerably more thau onc－third the total number of the known species of Chiroplera，－xaimated at slightly over 400 （see Introd．to Dobson＇s Catal．Chiropt．Brit．Mius．，1878）．Besides the characters of the family given in the synopsis，it may be added that the skull is of moderate size，the nasal and frontal boues not much extended laterally or vertically，nor furrowed by deep depressions ：the number of incisors raries from $\frac{2}{3}$ to $\frac{1}{3}$ ，rarely（in Autrozous only）$\frac{1}{2}$ ，premolars $\frac{3}{3}$ or $\frac{2}{2}$ or $\frac{1}{2}$ ，ravely（in Vespcrugo noctivagans of North America）$\frac{2}{3}$ ；the upper incisors ars small， separated by a wide space in the centre，and placed in pairs or singly ncar the canines；the molars are well－developed，with acnte W－shaped cusps．The family is distributed over the temperate and tropical regions of both hemispheres．The genera may be cou－ veniently divided into four groups：－Placoti，Vespertiliones，Xini－ opteri，and Thyroptcri．

In the Plecoti，of which the common Long－eared Bat（Plecetus auritus）is the type，the crown of the head is but slightly raised above the face－line，the upper incisors are closo to the canines，and the nostrils are margined belind by grooves on the upper surface of the muzzle，or by rudimentary nosc－leaves；the ears also are geaerally rery large and naited．Of the five geacra，Plecotus，$i \frac{\pi}{3}$, $p m \frac{2}{3}$ ，has two species：－one the common Long－eared European Bat referred to above；the other，$P$ ．macrotis，restricted to North America，is distingrushed by tho great size of the glandular pro－ minences of the sides of the muzzle，which mect in the centre abovo and behind the nostrils．Synotus，$i \frac{2}{3}, m m \frac{2}{2}$ ，distinguished by deatition and by the outer margin of the ear being carried forwarls above the mouth and in front of the eye，includes the European Barbastelle Bat，S．barbastcllus，and S．darjclingcnsis from the Himalaya．Otonycteris，$i \frac{1}{3}, ~ p m \frac{1}{2}$ ，conaccting this group with the Vespertiliones through the tropical Scotophili，is repre－ seated by a siugle species， 0 ．hemprichii，from North Africa and the Himalaya．The next two gencra are distinguished by the presence of a rudimentary nose－leaf：－Nyctophilus，$i \frac{1}{3}$ ，pm $\frac{1}{2}$ ，with one species，$N$ ．timoriensis，from the Australian region；and Antrozous，$i \frac{1}{2}, p m \frac{1}{2}$ ，distinguished from all tho family besides by laving but two lower incisors，and from other Plccoti by the separate ears；the single specics，A．vallidus，inhabits Califoraia．
The group Vespertiliones，with eiglit genera，includes nine－tenths of the species．Of these one－thind are contained in the genus． Vesperugo，which is divisible into six subgenera according to the number of premolars and incisors；the latter vary from $\frac{2}{3}$ to $\frac{1}{3}$ in tho subgenera Scotozous and Rhogcëssa，and the premolars from $\frac{2}{2}$ to $\frac{1}{2}$（in the subgenus Lasionycteris $\frac{2}{3}$ ）．The Bats of this genus are geacrally easily distinguished by their comparatively thickly formed bodies， by their flat broad heads and obtuse muzzles，by their short，broad， and triangular，obtusely－pointed ears，ty their obtuse and usually slightly incurved tragus，by their short legs，and by the presence in most species of a well－developed post－calcaneal lobule．This lobule （which is supported by a cartilaginous process derived from the calcaneum）may act as a kind of adhesive disk in securing the animal＇s grasp when climbing over smooth surfaces．Vesperugo probably contains the greatest number of individuals among the genera of Chiroptera，and，with the exception of Vespertilio，its species bave also the widest geographical range，being in fact cosmopolitan；and one of the species，the well－known Serotine，$V$ ． （Vesperus）seroiinus，is remarkable as the only species of Bat known to inhabit both the Old and the New World；one，V．borealis， has been found close to tha limits of the Arctic Circle，and another， $V$ ．magellanicus，inhabits the cold and desolate shores of the Straits of JIagellan，doubtless the Bat referred to by Mr Darwin in the Vaturalist＇s Voyagc．Chalinolobus agrees with Vespcrugo in the dental formula，but is readily distinguished by the presence of $\theta$
well-defined lobe projecting near the angle of the mosth from the lower lip, and by tho unicuspilate upper inner incisors. The §pecies fall into two subgenera:-Chalinolobus, pm $\frac{2}{2}$, with C. lubcrculatus from New Zcaland, Tasmania, and Australin, and three other species from Australia ; and Glauconyetcris, pm $^{\pi}$, linited to southern snd equatorial Africa, with f. argcentatus and two other species, the Bats of this subgenus being especially remarkable for their peculiarly thin membrancs traversed by very distinct reticulations and parallel Jines. Scotophilus, $i \frac{1}{3}, 2^{m}$ ì, includes eight apecies, restricted to the tropical ond oubtropieal regions of the eastern l.emisphere, though widely distributed rithio these limits. The Bats of this penus, though dillicult to detine, and approaching certain of those of Vesperugo i. many foints, are distinguished especially by the single pair of unicuspidate upper iocisors separated by a wide space a ad placed elose to the canines, by the Fig. il.-licad of Scotophitus sinall transverse first lower premolar emarginatus. Dobson, Mocrished in between the canine and nogr.Asiat. Chiropt. recond premolar, and, generally, by their conical nearly naked muzzles and remarkably thick leathery meanbranes. Sc. tcmninckii is probably the conmonest speeies of Bat in India, and appears often oul the wing even before the sun has touched the hrizon, especially when the white auts are swarming, feeding eagerly upon them as they rise in the air. Su. gigas, from equatorial Afriea, with the forearm $3 \cdot 4$ inches, is by far the largest species. Nycticejus, with the aame dental formula os Scotophiths, is distinguished by the first lower premolar not being crushed in between the adjoining teeth, and by the comparatively much greater size of the last upper molsr. It includes only the common North American species N. crepuscularis, a smail Bst scarcely larger than the Fipistrelle. Atalaph,$~ i \frac{3}{3}$. $\frac{2}{4}$ or with five species, is also limited to the New World. The Bats of this genus are generally charseterized by the interfemoral membrane being nore or less eorered with hair (in the two commonest species, A. noveboraccnsis and $A$. cinerea, wholly thickly covered), and by the peculiar form of the tragus, which is expanded above and abruptly curved inwards. In these species, which have two upper premolars, the first is extremely small and quite internal to the tooth-row. The genus Harpyiocephalus, $i \frac{3}{3}, p m \quad \frac{2}{2}$, includes eight very remarkable small apecies, distiaguished at once by their prominent tube-like nostrils and hairy interfemeral membrane. IH. suillus from Java and neighbonring islands is the best-known species, and another closely a'lied, II. hilgendorff, has been described hy Professor Peters from Jopan. The remaining six apecies are known only from the Himalaya and Tibet.- All appear to be restricted to the hill tracts of the countries in which they are found. Next to Vesperugo, the genus Vespertilio, $i \frac{3}{3}, p m$ 予, includes by far the largest number of species, anounting to forty-three; it has, bowever, rather a wider geographical distribution in both hemispheres, one species at least being recorded from the Navigators' Islands. The species are easily recognized by the peculiar character of the pairs of upper incisors on each side, the cusps of which diverge from each other, by the large number of premolars, of which the second upper is always very amall, and by the oval clongated ear and narrow attenuated tragus. Kerivoula, with the same dental formula as Vespertilio, is easily distinguished by tho parallel upper incisors, and by the compara tively large size of tho sceond upper premolar.
 Ten species have been Fik. $7 \%$-Side and Front Vlew of the head of Ker $f$ described from the voula hardwickii. Dobson, Monogr. Astat. Chiropt. Ethiopisa and Oricntal regions, of which $K$. picta, from India and the Indo-Malayan aubregion, is the best-known, being well characterized by its brilliantly coloured orange fur and conspicuously marked membrane, which are varicgated with orange and black. The genus includes tho most delicately formed and most truly insectivorous, tropical, forest-haunting Bats, which appear to stand as regards the species of Vespertitio in a position similar to that oceupied by Chalinolobus with respect to Vesperugo.

The next group, Miniopleri, ineludes two genera, Natalus and Miniopterus, charaeterized by the great clevation of the crown of the hesd above the face-line, and by the upper incisors being separated frome tine canines and also in front. Natatus, with the same dental fo:mula and general external form as Kcrivoula, is distiaguishod b) the alort triangular tragua, and by the charaeters of the group enumerated above. It includes threo apecies, all restricted to South aud Central America and the West Indies ; the head of one, N. micropus, lately deseribed by tho present writer, is shown in fig. 73. 'Miniopecrus, $i$ h, $p m$, at ance distinguished by the shortuess of the first phalanx of the milule finger, ard by the great leugtb of the tail, which is wholly contained within the interfermeral
membranc, includes four species, restricted to the pastern hemt sphere. Of these the Lest-known,-M. schrcibcrsii, is very widel distributed, being found almost everywhere throughout the tropical and warmer temperate regions of the eastern hemisphere, specimens from Germany, Nadagascar, Japan, and Australia differing in no appreciable respect.
The last group, Thyropteri, iucludes also two genera, distinguished not only by the prescnce of an


Fig. T3.-Hearl of Natalus micropus. $\times 2$. Dobson, Proc. Zool. Soc., 1880. in the middle finger and an equal number of phalanges in the toes, but also by peanliar accessory elinging organs attached to the extremitics. In Thyroptcra tricolor, $i \frac{3}{3}, 2 m \frac{3}{3}$, from Brazil, these organs have the appearance of small, cireular, pedunculated, hollow disks (fic. 74), resembling in miniature the sucking cups of cuttle-fishes, and attached to the inferior surfaces of the thumbs and soles of the feet, with which the animal, is enabled to main. tain its hold when creening over smooth vertical surfaces (for an

$\alpha$

b


Fio. 74.-Sactorial Diaks in Thyroptera tricolor. o, side, and b, concave sniface, of thumb disk; $c$, foot with disk, and calcar with projectlons (all much enlarged). Dobson, Proc, Zool. Soc., 1876.
account of the minute anstomy of these clinging organs see the writer'a paper in the Proc. Zool. Soc., 1876, pp. 531-31). In Myxopoda aurita from Madagascar (type of the second genus), with the same dental formule, but differing much in the characters of the teeth and in the form of the ears, the whole inferior surface of the thumb supports a large sessile horse-shoe-shaped adhesive pad, with the circular margin directed forwards and notehed along its edge, and a smaller nad oceupies part of the sole of the foot.

## Family Nrcteride.

This small family, defined in the synopsis above, inclndes only


Fia. 75,-Megaderma pigas, $\times \$$. Dobson, Proc, Zook Soc., 1880.
two genera of Buts of very peculiar aspect, limited to the tropical sad subtropical farts of the eastern heniisphere.

Meynelerma, i ? pm \% or $\frac{1}{2}$, with Gre species, is distinguished by the absence of upler incisors, by the cylindrical narrow numzle sur. monnted by an crect naked cutancuus process (the nose-leaf), the base of which conceals the nasnl orifices, by the immense counate ears with large bifd tragi, and by tha great extent of the interfemoral membranc, in the base of which the very short tail is concealed. Af. gigas, from central Queensland (lorearm $4: 2$ inches), is not only tho largest species of the genus but also of the suborder. Mr. lyra, common in India (forcarmi 2.7 inches), las been caught in the act of sucking the blood, while flying, froon a small species of Iesperugo, which it afterwards devoured (sce Dobson's Monograph of the Asiatic Chiroptera, p 77), 80 that it is probable that the Bats of this genus do not confine thenselves to 1 usect prey elone, but also fecd, when they can, upon the smaller species of Bats and other small mammals.

Nycleris, $i \frac{2}{3}$, mn $\frac{1}{2}$, with seren species, differs so much from Mcyaderma that it may be cousidered the type of a separate subfamily. As in that genus, the frontal bones are decply hollowed ont and expanded laterally, the muzzle presents a similar cylindrical form, and the lorver jaw nlso projects, but the single elevated nose. leaf is absent, and instead of it the face is marked by a deep longitudiual sharp-edged groove extending from the nostrils (which are on the upper surface of the muzzle near its cxtremity) to the low band connecting the bases of the large ears; the sides of this depression are margined as frr back as the eyes by small horizontal cutaneous appendages. All the species resemble oue another closely, and are mainly distinguished by the form of the tragus, and tha size and relative position of the second lower premolar. With the exception of $N$. javonica, all the species are limited to the Ethiopian region.

## Fanily Rininolophids

In all the species of this family the nasal appendages are highly developed, and surraund on all sides the nasal apertures, which are sitnated in a depression on the upper surface of the muzzle; the ears are large and generally separate, without trace of a tragns; the premaxillary bones are sudimentary, are suspended from tho nasal cartilages, and support a pair of very small incisors; the molars lave acute W-shaped cusps; the akull is large, and the nasal booes mhich support the large nasal cutaneous appendages are much expanded vertically end laterally ; in females a pair of teatlike appendages are found in frout of the pubis; and the tail is long and proiluced to the postcrior margin of tha interfemoral mombrane., The family is found in the temperate and tropical perts of the easwarn hemisphere.

From whatever point of view the Fhinolophidx may be considered, they are eridently the most highly organized of insectivorous Bats. In them the osscous and cotaneons systems reach the most perfect development. Compared with theirs the bones of the extremities and the volar membranes of other Bats appear coarsely formed, and even their teeth soem less perfectly fittell to crush the hard bodies of insccts. The rery complicatcd nasal appendages, which evidently act as delicate orrans of special perception (ride supra), here reach their highest development, and the differences in their form afford valuable characters in the discrimination of the species, which rescmble one another rery closely in dentition and in the colour of the fur.

Subfamily I. Rhinolophinæ.-First toe with two, other toes with three phalanges each; ilio-pectineal spive not congected by bone with the antero-iufcrior surface of the ilium.

Rhinolophus, $\left.i \frac{1}{2}, ~ c \frac{\pi}{3}, p m \frac{2}{3}, m \frac{3}{3}, ~ n o s e-\right]$ eci $[$ with a entral pracess behind and between the nasal orifices, posterior extremity lanceolate, antitragus large, includes twenty-four species. $N$. luctus, forearm 3 inches, is the larecst species, inlrabiong elevated hill tracts in India and Malayana; $I_{\text {. }}$ hipposideros of Europe, cxtending iuto sonth England and lreland, forcarm 1.5 inches, is one of the smallest; and $R$.ferrum-equinum, foreartn 2.3 inches, represents the everaga size of the species, which are mainly distinguished from one another ty the form of the nose-leaf. The last-nancl species extends from England to Japan, and southward to the Cape of Good Hope.
Subfamily 11. Phyllorhininæ.Toes equal, of two platanges each;
 Asiar chipopt Douson, sonogr ilio-pectineal spine united by a bony isthmus with a process derived from the antero-inferior surface of the ilium.

Phyllorkina, with twenty-twospecies, and Rhinonycleris, Trisnops, and Calovs, with one cach, represent this subfanily. Phyllorhina, $i \frac{1}{2}, c \frac{1, j m}{2}$ or $\frac{2}{2}, m \frac{5}{3}$, differs from Fhinolophus in the form of the nose-leaf, which is not lanceolate behind (see fig. 76 ), and is unprovided with a central process covering the nostrils; the largest speries, $P h$. armigera. appears to be the most northerly,
having been taken at $\Delta$ moy in China, and in the Himalaya at an elevation of 5500 fect. Mlany are prorided with a neculiar frouthil sac behind the nose-leaf, rudimentary in females (see fig. 67), which the animal can evert at pleasure; the sides of this sac secrete a vaxy substance, and its extreanity snpports a pencil of straiglit hairs. Ithinonycleris, represented by $R$. aurautia from Australia, aud Triænops, by $T$. persicus, from Persia and eastrm Africa, are closely allied gencra; the latter specics is claracterized by the very remarkable forni of its uasal appendages and ears, and by the presence of a peculiar osseous projection from the proximal extremity of the second phalanx of the fourth finger. Colops (C. frithii), from the Bengal Sunderbunds, Jara, and Siam (in the roof of the great pagoda at Lios), is distinguished, not only by the rery peculiar form of its nose-leaf, but also by tha great length of


Fio. it.-Head of Plyhorhina calcarata: Dousoll, Proc. Zool. Soc., Is77.


Fic. 7s.-Head of Trisinops persicus. $\times 2$.
Dobsoa, Monogr. Asiat. Chirapt. the metacarpal bone of the index finger, as well as by the shortness of the calcanea and interfenoral membrane.

## II. Emballontrine Alliance. Family Emballoscridis.

The second group of families (as defiued above) into which the Microckiroptera may be divided iocludes the Emballonurids and Phyllostomida. The former is represented by thirteen genera, inclading sixty-five species. The Emballonaridz are generally easily distinguished by the pecnliar form of the muzzle, which is obliquely truucated, the nostrils projecting more or less in front beyond the lower lip, by th , first phalans of the middlo finger being folded in repose forwards on the upper surface of the metacarpal bone, by the tail, which either perforates the interfemoral membrane or is produced far beyond it, and by the upper incisors, which are generally a single pair separated from the canines and also in front. They are cosmopolitan like the Vespertilionida, but rarely extend north or south of the thirtieth parallel of latituds.

Subiamily I. Emballonurinæ. - Tail slender, perforating the interfemoral membrane, and appearing upon its upper surface, or terminating in it; legs long, fibulæ Tery slender; upper incisors weak.

Group I. Furia.-Tail terminating in the interfemoral membrane; crown of the head greatly elevated above the face-line; thumb and first phalans of the midule finger very short ; $i$ f. $c \frac{1}{1}$, $y m \frac{2}{3}, m \frac{8}{3}$.

Tro genera, Furia and Amorphochilus, each including ono species of very peculiar aspect, the latter distinguished from the former by the widely separated nostrils and great extension backwards of the bony palate. Habitat South America.

Group II. Emballonurs. - Part of the tail included in the basal lalf of the interfemoral membrane, the remaining part passing through and appearing upon its upper surface; crown of the head slightly elevated; thumb and first phalanx of the middle finger moderately long; $p m \frac{2}{2}$. With five geuera.

Emballonura, $i \frac{2}{3}$, cxtremity of tho muzzle more or less produced beyond the lower lip, forehead flat, contains fire species, inhabiting islanils from Madagascar through the Malay Archipelago to the Navigators' lslands. Colcūra, i 素, Fig. 79.-Ear of Emballonura extremity of the muzzle broad, forehead raffrayana. $\times 2$. Dobson, concare, has two species from east Africa and the Seychelles Islands. Khynchonycteris is distinguished from Coleura by the much produced extremity of the muzzle; the single species, $R$. raso, from Central and South America, is very common in the vicinity of streams throughout the tropical parts of these countries. It is usmally found during the day resting on the rertical
faces of rocks, or on the truuks of trees growing out over the water, and, owing to the peculiar greylsh colour of the fur covering the body and grownir in small tufts from the antebrachial membrane, couraterfeiting tho weathered surfaces of the rocks and the bark of the trees, casily escapes notice. As the shades of evenincr approach. it apnears early on the wing, flyinge close to the surface of the water, and seizing the minute insects that hover over it. Saccopteryx, $i \frac{1}{f}$, antebrachial membrane with a pouch opening on its upper surface, contains six species from Central nod South Aracizea; the wing-sac varies in position in diferent species. It is developed only in the male; in the femalo it is quite rudimentary. In the adult males of the different species a valvular longitudinal opening is found on the upper surface of the membranc. This opening leads into a small ponch (in some specics large enonglı to hold a pea), the interior of which is lined with a glandular membrone aecreting an unctuous substanco of a roddish colour with a strong ammoniacal odour. The presence of this sne in males only indicates that it is a scenndary sexual character analogous to the ohoulder pouches of Epomophortes, the frontal sacs of Phyllorlino, $k c$.

Tho next genus Trphazous, including ten specieq, inhabiting the iropical and subtropical parta of all the eastern hemisphere except Polynesia, forms the second section of this group, distinguished by its cartilaginous premaxillaries, deciduous pair of upper incisors, and by the presence of four lower incisors ouly. Most of tho species bave a necusiar glandulor sac (see fig. 80) placed between the


Fio. 80.-IIeads of Taphozous longimanus, ahowing relative levelopment of gular aacs in male and female. Dobson, Iroc. Zool. Soc., 1873.
bngles of the lower jaw, a sexual character; for, while nlways more developed in males than in females, in aome species, although distinct in the male, it is quite absent in tho female. An open gular sac is manting in beth sexes in T. melanopogon, but about Its usual position the openings of small pores may bo scen, the secretion exudiag from which probably causes tho hairs to grow very long, forming the black bcard found in many male specimens of this species.

Gronp 11I. Dicliduri.-This is represented by a single genus, Diclidurus, iucluding two species. 1). albus, from Central and Sonth America, $i \frac{1}{3}, ~ c \frac{1}{1}, \mathrm{pm} \frac{2}{3}, \mathrm{~m} \frac{3}{3}$, resembles the species of Taphozous in the form of the head and ears, but, besides other characters, differs from all other Bats in possessing a pecuhar pouch, upeaing on the centre of the iaferior surface of the interfemoral membrane; the extremity of the tail enters this, and perforates its fundus.

Group IV. Noctiliones.-This also is represented by a single genns and two species, Noctilio leporinus and $N$. clorsatus, $i \frac{2}{2}, p m \frac{1}{2}$, from Contral nad South America. The group connects the family Emballonuride with the Phylloolomides, possessing charanters common to both, but also so many remarkable special peculiarities as almost to warrant the formation of a separate family for its reception. Tho type, $N$. leporinus of Linnæns, is a Bat of very curious aspect, with strangely folded lips, erect cutancous processes on the chin, and enormous feet ond claws. The two middle incisors are closo together, and so lerge as to con. ceal tho small outcr onea, whilu in tho lower jaw there are but two small incisors. This epparent resemblaneo to a Ro. dent actually led tho great naturalist to remove this Fio. 81.-Skull of rinnopoma micro. species from the Brts end phylhm. X2. Dowson, Slonogr. Asial. placo it in lis oriler Gitioes or chiropt.
Rodents. Similarly the next group Rhinopomata, represented by a singlo species, $I$. microyhyllum, might nlso bo elevated into tlie rank of a lamily, for it is very difficult to determine its exact affinities, a kind of eross relationship attaching it to the Sycterides on tho one land nud to this family, in which it is Jere placed provisionally, on the other. This curious species, distinguished from all other Microchiropte a as well by the presence of two phalanges in the inclex fiuger es by its remntkably long and olender tail projecting far beyond the narrow interfemoral membrane, in. hahits tho subterrancan tombs in Egypt and deserted buildings arencrally from worth-cat Africa to Burmal.

Subfamily II. Molossinæ. --Tail thick, produced far beyomet the posterior margin of the interfenome membuno (execpt in Miystred cina) ; lers short and strong, with well-developed filulx ; uplre incisors strong. This subfamily jucludes all the species of Embullonutridx with short and strong legs and bivad fect-whereof the first toe (and in most species the fifth also) is much thicker than the others, and furnished with long carved hairs, -with well-developed callosities at the base of the thambs, nad with atingle pail of larso unper incisors occupying tho centre of the space between the canines. In all tho species the feet aro freo from tho wingmembrane, which dolds up very perfectly under tho forearm and legs ; the interfemoral membrane is retractile, being movable backwards and forwards along the tail, and this power of varying its superficial extent must confer upon these Bats great dexterity in quickly changing the direction of their flight, as when obliged ta double in pursuing their swiftly-flying insect pucy, which their extremely expansible lips cvidently emable them to secure with ease.

Croup 1. Molossi.-Tail producel beyond tho postcrior margin of the interfemoral membruinc.

Cheiromeles, $i \frac{1}{1}, c \frac{1}{1}, p m \frac{1}{2}, m$, 3 , hallux much larger than the other toes and separable from them, ears separate, is represented hy a siagle species, $C^{\prime}$. torquetus, of large size (forearm $\boldsymbol{s} \cdot 1$ inches) and very peculiar aspect, inlabiting the Imlo-Malayan subregion. This species is nearly naked, a collar only of thinly spread lanirs half surroundiag the weck, and is further remarkable focits chormons thront sae and curious nursing pouches. 'The former consists of a great semicircular fold ofskin forminga deep ponch round the neek beneath, concealing the oritices of large sulecutaneous pectoral glands which discharge an oily fluid of insuffernbly offensive satell.- The nursing pouch is formed on each side by an extension of a fold of stis.: from the side of the body to the inferior surlaces of the humerus and femur. In the anterior part of this pouch the mamma is placed. For figules of these throat sacs and notes on the uso of the nursing pouches see Calal. Chiroptera, p. 406, pl. $x \times i$.

Molossus, $i \frac{1}{2}$ or $\frac{1}{2}$, pm $\frac{1}{2}$ ol $\frac{2}{2}$, upper incisors close together in front, with ten species, is restricted to the tropical and subtropical regions of the New World. The woodeut of M. glaucinuts (fig. 82) exhibits tho general plysiognomy of tho Bats of this genus. obscurus, a small species, is very common in tropical America. It inhabits the hollow trunks of palms of houses. The males and females live apart (as, indeed, appears to be tho case in most if not in all species of Dats). In the bollow trunk of a pakm two colonies were Fig. 82.-IIcad of Molossus glaurfus. discovered, one consisting of from
 Doson, Proc. Zoor. Nuc., ivto. posed of females with a male here and there among them.

Nyctinomus, $i \frac{1}{3}$ or $\frac{1}{2}$, pm $\frac{3}{3}$ or $\frac{1}{2}$, upper incisors scparate la front, includes twenty-one species, inhabiting the tropical and sub. tropical parts of both hemispleres. The lips of the Bats of this genus are even more expansible than in Mfolossus, in Hathy of the species (as in the woodeut of the lead of N. macrstis, fg. 83) showing vertical winkles $N$. cestonii, one of the largest species, alone extends into Eurone, and has been taken aa far north as Switzerland. N. johorensis, from the Malay Peninsula, is remarkablo from tho extraodinary form crois. - Tead of Syellnomus max of its ears. N. brasilicnsis is nearly as common as If. obsewmes in tropical America, and extends farther nortlı (Califormia) and south than that species.

Group 11. Afystacinx. - Tail perforating the iaterfemoral nembrane, and oppearing upon its upper surface.

This includes a single genus mid speeies, Ifystacina tuberculata, a very peculiar form restricted to New Zealand, where, with Chatinotobus tuberculatus, it represents tho wholo indigenous mammalian fatana of the islands. There are thim distinct phelanges in the middle finger ; the greater purt of the what-membinne is excecdingly thin, but a narrow portion alonoz the forearm, the sides of the body, and the legs is remarkubly thick and leathery; bencath this thickence portion the wings aro folded, and it is ovidently analogous to the thickened part of the anterior winss in heminterous insects and to the clytra of the coleoplera. With the wings thus encased, this species is tho noost quadrupelal of Bats. Other peculiarities of structure are foumb in the remarkal lo ferm of the clawa of the thumbs and toes. Which lave such a small talon
projecting from ita concave surfince near the base, also in the sole of the foot and inferior surface of the leg, as shown in fig. 84. The plantar surface, including the toes, is covered with solt and very fax integument deeply wrinkled, and eacle toe is marked by a central longitudinal groove with ahort grooves at right angles to it,


Fio. 84.-Thumb and Leg and Foif of Jysfacina fuberculata (enlarged). Dobson, Proc. Zool. Soc., 1876.
as i:t tho genus Hemidactylus (Gceliolidx). The lax wrinkled integu. nent is continued along the inferior flattened surface of the anlilo and leg. These peculiarities appear to be related to climling labits in tho species. Sce the writer's remarks in Proc. Zool. Soc., 1876, p. 488.

## Family Payllostomide.

The Bats included in this family are readily distinguished by the presence of a well-develoned third phalanx in the middle finger, associated either with distinct cutuncons nasal appendages, or with well-developed central upper incisors, or with both. Unlike tho Rhinolophidx, their eyes are generally large, and the tragus well developed, maintaining alninst the same form throughoit the species, however much the outer parts of the body may vary. Their fur is of a dull colour, and the face and back (in the Sterodermatia especially) are often marked with white streaks, as in the Ptcropodida, of which they take the place in the westera bemisphere. A few species, probably all those with the tail and interfemoral membrane well-dereloped, feed principally on insects, while the greater number of the species of the groups Vampyri and Glossophargas appear to live on a mixed diet of insects and fruits, and the Desmodonles, of which two species only are known, are true blood. suckers, and hare their teeth and intestinal tract specially morlifiel in accordance with their habits. Limitel to the tropical and sultropical parts of Central and South America.
Subfamily 1. Lobostominæ. - Nostrils opening by simple apertures at the extremity of the muzzle in front, not margined by a distinct nose-leaf; chin with expanded leaf-like appendages.
It includes two genera. In Chilonycteris (six species) the crown of tha head is moderately elevated above the face-line, and the hasicranial axis is almost in the sanie plane as the facial, while in Normops the crown of the bead is greatly elevated above the face. liae, and the basicranial axis is almost at right angles to tbe facial ; $i \frac{2}{2}, p m_{3}^{\frac{2}{3}}$ in both genera. Tha latter genus contains two species, which, in their very peculiar physiognomy, ara probnbly the most remarkable among the many strange forms exhibitcd by the different species of this order.

Subfamily 2. Phyllostominæ.-Nostrils opening on the upper surfoce of the muzzle, the nasal apertures more or less surrounded or margined by well-develoned cutaneons appendages, forming a distiuct nose-leaf; chin with warts.

Group I. Vampyri.-Mazzle long and narrow in front, the distance between the cyes generally less than, rarcly equal to, the distance from the eje to the extremity of the muzzle; nose-leaf rell-developed, borse-shoc-shaped in front, lanceolate behind; interfemoral meinbrane well-developed: tail geoerally distinct, rarely absent; inner morgin of the lips not fringed; $i \frac{2}{2}$ or $\frac{2}{2}$, pm $\frac{3}{3}$ or $\frac{8}{3}$; molars with W-shaped cusps, usually well-developed.

Nearly all the species of Vampyri appear to be insectivorous, so chat the term applied to this group cannot be considered indicative of their habits. A few, if not all, probably supplement their insect diet with fruit. Vampyrus spectrum (the largest Bat in the New World, forearm 4.2 iuches) is said to be wholly frugivorons, and Jracrotus watcrhousii appears to prey occasionally on small spreics
of Bats, like Megredemna Ty: a of the eastem henisphere, which it resembles in many respects.
The species may be divided into two sections, occording os the tail is produced to the linder margin of the interfemomal membrane or perforates it and appears upou its upper surface. Those iacluded in the first scction fall into three genera, Lonchorhinn, Macrolus, nud Mfacrophylhum, tho first-named inclutling a very remarkable species, $L$. aurila, with an extraordinary lonǵ nosc-leaf and peculiarly large cars and tragí. In the second section are includal the genera Tamplrus, Lophostoma, Schizostoma, T'rachrops, Phyllodermit, Phyllostome, Tylostome, Minon, Crarollia, and Fhinophylla, all, with
 fum. Proc. Zool. Soc., 1866.
tinguished from one another clicfly by the form of the skull and the presence or absence of the second lower premolar: Tracheyops. Phylloderma, and the three last-named genera aru cacli represented by a siugle species. Phyllostoma liastatumr, forearm $3 \cdot 2$ inches, next in joint of size to fampmrus spectram, is a well-known species in South America; $I \boldsymbol{H}$. clongatuan (sce fig. 86) differs in its sinaller size and much larger nose-leaf. Carollia brevicaude, a small species, is generally foumd represented in col. lections, and externally so closely resembles Glossophaga soricina (of tho next groull) that it lias often been confounded with that species. It forms a connecting link between this group aad the next Fhinophylla pumilio, forcarm $1: 2$ inches, tail none, is the smanllest known species of the fanmily; it is further distinguished by the narrowness of its molars, which do not form W-shaped ensps, and by the very small size of the last upper molar, characters connecting it, and consequently the gronn, with the Sleuodermala.


Fio. 87 .-IIcad of Charonycteris merirana, shoning fiblilated tengue. Dousull, Cat. Chirout. Litht, Jus.
Group II. Glossophaga-Muzzlo long and narrow; tonguo remarkably long and extensible, much attenuated towards the tip, and beset witl very long filiforn recurved papillæ; lower lip with a wido groovo above, and in front margined by snall warts; hosen leaf small ; tail short or none; $i \frac{2}{2}$, mm $\frac{2}{4}$ or $\frac{3}{3}$ or $\frac{2}{2}, 3 n \frac{3}{3}$ or $\frac{2}{3}$ or $\frac{3}{2}$; tectly rery narrow; molars with narrow W.shaped cusps, sometimes indistinct or absent; lower incisors very small or deciduous.

The ten species included in this group represent seven gemera, which are distinguished principally by differsnces in the form and number of the teeth, nnd by the presence or absence of the zygomatic arclies. The form and position of the upper incisors are extremcly variable. In Glossonhaga and Phyllonyctcris the upper incisors form, ass in tho Vampymi, a contimous row between the canines; in Monophylla and Ischnoglossa they ore separated iuto pairs by a narrow interval in front; while in Lonchoglosse, Glossonycteris, and Cheronycteris they ara ridely separated and placed in pairs near the cauines; in the first fonr gencra the lower incisors are present (at least up to a certain age), in the last three they are deciduous even in yonth. The zygomiatic arch is wanting in Phyllonycteris, Glossonycteris, and Charonyctcris.
The typical species is Glossophaga soricina, which so closely resembles Carollia brevicauda, both in external form and dentition, that it lias frequently been confounded with it. Its long fibrillated tongue (which it possesses in commen with other splecies of the group) lerl Spix to describe it as a, very cruel blool-sueker (sanguisuga crudclissima), believing that it was uscd to increase the flow of blood. This view is, however, altogether without foundation, and from the observations of Osburn and others it is evident that the peculiarly shaped tongue is used by the animal, as in the case of the Macroglossi anneng the frugivorous Pleropodidx, to lick out the pulpy contents of fruits having hard rinds. The food of the species of thia group appears to ennsist of both fruit and insects, ond the long tongue may also be used for extracting tho latter from the deep corolke of certain flowers.
Group III. Stcnodermata. - Muzzle very short and genemlly broal in front the distance between the eyes nearly always exceed.
ing (rarely equal ta) the distance from the cye to the cxtremity of the muzzle ; nose-leaf shorh horse-shae-shaped in front, lancealate behind (except iu Brachyphylla and Centurio); interfemoral membrane alwaya concave belind; tail mone; inner murgin of the lips fringed with conical papillie; $i \frac{2}{\frac{2}{2}}$ or $\frac{2}{1}, 2 m \frac{2}{2}, m \frac{4}{3}$ or $\frac{3}{3}$ or $\frac{2}{4}$; premolars and molara very broad (except in Sturutioa), the latter with coacave or flat crowna margined extermally by raised cutting elleses.
Although the Stenodermata aro generally easily distinguished from tha Fampyri by tha peculiar shortness and breadth of the muzzle, and by the form of the molar tecth, certain species of the latter group ciasely resemble those of the former in external a ppearauce, agreeing almost absolutely in the farm of the nose-leuf, of the ears and tragus, and of the warta on the chin. These resemblances show that, while the form of the teeth and jnws has become modified to suit the foad of the animals, the extermal charactera, beiag but slightly afiected by this cause, have renained much the same, and now indicate their common origin. The faod of these Bats appears to be whally or in great part trea fruit. The twenty species lave been divided inte nine genera, distingnished ly the farm of tha skull ard tecth. Artibeus, with five, includes among them the well-kuown frugiverous Bat, A. perspicillathes of Linnens, sa common in callections. Stenoderma achradophilum, found in Jsmaica and Cnba, associated with the abave, and scarcely distioguishable externally except by ita very much smailer size, differs altagether in the absence of the harizontal plate of the palate bones. Sturnira litium, while agreeing with the above in the form of the posc-lenf nod ears, differs from all the species of the family in its langitudially-groaved nolars, which resemble thase of the frugivareus Pteropodidæ merechnsely than those of any other Bata; and the presence of tufts of long differ-
 Dobson, Cat. Chiropt. Drit. Afus. yet yet another character in camman still more remarkable, which can searcely be considered, like the teeth, the result of adaptive change. Centurio senex is the type of a genus distinguished from Stenoclerma and other genera of this group by the absence of a dis. tinct pose-leaf. This most ramarkable form stands alone amang the species of Chiroptcra, and, iodeed, in its peculiar sud gratesque physiognomy is uncivalled amoug known mammals.
Group IV. Desmodontes. - Murzie short and conical ; mose-leaf distinct; interfeapral membrane very short ; tail nane ; $i \frac{1}{2}$, pm $^{3}$ ? in $\ddagger$ or $\frac{0}{8}$; upper incisors very large, trenchant, occupying the whole gpace between the canines; premolars very marow, with sharpedged longitudinal crowns; molara rudimentary or none ; stomach greatly clongated, iutestiniform.
There are two gencra, Desmodus, withaut calcanaum or true molars, and Diphylla, with a short calcancum and with a single dudimentsry malar on cach side, -restricted to Ceotral and South Anserica. Desmodus rufus, the commener species, ia a littla larger than the Noctule Bat of Europe, nid abundant in certain parta of South Auerica, whero it is very troublesame owing to ita attacka upon domeatic snimals, sucking their blood and often leaving them much weakcned from repeated bleedinga. See Vampire.

## Forsil, Cmiroptera,

Fossil remains of Chiroptcra cxtend as far back as the Upper Eocene of Europa and America, if, indeed, the beda in which they have been faund are rightly considered as belangiag to that age. Of thesa Vesperugo (Nyctitherium) parasicnsis, described by Cuvier from the gypsum of Montmartre, is very like a small specimen of the widely distributed $V$. serotinzes; $V$. velox and priseus of tha sama subsection, and Nycticstes scrolinus, have becn characterized by Marsh from the Eocene of the United States, and Vespertilio morloti, Pictet, from that of Switzerland. From the Quercy lacustrine doposits comes Inhinolophus antiquus, Filhol, but these are very doubtully of Eacena age. Palronycteris (allied to Rhinolophus), with P. robustus, Vesperugo, with V. noctuloides and murinoides, and Vcspertitio," with $V$. aquensis, pracox, and insignis, have becn found in Mioceno beds of France and Germany. Pliocena bane caves have alsa yulded remsins, in ail cases closely sllied to specios now inhabiting the same countries. All these forms, however, exhibit os much specislization in their general structure as any existing specica of the same families, indicating (if the ago assigned to the dopasits can be trusted) that the first appearance of Chiroptera must be referrcd to a very remoto period.
Bibliography of Chiroptera.-G. E. Dobson, Catnlogus of the Chiropsera in the Callection of tbe British ITuseum, 1878 , including deseripllons of alletho speeten of Bats then known; subsequent papers by the same suthor in Arf. Brth. Assoc. Ado. Science. Proc. Zool. Noce, Ann. Mag. Naf. Hist,, and Bullet. Soc. Zool, do france, by Peters in Monatso. Ahind, Missenach. Bertin, and by nilficli Tiomas and J. Scully in Ann, Nray. Nat. Hist.; H1. A Robn, Necherches Auatomiques sur les Jammiferes de l'Ordro des Clisropirres, l'urls, 1s81.

## Order rodentia

Terrestrial, rarely arboreal or natatorial, diphyodont placental mammals of small size; with plantigrade a semiplantigrade, geuerally pentadactyle, unguiculate, rarely subungulate, feet; with clavicles (sometimes imperfect or rudimentary) ; with never more than tro incisors in the mandible, and without canines.

The unper incisors resemble the lower in growing uninterruptedly from persistent pulps, and (except in Layomorpha) agree with them in number; the premolars and molars are rooted or rootless, with tuberculated or Jaminated crowns, and arranged io an unbroken series; the orbits are not circumscribed by bone; the mandibular condyle is antero-pusteriorly elongated ; the intestine (except in 1 yyoxidx) has a large crecum; the testes are ingainal or abdominal ; the uterus is tw:o-horned, the cornua opening separately into the vagina or uniting to form a corpus uteri ; the placenta 2 s discoidal and deciduate; and the smuoth cerebral hemispheres do not extend backwards so as to cover any part of the cercbellum.

The Rodents form a very compact order, readily distinguished by their large chisel-shaped incisors, and by the absence of caoines. They include by far the greatest number of species (over 900 ), and have the widest distribution, of any of the orders of terrestrial mammals, being in fact cosmopolitan, althougle more abundant in some parts, as in South America, whicl may be considered their headquarters, than in others, as in Australasia and Madagascar, where representatives of a few genera of one family (Muridx) only are found, thus contrasting remarkably with the Insectivoru, which constitute at least half the mammalian fauna of Madagascar, but are without living representatives in South America.

If, as we have seen, the term eatomophagous ia applicable to most Insectivora, much more so, on the other land, may the species of this great order be defined as phytophagous, and this uniformity in their food and in the mode of obtaining it, namely, by gnawing, has evidently led to such corresponding general uniformity in structure, which is observable throughont the species, that with difficulty we obtain characters sufficiently salient for dividing then into genera and families. Although, like the Insectivora, they present much dirersity of habit,-一 some being arborea!, as the Squirrels, many species of which aro provided with cutaneous parachutes on which they glide from tree to tree; some cursorial, as the Hares ; some agile jumpers, as the Jerboas; some fossorial, as the great MoleRats; and some natatorial, as the Benvers and Water-Rats, - yet we do not find corresponding structural modifications comparable with those noticed in that order.


Fio. 89.-SIdo Vlew of Sknll of Cape Jumping liare (Pedefes coffer) x p. Platit premuxilla; Mx, maxilla: Ma, malar; Er, frontal; $L$, lachromal; Pu, partecal; dia, nosal: Sy, squimosnl ; Ty, tympanle; $t x O$, exnecipltal; $A S$, allephenold;
OS, orbliospheuold; Per, mustold bula, Flower, Osicol. Sfammal. OS, orblio spheuold: Per, mustold bula. Flower, Osicol. Sfammal.
The Rodent skull is claracterized by the great size of the premaxillary bones, which completely separate the nasals
from the maxillarics, by the invariable presence of zygomatic arches, aud by the wide unnconpied space existing between the alveoli of the incisors and the molar teeth, and (except in Lagomorpha) by the antero posteriorly elongated glenoid cavity. Post-orbital processes of the frontals exist ouly in the Squirrels, Marmots, and Hares; in all other genera they are rudimentary or altogether absent; the zygoma nerer sends upwards a corresponding proccss, and the orbit in all is freely contiouous with the temperal fossa; the lachrymal foramen is always within the orbital margin; in many species the infra-orbital foramen is very large (in some as large as the orbit), and


F16. 90.-Sknil of Jुystrix crisfata (fnt.). t. tempirat muscle; m, masscler. $m$, portlon of masseter transmitted through the infra-orbital foramen, the superior maxiliary nerve passing Gutwards bctween it and the maxillary boae.
transmits part of the masseter muscle ; the zygomatic arcla is rariously dercloped, and the position of the malar in it is used as a distinguishing character for grouping the fàmilies; the nasals are, with few exceptions, large, and extend far formards; the parietals are moderate, and there is generally a distinct interparietal ; the palate is narrow from before backwards, - -this is especially pronounced in the Hares, where it is reduced to a mere bridge between the prenolars,-in others, as in the great Rodent Moles (Bathye"ginæ), it is extremely narrow transversely, its width being less than that of one of the molar teeth; tympanic bulle ossem are always present and generally large ; in some genera, as in the Gerbilles (Gerbillinx) and Jerboas (Dipodina), there are supplemental mastoid bullæ which form great hemispherical bony swellings at the back of the skull (see fig. $89, P$ er) ; in these genera, and in the true Hares, the meatus auditorius is tubular and directed upwards and backwards. The mandible is characterized by its abruptly narrowed and rounded symphysial part supporting the pair of large incisors, as well as by tho small size of the coronoid process and great development of the angúlar portion.
The dental formula varies from $i \frac{2}{1}, c \frac{0}{0}, p m i \frac{3}{2}, m \frac{3}{3}$ (total 28) in the Hares and Rabbits to $i \frac{1}{1}, \mathrm{c} \frac{9}{0}, p m \frac{0}{0}$, $m \frac{2}{2}$ (total 12) in the Australian Water-Rats; but in the vast majority of tho species it presents striking uniformity, and may be set down typically as $i \frac{1}{2}, c \frac{0}{0}$, $p m \frac{1}{1}$ or $\frac{\circ}{6}, m \frac{3}{3}$. In Lagomorpha only are there more than a siogle pair of incisors, and in them the additional pair are small and placed quite behind the middle pair, ${ }^{1}$ and in this group alone does the enamel extend even partially to the back of the tooth; in all others it is restricted to its front surface, and so, by the faster wearing away of the softer stractures behind, a chisel-shaped edge is always maintaiued. Botl the upper and lower incisors are regularly curved, the upper slightly more so than the lower, and, their growth being continunus, should anything

[^174]prevent the normal attrition by which their length is regulated, as by the loss of one of them, or by displacement owing to a broken jaw or other cause, the mopposed unused incisor may gradually curve upon itself until a complete circle or more has been formed, the tooth, perbaps, passing during its growth through some part of the animal's head. The mulir tecth may be rooted or


Fir. 91.-Vertical and Longitudinal Sectlon tliroucl, Skull of Castor fiber, show ing for cercbral cavity. the freatly-developed turbinal lanıclise, the mode of Implantation of the lurge ever. growing chisel-edged incisor, and the curved ruotless molars.
rootless, tuberculated or laminnted ; and this dirersity of structure may be uoticed even in the same fanily. When there are more than three back teeth those which precede the last three have succeeded milk teeth, and must therefore be considered promolars. In some species, as in the Agroutis (Dasyproctidx), the milk teeth are long retained, while in the allied Caries (Caviidx) they are shed before birth.

There are generally nineteen dorsolumbar vertebre ( 13 thoracic and 6 lumbar), nod their forms vary in the different genera; in the cursorial and leaping species the lumbar transverse processes are generally very long, and in the Hares there are large compressed hypapophyses. The caudal vertebre exhibit as much rariety as in Insectivora, from their rudimentary condition in the Guinea-Pig to their great size in the Jumping Hares and prehensile-tailed Porcupines. The scapula is usually narrow, with a long acromion; the clavicles may be altogether absent or imperfect, as in the Porcupines, Cavies, and Hares, but in most species they are well-developed; the bumerus has no supra-condylar foramen, and the forearm bones are distinct; in most species the manus has fise digits with phalanges normally developed, the pollex tarely rudimentary or absent. In contrast to the normal condition of the pelvis in Insectivora, we find here largely developed ischiatic nad pubic bones, with a long usually osseons symphysis ; the femur varies considerably in form, and there is gencrally a well-defined third trockanter; in the Sciurine and Hystricine Rodents the tibia aud fibula are distinct, but in the Rats and other Murines, and in the Hares, these bones are united, often high up; the pes is much more variable than the manus, the digits varying in number from fire, as in the Squirrels and Rats, to four, as in the Hares, or even three, as in the Capybara Viscacha, and Agouti ; in the Dipodidx the metatarsals aro greatly elongated, and in some of the species, as in the Jerboas, they are ankylosed together.
The mouth is divided into tro carities communicating by a constricted orifice, an anterior containing the large incisors and a posterior in which the molars are placed, the hairy integument of the face being continued inwards behind ths incisors. This eridently prevents substances not intended for food getting into the mouth, as when the animal is engaged in gnaming through an obstacle. In the Hares and Pacas the inside of the cheets is hairy, and in some species, as in the Pouched Rats and Hamsters, there are large interual cheek pouches lined with the hairy integument, which open near the angles of the mouth and extend backwards belind the ears; in the New-World Pouched Tats (Geomyidx) the pouches opeis externally on the cheeks.

The tongue presents little of that variability in length observable in the preceding orders; it is characteristically short and compressed, with an obtuse apex never protruded beyond the incisors; in most species there are, as in Insectivora, three papillæ circumvallate at the base; and the apical portion is generally covered with small filiform prpillix, some of which in the Porcupines (IIystrix) become greatly enlarged, forming toothed spiues. The stomach varies in form from the simple oval sac of the Squirrel to the complex ruminant-like organ of the Lemming. In the Water-Vole (Arvicola amphibius) and in the Agouti (Dasyprocta agouti) it is strongly constricted betweer the œesophagus and pylorus; in the common Dormouse the œesophagus immediately before entering the stomach is much dilated, formiog a large egg-shaped sac with thiekened glandular walls, and in some other species, as in Lophiomys imhausi and in the Beaver, glandular masses are attached to and open into the cardiac or pyloric pouches. All Rodents, with the exception only of the species of Dormice (Myoridx), hare a cxcum, of ten of great leagth and sacculated, as in the Hares, Water-Voles, and Poreupines, and the loag colon is in some, as in the Hamster and WaterVole, spirally twisted upon itself near its commencement. The liver is typically divided in all, but the lobes are variously subdivided io the different species (in Capromys they are divided into minute lobules); and the gall-bladder, though present in most, is absent in a few. In most species, as in many Inscctivora, the penis (whieh is geverally provided with a bone) may be more or less completely retracted within the fold of integument surrounding the anus, and lie curved backwards upon itself under cover of the integument, or it may be carried forward some distance in front of the anal orifice, from which in the breeding season, as in the Voles and Marmots, the promiaent testicular mass separates it. The testes in the rut form projections in the groins, but (except in Lagomorpha) do not completcly leave the eavity of the abdomen. Prostatic glands and, except in Lagomorpha, vesieulæ semiuales are present in all. The uterus may be double, each division opening by a separate os uteri into a common vagina, as in Leporidx, Sciuridx, and Hydrocheerus, or two-horned, as in most species. The mammary teats vary in number from the siugle abdomioal pair of the Guinea-Pig to the six thoracico-abdominal pairs in the Rats. In the Octodontidx the teats are placed high up on the sides of the body.

The peculiar odour evolved by many Rodents is due, as in the Insectivora, to the secretions of special glands, which may open into the prepuce, as in Mus, Arvicola, Cricetus, sc., or iato the rectum, as in Arctomys and Aulacodus, or iato the passage common to both, as ia the Beaver, or into pouches opeaing near the anus, as in the Hare, Agouti, and Jerboa.

The iategument is generally thin, and the panniculus carnosus rarely much developed. The fur varies exceedingly ia eharacter, -ia some very fioe and soft, as in the Clinchillas and IIares, in others more or less replaced by spines on the upper surface, as in the Spiny Rats and Porcupines; in several genera, as in Xerus, Acomys, Platacanthomys, Echiothrix, Loncheres, and Echinomys, the spiaes are flatteacd. In the muscular structures the chicf peculiarities are noticcable ia the comparatively small size of the temporal museles, generally so largely developed in Insectivara, and in the great double masseters, which are the principal agents in gnawing; the digastrics also are remarkable for their well-defined central teadon, and in many species their anterior bellics are united between the mandibular rami ; the cleidomastoid generally arises from the basi-occipital, and the pectoralis majo: is connceted with the latissimus dorsi ; i: the Porcupioes and Hares the teadons of tho flexor digitorum longus aad flesor
hallucis longus are connected in the foot, whice in the Rats and Squirrels they are separate, and the flexor digitorum longus is generally inserted into the halluceal metatarsal. (See Dobson, Journ. Auct. Phys., vcl. avii.)

## Sunorder I. RODENTIA SIMPLICJDENTATA.

Rodents with two incisors only in the urper jaw, having their enamel confined to their front surfaces. The incisive foramina ara moderate and distinct; the fibnla docs nct articulate with the os calcis; and the testcs aro abdominal, and descend periodically only into the inguinal canal.

Section I. Seitromompea.
Zygomatic arch slender, chiefly formed by the malar, which is not supported by a long maxillary process extending backwards beneath it; post-orbital processes present or absent; infra-orbital


F1c. 92.-Skull of Arciomys monax.
opening small (except in Anomalurus); mandibla with the angulal part arising from the inferior surface of the bony socket of the lower incisor; clavicles rell-developed ; fibula distinct.

## Family 1. Anomalurides.

Arboreal Rodents, having their limbs connected by a cutaneous expansion supported by a cartilaginous process arising from the olecranon; with a long hairy tail having large scales on its inferior surface ncar its root ; with sisteen pairs of ribs, and without post. orbital processes of the frontals; pm if molars not tuberculate,. with transverse enamel folds. Ethiopian.


Fic. 93.-Anomalurus fugens (reduced). Alstun, Proc. Zool. Soce, 1878.
Anomalurus, with (?) five species from West Africa, alone represents the family: The peculiar caudal scales, which evidently assist tho animal in climbing, and the position of the cartilaginons support of tha parachute, ara well shown in the abore woodent (fige 93).

F゙umly 2．Sciurid．s．
Arboreal or terrestriak Rodents，with cylindrical hairy tails， without scales，and with twelve or thirteenp pairs of ribs．Skull with distinct post－orbital processes；infra－orbital opeaing small； palate broad；pma $\frac{?}{2}$ ；first upper premolar very small or deciduous； inolars rooted，tubercular．
－Subfamily 1．Sciurines．－lacisors compressed，form slender， tail Jong and lairy（＇l＇rue Squirrels）．Cosmopolitan（excludiuğ Anstrulian remion）．

There are four gencra．Pleromys，－limbs united by a cutaneous expansion forming a parachute，the supporting cartilage of which aprings from the carpus，－includes the Flying Squirrels of bath liemisplices．Sciurus，with more than eighty species，comprises the true Trce Squirrels．To this group also belong the Short－eared Squirels of the gemera lerus and Tamias；the first－named， distincuishal from Sciurus by possessing oaly two pairs of mam－ mary teats，by the comparatively sloort tail，and by the fur being mixed with flattened spines，includes a few African species which live in bumows；Tamias，separated by the presence of large internal check－pouches，includes the vell－knewn Grouad Squirrels of North America，of which one species（T．asiaticus）extends into North Lurone and Asia．See SQtiditel．

Subfamily 2．Arctomyinæ．－Incisors not compressed；form stout ；tail short（Narmots）．Palæarctic and Nearctic．

Spermophiles，distinguished by its large cheek－pouches and by the absence or ridimentary condition of the pollex claw，resembles Timias in the slender form of the body，and conaects the Marmuts with the true Squinels．The distribution and habits of the species are similar to these of Tumices．Cynomys，with shallow cheek－ pouches，long pollex claw and stout form，includes the well－known Prairie Dorrs peculiar to North America，which live together in large commuaities，inhabiting burrows which they excavate at short distances apart ；thicy feed on the buffalo－grass which covers the plains．The small hurrowing owl（Athone cunicularia）and the rattlesnake are often found inhabiting their burrows，the former prouably arailing itself of the convenience of a ready－mate hati－ tation，the latter coming there to feed on the young Marmots． Arctomys，distincuished by its rudimentary pollex，includes the true Marmots．See Marmut．

## Family 3．Harlodositide．

Terrestrial Rodents，distinguished from Sciuridaz by the absence of post－orbital processes，the depressed form of the skull，and the raotless molars．Premolars＇f，the first upper one small．
Haplodon，with $H$ ．rufus，from North America west of the Rocks Jountains，alone represents the family．The habits of the single species are similar to thase of the Prairie Dog．

## Family 4．Castorid．玉．

Natatorial Rodents，with massire skulls，witheut post－arbital processes，with mandibular angle rounded，and with semi－rooted or rootless molars with reeatering enamel folds；$p m \frac{1}{1}$ ．

Castor，with one species only，C．fibcr，the Beaver of the northern parts of Asia，Europe，aud America．Tha ppper molars aro subequal，each with one internal and two exteraal enamel folds； the stomach has a large glandular mass situated to the right of the cesophageal orifice；the anal and urethro－genital orifices open within a common cloana；the tail is broad，horizontally flatteaed，and naked；sad the hind feet are webbed．See Beaver．

Section IT．Mromorpha．
Zgcomatic arcb slenler，the malar rarely extending far forwarils， and usually supported below by the long zygomatic process of the


Fio．94．－Skull of Fiber zibetheczo．Natural size
naxillary ：mo post－orbital processes；infra－orlitsl opening varie able；mandille with the angular part arising from the inferior surface of the boay socket of the lower incisor lexcept in

Eathyoryina）；clưlcles well－develeped（exccutin Lophiomys）；tibla aud hlula united．

## Fumily 1．Mroxid．e．

Arboreal Rodents，witll long lairy tails，large ejes and ears，and short forc limbs．I＇he intestinc is without a cæcum ；the skull has contracted frontals；the infin－orbital forsmen is moderate，high，snd narrow；and the mandible has a long and sleader coronoid process． Pn $\frac{1}{3}$ ；molars roated，with transverse enemel plates．Paloarctic and Ethiopian．

There are four gencra：－Myoxus，with $1 /$ ．glis of Europe，with bushy＂，distichous tail，simple stomach，and large molars with well． marked enamel folls；d／uscardiaus，with $\mathrm{NI}_{\text {．arcllancrius，tho }}$ common Dormouse，clistinceuished by the cylindrical bushy tail and thickened glandular walls of the cardiac extremity of the cesophagus； Eliomys，with about six species，with tufted and distichous tail， simple stomacl and smaller noolar tcelli with concare crowns and faintly marked enamel folds ；and Graphiurus，with two species， witl short cylinclical tail ending in a peacil of hairs，and vert small molers almost without trace of emanel folds．The Dormica form a very natural family，distinguished from all ather Rodents by the sbsence of a cecum．In their habits and form they evidently closely approach the Squircls．？

## Family 2．Lophiomyide．

Arboreal Rodents，with rudimentary clavicles and rootea tuberculate molars．Premolars none．Skull murine in form，but the temporal fossa are conipletely arched over by thin plates arising from the temporal ridge and malar bene．latestine with a smal сæсип．


Fig．95．－Lophiomys imhausi（reduced）．A．Milne－Edralds
Lophionzys，with $L$ ．imharsi（fig．95），alone represents the Gamily．This very extraordinary species from north－east A frica differu from all other Redents in the peculiar granulated plates which cover the temporal fosse，and from all the species of the section ia the rudimentary condition of the clavicles os well as in the pessessiou of an opposable hallux．The hair is very peculiar in structure，an forms a crest along the back and tail．For full description see A． Milne－Edrards，L＇Institut，xxxp．p． 46.

## Family 3．Moride．

Rodents of various habit，but gencrally tercestrial ；with con－ tracted frontals，with the lower root of the maxillary zygomatic process more or less flattencd into a perpendicular plate；with a short and slender malar，geucrally reduced to a splint between tha maxillary and squamosal processes；with（in typical forms）a high， perpendicular infra－orbital foramen，wide above and narrow below； with compressed lower incisors and roated or rootless melars， tuberculate or witli angular enamel folds．Premolars none（except in Sminthinæ）；pollex rudimentary ；tail geatrally sub－naked aud scaly．

This large family includes mare than one－third of all the species of Roilents，and is represented by thirty－ive genera of cosmopelitan distribution．These fall into tro sections corresponding to the rooted or rootless coadition of the molars．

## 1．Molars rootcd．

Subfamlly 1．Sminthinæe．－Pm $\frac{1}{1}$ ，in $\frac{3}{3}$ ；infra－orbital opening subtriangular，widest below；iacisive foramina loag．

Sminthus，with one species，S．ragus，a lat－like Rodent inhalit． ing northera A sia and Europe．
Subfamily．2．Hydromyinæ．$-\mu$ ，divided into transverse lobes；infrsorbital opening cresce $0^{\circ}$ ；ic，$\theta$ вarcely narrowed above； zaesive foramina very suaall．

Hydromys, with tro species from Australin, Tasmania, and New Guinen, includes the Water-Rats of the Australian region, with partinlly webbed toes. They are distinguished frow all viict Rodents by the small number of their molars.
Subfanily 3. Platacanthomyinæ.-M , mith transverse lamine ; fur mixed with datatened spines; thil densely hairy.

Platacanthomy/s, with $P$. lasiurrus. a small Dormonse.like species from western India, inhabiting the recky mountains of Travaneore.
Subfarnily 4. Gerbillinæ.-Incisors marrow, molars with transverse lamine: auditory buile ossere usually large; himillims elongated ; tail generally long and hairy. l'alwaretic, Indian, and Ethiopian.

Gerbillus, with nearly fifty species, has a range cooxtensive with that of the subfamily. Puchyeromys is distinguished by the cnormous size of the aulitery bullx, as well as by the short fleshy club-shaped tail. Afystromys, Otomys, and Dasymys differ in the form of the molars, and aro represented by a few speeies, all from Sonth Africa.
Sublamily 5. Phlæomyinæ.-Incisors broad, molars with transrerse lamine; claws large. Indinn.
Phlaomys, with P.cumingii from the Philippines, ard Nicsokia, with cight species widely distributed throughout the Indian licgion. The latter (distinguishod from the former genns by the short, subnaked, scaly tail) includes the Great Bandicoot Rat of India (N. bandicota).

Subramily 6. Dendromyinæ.-Incisors conrex in front. molars tuberculate; ears hairy; claws leng. Ethiopian.
Three genera, Dcndromys, Stcatomys, and Lopihurmys, incinde several species of small Mouse-like Fodents with the habits of Dormice generally, though some burrow in corn-fields.
Subfamily 7. Cricetinæ.-Molars tubereulate. Large interna! cheek-pouches. Palæaretie and Ethiopian.
Of the three genera, Cricclus, Saccostonits, and Cricctomys, the last is distinguished from the others by the grooved upper incisors, while Saccostomus is separated from Criccuss by the tubercles of the molar teeth being arranged in threes. The cheek poucles in Cricctus are very large, and their walls are connected with mnscles orising from thic lumbar vertebre. The best-known species is C. frumentarius. See Mamster.

Subfamily 8. Murinæ.-Molars tuberculate, at least in youth. Cheek-pronches absent. Tail sealy, more or less naked. Cosmopelitan.
This includes the tyrical murine forms, divilet into fifteen genera with over three hundred species, of which nearly half, however, aro contained in the genus Mus. M. decumenus, the common Grey Rat, and M. musculus (see Mot'se) are familiar examples which have been introduced in ships into almost every part of the habitable world. In Acomys the skull and teeth are ns in Mhes, but the fur is nixed with sharp flattened spines. A. dimidiatus presents the appearance of a little Hedsehog when its spines are erected; it inlabits the stony deserts of Arabia letrea and Palestine, and fecls on bulbs. Echiothrix, UTomys, and Hapalotis, the latter-with about a dozen species, are limited to the Australian region. Brachytarsomys, Nesomys, Hallomys, and IIynogcomys, each with one or two speetes, are peculiar to Madarascar, where they alone represent the order. Drymomys, Holochcilus, Ochetodon, and Hespcromiys are New-World genera, thz last-named including many species representing the Old. World Mice, hat distinguished by the indenting enamel folds of the molars. Of the remaining genera, Ficherodon, with grooved incisors, inclndes two very remarkable Mablit-like species, one inhabiting Patagonia, the other Tierra del Fuego.

## 11. Jolars Scm

Snbfamily 9. Arvicolinæ.-Molars composed of triangular prisnss ilaced altermately; limbs moderate; tail moderate or short, hairy. Polearctic and Nearctic.
Arvicola, with over thirty species, ineludes the Voles, of whieh the Field-Vole (A. agrostis) and the Hinter-Vole (A. amphibius) are well-known examples (see Vole). Dfyodes, distingnished by the hairy foot-sole, includes two species, of which M. Icmmens, of the Scandinarian Peninsula, is remarkable for Its extraordinary migrations (see Lemmang). Fiber is represented by a single large splecies, F. zilcelhicus (see fig. 94), the Musk-lat, or Musquash, a Beaver-like Water-Rat with welbed toes, but a laterally flittened tail, inhabiting the banks of rivers and lakes in North America, and construeting dome-roofed dwellings like those of the Beaver; it is much hunted for its finr.

Sublamily 10. Siphneinæ.-Molars as in Arricolizac; form cylindrical ; ear-conch rullimentary; limbs and tail very short. lalearetic.
Sllobius, with allort claws, conncets the species of this subfamily of fossorial Mole-like Rodents with the Areicolina. Siphncus, on the other land, leads to the next fanily, which includes the true Mole-liats: thuc species, whieh elicefly inhanit northern A sia, elnsely ressmble the Golden Moles (Chrysochloris) in general form and in the: great development of the claws of the fore teet (compare fig. 90 with fig. 64, $b^{4}$. $4(50)$ )

Kodent Moies, with very small or rulimentary eyes and earconclis, large clavs, and short or ruilimentary tail. Form cylindrical. Ineisors large; molars rootcd. with re-enterind enamel folds; palate narrow.
Subsamily 1, Sparacinæ.-Angular part of the mandibie arising from the lower edge of the socket of the lower incisor. I'almaretie, Tnuiañ; and Ethiepian

Spalax, with S. lyphllus of senth-cast Europe, agrees with the insectivorons Golden Moics in the complete external abscuce of tho cve which is cevered by the bainy skin, showing sinilar adaytive


Fig. 96.-Siphncus armandii (reducel). A. Mince-Eduards, Nammif. Tibet.
modification in widely removed spenies. In Fhizomys, incluting several species frem China, Tibet, Malay Ieninsula, and easten Africa, the eye is very small.
Subfamily 2. Bathyerginæ. - Angular part of the mandihle arising from the side of the socket of the lower incisor. Ethiopian.
Bnthycrgus, with B. maritimus, the Great Rodent-Mele, inhabiting the sand-dunes along tho coast in the vicinity of the Cape of Good Hope, is distinguished chiefly by its grooved inessers from the other species included In the genera Gcorychus anil IIcliophobius, the former with several, the latter with one spacies, and differing from both in the presence of two or three premolars.

## Family 5. Georrtide.

Terrestrial or fossorial Rerlents, with large clieck-pouches opening on the chceks outside the mouth. The squamosal bones are much expanded, and the malars extemel forwards to the lachrymals. Pm $\frac{1}{1}$; molars roeted or reotless. Nearctie and Neotropical.
Sublanily 1. Geomyinæ.-Inclsarshrond; masteil not appenring on the top of the skull; eyes sinall; ear-couch rudimentaly; limbs short, subequal. Fesserial.
Gcomys bursarius, the common Pouched Rat of North America, witl deeply.grooved incisors, inhabits the plains of the 3 i ississipri, living in burrows like the Mole. Four ollaer snecies from the Southern States, Mexico, and Central Ameriea are recoanized. Thomonys talpoincs, with plain incisors, extends all over Canada and North America west of the Rocky Monntains.
Subramily 2. Heteromyinæ.-- lucisors narrow; mastnid appear. ing largely oin the top of the sknll ; cyes and ears moderate or large; Phind limbs and tail elongated. Terrestrial.
Dipodomys has the molars rootless; $D$. phillipsi is the KangarooRat of the ciesert regions east of the Foeky Mountains. Peroynnelhus and Heteromys have rootel molars; the latter gemus is distinguished by the presence of flattenel spines amoug the fur, with species extending into South America,

## Frmily G. Dimodide.

Terrestrial leaping Rodents, of slenter form, with elongated hind limbs. The incisors are conipressed, the molars have transterso enamel folds, the infra-orbital opening is rounded and very large, the malar ascends in front to the lachrymal in a flattened perpendicular plate (see fig. 89, p. 415), and the mastoid part of the auditory bulla is usually greatly leveloped.
Subfamily 1. Zapodinæ.-Molars rooted; cervical vertelire fres ; metatarsals separate ; hind feet with five digits. Nearctic.

Zapus hudsonius, the American Jumping-Douse, extends over almost the whole North-American continent from Labrador to Mexico.
Subfamily 2. Dipodinæ.-Molars rooted; cervical vertelrex more or less ankylosed; metatareals unitell; lind fect with thrce functional digits only. T'alearetic and Ethiopian.
This includes the truc Jerboas. It contains three gencra: Dipue
with three toes, and Alactaga and Platycorcomys with fire, the lastnamed distinguished by tha total absence of premolars, comprising many species extending from Siberia to Nubia.

Subfamily 3. Pedetine.-Molars rootless; cervical vertebre free; metatarsals separate; lind feet with four digits. Ethiopina.

Pcdetes caffer, the Cape Jumping Fare, by far the largest species of the family, extends from Mozanubique and Angola to the Cape of Good Hope. Sco Jeriboa.

## Section IIJ. If ystricomorpid.

Zsgomatic arch stout; malar not supported below by a continua. tion of the maxillary zygomatic process; infra.orbital opening jarge ;


Fio. 97.-Skult of Hydrochoerus capybara (reduced).
mandible with the angular part arising from the outer side of the bony soeket of the lower incisor; clavicles perfect or imperfect; Gbula distinct.

## Family 1. Octodontide.

Terrestrial, rarely fossorial or natatorial Rodents, with perfect clavicles and long incisive foramina extending into the maxillaries. Malar with an inferior angle; molars with external and interual enamel folds; mammary teats placed high on the sides of tha body.
Subfamily 1. Ctenodactylinæ.-Molars seni-rooted; mslar as in Dipodiber; the two inner toes of the hind feet with a horny comb and rigid bristles. Etbiopian.

Ctenordactylus guendi and Pectinator spefeic, both from North Africa, alone represent the subfamily; the peculiar comb-like ioner toes are used in dressing the soft fur.

Subfamily 2. Octodontinæ. - Molars semi-rooted or rooticen with simple enamel folds ; fur soft. Ethiopian and Neotropical.

Thera are six genera, includiag several speeies of Rat-like Rodeats. Octodon cumingii, common in Chili and Peru, about the siza of a Rat, lives like Rabbits in Jarge communitics. Pctremys typicus is the only African representative.

Subfamily 3. Echiomyinæ. Molars semi-rooted or rooted, with deep, curved enamel folds ; fur more or less harsh, often mixed with spines. Neotropical and Ethiopian.

Aulacodus, with A. swinderianus, the Ground-Rat of western Africa; the remaining nine genera are all Neotropical. Of these Myopotamus includes $M$. coypu, about 2 fect in leggth, tha largest species of the family, common in South Americn, living in burrows near water, and feeding on aquatic planis. Capromy/s pilorides, nearly as large, is arboreal in habits, and inhabits Cuba and Hayti, whare it is the largest indigenous mammal; the species of this genus are remarkable for tha manner in which the liver is divided into mioute lobules. Plagiodontia xdium is peculiar to Hayti and Jamaica, and in the latter island (besides Bats and Mice, the latter probably introduced) appears to be the only indigenous mammal. In Loncheres and Echinomys most of the species have the fur mixed with flattened lanceolate spines.

## Family 2. Hystricide

Terrestrial or arboreal Sodents, of stout form, with subequal limbs and more or less spiny interament. Malar without an inferiorangle; the facial part of the skull short and broad; molars with external and internal enamel fo!ds.

Subfamily 1. Spingurinæe. - Molars rooted; clavicles perfect; soles of feet tuberculatel; teats four; tail geaerally prehensilc. Arboreal. Nearctic and Neotropical.
There are three genera, including several species. Of these Ercthizon dorsalus, the Urson, is distributed all over the forest regions of North Americi ; Syncthercs (=Cercolates) prehensilis, the wrll-known prehensile-tailed Poreupine of South America (Gfo. 98), las the whole upper surface of the body protected by long white-tipped spines; Chalomys subspinosns is clothed with strong Wary bristles; in the last two gencra the feet have four digits only.

Subfanily 2. Hystricina.-Molars scmi-rooted; clavicles mperfect ; soles of fect sninotle; teats six; tail wot preliensile. I'errestrial. l'alæarctic, Indian, and Ethiopian.

Hystrix cristata, the Common Porcupine of southern Eumpe and northern Africa, is tyjucal of this genus, which inchules scveral other


Fig. 58 -Synetheres prehensilis.
species from the Jndian regiou. The spines are cylindrical, the tail sliort and covered with spines and slender stalked open quills. An Atherura fasciculata of the Malay Peninsuia the spines are flattened, and the tail is long and scaly, with a tuft of compressed bristles. A closely allied species, A. africana, inhabits western Aftica. Sco Porcupine.

## - Family 3. Chinchillide.

Terrestrial Rodents, with elongated hiod limbs, busly tails, very soft fur, and perfect clavicles. The malar is without an inferior angle, and extends forwards to the lacrymal; the palate is contracted in front and deeply emarginate behind; the incisors are short, and the molars divided by contiauous folds into transverse laminæ. Neotropical.

This small iomily includes only three species, divided ioto as many genera. Chinchilla lanigera and Lagidium peruanum are restricted to the alpiae zones of the Andes from the northern boundary of Peru to the southern parts of Chili, and Lagostamzis trichodactylus, the Viscacha, to the pampas from the Uruguay river to the Rio Negro. In Chinchilla the foro feet have five and the hind four digits, the tail is long and busly, and the auditory bulle are enormous, appearing on the top of the skull ; Lagidium has four digits in both fore and hind feet, and Lagostomus three only in the hind feet, while the auditory bullæ are nuch smaller. Sce Chinchilla.

## Family 4. Dasyphoctidee.

Terrestrial Rodents, with subequal limbs; hoof-like claws, short or obsolete tail, and rudimentary clavicles. Mandibular masseteric ridge obsolete; palate broad; incisors long; molars semi-rooted, with external and internal enamel folds. Neotropical.
With two genera:- Dasyprocta, including several species of slenderlimbed, subungulate Rodents with thrce hind tocs, inhabiting Central and South America, one ( $D$. crastata) extending into the West-Indian Jslands; and Celogenys, with five hind toes, remark. able for the extraordinary development of its zygomatic arches, which are enormously expanded vertically, forming great convex bony capsinles on the sides of the face, enclosing on each side a large cavity lined with mucous membrane internally, and communicating ly a small opening with the mouth ; $C$. pace is about 2 feet long, and, like the snecies of Dasy/procta, lives generally in the forests or along the banks of rivers.

## Family 5. Dinomyine.

Terrestrial Rodents, distinguished from Dasyproctidx by the cieft upper lip and rather long and bushy tail, and by the presence of four digits in the fore and hind fect. "The manubrimm is broas ; the optic foramina are conlluent, the incisors broad and the molars rootless, with folds dividiag them into transvarse lobes.

This family inclucles but a snggle species, Dinomys bornickii, known only from a single specimen obtained in l'eru, which resembles C'alogenys paca in the general form of its body and in size. It is regarded by its describer, l'rofessor Peters, as a connect. ing link between the fanilics vclodontidæ, Chinchillidx, Dusymoctidx, and Caviida.

## Fumity 6. Cariidem

Terrestrial or matatorial Rodents, with slort incisors, strong mandibular masseteric rilges, long and curved paroceipitals, and palate contracted in front. Fore dect with four digits, lind feet with three; clavicles imperfect: molars divided by enamel folls into transperso lobes; milk teeth sled beloro birth. Other characters as in Dasyproctuda. Neotrojical.

Cavia, limbs and ears sloort, suhequal, tail none. includes several species widely distributed thronghout South Ameriea, extending even to the Straits of Magellan, from one of which (C. aperca, prob2bly) the common Guinea-l'ig is derived. Dolichotis has the limbs and ears long, tail very short, with $D$. pratagonica, a large species, mearly 3 feet long, inhabiting the gravelly plains of I'atagonia. The palate is so much contracted in front that the premolars of opposite sides touch by their antero-intermal edges. Hiydrocharus, with all the feet fully webbed, also jncludes a single species, which is the largest of living Rodents. The sknll (fig. 97) is distinguished, :ot only by its great size, but also by the enormous development of the paroccipital processes. See Cavy and Carybara.

## SUBORDEF. II. RODENTIA DUPLICIDELJTATA.

Rodents with four incisors in the upper jaw (two of them very small, and placed directly belind the large militle pair), the enamel of which extends round to their posterior surfaces. At birth there are six of these incisors, but the outer one on cach side is soon lost. The ineisive foramina are large and nsually confluent; the bony palate is very narrow from befere hackwards; there is no true alisphenoid canal ; the fibula is ankylosed to the tibia, and articulates with the os calcis; and the testes are permanently cxternal.

## Scetion IV. Lagomorpia.

Characters those of the suborder.

## Family 1. L.igomind.

Terrestrial Rodents, with complete elavieles, subequal limbs, no external tail, and short ears. Skull depressed, frontals contraeted and without post-orbital rrocesscs ; $p$ m $\frac{1}{3}$ or $\frac{f}{3}$; molars rootless, with transverse cnamel folds. Palæaretic ard Nearctic.

Lagomys, with about a dozen species of small Gninea-Pig-like nnimals, jnleabiting chiefly the mountainous parts of northern Asia (from 11,000 to 14,000 feet), one species only being known from south-east Euroje and one Irom the liocky Mountains.

## Fumily 2. Leporide.

Terrestrial Rodents, with imperfect clavicles, elongated bind limbs, short recurved tail, and long ears. Slkull compressed,


Fig. 99.-Skinll of Lepus timidus.
frontals with largo wing-shaped post-orbital processes (fig. 99); $p m \frac{3}{2}$; molars as in Lagomyida: Cosmopolitan (except Australasia). Lepus inchulus about twenty species, which all resemble one another in general external characters. In all the fore limbs have tive and the lind only four digits, and the soles of the feet are densely clothed with hairs similar to thoso covering the legs; the immer surface of the eheeks also is hairy. Although the fanily has such a wide distribution, the greater number of the species are restricted to the l'alxaretic and Nearctic regions, and a single species only ( $L$. lowsilichsis) extends into South America. Sco IIane and liabnit.

Fossil representatives of all the above-defined families, with the exception only of the small groups includel under Anomaluridx, Ifalioulontirlx, Lophiomyile, Spalacilx, and Dinomyida, have been describel frous varions deposits. Of these the carlicst have been found in the Upuer Eocene of Europe and America, amd helong to the fumily Sciurila. of which the genera Colonomys, Taxymys, Tillomys, F'eramys, Mcliscomys, and Mysyons have been characterizul from the Eocene of Norli Anerica, and Plesiarctomys from that of both imerica and France, while examples of even the receut genus Seiurus have been found in beds of the same age in the latter country. Other recent families have representatives in later deposits, as Castoride with Stencofiber and Palwomys from the Miocenc of Europe and North America, Trogonotherium from that of ludia, Chalicomys from that of Germany, and Eucastor from North Ameries, Myoxila with Myoxus and Mrurida witl Flomys, Decticks, Orcomys, and Cricriodon from the European Miocene, Ilystricida with Erchiant extending back to the Miocene of India, Gcomyidx with Entoptyclus and Plewolicus and Dasyproctida with Paciculus from the Dliocene of North America, Lagomyider with Titanomys and Myolagus from the European Mliocene. and Leporidx with Paixolagus from corresponding North American beds. Later Tertiary strata have yiclded Rodent remams inore abundantly; many of them refcrable to recent genera, or even closely allied to or undistingnislable from existing species, have been described from Brazilian bone-eaves.

Besides those referable to existine families, several fossil remains have been discovered which cannot be so classed. These have been included in three families:-Ischromyide with Pseudolomus from the Eocenc, and Jschuomys and Gymnoptychus from"the Dliocene of North America; Therulonyide with Therdomys extending from the Eocenc to the Pliocene of France, and Archaomys, Issinioromys, and Dipoides from the Miocene; and Castorvididz with Castoroides from post-l'liocene deposits of North America, and Amblyrhiza and Loxomylus from the bone-breceias of the island of Anguilla. The first-named family appears to be intermediate between the Sciurida and Castoridx; the socond is allied to Gcomyidz and Divodidx; and the last, connected with Chinchillidx, includes Cajstoroides ohiocnsis, a species vastly exceeding in size the largest or existing Jodents. A fourth family, Afcsotheriullx, including a single fossil form, Mcsotherium cristctiom, also of large size, from the Plocene of South America, has been referred to this order, but it is evident that an animal which, besides presenting many other structural differences, jossesses four lower incisors completely surrounded by enamel, and in which the naudibular condyle is transversely extended and the maxillaries articulate frecly with the nasals, cannot be considered as coning under the definition of a Rolent.

Thus, like the Inscctivora and Chiropicra, fossil remains of Rodentia are found as far back as the Eocenc period, and of these some are even referable to one or more recent genera, and differ but slightly from existing species, while all others are cither capable of being classed in recent families or are more or less closely related to them. It follows thercfore (if the age of the beds in which these remains were found has been correctly determined) that, as in the case of these orders also, the first ajpearance of true Rodents must be sought lor much farthor back in time, and the question of their descent must be deferred till the discovery of sulficient material admits of reliable generalizations.
bibliography of Rodeytin-G. R. Watehouse "Observations on the Rodentla," Nag. Nut. Hist., iii. (1839); Id., Ann. Nut. Mist., vilt, and x. (1839-42) i ld, "On the Gencraphical Distribition of the Rodentin," Proc. Zobl. Soc, 1839, np. 169-174. NH.: Nutural History of the Mammalia, vol. it. "Rodentia," (1848): Gervais, Dict. Vhir. U Hist. Nat., Xi, p. 202 (1818), Framit, "Cntersuchunten iiber the cranlmogischen Entwickelangsstiten und Classificatinn der Naper der Jetzwelt." Nem. do l'Acud. Imper. de St Petersbourg (1855); Lilljebore, Systematish Gefersight of de Gnagande Daggofjures, Upsala, 1866: Alston, "On the Classification of the Order Clares," Proc. Zoot. Soc., 157 6, pp. 61-98 ; Trouessart,
 1880-1': varlons papers iy I'elers in Alonatsb. Akad. 1Fissenseh. Berlin, and by Alston. Anderson, Bramilfodd. A. Milnc- Fidwards, Thomas, and others, in Proc. Zool. Soc., Jour. Asiat. Soc. Beng., Ann. LJag. N'al. Hist., \&c.
[For the above sections on the Iuscctivora, Chiroptera, and Rodentia we are indebted to I)r G. E. Fiosson. 7

## Order tiNGULATA.

Uuder this term may be included provisionally a large and rather heterogencous group of mammals, tho existing members of which form tho Pecora and Bellux of Linneus, tho Ruminantio and Puclyydcrmata of Cuvier. A few years ago it was found convenient to restrict the order to a well-marked and distinctly circumscribed group, comprising the two sections known as Perissodactyla and Artiodactylt, and to leare out such isolated forms as the Elephant and Ityrax; but the discovery of a vast number of oxtinet species, which enuld not be brought under the defin:tion of cither Perissolactyle or Artiodactyle Ungulates,
and get are evidently allicd to both, and which to a certain extent bridge over the interval between these and the isolated groups just mentioned, makes it uecessary either to introduce a number of new and ill-defined ordinal divisions, or to widen the scope of the original order so as to embrace them all.

They are all animals eminently adapted for a terrestrial life, and in the main for a regetable diet. Though a few are more or less omnivorons, and may under some circumstances kill living ereatures smaller and weaker than themselves for food, none are distinctly and habitually predaceous. Their teeth are markedly heterodont and diphyodont,-the milk set being well developed and not completely changed until the animal attains its full stature. The molars have broad crowns with tuberculated or ridged surfaces. They have no clavicles. Their toes are provided with blunt, broad nails, or in the majority of cases with hoofs, more or less enclosing the ungual phalanges. The scaphoid and lunar bones of the carpus nee always distinct.
The whole group may bo divided into the Ungulata Vera, containing the suborders Perissolactyla and Artiodactyla, nid a less well-known assemblage of animals which may be called Subungulata or Ungulata Polydactyla. Cope has pointed out a claracter in the structure of the carpus by which the latter are differentiated from the former. In all the Subungulata the bones of the proximal and distal row retain the primitive or more typical relation to each other (see fig. 100). The os magnum of the second row articulates mainly with the lunar of the first, or with the cuneiform, but not with the scaphoid, while in the group to which the
 vast majority of modern ${ }_{\text {Fse. }}$. 000 . - Right Fore Font of Indlan EleUngulates belong the phant. $\times$ b. U, unina i R, ratius $c$, , eunelform; second or distal row has i, unnar; sc, scaphold; $u$, unciform; $m$, mag: been shifted altogether first io firth dibith
towards the inner side of the limb (see figs. 107 and 109), so that the magnum is brought considerably in relation with the scaphoid, and is entirely remored from the cuneiform, as in the great majority of existing mammals.

## SUBUNGULATA.

By far the greater number of the Subungulata are eatinct, nnd of many of those whose former existence bas been revealed, chiefly by the labours of the American palæontologists, our knorledge is at present necessarily imperfect, though daily extending. It will only be possible here to give eny details of some of the more interesting or best. known forms.

## Suborder hyracoidea.

This division is constituted to rcceive n single family of mammals, the affinities of which have long constituted a puzzle to zonlogists. They were first placed among the Rodents, to which animals their small size and general appearance and babits give them much superficial resemblance. Curier's investigations into their anatomical structure, and especially their dental characters, led lim rii place them among the Ungulates, near the genus l.hinoceros, a position still aceepted by many zoologists.

Further knowledge of their organization and mode of derelopment has caused Milne-Ed wards, Huxley, and others to disassociate thern from this comnexion, and, failing to find any agreement with any other known forms, to place then in a group entirely apart. Palkentology has thrown no light upon the affinities of this anomalous and isolated group, as no extinct animals possessing their distinctive characters liave as yet been discovered.

The deutition consists only of incisors and molars, the formula in all known species being $i \frac{1}{2}, c \frac{0}{6}, p \frac{4}{4}, m \frac{3}{3}$. The upper incisors have persistent pulps, and are curved longitudinally, forming a semicircle as in Rodents. They are, however, not flattened from before backwards as in that order, but prismatic, with an antero-external, an antero-internal, and a posterior surface, the first two only being covered with enamel ; their apices are consequently not chisel-shaped, but sharp pointed. They are preceded by functional, rooted miiin teeth. The lnwer incisors have


Fig. 101.-Skull and Dentition of Dendroliyrax dorsalis. $\times 3$.
long tapering roots, but not of persistent growth. They are straight, procumbent, with arrl-shaped, trilobed crowns. Behind the incisors is a considerable diastema or interral. The molirs and premolars are all contiguons, and formed almost exactly on the pattern of some of the Perissodactyle Ungulates. The hynid arcl: is unlike that of any known mammal. The dorsal and lumbar vertebre are very numerous, 28 to 30 , of which 21 or 22 bear ribs. The tail is extremely short. There are no clavicles. In the fore foot, the three middle toes are subequally developed, the fifth is present, but smaller, and the hallux is rudimentary, although, in one species at least, all its normal bones are present. The ungual phalanges of the four outer digits are small, somerhat conical, and flattened in form. The carpus has a distinct os centrale. There is a slight ridge on the femur in the place of a third trochanter. The fibula is complete, thickest at its -upper end, where it generally ankyloses with the tibia. The articulation between the tibia and dstragalus is more complex than in other mammals, the end of the malleolus entering into it. The hind foot is very like that of Rhinoceros, having three well-dereloped toes. There is no trace of a hallux, and the fifth metatarsal is represented by a small nodule only. The ungual phalanx of the inner (or second) digit is deeply cleft, and has a peculiar lorg curved claw, the others having short broad nails. The stomach is formed upon much the same principle as that of the Horse or Thinoceros, but is more elongated transrersely and dirided by a constrietion into tro cavities-a large left cul de sac, lined by a very dense white epithelium, and a right pylorio cavity, with a rery thick, soft, vascular lining. The intestinal canal is long, and has an arrangemeni perfectly unique emong mammals, indeed among vertebrated animals, for, in addition to the ordinary short, but capacious and sacculated cxcum at the commencement of the colon, there is, lower àorn, an additional pair of large, conical, pointed ceeca. The liver is much subdivided. and there is
no gall-bladder. The brain resembles that of the typical Ungulates far more than the Rodents. The testes are permanently abdominal. The ureters open into the fundus of the bladder as in some Rodents. The female has six teats, of which four are inguinal and two axillary, and the placeuta is zenary, as in the Elephant and Carnivora.
There are two distinct forms of Hyrax, differing both in structure and habits, and which may well be accorded generic rank.

1. Hyrax.-Mtolar teeth having the same pattern as those of minoccos. Interval between upper incisors less than the width of the teeth. Lower incisors slightly notched at the cunting edge. Vurtchre: $\mathrm{C} 7, \mathrm{D} 22, \mathrm{~L} 8,86, \mathrm{C} 6$. Of this form the earlicst known species, $H$. capensis, is the type. There arc several other species, as 1I. synicueus and habcssinicichs, from eastern Africia and Syria. They in habit mountainous and rocky regions, and live on the ground.
2. Dendrohyrrax. - Molar teeth having the same pattern as Palxo. theriuthe (except that the thind lower molar has but two lobes). interval between upper incisors exceeding the widul of the teeth. Lower incisors with very distinctly trilobed crawns. Vertebre: C 7, D 21, L 7, S $5, \mathrm{C} 10$. The members of this section frequent the trunk's and large bramelies of trees, sleeping in holes. There are several surecies, not distinctly defned, from irestern and south Africa, as $D$. arborctus and $D$. lorsitis. The members of both groups a, pearr to have a power like that possessed by the Lizards called Cleckos of cliaging to vertical surfaces of rocks and trees by tho soles of their feet. See Hyris.s.
The anatomy of Hyrax was first described by Pallas (Spicilegia Zoologica). 3 esides nilnur memolrs, two vely detailed accounts of its structure have recently
 HV, No. 2, 1869 ; and Another by George, in Amnales des Scieaces Naturelless feites si. Oin. $1 ., 1$ Isit, in which references to all the previous hier atule will be



## Suborder Proboscidea.

This name has been appropriated to a well-marked group of animals, presenting sonie rery anomalous characters, allied in many respects to the Ungulata, but belonging neither to the Artiodactyle nor Perissodactyle type of that order. It las been theught that they possess some, though certainly not very close, affinities with the Rodentia, and also with the Sirenia. It is certain, however, that the two species of Elcphant which are the sole living representatires of the group, stand quite alone among existing mammals, differing widely from all others in many points of their structure. In some respects, as the skull, proboscis, and dentition, they are highly specialized, but in others, as in the presence of two anterior venæ care, and in the structure of the limbs, they retain a low or generalized condition. $\Lambda$ considerable series of extiuct forns, extending back through the Plincene and Mioceno epochs, show the same type under different modifications, and in still more generalized outlines; and certain recently discovered forms from the Eocene of North America, if thcir affinities are rightly interpreted, appear to link the true Proboscidea to some unknown primitive type of Perissodactyle Ungulata.

The following are the principal characters common to existing, and, by inference, to the extinct, Proboscidea. The nose extended into a long, muscular, very flexible and prehensile proboscis, at tho end of which the nostrils are situated, and from which the namo given to the group is derived. The tecth consisting of ever.groming incisors of very great size, but never exceeding ono pair in each jam, and often present in one jaw only ; no canines; large and transversely ridged molars. No clavicles. Limbs strong, the upper segment, especially in tho hind linb, the longest. Radius and ulna distinct, tho latter articulating extensively with tho carpus. Fibula and tibia distinct. Astragalus rery flat on both surfaces. Manus and pes short, broad, and massive, each with five toes, though the outer pair may be more or less rudimentary, all cucased in a common integument, though with distinct, broad, short, hoofs. Third digit the largest. Two anterior veno cave entering the right auricle. Stomach simple. A crpacious cecum. Testes permanently abdominal. Uterus bicor-
nuate. Placenta non-deciduate and zonary. Mammæ two, pectoral.

With regard to the teeth, the incisors, ${ }^{1}$ which project, largely out of the mouth, and are commonly called "tusks," are of an elongated conical form, and gencrally curved. They are composed mainly of solid dentine, the fine elastic quality and large mass of which renders it iuvaluable as "ivory" for comnerce and the arts. A peculiarity of the dentine of the Proboscidea is that it shows, in transverse fractures or sections, strix proceeding in the arc of a circle from the centre to the circumference in opposite directions, and forming by their decussations curvilinear lozenges, as in the "engine-turning" of the case of a watch. The enamel covering in existing species is confined to the extreme apex, and very soon wears off, but in some extinct species it forms persistent longitudinal bands of limited breadth. The tusks have small milk predecessors, shed at an early age.

The molar teeth present a remarkable series of modificatiens frem the comparatirely simple form in Dinotherium, with two or three strongly pronounced transverse ridges ard a normal mode of succession, to the extremcly complex structure and anomalous mode of replacement found in the true Elephants. The intermediate conditions occur in the various species of Mastodon. In this genus the enamelcorered transverse ridges of each tooth are gencrally more numerous than in Dinotherium, and often complicated by notches dividing their edge or by accessory columns atteched


Fig. 102.- Longitudinal Scetions of the Crnwn of a Mular Tooth of vartous Iro boscideans, sliowing stoges in the kiadual modification from the slmple to the complex furm, I, Arasfodon ohioticus; 11, Elegnion insignis; 111, Loxodon ofricanus; 1 V, Elephas primigenius. The dentinu is indicatcd
lines, the cementum by a doted surface, and the enamel is black.
to them, but in the unworn tooth they stand out freely on the surface of the crown, with deep valleys between (fig. 102, I). In the Elephants tho ridges are still further increased in number, and consequently narrower from before backwards, and are greatly extended in vertical height, so that, in order to give solidity to what would otherwise be a lamiaated or pectinated tooth, it becomes necessary to envelop and unite the whole in a large mass of cementum,

[^175]which completely fills up tiee ralleys, and gives in general smooth appearance to the organ when unworn; but as tho wear consequent upon the masticating process proceeds, the alternate layers of tissue of different hardness - cementunn, dentine, and enamel-which are disclosed upon the surface form a fine and very efficient triturating instrument. The modification of the tonth of a Mastodon into that of an Elephant is therefore preciscly the saone in principle as that of the molar of a Faleotherium into that of a Horso (see rol. xiii. p. 174), or of the corresponding tooth of one of the primitive Artiodactyles into that of an Ox . The intermediate stages, moreover, even in the present state of our knowledge, are so numerous that it is not jossible to draw a definite line between the tro types of tooth structure (sec fig. 102, II, 1II, IV).
As regards the morle of succession, that of modern Elephants is, as before mentioned, very peculiar. During the complete lifetime of the animal there are but six molar teeth on cach side of each jaw, with occasionally a rudimentary one in front, completing the typical number of seven. The last three represent the true molars of ordinary mammals ; those in front appear to be milk molars, which are never replaced by permanent successors, but the ,whole series gradually moves formards in the jaw, and the teeth become morn away and their remnants cast out in front, while development of others proceeds behind. The individual teeth are so large, aud the processes of growth and destruction by wear take place so slowly, that not more than one, or portions of tro, teeth are ever in place and in use on each side of each jaw at one time, and the whole series of changes coincides with the usual duration of the animal's life. On the other hand, the Dinotherium, the opposite extreme of the Proboscidean series, las the whole of the molar teeth in place and use at one time, and the milk molars are vertically displaced by premolars in the ordinary fashion. Among Mastodons transitional forms occur in the modu of succession as well as in structure, many species showing a vertical displacement of one or more of the milk molars, and the same has been observed in one extinct specics of Elephant ( $E$. planifrons) as regards the posterior of these teeth.
All known Proboscideans are aninals of large dımensions, and some are the most colossal of land mammals. The head is of great proportionate size ; and, as the brain case increases but little in bulk during growth, while the


Fig. 103.-A Section of the Skull of the Afriean Elcphant (Elephas africanus) taken to the left of the middle line, ond Including the vomer ( $V_{0}$ ) end the mesethminid $(M E)$ an, anterior, and pn, posterior narial aperture. is not.
sizc. Flower's Osicology of Mammalia.
esterior wall of the skull is required to be of great superficial extent to support the trunk and the huge ard ponderous tusks, aud to afford space for the attachment of suuscles of sufficient size and strength to wield the skull
thus hcarily weignted, an extraordinary development of air-cells takes place in the cancellous tissue of nearly ald the bones of the cranium. These cells are not only formed in the wails of the cranium proper, but are also largely dereloped in the nasal bones and upper part of the premaxille and maxilla, the bones forming the palate and the basi-cranial axis, and even extend into the interior of the ossified mesetumuid and vomer. Where two originally distinct bones come into contact, the cells pass freely from one to the other, ond alnost all the sutures becomic obliterated in old animals. The intercellular lamelle in the great mass which surrounds the brain cavity superiorly and latcrally mostly radiate from the inner to the outer table, but in the other bones their direction is mure irregular. Like the similar but less developed air-eells in the skulls of many other mammals, they all communicate with the nasal passages, and they are entirely secondary to the original growth of the bones, their developmeit having scarcely commenced in the new-born animal, and they gradually enlarge as the growth of the creature proceeds towards naturity. The nasal bones are very short, and the anterior narial aperture situated ligh in the face. The zygnaatic arch is slender and straight, the malar bones being small, and forming only the middle part of the arcb, the anterior part of which (unlike that of all true Ungulates) is formed ouly by the naxilla. The maxillo-turbinals are but rudimentary, the elongated proboscis supplying their place functionally in warming and clearing from dust the inspired air.
The neck is very short. The limbs are long and stout, and remarkable for the great length of the upper segment (especially the femur) as compared with the distal segment, the manus and pes. It is owing to this and the vertical position of the femur that the knee-joint in the hind leg is placed much lower, and is more conspicuous externally than in most quadrupedal mammals, and, this having been erroncously compared with the hock-joint or ankle of Ungulates, the popular fallacy that the joints of the Elephant's leg bend in a contray direction to that of other mammals has arisen. There is no round ligament in the hip-joint, or third trochanter to the femur. The radius and ulna are distinct, though fixed in a crossed or prone position. The fibula also is quite distinct from the tibia. The feet are short and broad, the carpal and tarsal bones being very square, with flattened surfaces for articulation; the astragalus especially differs from that of true Ungulates in its flatness, in the absence of a distinct pulley-like articular surface at either extremity, and in haring no articular facet for the cuboid. The fibula articulates with the calcaneum, as in Artiodactyles. Of the fire toes present on each extremity (see fig. 100), the middle one is somewhat the largest, and the lateral ones smallest, and generally manting (especially in the hind foot) the complete number of phalanges. The ungual phalanges are all small, irregular in form, and lats in ossification. The whole are encased in a common irtegument, with a flat, subeircular, truncated sole, the only external indication of the toes being the broad oval nails or hoofs arranged in a semicircle around the front edge of the sole. The bind foot is smaller and narrower than the front. The liver is small and simple, and there is no gallbladder. In form the brain resembles that of the Rodents and other lower orders of mammais, the cerebellum being entirely behind and uncovered hy the cerebram, but the hemispheres of the latter are richly convoluted.
The Proboscilea are exclusively vegetable feeders, liviag chiefly on leaves and young branches of forest trees and various kinds of berbage, which they gather and convey to their mouth by the very mobile proboscis, an organ which combines in a marvellous manaer strength with dexterity of npplication, and is a necessary compensation for the shortness and intlesibility of the neck, as by it many of the
functions of the lips of other animals are perfermed. By its means the Elephant is enabled to drink without bending the head or limbs; the cid of the trunk being dipped into the stream or pool, $n$ forcible inspiration fills the two capacious nir-passages in its interior with water, which, on the tip of the trunk being turned upwards and inserted into the mouth, is ejecter by a blowing action, and swallowed; or if the nnimal wishes to refresh and cool jts skin, it can throw the water in $n$ copions stream over any part of its surface. Elepbants can also throw dust and sand over their bodies by the same means and for the samo purpose, and wild animals hare been frequently observed fanning themselves witt leafy boughs held in the trunk. The species are at present limited in their geographical distribution to the Ethiopian and Oriental regions, but they formerly bad a far more extensivo range.
Elephias.-Dentition: $i \frac{2}{3}, c \frac{f}{f}, m \frac{8}{8}=26$. The incisors variable, but usually of very large size, especially in the male sex, directed somewhat outwards, and curved upwards, without enamel except on the apex before it is worn; preceded by amall milk incisors. The molars succeed each other by horizontal replacement from before backwards, nover more than one or part of two being in use on each side of cach jaw at the same time ; each composed of numerous flattened enamel-covered plates or ridges of dentine, projecting from a conmion many-rooted base, surrounded and united together by cemantum. The number of plates increases from the anterior to the posterior molar in regular succession, varying in the different species, but the third and fourth (or the last milk molar and the first true molar), and these only, have the same number of ridges, which always exceeds five. Skull of adult very high and globular. Mandible ending in front in a prolonged deflected and spout-like symplysia. Vertebre: C 7, D 19-21, L 3-4, S 4, C 26-33.
The existing species of the genus differ so much that they must be placed in tivo distinct sections, considered by some zoolagists as distinct genera.

1. Elcphas proper. Elasmodon, F. Cuv.; Euclephas, Falc.A verage number of plates of the six successive molar teeth expressed by the "ridge farmula" $4,8,12,12,16,24$. The plates compressed from before bnckwards, the anterior and posterior surfaces (as aeen in the worn grinding face of the tooth) being nearly parallel. Ears of moderate size. Upper margin of the end of the proboscis developed into a distinct finger-like process, mach longer than the lower margin. Five nails on the fore feet, and four (occasionally five) on the hind feet.
Tho well-known Asiatic Elephant, E. indicus, inhabits in a wild state the forest lands of India, Burnaal, the Malay Peninsula, Cochin China, Ceylon, and Sumatra. Those from the last-namcd islands, presenting some variatior.o from those of the mainland, have been separated under the name of $E$. sumatranus, but the distinction has not been satisfactorily established. Tho appearance of the Asiatic Elephant is familiar to all. Though marely breeding in captivity, it hos been domesticated from the most remote antiquity, and is still oxtensively used in the East as a beast of burden. In the wild state it is gregarious, associatiug in herds of ten, twenty, or mare individuals, and, though it may under certaiu circumstances beconie dangerous, it is generally inoffiensive and even timid, fond of shade and solitude and the neighbourhood of water. The height of the male at the shoulder when full grown is usually from 8 to 10 feet, ocoasionally as much-as 11. Tho femalo is somewhat smaller. See Elephant.
2. Loxodon. - Molar teeth of coarse construction, with fewer and rarger plates and thicker enamel. Ridga formula: 3, 6, 7, 7, 8, 10 . The plates not flattened, but thicker in the middle than at the edgcs, so that their worn grinding surfaces are lozenge-shaped. Ears vory large. Tho upper and lower margins of the end of the trunk formiog two nearly equal prehensile lips. But three hoofs on the hind foot. The one species, $E$. africanus, now inlabits the wooded districts of the wholo of Africa south of the Sahara, excelt where it has been driven away by human settlements. Fossil remains of Pleistocene age, undistinguishable specifically, have been found in Algoria, Spsin, and Sicily. It was trained for war and ehow by the ancient Carthaginians and Romans, and recent experience of the species in captivity in England shows that it is as intelligent as its Asiatic relative, if not more so, while surpassing it in courage, activity, and obstinscy. Nevertheless, in madern tianes, no peoplo in Africa have been sufficiently civilized or enterprising to caro to train it for domestic purposes. It is hunted chiet.y for tho eake of the frory of its immense tusks, of which it yields the principal source of supply to the European market, and tho desire to oltain which is rapidly leading to the extermination of the apocies. In size the malo African elephant often surpasses that of Asia, but the female is usually smaller. The circımference of the corefoot is half the height at the shoulder. a circumstance
which enables the hunters to judge from the footprints the exact size of the animals of which they are in pursuit.
Extinct Specics of Elephant.-Abundant remains of Elephants are found erabedded in alluvial gravels, or secreted in the secesses of caves, into which they have been washed by streame and floods, or dragged as food by Hyænas and other carnivorous inhabitants of these subterranean deng. Such remains belonging to the Pleistocene and Plioceno periods have lueen found in many parts of Europe, including the Pritish Isles, in North Africa, throughout the North American continent from Alaska to Mexico, and extensively distributed in Asia, where the deposits of the sub-Himalayan or Sivalik hills, belongin: to the carliest Pliccene, are rich in the remains of Elephants of yaried form. These species are chiefly known and characterized at present by the teeth, some of which resemble the existing Indian and some the African type, but the majority arn between the two, and make the distinction between Elcphas and Loxodon as different genera quito impracticable. Others again approach so clesely in the breadth and coarseness of the ridgey and paucity of cementuns to Mrastodon as to have been placed by some zoologists in that geuus. These form the group or subgenus called Slegodon by Falconer.

Among the beat known extinct Elephants are E. primigcnius, the Mammoth, very clasely resembling the existing Indian species, and one of the most recently extinct and extensively distributed (sce Mamsoth); E. antiquus and E. meridionalis, alsa found in Britain, as well as in Europa generally, of rather earlier date, and inclining more to the Loxoclon type, as also do two species found in the island of Malta, E. mnaidicrsis and E. melilensis, the latter the smallest known species of the suborder, sometimes not exceeding 3 feet in height when adult. The Slegodon forms, E.clifti, boinbifrons, insignis, and gancsa, are all from India, which locality would appear, from the abundance of remains and variety of farms, as well as thro generalized character of some and the gealogical horizon (PlioMiocene) in which the remains are found, to be the earliest hahitation of the true Elephants yet discovered. Remains of Eleplants of the last-named group have also lately been found in China and Japan. A tusk the dentine of which presents the characters hitherto considered peculiar to the Proboscidca, from Australia, has been lately described by Professor Owen under the name of Notelephes.
Mastodon.-Dentition: $i \frac{1}{10 r 0}, c \frac{9}{6}, p$ and $m \frac{8}{6}$. Upper incisors very large, as in Elcphas; sometimes with longitudinal bands of enamel, more or less spirally disposed. Lower incisors variable: when present consparatively small and straioht, aometimes persistent, sometimes early deciduous, and in some species never present. Grinding surface of molars with transverse ridges, the summits of which are divided more or less into conical or manmillary cusps, and often with secondary or additional cusps between and clustering against the principal ridges; enamel thick; cementum very scanty, never filling up the interspaces between the ridges. The third, fourth, and fifth malars having the same number of ridges, ${ }^{1}$ which never excceds five. In same species ( $\lambda 1$. ohioticus) no vertical succession has been observed, but in others, as M. angustidens, the two posterior premolars, ond in the American MI. productus apparently all three, are preceded by milk n:olars. There is also a horizontal succession as in Elephants, the anterior teeth being lost before the posterior ones are fully developed, but not so complete as in the former genus, for as many as three teeth may be in place in one jaw at ene time. The skull generally is less elevated and less cellular than in Elephas; otherwise the remainder of the akeleton is similar.
All known Mrastodons are gigantic animals, equalling or exceeding the recent Elephants in size. Their remains have been found in Europe and southern Asia and America, from the Miocene to the Pleistocene epocbs.
Dinothcrium.-Dentition of adult: $i \frac{0}{1}, c \frac{8}{8}, p \frac{2}{2}, m \frac{3}{5}=22$; all present at the same time, there being no harizontal succession, but the premolars replace milk teeth in the ordinary manner. The preseace or absence of upper incisors has not yet been clearly ascertained. Lower incisors, large, conical, descending and slightly curved backwards, implanted iu a greatly thickened and deflected beak or prolongation of the symphysis. In section they do not show the decussating strix characteristic of Mastodons and Elephants. Crowns of molars with strong, transverse, crenulated ridges, with deep vallcy's between, much resembling those of the Tapirs. Ridge formula of the permanent molar scries: 2, 2, 3, 2, 2. The three ridges of the first true molar appear to be constant in both upper and lower jaws, although it is quite an anomalous character smoug
${ }^{2}$ This, and the larger number of ridges in the latter, are the only absolute distinctions which Falconer cauld find between Mastodon and Elephas (Palaont. Menoirs, ii. p. 8), and it is clear that they are somewhat arbitrary. The line between the two genera is drawn at this pelnt more as a matter of convenjence for descriptive purposes than as indicating any great natural break in the sequence of modificetions of the same type.

Proboscideans for this molar to have more ridges than those which come behiad it. The last nilk molar las also three ridges, the penIltimate but two. The cravium is much depressed, with compara-


Fia. 104.-Stull of Dinotherizm giganteum (Hiocene, Eppelsheim). tively littlo development of air-cells. The remainder of the skeleton is imperfectly known, but apparently agrees in its general charac ters with that of the other Proboscideans.

Remains of Dinotheriuin giganteum, an animal of elephantine proportions, strikingly characterized by tbe pair of huge tusks descending nearly vertically from the front of the lower jaw, were first discovered at Eppelsheim, ncar Darmstadt, and described by Kanp. They have since been met with in Yarious Middla and Upper Miocene formations in the south of Germany, France, Greece, and Asia Minor. Three species, D. pentapotamix, $D$. indicum, aad $D$. sindiense, have been described by Falconer and Lydekker from north-western India. The genus has bitherto not been found in England or in America.
The geous Phenocodus, from the Lower Focene of Wyoming, lately described by Cope (Am. Naturalist, December 1881 anit June 1882), is placed by that zoologist in a special group called Condylarthra, allied to the Proboscidea, but distinguished by "a post-glenoid process, and a third trochauter of the femur, and ao calcaueal facet for thefibula." This and the Proboscidea are united by Cope to form the order Taxcopoda, one
viated as in modern Proboscideans, and there is no evideace that they possessed a trunk. The head differed greatly from that of the Elephants, being long aud narrow, more like that of a Rhinoceros, and, as in that animal, was elevated behind into a great occipital crest, and it had developed upon its upper surface three pairs of couspicuous, laterally diverging protuberances, one pair in the parietal region, one on the maxillaries in front of the orbits, and oue (much smaller) near the fore part of the elongated nasal bones. Whether these were merely covered by bosses of callous skin, as the rounded form and ruggedness of their extremities mould indicate, or whether they formed the bases of attachment for horna of still greater extent, like those of the Rhinoceros or of the Cavicorn Fuminants, can only be a matter of conjecture. There were no upper incisors, but three on each side below, of comparatively small size, as was also the lower canine. A huge, compressed, curred, sharp-pointed canine tusk, rery similar in form and position to that of the-Musk-Deer, descended from each side of the upper jaw. These were present in both sexes, but very much smaller in the female, as was also the flange like process of the lower jaw by which they were guarded. Behind these, and at some distance from them, were on each side above and below six molar teeth, of comparatively small size, placed in continuous series, each with a pair of oblique ridges conjoined internally and diverging externally in a V.like manner, and provided with a stout basal cingulum. The dental formula was therefore $i \frac{0}{3}, c \frac{1}{1}, p \frac{3}{3}$, $m \cdot \frac{3}{3}=34$; and the dentition had thus already attained a remarkable degree of specialization, although the brain was smaller and more rudimentary in characters than in almost any other known mammal. of his primary divisions of the Ungulata.

In all the preceding forms the astragalus articulates only with the navicular bone, in those that follow with both navicular and cuboid.

## Suborder AMBL YPODA

Among the most remarkable of the recent discoveries in the Eocene formations of the western States of North America has been that of a gronp of animals of huge size, approaching if not equalling that of the largest existing Elephants, presentigg a combination of characters quite unlike those known among either recent or extinct creatures, and of which there wore evidently many species iiving contemporaneously, but all of which became extinct before the close of the Eocene period. To form some idea of their appearance, we must imagine animals very elephantine in general proportions and in the structure of their limbs. The fore foot had. fire, and the hiod foot four toes. The tail, as in the Elephants, was long and slender, but the neck, though still short, was not so much abbre-


Fio. 105.-Restoratioa of Dinoceras mirabite. ity nat. size. From Marsh (Am. Jour. Sei., vol. nll. pl. 2)
The first.discovered evidences of the existence of animals of this group were described by Leidy. in 1872, under the name of Uinlatherium (from the Uiutah mountains, near which they were found). Other nearly allied forms have been named Dinoceras (restoration of which is shown in fig. 105), Tinoceras, and Loxolophodon. They coostitoto the order Dinocerata of Marsh, but are inclueded by Cope in the Amblypoda.

Another interesting form referred to this suborder is Coryphodon, Which uppears to connect the Proboscidea with the most primitive Perissodactyla, especially Lophiodon. It was first described by Owen in 1816 from a fragment of a jaw from the London Clay. More perfect remains were afterwards discorered in France, and lately in great abuadance, indicating many species from the size of a Tapir to that of a Rhinoceros, in the lowest Eocenes of New Mexico and Wyoming, in the United States. It had forty-four teeth; the canines of both jaws mere large and sharp-pointed, and the molars had stroagly prononnced oblicque ridges. Tha general proportions were those of a Bear, but the tail was of moderate length, and the feet ahort and wide, with five toes on each.
The Tertiaries of South America bare yielded some very remark. able forms of mammalian life, the nature and affinities of which
have greatly puzzled all zoologists who have attempted to unravel them. Macrauchenia, an animal with a Camel-like nerk, is now knowa to be a Perissodactyle, though in some characters somewhat aberrat. The articulation of the hbula with the calcaneun is an Artiodactyle or perhaps generalized character. The teeth ally it to Palæotherium aad Phinoccos. Homalodontotherium, from the banks of the river Gallcgos, south-cast Patagouia, is known by the teeth alone, which, though very generalized, are on the whole rhioocerotic. Nesodon, from the same locality, also only knowu by the dentition aad some parts of the skull, connects the last and Afacrauchenia with Toxodon. These three gencra have the typical deatal formula of $i \frac{3}{3}, c t, p \frac{4}{4}, m \frac{5}{3}=44$. Toxodor is an animal about the eize of a Hippopotamus; it was first discovered by Darwio, and many specimeas have since been found in Pleistocene deposits near Buenos Ayres, and described by Owen, Gervais, and Burmeister. The teeth consist of large incisors, very small lower canines, and strongly curved molars, all with persistent roots, the formula being appareatly $i \frac{3}{3}, \mathrm{c}_{\mathrm{i}}^{5}, p^{\frac{4}{3}}, m{ }_{3}^{\frac{3}{3}}=33$. The cranial characters exhibit a combination of those found in both Perissodactyles ond Artiodactyles, but the form of the hinder part of the palate and the abeeace of un alispheaoid canal belong to the latter ; and the tyoupanic, firmly fixed in between the squamosal and the exoccipital, ankylosed to both, and formins the floor of a long unward-directed meatus auditorius, is so exactly like that of the Suina that it is difficult to bclieve it does not iadicate some real affinity to that group. These characters seem to outweigh in importance those by which some zoologists have linked Toxodon to the Perissodactyla, and the absence of the third trachanter and the articulation of the fibula with the calcancum tell in the same direction. The structure of the feet is oot completely known, but Cope has shown that the tarsal boucs differ altogether from those of either Artiodactyles or Perissodactyles, and more nearly resemble those of the Proboscidca than any other Latown Ungulates.
Mfesotherizem, also called Typothcrium, from the same locality, was an aaimal rather larger than a Capybara, and of much the same geaeral appearance. Its skeleton is completely known, and shows a aingular combination of characters, resembliag Toxodon or a


Fio lue. Cranlum and Lower Jaw of Ahesotherium fistatum, is nat, size. From Gervals.
generalized Ungulate on the one hand, and the Rodents, especially the Leporidæ, on the other. In the presence of clavicles it differs from all known Ungulates, and in laviag four lower incisors from alt Rodents. The teeth are $i \frac{4}{2}, c \frac{q}{q}, p \frac{2}{1}, m \frac{3}{3}=24$.

It will thus be scen that, althongh our knowlerge of many of these forms is still very limited, we may trace among them a curious chain of affinities, which would scesa to unite the Ungulates on the one hand with the Rodcuts on the ohler ; but further materialsare required before we can establish with certainty so important a re'a tionship, one which, if true, would alter materially some of the prevailiag views upon the classification of mammals.

## UNGULATA VERA.

In the typical Ungulata the fect are never plantigrade, and the fuactional tees do notexceed feur, - the inner digit being suppressed, at all events in all forms which have
existed since the Early Eocene period. The os magnum of the carpus articulates freely with the scaphoid. The allantois is largely developed, and the placenta, so far as is knewn, is non-deciduate, the chorionic villi being either evenly diffused or collected in greups or cotyledons (in Pecora). The testes descend into a scrutum. There is never an os penis. The uterus is bicoruuate. The mamma are usually few and inguinal, or may be numerous and abdominal (as in Suina), but are never solelypectoral. The cerebral hemispheres in existing Ungulates are well convoluted.

The group is now, and has been tiroughout the whole of the Tertiary period, composed of two perfectly distiact sections, differing from each other, not only in the obvious characters of the structure of the limbs, but in se many other parts of their organization that they must be considered as of the rank at least of suborders. The characters of these divisiens, first indicated by Cuvier, were thoreughly established by Owen, by whom the names whereby they are now generally known were proposed.

## Suberder PERISSODACTYLA.

This is a perfectly well-defined group of Ungulate mammals, represented in the actual fauna of the world by only three distiact types or families-the Tapirs, the Rhinoceroses, and the Horses-poor in genera and species, and (except in the case of the two domesticated species of Equus, which have been largely multiplied and diffused by man's agency) not generally numerous in individuals, though widely scattered over the earth's surface. Palæontological recerds show very clearly that these are but the surviving fragments of a very extensive and mucis varied assemblage of animals which fleurished upen the earth throughout the whole of the Tertiary geological peried,' and which, if it could be recenstructed in its entirety, would not only show members filling up structurally tho intervals between the existing apparently isolated forms, ${ }^{4}$ but would show several marked lines of specialization which have become extinct without leaving any direct successors.

The following are the principal characters distinguishing them from the Artiodactyla. Premolar and molar teeth in


Fio. 107.-Dones of Fore Fool of existing Pertssodsctyles. A, Tuple (Tapirwt
 cabailus $)_{,} \times 1$. U, una; $n$, radius; $c$, cunelform: $l_{1}$ lunar; $s$, scaphold: $u$, unclfom; m, magnum; td, Irapezold; fm, trapezlum. Ostiolcgy of Mammalia.
continueus scries, with massive, quadrate, transversely ridged or complex crowns, - the posterior premolar's resembling the true molars in size and structure. Crown of the
lastlower molar commonly bilobed. ${ }^{1}$ Dorso 1 Inmbar vertebro never ferer than twenty-two, usually trenty-three in the existing species. Nasal bones expanded posteriorly. An alisphenoid canal. Femur with a third trochanter. The middle or third digit on both foro and hind feet larger than any of the others, and sym.netrical in itself, the free border of the ungual phalanx being evenly rounded (see fig. 107). This may be the only functional toe, or the second and fourth may be subequally dereloped on each side of it. In the Tapirs and many extinct forms, the fifth toe also remains on the fore limb, but its presence does not interfere with the symmetrical arrangement of the remainder of the foot nround the median liae of the third or middle digit. Traces of a hallux have only been found iu some extrenely ancient and primitive forms. The astragalus has a pulleylike surface abose for articulation into the tibia, Lut its distal surface is flattened and unites to a much greater extent with the navicular than with the cuboid, which bone is of comparatively less importance than in the Artiodactyles. The calcaneum does not articulate with the lower end of the fibula. The stomach is simple, the cecum large and capacious, the placenta diffused, and the mammæ inguiaal.

The very distinct minor grouns into mhich the Perissodactyles are divided in the later periods of the earth's history are, even by the knowlealge already gained of the ancient members of the suborder, so closely united by connected forms that it is difficult to make ayy satisfactory classification of the whole. This is of course what might be expected, and would probably be the case with all other groups if re knew as much of their past history as we do of that of the Yerissodactyles. It is necessary, however, for descriptive purposes to have soma arrangement; and perhaps, if not the most natural, the most convenient division (especislly as it is chiefly or only by thesa organs that many ara koown) is one founded upor the structure of the lower molar teeth. By this character rie may make three primary divisions, each of which has a representative at the present time:-(A) those in which the crowus of the lower molars are disposed in transverse ridges, as in tha Tapirs; $(B)$ those in which the crowns of tha lower molars are formed by a pair of crescents, as in Rhinoceros; (C) those in which the crowns of the lower molars are formed of a pair of crescents, with the addition of ioner lobes or columns, as in the Horses. As thase forms are all modifications of tha same essential pattera, tranaitions in certain or all of the tecth must be expecfed in many casos, and, as before implied, the grouping of the Perissodactyles into Tapiroid, Rhinocerotic, and Equine sections according to the pattern of their molar teeth may not be a trua exposition of the real affnities of the genera, but must be looked upon rather as - convenient provisional arrangement,

## A. Tapiroid Section.

Lower molars bilophodont.

## Famely Lophiodontide.

Both upper and lower true molars bilophodont. Premolars emaller and aimpler than the true molars. Four toes on the nnterior and three on the posterier feet. This family includes a large number of more or less imperfectly known forms, all extinct, ranging from the size of a Rabbit to that of an Ox. They are the earliest in time and most generalized in structure of the known Perissodactyles. It is possible that from some either of the known or the still uadiscoverod mernbers of this group most of the other types of the order have been derived. Their remains have been found in Europe only in the Lower 3nd Mriddle Eoceue, though in North Americs they appear to have lingered to a somewhat later date. The genus Hyracotherium was eatablished ir: 1839 by $O$ wen for a small animal, no larger than a Hare, the skull of which was found in the London Clay at Herae Bay. A more perfect apecimen apparently of the same species was afterwards (in 1857) described under the nsme of Philophus vulpiceps. Closely allied forms from the Europeaa continent have been named Pachynolophus and Lophiotherium. These have sil the completa dentition, viz., $i \frac{3}{3}$, ct, $p \frac{4}{4}, m \frac{3}{3}=44$. The posterior lower molar has three lobes. The genus Luphiodon (Cuvier, 1822) contains animals of much larger nize and later geological period (NIIddle or Upper Eocene), in which the dentition was so far spacialized as to have lost the anterior premolar of both jaws, the formula being $i \frac{3}{3}, c \frac{7}{2}, p \frac{3}{3}, m \frac{\frac{3}{3}}{} \operatorname{co}^{\circ} 40$. The transverse ridges of the upper molars are placed obliquely, the
${ }^{1}$ These deatal characters are not strictly applisable to the most如cieot forms.
posterior is smaller thau the anterior, and they are united by their external borders; these of the mandible are distinct and only connected by a fcebla diagonal crest, the last bearing a talon or rudiment of a third lobs. On the premolars the anterior ridge only is developed. Nearly allied was the Amcrican genus Hyrachyus, the structure of which is now very completely known from rell-preserved remaina The skeleton closely resembles that of the Tapir, though the dentition Is mere like that of Lophiodon, except that the last lower molar has but two lobes. As many as nine sjecies have becn already described, all from the Upper Eocene. Another form from the eame deposits, Colonoccras of D1arsh, is said to have had au attaclimert for a dermal loru on each nasal bone. Triplopus, otherwise closely similar to Hyrachyus, wants the fifth digit of the manus, and hence is placed by Copo in a distinct fanily, Triplopide:

## Family Iapiride.

Both upner and lower true molars bilophodont. Posterior premolars abova and below resembling the true molars this family is connected with the last by the Middle Miocene genus Listriodon. The genus Tapirus, in which as many as three premolars resemble the true molars, and in which the last lewer molas has no talon, appears first in the Upper Mioceea of Europe, and has continucd with scarcely any appreciable change until the present time, being represented by several species in Central and South America, and one in the Mialay Peninsula and adjacent islands. It is therefore probably the oldest existing genus of manmals. One of the Amcrican species differs from all the others in the great antcrior prolongation of the ossification of the mesethmoid cariilage, and has been separated generically by Gill under the name of Elasmegnathus. See Tapir.

## B. RHinocerotic Section.

Lower molar teeth with the ridges, instead of being transrerse; curved in a crescentic manncr. The cutcr extremity of each ridge is curved forwards so that the hinder ridge abuts agaiost the external surface of the ridge in front of it. An unwurn lower molar of a Rhinoceros has thus externally tro convex areas separated by a vertical groupt, and internally two principal sinuses, corresponding to the projections exteroally. The entrances to these sinuses ars bordered by three conical pillars-the first of comparatively litrle importance, representing tho anterior talon of the Tapir's toolh, the second, the largest, representing the antero-internal principal cusp, and the third the postero-internal principal cusp. The upper nolars of all the animals of this section resemble those of Lophiodon in principle, the transverse ridges being joined by an outer wall and placed obliquely, their inner ends inclining backwards and their posterior surfaces being more or less concave. There are two further chief modifications of this type:-(1) that in which the free edga of the outer wall acquires a strongly zigzag or bicrescestic character, being deviated inmards oppesite each of the principal outer cusps, and outwards at the anterior and posterior angles of the teoth and in the middle between the cusps, as in Palæotherium; and (2) that in which the outer wall is greatly developed, and in the main flat or smoothly convex, thongh with slight elevations and depressions carresponding with those so regular and well-marked in the last section: thise s tho character of tha teeth of Rhinoceros and its allics.

## Family Hrracodositide.

Separated by Copa from the next, and containing the genas Hyracodon of Leidy, a primitiva or simple Rhinoceros.like type, from the Lower Miocene of North America, with the full number of teeth, but only three digits on each foot.

## Fanzily Ranocerostide.

A very extensive group, of which many modifications, forming a gradual series, showing increasing specialization from primitive Lophiodon-like animals, have been discovered both in North Anerica and in the Old World. One of the most rcmarkabla of these specializations has been the derelopraent of dermal horns over the nasal bones, either in laterally placed pairs as in somo of the early forms, or in the median line, either single or double. In America they all becanie extinct before the close of the Pliocane period; but in the Old World, although their geographical distribution has become greatly restricted, at least five well-marked species survive. See Rilinoceros.

## Family Macratchemde.

This contains one extince genus, ifacrauchenid, with two species M. prtachonica and 3. boliviensis, both from South America, and apparently from Pliocene- formations. They are very singular and specialized forms, quite out of the line of desccnt of any of the existing Perissodactyles, and the steps by which they are connected with the rest of the group have not yet been discovered. Of the larger species, M. palachomica, the skeleton is completely known. It lad the full number of forty-foar
teeth, formiligy an minterrupted serics. The cervical vertebrit resenible those of the Cancls in the position of the vertebrarterial canal, but the ends of the centra are Hat, and not opisthoccelous as in the allied forms. In some of the limb characters it resembles the Equid $\mathscr{X}$, but in the articulation of the fibula with the calraneum it agrees with the Artiodactyles. The structure of the feet is, however, distinctly Perissodactyle, there being three tocs on each.

## Fímilics Chalicotheriide and Menodontide.

These familics, with not very distinetly defined boundarjes, contain a large number of extinct form. from Eocene and Miocene formations of both the Old and the New World. Among the latter the most remarkable is a group of animals of cigantic size, to tho first-known fragment of which the name of Meroduls was given in 1849 by Pomel, but of which more perfect renains lave since been described by Leidy as Titanotherium and Megacerops, by Marsh as Brontotherium, and ly Cope as Symborodon, some of which appear to represent distinct generic modifications, but the synonymy of the group is at present much confused. The head was large and much elongated, as in the Rhinoceros; but they had a pair of stout diverging osscous protuberances like horn-cores on the maxillaries in front of the orbits. Their molar teeth were of a simple palæotheroid type, and the incisors and canines were very much reduced. Their fore feet had four and their hind feet three short, stout toes. Their remains abound in the Lower Miocenc strata of North America.

## Family Paleotneriide

The structure of the type of this family, Palwotherium, was made known by Cuvicr, from specimens found in the Paris gypsum beds (Upper Encene). Fig. 108 gives an idea of its general appearance, not unlike that of a Tapir, which also it resembled in size. It had, however, but three toes on the fore feet. The dentition was $i \frac{5}{3}, \mathrm{c}_{1}^{1}, p^{\frac{4}{4}}, m \frac{3}{3}=44$. Many species and allied genera (as


Fig. 108.- Restoration of Palaotherium (Upper Eocene). Cuvier.
Palnplotherizu, an earlier form from the Middle Eocene, and Anchithcrium, $\Omega$ later one from the Miocene) havo been discovered both in Europe and North America. To some of theso the ancestral form of the modern Horses may be traced, the transition from this to the next family being formed by almost imperceptible gradations.

## C. Equine Section.

Lower molars formed of a pair of crescents complicated by the addition of columns or lobes at the inner extremities. Upper molars a modification of the palxotheroid type, but gradually passing as time advanced from the brachyodont to the hypsodont form. Outer digits becoming gradually reduced, until, as in the modern Horses, thero is but one (the third) functionsi digit on each foot. To these alone the family Equidx is restricted by some authors, but in few groups is the artificial nature of the boundaries placed between such divisions so apprarent as in the Perissodactyles, for the simple reason that their palxontological history is better known than that of most others, and so many of the intermediate forms have been prescrved. For the history, characters, and present distribution of the Equidx, see tho article Horss, vol. sii. p. 172 sq.

## Suborder atitiodactrla.

This is an equally well-defined group, traceable from the Early Eocene period, though then apparently by no means so numerous as the Perissodactyles. Sume of its types, as that represented in the existing Swine, have retained to the present time much of the primitive character of the group; but others have been gradually becoming more specialized and more perfected in structure, and its latest modification, the Clavicorn Ruminants or Bovidx (Antelopes, Sbcep, and

Oxen), are now the dominating members of the great Ungulate order, widespread in gcographical rauge, rich in generic and specific variation, and numerous in individuals, -forming in all these respects a great contrast to such decadent types as those represented by the Tapirs and Rhinoccroses.
The principal aaatomical characters by which they are distinguished from the Perissodactyles are as follows. The premolar and molar teeth not alike, the former being single and the latter two-lobed. The last lower molar of both first and second dentition almost invariably threelobed. Nasal bones not expanded posteriorly. No alisphenoid canal. Dorsal and lumbar vertebre together always nineteen, though the former may vary from twelve to fifteen. Femur without third trochanter. Third and fourth digits of both feet almost equally developed, and their ungual plalanges flattened or their inner or contiguous surfaces, so that each is not symmetrical in itself,


Fio. 109.- Bones of Fore Foot of existing Artiodactyles. A, Pig (Sus scrofa), $\times \frac{1}{3}$; B, Red Deer (Cervus elaphus), $\times 1$; C, Camel (Camelus bactrianus), $\times \frac{1}{1}$. U, tha; $R$, radius; $c$, cuneiform; $l$, lunar; 8 , scaphold ; $u$, unclifurm; n, mag.
but when the two are placed together they form a figure symmetrically disposed to a line drawn between them. Or, in other words, the axis or median line of the whole foat is a line drawn between the third and fourth digits, while in the Perissodactyles it is a line drawn down the centre of the third digit. Distal articular surface of the astragalus divided into two nearly equal facets, one for the navicular and one for the cuboid bone. The calcaneum with an articular facet for the lower ead of the fibula. Stomach almost always more or less complex. Colon convoluted. Ciecum small. Placeata difused or cotyledonary. Mammx few and inguinal, or numerous and abdominal.

In treating of many sections of memmals, it is only from the existing epecies that our claracters and clossification can be derived, and tn these chielly our observations upon the group must be directed, the extinct forms being so little known that they can only be referred to incidentally. With the Ungulate, however, it is quite otherwise. As with the last section, tho history of the Artiodactyla throughout the Tertiary period is now well known, end throws great light upon the position and relations of the existing groups.

The principal mooifications which have taken place in the type from its earliest known and most generalized manifestation heve been the following :-

1. As regards the teeth. Assumption of the grinding surfaces of the molar tecth either of a distiactly tubercular (bunodont) or of a crescentic ridged (sclenodont) form. Modification of the latter from

- brachyodont to a hypsodont type. Loss of ypper incisors. Development of canincs into projecting tusks. Loss of anterior premolars.

2. As regards the limbs. Reductiou of the ulna from a complete and distinct bone to a comparatively rudimentary state in which it coalesces more or less firmly with the radius. Reduction of the Gbula till nothing but its lower estremity remains. Reduction and final loss of outer pair of digits (second and fifth), with coalescence of the metapodial boses of the two middle digits. Union of the navicularand cuhoid, and sometimes the ectocuociform bone, of the tarsus.
3. Clange of form of the odontoid process of the axia from 8 cone to a hollow half-cylinder.
4. Development of horns or antlicrs on the frontal hones, and gradual complication of form of antlers.
5. By inference only, increasing complicstion of stomach with ruminsting function superadded. Modification of placenta from simple diffused to cotyledonary form.

The primitive Artiociactyles, with the typical number (44) of incisor, canine, and molar teeth, brachyodont molars, conical odontoid process, four distinct toes on each foot, with metapodium and all carpal bones discrete, no froutal appendages, and (in all probability) simple stomach and diffused placenta, were separated even in the earliest known forms into Bunodonta and Selenodonta.

## A. Bunodonta.

This, the most primitive group, with various offsets which became partially specialized and then extinct, unsble appsrently to adspt themselves to new conditions, has been continued to the present day with comparatively littlo change in the section of the suborder called Suina, containing the families Hippopotamidæ and Suidæ. See Hippopotamus, Peccart, and Swine.

## B. Selenodonta.

Members of this group having the complete typical dentition as re ards number, but with various modifications in the details of the form of the teeth, and also in the structure of the feet, abounded in the Middle and Upper Eocene and Lower Miocene of Europe and America. One of the earliest kaown, Anoplotherium, was fully described by Cuvier from remains found in the Paris gypsum beds (Upper Eocene). Its teeth formed a series unbroken by a gap or diastema, and were of uniform height (as in Man alone of cxisting mammals). Its tail was long, with large chevron bones


Fig. 110.-Restoration of Anoplotherium communc (Upper Eocene). Cuvier.
underneath, not usaally found in Ungulates, and there were but two toes on each foot. It was in many reapects a much sprecialized form, apparently not on the line of descent of any of the existing цтоирs. Charopotamus, Anthracotherium, Hyopotamus, Xiphodon, Dichodon, Dichobune, Cainotherium, the American Oreodon, and numerons others were forms more or less intermediate in character between the three distinct sections into which, by their extinction, the Selenodont Artiodactyles can now be divided, -the Tylopoda, slso called Phalangigrada, the Tragutina, and the Pecora or Cotylophora.

## I. Tylopoda.

Represented at the prescnt time by the two species of Camele of the Old World and the Llamas of Americs. For their apecial distiuguishing charscters see articles Llama and Camel.

## II. Tragulina.

No teeth in premsxillæ. Upper canines well-developed, especially in the males ; narrow and pointed. Lower canines incisiform. No caniniform premolsrs in either jaw. Molariform teeth in a contiduous series consisting of $p \frac{5}{3}, m \frac{3}{3}$. Odontoid process of axis conical. Fibula complete. Four complete toes on each foot. The middle metapodials generally confluent, the outer ones (sncoud and fifth) very slender but complete, i.e., extending from thc carpus or tarsus to the digit. Navicular, cuboid, and ectocuneiform bones of tarsus anited. Tympanic bullæ of akull filled with cancellar tissue. No frootal sppendages. Ruminating, but the stomach with only three distinct compartments, the maniplies or third cavity of the stomach of the Pecora being rudimentary. Placenta diffused.
This section contains the singio femily Tragutide, containing a
few animals of small sizc, commonly known as Cherrotains, intert mediate in their structure betreen the Deer and the Pigs. The large size of the caniaes of the inale and the absence of horna caused them to be associated formerly with Moschus, one of the true Decr ; hence they are often spoken of as "Pigmy Musk-Deer," although they have no musk-secreting gland, or, except in the abovo-named trivial external chsracters, no special affinities with the true Musk. There has scarcely been a nore troublesome and obdurste error in zoology than in this association of animals so really distinct. It has been troublesome, not only ss preventing a jus\% conception of the relations of existing Artiodactyles, but also in causing great confusion and hindrance in palieontological researches among allied forms ; and most obdurate, inasmuch as all that has been recently donc in advancing our knowledge of both groups has not succeeded in eradicnting it, not only from pearly every one of our zoologicsl text-books, whether British or Continental, but even from works of the bighest scientific pretensions.

The family is now generally divided into two genera.
Tragulus, containing the smallest of the existing Ungulatey, animals baving more of the general aspects and babits of somn Rodents, as the Agoutis, than of the rest of their own order. The best-known species are T. javanicus, T. napu, T. Eanchil, T. stanlcyannes, and T: memmina. The first four are from the Malay Peninsula, or the islsnds of the Indo-Malaysin Archipelago, the last from Ceylon and Hindustan.

Hyomoschus is distinguished chiefly by the feet being stouter and shorter, the outer toes better developed, and the two middle meta. carpsls not ankylosed together. Its dental formala (as that of Tragulus) is $i \frac{\circ}{\mathrm{j}}, c \frac{1}{1}, p \frac{3}{3}, m \frac{3}{3}=34$. Vertebræ: C7, D 13, L6, $\mathrm{S} 5, \mathrm{C} 12-13$. The only existing species, $H$. aquaticus (fig. 111), from tho west const of Africa, is rather larger than any of tha


Fro. 111.-Afitcan Water Cherrotaln (Hyomoschus agualicus).
Asistic Cherrotsins, which it otherwise much resembles, but it in said to frequent the banks of streams, and have much the habits of Pigg. It is of a rich brown colour, with back and sides spotted and striped with white. It is evidentiy the survivor of a very ancient form, as remains of a species only differing in size ( $H$. crassus) hsve been found in Mincene deposits at Sansan, depart ment of Gers, France.

## III. Pegora or Cotylophora

No premaxillsry teeth or caniniform premolars. Upper caninea generally absent, though sometimes largely developed. Inferior incisors, three on each side with an incisiform canine in contact with them. Molariform teeth consisting of $p \frac{3}{3}, n 2 \frac{3}{3}$, in coriv tinuous seriee. Auditory bullæ simple and hollow within. Odostoid process in the form of a crescent, hollow abore. Distal extremity of the fibuls represented by a distinct malleolar bone of peculiar shspe, articulating with the outer surface of the lower end of the tibia. Third and fourth metacerpals and metatarsals confluent. Ooter toes small sad rudimentary, or in some cases entire.', suppressed; their metapodisl bodes never complete. Navicular as. cuboid bones of tarsus united. Horns or sntlers asaally present, at least in the male sex. Left brachial artery srising from a common innominste trunk, instesd of coming off sepsrately from the aortic arch as in the preceding sections. Stomech with four complete carities. Placenta cotyledodous.

The Pecora or true Ruminants form at the present time an ex. tremely homogeneous group, one of the best-defined and most closely united of any of the Mammalia. But, though the original or com mon type has never been departed from in essentials, variation has been very active among them within certain limita; and the great difficulty which all zoologists have felt in subdividing them into natural minor groups arises from the fact that the claages in different organs (feet, skull, frontal appendages, teeth, cutaneous glands, \&c.) have proceeded with such apparent irregularity and absence of correlation that the different modifications of these parts are most variously combined in different members of tha group. It appears, however, extremely probable that they soon branched into two main types, represented in the present day by the Cervida and the Bovide,-otherwiss the Antlered and Horned Ruminants. lnteruediate amaller branches produced the existing Musk-Deer and Giraffe, as well as the extinct Helladotheriuen incliuing to the firstnamed group and the extinct Sivatherium, Brahmaihcrium, Hydaspitherium and others more allied to the latter, although upon tha true relationship of these forms there is a differeace of opinion between the two palicontologists who have pard most attention to the group, Ruitimeyer and Lydekker, but the materials forthcoming at present ars seareely sufficient for forming a decided opinion.

The earliest forms of true Pccora, as Gelocus and Dremothcrium (Miocene), had no frontal appendages, and some few forms (Moschus aud Hydropotcs) continue to the present day in a similar case. In tha very large majority, however, either in both seses or in the male only, a pair or occasionally two pairs (Tctraccros and the extinct Sivalherium) of processes are developed is weapons of offenee and defence from the frontal bones, these being almost always formed on one or other of two types.

1. "Antlers" are an outgrowth of true bone, covered during their growth witl vascular, sensitive integument coated with ahort hair. In this state they remain permauently in the Giraffe, but in the true Cervida, when the growth of the antler is complete, the aupply of blood to it ceases, the skin dies and peels off, leaving the bone bare and insensible, and after a time, by a process of absorption near the base it becomes detached from the akull and is "shed." A more or less elongated portion or "pedicle" always remains on the skull, from the summit of which


Fic. 112.-Head of Decr (Cervus schomburghii), showing Aatters. From Sclater, Proc. Zool. Soc., 1877, p. 682.
a naw antler is doveloped. In tha greater number of existing apeciea of Deer this process is repeated with great regularity at the sams period of each year. The antler may bo simple, straight, aubcylindrical, taperiog and pointed, but more often it acnds of one or more branches called "tynes" or "snags." In this case the main stem is termed the "beam." Commonly all tho brtwehes of the antler are cylindrical and gradually tapering. Sometimes they are more or less expanded and flattened, the antler being then aaid to be "palmated." In young animals the antlers are always small and simple, and in those species in which they are variously
branched or pialmatcd, this condition is only graduslly acquired in several successive annual growths. An interesting frallel has been observed here, as in so many other eases, between the development of the race and that of the individual. The earliest known forms of Deer, those of the Lower Mioeene, have no antlers, as in the young of the existing species. The Deer of the Middle Miocene have simple antlers, with not more than two branches, as in existing Deer of the second year. Species occur in the Upper Mliocene with three branches to the antlers, but it is not until the Upper Pliocenc and Pleistoceno times that Deer occur with antlars developed with that luxnriance of growth and beauty of form characteristic of some of the existing species in a perfectly adult state. Among recent Cervidx, antlers are wanting in the genera Moschus and IIydropotes; they are present in both sexes in Tarandus (the Reindeer), and in the male sex only in all others.
2. The "horns" of the Bovida consist of permanent, conical, usually curved, bony processes, into which air-cells continued from the frontal sinuses often extend, called "horn-cores," ensheathed in a case of true hoin, an epidermic development of fibrous structure, which grows continuously, though slowly, from the base, and wears away at the apex, but is vory rarely shed entire. The only existiu? species in which such a process occurs regularly and periodically is


Fig. 113.-Head ol Antelope (Gazella gran(i), showing Herns, From Sir V. Brooke, Proc. Zool. Soc., isis, p. 724.
the American Prong-Buck (Antilocapra), in which the horns also differ from those of all others in being bifurcated. Horns are not present at birth, but begin to grow very soon afterwards. The inales of all existing Bovidx possess tbem, and they are also present (though usually not so fully developed) in the females of all except the genera Portax, Tragclaphus, Procapra, Antilope, Epyceros, Saiga, Kobus, Cervicapra, Pclea, Nanolragus, Neotragus, and Tctraceros. ${ }^{\text {² }}$

Another character by which the different members of the Pceora can be distioguished is derived from the characters of the molar teeth. Although there is nothing in the general mode and arrangement of the cnamel folds, or in the accessory columns, absolutely distinctive between the two principal fanilies, existing apccics may gederally be distioguished inasmuch as the true molars of the Ccrevdre are "brachyodont," and those of the Bovida "hypsodont," i.c., the tectli of the former lave comparatively short crowns, which, as in most mammals, take their place at onee with the neck (or point where the crown and root join) on a level with or a little above the alveolar border, and remain in this
${ }^{1}$ Sir Victor Brooke, Proc. Zool. Soc., 1878, p. 884
position throughont the animal's life; whercas in the other forms, the crown being lengthened and the ruot small, the neck dees not come up to the alveolar level until a considerable part of tha surface bas worn away, and the crown of the tooth thas appears fer tha greater part of the animal's life partially buried in the socket. In this form of tooth (which is almost always most developed in the posterier molars of the permancut scries), the constituent columns of the crown are necessarily nearly parallel, whereas in the first-described they diverge from the neck towards the free or grinding surface of the tooth. In the more complete liypsodent form the interstices of the lengthened columnar folds of cnamel and dentine are filled up with cementum, which gives stability to the whole organ, and which is entircly or nearly wanting in the short-crowned teeth. The sama modification from low to high crowns without essential alteration of pattern is seen in an even still more marked manncr in some of the l'erissodactyle Ungulates, the tooth of the IIorse bearing to that of Anchitherium (see Horse, vol. xii. 1. 174) the same relation as that of an Ox does to tha early Seleuodont Artiolactyles. A parallel medification has been nlso shown to have taken place in the molar teeth of the Proboscidea (see p. 423).

As the hypsodont teeth is essentially a modifcation of and, as it were, an improvement upon tha brachyodont, it is but natural to expect that all intermediate forms may be met with. Even among the Deer themselres, as pointed out by Lartet, the most ancient have very short molars, and the depressions on the grinding surfaca are so shallow that the boltom is always visible, while in the Cervide of the more recent Tertiary periods, and especially the Pleistocene and living specics, these same carities are se deep that whatever be the state of tha dentition the bottom canset be seen. Some existing Deer, as the Axis, are far more hypsodont than the majority of the family; and, on the other hand, many of the Antelopes (as Tragelaphus) retain much of the brachyodont character, which is, however, completely lost in the more modern and highly specialized Sheep and Oxen.

## Family Cervide.

Frental appendages, when present, in the furm of antlers. First molar at least in looth jars brachyodont. Two orifices to the lacrymal duct, situated on or inside the rint of the orbit. An anteorbital racuity of such dumensions as to exclude the lacrymal bone from articulation with the nasal. Upper canines usually present in beth sexes, and sometimes attaining a very great size in the male (see fig. 114). Lateral digits of both fore and hind feet almost


Flo.114-Skull of Frydronc'es inermis (adult ma'c), a Decr without Antlers, but with largely-develnped upper canine teeth. $\times \frac{1}{3}$. From Slr V. Brouke, Proc. Zool. Soc., IS72, p. 521.
almays present, and frequently the distal eads of the metapodals. Placenta with few cotyledons. Gall-bladler absent (except. in Moschus). This family contains numerous species, having a wida geegraphical distribution, ranging in the New World from the Arctic Circlo as far sonth as Chili, and in the old World throughout the Whele of Europe and Asia, but absent in the Ethiopian and Australian regions. For the characters of the generic subdivisions and their distribution, see Stag, also Deea, Mentsac, and Musk. Deer.

## Family Cahelopardalidz

Frontal appendages consisting of a pair of short, erect, permanent bony processes, ossified from distinct centres, and for a time suturally connected with the frontals, though afterwards ankylosed to them, covered externally with a hairy skin, prescat in both sexes, and even in the dew-born apimal. Anterior to these is a median protuberance on the frontal and contigueus parts of the nasal bones, which increases with age, and is sometimes spoken of as a third horn. No upper canines. Molars brachyodont. Lateral digits entirely absent on both fore and hind feet, eren the hoofs not dereloped.

This family contains but a single species, the well-known and very remarkable animal tha Giraffe, or Camelopard (Camelopardalis girafa). See G(baffe.

## Family Boride.

Frental appendages when present in the form of herns. Melars ustually hypsodont. Usually ouly one orifice to tha lacrynal canal, situated inside the rim of the orbit. Lacrymal bene almest always articulating with the nasal. Conides absent in both sexes. The lateral toes may be completely absent, but mere often they ara represented by the hoors alone, supported sometimes by a vers ruhimentary skeleten, consistiog of mere irregular nodules of bone. nistal cnds of the lateral metapodals never present. Gall-hladder -most alvays, present. Flacenta with many cotyledons.
The Bovidx; or hollow-horned Ruminants (Cavicornia), formamost extensive family, with mambers widely distributed throughont the Old World, with the exception of tha Australian region; but in America they are less numerous, and confined to the Arctic and northenn temperate regions, no species being indigenous either to South or Central America. There is scarcely any natural and welldefined group in the rhole class which presents grcater difficulties of subdirision than this; consequently zoolegists are ns yet very little agreed as to the extent a a boundaries of the genera into which it should be divided. The pribcipal species will be found more particularly described under tha headings Astelope, Bisos, Buffalo, Cattle, Chamohs, Eland, Gnu, Goat, Hahtebefat, lbex, Musk-Ox, Nilgitau, Ox, Saica, and Seeep.

## Group TILLODONTIA.

Here may be noticed a remarkable group of enimals, called by Marsh Tillodontia, the remains of which are found abundantly in the Lower and Middle Eocene beds of North America. They seem to combine the characters of the Ungulata, Rodentia, and Carnivora. In the genus Tillotherium of Marsh (probably identical with the previously described Anchippodus of Leidy) the skull resembled


Fic. M15.-Skull of Tillotherium fodiens. I vat. size. From Marsh.
that of the Bears, but the molar teeth were of the Ungulate type, while the large incisors were very similar to those of the Rodents. The skeleton resembled that of the Carnivores, but the scaphoid and lunar bones were distinct, and there was a third trochanter on the femur. The feet were plantigrade, and each had five digits, all with long pointed claws. In the allied genus Stylinodon all the teeth were rootless. Some were as large as a Tapir.

These, with other similar animals, constituting a gruup called Txniodonta, are included by Cope in his large order Bunotheria, to which also the existing Insectivora are referred. The constantly increasing knowledge of these annectant forms adds to the difficulty so often referred to in this article of establishing anything like e definite classification of the heterodont mammals.

## Order carnivora.

Though the Carnivora as at present restricted ${ }^{1}$ form a very natural and well-defined order among the Mrammaliä, it is difficult to find any important common diagnostio characters by which they can be absolutely separated; but, as in the case of so many other natural groups, it is by the possession of a combination of various characters that

[^176]they must be distinguished. They are muguiculate, and have never less than four well-developed toes on each fuot, with nails more or less pointed, rarely rudimentary or absent. The pollex and lallux are never opposable to the other digits. They are regularly diphyodont and hetero. dont, and their teeth are always rooted. ${ }^{1}$ Their dentition consists of small pointed ineisors, usually three in number, on each side of each jaw, of which the first is always the smallest and the third the largest, the difference being must marked in the upper jaw; strong conical, pointed, recurvech canines; molars variable, but generally, especially in the anterior part of the series, more or less compressed, pointed, and trenchant; if the crowns are flat and tuberculated they are never complex or divided into lobes by deep inflexions of enamel. The condyle of the lower jaw is a transversely placed balf-cylinder working in a deep glenoid fossa of corresponding form. The brain varies much in relative size and form, but the hemispheres are never destitute of well-marked convolutions. The stomach is always sinople and pyriform. The crecum is either absent or short and simple, and the eolon is not sacculated or greatly wider than the small intestine. Vesiculæ seminales are never present. Cowper's glands are present in some, absent in other groups. The uterus is bicornuate. The mamma are abdominal, and very variable in number. The placenta is deciduate, and almost aiways zonary. The clavicle is often entirely absent, and when present is never complete. The radius and ulna are distinct. The scaphoid and lunar hones are always united into one, and there is never a distinet os centrale in the adult. The fibula is always a distinet slender bone.
The large majority of the species composing this order subsist chiefly upon some variety of animal food, though many are omnivorous, and some few chiefly, though not entirely, vegetable eaters. The more typical forms live altogether on recently-killed warm-blood?d animals, and their whole organization is thoroughly adapted to a predaceous mode of life. In conformity with this manner of obtaining their subsistence they are generally bold and savage in disposition, though some species are canable of being domesticated, and when placed under favourable circumstances for the development of suclı qualities exhibit a very high degree of intelligence and fidelity. The order is naturally divided into two suborders, the members of oae being the more typical, and mainly terrestrial in their mode of life, while thoso of the other are aberrant, having the whole of their organization specially modified for living labitually in water. These are called respectively the True or Fissiped and the Pinniped Carnivora.

## Suborder CARNIVORA VERA or FISSIPEDIA.

Gencrally adapted for terrestrial progression and mode of life, though some may be partially aquatie in their habits. The fore limbs never have the first digit, or the hind limbs the first and fifth digits, longer than the others. Incisors $\frac{3}{3}$ on each side, with very rare exceptions. Cerebral hemispheres more or less elongated; always with three or four gyri on the outer surface forming arehes above each other, the lowest aurrounding the Sylvian fissure. The molar aeries of teeth have not the uniform characters of those of the Pinnipedia. There is always one tooth in each jaw which is specially modified, and to which the name of "sectorial" or "carnassial " tooth has been applied. The teeth in front of this are more or less aharp-pointed and compressed; the teeth behind it are broad and tuberculated. The characters of the sectorial teeth deserve speeial attention, as, though fundamentally the same

[^177]throughout the suborder, they are greatly modified in different genera. The upper sectorial is the most posterior of the teeth which have predecessors, and is therefore reekoned as the last premolar ( $p 4$ of the typical dentition). It consists essentially of a more or less compressed


Fig. 116.-Upper Sectorial Tecth of Cavnirora. 1, Felis; II, Canis; III, Uיsus. 1, unterior, 2, middle, and 3, posterior cusp of blude; 4, inner lobe supported on distinct root; 5 , inner lobe, posterior in positlon, nad without distinet root, characteristic of the $U \quad$ rsidx.
blade supported on two roots and an inner lobe supported by a distinct root (see fig. 116). The blade when fully developed has three cusps ( 1,2 , and 3 ), but the anterior is always small, and of ten absent. The middle lobe is conical, high, and jointed; the posterior lobe bas a compressed straight knife-like edge. The inner lobe (4) varies very much in extent, but it is generally placed near the anterior end of the blade, though sometimes it is median in position.


Fio. 117.-Modifeotions of the Lower Sectorlal Tooth in Carnitora. I, Felis: 1f, Cunis; 111, Herpestes; IV, Lutra; V, Meles; V1, U'rsus, 1, anterior lobe of blode; 2, posterfor lobe of blade; 3 , Inner tubercle; 4 , heel. It wist be seen that the relatlve size of the two roots varles according to the development of the portion of the crowa they have respectively to support.

Ia the Ursidx alune both inner lobe and rout are wanting, and there is often a small internal and posterior cusp (5) without root. In this aberrant family also the sectorial is relatively to the other teeth much smaller than in the reat of the Carnivora. The lower sectorial (see fig. 117) is the most anterior of the teeth without predecessors in the mils series; it is therefore reckoned the first true molar $\overline{(m \mathrm{l})}$ ) It has two roots supporting a crown, consisting when fully developed of a compressed bilobed blade ( 1 and 2), a beel (4), and an inner tubercle (3). The lobes of the blade, of which the hinder (2) is the larger. are separated by a notch,
generally prolonged into a linear fissure. In the most specialized Carnivora, as the Felidx (I.), the blade nlone is developed, both heel and inner tubercle being absent or rudimentary. : In others, as Mretes (V.) and Ursus (VI.), the heel is greatly developed, broad, and tuberculated. The IMade in these cases is geacrally placed obliquely, its flat or convex (outer) side looking forwards, so that the two lobes are almost side by side, instead of unterior and posterior. The inner tubercle ( 3 ) is generally a conical pointed cusp, placed to the inner side of the hinder lobe of the blade. The special characters of these teeth are more disguised in the Sea Otter (Enhydra) than in any other form, but even in it they can be traced.

The'toes are nearly always armed with large, strong, cursed, and tolerably sharp claws, eushcathing the ungual phalanges, and held more firmly in their places by broad laminæ of bone reflected over their attached ends from the bases of the phalanges. In some forms, most notably the Felidæ, these claws are "retractile." The ungual phalanx, with the claw attached, folds back in the fore foot into a sheath by the outer or ulnar side of the middle phalanx of the digit, being retained in this position when the animal is at rest by a strong elastic ligament. In the hind foot the angual phalanx is retracted on to the top, and not the side of the middle phalans. By the action of the deep fexor muscles, the ungual phalanges are straightened out, the claws protruded irom their sheath, and the soft "velvety" paw becomes suddenly converted into a most formidable weapon of offence. The habitual retraction of the claws preserves their points from wear in ordinary progression.

The Fissipedal Carnivora were divided by Cuvier into two groups, according to the position of the feet in walking, 一 the Plantigrada, or those that place the whole of the soles to the ground, and the Digitigrada, or those that walk only on the toes; and the difference between these groups was considered of equal importance to that which separated from them both the Pinnigrada or Seals. The distinction is, however, quite at artificial one, and every intermediate condition exists between the extreme typical plantigrade gait of the Bears and the truly digitigrade walk of the Cats and Dogs; in fact, the greater number of the Cernivora belng to neither one form nor the other, but may be called "subplantigrade," often when at rest applying the whole of the sole to the ground, but keeping the heel raised to a greater or licss extent when walking.

A more natural classification is iuto three distinct sections, of which the Cats, the Dogs, and the Bears may் be respectively taken as representatives, and which are hence called ELuroidea, Cynoiden, and Aretoidea. This division is founded mainly on characters exhibited by the base of the skull, but is corroborated oy the structure of other parts. ${ }^{2}$ The presence or absence of a bridge of bone, covering the external carotid artery in a part of its course by the side of the alisphenoid boue, and enclosing the "ahisphenoid canal," a character to which the late Mr H. N. Turner first drew atteation, might seem unimportant at first sight, but it is curiously constant iu certain groups, which we have other reasons, derived often from a combination of less easily definable characters, to regard as natural. It is therefore generally mentioned in the following family definitions.

## Section eluroidea.

The EEluroidea or Cat-like forms inclnde the Felidæ, Fiverridæ, Protelidx, and Hyænidre.

- See W. H. Flower, "On the Value of the Characters of the Base of the Cranium in the Classificstion of the order Carnivora, Proc. Zool. Soc., 1369, p. 4; St George Mivart, "On the C!assification and Distribntion of the Eluroidea," ibid., 1882, p. 135; and Id., The Cat, an Introduction to the Study of Backioned Animals, especially Menmake 1881.

True molars reduced to onc above and below, that of tle upper jaw very small and transversely extended. Only two inferior premolars. Auditory bulla not externally constricted, but internally divided by a septum. No alisphenoid canal. Carotid canal rey minute. Digits 5-4. Dorsal vertebre 13.

Ficlis.-The whola structure of the animals of thas genas exhibits tho carnivorous type in its fullest perfection. Dentition $i \frac{s}{3}, c \frac{1}{3}, p \frac{3}{2}, m \frac{2}{8}$; total 30. The upper auterin preinols.! always suall, may sometimes be absent without any other mollification in the dental or other structures. Sucla a variation should not therefore be considered as of gencric importance. Incisors very small. Canincs large, strong, slightly recurved, witl trenchant edges and sluarp points, and placed wile apart. I'remolars compressed and sharp-poiuted. The most posterior in the upper jaw (tive sectorial) a very large tooth, consisting of a subcompresset blade, divided into three wequal cusps supported by two roots, with a very small inner lobe placed near the front eud of the tooth and supported by a distinct root. Tho upper true molar a very small tubercular tooth placel more or less transversely at tha inuer sule of the hinder end of tho last. In the lower jaw the true molas (sectorial) reduced to the blade alone, which is very large, trenchant, and much compressed, divided into two suberual lobes. Occasionally it has a rudimentary heel, but nerer an inuer tubercle. The skull gencrally is short and rounded, though proportionally more elougated in the lareer forms. The facial jortion is especially short and broad, and the zygonatic arches very wide and strong. The unditory bullz are large, rouncied, and smooth. Vertebre: C 7, D 13, L 7. S 3, C 13-29. Clavicles better developed than in other Camizora, but not articulating with either the shonlder bones or sternam. Limbs digitigrade. Anterior feet with five tocs, the third and fourth nearly cqual and longest, the second slightly and the ffits considerably shorter; the pollex still shorter, not reaching as far as the metacarpo-phalangeal articulation of the sccond. Hind feet with only four toes. The third and fourth the longest, the second and fifth somewhat shorter and nearly equal; the hallux represented. only by the rudimentury metatarsal bonc. The claws all very large, strongly curved, compressed, very sharp, and exhibiting the retractile condition in the bighest degree. The tail varies greatly in length, being in some a nere stump, in otbers nearly as long as the body. Ears of moderate size, morn or less triangular and pointed. Eyes rather large. Iris very mobile, and with a pupillary aperture which coutracts under the influence of light in some species to a darow vertical slit, in others to on oval, and in some to a circular aperture. Tongue thickly covered with sharppointed, recurved horny papillw. Cæcum small and simple.

As in structure so in habits, the Cats may be considered tbe roost specialized of all the Carnivora. All the known members of the genus feed, in the natural state, almost exclusively on warm-blooded animals which they have themsclves killed. One Indian species (F. vivcrina) is said to prey on fish and even freslwater molluses, Unlike the Dogs, they never associate in packs, and rarely hunt their prey in open grouud, but from some place of concealment wait until the unsuspecting victim comes within reach, or with noiseless and stealthy tread, crouching close to the groand for conccalment, approach near enough to make the fatal spring. lu this manaer they frequently attack and kill animals considerably exceeding their own size. They are mosily nocturnal, and the greater number, especially the smaller species, more or less orboreal. None are aquatic, and all take to the water with reluctance, though some may labitually haunt the barks of rivers or pools, because they more easily obtain their prey induch situations. The numerous species of the genus are very widely diffused over the greater part of the habitahle world, though most abundant in the warm latitudes of both hemispheres. No species are, however, found in the Australisu region, or in Madagascar. Although the Old-World and NewWorld Cats (except perhaps the Northern Lynx) are all specifically distinct, no common structural character has been pointel out by which the former can be separated from the latter. On the contrary, most of the minor groups into which the genus has been divided have representatives in bath hemispheres.
Notwithstanding the considerable diversity in external onpearance and size between different members of this extensive genus, the atructural differences are but slight, and so variously combines in different species that the numerous attempts hitherto made to subdivide it are all unsatisfactory and artificial. The principel differences are to be found in the form of the cranium, especially of the nasal and adjoining bones, the completeness of the bony orbit posteriorly, the development of the first upper yremolar and of the inner lobe of the upper sectorial, the length of the tail, the form of the pupil, and the condition and coloration of the fur, especially the presenee or absence of tufts or pencils of hair on the external ears. There is one decidudly aberrant form, which enables us to divide the genus into two sections, to which the rank of genere is sometines accorded.

1. Felis proper. - A distinetly cusped inner lobe to the upper sestorisl footh. Flaws completely retractile. There are about
fifty speeres, of whin the following are tho most important and best known.
A. Old-IF orld Spccies.

For $F$. lco, see Lion; and for $F$. tigris, sec Tigen. With regard to $F$. pardus, the Leopard or Panther, it is still a matter of uncertainty whether the large spotted Cats to which these names are given, found chiefly in wooded districts through neally the whole of Africa and the warmer parts of Asia as far as Japan, belong to one or several species. Sec Leopard. F. uncia, the Ounce, inhabits the highlands of Central Asin, from the snowy mountains of Tibet to the southern parts of Siberia, at altitudes of from 9000 to 18,000 feet abova the sea. It is about the size of the common Leopard, but lighter in colour, with longer fur and less distinct spots. Its skull differs in sliape from that of all tho other Fclida, the facial portion being very broad, the aasal hones especially being wide and depressed, ond the zygomatic arehes very strong and deep. $F$. macrocelis, the Clauded Tiger, is a beautifully marked species, with elongated head ond body, long tail, and rather short limbs. The canine tecth are proportionally longer than in any existing urember of the genus. It is thoroughly arboreal, and is found in the forests of south-cast $\Lambda$ sia and the islands of Sumatra, Java, Borneo, and Formosa. F. scrual, the Serval, from South Africa, is yellow with black spots, and has a short tail and large ears. Numerous smaller species called Tiger Cats and Wild Cats, many of them by no means elearly defned zoologieally, are found throughout the warmer parts of Asia and Africa. The Wild Cat of Europe, F. catus, still inhabits the mountainous and wooded parts of Great Britain. The Domestic Cat is an introduced species, and generally supposed to be derivod from $F$ maniculata of Egypt and Syria. Moderate-sized Cats, with short tails, rather long limbs, especially the hinder ones, and tufts or pencils of hair on their cars, are called Lyaxes. See Linx.
B. New-World Spccics.
$F$. concolor, the Puma or Couguar, commonly called "Pautlier" in the United States, is about the size of a Leopard, but of an uniform brown colour, spottod only when young, and. is extensively distributed in both North and South America, ranging between the parallels of $60^{\circ} \mathrm{N}$. and $50^{\circ} \mathrm{S}$. $F_{\text {. onca, the Jaguar, is a larger }}$ and more powerful animal than the last, and more resembles the Leopard in its colours. It also is found in both North and South America, but with less extensive range, reaching northmards only as far as Texas, and southwards nearly to Patagonia. See Jaguar. F. pardalis, and several allied smaller elegantly-spotted species inhabitiog the intratropical regions of America, are commonly confounded under the name of Ocelot or Tiger C'at. F. yaguarundi, rather larger than the Domestic Cat, with an elongated head and body, and of a uniform brownish-grey colour, ranges from Nata. moras to Paraguay. $F$. eyra is a small Cat, very Musteline in form, having an elongated head, body, and tail, and short limbs, aud is also of a naiform light redulish-brown colour. It is a native of South America and Mexico. F. pajeros is the Pampas Cat. Four species of Lynx are described from North America, but it is donltful whether these are specifically diatinct from each other nud from the Lynx of northern Eirope.
2. Cymalarrus.-Sometimes considered as a distinct genus. The Chectah or Hunting Leopard, F.jubata, is distinguislied from the other Ficlide by the inner lobe of the upper sectorial, thongh supported bya distinct root, having no salient cusp apon it, by the inbereular molar being more in os line with the other teeth, and by the claws being smaller, less curved, and less completely retractile, owing to the feebler development of the olastio ligaments. The skull is short and high, with the frontal region broad sud elevated in consequence of the large development of the frontal air-siauses. The head is small and round, the body light, the limbs and tail long. Its colour is palo yellowish-brown with small black spots. Tlie Cheetah is less savage and moro ousily tamed than most of the Cats. In Asia it has been trained for the chase of the Antelope. It has rather an extensive geographical range from the Cape of Good Hope, throughout Africa and the south-western parts of Asia, as far as southern India.

Fossil Felida. - Namerous extinct species of the genus are found in Pleistocene, Pliocene, and even later Miocene deposits in Europe, Asia, and America. Among thom is the Cave Lion, F. spolza, which can aearcely bo separated suecifically from $F$. lco, and of which abundant remains arc found in caves in England and other parts of Europe. F. cristata, from the Siwalik Hills, intermediate in size between a Tiger anu Jaguar, is distinguished from the other Felide by the shortness of the face as compared with the cranial part of the aknll. These and many others, mostly of smaller size, present no greater modifications of form thau the various existing members of the genns Fclis, and can therefore be properly included within its limits; but numerous other forms are gradunlly becomiog known, especially through the researches of American palrootologists, which, though eridently animnls of tho same general type and therefore to be sncluded in the fornily Felidss, depart 50 much in varions details of structure that they must be placed in difforent geners. As one of the points in which Felis manifests its special-
ization is the reduction of tlac number of the molar serics of teeth with roncomitant shortening of the jars, it might bo suplosed that in the earlier and perliaps ancestral forms these teeth wonld be more numerous and approach more nearly to the primitive or typical number of the heterodont manmals, viz., seven on each side. This is actually the casc. One Enropean form (also reecntly found in America) to which Gervais has given the name of Pscudalurus, of Bliocene age, has the dentition of Fclis with an addition of one nsemolar in the lower jaw; but others have a still larger number, as Archalurus debilis of Cone from the American Miocene, about the size of a Pantler, which has four premulars and a tubercular molar io the opper jaw, and three premolars and two molars in the lower jaw. A tubereular molar in the lower jaw, behind the sectorial, also occurs in Elarogalc, Dinictis, and Nimrarus. Another tendency to generalization is the existence in some forms, as Hoplophoncus, of a posterior lobe or heel to the inferior sectorial, found in nearly all Carnivores except the existing Fclidx. On the other hand some of the extinct Fclide show a most remarkable tendeney towards a specialization not occurring in any of the surviving members of the fimily, viz, an enormous development of the upper eanines, with which is usinally associated on expamsion downwards and flattening of the anterior part of the ramas of the lower jaw, on the onter side of which the canine lies, when the mouth is closed. In Smilodon nxogeus, the Sabre-toothed Tiger, from the eaves of Brazil and also from Pleistocene deposits near Buenos Ayres, an animal about the size of a Tiger, these teeth are 7 inches in length, greatly compressed, and finely serrated on the trenchant anterior edges. Similar serra. tions are seen on a much fainter srale in the unworn teeth of modern Tigers. Many modifications of this commonly-called "machærodont" type have been met with both in the Old and New World to which the names of Macharodus, Drcpanodon, Smilodon, Hoplophoreus, Dinictis, Pogonodon, \&c., have been given. A very remarkable form, Eusmilus, differs from all other koown Felines in having only folfor incisors in the lower jaw, and a pair of small canines separated by a very long diastema from the next teeth, which consist only of one premolar and one sectorial true molar. The lower jaw is enormously expanded towards the symphysis to protect the large upper canines. This snimal then, although of Eocene age, appears to form the culminating development of the sabre-toothed or macherodont dentition, the most specially carmivorous type. of structure known.

Cope divides all the known Feline animals into two families, Felidx and Nimravidæ, ${ }^{1}$ distinguished by the characters of the foramina at the base of the cranium, the former being of more modern origin than the latter, the nembers of which are all extinct, and which seen to connect the Cats with still more primitive tynes of Carnivorct.

## Family Vivenride.

Premolars $\frac{3}{3}$ or $\frac{4}{4}$. Alolars $\frac{1}{4}$ or $\frac{2}{2}$. Auditory bulla externally constricted, and divided by a septum. An alisplienoid canal (with very rare exceptions). Carotid canal distinct as a groove on the side of the bulla. Digits usually $5-5$, but sometimes the pollex or hallux or both may be wanting. Dorsal vertebre 13 or 14 . Limited in distribution to the Old World.

The subfamily Cryptoproctinæ contains the single genos Cryptoprocta. Deatition: $i \frac{3}{3}, c \frac{1}{1}, p \frac{4}{6}, m \frac{\lambda}{1}=\frac{9}{9}$; total 36 . The teeth generally closely resemble those of the Fclidx. The first premolar of both jaws is very minute and early deciducus. The upper sectorial has a very small inner lobe, quite at tbe anterior part of the tooth. The true molar is very small and placed transversely. The lower sectorial has a large trenchant bilobed blade, and a very minute heel, but no inner tubercle. Skull generally like that of Fclis, but proportionately longer and narrower. Orbit widely open behind. Vertebræ: C 7, D 13, L 7, S 3, C 29. Body elongated. Limbs moderate in size. Feet subplantigrade; five well-developed toes on each, with sharp, compressed, retractile claws. Ears moderate. Tail long and cylindrical.
The only known species, C. ferox, the "Foussa" of the Malngasy, is peculiar to Madayascar, being the largest carnivorous animal in the island. It is about twice the size of the common Cat ( 5 fect from nose to end of tail), with short close fur of nearly uniform pale brown/ littla is as yet known of its habits, except that it is nocturnal, frequently attacks and carries off goata, and especinlly kids, and shows great ferocity when wounded, on which account it is much dreaded by the aatives.

The remaining numerons specific and generic modifications found in the existing animals belonging to this family seem to group themselves mainly into two tolerably distinct groups, distinguishablo by the characters of tho auditory bulla and neighbouring parts of the base of the skull, and by the structure of the feet. The one form has the genus Viverra or Civet Cats for its most typical representative, and the othor Herpestes or the Ichneumons.

Subfamily Viverrinse. - Auditory bulla oval or rather conical, broad and truncated and not everted behind, narrow in frons and
more or lass compressed at the sides. The outer or anterior chamber very small and flat. The meatus with scarcely any inferior lip, its orifice being close to the tympanic ring. Paroccipital process triangular, its apex projecting slightly beyood the buila. Claws strongly curved satl more or less retractile.
 elongated; fscial portion simsli and compressed. Orbits welllefined but incomplete behind. Vertebre: C 7, D 13, L 7 (or D 14, L 6), S 3, C 22-30. Body elongated and compressed. Head pointed in front; ears rather sinnll. Extremities short. Feet snsll and rounded. Toes sloort, five on cach foot. First toe botl on fore and hind feet much shorter than the others. Palms ami soles covered with hair, except the pads of the feet and toes, and iu some species a narrow central lioc on the under side of the sole, extending backwards nearly to the heel. Tail moderate or long. A pair oflarge glandular follieles situated on the perineum (in both sexes), and secreting in most suecies an oily substanco of a peculiarly penctrating odour.

Ths numerons species of this genus form a large scries, the two extremes of which differ considerably, but the several sections into which they may be divided blend so into one another that it is elificult to differentiate them slarply. (1) Vircera proper. This includes the largest species. The tecth are stonter and less compressed than in the other sections. The second upper molar especially larger. The auditory bulla smaller and more pointed in [roat. Body shorter and stouter; limbs longer; tail shorter, tapering. Under side of tarsus completely covered with lisir. Claws longer and less retractile. Fur rather long and loose, ann in the niddle line of the neck oud back especially clougated so as to form a sort of crest or mane. Pupil circular when contracted. Perineal glands greatly developed. These characters apply especially to $V$. cieclla, the Arrican Civet, or "Civet Cat" as it is commonly called, an animal rather larger than a common Fox, and an inhali. tant of iniratropical Africa. V. ailuctta, the Indian Civet, of sbont equal size, approaches in miny respects, especinlly in the characters of the teeth aod [cet and absence of the crest of elongated hair on the back, to the oext section. It inhabits Bengal, China, the Malay Peninsula, and adjoining islands. $V$. langalunga is a smaller but aearly allied animal from the same part of the world. From these three species and the next the civet of commerce, once a) much admired as a perfume in England, and still largely used it the East, is obtaioed. The animals are kept in cages, and the odoriferous secretion collected by scraping the interior of the perineal follicles with a spoon or spatula (2) Vitcrricula. This section resembles generaliy the next, but rith the mliole of the under side of the tarsus hairy. Alisphenoid canal generally absent. $V$. malaccensis, the Rasse, inhabiting lodia, China, Java, and Sumatia, is an elegant little animal, which affords a favourite perfume to the Javanese. (3) Gcnella. The Genettes are smaller animals, with more elongated and sleader bodies, and shorter linils than the Civets. Skull elongated and aarrow. Auditory bulla large, elongated, rounded at both ends. Teeth compressed and sharp-pointed; a lobe on the inner side of the third upper premolar not preseut in the previous section. Pupil contracting to a lioear aperture. Tail long, slender, ringed. Fur ahort aod soit, spottcel or cloudy. Under side ol the tarso-metatarsus with a narrow longitudinal bald streak. V.gcnclle, the common Genette, is found iu France south of the river Loire, Spain, south-westera Asia, gud Africa from Barbary to the Cape. V. felina, senegalcnsis, ligrina, and pardalis are other named species, all Africau in habitat (4) Fossa. V. fossa, from Madagascar, may belong to a distinct section or genus, bnt its structure is very imperfectly knowa. (5) lo some of the smallest species the second upper molar (already reduced to very small dimensions in the Gencttes) is absent ; in other respects their dentition agrees with section 3. V. gracilis and V. pardicolor, both from southern Asia, constitute the genus Prionodion of Hors. field; V. richardsonii, from West Africa, the genus Poiana of Gray. The former has the buck of the tarsuy hairy, the latter lass a narrow aaked streak as in the Geaettes.

All the animals of this genus are, for their size, extremely octive, fierce, and ranacious. They feed chiefly on small mammals and birds.

Arcliclus.-Dentition: $i \frac{\pi}{3}, c+p \frac{4}{5}, m \frac{2}{2}=\frac{10}{2}$; total 40. The posterior upper melar and the Grst lower premolar very often obsent. Solar teeth generally amall and rounded, with a distinct iuterval between every two, but formed geacrally on the same pattern as Parodownris. Vertebræ: C 7, D 14, L 5, S 3, C 34. Body elongated. Head broad lelind, with a small pointed face. Whiskers long and numerous. Ears small, rounded, but clothed with a pencil of long hairs. Eyes small. Limbs short. Soles and palms broad, entirely asked. Tail very long and prebensile. Fur long and harsh. Cæcum extremely small. But one species is known, A. binturong, the Binturoug, an inhabitant of southern Asia from Nepal through the Malay Peninsula to the islands of Sumstra rad Java. Although structurally agreeing closely with the Paradoxures, its tufted ears, loof, coarse, and tark hair, and ratheusile tail give it a very diferent external snpearauce. It is
slow and cantious in its movements, clicfly if not cutirely arhoreal, ant applears to [eed on vegetable as well ns animal substnuces.

Paradoxuris.-Dentition: $i \frac{1}{3}, \epsilon \frac{1}{2}, p^{3}, m \frac{2}{3}=\frac{1}{1}$; totrl 40. The blunt and rounded form of the cusprs of the linder premolar and the molar teeth distiaguislics this genus from most of the members of the fanily. Vertubre: C 7, D 13, L 7, S 3, C 29-36. Head pointed infront. Enrs sunll, rounded. Bodylong. Limbs molerate. Palars and soles almost entirely nakcd. Clams completely relractilc. Tail long, non-prehensilc. The Paradoxnres or Paln-Cipets are less strictly carnivorons than the other members of the fariily. They are mostly about the size of the common Cat, or iather larger, and aro partly arboreal in their habits. The species are mother unmerous, and present considerablo rariations in tho details of the form and sizo of their molar teeth. They. are restricted geographically to sonthem Asia and the Indo- Malayau archipelago. The best known species are $P$. bondar, $P$. scylauicus, P. lypus, $P$. musanga, $P$. lurala, and $P$. grayi. P. virgala has been seprarated from tho others, and raised into a distinct genus, Alrclogale, on acconnt of the smalluess of the tecth and the clongrtion of the bony nalate. Otherwiso it seems not to differ from tho others.

Nandinia contans ono specres, iv. obnalada, a somewhat nberrant Paradosure, from West Arrica. It is rather amaller than the truo l'aradoxures, lars smaller and more pointed molsr tecth, and no catcum. Tho wall of tho inner chamber of the auditory bulla remains thronglı life unossified.

Hemigrler, another modification of the Paradoxure type, contains one species, $/ 1$. harlacickii, from Boraco, on clcgant-looking animal, smaller and noro slender than the Paradoxures, of light grey colour, with transverse broad dark bands across the bsck and loins.

Cymogalc also contains one species, C. bennctliz, Gray (described by S. Minler monder the name of Potrmophilus barbatus), from Boraco. 'Ihis is a curious Otter-like modification of the Viverrina typ, laving semi-aquatic liabits, both swimmiog in the water and climb ing trees, living upon iish, crustacea, small mammals, birds, and fruit. Tho number and genural arrangement of its tceth are as in Parr. doxntres, but the premolars are peculiarly elongated, compressed, pointed, and recurvel, somewhat as in the Seals, thongh the molare are tuberculated. The lead is clongated, the mnzzle broad anil depressed. Whiskers rery long and abundant. Ears small and rounded. 'Foes short and slightly webbed at tho base. Tail ahort, cylindical, covered with short hair. Fur very dense nud soft, of a dark brown colour, nixcel with black and grey.
Subfamily Herpestinæ. - Auditory bnlla very promiacnt, and somewlat pear-shaped, tho posterior chamber beiug large, ronuded. aod gencrally with its greatest prominence to the outer side. Tha anterior clamber consilembly dilated, aud produced into a short inferior wall to tho auditory meatus, in which is a depression or vacuity just below tho centre of the opeuing of tha meatus Sometimes this vacuity is coutiuucd into the meatus, forming a uarrow fissure. The paroccipital process does not project beyoud the bulla, but is spread ont and lost (in adult adimals) on its josterior surface. Toes straight; clawo lengtheued, exseitch, noaretractile.

Herpestes.-Deatition: $i \frac{3}{5}, c \frac{1}{2}, p \frac{4}{3}$, sometimes $\frac{3}{3}, m \frac{7}{2} ; 40$ or 36 . Teeth of molar series generally with strongly-developed, sharils. pointed cusps. Skull elorgated, coustricted behind the on bits. Face short avd compressed. Frontal rerion broad and arched. Postorhital processes of froutal and malar bones rell-developed, generally meetiog so as to complete the circle of the orbit behind Vertebra: C 7, D 13, L 7, S 3, C 21-26. Head pointed in frout Enrs ahort and ronoded. Body very long and slender. Extrenjtics short. Five toes on each foot, the first, especially that on the lind foot, very ahort. Toes free, or but slightly palmated. Palms noked. Distal jortion of soles naked, under surfsce of tarsus and metatarsus clotlied with hair. Toil long or moderate, generally thick at the base, snd soinctimes covered with more or less elongated hair. The longer hairs covering the body and tail almost always annulated. This geaus contains o very large aumber of animals commonly called lchneumous, or in India Mongooses, varying in size from that of a larce Cat down to a Weasel. They aro widely distnluted orier the Africun contiocut and the sonthern parts of Asia, especially India aud the lmo- Malayan archipelago, one species occuming also in Spuia. They ure mostly terrestrial in their habita, feerling on smoll mammals aud lirds, reptiles, especially snakes, eggs of birds end reptiles, und ulso insects. Some species ano partially domesticated, bein:r usud to keep lonses clear of rats, mice, and snakes 71. ichueumem was a sacred onimal to the oncient Egyptians. They vary considerablyzin aljesrance, some, as H. galera (alse called palueltnosus and robistus), ure larger and heavier, with steuter body, longer limbs, and stronger tecth. Others aro small, with very elongated bodies and short legs. Tho tail also varies somewhut in length, and in the amount of hair with which it is covered. These trivial differences hove given riso to the formation by some zoolonists of very numerous getara, the characters of which are by no meauy clearl; defined, lut the following are the most dise tinet and gencrally secognizal.

Helogale，meniolars $\frac{s}{3}$ ，contains tro small South－African species， II．parvula and II．uendulata．

Bdeogatc contains also two small Ichncumon－like animals． B．crassicauda and puisa，differing from Herpestes proper in having only four toes on each foot，botli pollex and hallux being absent． The orbit is uearly．complete，the tail of moderate length and rather oushy．

Cynictis．－l＇ollex present，but hallux absent．Skull shorter and broader than in Herpestes，rather coutracted behind the orbits， which are large and completo behind．Face short．Auterior chamber of the anditory bulla very largc．Front rlaws elongated． C．penicillnta，from South Africa．

All the foregoing Herpestines lave the nose short，with its under surface flat，bald，and with a nedian longitudisal groove．The remaining forms have the nose more or less prodnced，with its ander side convex，and a space between the nostrils and the upper lip covered with closo arlpressed hairs，and without any median groove．

Rhinogalc．－Toes 5－5．Claws．of fore fect slıort，compressed，acnte． Under aurface of tarsus hairy．Founded on a single specimen from Last Africa，$R$ ．melleri．
Crossarchus．－Dentition：$i \frac{3}{3}, c \frac{\pi}{1}, p \frac{\pi}{3}, m \frac{\rho}{2}$ ；fotal 36．Snout clongated．Toes 5－5．Claws on fore feet long and curved．Hallux very short．Under surface of tarsus maked．Tail shorter than the body，tapering．Fur harah．Species：O．obscurus，the Kiusimanse， a small burrowing animal from West Africa，of uniform dark－brown colour；C．fasciatus；C．zcbra；C．gambixnus．

Suricata．－A more distinct genus than any of the above．The dental formula as in the last，but the teeth of the molar serics remarkably ahort in the antero－posterior direction，correspondiny with tho shortness of the skull generally．Orbits complete behind． Vertebre：C 7，D 15，L 6，S 3，C 20．Thougl the locad is short and broad，the nose is pointed and ratlier prodnced and movable．Ears very ahort．Body shorter and limbs longer than in Iferpestes．Tocs $4-4$ ，the pollex and hallux being absent．Claws on fore fcet ve，$y$ long and narrorr，arched，pointed，and subcqual．Hind feet with much ahorter clays，soles hairy．Tail rather shorter than the body．One apecies only is known，the Suricate，S．tctradactyla，a small grey． brown aninlal，with dark transverse stripes on the hinder pait of the back，from South Afica．

Galidictis，Galidea，and IIcmigalidia are names of three slight generic modifications of the Viverrine type，nllicd to the Horpcs－ liner，but placed by Mivart in a distinct subfamily，Galidictionx． They are all inhabitants of Madagascar．The best－known，Galidia clegans，is a lively Squirrcl－like little animal with soft fur and a long buslyy tail，which climba and jumps with agility．It is of a chestnut－brown colour，the tail being annulated with darker brown． Gulidictis villata and striata chicfly differ from the Ichneumons in their coloration，being grey witl parallel longitudinal stripes of dark brown．

Euplcres is another form，nlso from Madagnscar，which has been placed in a aublamily apart．It differs remarkably from all the other Viverrida in the weak developinent of the jaws and the small


Fig．118．－Skull of Euptcris gosdoti．that．size．Jius．Jioy．Call．Surgeons．
size of the tecth，in consequence of which it was，when first dis－ covered，placed inthe order Insectivora．Dentition：$i \frac{\pi}{3}, c \frac{1}{2}, p$ is in $\frac{3}{3}=40$ ．Vertebrie：C 7，D $13, \mathrm{~L} 7, \mathrm{~S} 5,020$ ．But one specics is known，$E^{\prime}$ goudoti．

## Family IIrexipes．

No alisplenoid canai．Dorsal vertelra 15．Molars 1．Limited to the Old Warls．

Subfamily Protelidæ．－Anditory bulla divided into two dis． tinct clamber：Premolar and molar teeth very small and simple in elaracter．

This group contains but a single species，belonging to the genus Protelcs， 1 ．cristalus，the Aard－Wolf or Ea：th－Wholf of tho Duteh colonists of the Cape，on animal nearly allicl to the Ilyarnas，but remarkably modificd in its dentition，the molar teeth being very amall，placed far apart，and olmost rudimentary in character（seo fig．119）．Tho canines aro long wull rather slender．Tho dental formula is $i \frac{9}{3}, c \frac{1}{1}, p$ and $m \frac{4}{3 \operatorname{cor}}-\frac{8}{\text { gora }}$ ；total 30 or 32. Vertebre C 7，D $15,1,5, \mathrm{~S} 2, \mathrm{C} 24$ ．The fore fect with five tors；he pollex． thongh short．with a distsist claw The hind fect with four
suhequal toes．Claws all strong，blunt，subcompressed，and non－ retractile．The general external appearanee is yery like that of a small striped Ilymen，but the muzzle is more pointed and the ears larger．It has a copious mane of long hair，capable of heing


Fig．110．－Skull and Dentition of Protcles cristalus．$\times 1$ ．
Hus，lioy，Coll．Surgcons．
crected，when the animal is excited，along the middle line of the neck and back．It is a native of Soutl Africa，and is a burrowing nocturnal anmal，feeding on decomposing animal substances，larva， and termites．Observations upo specimens in captivity indicate that it has neither inclination nor power to attack or feed upen living vertebrated animals．

Subfamily Hyanidæ．－Aliuitory bulla not divided by a septun into two chambers．

IIyæna．－Dentition：$i \frac{3}{3}, c \frac{1}{1}, p \frac{5}{3}, m \notin-\frac{8}{8} ;$ total 34．Tceth， especially canines and premolars，very large，strong，and conical Upper sectorial with a very large，distinctly trilobed blade and a moderately dereloped iuner lobe placed at the anterior extremity of the blade．Molar very small，and placed transversely close to the hinder edre of the last，as in the Felidx．Lower sectorial consisting of little more tlan the bilobed blade．Zygomaticarches of cranium very wide and strong．Sagittal crest high，giving attachment to very powerful biting muscles．Orbits incomplete behind．Vertebre：C＇7，D 15，L5，S 4，C 19．Limbs rather long， espccially the anterior pair，digitigrade，four subequal toes on eaci， with stout non－retractile claws．Pollex and hallux only repre． sented by rudimentary metacarpal and metatarsal bones．Trail rather sbort．A large post－anal median glandular pouch，into which the largely developed anal scent glands pour their secretion．

The three existing species of Hywua（see Hysfa）are divisible into two sections to which some zoologists assign generic rank．
1．Upper molar uollerately developed and ibree－rooted．An inner tuberclo and lieel more or less developed on the lower molar． Ears large，pointed．Hair long，forming a mane on the back amd shoullers．II．striata，the Stripet Myzena，of northern Africa and southern Asia．Mr．brunnca，of soutlı Africa，in some respects internediate between this aml tlie next section．2．Genas Crocuta． Upper molar extremuly small，two－or one－rooted，often decidueus． Lower molar witliont trace of inner tuberele，and with an extremely small beel．Ears moderate，rounded．IFair not clongated to form a mane．$J_{\text {．crocuta or Crocule maculata，tho Spottedl Hyæna，}}^{\text {mat }}$ ， from Africa south of the Sahara．In deutal characters the first section inclines more to the Viverrida，the second to the F＇clider； or the seconll nay be considered as the more specintized form，as it certainly is in its visceral anatomy，esjeccially in that of the icproductive organs of the female．${ }^{1}$

Ectinet IHywnidax．－1lymas abounded in Europe from the Upper Niocene to the Pleistocene epoch，and a series of transitional forms from ancient geweralized types merging into Viverride，as Icti－ therium and Myanictis（with ndlitional tnhereular molars），leadiug loy gradual morlifications during successive geological ages to tho species now existing，lave been traced by Gaudry．Tle Cave llyana （ $M$. svelaa），once so nbinulant in Britain and other parts of Euione， is scareely tistinguishable specifieally from the existing $J_{\text {．}}$ crocuia of Africa；and extinct forms found in France，described under the nancs of $H$ ．prisca and $H$ ．areernensis，are probshly the ancrcton＂ of $H$ ．striala．The existing $H$ ．brunnea secnis to hive preserved the claracters of $J$ ．cximia of the Upper Miocene of likermi in Grece with little mollification．There is at present，no evidence of the existence of this mrour in America．

## Section CどふO1DEA．

This section contains a single family，Canilx，or Dog．like animals，which appear to holly an intermediate position between the other two sections，retailing also many of the more generalicel characters of the ancient members of the order．The structure of the muditory bulla and arljaceut parts of the hones of the skull is

[^178]quita intermediate between that of the Aluroid and Arctoid forms. In the number and arrangement of the tecth they more nearly approach the primitiva beterodont type than any other existing Cernivora. A crecum is always present, sometimes short and simple, but when long it is folded unon itgelf in a characteristic manner.
The Dogs form a very compact group, composed of numerous apecies which closely resemble each other in essential characters, though differing considerably externally. The most marked differences are a alight variation in the number of the true molar teeth, which exceed the usual number in the Cape Long-eared Fox (.Otocyon), and fall short of it in somo other less aberraut forms to which the names of Ictieyon and Cyon have been given, and a diminution in the number of toes in the Cape Hunting Dog (Lycaon), which has $4-4$, instead of $5-4$ as in the remainder of the family. After taking these away, there remain a great number of aninals called Dogs, Wolves, Jackals, and Foxes, varying from one another only in the characters of the tail, ears, fur, form of the pupil, and some trifling peculiarities of skull and tecth, upon which some authors hara divided them into many genera. These divisions are, however, extremely dificult, if not impossible, to definc, on accomat of the anmeraus gradual transitions from one form to the other.

Canis.-Pending forther investigation, it will perhaps be safest te ratain all the species, with tha exccptions of Otocyon and Lycaon mentioned above, in the old genus Canis, the most prominent characters of which are tha following. Teeth, usually $i \frac{3}{3}, \epsilon \frac{f}{1}, p \frac{4}{4}$, $m$ 塞 $1_{1}^{0}$; total 42. The absenca of the last upper molar ( $m 3$ ), aloue distinguishes this from the generalized dentition of heterodonts (see p. 353), and this tooth is occasiunally present in ons species (C. cancrivorus). In certain Asiatic species (C. primarus and its alliea), which on this account have been separated to form the genus Cyon of Hodgson, the last lower molar $\overline{(m 3)}$ appears to be constantly absent, and in C. venaticus (genus Ieticyon, Lund) not only this but also $m 2$ is usually not developed. The milk dentition is $d i$ s, $d$ o $\frac{1}{1}, d m \quad \frac{s}{s}=\frac{7}{7}$; total 28 ,-the first permanent premolar having no predecessor. The teeth of both permanent and milk or temporary series are figured at p. 353 (fig. 3). The upper sectorial p 4 consists of a stout blade, of which the anterior cusp is almost obsolete, the middle cusp larga, conical, and pointed backwards, and the posterior cusp in the form of a compressed ridge; the inner. lobe is very small, and placenl quito at the fore part of the tooth. The first molar is more than balf the antero-posterior length of the sectorial, and considerably wider than it is long; its crown consists of two prominent conical cusps, of which the anterior is the larger, and a low broad inward prolongation, supporting two more or less distinct cuspsand a raised inner border. The second molar resembles the first in generd form, but is considerably smaller. The lower sectorial $m I$ is a very larga tooth, with a strong compressed bilobed blade, the hinder lobe being considerably the larger and more pointed, a small but distinct inner tubercle placed at the hinder margin of the pesterior lobe of the blade, and a broad, Jow, tubercnlated heel, occupying about ove-third of the whole length of the tooth. The second molar is less than half the length of the first, with a pair of cusps placed side by side anteriorly, and a less distinct posterior pair. The third is an extremely small and simple tooth with a subcircular tuberculated crown and single root.
The craoium is more or less elongated, the faciat portion tapering forwards and compressed. The jaws elongated. The zygonata moderately strong. The post-orbital processcs of the frontal short, leaving the orbit widely open posteriorly. Vertebræ: C 7, D 13, L 7, S 3, C17-22. Clavicles present, but very rudimentary. Limbs of moderate proportinns, digitigrade. Fcet short; five toes on the fore foot, the pollex much shorter than the others, and not reaching to the ground. Four toes ou the hind foot, the hallux bcing represented by a rudiment of the metatarsal. ${ }^{1}$ All the toes are provided with exserted nod-retractile alightly curved and blunt claws, which, beiog exposed, become worm at the tips. Tail moderate, or rather long, generally somewhat bushy. The pupil of the eye, when contracted, is in some species round, in others elliptical and vertical.

This extensive genus may be considered as trnly cosmopolitan. One or more species are found thronghout the American continent from Greenland to Patagonia and the Falkland Isles; and similarly, in the Old World, Eurnpe, Africa, and Asia, with most of the large islands adjacent, and even Australia, have their wild Dogs, thongh in the last case they probably belong to a feral race, introduced oricrinally by man. They are generally sociable animals, bunting their prey in packs. Many species burrow in the ground; none habitually climh trees. Though mostly carnirorous, fceding chiefly on animals they havs chased and killed themselves, many, cspecially among the omaller species, eat garhage, carrion, insects, and also fruit, berries, and other vegetable substances. The species

[^179]are very numerous, and, as in most other large genera, very ill. defined, few zoologists agreeing as to which of the many slightly different nodificationa unay be considered as local varieties and which trus specics. Perhaps the best cranial character by which the differcat members of the genus can be distinguishod is that pointed out by Burmeister, viz., that in the animals generally called Dogs, Wolves, and Jackals the post-orbital process of the frontal booe is regularly smooth and convex above, with its extremity bent downwards, whereas in Foxes the process is hollowed above, with its outur margin (particularly of the anterior border) somevhat raised. This modification coincides in the main with that upon whiclı Professor Huxley has recently ${ }^{2}$ based his division of the group, into two parallel series, the Thooids or Lupine forms and Alopecoids or Vulpine forms, which be charactcrizes by the presencs of frontal air-sinuses in the former, which not only affects the external form but to a still greater dcgree the slape of the anterior part of the cranial cavity, and the absence of such sinuses in the latter. The pupil of the eye when contracted is round in most members of the first group, and vertically elliptical in the others, but more observations are required before this claracter can be absolutely relied upon. The form and length of the tail is often used for the purposes of classification, but its claracters do not coincide with those of the cranium, as many of the South American Canidæ have the long bushy tails of Foxes and the skulls of Wolves. Taking into account various combinations of these and other minor characters, the species may be arranged in tha fellowing groups, which some nuthors liave considered as of generic importance.
A. Thooid or Lupine Serics.
(1) Canis proper contains the largest members of the genus, the true Wolves of tho northcin parts of both Old and New Worlds (C. lupus, \&c.), the Jackals of southern Asia and Aftica (C. aurcus, mesomclas, \&c.), and the various breeds of the domestic Dog (C. familiaris), the origin of which is still involved in obscurity: Some naturalists believe it to be a distinct species, descended from one that no longer exists in a wild state; others have sought to find its progenitors in some one of the wild or feral races, either of true Dogs, Wolves, or Jackals; wbile others again believe that it ia derived from the mingling of two or more wild species or races. It is probably the earliest animal domesticated by man, and few if any other species liave undergoue such an extraordinary amount of variation in size, form, and proportion of limbs, cars, and tail, variations which have beeu perpetuated and increased by careful selective breeding. See Dog. The Dingo or Australian Dog ia met with wild, and also as the domestic companion of the aboriginal people. Dogs were also in the possession of the natives of New Zealand and other islands of the Pacific, where no placental mammals exist naturally, on their discovery by Europeans in the last century, (2) Cyon, wild Dogs of the southeast of Asia, distinguished by slight modifications as C. primevus, C. dukhenensis, and C. sumatrensis, differ from the above in wanting the small lasto lower tubercular molar. (3) Lycalopex is a group formed of certain South-Anerican C'antiax, distinguished from Canis proper hy their longer tails and Fox-like aspect:-C. cancrivorus, C. brasiliensis, C. melampus, C. vchulus, C. fulvicaudus, C. azaræ, C. megcllanicus, $C$. griscus. The last three have been further separated (under the name of Pscudelopex) on account of slight differences in the relative size of the molar teeth, and of their pupil being elliptical when contracted. (4) Nycicrcutcs (one species, C. procyonides, from Japan and north-east Asia) las no claims to generic distinction but such as are founded upon its long loose fur, short ears, and short bushy tail, which give it some superficial resemblance to a Raccoon. (5) Icticyon, with one small specics, C. venaticus, the Bush Dog, from Guiadr and Brazil, with close hair, and short legs and tail, has nore reason to be regarded as a distinct form, as it is distinguisherf from all other Dors by the reduction of its molar teeth ta $\frac{1}{2}$, and their comparatively small size. In consequence of this, and its geneml cxternal characters, it was formerly placed among the Arustclids, but its Canine affinities hava now been thoroughly established.

## B. Alopecoid or Vuppine Series.

(6) Irulpes, true Foxes. The species or varieties are numerous and widely spread over North America, Enrasia, and Africa:-C. rulpes, the common Fox of Eurone; C. nitoticus, adustus, snd varicgatus, Africa; C. flavcscens, montanurs, bengalensis, japonicus, corse, Asia; C. fulvers, macrourus, velox, North America. The tail of the abovo is clothed with soft fur and long hair, uniformly mixed; from them Baird distinguishes, nnder the name of Urocyon, other species which have a concealed erect mane of stiff hairs along the upper line of the tail. These have also a shorter minzle and a wide space between the temporal crests; they are $C$. virginianus and $C$. littoralis, both from North America. The Arctic Fox (C. lagouns, genus Lcucocyon, Gray) has the tail very full and bushy and the soles of the feet denscly furred below. Its colour changes according to season from bluish-grey to pure white. (7) Fenatculs. Certain small elegant African Foxes (C. cordo, fanclicus, and chama), with very
\&ange ears and corresponding large auditory bullæ, have been separthed ander the above name.

Lyyaon.-This resembles in most of its characters the Dogs of the Lapine serics, but the teeth are rather more massive and rounded, the skull shorter and broader, and it has but four toes on each limb, as in Hyana. The one specics, $L$. pictus, the Capo Hunting Dog (fig. 120) from south and east Africa, is very distiact exter-


Fio. 120.-Cape Hunting Dog (Lycaon pietus).
aslly from all the other Canidx. It is nearly as large as a mastiff, with Jarge, broadly ovate erect ears, and singularly coloured, being not only variable in different individuals, but mosymmetrically marked with large spots of white, yellow, and black. It presents s.ee curious superficial resemblances to Hyæna crocuta, perhaps a case of minetic analogy., It hunts its prey in large packs.

Olocyon.-Dentition: $i \frac{3}{3}, c$ 支, $p \frac{4}{4}, m \frac{3 \text { or } 4}{4}=\frac{11 \text { or } 12}{12}$; total 46 or 48. The molar teatll are thus in excess of any other known hetersdont mammal. They have the same general claracters as in Cosis, with very pointed cuaps. The lower sectorial shows little of its typical characters, having five cusps on the surface; these gan, however, be identilied as the inner tubercle, the two greatly rednced and obliquely placed lobes of the blade, and two cusps on the heel. Tha skull genorally resambles that of the smaller Foxes, particalarly the Fennecs. The auditory bulle are very large. The finder edge of the mandibla has a very peculiar form, owing to the great development of an expanded, compreased, and somewhat inverted aubangular process. Vertebræ: C 7, D 13, L 7, S 3, C 22. Ears. Tery large. Limbs rather long. Toes 5-4. One species, O. megalotis, from South Africa, rather smaller than a common Fox.

Professor Huxlay looks upon this as the least differentiated or most primitive existing form of Canis, regarding the presence of the fonr molar teeth as a survival of a condition of the dentition exhbited by the common ancestors of the existing Canidæ and the existing carnivorous Marsupials. There is, however, at prescnt no raiacontological proof of this, as none of the nuverous fossil forms of Canids yet discovered have more than the normal number of melars. One of the best known of these is Amphicyon, from the Miocene strata of Europe and America, formerly supposed to have sfonities with the Bears, having five toes on each foot, and being fossibly plantigrade, bist, as the structure of the skull and teeth clearly ahow, only a generalized Dog , in which the true molars ara fully developed. Another genue, Cynodictis, of which many modifications have been described by Filhol from the oouth of France, approaches the Viverrids, and may be a common ancestor of the Cyooid and Eluroid Carnivora.

## Section Arctoidea.

The saction Arctoidea includas a considerable number of forms which agree in the essential characteristics of tho structures of the base of the cranium and reproductive organs, and in the absence of a cecum to the inteatinal canal. They have no Cowper'a glands, and have a rudimentary proatate aud a large cylindrical penial bone. All the mernbers of this group have five completely developed toes on each foot.

## Family Mustecide.

Trne molars (or 1 in Mellivora). No aliaphenoid canal. A large group widely diffused, especialiy in the northern temperate regions of the earth. The different genera ara very difficult to arrage in any natinal order. They are rather artifcially di-:ided,
clicilly according to tho characters of their feet and claws, into the Otter-like (Lutrine), Ladger-like (Meline), and Weasel-lika (Musteline) forms.

Subfamily Lutrinæ.-Fcet short, rounded (except the hind feet of Enhydra). Toes webbed. Claws small, curved, blunt. Head broad and much-depressed. Upper pesterior molars large and quadrate. Kidneys conglomerate. IFabits aquatic.

Lutra.-Dentition: $i \frac{3}{3}, c \frac{1}{2}, p$ 需 $m \frac{1}{2}$; total 36. Upper sectorial with a treachant tricusped blade, and a very lurge inner lobe, hollowed on the free surface, with a raised slarp edge, and extending along two-thirds or more of the length of the blade. True molar large, with a quadricuspidate crown, broador than long. Skull broad and dopressed, contracted immediately behind the orbita. Facial portion very short; Lrain case large. Vertebre: C7, D 14-15, L6-5, S3, C 20-26. Body very long. Ears shert and rounded. Limbs sliort. Feet completely webbed, with well dereloped claws on all the toes. Tail long, thick at the base and tapering, rather depressed. Fur short and close.

The Otters are all more or less aquatic, living on the margins of rivers, lakes, and in sonc cases the sea, are expert divers and swimmers, and feed chielly on fish. They have a very extensive georraphical range, and so much resemble each other in outward appearance, especially in the nearly uniform brown colouning, that the species are by no means well-defined. See Otter.
L. sandbachii, a very large speciea from Demerara and Surinam, with a prominent ridge along each lateral margin of the tail, constitutes the genus Pleronacra of Gray.

Aonyx. - Fcet only alightly webbed; claws exceedingly small or altogether wanting on some of the toes. First upper premolat very small, sometimes wanting. True melars very broad and massive, presenting an approach to the form of the next genus. A. inunguis, South Africa; A. leptonyx, Java, Sumatra.

Enhydriodon. - E. sivalensis is a large extinct Otter-like animal described by Dr Falconer from the Pliocene strata of the Subhimalayan mountains.

Enhydra.-Dentition: $i \frac{3}{2}, c \frac{1}{1}, p, \frac{3}{3}, m \frac{1}{2}$; total 32. Differs from all other kuown Carnivora in liaving but two incisors on each side of the lower jaw, the one corresponding to the first (very small in the trua Otters) being constantly absent. Though the molar -teeth generally resemble those of Lutra in their proportions, they differ very much in the excceding roundness and massiveness of their crowns and bluntness of their cusps. Feet webbed. Fore feet short, with five subequal toes, with short compressed claws. Hind feet very large, depressed, and fin-like. The phalanges flattened as in the Seals. The fifth toe the longest and stoutest, the rest gradually diminishing in size to the first, all with moderate clars. Tail moderate, cylindrical.

One species, E. Zutris, the Sea-Otter. It is larger than any of the true Ottera, and is found oaly on the coasts and islands of the North Pacific, whero it was formerly very abuudant, but is gradually becoming more and more rare, on account of the numbera killed annually fer their valuable fur. It is said to lire on molluscs and cralos as well as fish, and the massive mill-like structure of the grinding teetb, so unlike that of all the known purely piscivorous mammals, would seem to indicate some such diet.

Subfamily Melinæ.-Feet elongated. Toes straight. Claws non-retractile, slightly curved, subcompressed, bluat; those of tho fore foot especially large. Upper posterior molar variable. lidneys aimple. Habits mostly terrestrial and fossorial.

Mcphitis.-Dentition: $i \frac{3}{3}, c \frac{1}{1}, p \frac{2 \text { or } 3}{3}$, ue $\frac{1}{2}$; total 32-34.
Upper molar larger than the sectosial, subquadrate, rather broader than long. Lower sectorial with heel less than half the length of the whole tooth. Bony palate terminating posteriorly opposite the hinder border of the last molar tooth. Facial portion of akull short and somewhat truncated in front. Yertebre: C7. D 16, L6, S 2, C 21. Head small. Body elongated. Limbs moderate, subplantigrade. Ears short and rouuded. Tail long, abuntantly clothed with very long fine hair. Anal glands largely develoned; their secretion, which can be dischargad at the will of the animal, has an intolerably offensiva odour, which circumstance has rendored the Skunks, as they are commonly called, proverbial. They are strictly nocturnal animals, terrestrial and burrowing, feeding chiefly on sinall mammals, birds, reptules, insects, worms, roots, and berries. All the known species have a prevalent black colour, varied by white stripes or spoots on the upper part. Tlicy generally carry the body much arched, aud the tail erect, the long loose hair of which waves like a plume over the back. There are many species, all inhabitants of the Anserican continent, over which they have an extensive rangc. Seu Skunk. Tha South-American apccies, which have only two nfuer premolars, and differ in sone other charactera, have becu gencrically separated under the name of Conepatus.

Arctonyx.-Dentition: $i \frac{3}{3}, c$ t, $p$ a $m \frac{1}{2}$; total 38. Incisor lins curved, the outer teeth being placed posteriorla to tha others. Lower iacisors jroclivous. First jremolars often rudimentary or alaent. Ulper molar much larger than the scctorial, louges in ths
antero-posterior direction thinn brand. Lower sectorial with a wery, large, low, tubermlated liecl. Crinimm clongated and depressed; face long, maruw, aml comeave above. liony jalate extendang as far buckwads us the level of the glcuojil fows. Palatal bones dilated. Siborbital formina very large. Vertrbie: C 7, D 16, L 4, S 4, C 20. Saout long, naked, mobile, and truncated, with large terminal nostrils, much like those of a Dig. Eyes small. Ears very smull and rounded. Lody convressef, sather than depressed. Limbs of moderate length and digitigrade in walking. Tail molerate, tapering. A full soft under fur, with longer, bristly hairs lnterspersed. Ilie best-known specius is A. collaris, the Sand-Bear or Bhaliosoor (i.c., Bear-Pig) of the natives, fomm in the monatains of the nortle-east of Hinlustan and Assam. It is anther larger than the English Badger, lingher ia its legs, and rery lig.like in general aspect, of a light grey colomr, with flesh-colourcl snout and feet; nocturnal and ornavorous. Otler species or local varicties have been described by A. Mliluc-Elwards from Nortl! China and Tibet.

Mydares.-Dentition as the last, but the cusps of the tecta more acutely pointed. Cranium elongated, face narrow and produced. Suborbital foramen small, and the palate, as in all the succecting gencra of this group, produced backwards about milway between the last molar tooth and the glepoid fosse. Vertebre: C7, D 14-15, L 6-5, S 3, C 12. Head pointed in front ; snoat produced, mobile, obliquely truncated, the nostrils being inferior. Liabs ratler short and stout. Tail extremely short, but clothed with rather long bushy hair. Anal glands largely developed, and emitting an odour like that of the American Skanks (Ncphitis). One species, $M$. meliceps, the Teledu, a small burrowing animal, found in the monntains of Java, at an elevation of 7000 or more feet above the sea-level.

Mcles.-Dentition : $i \frac{5}{3}, c \frac{1}{1}, y^{4}, m \frac{1}{2}$; total 38. The first pre. molar in both jaws extrensely minate and often deciduous. Ujper molar very much larger than the sectorial, sabquadrate, as broad as long. Lower sectorial with a broad, low, tubercalated lieel, more than half the length of the whole tooth. The postglenoid processes of the skull are so strongly developed, and the glenoid fossa is so deep, that the condyle of the lower jaw is firmly licld in its ploce even after all the surroundiog aoft parts are removed. Vertebrx: C 7, D 15, L5, S 3, C 18. Nuzzle pointed. Ears very short. Body stont, broad. Limbs short, strong, subplantigrade. Tail short. The best-known species is the common Badger (AI. taxus) of Farope and northern Asia, still found in many parts of England, where it lives in woods, is nocturnal, barrowing, and very omnivorous, feeding on mice, reptiles, insects, frait, acorns, and roots. Other nearly allied species, $M \Gamma$. lcucumes and $M 1$. chinensis, aro found in continental Asia, and M. anak:uma in Japan.

Taxidea. -Dental formula as in Mcles, excent that the rudimentary anterior jremolars appear to be always wanting in the upper jaw. The upper sectorial much larger in proportion to the other teeth. Upper molar aboat the same size as the sectorial, triangular, with the apex tarned backwards. Heel of lower scctorial less than half the length of the tooth. Skull very wide in the occipital region; the lambdoidal crest very greatly develuned, aud the sagit. tal bat slightly, coutrary to what obtains in Mrcles. Vertebice: C 7, D 15, L 5, S 3, C (?). Body very stoutly built and depressed. Tail short. 'I'he animals of this gemus are peculiar to North America, where they represent the Badgers of the Old World, resembling them much in appearance and habits. T. americance is the common American Badger of the United States. T. berlandieri, the Mexican Badger, is perhaps only a local varicty.

Mcllivora.-Dentitioa: $i \frac{3}{3}, ~ c \frac{1}{1}, p$ s. 3 , $m \frac{1}{1}$; total 32. Ulper sectorial large, with its inner cusp quite at the anturior end of the blale, as in the followiog genera; molar much smaller and transversely extended, having a very small outer and a larger rounded inner lobe. Heel of lower sectorial very small, scarcely one fomth of the whole length of the tooth, and with but one cusp. Tubercular molar absent. Vertebrie: C 7, D 14, L 4, S 4, C 15. Boly stout, depressed. Limbs short, strong. Hcad depressed, nose rather pointed. External cars rudimentary. Tail aloort. The animals of this genus are commodly called Ratels. M. indica, from India, and $M$. ratel and $M$. lcuconola from South and West Africa, have nearly the same general apnearance and size, being rather larger than a common Badger. Their coloration is peculiar, all the upper surface of the body, head, and tail being osh-grey, while the lower parts, separated by a distinct longitudinal boandary lime, are black. They live chiefly on the ground, iato which they burow, but cun also climb trees. They feed on small mammals, lirde, reptiles, and insects, and aro said to be very partial to boney.

Helictis.-Dentition: $i \frac{3}{3}, c \frac{1}{1}, p \frac{4}{3}, m \frac{1}{2}$; total 38. Upper sec. torial with a large bicusped inner lobe. Molar sinaller, wider transversely than in the antero-posterior direction. Lower sectorial with heel about one-thirl the length of the tooth. Skull elongated, rather narrow and depressed. Facial mortion especially narrow. Iufraorbital foramen very large. Head rather small and produced iu front, with an elongated, obliquely truncated, uaked
suont. Ears smarl. Posly clongoted. Limbs short. T'ail short or moderate, lusliy. Surverl species are described ( $I$. oricntalis. moschuta, nipalensis, subumantirucn), nll from castern Asia, snall animals comprarel with the other members of the subfanily, climbing trees with agility and living much on fruit and beries as well as on small mammals and birds.

Ictonge.-Dentition: $i \frac{\text { a }}{3}$, e $1, p$, $m \frac{1}{2}$; total 34. - In gencral elaracter's the teeth muels resemble those of the Polecats (Mustela), bcing more delicately cut and sharply cusped than in most of the foregoing. Uheur molar smaller than the sectorial, narrow from before backwarts. Lower sectorial witl a small narrow heal and distinct inner tulerele. General form of body musteline. Limbs short. Fore feet large aud broul, with five stout, nearly straight, blunt, and mon-retractile claws, of which the first and fifth ane considerably shorter than the others. Tail moderate, with longer lairs towards the end, giving it a bushy angearance. Hair gene anlly long and loose. The best-known sjecies of this genus, I. zorilla, tho Cape Polecat, was placed by Cuvier in the gents Mustcla, by didntenstein in Mcphitis, and in many characters it fonms a transition between these genera. It is about the size of an Enclish Polceat, but conspicuous by its coloration, having broad, longitudiual bands of dark bown, alternating with white. Its odour is said to be as offensive as that of the American Skunks. From the Cape of Good Hope it ranges as far porth as Senegal. Another specics, I. ficurita, from Sennaar, has been described.

Subfamily IVIustelinæ. -Tocs short, partially webbed; clams short, compressed, acute, curved, often semiretractile. Upper posterior molar of moderate size, wide transversely. Kidneys simple. Terestrial and arborcal in habits.

Galictis.-Dentition: $i \frac{3}{3}, c \frac{1}{4}, p \frac{3}{3}$, m $\frac{1}{2}$; tolal 34. Molars small but stont; upuer sectorial with the inner lobe near the middle of the inner border of the tooth. Lower sectorial with heel small, and inner tubercle small or absent. Body long. Limbs short; claws non-retractile. Palms and soles naked. Head broad and depressed. Tail of moderate length. The best-known species, G. vittata, the Grison (genus Grisonia, Gray), and G. berbara, the Tayra (genus Galcra, Gray), are both South-American - G. allaonandi is an intermediate form.

Mustcla.- Dentition: $i \frac{3}{3}, c \frac{1}{1}, p \frac{4}{4}, m \frac{1}{2}$; total 38. Upper sectorial with Inner lobe close to the anterior cdge of the tooth. Molar nearly as large as sectorial. Lower sectorial with small inner tubercle. Vertebræ: C 7, D 14, L 6, S 3, C 18-23. Body long and slender. Limbs short, digitigrade. Feet rounded; toes short, with compressed, acute, semiretractile claws. Tail moderate or long, more or less besliy. One species is British, M. martes, the Pine Marten; the remaiader inhabit the northern regions of Europe, Asia, and America. Mlany of the species, as the Sable ( $M$. zibellina), yield fur of great value. See Marten,

Pulorius.-The dentition differs from that of Mustela chitfly in the absence of the anterior premolars of both jaws. The teeth are more sharnly casped, and the lower sectorial wants the inner tubercle. External characters generally similar to those of the Martens, but the body is longer and $m$ ure slender, and the limbs even shorter. They are all small animals, of very active, bloodthirsty and conrageous disposition, living chiefly on birds and small manmals, and are rather terrestrial than arboreal, dwelling among rocks, stones, and outballings. Some of the species, as the Stoat or Ermine ( $P$. crmineus), inhabiting cold elimates, undergo a seasonsl clange of colour, being brown in summer and white in winter, though the clange does not affect the whole of the fur, the end of the tail remaining black in all seasons. This is a large genus, having iv very exteasivo geographical range throughout tho Old and New Worlds, and includes the animals commonly known as Weasels, Polecats, Ferrets, and Miak

Gulo.—Dentition: $i \frac{3}{3}, \mathrm{c} \frac{1}{1}, p \frac{2}{4}, 2 \frac{1}{2} ;$ total 38 . Crowns of the tecth very stout. Upper molar very auth smaller than the sectorial. Lower sectorial large, with very small heel and no inner tubercle. The dentition, though really but a modification of that of the Weasels, presents a great gepaeral rescmblance to that of Hyæun. Vertebre: C 7, D 15, L 5, S 3, C 15. Body and limbs stoutly made. Feet large anl powerful, subplantigrade, witls large, compressed, much curved, and sharp-poisted claws. Soles of the feet (except the pads of the toes) covered with thick bristly lairs. Ears very small, nearly concealed by the fur. Eyes small. Tail shọt, thich, and bushy. Fur fill, long, and rather coarse. The one epecies, the Wolrerene or Glatton, $G$. luscus, an inlabitant of the forest regions of northern Europe, Asia, and America, mach $r$. embles a small Bear in appearance. It is a very powerful animal for its size, climbs trees, and lives on squirrels, bares, beavers. reindcer, and is said to attack even horses and cows.

## Family Procyonide.

True molars $\frac{2}{2}$, obtusely tuberculated. No alisphenoid canal. Habitat exclusively A.merican.

Procyon.-Dentition: $i \frac{2}{3}, c \frac{1}{1}, p \frac{4}{4}, m$ 类; total 40. The molar teeth broad ond taberculated. The mper sectorial with three cuspsalong the outer margin, and a very broad bicusped inaer lube.
giving ar. almost quadrate form to the crown. First molar with a large tuberculated crown, rather broader than long. Second considcrably amaller, with transversely oblong crown. Lower sectorial with aa extremely small uod ill-defined blade, placed trans* versely in froat, and a large inner tubercle and lieel. Sccond molar as long as the first, but narrower behiod, with five obtuse cusps. Vertebre: C 7, D 14, L6, S 3, C 16-20. Body stout. Head broad behind, but with a pointed muzzle.. Limbs plantigrade, but in walking the eatire sole is not applied to the ground as it is when the aaimal is standing. Toes, especially of the fore foot, very free, and capable of being spread wide apart. Claws compressed, curved, pointed, and non-retractile. Tail moderately long, cylindrical, thickly covered with hair, annulated, noa-prehensile. Fur long, thick, and soft. The well-known Raccoon (Procyon lotor) of North America is the type of this genus. It is replaced in South America by $P$. cancrivomes.

Bassaris.-A form closely allicd to Procyon, but of more slender and elegant proportions, with sharper nose, longer tail, and more digitigrade feet, and with teeth otherwise like, hut smaller, and more sharply deaticulated. It was formerly, but erroneously, placed anong the Viverridx. Two species:-B. aslula, from the southern parts of the United States and Nexico, and B. sumichrasti, from Central America.

Bassaricyon.-This name has recently (1876) been giren to s distinct modification of the Procyonine type of which at present only two examples are known, one from Costa Rica and the other from Ecuador, which, appearing to be different species, have been zamed $B$. gabbi and $B$. alleni. They much resemble the Kiakajou (Cercoleples) in external appearance, but the akull and tecth are moro like those of Procyon and Nasua.

Nasua.-Dentition as in Procyon, but the upper csnines are larger and more strongly compressed, and the molars smaller. The facial portion of the skull is more elongated and narrow. Vertebræ: C 7, D 14, L 6, S 3, C 22-23. Body elongated and rather compressed. Nose prolonged iato a somewhat upturned, obliquely truncated, mohile snont. Tail long, non-preheasile, tapering, annulated. These animals, commonly called Coatis or Coati-Mundis, live ia small troops of eight to twenty, are chiefly arboreal, and feed on fruits, young hirds, eggs, insects, \&c. Recent researches have rednsed the number of supposed species to two, N. narica of Mexico and Ceatral America, and $N$. rufa of South America from Surinam to Paraguay.

Cercolcptes.-Dentition: $i \frac{3}{3}, c t, p \frac{5}{3}, m \frac{2}{3}=36$. Molars with low flat crowns, very obscurely tuberculated. Skull short and rounded, with flat upper surface. Vertebræ: C 7, D 14, L 6, S 3, C 26-28. Clavicles present, but in a very rudimentary condition. Head broad aod round. Ears short. Body loog and musteline. Limbs short. Tail long, taperiog, and preheosile. Fur short and soft. Tongue loag aud very extensile. But oae species of this somewhat aberrant genus is known, C. caudivolvulus, the Kinkajon, found in the foresta of the warmer parts of South and Central America. It is about the size of a Cat, of a uniform pale, yellow. jsh-hrown colour, nocturnal snd arboreal in its habite, feediog on fruit, honey, eggs, and small birds aad mammsls, and is of a tolerably gentle disposition and easily tamed.

## Family Alluride.

Formed for the reception of one genus, resembling the Frocyonida in the number of true molar toeth, but differing in some cranial characters, especially the presence of an alisphenoid canal, and in its Asiatic habitat.

Ailurus.-Dentition: $i \cdot \frac{9}{3}, \mathrm{c} \frac{1}{1}, p \frac{3}{3}, m . \frac{2}{2}$; total 38. First lower premolar very minute and deciduous. Molars remarkable for their great transverse breadth, and the numerous cusps of their crowns. Vertebræ: C 7, D 14, L 6, S 3, C 18. Sknll high and compressed. Facial portion ahort. Ascending ramus of aiandible extremely high. Head rouad. Face short and broad. Ears large, erect, pointed. Iimbs stout, plantigrade, with large blunt mon-retractile claws. Tail nearly as long as body, cylindrical, clothed with long hairs. Fur.long aud thick. One species, A. fielgens, the Panda, rather larger than a Cat, fuund in the south-east Mimalayas, st heights of from 7000 to 12,000 feet above the soa, among rocks and trees, and chiefly feeding on fruits and other vegetable substances. Its fur is of a remarkably rich reddish-brown colour, darker below.

## Fanily Urside.

True molars $\frac{3}{3}$, with broad, flat, tuberculated crowns. The three anterior promolars of both jaws rudimentary ond often deciduous. Fourth upper promolar (sectorial) with no third or inner root. Ko alisphenoid canal (axcept in Ailucropus). Kidneys conglomerate. Gengraphical distribution oxtensive.

Ailuropus. - An intoresting annectant form connectiag the true Beara with Ailumus and with several extinct genera. Dentition: i $1, \mathrm{c}_{1}, p \frac{4}{3}, m$; total 40 . Premolars incroasing in size from first to last, and two-rooted cxcept the first. First upper molar with quadrate crown, broader than long. Second larger than the durst. Cranism with zygomatic arches and sagittal crest immenscly
developed, and sscending ramns of mandible very high, giviag greater spaces for attachmento of temporal muscle than in any other existing member of the order. Facial portion ahort. Bony palate not exteadiag behind the last molar tooth. An alisphenoid cansl. Feet bear-like, but soles more hairy, and perhaps less completely


Fig. 121. Ailuropus melanoleucus. From A. Milne-Edwards.
plantigrade. Fur long and thick. Tail very short. One extremely rare species, A. melanoleucus (fig. 121), discovered by Père David in 1869, in the most inaccessible mountains of eastern Tibet. Said to feed principally on roots, bamboos, and other vegetables It is of the size of a small Brown Bear, of a white colour, with ears, spots round the eyes, shoulders, snd limbs black.

Ursus.-Dentition: $i \frac{3}{3}, c \frac{1}{1}, p \frac{4}{4}, m \frac{8}{5}=42$. The three anterior premolara sbove and below one-reoted, rudimentary, and frequently wanting. Unaslly the first (placed close to the canine) is present, and after a considerable interval the third, which is situated close to the other teeth of the molar series. The secoud is very rarely present is the adult state. The fourth (upper sectorial) differs essentially from the coltesponding tooth of other Carniveres in wanting the inner lobe supported by a distiact root. Its sectorial characters are very slightly marked. The crowns of beth the true molars are longer than broad, with flattened, tubercnlated, grindiog surfaces. The second has a large backward prolongation or hecl. The lower sectorial has a small and iadistinct hlade sud greatly devcloned tubercular heel. The second molar is of about the same length, but with a broader and more flattened tubercular crowa. The third is smaller. Tha milk teeth are cemparatively small, and shed at an early age. Skull more or less elongated. Orbits small and incomplete behind. Palate prolonged considerably behind the last molar tooth. Vertebre: C 7, D 14, L 6, S 5, C 8-10. Body heavy. Fect broad, completely plantigrade. The five toes on each foot all well-developed, and armed with long compressed and moderately curved, noa-rctractile claws. Palms and soles aaked. Tail vcry short. Ears moderate, erect, rounded, hairy. Fur generally long, soft, and shaggy.
The Bears are all animals of considerable bulk, and include among them the largest members of the order. Though the species are not numerous, they are widely spread over the earth's surface (but absent from tho Ethiopiaa sad Australian regions, sad oaly represented by one species in the Neotropical region), and differ much among themselves in their food and manner of life. They are mostly omnivorous or vegetable feeders, and even the Polar Bear, ususlly purcly carnivorous or piscivorous, devours grass witly avidity in summer. The various species may be grouped in the following sections. (I) Thalassarclos. Head comparatively small, molar teeth amall- and narrew. Soles more covered with hair than in the other sections. U. maritimus, the Polar or White Bear of the Arctic regions. (2) Ursus proper. U. arctos, the common Brown Bear of Europe and Asia, a very variable species, to which U. syriacus and isabollinus, if distinct, ara nearly related; U. horribilis, the Grizzly Bear, an American representative form; $U$. tibetanus, japonicus, and americanus, the Black Bears of the Ilimalsyas, Japan, and North America ; U. orma\&us, the Spectacled Bear of the Peruvian Andes. (a) Helarctos. Head short and broad. Molar teeth comparatively broad (hut the length still exceeding the breadth). Tongue rery lang and exteasile. Fur short and amooth. U.malayanus, the Malay Bear or Sun Bear. See Bear.
Melursus. This differs from the true Bears in the first upper incisor being absent or shed at a very early age, ia the very small
size of the other teeth, in the rery large extensile lips, and in other minol' characters. 'lhe one species, 3/. labialas, the wellknown Sloth Bear of Iudia, feeds cliedly on black ants, termites, beetles, fruit, honcy, \&c.

The great Cave Bear, the remains of which are found so abundautly in caves of Pleistoceno age in Europe, was a tulue C̈rsus, and as nuch or more specialized as any existing species, as it had lost its three anterior premolars in the adult state, but iu L'rsus arwernensis and older spocies from the lliocene they were all yetained. Still more gencralized forms of Bears, presenting various degrees of transition towards a common Carnivorous type, are represented by the genera Arctotherium from South America and Ifyænarctos of Nincene strata of Europe and Asia, and others which are not far removed (at least in dental characters) from such primitive Dog-like types as Amphicyon.

## Extinct Carmivora of Doubtful Position.

The discovery of fossil remains in Eocene and early Niocene formations both in Europe and North America, shows that numerons species of terrestrial carnivorous animals existed upon the earth during thase periods, which cannot be referred to either of the sections into which the order has now become broken up. By some zoologists these have been supposed to he Nlarsupials, or at least to show transitional characters between the Didelphous and Monodelphous subclasses. By others they are looked upon as belonging altogether to the latter group, and as the common ancestors of existing Carnivores and Insectirores, or perhaps rather as descendants or relatives of such common ancestors, retaining more of the generalized claracters than any of the existing species. They shade off almost insensibly into numerous other forms less distinctly carnivorous, to the whole of which, including the modern Insectivora, Cope (to whom we are indebted for our principal linowledge of the American extinct species) gives the name of Buxotheria, those more specially related to the existing Carnirora forming the sulorder Crcodonta, which is divided into the five familics, Arclocyonid $x$, Miacid $æ$, Oxyænid $x$, Amblyclonidx, and Mcronychidx. These are cases, however, in which the application of the principles of classification adopted in the case of eristing species, of which the entire structure is knorra, and which bave becone divided into isolated groups ly the extinction of intermediate forms, is really impossible. If the generally accepted rietw of evolution, is true, and the extreme modifications pass insensibly into eacli' other by minute gradations (a view the palæontological pronf of which becomes strengthened by every fresh discovery), there must be many of these extinct forms which cannot be assigned to definitely characterized groups. There are, Lowever, some which stand out prominently from the others as formed on distinct types, haring no exact representatives at present living on the earth. Oif these the best-known is that named Hyznodon, of which, with the nearly allied Pterodon, many species


Fig. 12..-Dentiflon of Hyænodon Teptorhynchus (Lower Miocene, France). The posterior molar is concealed behind the penultimate tooth.
have been found both in Europe and America. They had the full number of forty-four teeth, grouped in the usual manner, and the incisors, canines, and premolars were formed upon the ordinary Carnivorous type as now seen in the Canide, the fourth premolar above and the first true molar below bcing formed upon the "sectorial" plan, but the teeth behind these, instead of being tuberculated as in all existing Carnivora, repeated the characters of the sectorial, and also increased iu size, especially in the lower jaw, trom before backwards. They thus present some resemblance to the teeth of sueh carnivorous Marsupials as the Dasyuridæ; but, as the researches of Fillool have demonstrated, their milk dentition follows precisaly the rule of existing placental heterodont mammals, and not that characteristic of the Jlarsupials. They shom, moreorer.
none of the essential cranial modifications which distinguish tras Marsupials. The curions Americad genus Uxana seems to hate been a specialized form of this type, and tho Eurnnean Proviverra or Cynohyarnodon of Filhol) forms a complete transition between it and the Fiverridx. In Aretocyon primazus, the oldest known Tertiary mammal, from the lowest Eocene beds of La Fère, department of Aisne, France, on the other hand, all the molars were tuberculated, and have been compared with those of the Procyonide and also Gymuzera, among the Insctivora. The small size of the braia of these early forms is not, as has been supposed, a special Marsupial chatacter, but is common to the primitive forms of all groups of vertebrates. Mcsonyx, from the Focene of North America, scerns to have been a very generalized form, with flat blunt claws, and long and slender tail. Coje makes the interesting suggestion that this may have becn in the ancestral line of the Pinnipeds, but his statement that the scaphoid and lunar bones of the carpus wero distiaet offers a decided difficulty to the accentance of this view.

## Subonarn PINNIPEDIA.

These differ from the rest of the Curnivorce mamly in the structure of their limbs, which are nodificd for aquatic pragression,- the two proximal segments being very short and partially enveloped in the general integument of the body, white the third segment, especinlly in the hinder extremities, is elongated, expanded, and rebbed. There ars almass five well-developed digits on each limb. In the bind limb the two marginal digits (first and fifth) are stonter and generally larger than the others. The teeth also differ from those of the more typical Carnivora. The incisors are always fewer than $\frac{3}{2}$. The nolar series consists generally of four premolars and one molar of rery unifurez characters, with never more than $t$ roo roots, and with conical, more or less compressed, pointed crowns, which may have accessory cusps, placed before or behud the principal one, but are never broad and tuberculated. The milk teeth are rery small and simple, and are shed or absorbed at a very early age, usually either before or within a few days after birth. The braiu is relatively large, the cerebral hemispheres broad in proportion to their lengtb, and with numerous aud complex convolutions. There is a very short cecum. The kidneys are divided into numerous distinct lobules. There are no Cowper's glands. Mamaze tro or four, abdominal. No clavicles. Tail almays rery short. Eyes very large and exposed, with flat cornea. The nostrils close by the elasticity of their walls, and are opened at will by muscular action.

The animals of this group are all aquatic in ther mode of life, spending the greater part of their time in the water, swimming and diving with great facility, feeding inainly or fish, crustaceans, and other marine animals, and progressing on land rith difficulty. They always come on shore, however, for the purpose of bringing forth their young They are generally marine, but they occasionally ascend large rivers, and some inhabit inland seas and lakes, as the Caspian and Baikal. Though not numerous in species, they are widely distributed over the world, but occur most abundnatly on the coasts of lands situated in cold and temperate zones. The suborder is divisible into three $\pi$ cllmariked families :- the Otaridelx or Sea Bears, which form a transition from the Fissiped Carnivora to the Seals; the Trichechidx, containing the Walrus; and tie Phocidx or typical Seals.

## Fumily Otarines.

When on land the hind feet are turned forwards under the bodys and aid in supporting and moring the truak as in ordinary quadrupeds. A small external ear: Testes suspended in a dis rixct external serotum. Skull with post-orloital processes and alisphenoid canal. Palms and soles of feet naked.

Otaria.-Dentition: $i \frac{3}{2}, c \frac{1}{1}, p \frac{4}{4}, m \frac{1 \text { or } 2}{1}$; total 34 or 36. First and second upper incisors small, with the summits of the crowns divided by a deep transverso groove into an anterior and a posterior cusp of nearly equal height; the third large and canine-like. Canines large, conical, pointed, recurved. Molars and premolars, usually $\frac{5}{6}$. of which the second, third. and fourth are
precedel by milk teeth shed a few days after birth; sometimes (as in fig. 123) a sixth upper molar (occasionally developed on one side and not the other) ; all with sinilar charaeters, generally uniradicular ; crown moderate, compressed, pointed, with a single principal cusp, and sometimes a cingulum, and more or less de veloped anterior and posterior accessory cusps. Vertebie: C 7, D 15, L 5, S 4, C


Fig. 123.-Skull and Dentition of Otaria forsteri. From Gray, Proc. Zool. Soc., 1872, p. 660.
9-10. Head rounded. Eyes large. Pinna of ear small, narrow, and pointed. Neck long. Skin ot all the feet extended far beyond the nails and ends of the digits, with a deeply-lobed margin. The nails small and of ten quite rudimentary, especially those of the first and fifth toes of both feet; the best-developed and most constant are the three midulle claws of the hind foot, which are elongated, compressed, and curved.

The Olaria, or Eared Seals, commonly called Sea Bears or Sea Lions, are widely distributed, especially in the temperate regions of both liemispheres, though absent from the coasts of the North Atlantic. As might be inferred from their power of walking on all fours, they spend more of their time on shore, and range inland to greater distances, than the true Seals, especially at the breeding tine, thongh they are obliged always to return to the water to seek their food. They are grecrarions and polygamous, and the males are usually much larger tlau the females, a circumstanco whicl has giveu rise to some of the consusion existing in the specific detennination of the varions members of the geans. Some of the species possess, in addition to the stiff, close, hairy covering common to all the group, an exceedingly fine, deuse, woolly uader fur. Tho skins of these, when dressed and deprived of the longer harsh outer hairs, constitute the "sealskin" of commerce, so much valued for wearing apparel, which is not the product of any of the true Seals. The best-known species are $O$. stelleri, the Northera Sea Lion, the largest of the genus, from the North Prafie, about 10 feet in length; 0 . juebata, the Southern Sea Lion, from the Falkland Islands and Patagonia; O. californiana, from Califormia, frequently exlubited alive in menageries in Europe; O. ursina, the common Sea lear or Fur Seal of the North Pacifie, the skins of which are imported in immense numbers from the Prybiloff Islands; $O$. pusilla, from the Cape of Good IIope; O. forstcri and others, from the coasts of Australia and various islands scattered over the southern hemisphere. These have been grouped by some zoologists into niany genera, founded apon very trivial modifications of teeth and skull.

## Famoily Tricurcuide

In many characters the siugle genus comprising this family is intermediate between the Otariidx and Phocidx, but it las a completely aberrant dentition. It has no external ears, as in the Phocidx; but when on land the hind feet are turned forwards and used $\cdot$ in progression, though less completely than in the Otariida. The upper canines are developed into immense tusks, which descend a long distance below the lower jaw. All the other teeth, including the lower canines, are much alike, small, simple and one-rooted, the molars with flat crowns. The skilll is without post. orbital process, but has an alisphenoid canal.

Trichichus, Liun. ; Odobænus, Brisson (whicls somo modern zoologists have revived). -Dentition of youncr : $i \frac{3}{3}, c \frac{1}{1}, p$ and $m$. Many of these teeth are, however, lost early or remain through life in a rudimentary state e concealed by the sums. Tho teeth $^{\text {s }}$ whicln are usually leveloped functionally are $i \frac{1}{1}, c \frac{1}{1}, p$ s. $m \frac{0}{0}$; tetal 18. Verteloras: C 7, D 14, L 6, S 4, C 9. Ilead round. Eyes rather sinall. Muzzle short and broad, with on eaclı side a group of long, very stiff, bristly whiskers. The remainder of tho hair covering very short and adpressed. Tail very rudimentary. Fore feet with subequal toes, with five minute flattencl nails. Ilind feet with subequal toes, the fifth slightly the largest, with cutancous lobes projecting beyond the cuds as in Otaria; first and fifth with minuto tlattened nails ; second, third, and fonrth with large, elongated, sub= compressed pointed nails,
The Walrus or Norsc (T. rosmarus) is found throughout the circum. polar regions, those of the Nortb $\Delta$ tlantic and North Pacilic being considered by some zoologists as distinct species, by othera as local varnctics, it is grogarions, but, owing to the destruction liy the
sealers for the sake of its tusks, oil, and hide, it is fur less abunaint than formerly. The use of the great tusks (which are developed in both sexes, though in the femate they are nore sleader than in the male) appears to be tor scraping and digging anong the sand and slingle for the molluses and crustaceans which form its miacipal sustenance; they are also formidable weapons of defence.

## Fumily Phocide.

The true Seals are the mest completely adapted for aquatic life of all the Pinnipeds. When on land the hind limbsare extended behiad them and take no part in progression, which is effectel by a series of jumping movements produced by the muscles of the trunk, in some species aided by the fore limbs only. The palms and sqles of the feet are hairy. There is no pinna to the ear, and no scrotunn. the testes being abdominal. The upper incisors liave simple, pointed chowns, and vary in number in the different groups. All have well developed canines and $\frac{5}{5}$ teeth of the molar series. In those species of which the nilk dentition is known, there are tliree milk molars, which precede the second, third, and fourth permanent molars; the dentition is therefore $p \frac{1}{6}, m \frac{1}{1}$, the first premolar laving as usual no milk predecessor: The skull has no post-orbital process and no alisplienoid canal. The fur is stift and adpressed, without wonlly under fur.
Subfamily Phocina.-Incisors $\frac{3}{2}$. All feet with five welldeveloped claws. The toes on the bind feet subequal, the first and fifth not greatly exceeding the others in length, aud with the interdigital membrane not extending beyond the toes.

Halichorws.-Dentition: $i \frac{3}{2}, ~ e \frac{1}{1}, p \frac{4}{4}, m$ f; total 34. Molars with large, simple, conical, recurved, slightly compressed crowns, with sharp anterior and posterior edges, but without accessory cusps, except sometimes the two hinder ones of the lower jaw. With the exception of the last one or two in the upper jav and thu last in the lower jaw they are all uniradicular. Vertebre: © 7 , D 15, L 5, S 4, C 14.
One species, $\mu_{\text {. grymes, the Grey Seal of the coasts of Scandinavia }}$ and the British Isles.
Phoca. - Dental formula as the lasto Teeth smaller and more pointed. Molars with tworoots (except the first in each jaw). Crowns with accessory cusps. Vertebre: C 7, D 14-15, L 5, S 4, C 11-14. Head round and short. Fore feet short, with five very strong, subcompressed, slightly curved, rather sharp claws, subequal in length. On the hind feet the claws much narrower and less curved. Tho species of this grenus are widely distributed throughent the nortliern liemisphere, and include $P$. barbata, the Bearded Seal; $P$. groenlaml$i c a$, the Greenland Seal ; $P$. vitulina, the Common Seal; and $P$. hispida, the Rioged Seal of tlie North Atlantic; $P$. caspica, from the Caspian and Aral Seas; aud P. siberica, from Lake Baikal. Spe Seal.

Subfamily Stenorhyachinæ.--Incisors $\frac{9}{2}$. Molars two-rooted, except the first. On the hind feet the first and fifth toes greatly exceeding the others in length, with nails rudimentary or absent.

Monuchas.-Dentition: $i \frac{2}{3}, c \frac{1}{1}, p \frac{3}{3}, m \frac{1}{3}$; total 32. Crowns of molars strong, conical, compressed, hollowed on the inuer side, with a strongly-narked lobed cingulum, especially on the inner side, and slightly developed accessory cusps before and belind. The first and last upper and the first lower molar considerably smaller than the others. Vertebre: C 7, D 15, L5, S 2, C 11. All the nails of both fore and lind feet very small aod rudimentary. One species, M. albivcutcr (Pclagites monachus of some anthors), the Monk Seal of the Mediterrancan and adjacent parts of the Atlantio.
The other geaera of this section hare the same dental formula, but are distingrished by the cheracters of the molar teeth and the feet. They are all iuliabitants of the shores of the seuthern liemisphere.

Stenorhmichus (Ogmorhinus, Peters) - All the teeth or the molar serics with three distinct pointed cusps, deeply separated from each other ; of these the middle or principal cusp is largest and slightly recurved; the other two (anterior and posterior) are nearly equal in size, and have their apices directed towards the middle one. Skull nuch elongated. One species, S. leplomyx, the Sea Leopard, widely distributed in the Autaretic and southern tenperate stas.
Lobodon.-Molars with much-compressed elongated crowns, witlı a principal recurved cusp, rounded and somenlias bulbous at the apex, and with one anterior, and one, two, oŕthree posterior, very distijet accessory cusps. One species, $L$. earcinoph:aga.

Leptonyz:- Dlolars small, with simple, subeuns.ressed, cenical crowns, witlı a broad ciugulum, hut no distiact accessory cusps. L. weddellii.

Ommatophoca. - All the teetlı very sr ?1; llose oi the molar series with pointed recurved crowns, and suatl posterior and still less developed anterior accessory cuspis Urbits rery large, Nails quite rudimentary on front and absent on hind feet. The skull bears a considerable resemblauce to that of the meukers of the neat subfamily, towards which it may form a transitioni... There is one species, 0 . rossif, of which very little is known.

Subfamily Cystophorinw. -Iucisors ₹. 'Tecth of melar serius
generally one-rooted. Nose of males with an appendage capable of being inflated. First and fifth tocs of hind fert greatly exceeling the others in length, with mrotonged cutancoas lobes, and radimentary or no nails.

Cystophora.-Dentition: $i \mathfrak{ร}, c \neq p$ 事, mq; total 30. The last molar has generally two distinct roots. Beneath the akin over the face of the male, and connected with the nostrils, is a sac capable of inflation, when it forms a kind of hood covering the upper part of the licad. Nails present, though small on the hind feet. C. cristata, the Hooded or Bladder-Nose Seal of the Polar Seas.
Macrorhinzs. - Dentition as the last, but molars of simpler character, and all one-rooted. All the teeth, except the canines, very snaall relatively to the size of the animal. IIind feet without nails. Vertebre: C 7, D 15, L 5, S 4, C11. Nose of ndalt male produced into a short tubulat proboscis, ordinarily faccid, but capable of dilatation and elongation nnder excitement. One species, M. Yeonina, the Elephant.Seal, or "Sea Elephant" of the whalers, the largest of the whole family, sttaining the length of nearly 20 feet. Formerly abundant in the Autarctic Seas, and also found on the const of California.

## Eatinct Pinnipens,

Remains of animals. of this group have been foand in late Miocene ond Pliocene strata in Europe and Americe, the most abundant and best preserved being those of the Antwerp Cragg, the subject of a rccent illustrated monograph by Van Bencden. Nothing has, however, yet been discovered which throws any light upon the origin of the group, as all the extinct forms at present known come within the definition of the existing families; and, thongh annectant forms betwcen these occur, there are as yet no transitions to a more gencralized type of mammal. Indeed, all those of which the characters are best known belong to the completely dereloped Phocine or Trichechine, not to the Otarine, type. The structure of the Pinnipeds is so clearly a modification of that of the terrestrial Carnivores, especially of the Arctoid type, that it is differcult to imagine that they can have had any other origin but one in common rith that group; but the separation must have taken place early in the Tertiary epoch, if not before.
Dibliography of Pinnipedia.-J. A. Aven, Eistory of North American Pinnipeds, 1880; P.J. Van Beneden, Ossements fossiles d'Anvers, pt. J., 18:7.

## Order PRIMATES.

This order in the system of Linnæus includes Man, all the Monkeys, the Leqmurs, and the Bats. By common consent of all zoologists the last-named animals have been remored into a distinct order. With regard to the assacintion of the others, there his been, and still is, nuch difference of opinion.

That all the Monkeys, from the highest Anthropoid Apes to the lowest Marmosets, form a natural and tolerably homogeneous group seems never to have been questioned; but whether the Lemurs on the one hand and Jan on the other should be united with them in the same order are points of controversy. With regard to the first, the question has already been referred to iu the article Lemur, in which an account has been given of the charactera and the principal modifications of the type. If, in accordance with the traditional views of zoologists, they are still considered to be members of the order Primates, they must form a suborder apart from all the others, with which they here really very little in common except the opposable hallux of the hind foot, a character also met with in the Opossums, and which is therefore of very secondary importance.
The history of all the various forms of true Monkeys is very fully given in the article Ape. The position of Man alone remains to be considered. In the Systema Naturæ of Linnæus he was separated only generically from the Apes, but in the nest great work which exercised a widespread influence over the progress of zoological science, the liègue Animal of Cuvier, he forms a distinct order under the name of Bimana, the Monkeys and Lemurs being associated together as Quadrumana. This has been the prevailing arrangement in the zoological systenis of the present century, though in the classification of Owen his position is still farther removed from that of the Monkeys, is in it the genus Homo forms one of the four primary divisions or subclasses of the Mammalia, called Archencephala, the Quadrumana being united with the Camivora,

Ungulata, and others in another divisiou called Gyrencephala. On the other hand the teadency of most modern systematists, for reasons which have been fully stated by Professor Husley, ${ }^{1}$ is to revert towards the Linnæan position. Considering solely the facts of Man'a bodily structure, it can be clearly demonstrated that the points in which he differs from the most nearly resembling Ape are not of greater importance than those by which that Ape differs from other mniversally acknowledged members of the group; and thercfore, iu any natural system, if Man is to be made a eubject of zoological classification upon the same principles ns those applied elsewhere, he mast be included in the order which comprises the Monkeys. We say upon the same principles as are applied elsewhere, as zoological classification has never taken into consideration the psychological characteristics which distinguish the subjects of its investigations, but only their tangible and phyaical structure, otherwise eudless confusion would result, at all events with our very imperfect knowledge of animal psychology. The essential attributes which distinguish Man, and give lim a perfectly isolated position among living creatures, are not to be found in his bodily structure, and therefore should either be left entirely ont of consideration or have such weight given to them as wonld remove him completely out of the region of zoological classification. To profess to classify Man as if he were one of the animals, as in all points of the structure and functions of his organs be undoubtedly is, to place lim in the class Mammalia, and then to allow other considerations to influeuce the judgment as to the particular position he should occupy in the class, is most illogical

Man, therefore, considered from a zoological point of view, must be included in the order Primates, even if the Lemurs are removed from it, as his structural affinities with the Monkeys are far closer than are those of the socalled "Half-Apes." We may, without treading upon debateable ground, go farther, and say that the differences between Man and the Anthropoid Apes are really not 80 marked ns those which-separate the latter from the American Monkeys. Perhaps the best exposition of the facts relating to the present condition of the order will be a division into five sections, which may be considered as families, of course without intending to imply that they are exactly equivalent, or that the intervals which separnte them are of precisely the same importance, but that they are five distinct groups, all branches from a common stem, and unconnected in the present condition of nature by any intermediate forms. These are-(l) Hominidx, containing Man alone; (2) Simiidx, containing the four genera of Man-like Apes: Troglodytes, Gorilla, Simia, and Hylobates; (3) Cercopithecidx, containing all the remaining Old-World Monkeys; (4) Cebidx, containing the American Monkeys having three true molar teeth on each side of each jaw ; and (5) Hapalidx, the American Monkevs with two molar teeth, or Marmosets.

The distinctions between Hominida and Simiidx of which aloue we have to treat at present, as the characters of the other families are given in the article Ape, are chiefly relative, being greater size of brain and of brain case as compared with the facial portion of the skull, smaller development of the canine teeth of the males, more complete adnptation of the structure of the vertebral column to the vertical position, greater length of the lower as compared with the upper extremities, and greater length of hallus or great toe, with almost complete absence of the power of bringing it in opposition to the other four toes. The last

[^180]aud the small size of the canine teeth are perhajs the most marked and easily defined distinctions that can be drawn between the two groups.
Man is universally admitted to form a singlo genus, Homo of Linnæus, but a question of considerable importance in treating of him from a zoological point of view, and one which has been a subject of much controversy, is whether all men should be considered as belonging to one or to several species. This question is perbaps of less importance now than formerly, when those who maintained a plurality of species associated with the hypothesis plarality of origin. One of the strongest arguments against the view that the various races of Man represent more than, one species is that none of those who have maintained it have been able to agree as to how many distinct specific modifications can be defined, almost every number from three to twenty or more having been advocated by different authors. If the distinguishing characters of the so-called species had been so marked, there could not be such a remarkable diversity of opinion upen them. Again, the two facts-(l) that, however different the extremes of any two races may be in appearance (and it must be admitted that, as advocated by many polygenists, the differences are greater than many which are considured specific among other animals), every intermediate gradation can be found through which the one passes into the other, and (2) that all races are fertile inter se-are quite conclusive in favour of considering Man as repretrajting a single species in the ordinary sense in which the word is now used, and of treating of all his various modifications as varieties or races.
The great problem at the root of all zoology, the discovery of a natural classification which shall be an expression of our knowledge of the real relationship or consangninity of different forms, is also applicable to the study of the races of Man. When we can satisfactorily prove that any two of the known groups of mankind are descended from the same common stock, a point is gained. The more such points we have acquired the more nearly shall we be able to picture to ourselves, not only the present, but the past distribution of the races of Mau upon the earth, and the nude and order in which they have been derived from one aoother. Bat the difficulties in the way of applying zoelogical principles to the classification of Man are vastly greater than in the case of most animals. When groups of animals becomo so far differentiated from each other as to represent separate species, they remain isolated; they may break up into further subdivisions--in fact, it is only by further subdivision that new species can be formed; bnt it is of the very essence of species, as now universally understood by naturalists, that they cannot recumbine, and so give rise to new forms. With the varieties of Man it is otherwise. They have never so far separated as to answer to the physiological definition of species. All races, as said above, are fertile with one another, though perhaps in different degrees. Hence new varieties have constantly been formed, not only by the segmentation of portions of one of the old stocks, but also by varions combinations of those already cstablished.

Without entering into the difficult question of the method of Man's first appearance upon the world, we must assume for it vast antiquity,-at all events as measured by any historical standard. Of this there is now ample proof. During the long time he existed in a savage state-a time compared to which the dawn of our historical period is as yesterday-he was influenced by the operation of these natural laws which have produced the variations seen in other regions of organic nature. Tho first Men may very probably have been all alike; but, when spread over the face of the carth, and become suhject
to all kinds of diverse external conditions, - climate, food competition with members of his uwn species or with wild animals,-racial differences hegan slowly to be developed through the potency of various kinds of selection acting upon the slight variations which appeared in individuals in obedience to the tendency planted in all living things. These differences manifested themselves externally in the colour of the skin, the colour, quality, and distribution of the hair, the form of the head and features, and the proportions of the limbs, as well as in the general stature.

Geographical position must have been one of the main elements in determining the formation and permanence of races. Groups of Men isolated from their fellows for long periods, such as those living on small islands, to which their ancestors may have been accidentally drifted, would naturally, in course of time, develop a new type of features, of skull, of complexion, or hair. A slight set in one direction, in any of these characters, would constantly tend to intensify itself, and so new races would be formed. In the same way, different intellectual or moral qualities would be gradually developed or transmitted in different groups of Men. The longer a race thus formed remained isolated, the more strongly impressed aud the more permanent would its characteristics become, and less liable to be changed or lost when the surrounding circumstances were altered, or under a moderate amount of intermisture from other races-the more "true" in fact, would it be. On the other hand, on large continental tracts, where no mountain ranges or other natural barriers form obstacles to free intercourse between tribe and tribe, there would always be a tendency towards uniformity, from the amalgamation of races brought into close relatigel by war or by commerce. Smaller or feebler races would be destroyed or absorbed by others impelled by superabundant population or other eauses to spread beyond their original limits ; or sometimes the conquering race would itself disappear by absorption into the conquered.

Thas, for untold ages, the history of Man has presented a slifting, kaleidoscopic sceue: new races gradually becoming differentiated ont of the old elements, and, after dwelling a while upon the earth, either becoming' suddenly annililated or gradually merged into new combinations; a constant destruction and reconstruction; a constant tendeacy to separation and differentiation, and a tendency to combine again into a common uniformity-the two tendencies actiug against and modifying each other. The history of these processes in former times, except in so far as thoy may be inferred from the present state of things, is a difficult study, owing to the scarcity of evidence. If we bad any approach to a complete paleontological record, the history of Man conld be reconstructed; but nothing of the kind is forthcoming. Evidence of the anatomical characters of Man, as be lived on the earth during the time when the most striking racial characteristics. were being developed, during the long antc-listoric period in which the Negro, the Mongolian, and the Caucasian were being gradually fushioned into their respective types, is entirely wanting, or if any exists it is at present safely buried in tho carth, perhaps to bo revealed at some unexpected time and in some unforescen manner. Even the materials from which a history of the modifications of the human species as known to our generation must be constructed are rapidly passing away, as the age in which we live is all ge in which, in a far greater degree than nny previous one, the destruction of races, both by annihilation and absorption, is going on. Owing to the rapid extension of maritime discovery and commerce, changes such as have never been witnessed beforo are now tiking place in the cthnology of tho world, changes especially affecting the island populations among which, more than elsewhere. the sclution of
many of these problems may be looked for. The subject is, however, attracting the attention of observers of all countries to a greater degree than it ever has before, with the usual result of briaging distrust upon, and dissatisfaction with, the old systems, without as yet cstablishing auything in their place which meets with universal acceptance. Tho difficulty of finding distinctive characters capable of strict defuition by which races or groups may be differentiated may be inferred from what has been said above. It is rather by the preponderance of certain characters in a large number of members of a group than by the exclusive or even constant possession of these characters in each of its members that the group must be distinguished. Hence, in all cases in which the characters can be cxpressed by the numerical method, as in the
dimensions and proportions of different parts of the body, averages are now largely used by anthropologists. Previded the data upon which these averages are based have been obtained from a sufficient number of individuals, they can be absolutely relied upon to express the prevailing or most characteristic development of each particular feature in any group, and permit satisfactory comparisons between the conditions of that feature in different groups. Great progress is now being made in perfecting the methods of investigation of racial characteristics, and as we are beginning to learn what lines of research are profitable and what are barren, we may hope that the time is not far distant when we may get some clear insight into the knowledge of the natural classification and relationshipa of the races of Man.
(w. H. F.)

## Index.

Aard-vark. 389.
Aard-wolf, 437. Acanthoglossas, 378.
Eluraidca, 434.
Aevial mammals, 373.
Ajuridæ, 441. Aluronas, 44L. Air sacs, 366.
Alimentary canal, 362. Amblypoda, 436. Amphitheriom, 375. Anatomy, 347.
Anomalu-idse, 417. Anoplotherinm, 430 Anteaters, 385, 388. Antelope, 432. Antlers, 43L Apes, 441. Aquatic mammals, 373. Archæoceti, 395 Arctoidea, 439. Arctomys, 418; akull, 417 .
hrmadillo, 386 ; sternum and ribs, 358.
Artiodactyla, 429 Badgers, 440.
Balænoidca, 394.
Baddicoot, 381.
Bats, 405.
Bear, $4 \frac{1}{4}$.
Beaver, 418.
Beluga, 398.
Binturong, 436.
Bison, 152.
Bladder, 366.
Blood, 364.
Bottle-nose, 396, 399. Bovid.e, 432.
Bradypodldæ, 284.
Erain, 366.
Euffalo, 432.
Buqodonta, 430.
Bunotheria, 442.
Cachalot, 396.
Camel, 430.
Camelopardatidx, 432
Capybara, 421.
Camivora, 432
Carpas, 359. Castoridx, 418; akull,416. Cat, 43!.
Cattle, 432.
Caviidx, 421.
Cebidx, 444.
Centetidx, 404
Centario, 415.
Cercopithecidæ, 444.
Cervidx, 432.
Cetacea, 391.
Chalicotheridar, 429.
Cbamois, 432
Cheetab, 435.
Cherrotain, 430.
Chinchilldx, 420.
Chiroptera, 405.
Chlamydophorinæ, 396
Charonycteris, 414.
Cbaropus, 381
Choleppus, 384.
Chrysochloride, 408.
Ciret. $430^{\circ}$
Classification, 3 ㄱㅇ.

Claws, 348.
Coati, 441 .
Coryphodon, 426
Cotylophoran 430
Couguar, 435.
Crmmea gland, 348.
Cryptoprocta, 435.
Cynogale, 436.
Cyaoidea, 437. Dasypodidæ, 386
Dasyproctidæ, $\mathbf{4 2 0}$.
Dasyuridx, 380; skul4, 379.
Deer, 431.
Delphinide, 398. Delphinoidea, 395. Deadrohyrax, skull, 422
Deatal system, 843; formula, 353.
Didelphia, 371, \$78.
Didelphidæ, 380. Digestive system, 361. Dingo, 438.
Dinoceras, 426. Dinomyldæ, 420 . Dinotherium, 425 . Dipodidæ, 419. Distribution, geographlcal, 373.
Dog. 438; teeth, 359 . skull, 355; vertebre, 357. Dolphins, 399 ; teeth, 352 ; 'akult, 392.
Dormouse, 418.
Duetless gland 34
Dugoag, 390.
Ear, 367.
Echidnidæ, 378.
Edentata, 383.
Eland, 432.
Flephant, 423. Emballonutide, 412. Epomophonis, 408. Equidæ, 429. Erinaceidx, 402. Eapleres: 436 Eusmilus, 435. Eutheria, 372,393.
Eye, 367.
Felidx, 434.
Ferret, 440.
Fiber, 419; akull, 418.
Fib-whales, 395.
Fissipeali, 4ts.
Flying lemur, 401. Fcetal membranes, 363.
Foot, 360.
Fox, 438.
Galeopithecide, 401
Gegette, 436.
Genital organs, 308. Geographical distribation, 378. Geomyjdæ. 119.
Giraxie, 432.
Glution, 440.
Glypendon. 388.
Gnu, 432.
Gost, 432.
Grampos, 393.
Frison, 440.
Guluea pig, 421.

Hair, 347 Halicore, 390. flamster, 419. II upalidx, 444. ILaplodontidæ, 418. ITare, 42l.
IIurpyia, 409.
IFartebeest, 432.
Hearing, sease of, 367.
Heart, 364.
Iledgehog, 403. Hemicertetes, 405. IHerpestinx, 436. IIippopotamus, 430. Hominidx, 444.
Horns, 431.
IIorse, 429.
Hyæna, 487.
Iy inaodou, 442.
Hydrocheras, 421 ; skull 420.

Hydropotes, 432.
Hyperoodon, 396.
Hyracodontid天; 428.
Hyracoidea, 422.
Hyтax, 483.
Hy'stuicide, 420 ; skull, 416 Hystricomorpha, 420.
Ihex, 42.
Ichneumon, 436.
Ictonyz, 440.
Insectirora, 400.
Intestincs, 362.
Jackal, 438.
Jaguar, 435.
Jerboa, 419.
Jumping hare, 415, 420.
Jurassic mammals, 375.
Kangaroo, 3S』.
Keriroula, 411.
Kldneys, 366. Kinkajou, 441.
Euala, 383; skull, 379;
hiod loot, 382.
Lagomorpha, 421
Lagomyidæ, 42L
Larynx, 363.
Leg, 360.
Lemming, 419.
Lemur, 444.
Leopard, 435.
Leporida, 421.
Limbs, 258.
Lion, 435.
Liter, 363
Llama,430
Lophiodontidix, 428.
Lophiomyidæ, 418. Lungs, 365.
Lutriog, 439
Lycaon, 439,
Lymphalle vessels, 364.
Lynx, 435.
Machærodas, 435 .
Macrancheaidx, 428.
Macropodidx, 382.
Macroscelidæ, 402.
Mammary glands, 368.
Mammoth, 425.
Man, 444.
Manatee, 390.
Manidx, 988.

Dlaouk, 359.
Mar mot, 418
Maltea, 440.
Marsuplalia, 378.
Mastodon, 425.
Megachiroptera, 409.
Megaderma, 411, 412.
Megatheriidx, 384. Melinæ, 439.
Menodontidæ4 429.
Mesoplodon, 397.
Mlesotheium, 427.
Mesozoic mammals, 375.
Metatheria, 371, 378.
Dicrochiroptera, 410.
DIInk, 440.
Mole, 404.
Molossus, 405, 413.
Mongoose, 436.
Dlonkeys, 444.
Monodelphia, 372, 383.
Monodan, 398.
Monotremata, 377.
Mormops, 414.
Morse, 443.
Mouse, 419.
Mouth, 361.
Muntjac, 48
Nuridæ, 418.
Dusk deer, 432
Musk ox, 432.
MIusk rat, 419.
Mustelidæ, 439.
Musteline, 440.
Myloton, 888.
Dyogaline, 403.
Dyomorpha, 418.
Myoxidæ, 418.
Dfrmecobina, 381.
Myrmecophagidx, 385.
Mystacioa, 413, 414.
DIystacocell, 394.
Nalis, 348.
Narwhal, 398.
Natolus, 411.
Nectogale, 403.
Nervous system, 866.
Noctule bat, 406.
Nostrils, 365.
Nycterida, 411.
Nyctinomus, 413.
Nylghan, 432.
Ocelot, 435.
Octodoatldæ, 420.
Odoutocetl, 395.
Odour-secretiag glands, 848.

Opossum, 880; teeth, 378.
Orca, 393.
Oraithodelphia, 371, 577.
Ornithorhynchida. 377.
Orycteropodidæ, 368
Oryzorictiaz, 405.
Otarilde, 44 .
Otocyom, 439.
Otter, 439.
Ounce, 485.
Ox, 432.
Palæotherlum, 429.
Panda, 441.
Pangolin, 388
I Pantrer 4

Paradoxare, 436. Peccary, 430.
Pecora, 430.
Pedetes, 415, 420.
Pelvic girdle, 360.
Pentail, 402.
Peramelidx, 381.
Perissodactyla, 427.
Phalangisțidæ, 382.
Phascolarctime, 382.
Pbascolomyidæ, 383.
Phasco!otherium, 376.
Phocrene, 398.
Phocidæ, 443.
Pbyllorhina, 412; P.
larrata, 409.
Phyllostomidx, 414.
Pbyseteridx, 395.
Pichiciago, 387.
Pinoipedla, 442.
Placenta, 368.
Placeatalia, 383.
Plagiaulax, 376.
Platanistidx, 397.
Polecat, 440.
Pooloporia, 398.
Porcupine, 420.
Porpoise, 398,399 ; ver. tebra, 858.
Potamogalidæ, 404.
Primates, 444.
Proboscidæ, 423.
Procjocidæ, 440 .
Proteles, 437.
Prototheria, 371, 377.
Pteropodidx, 409.
Ptilocercus, 402.
Puma, 435.
Rabbit, 421.
Paccoon, 4 At.
Rat, 419.
Ratel, 440.
Reproductive organs, 868.
Respiratory organy, 365.
Rhinoceros, 428.
Rhioolophidæ, 412
Rhinoporna, 413.
Rhytina, 390.
Ribs, 858.
Rodentia, 415.
Rorqual, 395.
Rumiaants, 431.
Saiga, 432.
Salivary glands, 361 .
Scales, 348.
Sculy anteater, 288
Scjuridre, 418.
Scinromorpha, 427.
Scotophilus, 411.
Sca bear, 448.
Sea cotr, 390.
Sea elephaat, 44
Sea lion, 443.
Seals, 443.
Secoadary sexual charac-

MAMMOTH, a name commonly given to one of the nomerous cxtinct furms of Elephant, Elephas primigenius of Blumenbach and most subsequent authors. ${ }^{1}$ Probably no avimal which has not survived to the historic period has left such abuodant and well-preserved cridence of its forme: existence. The discovery of immense numbers, not only, as io the case of most extinct creatures, in the form of fragmentary bones and teeth, but often as more or less entire carcases, or "mummies" as they may be
and generally with a tendency to a spiral form not seen in other species of Elephant. Different specimens, however, present great variations in curve, from nearly straight to an almost complete circle.

It is chiefly by the characters of the molar teeth that the various extinct modifications of the Elephant type are distinguished. Those of the Mammoth (see fig. 2) differ from the corresponding organs of allied species in (1) great breadth of the crown as compared with the length, (2) the narrowness and crowding or close approximation of the ridges, (3) the thimness of the enamel and its straightness, parallelism, and absence of "crimping" as seen on the worn surface, or in a horizoutal section of the tooth. The molars, as in other Elephants, are six in number on each side above and below, succeeding each other from before backwards. Of these, Dr Falconer gave the prevailing "ridge-formula" (or number of complete enamelled ridges in each tooth) as $4,8,12,12$, 16, 24, as in E. indicus. Dr Leith Adams, working from more abundaut materials, has shom that the number of ridges of each tooth, especially those at the posterior end of the series, is subject to very great individual variation, ranging in each tooth of the series within the followiog
zalled, with the flesh, skin, and hair in situ, in the frozen soil of the tundras of northern Siberia, has for a long time given oreat interest to the species, and been the cause of many legendary stories among the natives of the lands in which they occur. A mong these one of the most prevailing is that the Mammoth was, or still is, an animal which passes its life habitually in burrows below the surface of the gronnd, and which immediately dies if by any chance it comes into the upper air.

Tha general characteristics of the animals of the order Proboscidea, to which the Mammoth belongs, are given in the article Mammalia (p. 423). Its position is also there indicated as a member of the most highle specialized section of the group of Elephants, that called by Falconer Eucelephas, which also contains the modern Asiatic species. Of the whole group it is in many respects, as in the size and form wf the tusks, and especially the characters of the molar teeth, the farthest removed from the primitive Mastodon-like type, while its nearest surviving relative, E. indicus, has reaianed the slightly more generalized characters of the Mammoth's contemporaries of more southern elimes, $E$. columbi of Ameriea, and E. armeniacus of the Old World, if, indeed, it can be specifically distinguished from them.

The tusks or upper incisor tecth were donbtless present in both seses, but probably of smaller size in the female. In tho adult males the $\bar{y}$ often attained the length of from 9 to 10 feet measured along the outer curre. Upon leav. ing the head they were directed at first downwards and outwards, then upwards and finally inwards at the tips,

[^181]limits: 3 to 4,6 to 9,9 to 12,9 to 15,14 to 16,18
to 27 ,-excluding the small plates called "talons" at each to 27 ,-excluding the small plates called "talons" at each end of the tooth. Besides these rariations in the number of ridges or plates of which each tooth is composed, the thickness of the enamel raries so much as to have given rise to a distinction betreen a "thick-plated" and a" "thinplated" variety,
 ing most pre-Fig. 2.-Grinding Surface of Upper Molar Tooth valent among of the Mammoth (Elephas primigenius). From the specimens Owen. $c$, cementum ; $d$, dentine ; $e$, eoamel. from the Arctic regions, and most distinctively characteristic of the species. From the specimens with thick enamel plates the transition to the other species or varictios mentioned above, including $\int_{2}$. indicus, is almost imperceptible.

The bones of the skeleton generally more resemblo those of the Indian Elephant than of any other known species, but the skull differs, in the narrower summit, narrower temporal fossæ, and more prolonged incisive sheaths, required to support tho roots of the enormous tusks. Among the external characters by which the Mammoth was distinguished from either of the existing specios of Elephant ras the dense clothing, not only of long coarse outer hair, but also of close under woolly hair, of a roldish. brown colour, evidently in adaptation to the colder climate which it inhabited. This chara ter, for a knowledge of which we are indebted to the well-nreserved remaine form 1 in northern Siberia, is also represented in the rude ku;
graphic drawings of prehistoric age, found in carcras in the south of Fraoce. ${ }^{1}$ In size different individuals raried considerably, but the average height does not appear to have exceeded that of either of the existing species of Elephant.

The geographical range of the Mammoth was very exteusive. There is scarccly a county in England in which some of its remains lave not been found either in alluvial deposits of gravel or in carerns, and numbers of its teeth are from time to time dredged up from the bottom of the sea by the fishermen who ply their trade in the German Ocenn, having been washed out of the water-worn chffs of the eastern counties of Eugland. In Scotland and Ireland its remains are less abuudant, but they have been found in rast numbers at various localities throughout the greater part of central Europe (as far south as Santander iu Spain aud Rome), northern Asia, and the northern part of the American continent, though the exact distribution of the Mammoth in the New World is still' a question of debate. It has not hitherto been met with in any part of Scandinavia or Finland.

In point of time, the Mammoth belongs exclusively to the post-Tertiary or Pleistocene epoch of geologists, and it was undoubtedly contemporaneous with man in France, and probably elsewhere. There is csidence to show that it existed in Britain before, during, and after the glacial period.

As before iudicated, it is in the northern part of Siberia that its remains have been found in the greatest abundance, and in quite erceptional conditions of preservation. For a very long period there has been from that region a regular export of Mammoth ivory in a state fit for commercial purposes, both eastward to China and westward to Europe. In the middle of the 10 th century an active trade was carricd on at Khiva in fossil ivory, which was fashioned into combs, vases, and other objects, as related by Abú 'l Kásim, an Arab writer of that period. Middendorff reckoued that the number of tusks which have yearly come into the market during the last two centuries has been at least a hundred pairs, and Nordenskiöld from personal observation considers this calculation as probably rather too low than too high. They are found at all suitable places nlong the whole line of the shore between the mouth of the Obi and Behring's Straits, and the farther north the more numerous do they become, the islands of New Siberia being now one of the most favourite collecting localities. The soil of Bear Islands and of Liachoff Islands is said to consist only of sand and ice with such quantities of Mammoth bones as almost to compose its chief substance. The remains are not only found around the mouths of the great rivers, as would be the case if the carcases had been washed down from more southern localities in the interior of the continent, but are imbedded in the frozen soil in such circumstances as to indicate that the animals had lived not far from the localities in which they are now found, and they are exposed either by the melting of the ice in unusually warm summers or by the mashing away of the soa cliffs or river banks by storms or floods. In this way the bodies of more or less perfect animals, often standing in the erect position, with the soft parts and hairy covering entire, have frequently been brought to light

References to the principal recorded discoveries of this kind, and to the numerons speculations to which they have given rise, both amnng tho ignorant peasants and learned academicians, will be fonnd in Nordenskiold's Voyage of the Fega (English translation, vol. i. 1881, p. 398 sq.) and a series of papers in the Geological Magazine for 1880 and 1881, by H. H. Howorth. For the geo-

[^182]graphical distribution and anatomical characters, sec Falconer*e Palaontological Mcmoirs, vol. ii., 1863; Boyd Dawkins, "Elcphas primigcnius, its rangc in space and tme," Quart. Jour. Gcol. Soe., Axxv. p. 133 (1879); and Lcith Adams, "Mlonograph of British Fossil Eleplauts," part ii., Palæontographica? Sociely, 1879.
(W. H. F.)

MAMMOTH CAVE, in Edmondson county, Kentucky, United States, $37^{\circ} 14^{\prime} \mathrm{N}$. lat. and $86^{\circ} 12^{\prime} \mathrm{W}$. long., by rail 85 miles south-south-west of Louisville, was discorcred, in 1809, by a hunter named Hutchius, while in pursuit of a wounded bear. Its mouth is in a forest ravine, I 94 feet above Green river, and 600 feet above the sea. 'Ihis aperture is not the original mouth, the latter being a chasm a quarter of a mile north of it, and leading into what is known as Dixon's Cave. The two portions are not now connected, though persons in one can make themselves heard by those ju the other. Saltpetre wis formerly made from the nitrous earth in which the cave abounded; but it is now mainly turned to account as a place of exhibition.
The cavernous limestone of Kentucky covers an area of 8000 square miles, is massive and homogeneous, and belongs to the Subcarboniferous period. It shows few traces of dynamic disturbance, but has been carved, since the Miocene epoch, into many caverns, of which the Mammoth Care is the noblest specimen known. The region is undulating, but its valless are mostly funnel-shaped depressions emptying through fissures into subterranear streams, which feed rivers, oftea of navigable size, aud whose waters are never frozen over, even in severe winters. Such valleys are called siuk-holes

The natural arch that admits one to Mammoth Cave has a span of 70 feet, and from a ledge above it a cascade leaps 50 feet to the rocks below, where it disappears. A winding flight of stone steps leads the way down to a narrow passage, through which the air rushes with violence, outward in summer, and inward in winter. The temperature of the cave is uniforinly $54^{\circ}$ Fahr. throughout the ycar, and the atmosphere is both chemically and optically of singular purity. While the lower levels are moist from the large pools that have secret connexion with Green river, the upper galleries are extremely dry. These conditions led, at one time, to the erection of thirteen cottages, at a point about 1 mile under ground, for the use of invalids, especially consumptives. The experiment ended in failure, and only two cottages now remain

The Main Cave, from 40 to 300 feet wide, and from 35 to 125 feet high, has seveial vast rooms, e.g., the Rotunda, where are the ruins of the old saltpetre works; the Star Chamber, where the protrusion of white crystals through a coating of the black oxide of manganese creates an optical illusion of great beauty; the Chief City, where an area of 2 acres is covered by a vault 125 feet high, and the floor is strewn with rocky fragments, among which are found numerous half-burnt torches made of canes, and other signs of prehistoric occupancy. Two skeletons were exhumed near the Rotunda; but no other bones of any description have been fouud. The so-called Mammoth Cave " mummies" (i.e., bodies kept by being inhumed in nitrous earth), with accompanying utensils, ornaments, braided sandals, and other relics, were found in Short and Salt caves near by, and removed to Mammoth Cave for exhibition. The Main Care, which abruptly ends 4 miles from the entrance, is joined by winding passages, with spacious galleries on different levele; and, although the diameter of the area of the whole cavern is less than 10 miles, the combined length of all accessible avenues is supposed to be about 150 miles. ${ }^{2}$

[^183]The chief points of interest are arranged along two liucs of exploration, besides which there are certain side excursions. The "shert route" requires about four hours, snd the "long reute" nine. Auduben's Avenuc, the one nearest the entrance, is seldom visited, except by the bata that hang from the walls in clueters like exarms of bees. The Gothic Avenue contains numerous large stalactites and stalagmites, and on interesting place called the Chapel, and ends in a small double dome and cascade. Among the nost surprising features of cava scenery are the vertical shafts that pierco through all levels, from the uppermost gallerics, or even from the aink-holes, down to the lowest Hoor. These are styled pits or domes, according to the nesition occupied by the observer. 4 crevice behind a block of stone 40 feet long by 20 wide, called the Giant's Coffin, admits the explorer to s place where six pita, varying in depth from 65 feet to 220 feet, exist in sn area of 600 yards. This includes Gorin's Dome, which is viewed from a point midway in its side, snd is by many regarded ss the finest room in the cavern. Others admire mere the Mammeth Dome, at the termination of Spark's Avenus, where s cataract falls from a height of 250 feet smid walls wonderfully draped with stalactitic tapestry. The Egyptian Tumple, which is a continuation of tbe Mammoth Dome,
contains six massive columns, tro of them quite perfect, and 80 feet high and 25 feet in diameter. The combined length of thess contiguous chambers is 400 feet. By a crevice above they are connected with an arm of Audubon's -Avenue. Lucy's Dome, about 300 feet high, is supposed to be the leftiest of all these vertical shafts. A pit called "the Maelstrom," in Croghan's Hall, is the spet most remote from the mouth of the cave; a son of Prentice, the poet, permitted himself to be lowered 190 feet by a rope to the bottom, in 1859. Thero are some fine stalactites nesr this pit, snd others in the Fairy Grotto and in Pensico Avenue ; but, considering the maguitude of Msmmoth Cave, its poverty of stalactitic ornamentation is remarkable. The wealth of crystals ie, however, surprising. These are of endlese variety and fantastic beauty. Besides the sparkliag vault of the Star Chamber ( 300 feet long and 80 high), there are halls canopied by fleecy clouds, or studded with mimic snowballs, sat others displaying various grotesque resemblances on the walls and cciling.
Cleveland's Cabinet and Marion's Avenue, each \& mile long, are adorned by myrisds of gypsum rosettes and curiously twisted crystals, called "oulopholites." These cave flowers are unfolded by pressure, as if a sheaf were forced tbrough a tight linding, and

the crystal fibres curl outward from the centre of the group. Thus spotless arches of 50 feet apan are embellished by floral clusters and garlands, hiding nearly every foot of ths grey limestone. The botryoidsl formations hanging by houeauds in Mory's Vibeyard resemble mimic clusters of grapes, ss the oulopholites rescmble roses. Again there are chambers with drifts of snowy crystals of the sulphate of maguesia, the ceilinge so thickly covered with their eflorescence that s loud cencussion of the air will cause them to fall like the flakes of a snow etorm.

Many emall rooms and tertuous pathe, where nothiog of special iuterest ean be found, are avoided as much as noseible on tho regular routes; but certain disagreeable experieaces are iaeritable. There is peril also in the vicinity of the deep pits. The one known as the Bottoruless Dit was for many years a barrier to all further expleration, but is new c-ossed by a woeden bridge. Long beforo the shaft had been cut as deep ac now, the water flowed aw ${ }^{\text {a }}$ y by channel gradually contracting to a Berpentuno Fisy, so extremely narrow as to bo called the Fat Man's Misery. The walle, oniy 18 inches spart, change direction eight times in 105 yards, while the distance from the sandy path to the ledge overhead is but 5 foot. The rocky sides aro fincly marked with waves and ripples,
as if running rater had suddenly been petrified. This winding way conducts one to River Hlall, beyend which lie the crystalliue gardens that have been described. It used to bo said that, if this narrow passage were blocked up, escspe would be impessible ; but lately an intricate web of fissures, called the Corkscrew, has been disoovered, by meante of which s good climher, ascending only a fow hundred feet, lands 1000 yards from the mouth of the cave, and cuts off one or two miles.
The waters, entering through numerous domes snd pits, and falling, during the rainy season, in cascades of great volume, are finally collected in River Ifall, where they form several extensive lakes, or rivers, whose connexion with Green river is known to be in two deep eprings appearing under arches on its margin Whenever there is a freshet in Green river the streams in the cave sre joined in a continuous body of water, the rise sometimes bcing 60 feet above the low-water mark. The subsidence within is less rapid than the rise; and the streams are impassable for obout seven monsi's in each year. They aro navigable from May to Octoive, and furnish interesting fentures of cave scensry. The first spprosched is cailici th: Drad Ses, onibraced by cliffs 60 feet high and 100 feet long, above which a $H^{-1 / k}$ has been made,
whence a staimay conducts us down to the banks of the River Styx, a body of water 40 feet wide and 400 feet long, crossed by a natural bridge. Lako Lethe comes next-a broad basin enclosed by walls 90 feet high, below which a narrow path leads to a pontoon at the neek of the lake. A beach of the finest yellow sand extends for 500 yards to Echo river, tho largest of all, being from 20 to 200 fect wide, 10 to 40 feet deep, and about three-quarters of a mile long. It is crosscd by boats. The arched passage-way is very symmetrical, varying in leight from 10 to 35 teet, and famons for its musical reverberations, -not a distinct echo, but an harmonious prolongation of sound for from 10 to 30 seconds after the original tonc is produced. Tho loug rault bas a certain keynote of its own, which, when firmly struck, excites harmonics, including tones of incredible depth and sweetness.
The fauna of Mammoth Care has been classified by Putman, Packard, and Cope, who have catalogued trenty-eight species truly subterrancous, besides those that may be regarded as stragglers from the surface. They gre distributed thu: -Vcrtebrata, 4 species; Insecia, 11; Arachnida, 6 ; Myviapodi, 2; Crustacea, 2 ; Vermes, 3. Ehrenberg adds a list of 8 Polygastric Infusoria, 1 fossil infusorian, 5 Phytolitharia, and several microscopic fungi. A bed of $A$ garicus was found by the writer near the River Styx; und unon this hint an attempt fas been made to propagate edible funci in this locality. Tho most interesting inhabitants of Mammoth Cave are the blind, wingless grasshoppers, with extremely long antenne ; bliud, colourless crayfish (Cambarus pellucidus, Telk.); and the blind fish, Amblyopsis spelzus, colourless and riviparous, from 1 inch to 6 inches long. The Canbarus and Amblyopsis have wide distribution, being found in many other caves, and also in deep wells, in Kentucky und Indiana. Fish caves, lind are occasionally caught, which are apparently identical with spccies existing in streams outside. The true sobterranean fauna may be reganded ae chiefly of Pleistocene origin ; yet certain torms are possibly remnants of Tertiary life. The strongly marked divergence of these animals from those found outside convincell the elder Agassiz tbat they were specially created for the limits within which they dwell. But the opinion now beld is that they are modified from allied species existing in the sunlight, and that their peculiarities may all be accounted for on principles of crolu-tion,-the process heing accelerated (or retarded) by their migration from the outer world to $a$ realm of absolute silence and perpetual darkness.
The licerature of Mammoth Cave ts extensive, though scattered through many periodicals, volumes of travels, and scientite reporis. See especially Bullit, Rambles by a risfor, 1844 ; Coillins, History of Kentucky, 1847; Forwood, The Mrammoth Cave, 1870; Packard and Putnam, Inhabitants of Mammorh Cave, 1872; Shaler, Memoirs af Geological Survey of Kentucky, 1876 ; Hovey "In slammot
Cave," Scribner's Sagasine, 1850; Celebrated Caverns, 1882 . (H. C. H.)

Man. See Anthrofology (rol ii. p. 107 sq.) and the articles on the various contributory sciences there referred to. Compare also Mammalia, above, p. 444.

Man, Isle of, a dominion of the crown of England, situated in the Irish Sea, almost equidistant from England on the east, Scotland on the north, and Ireland on the west. It lies betreen $54^{\circ} 2^{\prime}$ and $54^{\circ} 25^{\prime} \mathrm{N}$. lat., and betreen $4^{\circ} 18^{\prime}$ and $4^{\circ} 50^{\prime} \mathrm{W}$. long., Douglas on the east coast of the island being distant 58 miles west-north-west from Fleetrood, while Peel on the west coast is 65 miles south-east of Belfast, The greatest length of the island is about 33 miles, and its greatest breadth about 12 miles. The total area is 145,325 acres, or about 227 square miles.

A mountain rarge occupies the larger portion of the island, extending from Maughold Head to the Calf Islet; the highest summits-Snaefell (202t feet), North Barrule (18.12), and Slieu Chairw (1808)-are in the north-mest. Thesa mountains rise abruptly from the narrow tract of almost level ground which forms the extreme northern boundary of the island; and between their lofty chasms are the lovely and picturesque recesses of Ravensdale; Sulby Glen, Glen Aldyn, and Ballure. The fine scenery of the mountains has been made more accessible by the construction of a series of roads, commanding at many points viems unsurpassed in the United Kingdom for picturesqueness and rariety. In the south-western portion of the mountain range only one summit, thai of South Barrule ( 1585 feet,) rises above 1500 feet. From Peel southwards along the western shore the monntains stretch to the very edge of the soast-line, and at the sonth-western extremity the shore is wildly precipitous, especially at Cronk-ny-Irree-Lhaa, whieh rises abruptly from the sea to the height of 1449
feet; at Brada Head, near which Brada Hill forms an almost precipitous wall over 700 feet in height; at Calf Islet, surrounded by rugged broken rocks; and at Spanish Head (said to take its name from the destruction which there orertook a portion of tha Spanish Armada). Towards the south-eastern shore the mountains slope more gradually torsards the eea, the coast of which is generally low and sandy, being iudeuted by sereral finely rounded bayes, including Castletown Bay and Derby Haven. From Derby Haven to Maughold Point the coast is frequently bold and rocky, and the numerous creeks and bays, the largest of which are Donglas Eay and Laxey Bay, greatly add to the charm and variety of the scenery. From Maughold Head round to Peel the eoast presents little of special interest, being formed in great part of sand and gravel cliffs, although along the western side the bold clajerate forme mation again appears.


Isle of Man.
The largest river in the island is the Sulby, which rises near Snaefell, and, after flowing northwards throngh a rugged glen to Sulby village, winds castwards through a level and well-cultivated country to the sea at Ramsey. The Neb or Great River, which is formed by the junction near Slieuwhallin of a stream rising near South Barrulo and flowing north by the Fosdale Glen, and of another flowing south from Sartfell by Rheuass, passes west to the Irish Sea at Peel. The Silverbura flows southwards from South Barrule to the Castletomn. Bay. The Dhu and Glass flowing eastrards unite before entering the sea at Douglas, which takes its name from their union. The streams abound with trout, and fishing is generally parmitter without restriction. There are no lakes
Geology.-The greater part of the islaud is formed of staty Silurian rocks of identical formation with. the mountainous regions of Cumberland and Westmoreland. No characteristic fossils, howerer, exist to determine their exact age except one, Palxychorda. major, foand in the Skiddaw slates. The line of strike is from sonth-west to north-east, and the strata are highly inclined. The mountains for the most part present a smooth rounded appcarance, superinduced by prolouged suivaeriai waste The clay-slate formation is sometimes broker through by intrusions of granite and other ernptive rocks The "greenstones" are especially risible_as_Braila Head.

Castletown, Languess, and other points along the coast. A large mass of granite, containing silvery mica, red and white felspar, and gray quartz, reste on the easteru alope of South Barrulo mountain, and valuable masses of the same rock appear at the Dhoon river to the north-east of the Laxey lead-miues. Upper Old Red Sandstone and coaglomerate occur at Peel on the west coast, and on the south coast, in the neighbourhood of Castletown Bay, chiefly at the peninsula of Langness. It rests on the upturned cdges of the slates, and passes imperceptibly into the beds of limestone. The Carboniferous or Mountain Limestone is the ouly representative of the Carboniferous strata in the island. The limestone contains namerous fossils. At Poolvash it assumes the character of black marble, which is much used for chimneypieces. At Scarlet Point, and thence to Poolvash, interesting evidence cxists of volcanic eruptions during the uccumulation of the Carbonifcroue rocks. A great blank in the geological record occurs at the top of the limestone series, for the next strata that appear are the clays and gravels of the Glacial period. These strata occupy the greater portion of the low gronnd of the island, and consist of boulder clay, drift gravel, and sands. They occasionally reach as far up the mountains as 500 feet, and in the southern districts erratic boulders are sometimes to be observed on the very highest summits. Boulders of granite, for example, have been carried across South Barrule Hill ( 1585 feet) and dropped on the top of Crook-ny-Irree-Lhaa (1449 feet). The whole of the plain in the north of the island is occupied by Drift deposits, which occasionally form hills above 300 feet in height. Numerous depressions in the plain at one time occupied by lakes are now filled by beds of peat.

Minerals. -The most importaut minerals are lead, copper, and zinc. The principal mines are those of Laxey, near the Laxey river, which produce lead, copper, and especially sulphide of ziac, which forms more than two-thirds of the total quantity of ore raised from those mines. The galena obtained is very rich in silver. The Foxdale mines, between Castletown and St John's, are also very largely wrought. The amount of copper ore is comparatively emall. The mines are rented from the queen as lady of the manor, the lessees paying one-tenth of the producc. In 1852 the total quantity of lead ore obtained was 2415 tons, of lead 18344 tons, and of silver $36,700 \mathrm{oz}$, the value of which was $£ 7646$. In 1871 the total quantity of lead ore obtained was 4645 tons, producing 3335 tons of lead and $176,631 \mathrm{oz}$. of silver ; 5768 tons of zinc were also obtainod, valued at $£ 19,015$, and 267 tons of copper ore, producing 18 tons of copper, valued at $£ 1074$. In 1881 Brada Head coppermine yielded 78 tons of ore, producing 6 tons 5 ewts. of fine copper, valued at $£ 562,13 s$; ; nd int Great Laxey 7567 tons of zine were raised, giving 3180 tons of the metal, valued at $£ 28,701$. The following table gives the produce of the lead-mines in 1881.

| Miac. | Lead Ore. | Lead. | gliver. | Value of Ore, |
| :---: | :---: | :---: | :---: | :---: |
| Foxdale | Tons. | Tona. Cwta. 2,5000 | $\begin{aligned} & \mathrm{O}_{2} \\ & 9,080 \end{aligned}$ | $\begin{array}{ccc}\text { L } & 8 . \\ 39,116 & 10 & 0\end{array}$ |
| Laxey | 1,700 | 1,275 0 | 5250 | 30,487 0 0 |
| Foxdalo, Eiat | 400 | 2980 | 9.600 | 5,362 00 |
| Rashen | 101 | 757 | 810 | 1,050 150 |
| Klrk Michaol. | 40 | 80 0 | 12 L | 33800 |
| Great Laxejo............. | 15 | 118 | $\ldots$ | 123150 |
| Total | 6,075 | 4,183 12 | 84,865 | 76,51300 |

Rotten-stone and ochre are obtained in the south at Malew and Arbory, the total amount raised in 1881 being 207 tons, valued at f036. Iron is found in small quantitios at Foxdale, but the total qunntity obtained in 1881 was only 120 tons, valued at $£ 60$. Limestone is extonsively quarried in the bouthern districts, both for building purposes and for agriculture. Dolomito oecurs in large quantitics in the minus at Laxey. There is a valuable granite quarry at Foxdalo. Gold in minute particles lics in the bed of - suall etresm near Barrula. A considerablo number of other minerale are fonnd, but the quantity of each ia uninportant. Tho total number of persons employed in tho mines in 1881 was 1258.

Climate.-The mean annual temperature is bigher than that of any other district occupying the same parallel of latitude, and the variation according to the ecasons is remarkably small. The mean annual temporature is a
little less than $49^{\circ}$ Fahr., the mean temperature of summer less than $59^{\circ}$, and that of winter nearly $42^{\circ}$, giving a difference of only $17^{\circ}$. Rain is frequent but seldom heavy, the annual fall being 41.71 iaches, about the same as in the adjacent parts of England and Scotland, but less than in those of Ireland. Thunderstorms are very rare. Many plants, even palms, which in England require artificial heat, grow in some parts of the island throughout winter in the open air, while fuclisias under the same conditions altain to great size and perfection. The air is unusually clear and pure.

Agriculture.-Owing originally to the enterprise of Scotch aud English farmers, the land where arable has been brought into a state of high cultivation. Thrangh the use of seawced in large quantities in the northern districts of the islaud the sandy and gravelly soil has been greatiy enriched, and it now possesses remarkable fertility, its productiveness being increased by the fine climate. The lime obtained in the neighbourhood of Castletown in the souti has also beeu found lighly beneficial for the soil in that vicinity. The best land is in these two districts, but even in the mountainous regions in the centre of the island great improvements have taken place. The farms are principally held on lease, and of late years many small holdings hava been combined into large farms cultivated on modern priaciples.

According to the agricultural returns of 1882, the cultivated are comprehended 97,494 acres, 85 per cent. of the whole. The commons and uncultivated Jands on the mountains are, moreover, utilized for the pasturage of horses, cattle, and sheep, the evergreen furzo forming the principal food of these animals during the winter season. The area under corn crops was 25,211 acres, under green crops 12,046 , rotation grasses 37,094 , permanent pasture (exelusive of heath or mountain land), 22,836, and fallow 307. Oats occupy about one-half of the total area under corn crops, barley about onethird, and wheat about one-gixth. The wheat, which is of a very fine quality, is cultivated chiefly in the north of the island. The white and red clover and the conmon grasses grow in great luxuriance, and on account of the good pasturage iu trinter the supply much exceeds the needs of the island, large quantities heing shipped to the neighbouring districts of England. Turnips, which in 1882 occupied 8432 acres, are alsu largely exported. The dry sandy soil of the island is very favourable for the growth of potatoes, the area planted in 1882 being 3373 acres. The most common rotation of erops is corn, green crop, corn, clover and hay, and pasture.
The total number of horses in 1882 was 5249 , of which 3551 were used solely for purposes of aggiculture. The native breed of horses is similar to that of North Wales. They are small, but haniy, active, and patient of labour. In 1882 cattle numbered as many as 19,780, ad average of nearly 21 to every 100 acres under cultivation, considerably above that of Great Britain, which was 18\%. Of the cattle, 6862, or more than one-third, were cows and heifers in milk or in ealf. On aceount of the large number of summer visitors, dairy farming is specially profitable. The native breed of cattle has very much degencrated, but on improved stock is now general through the importation chiefly of Ayrshires and shorthorns Shecp in 1882 numbered 55,680 , not a very large number considering the mountainous nature of the country, but cattle feeding is generally more profitable than sheep rearing, partly owing to the fino elimate. The principal sheep runs are those which lave been enclosed by the crown from tho conmon lands. The native breed of sheep, small hardy animals, is graduolly being snperseded by crosses, and by the introduction of English shecp in the low grounds. The flecee of the aative sheep is not valuable, but the mutton is of very fine quality. l'igs are largely kept, the unmber in 1582 being 4685. The old breed called "purrs" is now ncarly extinct.

In 1882 there were 237 acres nnder orchards, 142 under market gardens, and 6 under nursery grounds." The acreage under woods is not given, but it is very small. Apples, for whinh the island was at one time famed, are still grown in cousiderable qunatities, and gooseberries, currants, stmwberrics, and other smaller fruits are fargely cultivated. The totany of the island is not sperially interesting. The raricty of species is net great, although there nre a few mere plants.
Faunc.-Like Ircland, the Islo of Man is exempt from venomous reptiles and toads, a circumstance traditionally attributed to the agency of St Patrick, the patron saint of both islands. Frogs are, however, fond, and both the sand liznrd aad the common lizard aro met with. Moles aro absent, badgers aro unknown, and foxes aro now extinct. Fossil bones are frequently found of the

Irishelk; and the red deer, as is nrosed by the references to it in old laws, uud the representations of it on linnic menuments, was nt ene time common, althongh the species liad nlmost disappeared abont the beriming of the 18 th century. Ilares are less plentifu] than formerly, and rabbits are not numerons except on the Calf l slet. Snipe are abundant. There are a few partridges, grouse, and quail, hut neither pheasants nor black game. Varions species of waterfowl visit the island, including wild geese, wild ducks, plever, widgeon, and teal. The Manx puffin (Procellaria anglerum) is becoming scarce, but still frequents the Calf Islet. The peregrine faleon breeds in the precipiteus rocks in the neighbourhood of the Culf 1slet, aud at Maughold Head. The red-leaged crow is commen, the kingfisher scarce. The cuckoo is a yearly visitant, as is alse the lapwing. Wild pigeons aud seabirds of great variety frequeat the rocks.

A variety of the domestic cat, remarkable for the absence or atunted condition of the tail, is common in the island.

Manufuchures and Trade.-Partly perhaps on necount of the absence of conl, the manufactures of the island have not attained any impertance, the principal being Manx clath, canvas, nets, ropes, and twine. There is, however, a large export of all kinds of agricultural proluce, horses, cattle, and shcep, as well as of lead, lime, and black marble. Dfuch of the trade is still carried on by means of sinall coasting vessels, but these are being gradually superaeded by steaners which ply between Douglas and Liverpool, Baxrow, Fleetwood, Silloth, Dublin, Belfast, Whitehaven, and Glasgew. The imports censist principally of provisions from England, timber from Norway, and lean cattle from lreland. In 1881 the number of vessels engaged in the foreign and colonial trade that entered the perts of the island was 26 of 4885 tons, while 14 of 2916 tons cleared. The number engaged in the coasting trade was-entered, 2288 of 440,158 tons; cleared, 2328 of 436,107 teas. There is daily communication between Donglas and Liverpoel.

There are very valuable fishing gromnds, especially for ring and cod, round the southern balf of the island frem Peel to Douglas, and mackerel fishing is also largely prosecuted by the islanders of the coast of lreland. The Maox fishing boats, decked and undecked, number upwards of seven hundred, employing more than four tbousand men. Peel and Port St Mary alone have about three hundred and fifty-seven boats, manaed by two thousand fire hundred men, the capital inveated in baats and nets being for these perts alone about $£ 100,000$.

The presperity of the island, apart from its fisling and agriculture, is maiuly depeadent on its yearly influx of summer visitors, the annual number heing now about 120,000. The season lasts from the middle of May to the middle of September.

Intomal Communication. -The roads, which of late years have been greatly improred and extended, are excellent. They are maintained by a system of licences on innkeepers, grocers, snd hawkers, and by nn impost on carriages, carts, and dogs, and a rate on real property. The highways are under the management of a board appointed by the Tyawald court, a surveyer-gencral, snd parochial survegors

The first railmay in the Isle of Man was that betreen Dounlas and Peel, opened in 1873. There is now cemmunication by rail between the various tewns of the island, and a propesal has also been made for a direct line between Douglas and Ramsey via Laxey. The insular goverument has assisted one of the raibway companies by a guarantee. The railways are single narrem-gauge lines, and are worked on the baten system.

Government and Administration. - The government of the islavd is rested in a gevernor appointed by the crown, a council which acts as an upper chamber of the legislature, and the House of Key. The governor and conncil and the Ifouse of Keys together constitute the court of Tynwald; but the approval of the queen of Great Britain in conocil is essential to every legislatiro enactment. Acts of the British legislature do not affect the island except it be specially named in them. For the purposes of civil jurisdiction the island is divided into a northern and a soutbern district, and cach of these is again subdivided into threo "sheadings," which are nazlogens to counties.

The goveruor, who is the representative of the sorereign, is captain-geueral of the military forces. He presides in the council and in all courts of Tyawald, and is cx officio sele judge of the chancery and exchequer courts. The council consists of the lord bishop of the diacuse, the attorney.general, the two deemsters, the clerk of the rolls, the water-bailitf, the receiver-general, the archdeacon, and the vicar-general, all of whom are appointed by the crown, except the vicar-general, who is appointed by the bishop. No act of the governor and council is valid unless it is the act of the gosernor and at least tro members of the council. The Hause of lieys, the representatire branch of the legislature of the island, is one of the most ancient legislative assemblies in the world. It consists of imenty-four members elected by male owners or occupiers, aad female omners of property. Each of the aix sheadings elects three members, the towns of Castletown, Peel, and Ramsey one ea:h, and Donglas, the chief town, three. There is a property quali-
fication required of the members, and the house sits for seren gears unless previously dissolved. The lieys were at one time self-elected, but in 1866 they conscated to popular clection in exchange for the privilege of controlling the expenditure of the surplus revenue of the island, agreeing, however, to pay into the imperial exchequer a fixed sum of $£ 10,000$ sannally as the island's contribution towards the expenses of the army and navy of the United Kingdom.

In matters of property the court of chancery has the most extensive jurisdiction of any in the island, end is a court both of lav nnd of equity. The governor presides, and is assisted by the clerk of the rolls and the deemsters. The exchequer court takes cognizance of all matters conaccted with the rerenue, and also deternines the light of tithe. The common lav courts for the scuthern division are held st Deuglas and Castletown alternately, and those for the nerthern division ot Ransey, oace io three months. They nre presided over by the deensters, and take cegnizasce of all actions, real, personal, and mixed, and of ciril natters that require to be determined by a jury. Ceurts of general jail delivety ase held at Castlctown, for the trial of prisoners indieted for criminnl offeaces; the governor presides, attended ly the deemsters, the clerk of the rolls, and the water-bailiff.
The deemsters or judges of the island (supposed by some to be the successers of the Druidical priests) until the 15 th century acted accordiog to unwritten laws, called "breast laws," of which they were the depasitaries. They have concurrent jurisdiction over.the Wholo island. Their advice is taken by the gevernor on all diftcult points of larr. Each has now a salary of $£ 1000$ per ancuns. Deemster courts are held weekly, alternately at Douglas add Castletorn by the deemster fer the southem division, and at Ramsey and l'eel or Kirk Michael by the deemster of the northern division. They take cognizance in a summary manner of matters of debt, and have jurisdiction in criminal cases. The herring fishery, and the bosts employed in it, are placed under the charge of the water-bailiff, whe bolds courts to redress grievances and enforce the regulations of the fishery. He appeints with a small salary two fishermen, called admirals, to preserve order. The water-bsiliff has also civil jurisdiction in questions of salvage, and takes cognizance of suits in maritime matters. The higb bailiff's courts are held weekly in Donglas, Castletown, Ramsey, and Peel for the recorery of debts under 40 s ., and daily for the punishmeat of drunkenness and offences against public order. The magistratez bold regular courts in esch of the towns for the summary trial of breaches of the peace and minor offences. They are appointed by commission under the great seal of England, but their jowers are regulated by insulnr acts of Tyawald. The members of the council and the four high bailiffs are also ex afficio megistrates. The coroner of the sheading, who is appointed annually by the governor, is a kind of sheriff. Inquests of death are held by the high bailiff and jury. There are about thirty legal practitioners, called advocates, whe combine the functions of barrister and salicitor.

The laws of the isluod still setain much of their ancient peculiarity of character, though modified by acts of Tynwald, and rendered in some respects more in unisen with those of England. The criminal lnw was consolidated and amended by the criminal code of 1872.
The general tenure is a customery freehold devolvigg from each possesser to his next heir-at-law. The descent of land follows the same rules as the descent of the crown of Encland. Tha right of primegeniture extends to females in defanlt of males in the direct line. The interest of a widow or widower, being the first wife or husband of a person deceased, in a life estate is ene-half of tbe lands which have descended hereditarily, and is forfeited by a secend marrisge; a second busband or second wife is only entitled ts a life interest in one-fourtb, if there be issue of the first marrisge. Of the land purchased by the busband the wife surviving bim isentitled to a life interest in one moiety. By a statute of the year 1777 prop rietors of land are empowered to grant leases for any term not exceeding trenty-one years in possession without the consent of the wife.

Previous to the Act of Revestment in 1765, the commerca of thu island consisted principally in the importing and exporting of contraband goods, the areraga return of which exceeded half ${ }^{2}$ million sterling per annum, the loss to the Britiah rerenve being estimanted at $£ 300,000$. After this period the cnstoms of the island were regulated by the imperial perliament. The various loane to the insular government were consolidated in 1882, and the funded debt norr amounts to $£ 230,000$.

For the year ending Narch 31, 1882, the nct revenue of the customs of the island was $£ 70,906$, and the expenditure $£ 50,558$, leavizg a bslance of $£ 20,348$, which is disposed of thus:-

$\mathfrak{2} 20,348$

Tisligon and Elucation.-Christianity is said to have been Introluved into the island by St Patrick about the middlo of the oth century. The hishopric of Soder (i.e., Sudreys, the southern 11 cbrides) was fornerly united with that of Man ; and the nnion continued till the 14th century, the Manx bishops even now retaining the joint title Sodor and Slan. Soma indeed affirm, but with small evidence to support tha statenent, that the titio of Solor was derived from the littla island off Peel, said to here been at one time ealled Sodor, now known ns St Patrick's lsle, and the seat of the eathedral of St German. The diocese is in the provinee of York; its bishop has a aeat but not a vote in the Honse of Lords. The bishop ia assisted in ecclesiastical matters by an archdeacon, a vicar-general, a registrar, and a snmner-general.
The ecclesiastical courts are the consistory, chapter, and the vicar-general's sumnary court. The livings of the clergy arise chiefly from tithes; the patronage, from the blshopric downwards, with the exception of four in the gift of the diocesan, is rested in the crown.
Besides King William's College, opened in 1833, providing an education equal to that oltainabie nt the highest class schools of England, nnd possessing a considerablo number of exllibitions to the universites, there are in the island several other good secondary schools. The parechisl schools are also well tanght, and there are now board schools, under the insular Education Act, established throughout the ieland.
Population.-The following table shows the population of each parish and town from 1726 to 1881.

| Steadins.f. Partsee, and | Populaten. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1726 | 1755. | 1391. | 1881. | 1887. | 189. |
| Ef |  | 1,965 | ${ }_{\text {2 }}^{2,8,51}$ |  | $\substack { \text { 2, } \\ \begin{subarray}{c}{2,568 \\ 2,38{ \text { 2, } \\ \begin{subarray} { c } { 2 , 5 6 8 \\ 2 , 3 8 } } \end{subarray}$ | 2,274 |
|  | cis | ${ }^{\text {li, }}$ |  | cita | cincisio |  |
|  | ${ }_{\substack{376 \\ 780}}$ | ${ }^{\text {a }} 1.127$ | ${ }_{1,384}^{1,300}$ | ${ }_{2,47}$ | 2,225 | 2071 |
|  | $\underset{\substack{310 \\ 310}}{ }$ |  | Si, |  | cis |  |
| Satami (e) | ${ }_{610}^{489}$ |  |  |  |  | (1893 |
| Peat | ${ }_{375}^{475}$ | ${ }_{80}^{885}$ |  | ${ }_{\text {2, }}^{\substack{2,32 \\ 2,92}}$ |  | cisise |
|  | cin | ${ }_{8}^{898}$ | $\xrightarrow{1,8,84}$ | 隹, | ciple | , |
|  |  | cose | $\substack{\begin{subarray}{c}{1,23 \\ 1,220} }} \end{subarray}$ |  | cisisi | ${ }^{1,2,148}$ |
| Sent | (1, | 1, 1,585 |  |  | cis80 |  |
| Surb, (P). | ${ }_{483}$ |  |  |  |  |  |
| (en | ${ }_{643}^{864}$ | ${ }_{886}^{773}$ | ${ }^{1} 1,687$ | ${ }_{1}^{1,4,162}$ | ${ }_{1}^{1,27231}$ | 971 |
| Toat | 4,070 | , | 40,087 | 82,16 | 33,78 |  |

In. 1880 the death-rate was $21 \cdot 9$ per 1000, and the birth-rate 28 6.
The principal towns of the island are Douglas, Castletomn, Rassey, and Peel. Douglas, the chief town and seat of government, is noticed in vol. vii p. 376 . Castletomn, the ancient capital of the island, was until a recent period the residence of the governor. It possasses a good harboor, barracka, and a custom-house. Remsey, on account of its fine sandy beach and beatiful situation, is a favourite watering.places, and it has also a large shipping trade. Peel, adjoining St Patrick'e Islot, is the principal scat of the herring fiahery.
Language. - The Manx laoguage is a snbdinlcet of the ancient Celtic, and a dialect of the Irish branch, to which tha Scottish Gaclic also belonga. The differences in pronunciation of these languages are not so great as to pravent a rative of either country conversing with ane of the other, although the differences in orthography perplex eren the most learned linguists. The Manx is now spoken only in the north-western parishes nad at a fow localities Rlong the western coast. The natives gencrally concerso in the English lsnguage. Manz is not tanght in any of the echools, and it is very probable that it will shortly become utterly extinct. Seo Celtio Literatere, vol. v. p. 293.
History and Antiquities.- It admits of nearly nbsolute demonatration that Anglesey and not Man was the Mona of Cesar. By ancient writers the island is called Eubouis. The English name Man 19 derived from the Manx Mannin. Mayy explangationg lave been giren of the origin or the word, bat none of them are better than conjectures. ${ }^{1}$ It is inherently probablo that the island was occupied by tho Romans, and this is confirmel by tho discovery of 3 Roman altar, which is still prceserved in Castlo Rushen, and of Homan coins in the same vicinity. A cist nnd urn fonnd in 1852 near Tynmald Eill are supposed to belong to the aboriginal pagan

[^184]period; another memorial of this period is probably St Patrick's chair, consisting of five upright stones on a stone platfornh forming a seat. Two of the stones are marked by a cross, but this in alt likelihood was done at a period long subsequent to their ercection. According to tradition the island mas for a considerable period ono of the chier zeata of the Druids. By the peasantry acarly all the old monuments aro striluuted to the Druids, but the Runic crossea belong of course to a later period. One of the priucipal Druidical stone circles is that on the eminence called Mull, near the Calf Islet.
The earliest personage mentioned by tradition and history is Mannapan-Beg-Mac-y-Lheirr, whe is described in the statute-book of the island as a paynim, who "kept the land under mist by his neeromancy." In 517 Maelgryn, king of North Wales, and nephew of King Arthur, expelled the Scots, and annexed the island to his Welsh deminions. He was succeeded by his son Rhun-apMaelgryn in 560 , from whons in 581 the island was reconquered by Aydun M'Gabbran, king of "Sootland, who appointed his sister'a son Brennus "thane of DLin." The Welsh king sppesrs to have recovered it from the Scots about 611, and to have retained possession of it until 630 , when it was conquered by Edmio, king of Northumbria. Shortly afterwards it again fell under the dominion of the Welsh, till towards the close of the 9 th century it was subdued by Harold Haarfager of Norway. The jarls of Harold for some tims threw off his rule, and held independent sway. Of these Jarl Orry succeeded in establishing his rula over Man. His desceadaats contioued to rule till 1077, when Gedred Crovan, son of Harold the Black of Iceland, routed the islanders and slew their king, Fingal II. On the death of Godred in 1093, Magnus Barefoot succeeded in oltaining possession of Man, over which be placed the Norwagian jarl Octtar as goveruor. The inhabitants of the southern district, becoming displeased with Octtar, elected Mscmanns in hia place ; a battle in consequence ensued at Santwart (or Sainthill), in tha parish of Jurbs, aud victory was inclining to the party of Macmanus, when the women of tha north, rushing to the scene of action, totally changed the issue of the fight, although not till both leaders were slain. On the death of Mognus, the right of Codred Crovan's line to the kingdom of tha lsles was recognized, and Lagman, the son of thst conqueror, succeedsd to the government. He at length aldicated, and undertook a pilgrimage to Palestine, whence ha never returned. Olave II., surnamed the Dwarf, the only surviving son of Godred Crovan, being then a minor, a regent was appointed, who was expelled from the kingdom in the third
year of his governmert. Olate ascended the throne in 1114 He year of his government. Olate ascended the throne in 1114. He entered into alliance with the kings of Eagland, Ireland, snd Scotland, but his reign was disturbed by the pretensions of threo natural sons of his brother Harold, by ona of mhom he mes treacheronsly slain in 1154. On this Godred the Black, Olars'a onll legitimate son, was recalled from Norway, and the sons of Harold were delivered to condign punishment. During his reign Somerled, thane of Argyll, olttained possession of the island, and Godred had to take refuge in Norway, where he remsined till the death of the usurper, on which he regained possession of his throne. His death took place in 1187. Olsve III., his only legitimata son, being then a minor, Reginald, another son, was appointed to the gorernment during his minority. The latter endeavoured to secure to himself the throne by doing homage to John of England, and afterwards by acknowledging the supremacy of the pope ; a series of struggles was the consequence, till at length Reginsld was slain in 1226 . In 1237 Olare died in Peel Castle, learing three sons, - Hrold, Reginald, and Magras ; he was succeeded by his son Harold II., who was drowned, with his queen and a numerous retinue of nobility, in 1248, on their return from Normay, where they had been celebrating his marriage mith Cecilia, daughter of Haco. His brother Reginald II. assumed the government, but was afterwards slain by lvar, hrother of Reginald the usnrper, in 1249. On the death of Reginald II. his brother Magnns wes chosen king. John of the 1 sles landed with an armyat Ronaldsway to disputo his claims, but was driren from the island.
Fron this time the power of the Norwegian kings began to decline, 3nd that of tha Scottish sorereigas to revive. Mlagnus did homago to Alexsnder III. of Scotlsnd, and held the island from the crown of Scotland. ITe died in 1265, without issue. In the meantima Magnus VI. of Norway, as the iegitimate sorcereign of Man, ceded in 1266 to Alcxauder 11l. all his clsims and interest in the sovereignty and episcopacy of Man for the snaz of 4000 marks, and an annnal pension of 100 marks. The widow of Magnus (the late king of Man) succeeded, however, in getting Irar, the nssassin of her brother-in-law Reginald, placed on the racant throne; and Alexander in 1270 sent an ampy to reducs the island to obedience. After a decisire battle at Ronaldaway, in which Ivar was elain, the kingdom was annexed to the dominions of Alexnnder. This mounrch, in token of his conquest, substituted the quaint device of "the three legs," which still constitutes the national emblem, for the ancient armorial ensign of the is and a ship in full sail, with the motto, "Rex Jannix al Insularum."

Ho placed the island under tho government of his nobles or thanes, whose repeated acts of tyrannical oppression at leugth inspired the iuhalitants to throw of the Scuttish yoke. Bishop Mark (Marcus Galvadiensis), a Scotchman, however, being informed of their determination, obtained their mutual consent to lecide the contest by thirty champions selected from each party. Tho Manx champions were ell killed, and twenty-five of the Scottish warriors shared the aame fate. This victory coufrmed tho conquest of the Scots; the ancient regai beyernnment was abolished, and a military despotism established
The most important relics of the Northmen are the Runic crosses, of which there are about forty, either whole or fragmentary. Nearly one half of these contain Scandinavian inscriptions in the ancieut Norse language and in Runic character. Thera are a very large nurnber at Kirk Mlichael, but some of the most perfect are those in the churchyards of Ballaugh, Maughold, and Braddan.
During the contentions of Bruce and Baliol, Edward I. of England took possession of the island for a period, while two rival claimants for the throna sppeared. Oue of these was Mary, the daughter of Reginald II.; the other her aunt Affrica or Alfrids, a daughter of Olave II., and sister of Magnus. The latter in 1305 conveyed her right in the island to her huaband, Sir Simon de Montacute, whose son Sir William afterwards mortgaged its revenues to Anthony Beck, bishop of Durham and patriarch of Jerusalem. In 1313 Bruce made a descent on the island, and granted it to his nephew Randolph, earl of Jurray.
In the reign of Edward 11I. Nary Waldebeof, daughter of the previous clainant, solicited the assistance of that monarch. The king allowed her title, and by giving her in marriaga to William Montacute, earl of Salisbury (the grandson of Sir Simon Montacuta and Alfrida), thus united in their persons the rights of the two lines of descendants of Olave the Black to the kingdom of Man. With the aid of thic English king, the earl was enabled to expel the Randolphs from the island; and in the year 1344 be was crowned king of Man. In the year 1393 the earl of Salisbury sold to Sir William le Scroop, sfterwards earl of Wiltshire, "the Isle of MIan, with the title of king, and the right of being crowned with a golden crown." On his attainder for high treason, the island in 1399 was bestowed on Henry Percy, earl of Northumberland, but, he having.been attainted and banished, Henry IV. made a grant of it to Sir John Stanley for lifc. This grant was cancelled, and a new patent passed the Great Seal in 1406, bestowing the island on him and his heirs, to be held of the crown of Great Britain, by presenting to the ling a cast of falcons at his coronation. Sir John died in 1414
The lords of the house of Stanley governed the island chiefly by Fieutenants, who occupied the castles of Peel and Rushen. Various tumults arose; and in 1422 fourteen persons were drawn by wild horses, quartered, and beheaded. Eventually authority was delegated by Sir John Stanley the second to Henry Byron, who remolelled the House of Keys, and rendored his regency one of the most popular in the insular history. Eir John died in 1432, and was aucceeded by his son Thomas, who was created Baron Stanley by Henry VI., and died in 1460 . Thomas his son was created earl of Derhy by Henry VII. He died in 1505. This nobleman'a son Thomas, the second earl of Derby, relinquished the title of king of Man, as he preferred "being a great lord to being a petty king." Edward, the third earl, son of the last-named Thomas, was a great favourite with Henry VIII. On his death in 1572 he was succeeded by his son Henry, the fourth earl of Derby. He died in 1594, leaving two sons, Ferdinand and William, who in time becanse lords of Mlan. The title of William was disputed by the three daughters of Ferdinand ; with these, bowever, be effected a compromise ; and in 1610 he obtained an "act for assuring and establishing the Isle of Man in the name and blood of William, earl of Derby!" but in 1627 resigned his dignities to his son James, celebrated in history as "the great carl of Derby."

After the execution of this earl in 1651, for bringing aid to Charles II. before the battle of Worcester, the defence of the island was undertaken by tha heroic Lady Derby, who was then in Castlo Pushen ; but William Chriatian, the receiver-general, on the appearance of a bostile flect, aurrendered the castle without resistance. The island was then granted to Geveral Lord Fairfax, who held it until the Restoration, when it was restored to Charles, the eighth earl (tha son of Earl James), in 1660. On the death of Earl Charles in 1672 be was aucceeded by his son William, the ninth earl, who took but little interest in his Manx property, and, dying without issne in 1702, was succeeded by hia brother Jamea (a younger aon of Charles, the eighth earl). At this time the lordship of Mlan was approaching dissolution. The leases, which had been granted for three lives, having nearly expired, and no provision having been made relative ta their renewsl, tha neglect of agriculture became general, and the peopla ware wholly given np to the fisheries and the pursuit of the contraband trade. In 1703, however, the earl conferred on his Manx subjects the Act of Settlement (very justly called tha Manx Magna Charta), by which the Jesseea of ostates were finally established in their possession, and their descent
sccured $m$ perpctuity, on the parment of certain fines, rents, and dues to the lords. James died in 1730 without issue.
The lordship of Man then devolved on Jomes, second duke of Athole, a descendant of the Lady Amelia Anna Sophia Stanley (youngest daughter of the seventh carl of Derby). In 1725, in order to put an ead to the contraband trade of the island, an Act of Parliament was passed authorizing the purchasa of all the royaltics and revenues of the island; but no result followed till 1765, when proposals for the purchase were revived and the sovereignty and its revenues were surrendered to the crown for $£ 70,000$. The duke and duchess reserved the manorisl rights, the patronage of the asa, and other cmoluments aud perquisites. By the Act of Revestment the island was more closely united to the crown of England, although its iadependent forn of government bas never experienced any material change. An annuity of $£ 2000$ had also been granted to the duke and duchess, hut, on the ground of inalequate compreusation, the fourth duke presented petitions to parliament and the privy council in 1781 and 1790 . He did not succeed, however, until the year 1805, when su Act was passed assiguing to him and his heirs, as an additional grant, a sum equal to one-fourth of the revenues of the island, which was afterwards commuted for $£ 3000$ per annum for ever.

In 1825 an Act passed both houses of parliament, at the instance of the lords of the treasury, authorizing the lords of the treasuiy to treat with the duke for the purchase of his remaining interest in the island, and in 1829 he was awarded a further sum of $£ 417,144$ for his rights in and over the soil as lord of the manor, as followa:-

For the annaity
£150,000
Rents and allenation foes
34,000
Tithes, miaes, and quaries
ronage of the bistopric, with foutifeeo advowsons, she
233,144

Total...

## £417,144

The ecclesiastical buildings of Man have never been remarkable for architectural beauty. The most important ecclesiastical ruin is St German's cathedral on St. Patrick's lslo. The present building, which is roofless and in a very dilapidated condition, dates fron 1245 , but is supposed to occupy the site of an older building. It is a rude cruciform structura 110 feet long by 70 feet broad. The tower, 68 fect in height, is still entire. The crypt of the cathedral was mada use of for an ecclesiastical prison, among its more import. ant captives being Eleanor, wife of Humplirey, duke of Gloucester, uncle of Henry VI. She is alluded to by Shakespeare as living in banishment "with Sir John Stanley in the Isle of Man." St Patrick's church on the same islet is supposed to have been erected in the time of St Patrick. Adjoining it is a round tower similar to those so common in Ireland. Most of the other old churches in Man hava been replaced by modern structures, but another very ancient one is Lonan old church, now partly roofless, a rery uupretending structure, but said to date from the 6th century. St Trinian's church, also in ruins, is said never to have been roofed, a circum. atance rccounted for by an interesting legend. Of Rushen Abbey, a house of the Cistercians, founded by Olave, king of Mau, in 1134, there now only remain the tower, refectory, and dormitory. The Franciscan iriary of Bimakin, founded in 1373, has been partly rebuilt in a rude manner, and is used as a bsrn. Of the nunnery of Douglas, said to have been founded by Matilda, danghter of Ethelbert, king of the West Saxons, there are now very slight remains, chiefly of the chapel.
The principal castles are Castle Rushen, in Castletown, the ancient residence of the kings of MIan, dating probably from the 13 th century, and still quite entire; Peel Castle, the ancient stronghold of the island ; and Castle Mona, Douglas, erected in 1801 as a residence by the duke of Athole, and now used as a hotel.
The chief aources of the carly history of Mao are the Norse and Erse Sagas, and tha record kept by the monks of Eushen Abbey entitled Chromicon Monnix, which bas been edited with learned notes by P. A Manch, Christlanla, 1860. The best general hlstory is that of Trala, 2 vols., 1845 . Among other works may be mentioaed J. O. Cumming, lsie of Man, its history, physical, ecelesiastiral, citil, and legendary, 1848; 1d., Runic and other Remoins of the Isle of 8 fan. 1857 . J. O. Halliwell, Rourdabout Notes on the lsle of Mon, 1863. The pablications of the Janx Society are of greai value and interest.

MANACOR, a town in the island of Majorca, stands on a slight eminenco in a fertile plain, 30 miles east of Palma ( 40 miles by rail, by way of Inca). It is substautially built, with wide streets and several squares; it has the usual buildings (a parish church, a hospital, schools, and the like), and the former palase of the independent kings of Majorca is pointed out. The neighbourhond produces cereals, fruits, an inferior quality of wine, and some oil; and there is some trade in these, as well as in sheep and cattle. The population in 1877 was 14,894 .

MANAGUA, the capital of Nicaragua, Central America. lies on the south shore of Lake Managna is $12^{\circ} 7^{\prime} \mathrm{N}$. lim.
and $86^{\circ} 12^{\prime} \mathrm{W}$. long. Steamboat communicatiou with Old Leon was opened in 1881, and a railway ( 32 miles) is in course of construction to Granada. It was mainly owing to the rivalry between Leen ${ }^{\circ}$ and Granada that Managua was chosen as the seat of the national assembly, and apart from the administrative buildings there is little of interest in the place. The population is about 12,000 .
MANAKIN, from the Dutch word Manneken, applied to certain small birds, a name apparently iatroduced into English by Edwards (Nat. Hist. Birds, i. p. 21) in or about 1743 , since which time it has beea accepted generally, and is now used for those which form the Fanuily Pipridx of modern ornithologists. The Manakins are peculiar to the Neotropical Reginn, and are said to bave many of the labits of the Titmouse Family (Parile), Jiving, says Swainson, in decp forests, associating in small bands, and keeping continually in motion, but feeding almost wholly on the large soft berrics of the different kinds of Melastoma. However, as with most other South American Passerine birds, little is really known of their mode of life; and it is certain that the Pipridx have no close affinity with the Paridx, ${ }^{1}$ but belong to the other great division of the Order Passeres, to which Garrod assigned the name 'Mesomyodi, and in that division, according to the same authority, constitute, with the Cotingidx, ${ }^{2}$ the group Heteromeri (Proc. Zool. Society, 1876, p. 518). The Manakins are nearly all birds of gay appearance, generally exhibiting rich tints of blue, crimson, scarlet, orange, or yellow in coubination with chestnut, deep black, black and white, or olive green; and among their most obvious characteristics are their short bill and feeble feet, of which the outer toe is united to the middle toe for a good part of its length. The tail, in most specics very short, has in others the middle feathers much elongated, and in one the outer rectrices are attenuated and produced into threads. They bave been disided by various authors into upwards of twenty so-called gencra; but Messrs Sclater and Salvin (Nomenclator, pp. 53-55) recognize only fifteen, though admitting sixty species, of which fifteen belong to the genus Pipra as now restricted, the $P$. leucocilla of Linnrus being its type. This species has a wide distribution from the isthmus of Panama to Guiana and the valley of the Amazon; but it is one of the most plaiuly coloured of the Family, being black with a white head. The genus Macheropterus, consistiog of four species, is very remarkable for the extraordinary form of some of the secondary wing-feathers in the males, in which the shaft is thickened and the webs changed in shape, as described and illustrated by Mr Sclater (Proc. Zool. Sociely, 1860, p. 90 ; Ibis, 1862, p. $175^{3}$ ) in tho case of the beautiful M. deliciosus, nnd it has been observed that the wing-benes of these birds are also much thickencd, no doubt in correlation with this nbnormal structure. $\Lambda$ like deviation from the ordinary character is found in the allied genus Manachs or Chiromacharis, comprehending six species, and that gentleman belicves it enables them to make the siugular noise for which they have long been noted (see Burds, rol. iii. p. 770), described by Mr Salvin (1bis, 1860, p. 37) in the case of one of them, MF. candxi, as beginning "with a sharp noto not unlike the crack of a whip," which is "followed by a rattling sound not unlike tho call of a lindrail"; and it is a similar habit that has obtained for another species, M. edveardsi, the name in Cayenue, accord-

[^185]ing to Duffon (1Iis. Nat. Oiscaux, iv. p. 413), of Cassenoisette. This riew is supported by Mr Layard, who, writing of the last species,-says (Ihis, 1873, p. 384)"They make a curions rattling noise (I suspect, by some novenmeut of the oduly slaped wing-feathers), which constantly betrays their presence in the forests," while of the congeneric 11. gutturosus, Mr J. F. Hamilton remarks (Ilis, 1871, p. 305) - "The first intimation given of the presence of one of these birds is a sharp whirring sound ver'y like that of a child's small wooden rattle, followed by two or three sharp snaps." The same observer adds (loc. cit.) of a meuber of the kindred genus Cheroxiphia, containing five species, that $C$. caudata is known to the Brazilians as the Fandango-bird from its "habit of performing a dance." They say that "one perches upon a branch and the others arrange themselves in a circle round it, dancing "p and down on their perches to the music sung [?] by the centre orie." Esception must be taken to this story so far as regards the mode in which the "music" is produced, for these birds have no true song-muscles; but the effect is doubtless as described by Mr Hamilton's informant.

MáNantadi, or MaNantoddy, a town in Malabar district, Madras, the trading centre of the Wainad coffee district ( $11^{\circ} 48^{\prime}$ N. lat., $76^{\circ} 2^{\prime} 55^{\prime \prime}$ E. long.). The population in 1871 , including numerous European coffee planters, with their families, in the neighbourhood, was 10,959 . Besides several Government offices, it contains a good club. Early in the century it was a military outpost, and in 1802 the garrison was massacred by the Kotiote rebels.
MANASSEH. The tribe of Joseph ( $q . r_{0}$ ), the northern and stronger half of the "sons of Rachel," was divided into two branches, so considerable as themselres to bear the name of tribes, which referred their origin to Manassel and Ephraim, the tro sons of Joseph by his Egyptian rifg Asemath. - Of the two Manasseh was held to be the elder, but the patriarchal story relates how Jacob predicted the superiority of the younger branch (Gen. xlviii.), which in fact played far the greater part in history, nccupying in the early days of the settlement in Canaan the part of tho central mountain land (Mount Epliraim) where the headquarters of armed Israel and the sanctuary of the ark stond (at Shiloh), and in later times holding the kingship. and greatly excelling Manasseh in numerical strength (Deut. xxxiii. 17). During the conquest, perhaps, the separation of the two branches of Joseph was not so well markcd as it afterwards became, for the ancient narrative of Josh. xvii. 14 sq. represents the whole house of Joseph as acting together, establishing itself in the uncleared forests of the central mountains till it had strength to contend with the iron chariots of the Canaanites about Bethshean, and in the cities of the rich plain of Jeareel. These cities probably were not all subdued till the days of David or Solomon (.Tud. i. 27 ; 1 Sam. xxsi. 10; 1 Rings ix. 15); they ultimately fell to Manassel, which held the northern part of the hill country of Joseph, overlooking the phain, and finally encroacleed on lands once reckoried to the less warlike tribes of Asher and Issachar (TOsh. xvii. 11). But the line of division betreen Eplraim and Manassch was nor always the sume, and in the time of Gideon, the great hero of Manassel, and the man under whon the seniorit. of the tribe had a real meaning, Shechens itself was $\dot{8}$ Manassite dependency (Jud. viii. 31, ix.; comp. Nuu xxvi. 31 ; Josh. xvii. 2). Besides their western settlements in the fertile glades of northern Samaria, rumning ous intc the great plain, the Manassites had broad territories east of the Jordan in the pasture land of Bashan and Gileat, mainls occupiod by a clan uamed Machir, and reckoned as thê first-born of Manassch. On the probability that these territories were colonies from the nest see vol. xiii. p. 401.

Tho outlying Manassites hach many struggtes with their foreign neighbours; 1 Chron. ii. 23 spaaks of the loss of sixty cities to Ceshur and the Aramicans (A. V. mistransIntes). After suffering much at the hands of Damascus, they wero carried into captivity by Tiglath Pileser ( 734 B.c.). The captivity of their brcthren in the west followed some thirteen years later.
The name Manasseh ( $n$,he he who couses to forget) is referted in Gen. xli. 51 to Josefh's joy at the birth of the son who caused him to forget his sorrows anil ceaso to long for his homie. Untike tho other tribal names, it occurs as a personal namo before the captivity, being that borne by tho son and successor of Hezekiah, the golless king whose sins are designated as the decisire cause of the rejection of ihe kingtom of Judah.
MANATEE, an animal belonging to the order Sivenia, for the general characters and position of which seo Mammalia (1.359). The namo Manati was appareutly first appliod to it by the early Spanish colonists of the West Indies, in allusion to the hand-like use which it frequently makes of its fore limbs; by English writers from the time of Dampier (who gives a good account of its habits) downwards it has been generally spelt "Manatee." It mas placed by Limæus in his beterogeneous genus Trichechus, but Storr's name Mranatus is now generally accepted for it by zoologists. The question of the specific distinction of the African and American Manatees will be trented of further on, but it will be chicfly to the latter and better known form that the following description applies.

The size of the Manatee has been much exaggerated, as there is no trustworthy evidence of its attaining a greater length than 8 or perhaps 9 feet. Its general external form may be seen in the figure at p. 390 of the prosent volume, taken from a living example in the Brighton Aquarium. The body is somewhat fish-like, but depressed and ending posteriorly in a broad flat shovel-like horizontal triil, with rounded edges. The head is of moderate size, oblong, with a blunt, truncated muzzle, and divided from the body by a very slight constriction or neck. The fore limbs are flattened oral paddles, placed rather low on the sides of the body, and showing exterually no signs of division into fingers, but with a tolerably free motio at


Fio. 1. -Front View of ITead of Ancrican anatee, showing the eyes, nostrils, and mouth. A, will the lobes of the upper lip divaricatel; B, with the lip contracted. From Murie, Trans. Zool. Soc., vol. xi.
the slioulder, elbow, and wrist joints, and with thrce diminutive flat nails near their extremities. No traces of lind limbs are discernible either exterually or internally ; and there is no dorsal fio. The mouth is very peculiar, the tumid upper lip being cleft in the niddle line into two lobes, each of which is separately movable, as will be described in spaking of its manner of feeding. The nostrils are two semilunar valve like slits, at the apex of the muzzle. . The eyes are very minute, placed at the sides of the head, and with a nearly circular aperture with wrinkled margins. The esternal car is a minute orifice situated behind the cye, withont any trace of pinna. The ekin geuerally is of a dark greyish colour, not smooth or
glistening, like that of the Cetacea, but finely wriukled. At a little distance it appears naked, but a close inspection, at all events in young animals, shows a scanty corering of very delicate liairs, and both upper and under lips are well supplied with short, stiff bristles.

The skeletou is remarkablo fur the massiveness and extreme density of most of the bones of which it is composed, especially the skull and ribs. The cervical region of the rertebral column is short, and presents the great peculiarity of containing only six bones instend of seven, the number usual in the Mammulia, -the only other case Leing that of one species of Sloth (Cholopus hofimanni). Another great peculiarity (which, however, seems to be characteristic of all the Sirenia) is that the flat ends of the bodies of the vertcbra do not ossify scparately, so as to form disk-like cpiphyses in the young state. None of the vertcbre are united together to form a sacrum, the rudimentary pelvic bones having no direct connexion with the vertebral column. The number of rib-bearing vertebra appears to vary in different individuals from fifteen to eighteen, and those of the lumbar and caudal region from trenty-five to twenty-uine. The skull (fig. 2) is cxceed-


F10. 2. - Skull of African Maratee (Manatus senegatensis). $\times \frac{1}{6}$. From Mis. Rey. Coll. Surgeons.
ingly different from that of any of the Whales or Dolphins (order Cetacea), with which the Manatee was formerly supposed to be allied. The cerebral cavity is rather small as compared with the size of the animal, and of oblong form; its roof is formed of the parietal benes as in ordioary mammals. The squamosal has an extremely large and massive zygomatic process, which joias the largely developed malar bone in frout. The orbit is small, but prominent and nearls surrounded by bone. The anterior nares takeu together form a lozenge-shaped aperture, which looks upwards and extends backwards considerably behind the orbits. Their sides are formed by the ascending processes of the premaxille below, and by the supraerbital processes of the frontals above, no traces of nasals being found in most skulls, though these bones are occasionally present in a most rudimentary condition, attached to the edges of the frontals, far away from the middle line, a position quite unique among the mammalia. In front of the narial aperture the face is prolonged into a narrow rostrum, formed by the premaxille, supported below and at the sides by the maxillx. The under surface of this is very rugous, and iu life covered by a horny plate. The rami of the mandible are firmly united together at the symphysis, which is compressed laterally, deflected, nod has a rugous upper surface; to this another horny plate is attached, which with that of the upper jaw functionally supplies the place of teeth in the anterior part of the mouth. In the joung state there are radimentary teeth concealed beneath these horny plates, which never penetrate through them, and must therefore bo auite
functionless, and altogether disapyear before the animal is full-grown. There is besides, on each side of the hinder part of both upper and lower jaws, a parallel row of molar teeth, similar in characters from the beginning to the end of the series, with square enamelled crowns raised into tuberculated transverse ridges, something like those of the Tapir and Kangaroo. The upper teeth have two ridges nud three roots; the lower tecth have an additional posterior small ridge or talon, and but two reots. These teeth succeed each other from before backwards, as in the I'robosciden, those at the frout of the nouth being worn out and shed before those at the back are fully developed. There are altogether about eleven on each side of each jaw, but rarely more than sis are present at one time. The brain is remarkably simple in structure, its hemispheres exhibiting none of the richness of convolution so characteristic of the Cetacea. The stomach is compound, being divided by a valvular constriction into two principal cavities, the first of which is provided with a siogular glandular pouch near the cardiac end, and the second with a pair of elongated, conical creal sacs or diverticula, the use of which is by no means obvious. The ceecum is bifid. The kidneys are simple. The heart is broad and flat, with the apex deeply cleft between the ventricles. The principal blood-vessels form very extensive and complex retica mirctilia. The lungs are remarkably long and narrow, as owing to the very oblique position of the diaphragm the thoracic cavity extends very far back over the abdomen. The mammary glands of the female are two in number, situated just behind and to the inner side of the origin of the pectoral limb. The red corpuscles of the blood are among the largest of those of any members of the class, averaging in diameter, according to Gulliver, $\frac{1}{2!} \frac{1}{\sigma}$ of an ioch.

Manatees pass the whole of their life in the water, inhabiting bays, lageons, estuaries, and large rivers, but the open sea, so congenial to the Celacect, is quite unsuited to their peculiar mode of life. As a general rule they prefer shallow water, in which, when not feeding, they lie near the bottom, supporting themselves on the extremity of the tail, or slowly moving about by the assistance of the fore limbs, the tips of which are just allowed to touch the ground, and only raising the top of the head above the surface for the purpose of breathing at intervals of two or three minutes. In deeper viater they often float, with the body much arched, the rounded back close to the surface, and the head, limbs, and tail hanging downwards. The air in the lungs obviously assists them to maintain this position, acting in the same manner as that in the air-sac of fishes. Their food consists exelusively of aquatic plants, on which they browse beneath the water much as terrestrial Ungulates do on the green pastures on shore. They are exiremely slow and inactive in their movements, nud perfertly harmless and inoffensire, but are subject to a constant persecution from the inhabitants of the countries in which they $d$ well for the sake of their oil, skin, and flesh. Frequent nttempts lave of late been made to keep specimens alive in captivity, and sometimes with considerable success, one having lived in the Brighton Aquarium for upwarls of sixteen months. It was ferl chicfly on lettuce and endives, but would also eat leaves of the daudelion, sow-thistlo, cabbage, turnip, and carrot. From this and other captive specimens some interesting observations upon the mode of life of the animal have been made. One of these is the free use it makes of its ferelimbs. From the shoulder-joint they can bo moved in nll directions, anc the elbow and wrist permit of free extension and flesion. in saeding they push the food towards their mouths by means of one of the bands, or beth used simultaneonsly, nid a!. $\boldsymbol{T}$ one whe has seen these members. thus employed can readily believe the steries of their
carrying their young about under their arms. Still mere interesting and quite unique among Mammals is the action of the peculiar lateral pads formed by the divided upper lip, thus deseribed by Professor Garred:-"These pads have the power of transversely approaching towards and receding from one another simultaneously (see fig. 1, A and B). When the animal is on the point of seizing (say) a leaf of lettuce, the pads are diverged transversely iu such a 'way ns to make a median gap of considerable breadth. Directly the leaf is within grasp the lip-pads are approximated, the leaf is firmly seized between their contiguous bristly surfaces, and then drawn inwards by a backward movement of the lower margin of the lip as a whole." The animal is thus enabled by the unaided means of the upper lip to introduce food placed before it without the assistance of the comparatively insigoificant lower lip, the action greatly recalling to the observer that of the mouth of the silkworm and other caterpillars in which the mandibles diverge and converge laterally duriog mastication. When out of water the Manatee is an extremely helpless animal; and, although statements are frequently met with in books of its voluntarily leaving the water for the purpose of basking or feeding on shore, all trustworthy observations of those acquainted with it, either in a state of nature or in captivity, indieate that it has not the power of doing so. None of the specimens in confinement have been observed to emit any sound.

Manatees, though much less numerous than formerly, are still oceasionally found in crecks, lagoons, and estuaries in some of the West India Islands, and at various spots on the Atlantic coast of America from Florida as far south as about $20^{\circ} \mathrm{S}$. lat., and in the great rivers of Brazil, almost as high as their sources. They are also met with in similar situations on the opposite African coast, from about $16^{\circ} \mathrm{N}$. to $10^{\circ} \mathrm{S}$. lat., and as far into the interior as Lake Tchad. Its range may even extend, if native reports obtained by Schweinfurth are correetly interpreted, to the river Keebaly, $27^{\circ}$ E. long.
The American Manatee (M. australis, Tilesius) was thought by Dr Harlan to be divisible into two species, one inlabiting Brazil und the other the West Indies and Florida. To the northern form be gave the name of $M$. latirostris, but the distinetion is not now geoerally recognized. On better grounds the African Manatee was separated by Desmarest, under the name of M. senegalensis, and there are certainly constant although not very important cravial claracters by which it can be distinguished from its American congener, anoug which the following may be cited :-the anterior part of the rostrum is shorter, shallower, and altugether smaller; the orbit is smaller ; the zygomatic process is moro deep und massive ; the malar bone is deeper from above downwards; the upper margin of the anterior nares is narrower and with a smooth and rounded instead of a thin and serrated edge; the upper surface of the frontal is flat, instead of concare; the foramen magnum and occipital condytes are narrower from side to side, and tho symplysis of the mandible smaller and shallower.

For an necount of the animals most nearly allied to the Manatee, the Rhytina, or "Northern Manatee" as it is sometimos called, and the Dugeng, as well as the various extinct kindred forms, see Mamaala, pp. 390, 391.
Bibliography, -W. Vrolik, Bijdragen tot de Dicrkzundc, 1851; J. Murie, "On the Form and Structure of the Manatee," Trans. Zool. Soc. Lo.rd., vol. viii. p. 127, 1872, and "Futher Observations on the Mianatee," Mid., vol. xi. p. 19, 1850; A. H. Garrol, "Notes on the Manatee recently living in the Zoological Society"s Gardens," Ibid., vol. x. p. 137, 1875; 11. C. Chaj"nan, "" Observations on the Structurc of the Nanatee," Proc. Acad. Nat. Scicnces of Philadelphia, 1875, 1. 452; A. Cranc, "Notes on the Ilabits of the Manatees in Captivity in the Brighton Anuarium," Proc. Zool. Soc. Lond., 1881, p. 450 . (wi. F.)

$$
\text { XV. }-58
$$

MÁNBHÚM, a district in the lieutenaut-governorship of Bengal, India, lying between $22^{\circ} 3 i^{\prime}$ and $24^{\circ} 3^{\prime} \mathrm{N}$. lat., and $85^{\circ} 51^{\prime}$ and $8 i^{\circ} 16^{\prime}$ E. long., is bounded on the N . by Hazáribágh and Bírbuim, on the E. by Bardwan and Bankura, on the S. by Singbhúm and Midnapur, and on the W. by Lohírdagâ and Hazáribágh. It has an area of 4147 square niles. The headquarters station is at Purulia. Nánbhim district forms the first step of a gradual descent from the table-land of Chutiá Nâgpur to the delta of lower Bengal. In the northern and eastern portions the country is open, and consists of a series of rolling downs, detted here and there with isolated conical hills. The soil is for the most part composed of hard, riry, ferruginous gravel, but many of the lower levels are filled with good alluvial soil, which yields a fine rice crop. In the western and southern tracts the country is more broken, and the scenery much more picturesque. The principal hills, are Dalmá ( 340 feet), the crowning peak of a range of the same name ; Gangabari or Gajboro ( 2220 feet), the highest peak of the Baghmundi range, about 20 muiles sonth-west of Purulia; and Pancblot or Pánchet ( 1600 feet), on the summit of which stands the old palace of the rajas of Panchet. The hills are all covered with dense jungle. The chief river is the Kasai, which flows through the district from north-west to south-east into Midnapur, and on which a considerable floating trade in sal timber is carried on. The useful timber found in Manbhum is very limited in quantity, and with the present rate of decrease the supply cannot last many years. Tigers, leopards, bears, wolves, and jackals are not uncommon; varions kinds of deer abound; and bison are occasionally met in the south of the district. Elephants come every year from the south-east into the hilly country between Mánbhúm and Singbhúm.
The census of 1872 returned the population at 820,521 . The aboriginal tribes unmbered about 100,000 , Hindus nearly 700,000 , and Mohammedans about 30,000 . In ISS1 the populatiou mas 1,042,117. A large proportion of the aborigines are now scmilinduized. The mest numerous alveriginal tribe are the Santáls; but the Bhúmij Kols are the characteristic aboriginal race. In Manbhum they inhabit the country lying on both sides of the Subarnarekhí. They are pure Mundas, but their compatriots to the east have dropped the title of Munda and the use of their distinctive language, have adopted Hindu custems, and are fast becoming Hindus in religion. The Bhumij Kols of the Jungle Maháls were ouce the terror of the surrounding districts; they are now a more peaceful tribe, but have lost to a great extent the simplicity and truthfulness of character for which their cognates are generally distinguished. Among high-caste Hindus about 50,000 are Brahmans and 16,000 Rajputs. The Kermús, who are agriculturists, form the most numerous caste in the district. The Christian populatiou numbers about 600 , most of whom are engaged in agriculture. Mánbhum is a thoroughly rural district, and contains only two towns with uprards of 5000 inhabitants, namely Purulia and Raghunathpur, and three others with over 2000, namely Jhálidá, Kaisipur, and Máubázár.
Three principal crops of rice are grown, one sown broadcast early in May on table-lands and the tops of ridges, an autumn crop, and a winter crop, the last forming the chicf harvest of the district. Other crops are wheat, barley, Indian corn, pulscs, oilseeds, linseeds, jute, hemp, sugar-cane, indige, pan, and tobacco. Oring to tho completeness of the natural drainage floods are unknorn, but the country is liable to droughts caused by deficient rainfall. The principal articles of export are oilseeds, pulses, ghi, lac, indigo, tasar silk (manufactured near Raghnnáthpnr), timber, resin, coal, and (in good seasons) ricc. The chief imports are salt, piece goods, brass utensils, and unwrought iron. Cotton hand-loom weaving is carried on all orer the district. Coal is found at Iharia, a ferr miles from Parasnath. The total revenue of Mänbhum district in 1881 amounted to $£ 25,760$, of which $£ 7562$ was obtained from land, and $£ 6424$ from excise. The schools in $18: 7$ numbered $3 £ \AA$, with 0616 pupils. The climate of the district is fairly healthy. The average rainfall for the ten years ending $1880-\$ 1$ was 55.05 inches.

MANCHA, L.A. This name, when employed in its widest sense, denotes that bare and monotonous elerated plateau of central Spain which stretches between the mountainz of Toledo and the western spurs of the hills of

Cuenca, being bounded on the S. by the Sierra Morena and on the N. by the Alcarria, which skirts the upper course of the T'agus. It thus comprises portions of the modern provinces of Toledo, Albacete, and Cuenca, and almost the whole of Ciudad Real. Down to the 16 th century the eastern portion was known as La Mancha de Montearagon or de Aragon, and the western simply as La Mancha; afterwarde the north-eastern and south-western sections respectively were distinguished by the epithets "Alta" and "Baja" (npper and lower). La Mancha was created a province in 1691 ; its officially recoguized boundaries have since that time raried considerably, and in common parlance it is often now identified with the modern province of Ciudad Real. Ciudad Real, which is bounded on the N. by Toledo and Cuenca, on the E. by Albacete, on the S. by Jaen and Cordova, and on the W. by Badajoz, ranks next to Badajoz and Caceres in point of exteut, containing an area of 7840 square miles. The population in $187 \%$ was 260,641 . From the scarcity of water and the absence of trees and fences, as also from the circumstance of the rural population being concentrated only at certain points, it as a whole presents to the traveller the arid and cheerless aspect of a desert. The principal river is the Guadiana, which rises in the so-called Ojos ("Eyes") del Guadiana in the north-east, and is joined by the Azuer and the Jabalon on the left, and by the uaited waters of the Zancara and Giguela on the right. No adrantage, unfortunately, is taken of these or any of the other streams in the province for irrigation, the inhabitants depending entirely on the meagre and precarious rainfall. A peculiarity of the province is the facility with rhich water can he reached by digging; but neither has this resource been turned to much account. The mineral wealth of the province (lead, copper, iron, antimony, coal) is great, the cinnabar mines of Almaden, in particular, which were known to the ancients, being the chief European source for the supply of quicksilver. Saltpetre is obtained in several places, especially in the north (Herencia and Alcazar de $\cdot$ San Juan), and there are quarries of fine stone at Santa Cruz and elsewhere. The crops, when not interfered with by drought and locusts, the two scourges of La Mancha, are very large; they include wheat, barles, rye, chick pease, wine (that of Valdepeñas being especially famous), vinegar, and brandy, some oil, saffron, esparto, flas, and silk. The nules rearcd in the province are considered the best in or out of Spain. There are manufactures of woollen fabrics, lace, earthenware, cutlery, saltpetre, gunperder, and soap. The lace of Almagro is nuch appreciated throughout the peninsula. The province is traversed by the Madrid and Cordora Railway, which enters near Alcazar de San Juar and passes through Manzanares and Taldepoñas, entering Jaen at the Venta de Cardenas in the Sierra Morena. The Madrid and Badajez line passes tbreugh Cindad Real, the capital of the province, which is connected by rail with Manzanarcs. There are ten judicial partidos,-those of Alcízar de San Juan, Almaden, Almagro, Almodórar del Campo, Ciudad Real, Daimiel, Infantes, Manzanares, Piedrabuena, and Valdepeñas. The only towns having a population above 10,000 in $187 \%$ were Almodóvar del Campo, Cindad Rieal, and Valdepeñas.

MANCHE, a department in the north-west of France, washed by the Euglish Clunnel (Fr., La 1Fanche), from which it derives its name, and made up of the Cotentin, the Avranchin, and part of the Bocage, three districts of the former province of Normandy, lics bet ween $45^{\circ} 2 S^{\prime} 40^{\prime \prime}$ and $49^{\circ} 47^{\prime} 30^{\prime \prime}$ N. lat., and between $0^{\circ} 43^{\prime}$ and $1^{\circ} 54^{\prime} 30^{\prime \prime}$ W. leng., bounded W., N., and N.E. by the Channel, E. by the department of Calrados, S.E. by Orae, S. by Majenne and Ille-et-Tilaine. The capital, $\mathrm{St} \mathrm{L} \hat{\mathrm{t}}$, is 159 miles west of Paris. The estreme length from north-west to south-east
is 81 miles, the mean breadth from east to wost awout 23 miles, and the area 2289 square miles.
The department is traversed from south to north by a rango of hills, in many parts picturesque, and connected in the sonth with those of Maine and Brittany. In the country round Mortain, which bas been called the Switzerland of Normandy, they rise to a height of 1200 feet, and at Cherbonrg their altitude is still from 500 to 600 feet. As a whole the department Las an Euglish aspect, with its broken and tide-beaten shores ofton euveloped in mist, and its ever-verdant meadows. The coast-line, running northward along the bay of the Seiue from the rocks of Cirand Camp to Cape Bartleur, thence westward to Cape la Harue, and finally southward to the Bay of Mont St Michel, has a length of 200 miles. The Vire and the Tante (which receives the Onve as a tributary on the left) fall iato the sea at the Calvados border, and are united by a canal soms miles above their mouths. From the mouth of the 'I'aute a low beach runs to St Yaast la Innugue, where the coast becomes rocky, with sandbanks. Between Cape Barleur and Cape la Hague lie the roads of Cherbourg, protected by the famous break water. The whole western coast is inlospitable; its petty lavens, lying behind formidable barriers and reefs, are alnost dry at low tide. Great cliffis like the points of Jobourg ( 120 feet high) and Flamanville alternate with long strands such as that which extends for 30 miles from Cape Carteret to Granville. Between this coast and the Cbannel Islands the tide, pent up between numerous sandbanks, flows with a terrific force that has given these passages such ill-omened names as Passitge de la Déroute and the like. The only important harbours are Granville and the baven of refuge of Diélette between Granville and Cherbourg. The chief strean is the Sienne with its tributary the Soulle flowing by Coutances. South of Granville the sands of St Pair are the commencement of the great Bay of Mount St Michel, whose area of 60,000 acres was covered with forest till the terribla tide of the year 709. The equinoctial tides reach a vertical height of nearly 50 feet. Amidst the foam rise the picturesque walls of the abbey, from the summit of a roek 400 feet higl. The Sce, which waters Avranches, and the Couesnon (separating Manehe from Ille-et-Vilaine) disembogue in the bay.

The climate of Manche is muld and humid from its propinguity to the sea. At Cherbonrg, in spite of the hortherly exposure, the mean temperature is $3^{\circ} \mathrm{Fahr}$. above the mean for that latitude over France. Frosts are never severe ; myrtles and fuchsias flourish in the open air. Excessive heat is also unusual ; the predominant winds are sonth-west. Rains are frequent, as the verdure of the country testifies, but they are not violeat, the annual rainfall varying from 30 to 34 incles.

Of the entire area more than the half is arable, 198,000 acres are meadow land, 52,000 are under wood, a1. 1 82,000 are heath. The soil is not naturally fertale, but vegetation is promoted by tha lumidity of the climate and by artifirial improvements. The characteristic industry of the department is the rearing of horses and other live stock; the horses number 92,830 , besides several thousands of asses and mules, and there are 270,000 horned cattle, 277,000 sheep, upwards of 100,000 nigs, and 40,000 beehives. In 1876 the departinent yielded 1,458 , 476 hectolitres of wheat, 83,393 of meslin, $1,014,662$ of harley, 427,360 of sarrasin, 484,365 of oats, 52,236 of rya, 683,834 of patatoes, 72,401 of dried legumes, 363,372 of bectreat, and 8758 quintals of homp; and in the same ycar there were manufactured 86,088 klogrammes of linseed oil and 39,380 kilogrammes of colza oil. The arable and meadow lands oceupy tha eastern portion of the department ; legunaes ara grown in the west, where lands adapted for market gardening purposes are worth as much as 15,000 francs per hectare. Manche has a larger production of eider than any other department of Franco (upwards of $28,000,000$ gablons). Besides apples, pears, plums, cherries, and figs are grown. The fields are lined with rows of oak, elm, and beech, which furnish good timber for building purposes. The aspen, poplar, walnut, and chestmut are also common. Some attempts at reclamation have beon made along tho ses.shore. The department
contains ramablefranite quarries in the Cherbourg arrondissement and the Chausay Islauds; there are also deposits of carboniferous marble, kaolin, talc, and of calcareolis sand ("tangue") used as manure, There are smiths' forges and iron foundries, important brass foundries, and cstablisluments for the manufacture of tools, needles, and other kinds of hardirare. The port and arsenal of Cherbeurg is very complete in all its appointments. The department has 45 wool-spinning factories with 13,123 spindles, and 6 cotton-spinuing mills with 50,000 spindles; and cloth-making, paper-making, tanning, and other industries are carried on. On tha coast there are important beds for oyster culture, and the masitime jopulation, when nat engaged in the pursuit of the herring, mackerel, or lobster, collect ware and sea-grass. The shipping of Mauclic :umumts to some 4600 vessels, with an aggregate tonnage of 29,000 tuns; tho exports consist of butter, egrss, poultry, live stock, legurnes, meat, fish, liorses, grain, stone, brasiery, and hardware. The papulation in 1876 was 539,910 . There are six arrondissements (St Lô, Avrauches, Clierbourg, Coutances, Mortain, Valognes), 48 cautons, and 643 comnunes : tle capital is St Lô.
MANCHESTER, a city whose industries âre famous throughout the civilized world, is situated in the southeastern corner of Lancashire, and forms the centre of the towns and villages which conslitute the great English cotton district.
The city of Manchester and the borough of Salford are about 180 miles north-west of London, and lie in $53^{\circ} 29^{\circ}$ N. lat., $2^{\circ} 14^{\prime} 23^{\prime \prime}$ W. long. The sister towns stand for the most part on a level plain, the rising ground being chiefly on the north side. The rivers are the Irwell, the Medlock, the Irk, and the Tib, the last entirely overarched and covered by streets and warehouses. The Irwell, which separates Manchester from Salford, is crossed by a series of bridges; it has here an average width of 91 feet, and an average depth of about 7 feet; and it discharges itself into the Mersey, which is about ten miles distant. The chief part of the district, before it was covered with the superficial drift of sand, gravel, and clay, consisted of upper New Red Sandstone with slight portions of lower New Red Sandstone, magnesian marls and upper red marls, bard sandstone and limestone roek, and cold clays and shales of contiguous coal-fields. The town, as its thousands of brickbuilt houses show, has been for the most part dug out of its own fields of clay. The parliamentary borough of Manchester has an area of 6349 acres; the municipal area is 4294 acres. The parliamentary and municipal boundaries of Salford are identical, and have an area of 5208 acres.

Parks and Statues. - Of the parks and open spaces the principal is the Peel Park in Salford, containing an area of about 40 aeres. In its centre is the building containing the Salford library, and also a valuable museum of natural history and a collection of paintings known as the Langworthy gallery (built and endowed by the late Mr E. R. Langworthy, a wealthy Mawchester merchant). Among tho notable pretures may be named the Last Sleep of Argyll and the Execution of Moutrose, by Mr E. M. Ward. Seedley Park, Ordsall Park, and Albert Park have been recently constructed, and are situated in Salford,-where also is the Kersal Moor, a bit of wild moorland, some 21 acres in extent, now under the care of the corporation of Salford. The moor has long been noted for the richness of its Hora, about one-eighth of the English flowering plants laving been gathered on its very limited area. It has also been the scene of an entomological incident of some interest-the capture of the Ecophara Troodiella, of which thero is no other recorded habitat. The Queen's Park at Harpurhey is pleasantly situated, notwithstanding that it is now completely surrounded by cottages and manufactories. In the centre is a small muscum, the chief interest of which depends upon a series of plrenological easts made by Gall and Spurzheim and conipleted by Bally. Pb:lips Park is also attractive, not withstanding its close proximity to some of the densest
portions of the tomn. The principal parks so far named were constructed from money obtained by a public subscription in 1846, but the Alexandra Park at Moss side has been entirely paid for out of the public rates. It has very good ornamental grounds, but owing to the difficulties of the situation the construction has been somewhat costly. In this connexion may be mentioned the Botanical Gardens, which are situated at Old Trafford, and, although intended chiefly for the subscribers, are open at certain times to the public on liberal terms.

Manchester is not remarkablo for the number of its public memorials of the dead; but it possesses some
which should not be passed unnotices. [n front of the infirmary are bronze statues of Wellington, Watt, Dalton, and Peel. A bronze statue of Cobden occupies a prominent position in St Ann's Square. The marble statue of the Prince Consort, covered by a Gothic canopy of stone, is placed in Albert Square, in proximity to the town-ball, the enormous proportions of which have the effect of dwarfing what would otherwise be a striking monument. The most picturesque is the bronze statue of Crommell, on a huge block of rough gianite as pcdestal. In the Peel Park are statues of Queen Victoria, the Prince Consort, Sir Robert Peel, and Joseph Brotherton.


Plan of Marchester.

Public Bualdings.-There are many fine public buildings En Manchester. Among them may briefly be noticed the -oyal infirmary, consisting of three sides of a quadrangle, ne of which owes its existence to the benerolence of Jepny Lind, who gave tro concerts in order to raise the necessary funds. The institation will accommodate about two lundred and sixty patients. The rojal exchange is a fine specimen of Italian architecture, and was erected in 1869; the great meeting-hall is one of the largest rooms in England, the ceiling haring a clear area, without supports, of 120 feet in width. The exchange is seen at its best on market days (Tuesday and Friday), when representatires, from all parts of Lancashire, and indeed of the neighbour-
ing counties, are earnestly engaged in buying and selling. The assize courts were built in 1864 from designs by Waterhouse. The styls is a misture of Early English and Decorative, and a large amount of decorative art has been expended on the building. The cost was about $£ 100,000$. The New Bailey prison, intended for the criminals of Salford hundred, was built (1787) in accordance with the suggestions of Horard, the prisen philanthropist, but in 1868 the present structure, at the rear of the assize courts, was erected. The style of architecture is Norman, and the building, which covers 9 acres, cost $£ 170,000$. The city jail is situated in Hyde Roan. The old townhall was built in 1832, in imitations
of the Erectheum of Athens, at a cost of $£ 40,000$; it is 20w occupied by the town library. The business of the city is conducted -in the new town-lall, probably beyond dispute the most important municipal building in the kingdom, if not in Europe. It was completed in 1877, from designs by Waterhouse, who selected as the style of architecture a form of Gothic, but treated it very freely as purposes of utility required. The edifice covers 8000 aquare yards, and includes more than tro hundred and fifty rooms. The triangular or flat-iron form of the site was a great difficulty, but the architect has skilfully surmounted it. The building consists of continuous lines of corridors surrounding a central courtyard and connected by bridges. The principal tower is 260 feet high, and affords a view which extends over a large part of South Lancashire and Cheshire, and is bounded only by the hills of Derbyshirc. It contains a remarkable peal of bells by Taylor of Loughborough, forming an almost pezfect chromatic scale of twenty-one bells; each bell has on it a line froais saction 105 of 'Tennyson's In Nemoriam. The great hall is 100 feet long and 50 feet wide, and contains a magnificent organ built by Cavaille-Coll of Paris. The paneis of this roum are being filled with mural paintings illustrating the rarious incidents connected with the history and progress of the city. The total cost of the building has been $£ 1,053,264$, inclusive of $£ 201,925$ for interest. The branch Bank of England is a Doric building designed by Cockerell. The Salford town-hall is also Doric ; and there are besides separate towa-halls for the townships of Ardwick, Chorlton, Hulme, Cheetham, Broughton, and Pendleton. The Free Trade hall is a fine structure in the Lombardo-Venstian style, and its great hall will accommo date five thousand people. It is used for public meetings, concerts, dc., and was built by Walters. The young men's Christian association hall was originally used as a natural history museum. The Royal Institution, built by Sir Charles Barry, is a proprietary institution intended for the encouragement chiefly of the fine arts. In the eatrance hall are casts of the Elgia Marbles, given by Gearge IV., and a statue of Dalton by Chantrey. There is a small permanent gallery, and periodical exhibitions of pictures are held and courses of lectures delivered. Arrangements have now (1882) been concluded by which the institution will become the property of the town and be managed by a joint committee of members of the town council and others interested in art and literature. The Athenœum, also designed by Barry, was founded by Richard Cobden and others associated with him, for "the advancement and diffusion of knowledge:" The institution has, perhaps, not developed exactly on the lines contemplated by its promoters, but it ias become one of the most useful in the town. All the auvantages enjoyed by members of high-class social clubs, with the eddition of facilities for educational classes and the use of an excellent news-room and a well-selected library of 18,000 volumes, are offered in return for a payment which docs not amount to a penuy a day. Tho mechanics' institution contains a library of 17,000 volumcs, and has connocted with it excellent day and evening schools, and classes for technical instruction. The Portico is a good specimen of the older proprictary libraries and newsrooms. It dates from 1806, and has a library of 20,000 volumes. The Memorial Hall was built to commemorate the memory of the Nonconformist ejected ministers of 1662. The Unitarian home missionary board has here its library and rooms for tho education of students; and the building is used for a variety of meetings, scientific, educational, musical, and religious. Tho inconvenience arising from inadequate provision for postal service is, after many years of hesitation, to be remedied by the erection, now (1882) in progress, of a commodious post-office.

Means of Communication.-The opening of the Manchester and Liverpool Railvay in 1830 marked an important epoch in the history of modern industry, and since that time Nanchester has gradually been connected by rail with every part of the kingdom. The enormous traffic by this means has not, however, entirely superseded the use of the canals, which fcrmerly played so important a part in the cotton industry. The construction of the Bridgewater Canal in 1661 was an event second in importance only to that of the introduction of the railway system. There are three large railway stations, Victoria, London Road, and the Central, and several minor ones. The excellence of the omnibus system of the city was perhaps one principal cause for the somewhat tardy adoption of tramways; but these have now rapidly developed, and ensure facilities for transit between the diferent parts of the city and also for communication with the meighbouring towns and villagcs. The estabisilment of a ship canal to connect Manchester with tie sea bas been frequently suggested at intervals for the last sixty years, and a scheme of tidal navigation elaborated by Mr Hamilton Fulton is now (1882) being actively discussed.

IVater Supply.-This is under the control of the corporation, which supplies not only the citizens but the surrounding populations. The gathering-ground is a series of reservoirs in the valley of Longdendale, chiefly along the course of the river Etherow. Woodhead, the chief reservoir, 20 miles from Manchester, is 777 feet above sea-level, is 72 feet deep, covers an area of 155 acres, and has a capacity of $1,235,000,000$ gallons. The present aystem of waterworks, including the portions now being constructed at Audeashaw and Denton, bave an area of reservoirs of $854 \frac{1}{2}$ acres, and a capacity of hclding $5,914,000,000$ gallons. The average daily supply of water was in $18558,078,152$ gallons; in 1881 it was $18,929,704$ gallons. In 1877 the water committee announced that in view of the increased demand it would be necessary to obtain additional or fresh sources of supply. The proposal to atilize Thirlmere in Cumberland for this purpose was vehemently opposed, bat the scheme was eventually sanctioned by parliament, and the works have been begun, but have not as yet made rapid progress. Thirlmere is 533 feet above the sea, and it is proposed to raise it by an embankment to 684 feet above the sea. From this height it is estimated' that a maximum quantity of $50,000,000$ gallons might be withdrawn daily.

Lighting.-The corporation not only manufactures gas for the lighting of the city, but sells it to out-districts. The area of distribution amounts to 42 square miles, and the street mains for the gas supply are 597 miles long. The entire assets of the gas-works were valued in September 1881 at $£ 1,386,942$. The average quantity of gas transmitted daily was $2,425,630,000$ cubic feet. The revenue from the sale of bye.products is about $£ 90,000$. Salford, which is supplied with water by Manchester, has its own gas-works, the property of the ratepayers, and managed by a committee of tho town council.

Administration of Justice.-The city has a stipendiary magistrate who, in conjunction with lay magistrates, tries cases of summary jurisdiction in the police courts; these are held in a building erected for the purpose, and having some architectural pretensions. There are also quarter sessions, presided over by a recorder. Separate sessions are held for the Salford hundred. Salford has also a police court with a stipendiary magistrate. Certain sittings of the Court of Chancery for the duchy of Lancaster aro held in Manchester. In addition to the county court, there is an ancient civil court known as the Salford Hundred Court of Record. Assizes bave been held since 1866.

Churches.-The chief ecclesiastical building in Man. chester is the cathedral, which, however, hardly corresponds to the ideas usually associated with that word. It was indeed built simply as a parish church, and, although a fine specimen of Perpendicular Gothic, is by no means what might be expected as the cathedral of an important and wealthy diocese. Though there are remains of older work, tho bulk of the buildiag lelongs to the early part of the 15 th century. The first warden was John IIuntington, rector of Ashton, who built the choir. The building, which was noticed for its hard stone by Leland when he visited the town, did not stand time and weather well, and by 1845 some portions of it wero rapidly decaying. This led to its restoration by Holden, which was not finished until 1868, when the tower was almost completely renovated in a more durable stone than that formerly used. The total length is 220 feet and the breadth 112 feet; the only parish church exceeding it in this last dimension is said to be that of Coventry. There are several stained-glass windows. In the Ely chapel is the altar tomb of Bishop Stanley, the fatber of the gallant Sir Joha Stanley, who fought at Flodden Field. In the stalls there are some curious miserere carvings. The tower is 139 feet high, and contains a peal of ten bells, chiefly from the foundry of the Rudballs. There are tro organs, one by Father Smith, and a new one erected at a cost of more than $£ 7000$, and enclosed in an oak case designed by the late Sir G. Scott. The church endowments are considcrable, and hare been the subject of a special act of parliament, known as the Manchester Rectory Division Act of 1845, which provides $£ 1500$ per annum for the dean, and $£ 600$ to each of the four canons, and divides the residue among the incumbents of the new churches formed out of the old parish. There are about one hundred places of worship in Manchester belonging to the Church of Eagland, but they are not especially remarkable. Of the Roman Catholic churches, the most important are the cathedral church of St John in Salford, of the carliest Decorative character, with a spire 240 feet in height, and the church of the Holy Name, which belongs to the Jesuits, and is remarkable for its costly decoration. Salford is the seat of a Roman Catholic bishopric, as Manchester is the seat of an Anglican one. Most of the Noaconformist bodies have churches in the city and its environs. The meeting-house of the Society of Friends is said to be the largest of the kind in the kiagdom, and will seat twelve huudred persons.

Literature and Science.-Manchester possesses nomerous associations for the cultivation of literature and science. The oldest of these, the Literary and Philosophical Society, founded in 1781, has a high reputation, and has numbered among its working members John Dalton, Eaton Hodgkinson, William Fairbiairn, J. P. Joule, H. E. Roscoe, and many other famous men of science. It has published a lengthy series of memoirs and proceedings. The Manchester Literary Club was founded in 1862 , and publishes an annual volume of papers. The Manchester Statistical Society was the first society of the kind established in the kingdom, and has issued Transactions containing many important papers. The Scientific Students' Association, the Field Naturalists' and Archæologists' Society, the Microscopical Society, the Botanists' Association, the Geological Society, and the Science Association may also be named. Several printing clubs, the Chetham, Record, Holbein, and English Dialect societies, have their beadquarters here. Nine daily papers are published, and the journalism of Manchester takes high rank. The periodicala issued are between fifty and sixty in number.

University and Schools.-There are many educational facilities in Manchester and Salford. The oldest achool is the Manchester grammar achool, which was founded in

1519 by Hugh Oldham, bishop of Exeter, who was a native of Crumpsall, ono of the outskirts of the town. The foundation was done "out of the good mind he bore to the county of Lancashire, percciving that the children thereof, having pregnaut wits; were for the most part brought up rudely and idly; that knowledge might be adranced, and that the children might be better taught to love, Lonour, and dread God and His laws." The master and usher appointed by tho gocd bishop were to teacle freely every child and scholar coming to the school, "without any money or reward taken." Some mills were devised for the maiatenance of the school, which was further endowed at both the universities by Sarah, duchess of Somersct, in 1692. The school has beeu reconstituted on a new basis within recent years, and has now two bundred and fifty free scholars, whilst other pupils aro received on payment of low fees. Mr E. I. Langworthy bequeathed to it $£ 10,000$ as an endowment for scholarships. Aerong those educated at the grammar school may be mentioned Thomas De Quincey and the late Mr Harrison Ainsworth.

The Owens College was founded in 1846 by John Owens, who left nearly $\mathcal{E} 100,000$ to trustees for an institutiou in which should be taught "such branches of learning and science as were then and might be hereafter nsually taught in English universitics." The college mas opened in 1851 , in a house which bad formerly been the residence of Cobden, but in 1872 it was removed to its present home, a handsome Gothic building designed by Waterhouse. An appeal made to the public in 1867 in behalf of the college was heartily responded to, and its capital funds now amoust to orer $£ 400,000$. The building is carefully adapted to its purposes; and the chemical laboratory, a separate structure at the rear, is of the completest description. The first bishop of Manchester, Dr J. Prince Lee, who had an interestiag library of some 6000 volumes, bequeathed it to the college, which has also received gits of books and money from rarious other quarters, and thus has now the nucleus of an important collection. The Royal School of Medicine, which was founded in 1824, and had aequired the reputation of being one of the most successful of the provincial schools, has been amalgamated with the college. The Medical Society has, by an arrangement with the college authorities, deposited its raluable library of 22,000 volumes in the college rooms. The Manchester museum is now the property of the college, and contains the bulk of the specimens gathered by the Geological Society and by the now extinct Natural History Society. A suitable huilding for the accommodation of the museum has long been a decided want, and is now (1882) about to be undertaken. The growing importance of the Owens College led to the project for a university charter. The proposal was not received without some opposition, but as the resalt of lengthy discussions and adjustments a scheme was evolved for a university to consist of affliated colleges, situated in different towns, but having its centre in Manchester ; and the charter of the Victoria University mas granted in 1880, with full powers to graat degrees except in medicine-an exception which is to be removed. Among the other educational institutions of the district are the Lancashire Independent college, the Primitive Methodist college, the Baptist institute, the St Bede's college (Roman Catholic), the college for women, the Salford college for working men, the school of art, and many minor institutions. The elementary education is controlled by an elected school board. Salford has also a school board. Very nearly the oldest educational institation in the town is the Chetham bospital, a bluecoat school educating one hundred boys; and almost the latest addition to these institutions is a oimilar institution founded by the late Alderman Nicholls. The schools for the deaf and dunib are situated at old

Trafford, in a contiguous building of the same Gothic Thexign as the blind asylum, to which Mr. Thomns Henshaw left a bequest of $£ 20,000$. There is also an adult deat and dumb institution, containing a news-room, lecture-hall, cliapel, \&c., for the uss of deaf mutes.

Litraries and Museums.-Manchester is well provided with libraries. The Chetham library is sometimes spoken of as the oldest free library in Europe, and certainly its doors have been open without let or hindrance for more than two centuries, and the building which it occupies is almast the only relic now left of ancient Manchester. What had once been the barons' hall, and afterwards the residence of the clergy, was purchased by the trustees of Humphrey Chetham, and by them applied to the purposes of a bluecoat school and library, provision for the foundation and maintenance of which he had made by will. The library, with its quiet and almost monastic corridors, forms a striking contrast to the busy streets withouti The contents now amonnt to about 40,000 volumes, and include many rare manuscripts and curions books, the gem of the collection undoubtedly being a copy of the historical compilation of Matthew Paris, with corrections in the author's handwriting. There is a large collection of matter relating to the history and archæology of Lancashire and Cheshire. A recent addition to its riches in this department is the extensive series of Lancashire manuscripts bequeathed by the late Canod Raines. The collection of broadsides formed by Mr J. O. Halliwell-Phillips, and the library of John Byrom, rich in mystics and shorthand writers, should also be named. In addition to the library, Chetham left provision for the education of a number of poor boys, and the increase in the value of the endowments bas raised the number to one hundred, who receive a good English education and are afterwards put to some useful trade or calling. An-additional school has recently been erected from designs by Waterhouse, who has been successful in making the new building harmonize with the quaint and sober architecture of the hospital and library. The Manchester Free Libraries were founded by Sir John Potter, who was instrumental in promoting a public subscription from which a building was bought and stocked with books, and then handed over to the town, by whose municipal authorities the libraries have since been not ouly maintained but materially increased. There is now a reference library containing about 70,000 volumes, including an extensive series of English historical works and a remarkable collection of books of political economy and trade. The chief object has been to make a good working collection for the student and man of etters. But, although the collection of objects dear to the bibliomaniac has not been considered of first importance, the library now inclades some literary curiosities of the first rank, among them specimens of the press of Caxton and Wynkyn de Worde. Affiliated to the central consulting library there are six lending libraries, the Hulme library having 17,000 volumes, Ancoats 15,000 , Rochdale Road 15,000, Chorlton and Ardwick 17,000, Cheetham 12,000, and Deansgate 18,000 . Each lending library has attached to it a commodious reading 600 m . There are also libraries in connexion with tho Athenxum, the mechanics' institutioo, the Portico, the Owens College, and other institutions. The sister borough of Salford has also adopted the free library system, and possesses at Pecl Park a largo reference and lending library, whilst additional lending libraries and news-rooms have been opened at Pendleton, Grcengate, and Regent Road.

Recreation.-The city has always been noted for its love of theatrical anusements, and the German element in its population has in the last fifty years largely inlluenced the taste for music by which it is now distinguished. The theatro royal is a pstent theatre, and was opened in 1845, its prodecessor having been burncd in the previous year. It rdubs iu sizc with the iarge metro-
politan theatres, and has connecled with it memories of nearly all phe great aetors of the present and past generation. The Pritice's theatre was opened in 1864, and is an elegant and beautifully finished structure. The Queen's theatre is a substantial building zith but small architectural pretensions. A theatre has recently been opened in Salford. The concert-ball will hold twelre huindred people. There are many musical societies; and amongst other places of amusement may be mentioned the Belle Vue Zoological Gardens, the Pomona Palace, and numerous music-halls, \&c.
Population.-According to the census of 1881, the municipal borough of Manchester contains a population of 341,414 ( 163,475 males, 177,939 females), while the parliauentary borough has 393,585 ( 189,005 males, 204,580 females). Salford, on the same authority, has 176,235 ( 84,610 males, 91,625 females). Thess figures, however, hardly convey the actual facts of the case. Nanchester and' Salford are as elosely joined as London and Southwark, and are surrounded by populous districts quite as much united as the component parts of what the registrar-general styles "Greater London." There has been a seeming decrease in the population of the city, which in 1871 was stated to contain 355,655 jersons; but this appearance is fallacious, for, while the progress of city improvements has reduced the number of inhabited houses in the centre, there has been a large influx into Salford, which has increased by 51,432 persons duriug the last ten years. The two boroughs, with the urban sanitary districts immediately contiguous, have a population of about 800,000 persons. In the Midule Ages there were in Manchester and Salford probably not more than two or three hundred burgesses and their dependants. In 1588 the population was estimated at 10,000 , but the parish is here meant. In 1757 the two towns contained 19,839 persons, who by 1773 had increasel to 27,246 , and by 1783 to over 39,000 . At the first census in 1801 Manchester had 75,275 , and SalGord 14,477. The last four census statements are:-

| 1851 | Manchester. ....303,382 | $\begin{aligned} & \text { Salford. } \\ & 63,850 \end{aligned}$ |
| :---: | :---: | :---: |
| 1961 | . 335,722 | 102.449 |
| 1871 | 351,189 | 124,801 |
| 1881 | .841,414 | 176,235 |

The increase in rateable value bas been equally remarkable. $l_{D}$ 1815 Manchester was rated at $£ 357,778$; in 1882 the estimate was $£ 2,761,469$. The correspending talues for Salford were $£ 54,130$ and $£ 80 \mathrm{I}, 192$.
Sanitary Condition-Manchester, like other towns, grew more rapidly than the provision for its wise government; but determined efforts have been made in the direction of sanitary improvement. The death-rate in 1840 was 34.3 ; in 1850, $29.6 ;$ in 1860, 28.0 ; in $1861,30^{\circ} 4$; in 1862, $30 \cdot 3$; in 1869, $28 \cdot 9$; in $1870,26 \cdot 52$; in 1871, $29 \cdot 8$; in 1877, $25 \cdot 4$; in 1880, $24 \cdot 7$; and for nine months of 1881 it was 23.3 . Whatever may be the causes of these fluctuations, it is clear that there is still ample room for further improve. ment. The air laden with the products of the combustion of coal, and the unspeakably filthy rivers, are urgently in need of energetic remedial action.
Manufactires and Commorce. - As nas arready been stated, Manchester is the centre of the English cotton industry; but in the town itself of late years the tendency has been more and more in the direction of commerce. Owing to the enhanced value of land, many mills and workshops have been removed to the outskirts and to neighbouring villages and towns, so that the centre of Manchester and an ever-widening circle around is now chielly devoted not so much to production as to the various offices of distribution. Large and handsome warehouses and shops abound, and there is every evidence of quick and opulent life. It would be a mistake, however, to regard Manchester as solely dependent upon the industries ennnected with cotton. There are other inportant manufactures which in another community rould be described as gigantic. Wool and silk are manufactured on a considerable scale, though the latter industry has for some years been on the decline. The miscellaneous and multifarious articles grouped under the designation of smallwares occupy many hands. Machincry and tools, using the term with its most comprehensive meauing so as to include alike philo. sophical instruments and steam-engines, are made in vast quantities. The chemical industries of the city are also on a large scale. In short, there are but few inportant manufactures that are wholly unrepresented. The proximity of Manchester to the rich coal-fields of Lancashire has had a marked influence npon its prosperity; but for this, indecd, tho rapid expansion of its industries would have been impossible.

It would probably be difficult to find a community in any part of the world with which Manchester has no commercial relations. The enterprise of its merchants bas kept pace with the energy of its mauufacturers, and the products of its looms are to be found in every land, though doubtless the supremacy which its cotton goods hare held in the markets of the world tends to become more and more abated by the gradually increasing foreign competition.

From figures laid before the Manclester Statistical Society, the money extent of trading opcrations at this centre bas been calcu-
lated at about $£ 207,000,000$ in 1872 and $£ 318,000,000$ in 1881. These figures, theugh to be taken with certain reservations, indicate apprexinstely the extent of the activity of the city.

The commercial institutions of Manchester are too numerous for detailed description. Its chamber of commerce has for more than siaty years held a position of much influence in regard to the trade of the district and of the nation. There are eleven joint-stock banks, seven of which have their bead offices in the town; these banks, hesides numerous branches in the surrounding district, have sixtecn branches in the town; and there are several private bankers.
Municipalily. -The affairs of the town are rcgulated by a council consisting of gixty-four representatives of the fiftecn wards into which the city is divided. The body corporste of sixteen aldermen sad forty-eight councillors, who are presided over by the mayor, has shown much onterprise and public spirit in the energy with which it has prosecuted public improrements, and in the business ability with which it has managed the vast undertakings connected with the lighting and water supply of the town. The town collacil of Salford cousists also of sixteen aldermen and fortyeight councillors, and there are fourteen wards.

History. - Fery little is known with certainty of the early history of Manchester. It has, indeed, been conjectured, and with some probability, that at Castlefield there was a British fortress, which was afterwards taken possession of by the soldiers of Agricola. It is at all events certain that a Foman station of some importance existed in this locality, and a fragment of the wall still cxists. In the last century considerable evidences of Roman occupation Trero still visible; and from time to time, in the course of excaration (especially during the making of the Bridgewater Canal), Roman remaies have been fonnd. The coins were chiefly those of Vespasian, Antoninus Pius, Trajan, Hadrian, Nero, Domitian, Vitellins, and Constantine. The period succeeding the Roman occupation is for some time legendary. As late as the 17 th century there was a floating tradition that Tarquin, an enemy of King Arthur, kept the castle of Manchester, and was killed by Launcelot of the Lake. The mention of the tomn in authentic annals is very scanty. It was probably one of the scenes of the missionary preaching of Paulinus; and it is said (though by a chronicler of comparatively late date) to have been the residence of Ina, king of Wessex, and his queen Ethelberga, after he had defeated Iror, somewhere abont the year 689. Nearly the only point of certainty in its history before the Conquest is that it suffered greatly from the devastations of the Danes, and that in 923 Edward, who was then at Thelwall, near Warrington, sent a number of his Mercisn troops to repair and garrison it. In Domesday Book Manchester, Salford, Rochdale, and Radcliffe are the only places nsmed in Sonth-East Lancashire, a district now covered by populons towns Large portions of it were then forest, wood, and waste lands. Twenty-one thanes held the manor of Salford among them. The chorch of St Mary and the church of St Michael in Manchester are both named in Donnesday, and some difficulty has arisen as to their proper identification. Most antiquaries have considered that the passage refers to the town only, whilst othera think it relates to the parish and that, while St Mary's is the present cathedral, St Michael's would be the preseut parish church of Ashton-under-Lyne. Mrnchester and Salford aro so clogely allied that it is impossible to disassociate their history. Salford received a charter from Ranalph de Blundeville, in the reign of Heary III., constitnting it a free borough, and Manchester iu 1301 received a cimilar warrant of municipal liberties and privilcges, from its baron, Thomas Gresley, a descendant of one to whom the manor had been given by Roger of Poictou, who was created by William the Conqueror lord of all the land betreen the rivers Mersey and Ribble. The Gresleys were succeeded by the De lo Warres, the last of whem was educated for the priesthood, and became rector of the tomn. To avoid the evil of a non-resident clergy, he made considerable additions to the lands of the church, in order that it might be endowed as a collegiate institution. A sacred guild was thus formed, whose members wera lound to perform the necessary services at the parish church, and to whom the old baronial hall was granted as a place of residence. The manorial rights passed to Sir Reginald West, the son of Joan Greslet, and he was summoned to parliament as Baron de la Warre. The West family, in 1579, sold the manorial righte for £3000 to John Lacy, who, in 1596, resold them to Sir Nicholas Mosley, whose descend. ants enjojed the enoluments aud profits to be derived from them uatil the middle of the present century (1845), when they were purchased by the present town council of Manchester for a sum of £200,000. The lord of the manor had the right to tax and toll all articles hrought for salo iato the market of the town. But, though the inhabitants were thug to a large extent taxed for the benefit of oue individual, they had a far greater amonnt of local self-govern. ment than might havo been supposed, and the court leet, which was then the governing body of the town, had, though doubtless in a somewhat rudimentary form, nearly all the powers and functions row pessessed by municipal corporations. This court had not oaly montrol orer the watching and watering of the town, the regulation
of the krater supply, and the cleaning of the atreets, but slso had power, which at times mas used freely, of interfering with what would new be considered the private liberty of their fellow-citizena. Some of the regulations adopted, and presumably enforced, sound grotesquely at the present day. Thus, no single woman was allowed to be a householder; no person might employ other than the town musicians; and the amount to be spent at wedding feasts and other festivities was carefully settled. Uuder the protection of the harons the town appears to have steadily increased io prosperity, and it early becanie an important seat of the textile manufactures. Full. ing mills were at work in the district in the 13th century; and documentary evidence exists to show that woollen manafac utes were carried on in Ancoats at that period. In 1641 we hcar of the Manchester people purchasing linen yarn from the Irish, wearing it, sad returnieg it fo: sale in a finished state. They slso brought catton rool from Smyma to work into fustians and dimities an Act passed in the reign of Edward VI. regulates the length of cottons called Manshester, Lancashire, and Cheshire cettons. These, notrithstanding their name, were probably all woollen textures. It is thought that some of the Flemish wearers wbo were intredaced into Esgland by Queen Philipna of Ilainault were settled at Mrancbester ; and Fuller has given on excecdingly quaint sad picturesque description of the msnner in which these artisans were welcomed by the inhabitants of the country they mece about to enrich with a new industry, one which in after centuries has become perhaps the most important industry of the country. The Flemish weavers were in all probability reiuforced by religions refugees from the Low Countries. Leland, writing in 1638 , describes Manchester as the "fairest, best builded, quickest, and most populons tomn of Lancasbire." The right of sauctuary had been granted to the tomn, but this was fonnd so detrimental to its industrial pur suits that after very brief experience the privilege was taken away. The college of Manchester was dissolved in 1547, but was refounded in Mary'a reign. Under her successor the tomn became the head. quarters of the commission for estsblishing the Reforned religion. In the civil wars, the town was besieged by the Royalists under Lord Strange, but was successfully defended by the inhrbitants under the command of a German soldier of fortune, Colonel Rosworm, who complained with some bitterness of their ingratitude to him. An earlier affray between the Puritans sad some of Iord Strange's followers is said to have occasioned the ehedding of the first bloed in the disastrous struggle between the king and parliament. The year 1689 mitnessed that strange episede, the trial of those concerned in the so-called I,sncashire plot, which ended in the triumphant acquittal of the supposed Jacobites. That the district really contained many ardent sympsthizers with the Stuarts was, however, shown in the rising of 1715 , When the clergy ranged themselves to a large extent on the side of the Pretender, and was still more clearly shown in the rebellion of 1745 , when the tomn was taken possession of by Prince Charles Edward Stasert, and a regiment, known afterwards as the Manchester regiment, was formed and placed under the command of Colonel Francis Townley. In the fatal retrest of the Staart troops the Manchester contingent mas left to garrison Carlisle, and surrendered to the duke of Cum. berland. The officers were taken to London, where they were tried for high treason and behesded on Kenaington Common.

The variations of political action in Mancbester had been exceed: ingly marked. In tho 16th centory, although it produced both Catholic and Protestant martyrs, it was earnestly in favour of the Reformed faith, and in the succeeding century it beceme indeed a stronghold of Puritanism. Yet the descendants of the Ronndheads who defeated the army of Charles I. were Jscobite in their sym. pathies, and by the latter half of the 18th century had become imbued with the aggressive form of patriotic sentiment known ae anti-Jacobinism, which chowed itself chiefly in dislike of reform and reformers of every description. A change was, however, imminent. The distress caused by war and tasation, towards the end of the last and the beginaing of the present century, led to bitter dis. content, and the anomalies existing in the parliamentary system of representation afforded only too fair an object of attack. While single individuale in some portions of the country had the power to return members of parliament for their pocket boroughs, great tomns like Manchester were entirely without representation. The injudicions conduct of the authorities, also, led to an increase in the bitterness with which the working classes regarded the condition of society in which they found themselves compelled to toil with very little profit to themselves. Their expressions of discontent, instead of being wisely regarded as symptotns of disease in the body politic, were looked upon as crimes, and the severest efforts were made to repress all expression of dissatisfaction. This foolish policy of the authorities reached its culmination in the affair of Petcrloo, which may be regatled as the starting point of the modern refortn agitation. This was in 1819, when an immense crowd assembled on St Peter's Fields (now covered by the Free Trade hall and trarehonses) to petition parliament for a redress of their grievances. The nuthorities had the Riot Act read, but in such a manner as to be quite unheard ij; the mass of the people; and drunkew yeomanry cavalry were
then turned loose upon the unresisting mass of spectators. The yeomanry appear to have used their sabres somewhat freely; several people were killed and many more injured; snd, although the mamistrates received the thanks of the prince regent and the ministry, their conduct excited the decpest indignation throughout the entire country. Naturally enough, the Manchester politicians took an important part in the reform agitation, and when the Act of 1832 was passed, the town sent as ita representatives the Right Hon. C. P. Themson, vice-presideut of the Board of Trade, and Mr Mark Plilips. With one notable exception, this was the first time that Manchester had been represented in parliament since ite barons hait seats in the House of Peers in tho carlicr centuries. In 1654 Mr Charles Worsley snd Mr R. Radcliffe were nominated to represent it in Cromwell's parliament. Worsley was a man of great ability, and inust ever have a conspicnons place in history as the man who carried ont the injunction of the Protector to "remove that bauble," the mace of the House of Commons. The agitation fer the repcal of the corn larrs had its headquarters at Manchester, and the success which attended it, not less than the active interest taken by its inhabitants in public questions, has made the city the home of various projects of reform. The "United Kingdom Alliance for the suppression of the liquer traffic " was founded there in 1853, and during the continuance of the Americsn War the sdherents both of the North and of the Sonth deemed it desirable to have organizations to influence public opinion in favour of their respective causes!" "A charter of incorporation was granted in 1838; a bishop was sppointed in 1847; end the town hecame a city in 1853. The Lancashire cotton famine, caused by the civil war in America, produced much distress in the Manchester district, and led to a national movement to help the starving operstives. The relief operations then organized are amongst the most remark. shle efforts of modern philanthropy:

Although seversl cxcellent books hsre been written on rubjects connected with the town, there is no sdequate madern history. The Hislory of Bfanchester, by the Rev. John Whilaker, appeared in 1771; It is a mere fragment, sad, though contalalag much impoutant matter, requires to le very discreetly used. The followlag msy be recommedded:-Rellly, History of Manchester, 1861: Procter, Manchesier in Holdday Dress (1866), Dfemorials of Manchester Sireets (1874), Memorials of Byegone Manchester, 1880 : Buxton, Botanical Guide to Mfanchester, de. $2 d$ ed., 1859 : A xon, Hondboot of the Public Libraries of Mfanchester and Salford, 1877 ; Grindon, Manchester Fiora, 1859; Baines, Mistos'y of Lancashire, 2d ed. 1808-70.
(W. E. A. A.)

MANCHESTER, a torn of the United States, in Hartford county, Connecticut, with a station on the New York and New England Railyoad, 8 miles east of Hartford. Its spinning and weaving mills turn out annually $2,000,000$ yards of gingham and 90,000 pairs of stockings; and its paper mills (upwards of a dozen in number) produce not only vast quantities of book paper but Government and bank-note paper for severul nations. At South Manchester, $2 \frac{1}{2}$ miles distant, and reached by a branch line, are the silk factorics of Messrs Chency, which cover about 8 acres, and give employment to one thousand operatives. The factory village has been laid out by a landscape gardener; and connected with it are a public hall, a library and readingroom, and a free school. The population of the towa has increased from 4223 in 1870 to 6462 in 1880.

MANCHESTER1, a city of the United States, one of the shire tewns of Hillsberough county, New Hampshire, is situated mainly on the left bank of the Merrimac, in a broad plain about 90 feet abovo the level of the river, in $42^{\circ} 35^{\prime} \mathrm{N}$. lat. and $71^{\circ} 31^{\prime} \mathrm{W}$. long., 16 miles from Concord and 46 north-west of Poston. It is a terminus of seversl railroads, as well ns a pripcipal station on the Boston, Lowell, and Concord line. The gencral plan is regular and spacious; there are sevcral largo and ornamental squares, and the main thoroughfare, Elm Strect, is 100 feet wide, more than a milo long, and bordered by the trecs from which it takes its nanie. Towards the river the froutage consists of great brick-built factories and substantial tenoments for the accommodation of the operatives. $\Lambda$ citylall (rebuilt after the fire in 1842), the county court-house, the State reform school (for one hundred and fifty pupils), two opera-houses, and a Roman Catholic convent (St Ann's) and orphan nsylum are among the buildings of noto. The city library ( 24,000 volumes), founded by private enterprise in 1844 as the Manchester Athenæum, became public property in 1854 . Water from Lake Massabesic ( 4 miles distant and 2300 acres in cxtent) was introduced into the
town in 1874 , at a cost of nearly $\$ 1,000,000$, and is stored in a reservoir capable of containiog $16,000,000$ gallons. It is almost exclusively to the water-porer furnished by the Blodgett Canal (built in 1816 round the Amoskeag Falls, which have a descent of 47 feet) that Manchester owes its prosperity as a manufacturing centre. The Amoskeag Company (dating from 1831), the Stark mills (1838), the Menchester mills (1839), the Langdon mills (1857), and the Amory mills (1880) are the leading establishments; they possess an aggregate capital of $\$ 7,650,000$, work 12,000 looms and 409,000 spindles, and make 143 miles of web daily. Locomotive engines (produced at the rate of fourteen per month), steam fire-engines, edge tools, circular saws, files, sewing machines, carriages, lesther, boois and shoes, paper, and ale all likewise form important items io the local industry. Manchester is governed by a mayor, a board of aldermen (one member for each of tho eight wards), and a common council (three members for each ward). The assessed value of prcperty in 1881 was $\$ 19,175,408$, and the city debt $\$ 965,550$. The population, which was 13,932 in 1850 , stands in the succeeding decades at $20,107,23,536$, and 32,630 , and is stated in 1882 at 36,500 .
Orginally settled in the close of the 17th century by Scoteb Presbyterans and Msssachnsetts Puritans, Derryfield, as it was then called, though incorporated in 1751, eon tınued for upwards of seventy years to be a place of less than one buodred inhsbitsuts, with neither minister nor lawyer, and so dependent on the river fisheries that the eels were known ss tbe "Derryfield beef." The name Maochester was legally recognized in 1810, snd a city charter was grsnted in 1846. The city has recently been described as paying nearly one-ninth of the State tex and producing one eetglth of the manufactured goods made in the State, as embracing one-tenth of the population of the State, as the fonrth city of the Union in the value of its cotton sud woollen masnufactures, snd the third city in Nerr Englsnd in increase during the last decade.

MANCHURIA is the name by which the territory is the east of Asia occupied by the Manchus is known in Europe. By the Chinese it is called the country of the Manchows, or, as it is prooounced by the natives, of the Manchus, an epithet meaning "Pure," chosen by the founder of the dynasty which now rules over Manchuria and China ns an appropriate designation for his family. Manchuria as it has existed for upwards of two centuries, that is to say since it has had an historical existence, is a tract of country lying in a north-easterly and sontlwesterly direction between $38^{\circ} 40^{\prime}$ and $49^{\circ} \mathrm{N}$. lat. and $120^{\circ}$ and $133^{\circ}$ E. long., and is wedged in between China and Mangolia on the west and north-west, and Corea and the Russian territery on the Amur on the east and north. Speaking more definitely, it is bounded on the N. by the Amur, on the E. by the Usuri, on the S. by the Gulf of Leaou-tung, the Yellow Sea, and Corea, and on the W. by the river Nonni and a line of palisades which stretch from Kwan-chung-tsze to the Great Wall of China. The territory thus defined is about 800 miles in length and 500 miles in width, and contains about 390,000 square miles. It is divided into three provinces, viz., Tsitsihar or Norls. ern Mancharin, Kirin or Central Manchuria, and Leave: tung or Southern Manchuria. Plysically the country is divided into two regions, the one a series of mountain ranges ocoupying the northern and eastern portions of the kingdom, and the other a plain which stretches southwards from Moukden, the capital, to the Gulf of Leaou-tung. Speaking gencrally, the mountains run in a direction parallel with the lie of the country, and are interspersed with numerous and fertile valleys, more especially on the southern and castern slopes, where the summer sun brings to rich perfection the fruits of the eoil fertilized by the showers of the south monsoon.

The principal range of mountains is the Shan-a lin, the Chiness Chang pih Shan. "the long white mountaine,"
which ruas in a north-easterly direction from the shores of the Gulf of Leaou-tung to the mouth of tho Amur river. [n its course through Northern Manchuria it forms the watershed of the Sungari, Hurka, and Usuri rivers, and ia the south that of the Ya-lu, Ta-yang, and many smaller stroanas. It also forms the eastera boundary of the great plain of Leach-tung. The mountains of this range reach their greatest leeight on tho south-east of Kirin, where their snow-capped peaks rise to the clevation of from 10,000 to 12,000 fect. The scearry among them is justly celebrated for the graudcur of its beauty, more especially in the neighbourhood of llaiching, Siu-yen, and the Corean Gate. Another range forms a parallel line to the Shan-a-lin mountaius on their west, and funs from the neighbourhood of the junction of the Hurka and Sungari rivers, passing Kirin, to the plain on the north side of Moukden.

The three principal rivers of Manchuria are the Sungari, Inrka, and Usuri already mentioned. Of these the Sungari, which is the largest, rises on the northern slopes of the Sban-a-lin range, and ruus in a north-westerly direction to its junction with the Nonni, from which point it turns north-east until it empties itself into the Amur. It is nevigeble by native junks above Kirin, to which city also the Russians hare succeeded in travelling on it by steamer. In its long course it varies greatly both in depth and width, in some parts being only a few feet deep and spreading out to a width of more than a mile, while in other and mountainous portions of its course its channel is narrowed to 300 or 400 feet, and its depth is increased in inverse ratio. The Usuri rises in about $44^{\circ}$ N. lat. and $131^{\circ} \mathrm{E}$. long., and, after running a northcasterly course for nearly 500 miles, it also loses itself in the Amur. The Hurka takes its rise, like the Sungari, on the nerthern slopes of the Shan-e-lin range, and not far form the sources of that river. It takes a north-easterly course as far as the city of Ninguta, at which point it turns northward, and so continues until it joins the Sungari at San-sing. It is navigable by junks between that city and Ninguta, though the torrents in its course make the voyage backwards and forwards one of considerable difficulty. Next in importance to these rivers are the Leaou and Ta-yang, the former of which rises in Mongolia, and after running in an easterly direction for about 400 miles enters Manchuria in about $43^{\circ} \mathrm{N}$. lat., and turning southward empties itself into the Gulf of Leaon-tung. In bygone days large junks were able to sail up it as fer as New-chwang, but owing to the silting up of the bed it is not now navigable for any but small boats beyond Ying-tsze, where the foreign settlement is situated. The Ta-yang rises on the sonthern slopes of the Shan-s-lin mountaias, and flows southward into the Yellow Sea.

Moukden, or as it is called by the Chinese Shing-yang, the cepital city of Meachuria, is situated in the province of Leaou-tung, in $41^{\circ} 40^{\prime}$ N. lat. and $130^{\circ} 30^{\prime}$ E. long. It occupies a fine position on the river Shin, an affluent of the Leaou, and is a city with considerable pretensions to grendeur. The city wall presents a bandsome appearance, and is pierced by eight gates. Like Peking, the town possesses a drum tower and a buge bell. The streets are brosd and well laid out, and the shops are well supplied with both native and foreign goods. The population is estimated at about 200,000 . including that of the suburbs, the richest and most exinnsive of which are on the western and southern faces of the city. Lesou-yang, which wes once the capital of the country, also stands in the province of Leanon-ting, but it is not now a place of much importance. Such trade as there is is carried on in the centre of the city, the remaining portions being open, having been turned into vegetable gardens. The other citics in the proviace are King-chow-foo on the west of the Gulf of

Leann-tung; Jin-chow, on the restern extremity of the Leaou-tugg peninsula; Kai-chow, on the north-westeru shore of the same peniusula; Hai-ching, on the road from Ying-tsze to Moukden; Ki-yuen, a jopmlons and prosferous city in the north of the province; and Hing-king, on the northern slope of the Shan-a-lin monntains, which is famous rather from the fact that it was the original seat of the founders of the prosent dynasty than for any pretensions to present importauce. The most important commercial place, however, is the traty port of Jing-tsze, whici is situated at tho head of the Gulf of Leaou-tung. The main street, which is lined with shops and werehouses, is 2 miles in length, and the trade there cartied on is very considerable. According to the custom-house returns the value of the foreign imports aud exports in the year 1580 was $£ 691,95 t$ and $£ 1,117,790$ respectively, besides a large native trade carried on in junks. The population of the whole province of Leaotr-tung is estimated to be about 12,000,000.

The province of Kirio, or Centrel Manchuria, is bounded on the N. and N.W. by the Sungari, on the S. by Leaontung and Corea, on the W. by the line of palisades already spoken of, and on the E. by the Usuri and the maritime Russian provinces. It contains an area of about 135,000 square miles, and is entirely mountainous with the exception of a stretch of plain country in its north-western corner. This plain produces large quantities of indigo and opiom, and is physically remarkable for the number of isolated conical hills which dot its surface. These sometimes occur in a direct line at interrals of 15 or 20 miles, and elsewhere are scattered about "like dish-covers on a table." Kirin, the capital of the province, is situated in about $43^{\circ} 40^{\prime} \mathrm{N}$. lat. and $126^{\circ} 50^{\prime}$ E. long., and occupies a magnificent position, being surrounded on the north, west, and south by a semicircular range of mountains with the broad stream of the Sungari flowing across the front. Tie local iride is considerable, and is benefited by the presence of large junk-building yards, which, owing to the abundance and cheapness of wood, have been established there, and from which the place has derived its Chinese name of Chuenchang or "shipyard." The towd has a well-to-do appearance, and in summer time the honses and shops are gaily decorated with flowers brought from the sunny south. Ashehoh, on the Ashe, with its population of 40,000 ; Petuna, Sinice Sing-chung, on the Sungari, populaion 30,000; Sin-siag, near the junction of the Sungari and Hurka; La-lin, 120 miles to the worth of Kirin, population 20,000; and Ninguta, are the other principal cities in the province.

Tsi-tsi-her, or Northern Manchuria, which contains about 195,000 square miles, is bounded on the N. and N.E. by the Amur, on the S. by the Sungari, and on the W. by the Nonni aud Mongolia This province is thinly populated, and is cultivated only along the lines of its rivers. The only towns of any importance are 'Tsitsihar and Mergen, both situated on the Nonni.

Fonr priucipal highways traverse Msnchuria. The first runs from Peking to Kirin via Moukden, where it sends off a branch to Corea. At Kiria it bifurcates, one branch going to San-sing, the extreme north-eastern town of the province of Kirin, and the other to Poissiet on the coast via Ninguta. The second road runs from the treaty port of Ying-tsze through Moukden to Petuna in the northwestern corner of the Kirin province and thence to Tsitsiher, Mergen, and the Amur. The third also starts from Ying-teze, and strikes southwsrd to Kin-chow at the extremity of the Leaou-tung peninsula. And the fourth connects Ying-tsze with the Gete of Corea.

The great plain in Leaou-tung is in meny parts swampy, and in the neighbourhood of the sea, rhere the soil emits a saline exuda-
rion such as is also comenon in the north of China, it is perfectly stcrile. [a other parta fine crops of millet and various kinds of grain are grown, and on it trees flourish abundantly.
The climate over the greater part of the country varies hetween the two extrenues of heat and cold, the thermonieter ranging betreen $90^{\circ}$ in the summer and $10^{\circ}$ below zero in the winter. As in the north of China, the rivers are frozen up during the four winter months. After a short spring the heat of summer succeeds, which in its turn is separated by an autumn of six weeks' duration from snow and ice. The trecs and plants are much the same as those common in England, and severe as the weather is in winter the less clevated mountains are covered to their summits with trees. The wild unimals also are those known in Europe, with the addition of tigers and panthers. Bears, wild boars, hares, wolvea, foxes, and Fild cats are very common, and, in the north, sables are found in creat numbers. One of the most noticeable of the birds is the Songolian lark (Melanocoryphyya mongolica), which is found in a wild state both in Manchuria and in the desert of Mongolia. This bird is exported in large numbers to northern China, where it is much prized on accoant of the extraordinary power it possesses of imitating the songs of other birds, the different tones of the barks of dogs, aud the mews and hisses of cats, as well as nll the noises peculiar to the neighbourhood in whicl it lives. The Manchurian crane is common, as also are eaglea, cuckoos, laughing doves, \&cc. Insects, of which there are, nccording to the Russiaas, one thousand different species, abound, orving to the swampy nature of much of the comntry. The rivers are well stacked with fish, especislly witly salmon, which Corms a common article of food aniong the people. In such immense shoals do these fish appear in some of the smaller streams that numbers are squeezed out on to the banks and there perish. This fact possibly gave rise to the legend of a certain Prince whose royal mother became preg. nant by the influence of the raye of the sun, and who brought forth an egg from which the prince was aprung. His snpernatural origin excital the alam of the king's ministers, who advised that he should be put to death, but his mother, having warning of their intention, sent him away privately. This Manchurian Phaeton thereupon randered forth, and in his travela came to a river having neither bridge nor ferry. In his difficulty he cried for help to bis father the Sun, and instantly fishes rose to the surface of the water anit formed themseives into such close array that the prince was able to walk to the opposite bank on thcir backs.
In minerala Manchuria is very rich: conl, geld, iron (as well as magnetic iron ore), and precious stones are found in quantities which suggest that if better nppliances were employed than are now in usa the returus night be very large.
Of the crops grown by the people indigo and opium are the most lucrative. The indigo plant is grown in large quantities in the plain country to the north of Moukdeu, and ia transported thence to the coast in carts, each of which carries rather more than a ton weight of the dye. The poppy is cultivated wherever it will grow, the crop boing far more profitable than that of any other product. Cotton, tobacco, pulse, millet, wheat, and barley are other crops gromn by the Manchurian farmers.

Mistory.-Manchow, ar more correctly Manchu, is, as has been said, not the name of the country but of the people who inhahit it. The name is a modern one, having been adopted by a ruler who rose to power in the beginning of the 13th century. Before that time the Danchus rere more or less a shifting population, with no fixed lacation, and, being broken ur, into a namber of tribes, they went mainly under the distinctive name of those clans which at different periods exercised lordship over them. Thus under the Chow dynasty ( $1122-225$ B.c.) we find them spoken of as Serwshia, and nt subsequent periols they were known as Yih-low, Wuh. $\mathrm{kc} \cdot \mathrm{h}$, Moh-hoh, l'ohai, Nüchin, and according to the Chinese historians also as K'etan. Throughout their history they appear as a rude people, the tribute they brought to the Chinese court cousisting of stonc arrow-heads, hawks, gold, and latterly ginseng. Assuming that, as the Chinese say, the K'etans were Mlanchna, the first appearance of the Manchus, as a people, in China dates from the beginning of the 10 th century, when K'etans haring first conquered the kingdom of Pohai crossed the frontier into China and established the Lesou or Iron dynasty in the northern portion of the empirc. These invaders were in their turn overthrown two centuries later by another invasion from Manchuria. These new conquerors were Niichins, and, therefore, direct ancestors of the Manchus. On assuming the imperial yellow in China, their chief allopted the title of Kin or "Golden" for his dynasty. "Iron" (Leaou), lice said, "rusts, but gold alwnys keeps its parity and colour, therefore my dynasty shall be called Kin.' In a little more than a century, however, the Kins were driven oot of Chiaa by the Mongols under Jenghiz Khan. But before the close of their rule a miracnlous event occurred on the Shan-a-liu mountains which is popularly believed to have laid the secds of the greatuess of the present rulers of the cmpire. Three heaven-boru maidens, so runs the legend, were bathing owo day in a lake under the Shan-a-lin mountains when a passing magnio drommed a ripe red fruit into the
lop of oue of them. The maiden ate the fruit, and in due coarso - a child was born to her, whom she named Aisin Gioro, or the Golden. When quite a lad Aisin Gioro was elected chief over threo contending clans, and established his capital at Otole near the Shan-a-lin mountains. His reign, however, was not of long duration, for his suljects rose against him and murdered him, tagether with all his sons except the youngest, Faucha, who, like the infant Haitu in Mongolian bistory, was miraculonsly saved from his pursuers. Nothing is recorded of the facts of Aisin Gioro's reign except that he named the people over whom he reigned Manclun, or "Pure." His descendants, through the rescued Fancha, full into complete olscurity until about the middle of the 16 th century, wheu one of them, Norhachi hy name, a chieftaia of a small tribe, rose to power. Taking advantage of the shifting scenes of Manchurian politics, Norhachi played with skill and daring the role which had been played by Jenghiz Khan more than tliree centuries before in Mongolia. With eveu greater success than his Mongolian couaterpart, Norhachi drew tribe after tribe uuder his sway, and after numerous riars with Corea and Mongolia, he established his rule over the whole of Manchuria. Being thus the sovereign of an empire, he, again like Jenghiz Khan, adopted for himself the title of Ying-ming, "Brave and lllustrious," and toak for his reign the title of T'een-ming. Thirtecen years later, in 1617, after numerous border fights with the Chinese, Norhachi drew up a list of "sever hates," or indictments, against his sonthern neighbours, and, not getting the satisfaction he demanded, declared war against them. The progress of this war, the hastily patched up peace, the equally hasty alliance and its consequences, heing mattors of Chinese history, have been treated of under the article China.

At the present day the Manchus are rapidly dying out belore the quietly advancing Chinese scttlera. By lar the greater number of the present inhabitants of Manchurin are Chinamen. The Chineso system of education is adopted everywhere throughout the country ; tho Chinese language is taught in all the schools; sud Manchuria promiscs to become before long as much a Chinese province as Chih-le or Shantung.
See Jourmeys in North China, Manchuria, and Eastcrn Mongotia, by the Rev. Alexander Williamson; The Manchus, by Rev. John Rass; Man-chow yucn lcwo kiau.
(R. K. D.)

MANDFANS, also known as Sabiaus, Nasoraans, or St John's Cbristians, ${ }^{1}$ an Oriental sect of great antiquity, interesting to the theologian as almost the only surviving example of a religion compounded of Christian, heathen, and Jewish elements on a type which is essentially that of ancient Gnosticism.

The Mandæans, who can never have been cumerous, and are now much decayed, are found in the marshy lands of South Babylonia (al-bataih), the ancient refnge of so many strange sects, particularly in the neighbourbood of Basrah (oi Bussorab), and in Khízistán (Disful, Shuster). ${ }^{2}$ They speak the languages of the localities in which they are settled (Arabic or Persian), but the language of their sacred books is an Aramaic dialect, which bas its closest affinities with that of the Babylonian Talmud, written in a peculiar claracter suggestive of the old Palmyrene. ${ }^{3}$ The existence of the Mandæans has been known since the middle of the 17 th century, when the first Cbristian missionaries, Ignatius a Jcsu 4 .

1 The first of these names (not Mendxans or Mandaites) is that given by themselves, and means $\gamma v \omega \sigma$ oikol, followers of Gnosis
 profess themselves autherents is a porsonification, the won aud mediator "knowledge of lifa" (sce below). The title Nasorcans (Násórayé), according to Petermann, they give only to those among theraselves who are most distinguished for knowledge and character. Like the Arablo Naskart, $\mathrm{It}^{2}$ ieriginally identical with the name of tho half heathen half Jewish-Christian Na̧̧opaîor, and indicates an early connerion with that sect. The inappropriato degignation of St Jolan's Christians arises from the early and imperfect acquaintance of Christian missionarics, who had regard merely to the revereace in which the name of the Baptist is held nmong them, and their frequent baptisms. In their dealings with members of ather commnnions the designation
 to baptize, that claimiag the toleration extended by the Kornn (Sur. 5,$79 ; 22,17 ; 2,59$ ) to thoso of that name.
${ }^{2}$ Fecent accounts (1884) represent them a shruak to 200 iamilies, and seeking a new settlement on the Tigris, to ascape the persecation to which they are expoged.
4. Sca Nöldeke's admirable Manääsche Grammatiz, Halle, 1875.

- Darratio originis, riluum, et crrorun Christiancromb S. Joarnio, Rome, 1652.
and Angelus a Sancto, began to labour among them at Basrah; further information was gathered at a somewhat later date by Pietro della Valle ${ }^{1}$ and Therenot, ${ }^{2}$ and un the following century by Knempler, Chardin, and Viehuhr. In recent times they have been visited by l'etermann ${ }^{3}$ and Albert Socin, and last of all Liouffi' published in 1880 a full and accurate aceount of the manners and rustoms of the seet, taken from thelips of a converted Mandenan himself. For our knowledge of their doetrinal iysten, however, we must of course still depend chiefly יpon the sacred books already mentioned, consisting of iragments of very rurjous antiquity derived from an older liternture. ${ }^{5}$ Of thesin the largest and most important is ধhe Sidré rabbú or "Great Book," known also as Ginzí (treasure), consisting of two unequal parts, of which the larger is callod "yamini (to the right hand) and the smaller "s'maila" (to the left hand), beenuse of the manaer in which they are bound together. In Petermann's edition the former occupies three humdred and ninety-five large euarto pages amd the other only one hmulred and thirtyeight. The former is inteuded for the living; the latter conrists chicfly of prayers to he read at the burial of priests. Is regards doetrine, the work is exhanstive; but it ischaracterized throughout by diffuspness, and oiten byextreme obscurity, besides being occasionally self-contradictory, as might be expected in a work which consists of a number of unconnected paragraphs of rarious authorship and date. The last section of the "right-hand" part (the "Book of Kings") is one of the older portions, and from its allusion so "the Persian and Arabian kings" may be concluded to datefrom somewhere between 700 and 900 A. D. Many of the doctrinal portions may in substance well be still older, and date from the time of the Sassanids. None of the MSS., however, are older than the 16 th century. ${ }^{6}$
The following sketch represents, as far ascan be gathered from these heterogeneous sources, the priacipal features of the Mandæan system. The ground and origin of all things is Pírá, or more correctly Pérá rabbí, "the great abyss" (either Persian Pír, "old," or from , "to split," comp. the Gnostic ), associated with whom, and forming a triad with him, are the primal æons Ayar zíai rabbá, "the great shining æether," and Máná rabbá d'ekárá, "the great

[^186]Epirit of glory," usually called simply uláná rabbá. The last-named, the most prominent of the three, is the king of light properly so called, from whom the derelopment of all things begins. From lim emanates larděnâ rabbá, "the great Jordan," whieh, as the higher world soul, permentes the whole æther, the domain of lyar. Along. side of Máná rabbá frequent mention is made of D'múthá his "image," as a female power; the uame "image of the father" arises out of the same conception as that which gives rise to the names of and among the Greck Gnostics. Máná rabbil ealled into being the highest of the wons properly so-called, Hayyé Kadmáyé, "Primad Life," and then withdrew into deepest secrecy, visibleindeed to the highest but not to the lowest roas (comp.
and
), yet manifesting himself also to the souls of the more pious of the Mandæans alter their separation from the borly. Primal Life, who is properly speaking the Mandran god, has the same predicates as the primal spirit, and every prayer, as well as every section of the sacred books begins by invoking him.' The extremely fantastic delineation of the world of light by which Hayyé Kadmáyé is surrounded (see for example the beginning of Sidrá rabbi) corresponds very closely with the Manichæan description of the abode of the "king of the paradise on light." The king of light "sits in the far north ia mighi and glory." The Primal Light uniolds himself by five great branches, viz., "the highest purest light, the gentle wind, the harmony of sounds, the roice of all the eons, and the beanty of their forms," all these being treated as abstractions and personified. Out of the further development and combination of these primary manifestations arise numerous æons ('Uthré, "splendours,"from ,"is rich"), of which the number is often stated to be three huadred and sixty. They are divided into a number of classes (kings, hypostases, iorms, \&c.) ; the proper names by which they are invoked are many, and for the most partobscure, borrowed doubtless, to some extent, from the Parsee angelology. From the First Life proceeds as a principal evaration the "Second Life," Hayyé Tinyáné, generally called Yushamin. This last name is evidently meant to be Hebrew, "Jehorah of the hearens," the god of the Jews being of a secondary rank ia the usual Gnostie ntyle. The next emanation after Yushamin is "the messenger of life" (Mandá d'hayyé, literally ), the most important figure in the entire system, the mediator and redeemer, the and the Christ of the Mandæans, from whom, as already stated, they take their name. He is occasionally also called the primal man, Gabrá Kadmáyá, as in the Kabbala and by Mani. I úshamin desired to raise himself above the Primal Light, but failed in the attempt, and was punished $\mathrm{b}_{j}$ removal out of the pure ætherial world into that of inferior light. The one world is separated from the other by water channels (H'fike MajJé). Mandí on the other hand continues with the First Life and Máná rabbá, and iscalled his "beloved son," the" firstborn," "high priest," and "word of life." Mandí makes his appearance ia the visible world in a series of incarnations beginning with the three brothers Hibil, Shithil, and Anush (late Judxo-Babylonian transiormations of the well-known names of the book of Genesis), and ending with John the Baptist. Of the first three the most bighly honoured is Hibil, almost invariably referred to as "the brilliant Hibil;" he is the alter ego of Mandí, his image in this present world, haring the same predicates and the same activities, and is the Jesus Christ of the Mandæans. The Second Life, Yúshamin, has as the last of three sons Hasyé t'lítíye, the "Third Life," the most distinguished of

[^187]the 'Uthré, hence usually called their father (Abá d' 'Uthré, Abáthúr). His usual epithet is "the Ancient" ("Atik ${ }^{2}$ ); and he is also called "the deeply hidden and guarded." IIe stands on the borderland between the lere and the hercafter, like the mysterious $\pi \rho \in \sigma$ ßúrys $\tau \rho i$ ítos or sence tertius of Mani, whose becoming risible will betoken the end of the world. Abithir sits on the furthest verge of the world of light that lies towards the lower regions, and weighs in his balance the decds of the departed spirits whe ascend to him. Beneath him was originally nothing but a huge void with muddy black water at the bettom, in which his image was reflected, becoming ultimately solidified into P'tahil, his son, who now partakes of the nature of matter. The demiurge of the Mandæans, and corresponding to the Ialdabaoth of the Oplites, he at the instance of his father frames the earth and men,-according to some passages in conjunction with the seven bad planetary spirits. He created Admm and Eve, but was unable to make them stand upright, whereupon Hibil, Shithil, and Anush were sent by the First Life te infuse into their forms spirit from Máná rabbá himself. Hibil, at the instance of the suprense God, alse tanght men about the world of light and the rons, and especially gave them to know that not P'tahil but another was their creator and supreme God, who as "the great king of light, withont number, without limit," stands far abovo him. At the same time he enjoined the protoplasts to marry and people the world. P'tahil had now lost his power over men, and was driven by his father out of the world of light iuto a place beneath it, whence ho shall at the day of judgment be raised, and after receiving baptism be made king of the 'Uthre with divine honours.

The underworld is made up of four vestibules and three hells properly so-called. The vestibules have each two rulers, Zartay and Zartanay, Hag and Mag, Gaf and Gafan, Anatan and Kin. In the highest bell rules alone the grisly king Sh'dum, "the warrior"; in the stery immediately beneath is Giv, "the great"; and in the lowest is Krun or Karkúm, the oldest and most powerful of all, commonly" called "the great monutain of flesh" (Túrít rabbí d'besrí), bnt also "the first-born of darkness." In the vestibules dirty water is still to be met with, but the hells are full of scorching consuming fire, except Krin's domain, where is nought but dust, ashes, and vacancy. Into these regions descended hiibil the brilliant, in the power of Minni rabbí, just as in the Maniebæan mythology the "primal man," armed with the elements of the king of light, descends to a contest with the primal devil. Hibil lingers, gradnally unfolding his power, in each of the vestibules, and finally passing from hell to hell reaches Karkum. Hibil allows himsolf to be half swallowed by the monster, but is unhurt, and compels his antagonist to recognize the superiority of Máná rabbá, the God of light, nad to divulge his profondest secret, the hidden name of darkness. Armed with thilis he returns throngh the snecessive hells, compelling the disclosure of every secret, depriving the rulers of their power, and barring the doors of the several regions. From the fourth vestibule he brought the female devil Ruhha, daughter of Kin, and set her over the whole four. This Minhi, the mother of falsehood and lies, of poisoning and fornieation, is an antiChristian parody of the Rưh d'Thodshá (Holy Spirit) of the Syriac Chureh. She is the mother of Ur, the personified fire of hell, who in anger and pride made a vileut onset on the world of light (compare the similar nccurrence in the Manicharn mythology), but was masterod by Hibil and thrown in chains down to tho "black water," rad imprisoned within seven iron and seven golden walls. By Ur, Rúhá, while P'tílifl was engaged in his werk of ereation, became mother of three sets of seven, twelve, and five sons respectively; all were translated by

P'tálíl to the heavenly firmament (like the Archens of Mani), the first group forming the planets and the next the sigas of the zodiac, while the third is as yet undetermined. Of the names of the planets Estera (Istar, Tenus, also called Rưhá d'Ḳudshá, "holy spirit"), Enba (Nebo, Mercury), Sía (moon), Kéwán (Saturn), Bil ,(Jupiter), and Nirig (Nirgal, Mars) reveal their Pabylonian origin; Il or Il Il, the sun, is also known as Kídúsh and Adunay (the Adonai of the Old Testament); as jord of the planetary spirits his place is in the midst of them; they are the source of all temptation and evil amongst nien. The honses of the planets, as well as the earth and a second world immediately to the north of it, rest unc 1 anvils laid by Hibil on the belly of Ur.

In the Mandæan represen'ation the sky is an ocean of water, pure and clear, but of more than adaanantine solidity, unon which the stars and planets sail. Its transparency allor's ns to see even to the pole star, who is the central sun around whom all the heavenly bodies more. Wearing a jewelled crown, he stands before Abathur's door nt the gate of the world of light ; the Mandæans accordingly invariably pray with their faces turned northward. The earth is conceived of as a round disk, slightly sloping towards the south, surrounded on three sides by the sea but on the north by a high mountain of turquoises; behind this is the abode of the blest, a sort of iaferior paradise, inhabited by the Egyptians drowned along with Pharaoh in the Red Sea, whom the Mandæans look upon as their ancestors, Pharaoh himself having been their first high priest and king. The tetal duration of the earth they fix at four hundred and eighty thonsand years, divided into seven epochs, in each of which one of the planets rules. The Sidra liabla knows of three total destructions of the human race by fire and water, pestilence and sword, a single pair alone surviviag in each ease. In the Mandran view the Old Testament saints are false prophets; such are Abraham, who arose six thousand years after Nú (Noah) during the reign of the Sun, Mishá (Moses), in whose time the true religion was professed by the Egyptians, and Shlimun (Solomon) bar Davith, the lord of the demons. Another false prophet and magicion was Yishu M'shihá, who was in fact a manifestation of the planet Mercury. Forty-two years before his day, under King Pontius Pilate, there had appeared the true prophet Yabya or John son of Zeehariah, an incarnation of Hibil, of whose birth and childhood fantastic stories are told. Yahyá by a mistake gave baptisn to the false Messiah, who had feigned humility; on the completion of his mission, after undergoing a seeming execution, he returued clothed with light into the kingdom of light. As a contemporary of Yahyia and the false Messiah Hibil's younger brother Anúsll 'Uthrí carne dewn from heaven, caused himself to be baptized by Yalyâ, wrought miracles of healing and of raising the dead, and bronght about the crucifixion of the false Messiah. He preached the true religion, destroyed Jerusalean ("Urashlan,", i.e., "ths devil finished it"), which had been built by Adunay, dispersed over the world the Jews who had put Yahyi to death, and previous to his return into the worlds of light sent forth three hundred and sisty prophets for the diffusion of the truo religion. All this speaks of intense hatred alike of Jers and Clristians ; the fasts, celibacy, and monastic and anchoret life of the latter are peculiarly objectionable to the Mandeans. Two hundred and forty years after the appearing of the false Messiah there came to the world sixty thousand saints out of Pharaoh's world to take the place of the Mandeans, who had been completely extirpated; thoir high priest had his residence in Damascus. The last falso prophet was M'hammad or Ahmint bar Bisbat (Mohammed), but Anush, who remained close beside him and his immediate successors, prevented hostilities agninst
the true believers, who elaim to have had in Babylonia, under the Abbasides, four hundred places of worship. thabsequent persecutions compelled their withdrawal to Ammárah in the neighbourhood of Wasit, and ultimately to Khuristín. At the end of the world the devil Ur will swallow up the earth aud the other intermediate higher worlds, and thereupon will burst and fall into the abyss of darkness, where, along with all the worlds and powers of darkness, he will nltimately cease to be, so that thenceforward the unirerse will consist of but one everlasting world of light.
The chicf depositarics of these Jandenn mysteries are the priests, Tho enjoy a high degreo of poower and social regard. Thc priesthood lias three grades. (1) the Shr'kanda or deacon is generally chosen from episcopal or priestly familics, and must be without bodily blenish. The candidate for orders must he at least nineteen yearsold and have ondergoue tirelve yenrs' preparation; he is then qualified to asisist the priesthood in the ceremonies of religion (2) The Taımidi (i.c. "Talmida,", iuitiated ") or priest is ordaincd by a lishop and tivo priests or by four priests after a long and extrenely paiuful period of preparation. (3) The Ganivird ("treasures") or bistop, the highitest dignitary, is chosen from the whole body of the Tarmidis after $n$ variety of tests, and possesses onlimited anthority over the elergy $\Delta$ eupreme pricstly rank, that of Risla "amma, or "head of the people," 2 s recognized, but only in theory; since the time of Pharioh this sovereign pontificate has only once been filled. The prestly dress, which is all white, consists of drawers, an onper garment, and a girule with the so-called tiga of "crovn"; In ull seremonies the celebrants must bo barefoot. By far the most frequent and important of the religious cercmonies is that of baptism (masbithí), which is called for in a great variety of cases, not ouly for cliildren but for adults, where cousecration or puritication is required, as for example on all sundays and feast days, after contact with n dead body, after return from abroad, after neglect of any formality on the part of a priest in the discharge of his functious In all these cases baptism is performed by total immersion in rumning water, but during the five dayg' baptismal festival the rita is olserved wholesale by mere sprinkling of large masses of the faithful at once. The Mandxans observe also with toments of bread (pehti) and wine (mamlúgi, lit. "fountain") a sert of eucharist, which has a special sanctifying efficaecy, and is usvally dispensed nt fextivals bunt only to baptized persons of good repute who have never willingly denied the Mandean faith. In receiving it the communicant must not touch tha host with his fager ; othcrwise it loses its virtue. The hosts are madd by the iriests from unlearened fine flour. A peculiar act of piety is for a layman under the guidance of the bishop to recive tha massektha ("eleration"), and thereby become a sort of ascetic, a shalmání tubả ("really prrfect"). The Mandean places of worship, being designed oniy for the priests and thcir assistants, are excessively small, and wery simply furnished; two windows, a door that opens towards the south so that those who enter have their faces turned towarls the pole star, - few boards in the corner, and a gabled roof complete the whole structure ; there is neithor attar nor decoration of any kind. The neighbourhood of running water (for baptisms) is essential. At the consecration of a church the sacrifice of a dove (the bird of Venus) has place among the ecrenionies. Besides Sandays thera are six great feasts: (1) that of the New Year (Naurizz rabbi), on tha first day of the first mouth of winter; (2) Dehwi h'nina, the annizersary of tha happy return of Hibil Ziva from the kingdom of darkness into that of light, lasting fire days, beginning with the 18 th of the first month of spring; (3) the Marwáni, in com. memoration of the druwned Egyptians, on the first day of the second mionth of spriog; (4) the great five days' baptismal festival (pantshi), the chief feast, kept on the five intercalary days at the end of the seeond month of sumi-er, - -during its continuance every Mazdrean, male and remale, must dress in white and hathe thrice daily; (5) Dehwá d'daimíná, in hooour of one of tha three hundred and sixty -Uthras, on the first day of the second nionth of autumn; (6) Kanslic Zahli, the preparation feast, held on the last day of the year. There are also fast days called m'battal (Arab.), on which it is forbidden to kill any living thing or eat fleslh. The year is solar, and has tirelvo months of thirty days cach, with five intercalary days between the eighth and the nintli month. Of the seven days of the week, next to Sunday (habslavid) Thurstay has a special sacredncss as the day of Hibil Zivi.. As regards sccular occupation, the present Mandaxans are geldstriths, iron wrorkers, and house and ship carpenters. They irractise polyganys, the Sidrd Palbid laying preat stress upon the Yuty of procreation, but few of tham are rich encurh to maintain more than two wives. In the 17 ths century, according to the old travellers, they numbered nbout 20,000 families, but at the present day they hardly number more than 1200 souls. In external eppearance the Mandxan is distinguishod from the aroelent only by a brown coat and $a$ a $u$ titi-cotoured headeloth with a cord twisted
round it. They hava some peculiar death-bed rites: a acaron ewer some attendants waits upon the dying, and as death approach administers a bath first of warn and afterwanis of cold water ; n holy dress, consisting of seven preces (rastá), is then put on ; th fect are directed torisrds the north and the hear turned to the sonth, so that the body faces the pole star. After the burial a funeral feast is held in the hoose of mourning.
The Mandwana are otrictly reticent about their therlogical dog. mas in the presence of strangers; and the kuowledge they actually possess of these is extremely small. The foundation of the systen is obviously to be sought in Guosticism, and more particularly in the older type of that doctriue (known from the serpent symbol a: Ophite or Naassene) which obtained in Mesopotamia and Further Asia generally. Bat it is equally plain that tho Ophite nucleus has from time to time received very nemerous and often curi ously perverted accretions from Babylonian Judaism, Orientaj Christiannty, and Parsism, exhibiting a atriking example of religious syncretism. In the Gnostic basis itself it is not difficuit to recognize the gencral features of the religion of ancient Baoy lonia, and thus we are brought zearer a solution of the problem as to the origin of Gnosticism in general. It is certain that Bebylonia, the seat of the present Mandæans, must be regarded also as the cradle in which their system was reared; it is impossible to think of them es coming from Palestine, or to attribute to their doctrines a Jewish or Christian origia. They do not spring historically from the disciples of John the Baptist (Acts xviii. 25 ; six. 3 sq.; Rccog. Clem., i. 54) ; the tradition in which he and the Jordan figure so largely is not original, and is therefore worthless; at tha eame tiune it is true that their baptismal praxis and its interpretation place them in the aame religious group with the Hemerobaptists of Eusebius (H. E., ir. 22) and Epiphanius ( $H \not{ }^{2}$., xrii.), or with the sect ofdisciples of John who remained ayart from Christianity. Their reverence for Johll is of a piece with their whole syncretizing attitude torards the New Testament. lucleed, as has been seen, they appropriate the entire personale of the Bible from Adam, Seth, Abel, Enes, and Pharaol. to Jesus and John, a phenomenon which bears witness to the clos6 relations of the Mandæan doctrine, at the time of its formation, both with Judaism and Christianity, -not the less close because they were relations of hostility. The history of religiou presents other examples of tha degradation of holy to demonic figures on occasion of religious schism. The use of the word "Jorlan," even in the plaral, for "ssecred Tater," is precisely similar to that ly the Naassenes described in the Philosophnuncrace ( r .7 ) ; thene
 which pervades the world of light. The notions of the Egyptian: and the Red Sea, according to the same work (v. 16), are used bi the Yerate much nis by the Mandreans. And the gosition ansignec by the Sethians ( $\sum_{\eta} \theta_{1}$ avot) to Seth is precisely aimilar to that given by the Mandæans to Abel. Both alike are uncrely old Babyloninn divinities in a new Biblical garb. The genesis of Mandæism and the ofder gnosis from the old nud claborate Pabylonio-Chaldiean religion is clearly seen also in the cact that the names of the old pantbeon (as for cxample those of the planetary divinities) nre retained, but their holders degraded to the pesition of demons, -a conclusion confirmed by tha fact that tha Mandreans, like the allied Ophites, Peratæ, and Manichæans, certainly have their original seal in Mesopotamia and Babylonia. Great caution is necessary, in the present stata of our knowledge, in the use made of the results of cuneiform decipherment in relation to Pabylonian mythology ; but so nuuch seems clear, that the trinity of Anu, Dil, and Ea in thic old Babylonian religion has its counternart in tho Mandean Pira, Ayar, nud DÍná rabbá. The D'múthá of Máná is the Dankina, the wifo of Ea, mentioned by Danıascius as $\Delta$ aúk Mandá d'hayyé and his image Hibil Zivi with his incaralions clearly cerrespond with the old Babylonian Marduk, Mero. dach, the "first-born" son of Ea, with his incarnations, this chief divinity of the city of Bahylon, the mediator and re. deemer in tha old religion. Hibil's contest with darkness has its protutype in Marduk's battle with choos, the dragon Tiamat, which (another striking parallel) partially swallows Marduk, just as io related of Hibil and the Manichæan primal man. Other featurcs are horrowed by the Mandiean mythology under this head from the well known cpos of lstar'a desccissus ad infcros. The sanctity with which water is invested by the Mandæans is to be explained by this fact that Ea has his seat "in the depths of the Torld sca."
Compare K. Kessler"s articlc "Mandäer "in Herzor-Plit's Real-creyllopädie, snd the same author's paper, "Ueber Gnosis ualtbabylonlscle Relligion," in the Alhandh. d. funglen internationalen Orientalisten-congresses zu Berlin (scrun 1882).
(K. K.) situated about 2 miles from the left banl: of the Irawaci river, in $21^{\circ} 59^{\prime} \mathrm{N}$. lat. and $96^{\circ} \mathrm{S}^{\prime} \mathrm{E}$. long. It was founded by the king of Burmah, who trausferred to it the seat of government from Amarapura in 1860. The cits proper is laid ont.in a square, each side of which is a little over a mile in length. It is enelosed by a creuel.
nuted brick wall 26 feet ligh and 3 feet thick; the twelvo gates (three on each side) are surmounted with wrooden Watcl-towers. $\Lambda$ deep wet moat, 100 feet broad, with its cscary 60 feet from the walls, extends along all four sides ; it is crossed by five bridges. The palace of the king occupies the central space of the city; the walls of its enclosure are laid symmetrically with those of the city, and cach face is about 370 yards in length. The onter fence consists of a stockude of teak-wood posts 20 fect high, and within it are three successive enclosures, bounded by brick walls. The palace is bult within the inner enclosure; aud its front, which faces the east, contaius the great hull of audience, 260 feet lons, composed of teak timber, claborately carved and gilded, erected on a terrace of lorickwork 10 feet high. It is in the form of a colonnade, the central part rupning back, forming a uare with $t$ wo sido aisles. At the extremity of this navo is a spaco like a clancel (said to be the exact contre of the city) where stands the throne, over which rises a graceful gilded spire, visible from all parts of the city and surrounding country. Another feature of the complex palace buildings is the lofty camparile. Around the palace walls a wide space has been laid out as an esphnade, on the further marsin of which are situated nost of the houses of the princes, ministers of state, and court oficials. The city may be said to consist of two parts, intramural and extramural; the strects in the former run parallel with the walls, dividing the building sites into rectangular blocks. The majority of the loouses are constructed of Damboos and bamboo matting, slightly raised from the grouud on posts, with here and there a few brick and wooden buildings. The streets iaside the city are very wide, the principal ones being lined with tamarind trees. In the suburbs the roads are laid out with something of the same regularity as in the city, but aro of less width, with the exception of the principal road, the Kuladan or foreign quarter, inhabited chiefly by Armenians, Mughals, and the few European residents. The number of houses in the city and suburbs is said to be, in round numbers, 12,000; and the population is roughly estimated at 65,000 . Monasteries and pagodas are dotted about in open spaces, both within and without the walls. Silkweaving is the principal manufacture.

## Sco Fytcho, Burma Past and Prcsent, 1878.

MANDAMUS, Writ of, in English law, is usually deseribed as a high prerogative writ, containing a command in the mame of the king, and issuing from the King's Bench, directed to persons, corporations, and inferior courts, ordering them to do a specific act within the duty of their office. Direct orders from the sovereign to subjects commanding the performance of particular acts were common in early times, and to this class of orders mandamus originally belonged. It became customary for the Court of King's Bence in cases where a legal duty was established but no sufficient meens existed for enforcing it, to order performaace hy 'this writ. At all times, accordingly, mandamus has been regarded as of the nature of an equitable interference supplementing the deficiencies of the common law. When the object sought could be equally well obtained by other means, as by an action, or by any other form of proceedings, then mandamus would not lie. A further condifion of mandamus at common law was that it lay ooly for the performance of acts of a public or official character. The enforcement of merely private obligations, such as those arising from contracts, was not within its scope. Further, the interference of the conrt could only be obtained when there was no doubt of the existence of the duty, or when performance had been demanded and refused. Nor would the writ Le issued when perforonance had become impossible. By the Common Law Procedure Act, 1854 , the plaiatiff is any
action other than replevin and cjectarent was cantitled to claim a writ of mandamus to compel the defenclant to discharge any duty in' which the plaintiff might show that he was personally interested, or from the non-performance of which be might sustain danage. The duties so enforceable must, however, be of a public character. By tho Judicature Act, 1873, a mandamus may bo granted Ly an interlocutory order of the court in all cases in which it shall appear to the court to be just and convenient, and subject to such terms and conditions, if any, as the court shall think just. Under this scction it has been held that the court (which now includes what.was formerly the Court of Chancery) las power to issuo a writ of mandamus in any cause or naatter pending before it, but when the cause is at an end the power is gone. And it lias also heen held that, when the circumstances are such as would form ground for an application for the old prerogative writ of mandamus, the application must be made to the Queen's Bench division, which has taken the place of the Court of Queen's Bench on the old systcm. The jurisdiction of the Court of Clancery to compel specific nerformance of contracts has some resemblance to mandamus in the domain of semi-public law. For a collection of the cases in which the prerogative writ of mandamus will or will not lie, reference may be made to Tapping On MFandamus, and to Selwyn's Nisi Prís, art. "Mandmus."
The writ has massed into the lav of the Unitecl States. "Thero is in the feleral judiciary an crnploynent of the writ substantially as the old prerogative writ in tlic King's Lenclı practiee, also as a moile of exercising appellate jurisliction, also as a procecting ancillary to a julgineut previously reudered, in excrcise of original jurisdiction, as when a circuit court having rendered a julgment against a county issues a mandamus requiring its officers to lery a tax to provide for the praynent of the judgment." And in thio various States mandanus is used under varying regulations, mandate being in some eases substitutel as the name of ine proceeding. See Abbott's Law Dictionary.

MANDATE (Mandatuni). The contract of mandatum in Roman law was constituted by one person (the mandatarius) promising to do something gratuitonsly at the request of another (the mandator), who undertakes to indemnify him against loss. The jurist distinguished the different cases of mandatum according as the object of the contract was the benefit of the mandator or a laird person singly, or the mandator and a third person, the mandator and the mandatarius, or the mandatarius and a thirid person together. When the benefit was that of the mandatarius alone, the obligations of the contract wero held not to arise, although the form of the contract might exist, the commission being held to be mertly advico teudered to the mandatarius, and acted on by him at his own risk. Mandatum was classified as one of the contracts established by consent of the parties alone; but, as there was really no obligation of any kind until tho mandatarius had acted on the-mandate, it has with more propricty been referred to the contracts created by the supply of some fact (re). The obligations of the mandatarius under the contrict were, briely, to do what he had promised according to his instructions; observing ordinary diligence in taking care of any property entrusted to him, and handing over to his principal the results of his action, including the right to sue in his name. On the other hand, the principal was bound to recoup him his expeuscs and indemnify him against loss through obligations he might have incurred.

The essontials and tho terminology of the contract are preserved in most modern systems of law. But in English law mandate, under that namo, can hardly bo said to exist as ? separate form of contract. To some extent the law of mandatum corresponds partly to our law of priacipal and agent, partly to that of lrincipal and surety. Story, disputing tho ossertion that "in the laws of Finclane tho contract of mandatum is of no use," points out that "the common law does not indeed comprehend under that appella tion a! I the contracts of mandate according to the civil law, -sucls
for example, as more nakcil acts of agency, where there is no bailment of anything to the agent. But for the most part the principles applicable to all the various classcs of mandate have a place in our law, although they may be differently namel." The difference, however, is more than one of name. English law in this as in otlicr cases reaches its end by a different method through different priu. ciples from those of tho civil law, thengh the end may be the samo.

Mandate is retained by Story and others to sirnify tho contract more generally known as gratuitoms bailment. It is restricted, as he points out, to personal property, and it implies the delivery of something to the bailee, both of which conditions are unknown in the mandatum of tho civil law. Mandate in this later sense is further distinguished from deposit in that the custody of the thing is the principal object of tho latter contract, while in tho former it is something to be done with respect to the thing, though Story holds that custody and performance concur in both contracts, -this by way of correction of Sir W. Jones's distinction that mandate consists in feasanco and denosit iu custody.
MaNDEVILLE, Bernard de (1670-1733), is generally known as an cthical writer of debasing and degrading tendency, but ho was at least as much of a humorist as a philosepher, and set up as an analyst of "what is," repeatedly disavowing all pretensions as a lawgiver of "what ought to be." Ho was a fereigner by birth, a native of Retterdam, where his futher practised as a 1 hysician for thirty years. A remarkably eloquent schoolboy exercise, De Medicina Oratia Scholastica, was printed for lim at Rotterdam in 1685 . H3 studied for siz years at Leyden, and took his degree in medicine in 1691, his inaugural thesis being De C'hylosi Vitiata. Immediately afterwards he camo over to England "to learn the language," which he did to some purpose, writing it with such mastery as to throw doubts upon his foreign extraction. Ho settled in London as a physician. The Fable of the Bees is the general title of the miscellaneous work by which he is known to fame. This work includes the fable proper, The Grumbling Hive, or Thaves Turned Honesi (some two hundred doggerel couplets, published as a sixpenay pamphlet and pirated as a halfpenny sheet in 1705); Remarkis on the fable and An Inquiry into the Origin of Moral Virtue, added to the edition of $1714 ; A n$ Essay on Charity Schools, and A Search into the Origine of Society, added to the editien of 1723 . Oring to a curious misprint in an edition published after Mandeville's death, a wrong date is cemmonly assigned to the Grumbling Hive, and the contemporary point of it consequently missed. It appeared during tho heat of the bitterly contested elections of 1705 , when the question before the country was whether Marlhorough's war with France should be continued. The cry of the high Tory advocates of peace was that the war was carried on purely in the interests of the general and the men in office; charges of bribery, peculation, hypocrisy, every form of fraud and dishonesty, were freely cast about among the electors. It was amidst this excitement that Mandeville sought and found an audience for his grimly humorous paradox that "private vices are public benefits,"that individual self-seeking, ambition, greed, vanity, luxury, are iedispeasable to the prosperity and greatness of a nation. "Fools only strive to make a great an honest hive." The bces of his fable grumbled as many Englishmen were displosed to do,-""cursed politicians, armics, fleets," whenever there came a reverse, and cried, "Had we but honesty!" Jove at last in a passion swore that lie would "rid the bawling hive of fraud," and filled the hearts of the bees with honesty and all the virtues, strict justice, frugal living, contentment with little, acquiescenco in the insults of cnemies. Straightway the flourishing hive declined, till in time only a small remnant was left; this took refuge in a hollow tree, "blest with content and honesty," but destitute of arts and manufactures. The Grumbling Hive was in fact a political jer d'esprit, full of the impartial mockery that might be expected from a humorous foreigner, and with as much ethical theory underlyiog it as might be
expected from a highly educated man in an age of actiso ethical speculation. The underlying theory was mado explicit in the Remarks and the Inquiry into the Origin of Moral Virtue, published in 1714. But his purpose in d welling on the text that private vices are public benefits was still rather the invention of hnmorous paradoxes than the elaboration of serious theery. Dr Johnson, who owned that Mandeville "opened his views into real life very much," considered that the fallacy of his argument lay in his defining neither vices nor benefits. But such a criticism as this overleoks the hingo on which all Mandeville's paradozes turn. He does define virtne and vice very precisely, in accordance with the current orthodoxy of the time. He "gives the name of virtue to every perfermance by which man, contrary to the impulse of nature, should endeaveur the benefit of others, or the conquest of his own passions, out of a rational ambition of bcing good"; while "everything which, without regard to the public, man should conmit to gratify any of his appetites" is vice. His paradoxical humour has amp? ? scope in tracing how much rice and how little virtue there is in the world, when the terms are thus strictly defined. IIc finds self-lovo (a vice by the definition) masquerading in many virtuens disguises, lying at the root of asceticism, heroism, public spirit, decorous conduct,-at the root, in short, of all the actions that pass current as virtueus. These actions are not virtuous by the definitien, because not performed solely "out of a rational ambition of being goed." "This is the way," Dr Jehnson says, "to try what is vicious, by ascertaining whether mere evil than geed is produced by it on the whole." Mandeville weuld at once lave admitted this, but his defnition com; pelled him, in determining virtue and vice, to consider also the motive. And having regard to the motive, "th" nearer we search into human nature, the more we shall be convinced that the meral virtues ara the pelitical offspriag which flattery begot upon pride." Man, "au extraordinary selfish and headstreng as well as a cuaning animal," has been induced to suberdinate his own appetites to the good of others, by the dexterous management of politicians and moralists, who have worked upon his pride to persuade him that self-indulgence is worthy only of the brutes, and altogether "unbecoming the dignity of auch a sublime creature as himself." When Mandeville, in the 1723 edition of the fable, applied his analysis of self-regarding motives to the institution of charity schools, at that time a highly fashionable ferm of munificence, a great outcry was made against his dectrines; his book was presented to the justices by the grand jury of Middlesex as being of an immoral and pernicious tendency, and a copy was condemned to be burnt by the common hangman. Mandeville's defenco of himself was that his remarks ivere "designed for the entertainment of people of knowledge and education," and that his inquiry could lardly be intelligible except to those accustomed to matters of speculation; and he claimed that he had "diverted persons of great probity and virtue and unquestienable good sense." The truth is that, to be rightly understeed, the prose part of Mandeville's fable mat be read in connexion with Lord Shaftesbury's ethical writings; the intention to ridicule the amiable but somewhat feebly reasoned theories of that moralist is mest apparent in the Search into the Origiz of Society, but niany lurking references may bo detected elsewhera If Mandeville were taken seriously, he would certainly be open to the clarge of conveying the impression that those who restrain their appetites and sacrifice personal interen's for the public good make fools of themselves, and are the dupes of a designing seciety. But his main purpose seems to bave been to entertain himself and ethers at the esnomso of mere serious but less quick-witted theorizers

Besides his political and philosophical parerga, Mandeville wrote, in 1711, a medical treatise, Of the Iypochondriack and Hysterick Passions-their symptoms, causes, and cures. The treatise is in the form of a dialogue, and is "interspersed with instructive discourses on the real art of physic itself, and entertaining remarks oii the modern practice of physicians and apothecaries." In this, with the same eutertaining etyle and clear and subtle judgment, he protests against and ridicults speculative therapentics, and pleads for patient diagnosis and careful ubservation and record of facts. His own theories about the animal spirits and their connexion with "the stomachic ferment" are fanciful enough, but he shows an intinnte acquaintance with the scientific methoda of Locke, and a warm admiration for Sydenham. The Virgin Unmasked; Free Thoughts on Religion, the Church, and National Happiness; An Inquiry into the Causes of the friquent Executions at Tyburn; An Inquiry into the Origin of Honour, and U'sefulness of Christianity in War-are titles of other works of Mandeville; but all that is characteristic of him as a thinker and humorist may be found in the Fable of the Bees.
(w. m.)

MaNDeville, Jefan de, the name claimed by the compiler of a singular book of travels, written in French, and published between 1357 and 1371. By aid of translations into many other languages it acquired extraordinary popularity, while a few interpolated words in a particular cdition of the English version have gained for Mandeville in modern times the spurious credit of being "the father of English prose."

In his preface the compiler calls himself a knight, and states that he was born and bred in England, of the town of St Albans; had crossed the sca on Michaelmas Day 1322; had travelled by way of Turkey (Asia Minor), Armenia the little (Cilicia) and the great, Tartary, Persia, Syria, Arabia, Egypt upper and lower, Libya, great part of Ethiopia, Chaldæa, Amazonia, India the less, the greater, and the middle, and many countries about India; bad often been to Jerusalem; and had written in Romance as more generally understood than Latin. In the body of the work we hear that he had been at Paris and Constantinople; had eerved the sultan of Egypt a long time in his wars against the Bedouins, had been freely addressed by him on the corruption of contemporary Christendom, had been vainly offered by him a princely marriage and a great estate on condition of renouncing Christianity; and had left Egypt under Sultaa Melech Madabron, i.e., Muzaffar or Mudhaffar ${ }^{1}$ (who reigned in 1346-47); had been at Mount Sinai, and had visited the Holy Land with letters under the great seal of the sultan, which gave him extraordinary facilities; had been in Russia, Livonia, Cracow, Lithuania, "en roialme daresten" (1 de Daresten or Silistria), and many other parts near Tartary, but not in Tartary jtself; had drunk of the well of youth at Polombe (Quilon on the Malabar coast), and still scemed to feel the better; had taken astronomical observations on the way to Lamary (Sumatra), as well as in Brabant, Germany, Bohemia, and still farther north; had been at an isle called Pathen in the Indian Ocean; had been at Cansay (Hangchow-fu) in China, and had served the emperor of China fifteen months against the king of Mauzi; bad been among rocks of adamant in the Indiau Ocean; had becn through aus haunted valley, which he places near Millestorach ( $=$ Millescorath, i.e., Malasgird in Armenia) ; had been at many great féats of arms, but had been incapable of performing any himself; had been driven home against his will in 1357 by arthritic gont (deepite the well of

[^188]youth!); and had writteu his bouk as a cousulation for his "wretched rest." The paragraph which states that he had had his book confirmed at Rome by the pop is, how: ever, an interpolation of the English version.

This recital is of itself enough to provole some little questioning, and on investigating。 the sources of the book it will presently be obvious that part at least of the per sonal history of Mandeville is mere invention. Undes these circumstances the truth of any part of that bistory, and even the genuineness of the compiler's name, becoms matter for serious doubt. No contemporary corroboration of the existence of such a Jehan de Mandeville seems to be known. Some French MSS., not contemporary, give a Latin letter of presentation from him to Edward III., but this is so bop-lessly vague that it might have beer penned by any writer on any subject. At Liégc, in the abley of the Guilelmites, now pulled down, there certainly was in the 16 th century a tomb of a man in armour said to be Mandeville; but the old French inscriptiou showed no name, and the arms were quite unlike those of the Mandevilles, earls of Essex; while the Latin inscription, stating that the tomb was Mandeville's, and that be died at Liége on November 17, 1371, is not only apparently much later in atyle, but confounds him with a physician called "ad Barbam," who is said in a printed Latin edition of Mandeville to have met him first at Cairo and again at Liége, and to have persuaded and helped him to write his travels. ${ }^{2}$

Leaving this question, there remains the more complex one whether the book contains, in any measure, facts and knowledge acquired by actual travels and residence in the East. We believe that it may, but only as a small portion of the whole, and that confined entirely to the section of the work which treats of the Holy Land, and of the different ways of getting thither, as well as of Egypt, and in gencral of what we understand by the Levint.

The prologue indeed points almost exclusively to the Holy Land as the subject of the work. The mention of more distant regions comes in ouly towards the end of thas prologue, and (in a manner) as an afterthought. As regards tho writer's claim to have travelled in those more distant regions, it is somewhat astonishing to find that any modern editor could have regarded this as possibly founded in truth. And the apology sometimes made for the book, as only a compilation of what was regarded as truth in the writer's age, is not tenable in the face of the frequent essertion (explicit or implicit) that he had himself been in the remotest regiona spoken of, and had witnessed some of the most marvellous circumstances that he details. To this we shall recur later, for the bearing of these statements can only be appreciated when the true derisation of the matter about the further Last shall have been exhibited.

By far the greater part of these more distant trarels, extending in fact from Trebizond to Ormus, India, the Indian Archipelago, and China, and back again to western Asia, bas been appropriated from the narrative of Friar Odoric (written in 1330). These passages, as served up by Mandeville, are almost always, iadeed, sirollen rith iuterpolated particulars, usually of an extravagant kind, whilst in no few cases tlie writer has failed to understand the passages which he adopts from Odoric and professes to give as his own experiences. Thus ( p .193 ) ${ }^{3}$ in appropriating a passage of Odoric about tortoises

[^189]of great size, seen in Champa, these are described as "snails" ''lynecons, A., limassons, G.) whose shells were as big as cottages.

In another place (p. 209), where Oderic has given a most curious and veracious account of the Chinese custom of employing tame cormorants to catch fish, the cormorants are converted by Mandeville into " little beasts called loyrcs (layre, A.), which are tanght to go into tho water" (the word loyre being apparently used hero for "otter," lutra, for which the Provençal is luria or loiria). Where Odoric, describing the court of the Great Khan, mentions the gennine Tartar custom which forbade any man in entering to set down his foot on the threshold of the door (an etiquette which P. della Valle found still in force at Ispahan in the 17 th century), Mandeville quite fails to naderstand the point (sce p. 220).

At a very carly date the coincidence of Mandeville's stories with those of Odoric was recognized, insomuch that a MS. of Odoric, which is or was in the chapter library at Mainz, begins with the words: Incipit Itincrarius fudelis fratris Odorici socii Militis Mendavil per Indiam; licel hic [read ille] prius et alter posterius peregrinationem suam descripsit. At a later day Sir T. Herbert calls Odoric "travelling companion of onr Sir John"; and Purchas, with most perverse injustice, whilst calling Mandeville, next to Polu, "if next, . . . the greatest Asian traveller that ever the world had," insinnates that Odoric's story was stolen from Manderille's. Manderille himself is crafty enough, at least in one passage, to anticipate criticism by suggesting the probability of his haring travelled with Odoric (see p. 282, and below).
Much again of Mandeville's matter, particularly in Asiatic geography and history, is taken bodily from the book of Hayton, an Armenian of princely family, who became a monk of the Premonstrant order, and in 1307 dictated this work on the East in the Frenck tongue at Poictiers, ont of his own extraordinary acquaintance with Asia and its history in his own time.

It is cnrious that no passage in Mandeville can be plausibly traced to Marco Polo, with one exception. This is (p. 163) where he states that at Ormus the people, during the great heat, lie in water, - a circumstance mentioned by Polo, though not by Odoric. We shonld suppose it most likely that this fact had been interpolated in the copy of Odoric. used by Mandeville; for, if he had borrowed it direct from Polo, he would lave borrowed more.
A good deal about the manners and customs of the Tartars is demonstrably derived from the famons work of the Franciscan Joh= of Plano Carpini (see Cabpist, rol. v. p. 132), thongh possibiy the immediate source for Mandevillo may have been some popuia: compilation. For though the passagea in question are all to be fonnd in Carpini, more or less exactly, the expression is condensed and the order changed. For examples compare Mandeville, p. 250, on the tasks done by Tartar women, with Plano Carpiai, p. $643 i^{2}$ M3ndeville, p. 250, on Tartar babits of eating, witl Plano Carpini p1. 639-40; Dlandeville, p. 231, on the titles borne on the seals of the Great Khan, with Plano Carpini, p. 715, \&c.

The account of Prester John, and all the wonders of his court ind realm, is taken from the famous Epistle of that imaginary potentate, which was so widely diffused in the 13 th century, and created that renome which made it incumbent on every trareller in Asia to assume his existence, and to find some new tale to tell of him. Many fabulons stories again of monsters, such as cyclopes, sciapodes, hippopodes, monoscelides, anthropoplagi, and men whose heads diu grow beneath their slioulders, of the phienix and the weeping crocodile, such as Pliny has collected, are introduced here and there, derived no doubt from the popular versions of Solinus. And interspersed, especially in the chapters about the Levant, are the stories and legends that were retailed to every pilgrim, such as the legend of Seth and the grains of paradise from which grew the wood of the cross, that of the shooting of old Cain by Lamech, that of the castle of the sparrow-harks (which appears in the tale of MeInsina), those of the origin of the balsam plants at Matariya, of the dragon of Cos, of the river Sabbation, \&c.

Even in tlaat part of the book which may be admisted with prob. ability to represent some genuine experience, there are distinct traces that another work has beca made use of, more or less, as an aid in the compilation, we might almost say as a framework to fill up. This is the itinerary of the German knight William of Buldensele, Written in 1336 at the desire of Cardinal Talleyradd de Perigord. ${ }^{2}$ A cursory comparison of this with Mandeville leaves no donbt of the fact that the latter has followed its thread, using its suggestions, and on many subjects its expressians, though digressing and expanding on every side, and too often eliminating the gingular good sense of the German traveller. After such a comparison we may indicate as examples Boldensele's acconnt of Cyprus (Maadeville, p. 23, and p. 10), of Tyre and the coast of Palestine 'Mandeville, 29, 30, 33, 34), of the journey from Gaza to Egypt (31),

Viz., in D'Arezac's ed. in tom. ir. of Rec. de Voyages et de Vémoires, pub. by sbe Soc. de Géog., 1839
${ }^{2}$ It is found in the Thesaurus of Cantsius, 1 CO t, v. pt. ii. p. 95 , and la ed. of
passages about Babylon of Egypt (40), about wecen (42), tho general account of Egypt (85), the Pyramids (52), some of the particular wonders of Cairo, such as the slave-market, thie chicken-hatching stoves, and the apples of paradise, i.e., plantains (59), the Red Sca (57), the convent on Sinai (58, 60), the account of the church of the Holy Sepulchre (74-76), \&c. 'like followiug may be quoted as a specimen, showing how Mandeville has at once followed Boldenscle and deviated from his good sense:-

Boldensele (ca. Bamage, p. 342).
Manderille (p, B2).
"Sunt phara antlquorum moumenta, "Now also I ahsll srisk of another figure pyramidolls, inter quæ sant doo thing... that Is to ay of the Garners mira magnltudiais et altitadinis, de of Josepp, that $\%$ caused to be made. maxlmis lep! 'ibus et politis, in quibus :. And the s be mude of otone, full inveni scipturas diversorum datomatum. well made of mason's sraft: of which

Dicunt simplices hoce maxima two be marrellously great and high, monumenta fulsse granarta Pharnonis, and the other is not bo great. . . . Aind et sic ea appellant, quod verum hullo above the Gamers, without, be many modo est; qula nee ad imponendam scrlptures of divers languages. And nec ad servendam annonam . . . locus aome say that they are sepulchres of in lpsis pyramidibus uptus deprehendirur great Lorda . . . but that ia not true for all the common rumour ond speech is ... , that they be the Guiners of Joscph."
It will be secn from these inarations, ana more particularly from the specific analysis given below, that there is only a small residuum of the hook to which gentrine character, as containing the experiences of the author, can possibly be attributed. Yet, as lias been intimated, the borrowed stories are frequently claimed as such experiences. We have already alluded to Mandeville's clriun (p. 4) to hare visited distant parts of Asia; to have drunk of the Foun tain of Youth, a favourite medieval fable whicl he interpolates in Odoric's account of Malabar (169); to his assertion that he had risited Lamary (Sumatra), and indeed that he had gone beyond it to $33^{\circ} 16^{\prime}$ of S . lat. (181-32) ; and that he had heen at a certain other island in the Indian Archipelago (190). He alleges also that he had witnessed the curious exhibition of the garden of transmigrated souls (described by Odoric) at Cansay, i.e., Hangchow-fu (211). He and his fellows with their valets liad remained fifteen nonths in serrice with the emperor of Cathay in his wars against the king of Manzi, -Manzi, or Southern China, having ceascd to have any existence as a separate kingdom some seventy ycars before the time referred to. Similar false statements are found at pp. 219, 235, 248,271 . But the most notable of these passages oceurs in his adoption from Odoric of the story of the Valley Perilous (232). This is, in its original form, apparently founded on real experifaces of Odoric viewed through a haze of excitement and superstition. Mandeville, whilst swelling the wonders of the tate with a rariety of extravagant touches, appears to safeguard himself from the reader's possible discovery that the tale wes stolen by the interpola. tion: "And some of our fellows accorded to enter, and some not. So there were with us two worthy men, Friars Minor, that were of Lombardy, who said that if any man would enter they would go in with us. And when they had said so, upon the gracious trust of God and of them, we caused mass to be suag, and made every man to be shriven and housclled; and thea we eatered, foarteen persons bnt at our going out we were but nine," \&c.

In referring to this passacge it is only fair to recognize that the description (though the suggestion of the greatest part exists in Odoric) displays a good dea! of inaginative power ; and there is much in the account of Christian's passags through the Valley of the Shadow of Death, in Bunyan's famous allegory, which indicates a possibility that John Bunyan may have read and remembered this episode either in Mandeville or in Haklayt's Odoric.

Such a passage, bowerer, as that which we rectutly quoted, and which appears to exist in all the MSS. and versions that have been examined, leaves no soon for the rehrbilitation of Mandeville's character as recards conscious mendacity. But it does not neces. sarily follow that the whole work is borrowed or fictitious. There are other examples in medieval works of travel in which fiction has been linked to true experiences. Even the great Moorish traveller Ibn Batuta, accurate and veracions in the main, seems, in one part at least of his narrative, to invent experiences and in such works as these of Joha of Hese and Arnold von Harff we have examples of pilgrims to the Holy Land whose narratires begin apparently in sober truth, and gradually pass into flourishes of fiction and extravagance. So in Mandeville also we find various particulars which we are uaable to trace to other writers, and which may therefore be, provisionally at least, assigned to the writer's own experience, or to knowledge acquired by colloquial intercourse in the East.

It is difficult to decide on the character of his statemente as to recent Egyptian bistorg. In his account of that country (pp. 37, 38, thongh the series of the Comanian (i.e., of the Bahri Mameluke) sultans is borrowed from Hayton down to the accession of Melechnasser, i.e., El-Malik el-Násir Mohammed ibn Kaláún, whe came first to the throne in 1299, Mandeville appears to speak from his own knowledge when he adds that this " Melcelnasser reigned long and governed wisely." In fact, though twice displaced in the early part of his life, Malik Náșir reigncel till 1341. a daration un.
aralleled in Mohammedan Egypt, whilst we are told that during. ;he last thirty ycars of his reiga Egypt rose to a high pitch of wealth and prosperity. Mandeville, however, then goes on to say that his eldeat son Melechomader was chosen to succeed, but this prince was caused privily to be slain by his brother, who took the kinglom under the name of Melechmadabron. "And he was Soldan when I departed from those couotriea." Now Malik Náșir Mohammed was followed in succession by no less than eight of his $80 n 9$ in thirteen years, the first three of whom rigned in aggregate only a few months. The names mentioned by Mandeville appear to represent those of the fourth and sixth of the eight, viz., El-Malik el-Şálih 'Indadu-d-din, and El-Malik el-Muzaffar Zainu-d-din Hájj; and these the statements of Mandeville do not fit.

Among particulars which seem to snggest personal knowledge may be instanced the very good description of the Bedouina (p. 64 ), starting from that of Boldensele, but largely and accurately cxpanded; the use of carvier pigeona in Syria (p. 118) ; the intimation that the Red Sea was frequented by Venetion merchants trading with India ( $\mathrm{p}, 140$ ). There are some other particulars Which the author can hardly have witnessed, but which may passibly have been heard in communication with other travellers (if not borrowed fiom some untraced source). Such are the practice of polyandry in a certain island (p. 287), and the rite of fraternal adoption between two persona by drinking cach other's blood (195). The mention of Ani in Armenia with its thousand churches (148) is probably derived from some book; the city and its thousand churches are mentioned by William of Rubrouck.

On several occasiona the writer indicates some acquaintance with Arabic, though the words are not always recognizable, owing perhaps to the carelessness of copyista in such matters. Thus (p. 142) he gives the Nohammedan confession of faith as La cllet ella Machometh rores alla (Rosel-alla, A.) (Lá iláha illá 'lláh Muhamma. dun rasulu 'lláh) ; ( p .50 ) the Arahic names of the wood, fruit, and sap of the balsam plant; (p. 99) the name of bitumen, "alkatran" ( al-Katrqu) ; ( p .131 ) three titles of the Koran, viz., "Alkoran," "Meshaf" (i.e., mishaf, "written sheets or pages," "a copy of the Koran"), and Hiarme (i.e., harain, in the sense of "sacred, inviolable"); (p. 168) the namcs of the three different kinds of pepper (long pepper, black pepper, and white pepper) as sorbotin, fulful, and bano or bauo (fulfull is the conmon Arabic word for pepper, the others we cannot explain with any confidence); (p. 192) the name of the clephant (but in A. this runs: Et apelle on la les oliphans vaches).
Mandeville again, in some passages (and especially in one which is familiar from its being cited by Dr Johnson in the preface to his dictionary) shows a correct ides of the form of the earth, and of position in latitude agcertained by observation of the pole star ; be knors that there are antipodes, and that if ships were sent on voyages of discovery they might sail round the world. And he tells a curious gtory, which he had heard in his yonth, how a worthy man did travel ever eastward until he came to his own country again ( p . 183). But on the other hand he repeatedly asserts the old belief that Jerusalem सras in the centre of the world ( 79,183 ), whilst he maintains in proof of this that at the equinox a spear planted erect in Jerusalem casts no shadow at noon, which if true would only show that the city was on the equator.

Brief Analysis,-Prologtte. Chaps. 1.-1ll. The way to Constantinople; the wooders and holy places there: the Greek islands, Greek Church, \&c. Chaps. ir, -V . Constantineple asd The Sinal desert and convent (these two chapters en the and Babylen ef Eqypt, the sinal desert aad convent (these two chapters en the lines of Beldensele : auccession of Ayublte aod memeluke oultans frem Hayten). Cbups. V. - . Palestine and the holy places (the moot original part of the work, but based occasienally on Boldensele). Chap. xi. Sylla, varioua foutea frem Western Europe; descriptioa of Tartary (the ateppe ceuotiy about tbe Velga,
very good, though expressly not from persoal experleoce). Chap. xil. On the very good, though expressiy not from persoan experteace). Chap. xil. On the Saracens and their religion, Mobammed, dec. (partly besed on Boldenaele).
Chap. zlit. Countrles of Asia and Africa; Jeumey to tha East from Trebizood (this and on to chap. $x x$. Incluslve is all based on Odoric, with interpolations adlibitum). Chep, xis. The Great Khas; bbe history of Jengblz and bis aucadlibilum). Chap, x. With something trom Plano Carplnf). Cbap. axll. The cessorg (from Eayteo, with something from Plano Carpinf). Cbap. axif. The
court and splendour of the khan, hia poper-menay, \&c. (frem Odoric). Chep. court and aplendour of the khan, hia poper-meney, \&c. (frem Odoric). Chap,
xxifl. Customs of tha Tartorg, dec. (chlefly from Plano Carplni). Chap, zxis. Ceuntries of Asia sliertly described (from Hayten). Chap, xxvl. The Iamb-plant (from Oderic), with much added abeut Alexander and the aluut-up aatlons, griftins, afd other mensters. Chap, xxvil. The royal estate of Prester Jehn (chlefly frem the "Letter" el Prester John, with something frem Hayton); the Old Dian of tha Denntain (frem Oderlc). Chap. xwvil. The Valley Perdeus (from Oderlc, with laventlens), followed by a quentity of fabulous geography of mLxed and uncertain origin. Chepg. xxix., xax. Similar hetchpotch contiaued (frem tbe remance of Alcasnder, tha letter of Prester Jobn, Plinian fables, dc.). Cbap. Ixsi. The return journey from Cathey, \&c. (from Odorlc). The epllogue.
The oldest known MIS. of the original is the earl of Ashburnham's MS. Libri xxiv., dated 1371, but nevertheless very inaccurate in proper names. The English version was made, at least as carly as the beginning of the 15th century, from a Freach MS. defcetive bctween p. $361^{\circ}$. 7 ("And there") of Halliwell's edition and p. 62 1. 25 ("And that Valey"), and is repreacnted in this etate by nearly every known English MS. It was completed and reviscd by tro independent cditors, neither of them later than the first quarter of the 15 th century. One of these revisions is represented by the British Musoum MS. Egerton 1982, and the very badly abbrevisted

Bodleian MS. O Mus. 116. The other is represented by the British IIaseum MS. Cotton Titus C. xvi. The first printer edition of the English version is apparently the undated edition of Pynson, which gives the version in its original defective shape. So do Wynkyn de Worde's edition of 1499 and eleven editions before 1725 , except that they insert a paragraph seemingly abbreviated from the revision represented by Cotton Titus C. xvi. This latter revision was, horever, followed in full by the editions of 1725 and 1727, and is, in Malliwell's editions, the teat now current. The other revision seems never to have been printed.
That none of the forms of the English version can conceivably be from the same hand which wrote the original work is made patent to any critical reader by their glaring errors of translation, but the form now current asserts in the preface that it was made by Mandeville himself, and this assertion has been taken on trust by almost all modern historians of English literature. The words of the original " $j c$ eusse cest lirret mis ea latin . . . . mais . je l'ay mis en rōmant" were mistranslated as if " je eusse " meant "I had "instead of "I should have," and then (whether of fraudulent intent or by the error of a copyist thinking to srpply an accilental omission) the words were added "and translated it azen out of Frenache into Englyssche." Schönborn and Mätzner respectively seem to have been the first to show that the current Latin and English texta cannot possibly have been made by Mandeville himself. Dr J. Vogels states the same of unprinted Latin versions which be has discovered in the British Museum, and he has proved it as regards the Italian version.
The terseness, the simplicity, and the quaintness of the English version, together with the curiosity of the subject-matter, will always make it delightful reading; but the title "father of English prose," Which in its stricter sense already belonged to King Alfred, must in its looser senso be now transferred to Wickliffe.

See Schöoborn's Bibliographische Uritersuchungen uber die Reise-Beschreibung des Sir John Mandeville, Breslau, 1840; Mätzner's Altenglische Sprachproben, I. is. Pp. 254-55; letters by E. B. Nichelson in The Academy of Nevember 11, 1876, and February 12, 1881; Vegeis, "Dus Verhaltaiss der italiealschea Versioo der Reisebeschreibugg Mandeville's 2 ur französisclien "In a Festschrift, dem Gymnasium zu Moers zur Feier seines 300 jährigen Bestehens gewidme vom Lehrer. Collegium des Civefelder Gymnasiums, Bonn, 2892, aod his lerthcemlng" Hsodschriftliche Untersuchungen iibar'Manderille's Relsebeachreibnng, "io Volimëller's Remanische Ferschungen; also for tha bibliegraply, of editions and traoslatioos, ap to 1867, Tebler's Bibliegraphia geographica Palæstinæ. See also Iule's Ca!hay and the Way Thither (Hakluyt Seciety), 1, 27, 23, on the soarces of the beek. At least two critical editions are understeod to bo io preparatioo-by Vogels (Freoch and Eaglish), oncl by Jichelaat (Erench, for the Societed de lorieot Catin). On a Freoch Lapidaive and ether werks attributed to Mandeville see Pannier' Lapidaives frangais du meyen áge, Paris, 1882, pp. 189-204. (E. B. N.ーU. Y.)

MANDI, a native state in the Punjab, India, lying between $31^{\circ} 23^{\prime} 45^{\prime \prime}$ and $32^{\circ} 4^{\prime}$ N. lat., and between $76^{\circ} 40^{\prime}$ and $77^{\circ} 22^{\prime} 30^{\prime \prime}$ E. long., and bounded on the $N$. and E. by Kullu, on the S. by Suket, and on the W. by Kángrá. The country is very mountainous, being intersected by two great parallel ranges, reaching to an average heigh: of from 5000 to 7000 feet above sea. The valleys between the hill ranges are very fertile, and produce all the ordinary grains, besides more valuable crops of rice, maize, sugarcane, poppy, and tobacco. Salt-miaes contribute about one-third of the state revenue. Iron is found in places, and als gold in small quantities. The area of the state is estimated at about 1200 square miles, and a census in 1881 gives the population as $147,01 \%$. The chief, a Rajput by caste, enjoys an approximate income of $£ 36,500$, and the state pays a tribute to the Britisn Government of $£ 10,000$ a year. Mandi town, the capital, is situated on the Biás, in $31^{\circ} 43^{\prime} \mathrm{N}$. lat. and $76^{\circ} 58^{\prime}$ E. long.

MANDINGOES, otherwise kcown as WaNGARAWA, Malinkes, or Wakore (the last probably their primitive designation), are one of the mose widely distributed and important peoples of Western Africa to the north of the equator, and perhaps form the best representatives of the Negro stock. The country of Manding, from which their ordinary name is derived, is a comparatively small district on both banks of the Niger, about the intersection of $12^{\circ}$ N. lat. with $9^{\circ}$ E. long. A Mandingo empire, usually called after Mali, the chief iown, which atood on the bank of the Niger to the north of Buré, was founded by a certain prince Baramindana or Baramangole in the 12th century ; and its porrer mas gradually extended till, in the rgign of Mansa Musa (1311-31), Songhai, Timbuctoo, and, in fact, the whole of the Sudau with the exception of Geune
on the Niger, were more or less thoroughly subjugated. Timbuctoo finally fell iuto the hands of the Berbers about 1433; but Mali remained a leading state and its capital a great commercial centre till the beginning of the 16 th century, when Omar Askia, prince of Songhai, captured the city. The Mali dynasty was a Mohammedan one; and, though aome sections of the Mandingo race are still pagans, the greater number are ardent supporters of Islam. Of the preseut grouping and relations of the states in which they are the dominant element detailed information does not exist; but, such accounts as those of Benjamin Anderson (Journey to Muscurdu, the capital of the IVestern Mardingoes, New Yerk, 1870) show that some of them are possessed of a considerable share of barbaric civilization. According to Dr Quintin, the leading areas of Mandingo occupation are the country watered by the great headstreams of the Senegal (the Faleme, the Baing, de.), the district to the south of the lower course of the Gambia, and the coast region of Susu to the morth of Sierra Leone. The Mandingoes are generally tall and strongly built; black in complesion, and harsh and ugly in features, but with a spirited and intellectnal expression. They are great traders, work iu irou and gold, weave cotton cloth, tan excellent leather, and regularly cultivate a considerable rariety of crops-rice, cotton, tobacco, kola, potatoes. Their clay-built walled towns often contain $\$ 000$ to 10,000 inhabitante, and rillages and hamlets are thickly scattered - ver the country.

Besides Park's Travels (in which the Mandingoes play a prominent part) see Barth, Travels in Central Africa, and Dr L. Quintin, "Etude ethnogr. sur les pays entre le Sénégal ct le Niger," in Bull. de la Soc. de Glogr., Paris, 1881.

MANDLA, a district in the chief commissionership of the Central Provinces, India, lying between $22^{\circ} 14^{\prime}$ and $23^{\circ} 22^{\prime}$ N. lat., and between $80^{\circ}$ and $81^{\circ} 48^{\prime} \mathrm{E}$. long., is bounded on the N.E. by Rewah state, on the S.E. by Bilaspur, on the S.W. by Balaghat, and on the W. by Seoni and Jabalpur. It has an area of 4719 square miles, and the headquarters are at Mandls town. The district consists of a wild highland region, broken up by the valleya of numerous rivers and streams. In the lower ralleys there is abundance of rich black cotton soil, while in the less faroured valleya a light friable soil is fonnd. The Nerbudda river flowa through the centre of the district, receiving severai tributaries which take their rise in the Maikal Hills, a range densely clothed with sal forest, and forming part of the great watershed between eastern and mesteru India. The loftiest mountain is Chauradadar, abont 3400 feet high. Tigers and wild beasts abound, and the proportion of deaths caused by wild animals is greater in Mandla than in any other district of the Central Provinces.
The census of 1872 disclosed a population of 213,018 (males, 110,473 ; females, 102,545). The aboriginal or hill tribes numker more strongly in Manda than in any other district of the Central Provinces, the Gonas being alone returned at 113,300 . Mandla town, with a population of 4936 , is the only place in the district with upwards of 2000 inhabitants. Of the total area of 4719 square miles, 556 were returned in 1881 as cultirated, and 2530 ns cultivable. In the same year 54,431 acres were deroted to tha production of rice, and 75,196 to wheat, while other food grains occupied 199,062 acres. Fibres and sugar-cane are produced in considerable quantities. The magnificent sal forests which formerly clothed tho highlands of the district have suffered greatly from the nomadic system of cultiration practised by the hill tribes, who cut down and burn the wood on the hill-sides, and sow their crops in the ashes. Of late yenrs, however, measures have been taken to prevent further damage to the forests. The only local manufacture consists in the wearing of coarse cotton cloth. The total gross revenne of the district in 1881 was returned at $£ 21,398$, of which 88999 was derived from the land. There are 46 Government and nided schools. The cost of officials and police mas $£ 6396$. The district has a bad reputation for ferer
MANDOLINE. So Lute.

MANDRAKE, Mandrajora officnarum, L.; of the potato family, order Solanacex, is a natire of Spain, Sicily, Crete, Cilicia, Syria, \&c., and North Africa (Benth. et Hook., Gen. Pl., ii. p. 900 ; and DC., Prod., xiii, p. 466). It has a short stem bearing a tuft of ovate leaves, with a thick fleshy and often forked root. The flowers are solitary, with a purple bell-shaped corolla. The fruit is'a fleshy orange-coloured berry. The mandrake has been long known for its poisonous properties and supposed virtues. It acts as an emetic, purgatire, and narcotic, and was much csteened in old times; but, except in Africa and the East, where it is used as a narcotic and antispasmodic, it has fallen into disrepute (Pickering's Chron. Hist. of Plants, p. 247). In ancient tinnes, according to Isidorus and Serapion, it was used as a narcotic to diminish sensibility under surgical operations, and the same use is mentioned by Kazwini, i. 297, s.2. "Luffah." Shakespeare more than once alludes to this plaut, as when Banquo in Macbeth says-"Or hare we eeaten of the insane root that takes the reason prisoner ?" and again in Antony and Cleopatra-"Give me to driuk mandragora." The notion that the plant shrieked wheu touched, so that those mho desired to pluck it up had to stop their ears with pitch, is alluded to in Romeo and Juliet-"And shrieks like mandrakes torn out of the earth, that living mortals, hearing them, run mad." The mandrake, often growing like the lower limbs of a mas, was supposed to have other virtues, and mas much used for love philtres (Diosc., ir. 76), while the fruit mas supposed, and in the East is still supposed, to facilitato pregnancy (Aug.; C. Faust., xxii. 56; compare Gen. xxx. 14, where the Hebrew D MTY is undoubtedly the mandrake). Like the mallow, the mandrake was potent in all kinds of enchantment (see Maimonides in Chwolsou, Ssabier, ii. 459. and the notes). Dioscorides identifies it with the кıркаia, the root named after the enchantress Circe. To it appeara to apply the fable of the magical herb Baaras, which cured demoniacs, and was procured at great risk or by the death of a dog employed to drag it up, in Josephns (B. J., vii. 6, § 3). The German manie of the plant (Alraune; O. H. G. Alruna) indicates the prophetic porer supposed to bo in little jmages (homunculi, Goldmännchen, Galgenmännchen) made of this root which were cluerished as oracles. . The possessior of such roots was thought to ensure prosperity (See Ducange, s.u. "Maudragora," and Littré.)
Gerard in 1597 (Herball, p. 280) dcsçrihed the male and femala mandrakes. Dioscorides also recognizes two such plants apparently corresponding to the spring and autumn species (1/. vernalis, Bert., and M. officinarum, L., respectively), differing as he says in the colour of the foliage and shape of fruit. © He alludes to the "ridiculous tales" and "doltish dreames" about it merely to scout them. He notes that the root is often 6ingle, or with two to many branchcs. Even in his day, as now, the root of the wild bryony Tas trimmed to represent the human form. miscalled mandrake, and then aold as such $\ddagger n$ the ignorant.

MANDRILL, the name of one of the most remark able, at all events in outward appearance, of the Baboons Cynocephalus maimon or mormon. The general characters of the genus to which it belongs are given in the article APE, vol. ii. p. 152. The word appears to have been first introduced into our literature in a work published in 1744 called A Nero Voyage to Guinea, by William Smith, who in an account of the animals of Sierra Leone describes one "called by the white men in this country Mandrill," but adds, "why it is so called I know not." ${ }^{1}$ Smith gives sufficiently accurate details to show that his animal is not

[^190]that now called Mandrill, but the Chimpanzee. Buffon, however, while quoting Smith's description, transferred the name to the very different species now under consideration, and to that it has been attached ever since.

The Baboons geuerally are distinguished from other Monkeys by the comparative equality of the length of their limbs, which with the structure of the vertebral columa adapts them rather for quadrupedal progression on the ground than for climbing among the braaches of trees. They are also remarkable for the great size of their face and jars as compared with the part of the skull which encloses the brain. The Mandrill, in addition to these characters, is distinguished by the heariness of its body, stoutness aud streagth of its limbs, and exceeding ahortness of its tail, which is a mere stump, not 2 inches long, and usually carried erect. It is, moreover, remarkable for the prominence of its brow ridges, beneath which the small and closely approximated eyes are deeply sunk; the immense size of the canine teeth; the great development of a pair of oral bony prominences on the maxillary boues in front of the orbits, rising on each side of the median line of the face, and covered by a longitudinally-ribbed uaked skin; and more especially for the extraordinarily vivid colouring of some parts of the skin.
The body generally is covered with a full ooft coating of hair of a light olive-brown above and silvery-grey beneath, and the chin is furnished underneath with a small pointed yellow beard. The hair of the forehead and temples is directed upwards so as to meet in a point on the cromn, which gives the head a triangular appearance. The ears sre aaked and of a bluish-black colour. The hauds aud feet are maked and black. A large space around the gteatly developed ischial callosities, as well ns the upper part of the insidea of the thighs, is aaked and of a crimson colour, shading off on the sides to lilac or blue, which, dependiag not upou pigment but upon injection of the superficial blood-vessels, varies in intensity accordiog to the condition of the animal-increasing under excitement, fading during sickncss, and disappearing after death. But it is in the face that the most remarkable disposition of vivid hues occur, more resembling those of a brilliantly coloured flower than what might be expected in the cutaneous corering of a mammal. The cheek prominences are of an intense blue, the effect of which is heightened by deeply sunk loagitudiaal furrows of a darker tint, while the central line and termination of the nose are a bright ecarlet. Notwithstanding the beauty of these colours in themselves, the whole combination, with the form and expression of features, quite justifies Cuvier's assertion that "il scrait difficile de se figurer un être plus hideux que le Mandrill."
It is only to fully adult males that thia description applies. The female ia of much smaller size, and of more slender make; and, thongh the general tone of the hairy parts of the body is the same, the prominences, furrows, and colouring of the face are very much less marked. The young males have black faces. At the age of three the blue of the cheeks begina to appear, and it is not until they are about five, when they cut their great canine teeth, that they acquire the characteristic red of the cad of the nose:
The Mandrills, especially the old males, are remarkable for the ferocity of their disposition, as well as for other disagreeable qualities, which are fully described in Cuvier's account of the animal in La Ménagerie du Muséun d'Histoire Naturelle (1801), but when young they can easily be tamed. Liko the rest of the Baboons, they nppear to be rather

[^191]indiscriminate eaters, feading upon fruit, roots, reptiles, insects, scorpions, dc., and inbabit open rocky ground rather than forests. Not much is known of the Mandrill's babits in the wild state, nor of the exact limits of its geographical distribution. The specimens brought to Europe all come from tho west coast of tropical Africa, from Guinea to the Gaboon.

An allied species, the Drill (Cynocephalus leucophxus), which resembles the Mandrill in size, geueral proportions, and shortness of tail, but wants the bright colouring of the face which makes that animal so remarkable, inhabits the same district.
(W. H. F.)

MIANDURIA, a city of Italy in the province of Lecce, 22 miles east of Taranto on the road to Lecce, in the midst of a wide open country. It had 7948 iohabitants at the census of 1871 , is the seat of two pretty important fairs, and contains a spacious palace of the Francavilla family, and a fine old church with campanile and rose window; but the main interest of the place attaches to the ruins of the ancient city in the neighbourhood. The whole circuit of the double line of ancient walls, built of large rectangular stones withont mortar, can still be traced, the outer wall and ditch measuring 23 feet in breadth, and the inner passage with the inner wall about 50 feet. At Scegno, just outside the malls, the risitor may still see the fountain of Mauduria, the level of which, according to Pliny, it was impossible to alter by any drawing out or pouring in of water.
Manduria is first mentioned in connexion with the death of Archidamus, king of Sparta, who perished in a battle fought under its walls in 338 B.C.; and the ooly other fact of importance in its ancient annals is the capture by Fabius Maximus in 209. Though omitted from Pliny'a list of towns in this region, it appears in the Tabula Peutiugeriana. After the destruction of the old town by the Saracens the inhabitants removed to the present site, and the name Casalnooro, which they at first applied to the new settlement, was exchanged by Ferdinand I. for the original Manduria.
MANES. This term, which is clearly euphemistic, meaning "goodies" or "good fellows," was applied by the Romans to the spirits of the departed. As in all nations of antiquity, and in many existing sarage tribes, these spirits were held by them in great awe and reneration, as being powerful for good or for harm. The doctrine, whether imported from the Egyptian tbeology or of Turanian origin through the Etruscan tomb-builders, is closely allied to that of the Greek belief in the existence of the souls of heroes, ancestors, and generally of the "mighty dead," whom they called $\delta$ aipoves, but, of course, in a sense widely different from our notion of demons. Thus in Æschylus the spirits of Agamemnon and of Darius are invoked as סaípoves, and in the Suppliant Tromen (24) they are appealed to as $\beta$ apútruor $\chi$ Oovio, where the notion of "heavily-punishing" seems conveyed by the compound epithet. Geuerally, the damones were regarded as hostile, or at least dangerous, and blood-offerings (ivalı $\mu 0^{\prime}$ ) were made to them to propitiate their wrath, and to induce them to send aid or material blessings from the realms below. The idea appears to have been that the spirits ranged the earth, bungry and forlorn, and seeking whom they might devour. Heace pestilences and sudden deaths were attributed to them, and in this sense they came to be regarded ns the enemies of the living. Victims were given to them, that they might not themselves make rictims of whomsoever they pleascd. Offerings of all kinds were placed in the tomb or burnt on the pyre, and the rites of burial were, with the lamentatious of surviving friends, thought necessary for the repose of the ghost. Hesiod, however, in a remarkable passage ( Op. et $D ., 122$ ), speak's of the $\delta$ aímores in terms more allied to our ideas of "guardian angels." He says they were the souls or spirits of the men, who lived in the goldeu age, and that their office now is to
walk the earth unseen, and to watch the actious and couduct of man. The meaning of the word demon is very obscure. Some connect it with $\delta(F$, the root of Dis, Dyaus, Zev́s, Juppiter, \&c., others with $\delta a i \epsilon \iota v$, "to allot," "to distribute," (Curtius, Gr: Etym., i. 230), while others, with Plato (Cratylus, p. 393, B), have supposed that $\delta a \eta \prime \mu() v$, "knowing," is the original sense. In a general way, סai $\mu \omega v$ meant a man's luck or fortune in life, and bence $\delta v \sigma \delta a i \mu \omega \nu$ and $\epsilon^{3} \delta \alpha i \mu \omega \nu$ are common phrases for "unfortunate" and "prosperous."

The word manes seems referable to an old adjective, of which there were two forms, manis and manus, "good." From the former comes immanis, applied to things or persons of formidable size, power, dimensions, \&c., and so "huge," "savage," or in any sense "uncanny." The morning is mane, "the good or lucky time," because there was an old proverb (Hesiod, Op. et D., 578 ) that morning was the best time for work. It is generally used as an ablative, mane novo, dic., set Virgil has dum mane norum, (Geory. iii. 325). Maners is found in the old Italian divinity Genita Mana, the "good mother," also called Mania and Larunda, the reputed mother of the Lares or household gods. To this goddess Pliny tells us (N. 1 . xxix. 58) the Romans offered in sacrifice a puppy-dog, catulus. In xxi. 11 he says that chaplets used to bo nffered to the manes, and in xxxiii. 2 he speaks of men digging mines to get wealth in sede monium, in the depths where the spirits reside.

There can be no doubt that food offerings were, according to a widely sproad superstition, offered to the manes, as to the Lar, to Hecate, to Trivia, and to other infernal powers. Thas Virgil (who is fond of the use of the word) says in EEn. iii. 63, "aggeritur tumulo tellus; stant Manibus aræ.". On these altars, he adds, goblets of milk and the blood of victims were offered, though be evidently has in view the Greek rite of appeasing the dæmons. Perlaps there were not, such solemn propitiatory sacrifices made to the manes as to the Greek $\delta$ aí $\mu$ oves. But all nations have reverenced the spirits of their ancestors, and especially those nations which retain strongly patriarchal traditions and the distiactions of caste.

The genius was a kind of attendant on the living, the share of his fortunes, and perhaps to some extent regulating thom, from birth to death. To indulge one's genius originally meant to please him with good cheer, an idea that lay at the root of all primitive notions of sadrifice. Of this notion therc is no Greek equivalent. It aeems more nearly allied to the superstition of a "double" or "wraith," a kind of alter ego who \&t once was, and was not, identical with the individual person. (See Hor., Epist. ii. 2, 187.)

Between the manes and the received idea of souls there was a pretty close analogy. When Virgil says (SEn. vi. 743), "quisque suos patimur manes," he appears to raean that the souls of all receive the reward of deeds done in life. There was, of course, a corresponding idea that the manes could be conjured up, and could appear as ghosts. Thus Propertius (El., v. 7), commencing with the verse "Sunt aliquid manes, letum non omnia finit," describes how the ghost of his Cynthia appeared to him and upbraided him for his faithlessuess. See also Virg., En. iv. 490 and จ. 99. Like the $\delta a i \mu o v e s$, they were also supposed to have the power of seading dreams (ibid: vi. 897).

Iu sepnlchral inscriptions, even on early Christian tombs, the dedication dis manibus is common, showing the strong tendency to deify which prevailed with the Romans under the empire.

MANETHO. Manetho Sebennyta (Mavé白 ${ }^{2}, \mathrm{Mave} \mathrm{\theta} \hat{\omega}$, Mave $\theta \dot{\omega}$ s, Mave $\theta \hat{\omega} \theta$, \&cc, i.e., Mai en Thoth, "beloved by Thoth "), Egyptian priest and annalist, was a native of

Sebcnnytus (Semmenúd) in the Delta. His name is connected by Plutarch with the reign of Ptolemy I., and he is usually stated to have written under Ptolemy II. Philadelphus, though the only authority for this is an epistle to that king of the Pseudo-Manetho, author of the forged Book of Sothis preserved by Syncellus. He was instructed in Greek80 Josephus tells us-and the three books of his Aiyuntcaкá composed in that language opened to foreigners the history of Egypt from the mythical period downwards, as it was preserved in the records of the priesta. Unhappily the book is now known only by some lists and fragments preserved by Josephus in his treatise Against Apion, by Eusobius in his Chronica, and by Syncellus. Syncellus used the work of Eusebius (also known to us through Jerome and the Armenian version ${ }^{1}$ ) and the lost Pentabiblon of Africanus. Thus the little that we know of Mauetho's history has reached us through a process of transcription and retranscription very unfavourable to the correct transmission of the lists of kings and dynasties, to which Josephus alone adds any considerable narrative excerpts. It seems indeed that our authorities themselves used varying and partly corrupt recensions of the original text, and that deliberate corruptions of the Manethonic tradition were not wanting appears from the existence of the Book of Sothis cited by Syncellus, which was undoubtedly a spurious work. That Manetho himself made honest use of his Egyptian sources is generally recognized, since the Egyptian monuments have afforded confirmation of many, though by no means all, of his statements; but how the corrupt and parying data we now have should be used, or whether the Egyptian tradition can be made the basis of a rational chronology of the oldest historical period, is doubtful (see vol, vii. p. 729 sq.).
The titles of several other books ascribed to Manetho, with a mass of useful material and discussion, will be found along with the best edition of the fragments in Mullcr's Fragmenta Historicorum Gracorum, ii. 511-616. Au extant astrological poem called 'A $\quad$ ore入erмarika bears the name of Manetho, hut is of much later date (last edition by Koechly, Leipsic, 1858). See Boeckh, Manetho u. die Hundssternpcriode, 1845 ; Gutschmid, in Philologus (1856), and Rhein. Mus., 1859; Lauth, Manctho und der Turiner KönigsPapyrus, 1865 ; Lieblein, Aeg. Chron. (1863) and Rceherchas sur la Chron. Ég., 1873 ; and in general the books on Egyptian history and chronology. A fuller list of relative literatare is given by Engolmann, Bibl. Scriptor. Class. (8th ed.), i. 507.

MANFRED (c. 1231-1266), regent and king of the Two Sicilies, a natural son of the emperor Frederick II. by Bianca Lanzia, the daughter of a Lombard earl, was born in Sicily about 1231, and received from his father the title of prince of Tarentum in 1248. Frederick II. at his death appointed him regent of the Two Sicilies during the abseace of his brother Conrad IV., and notwithstanding the hostility of Innocent IV., and the revolt of many nobles and towns in Apulia at the instigation of that pontiff, he was able in 1252 to hand over to Courad au undivided sovereignty. On the death of the latter in 1254, Manfred was once more called to the regency in the interests of his infant nephew Conradin, and by his victory over the forces of Innocent IV. at Foggia on December 2d of that year was able to establish hia authority over the entire kingdom. When in 1258 rumoura had reached Sicily of the death of Conradin, Manfred, yielding to the aolicitations of his prelates, barons, and people, allowed himself'to be crowned at Palermo on Augast 11. Shortly afterwards envoya arrived from the mother of Conradin to say that he was atill alive, and to demand the crown for him; but this the king, strong in the popularity which ho had acquired by his brave defence of his country, by his pleasing person, and by his many accomplishments, declined to give, promising only to preserve the crown for his nephew,

[^192]and faithfully to bequeath it to him on his own death. Excommunicated in 1250 by Alezander IV., Manfred again resorted to arms, and overrunning the papal states, was made master of Tuscany by the battle of Monte Aperto (September 4, 1260). Now at the height of his power, he was anew excomaiunicated by Urban IV. iu 1261, and in 1263 his forfeited crown was offered to Charles, count of Anjou, and brother of Louis IX. of France. Towards the end of summer in 1265, giving effect to a crusade proclaimed by Urban, Charles with his army entered Piedmont, but the encounter with the Sicilians did not take place until February 1266 at Benevento, where Manfred, filled with despair by the cowardly flight of his Apulians, spurred into the thickest of the battle and fell covered with wounds: His mangled body was hastily buried under a heap of stones near the bridge, but afterwards, at the instance of Pope Clement IV., was dragged out and laid in unconsecrated ground on the frontier of the kiugdom.

MANFREDONIA, a seaport and city of Italy, in the province of Foggia, the see of an archbishop, and the centre of a maritime district, lies 22 miles uorth-east of Foggia, with which it is connected by railway. The situstion, on the shores of the Gulf of Maufredonia and at the foot of Monte Gargano, is finely sheltered, and the vegetation of the district is similar to that of Sicily. A castle dating from the 13 th century protects the port, and the city is surrouaded by walls and towers. The principal building is the cathedral. Though the anchorage is available only for small vessels, a fair trade is carried on in the export of graio. While in 1863 there entered in all 418 vessels with a total burdea of 20,316 tons, in 1880 the burden of the 463 vessels was only 10,832 tons. The population of the commune in 1881 was 9401.
Manfredonia is the historical representative of Sipontum, a Roman municipium and colony of some mark, which lay about $1 \frac{1}{2}$ miles to the south. The ancient city laving greatly declined, partly owing to the unhealthiness of its situation and partly to the disasters of war, Manfred transferred its inhabitants to the present site in 1261. For a time Manfredonia flourished greatly, but the lavages of the Turks in 1620 proved fatal to its development. The site of Sirontum is marked by the ancient church of Santa Maria di Siponto.

MANGALIA, a town on the coast of the Black Sea, in the south of tho Debrudja, at the head of a district in the new Roumanian province of Kustendji. In the time of Genoese supromacy in the Black Sea it was a place of 30,000 inhabitants; and its population has again risen from a few hundreds to upwards of two thousand. According to the Corpus Inscriptionum Latinarum, it is to be identified with the ancient Thracian city of Callatis (or Acervetis, as it was formerly called)-a colony of Miletus which continued to be a flourishing place to the close of the Roman period.

MANGAI,ORE, the adminiptrative headquarters of suuth Kánara district, Madras is sitnated on the Malabar coast, in $12^{\circ} 51^{\prime} 40^{\prime \prime} \mathrm{N}$. lat., $74^{\circ} 52^{\prime} 36^{\prime \prime} \mathrm{E}$. long., with a population in 1871 of 29,667 . The town is picturesque, clean, and prosperous. Tho native houses are laid out in grood streets, and the European quarter is particularly pleasant. Mangalore clears and exports all the coffee of Coorg, and trades directly with Arsbia and the Persisn Gulf. In 18753600 ships of 264,000 tons entered. The exports in that year were valued at $£ 505,800$, and the imports at $£ 272,704$. There is a lerge native Roman Catholic papulation, with two European bishops, several churches, and a coavent. The Basel Lutherau mission has its headquarters here, and has done much good in leaching trsdes, \&c. Good cloth is woven at their establishment; the makiug of roof tiles, priating, and vookbiudiag are also taught.

BANGANESE, a metallic chemical element (symbol Mn; atomic weight 55) widels diffused throughout the mineral kingdom, being an almost constant companion oi ferrous oxide, lime, and magnesia in their native carbonates aud silicates. Of manganese minerals proper-which are comparatively scarce-the most important is pyrolusite, the native binoxide, $\mathrm{MnO}_{2}$. This is a black crystalline or crystallized solid with semi-metallic lustre, sufficiently soft to give a (black) streak on paper; hardoess, 2 to 2.5 ; specific gravity, 4.8 to 4.9 . It is known in commerce as "black axide of manganese" or "manganese," and is extensively used for the industrial extraction of chlorine from muriatic acid. Its most extensive beds are found it Ilaenau and Elgersburg, Thuringia; near Giessen, North Hesse; near Mährisch-Trübau, Moravia; and ir Spain. Almost all pyrolusite is contaminated with morc or less of the following "manganites"-general formula $\mathrm{MaO}_{2} \cdot \mathrm{R}^{\prime \prime} \mathrm{O}$-which besides occur (in the same localities) as independent minerals:-braunite, $\mathrm{Mn}_{2} \mathrm{O}_{3}$ or $\mathrm{MnO}_{2} \mathrm{MnO}_{;}$ manganite, or grey manganese ore, $\mathrm{In}_{2} \overline{\mathrm{O}}_{\mathrm{s}} \cdot \mathrm{H}_{2} \mathrm{O}$; hausman. nite, $\mathrm{Mn}_{3} \mathrm{O}_{4}$ or $\mathrm{MnO}_{2} .2 \mathrm{MnO}$; and psilomelan, a cumplex mineral, the composition of which generally approximates to $4 \mathrm{MnO}_{2} \cdot \mathrm{RO}+x \mathrm{H}_{2} \mathrm{O}$, -the R being chiefly Ba or $\mathrm{K}_{2}$, but including in general more or less of $\mathrm{Ca}, \mathrm{Mg}$, and Ma. These ores are not unlike pyrolusite in their general appearance, but csn usually be easily distinguished from it by their greater hardness and other physical pro perties. Closely allied to psilomelan are those earthy, massive, or reniform mineral mixtures known as "bog maaganese," "cupreous manganese," "earthy cobslt." In the two last-named the RO is chiefly CuO and CoO respec. tively. We must here mention those curious formations knowa as " manganese nodules" which were so frequently dredged up by the "Challenger" expedition, aud witb which, it seems, large areas of the ocean's bed are thickly covered. The writer found in one of these, which seemed exceptionally rich in manganese, $20 \cdot 12$ per cent. of binoxide of manganese (fully oxidized), 0.4 of oxide of nickel, 0.25 of cobalt, and 9.27 of copper, -a total of 21.04 jei cent. of the psilomelanic part, not reckoning the $\mathrm{CaO}, \mathrm{MgO}$, \&c., belonging to it. All the manganese ores named are available for the manufacture of chlorine, and indeed are so used, as components of what gaes in the arts as " man ganese."
The industrial value of a "manganese" depends, of course, on its actual or virtual percentage of binoxide. Aconvenient metlood for its determination was worked out by Freseinius and Will, on the basis of a reaction long before discovered by Turner. When $\mathrm{MnO}_{\text {, }}$ is brought in contact with aqueous sulphuric and oxalic acids, it is reduced to MnO (-salt) with formation of carbonic acid; thus: $\mathrm{MnO}_{3}$ $+\mathrm{C}_{2} \mathrm{O}_{4} \mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}=2 \mathrm{H}_{2} \mathrm{O}+11 \mathrm{nOSO} 3+2 \mathrm{CO}_{2}$. It is easy so to arrange matters tha's all the $\mathrm{CO}_{2}^{2}$ leaves the apparatus and nothing else, so that the weight of $\mathrm{CO}_{3}$ formed identifies itself with the loss of weight suffered by the co-resgents; and obviously every one gramme of $\mathrm{CO}_{2}$ formed indicates $\frac{\mathrm{AnO}_{2}}{2 \mathrm{CO}_{3}}=\frac{975}{3}=0.9986$ gramme of real $\mathrm{MnO}_{2}$ A determination of the free watcr (lass of weight suffered by the powdered ore at $120^{\circ} \mathrm{C}$.) must accompany the assay to enable one to compare two adalyses made at different times.

For the making of manganese preparations, high class pyrolusite is the most convenient raw material.
Metallic manganese may be prepared by intimately mixing it with lamp-black and heating the nixture to whiteness in a blast furnace. But the regulus thue obtained contains a large percentage of combined carbon. A purer metal was obtained by Devills, sho started with perfectly pure "red oxide, " $\mathrm{Mn}_{3} \mathrm{O}_{4}$, and heated it along with a proportion of sugar-charcoal insufticient for complete reduction in a double crucible made of quicklime. The unreduced oxide ( MuO ) and part of the lime fuse together into a violet slag, from which the regulus is easily separated. Brunner's mangnese (obtained by the reduo
tion of the fluoride with sedium in a clay crucible) is not manganese at all, but a silicide of the metal.
Hugo 'Tamm, who endeaveured to work out a process for the mannfacture of the metal, gives the following process :-11 parts of good pyrelusite is mixed with 1 part of lamp-black and 6 parts of a flux consisting of 20 parts of lead-free bottle-glass, 7 parts of quicklime, and 7 of fluor-spar; and the mixture is strongly heated, in a graphite crucible costed over with a mixture of 3 parts of graphite and 1 part of clay, by means of a blast-furnace. There is formed a regulus covered by a green silicious slag containing much protoxide of manganese. The "raw" manganese thus produccd is contaminated with about 1 per cent. each of iren, ailicon, and carbon, and traces of eulphur, phosphorus, calcium, and aluminium. The green elag in subsequent operations is substituted for part of the white flux. The raw metal, when re-fused with a bout one-third of its weight of manganous carbenate, yielded a regulus which contained $99 \cdot 9$ per cent. of the metal,,-the remaining $\frac{1}{10}$ per cent. consisting of carbon, silicon, and iron.

Manganese metal is grey, like cast iron (Deville's bad a reddish hue like bismuth); its specific gravity is about 8 ; it is hard and brittle, and about as difficult to fuse as wrought iron. It readily tarnishes in ordinary air ; even pure water, and much more dilute acid, attack it with crolution of hydrogen and formation of manganous ( MnO ) hydrate or salt. It is worth stating that neither MnO nor $\mathrm{MnCl}_{2}$ is reducible at a red heat by hydrogen gas ; jet Bunsen succeeded in obtaining metallic manganese by the electrolysis of a concentrated solution of the chloride, using a strong current and a negative electrode of very smsil area

Oxides.-Puro peroxide can be obtained artificially by keeping the pure nitrate at $200^{\circ} \mathrm{C}$. But really pure nitrate is hard to procure. Perhaps the only method for obtaining a really pure preparation is Volhard's : 10 grammes of "pure" (iron- and cobalt-free) manganous sulphate is dissolved in half a litre of water and 100 cm . of nitric acid of $1 \cdot 2$ specific gravity; the solution is heated to boiling, and strong solution of permanganate of potash added until the MnO is nearly but not quite down, and the mixture kept for a while on a water-bath. The precipitate of binoxide formed (according to equation $3 \mathrm{Mn}_{2} \mathrm{O}_{7}+3 \mathrm{MnO}=5 \mathrm{MnO}_{2}$ ) is washed, first with dilute nitric acid, then with water, and dried (when it retains some combined water).
When binoxide of manganese is heated to redness-in racium, air, oxygen, nitrogen - it loses oxygen with formation of lower oxides. Chis phenomenon was investighted by W. Dittmar, who found that, when the binoxide is heated in a constantly renewed atmosphere, the result, for a given temperature, depends only on the partial tension of the oxygen in that atmosphere. Pure (brown-red) $\mathrm{Mn}_{3} \mathrm{O}_{4}$ remains when this tension is less, while (black). $\mathrm{Mn}_{2} \mathrm{O}_{3}$ remains when the tension is greater than a certain limit value $p$. In Dittmar's experiments (which were all puade at a temperature somewhat above the melting point of sterling silver), the ralue $p$ was found to lie close to 26 cm . of mercury. An exact determiua. tien of this critical point was not possible, because the temperature was not perfectly constant, and an increase in temperature is equivalent to a diminution in the partial tension of the oxygen. Hence, zupposing the oxide $\mathrm{Mn}_{0} \mathrm{O}_{3}$ to be heated, say in vacuum and within a close apparatus, it will give off oxygen at any temperature greater than a certain minimum $t_{0}$, and at any templerature $t_{0}+\Delta t$ the gasevelution will come to a atop es soon as the tension of the gas has come up to the critical value $p$ corresponding to this $t_{0}+\Delta t,-p$ increasing with $\Delta t$.
The protoxide, MnO , is most readily obtained by heating any higher oxide to redaess in a current of hydrogen gas, as a dull green powder which gets readily discoloured by oxidation in ordinary air. It is not acted on by water, but readily dissolves in aqueous acids, with formation of manganous salts.
The sulphate, $\mathrm{MnSO}_{4}$, is prepared by making pyrolusite into a paste with concentrated sulpharic acid and then heating in a crucible to dull redness until vapours of the acid cesse to come off. The ferric and aluminic sulplates (originally present) are now, at least mostly, decomposed and reduced to insoluble basic salts, so that the residue when trested with water and filtered may yield a solution free of these impurities, and, of course, of baryta.

Should any iron or alumina be left it is easily eliminated by digestion rith a little carbonate of manganese (prepared from a small portion of the selution by precipitation with carbonate of soda) and filtration. Cobalt and nickel, if present, can be remorcd by fractional precipitation with sulphide of sodium (or $\mathrm{H}_{2} \mathrm{~S}$ in the presence of $\mathrm{MnCO}_{3}$ ?) ; the black sulphide of Co or Ni comes dorn first, the (flesh-celoured) MnS afterwards. But lime, magnesia, and alkalies (which are frequently present) are rery difficult to get rid of. Compare the scction on binexide. The salt, accerding to the temperature at which it crsstallizes, takes up 7 or 5 or 4 or even 3 or $1 \mathrm{H}_{2} \mathrm{O}$. Crystallized sulphats of manganese generally exhibits a rose-red tiut ; but this is owing to the presence of a trace of manganic salt (if not to cobalt salt). The pure salt is colourless.

The chloride, $\mathrm{MnCl}_{2}$.-The crude chloride contained in the preparation of chlorine from the binoxide and muriatic acid is purified by methods analogous to those explained for the sulphate. This (very soluble) salt crgstallizes at $15^{\circ}-20^{\circ} \mathrm{C}$., with $4 \mathrm{H}_{2} \mathrm{O}$. To obtain real $\mathrm{MnCl}_{2}$, the salt must be dehydrated in a current of dry liydrochloric acid gas.

The carbonate, $\mathrm{MnCO}_{3}$, is obtained by precipitating the solution of the sulphate or chloride by excess of carbonate of soda on boiling. It is a white precipitate, soluble in 8000 parts of water, which, when dried in the air, gets slightly oxidized with discoloration.

Far more oxidizable is the hydrate, $\mathrm{Mn}(\mathrm{OH})_{2}$, cs obtained by precipitation of manganous solution by caustic alkalies. In the presence of an excess of alkali or other strong soluble base (such as lime, for instance) the oxidation progresses very rapidly, with formation, ultimately, of a black manganite $\mathrm{MnO}_{2}$. RO (e.g., $\mathrm{MnO}_{2} \mathrm{CaO}$ ). This is the rationale of the famous "Weldon Process" for the recovery of the "mangancse" from chlorine liquors (see Bleaching Powder). A mixed solution of chloride of manganese and sal-ammoniac, when mixed with ammonia, gives no precipitate; but the alkaline liquor readily absorbs oxygen from the atmosphere with formation of a brown precipitate of a higher oxide. If, immediately ofter addition of the ammonia, the cxcess of volatile alkali is chased away by boiling, the resulting (neutral or slightly acid) liquor remains clear, even in air. Hereupon is founded a metbod for the separation of ferric iron and alumina from manganese.
Nanganic salts, i.c., salts of $\mathrm{Mn}_{2} \mathrm{O}_{3}$, aro 1 reduced only under very special conditions. Solutions centaining the sulphate and a phosphate respectively are obtained by heating fincly divided pyrelusite with strong sulphuric or phosphoric acid. Beth products dissolve in water with formation of intensely purple solutiens, which, however, are very unstable, showing a great tendency to pass into the manganous condition. Any manganic salt when boiled with hydrochloric acid gives manganous salt with erolntion of cllerine. This tendency separates them sharply from the correspondiug compounds of iron.

Manganates and permanganates (compounds with bases of the hypothetical oxides $\mathrm{MnO}_{3}$ and $\mathrm{Mn}_{2} \mathrm{O}_{7}$ ). The most important of these is the manganate of potash, $\mathrm{K}_{2} \mathrm{MnO}_{4}$. Four parts of very finely divided binoxide of mangancse and 31 parts of chlorate of potash are evaporated to dryness writh the solution of 5 parts of canstic potash, and the residue ignited (not fused) in platinum crucibles until all the chlorate is decomposed. The intensely green mass, containing large excess of caustic alkali, dissolves in water into an intensely green solution from which crystals of the salt $\mathrm{K}_{2} \mathrm{H}_{\mathrm{nO}}^{4}$ canbeobtained; but when the alkali is neutralized by an acid, the liquor turas intensely purple with formation of permanganate and a precipitate of alkaliferous binoxide: $2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{KMnO}_{4}+2 \mathrm{KHO}+2 \mathrm{H}$ and $2 \mathrm{H}+\mathrm{K}_{2} \mathrm{MnO}_{4}=\mathrm{H}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{MnO}_{3}$. The purple solution when alkalinized with potash contaminated with organic matter reassumes its original green colonr (whence its old name of "chameleon minerale"). For the preparstion of permanganate of potash it is best to pass chlorine into the green solution, when the whale of the manganese assumes the permanganate form: $\mathrm{K}_{2} \mathrm{MnO}_{1}+\mathrm{Cl}=\mathrm{KCl}+\mathrm{KMnO}_{4}$.

From the purple liquid crystals of permanganace are easily obtained by evaporation. The crystals (long prisms) are isomorphous with perchlorate of potash, $\mathrm{KClO}_{4}$. They are soluble in 16 parts of culd and far less of hot water. - They are almost black, and eadowed with a peculiar greenish or bluish metallic lustre. Their powder is red. Their aqueous solution is most intensely purple, one milligrammo of the salt giving a perceptible colour to a whole litre and more of water. On addition of acid the solution, through liberation of $\mathrm{Mn}_{2} \mathrm{O}_{7}$, becomes piak.

Of all wet-way reagents, manganates and permanganates are the most porerful oxidizing agents, especially when they are employed in conjunction with free alkali, or (the permanganates) along with free mincral acid. By one or the other of the two combinations most oxidizable inorganic and almost all organic substaaces are promptly oxidized. Hence both manganates and permanganates are extensively employed as disinfectants, and, in chemical laboratories, as oxidizing agents. For the former purpose impure forms of the soda salts are generally used, while pure permanganate of potash, nowadays, is exclusively employed for scientific or analytical laboratory work.
The ultimate fate of the reagert depends on whetheralkali or acid ras used as an auxiliary agent. In the former case the salt passes snccessirely into (crreen) manganate and (insoluble brown) bydrated binoxide of manganese, - three-serenths of the oxygen in the $\mathrm{Mn}_{2} \mathrm{O}_{7}$ being utilized. In the presence of free acid (sulphuric works best) the $\mathrm{In}_{2} \mathrm{O}_{7}$ loses five-sevenths of its oxygen with formation of a colourless solution of manganous ( MnO ) salt. Hence, supposing auch a change to take place promptly, and the reagent to be added gradually, the exact point of completed oxidation is reached when the liquid, by the addition of another drop of the permanganate, assumes a permanent pink colour. This is tho principle of a num. ber of processes for the determination of certain reducing agents by mcans of a standard solution of permanganate.
Analysis. - A manganiferous substance when fused up with carbenate of soda on platinum in the presence of air yields a green mass (manganata), the colour being more distinct after cooling. Manganese oxides, when fused $n p$ with a borax bead in the oxidizing flame, impart to it an intense amethyst colour, which disappears in the reducing flame. To detect manganese in a solution of mineral salts, re first eliminate what can be precipitated by sulphuretted hydregen in the presence of mincral acil. In the filtrate the iron (if present) is oxidized by boiling with a granule of chlorate of potash, and the ferric oxide precipitated aleng with the alumina by addition of sal-ammoniac and excess of ammonia, and boiling off the free volatile alkali. From the filtrate the manganese is precipitated by aulphide of ammoninm, as a sulphide whicb, when pure, exhibits a delicate flesh-red colour but is readily discoloured, by oxidation, when in contact with air. Cobalt, nickel, and zinc, if present, go down with the manganese, but can be eliminated by trcatment of the washed sulphides with acctic acid, which dissolves the manganese only.
(W. D.)

MANGEL WURZEL. See Agriculture, vol. i. p. 36 S.
MANGO. The mango-trce (Mangifera indica, L, , natural order Anacardiacex or Terebinthacex) is a native of tropical Asia, but during the last hundred years has been extea. sively cultivated in the tropical and subtropical regions of the New as well as tho Old World. It grows rapidly to a height of 30 to 40 feet, and its dense, spreading, and glossy foliage would secure its caltivation for the sake of its shade ond beauty alone. Its fruit, a drupe, though in the wild variety (not to be confused with that of Spondias mangifera, Pers., belonging to the same order, also called wild mango in India) stringy and sour from its containing much gallic ncid, and with a disagrecable flavour of turpentine, las become sweet and luscious through culture and selection, to which we orre many varieties, differing not only in favour but also in size, from that of a plum to that of an apple. When uaripe, they are used to make pickles, tarts, and preserves; ripe, they form a wholesome and very agrecable dessert. In times of scarcity, tho kernels also are caten. Not only the flesh and kernel of the fruit, but also the bark and resin are of some medicinal value; and the timber, although soft and liable to decay, serves for common purposes, and, mixed wili sandal woud, is cmplojed in
cremation by the Hiadus. It is usually propagated by grafts, or by layering or inarching, rather thau by sced. Sce Drury's Useful Plants of India.

MANGOSTEEN, Garcinia Mangostana, L., is a tree belonging to the gamboge order (Clusiacez or Guttifera) It is a native of the Molncea Islands, but has been iutro duced into the other islands of the eastern archipelago, Ceylun, and southern Asia, and even the Antilles, though not without difficulty. It grows about 20 feet high, and is somewhat fir-like in general form, but the leaves arc large, oval, eatire, coriaccous, and glistening. Its fruit, the much-valucd mangosteen, is about the size and shape of an orange, and is somewhat similarly partitioned, but is of a reddish-brown to chestnut colour. Its thick rind yields a very astringent juice, rich in tannin, and coataining a gamboge-like resiu. The soft and juicy puly is snow-white or rose-coloured, and of exceedingly delicious and subtle flavour and perfume. Being perfectly wholesome, it may be eaten freely, and administered in fever. G. purpurea is known in India as mate mangostcen, and Embryopteris glutinifera, an ebenaccous tree, as wild mangostecn. See Drury's Useful Plants of India.

MANGROVE. The remarkable "mangrove forests" which fringe tidal estuaries, overrun salt marshes, and line muddy coasts in the tropics of both Old and New Worlds, are composed of trees and shrubs belonging to the Rhizophoracex, a small order of calycifloral exogens, mixed, however, with the "white mangrove," Avicennia, a verbenaceous plant. Their trunks and branches constantly emit adventitious roots, which, desceading in arched fashion, strike at some distance from the parent stem, and seud up new trunks, the forest thus spreading like a banyan grove. The roots and stems afford lodgment and shelter to innumerable bivalves, crabs, and other marine animals, while tlis branches are inhabited by aquatic birds. A further advantage in dispersal, very characteristic of the order, iz afforded by the seeds, which havo a striking peculiarity of germination. While the fruit is still nttached to the parent branch, the long radicle emerges from the seed and descends rapidly towards the mud, where it may even establish itself before falling off. Owing to its clubbed shape, this is always in the right position, the plumule then making its appearance. The wood of some species is hard and durable, and the astringent bark is employed in tanning. The fruit of the common mangrove, Rhizophora Mrangle, L., is sweet and wholesome, and yields a light wine. See Treasury of Botany, and Lindley's Tegetable Fingdon.

MIANICHAISM. At the close of the 3d century three great religious systems stood opposed to one another in westera Asia and tho south of Europe; these were Neo. Platonism, Catholicism, and Manichreism. All three may be described as the final results reached, after a history ef more than a thousand years, by the religious development of the civilized nations stretching from Persia to Italy. Each had put off the national and particular character of the ancieat religions, and had become a world-rcligion, with universalizing tendencies, and with demands which in their effect transformed the whole of human life, both public and privatc. The place of national worship was taken by a system which not only aimed at being a philosophy of God, the world, and history, but at the samo time embraced a definite code of ethics and a religious ritual. In point of form, then, the three religions were like each other, as they also were in this, that each had appropriated clements of older and widely different religions. Their mutual resemblance becomes still further apparent when we observe that in all three the ideas'sf revelation, redemptiou, ascetic virtue, and immortality come into the foreground. Neo Platonism, however, was the spiritualized religion of pature

Greek polytheism transfigured and developed into Pantheism tbrough Oriental influences and philosophical speculations; Cathoiicism was the monotheistic universal religion, based apou the Old Testament and the Gospel, but built up with the resources of Hellenic speculation and ethics; Manichazism was the dualistic and universal religion, founded on Chaldaism, but charged with Christian, Parsic, and perhaps Tuddristic ideas. In Manichaism the Hellcuic element was wanting, in Catholicism the ChaldæoPersian. These three universal religions were developed in the course of two centuries (c. 50-250 A.D.), Catholicism being the earliest and Manichæism the latest creation. To both of these, hewever, Neo-Platonism was from the outset inforior, because it did not possess a founder, and consequently did not develop elemental force, but retained the character of an artificial creation. Attempts were made to invent a founder for it, but these, of course, entirely failed. Catholicism, again, appears as auperier to Manichæism, even if we do net look at the contents of the two religions, because it honoured its founder, not only as a bearer of revelation, but as Redeemer in His own person, and as the Son of God. The atruggle of Catholicism with Neo-Platonism had been already decided by about the middle of the 4th century, though the latter maintained itself in the Greek empire for nearly two centurics longer. Iu its contest with Manichæism, the Catholic Church was from the outset certain of victory, being at the time the privileged church of the empire. But this rival could not be annihilated; it maintained itself both iu the East and in the West, though in various forms and modifications, until far on in the Middle Ages.

Mani (Márys, Manes, Mavixaios, Manichæus ${ }^{1}$ ) is said, in the Acta Archelai, to have originally been called "Cubricus" (according to Kessler, a corruption of "Shuraik"). Nothing reliable about his•life was ever known in the Greco-Roman empire; for the account in the Acta Archelai is quite incredible, and shaped by the objects of its author. If criticism may succeed in showing the sources from which this account has flowed, in ascertaining the tendencies which have been at work in it, and thus in extracting some solid matter, it can only do ao by starting from the Oriental, the Mohammedan, tradition, which is comparatively worthy of credence. It is therefore to the latter along that we must apply for information. According to it, Mani was a high-born Persian of Ecbatana. The year of his birth is uncertain, but Kessler accepts as reliable the statement made by Birunf, that Mani was born in the year 527 of the astronomers of Babylon (215-216 A.D.). He received .a careful education at Ctesiphon from his father Futák (Пaréкcos). As the father connected himself at a later period with the confession of the Moghtasilah, or "Baptists," in southern Babylonia, the son also was brought up in the religious doctrines and exercises of this sect. These Baptists (see the Fihrist) were apparently connected with the Elkesaites and the Hemerobaptists, and certainly with the Mandæans. It is not improbable that this Babylenian sect had absorbed Christian elements. Thus the boy early became acquainted with rery different forms of religion. If even a small part of the stories about his father is founded on fact,-and there is no doubt that most of them are mere Manichæan legends, it was he who first introduced Mani to that medley of religions out of which his system arose. Manichæan tradition relates that Mani received revelations while yet a boy, and assnmed a critical attitude towards the religious instruction that was being imparted to him. This is the more incredible since the same tradition informs

[^193]us that the boy was as yet prohibited from making public use of his new religious views. It was only when Mani had reached the age of twenty-five or thirty years that he began to proclaim his new religior. This he did at the court of the Persian king, Sapor I., and according to the story, on the coronation-day of that monarch (241-42). A Persian tradition says that he had previously been a Christian presbyter; but this is certainly incorrect. Mans did not remain long in Persia, but undertook long journeys for the purpose of spreading hia religion, and alsn eent forth disciples. According to the Acta Archelai, his missionary activity extended westwards into the territory of the Christian church; but from Oriental sources it is certain that Mani rather went into Transexania, western China, and southwards as far as India. His labonrs there as well as in Persia were not without result. Like Mohammed after him and the founder of the Elkesaites before hine, he gave himself out for the last and highest prophet, who was to surpass all previous divine revelation, which only possessed a relative value, and to set up the perfect religion. In the closing years of the reign of Sapor I. (c. 270) Mani returned to the Persian capital, and gained adherents even at court. But the dominaut priestly caste of the Magians, on whose support the king was dependent, were naturally hostile to him, aud after some successes Mani was made a prisoner, and had then to flee. The successer of Sapor, Hormuz ( $273-273$ ), appears to have been favonrably disposed towards him, but Bahrám I. abandoned him to the fanaticism of the Magians, and caused him to be crucified in the capital in the year 276-7. The corpse was flayed, and Mani's adherents were cruelly persecuted by the king.

Mani himself composed a large number of worka and Man! epistles, which were in great part still known to the writi Mollammedan historians, but are now lost. The later heads of the Manichæan churches also wrote religious treatises, so that the ancient Manichæan literature must have been very extensive. According to the Fikrist, Mani made use of the Persian and Syriac languages; but, like the Oriental Marcionites before him, he invented an alphabet of his own, which the Fihrist has handed down to us. In this alphabet the sacred books of the Manicheans were mritten even at a later period. The Fihrist reckons seven principal works of Mani, siz being in the Syriac and one in the Persian language; regarding some of these we also have information in Epiphanius, Augustine, Titus of Bostra, and Photius, as well as in the formula of abjaration (Cotelerius, PP. Apost. Opp., i. 543) and in the Acta Archelai. They are (1) The Book of Secrets (see Acta Archel.), containing discussions bearing on the Christian sects spread throughout the East, especially the Marcionites and Bardesanites, and dealing also with their conception of the Old and New Testaments; (2) The Book of the Giants (Demons?); (3) The Book of Precepts for Hearers (probably identical with the Epistola Fundamenti of Augustine, and with the Book of Chapters of Epiphanius and the Acta Archelai; this was the most widely spread and most popular Manichæan work, having been translated into Greek and Latin ; it contained a short summary of all the dectrines of fnadamental authority); (4) The Eook Shahpirakan (Flügel was unable to explain this name; according to Kessler it signifies "epistlo to King Sapor"; the treatise was of an eschat ogical character) ; (5) The Book of Quichening (Kessler identifies this work with the "Thesaurus [vitix]" of the Acta Archelai, Epiphanius, Photius, ard Augustine, and if this be correct, it also must have been in use among the Latin Manichæans) ; (6) The Book тpay $\mu a \tau \epsilon i ́ a$ (of unknown contents) ; (7) a book in the Persian language, the title of which is not given in our present text of the Fihrist, bat
which is iu all probability identical with the "holy gosjel" of the Mauichrans (mentioned in the Acta Archel. and many other authorities). It was this work which the Manichæans set up in opposition to the Gospels. Besides these principal works, Mani also wrote a large number of smaller treatises and epistles. The practice of writing epistles was continued by his successors. These Manichæan dissertations also became known in the Greeco-Roman empire, and existed in collections. ${ }^{1}$ There also existed a Manichæan book of memorabilia, and of prayers, in Greek, as well as many others, ${ }^{2}$ all of which were destroyed by the Christian bishops acting in conjunction with the authorities. A Manichæan epistle, addressed to one Marcellus, has, however, been preserved for us in the Acta Aqchelai. ${ }^{3}$

Though the leading features of Manichæan doctrine can be exhibited clearly even at the present day, and though it is undoubted that Mani himself drew up a complete system, many details are nevertheless uncertain, since they are differently described in different sources, and it often remains doubtful which of the acecunts that have been transmitted to us represents the original teaching of the founder.
The Manichæan system is one of consistent, nucompromising dualism, in the form of a fantastic philosophy of nature. The physical and the ethical are not distinguished, and in this respect the character of the system is horoughly materialistic ; for when Mani coordinates good with light, and evil with darkness, this is no mere figure of speech, but light is actually the only good, and darkness the only evil. From this it follows that religious knowledge can be nothing else than the knowledge of rature and her clements, and that redemption can only consist in a physical process of freeing the element of light from the darkness. Under such circumstances ethics becomes a doctrine of abstinence in regard to all elements which have their source within the sphere of darkness.
The self-contradictory character of the present world furms the point of departure for Mani's speculations. This contradiction presents itself to his mind primarily as elemental, and only in the second instance as ethical, inasmuch as he considers the sensaal nature of man to be the outlow of the evil elements in nature. From the contradictory character of the world be concludes the existence of two beings, originally quite stparate from each other-light and darkness. Each is to be thought of according to the analogy of a kingdom. Light presents itself to us as the good primal spirit (God, radiant with the ten [twelve] virtues of love, faith, fidelity, high-mindedness, wisdom, meekness, kuowledge, understanding, mystery, and insight), and then further as the heavens of light and the earth of light, with their guardians the glorious æons. Darkness is likewise a spiritual kingdom (more correctly, it also is conceived of as a spiritual and femininc personification), but it has no "God" at its lhead. It embraces an "carth of darkness." As the earth of light has five tokens (the mild zephyr, cooling wind, bright light, quickening fire, and clear water), so has the earth of darkness also five (mist, heat, the sirocco, darkness, and

[^194]vapour). Satan with his demons was born from the kingdum of darkness. These two kingdoms strod opposed to each other from all eternity, touching each other on one side, but remaining unmingled. Then Satan began to rage, and made an incursion into the kingdom of light, into the earth of light. The God of light, with his syzygy, "the spirit of his right hand," now begot the primal man, and seut him, equipped with the five pure elements, to fight against Satan. But the latter proved himself the strouger, and the primal man was for a noment vanquished. And, although the God of light himself nory took to the field, and with the help of new wons (the spirit of life, dc.), iuflicted total defeat upon Satan, and set the primal man free, the latter had already been robbed of part of his light by the darkness, and the five dark elements had already mingled themselves with the generations of light. It only remained now for the primal man to descend into the abyss, and preveut the further increase of the generations of darkness by cutting off their roots; but be could not immediately separate again the elements that had once mingled. These mized elements are the elements of the present visible world, which was formed from them at the command of the God of light. The forming of the world is in itself the beginning of the deliverance of the imprisoned elements of light. The world is represented as an orderly structure of various heavens and various earths, which is borne and supported by the æons, the angels of light. It possesses in the sun and moon, which are in their nature almost quite pure, large reservoirs, in which the portions of light that have been rescued are stored up. In the sun dwells the primal man himself, as well as the glorious spirits which carry on the work of redemption ; in the moon the mother of life is enthroned. The twelve constellations of the zodiac form an ingenious machine, a great wheel with buckets, which pour into the suu and moon, those shining ships that sail cointinually through space, the portions of light set free from the world. Here they are purified anew, and attain finally to the kingdom of pure light and to God Himself. The later Western Manichæans termed those portions of light which are scattered throughout the world-in its elements and organisms-awaiting their deliverance, the Jesus patibilis.
It is a significant mark of the materialistic and inluman character of the system that, while the formation of the world is considered as a work of the good spirits, the creation of man is referred to the princes of darkness. The first man Adam was engendered by Satan in conjunction with "sin," "cupidity," "desire." But the spirit of darkness drove into him all the portions of light he had stolen, in order to be able to dominate them the more securely. Hence Adam is a discordant being, created in the image of Satan, but carrying within him the stronger spark of light. Eve is given him by Satan as his companion. She is seduct ive sensuousness, though also having in her a small spark of light. But if the first human beings thus stood entirely nuder the dominion of the devil, the glorious spirits took them nnder their care from the very outset, sending roons dowa to then (including Jesus), who instructed then regarding their nature, and in particular warned Adam against sensuality. But this first man fell under the temptation of sexual desire. Cain and Abel indeed are not sons of Adam, but of Satan and Eve; Seth, however, who is full of light, is the offspring of Adan by Evc. Thus did mankind come into existence, its various members possessing very different shares of light, but the men laving unifornly a larger measure of it than the women. In the course of history the denions sought to lind men to themselves by means of sensuality, error, and false religions (among which is to be reckoned above oull
the religion of Moses and the prophets), while the spirits of light carried on their process of distillation with the viers of gaining the pure light which exists in the world. But these good spirits can only save men by imparting to them the true gnosis cencerning nature and her forces, aud by calling them away from the service of darkness and sensuality. To this end prophets, preachers of truc knowledge, have been sent into the world. Mani, following the example of the guostic Jewish Christians, appears to have held Adam, Noah, Abraham (perhaps Zeroaster and Buddha) to be such prophets. Probably Jesus was also acceunted a prephet who had descended from the world of light,-not, however, the historical Jesus, the devilish Messiah of the Jews, but a contemporaneous plantem Jesus, who neither sufficed nor died (Jesus impatibilis). According to the teaching of some Manichæans, it was the primal man who disseminated the true gnosis in the character of Christ. But at all events Mani himself, on his own claim, is to be reckoned the last and greatest prophet, who took up the work of Jesus impatibilis and of Paul (for he too finds recognition), and first bronght full knowledge. He is the "leader," the "ambassador of the light," the "Paraclete." It is only through his agency and that of his imitatofs "the elect," that the separation of the light from the darkness can be completer. The system contains very fantastic descriptions of the processes by which the portions of light when once set free finally ascend even to the God of light. He who during his lifetime did not become one of the elect, who did not completely redeem himself, has to go through a severe process of purification on the other side of the grave, till he too is gathered to the blessedaess of the liglit. It is erroceous, however, to ascribe, as has been done, a doctrine of transmigration to the Manichæans. Of course men's bodies as well as the souls of the unsaved, who according to the oldest conception have in them ne light whatever, fall under the sway of the powers of darkness. A later view, adapted to the Christian one, represents the pertions of light in the unsaved as actually becoming lest. When the elernents of light have at last been completely, or as far as possible, delivered from the world, the end of oll things comes. All glorious spirits assemble, the God of light himself appears, accompanied by the æoas and the perfected just ones. The angels supporting the world withdraw themselves from their burden, and everything falls in ruias. A tremendous coaflagration consumes the world; the perfect separation of the two powers takes place once more; high above is the kingdom of light, again brought into a condition of completeness, and deep below is the (?now powerless) darkness.

On the basis of such a cosmical philesoply, ethics can only have a dualistic ascetic character. Manichæan ethics is not merely negative, however, since it is necessary to cherish, strengthen, aud purify the elements of light, ns well as free oneself from the elements of darkness. The aim is not self-destruction, but self-preservation ; and yet the ethics of Maaicheism appears in point of fact as thoroughly ascetic. The Manichæan had above all to refraic frem sensual enjoyment, shutting himself up against it by three seals, the signaculum oris, manus, and sinus. The signaculum oris ferbids all eating of unclean food dwhich iacluded all bodies of animals, wine, de.,-vegesable diet being allored because plants contained more light, theugh the killing of plants, or even placking their fruit and breaking their twigs, was not permitted), as well as all impure speech. The signacelum manus prohibits all irafic with things generally, in so far ns they carry in them elements of darkness. Fioally by the signaculum sinus every gratification of sexual desire, and hence also marriage, is forbinden. Desides all this. life was further regulated
by an exccedingly rigorous system of fasts. Certain astrenomical conjunctions determined the selection of the fast-days, which in their total number amounted to nearly a. quarter of the year. Sunday was regularly solemnized as one, and the practice was also generally observed on Monday. Hours of prayer were determined with equal exactness. The Manichæan had to pray four times a day, each prayer being preceded by ablutions. The worshipper turaed tewards the sun, or the moon, or the north, as the sent of light ; but it is erroucous to conclude from thie, as has been donc, that in Manichæism the sua and mooa were themselves objects of worship. Forms of prayer used by the Manichranss lave been preserved to us in the Fihrist. The prayers are addressed to the God of light, to the whole kingdom of light, to the glorious angels, and to Mani himself, who is apostrephized in them as "the great tree, which is all salvation." According to Kessler, these prayers are closely related to the Mandæan and the ancient Babylonian hymns. An asceticism so strict and painful as that demanded by Manichæism could only be practised by ferw; hence the religien must lave abandoned all attempts at an extensive propaganda, had it not conceded the principle of a twofold merality. A distiaction was made in the community between the Electi (Perfecti), the perfect Manichæans, aad the Catechumeni (Auditores), the secular Manichæaus. Ouly the former submitted themselves to all the demands made by their religien; for the latter the stringency of the preceptz was relaxed. They liad to avoid idolatry, sorcery, avarice, false. hood, fornication, \&c.; above all, they were not allowed to kill any living being (the ten commandments of Mani). They had also to free themselves as much as possible from the world; but in truth they lived very much as their non-Manichean fellow-citizens. We have here essentially the same condition of thinge as in the Catholic Church, where a twofold morality was also in ferce, that of the religious orders and that of secular Christians,-only that the position of the electi in Manichæism was a more distiuguished one than that of the manks in Catholicism. Fer, after all, the Christian menks never quite forgot that salvation is given by God through Christ, whereas tho Manichæan electi were actually themselves redeemers. Hence it was the duty of the auditores to pay the greatest respect and most assiduous attention to the electi. These "perfect ones," wasting away under their asceticism, were objects of admiration, and of the most elaborate solicitude. ${ }^{2}$ Food was presented to them in abundance, and by their eating it the electi set free the portions of light from the vegetables. They prayed for the auditores, they blessed them and interceded for thein, thereby shortening the process of purification the latter had to pass through after death. It was ouly the electi, too, who possessed full knowledge of religious truths, a point of distinction from Catholicism.

The distinction between electi and auditores, however, does not exhaust the conception of the Manichæan Church; on the contrary, the latter possessed a hierarchy of three ranks, so that there wero altogether five grada. tions in the "community. These were regarded as a copy of the ranks of the kingdom of light. At the head stood the teachers ("the sons of meekaess," Mani himself and his successors) ; then follow the administrators ("the sens of knewledge," the bishops); then the elders ("the sons of understandiag," the presbyters); the electi ("the sons of mystery"); and finally the auditores ("the sons of

[^195]fnsight"). The number of the eleeti must always have beeu small. Accordiag to Augustive the teachers were twelve, and the bishops seventy-two in number. Oue of the teachers appears to have occupied the position of superior at the head of the whole Mauichæan Church. At least Augustine speaks of euch a personage, and the Fihrist also has knowledge of a chief of all Manichæans. The constitution, therefore, had a monarchic head.
The worship of the Manichæans must have been very simple, and must have essentially consisted of prayers, Iymns, and ceremonies of adoration. This simple service promoted the secret dissemination of their doctrines. The Manicheans too, at least in the West, appear to have ndapted themselves to the church's system of festivals. The electi celebrated special feasts; but the principal festival with all elasses was the "Dema" ( $\beta \hat{\eta} \mu a)$ the feast of the "teacher's chair," held in commemoration of the death of Mani in the month of March. The faithful prostrated themselves before an adorned but empty chair, which was raised upon a podium of five steps. Long fasts accompanied the feasts. The Christian and Mohammedan bistorians could learn little of the Manichæan mysteries and "sacraments," and hence the former charged them with obscene rites and abominable usages. It may be held as undoubted that the later Manichæans celebrated mysteries analogons to Christian baptism and the Lord's Supper, which may have rested upon ancient consecration rites and other ceremonies, instituted by Mani himself and laving their origin in nature worship.
From the foregoing account it will be evident, as indeed from modern investigation it is certain, that Manichxism did not originate on Christian ground. It would be more proper to speak of Mohammedanism than of Manichxism as a Christian sect; for Mohammed stands in a far closer relation to the Jewish and Christian religions than did Mani. It is Kessler's merit to have shown that the ancient Babylonian religion, the original source of all the gnosis of western Asia, was the basis of the Manichran system. Hence the crroneousuess of the assumption, which formerly prevailed, that Manichæism was a reform movement of Parsism, a modification of Zoroastrianism under the influence of Cbristianity. Manicheism is a system which rather belongs to the Semitic group of religions. It is the Semitic religion of nature, withdrawn from national limits, modified by Christian and Persian elements, clerated into a gnosis, nud transforming human life by the iufluence of stringent regulations. .But the recoznition of this fact only supplics us with a very general explanation of the origin of Manichxism: The question still remains, through what channels and to what extent Mani adopted those Persian and Christian clements, and further, in what form the ancient nature religion of Babylonia was utilized by him. As far as the latter point is concerned it is known that, two centuries before Mani, the Semitic nature-religions lad already been taken up by various enthusiastic or speculative spirits, who had given them pliilosophic depth and moulded than into "systems," which were propagated with the aid of mysterious rites. Mani's undertaking, then, was by no means a novel one, but was rather the last in a long series of similar cfforts. Again, even in the earlicr of theso nttenpts, from that of Simon Magus onward, Christian clements had becn adopted to a greater or less extent; and the sects of the Christian gnostic schools of Syria and western Asia may all be traced back to the nature-religions of nacient Scmitism, transformed into a philosophy of the world and of life. It is tho Babyloninu sect of the Meghtasilal that seems to have furnished Mani with tho matter of his religions philosophical speculations, aud the religion of this sect was purely

Semitic (see Mandeans; the Mandæans were related to the Moghtasilah). This was the source of the thoroughgoing dualism which forms the basis of Mani's system ; fur the ancient Persian religion was not essentially dualistic, but was at bottom monistic, since Ahriman is created by Ormuzd. At the same time Mani turned the theologumena of ancient Persia also to account. The fact that the two orposed elements are called "light" and "darkness" can hardly be independent of Parsism, and Mavichæism uses other termini technici of the Persian religion. Whether Mani's idea of redemption is to be traced to the ancient Babylonian or to the Zoroastrian religion we do not venture to decide. The idea of "the prophet" auri, "the primal man" is at all events Semitic.

It is very difficult to determine what was the extent of Mani's knowledge of Christianity, how much he himself borrowed from it, and through what channels it reached kim. Iu any case it is certain that Mauichæism, in those district 3 where it was brought much into contact with Cliristianity, became additionally influenced by the latter at a very early period. The Western Manichæans of the 4th and 5th centuries are nuch more like Christians than their Eastern brethren. Iu this respect Manichxism experienced the same kind of development as Neo-Platonism. As regards Mani himself, it is safest to assume that he held both Judaism and Catholic Cliristianity to be entirely false religions. It is indeed true that he not only described himself as the promised Paraclete-for this designation probably originated with himself-but also conceded. a high place in his system to "Jesus;" we can only conclude from this, however, that he distinguished between Christianity and Christianity. The religion which had proceeded from the historical Jesus he repudiated together with its founder, and Catholicism as well as Judaism he louked upon as a religion of the devil. But he distinguished between the Jesus of darkness and the Jesus of light who had lived and acted contemporancously with the former. This distinction agrees with that made by the gnostic Basilides no less strikingly than the Manichean criticism of the Old Testament does with that propounded by the Marcionites (sce the Acta Avchelai, in which Mani is made to utter the antitheses of Marcion). Finally the Manichæan doctrines exhibit points of similarity to those of the Christian Elkesaites; but, as it is possible, and even probable, that such resemblances are to be ascribed to a common ancient Semitic source, they do not here call for further consideration. The historical relation of Mani to Christianity is theu as follows. From Catholicism, which he very probably had no detailed knowledge of, ho borrowed nothing, rejecting it as devilish crror. On the other hand, he looked upon what he considered to be Christianity proper, that is, Christianity as it had beens developed among the sects of Basilidians, Marcionites, and perhaps Bardesanites, as a comparatively valuable and sound religion. He took from ih, hotever, as from the Fersian religion, hardly anything but nanes, and, perbaps we may add, a criticiem of the Old Testament and of Judaism so far as he required it. Indications of the influence of Marcionitism are found in the high estimation in which Mani held the apostle Panl, and in the fact that he explicitly rejects the Book of Acts. Mani appears to have given recognition to a portion of the historical matter of the Gospels, and to have interpreted it in accordance with his own doctrine. In conclusion, it remains to be asked whether Buddhistic clements can also be detected in Manicheism. Most modern echulars since F. C. Banr have answered this question in the affrmative. According to Kessler, Mani made uso of the teaching of Buddha, at Ieast as far as ethics was concerned. It cannot be doubted that Mani, who undertonk Jong joueneya as far as Iudia.
knew of Buddhism. The name Buddha (Buddsa) which occurs in the legendary account of Mani, and perhaps in the latter's own writings, indicates further that he had occupied his nttention with Buddhism when engaged in tho worls of founding his new religion. But his borrowings from this sonrce must have been quite insignificant. A detailed comparison shows the difference between Buddhism and Manichaism in all their principal doctrines to be very great, while it becomes crident that the points of resemblance aro nlmost everywhere nccidental. This is also true of the ethics and the asceticism of the two aystems. There is not a single point in Manichreism which demands for its explazation an appeal to Buddhism. Such being the case, the relationship between the two religions remaius a mere possibility, a possibility which the inquiry of Geyler (Das System des Manichrismus und, sein Verhältniss zum Buddhismus, Jeua, 1875) has not been eble to elevate into a probability.
How are we to axplain the rapid spread of Manichæisn, and the fact that it really became one of the great religions? One answer is that Manicheism was the most complete gnosis, the richest, most consequent, and most artistic gystem formed on the basis of the ancient Babylonian religion (so Kessler). This explanation is insufficient, for no religion operates mainly through the perfection of its system of doctrine ; and it is not strictly correct, for the older gnostic systems. were not less richly equipped then the Manichæan. What gave strength to Manichæism was rather that it united an ancient mythology and $n$ thoroughgoing materialistic dualism with an exceedingly eimple spiritual worship and a strict morality. On comparing it with the Semitic religions of nature, we perceive that it retained their mythologies, after transforming them into "doctrines," but abolished all their sensuous cultus, substituting instead a spiritual worship as well ns a strict morality. Manichæism was thus nble to antisfy the nem wants of an old world. It offered revelation, redemption, moral virtue, and immortality, spiritual benefits on the basis of the religion of nature. A further source of strength lay in the aimple yet firm social organization which was given by Mani himself to his new institution. The wise man and the ignorant, the enthusiast and the man of the rorld, could all find acceptance here, and there was laid on no one more than he was able and willing to bear. Each one, however, was attached and led onward by the prospect of a higher rank to be attained, while the intellectually gifted had an additional inducement in tho assurance that they did not require to submit themselves to any authority, but would be led to God by pure reason. Thus adapted from the first to individual requirements, this religion also showed itself able to approptiate from time to time foreign elements. Originally furaished from fragments of various religions, it could increase or diminish this possession without rupturing its own elastic framework. And, after all, great adaptability is just as necessary for a unjversal religion as a divine founder in whom the highest revelation of God Himself may be seen and reverenced. Manicheism indeed, though it applies the title "redeemer" to Mani, has really no knowledge of a redeemer, but only of a physical and gnostic process of redemption; on the other hand, it possesses in Mani the supreme prophet of God. If we consider in conclusion that Manichxism gave a simple, apparently profound and yet convenient solution of the problem of good and evil, a problem that had become peculiarly oppressive to the human race in the 2 d and 3 d centuries, we shall have named the most important factors which nccount for the rapid spread of the system.
Danichæism first gained a firm footiog in the East, i.e., in Persia, Mesopotamia, and Transorania. The ersecutions it had to endure did not hinder its extension.

The seat of tho Manichean pope was for centuries in Babylou, at a later period in Samarkand. Even after the conouests of Islam the Manichean Church continued to maintain itself, indeed it seens to have become still more widely diffused by the victorious campaigns of the Mohammedans, and it frequently gained secret adherents nomg the latter themselves. Its doctrine and discipline underweat little change in the East; in particular, it drew no nearer to the Christian religion. More than once, however, Manichaism experienced attempts at reforman tion; for of course the auditores very easily beame worldly in character, and movements of reformatio:s led temporarily to divisions and the fornation of sects. Towards the close of the 10th century, at the time the Fikrist was written, the Manichæans in Mesopetamia and Persia had already been in large measure ousted from the towns, and had wittdrawn to the villages. But in Turkestan, and as far as the Chinese frontier, there existeu numerous Manichæan communities, and even whole tribes that had adopted the name of Mani. Probably it was the great migrations of the Mongolian race that first pot ats end to Mantchaism in Central Asia. But even in the 15th century there were Manichæans liviag beside the Thomas-Christians on the coast of Malabar in India (see Germann, Die Thomas-Christen, 1875). Manichacism first penetrated the Greek-Roman empire about the jear 280, in the time of the emperor Probus (see the Chronicon of Eusehius). If we may take the edict of Diocletian against the Maoichæans as genuine, the system must lave gained a firm footing in the West by the beginoing of tho 4 th century, but we know that as late as about the yesr 325 Eusebius bad not any accurate knowledge of the sect. It was only subsequent to abont 330 that Mauicbæism apread rapidly in the Roman empire. Its adherents were recruited on the one hand from the old goostic aects (especially from the Marcionites,-Manichæism exerted besides this a strong influence on the development of the Marcionite churches of the 4th century), on the other hand from the large number of the "cultured," who were striving after a "rational" and yet in some manner Christian religion. Its polemics and its criticism of the Catholic Church now became the strong side of Manichæism, especially in the West. It admitted the stumb-ling-blocks which the Old Testament offers to every intelligent reader, and gare itself out as a Christianily without the Old Testament. Instead of the aubtle Catholic theoriss concerning divine predestination and human freedom, and instead of a difficult theodicæa, it offered an exceedingls aimple conception of $\sin$ and goodness. The doctrine of the incarnation of God, which was especially objectionsble to those who were going over to the new noiversal religion from the old cults, was not proclaimed by Manichæism. In its rejection of this doctrine Manichæism agreed with Neo-Plstonism; but, while the latter, notwithstanding all its attempts to conform itself to Clristianity, could find no formula by which to ineugurate within ite own limits the apecial veneration of Christ, the Western Manichæans succeeded in giving their teaching a Christian tinge. The only part of the Manichæan mythology that became popular was the crude, physical dualism. The barbaric elements were judiciously screened from view as a "mystery;" they were, indeed, here nnd there explicitly disavowed even by the initiated. The further Msnicheism advanced into the West, the more Christian and philosophic did it become. In Syria it maintained itself in comparative purity. In North Africa it found its most numerous adherents, gaining secret support even among the clergy. The explanation or this perbaps lies ir the fact that one part of the popnlation of North Africa was of Semitic origin. Augustiue was as
nuditor for nine jears, while Faustus was at that time the most esteemed Manichæan teacher in the West. Augustine in his later writings against the Manichæans deals chiefly with the following problems:-(l) the relation betwcen knowledge and faith, and between reason and authority; (2) the nature of good and evil, and tho origin of the latter ; (3) the existence of free will, and its relation to the divine omnipotence; (4).the relation of the cvil in the world to the divine government.

The Cbristian Byzantine and Roman emperors, from Valens onwards, enacted strict laws against the Manichæans. But at first these bore little fruit. The auditores were difficult to trace out, and besides they really gave little occasion for persecution. In Rome itself between 370 and 440 Manichæism gained a largo amount of support, especially among the schciars and public teachers. It also made its way into the life of the people by means of a popular literature in whick.the apostles were made to play a prominent part (Apocryohal Acts of the Apostles). Manichæism in the West had also some experience of attempts at reformation from the ascetic side, but of these we know iittle. In Rome Leo the Great was the first who took energetic measures, along with the state authorities, against the system. Valentinian III. decreed banishment against its adberents, Justinian the punishment of death. In North Africa Manichæism appears to have been extinguished by the persecution of the Vandals. But it still continued to exist elsewhere, both in the Byzantine empire and in the West, and in the earlier part of the Middle Ages it gave an impulse to the formation of new sects, which remained related to it. And, if it has not been quite proved that so early as the 4th century the Priscillianists of Spain were influenced by Manichæism, it is at least undoubted that the Paulicians and Bogomiles as well as the:Catharists and the Albigenses are to be traced back to Manichreism (and Marcionitism). Thus the system, not indeed of Mani the Persian, but of Manichæism as modified by Christian iafluences, accompanied the Catholic Church until the 13 th century.

Sources.-(a) Oriental. Among the sources for a history of Manichrism, the most important are the Oriental. Of these the Mobaminedan, though of comparatively late date, are distinguished by the excellent manner in which they have been transmitted to us, aa well as by their impartiality. They must bo named first, because ancient Manichæan writings have been used in their construction, while, with the exception of some small and rather unimportant pieces, we possess no other original Manichwan works dating from the 31 century. At the head of all stauds En-Ñcdim, Fihrist (circa 930), edited by Fligel (1871-72); comp. the latter's work Mrani, scine Lehre u. scine Schriften, 1862. See alse Shahrastání, Kitab al-milal wan-nuthal ( 12 th cent.), edited by Curcton (1846) and translated into German hy Haarbriicker, 1851, and individual notes and excerpts by Tabarí (10th cent.), Al-Bírúní (11th cent.), and other Arabian and P'craian historians.

Of the Christian Orientals those that afford most iuformation are Ephraem Syrus (ob. 373), in various writings; the Armenian Esnik (aee Zeitsch. f. hist. Theol., 1840, ii., Langlois, Collcecion, ii. 375 sq.), who wrote in the 5th century agaiust Marcion and Msni ; and the Alcxandrian patriarch Eutychius (ob. 916), Annaies, ed. Pacocke, 1628. There are hesides acattered pieces of informatiou in Aphraates (4th cent.), Barhebreus (13th ceut.), and others.
(b) Greek and Latin. The earliest mention of the Manicheans in the Greco-Roman empire is to be found in an edict of Diocletian (ace Iräncl, Cod. Gircgor., tit. xv.), which is held hy some to be aparious, whilo others assign it to one or other of the years 287 , 290, 296, 303 (so Mason, The Perscc. of Diocl., p. 275 sq.). Ensebius gives a short account of the sect (II. E., vii. 31). It was the Acla Archelai, however, that became tho principal sauree on the subject of Manichæism for Greck and Roman writers. These Acta are not indced what they give themselves out for, viz., an account of a disputation held between Mani and the bishop Archelaus of Cascar in llesopotamia; but they nevertholess contain much that is trustworthy, especially recrarding tho doctrine of Mani, and they also inelude Manichean documents. They consist of various distinct peces, and originated in the beginning of the the century, nrobably at Edessa. They were translated as carly as the first half of the
same enntury from the Sgriac (as is muntsined by Jerome, De Vir Illust., 72 ; though this is doubted by modern scholars) into Greek, and soon afterwards into Latin. It is only this secondary Latir version that ie possess (edited hy Zacami, 1698; Routh, RcliqSac., vol. v., 1848; translated in Clark's Ante-Nicene Library, vol. xx.); small fragments cf the Grepte version have been preserved. Regarding the Acta Archelai, see Zittwitz in Zcitschr. f. d. histor. Theol.; 1873, and Oblasinski, Acta disp. Arch. al Manetis, 1874. In the form in which we now passess them, they are a compilation after the pattern of the Clemcntine Eomilics, and have been subjected to manifold redactions These Acta werc used by Cyril of Jerusalem (Catcch.; 6), Epiphanfus (Hær., 66), and a great number of other writers. All the Greek and Latin heresiologists have incloded the Nanichrans in their catalogues; but they seldom adduce any iodependent information regarding them (see Theodoret, $H æ r . j a b .$, i. 26 ; Important matter is to be found in the resolutions of the councils from the 4th century onwards (see Mansi, Aota Concil., and Hefele, Concilicngeschichte, val. i.-iii.), and also in the controversial writings of Titas of Bostra ( 6 th cent.), Mpds Mavixalous (ed. Lagarde, 1859), and of Alexander of Lycopolis, Aóros $\pi \rho$ dos tàs Mavixalou ódzas (ed. Combefis; transl. in Ante-Nic. Lib., vol. xiv. Of the Byzantines, the most worthy of mention are John of Damascus (Dc Hxres. and Dialog.) and Photius (cod. 179 Biblioth.). The struggle with the Paulicians and the Bogomiles, who were often simply identified with the Manichæans, again directed attention to the latter. In the West the works of Augustine are the great repertory for informatien on the subject of Manichæism (Contra cpistolam Manichæi, quam vocant fundamenti; Contra Faustum 3fanich\&unt ; Contra Fortunatum; Contra Adinantum; Contra Sccundinum ; De actis cum Felice Manichxo; De Genesi c. Manichæos; De natura boni; De duabus animabus; De utilitate credendi; De moribus eccl. cathol. et de moribus MFanichsorum; De hæres.). The more complete the picture, however, which may here be obtained of Manicheism, the more cautious must we be in making geaeralizations from it, for it is beyond doubt that Western Manichæism adopted Christian elements which are wanting in the original and in the Oriental Manichæism.

Literaturc.-The most important works on Manichæism sre Beausobre, Hist. critique dc Manichee et duc Manicheisme, 2 vols., 1734 sq . (the Christian elements in Manichaism are here strongly, indeed too strongly, emphasized); Baur, Das manich. Religionssystem, 1831 (in this work Manichæan speculation is exhibited from a speculative standpoint); Flügel, Mani, 1862 (a very careful investigation on the basis of the Fihrist); Kessler, Untersuchung zur Gencsis dcs manich. Rcligionssystons, 1876; and the article "Mani, Manichäer," by the same writer in HerzogPlitt's R. E., ix. 223-59. This article is very thorough, and leads to most favourable expectations regarding the anthor's forthcoming work. The accounts of Nosheim, Lardner, Walch, and Schröckh, as well as the monograph by Trechsel, Ucber Kanon, Kritik, und Excycse der MLanichäer, 1832, may also be mentioned as still usetul. The various researches which have been made regarding Parsism, the ancient Semitic religions, Cnosticism, \&c., are of the greatest importance for the investigation of Msnichæism. (A. HA.)

MANILA (less correctly MANLlA), the capital of Luzon and the Philippine Islands, aad the ceatre of Spanish commerce in the East, was founded by Legaspi in 1571, and is situated on the eastern shore of a circular bay 120 nautical miles in circumference, $14^{\circ} 36^{\prime} \mathrm{N}$. lat. and $120^{\circ} 52^{\prime} \mathrm{E}$. long. The country around the bay is more or less flat in character, and in the dey season almost bare of vegetation, so that, excepting tho Mafonso end Mateo mouutains behind Manila, and the chains of mountains running north and south of the entrance to the bay, there is really nothing attractive about the harbour. It is unsafe in the north-east and south-west monsoons, and vessels ore: 300 tons have to run for shelter to the naval port of Carite, the smaller craft finding a safe anchorage behind a break. water facing the mouth of the Pasig. A new breakwater, howevcr, mas commenced in 1880 for large vessels. This river Pasig, which is about 14 wiles long, is fed by an inland lake called the Laguna de Bayo, and on its way into the harbour it divides Manila into tro parts. On its northern bank are large commercial warchouses, a bazaar occupied chiefly by Clinese, known as the Escolta, and trending eastwards an extensive suburb of native dwellings extending some miles up the Pasig. Beyond the Escolta lie Binondo, the business part of Manila, and San Miguel, the fashionable quarter where Spaniards and forcigners have their resideace, and where siace the earthouako of 1850 two palaces
have veen erected for the governor or captaiu-general and for the admiral of the flect. There are numerous churches and barracks in this part of the town, and several public buildings, of which the following may be mentioned,- the hospital of St Lazarus, the garnero or large military storehouse, and the famous cigar factory, covering a space of about 6 acres, and employing daily 10,000 women. Beyond and blending as it were with Biaondo are villages in which the governor bas his country bouse, and where Europeans have built pretty villa residences. A stone bridge and a new suspension bridge connect Binondo or modern Manila with the suburb opposite and the old fort of St Iagn, situated on the south bank and about a mile from the mouth of the Pasig. Within the fort wall lies the old city, or, as it is commonly called, the Plaza de Manila. It is approached by several gates-the principal being the Entrada, near which stands the custom-bouse. It has aeveral squares, and the streets ruaning at right angles with each other are fairly broad and clean, but, as no trade is carried on in this part of the town, they are dul? by day, and, as only oil lamps are used, gloomy by night. The public edifices, such as the governor's palace, the town-hall, and the cathedral, are in a large square, in the centre of which is a statue of Charles IV. surrounded by a garden of flowers. To these may be added the civil and military hospitals, the mint and museum, the university and the academy of arts, the arsenal, the prison, and numerous barracks, convents, and monasteries. Beyond the walls is the calzada or esplanade, with a small paseo or promenade facing the bay, where three or four military bands play twice a week to a large concourse of people. This.forms the chief out-door attraction for the élite of Manila There are two theatres-occasionally visited by Enropean companies; but there is a want of the cafés and bull fights so associated with Spanish life. Erening receptions are given by the Spaniards, where cards and music serre to while away the time, and the well-to-do Tagalo, besides imitating his masters in all their amusements, has another to which he is passionately addicted, viz., cockfighting. This is under Government control, and in town can only be held in licensed cockpits, which in 1878 yielded above $£ 33,000$ to the revenue. The native officials may sometimes be a little officious and orerbearing; but the natives generally, especially those out of Manila, are as hospitable to the stranger as the Spaniard.

The population in the walled town, inclusive of the garrison, is given in the consular reports for 1880 as 12,000 , and that of Binondo and the suburbs as 250,000 to 300,000 . In 1842 the total was rather more than 150,000.

The climate is healthy, and though hot is not unbearably so, the mean temperature being about $82^{\circ} \cdot 6$ Fabr. The hot seasun prevails from March to the end of June; the rest of the year may be said to be showery and stormy. The chief climatic drawbacks to a residence in Manila aro hurricanes, earthquakes, and fearful thunderstorms. Great damage was done to property by a toraado of exceptional severity ia October 1882.

The cemetery of Manila is rell suited for a hot climate and the backward condition of its sanitary arrangements. It is a large circnlar area, surronnded by an outer and an inner wall, with horizontal recesses between them placed one above another in tiers. On the arrival of a body for sepulture it is taken out of its coffin and put into one of these recesses; quicklime is then spread upon it and the mouth of the recess bricked up. If the recess is the property of the relatires of the dead, the body remains undis. turbed for ever. If othersise, it remains until the recess is absolutely required for another inmate, when the bones, the only remains left of the deceased, are collected and carefully deposited in a larga hollow or fosse kept for tbat purpose.

For tro centuries after the Spanish settlement the trade of Manila with the Western rorld was carrica on wia Acapulco and Meaico;
and it Tras not till 1764 that even tbe Spanislı ressels began to come round by the Cape. The port, however, was opened with some restrictions to foreign ressels in 1789 ; permission for the establish. ment of an English commercial honse was granted in 1809; the same liberty was before long extended to other aationalities; and in 1834 tho privileges of the Royal Company of the Philipuines expired and left the commercial movement to its natural tendencies. Since that time the trade of Manila has greatly increased. Wbilo in 1840 the port was entered by 187 vessels with a burden of about 57,000 tons, the corresponding figures for 1831 are, including 182 steamers, 317 vessels (British, 118 ; Spanish, 95 ; Gcrman, 38), with a burden of 244,000 tons. Kamila hemp (abaca), sugar, cigars, and coffee are the chief articles of export ; and sapan wood, mother of pearl, and gum are regular though secondary items. The quantity of hemp shipped at Manils has increased from 528,206 piculs ( 1 picul $=139$ 䜣) in 1877 to 662,886 in 1881, and in the same period the quantity of sugar has risen from $1,215,066$ piculs to 2,001,310. Britain and the United States are the great markets for both. The average number of cigars exportcd is $92,620,000$, the greater proportion going to Singapore and China. Tbe total value of the exports was $£ 5,460,000$ in 1881, against $£ 2,679,000$ in 1861 ; and a corresponding increase has taken place in the imports.

Telegraphic communication betreen Manila and Hong-Kong was established in 1880.

MANILA HE\IP, the most raluable of all fibres for cordage, is the produce of the leaf-stalks of Musa textilis, a native of the Philippine Islands. The plant, called abaca by the islanders, throws up a spurious stem from its rhizome, consisting of a cluster of sheathing leaf-stalks which rise to a beight of from 20 to 30 feet, and spread out into a cromn of huge undivided leaves characteristic of the various species of Musa (plantain, banana, dc.). In its native regions the plant is rudely cultivated solely as a source of fibre; it requires little attention, and when about three years old develops flowers on a central stem, at which stage it is in the most favourable condition for yielding fibre. The stock is then cut down, and the sheathing stalks torn asuader and reduced to amall strips. These strips in their fresh succulent condition are drawn between a sharp knife-edged instrnment and a hard wooden block to which it is fixed, and by repeated scraping in this way the soft cellular matter which surrounds the fibre is remored, and the fibre so cleaned bas only to be hung up to dry in the open air, when, without furtber treatment, it is ready for use. Each stock yields, on an arerage, a littlo under 1 fb of fibre; and two natives cutting duwn plants and separating fibre will prepare not more than 25 Ib per day. The fibre yielded by the outer layer of leaf-stalks is hard, fully developed, and strong, but the produce of the inner stalks is increasingly thir, fine, and weak. The finer fibre is used by the natives, without spinning or twisting (the ends of the single fibres being knotted together), for making exceedingly fine, light, and transparent jet comparatirely strong textures, which they use as articles of dress and ornament. The henp exported for cordage purposes is a somewhat woody fibre, of a bright brownish. white colour, and possessing great durability and strainresisting power. It contains a very considerable amount of adherent pectinous matter, and an unusaally large proportion, as much as 12 per cent., of water in a dry condition. In a damp atmosphere the fibre absorbs moisture so freely that it bas been found to contain not less than 40 per cent. of mater, a circumstance which dealers in the raw fibre should bear in mind. The plant has been introduced into many tropical lands; but the cheapness of labour in its native regions, and its abundance there, prevent its being a profitable substance for general cultivation. The entire supply comes from Manila and Cebu in the Philippine Islands, where its cultivation and preparation must give employment to a very large population. The exports, which ato increasing with great rapidity, amounted in 1881 to about 400,000 bales of $2 \frac{2}{2} \mathrm{cmts}$. each, almost the whole of which goes to the United Eingdom, the United States, and the Australian colonies. The quantity imported inte
the United Kiogdom in 1881 was $346,908 \mathrm{cwts}$, valued ath $£ 678,514$. The fibre is now so raluable that manila hemp cordage is freely adulterated by manufacturers, chiefly by admixture of phormium (New Zealand flax) and Russian hemp.

MANILIUS, a Roman poet, was the author of a poem in fire books called Astronomica. Nothing is recorded of the author; he is neither quoted nor mentioned by any ancient writer. His very nạme is uncertain, but was probably Marcus Manilius. From the work itself it may be gathered with much probability that the writer lived under Augustus or Tiberius, and that be was a citizen of and resident in Rome. He bears the name of a distinguisled plebeian fanily. His work is one of great learning; he had studied his subject in the best writers, and geuerally represents the most advanced views of the ancients on astronomy. It is, however, destitute of puetical or literary merit. It is difficult to explain how a work of such learning on a subject which was studied with such interest by the ancients should have remained so neglected. Firmicus, who wrote in the time of Constantine, has so many points of resemblance with the work of Nanilius that he must either have used him or have followed some work that Manilins also followed. As Firmicus says that hardly any Roman except Cæsar, Cicero, and Fronto had treated the subject, it is probable that he did not know the work of Manilius. The latest event referred to in the poem is the great defeat of 9 A.D.

MaNIN, Daviele ( $1804-18 \tilde{5}_{7}$ ), president of the Venetian republic in 1848-49, and one of the principal founders of Italian independence, was born ia Venice on the 13 th May 1804 . He studied at Padua, graduating as doctor of laws when only seventeen years of age, aud soon after translated Pothier's large treatise Sur le Droit Romain. .To his fatber, an eminent barrister, he was indebted not only for much of his skill in jurisprudence but for his strong republican bias, haring as a boy constantly heard him denounce indignantly the injustice of Bonaparte in handing Venice over to Austria by the acandalous treaty of Campio. Formio. In 1830 Manin commenced practice as an adrocate, but only to become conscious of the harsh restrictions laid by Austria upon the administration of law. That and the following year showed some stirrings of political life in Italy; and Manin, already the leading spirit in Venetia of the new national party, strove to train his countrymen to united purpose and action. The question of a railway to Milan, for instance, or whether the Indian mail should go by Venice, was utilized to quicken the patriotic instinct by thwarting the Government, and that without neglecting the great principle "legality and publicity"-which till I 848 was his unswerving rule of conduct.

In 1847 he spoke ably on political economy at the scientific congress held in Venice, and soon after presented two petitions to the "congregation,"-a shadowy deliberative assembly which was tolerated by Austria. His principal demands were-separate government of Venice and Lombardy, revision of the code, an annual budget, frecdom of the press, and religinus equality. On the 18th Jauuary 1848, soon after Radetsky's crucd treatment of Milan, ho was arrested, but only to inteusify the patriotic enthusiasm of the people. The population of Venice marched past bis prison silently and mournfully, every head uncorered. The carnival (that year spent in gloom) was scarcely over, however, when the glad news from Sicily, Naples, and Paris so worked upon their minds that the Austrian authorities were forced to feel that tho revolutionary wave had reached Venice. On the 17th March Manin was carricd in triumph to the Place St Mark, and virtually declared dictator. Now that the moment for
action was come he immediately formed a civic guard, and by his energy and earnestness inspired all classes of the citizens to act as ono man. On the 22d the dictator became president of the nerr republic of St Mark, to cope alone with all the difficulties of administration, organization, and finance. In March 1849, on the defeat of King Charles Albert, Venice had to prepare berself resolutely for defence; and on the 2 d April there was passed in the palace of the Doges a decree in two clauses :- " (1) Venice will resist the Austrians at whatever cost ; (2) the president Marin is invested with unlimited pomers." On the 26 ch May one outlying fort was taken, but on the 3d Joly, when Rome and Mazzini had succumbed to the Freach, Veuice and Manin were still strenuous in their leroic defeace. Only when cholera had also attacked them, when food and ammunition were spent and people were dying of hunger, when every house not burned clown was riddled by the shot and slefl of the bombardment, and no gleam of bope from without was risible, was the capitulation signed, 24th August, on terms of amnesty to all except the president and thirty-nine other citizens.

Leaving Venice on the 27 th, with lis wife and two children, Manin spent the rest of his life in Paris, where he maintained a modest independence by teaching his native language. His energies were still devoted to the unification of Italy, so that, whether as a republic or as a kiagdom, she might be freed from Austrian domination. $\mathrm{H}_{8}$ died of heart disease on the 22d September 1857, and was buried in the family tomb of Ary Scheffer. In 1868 the remains were removed to Venice, and honoured with a public funeral.
See Heari Martin, D. Manin, 1859, and L'Unitt Italicnne, 1861 (Martin also wrote the article in' the Biogr. Universelle); C. L. Chassin, Manin et l'Ytalie ; Errera's Vita di D. AFrnin, Venice, 1872; P. de La Faye's Documents, dec., de D. Afanin, 1860. Other writers are Ernest Legouvé, A. de La Forge, and Edmnnd Flagg (New York).
manioc or Mandiog See Cassafa and Arrow. воот.

MANIPUR, a native state in north-eastern India, lyirg between $24^{\circ} 35^{\circ}$ and $24^{\circ} 48^{\prime} 30^{\prime \prime} \mathrm{N}$. lat., and between $93^{\circ}$ and $94^{\circ} 40^{\prime}$ E. long., is bounded on the N. by the Nága country and the hills overlooking the Assam valley, on the W. by Cáchar district, and on the E. by Independent Burmah. On the south the boundary is undefined, and abuts on the country inhabited by various independent wild hill tribes of Lushais, Kukis, \&c. The state consists of an extensire valley, estimated at about 650 square miles in extent, and a large surrounding unsurreyed tract of difficnlt mountainous country stretching between Assam, Cáchår, Burmah, and Chittagong. The total area is estimated at about 7600 equare miles. The population uf the Manipur valley and the surrounding hills is supposed to be about 74,000 hill-men and 65,000 Manipuris. The hill ranges generally run north and south, with occasional connecting spurs and ridges of lower elevation between. Their greatest altitude is in the north, where they reach to upwards of 8000 feet abore sea-level. The principal geographical feature in the valley is the Logtak Lake, an irregular sheet of water of considerable size, but said to be yearly growing smaller. The valley is watered by numerous rivers, the Bárak being the most important. The hills are densely clothed with tree jungle and large forest timber. There are large herds of wild elephants, ns well as tigers, lcopards, bears, buffiloes, \&c. The country seems to be singularly free from poisonous snakes: the cobra does not appear to exist in the valley, but the boa constrictor is found in the dense forcsts to the south.

The first relations of the British with Manipur date from 1:62 when the rajá solicited British aid to repel a Burmese invasion and a treaty was cotered into. The force was recalled, and
but little communication betreen the two countries took place until 1824, on the outbreak of the first British Burmese war. British assistance mas again invoked by the raja, and the Barmese were finally expelled both from the Assam and Manipar Falleys. A political ngent aets as a means of communication between the state and the Britisls Goverument. Manipur valley appears to have been originally oecupied by several tribes whieh camo from different directions. Although their general facial characteristics are Mongolian, there is a great diversity of feature among the Manipuris, some of them showing a regularity approaching the Aryan type. In the valley the people are cliefly Hindus, tbat religion being appareatly of recent introduction. They havo a caste system of their own, different from that of India, and ehiefly founded on what is known os the system of lallup or forced labour. Every male between the ages of seventeen aud sixty is obliged to place his services at the disposal of the state for a certain number of days each year, ond to different elasses of the people different employments are assigned. About four hundred Mohammedan families, descendants of settlers from Bengal, residn to the east of the capital. The aboriginal hill-men belong to one of tho two great divisions of Nágas and Kukis, and are subdivided iuto innumerable claus and sections with slight differences in lngmage, custous, or dress. The state is noted for the oxecllenco of its breed of ponies. The nor popular English game of polo was introdueed from Manipur, where it forms a great nationol pastime. The trade is but small, owing ehietly to the want of means of transport, noDe of the roads being available for wheeled carts.
Manis. See Pangolin.
MANISA, or MANissa, a town of Asia Minor or Anatolia, situated on the north side of Mount Sipylus, 28 miles northeast of Smyrna. This town was anciently called Maqnesia ad Sipylum (see Magyesta). It is situated on the baoks of the Hernus, and is noted as being one of the neatest and cleanest cities in Asia Minor. It cootains above twenty mosques, two of which are adorned on the exterior with double minarets, and in the inside with paintings and other articles. The Armenians, Greeks, and Jews lave also their respective places of worship. There is also a fine khan, and a citadel, which stands on a lofty rock, and commands an extensive riew. The surrounding country is rich and productive, especially of saffron, which is exported. The town is the seat of some considerable trade, and many of the inhabitants are employed in the manufacture of cotton and silk grods and goats' hair shawls. Population about 40,000 . The town is now connected with Smyrna by a railway, which is continned on to AlaShehr (Philadelphia). A ferv miles from Manisa is _a colossal statue cat in the rock, which is generally supposed to be the figure of Niobe, alluded to by ancient authors.
MANISTEE, a city of the United States, the county seat of Manistee county, Michigan, is situated 135 miles north-west of Lansing, on the east side of Lake Michigan, at the mouth of the Manistee river, which is navigable for vessels drawing 10 to 12 feet of water for the distance of $1 \frac{1}{2}$ miles to Manistee Lake. It is a great sest of the lumber trade, shipping anuually $200,000,000$ feet of timber, and having a score of saw-mills and about as many shingle mills, the latter of which produce in the year $400,000,000$ shingles, -the largest quantity made at any one place in the world. Planing-mills and fonndries are also maintained; and, in consequence of the discovery in 1881 of'a bed of solid salt 30 feet thick, extensive salt factories are being built. The surrounding district is especially adapted for fruit-growing; and sportsmen are attracted to the Manistee river and its tributaries by the abundance of the rarely found grayling. The population, 3373 in 1870 , was 7080 in 1880.

MANITOBA, one of the mestern provinces of the Dominion of Canada, is sithiated midway between the Atlantic and the Pacific coasts of the Dominion, about 1090 miles due west of Quebec (see vol. iv. plate xxxr.). It is boanded on the S. by the parallel $49^{\circ} \mathrm{N}$ : lat., which divides it from the United States ; on the W. by $101^{\circ} 20^{\prime}$ W. long; on the N. by $52^{\circ} 50^{\prime} \mathrm{N}$. lat.; and on the E. by the western boundary of Ontario. Manitoba formerly
belonged to the Hedson's Bay Company (q.v), and was, after the transfer of therr territory to Canada, admitted in 1870 as tho fifth froviace of the Dominion. At that time the infant proviace had an area of 13,500 square miles, and some 12,000 peoplc, chiefly Indian half.breeds. In 1881 the limits were increased to the extent indicated above, and now contaio, taking the Lake of the Woods as the eastero boundary, upwards of 80,000 square miles, an area only 8782 square miles less than that of England and Scotland together, extending 264 miles from north to south and upwards of 300 from east to west. The old district of Assiniboia, the result of the efforts in colonization by the carl of Selkirk in 1811 and succeeding years, was the nuoleus of the province. Manituba was so called by the Dominion parliament after the lake of that name; the dosignation is usually considered to be a conspound of the Ojibway words, Manito, great spirit, and Wabs, straits between lakes, or a word meaning echo.

The drainage of Manitobs is entirely north-eastward to Hudson's Bay. The . three lakes-whose greatest lengths are 250,150 , and 130 miles respectively-are Winnipeg, Winnipegrousis, and Manitoba. They are all of a very varying and irregular share, but average respectively 30,18 , and 10 miles in width. They are fresh, shallow, and tideless. Winnipegoosis aud Manitobs at high water, in spring time, discharge their overflow through small streams into Winnipeg. The chief rivers emptyin: into Lake Winnipeg are the Winnipeg, the Red, and the Saskatchewan. The Assiniboine river, with its source in the province, and navigable from 250 to 350 miles for steamers of light draught, eaters the Red river 45 miles from Lake Winnipeg, and at the confluence of the rivers ("The Forks") is situated the city of Winnipeg. The Winnipeg, which flows from the territory lying south. east of Lake Winnipeg, is a noble river some 200 miles long, that after leaving Lake of the Woods, dashes with its clear water over many cascades, and traverses rery beantiful scenery. At its falls from Lake of the Woods is one of the greatest and most easily utilized water-powers in the world. Like most rivers in the Now World, the Red river is at intervals of years subject to freshets. In the seventy years' experience of the Selkirk colonists there have been four
 peg is said to have been under 5 feet of water for seversl weeks in May and June in 1826, under $2 \frac{1}{2}$ feet in 1852, not covered in 1861, and only under water on the lowest levels in 1882. The extent of overflow Ias thus on each occasion been less. The loose soil on the banke of the river is every year carried away in great masses, and the channel has so widened as to render the recurrence of an overflow unlikely. Tio Saskatchewan, though not in the province, empties into Lake Winnepeg less than half a degree from the northern boundary. It is a mighty river, rising in the Rocky Mountains, and crossing eighteen degrees of longitude. Near its mouth are the Grand Rapids. Above these, steamers ply to Fort Edmonton, a point upwards of 800 miles north-west of the city of Winuipeg, Steamers ran from Grand Rapids, through Lake Winnipeg, up Red river to the city of Winnipeg.

Geologically Manitoba may be said to be the resumption of the Secondary rocks left behind in the fertile portions of Ontario. The whole north-east of North America, running from Labrador, crossing the Ottawa, and skirting the Georgian Bay and Lake Superior, is a region of Laurentian or Primary rocks-containing copper, silver, and probably gold-bearing rocks. From Lake Superior north-westward to within 40 miles of Red river and up to the eastern shore of Lake Winnipeg the same region confinues for about 500 miles, including near its western limits the Lake of the IVoods. This barren region left behind, the
fe:trle plains of Manitoba begin-a district resting on Sirurian limestones. For 100 or 150 miles these rocks continue. This is the first prairie steppe. At very few points does an outcrop of limestone occur. A range of hills running from south-east to north-west bounds this region on the west. These are Pembina Mountains, Riding Mountains, and Duck Mountain, varying from 200 to 700 feet in luight. Before the Riding Mountains are reached, on the shores and islands of Lakes Manitoba and Wianipegoosis are found a few buff-colonred Devonian limestones. From this line of hills westward spreads out the second prairie steppe, extending some 400 or 500 miles. Beyond this for an equal distance, at a still higher elevation, is the third prairie steppe, till the Rocky Mourtaius are reached. From the Pembina and Riding Mountains to the Rocky Mountains, say 1000 miles, Cretaceous beds underlic the plains and crop out at long intervals. The most striking feature of this formation, of which only the eastern 100 or 150 miles are within Manitoba, is the presence of coal. It is, like most of the Tcrtiary varieties, a lignite; a specimen aralysed gives water 7.82 per cent., volatile combustible matter $31 \% 35$ per cent., fixed carbon 54.07 per cent., and ash 5.86 per cent. The supply of this coal is, according to Professor Selwyn, practically inexhaustible. Mr G. M. Dawson, Governmeat explorer, has figured exposures of lignite 1 foot, 7 feet, and even 18 feet in thickness in the Souris valley, 250 miles south-rest of Wianipeg. As a fuel fur domestic purposes, this coal in general answers very well. The drift deposit on the first and second prairie levels varies from 20 to 100 fcet, and cocsists of clay and boulders. A clay lying near the surface is used for making the white brick of which Winnipeg is built. The most recent geologic deposit is a rich vegetahle mould, sometimes 4 feet in thickness. It is this that gives the reputation for fertility which the soil of the province enjoys.
The surface of Mauitoba is somewhat sevel and monotoneus. It is chiefly a prairie region, with treeless plains of from 5 to 40 miles extent, covered in summer with an exuberant vegetable growth, which dies every year. The river bauks arc, however, fringed with trees, and in the more undulating lands the timber belts vary from a few hundreds of yards to 5 or 10 miles in width, forming at times forests of no inconsiderable size. The chief trees of the country are the aspen (Populus tremuloides), the ash-lcaved maple (Negundo aceroides), oak (Quercus alba), elm (Ulmus americana), and many vapictics of willow. The strawberry, raspberry, currant, plum, cherry, and grane are indigenous.
The climate of Manituba, being that of a regioc of wide extent and of similar conditions, is not subject to frequent variations. Winter, with cold but clear and braciug weather, usually sets in about the middle of November, and cnds with Barch. In April and May the rivers have opened, the snow has disappeared, and the opportunity has becn afforded the farmer of sowing his grain. The month of June is often wet, but most favourable for the springing crops; July and August are warm, but, excepting two or three days at a time, not uncomfortably so; white the auturn months of Augustand September are very pleasant. Harrest generally extends from the middle of August to near the end of September. The chicf crops of the farmer aro wheat (which from its flinty hardness and full kerncl is the specialty of the Canadian nortl-west), oats, barley, and pease. Hay is made of the native prairic grasses, which grow luxuriantly. From the richness and mellowness of tho suil potataes and all tap-roots : eacli a great sizc. Heary dews in summer give the needed moisture after the rains of June havo ceased. The traveller and farmer are at tincs annoyer by tho mosquito. This troublesome insect is
chiefly found ucar swampy ground or on the uncultirated prairie. It usually continues through June and July.
The population of the province is very mixed. In 1870 there were 2000 whites and 10,000 Indian half-breeds. Of the latter, nne half are of English-speaking parentage, and chiefly of Orkney origin ; the remainder are known as Metis or Bois-brûlés, and are descended from French-Canadian voyageurs. In 1875 a number of Russian Meunonites (descendants of the Anabaptists of the Reformation) came to the country. Some fifty years ago. they originally emigrated from Germany to the plains of southern Russia, but came over to Nlanitoba to escape the conseription. They number nearly 8000 . About 4000 Frenel Canadians, who had emigrated from Quebec to the United States, have also male the province their home, as well as a number of Ieclanders. The remainder of the population is chiefly made up of English-speaking pecple from the other provinces of the Dominion, from the United States, from England and Scotland and the north of Ireland. Thongh somewhat difficult to estimate, the population of Maniteba is estimated ly competent authorities at upwards of 120,000 in 1882.
In 1881 the religious opiuions of the people were as follows:Episcopalians, 22 per ceut; Presbyterians, 22 ; Poman Catholics, 19 ; Methodists, 14 ; Baptists, $2 \frac{1}{2}$; Lutherans, 11 per cent.
There is a system of prinary and secondary free school education for Protestauts, and another for Roman Catholics. For the higher education there aro the three colleges of St Boniface (Roman Catholic), St John's (Episcopaliav), and Manitoba Coliege (Presbyterian). These are affliated to the university of Manitobà. shich is an ex. amining and degree-couferring bocty.
Like other provinces of the Dom:m:on, Mantoia is under a lieutenant-governor, with a council of five ministers responsible to the local legislature, which arain is composed of thirty-one members. The province is representell by three senators in the Dominion senate, and by five meanbers in the Dominion house of commons. There are three judges of the superior court, and a number of county court judges. The whole province is divided into municipalities, each of which chooses a warden and six councillors annually.
The city of Winnipeg, the provincial centre of government, law, education, and religion, had in 1882 upwards of 20,000 inhabitants. The trade of the country las chicfly grown up since Winnipeg was connected in 1878 with the United States rairoad system, and it has received a further inpulse from the construction of the Canadian Pacific Railway, which traverses the territory. (G. BR.)
MANITOWOC, a city, of the United States, the county seat of Manitowoc county, Wiscensid, is situated on the west side of Lake Michigan, at the mouth of Manitowoc river, 77 miles north of Nilwankee by the Milwausee, Lake Shore, and Western Railway, It has a good harbour, and is the seat of an active trade in lumber, leather, and wheat. Shipbuilding is also extensively carried on. Population in 1870, 3055 ; in 1880, 6367.
IIANKATO, a city of the United States, the county seat of Blue Earth county, Minnesota, is situated in the midst of a good agricultural district on the right bank of the Minnesota river, and is a station on the Chicago, Milwaukee, and St l’aul, the Chicago and North Western, and the Chicago, St Paul, Minneapolis, and Omaha railways. From St Paul it is distant 86 miles. Besides carrying on an extensive trade Mankato manufactures woollen goods, linseed oil, flour, beer, carriages and waggons, iron wares, and furniture. It has a fine park and fair ground, three public halls, a public library, and a State normal school. The population icereased from 3482 in 1870 to 5550 in 1880 .
manley, Mary de la Fivier (1672-1724), dramatist, political writer, and novelist, the most cminent female "wit" of the reign of Queen Anne, was the daughter of a studious and litcrary royalist, Sir Roger Manley, goveroor of the Channel Islands'; part author of The Turkish Spy, and author of screral military historics. Mrs Manley is lierself the chief nuthority for such particulars of her private life as are known. Towards the close of Annc's reign, finding that Curll haci amounced The Alventures of lizella, or the History of the Author of Atalantis, and suspecting this to be the work of an enemy, she contrived with dextcrous tact to supplant Curll's author, and wrote her own biography under the announced title. Her mother died when she was a child, her father when she was a girl
of sisteen. A kinsman, already married, took advantage of her position, weut through a mock ceremony of marriage, and deserted her basely three years afterwards. She was patronized for a short time by the duchess of Clereland, and in 1096 mado good a position anong writers of established reputation by two plays, a comedy and a tragedy. The dialogue of the comcdy, The Lost Lover, is extremely brilliant and witty, overflowing with high animal spirits; in freedom of specch it goes almost beyond the most licentious male writers of comedy in that gencration. The play was at once published. In the preface she thanks the town for not keeping her long in suspeuse: her comedy was damned with promptitude. A similar fate befel her tragedy, The Royal Mischef, though great literary power was shown in it, The splendid energy of the characters, and the hyperbolical vignur of their language, may be compared with the undisciplined youth of the Elizabethan drama; but it was not willout reason that even contemporary critics complained of the "warmth" of certain passages. She pleaded in defence the example of Dryden ; but Dryden in his mastindecent moments falls short of it. Fronn 1696 Mrs Manley was a favourite mearber of witty aud fashionable society; she admits that she never had any pretensions to beauty, but the charms of her eyes and lier conversation marle her very fascinating. She achieved her principal triumph as a writer by her Secret Memoirs of Several Persons of Quality, a scandalous chronicle "from the New Atalantis, an island in the Mediterranean," published in 1709. Henceforth she was known as "the author of Atalantis." The Atalantis had a political purpose. Mrs Manley was a warm Tory partisan, and she sought in this scandalous narrative to expose the private vices of the ministers whom Swift, Bolingbroke, and Harley combined to drive from office. There are many references to her in Swift's Journal to Stella. '"She has very good principles for one of her sort, and a great deal of good sense and invention." Mrs Manley ras in fact one of the most romantically publicspirited and disinterested politicians of that corrupt time, and next to Swift the most effective writer on the side of Harley and Bolingbroke. During the keen political campaign in 1711 she wrote several pamphlets, and many uumbers of the Examiner, criticizing persons and policy with equal vivacity. After the accession of George, she wrote a tragedy Lucius (1717)-a failure, and two socnlled novels, Bath Intrigues, and A Stage-Coach Journey to Execter. The story in these novels is told in letters between the principal characters.
MANLIUS is the name of a Roman gens, chiefly patrician, but, in later times at least, also containiog plebeian families. Thi Roman historians represent them as intrepid, but stern even to cruelty.
I. Marcus Manlius Capitolinus, a brave and distinguished soldier, was one of the garrison of the Capitol while besieged by the Gauls; when they attempted to scale the rock by night, Manlius, aroused by the cachling of the sacred geese, rushed to the spot and threr down the foremost. 'Several years after, sceing a centurion led to prison for debt, he freed him with his own money, and even sold lis cotate to relieve other poor debtors, while he accused the senate of embezzling public money. He was clarged with ospiring to kingship, and condemned by the comitia, but not uatil the assembly had adjourned to a H2ce without the walls, where they could no longer sce the Capitol which he had saved. His house on the Capitol was razed, and the Manlii resulved that no patrician Manlius should henceforth bear the name of Marchs.
II. Titus Manlius Imperiosus Torquatus vent to the tribune Pompninis, who had brouglt his father to trial for overstenfing the limits of his office, and threatened to kill
lin unless he desisted from the accusation ( 365 B.c.) Shortly after he slew a gigatic Gaul in singlo combat, and took from him a torques or neck-ornament, whence his surname is said to have been derived. When the Latins demaaded an equal share in the government of the cenfederacy, Manlius vowed to kill with his own hand the first Latin he saw in the senatc-bouse. The Latins and Campanians revolted, and Manlins, consul for the third tince, marcled into Campania and gained two great victories, near Vesuvius (where Decius his colleague devoted himself to gain the day), and at Trifanum. In this campaign Manlius executed his own son, who had killed an cnemy in siugle combat, and thus disobeyed the express command of the consuls.

Both these Manlii belung to a great extent to logend, much of which is probably due to attempts to explain their surnames.

IIL. Titus Manlius Torquatus in his first consulship (235 b.c.) subjugated Sardinia, recently acturired from the Carthaginians; he was consul again (224) during the Gallic war. In 216 he opposed the ransoming of the Romans taken prisoners at Canne; and in 215 lie was scnt to Sardinia and defeated a Carthaginian attempt to regain possession of the island.
IV. Cneus Manluus Vulso, consul in 189 b.e., received Asia as his province. Starting from Ephesus in the spring, be marched into Pamphylia, levying enormons contributions. He then attacked the Celts of Galatia on the pretext that they had aided Antiochus. They took refuge in Mounts Olympus and Magaba, but the nissiles of the Roman light troops won each position with great slaughter. In the winter, assisted by ten delegates sent from Fiome, he scttled the terms of peace with Antiechus. He returned to Rome in 187, and triumphed after much opposition. The discipline of his army was loose, and his soldiers brought into Rome many foreign luxuries.
mann, Horace, one of the best-known of American educationists, was bern at Franklin, Massachusetts, May 4, 1796, and died at Yellow Springs, Ohis, August 2, 1859. His childhood and youth were passed in great poverty: "It was the misfortune of his family that it belonged to the smallest district, had the poorest schoolhouse, and employed the cheapest teachers, in a town which was itself small and poor." His health was early injured by hard manual hal)our, which left him no time for recreation either in summer or winter. He lost:his father at the age of thirteen. He was from his childbood an eager reader; but his only menns of gratifying this desire was a very smaii library in his native town. Up to the age of fifteen he had never becn able to attend school for more than eight or ten weeks in any oue year. He remaincd at home, working for his mother and the rest of the family, till tho age of twenty. At that age he was taught the rudiments of Latin and Greek and a little Englishi grammar by an itinerant schoolmaster, and entered the junior classes in Brown University in the jear 1816. Symptoms of consumption, poverty, the necessity of supperting hilmself while at college, and other circumstances interfered with his studies. He, howerer, graduatcd in 1819. In 1821 he entered the school of law at Litchfield, Connecticut, and was called to the bar in 1823 . In 1827 he was elected to the State legislature of Massachusetts, and in 1833 he was returned to the upper house. He suggested and organized the State lunatic asylum of Worcester. In 1837 the legislature appoioted a board of education to revise and reorganize the common school system of the State; and Nann was appointed secretary. To give his whole time to the work, be gave up his profession and also his seat in the senate. He was secretary for twelve years. For these twelve years lie worked fifteen bours a day, beld teachers'
conventions, gave lectures, and carried on an enormous correspondence. He started a periodical, The Common School Journal, in which he explained his views on education. He alsu published a series of Annual Reports; these American critics call "a classic on the subject." His seventh annaal report gave the substance of his observations in Europe, and compared the systems of instruction followed in Prussia with those in use in Massachusetts, much to the disadvantage of the latter. ${ }^{1}$
In 1848 Mann was elected to Congress to fill the vacancy caused by the death of John Quincy Adams. He tried to induce the Government to establish a bureau of education nt Washington, but this was not done till much later. He resigned his seat in Congress in 1853, and became the first president of Antioch College, at Yellow Springs,-a college fur the conbined education of men and women. Mann's chief work in American education is the reform which ho brought about in the common and normal school system of Massachusetts; and this reform is largely due to his twelve annual reparts.
Mann's other works arc-Lectures on Education, 1848; A Fcw Thouyhts for a Young Man, 1850 ; Slavery, Lettcrs and Speches, 1851 ; Povers and Dutics of Womcn, 1853, scc. A complete edition of his writings, with a biography, was published in Cambridge, Massachusetts, in 1867; and a selection, under the title of Thoughts Selcetcd from the Writings of Horace Mann, in 1869.
MANNA, a concrete saccharine exudation obtained by making incisions in the trunk of the flowering or mana ash tree, Fraxinus Ornus, L. At the present day the manna of commerce is collected exelusively in Sicily from cultivated trees, chiefly in the districts around Capaci, Carini, Cinisi, and Favarota, small towns 20 to 25 miles west of Palermo, and in the townships of Geraci, Castelbuono, and other places in the district of Cefalu, 50 to 70 miles east of Palermo. In the frassinetti or plantations the trees are placed about 7 feet apart, and after they are eight years old, and the truak nt least 3 inches in diameter, the collection of manna is begon. This operation is performed in July or August during the dry weather, by making transverse incisions $1 \frac{1}{2}$ to 2 inches long, and about I inch apart, througla the bark, one cut being made each day, the first at the bottom of the tree, nnother directly abore the first, and so on. In succeeding yeurs the process is repeated on the untouched sides of the trunk, mutil the tree has been cut all round and exhausted. It is then ent down, and a young plant arising from the same root takes its place. The fincst or flaky manna arpears to have been allowed to harden on tho stem. A very superior kind, obtained by allowing the jnice to encrust pieces of wood or straws inserted in the cuts, and called manna a cannolo, is not found in commerce in England. The fragments adhering to the stem after the finest flakes have been removed are scraped off, and form the small or Tolfa manna of commerce. That which flows from the lower incisions is often collected on tiles or on a concave piece of the prickly pear (Opuntia), but is less crystalline aud more glatinous, and is less esteemed.

Manna of good quality dissolves nt ordinary temperatures in about 6 parts of water, forming a clear liquid. Its chicf constituent is munnito or manua sugar, a hexatomic alcohol, $\mathrm{C}_{6} \mathrm{H}_{8}(\mathrm{OH})^{3}$, which likewise occurs, in much smaller quautity, in certain species of Fucus and in plants of several widely separated natural orders. Of this substance the best manaa contains 70 to 80 per cent. It crystallizes in shiuing rhombic prisms from its solution in boiling alcoliol. Manna possesses mildly laxative properties,

[^196]and on account of its sweet taste is employed as a mild aperient for children. It is less used in England now than formerly, bat is still largely consumed in Sonth America. In Italy mannite is prepared for sale in the shape of small cones resembling loaf sugar in shape, and is frequently prescribed in medicine instead of manna.

The manna of the present day appears to have been unknown before the 15 th century, although a mountain in Sicily with the Arabic name Gibelman, i.e., "manna mountain," appears to point to its collection there during the period that the island was held by the Saracens, $827-100_{0} 0$. In the 16th century it was collected in Calabria in Italy, and until recently was produced in the Tuscan Marenma, but neither from that locality nor fron the States of tho Church is any now brought into commerce, although the nane of Tolfa, a town near Civita Vecchia, is still applied to an inferior variety of the drug.

Various other kinds of manua are known, but nowe of these hare been found to contain mannite. Alhagi manna (Persian and Arabic tar-angubin) is the produce of Alhagi camelorum, Fisch.; a small, spiny, leguminous plant, growing in Persia, Afghanistan, and Baluchistan. This manna occurs in the form of small, roundish, hard, dry tears, varying from the size of a mustard seed to that of a coriander, of a light-brown colour, sweet taste, and senna-like odour. The spines and pods of the plant are often mixed with it. It is collected near Kandahar and Herat, and imported into India from Cabul and Kandahar to the extent of about 2000 Ib . annually, and is valued at about thirty shillings per tb . Tamarisk manna (Persian gaz-angubin, tamarisk honey) exudes in June and July from the sleuder branches of Tamarix gallica, var. mannifcra, Ehrenb, in the form of honey-like drops, which, in the cool tem:perature of the early morning, are fouod in the solid state. This secretion is caused by the punclure of an insect, Coceus manniparus, Ehrenb. In the valleys of the peninsula of Sinai, especially in the Wady el-Sheikh, this manna (Arabic man) is collected by the Arabs and sold to the nonks of St Catherine, who supply it to the pilgrims visiting the convent. It is found also in Persia and the Punjab, but does not appeas: to be collected in any quantity. This kind of manna seems to lis alluded to by Herodotus (vii. 31). Under the same name of gaz-angubin there are sold commonly in the Persian bazaars round cakes, of which a chief ingredient is a manna obtained to the south-rest of Ispahan, in the month of August, by shaiking the branches or scraping the stems of Astragalus forulcutus and A. adscondens, Boiss. and Hausskn. ${ }^{2}$ Shirkhist, a kind of nanna known to writers on materia medica iu the 16 th century, is still found in the bazaars of north-west India, leing imported from Afghanistan and Turkestan to a limited extent. liansskneclit states that it is the produce of Cotoncastor nummularia, Fisch. and Mey. (Rosaccex), and Alraphaxis spinosa, L. (Polygonacc: ), and that it is brought chicly from Ilerat.

Oak manna, according-to Haussknecht, is collected from the twigs of Qucraus Vallonca, Kotschy, and Q. persica, Jaub. and Spach, on which it is produced by the puncture of an insect during the month of August. This manna occurs in the state of agglutinated tears, and forms an object of some industry amons the wandering tribes of Kurdistan at the present day. It is collected before sunrise, by shaking the grains of manna on to linen cloths spread out bencath the trees, or by dipping the small branches in hot water and evaporating the solution thus obtained. A substanco collected by the inhabitants of Laristan from Purus glabra, Boiss, stiongly resembles oak manna in appearance.

Australian manna is found on the Jeaves of Eucalypius riminalis, Lab. ; the Lerp manna of Australia is of animal origin.
Briançon manna is met with on the leaves of the common Larcir (q.v.), and a kind of manma was at one time abtained from tho cedar, but noue of these are now collected for commercial purposes.

The manna of Scripture, notwithstanding the miraculous circumstances which distinguish it in the Biblical narrative from anything now lnown, answers in its description very closely to the tamarisk manma.

Seo Pharmacographia, p. 409 ; Hanbury, Science Papers, p. 355363 ; Stewart, Tunjab Plants, Lahore, 1869, pp. 57-92; Geoffoy, Mat. Med., ii. (1711) P. 584 ; Dobson, Proc. Roy. Soc. Van Diemen's Land, i. (1851) p. 234.

MANNHEIM, the most popalous town and the second capital of the grand-duchy of Baden, lies on tho right bank of the Rhinc, in tho triangular piece of low-lying ground enclosed between that river and the Neckar. It

[^197]is the most regularly built town in Germany, consistiog of twelve parallel streets intersected at right angles by ten others, which cut it up into about 130 square sections of equal size. These blocks are distinguished, sfter the American fashion, by letters and numerals. .Escept on the south side all the streets debouch on the promenade, which forms a circle round the turn on the site of the old ramparts. Outside this ring are the suburbs of Sclwetzinger Gärten to the south and Neckargärten to the oortk. Manheim is connected by a handsome bridge with Ludwigshafen, a rspidly growiag commercial and manafacturiag town on the left bank of the Rhine, in Bavarian territory. The Neckar is spanned by a suspension bridge. In 1880 Mannheim contained 53,545 inhabitants, of whom about 4500 were Jews, and the rest Roman Catholics and Protestants in nearly equal proportions. Ludwigshafen contained 15,012 inhabitants.
Nearly the whole of the south-west side of the town is occupied by the palace, built in 1720-29, and formerly the residence of the elector of the Palstiaate. It is one of the largest buildings of the kind in Germany, covering an area

the "kaufhaus," the town-hall, the railway station, and the observatory. The only noteworthy church is that of the old Jesuit college, the iaterior of which is lavishly decorated with marble and painting. The square in froat of the theatre is embellished with statues of Schiller, Iflland the actor, and Dalberg, inteadant of the theatre in the time of Schiller. Manaheim is the chief commercisl town on the upper Rhine, and yields in importance to Coblentz and Cologne alone among the lower Rhenish towns. The staple commodities of its trade are tobacco, grain, petroleun, hops, timber, and coffee. Its new harbour, constructed at a cost of $£ 650,000$, ad measuring 2300 yards in length, is the most extensive inland harbour in Germany. It is entered annually by 3000 river craft, cerrying nearly 700,000 tens of goods. The railway goods station and waruhouses in connexion with the harbour cover 400 acres of ground. The principal industrial products of Mannheim are machinery, iron, brass, india-ruhber, sugar, mirror, chemicals, wall-paper, and cigars. The manufac-
tories of Ludwigshafen produce aniline dyes, soda, tartaric acid, alum, artificial manures, aud lime. Mannheim is the seat of the central board for the navigation of the Rhine, of a chamber of commerce, and of the suprente court of Baden. Ten or twelve different countries are represented here by their consuls. The schools and public institutions of Manoheim include a gymnasium, a "realschule," an industrial school, a high school for girls, a public library, a large poorbouse, three hospitals, and au orphsnage.
History. - The name of Mannheim was connected with its present site as eally as the 8 th century, when a small villago belouging to the abbey of Lorsch lay in the marshy district between the Neckur and the Rhine. To the south of this village, on the Rhine, was the castle of Eicholzheim, which acquired soune celebrity as the place of confinement assigned to Pope John XXIII. by the council of Constance. The history of the modern Mannheim hegins, however, with the opening of the 17 th century, when Elector John Frederick IV. founded a town here, which he peopled chiefly with Protestant refugees from Holland. The strongly fortified castle which he erected at the same time had the unfortunate result of making the infant town an object of contention in the 'Thirty Years' War, during which it was five times taken and retaken. In 1689 Mannheim, which had in the meantime recovered from its fermer disasters, was captured by the French under Delac, and ruthlessly destroyed. Ten years later it was rebuilt on an extended scale and provided with fortifications. For its subsequent importance it was indebted to Elector Charles Philip, who, owing to ecclesiastical disputes, transferred his residence from Heidelberg to Mannheim in 1720: It remained the capital of the Palatinate for nearly sixty years. In 1794 Mannheim fell into the hands of the French, and in the following year it was retaken by the Austrians after a severe bomhardment, which left scarcely a single building uninjured. In 1802 it was assigned to the grand-duke of Baden, who caused the fortifications to be razed. Ludwigshafen, originally only the tele-du-pont of Mannheim, received its present name in 1843, and became a town in 1859. Towards the end of last century Danaheim attained, great celebrity in the literary world as the place where Schiller's early plays were performed for the first tince. It was at Mannheim that Kotzebue waa assassinated in 1819.

See Feder, Geschichte der Stadt Mannheim, 1875 : and Unglenk. Praktischer Fuhrer durch Mannheim, 1880.

MINNING, Robert commonly known as Robert of Brunae, a monk of the priory of Brunue or Bourne in Lincolnshire, wrote in the beginning of the reign of Edward III. a metrical history of England from the landing of the imaginery Brute to the end of the reign of Edward I. The work has no iadependent historical value; it professedly follows Peter of Langtoft's Chronicle from the Anglo-Saxon or "Inglis" invasion downwards, and Wace for the previous "British" story. It is a lively narrative, written "not for the lered bot for the lewed," and it has a certain interest as a landmark, not only in the bistory of the Eaglish language, but also in the history of national sentiment. Manoing is warm in praise of the deeds snd the character of Edward I.; "Edward of Inglond," although be deplores the Norman Conquest as a "boadage," and says concerning the death of Harold that "our freedom that day for ever took the leave." The old monk is our first avowedly "populsr" historian. He wrote for the entertainment of men who knew neither Latin nor French, and in his prologue comments bumorously on the "quaint English" and subtle rhymes of his predecessors, claiming for himself purity of language and simplicity of metre. A passage in this prologue has often been quoted as bearing on the authorship of the romance of Sir Tristram. Manning also translated William of Waddiagton's Manuel des Pechiez under the title of Mandlying Synne, in 1303, and is plausibly conjectured to be the author of Medy ${ }^{2}$ tacyuns of the Soper of oure Lorde Ihesu, translated from Bonaventurs's Vitc Christi. He is not a bald rhymester, but uses language with skill and effect, and in some places whers he departs from his originals shows genuine poetical rapture.

MANOMETER, or Pressure Gatge, is an instrument for measuring the hydiectatic pressure exerted by gases,
sapours, or liquids against the sides of the closed vesse!s in which they are cenfined,-as, for instance, the pressure of steam in a steam-boiler.

The simplest and at the same time nost accurate form of manometer is that known as the "mercury manometer," sometimes also called the "free-air manemeter," and represented in fig. 1. It consists essentially of tro vertical cummonicating tubes. One of these, AB , npen at both ends, and made of thick glass, with a narrew uniform bere, is fixed liermetically in the neck of a large wrouglit-iren cylinder C , its lower end dipping below the surface of mercury contained in the cylinder. The other tube, EF, is altacled at its lower end to the cylinder by the cross pipe $D$, and at its upper end can be put in communication with the vessel the pressure in which is to be ascertained. Usually the tube EF, the cross pipe $D$, and the space above the mercury in C are filled with water. At first the tube EF is left open to the atmosplere, and the height of the mercury in AE noted. When $E F$ is then put in communication with the vessel in which the pressure (above atme. spheric) is to be determined, the mercury in $A B$ rises, and from the height to which it rises the pressure is deduced. For accurate work corrections must be made for the fall of the mercury in C as it rises in AB , and for the temperature and the height of the barometcr at the time of the experinient.
The great drawback to the employment of the simplo mercury manonieter for measuring very great pressures is the mechanical difficulty of obtoining a sufficiently long column of mercury. E. H. M. Amagat, hevever, has lately ( 1880 ) worked with a column one-fifth of a nile high. His experiments were undertaken to find out how the various gases, nitrogen, oxygen, air, hydrogen, \&c., departed from Mariotte's law when subjected to enormous pressures. At the bettom of a ceal-mmne at Verpilleux, ncar St Eticnue, which had a depth of 327 metres, was placed the glass manometer tuhe containing the compressed gas, while the mercury tube (made of steel) extended up the slaft, being gradually built np in sections. See Naturc, vol. xxii. pp. 62, 63. By means of Amangat's tables of the volunno and correspanding pressure of the everal gases, and with special forms of nanometer to suit par- Manometer.
ancular circumstances, accurate aud delicate measires of enormous


Fro. 1.Mercury pressures can now be obtained. Professor Tait, for instance, has recently applied these tables along with a manometer of his own devising for testing the behaviour of the thermometers supplied to the "Challenger" expedition under a pressure of as much as 10 tons to the square inch.
"Regnault's manometer" is shown in fig. 2. AB is a strong metal tube, closed at the lower eud, and carrying at the upper a bent pipe for admitting the compressed gas and 1 stop-cock $R$ pierced with holes in a $T$ form. DE and FG are twe graduated glass tubes communicating at their lower ends by a narrow passage in the metal block to which they are hermetically fixed. DE and AB also comaunicate at the upper ends by a passage in a metal picce sitached hermetically to them. By the stop-cock $R$ ', having radial holes at right angles to each other, DE can :ommunicate either with AB or with the atmosphere at O ; and by the stop-cock $R^{\prime \prime}$ it can communicate either with FG or with the open air. The three tubes are surrounded by a cylinder MM' containing water to keep the temperature constant. The tube $A B$ is filled with the compressed pas whose pressure is to be ascertained. The step-cock $\mathbf{R}^{\prime}$ being then placed as in fig. 2, mercury is poured Into $F G$ till it fills $D E$ and runs out at $O$. The stop-
cocks $\mathrm{I}_{\mathrm{i}}$ aud $\mathrm{I}^{\prime}$ are then turied as in fig. $2 a$, so that AF and DE communicate with each other. Part of the cor pressed gas fiows over into DE , and the mercury in FG riscs. By manipulating the step-ceck $\mathrm{I}^{\prime \prime}$ as shown in fig. $2 b$, part of the inercury is allower to run out of DE till a conveniently ineasurable differcnce of lerel between the mercury surfaces in DE and FG is attained.

Let $h$ be this difference. Also let $x$ be the pressure of the gas origiually filling the volume $V$ of AB, $V^{\prime}$ the additional volmme accupied by the cxpanded ras, and $H$ be the height of tbe barometer at the time; then we have by Mariotte's law
$x \mathrm{~V}=\left(\mathrm{V}+\mathrm{V}^{\prime}\right)(\mathrm{H}+h)$,
from which


Fig. 2.-Peounult's Manometer.
$x=\frac{V+V^{\prime}}{V}(H+\pi)$
$V^{\prime}$ is determined by weighing the mercury required to fill the space it occupies, and $V$ can be calculated from (1) when $A B$ is filled with dry air at pressure $H$.

In Regnault's apparatus the length of AB and DE was 1 metre, the diameter of $A B 5 \mathrm{~mm}$. and of DE 20 mm . The section of DE was thus sixteen times that of $A B$, and $i n$ this way a very great pressure conld be measured by a comparatively small difference of jevel between the mercury surfaces in FG and DE. The instrument, however, is subject to errars, arising chiefly from the dificulty of measuring accurately the rolumes $V$ and $V$ '.

The "compressed air manometer" (fig. 3) consists of a strong graduated glass tube of uniform narrow bore, closed at the top and fixed hermetically into the neck of a wide iron cyliader. The tube contains dry air, and its lower end dips belew the surface of mercury centained in the cylinder. Attached to the side of the cylinder is a tube A, with a stop-ceck, to afford communication with the vessel the pressure in which is to be measured. When the manometer is attached to the vessel containing compressed gas the mercury rises in the glass tube till the pressure of the air cenfined in the tube (reckoned in millimetres of inercury) plus the height of the mercury column above the level of the mercury in the cylinder is equal to the pressure on the surface of mercury in the cylinder.
"Desgoffe's manometer" depends upon the same principle as the hyuraulic press, and can be employed to measure the enormons pressure reached in the cylinder of that instrument. It is represented in perspective in fig. 4 and in section in fig. 5. V is a atrong circular iron vessel, in which moves up and down for a short


Fic. 3.Compressed Air Manometer. distance a flat niston D attached to a cylindrical plug T. The lower part of V contains mercury which has free communication with a graduated vertical glass tube AB fixed liermetically into the side of V. Ahove the mercury in $V$ is piaced a thin layer of mater, and above that is stretched a thin membmne of india-rubber bolted down water-tight by an iron ring. ise chenter C sontains a cavity in which the plug T moves water-U. $\mathrm{U}_{\mathrm{f}}$ t. By means of the tube $t$ the instrument car. be put in coumumaication
with the vessel containing the fluid whose pressure is to be measured. The compressed fluid acting upon T depresses the niston D and causes the mercury to rise in $A B$.

Let $p$ be the pressure of the fluid per unit of area, $s$ the area of $T$, and $S$ the area of D ; also let P be the pressure per unit of area as recorded by the height of the merenryinAB. Thus evidently we have $p_{s}=\mathrm{PS}$, or $p=\frac{\mathrm{S}}{s} \mathrm{P}$.

Hence by making S very great and ${ }^{\circ}$ very sniall a very great pressure can be measured by a comparatively short column of mercury in AB. As part of the pressure $p$ is employed to stretch the india-robleer mem. brane, the ratio S:s should be made very great, so that U will only sink a very shortdistance. Cailletet, who employed this manometer in his experiments on the compressibility of fluids, lad it so arranged that (neglecting the stretching of the india. rulber) the mercury


Fig. 4.-Desgoffe's Manometer.


Fic. 5. Section of Desgoffe's Manometcr. in AB rose 4.3 metres while the piston in D sunk only one-eighth of $a$ millimetre.

Detallic manometers depend on the principle exemplified in the aneroid barometer. Suppase a long tube, preferably of elliptic seetion, and having thin walls of elastic material, to be closed at one end and either bent or coiled up in the form of a spiral. Let the open end be attached to an apparatus whereby the pressure insile the tube can be either increased or diminished. If the pressure inside the tube be made greater than that ontside, the tube has a rendency to straighten or uneoil itself, but if the pressure outside be greater than that inside the tube las a tendency to bend or coil itsclf up, farther. Fig. 6 reprosents an early form of metallic manometer made on this principle by Bourdon, the first to construct sueh instruments. A metallic tube $a b$,closed at $b$, is eoiled in a spiral and rigidly attached at the open end $a$ to a tube with stop-cock $m$, whereby it can communieate with the compression apparatus. A light index $e$ is attached to $b$ and moves over a graduated scale. The scale is graduated by applying known pressures inside the tube. This form of mano. meter is very convenient for rough praetieal work, but has no pretensions to scientific


Fig. 6. - Bourdion's Metallic Manometer. aecuraey, as changes of temperature affect the elastieity of the tube in a way which is diffeult to disoover and allow for. Various forms of metallic manometers have been reeently in rented, the best-known of which are perhaps those of Bourdon and Schäfer, in which the index is moved by a train of wheels aetuated by the free end of the clastic tube.
Air-pump Manometcr.-For measuring pressures less than that of the atmosphere, as in the receiver of an air-pump, a special form of mercury mancmeter is emplojed, consisting of a glass $U$ tube with each leg iver 30 inches long and half filled with mercury. One leg communicates by 8 n air-tight communication with the receiver of the air-pump, and the other is left open. As the exhaustion proceeds, the mercury falls in the open leg and rises in the other,

When only considerable degrees of exlaustion are to be measured, the instrument takes the form of a short $U$ tube closed at one end and open e.t the other, and has its closed leg completely filled with mercury, the mercury being held up by the atmospherie pressure. The whole is enclosed in a wide glass tube elosed at the top and hermetically fixed at the lower end to a brass piece, provided with n stop-cock, wherely it can be screwed on to the sole plate of the nir-pump. The difference of level in the two legs gives the degree of exhaustion obtaincd.
See Ganat's Physics; Wiilher's Lehrbuch dor Exporimentalphysik; Amagat in Annales de Chemic ct de Physique, Mareh 1880; Report of H.N.S. Challengcr, in regard to pressure correetions supplicd by thermemeters, by Professor' 'ait.
(J. BL.) :

MANOR, in English law, is an estate in land, to which is incident the right to hold certain courts called courts baron. It might be described as the unit of tenure under the feudal system, and it is historically connected withe the territorial divisions of the mark and the parish or township. ${ }^{1}$ The legal theory of the origin of manors refers them to a grant from the crown, as stated in the following extract from Perkins's Treatise on the laws of England:-"The beginning of a manor was when the king gave a thousaud acres of land, or a greater or lesser parcel of land, unto one of his subjects and tis heirs, which tenure is knight's service at the least. And the donor did perbaps build a mansion bouse upon pareel of the same land, and of 20 acres, parcel of that which remained, or of a greater or lesser parcel before the statute of Qaica Envptores did enfeoff a stranger to hold of him and his heirs to plow 10 acres of land, parcel of that which remained in his possession, and did enfeoff another of another parcel thereff to go to war with him against the Scots, \&c., and so by continuance of time made a manor." It is still, as Mr Joshua Williams terms it, a "fundamental rule" that all lands were originally derived from the crown, and that the queen is lady paramount mediate or immediate of all the land in the realm. A manor then arises where the owner of a parcel so granted or supposed to have been granted by the crown (and who is called in relation thereto the lord) has in turn granted portions thercof to others who stand to him in the relation of tenants. Of the portion reserved by the lord for his own use (bis demesne) part was occupied by villeins, with the duty of cultivatiog the rest for the lord's use. These were originally tenants at will, and in a state of semi-serfdom, but they became in course of time the copyhold tenants of the later law. (See CopyBold.) It is of the essence of copyhold that it should be regulated by the custom of the manor ; and that, according to some authorities, is one reason why a manor cannot be created at the preseat day. "Length of time being of the very essence of a manor, such things as receive their perfection by the continuance of time come not within the compass of a king's prerogative" (Scriren, Copyholds, chap. i). But the effect of the statute of Quia Emptores was to make the creation of manors henceforward impossible, inasmuch as it enacted "that upou all sales or feoffments of land, the feoffee shall hold the same, not of his immediate feoffor, but of the chief lord of the fee of whom such feoffor himself held it." The statute did not apply to the kiag's tenants in capite, who might have aliened their land under a licence. Accordingly it is assumed that all existing manors are "of a date prior to the statute of Quia Emptores, except perhaps some which may have been created by the king's tenants in capite with licence from the crown" (Williams, Real Property, chap. iv. ; see also Scriven, Copyholds, chap. i.). When a great baron had granted out smaller
${ }^{1}$ Laveleye (Primitive Property, chap. xviii.) observes that in the 10 th century, even before the Norman Conquest, the mark had already been transformed into the manor, although the term was not yet in use. The country was covered with a great number of domaiss (maneria), of very different extent, from the maneriolum of one plough to the 'atifundium of fifty ploughs.
manors to others, the seignory of the superior baron was frequently termed an honour.
MANRESA, a town of Catalonia, Spain, 39 miles north-west of Larcelona, with a population of 15,264. It was formerly Bacasis, one of the cities of the Jaccetani, the most important of the small tribes at the foot of the Pyrenges. It lies on the left bank of the Cardonero, 2 miles above its junction with the Llobregat, in the midst of a fertile and well-irrigated district, and its chief magufactures are cloth, cotton, silk, gunpowder, ond brandy. Building stone is quarried near the town. The Cardonero is crossed by two bridges, -one ancient, the other erected in 1804. The two principal sights of Manresa are the collegiate church, El Seo, commeaced in 1328, and finished in the 15th centary, and the Cneva de Saa Ygnacio. The late Mr G. E. Street has minutely described the church in his Gothic Architecture of Spain. Among its greatest treasures he specializes a magnificent altar frontal as "the most beautiful work of its age." It is 10 feet long by 3 feet 10 inches in height, and is divided into nine compartments, at the bottom of which is the inscription in Lombardic characters:-GERI : LAPI : rechamatobe : mefecit : inflorentia. - In the Cueva de San Ygnacio, Ignatius Loyola lived for a year, fasting and submitting bimself to the severest penances, constantly gazing at the shrine of the Virgin of Montserrat, who, he asserted, encouraged him in his austerities. A great monastery surrounds the cave, which is visited by thousands of pilgrims, and from the esplanade there is a magnificent view of the "pinnacles, spires, turrets, sugarloaves, and pyramids of faint grey rocks," constituting the famous mauntain of Montserrat. At Cardona, a little nore than 20 miles to the north-west of Manresa, there is a remarkable hill of rock-salt 3 miles in circumference, and 350 fect in height, which is estimated to contain 400 million cubic yards of salt.

MANS, Le, a town of France, formerly capital of Maine and now of the departmeat of Sarthe, lies 118 miles ( 131 by rail) W.S.W. from Paris, near the confuence of the Sarthe and the Huisne, on an elevation rising from the left bank of the former river. Three bridges besides that of the railway connect the town with the quarter on the right bank. Of the wide and commodious thoroughfares which are gradually superseding the old winding and narrow streets, the most worthy of notice is the tnanel by which the Placa des Jacobins is connected with the river side. The principal building is the cathedral, originally founded by St Julian, to whem it is dedicated. Rebuilt is the 6th century by St Innocent, in tle 9th by St Aldric, and a third or fourth time in the 1 lth by Vulgrin, who was at once arclitect and bishop, it was completed by the addition of two towers in the 12 th. Destrojed by tro fires, the roof was reconstructed in the Cothic style, aud the transept and south portal were added. In the 13th century the choir was enlarged in the grandest and boldest style of that maguificeat period. Finally a new transept and a bell tower were added in the 15 th century. In the large window of the west front the ten divisions which have for their subject the legend of St Julian are the oldest extant specimens of stained glass in France (end of 11 th century). The side portal (12th century) is riclily decorated, and its statucttes exhibit many interesting costumes of the period. The aisles have ten bass, but the nave only five; the transept is much higher; from it rises the only torrer of the building. The austere simplicity of the nave is in striking contrast with the lavish richness of the ormamentation in the choir and apge. The former is 115 fect in height, and has twelve chapels besides the sacristy ; its windows almost entirely date from the middle of the 13 th centurs. The glass of the north transept is of the 15 th century, und represents the Last Judgment ;
it contains many historical figures. The cathedral has also curious tapestries and some remarkable tombs, including that of Berengaria, queen of Richard Cceur de Lion. The entire length of the building is 427 feet. Clcse to the western wall is a megalithic mpaument vearly 15 feet in height. The charch of La $^{2}$ Couture, which belonged to an old abbey founded in the 7 th century by St Bertrand or Bertram, has a remarkable porch of the 13th century; the rest of the building is older. Of the other churches of Le Mans, none require special mention except that of Notre Dame da Pré, on the right bank of the Sarthe. Of tho secular buildings may be meationed the hôtel de ville, built about a century ago on the site of the former castle of the counts of Maine, and the prefecture, occupying the site of the monastery of La Couture (1760). The lattor contains the library ( 50,000 volumes, 700 MSS .), the communal archives, and the museum of paintinga, archæology, and natural histary. Other promineat buildings are the general hospital, the lyceum, the seminary, the palais de justice, and the cavalry barracks; the house occupied by Scarron is atill pointed out, and there are considerable remains of the old Gallo-Roman enceinte. The principal promenades are those of the Jacobins, of the horticultural garden, Du Greffir (on the right bank of the river), and Des Saping (on the road to Tours). The industries of Lo Mans, which are carried on chiefly in the faubourg of Pontlieue, include metal-working, the manufacture of agricultaral implements, and weaving. For some years there has been a Government tobacco factory. A local specialty is the fattening oi ponltry. The population in 1876 was 50,175 (including 5282 represeating the garrison, \&c.). Le Mans is an important railway junction.
As the capital of the Aukerci Cenomani, Le Mans was called Suindinum or Vindinum. The Romans surrounded it with walls in the 3d century; it was evangelized by St Julian in the 4 th. The countship of Maine was made hereditary by Hugh Capet in the 10th century. Le Mans was seized by William the Conqueror, but his son Robert was unable to retain it. Having chosen the side of Richard Cocur-de-Lion, it was taken ly Philip Augustus, recaptured by John, subsequently confiscated, and afterisards ceded to the widory of Richard. Maine ras next held by Jargaret, the wife of St Lonis, who gave it to his brother Charles of Anjou. Le Mans was fire times besieged during the Hundred Years' War, and was subsequently devastated by the Huguenots in 1562. In 1793 it mas seized ly the Vendeans, who were expelled by Marceau after a sanguinary battle in the streets of the town. In 1799 it was again occupied by the Chouans; and in January 1871 tbe second army of the Loire sustained in the neighbourbood of Le Jians a defeat which made the relief of Paris impossible. The town is the birthplace of Henry II. of England, of John the Good, king of France, and of Chappe, the inventor of the aerial telegraph.

MANSEL, Henry Longueville (1820-1871), metaphysician and theologian, was bora at Cusgrove, Northamptonshire (where his father was rector) in 1820, and educated at Merchaat Taylors' School aad St John's College, Oxford. He succeeded to a fellowship in 1842, graduated in 1843 , and became tutor of his college. Ife was appointed reader iu moral and metanhysical philosophy at Magdalein College in 1855, becoming Wayatlete professor in 1859. In 1867 he succeeded Dean Stanley as professor of ecclesiastical history; agd in the following year was appoiated dean of St Paul's. He died July 31, 1871.
The philosoplyy of Mansel, like that of his older contemporary Sir W. Hamilton of Edinburgh, was mainly due to threc sources, the works of Aristotle, the speculations of Kant, and the philosophy of Reid. Like Ilamilton, Mansel maintained the purcly formal character of logical science, the duality of consciousness as testifyins to loth self and the external world, and the limitation of knowledge to the finite and "conditioned." His logical doctrines were developed in his edition of Aldrich's A ris Logica Pudimenta (1819) -his clief contribution to the reviving study of Aristotleand in his Prolegomena Logica, -an Inquir!' into the Psyclological Character of Logical Processes (1851), in which the limits of logic as the "science of formal thinking" are rigorously determined. In his Bampton Lectures ou The Limits of Religious Thought (1858)
he epplied to Christlan theology the metaphysical egnosticism which scomed to result from hant's criticism, and which had been developed in Hamilton's Philosophy of lise Unconditioncd. Showing the contradictions which ariso when we attenpt to conceiva God under the categories of substance or cause, Mansal "contands that we caa have no positive conception cither of the metaplyysical or momal attributes of tho Absolute and Infinite Being, though wo are compolled to believe in His existence, the religions conscionspess bcing built up by reflexion from the feeling of dependence and the conriction of moral obligation. Hepco he infers the invalidity of all ohjections to revelation from its alleged incoosistency with the Divine character, maiutaining the dependeace of its claim to acceptance apon the evideaces accompanying it. While denyiag all knowlelge of the supersensuons, Hansel deviated. from Kant in contendiag that cogaition of the ego es it really is is itself a fect of experience. Consciousness, he held,-agreeiog thus with tho doctrine of "natural realism" which Hamilton developed from heid, -implies knowledge both of self and of the external world. Tho latter Mansel's psychology reduces to cooscionsness of our organism as extended; with the former is giren consciousness of free-will and moral obligation. These views and a summary of his wholo philosophy are contaised in bis article "Metaphysics" contributod to the 8th euition of the Encyclopsdia Brilannica (separately published, 1860). Mansel was also the author of an essay on The Philosoplyy of the Conditioncd (1866) in, reply to Mill's criticism of Hamilton, of other controversial and occasional wriliogs republished in Letters, Lcetures, and Reviews (1873), and of lectures on The Grostic IIeresies (edited by J: B. Lightfoot, 1875).

MANSFELD, Count Ernest of (1585-1696), a natural son of Peter Ernest, governor of Luxembnrg and Brussels, was born in 1585. Trained by his gedfather, the archduke Ernest of Austria, in the Roman Catholic religion, he devoted himself to the servica of the king of Spain in the Netherlands, and to that of the emperor in Hungary. The emperor Rudolf II conferred on him the rights of legitimate birth, and promised to put him in possession of his father's lands in the Netherlands. As this promise was not fulfilled, he joined the Reformed Church, and in 1610 formally associated himself with the Protestant princes From the outbreak of the Thirty Years' War in 1618 he fought steadily on bebalf of the elector of the Palatinate both in Bohemia and in the Rhine country. In 1625 he was able to collect a powerful force with which he intended to attack the hereditary territories of Austria, but, on the 25th of April 1626, he was defeated by Wallenstein at Dessau. He pressed formard to effect a junction with Bethlen Gabor, prinee of Transylvania, but as the latter changed his poliey Mansfeld had no alternative but to disband his army. When preparing to go to England by Venice, he becsme ill at a village near Zara, and died on the 20 th of November 1626. He was a man of great courage and resource, and ranks among the most brilliant generale of his age,
See Reuss, Graf Ernst voik Janksfold im bobhmischen Kriege 1618-21 (1865); Villermoat, Ernest de Mansfeld (1866) and Graf Uetterodt zu Sclaa-fienberg, Ernest Graf zu Mansfeld, historische Darstcllung (1867).

MANSFIELD, a market-town in the oounty of Nottingham, England, is situated in Sherwood Forest, near the nerth bank of the river Mann or Maun, 17 miles north-west from Nottingham, and 140 north-north-west of London by rail. The town is built of stone, with regular atreets radiating from the market place, and several good bouses. The church of St Peter is partly Early Norman and partly Perpendicular. There is a grammar school founded by Queen Elizabeth in 1561, for which new buildings have lataly been erected at a cost of $£ 10,000$. Twelve almshouses rere fonnded by Elizabeth Heath in 1693, and to these sis were afterwards added. In addition there are a number of other charities. The other principal building are the torn-hall, the mechanics' institnte, and the public baths. In the market place there is a monument to Lord George Bentinck. The industries of the town are the manufacture of lace thread, cotton bose, machines, engines, and bricks and tiles, ircn-founding, and brewing.

In the deighbourhood there are quarries of limestone, sandstone, and freestone. Population in 1811, 11,824; in 1881, 13,051.
From coins found at Jansfield and the remains of a Ronan villa in the neighbourhood, it is beliered to have been a Roman, station. During the heptarchy it was occasionally the residence of the Merciain kings, and it was afterwards a favoorite resort of Norman sovereigns. By Heary V111. the manor was granted to the earl of Surrey. Afterwards it went by exchange to the duke of Nevreastle, and from the Neircastles to the lortland family. The town obtained a fair from hichard 11. in 1377.

MANSFIELD, the county seat of Tichland county, Ohio, U.S., pleasantly situated on ligh ground, 54 milcs south of Sandusky, in the midst of a prosperous farming district. It is the terminus of the North-Western Ohio Railroad, and is at the junction of the Baltimore and Ohio, the Pittsburgh, Fort Wayne, and Chicago, and the New Yurk, Pennsylvania, and Ohio lines. It possesses a flourishing trade, and extensive mannfactories of agricultural implements, machinery, flour, boilers, carriages, and household furaiture, with many minor industries. Mansfield has public water-works ox the "Holly" system, a public library, and an opera-house. The population was 8029 in 1870 and 9859 in 1880.
MaNSFIELD, William Murray, Earl of (17051793), was born at Scone, in Pertbshire, on 2d March 1705. He was the eleventh child and fourth son of David, fifth Viscount Stormont, a nobleman whose family possessions had sbrunk within so narrow limits that he hed to bring up his numerous family with exceedingly strict economy. The family was Jacobite in its politics, and the second son, being apparently mixed up in some of the plots of the time, joincd the court of the Pretender at the accession of George I., and was created by him earl of Dunbar. William Murray was sent first to the grammar school at Perth, where he remained until lie was thirteen, and at that age was sent to Testminster nt the suggestion of his exiled brother, who had been in close relation with Atterbury (then dean of Westminster), and probably desired to bring the boy under his infuence. He was elected a king's.scholar a year after his entrance, and in 1723 was first on the list of scholars sent on the foundation to Christ Church, where be remained for nearly four years. It had been originally intended that he shcild enter the English church, as, although his own inclination while at school pointed strongly tomards the bar, the circumstances of his family seemed to forbid the expense of a legal education. But this obstacle was removed by the kindness of the father of one of his schoolfellows, and he was entered at Lincoln's Inn. Soon after be went to Oxford. In 1727 he took clambers in Lincoln's Inn, and in 1730 was called to the bar. His studies from the time he left Westminster seem to have been steadily directed towards his future profession, but in a manner far more liberal than was then usual among lawyers. He had mado himself at Westminster and Oxford an admirable classical scholar; he paid particular attention to English composition and to the art of debate; his historical studes were extensive, and in the mole strictly professional sphere his wide vier of the education aecessary for a lawyer was shown by the knowledge he acquired of Roman law and of the juridical writers of Scotland and France. At the samo time he enjoyed the adrantage of mixing extensively with the best litersry society. He had early become an intimate friend of Pope, and his own ability and accomplishments soon mado him everywhere a man of mark.

For two or three years be made little or no progress at the bar, but at length his appearance in some important Scotch appeal cases brought him into notice, and in Scotland at least he asquired an immense repatation by bis appearance for the city of Edinburgh when it was
threatened with disfranchisement for the affair of the Porteeus mob. His English business bad as yet been scanty, but ia 1737 a siagle speech in a jury trial of note may be said to have placed him at the kead of the bar, and from this time he enjoyed a great busiaess. In 1738 he married Lady Elizabeth Finch, daughter of the earl of Wiochelsea. His political career commenced iu 1742 with his appointment as solicitor-geaeral. Probably his political opinions were not of a marked party character; ho had been bred a Jacebite, aud many of his earlier associates beloaged to the high Tery camp, but his calm seuse end temper disiacliued him to extreme factions, and indeed bis isterest in polltice seens at all times to have been subordimate to the love of his profession. He had kept entirely aloof duriag the struggles which preceded the fall of Sir Robert Walpole; he refused any purely political appointment, and only took office as solicitor when he felt assured of the permatience of the new administration. During the next fourten years Murray was one of the mest con. spicueus figures in the parliamentary history of the time. Altheugh holding an office of subordinate rank, and net aharing, nomieally at least, in the councils of the administration, he was the chief defender of their measures in the liouse of Commons, and during the time that Pitt was in oppositien bad to bear the brunt of his attacks. He mas especially conspicuous in the great debates on the empleyment of the Hanoverian troops, the treaty of Aix-loChapelle, and the Regency Bill. In 1754 he became nttorney-general, and for the next twe years acted as leader of the House of Commons under the administration of the duke of Nercastle. During these years he had to defend a meak Goverament against the incessant, rehement assaults of Pitt, and, according to the testimony of contemporaries, acquitted himself brilliantly in the contest. But in 1756, when the Government was evidently approaching its fall, an unoxpected racancy occarred in the chief justiceship of the king's bench, and he claimed the office. Nescastle mado every effiort to retain him in the House of Commons, feeling as be did that his departure would hasten the fall of the Goverament, but Murray was inexerable. He seems to have been thoroughly tired of his parliamentary life, and to heve long looked forward to the bench as the proper sphere of his mork. He was at the same time raised to the pecrage as Barea Mansfield.
From this time the chief iaterest of his career lies in his judicial werk, but he did not wholly disserer himself from politics. He became by a singular arrangement, only once repeated subsequently is the case of Lord Ellenborough, a member of the cabinet, and remained in that position through various changes of administration for nearly fifteen years, and, although he persistently refused the chancellership, he acted as speaker of the House of Lords while the great seal mas in commission. During the time of Pitt's ascendency he took buit little part in pelitics, but while Lond Bute was in power his infinence was very considerahle, and seems mestly to hare been exerted in faveur of a mere moderate line of pelicy. Ho was on the whole a supperter of the prerogative, but within defnito limits. Macaulay terms him, justly enough, "the father of modera Toryism, ef Toryism modified to suit an order of thinge in which the House of Cemmons is the most powerful body in the state." In this spirit he contioued to act a conspicueus though net a fercmost part in pelitical life during the rest of his career. During the stermy session of 1770 he came into violent cellision with Lord Chatham and Lord Camden in the questions that arose out of the Middlesex election and the trials for political libel, and in the eubsequent years he was made the subject of the bitter attacke of Junius, in which his carly Jacobite cennexions, and his apparent lennings to arbitrary power, were used
against him rith extraordinary ability and rirulence. In 1776 he was created earl of Mansfield. In 1783, although he declined to re-enter the cabinet, be acted as speaker of the House of Lords during the coalition ministry, and with this his political career may be said to have closed. He continued to act as chief justice until his resignation in June 1788, and after five years spent in quiet retirencnt died peacefully on 20th March 1793. He left no family, but his title lad been re-granted (in 1792) with a direct remainder to his nepher, Lord Storment.
Lord Mansfield's great reputation rests chiefly on his judicial career. The political trials in thich he presided, although they gave rise to numerous accusations against him, were conducted with siagular fairness and propriet?. He was accused with especial bitterness of favouring norbitrary power by the law which he laid down in the trials for libel which arose eut of the publications of Junius and Horne Tooke, and which at a later time he reafirmed in the case of the dean of St Asaph (see Lieel). But, although his political opinions led hin to look with disfarour on the nopular viem, and altheugh it mas unquestionably unfor tunate that in some of these instances he was a member of the cabinet which directed the proceedings, we must rensember that his view of the law was concurred in by the, great majority of the judges and lawgers of that time, and ras supported by undoubted precedents. In other instances, when the Goverament were equally concerned, Le was wholly free from suspicion. He supported Lord Camden's decision against general marrants, and reversed the outlawry of Willies. While on the whole lie leaned in opinion to a view of the law which wo should now call oppressire, there is no instance in which he can justly be accused of wresting it, and in every instaace lic treated the accused with a fairness and decency which had not always been slown by his predecessers. In anether way he came into conflict with popular prejudices. He was always ready to protect the rights of conscience, whether they mere claimed by Dissenters or Catholics, end the popular fury which led to the destruction of his house during the Gördon riots was directed against him very much because a Catholic priest, who was accused of saying mass, had escaped the penal larrs by his charge to the jury. His chief celebrity, homerer, is founded upon the consummate ability with which he discharged the civil duties of his office. He has always beea recognized as the founder of English mercantile lars. The commea lar as it existed before his time was wholly inadequate to cope with the new cases and customs which arose with the increasing development of commerce. The facts were left to the jury to decide as best they might, and no principle was crer extracted from them mhich might scrve as a guide in subsequeut cases. Lord Mansfield found the law in this chaotic state, and left it in a form that mas balmost equivalent to a code. Werking patiently with the gnildhall juries, whom he trained to act in thorough understanding with him, he defined almost every principle that geverned commercial transactions in such a manner that his sucecssors had only to apply the rules he had laid down. His knorledgo of Roman and fereign law, and the general width of his education, freed him from the danger of relying tee exclusively upon narrow precedents, and afforcerd him a sterehouse of principles and illustrations, while the grasp and acuteness of his intellect cnabled him to put bis judgments in a form which almost always commanded assent. A similar influence was exerted by him in other branches of the common law; and altbengh, after his retirement, a renction took place, and he was recarded for a while as one who bad corrupted the ancient priaciples of English lam, those prejudices passed rapidly away, ond the value of his work ia bringing the older law in barmony
with the needs of modern socicty has long been fully coognized.
Tha chief defect of Lord Mansfield's character was a certnin coldness and want of moral courage. He had no very warn attachment either to persons or opinions, although invariably kindly and considerate in his demeanour. ' Eren his greatest speeches owe their imprestiveness to a certain intellectual nobleness and breadth of riem. Kis attachment to justice ras not impassioned, but of the type which is hred from highest professional custom, and from the kind of intellectual taste rhich led him so frequently to the ethical writings of Cicero. He could not alrays face the enthusiasm of Chatham, and we cannot feel certain that his courage would have sustained him through nay very perilous stand for righteousaess. But in the sphere in wiich he was chiefly famons these defects wers scarcely disadrantages. His sense of duty and of personal dignity was amply sufficient to bear him perfectly unstained througl life. No suitor had ever to complain of delay or nerlect. His want of strong feeling obly permitted him to use his magnificent intellect with greater impartiality; and, if at any time he was affected by personal prejudice, no trace of it. was ever allowed to appear. Nothing ever disturbed the perfect dignity and propriety of his judicial conduct, which is apparent in every trial at which he presided. He impressed himself on the mind of his contemporaries as one of the best examples of what a great judge ought to be, and from that estimate a closer examination of lis claims will scarcely lead us to differ.
(A. GI.)

## MANSLAUGHTER. See Mcrder.

MANSON, GeOrge (1850-1876), a Scottish watercolour painter, was born in Edinburgh on the 3d of December 1850. When about fifteen he was apprenticed as a woodcutter with Messrs W. \& R. Chambers, with whom he remained for over five years, designing and engraving vignettes distinguished by singular rightness and directness of technical method, diligently employing all Lis spare time in the study and practice of art, and producing in his morning and evening liours water-colours of much delicacy and beanty, like the Milking Time and the Cuttage Door. In 1871 he left the Messrs Chambers, and devoted himself exclusively to painting. His subjects mere derived from humble Scottish life-especially child life, varied occasionally by portraiture, by landscape, and by views of picturesque architecture. In 1873 he visited Normandy, Relgium, and Holland; in the following year Le spent several months in Sark; and in 1875 he resided at St Lo, and in Paris, where he mastered the processes of etching. He afterwards produced a series of platas which promised excellence in the art. Meanwhile in his water-colour work he had been adding more of breadth anit power to the tenderness and richness of colour which distinguished his early pictures, and he was planning more complex and important subjects. But his health had been gradually failing, and he was ordered to Lympstone in Devonshire, where he died on the 27 th of February 1876. Among lis chief productions are the High School Vynd; the Compranions-a gipsy girl and her donkey; Waiting for the Boats; What is It?-a child examining an antique clock; and his own portrait ns a Sark fisherman. Since his death several exhibitions of his works have been held in London and Edinburgh, and a volume of photographs from his water-colours and skatches, with a memoir by J. M. Cray, was published in 1880 . For an account of Manson's technical method as a srood cagraver see P. G. Hamerton's Graphic Arts, p, 311.

MANSUR, MANsoor, or more properly, with the article, At-Masșúr, "the victorious," a surname (lakab) assumed by not a fers Moharmedan princes, Among the person-
ages cuminonly referred to by this title the followirg may be noticed.

1. Abu Jaiar ibn Mohammed, second caliph of the house of 'Abbás, who reigned $754-775$ A.D. See Mohanmedan Empire.
2. Abú Táhir Ismaíl ibn 11 -Kám, third Fatimite caliph of Africa (946-953). Under Al-Ǩáim, his father, the Fatimites, already weakened by their conllict with the Omayyads of Spain, were thr satened with utter ruin by a Berber rising under Abu Yezid, a puor nonconformist ('Ibádil) schoulmaster, who appeared as a religions reformer, and gatherer round him the Sunnites, who detested the Fatimites. In 944 Abu Yeald conquered the capital Kairawán, and recognized the spiritual headship of the Spanish caliph. While the Spanish caliph and his vassals stripped the Fatimite of his remoter posscssions, Abú Yezin pressed him at home, and during the siege of Súsa Al-Kaim died, and was succeeded by Al-Manṣír. Then the fortunes of war rapidly turned Abu Yezid alienated many of his follorers by lapsing into babits of arrogant luxury and by treachery towards the Sunnites. At length he lost all he had mon, fell into the hands of Al-Mauṣur, and was put to death (947). The caliph brilt the city of Mansúrifah on the field of the decisive battle and made it his residence; the empire was rapidly restored, and the Spantsh vassals driven from Africa. Al-Manṣúr died at Mansúríyah, end was succeeded by Al-Mo'izz, the conqueror of Egypt (see vol. rii. p. 750 sq.).
3. Ibn Ab1 "Ámir Mohammed, commonly called Almanzor by European writers, of an ancient but not illustrious Arab family, which had its seat at Tormex near Algeciras, was bern 939 A.D., and began life as a lawyer at Cordova. In 967 he obtained a place at the court of Hakam IL., the Andalusian caliph, and by an unusunl combination of the talents of a courtier with admiaistrative ability and address in dealing with men, rapidly rose to distinction, enjoying in particular the powerful suppnrt of Subh, the favourite of the caliph and mother of his keir Hishám. On the death of Hakam (976) the accession of a minor gave fresh scope to the genius of Ibn Abf Ámir, who threaded his ray with consummate but unscrupulous talent through the intrigues of the court, and in. 978 became prime minister. He now aimed at absolute dominion. The weak young caliph, absorbed in exercises of piety, was easily reduced to a cipher, but at"first Ibn Abi "Amir had to share the power with his father-in-law Ghalib, the best general of Andalusia, and his chief aid, along with the mother of Hisham, in the steps that had raised him to power. At last a rupture took place between the two ministers, and ended in a war, in which Gbalib professed himself the champion of the caliph and called in the aid of the Christians of Leon. But his rival had anticipated the struggle; he had long before found means to add military to admidistrative reputation, and since he rose to the direction of affairs had remodelled the army so as to make it more formidable and more devoted to his cause. Ghálib fell in battle (98I); a rictorious campaign chastised the Leonese; and on his return to Cordora the victor assumed the regal suruame of AlManșúr billah, and became practically sovereign of Andalusia. The caliph was a mere prisoner of state, holding a nominal dignijty, and Al-Manṣúr ultimately assumed the titlo as well as the prerogatives of king (996). Unscrupulous in the means by which he rose to power, he wielded the sorcreignty nobly. His strict justice and the enlightened excellence of hiainteralal admiaistration were not less notable than his military prowess. But it is by the latter that he is best known. His arms were the terror of the Christians, and raised the Moslem power in Spain to a pitch it had never before attained. He fought more than
fifty campaigns, all glorions, and destroyed many cities, including the three capitals of Leon, lampeluna, and Earceluna, and the sacred shrine of Santiago do Compostella. In Africa his armies were for a time bard pressed by the revolt of Ziri, viceroy of Mauretania, but before his death this enemy had also fallen. Al-Mansúr died at Medinaceli 10th Angust 1002, and was succeeded by his son Moḍaffar. ${ }^{1}$
4. Abư Yúsuf Ya'kúb ihn Yusuf (Jacob Almanzor), of the Moorish dynasty of the Almohades, the conqueror of Alphonso III. in the great battle of Alarcos (1195), reigned 1184-99.
Mantegna, Andrea (1431-1506), one of the chief heroes in the adrance of painting in Italy, was born in or near Padua, of very humble parentage. It is said that in his earliest boyhood Andrea was, like Giotto, put to shepherding or cattle-berding ; but this can have lasted only a very short while, as his natural genius for art developed with singular precocity, and excited the attention of Frsucesco Squarcione, who entered him in the guild of painters before he had completed his eleventh year.
Squarcione, whose original vocation was tailoring, appears to have had a remarkable enthusiasm for ancient art, and a proportionate faculty for acting, with profit to himself nnd others, as a aort of artistic middleman; his own performances as a painter were merely mediocre.' He travelled in Italy, and perbaps in Greece also, collecting antique etatues, reliefs, vases, \&c., forming the largest collection then estant of such works, making drawings from them himself, and throwing open his stores for others to study from, and then undertaking works on commission for which his pupils no less than himself were made available. As many as one hundred and thirty-seven painters and pictorial students passed through his school, established towards 1440 , which became famous all over Italy. Mantegna was, as he deserved to be, Squarcione's favcurito pupil. Squarcione adopted him as his son, and purposed tinking him the heir of his fortune. Andrea was only seventeen when he painted, in the church of St Sophia in Padua, a Madonua picture of exceptionsl and recognized excellence. IIe was no doubt fully aware of having achieved no common feat, as he marked the work with his name and the date, and the years of his ace. This painting was destroyed in the 17 th. century.

The affectionate reation between Squarcione and Mantegna was not destined to contitue long. As the youth progressed in his studies, he came under the influence of Jacopo Bellini, a painter considerably superior to Squarcione, father of the celebrated painters Giovanni and Gentile, and of a daughter Niccolosia ; and at some date, which may have been towards 1450 , Jacopo gave Niccolosia to Andrea in marrisge. This connesion of Andrea with the pictorial rival of Squsrcione is generally assigned as the reason why the latter became alienated from the son of his adoption, and always afterwards hostile to him. Another auggestion, which rests, however, merely on its own internal probability, is that Squarcione had at the outset used his pupil Andrea as the unarowed executant of certain commissions, but that after a whilo Andrea hegan painting on his own account, thus injuring the professional interests of his chief, and incurring his animosity. The remarkably definite and original atyle formed by Mantegna may be traced out as fonnded on the study of the antique in Squarcione's atelier, followed by a diligent application of principles of work exemplificd by Paolo Uccello and Donatello, with the practical guidance and cxample of Jacopo Bellini in the sequel.

Among the other carly works of Mantegna aro the fresco of two aints over the entrance-porch of the church of S .

[^198]Antonio in Padua, 145?, and an altarpiece of St Luke and other saints fer the church of St Justina, now in the Brera Gallery in Milan, 1453. It is probable, however, that before this time some of the pupils of Squarcione, including Mantegoa, had alrcady begun that series of frescos in the chapel of St Christopher, in the church of S. Agostino degli Eremitani, by which the great painter's reputation was fully confirmed, and which remain to this day conspicuous among his finest achievements. ${ }^{2}$ The now censorious Squarcione fonnd much to carp at in the earlier works of this series, illustrating the life of St James; he said the figures were like men of stone, and had better have been coloured stone-colour at once. Andrea, conscious as he was of his great faculty and mastery, and of the transcendent display he had here made of these, seems nevertheless to have felt that there was something in his old preceptor's strictures; and the later subjects, from the legend of St Christopher, combine with his other excellences more of natural character and vivacity. Trained as he had been iu the study of marbles and the severity of the antique, and openly avowing that be considered the antique superior to nsture as beiug more eclectic in form, he now and always atfected precision of outline, dignity of idea and of figure, and he thus tended towards rigidity, and to an austere wholeness rather than gracious sensitiveness of expression. His draperies are tight and closely folded, being studied (as it is said) from models draped in paper and woven fabrics gnmmed. Figures slim, muscular, and bony, action impetuous but of arrested energy, tawny landscape, gritty with littering pebbles, mark the athletic hauteur of his style. He never changed, though be developed and perfected, the manner which he had adopted in Padua; his colouting, at first rather neutral and undecided, strengthened and matured There is throughout his works more balancing of colour than fineness of tune. One of his great aims was optical illusion, which he carried out by a mastery of perspective that, though not always impeccably correct, nor absolutely superior in principle to the highest contemporary point of attainment, was worked out by himself with strenuous labour, and an effect of actuality astonishing in those times.

Successful and admired though he mas in Padua, Mantegna left his native city at an early age, and never afterwards resettled there; the hostility of Squarcione has been assigned as the cause. The rest of his life was passed in Verona, Mantua, and Rome-chiefly Mantua; Venice and Florence liave also been named, but without confirmation.
It may have been in 145 c that he went to Verona; and he painted, thoongh not on the spot, a grand altarpiece for the church of S. Zenon, a Madonna and angels, with four saints on each side. The Marquis Lodorico Gonzsga of Mantua had for some time bcen pressing Mantegua to enter his scrvice ; and the following year, 1460, was perhsps the one in which be actually established himself at the Mantuan court, residing at first from time to time at Goito, but, from Decenber 1460 onwards, with bis family in Mantua itsclf. His engagement was for a salary of 75 lire (about $£ 30$ ) a month, a sum so large for that period as to mark conspicuously the high' regard in which his art was held. He was in fact the first painter of any eminence

[^199]ever domicilcd in Mantua. He builta stately house in the city, and adorned it with a uultitude of paintings. The house remains, but the pictures lizue perished. Some of his early Mantuan works are in that apartment of the Castello which is termed the Camera degli Sposi, -full compositions in fresco, including various portraits of the Gonzaga family, and some figures of geaii, \&c. In 1488 be went to Foine at the request of Pope Innocent VIII., to paint the frescos in the chapel of the Belvedere in the Vatican; the duke of Mantua created him a caraliere before his departure. This series of frescos, including a nuted Baptism of Clurist, was ruthlessly destroyed by Pius VI. in laying out the Museo Pio-Clementino. The pope treated Mantegna with less liberality than he had been used to at the Mantuan court; but on the whole their connexion, which ceased in 1490, was not unsatisfactory to either party. Mantegna then returned to Mantua, and weut on with a series of works-the nine tempera-pictures, each of them 9 feet square, of the Triunph of Cxsar-which he hade probably begun before his leaving for Rome, and which are now in Hampton Court. These superbly invented and designed compositions, gorgeous with all splendour of subject-matier and accessory, and with the classical learning and eathusism of one of the masterepirits of the age, have always been accounted of the first rank among Mantegna's worls. They were sold in 1628 along with the bulk of the Mantuan art treasures, and were not, as is commonly said, plundered in the sack of Mantua in 1630. They are now greatly damaged by patchy repaintings. Another work of Mantegna's later years was the so-called Madonna della Vitteria, now in the Louvre. It mas painted in tempern about 1495, in commemoration of the battle of Fornovo, which Gonzaga found it convenient to represent to his lieges as au Italian victory, though in fact it had been a French victory; the church mhich originally housed the picture was built from Mantegna's own design. The Miadonna is here depicted with various saints, the archangel Michael and St Maurice holding her mantle, which is extended over the kneeling Francesco Gonzaga, amid a profusion of rich festooning and other accessory. Though not in all respects of his highest order of execution, this counts among the most olviously beautiful and nttractive of Mantegna's works, from which it must be said that the qualities of beanty and attraction are often excluded, in the stringent pursuit of those other excellences more germane to his severe genius, tense energy passing into liaggard passion.

Vasari eulogizes Mantegna for his courteous, distinguished, and praiseworthy deportment, although there are indications of his baving been not a little litigious in disposition. With his fellow-pupils at Padua he had been nffectionate ; and for two of them, Dario da Trevigi and Marco Zoppo, he retained a steady friendship. That he lad a high opinion of himself was natural, for no artist of his epoch could produce more manifest rouchers of high and progressive attainmeut. He became very expensive in his habits, fell at times into difficulties, and had to urge his valid claims upon the duke's attention. After his return to Mantua from Rome his prosperity was nt its height, until the death of his wife. He then formed some other connexion, and became at an adranced age the father of a natural son, Gioranni Andrea; and at the last, although he continued launchiag out into various espenses and schemes, he had serious tribulations, such as the banishment from Mantua of his son Francesco, who had incurred the duke's displeasure. Perbaps the aged master and connoissenr regarded as barely less trying the hard necessity of parting with a beloved antique bust of Faustina.: Vcry soon after this transaction lie died in Mantun, on 13th September 1506. In 1517 a handsome
monument was set up to him by his sons in the chureh of S. Andrea, where be had painted the altarpiece of the mertuary chapel.

We lave spoken as yet of Mantegna as a painter and architect ; lie was no less eminent as an engraver, and is reported to have been a sculptor and poct as well, though we are not aware that any verses of his are cxtant, or that his sculptnral practice cxtended beyond making a drawing for a statue of Yirgil. As an engraver hia bistory is somawhat obscure, partly becansa he naver signed or datel any of his plates, unless in ono singlu disputed instance, 1472 . The account wlich has como down to us is that Mantegna began engraving in Rome, prompted by the engravings produced by Baccio Baldini of Florence after Sandro Botticelli ; nor is there anything positiva to invalidate this acconnt, except the consideration that if would consign all the guruerous and claborate engravings made by Ilantegua to the last sixtcen or serenteen years of his life, which seems a seanty space for them. To get over this difficulty, it lass been sugrested, but without any evidence, that he began engraving whilo still in Padus, nnter the tnition of a distinguished goldsarith, Niceold. He eagrared about filty plates, accordiog to the usual reckoning; some thirty of them aro indisputable-often large, full of figures, and highly stadied. Amogg the principal camples are Ioman Triumphs (not the same compositions as the IIampton Court pictures), A Bacchanal Festival, Ilercules and Antreus, Marino Gods, Juditl with tha Haad of Holoplernes, the Deposition from the Cross, the Entombment, the Resurrection, the Man of Sorrows, the Virgin in a Grotto. Nantegna has sometimes been credited with tha isportant insention of engraving with the burin on copper. This claim cannot be sustained on a comparison of dates, but at any rate he introduced the art into upper ltaly. Several of his engravings are supposed to be execnted on aome metal lesa hard than copper. The technique of hinself and his followers is characterized by the strongly marked forms of the design, and by the oblique formal hatchings of the ahadows. The prints are frequently to be found in tro states, or cditions. In the first stata, the prints have been taken off with the roller, or even by hand-pressing, and they are weak in tint ; in the second state, the priating press has been nsed, and the ink is stronger.

The iafineace of Mantegna on the styla and tendency of his age was vary narked, and cxtended not only to his own flourishing Mantusn school, but over Italian art generally. His vigorous perspectives and treachant foreshortenings pioneered the way to other artists : in soliel antique taste, and the porrer of reviving the aspect of a remote age with some approach to system and cousiatency, ho distanced all contemporary competition. He did not, however, leave belind hinı many scholars of superior facnlty. His two legitimate sons were painters of only ordinary ability. His favourite pupil was knowa as Carlo del Mantegna; Caroto of Verona was another pupil, Bonsignori an iwitator. Giovanni Bellini, in his earlier werks, obviously followed the lead of hia brother-in-law Andrea.

The rorks painted by Mantegna, apart from his frescos, are not numerons ; thirty-three or thereabouts are regarded as fully autlienticated. Ws may pame, besides thosa already specified-in tha Naples nuseum, St Euphemia, a fine early work; in Casa Melzi, Milan, tha Madonna and Child with Chanting Angels, 1461 ; in the Tribuae of the Uffizi, Florence, three pietures remarksbla for scrupulous finish; in the Berlin Musenm, the Dead Christ with two Angels; in tha Louvre, the two celebrated pictures of mythic allcgory-Parnassus, and Minerva Triumphing over the Vices; in the Loadon National Gallery, the Virgin and Child enthroned, with the Baptist and the Magdalen, a late example; the monochrome of Yestals, lately bought from Hamilton Palace; the Triumph of Scipio (or Phrygian Mother of the Gods raceived by tha Roman Commonwealth), a tempera in chiaroscuro, painted only a few months beforo tho master's death; in the Brera, Milan, the Dead Christ, with the two DIaries weepirg, a remarkable tour de force in the may of foreshortening, which, though it has a stunted appearance, is in correct technical perspectiva as seen from all points of view. With all its exceptional merit, this is an eminently ugly picture. It remained in Mantegna'a studio unsold at his death, and was disposed of to liqnidate debts. (W. M. R.)
Mantell, Gideon Aleepron (1790-1852), bern ib 1790 at Lewes, Sussex, rose to eminence as a popular exponent of geology, and contributed many original papers to the literature of the science. Educated for the medical profession, he first practised in his native tomn, afterwards in Brighton, and finally at Clapham, near London. Whilo devoting himself with industry and success to the duties of a medical maa, he yet found time to prosecute researches in the palrontology of the Secondary rocks, particularly ia Sussex-8 region which he has made for ever classical in the history of discovery. While he was still a conatry
doctor at Lewes his eminence as a geological investigator was fully recognized on the publication of his work on The Fossils of the South Doorns, 1822. His most remarkable discoveries were made in the Wealden formations, whence he brought to light and described the remarkable Dinosaurian reptiles known as Igzanodon, Hylæosaurus, Pelorosaurus, and Regnosaurus. The memoirs in which be sketched the structure of these strange creatures, and pointed out the probable conditions in which they lived, were recognized by the Geological Society as deserving of its nighest bonour-the Wollaston medal. The Royal Society also awarded him a Royal mednl. Besides these and other contributions to the literature of palwontology and geology, he published from tinue to time various popular works which had a large sule and did mucl to spread a knewledge of and interest in the scienco. ${ }^{1}$ Towards the end of his life Dr Mantell retired to London. Though for many years suffering from a severe spioal disease, the result of an accident, he continued with unabated enthusiasm the prosecution of his favourite scientific pursuits, sparing neither prins nor expense torards the attainment of his objects, and kindling in others a spirit of eager desire to further the cause of science. He wrote with great clearness and attractiveness, so that his general works were deservodly popular. As a lecturer also he was almost unrivalled for flucacy and eloquence. His name appeared on the list of membership of nany learned societies both at home and abroad. He died in 1852

MANTINEIA was one of the most famous cities of Arcadia It was situated in the long narrow valley, running north and south, which is now called after the chief town Tripolitza. Tegea was in the same valley, aboat 10 miles south of Mantineia, and the two cities continually disputed the supremacy of the valley. In every great war we find then ranged on opposite sides, except when superior force constrained both. In tho Peloponnesus the disputes between Argos and Sparta I asted for centuries; and Mantineia was always an ally of the former. In the war between Sparta and Atbens, Mantineia was at first forced to be an ally of Sparta, but in 421 it joined Arges in making an alliance with Athens. The city is said by Straba to have been founded under Argive instigation, by the union of several villages of the valley; there can be no doubt that this was done in order to maintain a party in the valley bostilo to Tegea and Sparta. It is impossible here to trace the varying history of the town. It was one of the chief members of the Arcadian league that helped Epaminondas to break the power of Sparta. It was one of the original members of the Achæan league, but deserted it for the Etolian. The Achæans and Antigonus Ioson captured the city in 222 B.C., and changod its name to Antigoneia, but the emperor IIadrian restored the ancient name. The worship and mysteries of Cora at Mantineia were famous. The salley in which the city lies has no opening to the coast, and the water find's its way, often only with much care and artificial aid, through underground passages (catabothra) to the sea. It is bounded on the wost by Mount Manalus, on the east by Mount Artemision. The river Ophis flowed through the city. The position of the town in the centre of this valley route made it of great military importonce, and fir: important battles wore fought beside it: in 418 B.c. Sparta defeated the alliance abore mentioned; in 362 Epaminondas defcated the Spartans and lost his own life;

[^200]in 295 Demetrius Poliorcetes defeated the Spatrans; in 242 Aratus defeated the Spartans; in 207 Philopcemen defeated the Spartans. In the begioning of the 4th ceatury b.c. Mantineia had 3000 citizens capable of bearing arms.

MANTIS. Probably no other insect has been the sub. ject of so many and widespread legends and superstitions as the common "praying mantis," Mantis religiosa, I (see Insects, Orthoptera, fam. Mfantidx, vol. xiii. p. 152). The ancient Greeks endowed it with superratural powers ( $\mu$ ávics, "a divincr") ; the Turks and Arabs hold that it prays constantly with its face turned towards Mecca; the Provençals call it Prega-Diou (Prie-Dieu); and numerous more or less similar uames-preacher, saint, nun, mendicant, soothsayer, \&e.,-are widely diffused throughont sonthern Europe. Children ask it to show them the way, and Mouffet assures us that it rarely or never deceives them; and it is even recorded that one specimen, whilh alighted on the hand of St Francis Xavier, and which he commanded to sing the praise of God, loudly intoned a very beautiful canticle. In Nubia it is held in great esteem, and the Hottentots, if not indeect worshipping the local species (M. fausta), as one traveller has alleged, at least appear to regard its alighting upon any person both as a token of saintliness and an omen of good fortune.


Praying Mantis (11antis religiosa).
Yet tnese are "not the saiuts, but the tigers, of the insect world." The front pair of limbs are very peculiarly modified,-the coxa being greatly elougated, while the strong third joint or femur bears on its curved uadersido a channel armed on each edge by strong 'movable spines. Into this groove the stout tibia is capable of closing like the blade of a penknife, its sharp, serrated edge being adapted to cut and hold. The arrangement is essentially similar to the sub-chela of Squilla and Amplaipods among Crustacea ( $q . v$. ), as well as to the chelicere of spiders (see Arachnida). Thus armed, with head raised upod the much-elongated and semi-erect prothoras, and with the half-opened fore limbs held outrards in the characteristic devotional attitude, it rests motionless upon the four posterior limbs waiting for prey, or occasionally stalks it with slow and silent movements, finally seiciag it with its knife-blades and derouring it. Although apparently not daring to attack ants. these insects destroy great numbers of flies, grasshoppers, and caterpillars, and the larger South-American species even sttack small frogs, lizards, and birds. They are very pugnacions, fencing with their *word-like limbs " like hussars with sabres," the larger frequently derouring the smaller, and the femalcs the males. The Chinose keep them in bamboo cages, and match them like fighting cocks.

Tha elytra of the common mantis have been compared to a withering willuw leaf, a circumstance which not improbably aids in concealing them from their prey. Some of the tropical forms exhibit as perfect mimicry of the leaves as the leaf insects proper (I'husmida). Sates found a mantis on the Amazon which cxactly resem? led the
white ants it preyed upon, while Wallace mentions a Javanese species which miniles a pink orchid flower, and "is said to feed largely on butterflies,-so that it is really a living trap, and forms its own bait!"

The common species fixes its somewnat uut-like egg capsules on the stems of plants in September. The young are liatchod in early summer, and resemble the adults, but ure without wings.

Sce Westwood's Introd. Mod. Class. of Insects, 1840, and forthcoming monograph of the family.

MANTUA (Italian, Mantova), a fortified city of Italy, the cbicf town of a province, the sce of a bishop, and the centre of a military district, lies 95 miles east-south-east of Milan, and 25 miles by rail south of Verona on the may to Modena, occupying, at the height of 88 feet abore the level of the Adriatic, an almost insular site in the midst of the swampy lagoons of the Mincio, with their vast reaches of reeds and bulrushes. As the belt of marshy ground along the south side can be laid under water at pleasure, the site of the city proper, exclusive of the considerable subuibs of Borgo di Fortezza to the north and Borgo di San Giurgio to the east, may still be aaid to consist,' as it formerly did more distinctly, of two islands separated by a narrow channcl and united by a number of bridges. On the west side lies Lago Superiore, on the east side Lago Inferiore -the boundary between the tro being marked by the Argine del Mulino, a long covered wooden bridge stretcliing northward from the north-west angle of the city. As approached from the north by tho old road, Mantua presents a beautiful prospect with its "towers and walls and waters." On the highest ground in the city rises the cathedral, built after his dcath according to the plans of Giulio Romano on the site of the ancient church of Sts Peter and Paul; it has double aisles, a dome-covered traosept, and a large tower, popularly assigned to the Roman governor Arims. Architecturally much more important is the church of St Andrew, built towards the close of the 1 ōth century, after plans by Leon Battista Alberti, and consisting of a single larrel-vaulted nave 350 feet long by 62 feet wide. It las a noble façade, with a deeply recessed portico, and a brick campanile of earlier date than the main building. The interior is richly decorated with 18 th century frescos. S. Maria delle Grazie, consecrated in 1399 as an act of thanksgiving for the cessation of the plague, has a curious collection of ex voto pictures and the tombs of the Gonzagn family. The old ducal palace-ono of the largest buildings of its kind in Europo-was commenced in 1302 for Guido Bonaccolsi, and probably completed in 1328 for Ludovico Gonzaga; but many of the accessory apartments are of much later date, and the interior decorations are for the most part the work of Giulio Romano and his pupils. Outside of the city, to the south of Porta Pusterla, stands the Palazzo del Te, Giulio's architectural masterpiece, erected for Frederick Gonzaga; of the numerous frescocovered chambers which it contains, perlaps the most celebrated is the Sala dei Giganti, wherc, by a combination of mechanical with artistic devices, the rout of the Titans still conteuding with artillery of uptorn rocks against the pursuit and thunderbolts of Jove appears to rush dowarwards on the spectator. Among the educational institutions in Mantua are an academy of arts and scieuces (Accademia Vergiliana) occupying a fine building erected by Piermarini, a public library founded in 1780 by Maria Theresa, a museum of antiquities dating from 1779, a good botanical garden, and an observatory. The Monte di Pieta was established in 1484, the civil hospital in 1449 . Oil, beer, leather, and playing cards are the chief products of the limited local industry. The population increased from 26,687 in 1871 to 28,018 in 1881 . As a fortress Mantua
was long one of the most formidable in Europe, a force of thirty to forty thousand men finding accommodation within its walls; but it had two serious defecta-the marshy climate told heavily on the health of the garrison, and. effective sorties were almost impossible.

Mautua was originally an Etruscan towu, and had still a strong Etruscan element in its population during the Roman period. It vas a Roman municipium; but Nartial calla it little Mantua, and, had it not been for Virgil's intcrest in his native place and in the expulsion of a number of the Mantuana from their landa in favour of Octavian's soldicrs, we should probably lave beard almost nothing of its existence. In E68 the Lombards found Mantus a walled town of some strength; recovered from their grasp in 690 by the exarch of Ravenna, it was again captured by $A$ gilulf in 601. Tho 9th century was the period of cpiscopal aupremacy, and in the 11th the city formed part of the vast possessiona of Bonifacio, narquis of Canossa. From him it passed to Geoffrey, duke of Lorraine, and afterwards to the Countess Matilda, whose support of the pope led to the conquest of Bantua by the emperor Henry IV. in 1090 Reduced to obedience by Matilda in 1113, the city obtained its liberty on her death, and instituted a communal government of its own, salva impcriali justitia. It afterwarda joined the Lombard League ; and the unsuccessful attack made by Frederick II. in 1236 brought it a confirmation of its privileges. But after a period of internal discord Ludovico Gonzaga attained to power (1328), end was recognized as imperial vicor (1329); and from that tima till the death of Ferdinando Carbo in 1708 the Gonzagas were masters of Mantua (see Gonzaga, vol. x. p. 772). Uider Gian Francesco 11., Ludovico, and Federico II., the lirst duke of Mantua, the city rose rapidly into importance as a seat of industry aud culture. Claimed in 1708 as a fict of the empire ly Joseph I., it was governed for the greater part of the century liy tho Austriang. In Junc 1796 it was besieged by Napoleon; but in spite of terrific bombardments it held out till February 1797. A three day's bombardment in 1799 again placed Mantua in the hands of the Austriana; and, though restored to the Frencl by the peace of Luneville (1801), it became Austrian once more from 1814 till 1866. In the yeara between 1849 and 1859 the city ras the scene of violent political persecution
Besides Virgil, Mantua counts among its celebrities Sordello the Provençal poet, Castiglioni, Folengo the writer of nacaronics, and Pomponazzi the philosopher ; and it has a long roll of local historians-Donesmondi (ecclesiastical affaira), Possevino, Daino, Amedei, Visi, Tonelli, and Count Carlo d'Arco.
Gact. Susani, Nuovo prospello delle pilfure, dic., di Monlora, Mantua, 1830; Carle d'drco, Delle arti e degli astefici di Mantora, Bfantua, 1857, and Storia dí Mantoca, Mantua, 1874.

MANUCODE, from the French, an abbreviation of Manucodiata, and the Latinized form of the Malay Manukdewata, meaning, says Crawfurd (Malay and Engl. Dictionary, p. 97), the "bird of the gods," and a name applied for more than two bundred years apparently to Birds-of-paradise in general. In the origiual sense of its inventor, Montbeillard (Ilist. Nat. Oiseaux, iii. p. 163), Manacode was restricted to the King Bird-of-paradise and three allied species; but in English it has curiously been transferred ${ }^{1}$ to a small group of species whose relationship to the Paradiseidx has been frequently doubted, and must be considered uncertain. These IIanucodes have a glossy steel-blue plumage of much beauty, but are easily distioguished from other birds of similar coloration by the outer and middle tocs being united for some distance, and they are very remarkable for the extraordinary anvolution of the trachea, in the males at least, with which singular structure is correlated the loud and clear voice of the bircis. The convoluted portion of the tracbea lies on the breast, between the skin and the muscles, much as is found in the females of the genus Rhynchaxa, in the males of the Curassows (Cracidx), and in a few other birds, but wholly unknown elsewhere among the Passeres. The Manucodes are peculiar to the Papuan Sub-region (including therein

[^201]the peaiosula of Cape York), and comprehend, according to Mr Sharpe (Cat. B. Brit. Museum, iii. p. 164), two genera, for the first of which, distinguished by the elongated tufts on the head, he adopts Lesson's name Phonygama, and for the second, having no tufts, but the feathers of the head crisped, that of Manucodia; and Mr W. A. Forbes (Proc. Zool. Society, 1882, p. 349) observes that the validity of the separation (which has not yet been gencrally acknowledged) is coafirmed by what is now known of their tracheal formatina. Of Phonygama. Mr Sharpe recognizes three species, $P$. Keraudreni (the type) and $P$. jamesi, both from New Guinea, and $P$. gould $i$, the Australian representative species; but the first two are considered hy Mr Elliot (Ibis, 1878, p. 56) and Couut Salvadori (Ornitol. della Papuasia, ii. p. 510) to be inseparable. There is a greater unanimity ia regard to the species of the so-called geuns Manucodia proper, of which four are admitted - MF. chalybeata or chalybea from north-western New Guines, M. comriei from the south-eastern part of tie same country, M. atra of wide Nistribution within the Papuan area, and M. joliensis peculiar to the island which gives it a name. Little is known of the habits of these birds, except that they are as already mentioned remarkable for their vocal powers, which, in P. Keraudreni, Lesson describes (Voy. de la Coquille, Zoologie, i p. 638) as enabling them to pass through every note of the gamut. Mr Wallace (Ann. Nat. IIistory, ser. 2, xx. p. 476) remarked that M. atra was very powerful and active, clinging suspended to the amaller branches of trees, on the fruits of which alone it appears to feed. M. gouldi, according to an informant quoted by Mr Forbes (ut supra), frequents in pairs the dense palm-forests, perching high up, uttering a very deep and loud guttural note; it is graceful in its movements, evincing more curiosity than timidity on being approached. As with members of the Paradiseidx generally, the nidification of the Manucodes is atill shronded in mystery.
(A. N.)
mancel I., Comenus, emperor of Constantinople from 1143 to 1184, was the fourth son of John II. (CaloJoanues $\}$, aud was born about the year 1120. He aucceeded to the imperial crown on April 8, 1143, having for his martial qualities been nominated by Jobn to the inheritance in preference to his elder surviving brother. Daring his reign of thirty-seven years he was involved in almost perpetual war, in which he displayed much more of the courage of a soldier than of the pradence and skill of a commander. In 1144 the imperiai general De:metrius Branas brought back Raymond, the Tat:n prince of Antioch, to his allegiance, and in 1145 Manuel in persoa drove out the Turks who had invalod Isauria, end conpeije tiem to accept peace on his own ternis. It 1147 he granted a passage through his dominions to the crusaders under Louis VII. of France and Conrad III. of Germany, but secretly harassed them by every means iu his power, and rent word to the Turks of their approach. In the followiag year he became involved, along with the Venetiana, in \& war with Roger of Sicily, who had taken Corfu and invaded Greece; an episode of the campaiga towards its beginning was his repulse beyond the Danube of the Patzenegues, of whom he took hostages for their future good behaviour. Disembarking his host at Corfin bcfore the end of the year, he invested the fortress in co-operation with the Venetian army ; the inlabitant,, after a long siege, in which he displased prodigies of personal strength and valour, surrendered in 1149 . Nanuel was now prevented from invading Sicily by a diversion made by the Servians and Hungarians on the Danube, who were not completely vanquished until 1152. In that year Manuel was repulsed by the Turks in Cilicia, but in the west his troops obtained possession- of Bari, Brundisium, and other places of importance in Apulia and Calabria The coorse of Italian
pontics, however, deprived him of the means on which he had reckoned for enabling him to reuuite southern Itsly with the Byzantine empire, and after the defeat of his fleet at Negropont he concluded a peace with William, Roger's successor, in 1155. The next important war of Manuel'a reign was waged against the Hungarians from 1163 to 1168 ; it came to an end in the latter year with the hardwon victory of the Byzantine arms at Zeugninum (Semlin). Less successful was the expedition under Aadronicus Contostephanus against Egypt in 1169, when the combined forces of Manuel and King Amalric were compelled to withdraw from before Damietta. From 1171 to 117 ! Manuel bad a war with the Venetıans; and in 1176 he ler in person an expedition against Kilidj Arslan, the sultan of Iconium when he sustained a disastrous defeat at Myriocephalus, and was compelled to sign a dishonourable peace. This disgrace, altbough partially retriesed by a somewhat more successful expedition in 1177 , so preyed upon the spirit of Manuel that he ultimately succumbed to a slow fever on September 24, 1180. He was first married to Bertha (Irene), a relative of Coarad III of Germany, and afterwards to Maria (Xene), daughter of Raymond of Antioch; Alexis II., bis son by the latter, succeeded him.

MaNUEL II., Paleologus, emperor of Cunstantinople, was born in 1348, and succeeded his father, John VI. (with whom he had been associated since 1375), in 1391. At the tine be was a hostage at the court of Bajazet at Nicæa, but succeeded in making his escape; he was forthwith besieged in Constantinople by the sultan, whose victory over the Christians at Nicopolis, however (September 28, 1395), did not secure for him the capital. Manuel aubsequently set out in person to seek help from the West, and for this purpose visited Italf, France, and Germany, but without material success; the victory of Timur in 1402, and tie death of Bajazet in the following year, were the first events to give him a geouiee respite from Ottoman oppression. He atood on friendly terma with Mahomet I., but was again besieged in his capital by Amurath II. in 1422. He died in 1425 , and was succeeded by his son, John VII.
MANUEL I., emperer of Trebizond, surnamed the
 Alexius ., first emperor of Trebizond, and ruled from 1238 to 1263 . Whaterer may bave been his military skill, or his personal character for bravery, he was unable to deliver his empire from rassalage first to the Seljuks and afterwards to the Mongols. He was the founder of the church and monastery of St Soy hia at Trebizond. His predecessor was John I., Azuckus. and his eldest son, Andronicus II., succeeded him.

Manuel II., the descenant of Manuel I., reigned only a ferr months in 1322-33. Manuel III. reigred from 1390 to 1417, but tho orly interest attaching to his name arises from his connexion with Tirmur, whose vassel he was.
Eeo Finlay, Medizaral Grecec and Trebizond, 1851.
WhNURE. The term " manure," though formerty appiied only to the excrements of animals, either alone or mized with straw, is now mare widely used, and is given to all substances, or mistures of substances, which are added to the soil in order to increase its productiveness or to restore the natural fertility lost by repeated cropping.

The subject of manures and their application involves a prior consideration of plant life and its requirements. Tho plant, growing as it does is the soil, and surrounded by the atmosphere, derives from these tro sources its uourishment and means of gromth through the various stages of its development. From these sources, each equally indispensable, the plant obtains the materials which it has the power of claborating and building up to form its own structure.

Chemical analysis has shown that plants aro comoosed
of water, organic or combustible matters, and inorgauic, incombustible, or mineral matters. These last are left as the ash when the plant is burnt. The elements foraing the organic portion of plants are carbon, hydrogen, oxygen, and nitrogen ; the mineral portion, or ash, consists principally of line, magnesia, potash, soda, oside of iron, phospboric acid, sulphuric acid, chlorine, and silica.

The atmosphere is the great storehouso of erganic plantfood. The carbonic acid always present in the air is, as is well known, eagerly taken up by the leaves of plants, all of which have the porrer of decomposing carbonic acid, giving off its oxygen, and assimilating its carbon. Roughly speakiog, three-fourths of the dry substance of all plants is derived from the at mosphero.

Under conditions of patural grorth and decay, when no crops are gathered in, or consumed on the lend by live stock, the herbage on dying down and decaying returns to the atmosphere and the soil the elements takeu from them during life; but under cultivation a succession of crops deprives the land of the constituents which are essential to bealthy and luxurisut growth. Without an adequate return to the land of the matters remored in the produce, its fertility cannot be maintained for many years. In newly-opened countries, where old forests have been cleared and the land brought into cultivation, the rirgin soil often posscsses at first a high degreo of fertility, but gradually its productive power decreases from year to year. Generally speaking, it is more convenient to clear fresh forest land than to improve more or less exhausted virgin land by the application of manure, labour, and skill. In all densely peopled countries where such a mode of cultivation cannot be followed it is necessary to resort to artificial means to restore the natural fertility of the land and maintain and increase its productiveness,
The researches of Liebig, Wiegmann, Polstorff, and others have proved bejond doubt the important functions of the mineral constitueats of the soil in relation to plant life. The gradual remoral of phosphate of lime in the tillsge of dairy districts, or the remoral of other mineral matters essential to the healthy growth of farm crops, certainly imporerishes the land. The exhaustion of the soil is caused in a much more marked way, however, by the rapid loss in arsilable nitrogenous plant food which soils sustain when under cultivation without manure.

Agricultural improrements manifest themselves in two different diections-the mechanical and the chemical. Under mechanical improrement the physical condition of the soil is bettered and its latent stores of plant food brought into action by mechanical means, such as ploughing, subsoiling, steam cultivation, \&c. The introduction of new and superior agricultural implements, good systems of drainage, and intelligent division of labour characterize the first stage of progress in agriculture. The second stage is marked by the application of chemical principles to practical agriculture, an application shown by the introduction of a rational system of feeding, a proper rotation of crops, and chielly the use of chemical, or artificial, manures for the purpose of restoring the natural fertility of the soil and iucreasing its productive powers.

The aid which chemistry has rendered during the last twenty-five or thirty years to practical agricu!ture has greatly promoted agricultural improvements; and farming, which is in a large measure dependent for success upon an economical use of mscures, is now being carried on much more rationally thsn in former times. The proper application of rarious kinds of manures is one of the most prominent features of successful modern farming.

In considering the economicel use of manures on the land, regard must be had to the following points:-(1) the tequirements of the crops intended to be cultivated; (2)
the physical cendition of the soil ; (3) the composition of the soil ; aud (4) the composition of the manure. Briefly stated, the gnidiag principle of manuring economically sid profitably is to meet the requirements of the crops intended to be cultirated, by incorporating with the soil, in the most efficacious statos of combination, the materials in which it is deficient, or which the various crops usually grown on the farm do not find iu the land in a sufficiently svailable condition to ensure an abundant harrest.
Soils rary grcatly in composition, and hence it will be readily understood that in one locality or on one particalar field a certsio msnure may be used with great benefit, while in another field the same manure has little or no effect upon the produce. Although increased attention has of recent years been paid to the chemical composition and propertics of soils, there is still much room left for improrement, for many fsrmers dizregard almost altogether the composition of their fields in buying artificial manurea,
It hes been pointed out by Sir John Lawes that in actual Englishl farm-practice there is, speaking practically, a standard of natural produco which caries within certain limits, as iaflucnced by seasons and management, and which cannot bo permanently increased or reduced by cultivation ; and further, whea land is spoken of as being in "good condition," referonce is made only to the temporary rise of fertility by means of the manures employed, while by lend "out of condition" is signified the exhaustion of the manures by tho removal of crops, loss by drainage, dec., and that the soil has merely gone back to its standard of natural productiveness. Some soils, indeed, contain in their nstural condition hardly a sufficient proportion of available elements of plant food to yield remunerative crops; such soils sre naturally barren, and, although by the constant use of mannres they msy be improved and may attain some degree of fertility, they will, if left unmanured, speedily revert to their former natural unproductive state.

The principal constitaents of manures are-nitrogen, ia the form of ammonia, nitrates, and nitrogenous organic matters ; organie matters not containing nitrogen (humus); phesphorie acid, potssh, soda, lime, mognesia, silica, sulphuric acid, and chlorine. Of these constituents by fsr the most important are the nitrogen, phosphoric acid, and potash, and these will be cousidered more in detail.

1. Nitrogen.-Nothing so much affects the productive: ness of soils as nitrogen, when it is supplied to plants in a form in which it can be assimilated by them, and nothing is more readily removed from the land, either in the crop grown or, in the form of nitrates, by drainags. The "good condition" of land, to which allusion has besa mado already, is, in a great measure, the fertility which has been imparted to the soil by the nitrogen supplied to it, while the "natural productiveness" may be taken as that due to the phosphoric acid, potash, and other mineral constituents of the soil.

Supply of Nitrogenous Plant Food.-In the case of a crop growing ander natural conditions, and not remeved from the land, the mineral constituents taken from the soil, and carbonaceous as well as some nitrogenous organic matter, principally derived from the atmosphere, are returned to the land, and a sich carbonaceous soil or humus is produced in the couree of years. Such a soil is capable of supplying for a considerable number of yesrs, when under cultiration, the nitrogen needed by the creps grown on the land. This supply of nitrogen, however, gradually becomes exhausted by repeeted cropping. The atmosphere, in addition to free nutrogen gas, which constitutes about four-fifths of its volume, contaias but very little combined nitrogen in the forms of ammonia or nitric acid
M. Boussingault's experimeats clearly show that plants
do not possess the power of taking up by their leaves and of assinilating the free nitrogen of the air. This conclusion has been verified by the extensive researches of Messrs Lawes, Gilbert, and Pugh. The nitrogen contained as nitric acid and ammonia in the air, and descending upon the land in the shapo of rain, dew, or snow, though, without doubt, adding to the supply of nitrogen in the sonl, is altogether insufficient to meet the requirements of remunerative crops. The experiments of Messrs Lawes and Gilbert and Professor Way show that the average proportion of nitrogen deposited annually upon one acre of land at Rothamsted, St Albans, amounts to 7.21 Ht , of which quantity 6.46 Hb occur as ammonia and 75 ib as nitric acill.

The further investigations of Dr Voelcker, Professor Frankland, and Messrs Lawes and Gilbert upon the drainage water from cultivated soils show that a considerable quantity of nitrogen in the shape of nitric acid passes into land drainage, and that this loss of nitrogen is much greater than the total amount supplied to the land by the rain and dew. The results which Messrs Lawes and Gilbert obtained in their experiments on the continuous growth of barley at Rothamsted from 1852 to 1875 afford. as is shown in the following table (I.), direct evidence of the insufficiency of the atmospheric supply of nitrogen, and of that present iu the soil in the form of nitrogenous organic matter.

Table I.-Messis Laves and Gilbsit's Experinents on the Growh of Wheat and Berlcy, your after yecr on the same Land, without Maunre, and with different hinds of Manerc.

| Slanures per dere per Abmun. | Produce per Acre (Average per Annam). |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dresscd Corn. |  |  |  |  |  | Total Stram. |  |  |
|  | Quantity. |  |  | Welght per Bushel. |  |  |  |  |  |
|  | $\begin{aligned} & 12 \text { Years'12 Years! } \\ & 1892-63 . \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 24 \text { Years } \\ & 1852-75 \end{aligned}$ | $\begin{aligned} & 12 \mathrm{Years} \\ & 1852-63 . \end{aligned}$ | $\begin{aligned} & \text { s'12 Yearg' } 24 \text { Years } \\ & 1864-75.1862-70 . \end{aligned}$ |  | 12 Years' 12 Years 24 Year 1652-68.\| 1864-75.| 1852-i5 |  |  |
| 17heat. ${ }^{1}$ |  | bush. | Qush. |  |  |  |  |  |  |
|  |  | 123 |  | $56\}$ | 59 | 573 |  | 93 | 123 |
| 100 lb sulphate of magnesia, and 8 f cwts , of supelphosphate made from 200 ib bece ash, 150 it sulphurle acld of $1 \cdot 7$ specific gravity, and water) ... | \} 183 | 133 | 16\% | 578 | 59 | 88\% | 16\% | 148 | 143 |
| 3. Amanouia salts alone Por $\mathbf{2 8 4 5}$, and each year since; mineral manure in 16 ti (equal parta of sulphate and muriate of ammonia of commerce) | \} 228 | $21 \frac{1}{3}$ | $21{ }_{8}^{1}$ | 551 | 38 | 263 | $\left.{ }^{23}\right\}$ | 18\} | 208 |
| 4. Ammonla salts and minerals. (The same minerals as in No. 2, and 600 to ammonia salts.). | $\}^{38}$ | 37 | 371 | 273 ${ }^{\circ}$ | 601 | 50 | 42 k | 401 | $41 \ddagger$ |
| 5. Farmyard manuio (1t tong ciery fcar)................................................ | 223 | ${ }^{35}$ | $3{ }^{3} \ddagger$ | 591 | $60 \%$ | 60 | 348 | ${ }^{828}$ | 338 |
| Bartey, ${ }^{2}$ |  |  |  |  |  |  |  |  |  |
| 2. Unmanured continuously .......................................... .i.......... |  | 15k | 185 | ${ }^{1 /}$ | $53\}$ | 52] | 12\% | $9{ }^{9}$ | 11 |
| 2. Mincral manure alone ( 200 ib aulphate of potash, 100 Hb sulphate of sedd, ? 100 tb sulpbate of magne日la, and sy cwis. of superphesphatcs)................... | 3 308 | 24 | 258 | 521 | $54 t$ | - 531 | 356 | 103 | 138 |
|  |  | ${ }_{20}^{209}$ | ${ }_{31}^{24}$ |  |  | 53 528 50 | 1193 | ${ }_{15} 104$ | 127 172 |
| 5. Nitrato of soda ( 275 \$ 1 ) ...................................................................... | ${ }^{39 \frac{1}{8}}$ | 321 | ${ }_{36}{ }^{18}$ | ${ }_{51}{ }^{1}$ | ${ }^{\text {5 }}$ 3 ${ }^{\text {P }}$ | 52 56 | ${ }^{\text {23\% }}$ | 189 |  |
|  | \} $47 \frac{1}{8}$ | 44 | $45\}$ | 52 | 858 | 54 | . 293 | $26\}$ | 278 |
| 7. Nitrate of aoda and minerals. (Thc eame ulacrals as in No. 2, and 275 to - niltrate of ada.) | $\} 50{ }^{5}$ | 468 | $48\}$ | 513 | $55 \ddagger$ | 589 | $34 \frac{5}{8}$ | 23 | 314 |
|  | 468 | $50 \%$ | $48\}$ | 581 | 531 | 543 | 271 | 298 | 283 |

The Rotbamsted soil is a moderately stiff one, of considerable depth, and contains naturally the mineral elements of plant food in abundance; thus it has been possible to grow corn crops for over twenty-five years without any manure (Plots 1). The crops in the second period of twelve years were, however, less than those of the first period, and in neither case were full crops obtained. Whisd the application of mingral manures alone (Plots 2) produced only a slight increase in the case of the wheat, and rather better, though poor, results with barley, nitrogenous manures, applied to the land either in the shape of ammonia salts or nitrate of sola, produced a strikingly large incredse. The experiments further show that while good crops, both of wheat and barley, can bo grown by the annual application of 14 tons of farmyard manuro per acre, the best results are obtained by the use of a mixture of mineral and nitrogenous manures.
In Messrs Lawes and Gilbort's experiments the amount of nitrogen romoved in different crops was determined with the following results:-over a period of thirty-two years (to $18 i \overline{0})$, wheat yieldedan average of 20.7 Ib of nitrogen per acro

[^202]per annum without any manure, but the annual yield has decreased from an average of over 25 ib in the first eight to less than 16 tb in the last twelve years, and since 1875 it has bcen still less; nver a period of twenty-four years, barley, when unmanured, yielded an average of 18.3 it nitrogen per acre per annum, but with a decline from 22 If in the first twelve to $14 \cdot 6$ in the last twelve years. Experiments similar to those on wheat and barloy have been made on oats, root crops, leguminous and grass crops, all showing the gradual decline in produce when grown'continuously withont nitrogenous manures, and proving that the soil and not the atmosphere is the chief source of nitrogen in plants. In face of these resnits the "mineral theory" of Liebig,' which attached but small value to nitrogen applied to the soil in the form of nitrogenous manures, and maintained the sufficiency of the ammonia of the atmosphere for supplying the needs of the plant, cannot be accepted without rescrve.

Notwithstanding the great effect produced by the nitrogenous manares, two-thirdz of the nitrogen supplied was unrecovered in the increase of crops when the ammonia salts were supplicd to wheat in autumn. When, however, nitrate of soda was used, which is always applied in the spring, the quantity left unrecovered was not much more than half that supplied.
The following table (IT.), by Messrs Lawes aud Gilbert, shows the amount of nitrogen recovered, and the amount not recovered, in the increase of the crop for 100 supplied in manure, to wheat and to barlcy respectively, tho tesult being in each caso the averago orer a period of twenty years :-

Table II.

| Mananng quantlites per Acre per Annum. | Wheat. |  | Barley. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 20 \text { Years } \\ & 1832-\overline{1} 1 . \end{aligned}$ |  | $\begin{aligned} & 20 \text { Yeals } \\ & 1852-71 . \end{aligned}$ |  |
|  |  | Not recovered in In- crease. | $\begin{gathered} \text { Re. } \\ \text { covered. } \end{gathered}$ | Not recovered. |
| Complex mineral manure and 41 to of nitrogen as ammonia. $\qquad$ | \} 324 | 67.6 | 481 | 81.9 |
| Camplex mineral manure and 53.3 It of nitrogen as ammonia. |  | $\ldots$ | 49.8 | 60.2 |
| Complex mintral manure and 82 th of nitrogen as amionia $\qquad$ | \} 32.3 | 67.1 | ... | ... |
| Complex mineral manure and 123 it of nitrogen as ammonia. | \} 31.5 | 68.5 | ... | ... |
| Complex mineral manure and 164 to of nitrogen as ammonia $\qquad$ | \} 28.5 | 71.5 | ... | ..* |
| Complex mineral manure and 82 ib of nitrogen as nitrate. $\qquad$ | \} 43.3 | 54.7 | ... |  |
| Complex mineral and rape cake ( 61.75 tb of bitrogen) $\qquad$ | \} ... | $\cdots$ | 36.3 | 63.7 |
|  | \{, 11.6 | $85 \cdot 4$ | 107 | 893 |

The question will naturally be raised, What becomes of the one-half or two-thirds of the nitrogen which is not recorered in the increase of the crops? The examination of some seventy samples by Dr Voelcker, and a number of independent determinations by Dr Frankland, of the drainage-water from the experimental wheat plots which yielded the above results throw much light on this loss. The following table (III.) contains a summary of some of the more important results obtained.
Tsble III.-Nitrogen as Nitrates and Nitritcs, per 100,000 parts of Drainage Water from Plots diffcrently Manured, in the Experimental Wheat-field at Rothamsted, Wheat ceery year, eommencing 1844.

| Mean of Dr Vaelcker's and Dr Frankland'a Results. | Expert. ments. | Niltrogen. |
| :---: | :---: | :---: |
| Farmyard manure. | 6 | 1-264 |
| Without manure.. | 11 | 0.353 |
| Complex mineral manure | 11 | 0.428 |
| Do, and 41 th mitrogen as ammunis | 11 | 0.823 |
| Do. and 82 th nitrogen as ammonia | 11 | 1-439 |
| Do. and 123 tb nitroged as ammania | 11 | 1.815 |
| Do. and 82 tb nitrogen as nitrate ... | 10 | $1 \cdot 437$ |

These experiments show how great may be the loss of nitrogen by drainage when ammonia salts or nitrates are liberally applied to the land in autumn, shonld there be much wet weather in winter, or esen when applied in spring if there be much heary rain; also, that the quantity of nitrogen in drainage water as nitrates is increased iu proportion to the amounts of ammonia or nitrate employed on the land. Assuming that from one-quarter to nearly one-half the annual rainfall descends more than 40 inches below the surface, every inch of rain passing through the drains and carrying with it one part of nitrogen in 100,000 of water, there will be a loss of $2 \frac{1}{2}$ th of nitrogen per acre from the manure. Dr Voelcker's analysis of the drainage water of a wheat field manured in autumn by ammonia salts supplying 82 开 of nitrogen per acre shors that for every inch of rain passing through the drains in January a loss took place of about $8 \frac{1}{2}$ 乍 of nitrogen, costing about 1s. per ibs as manure. The loss of nitrogen thus is very large, and shors that by far the largest proportion of the nitrogen of manure which is not recovered in the crop is lost in drainage. In addition to the nitrogen removed in the crop and to that lost in drainage, some small proportion is found by analysis to be retained in the soil itself. The nitrogen may be of advantage to crops grown subsequently, according to the source from which it was derived; for while ammonia salts and nitrates yield but very small residues, and exert little or no effect beyond the first year, from bones, cake, and other such materials we get large residues of nitrogen in the soil, which iell markedly on future crops. The experiments on drainage water have further shown the
absorbent power of soils, and that manuring matters when in contact with soils undergo remarkable changes, being taken up by plants, not in the simple state in which they are applied, but in quite different kinds of combination. Professor Way has the merit of haviug first proved that all soils possess, in different degrees, the power of absorbing ammonia from its solution in water, and that in passing solutions of salts of ammonia through soils the ammonia alone is absorbed, and the acids of the ammonia salts pass through in combination, generally with lime, or, if lime be deficient, with magnesia or other mineral bases of the soil.

In the drainage investigations at Rothamsted, it was found that, although large quantities of ammonia salts wera applied to some of the plots, the drainage water from them contaiued mere traces of ammonia, but at all times of the year nitrates were present in quautity; from this it rould appear that it is chicfly, if not solely, from nitrates that crops build up their nitrogenous organic constituents. Before leaving the subject of drainage water it is worthy of note here that phosphoric acid and potash, the most valuable mineral fertilizing constituents of the manures, passed but little into the drainage water, but were retained almost entirely in the land, while the more abundaut and less important mineral matters, such as lime, magnesia, soda, chlorine, sulphuric acid, and soluble silica, passed in large quantities into the drainage water. It followa from these investigations, first, that much more nitrogenous material must be applied to the land than would be needed to produce a given increase iu the crop, supposing all the atrogen to be recoverable; and secondly, that nitrogenous organic matters when applied to the laud undergo decomposition, and are gradually resolved into ammonia compounds, which, after being retained a short time by the soil, are finally oxidized into nitrates, in which form they are most available and beneficial to plants, but are not absorbed by the soil, and are readily washed out by rain. Nitrogen has great forcing properties, and is most beneficial when applied to crops in their early stages. Grass land on which nitrate of soda has been put as a top dressing shows very rapidly and markedly the effects of the manure.

Nitrate of soda, unless applied just at the time the crop is ready to take it up, will be largely wasted in drainage ; bence it is usual to apply nitrate of soda as a top dressing in spring. Ammoniacal manures, such as Peruvian guano, soot, sulphate of ammonia, \&c., when used for winter wheat, are best applied in autumn, either before the wheat is sown or when it is fairly above ground. On light land they are often used as top dressings for wheat early in spring. The gradual decomposition of farmyard manures gives a more constant supply of nitrogen than the manures already noticed, and as the fermentation of dung proceeds but slowly it is best to apply it, When quite fresh, in autumn or winter, allowing it to decompose in the land and to yield nitrogen as nitrates when required in spring by the fresh growth of regetation. In the case of Ditrogenous organic materials, such as wool or hair refuse, which take even longer than farmyard manure to decompose, it is necessary to apply them some three or four months before the seed is somn.
2. Phosphoric Acid.-Next in value to nitrogen as a constituent of manures comes phosphoric acid. Of all the mineral or ash constituents of plants, this is the most important, for the simple reason that it occurs in most soils in comparatively small proportions, and is required alike by corn and forage crops in larger quantities than lime, magnesia, aud other mineral matters, which occur in most soils in almost inexhaustible quantities, or which, if deficient, can be easily and cheaply incorporated with the land.

Phosphoric acid occurs in soils principally in combination with lime as phosphate of lime, a constituent which enters
iargely iuto the composition of recent and zossil bones, coprolites, and guano, and of a variety of phosphatic minerals, such as Norwegian and Canadian apatite, Sombrero and Curaçoa rock phosphate, South Carolina phosphate, Spanish and Portuguese phosphorite, de. These and other phosphatic materials are now used largely in the manufacture of superphosphate and other artificial manures.
Phosphate of lime is so sparingly soluble in pure water that, for all practical purposes, it may be cousidered to be insoluble in water; it is, however, attacked by the natural agencies at work in the soil, and rendered available as plant food. According to the more or less porous condition of the phosphatic manuring materials, phosphate of lime is seudered more or less readily assimilable. Thus, while bone dust and guano, on account of their porous condition, may be uscd with good effect as suppliers of phosphoric acid to the soil, others, sach as hard and crystalline Canadian or Norwegian apatite, produce but little or no result when used as manures merely in a powdered state. It was in 1840 that Liebig suggested the treatment of bones with sulphuric acid in order to make their action more rapid. This treatment of bones by acid converts the phosphate of lime into a soluble lime 8alt called superphosphate, or, speaking chemically, transforms the original tribasic phosphate of lime into the monocalcic phosphate, sulphate of lime being at the same time produced. Following on this, Mr (now Sir) John Lawes treatea mineral phosplptes similarly with sulphuric acid, and with results which led to the establishment of a new industry, the manufacture of superphosphate and other artifcial manures. The yearly importation of phosphatic mincrals, dcc., into England for this manufacture alone exceeds 500,000 tons.

The acid or soluble phosphate of lime in superphosphate, when applied to the soil, is first dissolved by the rain, and equally distributed in a portion of the aoil, in which it must be precipitated and rendered insoluble before it can be assimilated by the plant. It is this intimate distribution and subsequent precipitation in a must finely divided statc that would seem to constitute the beneficial effects of auperphosphate, and its superiority over undissolved phosphates. It supplies at once phosphoric acid, lime, and sulphuric acid to the acill, and is much used in conjunction with nitrogenous materials. Superphosphates are manufactured of various strengths, the percentage of tribasic phosphate of lime, rendered soluble by acid, being taken as the basis of valuation.
3. Potash-The next to rank after phosphoric acid as a valuable constituent of manures is potash. It enters largely into the composition of all crops, especially root crops. Sandy soils, as a rule, aro poor in potash, for which reason they are benefited to a greater extent by the application of potash salts than most clay soils, which contain sufficient potash to mect the requirements of farm crops. In clay soils potash mainly occurs in the form of iasoluble silicato of potash together with other silicates. By nutumn cultivation, subsoiling, and similar means of facilitating the free access of the air to clay-land potash is gradually liberated from the insoluble silicates and is rendered available as plant food. Lime also seems to be on important agent in the liberation of potash. Potash also occurs in farmyard manuro, urinc, all excrements in oil cakes, and largely in wood ashos.
$\therefore$ Iost potash salis are very soluble in water ; this explains their greater abundanco in the liquid than the solid excrements of animals. On this nccount it is a matter of impurtance, in making farmyard manure, to prescrve the urine, aud not lose the bencfit of the potash salts it contains. On most soils in a good agricultural condition
the addition of potash manures produces little or no effect, but on poor sandy soils or worn-out pasture land the uso of potash salts, in conjunction with superphosphate, dissolved bones, and guano, is followed by most beneficial results. Potash salts as an addition to manurea for potatoes have been found advantageous, while their effect on pasture seems to be to improve the quality of tho herbage rather than to increase the yield of grass per acre.
4. Soda. - Most soils contain in abuadance all the soud that farm crops require. With the exception of chloride of sodiun (common salt), whicls occasioually is applied with more or less benefit to light sandy soila, and of nitrate of soda, which is employed as a nitrogenous manure, soda salts are not used for manuring purposes.
5. Lime - Lime is essential for the production of healthy cropa. Experience has shown that, when a soil is deficient in lime, farmyard manure, Peruvian guano, and other manurea, though used in abuadaace, produce comparatively but little effcct. Again, on poor sandy soils, lime, marl, or chalk not uofrequently produces better crops than farmyard or expensive artificial manures. Lime not only supplies an essential constitaent of plants, but also prevents the losa hy draioage of fertilizing matters such as potash, ammoaia, and phosphoric acid. One of the functiona of time in the soil is to coinhine with the acids of the potash and ammoniacal salta of guano and of farmyard and other manures, and to liberate potash and ammonia, which aro retained in the land, while the inexpensive lime salts pass into the land drainage.

Lime is used in agriculture in the form of quicklime, chalk (carbonate of lime), gypsum (sulphate of lime), marl, and shellsand. For liming purposes gas-lime also is frequently ennployed, and, if well exposed to the air before beiog put on the land, nay be used with safety and advantage.
6. Magnesia. - Magnesia is of but slight importance in manurea; it occurs with potash in kainite and other potash salts, and the aulphate is sometimes used in making up artificial manures, but apparently without beoefit.
7. Silica. -Silica is a constituent of the ashes of all plants, and occurs apecially in large proportion in the straw of cereal cropa, All aaila contain such an abundance of silica that no necessity exista of supplying it artificially.
8. Chlorine, Sulphuric Acid, and Oxide of Iron. -These ash constituents are of little practical importance, ionswuch as most aoils contain a sufficiency of them to meet the requirementa of tho cropa usually cultivated on the farm. It may be ohserved, however, that chlorine has been found to be essential to plant life, and that iron is neccssary for imparting to planta their green colour.
9. Organic Matler or Humus. - The importance of organic miatter in manures was formerly much exaggerated. It has been conclusively proved that the carbon of which the bulk of the dry substance of all agricultural produce consists is derived from tho carbonic acid of the atmosphere, and not from humns of the soil or the -non-nitrogenous organic matters supplied in the manure. The organic matters present in dung in the shape of mors or less decomposed or rotten straw exert a beneficial effect by improving the physical condition of both light and heavy land.

Farmyard Manure.-Farmyard manure is composed of the urine and solid excrements of animals callected in the stalls or yards, together with the straw used as litter. Its


1 Contalntng 297 of nirogen, equal $10 \cdot 30$ of ammonia.
Contalnligg sou of mitrogen, equal to 375 of ammonia. comalutug ammoala in frco stato, 016; in form of sults, 0.57.
composition raries greatly, according to the quantity of straw used as an absorbent, the nature of the animals, the food they have consumed to produce it, the length of time and way in which it has been kept, \&c. The analysis by Dr Voelcker of well-made farmyard manure from horses, corrs, and pigs, given in Table IY., p. 509, will show its approximate composition.

This analysis shows that farmyard manure contains all the constituents, without exception, which are required by cultirated crops to bring them to perfection, and hence it may be called a perfect manure. Dung, it will be observed, contains a great variety of organic and inorganic compounds of various degrees of solubility, and this complexity of composition-difficult, if not impossible, to imitate by art -is one of the reasons which render farmyard manure a perfect as well as a universal manure.

The excrements of different kinds of animals vary in composition, and those of the same animal will vary according to the nature and quantity of the food given, the age of the animal, and the way it is gencrally treated. Thus a young animal which is growing needs food to produce bone and muscle, and voids poorer dung than one which is fully grown and only has to keep up its condition. The solid and liquid excrements differ much in composition, for, while the former contains a good deal of phospheric acid, lime, magnesia, and silica, and comparatively little nitrogen, the urine is almost destitute of phosphoric acid, and abounds in alkaline salts and nitrogenous organic matters, which on decomposition yield ammonia. Unless, therefore, the two kinds of excrements are mixed, a perfect manure supplying all the needs of the plant is not obtained; care must accordingly be taken to absorb all the urine by the litter. Farmyard manure, it is well known, is much affected by the length of time and the way in which it has been kept. - Fresh dung is soluble in water only to a limited extent, and in consequence it acts more slowly on vegetation, and the action lasts longer than when dung is used which has been kept some time; fresh dung is therefore goncrally used in autumn or winter, and thoroughly rotten dung in apring, when an immediate forcing effect is required.
Tho changes which farmyard manure undergoes on keeping are illustrated by the following table of analyses, by Professor Wolff of Hohenheim in Würtemberg, of farmyard manure in its different stages of decompostion:-
Table V.-Average Perccntage Composition of Farnyard Manure.

|  | Fresh. | Moderately Rotten. | Thoroughly Rotten. |
| :---: | :---: | :---: | :---: |
| Water ........................................ | 71.0 | 750 | 79.0 |
| Organic matters.................................... | 24.6 | 19.2 | 14.5 |
| Ash . ................................................. | $4 \cdot 4$ | $5 \cdot 8$ | $6 \cdot 5$ |
|  | $100^{\circ} 0$ | 100.0 | $100 \cdot 0$ |
| Potash ......................................... | . 52 | -63 | -50 |
| Soda ............................................. | $\cdot 15$ | -19 | .13 |
| Lime ............................................... | - 57 | .78 | -18 |
| Magnesia...................................... | -14 | -18 | $\cdot 18$ |
| Phosphoric acid ................................ | $\cdot 12$ | -16 | -13 |
| Chlorine $\qquad$ | -15 | -19 | -16 |
| Sillca ........................................... | 1-25 | $1 \cdot 68$ | 1-3 |
| Nitrogen......................................... | $\cdot 45$ | - 00 | . 58 |

These figures represent the composition of farmyard manure of rather poor quality. Well-mado good dung, produced by fattening cattle fed upon a fair allowance of cake, roots, hay, and straw, on an average may be said to contain-

$$
\begin{aligned}
& \text { Potash ...................................... } 50 \text { per cent, ? } \\
& \text { Phosphoric acid .......................... } 53 \text { " } \\
& \text { Nitrogen ................................ } 64 \text {, }
\end{aligned}
$$

Forty tons of dung, according to this eatimate, contain in round numbers 448 Hb potash, 475 of phosphoric acid, and 573 of nitrogen.

During the fermentation of dung a large propertion of the non-nitrogenous organic matters disappears in the form of carbonic acid and water, while another portion is converted into humic acids whi h effectually fix the ammonia gradually produced from the nitrogenous constituents of the solid and liquid excrements. The mineral matters remain behind entirely in the rotten dung, if care be takep to prevent loss by drainage.

Well-fernuented dung, it will be noticed from the preceding table, is more concentrated and consequently more efficacious than fresh farmyard manure. Neither fresh nor rotten dung contains any appreciable quantity of volatile ammonia, and hence there is no necessity for applying gypsum, dilute acid, green vitripl, or other substances recommended as fixers of ammoria. If dung is carted out into the field and spread out at once it mas be left for weeks together before it is ploughed in without the slightest risk of sustaining loss in fertilizing matter by evaporation, for dung does not lose ammonia by evaporation on exposnre to the air, and any mineral soluble salts will be washed into the soil where they are wanted. If, however, dung is kept for a length of time in shallow heaps, or in open straw-yards and exposed to rain, it loses by drainage a considerable proportion of its most valuable soluble fertilizing constituents.

With a vicw to ascertaining the loss in fertilizing substances which farmyard manure surtains when it is kept for a long time exposed in open yards to the deteriorating influences of rain, Dr Voelcker spread a weighed quantity of fresh dung of known composition in an open yard, anc after a period of twelve mouths again weighed the dung and submitted it to analysís, when the results ahown in Table VI. were obtained :--

Table VI.-Showing the Loss which Dung sustains by Drainayc


These tabulated results showed that the manure lost 69.8 per cent. of its fertilizing matters; or, in round numbers, two-thirds of the dung was wasted and only onethird left behind. Thus, after twelve months' exposure to the weather, nearly all the soluble nitrogen and 78.2 per cent. of the soluble miaeral matters were lost by drainage. To prevent this loss, farmyard manure, as had been already pointed out, should, when possible, be carted into the field, spread out at once, and ploughed in at the convenience of the farmer. It is, however, not always practicab!e so apply farmyard manure just at the time it is made, aïa, as the manure heap cannot be altcgether dispensed vith. it is necessary to see how the manure may best be kept. For proper decomposition both air and moisture are requisite, while extreme dryness or too much water will'arrest it. Farmyard manure is either prepared in dung-pits, whith
nre pat in a separate place, or is accumulated under the animal in the feeding-boxes; of the two plans the latter is the better, the urine being more thoroughly absorbed, and, owing to the box manure being moro compact through constant treading on it, air entera less freely and the decomposition goes on less rapidly, the volatile matters in consequence not being so readily lost. External agents, such as rain, wind, aun, de., do not affect it as they would in the case of dung-pits. If farmyard manure must be stored in heaps, care should be taken to have the bottom and sides of the pit impermeable to water, and the bottom slightly inclined to allow any liquid manuro which collects to run off into a tank below, from which, by means of a pump, it may be again poured over the 'eap. A concrete bottom for the pit is best, or, failing that, one of thick clay or well-beaten earth. The manure heap should be kept as compact as possible, and always moist. The adrantage of farnyard manure lies, not only in its supplying all the constituents of plant food, but also in the improved physical condition of the soil through its application, as the land is kept porous, and air is allowed free access. While, however, farmyard manure has these advantages, exporieuce has shown that artificial manures, properly selected to meet the requirements of the crops intended to be grown, due regard being had to the chemical composition of the soil, may be employed to greater advantage. In farmyard manure about tro-thirds of the weight is water and onethird dry matter; a large bulk thus contains only a small proportion of fertilizing snbstances, and expense is incurred for carriage of much useless matter wheu dung has to be carted to distant fields. When a plentiful supply of good farmyard manure can be produced on the farm or bonght at a moderate price in the immediate neighbourhood, it is economy to use it either alone or in conjunctiou with artuficial manures; but when food is dear and fattening does not pay, or farmyard manure is expensive to buy, it will be found more economical to use artificial maures.

Manures from Feeding Stuffs.-The investigations of Messra Lawes, Gilbert, and Mure have ohown that, in estimating the value of animal manure, 90 per cent. of the nitrogen of the food may be reckoned to be recovered in the case of feeding cakes, pulse, and other highly nitrogenous feeding stuffs ; 85 per cent. in the case of foods comparatively poor in nitrogen, such as cereals and roots ; and less than 65 per cent. in the case of bulky feeding stuffs, such as hay and straw. As a source of manure, the value of fattening foods is greater the more nitrogen they contain. Practically speaking, the whole of the mineral constituents and about nine-tenths of the nitrogen of the food are recovered in the dung and urine. For the same weight of dry substance consumed, oxen void more manure than sheep, and sheep more than pigs. The composition of the different foods given to fattening animals being well known, it is easy to calculate the amounts of nitrogen, phosphoric acid, and potash of the food which will be recovered in the manure. Each constituent having its market value as a manuring constituent, the money value of the manure obtained from the ccasumption of a tou of any ordinary Lood of which the composition is known can be detcrmined. Assuming ammonia to bo worth 8d. per 1b, potash 2d. per 1 b , and phosphate of lime 1 d . per Ib , the nioney value of the manure produced by the consumption of a ton of various fonds is given by Mr Lawes in the following table (VII.), which also shows the gencral composition of the uificrent foods as far as their manurial value is concerned.

In these estimutes it is presumed that the manure can be put on the lend without less, but in practice some loss is unavoidable; it may be but slight, as, for instance, when sheep are fed on the land, or when the manure is made in feeding-boxcs, but it will be considerable when the food
has been consumed in open yarda in a very rainy season, Allowances must thus be made for the circumstances under which the manure was produced.
Tanle VII. - Composilion of Ordindry Fecding Stuffs in 1000 parls, and their Manuring Value per Ton.

|  | $\begin{gathered} \text { Dry } \\ \text { Matter. } \end{gathered}$ | Nitro. gen. | Potash. | Phosphorle Acld. | Mogoy rslae of the Dunure from One Ton of each Food. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Cotton seed cako (decortleated) | $\} 900$ | 60.0 | 310 | 81.2 | $\begin{array}{lll} f_{0} & 5 & d \\ 6 & 10 & 0 \end{array}$ |
| 2. Rape cake.................... | 000 | 48.0 | 13.2 | 24.6 | 4186 |
| 3. Linseed caks ................ | 885 | $4{ }^{\circ} 0$ | 14.7 | 19.6 | 412 |
| 4. Cotton cake (undecortt. cated) $\qquad$ | $\} 885$ | 37.0 | $20 \cdot 1$ | 22:4 | 3186 |
| 5. Linseed ....................... | 903 | 36.0 | $12 \cdot 3$ | $15 \cdot 4$ | 3130 |
| 6. Palm-kernel meal (Eng. lish | $\} 930$ | 250 | $5 \cdot 5$ | $12 \cdot 2$ | 2100 |
| 7. Peaş.............................. | 860 | 360 | 9.8 | 8.5 | 826 |
| 8. Beans.......................... | 8.50 | $40 \cdot 0$ | 12.0 | 11.6 | 3140 |
| 9. Lentlis ......................... | 880 | 430 | $9 \cdot 6$ | 8.9 | 3170 |
| 10. Mait dust. | 905 | $35^{\circ} 6$ | 10.5 | 172 | 450 |
| 11. Bran ........................... | 865 | 250 | 148 | 3 C 1 | 2180 |
| 12. Onts ........................... | 860 | 20.0 | 45 | 62 | 1150 |
| 13. Wheat .................. ...... | 850 | 180 | 5.4 | $8 \cdot 0$ | 1130 |
| 14. Briley ....................... | 840 | 16.5 | 4.9 | 73 | 1100 |
| 15. Maize........................... | 850 | 160 | 8.6 | 6.1 | 1110 |
| 16. Locust beans ...............ers | 850 | 12.5 | $3 \cdot 5$ | $5 \cdot 8$ | 126 |
| 17. Tares .......................... | 840 | 4200 | 66 | 16.3 | 3136 |
| 18. Coarse pollard............... | 860 | 25.8 | 14.9 | 34.2 | 2180 |
| 19. Fine pollard .................. | 860 | 26.0 | $14 \cdot 6$ | $30 \cdot 3$ | 2170 |
| 20. Malt ........................... | 950 | 170 | $6 \cdot 5$ | $7 \cdot 3$ | 1116 |
| 21. Clorer hay ................... | 840 | 23.0 | 19.5 | $5 \cdot 6$ | 250 |
| 22. Headow hay ................. | 810 | 14.0 | 16.8 | $3 \cdot 9$ | 1106 |
| 23. Bean atraw .................. | $8: 5$ | 10.0 | $11 \cdot 1$ | $4 \cdot 1$ | 106 |
| 24. Wheat straw ................. | 810 | 4.0 | $5 \cdot 8$ | $2 \cdot 6$ | 0126 |
| 25. Barley straw ................. | 850 | $5 \cdot 0$ | 9.7 | 2.0 | 0109 |
| 26. Oat straw ..................... | 830 | 50 | $10 \cdot 4$ | $2 \cdot 5$ | 0136 |
| 27. Pea atraw ..................... | 810 | $0 \cdot 3$ | 8.9 | $3 \cdot 8$ | 0189 |
| 29. Potatoes ...................... | 250 | 3.5 | $5 \cdot 6$ | 1.8 | 0.70 |
| 29. Mangolds ..................... | 115 | 0.0 | 3.9 | 7 | $0^{\prime} 43$ |
| 30. Swedes ....................... | 107 | $2 \cdot 3$ | $2 \cdot 0$ | - 6 | 043 |
| 31. Carrots ....................... | 142 | 20 | 32 | 10 | 040 |
| 32. Turnips ........................ | 82 | 1.9 | 2.9 | - 6 | 0 |
| 33. Parssips ....................... | 150 | 2.2 | 3.6 | 17 | $0 \quad 56$ |

Artificial Manures.-By some a distinction has been Irawn between those manures which, like superphosphate, dissolved bones, \&c., are manufactured in chemical works and those waich are produced naturally, such as guano, nitrate of soda, \&c. However, the term artificial manure is generally applied to all manures, natural or manufactured, which are not prodnced on the farm, as distinguished from farmyard manure and manure from purchased foods, which are essentially farm products. The value of all manures mainly depends on their chemical composition

As compared with farmyard manure, artificial manures have the disadventage that they, unlike it, do not improve the physical condition of the soil. 'Artificial manures have, on the other hand, the advantage over farmyard manure that they can supply in a small compass, and even if used in small quanity, ihe necded nitrogen, phosphoric acid, and potash, \&c., which crops require, and which farmyard manure has but in small proportion; they present the expensive fertilizing matters in a concentrated form, and by their application save expense in labour and carriage.

The following are the principal a:tificial maunres in use:-

1. Nitrogenous Manures.-Pcruvion Guano.-This is a natural mamure, valuable on accommt of tho ammonia, phosphoric acid, and potask it contains. It is the excrement, \&c., of sea birds accumulated in parts where no rain falls. The earlicst deposits found contained as much as 14 to 17 per ecnt. of ammonia, c.g., Chinchas Island guano; those now (1882) imported seldom exceed 8 per cent., and generally vary from 4 to 8 per ceist., of ammonia. In using guano it ghould be mixed with earth, \&c., to prevent injury to the seeds or jlants. Pernvian guano is also treatec with sulphuric acid, which renders tho phosphates solublo and fixes tho ammonia, thereby preventing any loss of it ; this constitutes dissolved guano, and is frequently oold upor a guaranter of 20 per cent of soluble phosphates, 4 per cent. oi ipsolublo phosphates, and 9 per cent. of ammonia. Feruvian guano is used as a top dressing for wheat and barley ; in addition to insolublo phosphates, it contains soluble phosphates of the alkalies.

Ammonia Salls.-The principal one is sulphate of amm nia, lsrgely produced in gas works by deutralizing gas liquor rith sulphuric acid; it is usually sold on a basis of 24 to 25 per celt of ammonia

Soot is raluable os secount of the sulphste of ammouia it contains; the percentage of ammonia varies from $1 \frac{1}{4}$ to 4.

Nilnate of soda is a nstural deposit; it is greatly uscd as a top dressing for whent and barley. It usually contains common ialt, and when purified is sold ou a basis of 95 per cent. of pure nitrato.

Organic Aitrogenous Subsiances.-Wool, heir, fish, flesh, horn, blood, rape cake, damaged cotton cake and other oil cakes. Wool refuse (shoddy), according to its quality, contains from 4 to 8 per cent. of vitrogen, flesh 14 to 10 per cent., blood (dried) 13 to 15 per cent., rape cake 4 to 5 per cent., linseed cake about 4 per cent., cotton cake (undecorticated) дesrly 4 per cont., and cotton cake (decorticated) orer 6 per cent. of nitrogon.
2. Phosphatic Manures. - (a) The following phosphatic minersls are used for the manufscture of superphosphate of various atrengths, and of compound manures:-coprolites (Cambridge, Suffolk, and Bedfordshire), containing 50 to 55 per cent. of phosphate of lime; phosphorite (Spanish and Portuguese); apatite (Norwegian and Canadian), containing often as much as 80 per cent. phosphato of line ; South Carolina (land and river) phosphate, 52 to 56 percent. phosphate of lime ; French phosplate ; Sonibrero phosphato, 70 per cent. phosphate of lime; Curaçoa phosphate, 80 per ceat. phosphate of lime; Narassa phosphate; Arubs phosphate, \&c.
(b) Boncs. - Raw boues, as $\frac{1}{3}$ inch and $\frac{1}{2}$ inch bones; bonomeal; bone dust, laring about 48 per cent. phosphaste of lime and $4 \frac{1}{2}$ per cent. of ammonir; boiled bones, with 00 per cent. phosphate of lime and about 1.8 per cent. of ammonis; dissolved bones; bone ash, with 70 per cent. phosphate of lime; animal charcoal, with 70 to 80 per cent. phosphate of lime.
(c) Fhosphatic Guanos.-Lacepede Island guano; Mexillones guano; Malden lsland. gueno; Fanning Island guano; and many others varying in composition from 60 to $90^{\circ}$ per cent. phosphate of lime.
3. Saline Materials. -Potash salts (cbloride and sulphate); kainite, with 20 to 25 per cent. sulphate of potash, and also onlphate of magnesia sud common salt ; wood ashes. with sbout 10 per ceat. of potash; comraon salt.
4. Culcarcous Manures. -Lime, chelk, marl, gypeam, shell said, gas lime, coal ashes, road sórapings, \&c.
5. Carbonaceous Manurcs.-Sardust, pest, ses-weod, regotablo tefuse, \&c.
6. Special and Compound. Manures -The basis of these is saper. phosphate, which is mixed with otber manuring materials to meet the special requirements of particular crops and soils.
The foregoing remarks made on the spplication of manures to different kinds of crops may now in conclusion be summed np. Farmyard manure, in order to be most beneficial, ahould be applied as quickly as possible efter it is made, the best time being in antumn or early winter. Nitrate of soda abould be applied as a top dressing early in spring; its effect will be been in the first season anly. Ammonia alts, guano, dung, \&c., are best applied to heary land in autumn or winter, either before the seed is sown, or after the plant is fairly above ground, but in the case of light land early in epring. The effect of bones in the varieus ferm of dissolved bones, bone dust, raw bones, \&c., will last two or more seasons accerding to the quantities nseI_ and their respective solnbility. Lastly, it may be observea thate the presence of lime is essential to the economical ure of manures.
As regards ceresl crops, it has been found that mineral manures alone, whether simple or comples, do not produce appreciable increase of crop, but that vitregeneus manures, whether as ammonia salts, nitrate of soda, or farmyard manure, greatly benefit the crop; that nitrate of soda does rather better than ammonia salts; and that, while on fairly heary land fartayard manure will yield good crops, the best results are obtained by using mineral and nitrogenous manures together. On clay soils a top dressing of nitrate of soda often answers all practical purposes, but on light soils nitrate of aoda or amnionia salts ahould not be used without mineral manures, while it is advisable even on heary land to use superphiesphate as well.

For root crops, on cold clays nothing answers so well as mineral superpbosphate alone, but on light land dissolved bones, bone dust yrecipitated phosphate, or a compound
artificial manure will be found to be much preferable to superphosphate. Bone meal mixed with mineral auper phosphate makes, for instance, a good manure for roots; for mangolds Peruvian guano and common salt in addition are useful, and for potatoes potash salta with phosphatic and nitrogenoua manures.

For pasture land the uso of artificial manures is, as a rule, not economical; nitrogenous manures raise the quantity, and phosphatic and potash manures improve the quality of. the herbage, while, for wom-eut pastures, potash with dissolved bones or superphosphate or superphosphate and guano will do much good. The minst economical way of manuring pasture land is to apply farnyard manure liberally, or feed it off with cattle, giving cutton cake in addition.

The employment of artificial manures in a judicious manner has shown the occapier of land that it is nut neccssary for lim to be bound down to auy system of rotation of crops which may be practised in his particular district, but that he has the means of pursuing the course of cropping, oystem of manuring, and general management of his farm which will yield him the best returns. No more striking iustance of this could be put forward than the cxperience of Mr Prout, who at Sawbridgewerth, Herta, has grown with much success cereal crops, year aftgr year, on heary clay land, selling the whele of the growing creps, and restoring the fertility of the soil by artificial mannres. The land was purchased in 1861, and up to tho present tima (1882) the crops have been as good as evor, and the land has not been deteriorated, but on the other hand improved, by coxitinuous corn growing. The experiments of Messra Lawes and Gilbert at Rothamsted aud of Dr Voelcker at Woburn have been thus verified on a large scale in the experience of Mr Prout, and have shown beyond all posaibility of doubt the efficacy and ecouomy of a liberal use of artificial manures
(A. v.)'

MANUSCRIPTS, Ancient. See Diplomatics and Paleograpiy.
ManU'TIUS. I Ardus Mavotius (1450-1515). Teobaldo Mannucci, better known as Alde Manuzio, the founder of the Aldine press, was born in 1450 at Sermoneta in the Papal States He received a scholar's training, atndying Latin at Rome under Gasparino da Verena, and Greek at Ferrara underGnarino da Verona. Having qualifed bimself for the career of a humanist, according to the custom of the century, be went in 1482 to reside at Mirandola with his old friend and fellow-student, the illustrious Giovanni Pice. There he stayed two yeare, prosecuting his atudies in Greek literature. Before Pice removed.te Flerence, he procured for Aldo the pest of tuter to his nephews Alberto and Lionello Pio, princes of Carpi. To Alberto Pio the werld owes a debt of gratitude, inasmuch as he supplied Aldo with funds for startiog his printing press, and gave him lands at Carpi. It was Aldo's ambition to secure the literature of Greece from further accident by committiog its chief masterpieces to type ; and the histery of his life is the record of the execution of this gigautic task Befure his time four Italian towns had won the heneurs of Greei publications:-Milan, with the grammar of Lascaris, Æsop $_{2}$ Theocritus, a Greek Psalter, and Isocrates, between 1476 and 1493; Venice, with the Erotemata of Chrysoleras in 1484; Vicenza, with reprints of Lascaris's grammar and the Erotemata, in 1488 and 1490; Florence, with Alopa's Homer, in 1488. Of these works, only three, the Milanese Theocritus and Isocrates and the Florentine Homer, were classics. Aldo selected Venice as the most appropriate atation fer his labours. He settled there in 1490, and seen afterwards gave to the world editions of the Hero and Leander of Museus, the Galeomyomachia, and the Greek Psalter. These have no date; but they are the earliest
tracts issued from his press, and are called by him "Precursors of the Greek Library."

At Venice Aldo gathered an army of Greek scholars and compositors around him. His trsdo was carried on by Greeks, and Greek was the language of his bousehold. Instructions to type-sotters and binders wero given in Greck. The prefaces to his editions were written in Cireok. Greeks from Crete collated IISS., read proofs, and gave modols of calligraphy for casts of Grcek type. Not countiog the craftsmen cmployed in merely manual labour, Aldo entertained as many as thirty of these Greek assistants in his family. His own industry and cnergy were unremitting. In 1495 he issued the first volume of his Aristotle. Four more volumes completed the work in 1497-98: Nine comedics of Aristophanes appeared in I498. Thucydides, Sophocles, and Herodotus fullowed in 1502; Xenophon's Hellenics and Euripides in 1503 ; Demosthenes in 1504. The troubles of Italy, which pressed heavily on Vcuice at this epoch, suspended Aldo's Jabours fur a while. But in 1508 he resumed his series with an edition of the minor Greek orators ; and in 1509 appeared the lesser works of Plutarch. Then came another stoppage. The league of Cambray had driven Venice back to ${ }^{\circ}$ her lagoons, and all the furces of the republic were concentrated on a struggle to the death with the allied powers of Europe. In 1513 Aldo reappeared with Plato, which he dedicated to Leo X . in a preface eloquently and earnestly comparing the miseries of warfare and the woes of Italy with the eublime and tranquil objects of the student's life. Pindar, Hesychius, and Athenxus followed in 1514.

These complete the list of Aldo's prime services to Greek liferature. But it may be well in this place to observe that his successors continued his work by giving Pausanias, Strabo, Aschylus, Galen, Hippocrates, and Longinus to the world in first editions. Omission has been made of Aldo's reprints, in order that the sttention of the reader might be concentrated on his labours in editing Greek classics from MSS. - Other presses were at work in Italy; and, as the classics issued from Florence, Rome, or Milan, Aldu took them up, bistowing in each case fresh industry upon the collation of codices and the correction of texts. Nor was the Aldino press idle in regard to Latin and Italian classics. The Asolani of Bembo, the collected writiugs of Puliziano, the Mypmerotamachia Poliphili, Dante's Divine Comedy, Petrarcl's poems, a collection of early Latin poets of the Christian era, the letters of the younger Pliny, the poems of Pontanus, Sannazzaro's Arcadia, Quintilian, Valerius Maximus, and the Adagia of Erasmus were printed, citber iu first cditions, or with a beauty of typo and paper never reached before, between tho years 1495 and 1514. For theso Italian and Latin editions Aldo had the elegant typo struck which bears his name. It is said to have been copied from Petrarch's handwriting, and was cast under the direction of Francesco da Bologna, who has been identified by Panizzi with Francia the painter.

Aldo's enthusiasm for Greek literature was not confined to the printing-room. Ho burned with a humanist's sthusiasm for the books he printed; and we may well pause astonished at his industry, when we remember what a task it was in that age to preparo texts of authors in numerous and so voluminous from MSS. Whatever the students of this century may think of Aldo's scholarship, they must allow that only vast erudition and thorough familiarity with the Greek language could have enabled lim to accomplish what lo did. In his own days Aldo's learning won the bearty acknowledgment of ripe scholars. To his fellow workers ho was unformly generous, freo from jealousy, and prodigal of praiso. His stores of MSS. were as open to the learned as his printed books wero liberal given to the public. While aiming at that
excellence of typograply which reuders his editions the treasures of the bool-collector, he strove st the same time to make them cheap. We may perhaps roughly estimate the current price of his pocket series of Greek, Latin, and - Italian classics, begun in 1501 , at 2s. per volume of our present money. The five volumes of the Aristotle cost about $£ 8$. His great uncertaking was carried on under coutinual difficulties, arising from strikes among his workmen, tho piracies of rivals, and the interruptions of war. When he died, bequeathing Greek literature as an inalienablo possession to the world, he was a poor man. In order to promote Greck studies, Aldo founded an academy of Hellenists in I500 under the title of the New Academy. Its rules were written in Greek. Its members were obliged to speak Greek. Their names wero Hellenized, and their official titles wero Greok. Tho biographies of all the famous men who were enrolled in this academy must be sought in the pages of Didot's Alde Manuce. It is enough here to mention that they included Erasmus and the English Linacre.

In 1499 Aldo marricd Maria, daughter of Andrea Torresano of Asola. Andrea had already bought the press established. by Nicholas Jenson at Venice. Therefore Aldo's marriage combined tro important publishing firms. Hencefurth the names Alius and Asolanus were nssociated on the titlo pages of the Aldine publications; and after Aldo's death in 1515, Andrea and his two sons carried on the business during the minority of Aldo's children. The device of the dolphin and the anchor, and the motto jestina lente, which indicated guickness combined with firmness in the execution of a great scheme, were never wholly abandoned by the Aldines until the expiration of their firm in the third generation.
II. Paulus Manutius (1512-1574). By his marriage with Maris Torresano, Aldo had three sons, the youngest of whom, Paolo, was born in 1512. He had the miafortune to lose his father at the age of tro. After this event his grandfather and two uncles, the three Asulani, carried on the Aldine press, while Paolo prosecuted his early studies with unremitting industry at Vecice. Excessive application hurt his health, which remsined weak during the rest of his life. At the age of twenty-one he had scquired a solid reputation for scholarship and learning. In 1533 Paulo undertook the conduct of his father's business, which had latterly. been much neglected by his uncles. In the interregnum between Aldo's death and Paolo's succession (I514-33) the Asolani continued to issue books, the best of which were Latin classics. But, thouigh their publications count a large number of first editions, and some are works of considerable magnitude, they were not brought out with the scholarly perfection st which Aldo aimed. The Asolani attempted to perform the wholo duties of editing, and to reserve sll its honours for themselves, dispensing with the service of competent collaborators. The result was that some of their editions, especially their Eschylus of I518, are singularly bad. Paolo determined to restore the gluries of the house, and in 1540 he separated from his uncles. The field of Greek literature having been well-nigh exhausted, he deroted limself principally to the Latin classics. Ho was a passionate Ciceronian, and perhaps his chief contributions to acholarship are tho corrected editions of Cicero's letters and orations, his own epistles in a Ciceronian style, and his Latin version of Demostbenes. Throughout his life he combined the occupations of a student and a priater, winning an oven higher celebrity in the former field than his father had done. Four treatises from his pen on Roman antiquities deserve to be commemorated for their orudition no less than for the clegance of their Latinity. Several Italian citics contended for the possession of so
rare a man; and he received tenpting offers from the Spanish court. Yet his life was a long struggle with pecuniary difficulties. To prepare correct editiens of the classics, and to print them in a splendid style, has always been a costly undertaking. And, thongh Paolo's publications were highly esteemed, their sale was slow. In 1556 he received for a time external support from the Trenetian Academy, founded by Federigo Badoaro. Jut Badoaro failed disgracefully in 1559 , and the academy was extinct in 1562. Meanmhile Paolo had established his brother, Antonio, a man of good parts but indifferent conduct, in a printing office and book shop at Bolognar Antonio died in 1559, having been a source of trouble and expense to Paolo during the last four years of his life. Other pecuniary embarrassments arose from a contract for supplying fish to Venice, into which l'aolo had somewhat strangely entered with the Government. In. 1561 Pope Pius IV. invited him to Rome, offering him a yearly stipend of 500 ducats, and undertaking to establish and maintain his press there. The profits on pablications were to be divided between Paolo Manuzio and the apostolie camera. Paolo accepted the invitation, and spent the larger portion of his life, under three papacies, with varying fortunes, in the city of Rome. Ill healih, the commercial interests he had left behind at Venice, and the coldness shown him by Pope Pius V., induced him at varions times and for several reasons to leave Rome. But of these excursions it is not necessary to take particular notice. As was natura!, his cditions after bis removal to Rome were mostly Latin works of theology and Biblical or patristic literature.

Paolo marricd his wife, Caterina Odoni, in 1546. She brought him three sons and one daughter. His eldest son, the younger Aldus, succeeded him in the management of the Venetian printing house when his father settled at Rome in 1501. Yaolo had never been a strong man, and his health was overtaxed with studies and commercial worries. Yet he lived into his sisty-second year, aud died at Rome in 1574.
III. Aldus Manutius, Junior (1547-I597). The younger Aldo, born in the year after his father Paolo's marriage, cradled in scholarship, and suckled as it were with printer's ink, proved what is called an infant prodigy. When he was nine years old, his name was placed upon the title page of the famous Eleganze della lingua Toscana e Latina. What his slare was in that really excellent selection cannot be ascertained ; but it is hardly possible that a boy of nine could have compiled it without assistance. The Eleganze was probably a book made for his instruction and in his company by bis father. In 1561, at the age of fourteen, he produced a work upon Latin spelling, called Orthographixe Ratio. During a visit to his father at Rome in the next year, he was able to improve this treatise by the study of inseriptions, and in 1575 he completed his labours in the same field by the publieation of an Epitome Orthographix. Whether Aldo was the sole composer of the work on spelling, in its first edition, may be doubted ; bot he appropriated the subjeet and made it his own. Probsbly his greatest service to scholarship is this analysis of the principles of orthography in Latin.

Aldo remained at Tenice, prosecuting studies in literature and superintending the Aldine press. But in these days of early manhood he was not satisfied with the career of zchoia:ship and business, At one time he hankered after the more worluly bonours of the law, at another he built a country house at Asvia, perplexing his father; who had given him too easy independence, with the humours of his age. A marriage came to make these matters straight. The Giunta family had been steadily rising in the world as printers, in proportion as the Aldi declined through want of concentration upon conmerce. In 1572 Aldo took for
his wife Francesea Lucrezin, daughter of Bartolommeo Giunta, aud great-grandchld of the first Giunta, who founded the fanoous pronting bouse in Venice. This ras an alliance which augured well for the future of the Aldines, especially as the joung husband, in the midst of distractions, bad recently fourd time to publish a new revised edition of Velleius Paterculus. Two years later the death of his father at Rome placed Aldo at the head of the firm. In concert with his new relations, the Giunta, he now edited au extensive collection of Italian letters, and in 1576 he appeared again beforethe lublic as a critic with his commentary upon the Ars Poctica of Horace. Printing, in this case, as in tho case of his father, went hand in band with original authorslif. About the same time, that is to say, about the year $15 \pi 6$, he was appointed professur of literature to the Cancelleria st Venice. The Aldine press continued through this period to issue bcoks, but nono of signal inerit; and in 1585 Aldo determined to quit his native city for Bulogna, where he occupied the chair of cloquence for a few months. In 1587 he left Bologna for P'isa, and there, in his quality of professor, he made the curious mistake of printing Alberti's comedy Philodoxius as a work of the classic Lepidus. Sixtus V. drew him in 1588 frons Tuscany to Rome; aud at Rome he hoped to make a permanent settlement as lecturer. But his public lessons were ill attended, and he soon fell back upon his old vocation of publisher under the patronage of a new pope, Clement VIII. In the tenth year of dis residence at Rome, that is, in 1537, he died, leaving children, but none who cared or had-capacity to carry on the Aldine press. Aldo himself, though a precocious student, a scholar of no mean ability, and a publisher of some distinction, was the least remarkable of the three men who gave books to the public under the old Aldine ensign. Times had changed in Italy since Aldo the elder conceived the great idea of reaping for the press the larvest of Greek literature. And his posterity had changed with the times for the worse. This does not of necessity mean that we should adopt Scaliger's critique of the younger Aldo without reservation. Scaliger called him "a povertystricken talent, slow in operation; his work is very conmonplace; he aped his father." What is true in this temark lies partly in the fact that schularship in Aldo's days had flown beyond the Alps, whers a new growth of erudition, on a basis different from that of the Italian Renaissance, had begun.
Rcnouard's Anzates de l'Imprimerie dis Allcs, Paris, 1834, and Didot's Alde Manule, Paris, 1873, contain all necessary information regarding the lives of the Manutii and their publications.
(J. A.S.)

Manzoni, Alessandro Francesco Tomaraso Antonio (1785-1873), founder of the romantic school in Italian literature, was born at Milan, Mareh 7, 1785. Don Pietro, his father, thea about fifty, represented au old family settled near Lecco, but originally feudal lords of Barzio, in the Valsassina, where the memory of their violence is still perpetuated in a local proverb, comparing it to that of the mountain torrent. The poet's maternal grandfather, Cesare Becenria, was a well-known author, and his rother Ciulia a woman of sonse literary ability. Manzoni's intellect was slow in maturing, and at the various colleges where his echool days were passed he ranked among the dunces. At fifteen, however, he developed a passion for poetry, and wrote two sonnets of considerable merit. On the death of his father in 1805 , he joined his mother at Auteuil, and spent two years there, mixing in the literary set of the so-called "idealogues," philosophers of the 3 th century school, among whom he msde many friends, notably Clande Fsuriel. There too he imbibed the negative creed of Voltairianism, and only after
his marriage, and under the influence of his wife, did he exchange it for that fervent Catholicism which coloured his later life. In 1806-7, while at Auteuil, he first appeared before the public as a poet with two pieces, one entitled Urania, in the classical style, of which he became lafer the most conspicuous adversary, the other an elegy in blank verse, on the death of Count Carlo Imbonati, from whom, through his mother, he inherited considerable property, including the villa of Brusuglio, thenceforward his principal residence.

Manzoni's narriage in 1808 to Henrictie Blondel, daughter of a Genevese banker, proved a most happy one, and he led for many years a retired domestic life, divided between literature and the picturesqua husbandry of Lombardy. His intellectual energy at this period was devoted to the composition of the Inni Sacri, a series of eacred lyrics, and a treatise on Catholic morality, forming a task undertaken under religious guidance, in rcparation for his carly lapse from faith. In 1818 he had to sell his paternal inheritance, as his uffairs had gone to ruin in the bands of a dishonest agent. The beautiful villa II Galeotto, where he bad spent his childish years amid the scenery he afterwards immortalized, then passed from his hands, to his great regret. His characteristic generosity was shown on this occasion in his dealings with his peasants, who on settling their accounts were found heavily indebted to him. He not only cancelled on the spot the record of all sums owing to him, but bade them keep for themselves the whole of the coming maize harrest.
In 1819 Manzoni published his first tragedy, Il Conte If Carmagnola, which, boldly violating all classical conventionalisms, excited a lively controversy. It was severely criticized in the Quarterly Reviev, in an article to which Goethe replied in its defence, "one genius," as Count de Guberoatis remarks, "having divined the other." The death of Napoleon in 1821 inspired Manzoni's powerful stanzas Il Cinque Magyio, the most popular lyric in the Italian language.
The political events of that year, and the imprisonment of many of his friends, weighed much on Manzoni's mind, and the historical studies in which he sought distraction during his subsequent retirement at Brusuglio, suggested his great work. Round the episode of the Immminato, historically identified with Bernardino Visconti, $I$ Promessi Sposi began to grow into shape, and was completed iu September 1822. The work when published, after revision by friends in 1825-27, at the rate of a volume a year, at once raised its author to the first rank of literary fame. Iu the interim of its composition in 1822, Manzoni publishod his second tragedy Adelchi, turning on the overthrow by Charlemagne of the Lombard domination in Italy, and containing many veiled allusions to the existing Austrian rule.
With these works Manzoni's literary career was practically closed. The end of the poet's long life was saddened by domestic sorrows. The loss of his wife in 1833 was followed by that of several of his children, and of his mother, to whom he was fondly attached. To 18.97 ic married his second wife, Teresa Borri, wiuiow of Count Stampa, whom he alsc survived, while of nino children hoin to hia in his two marriages, all but two preceded him 'o the grave. The death of his eldest son, Pier Luigi, on Ayil 28, 1873 , was the final blow which hastened his end; io iell ill immediately, and died of ccrebral meningitis, May 22, aged eighty-eight. His country mourned him with nlmost roya! pomp, and his remains, after lying in state for some days, were followed te the cemetery of Milan by os rast cortege, including the royai princes and all the great officers of state. But his noblest monument was Verdi's Requiem, specially written to honour his memors.

Manzoui'a position in literature is usique; for, while tae romantic Renaissauce produced in other countrias a galaxy of geniug, in Italy it remained ennodied in him alone, since nonc of his disciples came near enough to be classed with him. Scott declared I Promessi Sposi the finest novel ever written; and, if we take ns our standard loftiness of ain combined with ingennous simplicity of style, and Titianesque power of claracter painting relieved by an undercurrent of sultle irony giving point to every trivial incident, wa need scarcely dispute his verdict. It occupies the same place in Italian as Don Quixote in Spanish Jiterature, overshadowing in similar fashion the whole field of subsequent fiction. Manzoni'a poctry cannot be classed so high, and, despite its nervous diction and cpigrammatic intensity of thought, it is as a great master of Italian prose that lee will go down to posterity.
Of exalted private character, Manzoni furnishes an almost solitary instance of a poet whosa life contains no note of discord with tha loftiest standard presented by his works. The highest genius, disciplined by still higher moral gelf-control, produced in him the rare spectacle of a perfect equilibrium of forces in a powerful mind. His presence was impressive, and his speech, though retarded ty a slight impediment, so full of wisdom that Tommaseo declared ha had learned mora from his conversation than from all the books he lad ever read. At the sama tima he had that exquisite courtesy in listening which gave to thosa who addressed him the sensa of having spoken well. No mana ever attained to greater honour from his contemporaries, or sought it less, and few hava joined such rare intellectual gifts to so much gracions humility of mind and manners. His warmth of affection, tenderness of sympathy, and univensal benevolence endeared him to his friends and tellowcitizens, while by his countrymen at larga he was revered as tha sage and patriarch of ltalian letters.
In addition to the works already nanıed, he mrote La Sloria della Colonna Iifame, and a small treatise on the Italian language. $I$ Promesai Sposi, laboriously rerised by the author in accordance with tho Tuscan idiom, has gona through 118 ltalian, 19 Freach, 17 German, and 10 English editions.

Biographical sketches of Mapzonl have been recently poblished by Cessre Cantra (ls82), Benedetto Prina, Giullo Carcano, Ancelo de Guberoatis, Antonio Stoppans (his early yea rs), and othera. Some of his letters bave bege published by Gioranni Sfor2a, and a work entitled, Commento Storico su I Promess by Spost, by Cesare Cantiu. See also the essay on "Fauriel" in Sulnte-Beuve's Poriraits Contemporains, vol. iv.

## MaORIES. See New Zealand.

MAP. 1. First Essays in Mctp making.-As each man stands in the centre of his horizon and the portion of the earth's surface which lies within his range of rision has the appearance of a disk, the whole world was in ancient times conceived as a disk surrounded by the sea. It was consequently not uncommon for a leople to imagine-as was the case me kuow with the Chinese, the Hiadus, the Chaldæans, the Jews, the Arabs, and even the ancient Peruvians-that it occupied the middle part of the rorld. The wider a people's range of vision, the mider was the disk of the world represented. A circular surface is thus the simplest form for a mappa mundi or map of the world; and it is met with both in antiquity and in the Middle Ages. The extent of the circle of vision depends among uncivilized peoples on their way of life. Wandering tribes have seen more of the world than settled tribes; and hunters, fishers, and seamen make the widest excursions. Among them consequently we find the beginnings of mapmaking; and Eskimo, Indians, and Polynesians, for example, show in this matter astonishing quickness of apprebension, while among the settled Negro tribes, on the other hand, there are no maps. A map dramn by an Eskimo woman enabled Sir Edward Parry to discover Euiy and नiecia strait ; M'Clintoik aurnag nis enueavanrs to clear up the fate of the Franklin expedition repeatedly got the Eskimo to draw coast-maps of the Aretic lands; and many similar instances are given by Andree, "Beginnings of Cartography," Globus, xxxi. pp. 24-27, 37-43.
Turuing to civilized peoples, it is among the Egyptians that we find the earliest recorded examples of cartographic representation. Apollonius of Rhodes (born 230 B.c.) reports in his Argonautica (iv. 279) that the Egyptians of Colchis, a colouy dating from the time of Ramses II. ( 7 ), had preserved as heirlooms certain wooden tablets (кv́p $\beta$ кes) on which land and sea, roads and highways, were accurately indicated : Eustathius, in his commentary
on Dionysius Periegetes, mentions t'ant Sesostris the Eggptian king raused ronte-maps to ho prepared : nnd Strabo also refers to certain eld maps in the library of Eratosthencs in which Meroe and the south end of the peniasula of India were placed on the same parallel of latitude. These statements have been confirmed by the actual discovery of sucb maps and plans on old E.ryptian papyrus-rolls. Bircli has, for instance, identificd a drawing un a papyrus in the Turin Muscum as the topographical map of a geld-mining district in N゙ubia. The perspective in this case is very childish : in order to show that the roa! leads between two mountain-chains, the meuntains on one side of the road are inverted (comp. Lepsius, Crokndenbuch, pl. xxii.). This map is one thousand years older than that of Anaximander, who was considered by the Greeks as the inventor of cartogmally. On another sheet appears a representation of the victorious return of Sethos I. (1443-1392 в.c.) from $\Lambda$ sia, showing the road from Pelusium by Leentopelis to Herenpolis, Lake Timsah with fish in it, the canal from the Nile with crocodiles, and at Heroopolis a bridge over the canal. Similar picturemaps were discovered by Layard in Assyria (Ninevel and Babylon, p. 231 sq., 1867). The ancient Pabylenians bave also the high distinction of having divided space and time in a way that allewed scientific measurements to be made after the still customary. method. It was they who originated the division of the celiptic into twelve signs and later into 360 degrecs ; and the division of the circle into 360 degrees with 60 minutes to the degree and 60 seconds to the miaute, as well as the correspending division of the hour, was the outcome of their sexagesimal system of numeration. This method of divisien was introduced ameng the Greeks by Hipparchus ( 150 в.c.), and obtained general currency threugh the geographer Ptelemy (150 A.D.). By this means were provided the elements necessary for the astronomical determination of geegraphical position. Among the Egyotians and Babylonians map-makiog remained in its first infantile stage; its scientific development was received at the hands of the Greeks.
2. Development of Map-making among the Greelis.In Homer the " circumflueat ocean "represents the horizon which bounds the disk of the world; the scientific treatment of geography and map-making has its origin among the Ionic Greeks of Asia Niner. Anaximander, a pupil of Thales (about 560 в.c.); sketched the first map ( $\gamma$ corpaфixos rivas $)$, and was the first who sought to determine the compass of the earth (the world-disk) and the sea. As the Greeks gradually extended their jeurneys as far as India in the East and the Atlantic in the West, the conviction gained ground that the werld-disk could net be bounded by a regular circular ontline. About nne hundred years after Anaximander, Democritus of h $\hat{b}$ dere ventured to draw a new map on the basis of his own observations (for in bis extensive wanderings he bad been as far as Persia and perhaps even India); and in opposition to the circular form of the Ionians be gave the werld an oblong shape, and taught that from cast to west it was balf as long again as from north to south. Although after the time of Aristatle the tabular or flat-surface theory of the figure of the earth was expelled by the spherical or globe theory, the portion of the earth's surface which was really knewn retaioed the same obleng shape which it had with Democritus; and bence we still speak of longitude and latitude, that is, length and breadth. It was on this basis also that the far-travclled Hecatwus of Niletus, who wrote his $\Gamma \hat{\eta} s$ тepiodos between 520 and 500 b.c., drew up his map; for the representation of the world on a brazen tablet, which was shewn by Aristageras, tyrant of Miletus, to King Cleomenes of Sparta, was probably nothing else than the world-map of Hecatreus. The first application of astronomy
to gengruply was made by the famens Arctic mavigator Pytheas of Marscilles, about 326 B.C.; it is from him that we obtain the first observation of latitude, and, what is of some importance, this is for Marseilles. His veyage to the extreme North (Tlule) was undertaken partly for the purpose of satusfying himself in regard to the figure and size of the earth. Dicwarchus of Nessana in Nicily, a pupil of Aristotle's ( 310 b.c.), made the first appronct to a projection. He divided the inhabited (i.e., the known) world, which he reckoned to be one and a half times as long as it was broarl, into a northern and a southern half by means of what he considered a straight line drawn frem the pillars of Hercules, throuth Sicily, the Peloponnesus, Caria, Lycin, Pamphylia, Cilicia, and acruss the Tanrus to the Imaus (Hinialaya). He thus drew the first parallel of latitude, and upon this basis he prepared maps which were to be publicly exhibited in a hall (Agathem., $\$ 5$; Strabe, 1. 105). The name stáф pa $\mu \mu$ a тijs oiкov $\mu$ év $\eta$ s, i.e., partition of the inhabited world, wias given to the base-line. For the next material improvement we are indebted to thic famous astronomer and geograpuer Eratosthenes of Cyrenc, the keeper of the Alexandrian library ( $276-196$ b.c.). Ile was the first to make a rational gcodetic measureuent for the purpose of determining the size of the earth, and he collectcd in lis 「ewypaфıкú the whele geographical learning of his tiane. This work has unfertunately been lust, but from the numerous fragments that have been preserved. especially by Strabo, it is possible to form an idea of this the first systematic geugraphy. Starting with the spherical form and the size of the world, it gave a description of the oiкоvдév $\eta$, discussed the space relations of the world-island, and estımated its extent in longitude and latitude. On the basis of the diaphragm of Dicæarchus, the course of which was more precisely indicated, a series of seren parallols and as many meridians cutting the diaphragm at right angles were drawn, and by this means the inhabited world was divided to the nerth and the south of the diaphragm into a certain number of regular divisions to which the name of sphragidia or seals was given. Then follows a description of the countries is the several "seals," beginning with India. In this arrangemeut we may recognize the first attempt to construct a network or system of degrees. As numerous data in regard to distances were already at his command, Eratosthenes greatly improved on the old maps in the matter of correctness; but, as the number of astronomical determinations of latitude was still small, and the intervals between the parallels and the meridians rere unequal and conditioned by the available data in regard to distance, nis network of lines was far from beiog an exact mathematical system. Hipparchus of Nicæa in Bithynia, the greatest astronemer of the ancient world (abeut 150 B.c.), cansequently rejected the geography of Eratosthenes because it only partially utilized the abundant resources provided by the high development of contemporary mathematics and astronony. Instead of the uncertain estimates of distance and direction furnished by travellers, only astronomical determinations of latitude and lengitude should, he maintained, have been employed. He does not appear, bowever, to have himself written a geography or constructed a map. About the same time Crates of Mallus made the first globe. On this he extended the Atlantic Ocean southward to

Fig. 1. the south pole, placed a corresponding ocean on the other hemisphere, and, in the belief that the torrid zone could be occupied by nothing but water, ran an Oceanic belt along the line of the equater (fig. 1). In the four segments thus produced he set four semicircular land-areas, only one of which was known to the ancient rorld. This systemetio figure maintained its place down into the Middle Ages, as


If THE WORLD. :tual positions.
appears from the oroamentation of the globe that forms part of the insignis of royalty.

Mariaus of Tyre (about 150 A.D.) was the first who sought to give effect to the demand made by Hipparchus for a trustworthy representation of the countries of the world. His work unfortunately has been lost; and we know of its exiatence only from his successor Clandius Ptolemy. Without Marinus, however, Ptolemy's work would have been impossible; aud neither of them was able really to carry out Hipparchus's idea of determining the latitude and longitude for every place; for observations of latitude were known only for Marseilles, Syene, Alexandria, Rhodes, and perhaps a few other places, and all other positions were obtained by reducing distances to degrees. The determination of longitudes was even more difficult. Ptolemy possessed only the contemporary observation of the lunar eclipse in Arbela and Carthage of the year 331 b.c., from which he calculated a dif. ference of meridian of $45^{\circ} 10^{\prime}$ instead of $34^{\circ} 2^{\prime}$. The longer asis of the Mediterranean was consequently a third too great, 62 degrees of the meridian being assumed instead of 412 , and from this there resulted an exaggeration of all the Mediterranean countries, which was correcied oaly by the compass-maps of the later Middle Ages. I'tolemy, however (availing himself of the stereographic projection devised by Hipparchus), corrected an important bluoder which Marinus had committed through neglecting to take account of the sphericity of the earth and constructing a rectangular system of degrees. Like Marinus, he counted his meridians from the Canaries (the Fortunate Islands). No maps appear to have been drawn by Ptolemy himself; those to be found in the oldest editions of his work are by Agathodæmon (a mathematician of the 5th (?) century after Christ), though accurately based, it is true, on Ptolemy's data. The oldest MS. of Ptolemy is that found in the Vatopedi monastery of Mount Athos, and published by Victor Langlois in 1867 along with careful reproductions of the maps. It dates from the 12 th or 13 th century. Besides the exaggeration of the Mediterranean, the greatest blunders of Ptolemy are the following:-the European continent between the Black Sea and the Baltic is too narrow; India is not represented as a peninsula; Ceylon (Taprobane) is made much too large; and the Indian Ocean is bounded by lands towards the eouth (Plate VII.). But in apite of all this the scientific method pursued in the representation was perfectly correct. It was not till the Renaissance that a return was made to the rational treatmeat of cartography inaugurated by Ptolemy; and he then became the teacher of the modern world.
3. Map-making among the Romans.-The Romans contributed nothing to the development of the scientific method of the Greeks, and did not apply astronomy to the purposes of cartography. They valued maps according to their practical utility as implements of political administration; and they accordingly attached most importanco to the routemap, from which they could learn the roads, the stations, and the distances. If we may judge by the few examples which have been preserved, theso sketches may, distortions apart, be compared with our railway maps. Cicero and Seneca mention general and topographical maps. In their time the military routes were already divided into atages, furnished with milestones, and consequently measured. During the reign of Augustus a survey of the whole Roman empire was carried ont. The routes were mirked on parchment rolls for the purposes of military and civil administration. A map of tho world was painted in a portico at-Rome; a map of Italy was to be ceen in the temple of Tellos. Farticularly celebrated was Agrippa'a map. Pliny must plaiuly havo been in possession of maps to keep himself right in regard to the great number of
names which he records. A map of the Roman empire was drawn up under Domitian. The emperore of the $2 d$, 3 d , and 4 th centuries caused maps to be constructed and painted on the walls of public buildings in the cities of Gaul, as for example in Augustodunum (Autun); but of this class unfortunately none has been preserved. The only Roman map, indeed, of the imperial epoch which has come down to us is the Tabula Peutingeriana, which takes its modern name from Coarad Peutinger of Augsburg, who possessed it in the 16th century. It is now preserved in the Imperial Library of Vienna. Its origin as a map goes back at least to the 3d century of the Christian era, to the time, that is, of Alexander Severus; but the actual copy is not older than the 13th century. It consists of twelve folio sheets of parchment, which originally formed one long strip. It bas been published by Scheyb (1753) and Mannert (1834), and in excellent facsimile by Desjardins ( $1869, \& c$.). That the original of this remarkable map was of a circular shape has been satisfactorily proved, the pattern followed being that of the map of the world in the portico of the Campus Agrippæ, which for centuries retained the rank of a model. Probably, however, such an orbis pictus was not exactly round, but rather oval. In its construction effect was also given to the opinion current from the time of Herodotus that the extent of the inhabited world was greater from east to west than from north to south. From this it is clear that the Komans had not advanced beyond the earlier Greek conception, and were ignorant of the astronomico-mathematical method inaugurated by Hipparchus.
4. Map-making in the Middle Ages,-The scholastic Middle Ages confined themselves to imitation of the Roman orbes. Fulness of detail, moreover, was gradually lost, meagreness and crudity appearing in its place. Cartography in fact fell back to a second childhood. Fanatical exponents of the orthodox faith, like Lactantius, looked with disdain on all scientific culture. Geographical questions were of no interest to him because he regarded them as mere matters of opinion. Astroaomy was a piece of fantastic folly, the knowledge of distant lands mere learned lumber. "Quæ beatitudo," he exclaims, "erit mihi proposita si sciero unde Nilus oriatur vel quicquid de colo physici delirant?" As this narrow conception of things became on the whole the dominant one, geograplyy aud map-making practically ceased to exist. The doctrine of the sphericity of the earth was placed under the ban of the church, and people went back to the Humeric idea of a disk surrounded by the ocean. Isidore of Seville (ob. 636) taught: "Orbis a rotunditate circuli dictus quia sicut rota est. Undique enim Oceanus circumfluens ejus in circulo ambit fines. Divisus est autem trifarie ; c quibus una pars Asia, altera Europa, tertia Africa, quæ et Libya nuncupatur." Isidore is a master of false etymulogical inferences. Deriving rotunditas from rata, a wheel, he declares that consequently the earth has the appearance of a wheel. Hence the name wheel-maps has been giren to all those maps of the earlier Middle Ages. The three-fold dirision which he gives of the world-disk kept its ground for centuries, and the figure of the earth out on the miserable guise shown in fig. 2. It was only by the Greek fathers that the doctrine of the earth's sphericity continued to be taught; and, as the knowledge of Greek rapidly died out in western Europe, the fountain was dried up from which a better science might have been derired. Many minor modifications were introduced into the map of the world, but the fundamental type remained as giren in fig. 2. Jcrusalem lay in the centre, Paradise in tho extreme east. Clever artists geve life to the disk of the world by turreted pictures of towns-Jcrusalem, Troy, Babylon, Rome, \&ce, and drew Adam and Evo in the midst of a Paradiso which
was delendè a by a fence of therns or of flames, and, bsing considered the hirhest place in the world, was always introduced at the top of the map! The positions of Jerusalem and Paradise served to fix the other points. How long this conception remained in vogue appears from


Fig. 2.
tne fact that in 1422 Leonardo Dati, in a poem ou the sphere (Della Sperc), wrote, "A T within an O shows the design " (Un T dentre a uno $O$ mostra il disegno), thus $\Theta$. In this way the whole science of cartography sank back delow the level attained by the Ionian Greeks.
5. Map-making among the Arabians.-The first development of geographicsl science among the Arabs took place at Bagbdad about 772 A.D., in the reign of the caliph Mansur, and under the influence of an Indian astronomer and mathematician; and, not long after the works of Euclid, Archimedes, Aristotle, and Ptolemy were translated into Arabic, by orders of the caliph Mamún (813-833), a degree was measured in Mesnpotamia in the plain of Sinjar, and a system of the rorld (Rasm el-ard) was constracted by his librarian Mohammed ben Musa of Khiva (Alcharesmins), in which every place was to be determined by longitude and latitude in the style of Ptolemy. But the science split up only too soon into a practical and a theoretical (astronomical) aection-the one treating geography ( $\mathrm{ja}^{2}$ raflyá) as the dectrine of routes and provinces, the other as the doctrine of latitudes and longitudes. Astronomy contented itself with the astronomical determination of the position of places without drawing maps or exerting any influence on their projection ; travellers and topographers on the other hand did not trouble themselves about astronomy, but like Istakhri (c. 750) or Ibn Haukal (c. 750) added maps to their descriptions which were destitute of any system of degrees, and betrajed by the roughness of their outlines the clumsiness of the draughtsman. Ultimately, like Dimishki(1327), they left mathematical geography completely out of their works, Ibn Ḥnukal having already declared that mathematical division only brought confusion into geography. Only Edrisi's map, engraved for King Roger II. of Sicily upon a silver plate (1164), forms an exception; but, ss it was nut dramn according to the Ptolemaic projection, but eimply indicated the seven climates, it was after all but an unsuccessful copy of Ptolemy.
6. N'eutical Mraps. - The nautical (loxodromic or compass) maps, which make their first appearance in Italy in the 13 th century, indicate a gratifying improvement in cartography after a long period of stagnation. These maps were constructed with the aid of the compass, and took the name of compass-maps because they are covered rith the figure of a compass from which numerous straight lines radiato out in all directions over the sheet. The fact that the magnet turns towards the north is first rentionel in

11S7. Flario Gioja of Amalf was perhaps the tirst to make a mariner's compass and to teach seamen the use of that important instrument. The Italians divided the compass into eight parts (venti), assigning $45^{\circ}$ to cachTramontane (N.), Greco (N.E.), Levante (E.), Sirocco (S. E.), Dstro (S.), Libeccio or Garbinn (S. W.), Ponente (W.), Maestro (N.W.). Every division had four quarters (quarto di vento), each of $11 \frac{1}{4}$ degrees. The maps mere produced as fellows. The courses of individual ships were first of all inserted as straight lines, calculated according to the distances traversed, from particular parts, as Genoa or Venice, to other ports, and when a goond supply of such material had been collected and a eeries of diagonals drawn in accordance therewith, the most important poiuts on the coast and in the islands were fixed. The lines by which the meridians were cut at the same angle were called luxodromes; they gave a correct indication when they cut the true astronomical meridian, a false one when they cut the magnetic meridian. On the Italian charts the losodrones were drawn as straight. lines. The numerous radii of the compass shown on the maps enabled the seaman to find the direction which he had to take to reach his goal. Hence the title loxodromic maps.

Charts on which the degrees were marked became necessary only when narigation extended to the ocean; they were iotroduced by the Portuguese, probably at the suggestion of Prince Henry the Navigator. They are "plane charts" with lines of longitude and latitude.

The ollest losodromic charts which hare been preserved come from Pisa, Genoa, and Venice. The earliest, the so-called Pisan chart, belongs probably to the middle of the 13th sentury, and already comprises the whole Mediterrancan. As this representation of the whole must of necessity havo been preceded by surveys of the several portions, the beginning of the chart may be placed at least as far back os the first part of the 13th century. Next in pnint of age comes (2) the Lnxoro Atlas in Genoa ahout the year 1300, in the possession of the Caraliere Tounas Luxoro. Then follow (3) Petrus Vescontc, 1311, in the national archives at Florence, including the eastern Mediterranean (Petrus Vesconte de Janua fecil ista carta amn diui $\Lambda^{\circ} C C C X 1^{\circ}$ ), sce fig. 3 ; (4) Marino Sanudo, a map of the world representing the Medjtorrancan and the Atlantic coasts as far as Flanders, probably drawn between 1312 and 1321-several copies in Rome (the Vatican), Venice, and Brussels; (5) an atlas of Petrus Vesconte's about 13:3 (in Venice, in eight sheets; in Milan, ten slieets) ; (6) Perrınus V'esconte, 1327, in the Lanrentian Library at Florence; (7) Joanncs da Carignano, Letween 1306 and 1333, in the archives of Floreace (Presbiter Jomuncs rector sancli Marci de portu Jcuure me fecib) ; (8) a map of 1346 in the Castilian tongue, in the National Library at Paris; (9) the Medicean atlas of 1351 in tho Laurentian Lihrary at Florence, eight sheets, which represents also the Caspian Sea, and, remarkablo enough, the whole of Africa; (10) Pizigauis 1367, in the National Library at Parma, a map of the world which extends as far as Pursia, with numerous entries not only on the coasts but also in the interior; (11) an atlas of Pizigaoi, of date 1363, nine sheets in folio, in the Ambrosian Library in Milan, comprising the Mediterranean and the Occan as far as Jutland (M.CCCLXXIII a dic VIII di zugno franzescho piziganij veniziano in reniexia me fecil); (12) the fannous Cata. lonian map of the world of 1375 , in four sheets, in the National Library at Paris; (13) a map by Guill. Solerio of Dajorc3, 1385, in the public archives in Florence; and (14) atlas by some unknown hand, four sheets Solio, in the Biblioteca Nlarciana at Venice.

Several of these Italian maps give indubitable evidence that as early as the 14 th century the Azores and Canaries had been dis. covered, as well as the coast of Africa as far as beyond Caye Bojador. With the riddle of the ccntury the coast maps developed into maps of conntries with trade rontes, pictorisl figures, and numerous inscriptions. Maps preserved from the 15 th contury are still more numerous:-(15) a map by the Venetian Nicolao, of date 1408, in V'ienna; (16) Mecia de Villa destes, 1410 , in the National Gallery at Paris; (17) a map of the world of 1417 , in the National Library at Florence ; (18) Francesco de Cesanis, 2421, in the Museo Correr at Venice; (19) a map of 1424 at Weimar; (20) atlases by Gia. como de Giraldi, 1426-43, in Venice and Milan; (21) Gabriel de Valscequa, 1434 , from'3lajorca; (22) Francesco Beccario, three inaps, in the British Museum ; (23) two mans by Battista Beecario in Manich (1426) and Parma (1435) ; (21) Aodrea Bianco, 1436, an atlas of ten aheets, where for the first time the mediaval circalar maps are accompanicd by the Ptolemaic maps, in the Biblioteca
sarciana at Yeaice ; also a map of 1443, Jrawn at London, now in the Ambrosian Lilurary at Mirian (Andrcca Bicunco venccian connito di grtia me fexe a londra, 1448) ; (25) an elliptical map of tho world in the Pitti Palace at Florence, of Genosse origin, and of dato 1447 ; (26) Hannibal de Madiis, 1449, in the Anbrosian Library; (27) a Catalonian inap of the world, of 1450 (?), in the Natiounl Library at Florence ; (28) Giovauni Leardo, two maps of the world, of date 1448 (in the muscum nt Yicenza) and 1452 (the property of Consulgeneral ron Pilat at Venice); (29) Fra Mauro, a famous may of the world from 1457-59 in the Biblioteca Marciana nt Venice; (30) Gratioso Beninuessa of Ancona, a diligent cartegrapher, twentyfive very carefully executed works dating from between 1460 and 1482; most of them are in Italy, chiefly at Yenice, two in Paris, one ot Mumich, and one without date in the British Museum ; (31) Andrea Benincasa, son of the preceding, three maps of 1476 (Genera) and 1490 (Ancona aul Rome) ; (32) Bartolomeo Pareto, a map of the world, of 1455, at Ronie ; (33) Giolgio Giovanni, 1484 (Parma); (34) Cnuut Hortomanus Fredutias of Anceaa, 2497 (Wolfeubuttel).

In the begianing of the 16 th century, (35) Alberto Cantino, about 1501-3, was the first in Italy to dzaw map representing portions of America, Carla de navigare per le Isoic nuovamente trovere in la prerle delle Indie, in tha libsary at Modena. (36) The Magriolo fanills, famous for its cartography, flourisbed in Geno between 1511 and 1618 . Visconte Maggiole, the founder of the family, is known to have produced nineteen athases between 1511 and 1557. A map by Giacomo Maygiolo, of date 1562, is in the British Museum. (37) Battista Aguese labourc\& between 1527 and 1554 in Venice, and the thirteen athases he has left hehind him aro pieces of fine artistic work adorued with charning miniatures. Two of these atlases, of date 1527 and 1536, are in the British Muscum.
In the 15 th century and the beginning of the 16 th Spanish, Portuguese, Greck, and Freuch enrtographers appear as competitors with the Italian, Catalonian, and Balearic artists. We name only the most important. Juan de la Casa, a Basque, and a companion of Columbus, drew in 1500 a map of the world in whieh for the first time the hitherto discovered coasts and islands of


Fic. 3.-Chast of the Mediterranean (P. Vesconte, 1311).

America were introduced. A mnp of the world by Garcia de Torero, 1522, is preserved at Turin ; and two general maps, the one dating 1627 (probably by Fernando Colon, son of Columbus) and tho other 1529 (Ly Diego Riberu), exist ot Wcimar. Retwecu 1558 and 1569 Diego Homent preduced several beautiful atlases; of these four are in ltaly, and one, of date 1568, at Dresden. Amony the French world-maps a special place is due to that drawn up by order of King Ilenry II. It is published by Jomard in his dfonumens de la geographic.
As far as Italian navigation extended, and especially within the limits of the Mediterranean, a very correct representation of the coasts and of the contours of tho several countrics was sccured at an early date. The interior of the countries, on the other hand, remaini 1 confusel and inexact. These defects wero first strplied in the 15th century, when recourse mas again had to the contributions of the Greoks, and especially of Ptolemy.

Befere proceeding to discuss this new development, it may be as well to mention the varicus names by which the representations of
the earth's surface have been designated. The Greeks employed the expression $\pi$ \{vak (nicture), the Romans in like manner said tabula. The word map camo into use in the Middle Ages, the name marpamundi, nappcmonde ("world-naplkin"), proving that maps were originally painted on cloth. In English manp is nupplied only to a land-man, the sea-map being known as a chart. The Romance langurges had tho oxpressions disegno, figura, pintura, padron. W" wen the lexodromic maps came into existence, hand-books with sailing directions were written to accompnay them, leneo the titles "sailing directions," "sea-books," portulani (by which word actual maps were afterwards meant), or cartas da marear. The Latin roord charte signifies originally a letter, a written document; and in like manner the Portuguese and Spanish form carta. But as early as the 14th century this expression was (as appears from the inscription quoted under No. 3 above) used to distinguish a sen-map. In tho samo senso Paolo Toscanelli speaks of his carta, which he sent to the king of Portugal. But the expression did not become हeneral till the loth century; in 1513 wo fud it in Germany in a Strasburg
editiou of Ptolemy (Carta Marina Portugalensinm), in 15:4 in Spain (in the Junta of Badajoz), in 1532 in England (Jlichael Lack).
7. The lievival of Ptolemy.-This produced in the 15 th century a revolution in the construction of maps, and laid the foundations of modern cartography. Ptolemy's great work again became gencrally well known in westeru Europe only after it was translated into Latin by Jacobus Angelus de Scarparia in 1409 ; and this version was first printed in 1475 at Vicenza without maps. The first edition with maps (to wit, a map of the world, ten maps of Europe, four of Africa, and twelve of Asia) appeared at Rome in 1478. Afterwards there were editions at Bologna (1482), Ulm ( 1483 , by Nicolaus Donis with five modern maps), Ulm (1486), Rome (1490, 1507, and 150S, the last with seven modern mapa, among which the famous map of the world by Joh. Ruysch), Strasburg (1513, with forty-seven maps); sad in the course of the same century twenty-five other editions might be mentioned at Strasburg, Basel, Lyons, Cologne, Venice, and Paris. From this loug series, which if prolonged to the beginning of the Thirty Years' War would be further increased by five, it is evident that Ptolemy was the great master of the modern time. At first maps were drawn according to Ptolemy's determioations of geographical position; but, in proportion as the study of mathematics, astronomy, and cosmography excited the interest of men of culture, opportunities were afforded of correcting Ptolemy's astronomical posittions, especially in the case of central and northera Europe, where the range of the great cosmographer's knowledge bad hardly enabled bim to collect original material. The new arts of wood and copper engraving supplied the means for a rapid diffusion of printed maps. The oldest map printed from a wooden block (in the National Library at Paris), dating from 1460 , and thus belonging to the earliest period of rood engraving, was produced in Germany, and represents Germany and western Europe. It is considered to be a copy from an old Roman map.

After the foundations of trigonometry had been laid by Purbach, Regiomontanus, and others, attempts of a rather rude kind were made in the beginning of the 16 th century to execute geographical triangulations and delineations. The towns formed the central poiuts of the system, their direction and position from the post of observation beiog fixed as precisely as possible, and their distance estimated in miles ancording to the best available data without being accurately measured. It was considered sufficient to assign in this way the relative positions of inhabited places, and she representation of the physical relations was very supernicial; the course of rivers, for instance, was not measured, but carried past the towns on their banks in conventional linez.

In the Ptolemy of 1513 we already find three topagraphical mans, viz., one of Switzerland, one of the district of the upper Rhine fram Basel to Nainz and Lorraine, and a large one of Crcte, which it has been conjectured was taken from a Venetian original. The number of maps of smaller districts rapilly increased. In 1528 Aventinusdrew the duchy of Bavaria, in 1533 Se bastian of Rotenhamm produced a map of East Franconia. Mandrawing became a fayourite occupation with the Germans. The best geograpbical survey of this period was the Chorographia Bavarix, by the famous Philip Apianus (twenty-four sheets, at Ingolstadt, 1563). The number of cartographers increased so rapidly that Abraham Ortclius, in the first edition of his collection of maps (Thealrum Mundi, 1570), was able to give the names of ninety-three. The first attempts to improve and to increase the methods of projection known to the Greeks were made by Germans, -namely, Johann Stófler (1452-1536), Johann Wicrner of Nuremberg (1463-152S), Pcter Apianus (1495-1552). The last-mentioned introduced the favonrite method of repressnting both hemispheres together in an elliptical form with lines of latitude: Maps of the world were compiled by Peter Apianus, Oronce Fine (1494-1555), Sebastian Cabot (1544), Giaconio Gastaldo (1546-48), Giov. Batt. Guicciardini (1549), Giov. Donin. Methoni at Vcnice, Heiorich Pontanus of Aruhem ( 1556 , a map of the world in the shape of an imperial eagle). Guill. Postel at Paris (1581), \&c.
8. Mercator end his Successors.-Gerhard Kiramer, usually called Mercator (born of Cernan parents at Rupelmonde ${ }_{11}$ Flanders in 1512 , has the honourable place of a reformer of cartograply. We posscss his map of Palestino (1537), a map of Flanders (Louvain, 1540) in nine sheets, phototyped in 1882, a slobe (1541), and, the first critical map) of Europe ( 1554 ), by which be laid the foundation of his fane as the first cartographer of his age. The exclusive use of Latin letters for maps in Germany was due to his example. Especially famous is his map of the world (fig. 4) dating from 1569 : "Nova et aucta orbis terræ descriptio ad usum navigantium emendate accommodata" (one culy in the National Library at Paris). This map is drawn in the projection of jucreasing latitudes with liues of latitude and parallel meridians, the basis of which was furnished by Edward Wright in 1599 in Certain Efrors in A"ariga:tion. It is the first chart on which true rumb lines cuuld be drawn as straight lines. By 1601 Mercator's projection' was in use for all sea charts. In 1578 Mercator drew up maps for Ptolemy exactly in accordance with his determinations; and these were fullowed by maps of Germany, the Low Countries, and France (1585), and of Italy ( 1590 ). It was his purpose to produce a completo collection of new maps, to which he gave the name Allas; but he died in 1594 , and the publication of this first atlas (1595) was left to his son. The title took the place of the desiguations previously in fashion-T'heatium Orbis, Speculum Mundi, \&c. The second edition of the Atlas appeared in 1602 . The later editions were issued by Judocus Hondius in Ansterdam.

Before Mercator collectious of mars, including various cauntries, and independent of Ptolemy, bad begun to be published. Thus Christoffel Froschover in Zurich issuel varions "Landtaflen" in 1562 -a map of the warld (Universalis Cosmographia, in the shape of a heart, dated mp.xL.vi.), Europe, Germania, Gallia, "die gantze Eydgnoschatft," and eight toporraphical maps of Swiss districts. Of much greater importance and influence was the collection published by Abradiam Ortelins of Antwerp (1527-98), Thealazm Orlis Torrarum (1570), in which the best maps fram all countries were reeograved. The first edition with a Latin text cantained fifty-threo sheats; the seventh (1573) had sixty-uino maps, the tivelfth (15:9) ninety-two. Editions appeared with the text in German, French, Dutch, and after 1600 in Eoglish and Italian, and obtained the widest difiusion. Through this work the centre of cartographie activity was trausfcrred to Holland. There too laboured the successors of Mercator. Jodacus Hondius (1563-1611) and his son Henricus Hoadius (1580-1544). Their maps, in sevcral folio volumes, were numbered by hundreds. To the school of Mercator belonged also Petrus Plancius and Lucas Janszonn Waghenaer of Enkhuyzen (Aurigarius), who by his Spieghel der Zecracrdt (Leyden, 1583) became the founder nf nautical map-collections. In $15 \$ 5$ a reproduction of this atlas appeared in London as the first " Wiggouer." In the beginning of the 17th coutury tha town of Diepue also producedexcellentcharts, -Guill Levasseuil1601), Jean Dupont(16:5), and Jean Guerard (1631) Leing at work there. Alhout the satue time another farnous cartographic family arose in Holland. William Jansz. Blaeu (1571-1638) and his sons Jan and Cornelis turned out about four hindred maps previous ta 1655 . William Blaeu was iu 1633 a ppointed by public decree cartographer to the States-General; and it was his duty to examine the ships' logs and so amend the maps. He, had a rival in the person of Jan Janszoon (Jansonius), who, worl:ing with the material inherited by him from his father-in-law Jodocus Hondius, produced a Dutch atlas in six volumes, French in six folios, a Gcrman in nine folios, and a Latin in twa Cartography became a lucrative businese, but the scisntific value of the work grese less and less in the hands of Nicolaus Vischer (Piscator) from 1621 to 1670 and his son of the same name (ob. 1709), of Friedrich de Witt and his sons, and of Peter Schenct. The influence of the Dutch schuol, which had prevjously been so great, disappeared with the close of the 17 th century.

In the 16 th century the Italians were still active conipetitors with the Germans and Dutch. In cugraved maps Venice held aspecially high rank up to 1570, the Piudmontese Giacomo Gastaldo and Paola Forlani of Verona bcing settled there. Their publications conrprised well-nigh all narts of the earth. The progress of discovery can le followed on their general (unircrsalc) and topografincal maps. Gastaldo's periud of artivity lay hetween 1546 and 1569 , Forlani's between 1560 and $15 \% 0$. They had a sucecssur in Antonis,

Magini (1555-1617) of Padua, who in his Nove gcogr. tabułx, pul. lished in 1596, gare greater precision to the determinatious of position. Giovanni Battista Nicolosi (1610-70) of Sicily issued at Rome a scries of huge maps of the hemispheres and centinents. Ainong the French map-makers of this period must be mentioned Oronce Fine (Finmus) from Dauphine (1494-1555), who published in 1531 his Planisphariuns geographicum in the shape of a heart according to the projection of A pianus; Jolivet (ahout 1560); Guillaume Postel ( $1505-81$ ), who iu 1570 drew a new map nt Frauce; the Franciscan André Thevet (1502-90), who in 1575 edited a Cosmographic unirerselle (2 vola. in folio), and finally Melchior T'avernier, a pupil of Ortelius (ob. 1641), who published many maps of European conntries. In England thereappeared in 1544 the great map of the world by Sehastian Cabot. The first modern map of England was prodnced by Humphrey Lhuyd in $15 ¢ 9$ (Anglix regni tabula and Corographia Cambrix). He was sueceeded by Christopher Saxton, who travelled through different parts of the country with several engineers, and in 1575 gave to the world his Eritish atlas of thirty-six sheets, which Philip Lea afterwards reduced to twelve sheets. John Speed's atlas (Theatrun) of Great Britain was published at Amsterdam in 1610 by Jodocus Hondius. The first map of Scandinavia (Regnorum Aquiloniorum Deseriptio)
was produced in 1539 by Olaus Magnus, arclibishop of Upsals. Nuch more accurate waa tho map drawn by Adrian Veno in 1613, and engraved by Jodocus Hondius, but the real reformer of northern eartography was Anders Buré (Laræws, 1571-1646), who aurveyed the several parta of the conntry. Hia mapa were afterwards published in the atlas of the brothers Blacu between 1650 and 1660.

The first new map of Spain and the first of Portagal botb appeared in the same year, 1560 , the former bcing dne to Pedro de Medina, the latter to Feruando Alvarez Seceo.

During all this period there prevailed a remarkable varicty in the determination of the first meridian. Whilst the Spaniards and Portuguese reckoned from the line of demareation ( 3.0 leagues west of the Cape Verds) sanetioned by the pope, the Protestant Dutch, Germans, and English at first went back to Ptolemy, who began at the Canaries. Mereator, on his globe of the ycar 1541, chose the island Forteventura in the Cauariea as his starting-point, but be afterwards adopted Corvo in the Azores, because he there approachied the true indication of the magnetic needle. For the same reason Ortelius, the younger Mereator, Jansonins, and at first also William Blaeu fixed on the 1sla del Fuego in the Cape Verd group. Blaeu afterwarda proposed the Peak of Tencriffe, and in this he ras followed by all Dutchmen. In the year 1634 Richelieu consulted


F10. 4.-Outline of Mercator's Nova ct Aucta Orbis Deseriptio, 1569.
the astronomers Gassendi (1592-1055) and Morin (1583-1656), and in accordance with their decision Louis XIII. commanded, under penalty, that all French ships should calculate their longitudea from the meridian of Ferro, though it was not till the close of the 17th century tbat a French expedition determined with accuracy the relation of the position of Ferro to that of the observatory of Paris. It was in this way that the Ferro meridian obtained almost universal curreney down to the 19th century. As in this petiod it was still practically impossible to secure precise determinations of longitude, all cartographic representations were naturally subject to considerable distortions, especially in countries outside of Europe.
9. Period of Transition. $-A$ series of important discoveries and inventions in mathematics, physics, and astronomy having provided the means of making much more accurate observations and calculations, there followed as a matter of course a substantial improvement in cartograplay. Of chicf moment were the invention of the telescope ( 1606 ), Calileo's discovery of Jupiter's moons (1610) and Cassiai's calculation of their periods of rotation, so important for determinations of longitude (1666), the first application of trigonometry to geodesy by Sncllius (1615), Picard's
measurement of a degree between Paris and $A$ miens (1663 and 1670 ), the French measurement of a degree between Dunkirk and Perpignan by Cassini and Lahire(1683-1718), Hadley's mirror-sextant (1731; according to Nerton's adea, 1699), the improvements made on the lunar tables by Tobias Mayer (1753), and John Harrison's chronometer (1761). In this way there set in a period of transition in cartography which lasted till somewhero about 1750 ; the results of new investigations and measurements were gradually turned to account, but, while here and there traditional blunders were corrected and expunged, nothing essentially new was as yet created.
To this epoch in Germany belong Julann Baptist Illomann, (1664-1724), whose elegantly engraved napps, puhlished in Nuremberg, continued to bave a wide sale after his death, Johann Matthias 11 aso in Nuremberg (ob. 1743), and the famous Tobias Maycr (1723-86), who published in Nuremberg a critical map of Germany. In France eminence was obtained by Nicolas Sanson (1600-6i) of Abbeville, who from 1627 worked at Paris as royal geographer, and issued more than three hundred maps; and the reputation of the house was maintained by his sons Nicolas, Alrien, and

Guill. Snason, who workel aloug with Habert Jaillot (1681-1717), Pierre du Val (1619-83), and Jean Baptiste Nolin (1692) at the French book of charts, Aipptune francois, 1693, in which for the first time the new astronomical determinations were tarned to account. Greater critical acumen was shewn by the royal geograpber Guill. de l'Isle (1675-1726), and especially by the talented Jean Baptisto Bourgignon d'Anville (1697-1782) and his younger coutemporary Philippe Buache (1700-1733). In this period France was facile princeps in cartographic achierements, nod led the way to the vext and latest epoch. In England Dowet's Allas was published at the cost of the duke of Argyll, and in the aame year Aaron Arrowsmith was born (ob, 1828). A beginnieg of geodetic labour was at this time made in Sweden under Charles XI.,the proceedings being carried on first ander the Bayon Karl Griepexhielm ( $o b$. 1684) and afterwards under Count Dshlherg. For political reasona, however, the king did not allow the pablication of the map of Sweden; but, the Freach a mbassader D'Avaux baving in 1704 got possession of copies, it. was cngrared at Paris by De l'lsle. In Italy P. Vincent Coronelli (ob, 1718) descrves to be mentioned.
10. The Period of Triangulations and Geodetic Surveys. -Up to this point the whole art of map-making bad been treated as a matter of private speculation. It was France that gave the first example of carrying out the cartographic survey of the country at the cost of the state. Such surveys had a double object, one military, to provide the army with satisfactory maps, and the other administrative, to furnish a cadastre for the land tax. The military interest predominated ; conscquently the surveys have in almost all countries been carried out by officers of the general staff, and the maps are briefly designated as general staff or orduance maps. For such a survey the whole country is covered with a network of triangles, and, in order to secure the most trustworthy basis for the representation, numerous points are astronomically fixed. In comparison with those of earlier date the maps thas produced are distinguished by correctness of detail. In the century between 1750 and 1850 attention was mainly directed to the accurate rendering of the horizontal development of the face of the country; but during the last thirty years the rertical configuration has also been faithfully represented on topographical maps of large scale by the introduction of contour lines. The first example of this also was given by France, when at Laplace's suggestion (1816) it was determined to publish a ner map of France with curses of altitnde. But owing to the great extent of the country, and the consequent difficulty and slowness of the undertaking, only four sheets of this kind were published by 1833. Hanover, however, followed suit in 1829, Baden in 1833, Hesse in 1840 , and so on. Since the middle of last century nearly all the states of Europe hare been actire in map-making; and prolonged effort has produced rich results. Surveying and mapping have been followed by the publication of topngraphic maps. The states of the Balkan peninsula alone lag behind ; there no comprehensive surrey has been undertaken at public expense. As a summary of these great achievements in the larger part of Europe, we append a chronological ${ }^{1}$ table of the most important scrveys, with the date of the publication of the first sheet, the rame of the country, the title of the map, the scale, and the number of sheets. Outside of Europe there are but few countries in which a survey based on exact tringgulation bas been carried out. The largest areas thas measured are the United States of North America and British India, where great activity bas been shown ; and to these may be added Asistic Rassia, portions of Australia, portions of the Dutch possessions in the East Indic8, and Algeria. In the whole of South America there is only one country, Chili, of which we possess a map based upon a careful survey. In the second portion of the table consequently some maps are incladed which are mercly the work of prisate cartographers, and the list must be regarded as tentative.
${ }^{1}$ For convenience of comparison the different series for the British I sles are grouped together in the table in the place of the earliest date.

List of Topographic Maps.

| Year. | Country, | Tille of Jiap. | Scale. | No. of Sheets |
| :---: | :---: | :---: | :---: | :---: |
| 1750 | Fra | Carte stometria | 1:86,400 | 134 |
| 1766 |  | 3rape of Denmark, publisbed by the Academy of Sclences. |  | 19 |
| 1780 | MeckrenturgStrelitz. | Cborngraph. und 3ultair-Earte. | 1:33,900 | 9 |
| 1788 | JecklenbargSchwerin. | " " " " | " | 16 |
| 1855 | England. | 25-meh maps (400,400 shts. publlshed). | 1:2300 | S625 |
| 1846 1801 | " | 6 - inch maps. <br> 1- Inch map (old sertes) | 1:10,660 | 110 |
| 1874 |  | 1-Inch map (ola sertes). | 1:63,860 | 855 |
| 1836 | Scotland. | 23 -iach maps. | 2500 | 14313 |
| 1847 | " | 6. Inch maps. | 1:10.560 | 2425 |
| 1856 |  | 1-Inch mupa. | 1: 63,360 | 131 |
| 1571 | Ireland | 25-1nch maps (Dublin county only). | 1: 2500 | 665 |
| 1833 |  | 6 - inch mapa | 1:10,560 | 1309 |
| 1853 |  | 1-Inch mapa ${ }^{\prime \prime}$. ${ }^{\text {a }}$ | 1:63,860 | 205 |
| 1803 | Prussta. | Earte von Altproassen, enthaltend Ostpreussen nebst Preuss. Lithaven und Westpreussen nebse dem Netze-distict. | 1:180,000 | 25 |
| 1803 | Salztrarg. | Karte des Hereogitims Salzburg. | 1:144,000 | 1.5 |
| 1812 | Bavaria. | Topograph. Atles vom Kionlgr. Bnyerm. | 1:50,000 | 112 |
| 1813 | Anstria. | Karte d. Erzherzogth. Oesmerreich. | 1:144.000 | 31 |
| 1815 | " | Karte der geldisteten Grafach. Tyrol ncbet Vorarluerg. | 1:144,000 | 24 |
| 1826 | Sorway. | Offeiol maps published sinco 1845 by the Government. | 1:200,000 | $\cdots$ |
| 1528 | Parma. | Onita topografica del ducatl Parma, Piacenza, e Goastalla. | 1:86,400 | 9 |
| 1829 | Turtemberg. | Kasto vom Könlgr. Wuit temberg. | 1:50,000 | 67 |
| 1832 | Hanover and Buาдswicli. | Topogr. Allas des Könicr. llannover und Rerzocth. Braunschwoig. | 1: 100,000 | 63 |
| 1832 |  | Kaite von dem Grossherz. Hessen. | 1:50,000 | 31 |
| 1833 | France. | Carte topmgtaphiqne de la France. | 1:80,000 | 274 |
| 1318 | Lomhardy and Venlce. | Carte tnpogr. del Regro LombardoVeneto. | 1:86,400 | 12 |
| 1837 | Saxany. | Toporr. Alyar dea Könlgr. Sachsen. | 1:57.600 | 20 |
| 1838 | Badea. | Topagr, Kaite liver das Giossberz, Baden. | 1:50,000 | 36 |
| 1840 | Hesce. | Topogr. Katte vod dem Kuifurstenth. Hestsen. | 1:50,000 | 40 |
| 1842 | Modeas. | Carta topogr. del ducato di Hodena. | 1:8f, 400 |  |
| 1842 | Switzerland. | Tupogr. Kiarte der Scluwciz. | 1:100, 100 | 2.5 |
| 1944 | Moravia oud Sllesta. | Spectakferte d. Markgr. Mähren mit <br> d. Anth.ellen des Hrzgth. Schlesied. | 1:144,000 | 0 |
| 1849 | Bohemis. | Specialkarte des Kinigr. Bbismen. |  | 3 R |
| 1849 | Belgium. | Grande Carie topogr. de Belgique par P. v. त. Haeico. | 1:20,000 | 220 |
| 1850 | Sardiols. | Carta decli stati di sua maesta Sarda, to teire firma. | 1:50,000 | 91 |
| : 250 | Netberlands. | Topogr. en Milit. Kaart van bet Koningijjk der Nederlandc. | 1:50,000 | 62 |
| 1851 | Tuscany and PapalStates | Curta Lopogr. dello stato Pontifclo e del gran ducato di Toscana. | 1:86,400 | 52 |
| 1852 | Denmurk. | Topographlsk Kart over Kongeriget Darmark met hertort. Sleavig | 1:80,000 | 81 |
| 1852 | Prussla, E. | Topogr. Karte vom östllche Thelle der Monarchle. | 1:100,000 | 240 |
| 1852 | Prasala, IT. | Topogr. Karte der Provinz Westphateo and der Rhelnprovinz. | 1:80,000 | 70 |
| 18 | Gr | Map of Greece (Paris, 1852). | 1:200,040 | 20 |
| 18 | Fungary. | Fomitäts-Karten des Kzolgr. Cngam. | 1:288,000 |  |
| 185. 4 | Calleda. | Generalkarte von Galizien und Lodomerien. | 1:288,000 | 83 |
| 1856 | Oldenburg. | Topogr. Karta des Grossherz. Oldenburg. | 1:50,000 | 16 |
| 1856 | Portugal. | Carta corograflea dos relnos de Portugal e Algarve. | 1:100,000 | 37 |
| 18.57 | Rugcis | Mnlitary Topogr. Map of Russla | 1:126,090 | \% 31 |
| 186 | Swedea. | Topogr. Corpsens karta ülver Sverlse. | 1:100,000 | 23.3 |
| 1863 | Saxony. | Topost. Karte vom königr. Sachsed. | 1:100,000 | 25 |
| 1867 | Belglum. Sinal Pevios. | Certe topographique. | $\begin{aligned} & 1: 40,060 \\ & 1: 63,360 \end{aligned}$ | 66 |
| 1818 |  |  | 1: 126,720 | 2 |
| 1869 | Norway. | Topogr. Kart. over Kongeriget Norge. | 1:100,000 | $21:$ |
| 1863 | Hungary. | Specialkarte von Ungarn, Croaticn, und Slavoriec. | 1:1+4,000 | 198 |
| 1869 | Swltzerland. | Topographischer Atlas - bigher motutsis regions. | 1:50,000 | 546 |
| 1571 | Portogal. | Do. -hill recions. Carta geogr. de Portugal poblicada por ordera de Sun SIncestade. | $\left\{\begin{array}{l} 1: 25,000 \\ 1: 50 n, 000 \end{array}\right.$ | 1 |
| 1574 | Spain. | Mapr toport. de Espana. | 1:50,000 |  |
| 1875 | Austria. | Spechalkarte der Oustert.-unger. Monarchie. | 1:76,000 | 718 |
| 1875 | Saxoriy | Topogr. Earte ron Sachsen. | 1:25,000 | 156 |
| ${ }_{1278}^{1878}$ | Germany | Karte des dentschen Reiches. | ${ }^{1}: 100.000$ | 674 230 |
| 1278 1879 | Italy. | Carta delle provincle merlidimall Gran Caita topografica d'Iuslis. | 1:50,000 | 230 |
| 1873 | Palestine. | 1 -inch map. | 1:63,360 | $\underline{26}$ |
| 1825 | United States, | Virginfa (Hermann Brlje). Snuth Caroline (Rub, Nills). | $\left\|\begin{array}{l} 5 \mathrm{ml}=1 \mathrm{ln} \\ 2 \mathrm{ml}=1 \mathrm{ln} . \end{array}\right\|$ | $\stackrel{9}{4}$ |
| 1827 | Esat Indica. | The Indian Atlas (J. Horsburgh). | 1: 266,800 | 177 |
| 1834 | Australla. | Mup of the Colony of New Suuth Wales (T. L. Mitchell). | 1: 540,000 | 3 |
| 1838 | Culted Stalcs. | Map of Alaboma and West Fiorlda (John la Tourrette). | $6 \mathrm{ml}=1$ |  |
| 1839 | $\sim$ | Mnp of Missinsippi with a large portion of Loutslana and A iabama (La Tourretuc) | $6 \mathrm{ml},=1 \mathrm{~lm}$. |  |
| 1847 | Cancasia. | Mrp of the Cancaslan Countries (Geacral Steff). | 1:420,000 | 26 |


(8. RL)
'Map, Mapes, or Mapus, Walter, an ecclesiastical statesman and renowned wit of the 12th century, must be ranked among the greatest of English writers, though Freoch was the language that he used, and his personal fame has long been lost in the splendour of his creations. He was the cosmogonist and one of the priacipal creators of the Found Table legends, which sapplied tho ideal of chivalrous life to 80 many sacceeding centaries. Most of the facts that are known about his position in the world heve been gathered from a gossipy anecdotical work of his in Latin, De Nugis Curialium. He was probably a native of Herefordshire or Gloucestershire. He tells us that his parents rendered services to Henry II. both before and after his accession. He was acquainted with the household of Thomas Becket before this famous ecclesiastic became archbishop of Canterbury, which was in 1162. He studied in the university of Paris, attending the lectures of Girard la Pucelle, who began lectiring in 1160. Map seems to bavo risen rapidly in favonr at the court of Henry II., combining ecclesiastical with civil and political functions. In 1173 be was an itinerant justice at the assize of Gloucester, and in the same jear was with the conrt at Limoges, where the duty fell to him of eotertaining the archbishop of Tarentaise, about whom he tells some marrellous storics. He was senton a diplomatic mission to Lovis le Jeune, king of France, nnd sat as a delegate in a council called by Pone Alexander 1IL. (probably 1179), enjoying such repute that be was deputed to argue with the Waldense8. Ho accompanied Ifenry II. on all his progresses, and in retum for his services reccived sereral ecclesiastical preferments. Apparently he maintained his position at coart nader Richard and John. In 1106 he was appointed archdeacon of Oxford, and in 1207-8 the custodes of the abbey of Eynsban were ordered to pay him his accustomed rent of five marks per annum. In the 12th century the ahuses of the church were assailed with great
freedom ana abnadance of humoreus wit in rhymed Latin verse, and a ceutury or two later rubrics appear in the MSS. of these satirical poems ascribing them to Walter Map, "Golias Episcopus" is the nominal author and hero of a great many of these effusions ; that is to say, they represent the sayings and doings of Golias, the revelation made to him, the confession made by him, his creed, his reasons for not marrying, and so forth. The fact that Map's friend Giraldus Cambrensis denounces Golias as a foul-mouthed scoffer is rather against Map's alleged authorship, and they bave probably been attriboted to him in consequence of his great reputation as a rit, and a tradition that he had such a batred of the White Monks that he exempted them from his oath as king's deputy to render ceven justice to all men. If these coarse and witty poems were really Map's, they aro a proof of astonishing versatility, for they offer as great a contrast as possible to the high imagiaative qualities, gracious tenderness, pure and lofty idealism, of his contributions to the Round Table legends. This is not the place for an exposition of the origin of these legends, but the Quest du Saint Graal was undoubtedly written by Map, being assigned to him in the carliest MSS. M. Panlin Paris ascribes to bim also, upon grounds which commend themselves as being at least bighly probable, the Saint Graal, and the noble prologue and the concluding parts of Lancelot du Lac. The effect of these contributions to the cycle was to completely transform its character, making out of it a lofty spivitaal allegery, and forcing the paganism of the earlier tegends into the service of the morality of the church. With each consummate skill did Map insinuate his story of the Graal into the cycle that the separate legends of Lancelc:, Gawain, Percival, and Tristan seem to grow out of it; the whole luxuriast and irregular growth acquires a unity from its connexion with this root and stem. This reorganizing achievement alone, apart from the high romantic value of Map's independent additions. entitles him to a high place iu literature.
The De Nugis Curialium and the Latin poems commonly attributed to Walter Mapes were edited by Mr Thomas Wright for the Camden Society; and the Quest du Saint Graal, by Mr Furnirall. for the Rosburghe Club.
MAPLE. Maples and the sycamore are species of Acer, suborder Acerinee, order Sapindaces. The genus includes about fifty species, Datives of Europe, North America, North Asia, especially the Himalayas and Japan (Benth. and Hook., Gen. Pl., i. 409). Maples are for the most part trees with palmately-lobed leaves. The llowers are in corymbs or racemes, the lowermost.mostly male, the terminal bisexual. The fruit is a two-winged "samara."
The earliest known maples ocenr in the Miocene strata of Oeningen, where nineteen specics have been discovered, -a greater number than occurs in any one district at the present day (Lyell's El. of Geol., 6th ed. p. 250). A typical species appears to have been Acer trilobatum, Heer (Flora Tert. Helv:; pl 114). This had many marked varictics, of which leaves, flowers, and fruit have all been discovered. The foliage was even attacked by a fungus, Rhytisma induratum, Heer, just as the sycsmore is now by $\mathcal{R}$. acerinum, which forms black spots on the leaves.
The common maple, A. campestre, L., is the only species indigenous to Great Britain. This and the syeamere were described by Gerard in 1597 (Herball, p. 1299), the latter being "a stranger to England." Maby species have been introduced, especially from Japan, for ormamental purooses. The following are more especially worthy of notice.
European Species. - Accr "ampestre, L., the cammon maple, is common in hedgerows, but not often seen as a tree (see, howerer, J.ondon, Arborcuum, vol. i. 1. 430). Loudon gires four rarietics, the downy-fruited, the variegated, the hill-inhabiting, and the

Anstrian. It occars in northern Europe, the Caucasus, and northern Asia. Tho wood is excelleat fuel, and makes the best charcoal. It is compact, of a tine grain, sometimes beantifully reined, aod takes a high polish. Hlence it has been celebrated from antiquity for tables, se. The mood of the roots is frequently knotted, and valuable for small objects of cabinet work. The yourg shoots, being flexible and toogh, are empleyed in France as whips. A. pseudo-Platanus, L., the sycamore, or great maple, is a baodsonte tree of quick growth, with a smooth bark. The leaves are large, with fincly acute and serrated lobes, affording abundant sbade. Its longevity is from one hundred and forty to two lundred years. It is found in various parts of Europe in wooded mountainous situations. The wood when young is white, but old heart-wood is Jellow or bremnish. Like the coumon mapla it is hard and takes a high polish. It is much prized by wheelwrights, cabinetmakers, scalptars, \&c., on the Continent, while knotted roots are used for in. layiag. Sugar has bcen obtained from the sap of this as from other apecies, the most beiog one ounce froun a quart of sap. The latter bas also been made inte wiue in the Highlanda of Scotland. There are many varieties, the varicgated and cut-leaved being the most noticeable (see Gard. Chron., 1881, I. 229). For remarkable variations in the number of cotyledens arising from fusion, see a paper by the late Prof. J. S. Heaslow in Mrag. Nat. Hist., vol. v. P. 346. A. Platanoides, L., the Norway maple (Loudon, l.c., p. 408 ; Gard. Chron., 1881, p. 561 ), is met with from Norway to Italy, Greece, central and south lussia. It was introduced into Britain in 1683. It is a loity tree (from 40 to 70 feet), resembliog the sjeamore, but with ycllow flowers, and mere spreadiag rings to the fruit. There are seraral varieties. The wood is used for the same purposes as that of the bycaniorc. Sugar has been made from the sap in Norray and Sweden. The leaves of this species, in common with those of the sycamore especially, and perhaps all others, are liable to produce houeydew, which appears to be extravasated cell-sap. The preseat writer suggests that the starch formed in the leaves may be rapidly converted inte sugar, which is then condensed on the surface of the lent under excessive trauspiration.

Asiatic Specics. - Thirteen species are described by Hiern, chiefly In the temperate Himalayns (Flor. of Brit. India, p. 692 ; sce also Bravdis, For. Fl., 110). The wood of some species is ased, as that of A. lsvigatum, Wall., for building; that of Á. cæsium Vall. being soft, inferior drinking cups are made of it ; while that of $A$. piclum, Thunb., is white, light, and fne-grained.

Japancse Species.-Species, and many varieties, especially of $A$. palmatum, Thuab., generally known as polymorphum, with varionsly laciniated and more or less coloured foliage, have lately been introduced as orpamental shrubs. The origioal apecies was iotroduced in 1832. The branches and corella are purpla, the fruit woolly. Tha foliage of the typical form is bright green with very pointed lobes. It occurs in the central mountains of Nippon and near Nagasaki. Beautiful varieties bave heen introduced ander the names A. P. ampelopsifolium, atropurpureum, disseclum, \&c. They are remarkabla for the coppery purple tint that pervades the leaves and young growths of some of the varieties (for figs., see Calalogue of Hardy Trees, \&o., by Messrs Veitch). Of other Japanese species, A. rufinerve, Sieb. and Zucc., with the habit of the sycamore, from Nippen; A. distylum, Sieb. and Zucc., bearing leares without lobes; A. diabolicum, Bl., with large plane-like leares, from Nippon; and A. carpinifolium, Sieb, and Zucc., with toliage resembliog that of the hornbcams, are especially worthy of note.

North American Species - A. sacckarinzm, L., the sagar, rock, or bird's-eyo maple, was introduced in 1735 . It aometimes attains to 70 or even over 100 feet, more commonly 50 to 60 feet. It is remarksble for the whitencss of the berk. The wood is Thite, but acquires a rosy tinge siver exposure to light. The grain is fine and close, and when polished has a silky lustre. The timber is used instead of oak whera the latter is scarce, and is employed for axletrees and spokes, as well as for Wiedsor chairs, \&c. It exhibits two accidental forms in the arrangement of tha fibres, an undulated one like those of the curled maple ( $A$. rubrum), and one of spots which gives the name bird's-cye to the wood of this apeciea. Like the curled maple, it is used for inlaying mahogany. It is much prized for bedsteads, writing desks, shoo lasta, \&c. The wood forms excellent fuel and charcoal, while the ashes are rich in alkaline principles, furnishing a large proportion of the potash exported from Boston and New York. Sugar is priucipally ex. tracted from this species, the sap being boiled and the syrup whea reduced to a proper consistence run iato moulds to form cakes. Trees groming in low and moist situations afford the most aap but least sugar: A cold north-west wind, with frosty nights and sunny days in alternation, tends to incite the flow, which is more abundant during the day than the night $\Delta$ thawing night is said to promete the flow, and it ceases during a south-rest wind end at the approach of a storm; and so sensitive are the trees to aspect and clinsatic variations that the flow of sap on the south and enst sile has been aeticed to be earlicr than on the north and west side of the same tree. The average quantity of sap per tree is from

12 to 24 gahons in season. For full details of the preparation, \&c., aee Louden, l.c., p. 413 ; and Gard. Chror. 1878 , r. 137.
A. rubrum, L., the red-flewering or scarlet maple, is a middlesized tree, and was introduced in 1656. It is the first tree to blossom in spring in North America. The wood, lika that of other apecies, is aplicable to many purposes, as for the seats of Windsor chairs, turaery, \&c. The grain in very old trees is sometimes undulated, Which suggested the name of curled maple, and gives beautiful cffects of light and shade on polished surfaces. The most constaut use of curled maple is for tha stocks of fowling picces and rifles, 23 it affords toughness and atrength combined with lightocss and elegance. The inaer bark is dusky red. On boiling, it yields a purpla colour which with sulphate of iron affords b black dye. The wood is inferior to that of the preceding species in strength and as foel. Sugar was made from the sap by the French Canadians, but the production is only half as great as that from the sugar maple (Michaux). In Britain it is cultivated as an ornamental tree, as being conspicuous for its flowers in spriog, and for its red fruit and foliage in autumn. A. macrophyllum, Pursch., farnishes material for hats, baskets, mats, \&c., from its inver bark, and the sap gives augar. A. circinatum, Pursch., of California, has a fioe, white, tough wood, which takes a good polish.
For descriptlon of other specles of North Amerlca, see Gard. Chron, 1881, index, s.v. "Acer": Sargent's Cal. of For. Trees of N. Amer.; Loudon, l.e, p. 405 sp.; Gray's Manual of Bof., p. 84.
(0. H.)

Mar, Earldoy of. Mar, one of the ancient divisions or provinces of Scotland, comprised the larger portion of Aberdeenshire, extending from north of the Don southwards to the Mounth. It is remarkable for its nssociation with the oldest historical dignity of Scotland, or perhaps of any courtry, which bas been perpeluated to our own time. Donald MacEnun MacCainech, mormaer (bereditary ruler or steward) of Mar, fought, according to nearly contemporary testimony, at the battle, of Clontarf in Ireland in 1014. Under Anglo-Saxon influences mormaers or great stewards became earls; and Ruadri, mormaer of Mar, whose name appears in the Book of Deer, is designed "Rothri comes" in a charter of Alesander I. of 1114 or 1115. His representative in the latter part of the 12 th century was Gratney, earl of Mar, who married Christian Bruce, sister of King Tobert, a lady famed for ber defence of the chief stronghold of the earldom, Kildrummy Castle, against David of Strathbogie, earl of Athole, then (1335) in alliance with the English. Their son, Earl Donald, in his youth a captive in England, was restored to his country after Bannockburn. On the landing of Edward Balliol in 133?, and death of Thomas Randolph, earl of Moray, he was invested with the regency, and the troops bastily assembled by him to meet the :arader suffered a disastrous defeat at Dupplin, the earl of Mar being himself among the slain. Earl Thomas, the regent's son, dying without issue in 1377, his successor mas his sister Margaret, countess of Douglas by marriage. From her the earldom of Mar passed to her daughter, Isabel Douglas, countess of Mar, whüse second marriage forms a notable episode in Scottish history. Alexánder Stemart, nstaral son of Alexsnder, earl of Buchan, and, according to common belief, the instigator of a murderous attack on thst lady's first husband, stormed the widomed countess of Mar in Kildrummy Castle in 1404, compelled her to marry him, and extorted from her a clarter which, bad the king been prevailed on to confirm it, would have made orer the earldom to him and his heirs, in exclusion of the heirs of bis wife. But, weak as was the law north of the Mounth in the reign of Robert IIL, this outrage was too flagrant to be condoned. The indispensable confirmation was refused by the king; but a compromise was effected, by which Isabel voluntarily accepted Stewart as her husband, and, by a cbarter which Robert duly confirmed, gave him a right to the earldom for life, with remainder, however, to her own hairs Qua earl of Mar, the quondam leader of freebooters became a supporter of law and order ; and in 1411, when Donald, lurd of the Isles, was leading his marauding host southwards, it was under Alexander, earl of Mar, that the lowland gentry and the burghers of $A$ berdeen mustered to oppose

1 is advances. The sanguinary battle of Harlaw arrested th. 3 progress of the highlanders. and left Mar master of the field.

Earl Alezander died in 1435, when the right to the carldom passed to Isabel's nearest heir, Robert Lord Erskine (descended from a daughter of Earl Gratney), who established his right by retour in 1438 , and became earl of Mar. The crown, however, had seized on the valuable territories of the earldom, of which he could only obtain partial possessiou ; and James II. and his advisers, after temporiziog for a length of time, in 1457 reduced Earl Robert's retour by a collusive "service negative," based on the plea that, either by the bastardy of Alexander or in virtue of a resignation by him to James I., the earldom had lapsed to the crown, two exface worthless pretexts, inasmuch as Alexander had only been a lifercnter. The wrongful possession of the crown lasted more than a century, in the coursc of which time the earldom was twice temporarily in possession of younger members of the royal bouse, and portions of it were given away to favonrites; whilo its lawful owners, the Erskines, continned loyally to serve the sovereigns who had usurped their inheritance.

At length, on 23d May 1565, Queen Mary, made aware of the wrongs inflicted by her predecessurs, and "moved by conscience ${ }^{\text {p }}$ to make the fullest reparation, granted to John Lord Erskine a charter restoring the earldom of which he and his ancestors had been unjustly deprived. The earl of Mar, thus replaced in his rights, was regent of Scotland during the jast two ycars of his life; and his son, who succeeded him ia 1572 , and was treasurer to James VI., recovered by process of law those portions of his inheritance which bad been alienated by the crown during the period of illegal possession. In the next two generations the attachment of the family to the Stewarts brought with it fines and impaired fortunes. John, earl of Mar, fourth in descent from the treasurer, headed the rebellion of 1715 , and onffered attainder, but escaped abroad and survived till 1732. His daughter Lady Frances (who married an Erskino, the younger son of ber uncle, Lord Grange) would, but for the attaioder, bave inherited his title; and what remained of the lands was preserved to her by arrangoment with the commissioners of forfeited estate8. In 1824 her son, John Francis Erskine of Mar, was, as "grandson and lineal heir" of the attainted earl, restored by Act of Parliament from the effects of the forfeiture.
At the death in 1866 of John Francis Miller Erskine, earl of Mar, grandson of the restored earl, there seemed no room for doubt that the carldom devolved, in accordaneo with the rule of suceession which it had almays followed, on his sister's son John Francis Erskine Goodeve, in preferenee to his cousin and heir male, the earl of Kellie. The latter, bowever, claimed, not radeed the ancieat तlgnıy, bat a separate titular earldon, supposed to have been bestored ly Qacen Mary, not by her chaiter above alluded to, but Ly a lost and till thea uaheard-of patent a fevy weeks later in date, and with a different remaiader, mamely, to heirs male of the body. The resolution of the committee of privileges of the House of Lords in 1875, fiading Lord Kellie entitled to the earldom thus claimed by him, has euused great surprise ; and Scotch lawyers generally, while dieboliering as a question of fact in this ereation of 1665 , seem also to hold in point of law that the resolution alluded to leares untouched the right of tho Leir general to tho ancient historieal honour. The same viell has beea expressed by way of protest by a large number of tho Scottish peers, and enforecd by the lato earl of Cravforth in his ably written posthumous work The Earldom of Mar in Sunshinc and Shade.

MARABOUT is a corruption of the Arabic Morabit, a Moslem name for a hermit or a devotea. Primarily the word is derised from rebof, a fortified frontier station. Tu ouch stations pious men betook them to wir. religious merit in נvar. +gainst the infidel; their leisure was spent In ảevotion, and the habits of the convent superseded those of the camp (see De Slane in Jour. As., 1842, i. 168;

Dozy, Suppl., i. 502). Thus ribut came to mean a religious house or hospice (zariya). Thic great sphere of the marabouts is North Africa. There it was that the community formed by King lahya and the doctor Abdalla developed into the conquering empire of the Morabits, or, as Christian writers call them, the Almoravides ( $(2 \cdot 6)$, and there still, among the Berbers, the marabouts enjoy extraordinary influence, being esteemed as living saints and mediators. They are liberally supported by alms, direct all popular assemblies, and have a decisive voice in intertribal quarrels and all mattcrs of consequeace. On their death their sanctity is transferred to their tombs, where chapels are erected and gifts and prayers offered. The prominent part which the marabouts took in the resistance offered to the French by the Algerian Moslems is well known; and they have been similarly active in rerent nolitico-religious movements in Tinis and Tripoli.

MARACAIBO, a city and seaport of Yenezucha, tne capital of the state of Zulia (formerly Maracaibo), lies about 25 miles from the sea on the west bank of Laka Maracaibo, the suburbs presenting, with their cocoa-nut groves, a fiue contrast to the background of barren-looking lills sloping up from the shore to a height of about 200 feet. The atreets are laid out at right angles; the houses are poor structures of a crude concretc or rabble, strengthened by woolen beams; nnd even the public buildingssuch as the churches, the government house, the court: bouse, and the theatre-owe their pretentious appearance to plaster and paint. :- The water of the lake being brackish, and the sinking of Artesian wells as yet in the experimental stage, Maracaibo is dependent on the rains for its driuking water. The markets are well supplied with provisions (especially game), and the lower classes, with whom the plantain forms the staff of life, are akle to subsist in a state of comparative idleness. . The prcsperity of the place is due to the fact that it forms the outlet for the prodnce of a wide region; aud if the bar at the mouth of tho lake, preventing the entrance of vessels drawing mora than 10 or 11 feet, were removed Maracaibo would bid fair to become the chief mercantile centre of the north coast of Sonth America. Coffee, not of price quality, cocoa, and hides are the principal exports at preeent, $\$ 4,029,852$ oat of the $\$ 4,188,617$. at which the wholc exports were valued in 1880 being drawn from theco items. Steamers ascend the Catatnmbo as far as San Buenaventura and Villarnizar and the Escalente to Santa Cruz, thus tapping the border provinces of both Tenezuela and Colombia. Bricks and tiles, lcather and admirabla saddlery, cocos-nut oil, sugar, rum, and chocolate aro manufactured in the town. Though the Jesuit College, which formerly made Maracaibo onc of the few real scats of learning in this part of the world, no longer exists, means of education are-fairly abundant (a national college, a nautical school, \&c.); and, nlthough they devote them: selves mainly to political agitation, the upper classes are not withoat culture. Maracaibo was fonnded by Alonse Pacheco ia 1571. The population, returned in $1853^{*}$ as 21,951 , is estimated at 30,000 in 1881.

Seo Engel, "Maraeaibo," in Zcit. d. Ges. Erdi., Berlin, $18 i 00$; and U. S. Consular Reports, $188 ?$.

MARAGHA, a tomn of Persia, prorince Azerbijan, $37^{\circ} 20^{\prime}$ N., $46^{\circ} 25^{\prime} \mathrm{E}$., 68 mile 3 fion Tabriz, 232 north-west of Tehrán, pleasantly situated in a long narrow walley opening towards Lake Urmiah, which lics 10 miles to the north-west. The town consists mostly of mad houses eaclosed by a high dilapidated wall, and containing no conspicnous buildings except a largo bazaar and fine public bath. Násir-ed-din's observatory formerly stood on a hill to the west, where there are somo old tombs covered with Cufic inscriptions. The surrounding gardrus and planta.
tions are watered by canals from a sman river crossed here by two good bridges built in 1809. At the village of Dash-Kesen, 6 miles from Del Kurgin in this districh, are the famons Dlarigha marble pits, occupying a space half a mile in circamference, and annk to a depth of about 12 feet. Herc a multitude of springs charged with carbonic acid gas bubble up in all directions, precipitating large quantities of carbonate of lime. The marble in the semicrystallized formation of this deposit forms horizontal layers, which when eat in thin slabs are nearly transparent, and serve as mindows in the Tabriz baths and elserrherc. Larger blocks are also used as pavements in bazaars and palaces, and the famons throne in the Dirwán Khína at 'Tebrán is made of the same material. Marágha was formerly the capital of Húlakú, grandson of Jenghis Khán, and its fifteen thousand inhabitants still belong mostly to the Mukadam Turki tribc.

Maranhäo, or Maravham (Latinized as Maragnanuml, in full form Sao Luiz de Maranaio, the chief town of the province of Maranhão in Brazil, is situated in $2^{\circ} 30^{\prime} \mathrm{S}$. lat. and $44^{\circ} 17^{\prime} \mathrm{W}$. long., on the west side of an isiand of the same name 25 miles long and 15 broad. Though built on so hilly a surface that carriages cannot be used, it is laid out with regularity, and has straight, wide, and clean-looking streets. The public institntions comprise a naval arsenal, a high court of appeal, a tribuaal of commerce, a military hospital, several general hospitals, a theatre, a musenm, a public library, and a botanic garden, as well as a cathedral and an episcopal palace, both built by the Jesnits. Jaranhãe bas some commercial importance, exporting cotton, sugar, hides, dia, from a wide region of the interior, and receiving manufactured goods from Europe, and especially from Eagland. Though someWhat difficult of access to large sailing vessels, the port atfords good anchcrage to all drawing less than 20 feet. Steamers ply to Rio de Janeiro and Pará, as well as np the rivers Itapicaru, Guajahu, and Pindare ; and direct steam commanication is maintained with Lisbon and Liverpool. The population of the island Maranhão was 34,023 in 1872, about 30,000 belonging to the city.
French colonists settlel at St Luiz in 1612, but they were expelled by Jeronimo d'Albaquerque in 1614. The Datch were in possession from 1641 to 1653 . The bishopric ras created in 1676. The city was captured in 1823 by Lord Cochrane, who was afterwards created marquis of Jaranham.
MiARAT, Jean PaUl (i:743-1793), a famous revolutionary leader, was the eldest child of Jean Panl Mara of Cagliari and Louise Cabrol of Gencva, and was born at Houdry, in the principality of Nenchâtel, on May 24, 1743. His father was a dector of some learaing, who had abandoned his country and his religion, and had married a Swiss Protestant. It was he that laid the basis of the young Jean Paul's scientific learning, and the son at the same time imbibed the doctrines of Rousseau. On his mother's death in 1759 he set ont on his travels, and spent two years at Bordeaux in the study of modicine, whence he moved to Paris, where he made use of his koowledge of his two favourite sciences, optics and electricity, to subdue an obstinate discase of the cyes. After some years in Paris he went to Holland, the retreat of philosophers, whero all the works of the Eacyclopedists were printed for the Freach market, and then on to London, where he settled in Church Street, Soho, a fashionable district, and practised his profession. In 1773, at the age of thirty, he made his first appearanco as an nuthor with a Philosophical Essay on Nan, being an Attempt to Investigate the Principles and Lavs of the Reciprocal Influence of the Soul on the Body, of which only two volumes are estant, though at the end of the second velume he speaks of a third. The book shows a wonder-
ful knowlecige of Englfsh, French German, ILahin, and Spanish philosophers, and directly attacka Helvetius, who had in his L'Esprit declared a knowledge of acience unnecessary for a philosopher. Marat, as he now began to call himself, declares that physiology alone can solve the problems of the connesion between soul aod body, and proposes the existence of a nervous flaid as the true solntion. In 1774 he published a political work, The Chains of slavery, which appeared without hia name, and was intended to ioflueace constitaencies to return popular members, and reject the king's friends, with innumerable examples frum classical and modern history of the ways in which kings enslaved their peoples. The book was tou late to have any iafluence on the general election, and was got up in a style too costly for a wide circulation, bat its author declared later that it procured him an honorary membership of the patriotic socicties of Carlisle, Berwick, and Newcastle. He remained deroted to his profession, and in 1775 published in London a little Essay on Gleets, price 1s. 6d., of which an copy is to be found, and in Amsterdam a French translation of the first two volumes of his Essay on Man. In this jear, 1775, he visited Edinburgh, and on the recommeadation of certain Edinburgh physicians, was, on June 30, made an M.D. of St Andrews University. On bis return to London he published an Enquiry into the Nature, Cause, and Cure of a Singular Disease of the Eyes, with a dedication to the Royal Society. In the same year there appeared the third volume of the French edition of the Essay on San, which reached Ferney, and exasperated Voltaire, by-its onslaught or Helretins, into a aharp attack, that only made the young author more conspicuous. His fame as a clever doctor was now great, and on June 24,1777 , the Comte d'Artois, afterwards Charles X . of France, "owing to the report he had heard of the good and moral life, and of the knowledge and experience in the art of medicine, of J. P. Marat," made him by brevet phssician to his guards, with 2000 livres a year add allowances.

Marat was soon in great requiest as a court doctor among the aristocracy; and even Brissot, in his Mémoires, admits his influence in the acientific world of I'aris. The nest years were much occupied with scieatific work, especially the study of heat, light, and electricity, on which he presented memoirs to the Académie des Sciences, but the Academicians were horrified at his temerity in differing from Newton, and, though acknowledging his industry, would not receive hin among them. His experiments greatly interested Benjamin Franklin, who used to risit him; and Goethe always regarded his rejection by the Academy as a glaring instance of scientific despotism. In 1780 he had published at Neuchâtel without his name a Plar de Législation Criminelle, founded on the humane principles established by Eeccaria. In April 1786 be resigned his conrt appointment. The results of his leisure were in 1787 a new translation of Newton's Optics, and in 1788 his Mémoires Académiques, ou AYouvelles Découvertes sut lu Lumière.

His scientific life mas now over, his political life was to begia; in the notoricty of that political life his great scientific and philosophical knowledgo was to be forgotten, the high position he had giren up denied, and he himself to bo scoffed at as an ignorant chariatan, who had sold quack medicines about the strects o§ Paris, aod been glad to earn a ferr sous in the stables of the Comte d'Artois. In 1788 the potables had met, and adrised the assembling of the states-reneral. The elections were the cause of e floed of pamphlets, of which one, Ofrande do la Patrie, was by Marat, and, though now forgotten, dwelt on mach the same points as the famous brochure of the Abbe Sieyès. When the states-general met, Jarat's ioterest was as great
as ever, and in June 1789 he published a supplement to his Ofrante, followed in July by La Constitution, in which he embodies bis iden of a constitution for France, and in September by his Talleau des TVices de la Cunstitution d'Angleterre, which be presented to the assembly. The latter alone deserves remark. The assembly was at this time full of Anglomaniacs, who desired to establish in France a constitution exactly similar to tlat of England. Marat, whon had lived in England, had seen that England was at this time being ruled by an oligarchy using the forms of liberty, which, while pretending to represent the couutry, was really being gradually mastered by the royal power. Hie heart was now all in polities; and, feeling that his energies needed a larger scope than occasional tracts afforded, he decided to start a paper. At first appeared a single number of the Monitur patriote, followed on September 12 by then first number of the Publiciste parisien, which on September 16 took the title of L'Ami du Peuple, and was to absorb his future life.
The life of Marat now becomes part of the history of the French Revolution. From the beginning to the end he stood aloue. He was mever attached to any party; the tone of his mind was to suspeet whoever was in power; and therefore no historian has tried to defend him, and all state the facts about him with a strong eolouring. About his paper, the incarnation of himself, the first thing to be said is that the man always meant what he said; no poverty, no misery or persecution, could keep him quiet; he was perpetually crying-" nous sommes trahis."

Further, the suspicious tone of his mind extended to his paper. and he made it play the part of the lion's mouth at Venice: whoever suspected any one liad only to deaounce bim to the Ami du Peuple, and the denounced was never let alone till he was proved innocent or guilty. He began by attacking the most powerful bodies in Paris,- the corps municipal, with Bailly at their head, and the court of the Châtelet,-and after a struggle found thenı too strong for lim, and fled to Lundon (January 1790). There he wrote his Denonciction contre Necker, and in Mny dared to return to Paris and continue the Ami du Perple. He was embittered by persecution, and continued his vehement attacks agninst all in power-against Bailly, against La Fajette, and at last, after the day of the Champs du Mars, against the king himself. All this time ho was hiding in cellars and sewers, where he was attacked by a horrible skin disease, tended only by the woman Simonne Eurard, who remained true to him. The end of the constituent assembly he heard of with joy, and with bright hopes (suon dashed by the behaviour of the legislative) for the future, when almost despairing in December 1791 he fled once more to London, where he wrote his Eicole $d v$ Ciloyen. In April 1792, summoned again ly the Cordeliers, lie returned to Paris, and published No. 627 of the $A m i$. The war was now the question, and Marat saw clearly enough that it was not sought for the sake of France, that it was to serve the purposes of the royalists and the Girundins, who thought of thenselves alone. The early days of the war being minsuccessful, the proclamation of the dake of Brunswick excited all hearts; who could go to save France on the frontiers and leave Paris in the hands of his cnemies? Marat, like Danton, foresaw the massaeres of Septenber. After the events of August 10th he took his seat at the commune, and demanded a tribunal to try the royalists in prison. No tribunal was formed, and the massacres in the prisons were the inevitallo result. In the dections to the convention, Marat was elected seventh out of the twenty-four deputics for Paris, and for the first time took his seat in an assembly of the nation. At the declaration of the republic, he closed his Amidu Peuple, and commenced a uew paper, flig Journal de lse Ripublique Française, which
was to contain his sentiments as its predecessor had done, and to be always on the watch. In the assembly Marat had no party; he would always suspect and oppose the powerful, refuse power for himself. After the battle of Valmy, Dumouriez was the greatest man in France; he could almost have restored the monarcly; yet Marat did not fear to go uninvited to the tragedian 'Talma's, and there accuse Dumouriez in the presence of his friends of want of patriotism. - His inpopularity in the assembly was extreme, yet he insisted on speaking on the question of the king's trial, declared it unfair to accuse Jouis for anything anterior to his aeceptance of the constitution, and, though implacable towards the king, as the one man who must die for the people's good, he would not allow Malesherbes, the ling's counsel, to be attacked in his paper, and speaks of him as a "sage et respectable vieillard." The king dead, the months from January to May were spent in an unrelenting struggle between Marat and the Girondins. Marat despised the ruling party: because they had sufferer nothing for the republic, because they talked too nuels of their feelings and their antigue virtue, because they lad for their own purposes plunged the country into war; while the Girondins hated Marat as representative of that rough red republicauism which would not yield itself to a Roman republie, with themselves for tribunes, orators, and generals. The Girondins conquered at first in the convention, and ordered that Marat should be tried before the Tribunal Revolutionnaire. But their victory ruined them, for Marat was acquitted on April 24, and returnerl to the convention with the people at his back. Their fall was a veritable victory for Marat. But it was his last. Tho skin disease be had contracted in the subterranenn haunts was mpidly closing his life; he could only ease his pain by sitting in a warm bath, where he wrote his journal, and accused the Girondins, who were trying to raise France against Paris. Sitting thus on the 13 th July he heard in the evening a young woman begging to be admitted to see him, saying that slue brought news from Caen, where the escaped Girondins were trying to rouse Normandy. He ordered her to be admitted, nsked her the names of the deputies then at Caen, and, after writing their names, said, "They shall be soon guillotined," when the young girl, whose name was Charlotte Corday, stablued him to the heart. Grand was the funeral given to the man who had suffered so much for the republic. Whatever his political ideas, tro things shine elearly out of the mass of prejudice which has shrouded the nane of Marat-that he was a man of great attainments and acknowledged position, who sacrificed fortune, bealth, life 1 tself, to his convictions, and that he was no béle feroce, no factious demagogtae, but a man, and a bumane man too, who could not keep his head cool in stirriag times, who was rendered suspicious by constant persecution, and who has been regarded as a personification of murder, beeause he published every thought in his mind, while others only vented their anger and displayed their suspicions in spoken words.

The ouly works of Marat not mentional in the text are Les ceventeres diz Comte Potouski, a poor novel, which must have been written in his enrly days, and which was discoverel in MS. and published by Bibliophile Jacoli ; two brochures on a balloon accidont, 1785; Les Cherlatens Noikencs, one Lettres sur lo Charlaturnisme accudensque, 1791 ; Le Junius Franguis. journal golitique, Iunc 2 to June 21, 1790 ; trandation of Chuins of Slavery, with lifty mages on French liiitory melised, year 1.
On Narnt's life sloould bo reat L'ami dus pouple, Sliezen aus Mierat's jourmalistichin Leben, Hambugg, 1S40; A. Bougeart, Marat, l'amider pceple, 2 vols, 1804 ; G. Yiazzoli, Maral, l'amico del Ponolo rla Rivaluzione, Jilan, 1874; A. T'ermorel, Gurres de J. P. Nara', I'ami du peuple, reciefllics et annoters, 1869 ; F. Chevremon', Mural, Inde.c due Dibliophile, S.c., 1sic; Id., Pacards de Marat, 1575 ; and jarticularly his Sean Pand Maral, cenprit politique, accompugue ch sel vic ssicneifique, politiguze, ol privic, $^{2}$ 2 vols., 1881.
(H. M. S.)

MARITHON mas a plain on the northease coast of Attica, contaiuing four villages-Marathon, Probalinthos, Tricerythes, and Oinoe, which formed a tetrapolis. It wa: divicied from the plain of Athens by Mount Pcutclicus aiu the hilly district of Diacria, and was in the early period an autonomous state. After it becane incorporated in the Attic state, it retained something of its original distinctive character. The wership of Apollo had its first home in Attica bere, and it was carried henco to Athens when the teirapolis was made part of the Athenian comm. . realth. The district was one of the chief seats of the wership of Hercules, and boasted that it mas the first place where he had been wershipped as a god. Heace legend localized here soreral erents in the story of the Heraclidx, and especially the self-sacrifce of Macaria, daughter of Herculcs. The lcgend of Theseus was also known in the district; bere the hero slew the Marathonian bull. The plain derived its fame chiefly from the battle in which the Athenians and Platæans under Niltiades defeated the Persians, 490 B.C. The one hundred and ninety.two Athenians that were slain were buried on the field of battle, contrary to the usual Attic custom, and a mound, which is itill called Soro, was erected over them. Another tumulus corered the bodies of the slain Plateans and slaves, and a sperial monument was raised to Miltiades.
NARBLE is a term applied to any limestone which is sufficiently. close in testure to admit of being polished. Many other ornamental stones-such as serpentine, alabaster, and eren granite-are sometimes loosely desig. nated as marbles, but by accurate writers the term is invariably restricted to those crystalline and compact varieties of carbonate of lime which, when polished, are applicable to purposes of decoration. The crystalline structure is typically shown in statuary marble. A fractured surface of this stone displays a multitnde of sparkling facets, which aro the rhombohedral cleavageplanes of the component grains. On placing a thin section of Carrara marble under the microscope, it is seen that each grain is an imperfect crystal, or crystalloid, of culcspar, having an irregular boundary, and being itself made up of a number of crystalline plates twinned together (see fig. 5, article Geologr, vol. x. p. 231). It is said that a somerthat similar polysynthetic structure may be artificially induced in calc-spar by means of pressure. As marble appears to be, in many cases, a metamorphic rock, it is probable that pressure and heat have been the principal natural agents concerned in the alteration of compact into crystaline limestones. It was shown many years ago by Sir James Hall thate evon an earthy limestone, like clalk, when strongly heated in a closed ressel, might nssume a saccharoidal texture ; and it is a fact familiar to the field-geologist that a crystalline structure is often locally developed in limestone where it happens to have been invaded by an eruptive rock. Prof. Gcikie proposes to distinguish this kind of metamorphism by the term marmarosis (Text-Book of Geology, 1882).
Among statuary marbles the first place may be assigned to the fameus Pentelic marble, the material in which Phidias, Praxiteles, and other Greek sculptors executed their principal works. The characteristics of this stone are well scen in the Elgin marbles, which were removed from the Yarthenon at Athens, and are now in the British Museum. The marble was derived from the quarries of Mount Pentelicus in Attica. The neighbouring mountain of Hymettus likewiss yieldcd marbles, but these were neither so pure in colour nor so fine in texture as those of Pentelicus. Parian marble, another stone much used by Greek sculptors and architects, was quarried in tho isle of Paros, chiefly at Mount Marpessa. If. is called by ancient writers lychnites, in allusion to the fact that the quarries
were worked by the light of lamps. Tho Venas de' Mcdici is a notable example of work in ibis material. Carrara marble is better known than $\begin{aligned} & \text { anj } \\ & \text { of the Greek marbles, }\end{aligned}$ inasmuch as it constitutes the stone invariably employed by the best sculpters of the present day. This marble occurs abundautly in the Apuan Alps, an offshoot of the Apensines, and is largely worked in the neighbourhood of Carrara, Massa, and Serravezza. Stone from this district was cmployed in Rome for architectural purposes in the time of Augustus, but the fincr varieties, ardapted to the nceds of the sculptor, wero not discovered until some time later. It is in Carrara marble that the finest works of Michelangelo and of Canova are executed. The purest varitics of this stene are of snow-white colour and of fino saccharoidal texture. Silica is disseminated through some of the marble, becoming a source of annoyance to the workman ; while occasionally it separates as beautifully pellucid crystals of quartz known as Carrara diamonds The geological ago of the marbles of the Apuan Alps has becn a subject of much dispute, some geologists regarding them as metamorphosed Triassic or even Liassic rocks, while others are disposed to refer them to the Carboniferous system. Nuch of the common marble is of a bluish colour, and therefore unfit for statuary purposes; when streaked with blue and grey reins, the stone is known as bardiglio. Curiously enough, the common white marble of Tuscany comes to England as Sicilian marble-a name probably due tu its laving been formerly re-shipped from some port in Sicily.
Although crystalline marbles fit for statuary work are not found to any extent in Great Britain, the limestones of the Palæozoic formations ret field a great variety of marbles well suited for architectural purposes. The Devonian rocks of Seuth Devon are rici in handsome marbles, presenting great diversity of tint and pattern. Plymonth, Torquay, Ipplepen, Babbacombe, and Chudleigh may be named as the principal localities. Many of these limestoncs owe their beauty to the fossil corals which they contain, and are hence known as madrepore marbles.

Of far greater importance than the marbles of the Devenian system aro those of Carboniferous age. It is from the Carbeniferous or Mountain Limestone that British marbles are mainly derived. Marbles of this age are worked in Derbyshire and Yorkshire, in the neighbourhoud of Bristol, in North Wales, in the Isle of Man, and in various parts of Ireland. One of the most beantiful of these stones is the encrinital narble, o material which owes its peculiarities to the presence of numerous encrinites, or stone-lilies. These fossils, when cut in various directions, give a characteristic pattern to the stone. Tho joints of the stems and arms are known from their shape as "wheel-stones," and the rock itsclf is sometimes called entrochal marble. Thu most beautiful varieties are those in which the calcareeus fossils nppear as white markings ou a ground of grey limestone. On the Continent a black marble with small sections of crinoid stems is known as petit granit, while in Derbyshire a similar rock, crowded with fragments of minute encrinites. is termed bird's-eyo marble.

Perhaps the most generally usefnl narkles yielded by the Carboniferous system are the black rarieties, which are largely employed for chimney.pieces, vases, and other ornamental objects. The colour of most black limestone is due to the presence of bitnminous matter, whence the mineralogical name anthraconite. Such limestone commonly enits a fetid odour when struck; and the colour, being of organic origin, is discharged on calcination. Black marbles, noore or less dense in colonr, are quarried in varions parts of Ireland, especially at Kilkenny and near Galway ; but the finest kind is obtained from near Ashford
iu Derbyshice. From Ashford is alsi derived a very beautiful stone known as rosewood marble. This is a dense brown laminated limestone, displaying when polished a handsome pattern somewhat resembling the grain of rosewood; it occurs in very limited quantity, and is nsed chiefly for inlaid work.

With the roservood narble may be compared the wellknown laudscape marble or Cotham stone, an argillaceous linestono with peculiar dendritic markings, due probably to the infiltration of water containiug oxide of manganese. This limestone oecurs in irregular masses near the base of the White Lias, or uppermost division of the Rhatic series. It is found principally in the neighbourhood of Bristol. The arborescent forms depicted in bluish-grey upon this landscape marble form a marked cuatrast to tha angular markings of warm brown colour which are seen on slabs of ruin niarble from Florence-a stone occasionally known also as ianilscape stone, or pietra paesina.
Pritish linestones of Seconaiary and Tertiary age are not generally compact enough to be used as marbles, but some of the steelly beds are employed to a limited extent for decorative purposes. Ammonite marble is a dark brown limestone from the Lower Lias of Squersetshire, crowded with ammonites, principally A. planicostatu. Under the name of Forest marble, geologists recognize a local dirision of the Lower Oolitic series, so named by W. Snith from Wychwood Forest in Oxfordshire, where shelly limestones occur; and these, though of little economic value, are capable of being used as rough marbles. But the most important marbles of the Secondary series are the shelly limestones of the Purbeck formation. Purbeck marble was a favourite material with mediæval architects, who used it freely for slender clustered columns and for вepulchral monuments. It consists of a mass of the shells of a fresl-water snail, Paludina carinifera, embedded in a blue or grey limestone, and is found in the Upper Purbeck beds of Swanago in Dorsetshire. Excellent examples of its use may be seen in Westminster Abhey and in the Temple Church, as well as in the cathedrals of Salisbury, Winchester, Worcester, and Lincoln. Sussex marble is a very similar stone, occurring in thin beds in the Weald clay, and consisting largely of the shells of Paludina, principally P. sussexiensis and P. fluviorum. The altar stones and the episcopal chair in Canterbury cathedral are of this material.

Mixtures of limestone and scrpentine frequently form rocks which are sufficiently beantiful to be used as ornamental stones, and are generally classed as marbles. Such serpentinous limestones are included by petrologists under the term ophicalcite. The famous verde antico is a rock of this character. Mona marble is an ophicalcite from the metamorphic series of the Isla of Anglesey, while the "Irish green" of arehitects is a similar rock from Connemara in western Galway. It is notable that some of the "white marble" of Connemara has been found by Messrs King and Romney to consist almost wholly of malacolite; a silicate of calcium and magnesium.

A beautiful marble has been worked to a limited extent $n$ the island of Tiree, one of the Hebrides, but the quarry appears to be now exhausted. This Tiree marhle is a limestone having a delicate carnelian colour diffused through it in irregular patches, and containing rounded crystalloids of sablite, a green augitic mineral resembling malacolito in composition. When dissolved in acid the marble leaves a brick-red powder, which bas been studied by Dr Heddle, who has also analysed the sallito.

Many marbles which are prized for the variegated patterns they display owe these patterns to their formation in concentric zones, -such marbles being in fact stalagmitic deposits of carbonate of lime and vrobably consisting in
many cases of aragonite. One of the most beautiful stalagaitic rocks is the socalled onyx marble of Algeria. This stone was largely used in the buildings of Carthage and Rome, but the quarries which jielded it were not known to modern sculptors until 1849, when M. Delamonte rediscovered tha marble near Oued-Abdallah. The stone is a beautifully translucent material, delicately clouded with yellow and brorn, and is greatly prized by French workmen. Large deposits of a very fine onjx-like marble, similar to the Algerian stone, have been worked of late years at Técali, about 35 miles from the city of Mexico. Among other stalagmitic marbles, mention may be made of the well-known Gibraltar stone, which is often worked into models of cannon and other ornamental objects. This stalagmite is much deeper in colour and less translucent than the onys marbles of Algeria and Mexico. A richly tinted stalagmitic stoue worked in California is known as Californian marble. It is worth noting that the "alabaster" of the ancients was stalagmitic carbonate of lime, and that this stone is therefore called by mineralogists "Oriental alabaster" in order to distinguish it from our modern "alabaster," which is a sulphate, and not a carbonate, of lime.

The brown and yellow colours which stalagmitic marbles usually present are due to the presence of oxide of iron. This colouring matter gives special characters to certain stones, such as the giallo antico, or antique yellow marble of the Italian antiquaries. Siena marble is a reddish mottled stone obtained from the neighbourhood of Siena in Tuscany; and a somewhat similar stone is found in King's County, Ireland. True red marble is by no means common, but it does occur, of bright and uniform colour,' though in very small quantity, in the Carboniferous limestone of Derbyshire and north-east Staffordshire. It may be noted that the red marble called rosso antico is often confounded with the porfido rosso antico, which is really a red porphyritic felstone.
Fire marble is the name given to a brown shelly limestone containing ammonites and other fossil shells, which present a brilliant display of irinescent colours, like those of precious opal. It occurs in rocks of Liassic age at the lead-mines of Bleiberg in Carinthia, and is worked Into snuff-boxes and other small objects. By mineralogists it is often termed lumachella, an Italian name which may, however, be appropriately applied to any marble wlich contains small shells.
It would unnecessarily extend this article to enumerate the local names by which marble-workers in different countries distinguish the various stones which pass under their hands. The quarries of Franco, Belgium, and Italy; not to mention less important localities, yield a great diversity of marbles, and almost each stone bears a distinc; tive name, often of trivial meaning.
America possesses some raluable deposits of marble, which in the castern States have been extensively worked. The crystalline limestones of western Nerv England furnish an abundance of white and grey marble, while a beautiful material fit for statuary work has been quarried near Rutland in Vermont. A grey bird's-eye marble is obtained from central New Iork, and the grejish clouded limestones of Thomaston in Maine have been extensively quarried. Of the rariegated and coloured marbles, perhaps the most beantiful aro those from the northern part of Vermont, in the neighbourhood of Lake Champlain. A fine brecciated marble is found on tho Maryland side of the Potomac, below Point of Rocks. Among the principal localities for black marble may be nientioned Shoreham in Vermont and GlenoFalls in Nem York. In Canada tho crystalline limestones of the Laurentian series yield beautiful marbles.

Turniog to ladia, we find important quarries at Makrana in Rajputana-a locality which is said to have yiclded the marble for the famous Taj Mahal at Agra. In the valley of the Nerbudda, near Jabalpur, there is a lerge development of marble. The white marble which is used for the delicately-pierced screens callcd jolee work is ubtsined from near Raialu, in Ulwar. See Ball's Economic Geology of India, 1882 .
For descriptions of aneient marbles see F. Corsi's treatise Delle Pietre antiche ; and for muarbles in general consult Professor Thult's Building and Ornamental Stones, 1sia.
(F. W. R. ${ }^{\circ}$ )

Marbiefead, a town and port of entry of the United States, ir Essex county, Massachusetts, situated on the coast, 17 miles by rail north-east of Boston, and 4 miles routh-east of Salern, and communicates by two branch liues with thie main line of the Eastern Railway. It is built on a rocky peninsula of aboat 3700 acres in extent, which juts out into Massachusetts Bay, and has a deep, roomy, and nearly land-locked harbour. The fisheries in which Marblehead was once largely engared bave declined; but shoemaking has become an important industry, and the torn is rising into favour as a summer resort. Many of the honses date from the "colonial" period, and one of the churches was built in 1714, but in the summer of 1877 nearly the whole business part of the town was burnt to the ground. The population was 7703 in 1870, and 7467 in 1880.
Marblehenl mas incorporated in 1649. Of the original settlers, a coosiderable number were from the Channel lslands, and their peculiarities of speech continued for a long time to affect the local dialect. As at that period the second town of Massallusetts in wealth and size, Marblehend sent one thousand men to the War of Independence, and its privateers rendered excellent serviee; but its trading prosperity never recovered from the effects of the contest. Elbridge Gerry, viee-presideut of the United States in 1812, was born at Arbllohead; and the tomn is the seene of the grim revenge celebrated, with conslderable poetical licence, in Whittier's Slizpper Irsson's Ritde.

MARBURG, an ancient university town of Prassia, in the province of Hesse-Nassau and district of Cassel, is rery picturesquely situated on the slope of a hill on the right bank of the Lahn, 50 miles to the north of Frankfort-on-the-Main, and about the same distance to the south-west of Cassel. On the opposite bank of the river, which is here spanned by two bridges, lie the euburb of Weidenhausea and the station of the Main-Weser Railmay. The streets of the town proper are oteep aod narrow, and the general clasacter of the architecture is quaint and mediæval. The hill on which the town lies is crowned by the extensive old schloss, a fine Gothic building, the most noteworthy parts of which are the rittersaal (see below), dating from 1277-1320, and the beautiful little chapel. This chateau was formerly the residence of the landgraves of Hesse, afterwards served as a prison, and is now the repository of the historically interesting and valuable archives of Hessc. . The cbief architectural ornament of Marburg is, however, the Elisabethenkirche, a fveritable gem of the purest Early Gothic style, erected by the graud master of the Teutonic Order in 1235-83, to contain the tomb of St Elizabeth of Hungary. The remains of the saint vere deposited in a rich silver-gilt sarcophagus, whick is still extant, and were afterwards visited by myriads of pilgrims, until the Protestant zeal of Landgrave Philip the Generous caused him to remove the body to some unknown spot in the church. The church also contains the tombs of numorous Hessian landgraves and knights of the Tertonic Ordor. The Lutheran church is another good Gothic edifice. datiog mainly from the 15 th century. The townhouse, built in 1512, and sereral fine houses in the Renaissance style, also deserve mention. The university of Marburg, founded by Fhilip the Generons in 1527, was the first university astablished without papal privileges,
and speedily acquired a great reputation throughout Protestant Europe It has a library of 140,000 volumes, and is admirably equipped with medical and other insti. tutes, which form some of the finest modern buildiags in the town. The number of students is now about seven hundred. Marburg also possesses a gymnasium, a "rcalschule," au agricultural school, a society of naturalists, a hospital, a poorlouse, and an extensive lunatic asylum. It is the seat of a district court, and of superintendents of the Lutheran and Reformed churches. Marburg pottery is renowned ; and leather, irou wares, and surgical instruments are also manufactured there. The population in 1880 amounted to 11,225 . The eavirons are very picturesque.
Marbury is first historicaily mentioned in a document of the beginning of the 13 th century, and received its nuunieipal charter fron Landgrave Lonis of Thuringis in 1227 . On his death it became the residence of his wife, Eizabeth of Hungary, who built a hospital there and died in 1231, at the age of twenty-four, woms out with works of religion aod clarity. She was canonized soon after her deatl. By 1247 Marburg had already become the second tomn of Hesse, and in tho 15th and 161h centuries it alternated with Cassel as tho seat of the landgraves. In 1529 the famous conference between Luther and Zwingli on the subject of transubstantiation took place there in the rittersaal of the sehloss. During the Thirty Years' and Seven Years' Wars Starburg suffered eonsiderably from sieges and famine. In 1806, and again in 1810, it was the centre of an ahortive rising against tbe Freneh, in conscquence of which the fortifications of the castlo were destroyed.
Sereral mooogriaphs have been pabilishad ni the conference and untreerity of Saibuirg. A gencral account of the town, with reererences to the most Imports nt

MARBURG, the second town of the Austrian duchy of Styria, is very picturesqucly situated on both banks of the river Drave, in a plain called the Pettauer-Feld, at the base of the well-wooded Bachergebirge. It is the sest of the bishop of Lavant, and of the judicial and administrative authorities of the district, and contains a gymnasium, a "realschule," an episcopal seminary, a normal school, a pomological school, a theatre, and three hospitals. The principal buildings are tho calhedral, the tower of which commands a beautiful vier, and the old castle. Its situation in the midst of a fertile vinc-growing district, connected by the naxigable Drare with Huagary, and by railway with Vienna, Trieste, the Tyrol, and Carinthia, makes it the centre of a considerable traffic in wine and graiu. Its industrial producta are leather, iron and tin wares, liqueurs, and sparkling wine, and it also contains several large cooperages. The extensive workshops of the South Austrian Railway are situated in the suburb of Magdalena, on the right bank of the Drave, and give emplogment to nearly three thousand hands. With the exception of a successful resistance to Matthias Corvinus in 1480-81, the history of the towa presents no notsblo event. In 1880 Marburg contained 17,628 juhabitants, including a garrison of 1600 men. The environs abound in interesting and picturesque points.

## See Fuffs Handbook to Nari̛urg, Gratz, 1847.

MARCANTONIO, or, to give him his full name, Marcantonio Raimondi, is celebrated as the chief Italian master of the art of engraving in the age of the Renaisssuce. The dste of his birth is uncertain, nor is there any good authority for assigning it, as is commouly done, approsimately to the year 1488. He was probably born some jears at least earlier than this, inasmuch as he is mentioned by a contemporary writer, Achillini, as being en artist of repute in 1504. His earliest dated plate, illustrating the story of Pyramus snd Thisbe, belongs to the following year, 1505. Marcantonio received his training in the workshop of the fsmous goldsmith and painter of Bologns, Francesco Raibolini, usually called Francia. "Having more aptitude in design," says Tresari, "than bis master, and managing the fgraver with facility and grace, he made waist-buckles and
many other things in niellu, such being then greatly in fashion, and made them most beautifully, as being in truth mostexcellent in that eraft." The real fame, however, of Marcantonio was destined to be founded ou his attainmeats, not in the goldsmith's art generally, but in that particular development of it which consists of engraving designs on metal plates for the purpose of reproduction by the printiog press. This art was not new in Italy in the days of Mareantonio's apprenticeship. It bard been practised, in a more or less elcnentary form, for not less than forty or fifty years in the workshops of both Tuseany and Lumbardy. A school of cogravers had formed itself at Florence under the inspiration, as it appears, chiefly of Sandro Botticelli; in Lombardy the prevailing influence upon the nascent art had been that of Andrea Mantegna. But hitherto neither the engravers of Florence nor those of the Lombard cities had produced anything comparable fur richness of effect and teehnieal accomplishment to the work done during the same period on the other side of the Alps. The aim of tho Italian eagravers had not hitherto been directed, like that of Sehongauer or Dürer, towards securing such freedom and precision in the use of the burin as should impart to the impressions taken from their engraved plates both a striking decorative effect and a porer of sugcesting to the eye a complex variety of natural objects aud surfaces in light and -shade. The Italian masters had been satisfied with a much more primitive order of effects. They bad been content to omit all accessories and details except the simplest. They had merely drawn with the needle, or dry-point, upon the copper, in just the same way as they were accustomed to draw on paper with the pen or silver point,-taking great pains to get the outlines true aud pure, and indicating shadoms only by means of straight lines rapidly drawn in, or very simple hatchings.

By the beginning of the 16 th century, however, when Mareantonio began to work at engraving along with the other pupils of Fracia, a desire for a more cemplieated kind of effects was already arising among the forioners of the art in Italy. Both backgrounds aod passages of foreground detail were often imitated, inartificially encugh, from the works of the northern masters. Mareantonis himself was among the foremost in earrying out this movement. There exist about eighty engravings which can be referred to the first fire or six years of hais career ( $1505-11$ ). Their subjects are very various, ineluding many of pagan mythology, and some of obsenre allegory, along with those of Cluristian devotion. Tho types of figures and drapery, and the general character of the compositions, bespeak for the most part the inspiration, and sometimes the direct authorship, of that artist as graeeful as he was grave, Francia. But the influence of German example is very perceptible also in the worls of the young Marcantonio, particularly in the landscape backgrounds, and in the endeavour shorm by him to express foran by means of light and shadow with greater freedom than bad been hitherto the practice of the southern schools. Iu a fers subjects also the fignres themselves correspond to a coarse Teutonic, instead of to the refined Italian, ideal. But so far we find Mareantonio only indirectly leaning on the north for the sake of self-improvement. It must have been for the sake of conumercial profe that he by and by prodneed a series of direet counterfeits of northern work. Wo allude to tho eelebrated facsimiles engraved by Marcantonio on copper from Albert 'Dürer's roodeuts. These facsimiles aro sixty-nine in number, including seventeen of Diirer's Life of the Virgin, thirty-seven of his Little Passion on wood, and a number of single pieces. According to Vasari, Dürer's indigaation over those counterfeits was tho cause of his journey to Venice, whero
be is said to have lodged a complaint against Jarcantonio, and iaduced the signoria to prohibit the counterfeiting of his monogram, at any rate, upon any future imitations of the kind. Vasari's account must certainly be mistaken, inasmuch as Dürer's journey to Tenice took place in 1506, and neither of the two series of woodents imitated by Marcantonio was published uutil 1511. The greater part of the desigus for the Lije of the Virgin had, it is true, been made and engraved seven years earlier than the date of their publication; and it is to be remarked that, whereas Mareantonio's copies of the Little Passion leave out the monogram of Dürer, it is inserted in his copies of the Life of the Virgin; whence it would after all seem possible that he had seen and connterfeited a set of impressions of this series at the time when they were originally executed, and before their publication. But the real nature of the trausaction, if transaetion there was, which took place between Dürer and Marcanitonio, we cannot now hope to recover. Enough that the Bolognese engraver evidently profited, both in money and in education of the hand, by his work in imitating in a finer material the energetie characters of these northera woodeuts. He was soon to come under a totally diferent influence, and to turn the experience he had gained to account in interpreting the work of a master of a quite otber stamp. Up till the yea: 1510 Mareantonio bad lived entirely at Bologna, with the exception, it would appear, of a visit or visits to Venice. Very soon afterwards be was attracted for good and all into the cirele which surrounded Raplael at Rome. Where or when he had first made Raphael's acquaintanee is uncertain. His passage to Rome by way of Florence has been supposed to be marked by an engraving, dated 1510, and known as the Climbers, Les Grimpeurs (Bartsch 487), in which he has reproduced a portion of the design of Michelangelo's cartoon of the Battle of Anghiari, and bas added behind the figures a landseape imitated from the then young Dutch engraver Lucas of Leyden. The piece in which he is recorded to bave first tried his band after Raphael himself is the Lueretia (Bartsch 192). From that time until he disappears in the catastrophe of 1527, Mareantonio was almost exelusirely engaged in reproducing, by means of engraring, the designs of Raphael or of his immediate pupils. Raphael, the story goes, was so delighted with the print of the Lucretia that he personally trained and helped Marcantonio afterwards, adding, as some think, a touch of his own here and there to the engraver's work. A print: $\begin{gathered}\text { z } \\ \text { establishment was set up }\end{gathered}$ under the charge of Raph? s colour grinder, Il Baviera, and the profits, in the early age of the business, were shared between the engra ${ }^{-}$- and the printer. The sale soon became very sreat; pupils gathered round about Mareantonio, of nom the two most distinguished were Mareo Dente, known as Marco da Ravenna, and Agostino de' Musi, known as Agostino Teneziano ; and he and they, during the last ten years of Raphacl's life, and for several years following his deatb, gave forth a great profusion of engravings after tho master's work,--not copying, in most instances, his finished paintings, but working up, with the addition of simple baekgrounds and accessories, his first sketches and trials, which often give tho composition in 2. difierent form from the finished work, and are all the more interesting on that account.
The best of these engravings produced in the worlshop of Mareantonio-those, namely, done by his own hand, and especially those done during tho first few years after he bad attaehed himself to Raphael-justly count among the most prized and coveted examples of the art. In them he enters into the genius of bis master, the genius of choiee, of balance, of rhythmical purity and charm; bo loses little of the chastencd science and subtle grace of

Raphael's contours; or of the inspired and miuning sentiment of his faces; while in the parts where he is left to himself-the rounding and shading, the background and landscape-he manages his burin with all the ekill and freedom which he had gaincd by the imitation of northern models, but puts arway the nerthern emphasis and redundance of detail. His work, however, does net long remain at the height marked by picces like the Lucretia, the Dido, the Judgment of Paris, the Poetry, the Philosophy, or the first Massacre of the Innecents. Marcantonio's engraviags after the worka of Raphael'a later years are cold, ostentatious, and soulleas by comparison. Still more se, as is natural, were these which he and his pupils produced after the designs of the degenarate scholars of Raphael and Michelangelo, of a Giulio Romano, a Polidoro, or a Bandinelli. Marcantonio's association with Giulio Romano was the cause of his first great disaster in life. He engraved a series of obscene desigus by that painter in illustration of the Sonnctit lussuriosi of Pietro Aretino, and thereby jncurred the anger of Pope Clement VII., at whose order he was thrown into prison. Marcantonio's ruin was eompleted by the calamities attendant on the saek of Rome in 1527. He had to pay a heary ransom in order to escape from the hands of the Spaniards, and fled from Rome, in the words of Vasari, "all but a beggar." It is said that he took refuge in Bologna; but he never again emerges from obscurity, and all wo know with certainty is that in 1534 he was dead.
MARCASITE. Modern mineralegists, following Haidinger, have restricted this name to those forms of native bisulphide of iron which crystallize in the ortherhombic system, and are aometimes known as "prismatic iron. pyrites." By the older mineralogiats the werd was used with less definite meaning, being applied to all crystallized and radiated pyrites, whether rhombic or cubic. In the last century both minerals were extensively used as ornamental stenes. The marcasites were generally of amall size, faceted like rose diamonds, and brilliantly polished, in which form they were monnted in pins, brooches, shoebuckles, watch-cases, and other ornamiental objects. The lustre of the pelished surface was so brilliant that the atone, although opaque, formed a reugh substitute for diamond; and this lustre was net readily impaired by atmespheric iufluences. Much of the old marcasite jewellery is of so pale a celour as almost to resemble burnished steel; such kinds generally belong to the true modern marcasite, sometimes called "white pyrites"; while the specimens which possess a brassy yellow colour are mestly referable to the cubic species, which is distinctively termed pyrite. Some of the finest pyrites suitable for the jeweller is found in Elba and in Brazil ; but the mineral enjoys a very wide geegraphical distribution, and is common in England, especially in Cornwall, where it is known to the miners as "mundic." By the ancient Peruvians the mincral was extensively used for amuleta, whila the larger pieces wera polished as mirrors; hence marcasite is sometimes called pierre des Incas. The word marcasite, variously written marchasite, marchesite, marquesite, \&c., appeara to bave been introduced from Spain, and is supposed to be of Arabic origin. It is netable that the word was applied by early writers on chemistry to the metai now called bismuth.

MARCELLINUS, St , accordiog to the Liberian catalogue, became bishop of Rome on June 30, 296; his predecessor was Caius or Gaius. Of hia pontificate virtually nothing is known. In the Concilia of Mansi and Hardouin there is an account of a aynod alleged to have been held in 303 at Sinuessa (between Rems and Capua), at which Marcellinus was accused by three of his priests and two of his deacous of having accompanied Diocletian into the temple of Testa and Isis, and there burnt incense. The
narrative goes on to say that ultimately bie confessed his guilt in the presence of the three hundred assembled bishops, but that his condemnation was left to himself, for "prima sedes non judicatur a quoquam." It is further stated in the same account that he and many of the other bisheps were put to death by Diocletian on August 23, 303. The stnry of the syned of Sinuessa was current at an carly date, but was condemned by Augustine and Theoderet as a mere iavention of the Donatists, Ita fabulous character is maintained by Döllinger (Paps $f$ fabeln) and by Hefele (Conciliengeschichte), even ngainst the weighty autherity of the Breviary, where it constitutes a lesson in one of the nocturns for April 26, the commemoration day of Marcellinus. Marcellinus died, accerding to the Liberian catalogie, in 304, after a pontificate of eight years three montha and tweuty-five daya; after a considerable interval he was succeeded by Marcellns, who bas sometimes been identified with him.
marcellus, Marcus Claudiue, Remad warrier, was bern about 268 b.c., and ecrved first in Sicily against Hamilcar. In his first consulship (222) he was engaged in the war against the Insubres, and won the spolia opima by slaying their chief Viridomarus. In 216 he was to have gone as pretor to Sicily with a fleet, but was detained on the newa of the defeat at Cannæ. He went to Canusium and took command of the fragments of the army. He tried without success to prevent Capua going over to Hannibal, but saved Nola. In 214 he was in Sicily as cojsul at the time of the revelt of Syracuse; he stormed Leontini and besieged Syracuse, but the engineering akill of Archimedes repelled his attacks and cempelled him to content himself with a blockade. Himilco landed with a Carthaginian army, and Marcellus failed to prevent their occupying Agrigentum. Taking the opportunity of a feast of Artemis, Marcellus stormed Epipolm; but the old town and the island remained untaken, aa also the fort of Euryalus, which was, however, cut off and seen foll. Meanwhile pestilehce raged among the Carthaginian army encamped outside. After several menths, during which diserder reigned in the terra, he gained a lodgment by the aid of a Spanish officer, and Syracuse was surrendered (212). Marcellus spared the lives of the Syracusans, but carried off their art treasures to Rome. Consul again in 210, he took Salapia by help of the Roman party there, and put to death the Numidian garrison. Precensul in 209, he attacked Haunibal near Venusia, and after a-desperate battle retired to that town; he was accused of bad generalship, and had to leave the army to defcad himself in Reme. In his last cousulship (208), while both consuls were reconnoitring near Venusia, they were unexpectedly attacked, and Marcellus was killed. His succasses have probably been exaggerated, but he was a brave soldier, and the name often given to him, the "aword of Rome," was well deserved. Though plebeians, the Marcelli henceforth took a high positien; they were hereditary patrons of Sicily.

MARCELLUS, M. Claudius, was curule ædile in 56 b.o. with P. Clodius. In 52 he spoke on behalf of Mile at his trial. In 51 he was consul with Ser. Sulpiciua. During his consulship he propesed to remove Cæsar from his army from Narch 49. The decision was, hewever, delayed by Pompeiua's irreselution till February 50 , and then the tribune C. Curio insisted that Pompeius alse should vacate his command; and the enenate voted this by a large majority. But at last, C. Marcellus, cousin of Marcus, and then censul, went to Pempeius with the two censuls elect, and offered him the command of the army against Cæaar. In January 49 M. Marcellus tried to put off deelaring war till an army could be got ready; but when Pompeius left Italy Marcus and his brother Caius followed, while his cousin withdrew
to Liternum. After Plarsalus M. Marcellus retired to Mytilene. He long made no attempt to return, till in 46 the senate appealed to Cxsar. Marcellus accepted this favour reluctantly. Pressed by Cicere, he left Mytilene for Italy, but was mardered in May by Magius Cilo in the Piræus. Marcellus was a thorough aristocrat, but free from the violence which disgraced many of his party.

Marcellus, M. Claudius, son of C. Marcellus and Octaria, sister to Octavianus, was born about 43 b.c. Octavianus adopted him and made him pontifes and senator with pretorian rauk. In 25 he married Julia, daughter of Octarianus, and was looked on as his future successor. Yet in a dangcrous illness Augustus gave his signte to Agrippa. Differences arising, Agrippa was made proconsul of Syria to separate the rivals. In 23 Mareellus, whilo curule redile, fell ill and died at Baiæ. Livia was suspected of having poisoned him to get the empire for her son Tiberius. Great hopes had been built on the youth, and he was celebrated by many writers, especially by Virgil, in a famous passage in Ann. vi.
MARCELLUS I., pope, succeeded Marcellinus, after a considerable interval, most probably in May 307; under Maxentius he was banished from Rome in 309 on account of the tumult caused by the severity of the penances be had imposed on Christians who lad lapsed under the recent persecution. He died the same year, being succeeded by Eusebius.

MARCELLUS II., Marcellus Cervini, cardinal of Santa Croce, a nutive of the Mark of Ancona, was elected pope in the roonn of Julius III. on April 9, 1555, but his feeble constitution succumbed to the fatigues of the conclave, the oxhausting ceremonies connected with his accession, and the ansietics arising from his high office, on the twenty-first day after his election. Ho bad a high reputation for integrity, tact, and ability. His successor was Paul IV.

MARCH, the third month of our modern year, contains thirty-one days. As in the Roman year so in the English ceclesiastical calendar uscd till 1752 this was the first menth, and the legal year commenced on the 25 th of March. The Remans called this month Martius, from the god Mars; and it roceived the name Mlyd Monath, i.e., loud or stormy month, from the Anglo-Saxons. In Frauce March was alsu generally reckoned the first monfh of the yoar until 1564, when, by an ediet of Charles IX., January was decreed to be thenceforth the first month. Scotland followed the example of France in 1599; but in England the clange did not take place before 1752. There is an old sajing, common to both England and Scotland, which represents March as berrowing three days from April; thus the last throe days of March are called the "borrowing" or the "borrowed days." In the Complaynt of Seotland we find "the borial blastis of the thre boroning dais of Marcho bed claisset the fragrant flureise of evyrie fruittree far athourt the feildis." An ancient popular rhyme says :-
" Mareh borrowit from Averill
Three days, and they wero ill ;"
and then there is another rhymo which graphically characterizes these thres "ill" days in detail :-
"Tho first, it sall bo wind and weet,
The next, it sall be snaw and slect;
Tho third, it sall bo sic a freeze,
Sall gar the birds stick to tho trees."
There is an old proverb, " $A$ bushel of March dust is worth a king's ransom." Dry weather in March is generally farourable to the production of grain on clay lands; and heace a "dusty March" portended a plenteous season; white, on the centrary, a "wet March" frequently proved destructive of beth wheat and rye.

The principal fixed days now obsersed and noted in the
course of this month are the folloring:-March Ist, fot David; March 12th, St Gregory; March 17th, St Patrick; and March 25th, Lady Day, one of the established quarterdays in England.
MARCHE, a former proviuce of central France, was bounded on the N. by Berri, on the N. E. by Dourbonnais, on the E. by Auvergne, on the S. by Limousin, and ou the W. by Angoumois and Pcitou, embraciug the greater part of the modern departmeut of Crense, a considerable portion of Haute-Vienne, and fragments of Charente and Indre. It derived its name from the circumstance of its being the "mark" or boundary between Poitou and Berri; it is sometimes referred to as Marcho Límousine. It is first mentioned iu history as a separate fief about the middle of the 10th century, when the countship of Marche was committed by Duke William III. of Aquitania to Boso I count of Limoges and Charroux.

MARCHENA, a torn of Spain, in the province of Seville, lies in a sandy valley, not far from the Corbones, a tributary of the Guadalquivir, about 30 miles east-sonth-east from Seville. It is a station on the line by which Seville and Utrera are connected with Osuna and the Cordova-Malaga line. Formerly it was surronnded with walls and towers, of which some traces still remain. Among the principal buildings is the palace of the dukes of Arcos (descendants of Ponce de Leon), rithin the cnclosure of which is an ancient Moorish building, now the church of Santa Maria de la Mota, with a tower of considerable architectural merit. The ancient parish church of San Juan, rebuilt in 1490, has five navcs. At the eastern end of the torn is a sulphur spring which is a place of considerable resort for the cure of cntaneons diseases. The manufactures of the place are unimportant; there is some trade in the wheat, barley, olives, oil, and wine produced in the neighboarhood. The population in 1877 was 13,768. Marchera (the Castra Gemina of Pliny?) was taken from the Moors by St Ferdinand in 1240, and was presented to Ponce de Leon by Ferdinand IV. in 1309.
marcian (Marcianus), emperer of the East from 450 to 457, was born in a private station of life in Illyria or Thrace, about the jear 391, and at an early age entered the army, where after a considerable term of obscurity he attracted the attention of Ardaburius and subsequently of Aspar, being made military secretary and a captain in the guards. He accompanied Aspar in the ill-fated expedition against Genseric, by whom he was taken prisoner, but soon released. In 450 , haviug in the meantime become tribune and senator, he wont through the form of marriage with Pulcheria, the sister and successor of Theedosius IL, and was crowned on August 25. In 451 be assembled the cecumenise! conne! of Chaleedon, at which the proceedings of the "robber-synod" of Ephesus were annulled, and the Eutychian heresy condemned, a servico to orthodoxy which has greatly endeared his memory to the minds of Catholic historians. In 452 his generals Ardaburius and Maximin respectively gained victories of some importance orer the Arabs near Damascus and over the Blemmyes who had invaded the Thebaid; and after the death of Attila (453) he set about the task of repopulating the extensive tracts which had been derastated by the Huns. He maiutained the peace of his dominions during the troubles which convulsed the Western empire in 455 ; and in 456 his arms were free to repress disturbances in Lazica wlich had been fomented by the Armenians and Persians. He died in 457, and was succeeded by Leo L
ilarcion and tie Marcionte Cuurcies. In the period betreen 130 and 180 A.K the raried and complicated Christian fellowships in the Roman empire crystallized iuto close and mataally exclusire societies:-churches with
fixed coostitutions and crecds, schools with distinctive esoteric doctrines, associations for worsbip with peculiar mysteries, and ascetic sects mith special rules of conduct. Of churchly organizations the most important, next to catholicism, was the Marcionite community. Like the catholic church, this body professed to comprehend everything belonging to Christianity. It admitted all believers without distinction of age, sex, rank, or culture. It was no mere school for tho learned, disclozed no mysteries for the privileged, but souglat to lay the foundation of the Christian community on the pure gospel, the authentic institutes of Christ. The pure gospel, however, Marcion found to be cuery where more or less corrupted and mutilated in the Christian circles of his time. His undertaking thus resolved itself into a reformation of Christendom. Tlis reformation was to deliper Christendom from false Jewish doctrinesby restoring the Pauline conception of the gospel,Paul being, according to Marcion, the only apostle who find rightly understood the new message of salration as delivered by Ckrist. In Marcion's own vicw, therefore, the founding of his church-to which he was first driven by opposition-amounts to a reformation of Christendom throngh a return to the gospel of Christ and to Paul; nothing was to be accepted beynnd that. This of itself shows that it is a mistake to reckon Narcion among the Gnostics. A dualist, we shall see, he certainly was, but he was not a Gnostic. For he ascribed salvation, not to "knowledge" but to "faith"; be appealed openly to the whole Christian world; and he nowhere consciously added foreign elements to the revelation giren through Christ. It is true that in many features his Cbristion system-if we may use the expression-resembles the so-called Gnostic systems ; but the first duter of the bistorian is to point out what Marcion plainly aimed at ; only in the second place have wo to inquire how far the result corresponded with those purposes.

The doctrines of Diarcion and the history of his churches from the $2 d$ to the 7 th century are known to us from the enntroversial works of the catholic fathers. From Justin downwards, almost every eminent church teacher takes some notice of Marcion, while very many write extensive treatises against him. The most important of those which have come down to us are the controversial pieces of Irenæus (in his great rork against heretics), Tertullian (Adv. Marc., i.-จ.), Hippolytus, Pscudo-Origen Adamantias, Epiphanias, and the Armenian Esnik. From these works the conteats of the Marcionite Gospel, and also the text of Paul's epistles in Marcion's recension, can be settled with tolerable accuracy. His opponents, moreover, have preserved some expressions of his, with extracts from his principal work; so that our knowledge of Marcion's riews is in part derived from the best sources.

Marcion was a wealthy shipowner, beionging to Sinope in Pontus. He appears to have been a convert from paganism to Christianity, although it was asserted in later times that bis father bad been a bishop. That report is probably as untrustworthy as another, that he was excommunicated from the church for seducing a virgin. What we know for certain is that after the death of Hyginus (or c. 133 A.D.) be arrived, in the course of his travels, at Rome, and made a handsome donation of money to the local church. Even then, however, the leading features of his peculiar system must have been already thought out. At Rome be tried to gain acceptance for them in the college of presbyters and in the church; indeed be had previously made similar attempts in Asia Minor. But he now encountered such determined opposition from the majority of the congregation that he found it necessary to withdraw from the great church and establish in Rome a community of his own. This was about the year 144. The
new socicty incrensed in the two follnwing decades; and wery soon numerous sister-churches were flourishing it the east and trest of the empire darcion took up bis residence permanently in Rome, but still uadertook journeys for the propagation of his opinions. In Rome he became acquainted with the Syrian Gnostic Cerdo, whose specnlations infuenced the develonment of the Marcionite theology. Still Marcion seems never to have abandoned his design of gaining orer the whole church to his gospel. The proof of this is found, partly in the fact that le tried to cstablish relations with Polycarp of Smyrna, - from whom, to be sure, he got a sharp rebuff,-partly in a legend to the effect that towards the end of his lifo he sought ryarlmission to the church. Such, presumably, was the construction put in after times on his carnest endeavour to unite Christians on the footing of the "pure gospel." When he died is not known ; hut his death can scarcely have been much later than the year 165 .

The distinctive teaching of Marcion originated in a comparison of the Old Testament with the gospel of Christ and the theology of the apostle Paul. Its motive nas not cosmological or metaphysical, but religions and historical. In the gospel befound a God revealed who is goodness and love, aud who desires faith and love from men. This God he could wot discover in the Old Testament; on the contrary, he saw ihere the revelations of a just, stern, jealous, wrathful, and variable god, who requires from his scrvants blind obedience, fear and outward righteousness. Overpowered by the majesty and novelty of the Christia: message of salvation, too conscientious to rest satisfied witl the ordinary attempts at the solution of difficulties, while yet he was in no position to reach an historical insight into the rolation of Christianity to the Old Testament and to Judaism-who indeed was so in thuse day's ?-he beliered that be oxpressed Paul's viow by the hypothesis of two Gods: the just God of the law (the God of the Jews, who is also the Creator of the world), and the good God, the Father of Jesus Cl ain. Paradoxes in the history of religion and revelation which Paul draws out, and which Marcion's contemporaries passed by as utterly incomprehensible, are here made the foundation of an ethico-dualistic conception of history and of religion. It may be said that in the 2d century only one Cliristian-Marcion-took the trouble to understand Pan!; but it must be added that lie misunderstood him. The profound reflexions of the apostle on the radical antithesis of law and gospel, works and faith, were not appreciated in the $2 d$ century. Marcion alone perceived their decisive religious importance, and with them confronted the legalizing, and in this sense Judaizing, tendencies of his Christian contemporaries. But the Pauline ideas lost their truth under his treatment; for, when it is denied that the God of redemption is at the same time the almighty Lord of heaveu and carth, tlie gospel is turned upside down.

The assumption of two gods necessarily led to cosmological speculations. Under the influence of Cerdo, Marcion carricd out his ethical dualism in the sphere of cosmology; but the fact that his system is not free from contradictions is the best proof that all along religious knowledge, and not philosophical, liad the chief value in his eyes. The main outlines of bis teaching are as follows. Man is, in spirit, soul, and body, a creature of the just and wrathful god. This god created man from Hyle (matter), ${ }^{1}$ and imposed on him a strict law. Since no one could keep this law, the whole human race fell under the curse, temporal and eternal, of the Demiurge. Then a higher God, hitherto unknown, and concealed cren from the

[^203]Demiurge, took pity on the wretched, condemued raee of men. He sent His Son (whom Marcion probably regarded as a manifestation of the supreme God Himself) down to this earth in order to redeem men. Clothed in a risionary body, in the likeness of a man of thirty years old, the Son made His appearance in the fifteenth year of Tiberius, and preached in the syaagogue at Caperoaum. But none of the Jewish people understood Him. Even the disciples whom He chose did not recognize His true nature, but nistook Him for the Messial promised by the Demiurge tbrough the prophets, who as warrior and king was to come and set up the Jewish earpire. The Demiurge him. self did not suspect who the stranger was; nevertheless he became angry with Him, and, although Jesus had punctually fulfilled his law, eaused Him to be nailed to the cross. By that act, bowever, he pronounced bis own doom. For the riseu Christ appeared before him iu His glory, and charged him with having acted contrary to his own law. To make amends for this crime, the Demiurge had now to deliver up to the good God the souls of those who were to be redeemed; they are, as it were, purebased from him by the death of Christ. Christ then proceeded to the underworld to deliver the spirits of the departed. It was not the Old Testament saints, however, but only sinuers and malefactors who obeyed His summons. Then, to gain the living, Christ raised up Paul as His apostle. He aloue understood the gospel, and reeognized the difference between the just Gud and the good. Accordingly, he opposed the original apostles with their Judaistic doctrines, and founded small congregations of true Christians. But the preaching of the false Jewish Christians gained the upper hand; nay, they even falsified the evaugelical oracles and the letters of Paul. Marcion himself was the next raised up by the good God, to proclaim once more the true gospel. This he did by setting aside the spurious gospels, purging the real Gospel (the Gospel of Lulke) from arpposed Judaizing interpolations, and restoring the true text of the Pauline epistles. He likewise composed a book, called the Antitheses, in which he proved the disparity of the two gods, from a comparisou of the Old Testament with tho erangelical writings.
On the basis of these writings Marcion proclaimed the true Cluristianity, and founded churches. He taught that all who put their trust in the good God, and His crueifed Son, renounce their allegiance to the Demiurge, and approve themselres by good works of love, slall be saved. But he taught further-and here we trace the influence of the current Gnosticism on Mareiou-that only the spirit of man is saved by the good God; the body, because material, perishes. Aecordingly his ethics also were thoroughly dualistic. By the "works of the Demiurge," which the Christian is to flee, ho meant the wholo "serviee of the perishable." The Christian must shua everything sensual, and especially marriage, and freo himself from tho body by strict asceticism. The original ethical contrast of "good" aud "just" is thus transformed iuto the cosmological contrast of "spirit" and "matter." The good God appears as the god of spirit, the Old Testament god as tho god of matter. That is Gnosticism ; but it is at the same time illogical. For, siace, according to Marcion, the spirit of man is derired, not from the good, but from the just Cod, it is impossible to see why the spiritual should yet be more closely related to the goorl God, than tae material. There is yet another direction in which tho systen ends with a contradiction. Aecording to Marcion, the good God never judges, but everywhere manifests Hisgoodness,is, therefore, not to be feared, but simply to be loved, as a father. But bere the question oceurs, What becomes of tho men who do not believe the gospel? Marcion answers, thie gnod Gou loes tut judge them, but merely removes
them from His presence. Inen they fall under the power of tha Demiarge, who-rewards them for their fidelity ${ }^{\prime}$ No, says Marcion, but on the contrary-punishes them in his hell! The contradiction here is palpable; and at the same time the antithesis of "just" and "good" ultimately vanishes. For the Demiurge now appears as an inferior being, who in reality executes the purposes of the good God. It is plain that dualism here terminates in the idea of the sole supremacy of the good God.

It is not surprising, therefore, that even in the 2d century the disciples of Marcion diverged in several directions. Rigorous asceticism, the rejection of the Old Testament, and the recognition of the "new God" remaiued common to all Marcionites, who, moreover, like the eatholics, lived together in close communities ruled by bishops and presbyters (although their constitution was originally very loose, and sought to avoid cvery appearance of "legality"). Some, however, accepted three first principles (the evil, the just, the good); others held by two, but regarded the Demiurge as the god of evil, i.e., the devil ; while a third party, like Apelles, the most distinguished of Marcion's pupils, saw in the Demiurge only an apostato angel of the good God,--thus returning to monotheism. The golden age of the Marcionite churches falls between the years 150 and 250. During that time they were really dangerous to the great church; for in fact they maiutained certain genuine Cbristian ideas, which the catholie church lad forgotten. From the beginning of the 4th century they began to die out in the West; or rather they fell a prey to Manichrism. In the East also many Marcionites weat over to the Manichæaris; but there they survived much longer. They can be traced down to the ith century, and then they seem to ranish. But it was unquestionably from Marcionite impulses that the new sects of the Pauiicians and Bogomiles arose; and in so far as the western Katharoi, and the antinounian and anticlerical sects of the 13 th century are connected with these ${ }_{1}$ they also may be ineluded iu the history of Marcionitism.
Litcrature.-Baux. Dic Gnosis, 1835 : Möller, Geschichte der Kosmologie in der griechischen kirche, 1860 ; Lipsius, Gnosticisnntrs, 1860; Harnack, Zutr Quellenkritik der Geschiclite des Gnosticismus, 1873, and in the Zcitschrift f. hist. Theol., 18T4; Harnack, De Apullis gnosi monarchica, 1874; Lipsius, Quellen dor altesten Ketzergeschichte, 1875; Mansel, The Gnostic Hercsies, 1875 ; Haruack, Zur Geschichte der Marcionitischen Eirchen (Hilgenfeld's Zeilschrift, 1876). Of the numerous works on Marcion's Gospel and $\Lambda$ postolos lists will be found in any introduction to the New Testument or history of the canon. The following are the ascertained results of criticism :-(I) Marcion was the first to make a canonical collection of New Testament writings; (2) his Gospel is to be regarded as a reconstruction, and not as the basis, of our canonical Gospel of Luke.
(A. HA.)

## marco Polo. See Polo.

MARCUS, the successor of Tope Sylvester I., according to the Liberian eatalogue, had a pontificate of eight nonths and twenty days, from January 18 to October 7,336. Of his character or history nothing is recorded. He was suc, ceeded by Julius I.
míndin, a town of Turkish Kurdistan, the scat of a governor dependent on the pasha of Diarbekir, is situated in $37^{\circ} 20^{\prime} \mathrm{N}$. lat. and $41^{\circ}$. E. long., abont 60 miles south east of Diarbekir, at a height of 3900 feet above the sea. Climbing tho southern side of a steep conical bill (of soft limestone) in such a way that the roofs of the lower tier of houses serve as a street for these immediately above, Márdin presents a very picturesquo anpearance; and on the summit of the hill, which affords an unusually wide view over the Mesopotamian plain, stand the ruins of the famous castle Kaliah Shuhbá (Maride and Marde in Latin, and similarly in Syriac), which, at lenst from the time of the Romans, played au important part in the histury of this region. TLs Azabian geographers characterize it an
iompresnable; and, the apprcackes being extraordinarily steep, narrow, and well arranged for purposes of defence, it was able to offer a 1 r-tracted resistance to the Mongolian conqueror Hulagu, and to the armies of Timur. The castle vas for hundreds of years the residence of princes more or less independent. The town has net much conmerce or industry, but the surrouading country is distirguisked for its excellent water ind general fertility, and more especially fer its fruit trees and melens. As rigards their capacity and the heoesty of their dealings, the people of Mardin do net enjoy the best reputation. They are estimated to number from 15,000 te 18,000 ; in 1870 Professor Socin was informed ia the tomn that there were 600 Jacobite, 300 Cathelic Armenian, 200 Catholic Syrian, 30 Chaldæan, and 57 Protestant families. Among the Jacobites are included a few remnants of the old seet called Shemsiye. See Ritter, Erdkunde von Asien, 2d ed., vel. vii.
MARGARET of Assou, who becane the queen of Henry VI. of England, was bern at Pent à Moussen in Lorraine on the 21 tha $^{1}$ March 1429 . Her father, "the geed King René," os be was called in later years, did not at the Lime of her birth possess any of the pempous titles to which he afterwards laid elaim, but was simply ceunt of Guise, and jounger brother of the existing duke of Anjou. He lad, hewever, married Isabella; daughter of Charles II., dake of Lorraine, and during Margaret's iofant years be succeeded to tro dukedems, first Lorraine and then Anjou, nud afterwards to the crerns of Naples, Sicily, and Jerusalem. Some of these acquisitions, howerer, were no more than empty titles. He had a competitor for the duchy of Lerraine against whom he mas unsuceessful in war, and he was actually a prisoner in the hands of the duke of Burgundy when the death of Joan II. of Naples first made bim nomically a king. He deputed his wife Isabella to go to Naples and take possession of his new kingdom for him, and she took with her while on this enterprise her second sen Louis and her second daughter Margaret, then in her seventl year. René himself obtained his liberty after a time, and follored his rife to Naples, but, being defeated by a rival there alse, he returned to France after more than four years' absence. Before revisiting Lorraine or Anjou, he spent seme tinze in Provence, and there received a proposal for the marriage of Margaret, who had by this time nearly completed her fourteenth year, from Charles, count of Nevers. It was accepted, and the contract mas actually signed; but the marriage ras delayed on account of some disputes abeut the settlement, and next year it was set aside for the more splendid match offered by the king of England.

This was in 1444. The earl, afterwards duke, of Suffelk, had proposed the match to Henry VI. as a means of termioating the long war with France, and securing peace upon a solid basis. Heary fully entered into the scheme, and mas content for se great an object, not only to accept a bride without a dowry, but to give up to King Tené the prorinces of Anjou and Maine. A great embassy was sent over to France, with Suffols himself at its head, to negotiate the matter, and some months later the marriage mas celebrated by proxy at Teurs, Suffelk acting as Henry's representative. In April of the folloring year, 1445, Margaret erossed the Channel, aud was received by Henry on her landing at Porchester. A few days later, 22d April, they were married in Tichfield Abbey, or, as some other authorities say, at Southrick, ${ }^{2}$ and on Sunday

[^204]the 30 th of May Bargaret mas cromned at Westmanster. Suffolk was now high in farour at court, but the pelicy be had pursued of giving up territery for the sake of peace was not likely to be generally acceptable in itsclf, and the events of the next ferw years completed his unpopularity. War broko out again with France in 1449, and in the course of a single year the whole of Normandy was lost to the English. Suffolk mas impeached by the Commens, and the king was persuaded that the best way to protect him was to order bim to quit the country. But he was taken and murdcred at ser, and for some time the country was in a state of fearful anarclly. Margaret's position was now one that required great tact and delieacy. The king's marriage mas already unpepular, and the fact was soon manifcst that his wife possessed far higher abilities and greater porer of geveraing than hinself. This, together with the king's occasional attacks of mental imbecility, was really the great source of her misfortunes. During Henry's intervals of sanity it mas she tho really governed, and unfortunately she gave her whole support to the dukc of Somerset, whose mismanagement abroad had been the immediate cause of the less of Nermandy. The duke of York vainly endeavoured to procure Somerset's remoral, but he mas so protected by the court that the complaints of his aecuser were utterly unheeded, except during the king's periods of total incapacity, when the lerds made York protector. Ciril mar at last broke out, and Scmerset fell at St Alban's in 1455. Party feeliag was bitterly exasperated, and Margaret, as re Learn frem a contemporary French historian, actually instigated an attack on Sandwich by the French out of batrecl to the duke of York. . At length, in 1460, that nobleman openly challenged the crown as his right and obtained from parlimment, with the consent of Henry himself, a settlement of the successien in his farour. But at this time Margaret mas out of the way: The king had been taken prisoner the year before by the Forkists at the battle of Northamptnn, and she had sought refuge in Wales and Scotland along mith her only son Edward, prince of Wales, then seren years old, who mos now disinherited. Margaret's friends toek up her cause iu the north of England, and the duke of York, going to meet them, fell at the battle of Wakefield, 30th December 1460. Margaret naturally endearoured to improre her victory by marching on to London. But Edrard, earl of March, the duke of York's son, defeated her adherents on the borders of Wales, while the earl of Warwick with the king in his custody left London to oppose her. The illdisciplined treops that she brought with her fron the nerth ravaged the country as they rent, and made thenselres generally detested. But they overthrew Warwick's forces at St Alban's (the secend battle fought there in this war), and liberated the king. The earl of Marcl, herrever, seon came np and entered London, where he was proclaımed king by the name of Edrard IV., amid the shouts of the citizens, who had always been devoted to his father. Margaret then thought it advisable to withdraw into the nerth along with Heary and her son, and Edward and Warwick pursued them inte Yorkshire, where the bloedy battle of Tomton (20th March 1461) utterly crushed for the time the hepes of the house of Lancaster. Henry and Margaret fled to Scotland, and surrendered Berwick to the Scots as the price of their assistance. Margaret and her son soon after entered England with a bedy of Scots, who besieged Carlisle, but they were driven back by Loriz Montague. Then King Henry accompanied another invasien into the county of Durham which mas equally unsuccessful. Next year (1462) Nargaret sailed from Kirkcudbright to seek aid in France, and offercd the surrender of Calais to Leuis I.I. if Louis enabled her husband to regain his kiogdom. Louis gave her twe
thousand men under the command of Pierre de Brézé, ant with these shio mado a descent upon Northumberland and took Bamborough and some other castles, which, however, were soon after besieged by King Edward's forces, and after a while recovered. Jing Edward himself, on hearing of her landing, hastened into tho north, on which Margaret took ship to sail for France, but meeting with a storm was driven to land at Derwick and lost all ber treasure. On tho total tailare of this expedition the well-known story is told by a French mriter of her wandering with her son in a forest where she was attacked by robbers, and appealing successfully to the loyalty of one of them to save the son of his king.
Soon after, in April 1463,1 she sailed to Flanders and sought the aid of Philip of Burgundy, but be declined to do more than relicve her poverty, and she retired to a castle in Lorraine, which her father gave her to occupy. Here Sir John Fortescue, who accompanied her into exile, superintended the education of her son, and composed for his beneñt his celebrated treatise on the laws of England. Hero also she apparently remained while her husband made further efforts and met with further defeats, -while he lay concealed, for more than a year, in Lancashire, was taken prisoner, and committed to the Tower. But in 1470, when her old enemy the carl of Warwick, baving rebelled against King Edward, sought a refuge in France, Lonis XI. iadueed her, though with great difficulty, to pardon him and concert measures along with him for her husband's restoration to the throne. The negotiation was cemented by an agreement for the marriage of ber sen, the prince of Wales, to the earl's daughter after the kingdom should be recorered, and so successful was the project that Edward was actually driven into exile, and for a period of six months Henry was agaiu acknowledged as king. But the return of King Edward and the battle of Barnet once more changed the aspect of affairs before Margaret was able to rejoin her husband, and when she at length landed again in England she was defeated and taken prisoner at Tewkesbury. To add to her misery her only son Prince Lidward was butchered after the battle. Four years later, in 1475 , on peace being made between Eugland and Frauce, sho was ransoned by Louis XI., and returned to her native country. Sho died at Dampierro near Saumur in Anjou, on tho 25th of August 1482.

Principal Authoritics.-Bourdigné, Chroniques a'dnjone et du Matne ; Villeneuvo Bargemont, II istoire de Rene d Anjore ; William Wyrcestre, Amals, edited by Heane (with Liber Niger Scaccarii); Fragment relating to Edword IV., ed. Hearno (with Sprott's Chroaicle); English Chronicle, ed. Davies (Camden Society); Pastore Lelters; Rolls of Parlicment; Anchicmes Chronicques d' Engleterse, par Scheen de II avrin, edited by Mlle. Dupont ; Lord Clermont's edition of the Works of Sir Johu Fortescue. Mrs Ilooklian's Lifo and Tines of AFargaret of $A n j o u$ (London, $8 \mathrm{vo}, 1872$ ) is an elaborato and useful work, but not always accurate ond discriminating in the use of authorities.

MARGARET of Austria (1480-1530), duchess of Savoy, and regent of tho Netherlands from 1507 to 1530 , was the daughter of the emperor Maximilian and Mary of Burgundy, and was born at Erussels on January 10, 1480. In 1482 sle was betrothed to Charles, the son of Louis XII. (afterwards Charles VIII. of France); and in 1497 sho was actually married to the infante John of Aragon, who left her a widow a ferv months afterwards. In 1501 sho became the wifo of Philibert II. of Sarey, who only survived until 1504; and in 1507 she was entrasted by Maximilian with the regency of the Netheriands and also

[^205]with the clarge of his grandson Charles. She died at Mechlin in 1530.
Margaret of Austria (1522-1580) duchess of Parmo, and regent of the Netherlands from $\{559$ to 1567, was a natural danghter of Charles V. by Margaret van Gheenst, a F!emist lady, and was bern at Erussels in 1522. In 1533 she was married to Alexander, duke of Florence; and, having been left a widow in 1537, she became thid wife of Ottario l'arnese, duke of Parma, in 1542. Thid union proved an unhaply one, and she fur the first time found a sphere for her somewhat masculine abilities in the Netherlands, which were entrusted to her care by her brother Philip IL of Spain on his departure for the [热iusila in 1559 (see Holland, vol. xii. pr. 74, 75). It was with much reluctance that she resigned the reins of power into the hands of the duke of Alva in 1567 and retired to Italy. Before her death, which occurred at Ortona in 1586, she had tho satisfaction of seeing her son Alexander Farneso appointed to the government which she had occupied some twenty years before.
MARGARET, St, queen of Scotland, born in Hungary about 1040, was a daughter of Edward the Atheling, son of Edmund Ironside ; her mother was Agatha, most probably a niece of Queen Cisela of Hungary and of the emperor Henry II. She accompanied lier father to Eng. land in 1057, and after the Norman Conquest she wes breught (1068) to Scotlaud, where sho became the wife of Malcolm Canmore in the spring of 1069 . She sursived her husband, who died in November 1093, by only a fem days (see Scotland). The clreniclers all agree in depict. ing Queen 3Iargaret as a strong, pure, noble character, who had very great influence over her hasband, and through him over Scottish history, especially in its ecclesiastical aspects. Her religion, which was genuine and intense, was of the newest Roman style; and to her are attributed a number of reforms by which the Church of Scotland was considerably modified from the insular and primitire type which down to her time it had eshibited. Among those expressly mentioned are a change in the manner of observing Lent, which thenceforward began as elsewhere on Ash Wednesday and not as previously on the following Monday, and the abolition of the old practice of ebserving Saturday (Sabbath), not Sunday, as the day of rest from labour (see Skene's Celtic Scotland, book ii. chap. 8). Her sons Edgar, Alezander, and David successively occupied the throne of Scotland; her elder daughter, Natilda, becamo the wife of Henry I. of England in 1101. Nargaret was canonized by Innocent IV. in 1251, and by Clement $\boldsymbol{\sim}$. she was made patroness of Scotland. Her festival (semiduplex) is obserred by the Roman Church on June 10.
MARGARET (1283-1290), known in Scottish history as the "Maid of Norway,", was, through her mother Margaret, who had been married to Eric of Norray, the only grandchild of Alexander III. of Scotland, and was born in Norway in 1283. At the death of her grandfather (1286), while she was still an infant, Edward I. of Eng. land arranged for her betrothal to his son, bat this policy was defeated by her carly death, which took place, it was alleged, in Orkney, as she was on her way to Scotland, in 1200. The circumstances of ber death wero so obscure that doubts were entertaincd in some quarters whether she had not rather been spirited away. About 1300 a woman presented herself in Leipsic as the long-lost queen of Scotland; ultimately, however, she was burut at Bergen as an impostor.
Margaret of Valois. See, Marguerite.
MARGARITA, an island in tho Caribbean Sea, about 8 miles off the coast of Venczuela, constituting along with the lesser islands Blanquilla and Mermanos the new stato of Ninora Esparta. . It has au area of 400 square miles.
consists of tro portions united by a low and narrow isthmus, is cencrally mountainous, and attains its greatest sleration of 4630 feet in Moat Macanao. The pearls from which Margarita takes its name, and which proved a considerable source of wealth in the 16 th aud 17 th centuries, are no longer aought after; but the ordinary fisteries are sctively prosecuted, and since the War of Independence, igriculture, trade, and industry have all greatly improved. Pompatar is the only Larbour, Pueblo del Norte and Pueblo le la Mar being rather open roadsteads. Asuacion, the chief town, contains about 3000 inhabitants. The population of the island was 16,200 in 1807 (about 8000 being whites), and that of the state 30,983 in 1873 .
Discosered by Columbus in 1498, Margarita was in 1524 bestowed: by Charles V. on Marceto Villalobos. In 1561 it was raraged by Loper de Aguirre, a notorious freebooter, and in 1662 the torn of Pompatar was destroyed by the Dutch. Long included in the government of Cumana, Margarita attained admoinistrative independence only in the 18 th century. In the War of Independence the inhabitants made an effective stand against Morillo; and to this they owe the honour of having their island erected into the plate of Nev Spartz.

MARGARITA, St, virgin and martyr, is celebrated by the Clurch of Prome on July 20, but her feast formerly fell on the 13 th, and her story is almost identical, even in the proper names, with that of the Creek St Marina (July 17). She was of Antioch (in the Greek story Antioch of Pisidia), daughter of a priest Edeslus. She lived in the country with a foster mother, scorned by her father for her Christian faith, and kceping sheep. Olybrius the "s preses Orientis" aces her and offers his band as the price of renunciation of Christianity. Her refusal leads to her being cruelly tortured, and after various miraculous incidents, in which a heavenly dove plays a prominent part, ehe is put to death. Women prayed to St Margarita for easy deliverance. It has been shown by H. Usener (Legendens der heiligen Pelagia, Bonn, 1879) that this legend belongs to a group of curious narratires which all have their roat is a transformation of the Semitic Aphrodite into a Cbristiau penitent or saint. Of these legends that of St Pelagla (q.v.) is perhaps the most important. Marina is a translation of Polagia, and both are epithets of Aphrodite as she mas worshipped on the coasts of the Lerant. Pelagia in the legend has Margarito as her second name. The association of the marine goddess with the pearl is obvious, and the images of Aphrodite were decked with these jewels.

MARGATE, a municipal borongh, market-town, and watering-place of Kcnt, England, is situated in the Isle of $\eta$ 'hanet, 4 miles west of North Foreland, and by rail 90 miles east of London, with which it has also in summer daily steam communication by water. The streets of the town are regular and spacious, and there are many grod villas in the suburbs. There is a marine terrace 2500 feet in length, parallel to which there is an esplanade. The pier, 900 feet long, was constructed by. Rennie in 1810. A land-ing-place permitting the approach of ressels at all tides was constructed in 1854, and enlarged in 1876. The church of St John the Baptist, founded in 1050, contains some portions of Norman architecture, the remainder being Decorated and Late Perpendïcular. It possesses several fine brasses and monuments. Among the other pablic buildings. are the nerw town-hall, the market, the assembly rooms, the deaf and dumb asylum, and the royal sea-bathing infirmary, which has lately been much erlarged through the mnnificence of Sir Erasmus Wilson. The old name of Margate was Mereyate, the entrance to the sea. Previous to the last century it was only a fishing village with a small coasting trade, but since then, owing primcipally to its fine atretch of eand, it lias been steadily rising iuto favour as a Fatering-place, and is now one of the most favourite resorts
of the middre classes of London. It reccived municipal privileges in 1857. The population of the municipal borongh ( 384 acres) in 18.1 was 11,905 , and in 1881 it was 15,859

MAPGHithaN, Baber's Margminan, $40^{\circ} 2 S^{\prime}$ N. lat., $71^{\circ} 45^{\prime}$ E. long., now the adininistrative centre of the Russian proriuce of Ferghavs (q.v.), a rery old town, rith high earthen walls and twelve gates, commanded by the fort of Yar Mazar, lies in a beautiful and extraordinarily fertile district of the ame name, irrigated by canals from tho Slalimardán river. The heat in summer is excessive. Population about 40,000 , chicfly Usbeg. The priacipal industry is the production aud manufacture of silk; camels' hair and moollen fabrics are also made. The new Iussian town, planned by Cieneral Skobeleff, is 15 versts distant.

JLARGUERITE de Valois. The name Iarguerite was common in the Talois dynasty, and daring the 16 th century. there were three priucesses, all of whom figure in the political as well as in the literary history of the time, and who have been not unfrequently confonnded. The first and last asc the most important, but all deserve some account.
I. Marguerite d'Angouleve (1492-1549). This, the most celebrated of the Narguerites, bore no less than four surnames. By family she was entitled to the name of Marguerite de Valois; as the daughter of the Count d'Angoulême she is more properly and by careful writers almost invariably.called Marguerite d'Angoulême From her first husband she took during no small part of her lifo the appellation Marguerite d'Alençon, and from her second, Henri d'Albret, king of Navarre, that of Marguerite de Navarre. She was born at Angonlême on the 12 th $\Delta$ pril 1492, and was two years older than her brother Francis I. Slue was betrothed early to Charles, Duke d'Alençon, and married him in 1509. She was not very fortnnate in this first marriage, but her brother's accession to the throne made her, with their mother Louise of Saroy, the most porrerful woman of the kingdom. She became a widow in 1525 , and was sought in marriage by many persons of distinction, includiug, it is said, Charles V. and Henry VIII. In 1527 she married Henri d'Albret, titular king of Navarre, who was considerably younger than herself, and whose character was not faultless, but who seems on the whole, despite slander, to have-botlu loved and valned his mife. Nararre was not reconquered for the couple as Francis had promised, but ample apanages were assigned to Marguerite, and at Nérac and Pau miniature courts were kept up, which yielded to none in Europe in the intellectual brilliancy of their frequenters. Marguerite was at ouce one of the chief patronesses of letters that France possessed, and the chief refuge and defender of advocates of the Reformed doctrines. Round her gathered Marot, Boaaven. ture Desperiers, Denisot, Peletier, Brodean, and many othes men of letters, while she protected Rabelais, Dolet, \&c. For a time her influence with her brother was effectual, but latterly political rather than religious considerations made him discourage Lutheranism, and a fierce persecution was begun acgainst both Protestants aud freethinkers, a persecution which drove Despericrs to suicide and brought Dolet to the stake Narguerite herself, however, was protected by her brother, and her personal inclinations seem to have been rather towards a mystical pietism than towards dogmatic Protestant sentiments. Nevertheless bigotry and the desire to tarnish the reputation of women of lettere have led to the bringing of odious accasations againat ker character, for which there is not the amallest foundation. Marguerite died in 1549. By her first hasband ahe had no children, by her socond a son who died in infancy, and a daughter, Jeanne d'Albret, who became the mother of Henry IV. Althcugh the poets of the time are unwearied
in eelebrating her charms, sne does not, rrom the portrats which exist, appear to have been regularly beautiful, but as to her sweetness of disposition and strength of miud there is universal consent.

Her literary work has not yet been given entirely to the worlh, but tho printed portion of it makes ler a considerable figure in Erench literature, It consists of tho Heptemeron, of porms mntitled Les Margucrites de lo Murgucrite des Princesses, and of I.cters. The Heptemeron, constructed as its name indicates on the lines of the Drcamerons of Bnecaccio, consists of seventy-two alhort storics tald to each other by a company of ladies and gentlemen wha are stopped in the journey homemards from Cauterets by tho swelling of a river. It was not printed till 1558 , ten years after the nuthor's death. Interaal evidence is strongly in favour of 8 m mving bern a joint nork, in which more than one of the men of letters who composed Margucrite's hauschold took part. It is a delightful book, and strongly characteristic of the Freuch Renaissance. The sensuality which characterized the period aplears in it, tut in a less coarse form than in the great work of Rabelais: and there is a poctical spirit which, except in rare instances, is alscht from Pantagrucl. The Lcteres are interesting and good. The Alav'gucriccs consist of a rery miscellaneous callection of pocms, nysteries, farces, devotional poems of coasiderable length, spiritual and miscellancous sougs, \&c. Other poems, snid to be of equal merit, are still unprinted, or have appeared anly in part.
II. The second Mapgoerite (1523-1574), daughter of Frincis I., married the duke of Savoy in 1559. She is notoworthy as having giren the chief impulse at the comrt of her brother Henry II. to the first efforts of the Pléinde.
III. The third Marguerite (1553-1615), called more particularly Marguerite de Valois, was great-niece of the first and niece of the second, being daughter of Henry II. by Catherine de'Medici. She was born in 1553. When very young she became fsmons for her beauts, her lesrning, and the looseness of her conduct. She was married to Henry of Navarre, afterwards Heary [V., on the eve of St 13artholomew's Day. Both husband and wife were extreme esamples of the licentious manners of the time, but they not unfrequently lived tagether for considerable periods, and nearly always on good terms. Later, however, Marguerite was established i ., the castle of Ussoo in Auvergne, and after the ancession of Henry the marriage was dissolved by the pope. But Henry and Marguerite still continued friends; she still bore the title of queen ; she visited Marie de' Medici on. cqual terms; and the kirg freqnently consulted her on important affairs, though his somewhat parsimonious spirit was grieved by her extra vagance. Marguerite exhibited during the rest of her life, which was not a short one, the strange Valois nixture of licentiousness, pious exercises, and the cultivation of art and letters, and died in 1615. She left letters and memoirs, the latter of which are almmirably written, and rank among the best of the 16 th century. She is the "Reine Margot" of ancedotic history and romance.
The best clitions of the works of Narguerite d'Angoulerme are-of the Hepfameron, that af Leroux de Lincy, 3 vals., Paris, 1855 ; of the Lellers, that of Gellin, Paris, 2 vols., 18t2-43; and of the Mrrmucritcs, that of Frank, Paris, 4 vols,: 1.973 ; the Heptemeron is jlso obtsinable in seversl cheap editions. The Mennuircs of Marguerite do Vulais arc containcd in tho collection of . Michanud and Youjoulat, and havo been nublishod separately by Gucssard, Lalanne, Cabacbe, \&c.
(G. S.A.)

MARLA THERESA (1717-1780), archduchess of Austrin, queen of Ilungary and Bohemia, and empress of Germany, was the daughter of the emperor Charles VI. of Austria, by his wifo Elizabeth Christina of BrubswichWolfenbïttel, and was born in Vienna on May 13, 1717. By the Pragnantic Sanction of 1713, a settlement whieh was gusranteed by the principal states of Europe, her father had regulatod the succession in tho imperial family; and in 1724 accordingly, after the death of the archluke Leopold, her only brother, she was publicly declared sole heiress of tlio Austrinn dominions. In 1736 slic ninrried Frances Dtephen of Lorraine, whu in the following year
became grand-duke of Tuscany ; and on Octeber 20, 1740, she came to the throne, her husband (emperor in $1 / 45$ ) being declared co-regent. The cevents of her reign have been briefly summarized under $\Lambda$ Ustra (vol. iii. p. 127129) and liuvgary (xii. 370). She died at Vienns on Noveniber 29,$1 ; 80$. Of sixteen children whom she bore to Francis, ten reached maturity. Her sons were Josep, ha II., who succeeded his father as Holy Roman emperor in $176 \overline{5}$; Leopold, grand-duke of Tuscany, afterwards the emperor Leopold II. ; Ferdinand, duke of Modena; and Maximilisu, elector of Cologne. Of her daughters the best-known is Marie Antoiuette, the wife of Lonis XVI. of France.
MaRIANA, Juan de (1530-1024), a celebrated Spanish historian, was born of obscure parentage at Talavera de la Reina in 1536. He studied at the ubiversity of Alcals and was admitted at the age of seventeen into the Society of Jesus, Where he soon attracted notice by his brilliant talents and extensive acquirements. Called to the Collegium Romanum in 1561, ho there professed theology four years, and reekoned among his pupils Robert Bellarmine, afterwards the famous cardinal. He then passed into Sicily, where ho remained for about two years, and in 1569 he was sent to Paris, where his expositions of the writings of Aquinas attracted large audiences. In 1574 the decline of his health compelled bim to give up teaching, and he obtained permission to return to Spain; the rest of his life was passed at the Jesuits' house in Toledo, in a vigurons literary aetivity which was interrupted only by the molestations to which his too great independenee, liberality; and candour exposed him. He died on February 17, 1624.
His great work, Historix de Picbus Hispanix, first appeared in twenty baoks at Toledo in 1592 ; ton books were subsequently added (1005), bringing the work down 10 the accession of Charles V., and in a still later abstract of eveats the authar completed it to the accession of Philip IV. in 1621. It was so well received that Mariana सas indycerl to translate it into Spanish. The first part of this in some respects new wark (Historic de Espraja) a ppeared in 1601 ; it was completed in 1609, and much enlarged and improved in three subsequent editions which appeared during the translator's lifetime. It has beea frequently reprintel since 1624 , both in Latia and in Spanish; and an English translation by J. Stevens appeared in 1099. Mariana's History is justly esteemed for tho extent of the authar's resenrehes, for tlie gencral accuracy of his acquaintance with the materials at his command, for the sagacity of his reflexious and characterizations, and above all for the merit of his style, which, in its simplicity, vividness, and du'ectucss, has descrvedly been compared to that of Livy. The modern stadent may regret but can hardly blame the credulify with which in too many cases be has without the least attenpt at historical criticism adopted the "reccived traditions of his country." Of the ather works of Marians, the most interesting is his ticatise De Rege ct Regis Institutione, of which the Girst edition, dedicated to Philip III., appeared at Toledo in 1599. In its sixth chapter the question whether it is lawful to overthraw a tyrant is freely discussed and answered in tho affirmative, $-a$ circumstance which brought much popular odium upon the Jesuits, especially after the assassimation of Henry IV. of France in 1610. See Bayle's Dictionncire and IIsllam's Lilcrury History, part ii. chap. iv. A volume entitlerl Tractalus YII. Theolagici el Historici, Pillished by Marinna nt Cologne in 1609, containing in particular a tract "On Mortality and Inimortality," and saother "Do Mutstione Moneter," Whs put upon the Index Expurgatorins, and led to the confinement and pmislment of its author by the Inquisition. During his confinement there was found anong his papers a criticism upen the Jesuits (De lus Finfermedades de la Compañia de Jesus y de sus Rcinedios), which was believed ta have been writtea by him. It was not printed mutil after his death (1025).
MARLAZELL, a village in the duehy of Styria, Austria, with abont 1200 inhabitants, is very pieturesquely situated in the valley of the Snlza, amid the Styriau Alps. Its cutire claim to notice lies in the fact that it is the most frequented sanetuary iu Austria, being visited annually by about 100,000 pilgrims. Tho object of veneration is a miracle-working image of the Virgin, carved in lime-tree wond, and about 18 inches bigh. This was presented to tho place in 1157, and is now reverently enshrined in a
chanel lavishly adorned with objects of silver and nther cosily materials. The large church of which the chapel forms part was erected in 1644 as an expansion of a smaller church built in 1363 by Louis I., king of Hungary, after a victory orer the Turks. It possesses four lofty towers. In the immediate ricinity of Mariazell there is a very large and important iron foundry, formerly worked by Gorernment, but now leased to a company.

Marie antoinette, Josepie Jeanne (17551793), qucen of France, was the fourth danghter of Maria Theresi and the emperor Francis I., and was born on the 2 d November 1755, on the day of the great carthquake at Lisbon, and in the year in which the hereditary policy of enmity between the houses of France and Austria was clanged to an alliance between them. From her earliest gears she was destined by her mother to sustain this alliance, and was educated, with a view to a marriage with a French prince, by the Abbe de Vermond, who was to bave a great influence on ber future life. In 1770 Choiseul negotiated her marriage to the young dauphin, which took place on May 16 with the greatest pomp, but which was boon orershadowed by a terrible accident in Paris at the fête given in henour of the marriage. The dauphine soon found her position very difficult; she was but fourteen, and was intended by her mother to support the Austrian alliance and Choiseul at the court of France. This use of her danghters for political purposes has been recently denied by Von Arneth, the able editor of Maria Thercsa's letters; but a consideration of the leters themselves confirms the idea, which was at the bottom of Marie Antoinette's unpopularity in France, that she was only an Austrian spy in a high position. She had hardly arrived at Paris, when her iriend and the friend of the Austrian alliance, Choiseul, was dismissed from the ministry, and sbe was left alone to stece a difficult course by the advice of the Austrian minister, the Count de Mercy-Argenteau, whose reports of her daily doings to Maria Theresa have been published. In May 1774 Louis XV. died, and Marie Antoinette became queen of France. Through the first years of her reign she played a very important political part, but, except, as in the cases of Poland and the Bavarian succession, when her mother pressed her to maintain the alliance, she chiefly exerted her influence with regard to individuals, not to measures or policies. Thus she effected the dismissal of Turgot, and, by the Abbe de Vermond's advice, the eammons of Loménic de Brienne to the ministry, not from political but from personal motives, and obtained enormous presents for her intimate friends without thinking that they were interested in her for selfish motives of their own. This political role of hers, which ras more than suspected, made her intensely unpopular to the French people, and this feeling mas increased by her social mistakes. Her extraragance in dress and her passion for the card-table had greatly incensed and disgusted ber mother; and, when lee mother's death removed her only frank and bold adriser, she became more estravagant and more frivolous than ever Her passion for play, ber love of amusement, her intimacy rith the Polignacs and their wild and dissipated society, her night visits to masked balls in Paris, and her favours to many officers of her guards and young foreigners at her court were the subject of ribalu conversation in every coterie of Paris. The scandal of the diamond necklace, in which the queen was not to blame, epread her name with infamy all over France as if she had been guilty; and among the people her extravagance was regarded 28 a potent cause of their porerty and want. Such was her unpopularity when the states-general met in May 1789 ; sle was believed to be debauched and dissipated; when her real faults were that she was frivolous and careless of public opinion, Austrian at heart, though queen
of France, nnd opnosea to Necker as she had been to Turgot, and to all the reforms and economies her husband; Bouhomme Louis, mas willing to institute. F'rom July 14 onward Marie Antonette headed the party of reaction and armed opposition to the Revolution, and bccame unrittingly the means of her husband's unpupularity and downfall; for she always had influence caragla to prevent his carrying out the frank, loonest policy of refurm which he desired, but not enough to make him adopt hers in its stead, and is to blame for his vacillations in decisive moments. Left to himself, Louis would, from the beginning of his reign, have been a reforming king like Charles III. of Spain, and the great outureak nigat have passed over. To trace her policy minutely from 1789 to 1793 is made very difficult by the numerous pretended letters of hers which lave been published, and till recently believec? in. She inspired the collection of foreign troops round Paris, contrary to the king's opinion, and thus brought on the taking of the Bastille. She ras present at the bauquact at Versailles which caused the march of the women to Versailles and the transference of the royal fanily to Paris. When there, she still looked forward to undoing all that had becn done, and would never frankly recognize her position. When brought into negotiation with Mirabeau, she refused to trust him or deal frankly with him. Had she done $\mathrm{SO}_{\text {, }}$ she mould probably lave established a strong constitutional government, but she would not have been the self-willed Marie Antuinette. He advised her to go with the ling and rojal fsmily to some provincial capital, declare the royal adherence to all the early acts of the assembly, but declare also that its later acts mere passed under constraiat, and were aull and void; but she must not do tro things-she must not fly towards the frontier, else she would be suspected of seeking foreign aid, and che must not depend on the army but the people. She rould not act while Mirabeau was alire,-she was too iadependent to act hy any one's advice; but when he was dead she did What he had adrised her not to do, fled towards the frontier, and to Bouille's army. The royal family were stopped at Varennes, and brought bsck to Paris, but from that time were regarded as traitors to France. She had yet two more clances. . She might have thrown herself into the hands of Barnave, Duport, and the constitutional party of the coastituent assembly, who were ready to rally round their constitutional king, but she would not trust them or take their advice. When she was at the end of her power, when the Tuileries lad been stormed, and she was in prison, and the repuilic proclaimed, Dumouriez was ready, after his victory of Valmy, to turn lis army on Paris, dissolve the Jacobins, and re-establish the old constitution, but she would not trust him. It was her last chance. When once the republic was proclaimed, it was evident that Louis must die both to cement its foundations and to remore a dangerous centre of reaction; and in January 1793 Marie Antoinette became a widorw, never to the last recognizing that she had sacrificed her husband to her obstinacy and self-will. Harrowing descriptions have been given of her treatment in prison during the fer remsining months of her life, but, though she mas separated from her children, she had every materisl comfort, no less a sum than 1110 livres being spent on her food alone between August and October, at the rate of 15 livres a day. At last her trial came on,- $\&$ mock trial indeed, as all those of the time, for her exccution was determined before she came before the tribunal. Nuch has been said of the shameful charges made against her; but, shameful as they were, they were based on a confession made by her son, which, though probably forced from him and utterly false, was yet put in evidence. The trial was soon over, and on the same day. October 16, 1793, she was quillotined.

It is hard to speak of Maric Antoinotte mith justice: her find ts were caused by her edueation and position rather than her naturn, and she expinted them far more bitterly than was deserverl. She was thoroughly imbued with the imperial and absolutist jilens of Marin Theresa, and hal neither the licart nor the understanting to sympathize with the aspirations of the lower elasses. Iler love of pleasure and of display ruined both her character and her reputation in lier prosperous years, and yet, nfter a careful cxamination of mnny of the libels against her, it may be asserted with confidence that sle was personally a virtuous woman, though always appearing to be the very reverso. Innocence is not always its own protection, and ciremmspoction is as necessary for a queen as for any other woman. Her conduct throughout the Revolntion is heat-rending; we, who live after the troubleil times, ean seo her criors and the results of her pride and her caprice, but at the timo she was the only indisidual of the royal family who could inspire the devotion which is nhways paid to a strong claracter. In tho Marie Antoinette who suffered on the guilhotine we lity, not the pleasure-loving queen, not the widow, who had kept her husband against his will in the wrong conrse, not the woman, who thronghont her married life did not scruple to show her contempt for her slow and heavy but gool-natured and loving king, but the little prineess, sacrificed to state policy, and east uneduented and without a helper into the frivolous court of France, not to be loved, but to be suspected by all around her, and eventually to be hated by the whole people of Franee.

For llres and memelrs of Marie Anteinette before 2SG3, as well as enmravings of her, the student is referred to a complete and caref ul bio-bibllographs, contulned in M. de Lescure's La Fraje Marie Antoinette, Paris, 3863 , This work, however, contains many forged letters, purporting to be hers, and leads to the quastlon of Karie Antoinette's published letters. There can be no doubt that very many fubrications by autograph makers for autograph collectors are published as authentic in D'Hunolstein, Correspondance inélife de Mfarie Antoinefte, Paris, 1864; and In Feniliet des Conches, Louis XII., Marie Antoinetle, el Mfodame Elisabeth, letfres of documents infdites, Paris, 1865 . The falsity of these letters was shown by Professor Von Sybel and by \$1. Geffroy in the Revee des Deux Sondes, and still more cléarly in the latter's appendix to his Gusfove $H / 1$. et la cour de Fronce, Paris, 1867. To atndy Darie Antolnette as she really lived, the student must consulf Von Ameth's numerens publications on her and her mother and brothers, and particularly Armeth and Geffroy, Mavie Anioineite: Correspondance secrète entre Marie-Théretse el le Comte de Mercy-Avgenteau, Paris, 3 vels., 1974 , In which Marie Antoinctte's daily life for ten years, from $1770-80$, is described for ber mother's own eyes. For the affair of the necklace read Carlyle's Essay. For her imprisonment, trlal, and execution, see Campardon'a Tribunal Revolutionnaire, ₹ol. i., and the snme nathor's Mfario Antoinette da la Conciergerie, Paria, 2863.
(II. M. S.)

MARIE DE FRANCE is one of the most iateresting figures in the literary history of the Middle Ages. She is also one of the most mysterious. Nothing is known of her except from her own statements, whicli amount to little more than that her name was Marie and her country France, that she dedicated ono of her works to an unnamed king, and another to a certain Count William. She is mentioned by Denis Pyramus, who was her contemporary, and who says that she was very popular, but gives no particulars. Attempts bave been made to idontify conjecturally tho king and the count,-tho most probable hypotheses boing that the former was Henry III. of England, and the latter William Longsword of Salisbury; that is to say, Marie lived in the first half of the 13th century, and rather towards the beginning than the end of that half. Her work which remains to us is entirely poctical, and by no means inconsiderable in extent. It falls naturally into three divisions. 'The first consists of lais or narrative poems in octosyllabic couplets. There aro fourteen of them, the titles being Gugemer, Equitan, Le Frêne, Le Bisclavarct, Lanval, Les deux amants, Y'venec, Le Laustic (" the Nightingale"), Miton, Le Chaitivel ("the Unhappy One"), Le C'kèvrefcuille, Litiduc, Graelent, L'Épine. The longest of these contains nearly twelve hundred lines; tho shortest only just exceeds a hundred. The term lai is of Breton origin, and is belicved to have had reference originally to tho kind of music to which it was performed. But in Marie it is simply a short romance, gencially of an amatory character. The merits of these poems aro very great. They have much tenderness and delieacy of oxpression, flowing and melodious versef and not a little descriptivo porver. The dialect is decidedly Norman in eharacter, and English words occasiomally occur, but aro invariably explained in Frencl. Some of these poens tere paraphrascl by the lato Mr O'Shaughnessy in his Lays of France (Loudon, 1872 ), but the trauslater indulged to such
an extent in amplification that the effect is sery dissimilar to that of the original. The second division of Mlarie's work is of less peetica: "ut of greater general interest. It consists of an 1 sopet (a gencral term in the Middle Ages for a collection of fables) of one hundred and three fables, of which Maric tells us that Henry Beauclerk translated it from Latin inio English, and that for the love of Count William, "the most valiant of this realm," sho berself rhymed it from English into French. The faoles are exceedingly well told, with a liveliness, elegance of verse, and ingenious aptness of moral which make Marie a worthy forerunner of La Fontaine. The question has been debated whether the great fabulist was acquainted with her work. All that can be said is that, though it is by no means impossible, and from internal evidence not even wholly improbable, it cannot be said to be very likely. The third of Mario's works is a poem of two thousand threc hundred verses, describing the purgatory of Saint Patrick, writter at the request of an unidentified "prudom," or man of worship. Marie has been longer and better known than most of the poets of medieral France, and perhaps she has been relatively a little overvalued; but her positive excellence is very considerable. Her style is a good example of the pure and highly organized language of the 13th century; and despite its great age it can be read by any person acquainted with modern French with a very small expense of attention, and with but slight use of glossaries.
The standard edition of Marie's works is by B. de Roquefort, 2 vols., Paris, 1820.
MARIENBAD, one of the pretticsi and most frequented watering-places on the Continent of Europe, with a station (about $1 \frac{1}{4}$ miles S.E. of the town) on the Kaiser Franz Josephs Railway, lies in a pleasant valley in the district of Tepl, in the north-west of Bohemia, about 18 miles south of Carlsbad, and nearly 2000 feet above the level of the


Flan of Marienbad.
sca. Tho gently-sloping hills which enclose it on all sides execpt tho south are pieturesquely wooded with fragrant pinc forests. The town has au attractive and clean appearance, and is amply provided with buildings for the lodging and amuscment of its thirteen thousand annual visiters, including a theatre and a largo kurhaus. The handsome Roman Catholic ehurch and the tasteful little

English church aro among the chief ornaments of the place. The springs resemble those of Carlsbad, except that they are culd, and contain nearly twice the quantity of purgative salts. The water is used both internally and exteroally, and is deemed efficaeious in disorders of the stomach and other organs, skin diseases, gout, and nervous complaints. About one million bottles are annually exported. The curative appliances of Marieubar also include the use of goats' milk whey, and peat, pine-cone, and gas baths. The climate is healthy and bracing, the mean annual temperature being about $45^{\circ}$ Fahr. The springs of Maricnbad, though previously used by the peasantry of the district, frist came into general notice about the beginning of this century ihrough the instrumentality of Dr Nebr, to whom a monument was erected here in 185\%. They belong to the rich abbey of Tepl, which lies about 9 miles to the enst. The permaneat population of Narienbad mas 2009 at the census of 1880.
MARIENBURG (in Polish, Mallorg), the chief torn of a circle in the district of Dantzic, Prussia, lies 30 miles to the south-east of Dantzic, in a fertile plain on the right bank of the Nogat, a chanoel of the Vistula, here spanned by a bandsome railway bridge and by a bridge of boats. Marieaburg contains a large chemical woolcleaning work and several other factories, carries on a considerable trado in grain, wood, linen, feathers, and brushes, aud is the scat of important cattle, horse, and wool markets. Its educational institutions include a gymosium and a Protestant normal school. In the old market-place, many of the houses in which are built mith arcades in the Italian style, stands a Gothic town-bouse, datiug from the end of the 14th century. The town is also embellished «ith a good statue of Frederick the Great, who added this district to Prussia, and a moaument commemorating the war of 1870-71. The population in 1880 Tas 9559 . Marienburg is chiefly interesting from its having beco for a century and a balf the resideace of the grand masters of the Teutonic order. The large castle of the order here was originally founded io 1274 as the seat of a simple commandery against the ragan Prussians, but in 1309 the headquarters of the grad master were transferred bither from Venice, and the "Marieuburger Schloss" saon became one of the largest and most efrongly fortified buildings in Germany. On the decline of the order in the middle of the 15 th ecntury, the castle passed into the hands of the Poles, by whom it mas allowed to fall into neglect and decay. It came into the possession of Prussia in 1772, and was carefully restored at the beginning of the present century. This interesting and curious building consists of three parts, the Alte or Huhe Schloss, the Mittel Schloss, and the Vorburg. It is built of brick, in a style of architecture peculiar to the Baltie provinces, and is undoubtedly one of the most important secular buildiogs of the Middle Ages in Germany.
Of the numerous monographs published in Germany on the castle of Marienburg, it will suffice to mention here Biisching's Schloss der Deutschcn Rider zu Maricnburg, Berlin, 1828; Voigt's Geschichte ron Jarienlurg, Konigsberg, 1224; and Dergau's Ordmshaupthaus Marienberg, Berlin, 1871.
MARIETTA, a city of the United States, the capital of Washington connty, Ohio, lies oo the right bank of the Ohio, at the mouth of the Muskingum, 85 miles south-cast of Columbus, and is the eastern terminus of the Marietta nnd Cincinnati Railraad, and the southern terminus of the Cleveland and Marietta Railroad. The surrounding country being rich in petroleum, iron, and coal, the city has become the seat of no ioconsiderable industry in the shape of oil-works, iron foundries, and machine-shops, a rolling mill, tanneries, and carriage, car, lucket, aud chair factories. Marietta College, chartered in 1835, and
maintained by voluntary endormment and snbseription, is a flourishing institution, with eight instructors and a library of 25,000 volumes, occupying a fine group of buildings in the midst of, extensive strounds. The population of the city has risen from 3175 in 1850 to $5+11$ in 1880. At the latter date the towaship, which iacludes the rillage of Harmar ( $15 \div 2$ ), contained $\$ \$ 30$ persons.
Marietta, fonnded in 1788 by General Putnam, and naned in honour of Marie Autoinette, is the oldest town in Ohio. It is built on the site of a remarkable group of prehistnric monnments, the largest of which are two enelosnres, resprectively 40 and 20 acres in cxtent, formed by walls from 20 to 30 fect lrond at the base, and still in some phaces 5 and 6 feet high. Sce Squier aud Davis, Ancient Monuments of the Mississippi I'alliy.
Mariette, Auguste Ferdinand Frisçois, elder sou of Francois P. Mariette, advocate and torn-clerk of Bonlogne-sur-Mier, was born in that town on the 1lth of February 1821. Educated at the Boulogne municipal college, he distinguished himself in geometry, physics, chemistry, history, Latin, Greek, and English. He also erinced a remarkable talent for art. In 1839, when but eighteen years of age, he went to England in the capacity of professor of Freach and drawing at a boys' school at Stratford-on-Aron, which occupation be exchanged in 1840 for that of pattern-designer to a ribbon manuiacturer at Coventry. Weary of ill-paid exile, he returoed that same jear to Boulogne, resumed his interrupted studies, and in March 1841 took his bachelor's degree (witia honcurable mention) at Douai. He now became a professor at the college where he had formerly been a studeat, and for some years supplemented his modest salary by giving private lessons, and writing on histarical and archeolegical subjects for various local periodicals. In the meanwhile his cousin, Nestor L'Hôte, the iriend and fellow-traveller of Champollion, died; and upon Auguste Alariette devolved the pious task of sorting the multitudinous papers of the deceased savant. The young man thenceforth became passionately interested in Egyptulogy, devoted himself to the study of hieroglyphs and Coptic, and in 1847 published a Catalogue Analytique of the Esyntian Gallery of the Boulogne Museum. He had now found his vocation, and in 1849 , being appointed to a-subordinate position in the Louvre, left Eoulogoe for Paris. Entrusted shortly after with a Government mission for the purpose of seeking and purclasiog Coptic, Syriac, Arabic,-and Ethiopic MSS. for the national collection, he started for Egjpt in 1850. Soon after his arrival he made his celebrated discovery of the ruins of the Serapeun and the subterraneous catacombs of the Apis-bulls, buried for probably some two thonsanc years under the sands of the Libyan desert (see vol. vii. p. 773). His original mission being abandoned, funds werc now adranced for the prosecution of his researches, and he remained in Egypt for four years, escavating, discovering, aud despatching archrenlogical treasures to the Lourre, of which museum be mas, on his return, appointed an assistant conserrator. In 1858, by permissiou of his own Government, he accepted the position of conservator of Egjptian monuments to the ex-khedive, Ismail-Pasha, aod so remored with his family to Cairo. His history thenceforth becomes a chronicle of unwearicd exploration and brilliant success. The pyramid-fields of Memphis aud Sakkara, and the necropolises of Meydum, Abydos, and Thebes mere raosacked for scpulchral treasures ; the great temples of Denderah and Edfco were disioterred, and, with their tens of thousands of inscriptions and bas-relicfs, restored to the light of day; important excarations werio carricd out at Karnak, Mediact-Llabu, and Deir-elBahari; Tanis (the Zoan of the Bible) was partially explored in the Delta; and even Gebel Darkal in the far Soudan was made to yield monuments of the Ethiopic kings. The Sphin:x was also bared to the rock-level, and the famous
granite and alabaster monument miscalled the "Tcmple of the Sphinx" was discovered. In the meanwhile Mariette, raised successively to the rank of bey and then of pasha, had founded the "Ecole Française d"Egyptologie" and the "Institut Egyptien," and created ab ovo the museum at Bulak, the richost and by far the most interesting Egyptian collection in the world. Honours and orders were shorered upon lim. Poor in purse but rich in fame, he received in 1852 the grand cross of the Legion of Honour and of the Medjidie, in 1855 the Red Eagle (first class) of Prussia, in 1857 the Italian order of SS. Maurice and Lazarus, and in 1858 the Austrian order of Francis-Joseph. In 1873 the Academy of Inscriptions decreed to him the great biennial prize of 20,000 francs, and in 1878 he was elected a membor of the Institute. He was also an honorary member of most of the learned soeietics of Europe. Though of herculean strength and indomitable energy, he was not proof against over-work of all kinds, physical, mental, and official. Prostrated in $187 \%$ by a first attack of the insidious malady from which only death released him, he lingered for a few years, working to the last, and died at Cairo January 19, 1881. His remains, enclosed in an ancient Egyptian sarcophagus chosen by himself for that purpose, are interred within the precincts of the museamgarden at Bulak, facing the contrance to that unrivalled collection which is his own noblest monument.

Of Dariette's numerous and important contributiona to the literature of Egyptology, we may here especially note the following worka, which are not only distinguished for their erudition and accuracy, bnt for the exquisite grace of style with which they aro written:-Le Sírapen de Memphis, folio, 1857 and following years; Dendérah, five folios and one 4 to, $1873-75$; Abydos, two folios and one 4to, 1870-80; Karnak, folio and 4to, 1875 ; Deir. el-Bahari, folio and 4to, 1877 ; Listes géographiques des pylones de Karnak, foliu, 1875 ; Catalogue du Musec de Boulaq, sir editions, 1864-76; Aperç de l'histoire d'Égypte, four editions, 1864-74, \&e. His last, and one of his mest important works,' Les Mastabas de l'Aucicn Empire, text and illustrations facoimiled from the original MSS., folio, is now in courso of oublication, edited by Professor G. Maspero.

MARIGNOLII, Grovanni de', a notable traveller to the far East of the 14th century, born probably prior to 1290, and sprung from a noble family in Florence. The family is long extinct, but a street near the cathedral (Yia de' Cerretani) formerly bore the name of the Marignolli.

In vol. v. pp. 628-29 some account has been given of the extraordinary cpisode of intercourse between Europe and China in the first half of the 14th century. In 1338 there arrived at Avignon, where Benedict XII. held his court, an embassy from the great khan of Cathay, beariug letters to the pontiff from the kian himself, and from certain Curistian nobles of the Alan race in his service. These latter represented that they had been eight years without a spiritnal guide, and earnestly desired one. The pope replied to the letters, and appointed four coclesiastics as his legates to the khan's court. The name of Marignolii, a Franciscan of some repute for learning, appoars, as John of Florence, third on the letters of commission. We know not what became of his colleagues; he was the chief if not the sole envoy who actually went.

The mission left Avignon in December 1338, picked up the Tartar envoys at Naples, and sailed across the Black Sea to Caffa, whence they traveiled to the court of Mohamned Uzbek, khan of the Golden Horde, at Sarai on the Volga. The klan entertained them hospitably during the winter of 1339-10, and then sent them across the steppes to Armalec or Almaligh, the vorthern scat of the honse of Chaghatai, in what is now the proviuce of Ili "There," says Marignolli, "we built a church, bought a piece of ground . . . . sung massos, and baptized several persons, notwithstanding that only the year before the bishop and sis other minor friars had thero undorgone
glorious -martyràom for Christ's salvation." Quitting Almaligh in 1341, they seem to have reached Peking (by way of Kamil or Humi) in May or June 1342. They were well receised by the reiguing khan, the last of the Mongol dynasty in Cuina.
"The grand kaant, when he beheld the great horses (dextrerios) and the pope's preseots, with his letter, and that of king Robert (of Naples) too, with their golden seals, and when he sav us thlso, rejoiced greatly, being delighted, yea exceedingly delighted with everything. ... And when I entered the kaam's sresence, it was in full festival vestments, with a very fine cross carried before me, and candlea aod incense, whilst Crcdo in unum Deum was chaunted, in that glorious palace where he dwells. And when the chaaut waa ended I bestowed a full benodiction, which ha receired with all humility."

An entry in the Chinese annals fixes the year of Marignolli's presentation by its mention of the arrival of the great horses from the kingdom of Fulang (Farang or Europe), one of which was 11 feet 6 inches in length, and 6 feet 8 inches high, and black all over!
Marignolli stayed at Peking or Cambalec three or four years, after which be travelled through eastern China to Zayton or Cuinceew (q.v.), quitting China apparently in December 1347, and reaching Columbum (Kaulam or Quilon in Malabar) in Easter week of 1348. At this place he found a church of the Latin communion, probably founded by Jordanus of Severac, who had been consecrated bishop of Columbum by Pope John XXII. in 1328. Here Marignolli remained sixteen months, after which he proceeded on what seems a must devious voyage. First he visited the shrine of St Thomas near the modern Madras, and then proceeded to what be calls the kingdom of Saba, and identifies with the Sheba of Scripture, but which seema from various particulars to have been Java. Taking ship again for Malabar on his tray to Europe, he* encountered great storms, of which he gires an imaginative account :-

> "The sea as if in flames, and fire-spitting drayons flying by, which, as they passad, slew persons on board the otber junks, whilst ours remained untouched, by God's grace, and by virtue of the Body of Christ which I carried with me, and through the merits of the glorions Virgin and of St Clare."

They found shelter in the little port of Pervilis (Beruwala or Berberyn) in the south-west of Ceylou; but here the legate fell into the hands of "a certain tyrant Coya Jan (Khoja Jahin), an eunuch and an accursed Saracen," who professed to treat him with all deference, but detaiued him four months, and plundered all the gifts and Eastern rarities that he was carrying home. This detention in "Seyllan" enables Marigaolli to give a variety of curious particulars regarding Adam's Peak and other marvels. After this we have only fragmentary notices, showing that his route to Europe lay by Ormuz, the ruins of Babel. Baghdad, Mosul, Aleppo ("where there were many Christians who dressed after the Latin fashion, and spoke a language very near the Freach; at any rate lito the French of Cyprus"), and thence to Damascus and Jerusalen. In 1353 he arrived at Arignon, and delisered a letter from the great Liban to Pope Innocent VI. In the following year the cmperor Charlcs IV., on a visit to ltaly, made Marignolli one of his chaplains. Soon after, the pops mado bim bishop of Bisigmano; but he scems to bave been in no hurry to reside there. He appears to bave accompanicd the emperor to, Prague; in 1356 he is found acting as envoy to the pope from Florence; and in 1357 he is at Bulogna. The know not when he dierl. The last traco of Marignolli is a letter addressed to hin, which was found last century among the records in the Chapter Library at Praguc. The writer is an nnuamed bishop of Armagh, easily identified with Richard Fitz Ralph, a streunons foe of the Franciscans, who had liruken lances in controversy with OckLam and Burleg. The letter implies that aomo intentiou had been intimated from Arignon of seuding

Marignonli to Iranal in connexion with matters then in debate. :The wrath of Fitz Falph is sorely stirred at this, and he brandishes the slinlelah in a style of encrgetic metaphor wery like what we have been used to from like quarters in later days.

Fitz lialph's contemptuous language liad probahly n gookl deal of foundation. The fracmentary notes of Mariguolh's Eastern travels ffertontain most vivid remenbrance anl glaphic descrution, but combincl with an incominent ranity, and an incolerent lapse from one thing to anothel, matched by nothug in hterature but the conversation of M1s Nickleby. They have no clam to be calied a narrative, and it is with no small pans that anythong like a narrative can be pieced out of them. Indeed the mollo 14 wheh whey were clicited curiously illustrates how little mellexal travellers thought of publication. The emperor Charles, instead of urging his claplain to write a history of his vast journeys, set him to the eppugnant task of recasting the anmals of Boliemm ; and he consoled himself by salting the insipinl stuff by interpolations, $d$ propos de bottes, of his recollections of Asiatic travel
Nobody seems to have noticed the work tili 1768, when the chronicle was published in vol. it. of the Afonmenenta Hist. Bohcinire muspuam antchac cdita by Father Gelasius Dobner. But, though Marignolli was thus at last in type, no one seems to have real hin till 1820, when an interesting paper on his travels was publisherl by J. G. Meinert. The late Prolessor Kunstmann of Munich also devoted to the subject one of a series of rery intelli. gent papers on the ecclesiastical thavellers of the Middle Age3. And the whole of the passages bearing on the journey were excerpted, translated, and commented on lv Col. H. Yule in a collection printerl in 1866.
Nonumenta Historica, dic., collegit, \&c., P. Gelasins Dobner a S. Catherina tom. il., Prague. 1768; Seinert, In Abhandl. der K. Dïhn. Gesellsch. der Bissenschatten, Vil.; Kunstmann in Historische Potitische Btailtern vion Phillips und
 Sbaralea, Supplem. et Castigatio ad Scriplores Trium Ordd. S. Franctsci a Nad-
(II. Y.).

MARIGOLD. This name Las been given to several plants, of which the following are the best known:Calcnduia officinalis, $L_{\text {. }}$, the pot-marigold; Tagetes erecta, L., the African marigold; T. patula, L., the French marigold; and Chrysanthemums segetum, the corn marigold. All these belong to the order Compositx; but Caltha pelustris, L., the marsh marigold, is a ranunculaceons plant.
The first-mentioned is the familiar garden plant with large orange-coloured blossoms, and is a native of the meadors of southern Eurone (DC., Prod., vi. p. 451). It is unnisexual, the "ray" florets being female, the "disk" florets male. This and the double variety lave been in cultivation for at least three hundred years, as well as a proliferous form, C. prolifera, or the "fruitful marigolde" of Gerard (IIerball, p. 602), in which small flower-heads proceed from bencath the circumference of the flower. The figure of "the greatest double marigold," C. multiflora maxima, given by Gerard (l.c., p. 600) is larger than most specimens now seen, being 3 inches in diameter. He remarks of "the marigolde" that it is called Calendula "as it is to bo seene to flower in the calends of almost euerie monetli." It was supposed to have several specific virtues, but they are now discredited. "The marigold, that goes to bed wi' the sun," is mentioned by Shakespeare, Winter's Tale, iv. 3.

Tagetes patula, L., and T. erecla, L. (DC., Prod., v. p. [13),othe French and African marigolds, are natives of Mexico, and are equally familiar garden plants, having been long in cultivation. Gerard figures four vorieties of Flos africanus, of the single and donble kinds (7.c., p. 609); bnt they do not appear to be spocifically distinct; indeed Parkinson (Par:, p. 303, 1629) regarded them as one. Besides the aloove species the following have been introduced dater, T. lucuda, Cav., 'I'. signake, also from Mexico, and T. tenuifolia, Cav., from Peru (Hemsley's Handbook of Mardy Trees, \&ic., p. 247).

Chrysanthemum segetum, L., the yellow corn marigold, is indigenous to Great Britain, and is frequent in corn-fields in most parts of Fugland. A decoction of the fresh plant gathered beiome flow ring is acrid, and is suid to be nsefol
mencmally. When uried it has been employed as hay It is also used in Germany for dyeing jellow (Baxter, Brit. Gcn. of Pl., rol. iv. 306). Gerard observes that iu his day "the stalkc and lcaues of Corne Marigolde, as Dioscorides saith, are eaten as other potherbes are."

Caltha prelustris, L., the marsh marigold, the "winking Mary.buds" of Shakespeare ( $C$ ymbl, ii 3 ), is a common Britush plant in uarshy meadows and beside water. It bears cordate leares, the flowers laving a goldea yellow calyx but no corolla, and blossoming in Mareh and April. The flowcr-buds preserved in salted vinegar are a grood substitute for capers. A donble-flowered variety is olten cultivated, and is occasionally found wild (Baster. l.c., vol. ii. 153).

MARINES. With all maritime nations, espceially if they be insular and capable of taking the offensive in war, there must frequently be cases in which naval operations can be supplemented by the landing of a force. The armainent, cquipment, and discipline of tho armies and navies of such nations were ia early days practically alike. But with the introduction of more regular levies and better organization arose the necessity for having on board sLips-of-war an armed body organized to meet the altered condition of things. Sailors were but engaged for periods during which ships were commissioned; and their previons bistory and training did not tend to furnish the material required. Regular armies on shore called for disciplined forces alloat,-that is to say, for marines, or sea soldiers, Who should have the stcadiness of the troops of the line, be accustomed to the peculiar duties of ship life, and he subordinate to the aaval authorities.

Previous to 1664 the British navy had keen manned chiefly by "impress"; but in that year an order in council appeared, authorizing the formation of a furce of 1200 soldiers, in six companics, to be ruised for sea service during the Dutch War. Probably it was recruited from the London Trained Bands, as the Royal Marines, with the 3d battalion of the Grenadier Gnards, the East Kent Regiment, and the Royal London Militia, alone possess thprivilege of marching through the city with colonrs flying and bayonets fixed. Recruits were also obtained from the foot guards; and in 1672 companies of the guards were employed on shipboard. The Army List of 1684 shows for the first time the organized battalion of marines, in H. R.H. the duke of York and Albaray's maritime regiment of foot or "Admiral's Regiment," Which, in that year, mustered on Putney Heath twelvo companics, with a full proportion of officers. This stood third in seniority in the line, and cventually becamo the Coldstream Guarls; the 4th, or "Holland Regiment," which also sent companies to sea, and had like the above regiment been raised by tho City of Lendon, taking its place as 3d or "Old Buffs." Several other maritime regiments were suceessively formed and disbanded, until, in 1702, Queen Anne directed the addition to the army of sir regiments as a marine corps, while six existing regiments were also appointed "for sea service." These were done away with in 1714, three only being retained, as the 30 th, 31 st, and 32 d of the line. Independent companies, for service in the West Indies, were also formed, becoming in 1742 the 40 th foot. In 1739 six fresh regiments were levied, and augmented io 1742 to ten, of 1000 men in ten companies each; while three others were collected in America for colunial duty. Though conimanded by generals aud colonels of the army, they were to be quartered in the neighbourhood of the dockyards at lortsmouth, Shermms, Thatham, leptford, Woolwich, and Plymonth; and the propertion of officers, riz., 100 mon with a captain to twenty with a subaltern, was fixerl for the different elasmes of vossels. No field offierw was embarked unless a full battalion were sent. In

1745 two other battaltons were specially raised for service at Cape Breton, beconing finally the 50 th and 51 st foot; and in 1746 the ten regiments were restored to the arny; taking rank from the 44 th to the 53 d . Previous to their disbandment as marines they hard been partially under the orders of the lord high admiral.

By an order in council of 1755 a force of 5000 men in 50 companies was raised and definitely placed under the riaval authorities. They were to be stationed at Chatham, Portsmouth, and Plymouth, the 4 th or Woolwich division not being added until 1805 ; and this body was gradually increased to 19,000 men in 1762 , but reduced in 1763 to about 4000. Commissions ceased to be purchasable, but exchange with the army was, for a time, sanctioned. Naval admirals and captains wero appointed gencrals and colonels of marines in 1760, in consequence of a representation from the commandants of divisions that there was an insufficient number of field officers "for the discipline of the service." This absurd anomaly existed until 1833, when these useless sinecures were abolished.

The revolt of the American colonies in 1775 led, again, to an increase in the establishment, which by 1783 had reached 25,291 men,-fellowed by a reduction to 4495 ibe ensuing year. So urgent was the demand for marines during the struggle that men were frequently embarked untrained; yet, so popular was the service, they still "recraited better in every part of the island" than the army. Oring to this unwise policy of reduction, the force, on the nutbreak of the Erencl War in 1793, had to be supplemented, as formerly, by companies from the line; and at its conclusion the marine corps again reaclicd a total strength of more than 30,000 men. But there had been differences between the military and naval anthorities as to the employment of soldiers from the army; so that from 1815, when the numbers again fell to about 6000 , there las been a steady increase, until an establishment suitable to the wants of the nary has been fixed. During the long war, morcover, the necessity for the formation of a body of marine artillery had become increasingly apparent. The servioes of marines in this capacity had boen previously demanded during the American War, when they were employed in the half-moon battery and citadel at Mnlifax, and clsewhere in batteries on shore, as some of them had been "trained in the service of great guns" by Lieutenant Gillespie of the Rogal Artillery. By an order in council of the 18th August 1804, thercfore, "in consequence of the inconvenience of embarking the Royal Artillery," it was directed that one company of marine artillery, composed of the most intelligent and experienced officers and men, should be formed at each division to bo emploged for the training of the infantry, so as to embark efricient artillerymen in other vessels besides "bombs." This force suffered a reduction to two companies in 1822 , since which date it also has been steadily increased ; and in 1862 the artillery companies were scparated from tho light infantry and formed into a separate rivision at Fort Cumberland, Portsmouth, whenre tho headyuarters were transferred to Eastney in 1869. In 1869 tho Woolvich division was nbolished, a depôt for the training of recruits being formed at Walmer. At present the Royal Marine force numbers 48 companies of infantry and 16 of artillery, slowing a total force of 2532 artillery and 9862 infantry, at an expendi. ture of $£ 913,456$.

Each division of Royal Marines has a tora fosce of 16 companies, with a colonel comnandant, second commandant, lientenantcolenels, 14 majors, 20 captains, and 42 subalterus, inclusive of the divisional stall" of instructors of gumnery, musketry, \&c. "'he headquarter staff, in London, consista of a deputy and an assistant adjutant-general, \&c.; and llere nre, in addition, three generals, three lieutenant.generals, anul six major-wenernls on the active list. Tbo wea are recruited by special parties; they are cnlisted for
twelve ycars, with pormission to re-engagu for nine more. Als recruits undergo their preliminary traning at Walmer, and ate there drafted to the ses cral divisions, -1 hose who reach a higher standard being allowed to voluntecr for the antillery. The stindard for infantry and artillery, and the system of pay, equipment, pension, and divisional administration, are similar to those of the line and Loyal Artillery respoctively. Ollicers are obtnined by open competition from the pass-lists for contrance to the Military Acadeny, Woolwich, and tho Royal Military College, Sandlurst. The succossful infantry eandidates are drafted to their several divisions, and undergo a course of instruction uader the military instructor to the corps, - those for the artillery receiving a special traiuing for two years at the Royal Naval College, Greenwich.

The Royal Marines, reckoning as part of the naval forces, are accomitel for in the navy estimates; though the mames of the officers appear both in the Army and Nayy Lists. They are particularized in the Army Aet as sulhoct to military law at stated times, scrving on shore under the Act and the regulations in force in the garrisons, where they perform tho same duties as the lami forces. Afloat they are subject to the Naval Discipline Act; and a Narine Mutiny Act was formerly passed anmually for tho "regulation of Her Majesty's Royal Marine forces while on shore," stating that they werc under the dircetion of the lord lighalmirat? \&e. On board ship their duties are of a purely military chatacter, being confined to guard mounting, assisting to man boats for shoro operations, and helping to form the crews for tho heasy guns. Though under the supreme command of the naval nuthoritics, they are only obliged to aid in work on deck, and when lameded are cntirely commanded by their own officers.

The war services of the corps are so mumerons that they can le but briefly referred to. First employed at Cork in 1690, they have been present in nearly all the actions in which the navy has since then been engaged; and botween that date and 1800 they took part in 227 sea tights and 70 important operations on slore. At Gibraltar and Manila, at Belleisle and Bunker's litll, at Negapatanr, the Cape, and Acre, they earned the special commendation of tha leaders, as well as for Lord Howe's victory, and the great sea fights of Camperdown, Cape St Vincent, and thic Nile. Nor were their ensinies baskward in recognizing their worth. At Bellcisle the French, in describing the troops whose valour had been most conspicuons, designated the battalions of marines "les potits grenadiers"; and at Acre General Berthier bore testimony to the conspicuous gallantry of Major Oldlield, who fell in the attack on the fortress. From 1800 to 1815 they sam constant service in 99 coast operations and 142 maval actions. After the landing at Abonkir Bay in 1801 the "Bull Dogs" received higla praise for the way in which they had done their work. At the siege of Gaeta, at losas, and at Santa Maura, the mavines ognin distinguished themselves; and they took part in the decisive batiles at Copenhagen, Trafalgar, San Domincro, and the Dardanelles. Three battalions were also specially brigaded with the line for active service in America and 1lolland in 1813-15. Since that period the marines have slared in the naval actions at Algiws, Navarino, Acre, the Baltic, and Black Sca, and have fought by the side of the land forces at the Cape, in Thilia, Clima, New Zealand, Abyssinia, Ashantee, and Zululand, as also in those numerons petty skirmishes in which the navy has been so repeatedly engaged. In the bombardment of Alexandia (1882), and in the operations that followed it, the corps has again seen service by sea and land. Nor have their services been less important in other cases. Thongls forming frart of the ships' companies, and therefore at times suffering from the same grievances, they have nlways becu faithfut to their trust. In 1797, a leriod of much sedition thronghont the country, all efforta to sliake their allegiance were frnitless, nud the duke of York especially commended their loyalty aml \%eal. Between that year and 1802, after the mutinies of tho Nore, Spithead, and Bantry Bay, of the "Temeraire," "Castor," "Impétueux," "Hermione," "Gibraltar," and "Excellent," the marines were publicly thanked for their derotion.
As part of a slip's company in naval actions, ns a furce landed to assist in coast operations, and as troops acting in concent with the army, the masines have won distinction and the commendation of both naval and military authoritics for two hundred years. The motto of the corps, "Per mare per terman," needs no explanation: the title "Royal" was added in 1802 "for its nany and valied scrvices during the war," and its former fachngs were altered from white to royal blue; it was also in 1820, by an order in conncil, placed next in seniority to the 49th Reginent. In 1827 the globe, surroundell by the laurel wreath, for the sigge of Belleisle, tosether with "Gibraltar," in commemoration of the services jerformed there, was alded by "George IV. In 1855 the infantry branch of the corps became " Night infantry."

Although in the "armed strengths" of the great Europena powers marines and marine artillecy are mentioned, these roop have little in common with those in the Britisli navg, In France their duties are to garrison the five military ports and colonies, and to take part in marine und other wars. In Germuny the maxine
 tended for const defence onlỵ. Iu IHolland, Austria, and ILaly also thoy have a military organization, lut do not form a recognized part of the conplemeuts of sea-quing ships. Amerita alone cimploys marines in the simo mamer as Eng ind ; and they have won, as their British comrades have, the approtation of tho naval authrities and, on ninetuen occasions, the thanks of Congress. Adniral Farragut's opinion that "the marine guard is one of the great essentials of a man-of-war" is corrohorated by that of Admiral Wilkes, who considerel that "marines constituted the great dillicrence between n man-of-war nus a privatcer." Formed in 1775 for tha "publiek defense," they ramk as tho oldest furce in the American service ; and since that time they have shated in land amel sea operations in all parts of the work. In the fanous battles between the "Bonhommo Richard" and "Serapis" in 177\%, and in that between the "Chesapeake" and "Slannon," they displayed brilliant gallantry; nad while on the one hand they at Derne in 1503 first piantel the American flag on a fortress of the Old World, for which exploit "Trapol" is inscribed on their colonrs, they on the other shared in the hard fighting of the Mexican war as well as all the important const actions of the eivil war of 1861-65. A pronosal to incorporate them with the army after the struggle met with universal condemnation from the authorities best nualified to judge of their value. At present they ummer seventy-eight officers anil two thousand men under the command of a conmandant, who ranks as brigadier-general, with Leadquarters at Washington. Their administration, organization, and equipmeat are, as in England, identical with those of the soldiers of the line. They are ealisted for five years, must bo 5 feet 6 inches in height, between eighteen and thirty-five years of age, and able to read and write. The complement on hoarl ship varies from thirteen to fifty-one officers and aien, depending on the rating of the vessel. Their device is a globe resting on an anchor and surmounted by an eagle. "Ever faithful" is the title which Captain Luce, the historian of the force, appropriately applies to them.
(C. C. K.)

Manini, or Manino, Giambatista (1569-1625), Italian poet, was born at Naples ou October 18, 1569. At an carly age he secored the powerful patronage of Cardinal Aldobrandiai, whom he accompanied from Rome to Ravenna nnd Turin. His ungoverned pen and disordered life compelled bim to take refuge from 1615 to 1622 in Paris, where he was favourably recognized by Mary de' Medici. He died at Naples on March 25, 1625. See Italy, vol. xiii. p. 511.

MLILiNUS I. (Marthes II.) succeeded Joha ViII. in the pontificate about the end of December 882. On three separate occasions he had been empluyed by the three popes who preceded him ns legato to Constantinople, his mission in each case having reference to the controversy excited by Photius. Among his first acts as pope were the restitution of Formosus, cardinal bishop of Porto, and the anathematizing of Photius. He died in May or June 884, his successor being Adrian III.

MARINUS IL. (Martinus III.), pope from 942 to 946, was preceded by Stephea IS., and followed by Agapetus II.

MARION, Francis (IT32-1\%95), American general, was boro in 1732 at Winyah, near Georgetown, South Carolina. In I'59-6I lie served as lieutenant in expeditions ngainst the Cherokees, and in 1755 he was elected a member of the proviucial congress of South Carolina. This voted tro regiments of infantry, and Marion was elected captain in the second. He was made lieutenantcolonel after the defence of Fort Moultrie at the entrace of Clarleston harbour \{June 28, 1776\}, and was present at the ūnsuccessful attack on Savannah, September I779. In Augast he joined Gates, but was detached a fer days hefore Gates's defeat at Camden on August IG ; at Nelsou's Ferry, on the 20th, he rescued one hundred and fifty of the prisoners from a strong guard. He soon received a general's commission. Pursued by Tarleton and Wemyss, be was driven to North Carulina, but soou returned. After saccessful skirmishes against superior forces, he formed a camp at Snow's Iland in the midst of the swamps of the Pedee and the Santce. In March 188] he defeated Watson at Black River: Lut manawitice Dosle Lad
destroyed Marion's camp. Iu April Lue and Marion took Furt Wratsou, and in Ja§ Eort Motte. In June Greene de tached Sumter with Jiarion and others to mate an incursion. into the Iow contutry. At Quiuby Marion's men fought well against Coates; aud in August he made a forced march to Parker's Ferry and reseued Colonel Harden, l'ressed by a superior foree. At Lutaw Springs he commanded tho right under Greene. After the I'ritish retreat to Charles. ton, Marion went to an infortant session of the colonial assembly; ou the rery day that he returned to his brignde, February 2 4,1752 , it was surprised and dispersel, Marion arriving too late to recover the day. After tbe war he occupied hinself with farming. He died Jebruary 27, 1795. 1

MARIUNETTES (probably fruas morio, a fool or buffoon), Fistoccisi (from fantizo, a child), or PUPPETs (poupée, a baby or dull), are figures, generally below lifesize, suspended by threads or wires and imitating with their limbs and heads the movemeuts of living persons.

The bigh antiquity of puppets appears from the fact that figures with movable limbs have been discovered in the tombs of Egypt and among the remains of Etruria; they were also common umong the Greeks, from whom they were imported to Rome. Plays in which the characters are represented by puppets or by the shadows of moving figures, worked by concealed performers who deliver the dialogue, are not only popular in India nnd China at the present day, but during several centuries past maintained an importaut position aumong the amusements of the people in most European countries. Gocthe and Lessing deemed them worthy of atteution; and as late as 1721 I.e Sage wrote play's for puppets to perform. Every one remensers in Don Quixote "the curious puppet show, which represcats the play of Melisaudra and Don Gayferos, one of the best shows that has beeu acted time out of mind in this kingdom.v Reference to puppet shows is frequeat in English literature from Chaucer onward. Thus Davenant says:-

> And man in chimney hid to dress
> lappet that acts onir old Queen Bess, And man that, while the prphets ghay, I'lirough nose cxpoundetl what they sas."

The earliest performances in English were drawn or founded upon Bible narratives and the lives of the saints, in the same vein as the "morality" plays which they succeeded. Popular subjeets in the 16 th century were The Prodigal Son nnd Nineve?, with Jonak and the IHhale. And in a pamphlet of I641, descriuing Dartholomew Fair, we read, "IIere a knave in a fool's coat, with a trumpet soudding or a drum beating, inrites you to see his puppets. Here a rogue like a wild woodman, or in an antic shape like an incubus, desires your company to view his metion." In 1G6\% Pepys recorded bow; at Bartholomen Fair, bo found "my Lady Castlemnine at a puppet play, Patient Grizill." Besides I'he Sorrous of Giviselda, other puppet plays of the period were Dick IVrittington, The Vagarics of Merry Andrew, and The IIumours of Bartholumeao Fuir. Powell's noted ararionette slow was the subject of an article in The Tatler, 1709, and again in The Spectator, 1711. The latter refers also to Pinkethman, a "motionmaker," in whose scenes the divinities of Olympus ascended and descended to the strains of music. An iden of the class of representation may be gathered from an adsertisement of Crawley, a rival of Pinkethınan, which sets forth - "The Old Creation of the World, with the addition of Noah's Flood," also several fountains plnying water during the time of the play. The best scene represented "Noab and his family coming out of the ark, with all the animals two by two, and all the fowls of the nir seen ia a prosprect sitting upron trees; likewise aver the ark is the sun rising iu a grorgeous maner; inoreorer a multitude of
angels in a double rank," the angels riuging bells. "Likewise nachines descending from above, double, with Dires rising out of hell and Lazarus seen in Abraham's bosom; besides several figures dancing jiggs, sarabands, and country dances, with the merry conccits of Squire Punch and Sir John Spendall." Yates showed a morjug picture of a city, with an artificial cascade, and a temple,-with mechanical birds in which attention was called to the exact imitation of living birds, the quick motion of the bills, just swelling of the throat, and flutteriog of the wiogs. The puppets were wax figures 5 feet in stature. Toward the end of the 18th century, Flockton's show presented fire hundred figures at work at rarious trades. Brown's Theatre of Arts showed at country fairs, from 1830 to 1840 , the battle of 'Trafalgar, Napolenn's army crossing the Alps, and the narble palace of St Petersburg; and at a still later date Clapton's similar exhibition presented Grace Darling rescuing the crew of the "Forfarshire" steamer wrecked on the Fern lslands, with many ingenious moving figures of quadrupeds, and, in particular, a swan which dipped its head into imitation water, opened its wings, and with flexible neck preeued and trinmed its plumage. In these mechanical scenes the figures, painted upon a flat surface and cut out, commonly of pastcboard, are slid along grooves arranged transversely in front of the set scenery, the actions of logs and arms beiog worked by wires from the bands of persons below the stage, thongh sometimes use is made of clock work.

Marionettes proper, and the dolls exhinited in puppet shows (not including Punch and his conpanion actors), are constructed of wood or of pasteboard, with faces of composition, sometimes of wax; and each tigure is suspended by a number of threads to a short har of wood which is commonly held in one hand of the hidden performer while the finger of his other hand poses the figure or gives action to it by means of the threads. In the mode of constructing the joints, and the greater elaboration with whieh the several parts of the limbs are supported and moved, and especially in the fine degrees of movement given to the heads, marionettes have been so improved as to present very exact imitations of the gestures of actors and actresses, nnd the postures and evolutions of acrobats; and, in addition, ingenious exlnbitors such as Theodon, who introduced many norelties from twenty to thirty years ago, have enaployed mechanical arrangements for accomplishing the tricks of pantomime barlequinado. Arong the puppet personages presented in the small atrect shows are generally inchuded a snilor who dances a hornpipe, a hoop-dancer, a dancer of the Highlaud fling, a wooden-legged pensioner, a vaulter on a pole also balancing two chairs, a clowu playing with a butterfly, $n$ dancing figure without head until the head rises out of the body, gradually displaying an enornously long nock, a juggler tossing gitt balls which, sliding up and down upon tight invisible threads, fall into his hands again, a milk-woman carrying buckets out of which fly white dolls, and a skeleton, seen at first in seattered parts lying about the stame, but picce suceessively flying to piece, tho body first sitting up, then standing, and finally capped by the akull, when the completed fignre begins to dance.
Ombres Chinois aro the slader's of figures projected upon a stretched sheet of thin calico or a gauze acene painted as a transparency. Tho cardhoard flat figures are held belind this screen, illaminated from behind,-the perfermer supporting each figure by a loug wire held in ono hand white wires from all the movablo parts cerminato in rings in which are inserted the fingera of his other hand.
Mariotte, Edme (died 16S:), a celebrated French physicist, was a mative of Burgundy. Ho dived chiefly ncar Dijon as prior of St Martin sous Deaune, and was one of the first members of the Aeademy of Sciences, which was founded at Paris in 1636 . He dicd at Paris May 12, 168.4. The first volume of the IIistoire et Jémoires de iscudémie (1733) contrins many original [mpers by him upon a great variety of plysical eubjects, such, ay the rnotion of fluids, the nature of colour, the notes of tho tumpet, the barometer, the fall of bodies, the recoil of gucz, the freczing of water, icc. His I:ssuis ae Phesique, foar iu number, of which the first three wero pibiished at Paris hetweeu 1676 and 1679. are his most amportant worke,
and form, together with an elaborate qreatise on the percussion of bodies, the first roluane of the OEurrs de Mariotte (2 vols., Leyden, 1717). The sccond of these essays ("De la Nature de l'Air") contains the statement of the law convectiog the pressure and volume of a gas which, though sery gencrally called by the name of Nariotte, was discovered seven years before by Boylc. The fourth essay is a systematic treatment of the nature of colour, with a description of many curious experiments and a discussion of the rainbow, halos, parhelia, diffraction, and the more purely physiological phenomena of colour. The discovery of the blind spot is noted in a short paper in the second volume of his collected works.
maritlife Law. Sce Sea Laws.
MARITIME PROVINCE (Russian, Primorskaya Oulast), a province of the Russian empipe, and part of the generalgovernorsbip of Eastern Siberia, is a strip of territory which extends along the Siberian coast of the Pacific from Corea to the Arctic Ocean, and also includes the peninsula of Kamchatra ( $2 . v$.), the island of Saghalien or Sakhalio, and sereral small islauds scattered along the coast. Its mestern boundary stretches northwards fron the Corean town of Kiughing ( $41^{\circ} 45^{\prime} \mathrm{N}$. lat.) by Lake Khangka and along the Usuri, keeping to the eastward of the lilly tracts and prairies of northern Manchuria; it then follows au irne ginary line mbich runs due north from the mouth of tho Usuri to the bay of Udskoy, separating the province from the lowlands and mountain wildernesses of the Amur province; it next runs along the Stanovoy watershed between the Pacific and the Arctic Ocean, leaving to the west the elevated tracts of the Siberian plateau, and finally it crosses the spurs of this plateau through barren tundras belongiog to Yakutsk, reaching the Arctic Ocean at the Chaunskaya Bay ( $70^{\circ}$ N. lat.). The province has a length of 2300 miles and a width varying from 40 to 420 miles; it covers an area of 730,000 square miles, and exhibits very great varieties of climate, scenery, and population. The northerm part, known as the land of the Clukthees, occupies the north-eastern peninsula of Asia between the Arctic Ocean on the one side and the Scas of Behriog and Okhotsk on the other, and has the character of a barren platean from 1000 to 2000 feet high, deeply indented by the rivers of the Anadyr basin, and by long fiords, such as the Noluchin Bay (the wintering-place of Nordenskjïld's "Tega"), tho Gulf of Anadyr, and the Bays of Penzhina and Ghizhiga, To the norlh this plateau is bordered by a chain of mountains, the highest known within the Arctic circle, sereral summils of which reach a height of $\delta 200$ feet (Nakachinge peak and others), while the promontories by which the Asiatic continent terminates towards Pebring Strait-Serdtzc-kamen, Cape Vostochnyi (tho most easterly point of Asia), and Cape Chukotskiy-have heights ranging from 1000 to 2000 fect. Only lichens and mosses, with a fow dwarf species of Siberian trecs, cover this district, in marked contrast to the rich forests of the corresponding part of Arctic America. The fauna, bowever, is far richer than night have been expected, owing to the migrations of animals nlong the plateaus of Eastern Siberia, which extend in a north castorn direction from the very beart of Asia to Behring Strait. The fauna is further enlarged by a few American birds and mammals, which cross the strait wheo it is frozen. This country, and still more the seas by which it is surrounded, havo been for the last two centuries the paradise of lunters, and bave supplied Siberian trade with its best furs. Entiro species of animals bave been exterminated within this short period; the renowned lluc fox and black sable have acarly disappeared, and the whale, which was hunted a fow Licades ago by lundreds of American vessels, bas becomo very rare, The sea-otter, of which the party of Stcller
killed seven hundred auring its eiglit monlhs' stay on Beliring's [sland, is rapidly becoming extinct, as well as the sea-lion (Otaria stelleri) ; whilst the sca-cow (Rhytina stelleri) was completely estirpated in the course of forty years. Thanks to the care taken by an American company which lias the monopoly of hunting on Behring and Copper lslands, the sea-bear (Otaria ursina), which was likely to ineet with the same fate, is nearly domesticated at present, nud multiplies rapidly, sielding no less than twelve thousand skins per annum. The inhabitants of this region, the Chukchees (Tuski, or Claouktoos), who number no more than 12,000 souls (according to some authorities only 5000 ), seem to have immigrated from the south; their racial characters make them an ethoological link betreen the Mongols of Central Asia and the Indians of America; they are also very nearly akin in their fcatures and customs to the Eskimo. They are subclivided, however, into two distinct brauches, with different customs and languages, Those of the iuterior support themselves by reindeer breeding (herds of ten thousand being not uncommon) and by lunting; whilst those of the coast live by fishing, and are very poor. All travellers who have had dealings with Chukchees speak in the highest terms of the character of the former branch, and of the fraternal feelings shown by them in their mutual relations. The Koryaks (about 5000), who occupy the southern part of this region, are nearly akin to Chukchees. They extena their migrations also to the northern part of Kamchatka. Those of the interior are reindeer proprietors and hunters, and like the Chulchees are quite independent, own no superiors, and live in federations of families. They have firmly resisted Russian conquest; and there are tribes among them which still refuse to pay the yasak (tribute in furs) to the Russian authorities. Their national character is described by travellers as very different from that of the settled Koryaks of the coast, who live in the utmost porerty, and have acquired ricious habits fro.. tieir intercourse with European and American sailors.
The niddle part of the Maritime Province is a natron strip of land ( 40 to 60 miles ride) along the shores. of the Sea of Okhotsk, including the basin of the Ud in the south. This area is occupied by wild mountains, 4000 to 7000 feet high, forming the eastern border of the high plateau of Eastern Siberia. Thick forests of larch clothe the mountains to nearly one-half of their height, as well as the deep valleys, where short streams discharge into the Pacific the water produced by the melting of accumulations of soow and ice (nakipi, naledi). The undulatiog hills of the basin of the Ud, which is a continuation to the southwest, between the Stanovoy and Eureya mountains, of the leep indentation of the Sea of Okhotsk, are covered with iorests and marshes. Only Tunguses visit these inhospitable mountain rildernesses and the bays of the coast, living by lunting or fishing.

The southern part of the province includes tro distinct egions. From the north-eastern extremity of the Bureya, $r$ Little Khingan range, of which the group of the Shantar Islands is a continuation, a wide and deep depression runs routh-westwards to the junction of the Amur and Usuri, and thence to the lowlands of the lower Sungari. It is or the most part less than 500 feet abore sea-lercl.
The Annur, which takes a north-eastern course after reaching these owlands, runs close to their eastern boundary, at the foot of the nountains o: the sea-coast; whilst on its left or western bank it preads into numberless lakes and marshes, large and small, and extensively inund ites the swamps at time of flood. The area on :he right banks of the Amur and Usuri, between these rivers anul :he sea-coast, is occupied by a very little known billy tract consistng of several intricate systems of noountains, usually yepresented on maps as a single range, and know under the "general name of sikhota-alin. The sumnits reach the height of 5150 feet (Golaya Bora peak) and the average elcvation of the few passes is about

2500 feet. There is, howcer, one depression in these mountains, occnpicd by Lake lizi, which may have been at one time an outflow of the Amur to tho sea. The Sikhota-alin mountains are covered with thick impracticable forests, through which a passage can be forced only by means of the batehet. The lowlands and the countless islands of the Amur are covered with a grass vegetation as Juxuriant as that of the forests, and present the same difficulties to the pioncer. Jlerbaceous plants, 7 to 10 feet high, intertwined with numberless elimbing plants, cover the soil with an impenetrablo thicket, and, when destroyed by fire, rapidly grow again to their formor height. The flora and fauus of this region (especially in tho Usuri district) exhibit a striking combination of species of wam elimates with those of subaretic regions; the wild rine elings to tho larch and cedar-piue, and the tiger meets tho bear and the sable. The quantity of fish in the rivers is immense, and in Angust the wide chanals of the Amsrr and Usuri literally swarm with tho ascending salmon. The mountain-wildernesses are risibel by nomadic Tunguses, white the banks of the great rivers are inhabited, besides Russians, by Golds and Orochons, both of Tungusian origin, and the lower Amur by Ghilyaks, elosely allied to tha Ainos of Saghalien. Nanchus and Chines are scattered here and there among the Rus.an ropulation on this right bank of the Usuri.

The best part of the Maritine Province is at its southern extrenity, in tbe ralley of the Suifun river, whieh enters the Pacitic in the Gulf of Peter the Great, and on the sheres of the bays of the southern coast, where new settlements have appeared since this territory was unnexed to Russia in 1860 . But esen here the climate is wery harsl. The warms sea-current of the Kuro-siro does not reach the coasts of siberia, while a cold current, originating in the Sca of Okhatsk, brings its icy water and chilling fogs to the coasts of Saghalicn, anl flows along the Siberian shores to the eastern coast of Corea. The high mountains of the sea-coast and the monsoons of the Chincse Sea contribute to produce in the southern parts of the Maritime Province cold winters and wet summers. Accordingly, at Fladirostok (in the Gulf of Peter the Great), which has the same latitule as Marseilles, the average yearly temperature is only $39^{\circ} \cdot 5$ Fahr, and the harbour is frozen for nearly three months; the Amur and Usari aro frozen in Novenber. Towards the end of summer the moist roonsoons canse heavy rain. fills, wbich destroy the harvests and bring abont such inmondations that even in the tro miles wide clianuel of the Amur the wates within a few days rises more than 15 feet, and covers the lowlands to a breadth of 15 to 20 miles; tha narigation also becomes dangerous for snuall river steatuers and harges, on account of storius from the Chinese Sca. The sen-coast farther north has a continental and arctic climate. it Nikolayersk, temperatures as low as $-41^{\circ} 5$ Fahr. are observed in winter, and as higt as $9 t^{\circ} \cdot 6$ in summer, the a rerage yearly temperature being below zero $(-0.9)$. At $\Delta$ yan ( $56^{\circ} 27^{\prime} \mathrm{N}$. lat.) the average temperature of the year is $25^{\circ} \cdot 5\left(-0^{\circ} .4\right.$ in winter, and $50^{\circ} 5$ in summer), and at Okhotsk ( $59^{\circ} 21^{\prime} \mathrm{N}$. lat.) it is $23^{\circ}\left(-6^{\circ}\right.$ in winter, and $52^{\circ} \cdot 5$ in summer).

Russian settlements occur at interaals throughout the whole of the province, but, with exception of those on the banks of tho Amur and Usuri, and the sonthern ports of the sea-coast, they aro mere cestres of administration. Anadyisk on the Anadyr river, Penzhinsk and Ghizhiga at the heads of bays of the same nanie, A yan on the coast of the Sea of Okhetsk, and Ullskoy Ostrog on the river Ud, all bave played an important part in the conquest of Siberia by Cossacks and merchants; but at present they are only small blockhouses with a few buildings around them, and the seat of local anthoritics; the population of none exceeds two hundrel. Okhotsk, which has given its name to the sea between Kamchatka and the Siberian coast, is one of the oldest towns of Eastern Siberia, having been founded in 1649. Until the acquisition by Russia of the Janchurian sea-const, this port, 700 miles distant from Yakutsk, poor though it is, was an object of special solicitude to the Russian Gorernment for the maintenance of its possessions on the Pacific. It is connected by a bridle path with Yakutsk, and even in 1851-56, during the oonquest of the Amur, all communication with the mouth of the Amnr was by this route. It has now but 210 inhabitants. Nikolayevsk, on the left bank of the $\Lambda$ mur, 23 miles from its mouth, was until lately the capital of the Maritiune Province. Great expectations were formed regarding it when it was founded in 1851. It was provided with machiue-works, foundries, and dockyards, and was proclaimed a frec nort. But the dulticulties of navigation and of communication with the interior, and the complete failure of the governmental colonization of the Amur, made the prosperity of the new Russian port on the Paeific impossible, and the seat of government was transforred to the more central Khabarovka. At present Nikolayevsk has only 3500 inhabitants, nearly all military or offinals, and a few foreign merchants trading cbiefly in groceries and spirits. The port is visited every jear by from twenty to twenty-five ships, importing manufactured and grocery wares to the valne of about $£ 100,000$, and of wines and spirits estimated at $£ 20,000$. "On the banks of the Amur, from Nikolayevsk to the mouth of the Usuri, is a clain of Russian settlements at distances not excceding 25 milcs. Thcir

Sohabitants, free settiers from Inssia, are very badly off no aceount of the difficulties of agriculture in this region, and from the bat selection of sites. Many lave inigrated to the sea-coast, whilst those who still remain are for the most part very poor, and almost every year require to be provided hy Government with cora brought from Transbaikalia. Soliysk ( 1000 inhabitants, of whom 700 are military) is a purely military post. Kluabarovka, on a high promontory at the coufluence of the Anur and Usuri, is the prestent capital of the Maritine Irovinee. It has a settled jopulation of about seven hundred, besides military and officials. A few Russian merclants carry on an active trade in fuss with natives (about $£ 20,000$ a yearl, in silver moncy brought from Russia and sold to Chinese, nual in spirits and groceries. The Russian settlements on the richlt bank of the Usuri are very like those of the Jower Amur. The peasants, irlo have received the naune of Cossaeks, and lave a military organization, with the exception of a fevv settlements on the upper Usuri, are mostly in a wretched condition, and since 1859 have been dependent for food almost every year on Govermment aid. A line of posts and settlements connects the villages of the Usuri with the settlements on the shores of the Gulf of l'eter the Great. This wile gulf, divided into two long bays,-those of Amur and Usmi, which are connected by an inlet called the Eastern Bosphorus, is reyarded as the principal port of Russia on the Pacific, and the town on the inlet has received the name of VJadivostok ("ruler of the East ") : its spacious harbour, very similar to that of Selastopol, has been called the Golden Horn. At present Vladivostok has, home cver, merely the aspect of a middle-sized Russian village. One-half of its 8500 ialabilants are Chiaese and Coreans, the other half being military and officials. All necessaries of life, including ryebreail biscuits, continue to be imported by sea, and every spring, lefore the opening of the navigation, provisions become searec. The trade is in the hands of Chinese, who export stag-horns, seaweed, and mushrooms to a value of about $£ 10,000$ a year, and of Germans, who inport groeeries and spinits ( $£ 218,500$ in 1879). The entranee to the harbour is well-fortified, and the town possesses a machine-work, storehonses, and a station of the Northern Telegraph Company. Other settlements (at the Imperial, Vladimir, and Olga larbours, \&e.) are developing very slowly. Altagether the Russion population of these settlements has stild a provisional character, and has to overeome great ditfienlties before it can become indupemlent of the interior for its means of subsistence. The total population of the Naritime Province is estimated at 20,000 Russians, ( 12,000 military and officials), and at about 37,000 natives; but this $i_{s}$ certainly under the truth. The provinee is made up of one terri-tory-that of the Usuri-and six circles (olkrughi):-Nikolayevsk, Sofiysk, I'etropavlorsk (Kamchatka), Okhotsk, Ghizhighinsk, and Udskoy; the territory of the Usuri is subdivided into five cireles:Usuri, Suifun, Khangka, Avvakumovo, aud Suchan. (P. A. K.)
MARIUPOL, a seaport of Russia, on the northern shore of the Sea of Azoff, at the month of the Kalmius, in the government of Ekaterinoslar, 55 miles west of Taganrog. It is connected by a branch railway with the line between Kharkofl aad Taganreg, and is situated on the highway between the latter town and the Crimea. The place is said to have been jnlabited in remote times under the name of Adamakha; but the present town was built only in 1779 by Greek emigrants from the Crimen who settled on the shores of the Sea of Azoff and on the left bank of the lower Kalmius. Mariupol is the chief town of this district, the 40,000 inhabitants of which are engaged in agriculture, cattle-breeding, and fishing, and sell their produce in the town. In export trade Mariupol ranks next to Taganrog among the ports of the Sea of Azoff; but its harbour is open io the south-east and shallow, tho lino of 11 feet heing $1 \frac{1}{2}$ miles from the shore, with a narrow strip, 12 to 22 feet deep, which allows larger flat-bottomed ships to approach the town, esplecially during south-east winds. like all ports on this sea it is beconing more and more shallow. Mariupol is visited every year by abont 150 forcign ships (about 30,000 tons) and by 700 to 860 coasting vessels ( 65,000 tons), msinly carrying wheat and linseed, as also skins and tallow, from tho Groek district, and from the provinces of Don and Ekatcrinoshav. The importance of the port may iacrease when the mineral riches of the district (enal close to the sea-shore, kaolin, and quartz sand) are exploited. Population, with two suburbs, Marinsk and Karason, 9800

Marius, Caius ( $105-86$ n.c.), is one of the most striking figures in Ruman history. Born the son of a
small farmer at Arpinum (Arpino), the birtliplace also of Cicero, in 155 B.c., he worked bis way up from this humble origin, in spite of the most determined opposition from the senate and the aristocracy, to the highest posic tion in the state, was seven times coasul, aad was spoken of as a third Romulus and a second Camillus. He began life as a soldier, and first saw war in Spain under the great Scipio Africanus, whose grod opinion he won, and so rose from the ranks to be anofficer. But this was not enough to help him forward, on his return to Rome, in sising to those political offices which were iavariably a stepping-stone to the highest military rank. He had, bowever, when about forty years of age, the good luck to marry a great lady, of patrician rank, Julia, the aunt of Julius Cæsar; and, being at the same time a pepular favourite, as a man of plain and simple tastes, and a brave energetic soldier, he was in 115 b.c. elected pretor, which gave him an opportunity of still further showiog his military ability in the thorongh subjugation of the troublesome province of Further Spain (Spain west of the Ebro), ! where a gend oficer was specially wanted to check the marauding raids of a number of wild tribes. But it was in the war with Jugurtha, from 109 to 106 b.c., that be distinctly came to the front as the lieutenant of the consul Quintus Metellus. It wonld seem that his conduct towards his suparior officer was not perfectly straightforward and honourable, as he tried to make the Roman iraders in Africa, and through then the people of Rome, believe that the war was iatentionally prolonged from corrupt motives. Under the circumstances this was comparatively easy, as political feeling was just at this time particularly bitter, and the senate was reputed, not without some good reason, to be venal and corrupt. Already Marius bad achieved some important successes over Jugurtha, and had shown that he was the man to settle a tiresome guerilla war,' and now, when he was a little over fifty, in 107 B.C., he was, amid great popular enthusiasm, elected consul for the first time. In the following year, in conjunction with his future political rival, Sulla, he brought the war to a triumphant issue, and passed two years in his province of Ninmidia, which hic thorougbly subdued and aunexed to Rome's dominion.
By this time Marius was generally recognized as the ablest general of the day, and in face of tho great peril now beginning to threaten Rome from the north of the Alps, where an immense multitude of Cimbri and Teutones were hanging on the borders of Italy, public opinion promptly suamoned him to the chicf command. Two armies had been utterly destroyed in the neighbourhood of the Lake of Geneva, and it seemed as if a repetition of the disaster of Allia in 390 в.c., and the capture of Rome itself, might be not impossible. Marius, out of unpromisiag materials and a demoralized soldiery, organized a welldisciplined army, with which be inflicted on the iaroding hordes tro decisive defeats, the first in 102 b.C. at Aqua Sextix (Aix in the department of Boucles du Rhône, some way north of Marseilles), and the secoud in the following year at Vercelles (Vercelli, about midway between Turin and Milan), the result being that for a period of some centuries liome bad nothing to fear from the northern barbarians. Deservedly indced was Marius elected consul a fifth time, hailed as the "saviour of his country," and honoured with a triumph of uuprecedented splendour.
The really glorious part of his career was now over, and the remainder of his life is associated with the worst cruclties and horrors of civil war, revolution, and proscription. The hidcous strifes of Marius and Sulla bave passed into a proverb. It is indecd a dreadful and monotonous story of bloodshed, but it must be carefully studied if we are to understand the nature of the political changes which had their final derelopment in imperialism. Marius was a
plain, reugh, though very able, soldier, without any of the jutellectual culture which is indivensable to a statesman, nud which the Gracchi, his political aucestors, possessed. As a pelitician he on the wEole failel, theugh almost to the last he had the confideuce of the popular party. But he unfortunately associated himself with low and vulgar slenagegucs, men probably more degraded than the worst of the sematurs and of the aristocracy, and thus, altheugh perbaps he never quite sank to their level, he let himsolf bo guilty of crucl and pertidious acts, which it is hard to ficuncile with the character of a brave man and a bero. He was indeed appointed in SS b.c., after a riot and partial gevolution, to the command in the war in the East with Mithridates, bnt the triumph of Sulla aud the aristocratical party almost immediately afterwards drove him as an putlaw from Rome, and be had to seek safety amid the marshes round Minturnæ (Garigliano) in Latium. Tho Gallic trooper sent by the local authorities to strike off the old man's head quailed, it is said, before the fire of his eye, and Hed with the exclanation, "I cannet kill Cains Marius." Meantime, in the absence of Sulla, who had left Italy for the Mithridatic war, Cinna's sudden and violent revolution had put the senate at the mercy of the popular leaders, and Marius greedily caught at the opportunity of a bloody vengeance, which became in fact a reign of terror in which senators and nobles were slaughtered whelesale. He had himself elected consul, for the seventh time, in fulfiment of a prophecy given to him in early manhood. Thus, full of honours in one sease, but really hated and exccrated, he closed his career, dying in the delirium of fever in 86 B.C., at seventy years of age.

Sarius was not only a great and successful geneml, bat also a great military reformér. A citizen militia was from his time exclanged for a professional soldiery, which had hitherto been as little liked by the Roman people ns it was by our owz ancestors A standing army, their instiucts told them, would be a ready tool of despatisma, apd indeed the changes of which Marius was the auther pared ibe way for the subsequent military imperialism. The Roman soldier was henceforth a man who feese his home in the camp, and who had no trade but war. A great general could hardly fail to become the first and foremost man in the state. Marius, however, hionself did not attempt to overturn the oligarchy, as Cæsar afterwards did, by means of the army, but rather by such expedients as the censtitution seemed to allow, though they had to be backed up by street ricts and mob violence. He failed as a political reformer because the .merchants and the moneyed classes, whom the more statesmanlike Gracchi tried to conciliate, feared that they would themselves bo swept away by a revolation of which the mob and its leaders would be the ultimate controllers. - The farmer's son, the rough blunt soldier, the saviour of his coantry in middle life, and its curse and pest in his old age, had a decided tinge of fanaticism and that vein of superstition which is often allied to such natures. In matters so important as caevassing for the consulship he would be guided by the counsels of an Etrascan soothsayer, and would be accompanied in his campaigns by a Syrian prophetess. The fashionable accemplishments of the day, and the new Greck calture, wère whelly aljen to his taste, and be was thus really disqualified for the political life of his time. When his military career was once eaded, failure and disgrace became a certainty for him.

For the life of Marius our original seurces are a multitude of passages in Ciceno's works, Sallust's Jutgurthan War, the enitomes of the lost books of Livy, Plutarch's Lives, \&c. In Smith's Biographical Dictionary the life is given at great length, and the details stated generally with greataccuracy.' In Mommsen's History of lione, bk. iv. chans. B, 7, 8, a clear picture of the whole period is prescnted to ns ; and Niebulir's Leclurcs on Roman History (Lectures 81-S6) may be consulted with great advantigo.

Martyaux, Pierpe Carlet de Cinmblain de (1688-1763), novelist and dramatist, was born at Paris on the 4th February 1688. His father was a financier of Norman extraction, whose real name was Carlet, but who after tho loose fashion of the period assumed the sarname of Chamblain, and then, finding that others of his class bad chosen the same, superadded that of Marivaux. M. Carlet de Marivaux, howerer, was a man of good reputation, and he received the appointment of director of the mint at Fiom in Auvergne, where and at Limoges the young Pierre was brought up. It is said tlat he develeped literary tastes early, and wroto his first play, the Pèro Prudent et Equitable, when he was only eighteen; it was not, however, published till 1712, when he wns twentyfour. His chief attention in those carly days was paid to novel writiog, not the drama. In the three years from 1713 to 1715 he produced three novels-Les Effets Surprenantes' de la Sympathie, La Voiture Embourbée, and a book which' had tlree titles Pharsamon, Les Folies Romanespues, and Le Don Quichott Moderne. All. these books were in is curious strain, not in the least resombling the pieces which long afterwards were to make his reputation, but following partly the Spanish romances and partly the heroic novela of the preceding century, with a certain intermisture of the marvellous. Then Marivaux's literary ardour toots a new phase. He fell under the influence of La Motte, and thought to serve the cause of that ingenious paradoxer by travestying. Homer, an ignoblo task, which he followed up by performang tho same office in regard to Fénelon. His friendship for La Motte, however, introduced him to the Sercure, the chief newspaper of France, where in 1717 be produced various articles of the "Spectator" kind, which were distinguished by much keennoss of observation and not a little literary skill. It was at this time that tite peculiar style called Marivandage first made its appearance in him. The year 1720 and those immediately following were very important ones for Marivaux ; not only did he produce a comedy, now lost except in amall part, eatitled L'Amour et la Vérité, and another and far better one entitled Arlequin Poli par l'Amour, but he wrote a tragedy, Annibal, which was and deserved to be unsuccessful. Meanwhile his worldly affarls underwent a sudden revolutica His father had left him a comfortable subsistence, but he was persuaded by friends to risk it in the Mississippi scheme, and after vastly increasing it for a time lost all that he had. Eis prosperity had enabled him to marry a certain Mademoiselle Martin, of whom much good is said, and to whom ho was deeply attached, but who died very shortly. His pen now became almost his aole resource. Ho had a connexion with both the fashionable theatres, for his Annibal had been played at the Comédie Fraçaiso and his Arlequin Poli at the Comédie Italienne, where at the time a company who were extremely popular, despite their imperfect command of French, were established. He endeavoured too to tarn his nersspaper practice in the Mercure to more account by, startiog a weekly Spectatear Francais, to whichac was the sole contributer. But his habits were the reverse of methodical ; the paper appeared at the most irregular intervals ; and, thongh it contained some excellent work, its irregularity killcd it. For nearly twenty years the theatre, and especially the Italian theatre, was Marivaux's chiof support, for his pieces, though they were not ill received by the actors at the Français, were rarely snccessful there, The best of a very large number of plays (Marivauxa theatre numbers betreen thirty and forty items) were the Surprise de PAmour (1722), the Triomphe cle Plutus (1728), tho Jeue de PAmour at du Hasard (1730), Les Fausses Confidences (1737), all produced at the Italian theatre, and Le Legs, produced at the Fronch. Meanwhile
he had at intervals returned to both his other lines of composition. A periodical publication called L'rindigent Philorophe appeared in 17.27, and another called Le Cabinet du Philosuphe in 1731, but the same causes which had proved fatal to the Spectuteur prevented these later efforts from succeeding. In 1731 Marivaux published the first two parts of his best and greatest work, Merianne, a novel of a new and remarkable kind. As was usual, how ever, with him when he ventured on any considerable task, he was very slow with it. The eleven parts apmeared in batches at intervals during a period of exactly the samo mumber of jears, and after all it was left unfinished. In 1735 another novel, the Paysun Parvenu, was begun, but this also was left unfinished The year afterwards Marivaux, who was then nearly fifty years of age, was slacted of the Academy. He survived for more than tweuty sears, and was not idle, again contributing occasionally to the Jerrure, writing plays, "retlexions" (which were seldem of much worth), and so forth. He died on the 12th February 1763, aged seventy-five jeara

The nersonal character of Marivanx was eurious and somewhat contradictory, though not without nnalonjes, one of the closest of Which is to be foumd in Goldsmith. He was, however, unlike Goldsmith, at least as brilliant in eunversation as with the fen. He was extremely grod-natured, but fond of saying very severe things, unhesitating in his aceeptance of favours (he drew a regular annnity from Helvectius), but exceodingly tonchy if he thought hinaself in any may slighted. He urus, though a groat cultivator of sensibitite, on the whole decent aut moral in his writings, and was unsparing Iu lis criticism of the rising Philosonhcs. This last circumstance, and perhaps jealonsy as well, made him a dangerous enemy in Voltaire, who lost but fuw opportunities of apeaking disparagingly of him. Not very much is known of his life, though anecdotes of lis sayinge are not uncommon. He had good friends, not merely, is has been said, in tho rich, generous, and amiable Helvetius, but in Madame de Tenciu, in Fontenelle, and oveu in Madarae do Pompadour, who gave him, it is said, a considerahle pension, of the sourco of which he was igoorant. It is even asserted that annoyanco at the discovery of the origin of a bencit which he thought camo direetly from the king hastened his death; and, though this is searcely likely, his extreme seusitiveness is showrn by many stories, one of which carries out in real lifo and almost to the letter Farquhar's fomuus mol as to "langhing consumedly." He had one daughter, who tnok the voil, the duke of Orleans, the regent's successor, furnishing her with her dowry.

We lave no space here for a dotailell criticism of Marivaux's extensive work. The so-called Marivaulage is the main point of importance about $i$, though the best of the comedies have grent merits, aud Mariane is an extremely important step in the legitimate devalopment of the Frencl novel,-legitimate, that is, in opposition to the brilliant but episodic produations of Le Sage. The subject-matter of Marivaus's prouliar style bas been generally and with tolerable exactuess deseriheil as the metaphysic of love-making. His claractars, in a happy plirase of Crehillon's, not only tell each other and the reader everything they linee thought, but everything that they would liko to persuado the inselves that they have thought. Tho atyle closen for this is justly regarled as derived mainly from Foutenelle, and through him from the Precieuses, though there are traees of it cven in La liruyere. It abuses inetaphor somewhat, and delights to turn off a metaphor itsolf in some unexpocted and bizarro fishion. Now it is a faniliay plirase which is used where dignified language would bo expected; now the reverse. In the same critisism of Crebillon"s which has been alrealy quoted oceurs another happy deseription of Mrrivaux's style as being "an introduction to ench other of worls which have never made nequaintance, and which think that they will not get on together," a phrase ns lappy in its innitation as in its satire of the style itself. Yet this fintastic embroidery of languaga haa a certain charin, and suits prrlap:s letter than any other style the aomewhat unreal gallantry and scensibilite whish it describos and exhibits. The author possossed, moreover, both thought and observation, besides eonsiderable command of pathos. Ile is not, and is never any mora likely to be, gonerally popular, but he is one of the anthors in whom those who do like them nure sure to take particular delight.

 Aarianne and the Pauza\& Parwens in two volumes. J. Fleury's Mariuaur ep to
 silojeet.
(G. SA.)

MARI, the traditional namo of the author of tho Second Cospel. The nane arark occurs in sereral books of the New Testament. In the Aets of the Apostlës, rinal. xii.
mention is made of "John whose surname mas Mark," to the house of whose motier, Mary, at Jerusalem, Peter rent when miraculously released from prison. ${ }^{3}$ This Johri Mark went witl Larnabas and Paul on their missionary journey, as far as Perga in Pamphylia, and then, "departing from them, returned to Jerusalem" (Acts xii 25; xiii. 13). His departure was afterwards the occasion of a "shary contention" between Paul and Fiaruabas; the former "thought not geod to take with them him who withdrew from them from Pampliylia, and went not with them to the work"; the latter "took Marls, and sailed away into Cyprus" (Acts xv. 38, 39). On the subsequent history of Mark the Acts of the Apestles are sileut.

The same name Nark uccurs in three Pauline epistles. (1) In Col. iv. 10 the writer enumerates Mark among his fellow-workers, mentioning alsn that he was a nephew (some translate "coasin") of Burnabas, and implring that he was a. Jew (" of the circumcision "). He is evideutly about to send him, in accordance with a previous intimation, on a special mission to the Culossians; but there is noevidence, except the statement of the Copitic subscription to the epistle, to show whether the contemplated journey took place. (2) In Philemon $2 f$ the writer also mentions Mark as one of his fellow-workers, i.e., probably in preaching the cospel during lus imprisonment at lome. (3) In 2 Tim. iv. 11 the writer gives tho charge to Timothy, "Take Mark and bring him with thee, for he is useful to nue for ministering." It is a plausible conjecture that this is a request that Mark might be brought back to Rome after his mission to Colosse.

The same name also occurs in 1 Peter-v. 13, "Jfark, my son." This expression has sometimes been taken literally; but it is more usually naderstood iu a metaphorical sense, as measing that Peter had converted Mark. Those who take "Babylon" in the same passage to mean Rome necessarily infer that Mark was with Peter at Tome; a tradition to the same effect is mentioned in fragnents of Clement of Alexandria, preserved in Eusebius, II. E., ii. 15 ; vi. 14.

The preponderance of patristic and nedieval tradition is in favonr of the hypothesis that the samo person is designated in all these passages of the New Testament. But other hypotheses have found favour, especially among those writers of various schools who have felt a difticulty in understanding how the same person should be an intimate companion at once of St Paul and of St Peter. It has been supposed (1) that the Joln Mark of the Acts is the Mark of the Pauline epistles, but not the Mark of 1 Peter; (2) that the John Mark of the Acts, the Mark of the Panline epistles, and the Mark of 1 Peter are all different; (3) that the John Mark of the Acts is the Mark of 1 Peter, bat not tho Mark of the Iauline epistles. Into the arguments for these several hypotheses it is unnecessary to enter here; they are of course complieated by the prior question of the authenticity and date of the books of the New Testament in which the wame occurs. The most elaborate moderra discussion of the question, which arrives at the conclusion that the first of the three hypotheses just mentioued is the true ono, is contained in the work of SIulini, whose title is given below. But, whether there was ouly one Mark or more than one, there is a general belief, which rests ultimately on the testimony of the presbyter (John) who is quoted by Papias (ap. Eusel., II. E., iii. 39, 15), that the sccond canonical Gospel, or its original, is to be ascribed to the Mark who was the disciple of St Peter.? Of this Mark

[^206]the evangelist, as of other persons whose names are prominent in the New Testaniont, there is a large mass of traditional biography, in which possible fact and obvious fiction are so closcly interworen as not to be easily disentangled, and which would not be warth recording were it not for the later historical associations which have clustercd round it.

Of Sark's birth and country nothing is positively known; the majority of medieval writers state that lee was a Levite; but this is urabably no more than an inference from his supposed relationslip to Barmabas. The Alexandrian tradition scems to have heen that Ie was of Cyrenaun origin; and Severus, a writer of the loth century, adds to this the statement that his lather's name was Aritcobulus, who, with his wife Mary, was driveu from the Pevtapolis to Jerusalem by an invasion of barbarians (Sceverus Aschiman, np. Remadot, IIist. Patri(erch. Alex., 1). 2). In the apocryphal Acts of Barnabas, which profess to be written by him, he speaks of himself as having been furmerly a servant of Cyrillus, the high priest of Zeus, and as having becu baptized at lconimm. The presbyter Jolun, whom Papins quotes, sayss distinctly that " he neither heard the Lord nor acennpanied Him" (ap. Eusebins, l.c.) ; and this nositive statement is fatal to the tradition, which does uot appear until about two hundred and fifty years afterwards, that he was one of the seventy disciples SEpiplanitus, pseudo-Onigen De recta in Deum fide, and thie author of the Paschad Chronicle). Various other results of the tendency to fill up blank names in the gospel history must be set aside ou the same gromid; it was, for example, believed that Mark was one of the disciples who "went back" because of the "harel saying" (pseudo-Hippolyt., De LXX. Apostolis in Cod. Baroee. ap. Jigue, Futrol. Grxc., vol. x. 955); there was an Alexandrian tradition that he was oue of the servants at the miracle of Cana of Galilec, that ho was the "man bearing a pitcher of water" in whose houlse the last supper was prepared, aml that he was also the owner of the house in which the disciples met on the evening of the resurrection (Renandot, l.c.); and eveu in modern times there has been the conjecture that he was the "certain young man" whe "fled naked" from Gethsemane, Dark xiv. 51, 52 (Olshausen).

A tradition which was widely diffused, and which is nat in itself improbable, was that he afterwards preached the gospel and presided over the elurch at Alexandria (tho ealliest extant testimony is that of Eusebius, $I I . E$., ii. 16,1 ; ii. 24 ; for tho fully-developed legend of Iater timies see Symiean Mctaplirastes, Fila S. Marci, and Eutyehius, Origincs biclcsix Alcxcendrina). There was anotber, though perhaps not incompatible, tradition that he preached the gospel and presided over the elurchat Aquileia in North ltaly. Tbe earliest testimony in favour of this tradition is the vague statement of Gregory of Nazianzus that Mark preacled in Italy, but its existence in the 7 th century is shown by the fact that in 629 A.D. IIeraclius sent the patriarchal clair from Alexandria to Grado, to which eity the patriarchate of Aguileia had been then transferred (Chron. P'atriarch. Gradens . ap. Uglelli, Italig Sacre, tom. v. p. 1086; for other referenees to lie general tradition see De Rubeis, Afonum. Eicles. Aquilcien., c. 1 : Acta Sanctorunt, nil April. xxv.). It was though this tradition that Mask beeame connected ivith Venice, whither the patriarchate was further transferred from Grado; an early Yenetian legend, which is represented in the Cappella Zen in the basilica of St Mark, antedates this connexion by pictuing the evangelist as having been stranded on the Rialto, while it was still ar uninliabited island, and as having land the future greatiess of the city revealed to hinn (Danduli, Chron., iv. 1, ap. Muratori, Rer. Ital. Script., vol. xii. 1t).

The earliest traditions appear to imply that he died a matural Aeath (Euscbins, Jerame, and even Isidore of Seville); but the Martyrologies claim him as a martyr, thengh they do not agree as in the manner of lis martyrdom. Aceerding to the prseulgHippolytus he was burned; but Symeon Metaplrastes and the Paschai Chronicle represcnt him to have been dragged over rough stones until he died. But, horvever that may be, his tomb appenrs to have been vencrated at Alexandria, and there was a firm belief at Venice in the Diddle Ages that his remains had been translated thither in the 9 th century (the fact of the translation is denied even by Tillemont; the wealsness of the evidence in support of the tradition is apparent even in Molini's vigorous defence of it, lib. ii., e. 2; the minute aceount which the same witer gives, lib. ii. e. II, of the discovery of the supposed netual bencs of the evangelist in 1811 A.D., is interesting). There mas another though less wilely aceepted tradition, that the remains soon after their translation to Venice were retranslated to the abbey of Reichennal on Lake Constance; a circumstantial oecount of this retranslation is given iu the treatise Ex Diracmlis S. Mfurci, ap. Pertz, Mon. Hist.

Pauline anl not of the Petrine Mark are used by other writers in support of the hypothesis that in its prescat furm it is uot the work of swich Papias speaks.

Gcrman. Script., tom. 8. p. 449. It may be adgued that the Venetians prided themselves on possessing, not only the body of St Mark, but alse the autograph of his Gospel ; this nutograph, hew. cver, proved on exmmination to be only part of a 6 th-eeutury book ot ${ }^{*}$ the Gospels, the remaioder of which was published by Bianchini as the Evangcliariuin Furojulionse; the Vevetian part of this IIS. was found some years ago to havo been wholly destroyed by damp.
It has been at various times supoosed that Jark wrote other works besides the Gospel. Several books of the New Testament have been attributed to him: viz., the Epistle to the Hebrews (Spanheim, Op. Misccll., vol. ii. p. © 10 ), the Epistle of Jude (cf. Holtzrannn, Dic Synoptische Erangelicn, p. 3i3), the Apocalypse (Hitzig, Ucber Johamics A1arcus, Zurich, 1843). The apociyllal Acta Barnabx purpart to have been written by him. There is a liturgy which bears his dame, anil which exists in twe forms; the oue Com was found in a MS. of the 12th century in Calabria, and is, according to Remandot, the foundation of the three liturgies of St Basil, St Gregory Nazianzen, and St Cyril ; the other is that which is used by the Maronite and Jaeobite Syrinns. Beth forms hare been published by Revaudot, Liturg. Oriental. Collect, vol. i. p. 127, and rol. ii. p. 176, and in Neale's History of the Holy Easterns Church; but ncither has any substantial claim to beleng to the ante-Nicene period of Christian literature.
Tho symbel by which Mork is designated in Christinn art is usually that of a lion. Each of the "four living crentures" of Ezehicl and the Apeealspse has beed ottributed to each of the four evangelists in turn; Aughstine and Bede think that Mark is designated by the "man"; Theophylact and others thiuls that he is designated by the eagle; Arastasins Sinnita makes his symbol tho ox ; but medireval art aequieseed in the opinion of Jerome that he was indicatecl by the lion. Most of the martyrologies and calendars assign April 25 as the day on which he should be commemorated'; but the Martyr. Hicron. gives September 23, and sonie Greek martyrologies give January 11. This unusual variation Irrobably arises from early differences of opinion as to whether there was ono Dark or more than one.

The work of Canon Molint of Venice, De Tita et Lipsanis ©. Marci Erangelistex, ellited, after the author's fleath, by $s$. Pleralis, the libratian of the Bubberin Jibrary, in 186t, gives full information on all that sclates to the subject of tho present aricicle.
(E. IIA.)

## MARK, Gospel of. See Gospels.

MARKIRCH (in French, Ste-Marie-aux-Mines), a flourishing industrial torn of Germany, in Upper Alsace, cirele of Rappeltsweiler, is prettily situated in the valley of the Leber or Lieprrette, an affuent of the Rhine, near the French frontier. The once productive-silver, cepper, and lead mines of the neighbourhood are now no longer worked; and the present chicf industries of the placo are meaving and dyeing. In and about Markirch there are nearly forty wool and cetton facturies, besides numerous lonms in the cottages of the weavers; and these produce cloth to the annual value of $£ 625,000$. It is estimated that there aro about 40,000 workpeople in the industrial district of which Markirch is the centre. The small river Leber, which intersects the tuwn, was at one time the boundary between the German and French languages, and traces of this separation still exist. The German-speakiug inhabitants on the right bank were Protestants, and subject to the counts of Fappoltstein, while the French inhabitants were Roman Catholics, and under the rule of the dukes of Lorraine. The population in 1880 was 11,824 .

MARLBOROUGH, a municipal and parliamentary borough of Wiltshire, England, situated on the great highroad between Loadon and Bath, and distant 75 miles from the former, 32 from the latter, and 13 from Devizes. It stands on the left bank of the Kennet, a tributary of the Thames, in $51^{\circ} 25^{\prime} \mathrm{N}$. lat., and $1^{\circ} 43^{\prime} \mathrm{W}$. long. It is an agricultural centre, and has a weckly market. In the dass of its prosperity furty-tro public coaches halted daily at ils doors, and it had a fair trade in corn and malt; but jts traftic veas to a gecat extent diverted by the opening of the Great Western liailway, and it now carries on a very small trade in tanning, rope-making, and malting. It consists mainly of a lang and broad street, terminated at one cad by St Mary's church and the town-hall, and at the other by St Peter's church and the college. The municipal council consists of a mayor, four aldermen, and twelve councillurs, and the borough returns one member to parlias
ment. In 1881 the population of the municipal berough (arca 186 acres) was 3343 , and of the parliamentary borough (area 4665 aeres) 5180.

The name has been a frequent matter for discussion, some deelaring it to be the hill (berg) or fortress (burg) of Mertin the Briton, others the ALarl borough, in allusion to the survonading soil, which, howcyer, is chndk. A great British mound exists at the south-west extremity of the town, and a castle was crected around it by Witliam the Conqueror. This became a somewhat natable phace. Henry I. kept Enster here in 1110, and Henry 11. grantecl it to John Lackland. "llenry 111. held his last parliameut here in 1267, and passed tho "Statutes of Marleberge." Later the eastle served as an oceasional royal residence; it was probably dismantled during the Wars of the Roses. The town was besieged and taken during the civil wars, and a few years later (1653) was nlmost entirely consumed by fire. A largo mansion was erected by Lom Seymon in the reign of Charles 11. near the site of the castle, and this, after various vicissitudes, was in 1843 converted intó "Mardborough College," - a public school designed mainly for the education of the sons of the elergy. A large group of buildingschapel, schools, diuing hail, racket courts, \&e.-soon spring up around the origimat building, and the school numbered five hundred. and cighty in 1882.

MARLBOROUGH, a town of the United States, in Middlesex county, Massachusetts, about 25 miles west from Boston, with stations on the Old Colony and the Fitehburg Railways. It lies in a fertile hilly distriet, and contains a beautiful sheet of water 160 acres in extent, knowa as Willians Lake. Shoemaking is the staple industry, scme of the facteries in the department rivalling the largest in the world. There is a good public library; and three weekly newspapers are published in the town. The population increased from 8474 in 1870 to 10,126 in 1850. Marlborough, colonized by settlers from Sudbary in 1655, and incorperated in 1661, occupies the site of the Christian Indian village of Okommakamesitt.
Marlborough, John Churchill, Duke of (16501722). In the small manor house of Ashe, situated in the parish of Musbury in Devonshire, but hardly a stone's threw beyond the parish of Axminster, John Churehill the first duko of Marlborough was born 2 thl of Juue 1650. Arabelln Churchill, his cldest sister, and the mather of the duke of Berwick, was born in the somo house on the 2Sth of Febrnary ${ }^{-1648}$. They weac the children of Winston Chureliill of Glanville Wotton in Dorset and Elizabeth the fourth daughter of Sir John Drake, who after the close of the civil war reccived his sen-in-law into his own heuse. For a year or two after the Restoration John Churehill went to St Paul's school, and there is a tradition that during this period he showed the bent of his taste by reading and re-reading Vegetius De Re Militari. When fifteen years old he obtained a place in the houscheld of the duke of York, and about the sane time his sister Arabella became maid of honour to the duchess, two events which contributed greatly to the advancement of the Churehills. Next year, in 1666, he received, through the influence of his master, a commission in the guards, aud left England for service at Tangiers. Such fighting as was waged with the Moors did not aecord with his feelings, and he soon returned to his own country. For a few years afterwards Churclill remained in attendance at the court, and it was during this period that the natural carefuluess of his disposition was shern by his investing in an annuity a present of $£ 5000$ given him by a court beanty. In 1672 , when England to her shame sent six thousand troops to aid Louis XIV. in his attempt to subdue the Dutch, Churehill formed one of the company, and soon attracted the attention of Turcnne, by whose profound military genius the whole army was directal. At the sicge of Nimeguen Churchill aequitted himself with such success that the French commander predieted his ultimate riso to distinction. When Macstricht was besieged he saved the lifo of the duke of Monmouth, and reecived
the thanks of Louis XIV. for his services. Early in 1678 he was married to Sarah Jennings, tle favourito attendant on the Princess Anne, the younger danghter of the duke of York. Her father Richard Jennings, a Hertfordshire squire, had twenty-two brothers and sisters; one of the latter married a Londen tradesman called Hill, and their daughter Abigail Hill afterwards succeeded her cousin the duchess of Marlborough as favourite to Queen Anne Sarah Jennings Lind as little money as her husband, but this deficiency was more than compensated for by an abundance of energy and ambition.
On the accession of James IL the Churchills received a great incrense in fortuue. Colonel Churchill had been created a Scotelt peer iu 16S2, and as a reward for his services in going on a special mission from the new monarch to Louis XIV. he was advanced to the English peerage under the title of Baron Churchill of Sandridge iu Hertfordshire, the village in which the Jennings's property was situated. A step in the army was at the same time conferred upon lim, and when the duke of Monmouth attempted his ill-fated enterprise in the western connties the second position in command was bestowed on Lord Churchill. Through his vigilance and energy vietory declared itself on the ling's side. After the death of Moamouth he withdrem as far as possible from the administration of public busivess. Whilst on his embassy to the French court he had declared with emphasis that if the kiag of England shonld change the religion of the state he should at once leave his service, and it was not long before the design of James became apparent to the world. Churchill was one of the first to send overtures of obedience to the prince of Orange. Although he continued in a hight position ueder James, and drew the emoluments of his phaces, he promised William of Orange to use every exertion to bring over the troeps to his side. Janaes had been warned agninst putting any trust in the loyalty of the mars on whom he had showered so many favours, but the warnings were in vaia, and on the lauding of the Dutch prince at Brixhanz Churchill was sent against him with fire thousand men. When the royal army had adranced to the downs of Wiltshire and a battle seemed imminent, James was disconcerted by learning that in the dead of night his general lad stolen a way like a thief into the opposite campFor this timely act of treachery Churehill received another advancement in the peerage. He had now become the earl of Marlborough and a member of the privy council, a mark of royal favour which during this and the next reign was more than an ummeaning honour. William felt, however, that he could not place implicit reliance in his friend's integrity; and, with a clear sease of the manner in which Marlborough's talents might be employed without any detriment to the stavility of his throne, he sent him with the army into the Netherlands and into Ireland. For some time there was no open avowal of any distrust in Marlborough's loyalty, but in May 1692 the world was nstonished at the news that he had been thrown into the Tower on an accusation of treason. Thongh the evidence which could be brought against him was slight, and he was soon set at liberty, there is no doubt that Marlborough was in elose relations with the exiled king at St Germains, and that he even went so far as to disclose to his late mister the intention of the English to attack the town of Lrest The talents of the statesmen of this reign were chiefly displayerl in their attempts to convince both the exiled and the reigning king of England of their attachment to his fortunes. The sin of Marlborough lay in the fact that he had been favoured above his fellews by each in turn, and that he betrayed bath alike apparently witheut scruple or without shanse. Once again during the lecuwick plot he was charged with treasun, but William, knowing that if he
pushed Mariborough ano his friends to extremities there were no other statesmen on whom he could rely, contented himself with ignoring the confessions of Sir John Fenwick, and with exccuting that conspirator himself. Not long afterwards the forgiven traitor wes mado gorernor to the young duko of Gloucester, tho only oue of Anne's nuwerus children who gave promise of attaining to manhood. During the last jears of William's reign Ilarlburough once more was placed in positions of responsibility. His daughters were married into the most prominent families of the land : the eldest became the wife of the eldest son of Lord Godolphin ; the scoond, the loveliest woman at the court, with her-father's tact and temper and her mother's beauty, marricd the only son of Lord Sunderland. Highor hunours were in store for his family, and they came on the accession of Queen Anne in March 1702. She had not been mere than three days upon the throne before the knighthooul of the Garter was conferred apon Marlbornugh. He was niade captain-genoral of the English troops hoth at home and abroad, and master-general of the ordnance. The new qneen did not forget the life-long serrice of his wifo; three positions at the court by which she was euabled to coutinuc by the side of the sorereign as ciosely as she had lived with the princess were united in ber person. The queen slowed her devotion to ber friend by another signal mark of farour. The rangership of Windsor lark was granted her for life, with the cspecial object of enabling Lady Diarlborough to lire in the Great Lodge. These were tho npening days of many gears of fame and pormer. A week or tro after the death of William it was agreed by the three great porers, England, Holland, and Austria, which formed tho grand alliance, that war should be declared agaiust France on the same day, and on May 4, 1702, the declaration was made by the thrce countries. Marlborough was made commander-in-chief of the united armies of England and Holland, but throughont the war his plans were impeded by the jcalousy of the commanders who were nominally his inferiors, and by the opposite aims of the various countries that were striving to break the power of France. He himself wished to penetrate into the French lines; the anxiety of the Dutch mas for the maintenance of their froutier and for an augmentation of their territory; the desire of tho Austrian emperor was to eusure his son's rule over Spain. To secure concerted action by these different powers tased all the diplomacy of Marlborough, but he succeeded for the most part in his desires. In the first year of the campaign it was shown that the armies of the French were not incincible. Screral fortresses which Louis XIV. had seized upon surrendered themselves to the allies. Kaiserswerth on the Rhine and Venloo on the Jeuse soon passed from the hands of the French to the English. The prosperous commercial torn of Liége with its commanding citadel quickly capitulated. The successes of Marlborough caused much rejoicing in his own country, and for these brilliant exploits he was raised to the highest rank in the peerage, and rewarded with a handsome annuity. In the spring of the following jear a crushing blow fell upon the duke and duchess. Their eldest and only surviring son, the marquis of Blandford, was seized whilst at King's Collere, Cambridge under the care of Hare, afterwards bishop of Chichester), with the small-pos, and died on the 20th February 1703, in his seventeenth year. If the character of the youth which is gisen by Cole, the Cambridge antiquary, can be accopted as true, and Cole was not likely to be prejudiced in favour of the family of Charchill, his talents had already justified the prediction that he would rise to the highest position in the state.

The result of the campaign of 1703 inspirad the French king with fresh irpes of ultimate victory. The dashing
plans of Marlborough were frustrated by tho opposition of his Dutch colleagues. When he wished to invade the French torritory they urged hius to besicge Bonn, and he was compelled to accede to their wistes. After this digression from his first purpose he rcturned to his original plan of attacking Antwerp; but, in consequenco of the incapacity of the Dutch lcaders, the gencrals (Villeroi and Bouftlers) of the French army surprised the Datch division and iuflicted on it a loss of many thousands of men. Marlboruugh was furced to abandon his cnterprisc, and all the compeusation which he receired was the capture of the insignificant forts of Huy and Limburg. After a year of comparative failure for the allies, Louis XIV. was emboldened to enter upon an offensire morement against Austria; and Marlborough, smarting under the nisadrentures of 1703, and conscious that the war could only be brought to an end by more decisive measures, was eager to mect hinu. A magnificent army was scot by the Freuch king under the command of Marshal Tallard, with instructions to strilse a blow at Vienna itself. Marlborough divined the intention of tho expedition, and, without communicating his intentions to his colleagues, led his troops into Bavaria. The tro armies (that under Marlborough and Prince Eugène rumbering more than fifty thousand men, whilst Tallard's forces Nere nearly ten thousand stronger) met in battle array near the village of Ilenheim. The French commander made the mistake of supposing thot the enomy's attack would be directed against his position in the village, and he concentrated an excessive number of his troops at that point. The carly pars of the fight was in favour of the French. Three times were the troups led by Prince Eugène driven back in confusion; Marlborongh's cavalry failed on their first attack in breaking tho line of the enemy. Bat in the end the victory of the allies was conclusive. Nearly thirty thousand of the French and Bararians were killed and woundod, and in Blerilucim alone ten thonsand were made prisoners. Never was a victory more eagerly welcomed than this, and never was a conquering leader more rewarded than Ararlborough. On his return to his own country he was received with enthusiasm on all sides. Pocts and prose witers were employed to do him honour, and the lines of Acidison conparing the English commander to the angel who passed orer "palc Britannia" in the storm of 1703 have been famous for nearly two centuries. The manor of Woodstock, whieh was transferred by Act of Parliament from the crown to the duke, was a reward more after his own heart. The gift eren in that form was a noble one, bue the queen heightened it by instructing Sir John Vanbrugh to build a palace in the park at the royal expense, and; although the works subsequently cansed much anxiety to tho duke and duchess, $£ 240,000$ of public money was spent on the buildings.

The following year was not marked by any stirring incident. Marlborough was hampered by tedious formalities at the Hague and by jealousies at the Gcrınan courts. The armies of the French were again brought up to their full standard, but the generals of Louis were instructed to entrench themselres behind earthworks and to act on the defousive. In the darkness of a July night those lines wero broken through, and the Frencl were forced to take shelter under the walls of Lourain. Marlborough arged an attack upon them in their new position, but is passionato arguments were spent in vain, and when 1705 had passed away the forces of the French king had suffered no diminution. This immunity from disaster tempted Villeroi in the next spring into meeting the allied forces in an open fight, but his assurance proved his ruin. The battle of Ramillies (23d May 1706) ended in the total rout of the French, and caused the tramsferenes of nearly
the whole of Brabant and Flanders to the allies. Fire dhys afterwards the victor entered Brissels in etate, and the inhabitants acknowlelged the rule of the archduke. Antwerp and Ostend surrendered themselves with slight loss. Menin beld out until three thonsand of the soldiers of the allies were laid low around its walls, but Dendermonde, which Lonis had furty ycars previonsly besieged in vain, quickly gave itself up to the resistless Marlborough. Again a year of activity and triumph was sneceeded by a period of languor and dejression. During the whole of ${ }^{160}$ fortune inclined to the other side, with the result that early in the next year Ghent and Bruges returncd to the allegiance of the French, and Narlborough, fcaring that their example might be followed by the other cities, alvaneed with his whole army towards Ondenarde. Had the counsels of Vendome, one of the ablest of the French geuerals, prevailed, the fight might have had a different issuc, but his suggestions were disregardell by the dulke of Burgundy, the grandson of Louis, and the battle, like its predecessor, ended in their defeat. After this victory Marlworongh, ever anxions for decisive measures, wished in advance on Paris, but he was overruled. The allied army invested the town of Lille, on the fortificatious of which Vauban bad expended an immensity of thought; and after a struggle of nearly four months, and the loss of thirty thousand men, the citariel surrendered. By the end of the year Brabant was again subject to the rule of the allies. The suffering in France at this time weighed so heavily upon the people that its proud king humbled himself to sue for peace. Each of the allies in torn did he supplicate, and his minister endearoured by promises of large sums of money to obtain the support of Marlborongh to his propusals. Trbese attempts wore in vain, and when the winter passed away a French army of cone hundred and ten thousand, under the command of Villars, took the field. On the 3d of August 1709 Toumnay capitnlated, and the two leaders, Marlburough and Eugene, led their forces to Mons, in spite of the attempt of Villars to prevent them. For the last time during the protracted war tho two armies reet in fair fight at Malplaquet, 11 th September 1709, where the French leader had strengthened his position by extensive earthworks. The fight was long and doubtful, and, although the French ultimately retreated under the direction of Boufflers, for Villars had been wounded on the knee, it was in good order, and their losses were less than those of their opponents. The campaign lasted for a year or two after this indecisive contest, but it was not signalized by any such "glorions victory" as Blenheim. All that the English could plume themselves on was the aequisition of a few such fortresses as Douai and Bethune, and all that the French had to fear was the gradual tightening of the enemy's chain until it reached the walls of Paris. The energies of the French were concentrated in the construction of freshl lines of defence, until their commander boasted that his position was impregnable. In this way the war draggod on until the conclusion of tho peaco of Utrecht.

All that Karlborough bad effected on the battlefield during these years of war had not prevented his position from being undermined by party intrigues at home. In the carly part of Queen Anve's reign his political friends were to be found among the Tories, and the ministry was chiefly composed of members of that party. After a year or two, however, tho more ardent Tories withdrew, and two younger adherents of tho same canse, Harley and St John (both of whom were nt present content to conceal their nimosity to Mariborough), wero introduced into the ministry. The duckess, partly throngk the influenco of her son-in-law, the carl of Suaditand, and psti'y through Phe opposition of the Tories is íu hizest lan, ben zono
orer to the Whig cause, and she pressed fer views on the sovereign with more vehemence tlan discretion. She had obtained for her iudigent cousin, Abigail Hill, a suall position at court, and the poor relation very suon began to injure the bencfactor who had befriended her. With Ifill's assistance Ifarley and St John widened the breach witl the queen which was commenced by the imperious manner of the duchess. The love of the two frieods changed iuto hate, and no opportunity for humiliating the fanily of Marl. borough was allowed to pass away neglected. Sunderland and Gudolphin were the first to fall (July-Augnst 1710); a few months later the duchess was disnissed from her offices, and, although Marlborough himseif was nernitted to cun: tinue in his position a short time longer, his fall was only delayed nutil the last day of 1711. Life in England had hecome so umpleasant that he went to the Continent, and he remained abroad until the death of Anne (1st August 1714). Then he once more returned to the shores of England and resumed his old military posts, but he took little part in public affairs. Even if he bad wished ta regain his commanding position in the country, ill-Lealth would have prevented him from obtaining his desires: Juhnson, indecd, snys, in the T'anity of Ifuman Wishes, that "the streams of dotage" flowed from his eycs; but it is not desirable to examine too critically the assertions of a poom which relied for its success upon the strength of its comparisons. It is certain that at the time of his death he was able to understand the romarks of others and to express his own wishes. At four o'cluck on the morning of the 16th June 1722, he died at Cranbourn Lodge near Windsor. His remains were at first deposited in Westminster Abbey, in the rault at the east end of King Henry VII.'s chapel, but they now rest at Blenheim.

His widow, to whom must be assigned a cunsiderablo share both in his rise nad in his fall, survived till October 174. Those years were spent in bitter animosity with many within and withont her own family. Left hy lier husband with the command of boundless wealth, she used it for the vindication of his memory and for the justification of her own resentment. Tro of the leading opponents of the ministry, Chesterfield and Pitt, were especially honoured by her attentions. To Pitt she left ten thousand pounds, to the other statesman twice that sum and a reversionary interest in her landed property at Wimbledon. Whilst a widow, she received numerous offers of marriage from nany titled suitors. She refused them all : from her marringe to heo death ber heart had no other inmate than the man as whose wife she had become almost a rival to royalty.

Marlborougb obtained his first etart in life through a handsome pension, and his rapid rise to the highest position in the state was dne to his singular tact and to his skill in the management of men. In an age remarkable for grace of manner and for adroitness of complinent, his courteons demeanour and the art with which he refused or granted a favour extorted the admiration of every one with whom he came in contact. Through his consideration for the welfare of his soldiers he held togather for years an army drawn from every nation in Christendom. His talents may not have been profound (he possessed "au escellent plain understanding and sound judgment" is tho opinion of Lord Chesterfield); but they were such as Englishmen luve. Alike in planning and in executing, he tonk infinito pains in all points of detail. Nothing escaped his observa, tion, and in the hotest moment of the fight the coolness of his intellect shone conspieuons. His enemies indeed affected to attribute his uniform success in the field to fortune, and they magnificed his love of money by drawing up balance sheets which included every penny which he had received, but omitted the pounds which ho bad spent in the causo ino had sincerely at heart. All that can be
alleged in excuse of his attempt to serve tro masters, the king whem he had deserted and tho king who had received Litn into farour, is that not one of his associates was without $\sin$ in this respect.
The books on Marlborough are very numerous. Under his mame in the catalogue of the British Museum there are 121 entries, and 32 under that of his wife. Thec chief works are Lediard's, Coxe's, and Alison's Lircs ; a French menoir in 3 rolumes, 1808 ; Marl. borought's Letters and Dcynatches, edited by Sir Georgo Murray (5 volumes); and Mrs Creighton's interesting summary. The descrip. tions in Mr Joln Hill Burton's Reign of Quccon Anne of the battle scenes of Mariborough aro from personal observation. A good necount of his birthplace and country will be found in Pulman's Buok of the $A x c$ District; and for tho homo of the dueless the reader can refer to Mr Cussan's History of Hcrefordshire. Long after the death of the duke thero were many pamphlets written on the conduct of his wife from her appearance at court; but they relate to matters of littice interest at the present time. (W. P. C.)

MARLOW, Great, a parliamentary borough of Buckinghamshire, England, is fincly situated on the Thamcs, and on a branch of the Great Western Railway, 37 miles west of London and 25 south-east of Osford. It consists priacipally of two streets which cross each other at right angles. The church of All Saints, in the Later English style, erected in 1835, and lately extensively restored, possesses a number of brasses. The former bluecoat school has been reorganized under the endored schools commission as a grammar school. The town has paper-mills, a bremery, and manufactures of lace and embroidery. It is also a farourite resort for boating and fishing. Marlow, anciently Merlaw, is a very ancient manor, and for some time after William the Conqueror it was in the possession of the crown. It returned members to parliament from the 28 th of Edward I. till the $2 d$ of Edward II., and tho privilege was again restored in the 21 st of Janies I.; siace 1868 it has returned but one member. The borough includes Greatand Little Marlow, Medmenham, and Bisham in Berkshire, which is united with Great Marlow by a suspension bridge, 'erected in 1835, at a cost of $£ 20,000$. The population of the borough, which has an area of 14,514 acres, 2424 being in the county of Berks, was 6627 in 1871 and 6779 in 1881.
marLowe, Caristopher (1564-1593), the father of English tragedy and the creator of English blank verse, was bora at Canterbury in February 1564, and christened on the 26 th of that menth. John Marlowe, his father, is said, on authority which satisfied the best editor of the poet, to have been a shoemaker by trade; it is supposed also that ho was clerk of his parish, and survived his illustrious son for upwards of eleven years. The boy was educated at the King's School, Canterbury; matriculated as pensioner of Benet Colloge, Cambridge, March 17, 1581 ; took the degree of bachelor of arts is 1583 , and that of master of arts four years later. Before this date he had produced the first tragedy worthy of that name in our language, and called into existence that highest and most difficult of all its other than lyrical forms of verse, which alone has proved worthy of acceptance among his countrymen as the fit and adequate instrument of tragic drama. At some uncertain date of his early life he is supposed to have bcen an actor, and said to have broken his leg in the practice of his profession. But for this and many other traditions of his career and conversation there is no better evidence than that of a religious libeller. His first tragedy of Tanburlaine the Great, in two parts, was successively followed by Doctor Faustus, The Jew of Malta, Edward the Second, and The Massacre at Paris. The tragedy of Dido, Queen of Carthage, was probably completed for the stage after his death by Thomas Nash, the worthiest Eaglish precursor of Smift ia vivid, pure, and passionate prose, embodying the most terrible and spleadid qualities of a social and personal satirist; a man gifted also with
some fair faculty of elegiac and even lyric rerse, but in no wise qualified to put on the buskin left behind him by the "faruous gracer of tramedians," as Marlowe had already been designated by their common friend Greese from annng the worthiest of his fcllows.

The only authentic record concersing the death of Marlowe is an entry "in the burial-register of the parish church of St Nicholas," Deptford: "Christopher Marlowe, slain by Francis Archer, Juse 1, 1593." Two Puritau scribblers have left two inconsistcat reports as to the circumstances of this manslauglter. On the more respectable authority of Francis Meres the critic (1598) we are told that Mlarlowe was "stabbed to death" by a "serving. man" of bad character, "a rival of his in his lewd love." The one thing unhappily certain is that one of the greatest among English poets died of a wound rcceived in a brawl (stabbed in the head, according to one account, with his own dagger) at the untimely age of twenty-nine years and turee prooths. Like Sir Walter Faleigh and a few less memorable nen of the same generation, he was attacked in his own tine not merely as a freethinker, but as a propagandist or apestle of atheism; nor was the irregularity of hiselife thought worthier of animadrersion than the uncertainty of his livelihood. The informer whose name has survived as that of his most venomous assailant was duly hanged the jear after Marlowe's death; and the list of his charges, first published by Ritson, is hardly a document which can commend itself to any man's confidence as plausibly or even possibly sccurate in all its detailed report of the violeut and ofiensive nouscose attributed to the freethinking poet in common conversation "conceraing his damnable opinions."

The majestic and exquisite excellence of various lines and passages ia Marlowe's first play must be admitted to relieve, if it cannot be allowed to redeem, the stormy monotony of Titanic truculeace which blusters like a simoom through the noisy course of its ten fierce acts. With many and heavy faults, there is something of genuine greataess in Tamburlaine the Great; and for two grave reasons it must always be remembered with distinction and mentioned with honour. It is the first poem ever written in English blank verse, as distinguished from mere rlymmeless decasyllabics; and it contains one of the noblest passages, perhaps indeed the noblest in the literature of the world, ever written by one of the greatest masters of poetry in loving praise of the glorious delights and sublime submission to the everlastigg limits of his art. In its highest and most distinctive qualities, in unfaltering and infallible command of the right note of music and the proper tone of colour for the finest touches of poetic execusion, no poet of the most elaborate modern school, workiag at ease upon every consummate resource of luxurious learaing and leisurely refinement, has ever excelled the best and most representative work of a man who had literally no models before him, and probably or evidently was often if not always compelled to write against time for his living.

The just and generous judgment passed by Gocthe on the Faustus of his English predecessor in tragic treatment of the same subject is somewhat more than sufficient to counterbalance the slighting or the sneering references to that magnificent poem which might have been expected from the ignorance of Byron or the incompstence of Hallam. And the particular note of merit observed, the special point of the praise conferred, by the great German poet should be no less sufficient to dispose of the vulgar misconception yet liagering among sciolists and pretenders to criticism, which regards a writer than whom no man was ever born with a fincr or a stronger instinct for perfectien of excellence in execution as a mere noble sarage of letters, a rough self-taught sketcher or scribbler of r.rudo
and rude genius, whose unhern blecks of verse ind in theta some veins of rare enough metal to be quarried and polii hed by Shakespeare. What must impressed the author of Faust in the work of Marlowe was a quality the want of which in the author of Mfanfred is proof enough to conrign his best work to the second or third class at most. "How greatly it is all planned !" the first requisite of all great work, and one of which the highest genius possible to a greatly gifted barbarian could by no possibility understand the nature or conccive the existence. That Gocthe "had thought of translating it" is perhaps hardly less precious a tribute to its greatness than the fact that it has bera actually and admirably translated by the matchless translaver of Shakespeare-the son of Victor Hugo; whese labour of love may thus be ssid to lave made another point in commen, and forged as it were another liak of union, between Shakespeare and the young master of Shakespeare's youth. Of all great poems in dramatic form it is perhaps the most remarkable for absolute singleness of aim and simplicity of construction; yet is it wholly iree from all possible imputation of monotony or aridity. Tamburlaine is monotonous in the general roll and flow of its stately and sonorous verse through a noisy wilderness of perpetual bluster and slaughter; but the unity of tone and purpose in Doctor Faustus is not unrelieved by clange of manner and variety of incident. The comic scenes, written evidently with as little of labour as of relish, are for the most part scarcely mere than transcripts, thrown into the form of dialogue, from a pepular prose IIistory of Dr Faustus, and therefore should be set down as little to the discredit as to the credit of the poet. Ferv masterpieces of any age ia any language can stand besido this tragic poem-it has hardly the structure of a play-for the qualities of terror and splendour, for intensity of purpose and sublimity of note. In the vision of Helen, for example, the intense perception of leveliness gives actual sublimity to the sweetness and radiance of mere beauty in the passionate and spontancous selection of words the most choice and perfect; and in like manner the sublimity of simplicity in Marlowe's conception and expression of the agonies endured by Fnustus under the immediate imminence of his doom gives the bighest nete of beauty, the quality of absolute fitness and propriety, to the sheer straightforwardness of speech in which his agonizing horror finds vent ever more nnd more terrible from the first to the last equally benutiful and fearful verse of that tremendous monologue which has no parallel in all the range of tragedy.
It is now a commonplace of criticism to observe and regret the decline of porver and intercst after the opening acts of The Jew of Malta. This decline is undeniable, though even the latter part of the play is not wanting in rough energy and a coarse kiad of interest; but the first two acts would be sufficient foundation for the durablo fame of a dramatic poet. In the blank verse of Milton alonc, who perhaps was hardly less indebted than Shakespeare was before bim to Marlowe as the first English master of word-music in its grander forms, bas the glory or tho melody ef passages in the opening soliloquy of Barabas been possibly surpassed. The figure of the bero before it degenerates into caricature is as finely touched as the poctic execution is exceltent; and the rude ard rapid sketches of the minor characters show at least some vigour and vivacity of touch.

Ia Edward the Second the interest rises and the esecution improves as visibly and as greatly with tho courso of the advancing story as they declino in The Jotw of Malte.
The aceno of the king's deposition at Kenilworth is almest as muca finer in tragic effect and poetic quality as it is shorter and less elaborate than the correspoudiug sceue in

Shakespeare's liing Richard II. The terror of the deathsecne undoubtedly rises into horror; but this herror is with skilful simplicity of treatment preserved from passing into disgust. Iu pure poetry, in sublime and splendid imagination, this tragedy is excelled by Doctor Faustus; in dramatic power and positive impression of uatural effect it is as certainly the masterpiece of Marlowe. It was almost incvitable, in the hands of any poet but Shakespeare, that none of the characters represented should be capable of securing or even exciting any finer sympathy or more serious interest than attends on the more evolution of successive events or the mere display of emotions (except always in the great scene of the deposition) rather animal than spiritual in their expression of rage or tenderness or suffering. The exact balance of mutual cffect, the final note of scenic harmony, between ideal conception and realistic execution is not yot struck with perfect accuracy of touch and security of hand; but on this point also Marlowe has here come nearer by many degrees to Shakespeare than any of his other predecessors have ever come near to Marlowe.

Of The Massacre at Paris it is impossible to judge fairly from the garbled fragment of its genuine text which is all that has come down to us. To Mr Collier, nmong numberloss other obligations, we owe the discovery of a noble passage excised in the piratical edition which gives ns the only version extant of this unlucky play, nad which, it must be allowed, contains nothing of quite equal value. This is obviously an occasional and polemical work, and being as it is overcharged with the anti-Catholic passion of the time has a typical quality which gives it some empirical significance and interest. That antipapal ardour is indeed the only note of unity in a rough aud ragged clironicle which shambles and stumbles onward fron the death of Queen Jeanne of Navarre to the murder of the last Valois. It is possible to conjecture, what it would be fruitless to affirm, that it gave a hint in the next century to Nathaniel Lee for his far superior and really admirable tragedy on the same subject, issued ninety-seven years after the death of Marlowe.

In the tragedy of Diclo, Queen of Carthage, a servile fidelity to the test of Virgil's narrative has naturally resulted in the failure which might have been expected from an attempt at once to transcribe what is essentially inimitable and to reproduce it under the honelessly alien conditions of dramatic adaptation. T'be one really noblu passage in a generally feeble and incomposite piece of work is, however, uninspired by the unattainable moael to Which the dramatists havo been only too obsequieus in their subservience. It is as nearly certain as anything can be which depends chiefly upon cumulative and collateral evidence that the better part of what is best in the serious scenes of Fing ILenry J'I. is mainly the work of Marlowe. That he is at any rate the principal auther of the second and third plays passing under that name among the works of Shakespeare, but first and imperfectly printed as The Contention between the two Fanons Mouses of York and Lancaster, can lardly be now a matter of debate ameng competent judges. The crucial difficulty of criticisnı in this matter is to determine, if indecd we should not rather say to conjecture, the nuthorship of the humerous scenes in prose, showing ns they generally do a pewer of comparatively high and pure comic realism to which nothing in the acknowledged works of any pre-Sbakespearcan dramatist is even remotely comparable. Yet, especially in the original test of these scenes as they stand unpurified by the ultimate revision of Shakcspeare or his editors, there are tones nod touches which recall rather the clownish horseplay and homely ribaldry of his predecessors thau anything ia the lighter interludes of his very carlicst
plays. We find the same sort of thing which we find iu their writings, only better clone that they usually do it, rather than such work as Shakespeare's a little worse done than usual. And even in the final text of the tragic or metrical scenes the highest note struck is always, with one magnifcent and unquestionable exception, rather in the key of Marlowe at his best than of Shakespeare while yet in great measure his disciple.

Had every copy of Marlowe's boyish version or perversion of Orid's Elegies deservedly perished in the flames to Which it was judicially cundemned by the sentence of a brace of prolates, it is possible that an occasional bookmorm, it is ccrtain that no poetical student, would hare deplored its destruction, if its demerits could in that case lave been imagined. His translation of the first book of Lucaualternately rises above the original and falls short of $\mathrm{it}, \rightarrow$ often inferior to the Latin in point and weight of expreseive rhetoric, now and then brightened by a clearer note of poetry and lifted into a higher mood of verse. Its terseness, rigour, and purity of style would in any case have beeu praiserworthy, but are nothing loss than admirable, if not wonderful, when we consider how close the translator has on the whole (in spite of occasional slips into inaccurscy) kept himself to the most rigid linit of literal represeatation, phrase by phrase and oftea line by line. The really startling force and felicity of occasionsl rerses are worthier of remark than the inevitable stiffiness and heaviness of others, when the technical difficulty of such a task is duly taken into account.

One of the most faultless lyrics and one of the loveliest fragments in the whole range of descriptive and fanciful poetry would hare secured a place for Marlowe among the memorsble men of his cpoch, eren if his plays bad perished with himself. His Passionate Shejherd remains ever since unrivalled in its way -a way of pure fnacy and radiant melody without break or lapse. The uatitled fragment, on the other hand, has been very closely rivalled, perhaps very happily imitated, but only by the greatest lyric poet of England-by Shelley alone. Marlowe's poem of Hero and Leander, closing with the sunvise which closes the aight of the lovers' union, stands alone in its age, and far ahead of the work of any possible competitor between the death of Spenser and the dawn of Milton. In clear mastery of narrative and presentation, in melodions ease aud simplicity of strength, it is not less pre-eminent than in the adorable beauty and impeccable perfection of separate lines or passages.

The place and the vslue of Christopher Marlowe ss a leader among English poets it would be almost impossible for historical criticism to overestimute. To none of them all, perhaps, bave so many of the greatest among them been so deeply and so directly indebted. Nor was ever any great writer's influence upon his fellows more utterly and unmixedly an influence for good. He first, and he alone, guided Shakespeare into tlie right way of work; his masic, in which there is no echo of any man's before him, found its own echo in the more prolonged but hardly more exalted harmony of Milton's. He is the greatest discorerer, the most daring and iaspired pioneer, in all our poetic literature. Before him there was neither genuine blank rerse nor a genuine tragedy in our lsaguage. After his arrivsl the way was propared, the paths were made straight, for Shakespeare.
(A. c. s.)

MARLY-LE.ROI, chief place of a csnton in the department of Seine-et-Oise, France, 5 miles to the north of Versailles and 3 miles to the south of St Germain-en-Laye, is, notwithstanding some fine country houses, a dull and unattractive village of 1250 inhabitants, which owes all its celebrity to the sumptuous chateau of Louis XIV. It was originally designed as a simple hermitage to which the king
cuuld occasionally retire with a few of his nore intimate frieads from the poiap of Versailles, but gradually it grew until it became one of the inost ruinous extrasagances of the Grand Jonarque. The ceatral pavilion (inhsbited by the king himself) and its trelve subsidiary pavilions were in. tended to suggest the sun surrounded by the signs of the zodiac. Seldoon visited by Louis XV., and wholly abnadoned by Louis XVI., it was demolished after the Revolution, its art treasurcs hsring previously beea dispersed, and all that now remains consists of a few mouldering ivy-grown walls, some traces of parterres with magnificent trees, the park, which is well stockerl with game, aud the forest of $8 \frac{1}{2}$ square miles, onc of the most pleasant promenades of the neigbbourhood of Paris.

Close to the Scine, half-way betrreen Marly-le-Roi nud St Germain, is the village of Port-3arly ( 500 inhabitauts), and 1 mile farther up is the hamlet of Marly-la-Machine. Ilere, under Louis X1V., an imnaense hydraulic enginc, driven by the current of the river, was erected; it raised the rrater to a bigh tower of 155 metres (508 English feet), where the aqueduct of Marly conimenced ( 2100 English feet in length, 75 in height, with 36 arehes, still well-preserved), carrying the waters of the Seine to Versailles. The first engine of Marly began to work in 1682, but it was necessary to modify it in 1803. In 1826 a steam-engine was substituted, and since 1858 an atmospherie engine has been employed.
mardont, Auguste Frédébic Louls Viesse de (1774-1852), duke of Ragusa, and marshal of France, ono of Napoleon's carliest friends and most trusted generals, was born at Châtillon-sur-Sciue, on July 20, 1774. •e was the son of sa ex-nficer in the army, who belonged to the petite noblesse, and had adopted the principles of the Revolution. His lore of soldiering soon showing itself, his father took him to Dijon to learn mathematics prior to eatering the artillery, and there he made the acquaintance of Bonaparte, which he renerved after obtaining his commission when he served iu Toulon. The acquaintance ripened into intimacy ; Marmont became General Bonsparte's aide-de-camp, and accompanied him to Italy snd Egypt, winning distiaction and promotion as general of brigade. In 1799 he left Egypt with Bonaparte to the mercy of the English; he was present at the revolution of the 18th Brumaire, and organized the artillery for the expedition to Italy, which he commanded with great effect at Marengo. For this he was at once made general of division. In 1801 he became inspector-general of artillery, and in 1804 grand officer of the Legion of Honour. In 1805 he received the commend of a corps, with which he did goud serviee at Ulm. He was then directed to occupy Dalmatia with his army; he defested the Russians on October 30 at Castel Nuovo, and occupied Ragusa. The next fire jears were the most creditable in his life; he was both militsry and civil governor of Dalmatia, and has still left traces there both in great public works and in the memories of the people. In 1807 he was made duke of Ragusa, sud in 1809, being summoned up to the help of Napoleon, who was closely beset in the island of Lobau, earned the marshal's baton by his conduct at Wagram. In July 1810 he was hastily summoned from his palace, where he lived in Eastern luxury, to succeed Massena in the command of the French army in the north of Spain, called the army of Portugal. •The skill "with which be mancuvred hisarmy during the jear he commanded it has been always acknowledged. His relief of Ciudad Rodrigo in the autumn of 1811 in spite of the pres sence of the English arny was a great feat, and in the tractics which preceded the battle of Salananca he had the best of it. The extension of his left on the 22d July 1812 was, however, fatal, and its result was the great defeat of Salsmanca, in which Marmont was severely mounded in the right arm snd side. He retired to France to recover, and was still hardly cured when in April 1813 N ppoleon gave him the conimand of the 6th cor \%. With
it ho served at the battles of Lūtzen, Bautzen, and Dresden, and througbout the great defensive campaign of $1814_{2}$ until the lass desperate battle before the walls of Paris, from which be drew back his forces to the commanding position of Essonnc. Here he hnd 20,000 men in splendid condition, and was the pivot of all thoughts. Napoleon said of Essonne, "C'est liaque viendront s'addresser toutes les intrigucs, toutes les trahisens; aussi y ai-je placé Marmont, mon enfant élevé spus ma teute." Jarmont betrayed this trust and suffered for it. On the restoration of the Lourbons he was made a peer of France, and a majorgeneral of the royal guard, aud in 1820 a knight of $S t$. Esprit and a grand ufficer of the order of St Louis, but he was never trusted, never popular. He was the majorgeneral of the guard on duty uz July 1830, and was ordered to put down with a strong hand any opposition to the ordianaces (see France). After perserering some time he gave way, and allowed the republicans to succeed in their revolntion. This defection brought more obloquy upon him, and the 1)ue dAngeulême even ordered him under arrest, saying, "Will you betray us, as you betrayed himo ?" After this Marmont left France and wandered about the Continent for twenty years, publishing many volames of travels, an edition of Cæesar and of Xemophon, and bis E'sprit des Institutions Alilitaires. Nuch of his time was spent upoa his Mémoires, which are of real value for the military history of his time, though they mast be read as a personal defence of himself in various junctures rather than as an unbiassed account of his times. They show Marmort, as he really was, an embittered man, who never thought his services sufficiently requited, a great artillery general indeed, but without the fire of geniss which is so striking in several of his contentperaries, and above all, a man too much in love with himself and his own glory to be a true friend or a faithful servant.

For Marmont's militery ability eonsult Nspier, Jomini, and the historians of the time, particnlarly General Pelet. His own works are Voyage en Hongrie, \&e., 4 vols., 1837; Voyage en Sicile, 1838; Esprit des Instilutions Jilitaires, 1845 ; Ctser ; Àcnophon ; and Ménoires, 8 vols, published after his death in 1856. Sec also a long and careful notice by Sainte-Beure, Causeries dhe Itundi, vol. vi.

Mardontel, Jean Frascors (1723-1799), one of the most distinguished men of letters in loris during the iatter half of tho 18th century, was born of peor parents io Limousin, on the 11th July 1723. After studying with the Josnits at Mauriac, he tanght in their colleges at Clermont and Toulouse; and in 1745 , acting on the advice of Voitnire, he set out for Paris to try for literary honours. From 1748 to 1753 ho wroto a saccession of tragedies which, ${ }^{1}$ though for the most pare considnred prolix and artificial by modern readers, had great sliucess on the stage, and sccured to Voltaire's new disciple a geod position in literary end fashionable circles. Being now associated with Diderot and D'Alembert, he wrete for the great Encyclopédie a series of articles crincing considerable critical power and insight, which in their collected ferm, under the title Eléments de Litterrature, still rank among the higher French classics. Ho also wrote several comic operas, the two best of which probnbly are Syluain and Yémire et Asore. In 1758 he grined the patrongge of Madame l'ompsdour, and was soun after erppointed manager of the official journal Lee Mercure, in which he hud already commenced a scries of elegant and attractive tales. Tliese wero the Contes Morancx, on which, according to somo crities, Marmontel's literary reputation mainly rests. Their merit lies partly in the literary style, which in dolicate finish frequently rivals that of his mester Voltairc, bat mainly in their graptic and charming pictures of

[^207]Freuch society under Louis XV.. After being elected to the French Acadeny, in 1703, he appears to have been ambitious to create a new literary style, exemplifed notably in bis dull prose-cpic romance Betisaire, uow remarkable only on account of a chapter on religious toleration which incarred the censure of the Sorboune and the arehbishop of Paris. Marmontel' retorted in Les Ircas, by tracing the cruelties in Spanish America to the religious fanaticism of the Homan Catholic invaders.

After being appointed historiographer of Frauce, secre. tary to the Academy (1783), and professor of history in the Lycee (1786), Marmontel in 1788 wrote a bistory of tho regency, which is of "ittle value. To compensate for this, howrever, he in 1795 began his Mémoires, the most interesting and valuable if not the greatest of his works, being a picturesque review of his whole life, a literary historr of twe inpprtant reigns, a grest gallery of portraits extendiug from the venerable Massillon, whom more than half a century previeusly he had seen at Clermont, to the fiery Mirabeau amidst the tempestnous first years of the French lievolution. Rieduced to poverty by the Revolution, Marmontel in 1792 retired fiom the Reign of Terror to Evreux, and soou after to a coltage near Gaillon, in the departmeut of Ence. To thet retreat.we owe the Mémoires, and there, after a short stay in Paris when clected in 1797 to the Cunseil des Anciens, he died on the 31 st December 1799.
See Villenave, Notices sur Marmontel; Sainte-Beure, Causcrics, vol. iv.; Morellet, Etoge, 1805 ; Elinburgh Rericw, January 1806.

## Marmora, Sea of. See Black Sea.

MARJIOT. The word marmot may be considered to include animals belonging to the three following genera:the true marvits, forming the genus Arctoniys (" bearmouss "), so called frem the thickset, bear-like form of ite members; the prairie marmots of North America, better known as the "prairie dogs" (Cynomys, "dog-mouse"); and the pouched marmots, or sonsliks, comprising the genus Spernophilus, or seed-lovers, so named from the character of their food. These three genera are all closely allied to each other, and together form the subfamily Arctomynax of the great squirrel family, the Sciuride, of which the only other subfamily, the Sciurine, consists of the true sqairrels (Sciurus) and the flying-squirrels (Pteromys). The members of the marmot subfanily are coufined to the northera hemisplere, and in fact are almost cutirely limited to the north temperate zone, in marked contrast to the genera of the subfamily Sciurinx, which attain thoir greatest development in tropical or semi tropical countries.

The Arctomyince agrec in the possession of somerrhat short, stumpy bodies, comparatively short tails (except in certain sonsliks), and long and powerful claws suitable for burrowing. They all have broad, strong, and ungrooved incisors or cutting teeth, two pairs of prcinolars above and one below, and three pairs of true molars in each jaw. The grinding tecth are all on the whole very similar, the first upper premolar much smaller than the others, and nearly round, the nest three tecth triangular in outline, and each with either tro or threo transverse grooves upon the crown; the last molar is rather broader and more com.plicated than the others, as is shomn in fig. 2. The general form of the skeleton is very similar to that of the true squirrels, but the bones as a rule are stouter and heavier.

1. The following are the generic characters of Arctomys. External form stout und heavy, ears short, tail short and hairy, cheek-pouches rudimentary or abselit. Fore fect with four well-developed toes, and a rudimentary thumb provided with a flat nail ; skull (see Mammalia, p. 417, fig. 92 ) similar in general form to that of the other genera, but very much larger aud heavier, tho post-orbital processes
stouter, and at right angles to the axis of the skull. Incisors broad anrl puwerful. İirst upper premolar nearly as large as the second. Molar series nearly parallel, scarcely ennverging behind at all.

The various species of maronot, about ten in number, are all much alike in general appearance, ranging in size from about 15 to 25 inches in leugth, with tails from 3 to $G$ inches long. The following are the species now generally recugnized, though the Central-Asiatic forms are still very imperfectly known:-

Arclomys marmollu, Linn., sont hern Europe, the Alps, Pyreaces, and Carpathians ; A. bobnc, Schreb., castern Europe and Siberia; A. himelaynnts, IIodgs., south-west Tibet; $A$. hemachalamus, Joulgs., Nepral ; A. cauctutus, Jacquemont, Cashmere; A. dichrous, Auderson. Aghanistan; $A$. ceurcus, Blanforl, Turkestan; $A$. wionux, Linn., eastern North America; A. flevirenter, Aud. and 1hach, western United States ; A. 2ruinosus, Gmel., north-western Sorth America.

It will thus be seen that one species only is peculiar to Europe, and three to North Anerica, while at least six, and perlaps more, are found iu varions parts of Central Asia,one of these, $A$. babur, occurring also as far west as Russia and castern Germany


Fia. 1. - Alpine Marmot (Arctumys marmotia). After Brehm.
The following account of the habits of the Alpine marmot, A. marmotta, extracted from Professor Blasius's well-known work on the manmals of Germany, applies, with but little variation, to all the members of the genus.

Marmots live high up in the snowy regions of the mountains, generaily preferring exposed eliffs, whence they may have a clear *iew of any approaching danger, for which, while quietly basking in the sun or actively running about in search of food, a constant watch is kept. When one of them raises the cry of rarning, the lould piercing whistle so well kuown to travellers in the $\mathrm{Al}_{1} 1$ s, they all anstantly take to flight and hide themselves in holes and crannics samong the rocks, often not reappearing at the entrance of their lidino-places until several hours have clapsed, and then frequently standing motionless on the look-out for a still longer period. Their Fooll consists of the roots and leaves of various Alpine plants, which, like squirrels, they lift to their mouths with their fore pars.

For their winter quarters they make a large round burrow, with but one entrance, and ending in a sleeping-place thickly padded with hay. Here often froin teu to fifteen marmots pass the winter, all lying elosely packed together fast asleep until the spring. On arraking, hungry with tbeir long fast, they remove the hay $r$ rith Thich they stuff up the doors of their burrows, and resume their life of activity and watelffulness. The brceding scason is in the cariy summer, when they bring forth from fonr to six young ones. I heir flesh, although coarse and rank, is enten by the peasants, and their fur, though of lut little value, is also made use or.
2. Our second genus is Cynomys, containing only the wellLnown "prairio dogs," os more correctly "prairie marmots,"
of the Uuited States. The gentis may be characterized as follews. Size and form intermediato between Arctomys ard Spermophilus. Ears and tail short. Cheek-ponches shallow. Fure feet with five claws, that on the thomb as large as that on the fifth toe. Slanll heavily built, the post-orbital processes directed outwards. Dentition, as shown in fig. 2, remarkably heary, the molar teeth differing from those of Aretomes and Spermophilus by having three instead of two transverse grooves on their crowns. First premolar nearly as largo as the second. Molar serics strongly converg. ent behind.

Of this genus tirn species hare been described, very closely allied to each other, but separable by their slightly different size and coloration. The


Fig. 2.-IVnder Side of §kull ol Cynomys ludoricianus. larger and better-known of the two is the eastern prairie marmot, C. ludoricianus, Ord., inhabiting the open prairies of the central United States, while the smaller species, C. columbianus, Ord., is found to the westward as far as the Rocky Monntains.

The habits of the prairie marmots lave been so often described that every one is familiar with their custom of forming their burrows in groups or "towns," of sittiog outside to watch intruders, and of making the peculiar barking sound frot. Which they have derived their erroneous popular name of prairie dogs. In the burrows made by them there are commonly found three strango and, notwithstandiog the earlier travellers' tales, certainly nowelcome risitors, namely, rattlesnakes, owls, and weasels, all of which at times probably prey upon the joung marmots. Prairie marmots do not truly hibernate although in the more northern and colder parts of their range they retire to their burrows during the very severest weather. They feed on grasses and roots, for whose mastication, however, their grinding teeth appear to be umnecessar:ly powerful.
3. The last genns to which the name marmot may be applied is that of the sousliks or pouched inarmots (Spermophitus), of which the fullowing are the character? Size much smaller than that of Arctomys or Cynomys, and form more slender and squirrel-like. 'l'ail very variablo, from 1 to 8 or 9 inches in length. Cheek-ponches always present. Fore feet with four well-developed toes and a rudimentary thumb, of which the claw may be either present or absent. Skall much more lightly built than that of cither of the preceding genera, and the postorbital processes slender and directed backwards. Molar series nearly parallel, as in Arctomys, but all much smaller and lighter; the first premular simply roundec., never more than about one-third of the size of the second.

The members of this largo genus present a far greater range of variation than is found among the true marmots, some of them, such as the European souslik, being scarcely as large ns a common squirrel, almost entirely without external ears, and with the tail reduced to a mere stump, barely an inch long, while others again are more than three times this size, with long and often tufted ears and long bashy squirrel-like tails. These differenees, and ether corresponding cranial ones, have caused the genus
to be divided iato the three following eubgenera:Spermonhilus proper, containing thirteeu or fourteen species, of suall size, with mudimentary enr-conehes, short stumpy tails, and comparalively large teeth; Otospermophilus, two species, of squirrel-like build, with large and tufted ears, and long bushy tails; and Ictilomys, with four species, of rery slender, weasel-like form, with short ears, long but slender tails, and comparatively small teeth. The last two subgenera are confined to North America, while the range of the first is extremely similar to that of A rectomys, although certain species penetrate somewhat farther south in the New World, and none are found so far west in Enrope. Professor Blasius gives the following details of the habits of the common European sonslik (s. citil'us, L.).
It lives in dry treelcss plains, especially on a sandy or clayey boil, and is never found either in forests or on awampy ground. It forns burrows, often 6 or 8 feet decp, in which food is stored np and tho winter sleep takes place. Each bnirow has but ons entrance, which is closed up whan winter approaches, - a second hole, however, being 1 reviously forned from thie sleeping place to just below the surface of tho ground. This second hola is opened the next year, and nsed as the ordinary entrance, so that the number of closed up holes round a burrow gives an indication of the length of tine that it has been occupied. Sousliks ordinarily feed on roots, seeds, berries, sc., bat occasionally also on animal food, preying readily on eggs, small birds, and inice, the remains of thase latter being often found in their burrows. They bring forth in the spring fron four to eight young ones, which, if taken early, may be casily tamed. They are often caten by the peasants, the inhabitants of the Russian steppes consilering their flesh an especial delicacy.
(0. T.)

MARNE, a department of the north-east of France, made up from Champague-Pouilleuse, Rémois, Perthois, Tallage, and La Brie-Champenoise, distriets formerly belonging to Champagne. Its chief town, ChalonssurMarne, is 92 miles in a direct lino east of Paris. Bounded on the, W. by Seine-et-Marne and Aisne, on the N. by Ardennes, on the E. by Meuse, on then S. by Haute-Marne and Aube, it is situated between $48^{\circ} 31^{\prime}$ and $49^{\circ} 26^{\prime} \mathrm{N}$. lat., and $3^{\circ} 25^{\prime}$ and $5^{\circ} \mathrm{E}$. long. Its greatest length froni north-cast to south-west is 73 miles, and the area 3159 square nilcs. About one balf of this consists of Cham-pagae-Pouilleuse, a monotonous and barren plain covering a bed of chalk 1300 feet in thiekness. On the west and on the east it is commanded by two ranges of hills. The highest point in the department ( 920 feet) is in the hill district of Rheims, which rises to the sonth-west of the town of the same name, between the Vesle and the Marne. The lowest level ( 164 feet), whero the Aisne leaves tho department, is not far distant. To the south of the Marne the hills of Rheims are contiuied by the heights of La Brie ( 700 to 800 feet). All theso belong geologically to the basin of Paris. They slope gently towards the west, but command the plain of Champagne-Pouilleuse by a steep descent on the east. On the further side of the plain are the heights of Argonne ( 860 feet), formed of beds of the Lower Chalk, and covered by forests; they unite the calcareous formations of Langres to tho schists of Ardennes, and a continuation of thear stretches southward into Perthois and the marsly Bocage. The department belongs entirely to the Seine basin, but of that river thero are only 13 miles, in the sonth-west; it there receives the Aube, which has 10 miles within the department. Tho principal river is the Marne, which runs through the department for 105 miles in a great sweep concave to the south-west, passing Vitry-le-François, Châlens, Épernay, and Dormans. In its course through the department it falls from 410 to 213 feet. Tho principal tributaries are the Saulx (which receives the Ornain) on the right, and on the left the Blaise, which waters Vassy, tho Sonme Soude, and the Surmelin (with its tributary the Dhuis), whence Faris is supplied; besides the l'etit Morin and the Grand Morin. Of the last threo only the upper courses lic within
the department. The Aisne enters the department at a peint 12 miles from its sonree, and traverses it for 35 miles, watering Ste Menchould. Two of its afluents on the left, the Suippe and the Vesle, on which stands Theims, have a longer course from south-east to north-west across the department.

Marne has the climate of the region of the Scine; the anmun mean temperature is $50^{\circ}$ Fahr., the rainfall ahout 24 inches. of the total arca about threc-fourthis consists of arablo land, and a sixth is under forest, whilst a twenty-fifth is meadow land. Vineyards cover $63 \cdot 7$ square miles. Tho department is largely stocked with aheep $(536,000$, of which 133,000 are a mixcd merino breed, whose wool is used in tha manufacturo of merinocs, flannels, and cashmeres). Cattle are cstimated to nuniber 95,260; horses, 53,000 ; pigs, 62,000 ; goats, 6000 ; and asses, 6000 ; these last ara used in the Darrow pathways which intersect the vineyards. About 600,000 to of honey and 240,000 to of wax are produced. The vineyards, though not of great extent, are of high valuo from the quality of their products. The manufarture of the sparkling wines of Chanipagne is an important industry, of which Epernay, Rheims, and Châlons are the chief centres. The gearly exportation is about $20,000,000$ bottles, at the average value of half a crown a bottle. Cereals are grown in excess of tho local consumption. Corn, lay, rye, barley, potatocs, and beetroot are the chief crops. Several communes supply the more valuabla vegetahles. In 1881 the produce of wine was more than $14 \frac{1}{3}$ million' gallons. The principal orchard fruits are the apple, plum, and cherry. Pine woods ara largely planted in Champagne-Pouilleuse. Tha department produces iron ore, phosphate of lime, quantities of turf, and excellent millstones and stone for building.
The chief industry is that in wool, which has bronght together; in the neighbourhood of Rheims, establishments for spinning, carding, dyeing, and weaving. The materials wrought mre flannels, merinoes, tartans, shawls, rugs, and fancy articles. In 1879 the aggregata length of the various stuffs measured at Rheims was 12,198 miles. This business alono occupies 30,000 operatives in the departsnent, and produces annually nearly 800,000 pieces, valued at $£ 18,000,000$. Hosiery in woollen employs 420 looms, and in cotton 1800. Marme contains blast-furnaces, iron, copper, and bell foundrics, and manufactories of agricultural implements.' Besides thess thera are tanyards, currying and leather-dressing establishments, and glassworks, which, with sugar-works and breweries; completo the list of the most important industries Biscuits and gingerbread are a specialty of Rheims. Tho chief imports are wool, coal, and colonial wares; the exports are wine, grain, live stock, stone, whiting, pit-props, and woollen stuffa. Transport is suppliad by the river Marne and the canal connecting it with the Rhine and with the Aisno, and by 300 miles of railway. The population in 1881 was 421,027, an increasa of 116,371 sinca 1801. There are five arrondissements-those of Châlons (the chef-lieu), Epernay, Rheims, Ste Menehould, and Vitry-lc-François. The department belonge partly to the archbishopric of Rlicims aud partly to the see of Châlons. Châlons is tho headquarters of tho 6th army corps; to the north of the town is tha great camp dcvoted to military exercises.
maRNE, Haute-, a department of eastern France, made up for the most part of districts belonging to the furmer prnvince of Champagne (Bassigny, Pertheis, Vallage), with smaller portions of Lorraino and Lurgundy, and some fragments of Franche-Comté. It lies between $47^{\circ} 35^{\prime}$ and $48^{\circ} 40^{\prime} \mathrm{N} .1$ It., and between $4^{\circ} 40^{\prime}$ and $5^{\circ} 55^{\prime \prime}$ E. long., the capital, Chaumont, being 133 miles east-south-east from Paris in a direct line, and it is bounded on the N.E. by Meuse, on the E. by Vosges, on tho S.E. by HautcSaûne, on the S. and S.W. by Cûte d'Or, on the W. by Aube, and on the N.W. by Marne. The extreme length from nerth-north-west to south-sonth-east is 81 miles, and the area 2402 squaro miles. Its greatest elevation (1093 feet) is in the plateau of Langres, between the sources of tho Marne and those of tho Aube; tho watershed between tho basin of the Rhono on tho south and those of the Seiae and Meuse on the north, which is formed by the platean of Langres and the MIonts Faucilles, has an average height of 1500 or 1600 feet. The country descends rapidly towards the south, but in very gentle slopes nurthwards. To the north is Dassigny ("paybas," as distinguished from the highlands), a distriet of country characterized by monotonous flats of small fertility, and generally under wood. The lowest lovel of the depastipent
is 360 fect. Hydrographenily 11 aute-Marne bel nass fur the must part tu the basin of the Scinc, the remainder to those of the lihone and the Mcuse. The princijal strean is the Marne, which rises here, and has a course of 75 miles within the department. Among the more important affluents of the Marne are on the right the Rognon, and on the left the Blaise, one of the rivers of France most fully utilized for the sapply of water-power. The Sanls, another tributary of the Marne on the right, also rises in Haute. Marmc. Westward the department is watered by the Aube and its tributary the Anjon, both of which have their sources on the plateau of Langres. The 3 leuse also rises in the Monts Faucillcs, and has a course of 31 miles withm Hante-Marne. On the Mediterranean side the department seuds to the Suone the Apance, the Amance, the Salon, and the Vingeanne. The climate is partly that of the Seine region, partly that of the Tosges, and partly that of the RLone; the menn temperature is $51^{\circ} \mathrm{F}$., nearly that of Paris; the rainfall is slightlv below the average for France.

Of the total area rather more than one half is arable, about a third is mader wood, a twentietle under meadow, aod a fortieth is occupied by vineyards. There are 39,000 horses (extensively bred in Bissigny), 86,000 head of cattle, 170,000 sheep, 58,000 pigs, 6000 goats, 25,000 beehires, and a large quantity of all kinds of poultry. Though not very fertile, the soil is well cultivated, and in 1878 yielded $1,271,363$ hectolitres of wheat, 144,348 of barley, 1,446,421 of oats, 1,1i7,187 of potatoes, besides meslio, ry'e, buckwheat, dried legumes, colza, bectroot, and hemp. Upwards of 8 million gallons of wine of ordinary quality were produced in 1881. The timber consists chiefly of oak, beech, elm, ash, maple, hirch, and aspen ; the orchards produce cherries, apples, pears, and prunes. The department is very rich in iron ; the annual output of 300,000 tons is exceeded ouly by that of Meurthe-et-MIoselle. Building and paving stones are quarried. The warm springs ef Unurbonne-les-Bains are among the longest-known and most frestented in France. The leading industry is the metallurgical; in 1881 76,000 tons of pig iron and 85,000 of wrought iron were produced. The establishments include blast furnaces, foundries, forges, plate-rolling works, and shops for nailmaking and smith work of rarious descriptions. St Dizier, the place of largest population, is the chief centre of manufacture and distribution. The cutlery trade aloue occupies 6000 persons in the neighbouriood of Langres. The department employs 1800 spindles in the voollen manufacture; glove-making, basket-making, brewing, tanning, nad other industries are also carried on. The principal import is coal, while iron, stone, wood, and cereals are exported. The population in 1876 was 253,943 , making an increase of 27,288 since 1801. There are three arrondissements (Chaumont, Langres, and Vassy), the canital being Chaurnon之.

## Marocco. See Morocco.

MARONITES (Syriac, Môrềôyê ; Arabic, Mawârina), an ecclesiastical community, and therefore also, according to the usage of the Christian East, a distinct political or social body, found mainly in or near the Lebanon, ackuowledging the headship of the pope and the Latin standard of orthodoxy, but still retaining some peculiar privileges, including the use of a Syriac service-which fer even of the priests now understand-and permission for the inferior clergy to marry. Maronite writers, trained cither at Rome (in the Maronite college, founded by Gregory XIII. in 1584) or under Roman influences, have not unnaturally striven to prove that their church was always in essential accord with the Chureh of Rome except in ritual, but there is clear evidence that this is incorrect. The earliest references to the Maronitcs (beginning in the 8th century) leare no doubt that they were Monothelites, and there is contemporary $\begin{gathered}\text { fidence (William of Tyre) that they only abjured }\end{gathered}$ their heresies in 1182 , when with their patriarch and some bishops they joined the Latio Church. Even in later times it has cost Rowe muciu pains and money to attach them closcly to herself and produce real conformity to Latin or ultimetely to Tridentiae orthodozy. The origin of the Mfronites and their carlier history are obscure. The name is no doubt connected with the mouastery of St Maron.
ucar the source of the Orontes, onc of the chicf monasteries of Syria in the Gth centary ; ${ }^{1}$ the Maronites themselves (Assemani, Bit. Or., i. 496 sq .) Lave much to tell of their great patriarch John Maron, or rather John of Maron, who studicd at the convent of St Maron, converted the Lebanon to ortbodoxy, and died 707 A.D. Nuch of the history of this personage is certainly fabulous. ${ }^{2}$
Though the Maronite college at Rome sont torth some distinguished scholars-the granmarian Aníra, Gabriel Sionita, Abralam Ecchellensis, and the three Assemanisthe Meronite community never took on much Western culture. A simple warlike race, they long maintained a great measure of internal freedom under their native nobility, only paying tribute to the pasha of Tripoli ; and for a time, when the princely house of ShiLab left Islam and became Maronites, they greatly ontweighed the Druses in their induence in the Lebanon. ${ }^{3}$ Since the fall, in 1840 , of the Maronite emír Beshir, who was only by outward profession a Moslem, their power has sunk. For their subscquent history see vol. vii. p. 486 , and for statistics, \&c., at the present time, see Lebanon.

The scat of the Maronite patriarch is at Kannóbin (Cœenobium); the bishoprics are Aleppo, Baalbek, Jebeil, Tripoli, Ehden, Damascus, Beirút, Tyre, and Cyprus.
See in gencral Le Quien, Oriens Christimuzs, iii. $1-100$; Nairon. Dc originc, ecte, Jnronitamenn, Kome, 1679; Dandini's account of the mission of 1596 in the Frenclu translation with h. Simion's notes (Voymge dut Mont Lcbanon, Paris 16s5) ; Schnurrer, De Ecclesia Maronitica, 1810-1811; and Rudiger's article "Maroniten" in Herzog's Ricul-Eveycl.
MAROONS. A nègre marron is defined by Littré as a fugitive slave who betakes himself to the roods ; a similar definition of cimarron (apparently from cima, a mountain top) is given in the Dictionury of the Spanish Academy. The old English form of the word is symaron (see Hawkins's Voyage, sec 68). The designation in modern English is applied almost os a proper name to the descendants of those negroes in Jamaica who at the first English occupation in the 17th century fled to the mountains. See vol. xiii. p. 550.
MAROS-VASARHELY, a royal free town of Hungary, and capital of the Transylvanian county of Maros-Torda, is situated on the Maros and on the Hungarian Eastern Railway, 50 miles north-east of Hermannstadt, in $46^{\circ} 30^{\circ}$ N. lat., $24^{\circ} 31^{\prime} \mathrm{E}$. long. It is the seat of the "royal table" court of appeal for the Transylvanian circle, of royal and circuit courts of law, of a board of works, and of offices of assay and of the Government tobacco monopoly ; as also the headquarters both of the militia and regular iufantry for the district. The tewn is well built, partly upon rising ground, and has a citadel with barracks, three churches (one large ard handsome), and a college belonging to the Calvinists; Roman Catholic and Greek Orthodox churches, religious bouses, and schools; a public library of 80,000 volumes, with a picture gallery and fine collection of minerals; a theatre, a hospital, and several philanthropic and industrial institutes. The trade is chiefly in timber, planks, materials for house-roofing, grain, wine, tobacco, and other products of the neighbourhood. Both weekly and special markets are held. At the end of 1880 the population anounted to 12,843 ( 6265 males, 6578 females), Magyars and Roumanians by nationality.

[^208]matot, Clément ( 1406 -1544), one of the most agrecable if not one of the greatest poets of France, and a figure of all but the first impertance in her literary history, was born at Cahors, the capital of the province of Quercy, some time during the winter of the year 1496-97. He was, borwever, not a southern by blood, at least by his father's side. That father, Jean Marot, whose more correct name appears to have been Mares, Marais, or Marets, was a Norman of the neighbourheod of Cacn. He was himself a poet of considerable merit, and beld the post of cscripuctin (apparently uniting the duties of poet laureate and historiographer) to Anne of Britanny. He. had however, on what business or in what capacity is not known, resided in Cahors for a considerable time, and was twice married there, his secend wife, whose name is not knowr, being the mother of Clément. The boy was "brought into France "-it is his own expression, and is not unnoterworthy as showing the strict sense in which that term was still used at the beginning of the 16 th century - in 1506, and he appears to bave been educated at the university of Paris, and to have then begun the study of the law. But, whereas most other poets have had to cultivate poetry against their father's will, Jean Marot took great pains to instruct his son in the fashionable forms of versemaking, which indeed required not a little instruction. It was the palmy time of the rhétoriqueurs, poets who combined stilted and pedantic language with an obstinate adherence to the allegorical manner of the 15 th century and to the most complicated and nrtificial forms of the Ballede and the Rondeau. Clément himself practised with diligence this poetry (which he was to do naore than any other man to overthrow), and he has left panegyrics of its coryphexus Guillaume Cretin, the unfertnate suggester of the Raminagrobis of Rabelais. Nor did he long continue even a nominal devotion to law. He became page to a certain Messire de Nenville, and this opened to him the road of court life. Besides this, his father's interest must have been not inconsiderable, and the house of Valois, which was about to hold the throne of France for the greater part of a century, was deroted to letters. As carly as 1514, before the accession of Francis I., Clement presented to bim his Judgment of Minos, and shortly afterwards he was either styled or styled himself facteur (poet) de la reine to Queen Clande. In 1519 he was attached to the suite of Marguerite d'Angouleme, the king's sister, who was for many jears to be the mainstay not only of him but of almost all French men of letters. In 1524 be drew 95 livres annually from her as a pension, and be had a post in the housebold of her husband the Duc d'Alençon. It is certain that Marot, like most of Marguerite's literary court, and perhaps more than must of them, was greatly attracted by her gracio: wa way, her unfailing kindness, and her admirable intellectnal accomplishuents, buit there is not the slightest ground for thinking that his attachment was other than platonic. Indeed the most farnous passage of his poems which relates to the future queen, in which be describes her "sweet refusal with a sweeter smile," is tolerably decisive on the point. It is, however, evident that at this time either sentiment or matured critical judgment effected a great change in his style, a clange which was wholly for the better. At the sam, Time ie celebrates a certain Diane, whom it has been sought to identify with Diane do Poitiers. There is nothing to support this idea and much against it, for it was an almost invariable habit of the peets of the 16 th century, when the mistresses whom they colebrated were flesh and blood at ill (which was not always the case), to celebrate them under pseudonyms. In the same year 1524, Marot accompanied Francis on his disastrous Italian campaign. 1Ie was wounded and taken at Pavia, but soon released, ond he was
back arain at Taris by the keginning of 15\% . His luck bad, however, turoed. Marguerite for intellectual reasons, and her brother for political, had hitherto faroured the demble movementof A wflkärung, partly humanist, partly leforming, which distinguished the beginning of the century. Formidable opposition to both forms of innovation, howerer, now began to be manifested, and Marot, who was at no time particularly prudent, was arrested on a charge of heresy and Iodged in the Clatelet, Febrnary 15… But this was only a foretaste of the coming tronble, and a friendly prelate, acting for Marguerite, extricated lim from his durarice before Easter. The imprisonment gave him occasion to write a vigorous paem on it entitled Linfer, which was afterwards initated by his luckless friend Dolet. His father died about this time, and Marot seems to have been appointed to the place whiclı Jean had latterly enjojed, that of valet de chambre to the king. He was certainly a member of the royal houscheld in 1528, with a stipend of 250 lisres, besides which be bad inherited property in Quercy. In 1530, probably, he married. Next year lie was again in trouble for heresy, and was again rescted ; this time the king and queen of Navarre seen to have bailed him themselves. In 1532 be published, under the title of Actelescence Clementine, a title the claracteristic grace of which excuses its slight savour of affectation, the first printed collection of his works, which was very popular, and was frequently reprinted with additions. Dolet's edition of 1538 is believed to be the mest authoritative. Unfortunately, however, the poet's enemies were by no neans disconraged by their previous ill success, and the political situation was very unfavourable to the Reforming party. In 1535 Marot was again summoned to appear on the charge of heresy, and this time he was advised or thought it best to dy. He passed throngh Réarn, and then made his way to Rence of Ferrara, a supporter of the French Reformers as steadfast as ber aunt Margnerite, and even more efficacious, because her dominions were out of France. At Ferrara he wrote a good deal, bis work there including his celebrated Blasons (adescriptive poem, inproved upon medixval models), which set all the verse writers of France initating them. But the duchess Renée was not able to persuade her husbaud, Ercole $d^{\prime}$ Este, to share her viems, and Marot had to quit the city. He then went to Venice, but before very long obtained permission to return to France. Francis hinsself, thougla a fickle and unsafe patron, was attached to him, and in 1539 gave him a hoase and grounds in the suburbs. It was at this time that his famous translations of the Psalms appeared. The merit of these has been sometimes denied, owing apparently to the absurd partiality which scems in the case of some critics to make it impossible for the reader to appreciate the manner of a work to the matter of which he is opposed on political or religions grounds. It is, however, considerable, and the powefful influence which the book exercised on contemporaries is not denied by any one. Tho great persons of the court chose different pieces, each as his or her favomrite. They were sung in court and city, and they aro said, with exicreration donbtless, but still with a basis of truth, to have done more than anything else to advance the canse of the Reformation in France. Indeed the vernacular prose translations of the Scriptures were in that country of little merit or nower, and the form of pectry was still preferred to prese, cven for the most incongruous subjects. At the same time Marat engaged in a curions literary quarrel characteristic of the time, with a bad noct named Sagon. ILalf the verse writers of Fiance rangel themselves amoug the Mn:otiques or the Sayontiques, and a great deal of versified abuse was exchangool. The victory, as far as wit was concerned, nuturally rested with Marot. but his biographers are probably not fanciful in supprsing that a certaio amount of odmm was created against lim by
the squabble, and that, as in Dolet's case, his subsequent misfortunes were not altogether uncomnected with a too little governed tongue and pen. Although on his last return into France he had formally abjured his errors, the publication of the Psalms gave the Sorbonne a handle, and the book was condenıned by that body. In $15 \nmid 3$ it was evident that he could not rely on the protection of Francis, who was probably too selfish in any case to have given him inconvenient help, and who, like many of his family, was disposed to compound with the clurch for a libertine life bo ceremonial devotion and by sacrificing heretics liberally. Marot accordingly fled to Geneva ; but the stars were now decidedly against him. He had, like most of his friends, been at least as much of a freethinker as of a Protestant, and, notwithstanding the immense service he had done to the cause by the publication of his Psalms, this was fatal to his reputation in the austere city of Calvin. He had again to fly, and mado his way into Piedmont, where ho secms to have enjoyed a sort of left-handed protection from Francis, who then held it. But the harassing effect of these constant persecutions, assisted very likely by the careless living which was but too common at the time, proved too much for him, and he died at Turin in the autumn of 1544, aged barcly forty-eight.

In character Marot seems to lave been a fypical Frenchman of the old stamp, cheerful, good humoured, aud amiable enough, hut probably not very much disposed to elaborately moral life and con. versation or to serious reffexion. He has sometimes been charged, though on no very definite grounds, with a waut of independence of character, and his attitude tormards his patrons was certainly not that of almost liaughty equality which Ronsard brought in ; but it is fair to remember that Marot belonged alnost as much to the Middle Agcs as to the Renaissance, and that in the Middle Ages men of letters naturally attached themselves as dependants to the great. Such scanty knomledge as we have of his relations with his equals is favourable to him. He certainly at one time quarrelled with Dolet, or at least wrote a violent cpigram against him, for which there is no known cause. But, as Dolet quarrelled with almost every fricnd he ever had, and iu two or three cases playcd them the shabbiest of tricks, the presumption is not against Marot in this matter. Whatever may have been Marot's personal weaknesses, his importance in the history of French literature is very great, and it is wont nowadays to be rather under- than over-valued. Coming immediately before a great literary reform-that of the Pléiade - Marot suffered the drawbacks of his position ; he was both colipsed and decried by the partakers in that reform. In the reaction against the Pleiiade he recovered honour ; but its restoration to virtual favour, a perfectly just restoration, has again unjustly, depressed hin. Yet Marot is in no sense one of those writers of transition who are rightly obscured by those who come after them. Ile himself, was a reformer, and a reformer on perfectly independent lines, besiles which it may be said that he carried his own reform as far as it would go. It has been said that his early work was couched in the rhetoriquever style, the distinguishing characteristics of which are clajorate metre and rlyme, allegoric matter, and pedantic language. In his second stage he entirely emancipated fimself from this, and became one of the easiest, least, affected, and most vernacular poets of France. In these points indeed he has, with the exception of La Fontaine, no rival, and the lighter verse writers ever since have taken one or the other or both as model. In his third period he lost a little of this flowing grace and case, but acquired something in stateliness, while he certainly lost nothing in wit. It is leyond question that Marot is the first poet who strikes readers of Fr rench as being distinctively modern. He is not so great a poet as Yillon nor as some of his successors of the Plèiade, but he is much less antiquatcd tban the first (Those works, as well as the Romion de la Rose, it may be well to mention that he edited) and not so elahorately artificial as the second. Indeed, if there be a fault to God with Marot, it is undeubtedly that in his gallant and successful effort to break up, supple, and liquefy the stiff forms and stiffer language of the 15 th century, he made his noetry almost too vernacular and pedestrimu. In his hands, and while the sylye Mratotique was supreme, French poctry ran some risk of finding itself unequal to anything but graceful ver's de socielef. But it is only fair to remeuiber that for a century and moore its best achievements, with rure exceptions, had been vers de societe which were not graceful.

Thicre is a rcry cheap, handsome, and useful edition of Marot by Jannet and llciicault, 4 vols.. Saris, 1 si3; but M. Georges Guiffrey is slowly producing a cottly and splendid wolk, containing a vast quantity of unpuhlished matter, which will undoubtedly be the standald Thls work contains much biographlical detall, ithels. husever, as bing stall incomplate, is uot wailable to modify former' सेcoutis.

Marquesas ISlands, or Mendar̃a Islands (French, Les Marquises), an archipclago of twelvo islands lying between $7^{\circ} 50^{\prime}$ and $10^{\circ} 35^{\prime} \mathrm{S}$. lat., and $138^{\circ} 30^{\prime}$ and $140^{\circ} 50^{\prime} \mathrm{W}$. long. They extend over 200 miles from S.E. to N.W., and have a total area of 489 square miles. The lower or true Marquesas group consists of the islands Fatouhiva or Magdalcua, Motane or San Pedro, Taholiata or Sta Christina, and Hivaoa or Dominica, the last with a coastline of more than 60 miles. With these is often included the rocky islet of Fctohougo or Hood's, lying in midchannel to the north of Hivaoa. The noth-western or Washington group is formed of seven islands, the four largest being lioa-Poua or "Adams, Houahouna or Washington, Noukahiva or Marchand ( 70 miles in circumference), and Hiaou. Along the centre of cach island is a ridge of mountains, sometimes attaining an altitude of 3500 feet, whence rugged spurs forming deep valleys stretch torrards the sea. The volcanic origin of the whole archipelago is proved by the principal rocks being of basalt, trachyte, and lava. Except on a few barren peaka the islands are clothed with rerdure, and in the valleys, which are well watered with streans and brooks, the vegetation is luxuriant. The flora includes over four bundred known species, many of them identical with those belonging to the Society Islands. The vegetable producta comprise bananas, bread-fruit, yams, plantains, wild cotton, bamboos, sugar-cane, cocoa-nut and dwarf palms, and scveral kinds of timber trees. The land fauna is, however, very poor: there are ferv mammals with the exception of dogs, zats, and pigs ; and amphibia and insects are also generally scarce. Of twenty species of birds more than balf belong to the sea, where animal life is as abundant as at other subtropical Polynesian groups.

The climate of the Marquesas, although hot and humid, is not unhealthy. During the greater part of the year moderate easterly trade winds prevail, and at the larger islands there are often both land and sea breezes; the rainy season, accompanied by variable winds, sets in at the end ni November, and lasts for about six months. During this period the thermometer varies from $84^{\circ}$ to $91^{\circ} \mathrm{F}$.; in the dry season its average range is from $\overline{77^{\circ}}$ to $86^{\circ}$.
The inhabitants, a native Polynesian race, have in many respects a great affinity to the Tahitians, but excel them in symmetry of form. They live chiefly on bread-fruit, vegetables, and fish, almost entirely neglect agriculture, but rear hogs and fowls in great numbers. They exchango live stock, timber, vegetables, fruit, and fresh water with traders for iron utensils, frearms, gunpowder, cloth, tobacco, and brandy. They are polite in their intercourse with strangers, susceptible and courageous, but at the same time excitable, revengeful, addicted to stcaling, lazy, and immoral. The efforts of missionaries, whether Protestant or Roman Catholic, have hitherto: proved of little aval either in converting them to Christianity or in improving their moral and social condition. - At the commencement of the present century the population excceded 20,000, but since then petty warfare, infectious maladies, and various other causes have greatly reduced its number; and on the 31 st December 1876 it reached only 5754.

In 1842 the Marquesas arcnipelago was formally taken possession of for France by Captain Du Petit-Thouars; and the French still maintain a nominal protectorate over the islands, with a resideut and a small garrison at Noukahiva. Since 1861, however, French colonization has been virtually abandoned.
The Narqnesas Islands were first discovered 21st July 1595, by Alvaro Mcndaũa, who, however nnly knew of the south-east grour, to which he gave the name of Marquesas de Mendoza, in honour of the viccroy of Puru. Cook, pursting the same track, rediscovered this group, with the additio: of Fctohonge, iu 1774. _The worthe:
avest islands were first sighted by Ingmanm the American in 1791, and were sulsequently visited by Marchand (1791) and Hergest (1792). A more extensive investigation of the archupelago was made by Kruseustern in 1804. Of later narigators to the Marquesas the most noteworthy are Stewart (1820), Bennett (1835), and D'Urville (1838), and, since the date of the Frouch occupation, Dumoulin, Jouan, and above all Jardin.
See C. F. Meinicke, Dic Inseln des stillen Occons, Leinsic, 1875-76; Tablcaux de yop ., de., des col. franç. for 1877.

## Marquetriy. See Furniture.

MARQUETTE, a city and port of entry of the United States, and the county seat of Marquette comity, Michigan, lies on a bluff about 25 feet above a bay of Lake Superior, and is a terminus of the Marquette, Houghton, and Ontonagon, and the Detroit, Nackinac, and Marquette Railroads. Though the population of the city was only 4690 in 1880, Marquette is a place of importance as the chief shipping port for the great iron-ore region of western Michigan ( 787,150 tons shipped in 1881), and contains a number of blast furnaces, foundries, machine-shops, and powdermills, while at the same time it has a reputation as a resort for invalids and tourists. A lioman Catholic cathedral, convent, and orphan asylum are among the public buildings.
MARqUETTE, Jacques, a Jesuit missionary and explores, was born in 1637 at Lsou in France, and died May 18, 1675 , on the banks of a small stream, now knowu as the Marquette, which bas its mouth on the eastern shore of Lake Michigan. Having joined the Society of Josus, he sailed for Canada in 1666, spent eighteen months in the vicinity of Three Rivers, founded the mission of Sault Sainte Marie on Lake Superior iu 1668, and followed the Hurons to Mackinaw in 1671. It is rainly, however, as Jolict's companion in bis voyage down the Mississippi in 1673 that Marquette holds a permanent 10sition in the history of discovery in America.

Hio marative, first published in Thevenot's Recucil de Voyages (Pais, 1681), is printed along with other documents relating to him in Sher's Diseorcry and Exploration of the Mississippi Valley (New York, 1852).

MARQUIS, or Marquess, a title and rank of nobility, the second in tho order of the British peerage, and therefore nest to dukc. The first marquis in England was Robert de Vere, the ninth carl of Oxford, who by Richard IL., Ist December 1385, was created marquis of Dublin. On the 13th of October following the patent of this maryuisate was recalled, loobert de Vere then having been raised to a dukedom. John de Deaufort, the second legitimate son of John of Gaunt, was created to the second marquisate as marquis of Dorset, 29th September 1397. From that period this digaity appears to have been dormant till the reign of Henry VL., when it was revived, and thenceforward it maintained its place in the British peerage. A marquis is " most honourable," and is styled "my lord marquis."
 Marquis's Coronct. His wife, who also is "most honourable," is a marchioness, and is styled "my lady marchioness." The coronet is a circlet of gold ou which rest four leaves and as many large pearls, all of them of equal height and connected. The eap and lining, if worn, are the same as in the other coronets. The coronet, which in representations displays one central leaf with two pearls and two half-leaves, when without cap or lining, is shown in the annered woodeut. The mantle of parliament is scarlet, and lins three and a half doublings of ermine.

MARRIAGE, Law of. Marriage may be defined here as the act, ceremony, or process by which the legal relation-
ship of husband and pife is constituted. In most if not all legal systems it takes the form of a contract-the mutual assent of the parties being the prominent and indispensable feature of the ceremony. Whether it is really a contract or not, and if so to what class of contracts it belongs, are questions whicis iave been much discussed, but into which it is not necessary to enter. While the conseut of parties is universally deemed one of the conditions of a legal marriage, all the incidents of the relationship constituted by the act are absolutely fixed by law. In the United States it has been expressly decided that martiage is not a contract within the ineaning of the constitutional law, which prohibits state enactments "impairing the obligation of contracts." Mr Bishop, however, in his very valuable book on Marriage and Divorce, suggests that a State law permitting the status of marriage to be created without the consent of both parties would nut be constitutional; but that is a dificulty arising out of the peculiar relation of the States to the Union. The question whether marriage is merely a contract or more than a contract, whether a purely civil or also a religious act, belongs to a similar order of inquirics. The jurist has only to deal with marriage in so far as it creates the legal status of husband and wife. It should be added that, while marriage is generally spoken of by lawyers as a contract, its complete isolation from all other contracts is invariably recognized. Its peculiar position may be seen at once by comparing it with other contracts giviag rise to continuous relationships with more or less indefinite obligations, like those of landlord and tenant, master and servant, \&c. In these the parties may in general make their rights and duties what they please, the law only intervening when they are silent. In marriage every resulting right and duty is fised by the law.?
lionan Law.-The three primitive modes of marriage were confarreatio, coemptio in manum, and usus, all of which had the effect of placing the woman in the "power" (manus) of her husband, and on the sante footing as tho children. The first was a religinus ceremony before ten witnesses, in which an ox was sacrificod and a wheaton cake broken and divided between the spuuses by the priest. Coemptio was a conveyance of the woman by mancijatio, and might be described ns a fictitious sale per as a libram, like that employed in emaucipation and testamentary disposition and other processes. Usus was thic acquisition of the wife by prescription, throngh her colabiting with tho husband for one year without having been absent from his house three continuous nights. But a true marriage might be concluded without adopting any of these modes, and they all fell into desuctude and with them the subjection of the wife to the manns. Darriage without manus was contracted by the interchange of consent, without writing or formality of any kind. By some jurists it is regarded as iucomplete until consummated by delivery of the woman, and is accordingly referred to tho class of real contracts. The restrictions as to age, relationship by consanguinity and affinity, provious marriage, \&e, were in the main those which have continued to prevail in modern Europe with one important exception. The consent of the paterfumilias to the marriage of the children under his power was essential.
In the Canons Law, which is related on the one hand to the civil luw, on the other to the modern matrimonial law of Europe, although marriago was not merely a contract but a sacrament, the validity of marriages by consent was nevertheless admitted. "When the natural and civil contract was formed," says Lord Stowell, "it lad the full

[^209]essence of matrinony without the intervention of a priest. It had even in that state the clazacter of a sacrament, for it is a misapmehension to suppose that this intervention waz required as a matter of necessity eren for that purpose before the council of Trent." ${ }^{1}$

Euylnizel.- Marriage may be the subjech of an ordinary - comeract on which an action may be brought by either party: It is not necessary that the promise should le in witing, or that any particular time should be named. The barties were formenly inadmissible as witnesses in this astion; but they are now competent to give evidence, subject In the condition that the plaintifl shall not recover "unless his or her testimony shall be corroborated by sume other material cridence" ( 32 \& 33 Vict. c. 68). The ordinary defences, e.g., frand, clischarge, minority, are a vailable in these actions, and there are also special defences arising from the nature of the contract, sueh as the bad claracter of the plaintiff, the relationship of the parties within the prohibited degrees, \&ce. Promises to marry are not within the meaning of "agrecment made in consideration of marringe " in the statute of frauds, which requires such agreements to be in mriting. Contracls in lestraint of marriage, i.e., whose object is to prevent a person from marrying anybody whalever, are void, as are also contracts undettaking for reward to procure a matriage between two persons. These latter are termed marriage brocage contracts.
Any man and woman are capable of marrying, stibject to certain disabilities, some of which are said to be canonical as having been formerly under the cominzance of the ecclesiastical courts, others civil. The eflect of a canonical disability as such was to make the marriage not void but roidable. The marriage must be set aside by regnlar process, and sentence pronounced during the lifetime of the parties. Nalural inability at the time of the marriage to procreate children is a canonical disability. So was proximity of relationship within the prohibited degrees, which has been made an absolute avoidance of marringe by 5 \& 6 Will. IV. c. 54 . A pre-engagement to another person was at one time recognized as a canonical disability. Civil dispbilities are (1) the fact that either party is already married and has a spouse still living; ${ }^{2}$ (2) the fact that either party is a person of unsound mind; (3) want of full age, which for this purpose is fixed at the age of puberty as defined in the Roman lan; viz., fourteen for males and twelve for females; ${ }^{3}$ ( $t$ ) prosimity of relationship within the prohibited degrees, already alluled to. The statute which lawyers regard as establishing the rule on this last point is the 32 Henry VIIT. c. 38 (repealed in part by $2 \& 3$ Edw. VI. c. 23 , in whole by 1 \& 2 P. and 1I. c. 8 , but revired by 1 Eliz. c. ], and so left as under the Act of Edvardl), which enacts that "no prohibition, God's law except, shall trouble or inpeach any marriage withont the Levitical degrees." The forbidden marriages, as more particularly specified in previous statutes, are those between persons in the ascending aud descending line in infinitum, and those between collaterals to the third degree inclusive, according to the computation of the civil Jaw, which reckons from one of the persons related to the common stock and so down to the other perzon. The prohibitions extend not only to consangrinei (related by blood) but to afines (related by marriage). A man may neither narry his sister nor his deceased wife's sister, for both are related

[^210]to him in the second degree; nor his sister's daughter, nor his deceased uife's sister's daughter, for both are in the third degree; but he may marry his first cousin, for sho is in the fourth degree. C'onsungrine of cither spouse ate related by aftinity to the other; but the consanguinei of the one are not necessatily related to the consenguinei of the other. Hence two brothers may marry two sisters, or a father and son a mother and daughter. A husband is not related to the uffines of his wife, and so a man may marry the widow of his deceased wife's brother. The rulo as to collaterals includes those related by the balf blood and bastards (sce Stephen's Commentaries, book iii. c. 2). Other disabilities previously adaitted were nbolished by the statutc of Heury: The Act of 5 d 6 Will. IV. c. $5 t$ enacted that "all marringes which shall hereafter bo celebrated between persons within the prohibited degrees of consanguinity or aftinity slall he absolutely null and void to all intents and purposes whatsoever." They had previously, as already statecl, been only voiclable. The Act at the sane time legalized marriages within the prohibited degrees of affinity (but not consanguinity) actually celebrated before the 3lst August 1835.
The celebration of marriages is now regulated wholly by statutory legishation. The most imporiant Acts now in force are the $\frac{1}{}$ Geo. IV. c. TG and the 6 \& 7 William IV.c. $850^{4}$ The former regulates manrinces within the Church of Enclantl, but was intended to be of universal application, Jews and Quakers only being excepted by section.31. It requires either the previous publication of banns, or a licuice from the proper ecclesiastical amthority: As to banns, the mule of the rubric, so far as not altered by the statute, is requiral to be abservel. They nust be publishat on threc successire Sumlays at morning scrvice after the second lesson, in the church of the patish in which the parties dwell ; the bishop may, however, anthorize the publication of banas in a public chapel. Seven days' notice must be given to the clergyman of the names of the parties, their place of abole, and the time during which they bave lived there. If cither party is under age, the dissent of the parents or suadians expressed at the time of publication of banns reuders such publicaion null and void. Licence in lieu of banns may only be granted by the archbishop, bishop, or other authority, for the solemmization of a mariage within the churcle of the parish in Which one of the parties shall have resided for fifteen days beiore. Before a licence can be granted an oath must be taken as to the fact of residence and that the necessary consent has becnobtained in the case of persons under age. The father, or lawful guardian, or mother if unmarried, or guardian appointed by the cont, is each in order of substitution the proper person to consent to the marriage of a minor, and the place of any such person incapacitated meutally is taken by the lorv clancelior. The alosence of such consent doe's not, however, avoid a marriage once solemmized. But if persons wiffully intermarry (unless by' special licence) in in place not being a church or public chapel, or without due publication of banns or proper licence, or before a person not in holy orders, the marriage is null and voil to all purposes. Javiage must be celcbrated within three montlis after banns or licence, and betwecn the lowis of cight and twelre in the morning.

For the relicf of the great horly of dissenters the Act $6 \& 7$ Will. IV. c. $\delta 5$ was passed. It permits marriage to be solemmized in two additional ways, - viz. (1) by certificate of the superintendent registrar of a district without licence, and (2) by such certificate with licence. In the first case, notice must be given to the registrar of the district or districts within which the parties have resided for seven day's previous, which notice is inseribed in a marriage notico book, open to public inspection at all reasnnable times, and theneafter suspended for twenty-one days in some conspicuous place in the registrar's office. The notice must be accompanied by a declaration as to the absence of impediments, necessary consent, \&ec. Iny person whose consent is nccessary to an ecclesiastical licenco may torbid the issue of a certificate, but in defanle of such prohibition the certificate will issue at the end of the twenty-one days. The marriage may then take place on any day within three months of the entry of notice, and in one of the following ways :-(1) in a certified place of religious worship, reristered for the solemnization of marriage ; in that case a recristrar of the district with two witnesses must be present, and the ceremony must include a mutual declaration of assent by the parties and a disavoral of any impediment ; (2) at the superintendent registrar's office, with the same

[^211]declaration, but with no religious service ; (3) in a church accorling to the usual form, the consent of the minister thereof laving becu urtvionsly obtained; ( 4 ) according to the nsages of Jews and Quakers. The place of marriago in all enses must have been şucified in the notice and certificate.
In the secoud case, when it is desired to proceed by licenco. notice tunst be given to the registrar of tho district in which one of the persons resides, torether with a declaration that he or she has resided for fifteen day's therein, that there is no impediment, and that the necessary consents if any have been ohtained. The notice ia not exhibited in the registrar's office, nul the celtificate may be obtained at the expiration of one, whole thay after entry, together with the licence. No registran's licunce can be granted for a marringe in chureh or according to the forms of the Cluurch of Eur-laurl,- the ecclesiastical authonities retaiuing the in moropoly in that respect. It is also proviled that in the case of persons wilfully intermarrying in a place otber than that mentioned in the notice and certificate, or without notice or certificate, \&e., the marriage shall be null and void. And, as under the former Marriage Aet of Geo. IV., a valid marriage between persons one of whom is under age, brought about by fraud or false oath, suljects the offending party to a forfeiture of all property that otherwise might accute to him from the marriage, a like prenalty is provided in like cases under the later Act.

It will be observed that the various rules as to consent of parents, \&c., to the marriares of minors are regulations of procedure ouly. The absence of the necessary consent is not a disability invilidating a marringe actually solemnized.
The Act 26 Geo. 11. c. 33, comunonly knorrn as Lord Hardwicke"s Act, which forbids the solemnization of marriage wathourt banns or licence, also enacts that "in no case whatsoever shall any suit or procecding be had in any ecelesiastical court in order to compul a celebration in facic ceclesias, by reason of any contract of matrimony whatsoever whether per verba de presenti or per verbe de futaro." Blackstone observes that previous to this Act "any contract made per verber de presenti, or in words of the present tense, and in case of cohabitation per verbe de futuro also, was deemed valid marriage to many purposes; and the parties might be compulled in the spiritual courts to celebrate it in facic ccclesix." In his celebrated jndgnent in the case of Dalrymple $v$. Dalrymple, which turned on the effeet of promises exclanged between the parties in Scotland, Lord Stowelt laid it down "as the basis of the canon law, the known basis of the matrimonial law of Europe," that "in the irregular marriage, i.e., spansalia per rerba de presenti, everytbing was presumed to be complete and consumnated in substance but not in ceremony; and the ceremony was enjoined to be undergoue as a matter of order. In the sponsalia de futura nothing was presumed to be complete or consummated cither in substance or in ceremony, but if the parties who had exchanged the promise had carnal intercourse with each other the effect was to convert the engigenient into an irregular marriage." On the other hand, in the case of the Queen $v$. Millis in the House of Lords on appeal from the Irish Queen's Beneh, the position of Lord Stowell was strongly criticized. Lord Lyndhurst's conelusion was that, "although a marriage contracterl per verba de presenti was indissoluble, though it could not be released even by the mutual conseat of the parties, though either of them might enforee it and compel solemuization, though it hat the effect of rendering voidable a subsequent marringe solemnized in facie ecclesix, eren after the colabitation and birth of children, though it was considered to be of the essence and sulstance of matrimony-jet by the law of England it did not confer those rights of property or the more important right of legitiracy consequent on a marriage duly aolemnized according to the rites of the church." The lords were equally divided in their decision, aud the question has since been agitated not so much with reference to England, whero after the Act of Geo. 11. it had a merely hisiorical interest, os to the colonies and the United States (see below), where the common law of England prevails umless changed hy legishation. Dr Lushington in the case of a marriage in Niew South Wales declaced that, when there has been a "fact of consent between two parties to becomeman and wife," sncin $i_{3}$ "sufficient marriage to enable me to pronounce when necessary a decrec of separation." In the case noticed the pronises had been exchanged before ministers of relision not technically "in holy orders," and the questiou has aceordingly sometimes been put in the form whetber, according to the common law, the intervention of a ${ }^{-1}$ ergy man was necessary to a valid marriame.
Royal Maruages in England have been subject to sjecial laws. The Royal Harriage Act of 1772 (12 Geo. 111. c. 11), passed in consequencs of the marriages of the dukes of Cumberland and Gloueestor, enacted that "no descendant of his late majesty Gearge 11. (othe, than the issme of princesses married or who may marry into Soreign families) slall be capable of contracting matrimony withon:t the previous consent of his majesty, his heirs and suc. cessurs, signitied nuder the great seal. But in caso any descendaut of George II., being abore twenty-five jears chly, shall persist to pontract a marriage disapproved of loy his inajesty, suele buscendant, siter giving twelve mouths' notico to the privy council, nuay cou-
tract such nanringe, and the same may be cluly solemmized withous the couscnt of liis majesty, sc., and slall be good except both Louses of P'arlianent slamll deelare their disapprobation thereto."

Scollend.-The chief point of distinction, as compared with English law, is the recognition of irregular marriages abuve noticed. (1) "A public or regular marriage," says Fraser, "is one celebrated, after clue proclamation of bauns, by a mimster of religion; and it may be colebrated either in a chureh or in a privatc house, and on any day of the weck at any hour of the day." The miuisters of the national church at first alone could perform the ceremony; but the pivilege was extended to Episcopalians by 10 Anne c. 7, and to other ministers by $4 \& 5$ Will. IV. c. 28. (2) A marriage may also "be constituted by declarations mado by the man aud the woman that they presently do take each otter fcr busband and wife." These declarations " may be emitted on any day at any tiore and without the fresence of wituesses," and cither by writing or orally or by signs, and in any form which is clearly expressive of intention. Such a marriage is as effectual to all intents aud purposes as a public marriage. The children of it would be legitimate ; and the parties to it would have all the rights in the property of each other, given by the law of Scotland to husband and wife. (3) A promise followed by copula does not, according to Fraser, constitute marriage, muless followed either by solemnization in fucie ecclesiæ or rleclarator. On the other hand, in Lorimer's Handlook it is urged that the promise aod copula are mere tokens of consent recoguized by the law, and that "the date of the marriage is the date of the copula." Howerer this may be, Lord Moacreiff's opinion in the case of Brown ?. Burns is admitted on both sides to be good law, viz., that declarator is essential to the constitution of a marriaç of this kiod, so that, if no such declarator be brought in the lifetime of both parties, the marriage can never i'g established afterwards. The copula is presumed to have reference to the promise, but evidence may be adduced : shuw that such was not the casc.

By 19 \& 20 Vict. c. 96, it is enacted that no irreguier marriage shall be valid in Scotland, unless one of tio partics has lived in Scotland for the twenty-one days nes: preceding the marriage, or lias bis or her usual residence there at the time.
"Habit and repute" has sometimes been spoken of as constituting marriage in the law of Scotland, bust it is more correctly described as evidence from which marriage may be inferred. The repute must be the general, constant, and unvarying belief of friencis and neighboars, not merely the controverted opinion of a section of them. TLc cohabitation must be in Scotland, but in one case procf of cohabitation in another conntry was allowed, es tending to throw light on the nature of the cobabitation in Scotlaud.

The consent of parents is not necessary to the validity of the marriage, even of minors, but marriage uoder the age of puberty with or without such consent is void.

United States.-The absence of ccclesiastical courts has suggested difficulties as to the extent to which the law of England on this subject contiaued to prevail after the revolution. Bishop holds it to be the universal fact running through all the cases that everywberc in the country the English decisions on marriage and divorce are referred to with the same apparent defereace which is shown on other sulujecta to the decisions of the English common law and equity tribunals. The same author observes that "all our niarriage and divorce laws, and of course all our statutes ou the subject, in so far as they pertain to localities embraced within the limits of particular States, are State laws and State statutes, the national power with us not havicy legislative or judicial cognizance
of the matter mithin tuose localities." Some of the States have extended the agcs below which marriage camot take place. The common haw of the States is assumed to ho that "a contract per verba de presenti, or per verba de futuro erm comila, constitutes a complete marriage." Conditions, however, may be imposed by the various State legislatures, and as to these the rule las established itself in American jurisprudence that " a marriage good at common law is good notrithstanding the existenco of any statute on the subject, unless tho slatute coutains express words of. nullity." Thus in Pennsylvania, where a statute provided that all marriages "should be solemnized before twelve witnesses," marriages not so celebrated were nevertheless held to be good. In New Hampshiro justices and ministers of the gospel are authorized to solemnize marriage, and all other persons are forbidden to do so under penalties; yet a marriage by consent, as at common law, without justice or minister, has been held valid. On the other hand, under a very similar statute in Massachusetts, it was held that "parties could not solemnize their own marriage," and that a marriage by mutual agreement, not in accordance with the statute, was void. Bishop regards this as an isolated exception to the general course of the decisions. So when State legislation requires any particular form to be used the want thereof only iavalidates the act if the statute expressly so enacts. Many of the State codes infict penalties on ministers or justices for celebrating the marriage of minors without the consent of the parents or guardians. The original law as to probibited degrees has been considerably mudified in the States. The prohibition bf marriage with a deceased wife's sister is said by Bishop to be all but unknown in the United States, Virgiaia apparently being the only one where it is still retained. Some writers apply the term logislative marriages to cases in which the State by enactment confirms a marriage which was void for some defect. Questions sometimes arise as to whether such enactments are within the constitution of the Slate.
France. - Articles 144-226 of the Code Napoléon prescribe the gralifications and conditions of marriarc. The man must be eightcen and the roman fifteen years of age. A son under trentyfire, and a daughter under trenty-one, cannot marry without consent of the father and mother, or of the father only if they disagree, or of the survivor if one be dead. If both are dead grandfather and grandmother take their place. A man after trienty-five aud a woman after twenty-one are still hound formally to ask the consent of their yarents; until the aga of thirty and twenty-five respectivcly this request must he repcated twice, and after the third application parties are at liberty to marry without such consent. Even after the age of thirty, formal notice must be served on the parents or grandparents ona month befora morriage. If ncither parents nor grandparents be alive, parties under twenty-one require the consent of the family council. These rules apply to natural children when nffiliated; those not affiliated require the consent of a specially appointed guardian. Marriage is nrohibited between all ascandants and descendants in the direct line, and betreen persons related by marriage in the samo line, betireen brother and sister, between uncle and niece, and brother-jn-law and sister-inlaw.

Before the solemnization of marriage banns are required to bo published on two distinct Sundays, coutaining the pames, occupations, and domiciles of tha parties and their parents. The inarriago cannot take place until three. days after tha second publication, and if a year is allowed to elapse fresh banns must be fut up. On the day appointed by the partics, and in the parish to which one of them bolongs, the marriage is colebrated by the civil afficer or registrar reading over to them the various necessnry documents, with the chapter of the code relating to husband and wife, receiving from cach a declaration that they take each other for husband ond wife, and drawing up the act of macriage. All this bas to be done in the presence of four witnesses.

Blarriages contracted abroad betreen French subjects or between French subjects and foreigners are vatid in France if celebrated sceording to the forms of the foreign larr, provided the French conditions as to banns and cousent of parents hove been observed.

International Law. - In the "connict of larrs" on the sulject of frarriage, it las been irell settled that the lex loci governs. If tha
marriage is ralid by the lavy of the country mihero it is celebrated it is recognizal ny valid overywhere ; ir invatil there it is invalit cwerywhere. "This rulo," says Story, "has received tha most deliberate sanction of tho. English zul Ancricancourts and of forcign jurists." The most prominent, if not the only knarra exceptions, Story considers to be marringes (1) involving incest or polygamy, or (2) forbidden by the public law of a country from motives of policy, and (3) marriages celebrated in a foreign country under cireumstances which impose on the partics the law of their own country. W"cstlako (Prizato Intcrnational Lats, chap. ir.) lays it down as indispensable to the validity of a marringe that the lex loci slould be satislied in tespect of forms, consent of parents and guarlians, and capacity of the parties. The lnw of the partics' doruicile shoukh also be satisfied os to capacity unless when it imposes incapreity of a penal nature unknown to the lex loci. Story, in refcrences to the iirst of the threo exceptions nlluded to above, nttempted to set up a clenr and just moral difference betwcen marriages that are incestuons by the law of nature and those that are so by the municinal law of particular States only, with more particular referenee to consan. guinity and affinity. "It would be a strong point to put that a marrige perfectly valid between a man and tho sister of his former deceased wife in New Eogland wrould be held invalid in Vis ginia or Euglnud, cven thongh the parties formerly belonged to or were born in the latter country or State. But, as to persons not so belonging, it would be of the mast dangerous consequence to suppose that tha courts of either of them would ossume the liberty to hold such marriages a nullity merely because their own jurisprudence, would not in a local celebration of marringa therein uphold it." This position has been expressly disavowed by the English courts. In Brook v. Brook it was held that an Englislıman's marriage with lis deceased wife's sister during a residenco in Denmork where the union is lawful is invalid in England. In Ifyde v. Ifycle in the English divorce court it was held that a marriage contracted in a country where polygamy is lawful betwcen a mnn and a wnman who profens a faith which allorrs nolygamy is not a marriage as understond in Christendam; and, nlthough it was a valid marringo by the lexloci, and at the time when it was contracted both the min and the woman were single and competent to contract marriage, the court will not recognize it as a valid marriage in a matrimooinl suit. The difierence in the law of divorce in different countries produces many complications of this kind. It appears that a divorce of an English marriage zbroad for cause not recngnized in England as ground for a divores will be upheld in England if the parties rere domiciled at the time of the divorce in the foreign state; otherwisa not. Compare also the French rule as to morriages of French subjects in foreign countries. The too frequent consequence of these variances is that the same persons are held married in one country und unmarricd in another, thile their children ara legitimate in one country and illegitimate in another. Thera is no subject in relation to which tha establishment of a common code for all civilized nations is more urgently required.
Besides true marriage, with which we have been exclusively dealing hitherto, inferior forms of union have from time to time beeu recognized, and may be briefly noticed hera. Thesc hava n!l but disanpeared from modern society, depending as they do on matrimonial restrictions now obsolete.
Tha institution of slavery is a fraitful source of this kind of debased matrimony. In Roman law no slave could contract marriage whether with another slava or a free person. The union of male and female slaves (coontubcrnium was recognized for various purposes; a free roman entering into a union with a slave incurred under tha S.C. Claudianum the forfeiture of her own liberty ; but the bandwoman might be the concubine of a freeman. In tho United States, where slavery was said to bo regulated by the principle of the civil larr, the marriaga of slaves was so far recognized that on emancipation complete matrimony took effect and tha children becamo legitimate without any new ceremony. Such at least is the purnort of the more recent decisions.

Iu Roman law no legal marringe could be contracted unless there was connubium betreen the parties. Originally there was no connubium between plebs and patricians, and the privilege was conceded after a long struggle by the Lex Canuleia. In later times Latini and Feregrini were excluded from connubium excent where the right had been expressly conferred. The great matrimonial late of the early empire (Lex Julia ct Papial Poppaa) introduced restrictions depeuding on the condition of the partics which later legislation cxtended and perpetuated. Senators under that lawn were forbidden to marry freedwomen or women of inferior rank, and the husband of a freedwoman becoming a senator was sct free from his marriage. In the canon lavi ${ }^{1}$ new restrictions were developed. Persons who

[^212]boand themselves not to marry rere decmed incapable of marryang The order of the elergy were forbidden to marry Anl disparity of faith was recognized by the early elutech as a bar to mathimony, e.g., between Christians nad pagans, and between orthodox nand hereties (seo Dictionary of Christian Antiqutlics, art. "Marriago").
Concubinage, which such restrictions tended to develop, is notieed uniler a separate heading (q.v.). It might be describud as marriage which has no consequences, or only slight nud peculiar consequences, in legal slatus. In the left-handed or "morgnatic " 1 marriages of the German royal fumilies we have tho nearest approach ever made by concubinage to true marriage, tho children being legitimate, but neither they nor the wife acquiring any right to the rank or fortuno of the husband. Under the Royal Marrigo Act in England a union of this kind has no matrimonial effect whatever.
Differeuces of religion are no longer remarded in Christian countries as hindranees to mariange, except possibly in some branches of the Greek Chureh. But tho marniage of pursons of different religions frequently requires the intervention of the law as to the faith of tho children, more particularly in Europe as between Catholics and Protestants. In some countries the clergy make it a condition of such marriages that tho children shall Le educated in the Catholic faith. Euglish law gives the father nn indefeasible right to dictate tho faith of his children, no matter what engagements ho may havo eatered into (sec lNFAST). The practice on this yoint varics in Europe-tho question being ignored in Firenelı law, Germany following in some farts the same rule as England, in others giving effect to ante-nuptial stipulations. In Ircland mixed maniages (i.c., betwcen Catholic and Protestant) were by 19 Geo. II. c. 13 null and void if celebrated by a Catholic priest. This Aet is repealed by $33 \& 34$ Viet. e. 110, which permits mixed marriages to be validly celcbrated by an Episcopalian or Roman Catholic clergyman, subject to conditions set forth in section 38 . (E. R.)

Markyat, Frederick (1792-1848), bas never been surpassed as a writer of tales of nantical adventure. His own life supplied hin with abundant raw materials for his art. The son of a wealthy Lendon gentleman (who sat in parliament for several years for the boroughs of Horsham and Sandwich, and was a writer of verses and political pamphlets), he distinguished himself as a boy by frequently running away towards sea ; and at last, at the age of fourteen, he was allowed to enter the navy. His first service was under Loid Cochrane in the fanous "Impérieuse," and no midshipman ever had a livelier apprenticeship to the sea. "The cruises of the 'Imperiense' were," he say's, "periods of continual excitement, from the hour in which she hore up her anchor till she dropped it again in pert ; the day that passed without a shot being fired in anger was with us a blank day." During his two and a half years of service under the daring and active Cochrane, the young midshipman witnessed more than fifty engagements, many of them extremely brilliant, and had experience of cvery description of serviee, fighting duels with fairly matched ships of war, engaging gunboats, engaging batteries, storming forts, capturing and cutting cut merchantmen. Before the general peace of 1815 he had added considerably to this experience of active service, and gained a wide knowledge of conditions of life on beard ship under various commanders. Ho frequently received honourablo mention for his behaviour in action, and in 1818 he received the medal of the Ifumane Society for "at least a dozen" gallant rescues. He commanded with distinction in the Burmese war of 1824-25. And Marryat's honours were not confined to gallant exploits ; he was the inventer of a code of signals, obtained some celebrity as a caricaturist, and was elected an F.R.S.

Marryat brought ripe experieace and unimpaired vivacity to his work when he comnenced novelist. IIs first production was Frank Mild dmay, or the Naval Offer, published

[^213]in 1829, and his second, pul' ished nine months later, The King's Own. "I think," Washington Irving wrote to him soon after, "the chivalry of the occan quite a new region of fiction and romance, and to my taste oue of the most captivating that could be explored." This was the general feeling. The freshness of the new gield opened up to the imagination, so full of vivid lights and shadows, lighthearted fun, grinding lardship, stirring adventure, heroic action, warm friendships, bitter hatrecls, was felt all the more leenly from its contrast with the world of the historieal romancer and the fashionable norelist, to which tho mind of the general reader was at that date given over. The novels of the soa captain at once won public favour. Ifis first attempt ras somewhat severely criticized from an artistic point of view It was without form, though tho reverse of veid; he had packed into it matter enough for lialf a dozen nevels. Marryat was acensed also of gratifying privato grudges by introducing real personages too thinly disguised, He admitted the justice of these criticisms, and rapidly learut the mechanical part of his new business without losing any of the vivacious charm of his style. The King's Outh was a rast improvement, in point of construction, upon Fronk: Milldmay; and he went on, through a quick suecession of tales, Neuton Forster, Peter Simple, Jucob Faithful, The Pucha of Many Tates, Jophet in Search of a Father, Mr Midshipman Easy, The Pirate and the Three Cutters, till he reached bis highwater mark of constructive skill in Snanley-yow, or the Dog Fiend (1837). If he never surpassed this in storytelling art, hureoreus portraiture, and richncss of incident, the records of circulating libraries and the pencilled comments of their subscribers shew that his subsequent works -he produced twenty-four in all during his tricnty years of authorship-were no less capable of riveting the attention, especially of youthful readers. The following is the hist, with the dates of publication:-The Phantom Ship (1839), A Diary in A merica (1839), Olla Podrida (1840), Poor Juck (1840), Masterment lieady (1841), Joseph Rushbrook (1841), Percival Fieene (1842), Monsicur V'rotet (1842), The Setters in C'uncda (1843), The Privateer's Man (1844), The Mission, or Sicenes in Africet (1845), The Children of the Terw Forest (1847), The Little Savayc (1847), and Valerie, not completed by Marryat (1819). Captain Marryat retired from the naval service in 1830, and therenfter worked as bard at literature as any professional man of letters, making special historical and geographical studics for several of the works in the above list. Me edited the Metropalitan Ifayctine fur four yeurs (1832-36). Marryat's novels were in the first flush of their success when Diekens was a youth, and they have an interest in the bistory of literature as forming an important link between Smollett and Fielding and the author of Shetches by Boz IIe died in 1848. Thero is a biography by his daughter, Florence Marryat.
IIARS was a Romian deity whose name has passed into later literature as that of the war god. There grew in Romo a tendency, fostered by Greek influemee, to consides Jupiter as the one great god, and the other dsities as represonting special sides of his character. Mars then was illentified with the Greek Ares (q.v.), and was regarded as almost the same in nature with the warlike element in Jupiter as Feretrius and Triumphator. In the actual worship of the Romans Mars bears a very different character, which, however, bad almost disappeared from the mind of the people before Augustus built ili the Foruno bis temple to Dars Ultor, the avenger of the murder of Jwlius Casar.

Father Mars, Marspiter, Maspiter, Mavors, or Maurs, was the great god of one of the races that composed the homan shate. Ho is the god of heaven, the giver of light, the opener of the new year; he hurls the thunder and sends
the rain. In cases of drought the lapis manalis, which was kept in his temple on the Appinn Way, was carried through the city by the grontifices. The first month of the old Roman year was the month of Mars, still called March. On the first day the god had been born; and on the same day various anoual ceremonies both political and religious took place; and the holy fire was renewed in the temple of Vesta. When Mamurius Veturius, i.e., Mars of the Year (vetus, Greek féros), was beaten out of the city on March 14, the intention was originally to symbolize the driving away of the old year. The spear sacred to Mars was in its original sense doubtless the lightuing, and his sacred shield was, like the xgis of Zeus and Athene, the storm shield, i.e., the thundercloud. The Sabine words Marmar and Mamers (akin to $\mu$ apuaip $\omega$ ) are cridently names of the leaven-god. The wolf which was sacred to Mars may be compared with the Tic!res of Zeus Lycaios, and the horse, the sacrifice of JIars, is the horse of the sun, which the Greelss also sacrificed to Helios.

As heaven-god and sender of rain, Mars is the giver of iertility and increase. Hence in some of the oldest cults he is the god of the land, of egriculture, and of the flocks. As ho was porrerful to send fertility, so he could cause also drought, sterility, and all evil ; and propitiatory ceremonies, such as the Ambaralia, pere consecrated to him. The Arval brothers invoked Mars to assist them end to arert pestilence. In the Robigalia a sheep and a reddish dog were sacrificed by the flamen of Mars to avert mildew from the crops. The sacrifice of the "October horse" in the Campus Martius, whose head the people of the Subura and the Sacra Via struggled for in order to hang it up in their own precincts, had also a naturalistic and apotropaic character. In times of calamity there was an old Italian custom of dedicating to Mars a ver sacrum. Everything born in this spring was the property of the god; the animals were sacriticed, the young men when they grew up were sent out of the country. Mars seems also to hare had some relation to the religious ceremony of marriage. Along with Juno, the goddess of women and of childbirth, he was worshipped by the Roman matrons on June 1 and at the Matronalia on March 1. As god of the land aja giver of increase, Mars was also the god of death and the dead; he was one of the deities inroked by Decius when deroting himself to death. He was likewise the giver of oracles: like Zeus he revealed his will to men by certain signs. His aneient oracle at Tiora Matiene near Cære resembled in character the oracle of Zeus at Dodona, in so far as revelation took place by the medium of saered birds and trees. Woodpeckers were the sacred birds of Mars, and the noise which they made tapping on the trees was one of the simplest methods of revelation. Picus, the roodpecker, was a name or form of Mars, and was ultimately individualized as a local hero, an early king of Latium, and son of the god. Faunus, the favouring deity, son of Picus, is pre-eminently the god of prophecy; be also is closely related to the original Italian character of Mars, which he retained far more truly than the great Romas god.

Although the worship of Mars was known both in Latiuna and in Etruria, it was probably of Sabine origin. Quiriuus, an undoubtedly Sabine mord, is merely a name of Mirs, which never acquired complete individuality; the feeling almays remained alire in Rome that Mars and Quirinus were one, although they had separate priests. It is in aecordance with the Sabine character that the warlike clenuent should have been very strong in their conception of delty; and thus the Sabine Mars became in the Roman rantheon the deity of mar. Besides the ceremonies round ino altar of Mars in the Campus Martius, the oldest cults c! the god in Rome are the Sabine morship of Quirinus on
the Quirinal and the Latin worship of the noly spear of Mars in the temple of Vesta. There likewise grew at an carly. time a cultus of the god on the Palatine, said to bave been founded by Numa, and twelve Salii of the Palatine existed alongside of the twelre Quirinal Salii. The Palatine Salii performed one of the most remarkable ceremonies in the Roman worship of Mars. For many days, beginning from March 1 , they daneed in armour through certain parts of the city, clashinct their lances on their shields, and repeated the prescribed song. The shields mhich they carried were the twelve sacred ancilza preserved on the Palatine. One of these, it was said, fell from heaven in the time of Numa, and tho king, in order to preserve safely this pledge of victory for the state, had eleven others exactly like it made by Mamurius Veturius The song of the Salii, besides mentioniog all the gods of the city, referred to Mamurius, whose name is only a form of Mamers.

Noxt to Jupiter, Mars was the chief protecting god of the Roman state. Quirinus Mars was the father of the twin-founders of the city, and his sacred wolf was the emblem of the city and the foster-mother of the twins. The Campus Martins outside the city was dedicated to the god from a very early time; there the young men practised their warlike exercises; there the horse races, equiria, in honour of Mars (February 27) and the sacrifice of the "October horse" took place. There also was beld the census every fifth year, followed by the purificatory ceremonial for the whole city, which was dedicated to Mars. When war broke out, the Roman general clashed the shield and spear in the temple of Mars and invoked the god; the spoils of victory belonged to him after Jupiter Feretrius.

There was an ancient temple of Mars outside the Porta Capena on the Appian Way; and on the ides of July, in commemoration of the battle of Lake Regillus, the knights had a procession

> "From Castor in the Forum, To Dras without the well."

As the god of war, who marched with his people to battle, Mars was Gradivus; such at least was the inter explanation of an uld religious name. Inuus Lupercus, the arerter, to whom the Lupercalia was dedicated, was probably a local furm of Mars; his character as protector of the Palatine city, and the warlike element in him, resemble Mars (see Lupercalia). Silranus is also closely related to the agricultural god MIars, who is sometimes called Mers Silvanus. A goddess named Nerio or Neriene is sometimes mentioned as wife of Mars. There was also a goddess Bellona, whose name marks her strictly as the goddess of war; she is called the sister or daughter or wife of Mars. Quirinus, on the Quirinal, had a festival celled Quirinalia, on the 17 th of Fcbruary.
See Preller, Nibm. Nythol., and the other books on Foman religion ; Marquardt on religious antiquities; Unger, "Lupercalia," Rhein. Mus., 1881; Jordan, Stadt Rom; Roscher, Apollo und Mars ; and on the Etruscan Mars, Mfuller, Elrusker, ed. Deecke, ii. 57 and 169 .

MARSALA, a seaport on the rest coast of Sicily, in the province of Trapani, 20 miles south of Trapani, to the north of the river Marsala, with a station on the railway between Trapani and Palermo. A flourishing and wellbuilt torn, with mide pared streets, it possesses a castle, a cathedral, a theatre, cavalry barracks (now occupied by Government offices), an academy of science and literature, and a public library. The Corinthian columne of the cathedral were originally intended for the cathedral at Canterbury, and owe their present destination to the wreck of the vessel which was conveying them to England. After the destruction of its barbour in the latter part of the 16 th century as a precaution against its oecupation by
the Turkish pirates, the cemmercial importance of Marsala remained in abeyance till the construction of the new port to the south of the town. The sea-wall for this was begun in 1818; but it was not till 1835-36 that the $1^{\text {ieer was }}$ constructed. A great part of the surface of 44 acres constituting the port is now silted up; new woriss, however, on an extensive scale, are being undertaken. The wine trade, which forms the staple, was commenced in the end of the last century by Woodhouse if Co. ; and the wines first got into favour by being supplied to the English flect in 1802. They are for the unst part white, and are usually "fortified." The number of seagoing vessels that entered at Marsala in 1863 was 149 , with a burden of 9791 tons; in 1880 there were 249 ressels of 16,645 tons. From 31,350 in 1861 the population of the commune had increased by 1881 to 40,251 ; that of the tomn was 14,105 in 1871, or, with the suburbs of Porta Garibaldi, Porta Mazzara, and l'orta Trapani, 17,666.
On the small island of San Pantaleonc, about 6 miles north of Marsalh, lay tho Carthaginian stronghold of Motya (Ital., Mozia). ${ }^{2}$ After the destructiou of this settement by Dionysius in 397 B.c. the defeated party established a new colcny on the neighbouring promontory of Lilybeum. It was there that in 2700 B.C. tho Carthaginians held out successfully ngainst Pyrrlus, who had already driven them from the rest of Sioily ; and it was only after a siege of ten years that in the first Punic War they were obliged io surrender the fortress to the Romans. Under its new possessnrs Lilybuam continued to flourish and beenme the residence of one of the two qurestors of Sieily. It was still an important eity under the later cmpire, and when occupicd first lyy the Goths and then by the Yandals. The Arals called it Mersit "Aly, "port of "Aly," and Edrisi (12th century) describes it as a considerable town, which, having been ruined, had been restored by Roger I. It was at Marsala that Garibaldi began his Sicilian campaign ia 1860 .

MARSDEN, Whllam (1751-1836), an eminent Oriental scholar, ras the son of a Dublin merchant, and was born in 1754. After studying at Trinity College, he obtained an uppointment in the civil service of the East India Company, and set sail for Bencoolen, Sumatra, in 1771. Therc he soon rose to the office of principal secretary to the Government, and mas at the same time intent on acquiring that intimaey with the Malay language, and that knowledge of the country, which were afterwards the sources of his literary reputation. Returning to England in 1759 with a pension, he retired into literary seclnsion, and in 1782 produced The ITistory of Sumatra. Marsden was appointed in 1795 second secretary and afterwards first secretary to the admiralty. In 1807 he retired again into private life, nnd, devoting himself to study, published in 1812 his Grammar and Dictionary of the Malay Language, and in 1817 his translation of the Travels of Marco Polo. A pension of $£ 1500$, which ho had receired on his retirement from office, he voluntarily resigned in 1831 for the behoof of the public. In 1834 he presented his rich collection of Oriental coins to the British Muscum, and his library of books and Oriental MISS. to King's College, London. He died of apoplexy in October 1836.
Marsden's other warks are-Numismate Orientalic, London, 1823-25; ; Catalogne of Dictionaries, Vocabularies, Grammars, and Alphabets, 1796 ; and several papers on Eastern topies in tho thilosophical Transactions and the Archseologia. Ilis namo will also bo remembered in connexion with Afriean philology, as he had -tho first in Eingland, and, it would appear, inderendently of Jiehtenstein and Vater-drawn attention to tho affinity of the Congo and Mozambiquo languages with thoso spoken by tho Kaffo race. Ste Tuckey's Narrative of an Expedition to explore the River Zaire, London, 1818, p. 356 s\%.

MARSEILLES ( $F$ r. Marseule), the third largest city of Trance, and the chicf commercial port of the Mediterzoncan, in $43^{\circ} 17^{\prime} \mathrm{N}$. lat. and $5^{\circ} 22^{\prime} \mathrm{E}$. long., is the chief town of the department of Bouches du Rhône, headquarters of the 15 th army corps, the seat of a bishop, and of numerous

[^214]commereal and scientific institations." The population (1881) is 360,099 .

The old harbour of Marseilles opens on the rest to me Gulf of Lyons; and the famons Rue do la Cannebière, leading east-north-east from the inner cod of the harbour, and continued by the Rno de Noailles, the Allees de Meilhan, and the Eoulevard de Longchamps, to the Palais des Arts, forms the first main artery of the tomn. A second great artery, at right angles to the first, connects the Aix gate and its triumphal arch with the grand Promenade du Prado, by the Conrs Belsunce and the Rne de Rome. North of the old harbonr, between the Aix gate and the sea, lies the old town of Marseilles. The finest streets, the Rue St Ferreol, the Rne Paradis, and the Rue de Breteuil, are to the south of the Rue Cannebière,

running parallel with the Rue de Rome, Detreen it and the foot of the hill urion which ja Notre Dame de la Garde. From La Cannebière to La Joliette, the centre of the now docks, runs the broad Rue do la Répubiique, lined with fine buildings, and opening a line througb the oldest part of the town. Tho entrance to the old harbour is defended by Fort St Jean on the north and Fort St Nicolas on the south. Behind the latter is the Anse (Creek) de la Réserve. Beyond this again, situated in succession along the shore, como the old imperial palace, the Anse du Pharo, the military exereising ground, and the Anse des Catalaus. The now parts of the town extend in this direction to tho Vallon d'Endoume behind Fort St Nicolas. To the old harbour, which covered only 70 acres, the basin of $\mathrm{L}_{\mathrm{n}}$

Jolictte (55 acres) was added in 1853 . Communicating with the eld harbour by a channel which passes behind Fort St Jean, this dock opens on tho south iato the outer harbour, opposite the palace aud tho Anse du Pharo; it is separated from the roadstead on the west by a simple jetty. A scries of similar basius have since been added along the shore to the north, viz., the Lazargt or "Bassin des Docks" (37 acres), that of Areas ( 59 acres), the "Bassin National," triice as large as the preceding, and the graving doch of 20 acres; a fine revolving bridge, worked by steam, separates the graving dock from the rest. Farthcr out. the Château d'If and the islets of Pomègua and Ratonseau, where ressels formerly did quarantiac, have 45 acres of harbour ac ommodatioa. The port of Marseilles bas in all an area of 422 acres, but there are only $4 \frac{1}{2}$ miles of quays, an amount of accommodation quite inadequate for the cuormous traffic, now amounting to more than $3,400,000$ tons. Protected on the east by Cape Croisctte, aad on the mest by Cape Couronne, the roadstead of Marseilles and its approaches are lighted by six lighthouses, of which the most distant ( 130 feet high) is 8 miles south-west of the tomn, on the Planier rock. The docks along the Lazaret basin cover an area of 45 acres, and the company to which they belong also holds a large area of ground for their enlargement, and has cxclusive rights over $1 \frac{1}{2}$ to 2 miles of quays. The warehonses occupy 27 acres of floor space on their scveral stories, and the 200,000 tons of goods for which they afford storage are easily manipulated by powerful hydraulic machiaery wronght by steam. From the harbour station at the docks tha railway is carried up to the principal station, "Gare St Charles," which commands the town. The Toulon line goes round the zoological gardens, aad the whole upper part of Marseilles, and sends a branch to the Prado station. There is a fourth station to the south of the old harbour near the custom-house, and at the foot of the steps of St Victor; it is proposed to join it by a tunnel to the Marseille-Prado station. The large steam ressels for trading with Algiers, the Levant, and the further East lie in La Joliette, but the old harbour still displays the ancient characteristics of Marscilles. The old-fashioned Mediterranean traders with their lateen sails are crowded together ia the Rive Neuve Canal to the south, while the sailing vessels of heary tonnage are moored to the quay by their steras. At the end of the old harbour opens out La Caunehiere, so called from former rope-walks, of which it occupies the site; it is now the liveliest part of the town, where the principal cafés, shops, hotels, naval and commercial agencies, as mell as the Bourse, are found.

Despite its antiquity, Marscilles has no ancient monuments. The old cathedral, which superseded a temple of Diana, itself preceded, it is said, by an altar of Baal, has giren place to a modern structure, of which the exterior only is completely finished. It is a Byzantine basilica, in the form of a Latin cross, 460 feet long, built in grey Florentine stone bleaded with white stone from the neighbourhood of Arles. Near the cathedral stands the bishop's palace. The cathedral is situated at the entrance of the harbours, but a more distant church has superior attractions for the sailors, -the celebrated Notre Dame de la Garde, the steeplc of which, surmounted by a gilded statue of the Virgin, 30 feet in height rises 150 feet abore the summit of the hill on which it stauds, commanding a view of the whole port and town, as mell as of the surromading mountains and the neighbouring sea. The present chapel of Notre Dame de la Garde occupies the site of one built in 1214. Like the new cathedral it is in the Byzantine style, and constructed of the richest materials.

Descending from Notrc Dame by steps, with shops on both sides contaiuing objects of devotion, such as medals
and chaplets, and passing the Promenade Pierre Puget. which affords another fine view of the sea, we reach the church of St Victor, close by Fort St Nicolas. Originally an abbey founded about 410 by St Cassian, it was afterwards destroyed by the Saracens, but rebuilt in the llth century; destroyed a second time, it was finally restored by Pope Urban V., a former abbot, who surrounded it ia 1350 with high square crenellated towers. Tradition relates that St Lazarus iahabited the catacombs under St Victor; and the black Virgia, still preserved there, is popularly attributed to St Luke. The spire of the ancient church des Accoules marks the centre of Old Marscilles. At its foot are a "Calvary" and a curious chapel of modern construction in rock work. Notre Dame du Mont Carmel, also in the old forma, occupies the place of what mas the citadel of the Massaliots when they were besieged by Julius Cæsar. The new Hôtel de la Prefecture, at the ead of the Rne St Ferrél, the Palais de Justice, and the Bourse, are all buildings of the last trenty years. The first is a palatial edifice 300 fect lung and 260 wide, adoraed with statues and bas reliefs; it has a finc staircase and large reception rooms, decorated rith paintings. Before the Palais de Justice stands a statue of Berryer. The pediment and peristyle are decorated with bas reliefs by Guillaume. The outer hall is surrounded by beautiful pillars of red marble. The Bourse has in the vestibule a bas relief representing Jarseilles receiviag the productions of all parts of the world, and allegorical statues of Marseilles and France. The hall is larger than even that of the Bourse at Paris. The hall of the Chamber of Commerce, at whose.cost the whole edifice was built, is remarkable for the magnificence of its mural paintings and gildings. The Hôtel de Ville, an old and unimportant building, stnuds on the quay to the north of the old harbour. The Palais des Arts de Longchamps, completed in 1870, is a work of consummate taste; it is built at the terminus of the Canal de Marseille, that great work which has metamorphosed the town and its surroundings by bringing into it the waters of the Durance. This canal, which leaves the river opposite Pertuis, has a length of 94 miles, of which more than 15 are underground. It crosses the valley of the Arc, between Aix and Rocriac, by the magnificent aqueduct of Roqucfarour, comparable with the noblest works of ancient or modern times. The canal then purifies its waters, charged with ooze, in the basins of Réaltort, sets ia motion seventy-two mills, which it supplies with upwards of 1200 borse-power, carrying about 200 cubic feet of water per second to the district of Marseilles. Right and left of the Château d'Eau, which occupies tho centre of the Palais de Longchamps, and is 128 feet in height, are the picture gallery, a fine collection of ancient and modern rorks, and the natural history museum, remarkable for its conchological department and the interesting collection of ammonites. Behind are extensive zoological gardens, with the astronomical observatory, one of the most important in France. The museum of antiquities is established in the Palais Borely, in a fine park, recentiy purchased by the town, at the end of the Prado, and approached by the tro finest promenades of the city. It includes a Phœnician collection (containing the remains that support the hypothesis of the Phœnician origin of Marseilles), an Egyptian collection, numerous Greek, Latin, and Christian inscriptions in stone, \&cc. A building within the city, recently fiaished, 177 feet by 64 , with an imposing façade, contains the school of art and a valuable library. The triumphal arch of Aix, originally dedicated to the victors of the Trocadero, was in 1830 appropriated to the conquests of the empire.

Marseilles contains large hospitals. The Hôtel Dieu in the old town was founded in 1188, and rebuilt in 1593; it has 450 beds. The Hospice do la Charite, in the same ueighbourhood, acoommo-,
dates 600 patients, while at the npmsite extremity of the town, near the Prado station, are the modern Hôpital de la Coneeption (with 800 beds), the military hospital, and the lunatio asylum.
The scientific institutions of the town are also numerous, ineluding a faculty of seieuce, an astronomical observatory, a preparatory school of medicine and pharmacy, a musical conservatoirc, a school of art, a lyecum, and many private institutions. The principal learned societics are the academy of science, letters, and art, tho medical asspciation, and the geooraphical, statistical, agricultural, and horticultural socicties.
The mean temperature of Marscilles is $58^{\circ}$ Fañ.; frost is rare, and snow almost unknown. The heat of summer is tempered during the day by the cooling sca breezc. The most disagreeable wind is the mistral, a violent and cold north-west wind, which blows on an average one hundred and thirty-eight times a year, but has at least the advantage of restoring salubity to the frequently unhealthy shores of the Mediterranean. The sirocco, a south-east wind, blows some sixty times a year; though hot and parching in summer, it softens the winter climate. The east-south-east wind is cold and damp, and brings rain. The Canal de la Durance lans greatly modified tho clinate of Marseilles and its neighbourhood, for by restoring vegetation it has increased the fogs and rains; there is now an anoual rainfall of nearly 24 inches.

Marscilles is at once the largest commercial port of France and a manufacturing town, working up the raw materials brought in by sea from every part of the world. The lesding industry is that of soap-making, which occupies sixty factories with 1200 artisans, and annually produces 65,000 tons, valued at $£ 2,000,000$ sterling. With this manufacture are connected oil and ehemical works; in the forater, which employ 2000 to 2500 workmen, 55,000 tons of different oils are produced yearly. The chemical works compriso a dozen mills, manufacturing chiefly the salts of soda and concentrated acids. Two thousand operatives are there employed, and the value of their annual production is estimated at $£ 320,000$. There are also three sugar-refineries, producing 65,000 tons of loaf-sngar, of which more than half is re-exported. Sulphur from Sicily too is refined and converted into sticks or flowers of sulptur, to the valuc of $£ 80,000$. Petroleum refining occupies 100 workmen. Metallurgy is another great industry; a large quantity of ore, imported from Elbs, Spain, and Algeria, is smelted in the blast furoaces of St Louia in the suburbs. The Mediterranean iron-works and yards, together with other privato companies, have large workshops for tho construction or repair of marine steam-engines and every branch of iron shipbuild. ing, emplojing several thousand workmen. Msrsailles is a great centre for the extraction of silver from lead ore : 16,000 tons of lead and 25 tons of fine silver are separated annually. There are 64 flour-mills with 300 seta of stones, and 100 factaries prepare semolina and other cereal pastes, while 34 tanyarda dress 500,000 sheep skins and 335,000 goat skins. To this list of industries must be added the manufactories of matches, candles, and waxlights, with brass foundries, glass-works, and manufactures of eurat, and of Oriental hosiery.
The port of Marseilles is the centre of numerous lines of ateamers. The French company of mail stean packets (Messagerics Maritimes) despatch their boats regularly to Italy, Egypt, Réunion, India, China, and the far East, as well os to Grecee, Turkey, the Black Sea, Smyrna, and Syria. The Trsnsatlantic Company runs its vessels to Algiers, Tunis, Mralta, and the coast of Italy, snd has also a regular line between Marscilles and New York. Many private companies have services to Corsica, Algiers, the coast of Languedoo and of Spain, and the 1 talian Riviera. Other lines connect Marscilles withz Lrazil and La Plata, Havre, and London. Landword there are two lines of railway to Aix, and a third to 'Toulon. A navigablo canal is greatly needed to connect the port directly with the Rhone, in order to avoid the difficulties of egress from the river and to make Marseilles tho natural outlet of the rich Rhone basin. The conntrics with which the greatest traffic is maintained aro Algeria, Spain, Italy, Turkey, and tho Russion ports on tho Black Sea; next in order como England, Austria, tho western coast of Africa, Réunion, the Cape, British India, Brazil, the Antilles, China, and Sencgambia. From the Black Sea, Turkey, and Algeria come the cereala which form the chicf imports in paint of bulk; from ltaly, Spain, the Levant, China, nad Japan the silk, which is tho import of greatest valuo ( $£ 4,000,000$ yearly). Then follow ores and metals, iron, east iron, lead, and copper; also wood, rav material for oil manufacture, rsw sugar, cattle, wool and cotton, rice, and various dry vegetable fooda, petroleum, cocon, guma, pepper, and other spices, wines and brandies, coal, skins, cod-fish, cheese, and sponges. Tho principal exports in respect of value aro silk, woollen, and cotton fabrics, refined augars, wines nad spirits; thoso of greatest bulk aro cerenla in tho form of grain or flour, coal, building materials, oil-cakes, iron and other manufactures in metal, wincs and apirita, oila, glass and crystal, lead, and esffec.

Of the seanoing tonnago, one-third is under the Frencli flag, but the coasting trade, carried on by French sailors alone, is almost
half as large as the ocean trade. The shipwowers of the port possess almost seven liundred vessels, without counting the humdreds of fishing boats which ply along the coast.

History. - The Greek colony of Massalia (in Latin, Massitia) was founded by the enterprising mariners of thocæa in Asia Minor, about 600 n.c. The settlement of the Grecks in waters which the Carthaginians jealously reserved for their own commerce was not effeeted without a naval conflict; it is, indeed, not improbable that the Phœnicians were settlad at Marscilles belore the Greels period,
and that the very name of the town is the Ploenician hip, "settle. ment." Whether the judges (ロuEシ', "suffetes") of the Therician sacrificial tablet of Marseilles were the rulers of a city older than the advent of the Ploenicians, or were a sort of consuls for Punic residents in the Greck period, is disputecl. The fall of the Ionic cities before the Persians probably sent new settlers to the Ligurian coast and cut of the remote city of Massalia from close connexion with the mother conntry. Isolated amidst alien popmlations, the Massaliots made their way by great prudence in dealing with the inland tribes, by the vigilant administration of their oligarehical government, and by frugality and temperance united to reniarkable commercial and naval enterprise. Their colonies spread east and west along the coast from Monaco to CapeSt Martin in Spain, carrying with them the worship, of Artemis; the inland trade, in which wine was an important element, can be traced by finds of Massalian coins right across Ganl and through the Alps as far as Tyrol. The Massaliot Pytheas ( $330-320$ n.c.) passed the pillars of Hercules and visited the coasts of Gaul, Britain, and Germany. The great rival of Massalian trade was Carthage, and in the Punic wars the city took the side of Rome, and was rewarded by Roman assistance in the subjugation of the native tribes of the Ligurian mountains. In the war of Cæsar and Pompey the aristocratic torm took the side of the latter, and made a courageous but vain resistance to Cæsar. In memory of ita ancient servicea the city, "without which," as Cicero says, "Rome had zever trimmphed over the Transalpine nations," was still left as a civitas libera, but her porver was broken and most of ler dependencies taken from her. From this time Massalia has little place in Roman history; it became for a time an important school of lettera and medicine, but ita commercial and intellectual importance gradually declined into insignificance. The town appears to hare been Christianized before the end of the 3 d century, and its reputation partly revired through the names of Gennadius and Cassian, which give it prominence in the history of Semi- Pelagianism and the foundation of Western monachism.
After the ravages of successive streams of invaders, Marseilles was repeopled in the loth century under the protection of its viscounts. In 1112 the town bought up their rights, and was formed into a republic, governed by a podestat, who was appointed for life, and exerciseu his office in conjunction with 3 notables, and a municipal council, composed of 80 citizens, 3 clerics, and 6 principal tradesmen. During the rest of the Middle Ages, horrever, the higher town was governed by the hishop, and had its harbour at the creek of La Joliette. The southern suburb was governed by the abbot of St Victor, and owned tho Port des Catalaǹs. Situated between the two, the lower town, the republic, retained the old harbour, and was the most powerful of the thres divisions. The period of the crusades brought great prosperity to Marseilles. The activity of its shipbuilding, the magnitude of its feet, the importance of its commerce and manufactures, all increased at once. The count of Provence, Raymond Berenger, Charles of Anjou, and afterwards Alphonso of Aragon, successively attempted to make themselvea masters of the town ; it suffered at different times from incendiarisny, pillago, and massacre during the 13th and 14th cenoturies, and iu tho beginning of the $15 t h$. King lenć, who had made it his rinter residence, horever, caused trade, arta, and manufactures again to fourish. Under Francis 1., the disaffected constable de Bourbon vainly besieged the town with the imperial forces in 1524. During the wars of religion, Marseilles took an active part against tho Protestnota, and long refused to acknowledgo Henry ]V. The loss of the ancient liberties of the town brought on new disturbances under the Fronde, which Louis XIV. came in person to suppreas. 110 tonk the town by storm, nind had Fort St Nicolas constructed. Marseilles repentedly suffered from the plague, nad an epidemic raged from May 1720 to $M$ Kay 1721 with a severity for which it is almost impossible to find a narallel ; Bishop Belsunce, Chevalier Rose, and others inmortalized themselves by their courage and derotion.
During the Revolution the people rose agninst the nristocracy, who up to that time had governed the commune. In the Terror they rebelled ogainst the convention, but were promptly subdued by Geveral Carteaux. Tha wars of the empire, by dealing a severe blow to their maritime commerce, excitel the latred of the inhabitauts agninst Napoleon, who nccordingly hailed with enthusiasm the return of the Bourbons and the defeat of Waterloo. The news of the latter provoked a bloody reaction in the torn against those suspected of imperialism. Since 1815 the presperity of the city
lins mereivel a ronsilemhle impulse from the conquest of Agecia ant the nuening of the Surz Canal. The completion of the camal of the Durance his covered with verdure the formerly arid eountry surrounling the town, and the openines mado in the old part of Marseilles have improved its sanitary cuadition.
(C. JLE.)

Mimsh, Georce Perkins, LL.D. (1801-1882), Amcricau diplomatist and philologist, was born at Woodstock, Vermont, March 17, 1801, graduated at Dartinouth College in 18:0, and practised law at Burlington, Termont, deveting himeclf also with ardour to philological studies. In 1835 he was clected to the State legislature, and in 1842 he became a meniber of Congress. In 1849 he was appointed U'nited States minister to Turkey, and in 1852 distharged also a special mission to Greece, returning to Termont iu 1853. Iu 1861 be became United States minister to Italy, and died in that office at Vallombrosa, July $2 t, 188$ ?
His chier pullished morks are a Compendionts Grammar of the Old Nowtherin or Icelandic Lanruase, 1838, compiled and translated fiom the grammar of Rask; The Cirmel, his Organizatiom, Habits, and Uses, 1856 ; Lectures on the English Lenguag; 1851; The Origin and History of the English Lanyuage, 1862; Man and Nakure, 1864. The last-named work, largely revrritten, was issned under the title The Eurth as Modificd by Humax Action in 18i4.
MIARSHAL (from Old High German narah, horse, and scalc, care-taker), in its origiual signification a servant of the royal manége, was afterwards a title given in different countries to the holder of various high ofices, military and civil. In the time of Plilip Augustus the commander of the French forces mas called the marshal of France. Uuder Francis I. the marshals of France became two in number, under Henry III. four, and in the time of Louis XIV. their number was raised to twenty. In England the marshal was a high officer of state as far back as the 12th century. In the end of the 12th and first balf of the 13 th century the office was conferred on the earls of Pembroke, from whom it passed by female descent to the family of Bigod, carl of Norfolk. The dignity of earlmarshal was afterwards held successively by the Mowbrays, dukes of Norfulk, the Howards, dukes of Norfolk, and the exrls of Arundel and Norwich. Under a grant by Charles II. to Henry Howard, earl of Norwicb, it has descended to and continues in the line of the existing dukes of Norfolk. The marshal was in feudal times (in conjunction with the constable, a still higher officer) the judge io the court of chivalry, which had cognizance of questions of honour and dignity; and, when the king headed his army in person, it was the marshal who selected the proper spot for the encampment of each noble. The constable's poricrs and duties were superseded in the reign of Henry VIII. ; but the carl-marshal is still the head of the Heralds' College, and appoints the officers of arms. In Scotland (an orthography resembling the French maréchal being adopted) the office of marischal, probably introduced under David L, became from the 14 th century hereditary in the family of Kicith. The Scottish marischal became an earl under the designation of "earl-marisclal" in 1458 . Narischal College in Aberdeen was founded and enderved by the munificence of Ceorge, fth earl-marischal. The dignity came to an end by the attainder of Ceorge, 10 th earl-tarischal, in 1716. The military title of field-marshal was at first borrowed by the Germans from the lirench maréchal de champs; and in the Thirty Years' War it meant much what quartermaster-gcieral does now. It was not till last century that the mord rose in dignity so as to signify the highest military dienity except that of commander-in-chief. It was adopted into the British military system from Germany, -the first field-marshals being Joho, duke of Argyll, and George, earl of Orknes, made so by George IL. in 1735.

MARSHALL, Joen ( $1755-1835$ ), chief justice of the United States, ras born in Fauquier county, Virginia, on

Scptember $24,175 . \quad$ As lieutenant and captain he served in the revolutionary arny from 1755 to 1780 . In 1701 he began the practice of the law, ard two years later removed to Richmond. At various times from 1782 to 1798 he was elected a member of the Virginia legislature, in 1788 a member of the Virginia convention for the ratification of the constitation ; in 1797 be was envoy-estic. ordinary to France, and in 1799 a menber of Congress; in 1800 he became secretary of state; and on January 31, 1801, he was appointed to the chief justiceship, which position he held until his death on the 6th of July 1835. Drarbhall as a lanyer soon rose to the first rank at the Virginia bar, and acquired also a national reputation. Is the Virginia convention of 1785 his influence was second only to that of Madison in securing the adoption of the constitution. But, unlike Madison, he contiuucd, under the constitution, to support the administration of Washington and Federalist measures in general. It was as chief justice of the supreme court of the United States, howerer, that Marshall won lasting fame. His reports, filling about thirty volumes, form a worls which time will only render more valued. In the expounding of public law, whether international or State law, his taleats found their freest scopa In these departments of jurisprudence general prin. ciples rather than authority must be sought by the judge, and in their application Marshall has had no equal upon the American beach. It is the peculiar-function of the supreme court of the Cnited States to interpret the cunstitution and to guard it from the encroachments of both national and State legislation. To this duty Marshail brought his great and just powers of reasoning, as well as those broad riews of government which, during the thirtyfour years of his judicial career, gare to the constitution the liberal powers "hich were necessary to its durability. "The constitution," says Judge Story, "since its adoption, orve more to him than to any other single mind for its true interpretation and viodication." Sec biograph.'y by Henry Flanders in his Lives of the Chief Justices, vol. ii. Marshall isLands. See Micronesla.
MARSHALLTOWN, the county seat of Marsball County, Iowa, United States, is situated on the Iorra riser at the junction of several railways, and in the midst of a grain add stock producing region. Among its numerous industries are sugar-refining, waggon-making, and the manufacture of barbed steel wire for fencing purposes. The population was 3218 in 1870 and 6240 in 1880, and has since increased rapidly.
MARSHMAN, Joshua ( $1: 0$ OS-183i), a Eaptist missionary and Oriental scholar, was born on April 20, 1768, at Westbnry Leigh, in Wiltshire, where he reccived a somewhat defective school education, and afterwards followed the occupation of a weaver until 1791, when he removed to Bristol to take charge of a small school there. Meanwhile he had been diligent in the cultivation of his talents, which were naturally good; and be was already a man of considerable acquirements when in 1799 he was sent by the Paptist Missionary Society to join their establishment at Seramporc. Here, in addition to the dischargo of his more special duties, he engaged rith success in the study of Bengali and Sanskrit, and afterwards of Chinese, and accomplished numerous literary tasks, the more important of which are mentioned below. He received the degrec of D.D. from Erown University, U.S.A., in 1811. His death took place at Scrampore on December 5, 1837.
Dr Marshman translated into Chinese the book of Genesis, the Gospels, and the Epistles of Panl to the Romans and the Corintlians; in 1811 he published The Worlis of Confucius, containing the Original Text, with a Translation, and in 1514 his Clavis Sinica. He was also the author of Elements of Chinese Grammar, with Preliminary Disscrlation on the Characlers and Colloguial Mediums of the Chinese, and rias associated with Carey in the preparation of a

Sauskrit grammar nnd of a Bengali-Encolish dictiovary. See J. C. Marshman's Life uiul Times of C'arcy, JIarshman, and Ward 2 $^{2}$ vols., 1S5:9).
Marsigli (Latinized Marsilius), Luig Ferdinand, soldicr and savant, was born at Bologna, July 10, 1658, and died in the same city, November 1, 1730. After a considerable course of study in mathematics, matural history, and anatomy, le visited Constantinople, and on his return to Cbristendoru offered his services to the emperor Leopold, then at war with the Turks (1682). Wounded and captured in an action oa the river Raab, he was sold to a pasha and accompanied hin to the siege of Vienua; but in I6St his friends purchased his release, and at the close of the war he was appointed commissioner for fixing the new Dalmatiaa boundary. Ia 1703 he was second in command to the count of Arco when Alt-Breisach was currendered to the duke of Burgundy ; and, though popular opinion acquitted hin of Hlame, Marsigli was cashiered whea Arco was condemned to death. Devoting himself to scientific pursuits, be visited Switzerland, and spent a considerable time at Paris and Marseilles. He went to Rome in 1709 at the request of Clement XI., but soon returned to Murscilles to prosecute his investigations into the physical nature of the sea. In 1712 he presented his scientific collections to his native city, and thus gave rise to the Bologna Institute of Science and Art; and about the same time he established a press, including founts of Oriental characters, for printing the publications of the society.
Marsigli's own works were valunble contributions to knowledge, brought out in very handsome style. Best known are his curious physical history of the sea (Italian; Venice, 1711 ; French, Amsterdarn, 1725), with a very laulatory preface by Boerhave ; L'etet militairc de l'Enıpirc Ottoman (Arnsterdam, 1732); and Lanubius Pannonico-3lysicus (1lague, 1726). This last, of which only threo hundred and seventy-five copies were priuted, consists of six huge folio volumes illustrated by nearly three hundred maps anil engrapings, and furnishes an exceedingly elaborate account of the course np the Danube, of the torrus and autiquities along its banks, of its birds, beasts, tishes, \&ic. Sec Fontenelle's éloge in Meinu. de '"Acad. rics Sciences, Puris, 1730 ; Quincy, Vie ele Mons. וc Comte de Marsigli, Zurich, 17 it.

MARSTON, Jonry, was one of the most vigorous satirists and dramatists of the Shakespearean age. He was probably some ten years jounger than Shakespeare He has been identified with a gentleman commoner of Brasenose College, Oxfurd, who entered in 1591, aad was admitted B.A. in 1593 as the eldest son of an esquire. If this is the same Joln Marston that was buried in tho Temple Church in 1631, under a tombstone Outiviaud sacrum, the identification of him with the poet is most probably right, for one of Marston's most siugular poems is a prayer to Oblivion-

> "Let others pray
> For ever their fair poems hourish may; But as ior me, hungry Oblivion, Uevour me quick."

In the superlluity of learned allusions and Latin quotations in his plays Marston proclaims the fact that he was a university man. He entered the field of letters ia 1598, as a satirist, with a Scourge of Villuny. He was professedly an imitator of Juvenal, but he wrote rather in the spirit of Skelton, and speedily carned something like Skelton's reputation ns a coarso ribald buffoon of astonishing energy, gituing at the grossest vices of the time in " ${ }^{\text {plain naked words stript from their shirts." Thero was }}$ more of the good-natured chuckling buffoon than of tho cynic in Marston's satire, though bo did profess unme:?sured scorn for the vices and fopperies of his age. Tho coarse energy of his invective pours out as if he loved strong language more than he liated tho enbjects of his ridicule. Shalicspicare's T'enus and Adomis was one of Marston's first butts; in his Prymaliun's Inage (1598) the wooing of Adonis by the yuteen of love is very roughly but very
cleverly parodied. The freshness and vigour of Marston's vein brought thim at once into notice. He is meationed (misspelt as Maxton or Maztone) iu Menslume's Diary, in 1599, as "the new poet" receiving payment as part author of a play; and in the same year be was probably ridicnled by Pen Jonson as "Carlo Buffone" in Every IINan out of his Ilumour. He and Dekker had a famous quarrel with Jonson arising ouf of the latter's attack upou them in the Poetuster (see Dekker). The literary enemies were reconciled; Marston forswore literary quarrels, dedicated a play to Jonson in terns of high eulogy, and was conjoined with Jonson and Chapman in the play of Eastuard Ho! sone political allusions in which nearly cost the authors their ears. Marston wrote comparatively few plays, published in quick snccession at the following dates:-Antonio and Mellida (1602); Antonio's Revenge (1602); The Mulcontent ( 1604 , his first and most powerful play); The Dutch Courtesun (1605); Parcusituster (1606) ; Sophonisba (1606); What You H'ill ( 1607 ). Marston then apparently left off play writing; if he lived till 1631 , there is no explanation of his sudden stoppage. There is very little constractive skill in his llays; the plots are uainteresting. He does little more than send a procession of purpets across the stage, one or more of which "gird at" the others-very "loose libertines" aud very contemptible some of them-in the author's own rough vein of satire. One scene in Antonio and Mellidit was much admired by Chrries Lamb, and either suggested or was snggested by one of the most powerful situations in Ring Lear. But the passage taken out of the body of the play gives a very misleading idea of its general tenor, or of the general cast of Marston's dramatic vork.

MARSYAS was a Pbrygian god, whose name has passed into Greek mythology. It is hardly possible to discover the real basis of the legends, as their original form has beea so much altered. Marsyas was the god of a small river mhich rose in a cave in the agora of Celronæ, and flows into the Mæander. In this cave was hung a hide, which according to the story was the skin of Marsyas suspended there by Apollo. When Athene threw away her flute, Marsyas found it, a subject represented by the sculptor Myron. Proud of his skill, Marsyas challenged Apollo with his lyre. Midas the Phrygian kivg, appointerl judge in the contest, preferred the flute-player, and got his ass's cars in remard for his stupidity. The coutest and the punishment of Marsyas, who was flayed alive by Apollo, were frequent subberis ior Greck art, both vase-painting and sculpture. There can be little doubt that this account has been very much altered from its native Phrygian form by the Attic comic poets, with whom Marsjas was a favourite character. With regard to the Phrygian god it is difficult to say mere than that he and Silenus and Midas are associated in legend with Dionysus, and that he must therefore belong to the cycle of legends of Cy'bele (zee Preller, Gr. Myythul., i. 508). The flute was the favourite instrument in the worship of the goddess. Sacrifices were offered by the people of Celone to Marsyas, and be helpel them against the Galatians (Paus., x. 30). A statue of Mareyas vias erected in tho Roman Forum and in otber towns, and is said to have been a symbol of liberty.

MARTEN, ${ }^{2}$ the name of a group of animals constituting

[^215]a small but well-defined section of the family Mustelidx, belonging to the Aretuid or Bear-like divisiun of the order Carnivora (sec Mamala, pp. 439, 440 of the prescit volume).
The genns Mustela, as restricted by Cuvier (Rayne Animal, 1817), contains a very natural asscombare of animals commonly called Martens, Sables, Poleceits, Sitozta, Ermines, and Wcasels, all closely allicd in structure and habits. A structural division, lowever, occurs letween the two first-mamed and all the others, especially shown in the presence of an additional small premolar tooth on each side of each jaw ; and, availing hienself of this and some other minor characters, Cuvier clivided the genus into two subgenera, for the first of which he retained the name of Mustek, and to the second assigned that of Putorius. Three years later Nilsson (Skencl. Ficuna, 1820) definitely constituted the two groups into genera, applying to the first the nane of Martes, by which the animals composing it had been generally designated by the Latin-writing zon logists of the preceding century, and keeping Musteln for the more typical Weasels and their immeriate nllies. Later zoologists have been diviled between the nomenelature of Cuvier, which has the priority, and that of Nilsson, which on other grounds is preferable. Those who adopt the latter affirm that Curier's names, being only used ly him in a subgeneric sense, and not binomially, need not be applied generically; but this is contrary to the practice usually followed in such cases Others avoid the difficulty by not breaking up the genus at all, and so apply the term Mustela to all the species. The result is that the generic name of the Martens in modern zoological works nscillates between Nartes and Mustela, according to the views of the writer.

The following characters apply to the restricted group of Martens proper, by whatever name they are called. Body loag, slender, and very flexible, though less so than in the true Weasels. Head somewhat triangular; muzzle pointed, the nose extending a little beyond the lips; eyes large and prominent ; cars conspicuous, broad, somewhat triangular, rounded at the ends, furred outside and in ; limbs short; feet rounded; tocs short, fire on each foot, all with short, compressed, curved, sharp-pointed claws. Soles densely furred between the naked prads. Tail moderately long, more or less bushy. Outer fur long, strong, and glossy; a very abundant soft under fur.

Vertebrie: C 7, D 14, L 6, S 3, C 18-23. Skull elongated and depressed. Facial portion moderate and rather compressed. Zygomata arched and wide but slender. Postorbital processes small. Auditory bullie large, but not very globosc. Mandible with a strong triangular vertical coronoid process and a well-developed angular process.

Dentition: $i \frac{3}{3}, c \frac{1}{1}, p \frac{4}{4}, m \frac{1}{2}$; total 38 . Upper iacisors in a straight transverse line, rather long and compressed ; first and second subequal, third considerably larger. Lower incisors very small, especially the first, and crowded together, the second placed rather belind the others. Canines long and sharp-pointed. Upper premolars: frst very small, wilh simple crown and one root; second and third nearly equal in size and two-rooted, with simple compressed sharp-pointed crowns, with very slightly developed accessory cusps; fourth (the sectorial) with blade consisting chieffy of the central and posterior cusps, the anterior being rudimentary, inner tubercle small-and
and Martial often introduced foreign words into lis Latin. Its etymology has been connccted witis the German " miartern," to toment. A second Romanic name for the same animal is fuina, in Fronch fouine (see E. Von Marten"s "Uever Thicrnameu," in Der Zoologische Garlen, vol. xi., 1870). The tern" "Marten Cat," often used, is a misnomer, for though somewhat Cat-liko in size, general appearanee, aud landits, its truendinities are not with the Felida, but, as alaled alove, with tho Ecars.
confined to tho anterior part of the tooth. Truo molar tubercular, ahout twice as wide transrersely as in the antero-pinsterior dircction, having an outer, more elerated, Int smallor portion, bearing three blunt tubercles; to the inner side of this the crown is contracted, and its surface degily loollowed; it then expands again into a broad low lolec, with the central part clevated, and a raised, even, scmicircular, slighitly crenated internal Worder. Lower premolars: first very small, simple, and one-rooted; second, thirel, and frurth increasing slightly in size, with high compuresser linintel crowns and posterior accessory cusps, lonst markend in the third. First molar (sectorial) with wellmarked lialofed hilade, - heel scarcely more than one-third of the length of the tonth, and a very small inner tubercle. Second molar small, single-rooter, with a low, flattened, subcircular or nval tubercular crown.

In gengraphical distribution the Martens are limited in the northern liemisphere, ranging throughout the greater part of the morthern temperate regions of both Old and New Worlds, as far nartin as conditions of existence suited in thei: labits are met with, and southwards in America to $35^{\circ} \mathrm{N}$. lat., while in Asia one species is met with as far as the island of Java.

The various species appear to be very similar in their habits. They live in wools and rocky places, and ara thorouglly arboreal, spending nost of their tiue in trees, although descending to the ground in quest of prey. They climb with great facility, and are agile and graceful in their movements. Sume species are said occasionally to resort to berries and other fruit for food, but as a rule they are strictly carnivorous, feeding chiefly on birds aod their eggs, small mammals, as squirrels, hares, rabbits, and moles, but chiefly mice of various kinds, of which they destroy great numbers, and occasionally suakes, lizards, and frogs. In proportion to their size they are among the most bloodthirsty of animals, thongh less so than the true Weasels. The female usually makes her nest of moss, dried leaves, and grass in the hollow of a tree, but sometimes in a hole among rocks or ruined buildings, and produces several young at a birth, usually from four to six. Though wild and untameable to a great degree if captured when fully grown, when taken young they are very docile, and have frequently been made pets of, not having the strong unpleasant odour of the smailer Mrustelidx. The common European Marten appears to have been partially domesticated by the Greeks and Romans, and to have been used to keep houses clear from rats and mice before cats were introduced. ${ }^{1}$ In the same may, according to Hodgson, an allied species, the Yellowbellied Weasel (IArstela Kathiah), "is exceedingly prized by the Nepalese for its service in ridding houses of rats. It is easily tamed; and such is the dread of it common to all marine animals that not one will approach a house where it is domiciled." - It is, however, to the great valuo attached to the pelts of these animals that their importance to man is chiefly due. Though all yield fur of servicenble quality, the commercial value varies immensely, not only according to the particular species from which it is obtained, but according to individual rariation, depending upon age, sex, season, and other trifing circumstances. The skins from northern regions are more full and of a finer colour and gloss than those from more temperate climates, as are those of animals .killed in winter compared to the same individuals in the summer season. The caprices of fashion hase, moreover, set wholly factitious values upon slight shades of colour, recognized and named by experienced furriers, but not indicating any specific or other distiactions

[^216]of which zoologists have any cognizance. Enormous numbers of animals are annually caught, chicfly in traps, to supply the demand of the fur trade, Siberia and North America being the principal localities from which they are obtained.

With the exception of the Pekan (M. nennanti) all the Martens are so much alike in size, general colouriog, and cranial and dental characters that the discrimination of the speeies, and assignment of the proper geographical distribution to cach, Jas been a subject which has sorely perplexed the ingenuity and patience of zoologists. Tho following description by Dr Elliott Coues of the axternal characters of the Anicrican Pine Marten (M. americana) will apply almost equally well to most of the others. "It is almost impossible to describe the colour of the Pine Marten, except in general terms, without going into the details of the endless diversities occasioned by age, sex, scasou, or other incidents. The animal ja 'brown,' of a shade from orange or tawny to quite blackish; the tail and feet are ordinarily the darkest, the head lightest, often quite whitish; the ears are usually rimmed with whitish; on the throat there is usually a large tawny-ycllowish or orange-brown patcl, from the chin to the fore legs, souretimies entire, sometimes broken into a number of smaller, irregular blotches, sometimes wanting, sometimes prolonged on the whole noder surface, when the anintal is bicolor like a Stoat in summer. The general 'brown' has a greyish cast, as far as the under fur is concerned, and is overlaid with rich lustrous blackish-brown in places where the long bristly liairs prevail. The claws are whitish; the naked nose pad and whiskers are black. The tail occasionally shows interspersed white hairs, or a white tip."

The species generally recognized as distinct are the following, the first five belonging to the Old and the last two to the New World.

1. Mustela foina, Erxleben ; the Peech Marten, Stone Marten, or White-brcasted Narteu.-Distinguished from the following by the greater breadth of the skull, and some minnte but constant dental characterg, by the dull greyish-brown colour of the fur of the upper parts, and the pure white of the throat and breast. It inhabits the greater part of the Continent of Europe, but is more bouthern than the next in its distribution, not being found in Sweden or Norway, nor, according to the recent investigations of Mr Alston, in the British Isles, although included in their fauna by all earlier writers.
2. M. martes, Linn; Martes sylratica, Nilsson; M. abictum, Fleming; the Pide Marten (see figure). - Outer fur rich dark brown; under fur reddish-grey, with clear yellow tips; breast spot usually yellow, varying from bright ornnge to pale cream-colour or yellowish.white. Length of head and body 16 to 18 incles; of tail (including the hair) 9 to 12 inches. This species is extensively distributed thronghout northern Europe and Asia, and was formerly


Europenn Pine Marten (Mustcla marles). From life.
common is most parts of Great Britain and Ireland. Though commonly called "l'ine Marten," it does not appear to have any" special yreferenco for coniferous trees, excejt that, inasmuch as they constituto the greater proportion of the forests of the countries which it inhabits, it is more often met with in them than in any other. With regard to its recent occurrenco in the 13ritisli Jsles, Mr Alston writes in Proc. of Zool. Society of London, 1879 :-

Athough grently reduced io numbers by jersecutlon, It sellit mainiains its kround in tho wilder distetets of Scotland tho north of Encland, Wales, and lroland ; and occasloaally speclmens are kultad in cuuntles whatru tho soccles was
thnught to have been long extinct. In Scotland it in still foand, though comparbively 1 arely, in the Lews and in mose of tho Highland mainland countlea, fing pertiaps mast abundant in Sutherland and loossoshire, eapectally in the deer forests. In the Lowlands a Barte fs now a very great iarity ; but a fine example was killed in Ayrohira in the winter or $1875-76$. 10 the Dorth of England Sh W. A. Durnford says the spectes is 'still plentiful' in the wilder paits of Cumbelland, Westmorcland, and Lancushlic, and in Lincolnshire several have been recoried, the latest killed in 1865 , by Mr cordeava, ${ }^{2}$ Io Norfolk one wak alot last year; and 1 have myself examined a fine example which was shot in Hertiordshire, within 20 milles of London, in Deceniber 1si's. In Dorsetshire thic last is snld to have been klled in 1804 ; but a speelimen occurted In Hampshlro about forty years ogn, and another in Surrey in 1847. In Ireland the following countlea were enumelated by Thompson as habliats of this specles: Donegnl, Londonderry, Antrim, Down, Atmagh, Fermanagh, Longord, Galway, Tipperaty, Cork, and Kerry: The Cat-crann is probably now \& raver animal fa Ireland than it wos when Thompson wrote; but it still exists in variona districts, espectally in County Kerty, whence the snclety has recelved several lising examples; and Professor A. Leith Adams states that it has been aeed of lase years evea lo county Doblin."
3. M. $^{\text {a }}$ ibcllina, Linnæus; the Sable (German, Zobci and Zcbcl; Swedish, sabcl; Russian, sobel, a word probably of Turanian origin). -Closely resembling the last, if indeed differing from it except in the quality of the fur, whicb is the most highly valued of that of all the group. Found chielly in eastern Siberia.
4. M. Aavigula, Boddaert ; the Indian Marten.-Inhabits the southern slopes of the Himalayas, the Nilgiri Hills, the interior of Ceylon, the Malay l'evinsula, and Java
5. M. mclampus, Wagner.-Japan.
5. $\lambda 1$. americana, Turton; the North-American Sable or Marten.-A species so closely allied to the European Pine Darten and Asiatic Sable that it is very difficult to assign constant distinguishing characters between them. The importance of the fur of this animal as an article of commerce may be judged of from the fact that 15,000 skins were sold in one year by the Hudson's Bay Company as long ago ns 1743 , and the more recent annual imports into Great Britain have exceeded 100,000 . It is ordinarily caught in wooden traps of very simple construction, being little enclosures of stakes or brush in which the bait is placed upon a trigger, with a short upright stick supporting a log of wood, which falls upon its victim on the slightest disturbance. A line of such traps, several to a mile, often exteods many miles. The bait is any kind of meat, a monse, squirrel, picce of fish, or bird'a head. It is principally trapped during the colder months, from October to April, when the fur is in good condition, as it is nearly valueless during the sheddiag in summer. Dr Coues tells us that, notwithstanding the persistent and uninterrupted destruction to which the American Sable is subjected, it does not oppear to diminish materially in numbers in unsettled parts of the country. It holds its own partly in consequence of its shyness, which keeps it away from the abodes of men, and partly because it is so prolific, bringing forth six to eight young at a litter. Its home is sometimes a den under ground or beneath rocks, but oftener the hollow of a trec, and it is said frequently to take forcible possession of a squirrel's nest, driving off or derouring the rightful proprietor.
7. M. pennauli, Erxleben; the Pekan or Pennant's Marten, also called Fisher Marten, thongh there alpears to be nothing in its liabits to justify the appellation. This is the largest speciea of the gronp, the head and body measuring from 24 to 30 inches, and the tail 14 to 18 inches. It is also more sobust in form than the others, its gencral aspect being more that of a Fox than a Weasel ; in fact its usual name among the American hunters is "IBlack Fox." Its general colour is blackish, lighter by mixture of brown or grey on the liead and upper fore part of tho body, with no light patch on the throat, and unlike the other Marteus generally darker below than above. It was generally distributed in wooded districts throughout the grenter part of North America, as far nortlı as Great Slave Lake, lat. $63^{\circ} \mathrm{N}$., and Alaska, and extending south to the parallel of $35^{\circ}$; but at the present time it is almost exterminated in the settled parts of the United States cast of the Mississippi.
Seo Elltatt. Cones, Fur-bearing Animals, a Monograph of North American Mustelidx, 1877; E. R. Alston, "On tho Britlsh Martens," Proceedings of the Zoological Sociefy of London, 1879, p. 163.
(W, 11. F.)
Malitial (M. Valerius Martialis) is a wriler to whose merits it is difficull to do justice in the present day. His faults are of tho most glaring kind; they aro exhibiterl without tho least concealment; and they are of the sort of which modern feeling is most intolerant. Living as he did under perhaps the worst of the many bad emperors who ruled the world in the lst ceutury, he addrosses him and his favourites with tho most servile flattery in lis lifetime, reviles him immediately after his death (xii. 6), and offers cqually fulsomo incense at the shane of his successor. No writer of equal genius has ever slown such an absence of dignity and independeneo of claracter in his relation to his richer friends and patrons. Ho is not ashamed

[^217]to be denendent on them for gifts of moncy, for hils dioner, and oven fur his dress. The canuot feel suro that even what scem his sinecrest tributes of regard may not be prompted by the hope of payment. Further, there is no book in any literature which, both in expressinuand in the things treated of, sins so flagrautly against all instincts of propriety. A certain propurtion of the epigrams in every book-perlaps one-fifth or one-sixth (in some books the proportiou is much larger)-can bo read ty no class of readers with any ather feelings than those of extremo distaste.
These faults are so unmistakable and undeaiable that many readers of ancient literature have formed their whole estimate of Martial from then, and lave declined to make any further aeguaintance with him. Eren those who greatly admire his genius, who find the freshest interest in his represedation of Romau life aud his sketches of nianners and charaeter, and who, after admitting the unfavourable first impressiou which he is bound to make, believe that they still can rliscern sufficient indications of the better natare which arade him a popular and likeable man in his clay, do not attempt to palliate his faults, though they may partially account for them by reference to the morals of his age and the circumstances of his life. The time when "the last of the Flarian line was tearing in pieces the half-lifeless world, and Rome was a bondslave to a bald Nero," ${ }^{1}$ wos one when literature had cither to be silent or to be servile. Martial was essentially a man of letters; there mas no other nuetier for which he was fitted; le was bound either to gain favour by his writings or to starve. Tacitus and Jurenal might have chosen the latter alternative, but they were fortunately spared the pecessity of making the choice by the possession of independent means. Even Statius, the contemporary of Martial, whose writings are in other respects irreproachable, is nearly as fulsome in his adulation as Martial. Tho relation of client to patron had been recognized as an honourable one by the best lioman traditions. No blame had attached to Virgil or Horace on account of tho favours which they received from Augustus and Mreenas, or of the return which they made for these favonrs in their rerse. That old honourable relationship had, however, greatly changed its character between the cra of Augustus and that of Domitian. Men of good birth and education, and sometimes even of high official position (Juv., i. 11\%), were not ashamed to gain or increase their living by the acceptance of money doles to provide their daily meal. "Atria magna colam" is tho resource of a man who was too lazy or too inconipetent to become no adrocate, and who thought himself tou rauch of a geatleman to adopt any mechanieal trade. Martial cas merely following a general fashion in payiag his court to "a lord." "Rex" is the common term used for a patron. He made the best of the custom. In bis carlier career he used to accompany his patrons to their villas at Baix or T:bur, and to attend their aorning levées. Later on he went to his orn small country house, near Nomentum, and sent a poem, or a small rolume of his poems, as bis representative, at the early visit. If his patron was courteues and liberal, he became his friend and entertained him with his wit and social rivacity. If he was mean and exacting, he found in him a subject for his epigrains. The fault of grossness Dartial shares with ncarly all ancient and many modera writers who treat of life from the baser or more ridiculous side. That he offends worse than perhaps any of them is to be explained, not, apparently, on the ground that he mas more of a

[^218]libertive in his life, but on the grond that he had to amuso a public which had becouse more corrupt than in any otleer civilized era slithongh there is the most cynical effrontery and want of self-respect in Martial's use of lan. gnage, there is not much trace of the satyr in him, -mucb less, nany readers will think, than in Jurenal. Neither is it at all true, as is said by historians of Ioman litera. ture (IV. S. Teuffel, vol. ii. 317, 5), that his epigrame mostly deal with this side of life. At least four-fifths of them are unexceptionable in subject and treatment.

Our knawledge of Dartial's life is derived almost entirely from himself. His writings do not, like those of Horace, supply materials for a contiuuous biography, nor do they lay bare every secret of his heart with the self-absorption of Catullus. But, as he writes frankly about everything that interested him, be has not only painted a very lifelike picture, or rather drawu a multitude of very life-lise sketehes of Roman society in his time, but he has clearly marked his orn position in and his own relation to that society. His criticism of men and manners enables us to judge of the standard which he applied to life, of the things which he liked and disliked, and of his own temper aud disposition. Reference to public events enables us approximately to fir the date of the publication of the rlifferent books of epigrams, and from these dates to determine those of various important events in his life. Thus, as in book x.. which was published in 97 or perhaps 98 A.D., he is found celebrating his fifty-seventh birthday (x. 24), the date of his birth may be assimed to the year 40 or 41 . The place of his lirth was Bilbilis, or Augusta Bilbilis, in Spain, in a "barren and rugged country" near the sources of the Tagns. His name seems to imply that he was born with the rights of Roman citizenship, but he speaks of himself as "sprung from the Celts and Iberians, and a countryman of the Tagre"; and, in contrasting his own masculine appearance with that of an effeninate Greek, he draws especial attention to "his stiff Spanish hair "-

## "Hispanis ego contumax capillis" (x. 65).

In an epigtam written nearly thirty years after his removal to Rome he pionsly commends the soul of a little child, Erotion, to whom he was much attached, to his parents Fronto and Elaccilla, who had gone before to the world of shades (r. 34). Their pusition in life secms to be iodicated by such references to his former home as the phrase "sature sordida rura case" (x. 96). His home was evidently ove of rude coufort and plenty, sufficiently ia the couvtry to afford him the amusements of hunting an 2 fishing, which he often recalls with a keen sense of pleasure, and sufficiently near the town to afford him the coupayionship of many comrades, the few survivors of whom be looks forward to meet agaim after his five and thirty years abseuce ( x . 104). The memories of this old home, of Bilbilis on its mountain site, of the sballow, rapid Sato florring round the base of the hill ("fluctu tenui sed inquieto"), of "Gaius hoary with soow and sacred Vadavere with its broken clifis," of the ilex-grore of Burado (iv. 55) "which even the laziest traveller walks through," and of other spots the rough names and local associations of which he delights to introduce into his verse, attest the enjoyment which he had in his carly life, and were among the induences which kept bis spirit thoroughly alive in the midst of the deadening routine of social life in Pome. Eat his Spanish homo could impart, not only the vigorous vitality which was one condition of his success as a wit and poet, but the education which made him so accomplished a mriter. The literary distinction oblained by the Senceas, by Lucan, by Quintilian, who belonged to a somerrhat older generation, and by his friends and contempararies Licinianus of Bilbilis, Decianus of Emcrita. and

Canius of Gades, proves how eagerly the novel impulse of letters was received in Spain in the first century of the empire, just as a similar impulse had been received in Cisalpiue Gaul in the first half of the first centnry before our era. The success of his countrymen may have been the motive which induced Martinl's parents to prepare him for a liierary career,-
" 1 t me litterulas stulti docucre parentes" (ix. 73, 7),
and which induced Martial himself to remove to Rome when he lad completed his education. This he must have done some time before the fall, in 65 A.d., of Seneca and Lucan, who were probably his earliest patrous. He speaks of the halls of the Pisos and of Seneca as having been opened to him when he first went to Rome (iv. 40); and in epigrams, addressed to his widow nearly thirty years nfter the death of Lucan, he speaks of him with grateful admiration, and applies to her the word " Legina," "his lady patroness."
Of the details of his life for the first twenty years or so after be came to fome we do not know much. He published seme juvenile poems of which ho thought very little in his maturer years, and he laughs at a foolish bookseller who would not allow them to die a natural death (i. 113). Martial had neither youthful passiun nor youthful enthusiasm to make him precocionsly a poct. His faculty ripened with experienco and with the knowledge of that social life which was both his theme and his inspiration ; and many of his best epigrams aro among those written in his last years. From many answers which he makes to the remonstrances of friends,-among others to those of Quintulan, -it may be inferred that he was urged to practise at the bar, but that be preferred his own lazy Bohemian kind of life to more settled and remonerative modes of industry. He mado many inflnential friends nad patrons, and secured the fnvour both of Titus and Domitian. From them le obtained various privileges, among others the "semestris tribunatus," which conferred on him equestrian rank. He failed, however, in his application to the latter for more substantial advantages, although be commemorates the glory of having been invited to dinner by him, and also the fact that he procured the privilego of citizenship for many persons in whoso behalf he appealed to him. The carliest of his extant works, that known by the name of Liber Spectaculorum, was first published at tho opeuing of the Colosseum in the reign of Titus; but tho book as it now stands was given to tho world in or about tho first year of Domstian, i.c., about 81 A.D. The favour of tho emperor procured hin the countenance of somo of the worst creatures at the iuperial court,-among them of the notorious Crispinus, of Parthemus, Earinus, Fegulus, and probably of laris, the snpposed author of Juvenal's exile, on whose death Nartial afterwards wroto a eulugistic epitaph. The two books numbered xiii. and xir., and known by the name of Ierice and Apophorcta,-inseriptions of two iines for presents,-were published between 81 and 86 A.D. In that last year he gare to the world the first two of tho twelve books on which his reputation rests. From that time till his return to Spain in 98 A.D. ho published a volume almost every year. The first mine books and the first eclition of book $x$. appeared in the reign of Domitian ; and book :si. at the end of 96 A.D., shortly after the accession of Nerva, A revised edition of book x., that which we now possess, appeared in 98 A. D., about the time of the entrance of Trajan into Rome. The last book was written after three years' nbsence in Spain, shortly before his death, which happened ahout the year 102 or 103 A.D.
These twelve books bring Martial's ordinnry mode of life betreen the ago of five-and-ferty and sixty very fully
before us. His regular home for five-and-thirty years was Fome. He lived at first up three pair of stairs ("et scalis habito tribus sed altis," i. 117), and his rooms overlooked the laurels in front of the portico of Agrippa. He had a small and not very valuable country house near Nomentum, in the Sabine territory, to which he occasionally retired as a refuge from the bores and noises of the city (ii. 38, xii. 57 ). In his later years he bad a small house on the Quirinal, near the temple of Quirinus. At the time when his third book mas brought out he had retired for a short time to Cisalpine Gaul, in weariuess, as he tells us, of his unremunerative attendance on the levées of the great-
"Non poterat ranx txdia ferre toge" (iii. 4).

For a time be seems to have felt the charm of the new scenes which he risited, and in a later book (ir. 25) he contemplates, probably with a reminiscence of Horace (Od. ii. 6), the prospect of retiring to the neighbourhond of Aquileia and the Timarus in his old age. But the spell exercised over him by Rome and Roman society was too great to permit of a prolouged absence; and even tho epigrams sent from Forum Corncli and the Emilian Way ring much more of the Roman Forum, and of the streets, baths, porticos, and clubs of Rome, than of the places from which they are dated. So too his motive for his final departure from Rome in 98 A.D. was a weariness of the burdens imposed on him by his social position, and, apparently, the difficulties of meeting the ordinary expenses of living in the metropolis ( x .96 ) ; and be looks forward, with a kind of "nostalgia," to a return to the seenes familiar to his youth. The well-known epigram addrossed to Juvenal (xii. 18) shows that for a time his idea! was realized; but the more trustworthy evidence of the prose epistle prefixed to book xii. proses that his contentnent was of very short duration, and that he could not live happily away from the literary and social pleasures of Rome ("bibliothecas, theatra, convictus"), which supplied both the impulse to lis genius and the material on which it could exerciso itself. The one consolation of his exilo was the society of a lady, Marcella, of whom he writes rather as if she were his patroness, 一and it seems to have been a necessity of his being to lave always a patron or patroness,-than his wife or mistress. His delight in her society aroso from his finding in her one who, though born and bred in this remote provinee, yet by her natural grace and accomplishment revived for him the charm of Rome.
During his life there, although he never rose to a position of real independence, aud lad always a hard struggle with poserty, he seems to bave known everybody, especially every one of any eminence at the bar or in literature. In addition to Luean and Quintilian, he numbered among his friends or more intimate nequaintances Silius Jtalicus, Juvenal, the younger Pliny; and we find a number of other names, such as those of Julius Martialis, Fanstinus, Bassus, Decianus, Melior, Stella, dee, of men holding a higl social, legal, or literary position, whose society and patronage he enjoyed. Tho silence which ho and Statius, although authors uriting at the same time, having common friends, and treating sometimes of the same subjects, maintain in remard to one another may be explained by nutual dislike or want of sympathy. Martial, in many places, shows an undisguised contempt for the artificial hind of epic on which Statius's reputation chiefly rests; and it seems quite natural that the respeetalle antlor of the Thebaid and the Silies-should feel little almiration for either the life or tho works of tho Bohemian epigrammatist.
Tho persunal fiults of Martial, which deny to hia
writings, notwitustanding their vivacity, trutn, and brilliancy, a place among the best pectry of antiquity, have been sutficiently indicated. It remains to ask, What were those iutitics of nature and intellect which enable us to read lis best work-eren the great body of his workwith the freshest sense of pleasure in the presont day?

Ile bad the kecnest capacity for enjoyment, the kecnest curiosity and power of observation. The ordinary spectacle of human life, as it passed before his eyes, was thus rividly apprehended aud reproduced by him in all its details ; and the many rarieties of character which an over-ripe and decaying sivilization produces were quickly scized and graphically sketched. He had also a very just discernment. It is rare to find any one endowed rith so quick a perception of the ridiculous who is sn little of a caricaturist. He was himself singularly free from cant, pedantry, or affectation of any kind. Though tolerant of most vices, be has a hearty scorn of hypacrisy, - of the combination of outward nusterity with secret profligacy,-of the man who, while he wears

## "Fuscos colores, galbinos habet mores." ${ }^{1}$

There are fem better satirists of social and literary pretenders either in ancient or modern times. Living in a very artificial age, he was quite natural, hating pomp aud show, and desiring to secure in life ouly what really gave him pleasure. To live one's own life heartily from day to day without looking before or after, and to be one's self without trying to be that for which nature did not intend him, is the sum of his philosopliy. It is the philosophy of a man who has passed the middle of life, who has outlived any illusions he may ever have had, and who is quite content that whaterer remains to him in the future should be like his present. Further, while tolerant of much that is bad and base, -the characters of Crispinus and Regulus, for instance,-he shows himself genuinely grateful for kindness and appreciative of excellence. He has no bitterness, malice, or envy in his enmposition. He professes to aroid personalities in his satire ;-"Ladimus innocui" is the character he claims for it. Pliny, in the short tribute which he pass to him on hearing of his death, says, "He had as much candour as wit and puugency in his writings" ( $E p$. iii. 21):

Honour and sincerity (fides and simplicitas) are the qualities which he most admires in his friends. Though many of his epigrams indicate a cynical. disbelief in the character of somen, jet others prove that he could respect and almost reverence a refined and courteous lady. His own life in Rome afforded lim no experience of domestic virtue ; but his epigrams show that, even in the age which is known to modern readers chielly from the Satires of Jurenal, that virtue was recognized as the purest source of happiness. The tenderest clement in Martial's nature scems, however, to have been his affection for children and for his dependants. The pathos with which he has recorded their premature death, combined with his fresh enjoyment of outward nature, give to many of his pieces a rank among the serious poetry of the world-"inter sanctiora carmina,"-to use a phrase of his own.

The permanent literary interest of Martial's epigtams arises not so much from their verbal point or brilliancy, though in these respects they are unsurpassed, as from the amount of human life and character which they contain. There is no truer painter of social manners in antiquity. He euables us better than any other writer to revive the outward spectacle of the imperial Rome which we see in its ruins, and to repeople its streets, shops, porticos, baths, and nmphitheatres. If Juvenal enforces the lesson of that time, and has penetrated more deeply into the heart of society,

[^219]Martial has sketched its external aspect with a nuch fairer pencil and from a much more intimate contact with it. It is from the immediate impressions and comments of the epigrammatist that the satirist has taken the suggestion of many of his more elaborate pictures and more stern denunciations. But it is not only the peculiarities of Roman customs that live in the writings of Martial. His page, to use his own phrase, " ilas the true relish of humars life" in every age-"hominem pagina nostra sapit." Ho was to Rome in the decay of its ancient virtue and patriutism what Menander was to Athens in its deeline. They were both men of cosmopolitan rather than of a not ional type, and had a closer affinity to the life of Paris or London in the 18 th century than to that of Rome is the days of the Scipios or of Athens in the age of Pericles The form of epigram was fitted to the critical temper of Rome as the comedy of manners was fitted to the dramatic genius of Greece. Martial professes to be of the school of Catullus, Pedo, and Marsus, and admits his inferiority only to the first. But, though he is a poet of a less pure and genuine inspiration, he is a greater epigrammatist even than bis master. He has indeed made that form of art peculiarly his own. He has applied it to the representation of a very much greater number of situations, incidents, and characters, and he has done this with the greatest clearness, terseness, and rivacity of style, and with \& masterly command over all his metres, except the pure hexameter, in which no other writer has been able to treat the familiar matters of the day with the light touch of Horace. Martial, except where he is flattering the emperor, -and then we may sometimes suspect an undercurrent of irouy, -is one of the most natural and sensible as he is one of the wittiest and most brilliant of writers. He fails, perhaps, more often in his wit than in his sense. He is full of the happiest phrases, which express admirably for all times, without over-subtlety and without triteness, the judgment and impressions of life formed by direct contact with it, and taken neither from books nor from the opinions of other men, of a tharough man of the world, who had yet some feelings and sensibilities to which men of the world are generally strangers. He wrote naturally because he was completely in harmony with the life of his age. As this is the explanation of his grare offences, it should also be recognized as contributing to his merits as a writer.
Owing probably to the reasons which have exclnded his writings from school education, little has becn done for the criticism or explanation of Martial for about two centuries. There is a good edition of the text by Schneidewin in the Teubner series of classics For English readers the Selceted Epigrams of Mrartial, by H. H. Stephensen, and the Martialis Epigrammata Selccta, by Messrs Paley and Stone, may be recommended as a good introduction to the study of this poet. An edition of book i., with a Latin commentary by J. Flach, has lately appeared at Tuibingen. Fnrthcr information about him may be obtained in a work by A. Brandt, De Martialis poelx ritca ct scriptis (Berlin, 1853), and in Friedlander's Sittengeschichte Roms; and an excellent criticism on his writings is to be found among the prose rorks of Lessing.

## martial Latw. See Mimitary Law.

MARTIGUES, chief place of a canton in the departmeat of Bouches-du-Rhône, France, stands on the southern shore of the lagoon of Berre, and at the eastern extremity of that of Caronte, by which the former is connected with the Mediterranean. Divided into three quarters by canals with numerous bridges, the place has sometimes been called the Venice of Provence. It has a harbour of 10 acres, an iron feundry, workshops for maritime constructions, oil manufactures, and chemical works; the priacipal industry, howr ver, consists in the preparation of "boutargue," whi:e is obtained from the roes of the grey mullet canght in the lagoons, and rivals Russian caviare. The population in 1876 was 8053.

Biile in 1232 by Raymond Bérenger, count of Provence, Martigues twas idade a viscountsliip by Joanna I., queen of Naples. Henry IV. mrado it a principality, in favour of a princess of tho house of Luxembourg. It afterwards passed into the hands of the dukc of Villars.

MARTIN ${ }^{1}$ (French, Martinet), the Hirundo urlica of Einneus and Chelidon urbica of mıdern ornithologists, a bird very well known throughout Europe, including even Lapland, where it is abundant, retiring in winter to the south of Arrica. ${ }^{2}$ It also inhabits the western part of $A$ sia, and appears from time to time in large flocks in India; but the boundaries of its range and those of at least one of its Easteru congeners cannot as yet be laid down. Tho Martin (or House-Martin, as it is of ten called, to distinguish it from the Sand-Martin presently to be mentioned) commonly reaches its summer-quarters a ferv days later than the Swallow ( $q . v$ ) , whose habits its own so much resemble that heedless persons often disregard the very pérceptible differences between them, the Martin's white rump and lower parts being conspicuous as it flies or clings to its "loved mansionry" attached to our houses, for, as Shakespeare wrote-
Buttress, nor coign of vantage, butty, frieze,

Hath mado his pendent bed and procreant cradle."

- Macbeth, act i. sc. 6.

This nest, made of the same material as the Swallow's, is, however, a far more difficult structure to rear, and a week or more is often occupied in laying its foundationsthe builders clinging to the wall while depositing the mud of which it is composed. But, the base once securely fixed, the suporstructure is often quickly added till the whole takes the shape of the half or quarter of a hemisphere, and a lining of soft feathers, mixed with a few bents or straws, fits it for its purpose. The Martin sets about building very scon after its return, and a nest that has outlasted the winter's storms is almost at once reoccupied ; though if a new nest be needed its construction often involves great delay, for any excess of wet or dronght retards the operation, nad the work is generally placed in such an exposed situation that heavy driving rains will frequently wash away the half-dried walls. However, the bird mostly perseveres against these and other unterwardnesses, contriving in the course of the summer to raise a second or, rarely, a third brood of offspring-though it is certain that the latest broods often die in the nest-apparently through failure of food. Yet what seem to be adults of this species are observed in England every year so late as November, and there are several instances of its appearanco within a few days of tho winter solstice; but it is to be remarked that these late birds nre almost certainly strangers, and not natives of the locality in which they are seen,

The Sand-Martin, Hirundo riparia of Linmeus and Cotile riparia of modern writers, differs much in appearance and habits from the former. Its smaller size, monsecoloured upper surface, and jerking fight ought to render it easily recognizable from the other British Mirundinidx; but through cerelessness it is seldon discriminated, and, being the first of the Family to return to its northern bome, the "early Swallow" of newspaper-writers would rcem to be nearly elways of this species. Instead of the clay-built nost of the Honse-Martin, this bird Dores, with a degree of regularity nad an amount of labour rarely excelled in its Class, horizontal gallerics in a natural or

[^220]artificial escarpment. When beginning its excavation, it clings to the face of the bank, and with its bill loosens the earth, Working from the centre outwards, assuming all sorts of positions-as often as not hanging head downwards. The form of the boring and its length depend much on the nature of the soil; but the tunnel may extend to 4 , 6 , or even 9 feet. The gallery scems intended to be straight, but inequalities of the ground, and especially the meeting with stones, often cause it to take a sinuous course. At the end is formed a convenient chamber lined with a few grass stalks and feathers, the latter nlways beantifully arranged, and upon them the eggs aro laid. The Sand-Martin has several broods in the year, and is much more regular than other Hirundinidx in its departure for the south. The kind of soil needed for its uestinghabits makes it a somewhat local bird ; but no species of the Order Passeres has a geographical range that can compare with this. In Europe it is found nearly to the North Cape, and thence to the Sea of Okbotsk. In winter it visits many parts of India, and South Africa to the Transvaal territory. In America its range is even more extraordinary, extending (due regard being of course had to the season of the year) from Melville Island to Caiçara in Brazil, and from Newfoundland to Alaska.

The Purple Martin of Anerica, ${ }^{\text {s }}$ Hirundo or Progne purpurea, requires some remarks as being such a favourite bird in Canada and in the United States. Naturally breeding in hollow trees, it readily adapts itself to the nest-boxes which are very commonly set up for its accommodation; but its numbers are in some years and places subject to diminution in a manner which has not yet been satisfactorily explained. The limits of its range in winter are not determined, chiefly owing to the differences of opinion as to the validity of certain supposed kindred species found in South America; but according to some authorities it reaches the border of Patagonia, whils in sumner it is known to inhabit lands within the Arctic Circle. The male is almost wholly of a glossy steel-bluc, while the female is much duller in colour abore, and beneath of a brownish-grey.

Birds that may be called Martins ${ }^{4}$ occur almost all over the rorld except in New Zealand, which is not regularly inbabited by any member of the Family. The ordinary Martin of Australia is tho Hirundo or Hylochelidon migricans of most ornithologists, and another-and mors beautiful form is the Ariel or Fairy-Martin of the eame country, Hirundo or Lagenoplastes ariel. This last builds of mud a bottle-shaped nest, as does also the Rock-Martin of Europe, Hirundo or Biblis rupestris; but space fails wherein to tell more of these interesting birds.
(A. N.)

MARTIN, St, bishop of Tours, was born of heathen parents at Sabaris (Stein and Anger) in Pannonia, about the year 316. When ten years of age he became a catechumen, snd at fifteen, contrary to his own inclination, he entered the army. It was while be was stationed at Amiens that he divided his cloak with the beggar, and on the following night had tho vision of Christ making known to his angels this act of charity to Himself on the part of "Martinus, still a catechumen." Soon afterwards he received baptism, nnd, two years later, hariog been permitted to leare the army, lo joincd Hilary of Poitiers, who wished to make him a deacon, but at his own request ordained him to the humbler office of an exorcist. In the course of the years that followed he undertook a journey to Pannonia for the purposo of converting his parents, and was successful in bringing his mother within the pale of

[^221]the clurch: For some time, doubtless during the Arian troubles, he lived, along with a presbyter friend, an ascetic life on the desort island of Gallinaria near Genoa; in 360 ho was again with Hilary at l'oitiers, and founded in the neighbourhood the monasterium Locociagense (Licuge). Here his miracles, which included more than one case of restoring the dead to life, wero very numeruus, and mado him so famous that in 371 the people of Tours insisted on baving him for their bishop. In this capacity he was cxtremely zealous and energetic in seeking to extirpate idolatry from his diocese and from Frauce, aud by examplo as well as by precept he did much for the spread of the monastic system. To obtain the privacy that he required for the maintenance of his persenal religion, he established the monastery of Marmoutier-les-Tours (Martini monasterium) on the banks of the Loire. At Treves, in 385, he was importunate in bis entreatics that the lives of the Priscillianist heretics should bo given them, and he ever afterwards refused to hold ecclesiastical fellowship with those bishops who had senctioned their execution. He died at Candes about the year 400, and is commemorated by the Roman Church on November 11 (duplex). He is the patron saint of France, and of the cities of Mainz and Würzburg. The Life by his disciple Sulpicius Severus is practically the only source we have for his biography, but it is full of legendary matter and chronological inaccuracies. The feast of St Martin (Martiomas) took the place of an old pagan festival, and inherited some of its usages (such as the Martinsmänochen, Martinsfeuer, Martinshorn, and the lise, in various parts of Germany); by this circumstance is most probably to be explained the fact that he is regarded as the patron of drinking and jovial meetings, as well as of reformed drunkards.

MARTIN I., pope, succeeded Theodore I., in June or Joly 649. He had previously acted as papal apocrisiarius at Constantinople, and was held in high repute for learning and rirtue. Almost his first official act was to summion a synod (the first Lateran) for dealing with the Monothelite heresy. It met in the Lateran church, was attended by one hundred and five bishops (chiefly from Italy, Sicily, and Sardinia, a few being from Africa and other quarters), held live sessions or "secretarii" from the 5 th to the 3 ist of October 649, and in tweaty canons condemned the Monothelite heresy, its anthors, and the writings by which it bad been promulgated. In this condemnation were included, not only the "Ecthesis" or exposition of faith of the patriarch Sergius for which the emperor Heraclius had stood sponsor, but alao the "Typus" of Paul, the successor of Sergius, which bad the eupport of the reigning emperor (Constans II.). Martin was very eaergetic in publishing the decrees of his Lateran synod in an encyclical, and Constans replied by enjoining his exarch to seize the pope, should he persist in this line of conduct, and send him prisoner to Constantiaople. These orders were found impossible of esecution for a considerable space of time, but at last Martin was arrested in the Lateran (June 15, 653), hurried out of Rome, and conveyed first to Nazos fad subsequently to Constancinople (September 17, 654). After suffering an exhausting imprisonment and many public indignities, he was ultimately banished to Cherson, where he arrived on March 26, 655, and died on the 16th of September following His successor was Eugenius I. A full account of the events of his pontificate will be found in Hefele's Conciliengeschichte, val. iii., 1877.

Martin IL See Marinus I.
martin III. See. Marinus IL
MARTIN IV., pope from 1281 to 1285, was the anccossor of Nicholas III. He was a native of Touraine, born about 1210, and his proper name was Simos de Brion. Aiter holding various offices at Rouen atci Touss, he was
made cbancellor of Franco by Louis IK. in 1260, and cardinal by Urban IV. in 1261. He acted as legate for this pope and also for his successor Clement IV. in the negotiations for the assumption of the crown of Sicily by Charles of Anjou, and he is supposed slso to have stimulated the ambition of Philip IIL for the imperial dignity in 1273. After the death of Nicholas III. (August 1280) Charles of Aojou was able to secure the election of Cardiaal Simon by the conclare at Viterbo (February 22, 1281). The Romans declined to receive him within their walls, and bo was crowned at Orvieto. At the iustance of Charles, whose tool he had become, he in November 1281 excommunicated the emperor Michael Palæologus, who stuod in the way of the Freach projects against Greece, -an act by which the union of the Eastern and Western churches was rendered impossible. For three years after the Sicilian Vespers in 1282 all the spiritual and material resources at his command mere in vain employed on bebalf of his patron againat Peter of Aragon. He died it Perugia on March 25, 1285, and was succeeded by Honorius IV.
MARTIN V. (Otto di Colunna), pope from 1417 to 1431, was elected on St MIartin's day at Constance by a conclava consisting of tweaty-three cardinals and thirty delegates of the council, which after deposing Joha XXIII. had long experienced much perplexity from the conflictiog claims of Gregory XIL. and Benedict XIIL. The son of Agapito Colouna and Catarina Conti, bora about 1368, he belonged to one of the oldest and most distinguished families of Rome, became apostolic protonotary under .Urban VL, was created cardinal-deacon by Innocent VIL, and in 1410 was the delegate of Aloxauder $V$. to hear the appeal which had been taken in that year to the papal see by John Huss. He was justly esteemed for his moderation, learning, uprightness, and business capacity, but he failed to achieve, as he might have done; the honour of being a reforming pope. His first act after his election was to publish a brief confirming all the regulations made by his predecessors with regard to the papal chancery,-regulations which had long heen the subject of just complaint. When the "nations" of the council pressed their plans fer reform, Martin submitted a counter scheme, and ultimately entered into negotietions for separate concordats, for the most part vague and illusory, with Germany, England, and France. He left Constance at the close of the council (May 1418), but travelled slowly through Italy, lingered at F'lorence, and did not venture to enter Rome until September 1420, when his first task was to seck to restore it to the prosperity and order to which it had become a stranger. In accerdance with the decree of Constance, confirmed by hinself, ordering that councila should bo held every five years, be i. 1423 summoned the council which met at Pavia and afterwards at Siena; it was somewhat poorly attended, and this circumstance gave the pope a pretest for dissolving it as soon as it had come to the resolution that "internal church union by reform ought to take precedence of external union." It was prorogued for seven years, and then met at Basel ; shortly after its opening Martin died of apoplesy, on February 20, 1431. His successor was Eugenius IV.

MARTIN, Joun (1789-1854), a popular English painter, was born at Haydon Bridge, near Hexham, on the 19th of July 1789. On account of his early interest in art he was apprenticed by his father to a coachbuilder to learn heraldic painting, but owing to a quarrel the indentures were cancelled, and he was placed under Bonifacia Musse, an Italian artist, father of the wellknown ensmel painter Charles Musso. With his master Martin removed to London in 1806, where he married at the age of nincteen, and led a struggling life, supporting bimself by giving drawing lessons, and by painting in
water colours, and on china and glass. ITis leisure was occupied in the study of perspective and architecture. His first picture, Sadak in Search of the Waters of Oblivion, was executed in a month. It was exhibited in the Royal Atademy of 1812 , and sold for fifty guineas. It was followed by the Expulsion (1813), Paradise (1813), Clytie (1814), and Josbua (1815). In 1821 appeared the famous Belshazzar's Feast, which excited much farourable and hostile comment, and was awarded a prize of $£ 200$ at the British Iustitution, where the Joshua had previously carried off a premium of $£ 100$. Then came the Destruction of Herculaneum (1822), the Creation (1824), the Eve of the Delage (1841), and a long series of other Biblical and imaginative subjects, many of which are widely known through engravings. In 1832-33 Martin received £2000 for drawing and engraving a fine series of designs to Milton, and along with Trestall he produced a set of Bible illustrations. He was also much occupied with schemes for the improvement of London, and published various pamphlets and plans dealing with the metropolitan water supply, serrage, dock, and railway systems. During the last four years of his life he was engaged upon bis large subjects of the Judgment, the Day of Wrath, and the Plains of Heavell. He was attacked with paralysis while painting, and died in the Isle of Man on the 17 th of February 1854.

The bold oriminality of Nartin's preductions startled and attracted the public, but they are without the qualities of solid axocution and truth to nature unon which a lasting fame in the arts must be built. His figurcs are badly drawn, his colouring is bot and unpleasant. To mest of his professional brethren his works scemed theatrical and tricky; and the best lay critics of his time, like Cbarles Lamb, were disposed to deny that they evinced true imaginative pewer. His popularity may be said to have culruinated in 1828, the year of his Fall of Nineve', since then it has boen gradually declining.

MARTINA FRANCA, a city of Italy in the province of Lecce, 18 miles north of Taranto, on a bill near the sources of the Tara. It was a fief of the Caraccioli family, and dates from a comparatively modern epoch. The ducal palace is one of the finest buildings of its kind in the south - of italy, somerrhat similar in style of architecture to the Palazzo Pamfili in Nap? Thes population of the city was 13,088 in 1861 ; that of the commune has increased from 16,637 in that year to 19,257 in $18 \$ 1$.

MAFTINEAU, Harbet (1802-1876), English woman of letters, was burn at Norwich, where her father was a manufacturer. The family was of Huguenot extraction, but had adopted Unitarian vicws. Her education, which inclnded Latin and French, as well as domestic accomplishments, was received partly at linne, and partly under a Mr Perry, to whose lessons in lorical English composition she ascribed something of her later clearness of thought and statement. The atmosphere of her home was industrious, intellectual, and austere; she lierself was clever, weakly, and unhappy, and was, moreover, already growing deaf. At the age of fifteen the state of her health and temper led to a prolonged visit to her father's sister, Mrs Kcatish, who kept a school at Bristol. Here, in the companionship of amiable and talented people, her life became happier. Here, also, she fell under the influence of the Unitaman minister, Dr Carpenter, from whose instructions, she says, she derived "an abuminable spiritual rigidity and a truly respectable force of cunscience strangely mingled together." From 1819 to 1830 she ngain resided chiefly at Norwich. The first part of this period was mainly spent in quiet and almost secret study and in needlework. About her twertieth year her deafness became confirmed, and sle habitually from that time used an car trumpet. In 1821 she began to write anonymously for the Monthly Repositary, a Unitarian periodical, and was assured by her brother that authorshin.
was ber proper career. A little later sho published Derotional Exercises and Addresses, Prayers, and Hymns.

In 1826 her father died, leaving a bare maintenance to his wife and daughters. His death had been preceded by that of his eldest son, and was shortly followed by that of the young man to whom Harriet was engaged. Mrs Martineau and ber daughters soon after lost all their means by the failure of the house where their money was placed. Harriet had to earn her living, and, being precluded by her deafness from teaching, took up authorslip in earnest and toiled with incredible industry. She reviewed for the Repository at the rate of $£ 15$ a jear, wrote stories (afterwards collected as Traditions of Palestine), gained in one year (1830) three essaj-prizes of the Unitarian Association, and eked out her income by needlework. In 1831 she was seeking a publisher for a series of tales designed as Illustrations of Political Economy. Alter many failures she accepted very disadrantageous terms, and the first number appeared amidst gloomy prognostications from the publisher. The sale, however, was immediate and enormous, the demand increased with each new number, and from that time her literary success was seeured. In 1832 she moved to London; she at once became the fashion, and ber acquaintance was eagerly sought. Till 1834 she continued to be occupied with her political economy series and with a snpplemental series of Illustrations of Taxation. Four stories dealing with the poor-law came out about the same time. These tales, direct, lucid, written without any appearance of effort, and yet practically effeetive, display the characteristic qualities of their author's style. In 1834 , when the wholo series was complete, Miss Martineau paid a long visit to America. Here ber open adhesion to the Abolitionist party, then small and very unpopular, gave great offence, which was deepened by the publication, soon after her return, of Society in America and a Retrospect of Western Travel. An article in the Westminister Review, "The Martyr Age of the United States," introduced Eaglish readers almost for the first time to the struggles of the Abolitionists. In these American writings Miss Martincau shows less than her asual calmuess and judicial common sense, but it will scarcely be denied that there was some ground for her vehemence. The American books were followed by a novel, Deerbrook, - a story of middle class couatry life, lacking the delicate humour of Miss Austen or the touch of farce that enlivens Miss Edgemorth's tales, but delightfully clear in style, wholesome in spirit, and well sustained in point of interest. To the same period belong two or three little baudbooks, forming parts of a Guide to Sevvice. The veracity of her Maid of all Work led to a widcspread belief, which she regarded with some complacency, that she bad unce been a maid of all work herself.

In 1839, during a visit to the Continent, Miss Martineau's health, which had long been bad, broke down entirely. She retired to solitary lodgings in Tynemouth, and remained a prisoner to her couch till 1844. She was still busy, and, besides a novel (The Hlour and the Man), published some tales for children, and Life in the sick-rom. These volumes contain some of her best work, and possess a charm of tender feeling to balance the somewhat cold rationality that predominates in most of Miss Martinean's writing. During this illness she fur a sccond time declined a pension on the civil list, feariog to compromise her political independence. Her letter on the subject was published, and some of her friends raised a small annuity for her soon after.

In 1844 Miss Martineau underwent a course of mesmerism, and in a few montlis was restored to hedith. Her recovery excited much discussion and controverss.

She herself felt no doubt either of its reahty or of its being due to mesmerism, and not unnaturally resented the incredulity of others. She eventually published an account of her case in sisteen Lellers on Mesmerism, a proceeding which caused great cffence to some members of her fanily. On finding herself set free from the bondage of ill-health, she removed to Ambleside, where she built herself the house in which the greater part of her after life was spent. In 1845 she published thrce volumes of Forest and Game Law I'ales, in which the method of her political cconemy series was again applied. In 1846 she inade an Eastern tour with some friends. She was abroad for eight months, visiting Egypt, Palestine, and Syrix, and on her rctirn published Eastern Lịe. Tho tendcucy of this work is to display humanity passing through one after another of the world's histeric religions, the conception of the Deity and of Divine government becoming at cach step more and more abstract and indefinite. The ultimate goal Miss Martineau believed to be a philosophic atheism, but this belief she did not expressly deelare in Eastern Life, considering it to be outside the province of that book. She published about this time Houselold Education, expounding. the medern theory, in which freedom and rationality, rather than command and obedience, are regarded as the most. effectual instruments of education. Her practical interest in all schemes of instruction led her to start a serics of lectures, addressed at first to the school elildren of Ambleside, but afterwardsextended, at their own desire, to their elders. The subjects of these lectures were sanitary priaciples and practice, the histories of England and North America, and the scenes of ber Eastern travels. At the request of Mr Charles Kinight she wrote for him, in 1849, The History of the T'hirly Years' Peace, -a characteristic instance of Miss Martineau's remarkable powers of labour. "From the first opening of the books to study fer the listery to the depositing of the MS. of the first volume at press ras," she says, "exactly six months. The second volume took six months to de."
In 1851 Miss Martineau edited a volume of Letters on the Laws of Man's Nature and Development. Its form is that of a correspondence between herself and Mr H. G. Atkinson (in which the latter has much the larger share), and it expounds that doctrine of philosophical atheism to which Miss Martineau had, in Eastern Life, depicted the course of human belief as tending. The existence of a first cause is not denied, but is declared unknowable, and the authers, while regarded by others as denying it, certainly considered themselves to be affirming the doctrine of man's moral obligation. Mr Atkinsen was a zealous exponent of mesmerism, and the prominence given to the topics of mesmerism and clairvoyance no doubt tended to heighten the disapprobation with which the book was reeeived. The reviewers were almost unanimous in condemnation, and the publication caused a lasting division betiveen Miss Martineau and some of ber friends.
The new philosophical bent of her studics directed Miss Martinean's attention to the work's of Comte, and she uudertook a condensed English version of the Philosophie Positive. It appeared in 1853, and to most readers is more useful and intelligible than the original. She had begon in the previous year to write articles, chiefly biographical, for the Daily News. Ainong these were the Letters from Ireland, written during a visit to that country in the summer of 1852. Sho also wrote a considerable number of essays upon different manufactures for Household Words, and another series for the same periodical upon the treatment of blindness, deafness, idiotey, de., besides a Guide to Windermere, followed afterwards by a Complete Guide to the Lakes. She had been for many years a contributor to the Westminister Revier, and was one of the
little band of supporters whoso pecuniary assistauce, in 1854, prevented its extinction or forced sale. In the early part of 1855 Miss Martineau found herself suffering frem heart disease. Having always felt it one of her duties to write her autobiography, and belicring the time before her to be but bricf, she now at once set about this task, and on its completion caused the book to be printed that it might be ready for spreedy publication at her death. But her life, which she suppesed to be so near its close, was prolonged for other twenty years, her death not iaking place until 1876 .

These years were by no mcans tase. She continued to contributo to tho Daily Neue, for which sho wrote in all more than 1600 articles, and to tho Westminster Fericu, ns well as to other papers, and her biographical aketches were collected and reprinted from the Daily deuc's in a volume which has justly become one of the bestknown of her works. In point of style it is probably the most excellent of them all. The form and method leave nothing to be desired, ond the perception of character is slnewd, sincere, and, roughly speaking, reliable. But in reading the book we feel that the biograplies, diviled by the editor into groups of rosal, political, \&e., fall far more naturally intotwo larger classes, - the biogiaplies of persons whom Miss Dlartineau liked, and the biographies of persons whom she disliked. All aro doubtless in a sense true, as all photographe are true, but the dillerence between a flattering and an unflattering photograph is considerable.
She also produced two books on the government of India, and was continually occupied in promoting schemea of reform and benerolence. Her pooser neiglhbours owed much to her kindly and enlightened efforts, and ber servants found in her a friend as well ns a mistress. Her long and busy life bears tho consistent inupress of two leading characteristics,-industry and sincerity. Her work was invariably sound; and its motive invariably respectable. The rerdict which she records on herself in tho nutobiographical sketch left to be published by the Daily Nows is probably rery near to that which will be recorded by future judgment. She says, -" Her original power was nothing more than was due to caroestness and intellectual clearuess within a certain range. Witlu small imaginative and suggestive powers, and therefore nothing approaching to genius, she could aec clearly what she did see, and give a clear expression to what she. had to say. In short, she could popularize while she could neither discoser nor invent." Her judgment on large questions was clear and somnd, and was almays the judgment of a mind naturally progressive aud Protestantu Mentally she was a true daughter of her ITuguenot ancestors. Put it is impossible to read her autobiography without suspecting that she was subject to considerable prejucices, especially in her judg. ment of persons, and that her tumper, particularly in earlier life, was unamiable, hard, and unforgiving. She scems, indeed, to have possessed the sort of disposition which shows to much greater adrantage in its relation to juniors, inferiors, and dependants than in its relations to chlers ond superiors, and which therefore appears more amiable in the closing than in the opening years of life. Her autobiography reveals also a weakness which was perhaps unavoidable. The publication of her political cconomy tales bronght her into great and sudden notice; many persons of high position, official and otherwise, desired to enlist her adrocacy on the part of their particular projects. She found her help much courted, and much help eagerly proffered to her. Her deafness, which suffered her to hear only what was directly addressed to herself, assisted to make her a central figure, and to induco the belief that hers was one of the most potent if not actually the most potent roice in English politics. IIer deafness was in another direction probably advantageous. It led her to fiad solitude easier than most conspanionship, and saved her from many distractions of attention. It may indeed fairly be surmised that but for her deafness she could nerer hare found time to achieve the amaziog quautity of work that she did, while the courageous, cbeerful, and unobtrusive spirit in which she bore her infirnity remains an example and on encouragement to all her fellow-sufferers.
(C. BL.)
dartini, Giovanni Battista ( $1 ; 06-1784$ ), the most learned musician of the 18th century, was bern at Belogna on April 25, 1706. His father, Antonio Maria Martini, a violinist, taught him very early the elemente of musie, and to play the violin; at a later period he learned singing and harpsichord playing from Padre Pradicri, and counterpoint from Antonio Riccieri. Having received his education in classics from the fathers of the oratory of San Filippo Neri, he afterwards entered upen a noviciate at the Franciscan monastery at Lago, at the close of which he was received iato that order on September

11, 1722. Continuing his studies in the theory and practice of music with great zeal, he in 1725 , though only nineteen years of age, received the appointment of chapelmaster in the Franciscan church at Bologna, where his compositions soon attracted much attention. At the invitation of amatcurs and professional friends he now opened a school of musical composition at which in the course of his long life several celebrated musicians were trained, including Paolucci, Sabbatini, Ruttini, Zanotti, Sarti, Ottani, and Stanislas Mattei ; as a taacher ho consistently declared his preference for the traditions of the old Roman school of musical composition (see Music). Padre Martini was a zealous and indefatigable collector of -musical literature, and is alleged to have been the pessessor of the most extensive musical library ever formed. After a lingering illness he died at Bologna on August 4, 1784. His Elogio was published by Pietro della Valle at Bologua in the same year.
The greater number of Martini's sacred compositions remain unprinted. The Liceo of Bologna possesses the MSS. of two oratorios; and a requicm, with some other pieces of church music, are now in Vienna. Litanix atque antiphond finales $B$. V. Narix were published at Bologna in 1734, as also twe tve Sonate drintruvolatura; six Sonate per l'organo ed il cembalo in 1747 ; and Duelli da Camera in 1763. Martini's.most important works are his Storia della Nusica (Bologna, 1757-81) and his Saygio di Contrapunto (Bologna, 1774-75). The former, of which the three published volumes relate wholly to ancient music, and thus represent a mere fragment of the guthor's vast plan, exhibits immensc reading and industry, but it is written in a dry and unaturactive style, and is overloaded with matter which cannot be regarded as historical. At the beginning and end of ench chayter occur puzzle-canons, sonne of which are exceedingly difficult ; Cherubini solved the whole of them. The Saggio is a very learned and raluable work, containing an important collection of examples from the best masters of the old Italian and Spanish schools, with excellent explanatory notes. It treats chiefly of the tonalities of the plain chant, and of counterpoints constructed upon them. Besides being the anthor of several controversial works, Martini drew up a Dietionary of Ancient Mhusical Tcmns, wbich oppeared in the second volume of G. B. Doni's Works; be also published a treatise on The Theory of Numbers as applicd to Mhusic.

MARTINI, Simone (1283-1344), called also Simone di Martino, and more commonly, but not correctly, Simon Memmi, ${ }^{1}$ was born in 1283. He followed the manner of painting proper to his native Siena, as improved by Duccio, which is essentially different from the style of Giotto and his school, and the idea that Simone was himself a pupil of Giotto is therefore wide of the mark. The Sienese style is less natural, dignified, and reserved than the. Florentinc ; it has less unity of impression, has more tendency to pietism, and is marked by exaggerations which are partly related to the obsolescent Byzantine manner, and partly seem to forebode certain peculiarities of the fully developed art which we find prevalent in Michelangelo. Simone, ia especial, tended to an excessive and rather affected tenderness in his female figures; he was more successful in singlo figures and in portraits than in large compositions of incidont. He finished with scrupulous minuteness, and was claborato in decorations of patterning, gilding, \&c.

The first known fresco of Simone is the vast one which he executed in tho hall of the Palazzo Pubblico in Siena, the Madonna Enthroned, with the Infant, and a number of angels and saints; its date is 1315, at which early period of his life he was already an artist of repute throughout Italy. In S. Lorenzo Maggioro of Naples he painted a life-sized picture of King loobert erowned hy his brother,

[^222]Lewis, bishop of Toulouso ; this also is extant, but much damaged. In 1320 he painted for the high altar of the church of St Catharine in Pisa the Virgin and Child between six saints; above are archangels, apostles, and other figures. The compartmented portions of this sork are now dispersed, some of them being in the academy of Siena. Towards 1321 he executed for the ${ }^{\circ}$ church of St Dominic in Orvicto a picture of the bishop of Savona kneeling before the Madonna attended by saints, now in the Fabricceria of the cathedral. Ceriain frescos in Assisi in the clapel of St Martin, representing the life of that saint, ascribed by Vasari to Puccio Capanna, are now, upon strong internal evidence, assigned to Simone. He painted alsn, in the south transept of the lower church of the same edifice, figures of the Virgin and cight saints. In 1328 he produced for the Sala del Consilio in Siena a work of a very different character-a striking equestrian portrait of the victorions general Guidoriccio Fogliani de' Ricci.

Simone had married in 1324 Gioranna, the dulughter of Memmo (Guglielmo) di Filippuccio. Her brother, named Lippo Nemmi, was also a painter, and was frequently associated with Simone in his work; and this is the only reason why Simone has come down to us with the family. nams Memmi. They painted together in 1333 the Annunciation which is now in the Ufifizi gallery. Simone kept a bottega (or shop), undertaking any ornamental work commissioned of him, and his gains were large. In 1339 he settled at the papal court in Avignon, where ho made the acquaintance of Petrarch and Laura; and he painted for the poot a portrait of his lady, which has not come down to us; it gave occasion for two of Petrarch's sonnets, in which Simone is highly eulogized. He also illuminated for the noet a copy of the Coinment of Servius upon Virgil, now prescrved in the Ambrosian library of Milan. He was largely employed in the decorations of the papal buildings in Avignon, and several of his works still remain -in the cathedral, in the hall of the consistory, and, in the two chapels of the palace, the stories of the Baptist, and of Stephen and other saints. One of his latest productions (1342) is the picture of Christ Found by bis Parents in the Temple, now in the Liverpool Gallery. Simone died in Avignon in July 1344.

From this account of Simione's principal works it will be perceived that those with which his name and fame are most generally identified are no longer regarded as his. These are the compositions, in the Campo Santo of Pisa, from the logend of S. Ranieri, and the Assumption of the Virgin; and the great frescos in the Cappellone degli Spagnuoli, in S. Maria Novella, Florence, representing the Triumph of Religion through the work of the Dominican order, \&c. Some of the works in question can be proved to have been done many years after Simone's death, and the others belong to a different school and style of art.

MARTINIQUE, one of the West India islands, belonging to the clain of the Lesecr Antilles, and constituting a Frencla coluny, lies 33 niles south of Dominica and 22 north of Saint Lucia, between $14^{\circ} 23^{\prime}$ and $14^{\circ}$ $52^{\prime}$ N. lat. and $63^{\circ} 6^{\prime}$ and $63^{\circ} 31^{\prime}$ W. long. The greatest length is 43 miles, the mean width 19 ; and the surface comprises 244,090 acres, or 380 square miles. A clustcr of voleanic mountains in the north, a similar group in the south, and a line of lower heights between them, form the backlone of the island, which culminates in the north-west in Mont Pclća ( 4430 fect), and has altngether a much more irregular and strongly marked relicf than it presents to tho eye,- the decp ravincs and precipitous escarpments with which it abounds being reduced in appearance to gentle undulations by the drapery of the forcsts. Of the numerous strcams which traverse the few miles of country betweca the watershed and the sea, about seventy or cighty
are of considerable size, ant in the rainy scason become decp and too often destructive torrents. The esst coast of the island, exposed to the full sweep of the Atlantic, is a succession of inlets, headlands, islands, and rocks; the south coast is much more regalar, but bold and steep; and the west alonc prescuts, in the bay of Fort de France, a stretch of mangrove swamp. Of the total area, about 83,990 acres are under cultivation, 83,843 occupicd by forcst and savanna, and 68,837 by fallow. On an average, according to the returas for 1874-78 iaclusive, 47,440 acres are devoted to the sugar crop, 1290 to coffee, 640 to cotton, and 1660 to cocoa. The mean annual temperature is $81^{\circ}$ in the coast region,-the monthly mean for June being $83^{\circ}$, and that of January $77^{\circ}$. Of the annual rainfall of 87 inches, August has the heaviest stare ( 11.3 inches), though the raioy seasou extends from June to October; March, the lowest, has $3 \cdot 7$. Martinique enjoys a remarkable immunity from hurricanes; half e rentury nay pass without scrions disaster from such a visitation. In 1878 there were 162,861 inhabitants ( 77,782 males, 85,079 females) in the is!and, which is thus nearly as densely peopled as Belgium. Since 1848 the increase amounts to about 42,800 . Of the twenty-five communes, fourteen have more than 5000 inhabitants; the largest are Saint Pierre (23,909), Fort de France (15,414), Lamentin (13,409), and François ( 10,297 ). The great mass of the population consists of Creole negrocs and half-castes of various grades, rangiug from the "Saccatra," who has hardly retained any trace of Caucasian blood, to the socalled "Sangmêlé," with his mere suspicion of negro commixture. Marriage is frequently ignored, aud of the births no less than 66 per cent. are illegitimate.

Fort de France, the chief town, a place of about 11,000 inhabitants, stands on a bay on the west coast. Since the earthquake of 1839 nearly all the houses are of wood, and have only one story; the streets are laid out with great regularity. An abuadant supply of water was introduced in 1856. St Pierre, the commercial centre of the island, with about 20,000 inhabitants, lies farther north on the same coast. It coasists of a lower and an upper tewn,-the one close and unhealthy, and the other for the most part well-rentilated and pleasant
Martinique, also called Madiana or Mantinino, was discovered by Columbus 15 th June 1502. It was at tbat time inhabited by Caribs (Galibis) who had expelled or incorporated an older stock. In 1635 a Norman captaiu, D'Enambut, from St Christopher's, took posscssion of the island, and in 1637 his nephew Duparquet became captain-general of the colony, now numbering seveu hundred meu. $\ln 1654$ welcome was given to three hundred Jerrs expelled from Brazil, and by 1658 there were at least fire thousand people exclusive of the Caribs, who wero soon after exterminated. Purchased by the French Gcvernment from Duparquet's children for 120,000 -livres, Dartinique was assigned to the West India Company, but in 1674 it became part of the royal domaio. The Thabitants' (Freach landholders) at frst deroted themselves to the cultivation of cotton and tobacco; but in 1650 sugar plantations were commenced, and in 1726 the coffee plant was introduced by Desclieux, who, when water ran short durins his voyage to the island, sharel his scanty allorrance with his seedlingg. Slave labour having heen introluced, there were 72,000 blacks in the island by 1730. Martinique has several times been occupied by the English. Captured by Rodney in 1762, it was next year restored to the French ; but after the con!uest by Sir John Jervis and Sir Charles Grey in 1794 it was retained for cight years; and, seized again io 1S09, it was not snrrendered till 1814.
See Renonard. Stat. de la Jfartinizue, 1822: Silaney Daney, Hist. de la Mar-
 Pardon, La Martinique, 1877 ; H. Rej, Elude sur la col. de la Martiniquan 18ss.

MARTINSEURG, a town of the United States, the capital of Berkeley cuunty, West Virginia, lics on a plateau above the Tuscarora Creck, in the Shenandoah valley; 80 miles west of Washington. A station on the Baltimore and Ohio Railroad, and a terminus of the Cuniberland Valley Railway, Martiusburg is the seat of extensive machineshops belonging to the former company, which were sacked
by the Confederates in 1861. The population. 4568 in 1870 , was 6335 in 1880.

MartiUS, Carl Friedrica Philipr von (17942 1868), a well-known Germsn botanist and traveller in Brazil. He studied in the university of Erlangen, and on graduating M.D. in 1814 published as his thesis a critical catalague of plants in the botanic garden of the unirersity. He afterwards devoted himseli to botanical study, and in 1817 he and Spix were sent to Brazil by the king of Bavaria. They travelled from Rio Janciro through several of the southern and castern provinces of Brazil, and ascended the river Amazon to Tabatinga, as well as snme of its larger aflueats. In 1820 they returned to Europo with rich collections of plants and animals, as aiso with stores of information on the geography, ethnology, and products of Brazil. In 1820 he was appointed conservator of the betanic garden at Munich, and in 1826 professor of botany in the university there, and held both offices till 1854, when he resigned thera.

While a student Martius had published papers in various sciextific periodicals, and he continued to do so during his whole life. After his return from Brazil he devoted his chief attention te the flora of that country, and in addition to numerous short papers he publishod the Nova Gencra et Spccics Plantarum Brasilicnsium (1823-32, 3 vols.) and Icones selectas Plantarum Cryptogamicarum Brasiliensium (1827), both works being finely illustrated. An account of his travels in Brazil appeared in 3 vols. 4to, 1823-31, with an atlas of plates, and is regarded as one of the most valuable works of travel of the present century. Probahly the work by which lie is best known is his Historia Palnarum (1823-50) in 3 large folio volumes, of which one describes the pahms discovered by himself in Brazil. In 1840 he began the F'lora Brasiluensss with the assistance of the most distinguished Enropean botanists, who undertook monographs of the various orders. Latterly Dr Eichler was associated with him in the editorship of thas work, which is still going on, though over eighty parts have appeared. He also edited several works on the zoological collections made in Brazil by Spix, after the death of the latter in 1826. On the outbreak of notato discase in Europe he investigated the state of the diseased plants, and in 1812 published his observations. He also published independent works and short papers on tho aborigines of Brazal, on their civil and social condition, on their past and probable future, on their diseases and medicines, and on the languages of the various tribes, especially the Tupi.

MARTOS, a town of Spain, in the province of Jaen, is situated on the slope of a steep hill, which is surmounted by a ruined castle, 16 miles west-south-west of Jaen. The strects are steep, narrow, crooked, and ill-paved; the public buildings are of the usual order, and present no feature calling for special remark. The surrounding district is specially prodnctive of oil, and in the neighbourhoud of the town are two sulphurous springs much resorterl to in cases of cutaneous clisease. Population in $1877,14,654$.
Martos perhaps stauds on or near the site of the Tucci of Ptolcony. By Ferdinand IHI. it was taken from the Moors in 1225, and given to the knights of Calatrava ; it was there that the hrothers Carvajal, commanders of the order, were in 1410 execited by command of Ferdinand IV. after lie had been "sumnioned" by them to a meeting at the Divine judgment scat. O'Donnell here gained a victory over the royalist troops in 1854.

MIARTYN, Henry (1781-1812), a celebrated missionary, was born on February 18, 17Sl, at Truro, Cornwall. He came of a mining family, and his father John Martyu wàs a "captain" or mine-agent at Gwennap. He received his education at the grammar school of his native town under the famous Dr Carder, entered St John's Collegc, Cambridge, in the autumn of 1797, and in 1801, a month before he was twenty years old, was declared senior wrangler, obtaining soon after the first Smith's prize. In the following jear he was chosen a fellow of his college. In the autumn of 1801 he was introduced to Charles Simenn, whose ardeat disciple be soon becamc. It was his intention to devute himself to the bar, but in the October term of 1502 he chanced to hear Simeon speaking of the vast amount of good dene in India hy a single missionary, William Carey, sone time
afterwards he read the life of the devoted Davirl Brainerd, the enthusiastic apustle of the Indiaus of North Ancerica, and, "filled with a holy cumbation," resolved to devote his energies to the work of a Christian missionary. On Ottober 22, 1303, he was ordained deacon at Ely, and afteravards priest, and scrved as Simeon's curate at the 'church of Holy Trinity, takiner charge of the neighbouring parish of Lolworth. Still full of the thought of working in heathen lands, he desionned to volunteer for the Church Ifissionary Society, but a sudden disaster in Cornwall deprived him and his unmarried sister of all the frovision their father had marle for them, and reudered it necessary that he should obtain a salary that would support hor as well as himself. He accordingly applied for, and wotained, a chaplaincy under the East India Company. He left for India on July $5,1805$.

For some mouths he was chiefly loeated at Aldeen, near Scrampore ; in October 1806 he procceded to Dinapore, where he laboured for a time amongst the Europeans, and soon found himself able to conduct divine worship among the natires in their own vernacular language, and to cistablish schools for their instruction. At the end of April 1809 he was ordered up to Ciwnpore, where he made his first aftempt to preach to the heathen in his own componad, and had to endure frequent interruptions "amidst groans, hissings, curses, blasphemics, and threatenings" ; nevertheless he pursued his work among the hundreds who crowded round him, consoling himself that, if he should never see a native convert, God "might design by his patience and cuntinuance in the work to encourage other missionaries." Meanwhide the great business of his life was being diligently carried on. Day after day he occupied himself with learning ner languages, and had already, during his residence at Dinapore, been engaged in revisiog the sheets of his Hendustani version of the New Testament. He now translated the whole of the New Testament into Hindi also, and into Persian twice over. He translated the I'salms into Persian, the Gospels into Judro-Persic, and the prayer book into Hindustani, in spite of the constant interruptions caused by excessive weakness of body, and "the pride, 1 rdantry, and fury of his chief moonshee Sabat." Ordered by the doctors to take a see voyage for his health, be got leave to go tu Pẹrsia and correct his Persian New Testament, whence he made uip his mind to go on to Arabia, and there compose an Arabic version. Accordingly, on October 1, 1810, having scen his work at Cawnpore crowned, on the previous day, by the opening of a church, he left for Calcutta, whence he departed on January 7, 1811, for Bombay, which be reached on his thirfieth birthday. From Bombay he set out for Bushire, bearing letters from Malcolm to men of position there, as also at Shiraz and Ispahan. After a killing journey frum the coast he reached Sliraz, and was soon planged into discussiou with the disputants of all elasses, "Sufi, Muhammedan, Jew, and Jewish-Mohammedan, cyen Armenian, all anxiuas to test their powers of argument with the first Euglish priest who had visited them." Having made an unsuccessful journey to Tebriz to present the shah with his translation of the New Testament, he was seized with a fever, which so thoroughly prostrated his energies that, after a temporary recovery, he found it nesessary to seck a clange of climate. On September 12,1812, he started with two Armenian servants, crossed the Araxes, rode frous Tebriz to Erivan, from Erivan to Kars, froun Kars to Erzeroum, from Erzeroum to Chillik, urged on from place to place by his erucl Tartar guide, and, though tho plague was ragiug at Tokat, he was compelled to stop there from utter prostratious eaused by fever. On the Gth of October he died, either from the plagne or from the weakness of the disorders which hariosed him from day to day
lis lis vanable labours as a translator Mintgu hat placul purtions of the Seriptures within the reach of all who could ivat over ont-forth of the habitalde globe, and during his brief life he earnet for limself a foremost place among modern missionaries. Mamulay's lines, written in 1S18, testify to the implession mado by lis enthusiastic cmreer of self.levolius.
Sece Surgent, Memoir of the Vicr. Hemry IRartyn, B.D., 1819 ; Wilbertince, Journels and Letters of the Rer. Hchry Mutlyn, 1837; Kaye, Chrislicnity in Indie, 1859, longe, Pionecrs and Founders, 18it; and The Cherth Quaiterly fur Oetolier 1881.

MAliTYIIOLOGY, a cataloguc or list of martyrs, arranged according to the succession of their annivercaries, and sometimes meluding an account of their lives and sufferings. The curresponding word in the Greek Church is Menologion or Analogion; from the Menalogia the Signcticerice are compiled. The custom of paying honour to the memory of those who had "witnessed the good confessiun " in perilous times established itself very early in tho Christian church, and one particular manner of commemoration was formally recegnized by at least one ecclesiastical synod before the end of the 4th century ; in the 47 th canon of the third synod of Carthage (397 A.D.) it is decreed "liceat lecri Passiones Martyrum quum anniversarii eorum dies celebrantur." Apart from the still extant Depositio Matyrum contained in the work of the chrono. grapher of 354 , editer in 1850 by $1 l$ mmsen, the oldest "martyrolngics" of which anything is kuown are the «ipxaíwv $\mu$ артирíwv ovvay $\omega \gamma \dot{\gamma}$, or collection of records of past persecutions, to which Eusebius more than once alludes as having been made by himself, and the treatise On the Martyrs of Palestine, by the same author, the full text of which has been preserved in an ancient Syriac version edited by Cureton. Nest to the general martyrology of Eusebius, in chronological order, it has been usual to place the calendar of saints days referred to in a letter, attributed to Jerome, which purports to be written in answer to bishops Chromatius and Heliodorus, who had asked him to search the arehives of Eusebius with the view of emabling then to observe the saints' days with more regularity. This epistle is now admitted to be spurious; ultimately, however, a so-called Martyrologium Hiesonymianum cane into existence, but it is not so much a siugle martyrology as a rude patchwork derived from many ancient church calendars. In its present form it is a meagre list of names and places, but may be said to lie at the foundation of all subsequent Western calendars. Almost contemporary with its last recension is what is known as the Parmw Ifartyrologizm Romanzm, \{ound by Ado of Vienne about 850 ; in it many of the dates are changed, and for the first time days are assigned to the chief characters of Scripture T'o nearly the same date must be assigned the independeut compilation of Bede, which has reached us, however, only as cularged by subsequent editors. The 9th century was very fertile in martyrologies, among which may be mentioned that of Florus, subdeacou of Lyons (c. 830), whe was the first editor of Bede, that of Hrabauus Maurus, in attempted further ioprovement on Bede and Florus, that of Ado, an cnlargement of Florus, but based on the I'ervena Ifartyrologium Romanum, that of Usuard of Paris, the epitomizer of Ado, anch that of Notker of St Gall, based on Ado and IIrabanus. The Mfertyrologium Romanum was published by Paronius at the command of Popo Ciregory N1II. in 1586 ; the culargerl edition by Rusweyd appeared at Antwerp in 1613. The Cistercian Martyrology appeared at liome in 1733 and 1748. The best-knorn Greek irenolonion is that prepared in the 9 th century by command of the emperor Basilius Macedo ; it was edited in 1727 by Cardital Hannibal Urbini. An aucient Syriac martyrology, entitled "the names of our lurds the martyry and victors, with their days on which they won crowns,' written in 412 , has been editcd, with an English transla tion, by l'vofessor W. Wright, in the Jummal of Diacred

Jiterature (1860). See Catal. Syr. MSS. Dr. Mus., ii. 632.

MarulLuS, Michael Tarchamiota (ob. 1500), one of the most brilliant scholars of the gollen age of Florentine learning, was born at Constantinople, and at an early age, ou the fall of his mative city, was brought to Ancona in Italy, where he became the friend and pupil of Contanus, with whom his name is associated by Ariosto (Orl. Fur., xaxrii. S). He was a soldier and a poct, and in the latter capacity published epigrams and hymni naturales. ${ }^{1}$ Marullus took no part in the work of translation, then so favourite an esercise of scholars, but he was understood to be planning some great work when he perished, 10th April 1500 , in the river Cécina near Vulterra. Of other incidents in his life his feud with Politian and his marriage to the beautiful and learned Aleandra Scala, whom he praises in his poems, may be noticed. The name of Marullus is now perhaps most familiar from the brilliant emendations on Lucretius which he left unpublished, and which vere used for the Juntine edition. Sce especially Munro's Lucretiues, 2d ed, p. Ges.

MarUn (in Dutch Marwm), Martin Van (17501837), a distinguished Dutch man of science, born nt Delft. Though his fame rests chiefly on his electrical researches, he took a prominent position in many departments of natural science. He graduated at Groningen in medicine and philosophy, and his numerous papers take up subjects connected with botany, chemistry, hygiene, natural history. and technology, as well ns with his more special department, natural philosophy. In early life his father, who was n skilled mathematician, gave him a thorough tra.cinc in the oue really indispensable science. 'After his doctorate $\mathrm{h}_{\mathrm{o}}$ for sume time attached himself to the celebrated botams: Camper. He then commenced medical practice in Haarlem, but seems to have been too busy with original work to pay proper attention to his humerous patients. He devoted himself mainly to lecturing on physical subjects; and, after a brief interval, his extensive knowledge and methodical habits led to his being made secretary of the scientific society of his adopted city. For this post he was sjecially fitted; and, under his active guidance, the society was advanced to the position of one of the most noted in Eurnpe. He soon became professor of physics, and was entrusted with the care of the celebrated Teyler collection (now the Masée Teyler). He caused to be constructed for this, by Cuthbertson, the gigantic electrical machine which, for a long period, was the most powerful in the world. He also effected great improvements in air-pumps and uther pneumatic machines. Though his name is not associated with any discovery of the very first order, the number and rariety of his researches (especially in connection with electricity) are remarkable. So also is the practical mode in which he regarded his results, always when at all possible from tha technological point of view. The work by which he is best known is his Treatise on Electricity (Groningen, 1776 ), in which all that hnd then heen discovered in that science was carefully methodized. Van Marum was a man of quict but active disposition, and of simple habits and tastes, which probabiy conduced in $n o$ small measure to the extreme longth and usefulaess of his life.

MARUTSE-MABUNDA, a kingdom in Soutli Africa, stretching from $18^{\circ}$ to $14^{\circ} 25^{\circ} \mathrm{S}$. lat. and from about $22^{\circ}$ to $28^{\circ} 25^{\circ}$ E. long., with an area estimated at 123,590 square miles. It all belongs to the basin of the Zambesi, and by far the greater proportion lies to the north of that

[^223]river, which forms its suth-eastern boundary from the mouth of the Linyanti to the mouth of the Kafne, $n$ distance of about 350 miles. The kingetion thus includes the main part of the territory furnerly subject to the Makululo cmpive, which broke up on the death of Sekeletu in 1864. Of country and people Dr llolub gives a vary favourable report. Abundance of water, a fertile soil, and a genial clinate render casy the work both of husbaudry and cattle-breeding. 'The chief crop is Kaffre corn, red and white; the hemp-like kleen-korn or rasa, maize, natermelous, sugar-cane, ground-nuts, two kinds of beans, and manza are also cultivated. "Scpitember and October are the usual months for sowing; but goords, legumiuous plants, and tobacco are sown any time up to December, the growth of the two latter crops being so rapid that they often ripen by Jaunary, whilst Kaffre corn and maize are ready by February." Upwards of fifty kinds of wild fruit are used by the people ns food. Salt has to be imported, and is consequently within the reach only of the wealthier classes. Besides the two great tribes which give their name to the kingdom, there are n large number of vassal tribes of numerical importance-Masupias, Matongas, Makalakas-all considered in the light of slares by the rulers. The prevailing language is the Sesuto of the nearly extirpated Makololos. See Holub, Seven l"ars in South Africa, 1881.

MARVELL, ANdREw (1621-1678), was born ou March 31, 1621, at the parsonage of Winestead in Holderness. He was educated at Hull grammar school by his father, who had obtained high pusition in that town, until his admission to Trinity College, Cambridge, on December 14, 1633. There he became ensnared by the Jesuits, who at that time were keen to secure youthe of promise at the universities, and by them, probably in the beginning of 1638, was taken to London; but he was recaptured by his father, and again received into 'frinity on April 13 of the same year. He appears to have contributed to the Muso Cantabrigiensis in 1637; and beyond this nothing is known or even conjectured as to his college career. In 1640 his father was drowned under remarkable circumstances, an event which appears to have entirely unsettied him, for by an entry in the College Conclusion book, dated September 24, 1641, we find that he was ndjudged by the seniority to have forfeited the benefits of the college. He used his liberty during the next four years to travel through the Continent, remaining abroad until 1646. It has been assumed that during this journey Marvell became acquainted with Milton, but a comparison of dates shows that this is an error. His first employment was in 1650, as tutor to Lord Fairfax's daughter. During his stay at Nunappleton were written the Poems of the Country and some of the Poems of Imagination and Love. In $165^{2}$ he was in communication with Milton, to whom he had probably been introduced by Fairfax, and was by him sent on February 21 to President Bradshaw with a letter urging his nppointment as assistant Latin secretary to himself. The post was, however, otherwise filled up, and he was provided instcad with another tutorship, that of Cromwell's nephem; Mr Dutton. This has been wrongly stated by several writers as not occurring until six jeare later. In 1657 the secretaryship again fell vocant, and was then conferred upon him, but he held office for a year only, and no recurd of his work appears in the calendas of state papers. Marvell accepted the Commonweaith as : practical fact, and the rule of Cromwell as the only guaranter for government at once tolcrant and strong. But he neve lost his belief in the monarchical theory. His line "'Ti godlike good to sase a falling king" is well known; ans throughout his most vehement invective against corruptio there is a great tenderness and desire to spare the king

The ussistauk secretaryship opened the way to public life, snd in 1658 diarvell was elected member for Kiagston-apon-Hull in Richard Cromwell's parliament. From 2663 to 1605 he aitel as secretary to Lord Carlisle's embassy to Mnscory, Sweden, and Denmark; and this is the only official post he over filled duriag the reign of Charles. With the exception of this and of shorter unexplained intervals of travel, Marvell was constant in his parliamentary; attendance to the day of his death. He seldom spoze in the House, some five or six times in all, but his parliamentary influenco is amply established by other evidence; and his correspondence with his constituents, from 1660 to 1678 , forms a source of information all the more valuable because by a resolution passed at the Restoration the publication of the proceedings of the House witheut leave was forbidden. He made it a point of duty to write at each post-that is, avery two or three daysboth on local interests and on all matters of public interest." The discrect reserve of thess letters, natural at a time when the post-office was a favourite source of information to the Govornment, contrasts curionsly with the freedom of tho few privato letters which state opinions as well as facts Marrell's constituents, in their turn, were net unmiadful of their member. He makes frequent references to their presents, usually of Hull ale and of salmon, and he regularly drew from them the rages of a member, six and eightpence a day during session.

During these years Marvell wrote a good deal of verse, chiefly satire, often very coarse, but always vigorous and full of an honest hatred at corruption. He chose verse merely as bcing the usual rehicle of satire, and cared little about form. "He plucked a cudgell frem the nearest hedgerow, careless if it becama fuel after it had served his turn." It was very different with his prose satires. His peculiar talent was first displayed in the mock King's Speech, issued in 1675. This is written in a vien of genial banter, perhaps the greatest tribute to the iafluence which the bonhomie of Charles axercised even over such men as Marvell: But his tene acon changed, and The Growth of Popery and Arbitrary Power, published in the year of his death, is a grave indictment of the conduct of ministere of the crown, and, by implication, of Charles bimself, since the lestoration. So shrewdly did this strike the conscience of the kiug that a proclamation, of which Marvell takes laughing notice, offered a large reward for the discovery of the author.

As a political pamphleteer Marvell holds a high place; as a satirist he stands atill higher. Tolerance in religion was his creed, and this creed had been lately attacked by a clergyman seeking promotion, Dr Parker, afterwards bishop of Oxford, who asserted in their most extravagant form the claims of the civil nagistrate over the consciences of subjects in matters of external religion. Marvell's reply, The Rehearsal Transprosed, is a masterpiece of prolonged banter. It contains passages of lofty indignation, hearty langhter, coarse vituperation; but the prevailing tone is that of grave and ironical banter. The effect, as witnessed to by Anthony Wood, Burnet, and other contemporary writers, was to set tho whola puiblic "from the king to the tradeaman" in a laugh against Parker. This stung him to an ill-tempered rejoinder, affording Marvell a second opportunity, of which he availed himself so well that no more was heard from his opponent; and Swift was shortly afterwards able to say that people remembered Parker's book only by Marvell's answer. Marvell's accond controversial work, $3 / r$ Smirke, or the Divine in Mrode, was written in the same strain and under similar circumstances, and obtaine 1 a success fully equal to that of the Rehearsa! T'iansyrosed. It was a defence of Croft, bishop of Lereford. agniust a violent altack loy Dr Turner,
the High Church master of St Joinn'3, Cambridge. Prefixed to it was a "Ehort historical essay conceraing general conncils," intended to show the folly of religious impositions. Scveral other writings, often ascribed to him, more especially the Parlianenti Anglix Declaratio, A Sensible Question and an Usefull Ansver, and the Flagellum Parliamentarium, were certainly not his.

As a humorist, then, and as a great "parliament man," no name is of more interest to a student of the reign of Charlos II, than that of Marvell. Dut other qualitien entitle lim te still higher respect. To a personal clarm so great, to wit so brilliant, to learning so extensive, and to sympathies 80 wide that he was at the same time dear to John Milton and courted by Charles II., le joined the rarest quality of that evil time, a robust and intrepid rectitude. In the very heyday of political infamy, at a time when be eays passionately "we are all venal cowards except some few," and whei opposition to the court was likely to be resented by personal violence of the brutalest kind, he, a ncedy man, obliged to accept wages from his constituents, tempted in winning phrases from royal lips by his old schoolfellow Danby, and with.nothing to gain from the court by purity, kept his political virtue unspottod and unsuspected. The meaning of this fact can barely be fclt by any one who has not read with minute care the annals of that time. When the grossest forms of self. hiddulgence were the ordinary babits of town life, Marvell was a temperate man, in spite of Aubrey'a witness that he "kept bottles of wine at his lodgings and would drink liberally by himself to refresk his spirits and exalt his muse." Lastly, in the worst times of parliamentary violence, he stood forward throughout his career es the clampion of moderate and tolerant measures. His person corresponcied singularly with his miud, so far as can be judged from the portrait by Hannemann and from the ferv words of John Aubrey-" He was of a middling stature, pretty strong set, roundish faced, cherry checked, hazel eyed, brown haired. In his converaation he mas modest and of very few words."

He died suddenly in 1678 on his retnrn from Hull to take his seat in August. That ho was poisoned, and at the instigation of the court, has been roundly asserted, naturally enough, though without the slightest foundation The matter has been tinally set at rest by a very interestiue letter by Dr Samuel Gee in the Athenæum for March 7, 1874.

The following works may be consulted on Marvell :-Lifc and Works-(1) by Thomas Cooke, 2 vols,, 1726 (there is a reprint by Thonas Davies in 1772) ; (2) by Captain Thomson, 3 pols. 4 to, 1776 ; (3) by John Dove, 1832 ; (4) by Edwin Paxton Hood, 1853; and essays by Hartley Coleridge in Lives of the Northcrn Worthies Heary liogers in his collected Essays, and an anonymous author in tho Cornhill Mragazine for July 1869, and in the Saturday Reviero for April 26, 1873. All thesc authorities are mentioned, collated, and corrected in the very important and laborions work of $3 t r$ Grosart, whose book, in spite of its excessivo mannerism and one or two curious inaccuracies, is indispensable to the student of Marvell's correspondence and carcer.
(0. A.)

## MARTVAR. See Jodhpur.

MARY ${ }^{1}$ (Mapia, Mapıáp, the motber of Jesus, at the time when the gospel history begias, had her home in
${ }^{1}$ The name (Heb. פְרץים), that of the sister of Moses and Aaron, is of uncertain etymology; many interpretations have been suggested, including "stella maris," which, though it has athined considerable eurrency through Jerome (the Oromasticon), may be at oneo dismissed. It seems to have been very common among the Jews in New Testament times ; besides the subject of the present notico there are mentioned (1) "Mary (the wife) of Clopas," who was perhaps the mother of James "the little" ( $\delta$ uıpós) and of Joses (see wol. xiii. pp. 552, 553) ; (2) Mary Magdalene, i.e., of Magdala ; (3) Mary of Bethany, sister of Marthas and Lazarus; (1) Mary the mother of Mark (see Mank) ;and (5) Mary, un otherwise unknown bencfactiess of tho aprostle l'aul (Rom. xvi. 6).

Galilee, at the village of Nazareth. Of her parcutage 1othing is recorded in any extant listorical document of be 1st century, for the genealogy in Luke iii. (ff. i. 27) is manifestly that of Joseph. In carly life she became the wife of Joseris (q.u.) and also the mother of our Lerd (sce JEsus ${ }^{1}$; that she nfterwards had other children is a n. ural inference from Matt. i. 95 , which the erangelists, 1.10 frequently allude to "the brethren of the Lord," are at no pains to obsiate. The ferv incidents mentioned in Sicriture regarding ber show that she fullowed our Lurd to the very close of $H$ is earthly career with unfailing rootherliness, but the "Magnificat" assigned to ber in L. ake i. is the only passage which would distinctly ituply (: : her part a liigh prophetic appreciation of His divine t..ission. She was present at the crucifixion, where she wis commended by Jesus to the care of the apostle John, (John xix 25, 27), Juseph laving apparently died before this time. (It would be idle to inquire why "the brethren of the Lord," who, whatever their relationship to Mary, must at least have been nearer than John, were ighured in this arrangenent.) Mary is mentioned in Acts i. 14 as having bcen among those who continued in prayer along with the apostles at Jerusalem during the interval between the ascension and pentecost. There is no allusion in the New Testament to the time or place of ber death
The subsequent growth of ecclesiastical tradition and belief regarding Mary will be traced most conseniently nnder the separate beads of (1) her perpetual virginity, (2) ber absolute sidelessness, (3) her peculiar relation to the Godbead, which specially fits her for successful intercessiou on behalf of mankind.
Her Perpetual Virginity. - This doctrine, as has already bsen pointed out, was, to say the least, of no importance in the ejes of the evangelists, and so far as extant writings go there is no evidence of its having been anywhere tanght within the pale of the catholic church of the first three ceuturies. On the contrary, to Tertullian the fact of Mary's marriage after the birth of Christ is a useful argument for the reality of the Incaration against Gnostic notions, and Origen relies upon the references to the Lord's brethren as disproving the Docetisu with which be had to contend. The ácurap $\theta$ ervia, thongh very ancient, is in reality a doctrine of nea-catholic origin, and first occurs in a work proscribed by the earliest papal Index Librorum Prohibitorum (attributed to Gelasius) as heretical, -the so-called Protevangelium Jacoii, written, it is generally admitted, within the 2d century. According to this very carly source, which seems to have formed the basis of the later Liber de Infantia Marix et Christi Sulvatoris and Evangelium de Saticitate Marix, the name of Jary's father was Joachim (in the Liber de Infantia a shepherd of the tribe of Judah, living in Jerusalem) ; he had leng been married to Anna her mother, whose continued childelessness bad become a cause of much bumiliation and sorrow to them both. The birth of a daughter was at last angelically predicted to each parent separately. From her third to her twelfth year "Mary was in the temple as if she were a dore that dwelt there, and she recoived food from the hand of an angel." When she became of nubile age a guardian was sought for her by the priesta among the widowers of Israel " lest she should defile the sanctuary of the Lord "; and Joseph, an elderly man with a family, was indicated for this charge by a miraculous token. Some tine afterwards the annunciation took place; when the

[^224]Virgin's pregnancy was discovered, Joseph and she were brought before the high priest, and, though asserting their innecence in all sinecrity, were acquitted ouly after they had been tricd with "the watcr of the ordeal of the Lard" (Numb. v. 11). Numerons details regarding the birth at Bethlehem are then given. The perpetual physical virginity of Mary, nairely insisted upon in this apocryphon, is alluded to only with a balf belicf and a "some say" by Clemeat of Alezandria (Strom., vii. 16), but became of much importance to the leaders of the clurels in the 4 th century, as for example to Ambrose, who sces in Ezek. xliv, 1-3 a prophetic índication of so great a mysters.? Those who continued to believe that Jarg, after the miraculous birth of Jesus, had become the mother of other children by Juseph came accordingly to be spoken of as her encmics, - Antidicomarianitæ (Epiphanius) or Antidicomaritæ (Augustine), and the first-mentioned anthor devotes a whele chapter (char. 78) of his great work upon heresies to their confutation. For holding the ssme view Bonosus of Sardica was condemned by the synod of Capus in 391. To Jerome the perpetual virginity not only of Jary bat even of Jusepls appeared of so much consequence that while a young man be wrote (38\%) the long and vehement tract dgainst Helvidius, in which be was the first to broach the theory (which has since gained wide currency) that the brethrea of our Lord were children neither of Mary by her hushand, nor of Jesepli by a former narriage, but of another Mary, sister to the Virgiu and wife of Clopas or Alphesus. At last the epithet of $\dot{\alpha} \in i \quad \pi a \rho \theta$ éros mas authoritatively applied to the Virgin by the council of Chalcedon in 451 , and the doctrine implied has ever since been an undisputed point of orthodoxy both in the Eastern and in the Western church, some even seeking to hold the Anglican Church committed to it on account of the general declaration (in the Homilies) of concurrence in the decisions of the first four general councils.

Her Absolute Sintessiness. - While much of the apacryphal literature of the exrly sects in which she is repeatedly spoken of as "undefled before God" would scem tu encourage some such doctrine as this, many passages from the acknowledged fathers of the church could be cited to show that it was originally quite unknown to catholicism. Even Augustine repeatedly asserts that she was born in original $\sin$ (De Gen. ad lit., x. 18) ; and the lucus cla.ssinus regarding her possible immnnity from actual transgression, on which the subsequent doctrine of Lombardus and bis commentators was based, is simply an extremely guarded passage (De Nat. et Grat., chap. 36) in which, while cuntradicting the assertion of Pelagius that many had lived frce from sin, he wishes exception to be made in favour of "the holy Virgin Mary, of whum out of honour to the Lord I wish no question to be made where sins are treated of, 一for how do we know what mode of grace wholly to conquer sin may have been bestowed upon her who was found meet to conceive and bear Him of whom it is certain that He had no sim" A writer so late as Anselm (Cur Dezs Ilomo, ii 16) declares that "the Virgin berself whence He (Christ) was assumed was conceived in iniquity, and in sin did her mother conceire her, and with original sin was she burn, because she too sinned in Adam in whom all sinned," and the same view was expressed by Damian. The growth of the modern Roman doctrinc of the immeculate conception from the time in the 12 th century when the canons of Lyons sought to institute a festival in honour of ber "holy conception," and were remonstrated with by Bernard, bas been already sketched elsewhere (see Inmactlate Concertion).

[^225]The epithete applied to her in the Greek Church are such as ámódurtos, $\begin{gathered}\text { óvóvaros, áyia; but in the East generally no }\end{gathered}$ clear distinction is drawn between immunity from actual sin and original sinlessness.

Her Peculiar Relation to the Godlicad, vohich specially fits her for Successful Interccssion on Bchalf of Mankind.It seems probable that the epithet Oeoróxos ("Miother of God") was first applied to Mary by theologians of Alexandria towards the close of the 3 d century; but it does not occur in any geauine extant writing of that perion, unless we are to assign an early date to the apocryphal Transitus Marix, in which the word is of frequent occurrence. In the 4th century it is met with frequently, being used by Eusebius, Athanasius, Didymus, and Gregory of Nazinnzus, - the latter declaring that the man who believes not Mary to have been $\theta$ єotóкos has no part in God (Oral., li. p. 738). ${ }^{1}$ If, as is not unlikely, its use was first recommended by a desire to bring into prominence the divinity of the Incarnate Word, there can be no doubt that latterly the expression came to be valued us directly honourable to Mary lerself and as corresponding to the greatly increased esteem in which she personally was held throughout the catholic world, so that, when Nestorius and others began to dispute its propriety. in the following century, their temerity was resented, not as an attack upon the establisbed orthodor doctrine of the Nicene creed, but as threatening a more vulnerable and more tender part of the popular faith. It is sufficient in illustration of the drift of theological opinion to refer to the first sermon of Proclus, preached on a certain festival of the Virgin ( $\pi$ ourpopes $\pi$ ap $\theta$ evкй) at Constantinople about the year 430 or to that of Cyril of Alexandria delivered in the church of the Virgin Mary at the opening of the council of Ephesus in 431 . In the femer the orator speaks of "the holy Virgin and Mother of God" as "the spotless treasure-loonse of virginity, the spiritual paradise of the second Aclam; the workshop in which the two natures were welded together the one bridge between God and men "; ${ }^{2}$ in the latter she is saluted as the "mother and rirgin," "through whom ( $\delta i i^{\circ} \hat{i}_{5}$ ) the 'Trinity is glorified and worshipped, the cross of the Saviour exa? ted and bonoured, through whom hearen triumphs, the angels are made glad, devils driven forth, the tempter overeone, and the fallen creaturs raised up even to heaven." The response which sach language found in the prpular heart was sufficiently shown by the shouts of joy with which the Ephesian mob beard of the deposition of Nestorius, escorting his judges with torches and incense to their homes, and celebrating the occasion by a general illumination. The eauses which in the course of the preceding century had led to this exaltation of the Mother of God in the esteem of the catholic world are not far to seck. On the one hand the solution of the Arian controversy, however correct it may have heen thenretically, undoubtedly had the practical effect of relegating the God-man redecmer for ordinary ininds into a far away region of "remote and amful Godhead," so that the need for a medintor to deal with the very Mediator could not fail to be felt. On the other hand, it must be accepted as a fact abundantly proced by history that the religious instinets of mankind are very ready to pay worship, in grosser or more refined forms, to the idea of womanhood; at all events many of thaso who became professing Christians at the politieal fall of paranism entered the church with such instincts (derived from the

[^226]nature-religions in which they had been brotichit upl very fully developed. Probably it ought to be added that the comparative enlourlessness with which the character of Mary is presented not only in the canonical gospels but cren in the most copious of the apocrypha left greater scope for the untrammelled exercise of devont imagination thau was nossible in the case of Christ, in the circumstances of whose humiliation and in whose recorded utterances there were many things which the religious consciousness found difticulty in understanding or in adapting itself to. At all events, from the time of the council of Elluesus, to exhibit figures of the Virgin and Child became the approved expression of orthodosy, and the relationship of motherbood in which Mary had been formally declared to stand to God ${ }^{3}$ ras instinctively felt to give the fullest aud freest sanction of the chureh to that invocation of her aid which lad previously been resorted to only hesitatingly and occasionally. Previously to the council of Ephesus, indeed, the practice hard obtained complete recognition, so far as we know, in those circles only in which one or other of the numacrous redactions of the Transilns Marix lassed current. ${ }^{4}$ There we read of Mary's prayer to Christ: "Du Thou bestow Thine aid upon every man calling upon, or prayiog to, or naming the name of Thine handmaid"; to which His answer is, "Every soul that calls unon thy name shall not be ashamed, but shall find mercy and support and cnofidence both in the world that now is and in that which is to come in the presence of My Father in the heavens." But Gregory of Nazianzus also, in his panegyric upon Justina, mentions with incidental approval that in ber hour of peril she "implored Mary the Virgin to come to the aid of a virgin in her danger." ${ }^{5}$ Of the growth of the Marian cultus, alike in the East and in the West, after the decision at Ephesus it wonld be impossible to trace the history, however slightly, within the limits of the present article. Justinian in one of his laws bespeaks her advocacy for the empire, and le inseribes the high altar in the new church of St Sophia with her name. Narses looks to her for directions on the field of battle. Heraclius bears her imare on his banner. John of Damascus speaks of her as the sovereign lady to whom the whole creation has been made subject by her son. Peter Damian recog. nizes ber es the most exalted of all creatures, and apostrophizes her as deified and endowed with all power" in hearen and in earth, jet not forgetful of our race. ${ }^{6}$ In a word, popular devotion gradually dereloped the entire system of doctrine and practice which Protestant controversialists are accustomed to call by the name of Mariolatry. With referenco to this much-disputed plarase it is always to be kept in mind that the directly authoritative documents,

[^227]arike of the Greek and of the Toman Churel, distinguish formally between "latria" and "dulia," and declare that the "worship" to be paid to the mother of God must never exeeed that superlative degree of "dulia" which is vaguely described as "hyperdulia." On the other land, it must be renembered that the comparative rescrve shown by the council of Trent in its decrees, and even in its catechism, ${ }^{1}$ on this subject has not been observed by individual thcologians, and in view of the fact of the canonization of some of these (such as Liguori), - a fact guaranteeing the absence of erroneous teachiog from their writings, -it does not seem unfair to lold the Roman Church responsible for the natural iaterpretations and just inferences which may be drawn even from apparently exaggerated expressions in such works as th:e nell-known Glories of Mary and others frequently quoted in controversial literature. A good résané of recent Catholic developments of the cultus of Mary is to be found in Pusey's Eirenicon.
The following are the principal fensts of the Virgin in the orler in whel they occur in the ecelesinstical year. (i) That of the Freseutation (Prascutctio B. V. IK., tà ciobisa tins ocatórau), to commenorate the beginning of her stay in the temple, ns recosderl in the Protcraig-liums Jacoli (see above). It is believed to have originated in the East sometime in the 8th centuy, the earlest allusion to it being made by George of Nicomelia (9th century); Manuel Comnenus made it universal tor tho Eastern empire, and in the modern Greek Church it is one of the five great festivals in lonour of the Deipara. It was introduced into the Western Chureh late in the lifth centary, and, ofter haring been witbdrawn from the calenclar by Pins V., was Fectored by Sixtus V., the day observed both in East and West being November 21. It is not meltioned in the English calendar. (-2) The Feast of the Conception (Concentio B. V. M., Conceptio Inz-
 Ionian Cathalic Chimrch on December 8, and by all the Eastern churches on December 9 , has already been explained (see ImadcuLate Concertros) ; in the Greek Cliurch it only ranks as one of the madule festurals of Dlary. (3) The Feast of the Purification (Uucursus, Otcutio, Presscitatio, Fcsum SS. Simconis ct Annx,
 Cisidemas (2.2.). (4) The Feast of the Aununeiation of the
 may bc meotioned that at tho Tuledan council in 656 it was decreed that the Iestusal should be observed on December 18, in order to kecp olecr of Lent. (5 The Feast of the Visitation (Visitatio B. V. MI) mas instituted by Urban VI., promulgated in 1389 by Boniface [. X , and reappoisted by the couneil of Bascl in 1441 in commemoration of the visit Taid by Mary to Elizabeth. It is observed on July 2, alid Las been retained in the English calcndar. (6) The Fuast if the Assumption (Dormitio, Pcusatio, Trausitus, Deposilio,
 to the apocryphal story related in several forms in various documents of the 4 th centary condemned by Pope Gelasius. Their zencial purport is that as the time drew wigh for "the most blesscd Firgin " (who is also spoken of as "Holy Nary", "the queen of all the samis," "the holy spotless Mother of God") to leave the world, the apostles were miraculously assembled round her cleathbell at Betnlehers on the Lord's day, whereupon Christ descended with a multitule of angels and received her soul. After "the spotless and precious body "had been laid in the tomb, "suldenly there shone round them (the apastles) a miraculous light," and it was taken up into heaven. The first Catholic writer who relates this story is Gregory of Tours (c. 590); Epiphanius two centuries earlier had teclared that nothing was known as to the circumstances of Mary's death and burial; and one of the documents of the council of Ephesus implies a belicf that sine was buricd in that city. The Sleep of the Theotokos is observed in the Greek Church as a great festival on August 15 ; the Armenian Church olso commemoratcs it,

[^228]but the Edhopic Chanch celcbrates lier dealin and burial on two separate dajs. The earliest allusion to the existence of such a festival in the Westem Church seems to be that found in the prociculings of the synol of Salzbung in 800; it is also sroken of in the thirty-sixtle canom of the refoming symod of Mainz, hede 118 813. It was not, lowever, at that time universnl, being mentioncd as doultful in the capitularics of Chalemagne. It ought to ire olserven that the dactrine of the bodily assmuption of the Virgin into heaven, althongh cxtensively believod, and inded flowing as matural thicolomical cousequence from that of her sinfessness, has never been declared to be "de file" by the church of lome, and is still merely a "pin scutentia." (i) The Nativity of Mary
 first mentioncd in one of the homilics of Aulrew of Crete (c. 750 ), and along with the feasts of the Purification, the Anmuriation, and tho Assumption, it was appointed to be observed by the synod of Salzbarg in 800 , but secuss to have licen quite mannown at that time in the Gallican Church, and even two centuries later it was by no means general in Italy. In the Roman Church a large number* of minor lestivals in honour of the Virgin are locnlly celebrated ; and all the Saturdays of the year as well as the cutire month of May are alsa regaried as sacred to hers.
(J. S. BL.)

MARY I., queen of England (1516-1558), unplcasantly renzembered as "the Bloody Mary" on account of the religious persecutions sanctioned ajder her reign, was a woman whose private bistory demands no less compassion than her policy as queen (if indeed it was her own) merits the condemnation of a more bumane and tolerant age. She was the daughter of Henry VIII. and Catherime of Aragun, born in the earlier years of their married life, when as yet no cloud had darkened the prospect of Heary's reign. Her birth occurred at Greenwich on Monday the 18th February 1516, and she was baptized on the following Wednesday, Cardinal Wolsey standing as her godfather. She seems to have been a singularly precocions child, and is reported in July 1520, when slie was little more tlian four years of age, as entertaining somie visitors by a performance on the virgirals. When she was little over nine she was addressed in a complimentary Latin oration by commissioners sent over from Flanders on commercial matters, and replied to them in the same language " with as much assurance and facility as if she lad been twelve years old" (Gayangos, iii. pt. 1, 82). IIer father, agailist whom it cannot be said that he depreciated learning, had taken care to give her an excellent education, and was proud of her achievements. About the same time that she replied to the commissioners in Latin he was arranging that she should learn Spanish, Italian, and French. A grcat part, however, of the credit of her early education was undoubtedly due to her mother, who not only consulted the Spanish scholar Vives ufon the subject, but was herself Mary's first teacher in Latin. She was also wcll iostructed in music, and among her principal recreations as she grew up was that of playing on the virginals and lute.
It was a misfortune that she shared with many other high-horn ladies in those days that ber prospects of life were made a matter of sordid bargaioing from the first. Political alliances to be cemented by marriages between persons who were at the time mere infants-or perlaps, more shameful still, between a child and a superannuated debauchee-are among the most repulsive features of the times. Mary was little moro than two years old when she was proposed in marriage to the dauphin, son of Francis I. Three ycars afterwards the French alliance was broker. off, and she was affianced to her cousin the young emperor Charles V. by the treaty of W'indsor. No one, perhaps, scriously expected either of these arrangements to endurc ; and, though we read in grave state papers of some curious compliments ard love tokens (really the mere counters of diplomacy) professedly sent by the gill of nine to the nowerful cousin whom she had never secn, not many years passed away before Charles released himself from this engagement and made a more convenient match. In 1526 a rearrangement was made of the royal household, and it
was tnougur rignt to give Mary an establishment of her fwn along with a council on the borders of Wales, for the better government of the Marches. For some years she accordingly kept ber court at Ludlow, while new arrangements were made for the disposal of her hand in connexion with the latest turn in the tortuous game of diplomacy. Siho was now proposed as a wife, not for the dauphin as before, but for his father Francis I., who had just been redeemed from captivity at Madrid, and who was only too glad of an alliance with England to mitigate the $\begin{gathered}\text { evere }\end{gathered}$ conditions imposed on him by the emperor. Wolsey, however, on this occasion, only made use of the princess as a bait to enhance the terms of the compact, and left Francis free in the end to marry the emperor's sister.

It was during this negotiation, as Henry afterwards pretended, that the question was first raised whether Henry's own marriage with Catherine was a lawful one. The bishop of Tarbes, who was "one of the ambassadors sent over by Francis to ask the princess in marriage, had, it was said, started an objection that she might possibly be considered illegitimate on account of her mother baving been once the wife of her father's brother. The statement was a mere pretence to shield the king when the unpopularity of the divorce became apparent. It is not only extremely improbable in itself, but is proved to be untrue by the strongest evidence, for we have pretty full contemporary records of the whole negotiation. On the contrary, it is quite clear that Henry, who had already for some time conceived the project of a divorce, kept the matter a dead aecret, and was particularly anxious that the French ambassadors should not know it, while he used his daughter's hand as a bait for a new alliance. Thoalliance itself, however, was actually concluded by a treaty dated Westminster, the 30 th April 1527, in which it was provided, as regards the Princess Mary, that she should be married either to Francis himself or to his aecond son Henry, duke of Orleans. But the real object was only to lay the foundation of a perfect mutual understanding between the two kings, which Wolsey soon after went into France to confirm.

During the next nine years the life of Mary, as well as that of heer mother, was rendered miserable by the conduct of Henry VIII, in seeking a divorce. During the most of that period mother and daughter seem to have been kept apart, and, thongh sometimes living at no great distance from each other, were atrictly forbidden to see each other. Of the two it may be that Queen Catherine had the hardest trial; but Mary's was searcely less severe. Removed from court and treated as a bastard, she was, on the birth of Anne Boleyn's daughter, required to give up the dignity of princess and acknowledge the illegitimacy of her own birth. On her refusal her household was broken up, and she was sent to Hatfield to act as lady-in-waiting to her own infant sister. Nor mas even this the worst of her trials; her very life was in danger from the hatred of Aune Boleyn. Her health, morcover, was indifferent, and even when she was seriously ill, although Henry sent his own physician Dr Buttes to attend her, he deelined to let her mother visit her. So also at her mother's death in January 1536 she was forbidden to take a last farewell of her. But in May following another change occurred which seemed to promiso some kind of relief. Anas Boleyn, the real cause of all her miseries, fell under the king's displeasure and was put to death. Mary was then urged to make a humble submission to her tather as the means of recovering his favour, and, after a good deal of correspondence with the king's secretary Cromwell, she actually did so. The terms exacted of her were bitter in tho extreme, but there was no chance of naking life tolerable otherwise, if indeed ake was pernitted to live at all ; and the poor friendless
girl, absolutely at the mercy of a father who could brook no contradiction, at length subscribed an act of submission, acknowledging the king as supreme, repudiating the pope's authority, and confessing that the marriage between her father and mother "was by God's law and man's law incestuous and unlawful."

No act, perhaps, in the whole of Henry's reign gives us a more painful idea of his revolting despotism. Mary was a high-spirited girl, and undoubtedly popular. All Europe looked apon her at that tine as the only legitimate child of ber father, but her father himself compelled her to disown the title and pass an unjust stigma on her own birth and her mother's good name. Nevertheless Henry was now reconciled to her, and gave her a houschold in some degree suitable to her rank. During the rest of the reign we hear little about her except in connexion with a number of new marriage projects taken up and abandoned auccessiveiy, one of which, to the count palatine Philip, duke of Bavaria, was specially repugnant to her in the matter of religion. Her privy purse expenses for nearly the whole of this period have been published, and show that Hatfeld, Beaulieu or Newhall in Essex, Richmond, and Hunsdoo were among her principal places of residence. Althongi she was stiil treated as of illegitimate birth, it was believed that the king, having obtained from parliament the extra. ordinary power to dispose of the crown by will, would restore her to her place in the succession, and three years before his death she was ao restored by statute, but still under conditions to be regulated by her father's will.

Under the reign of her brother Edward VI. she was again subjected to severe trials, which at one time made her seriously meditate taking flight and escapiog abroad. Edward himself indeed seems to bave been personally not unkind to her, but the religious revolution in his reign assumed proportions such as it had not done before, and Mary, who had done sufficient violence to her own convictions in submitting to a despotic father, was not disposed to yield an equally tame obedience to authority exercised by a factious council in the name of a younger brother not yet come to years of discretion. Besides, the cause of the pope was naturally her own. In spite of the forced declaration formerly wrung from herself, no one really regarded her as a bastard, and the full recognition of her rights depended on the recognition of the pope as head of the church. Hence, when Edward's parliament passed an Act of Uniformity enjoining services in English and communion in both kinds, the law appeared to ber totally void of authority, and she insisted on having mass in her own private chapel under the old form. When ordered to desist, she appealed for protection to the emperor Charles V., who, being her cousin, intervened for some time not ineffectually, threatening war with England if her religious liberty was interfered with. But Edward's court was composed of factions of which the most violent erentually carried the day. Lord Seymour, the admiral, was attainted of treason and beheaded in 1549. His brother, the Protector Somerset, met with the same fate in 1553. Dudley, duke of Northumberland, then became paramount in the privy council, and easily obtained the sanction of the joung king to those schemes for altering the succession which led immediately after his death to the usurpation of Lady Jana Grcs. Dudley had, in fact, overawed all the rest of the privy council, and when the event occurred ho took such cnergetic measures to give effect to the scheme that Lady Jane was actually recognized as queen for some daya, and Mary had even to fly from Hoddesden inte Norfolk. But the country was really devoted to her cause, as incleed ber right in law was unquestionable, and before many days she was royally received in London, aud tnok up lier abode within the Tower.

Her nest acts at the beginning of her reign displayed a character rery different from that which she still holds in popular estimation. Her clemeucy towards those who had taken up arms against her was altogether remarkable. ,She relcased from prison Lady Jane's father, Suffolk, and had difficulty eren in signing the warrant for the execution of Northumberland. Lady Janc herself she fully meant to spare, and did spare till after Wyatt's formidable insurrection. Her conduct, indeed, was in every respect conciliatory and pacific, and 80 far as they depended on her personal character the prospects of the new reign might have appeared altogether farourable. But unfortunately ber position was one of peculiar difficulty, and the policy on which she determined was far from judicious. Inexperienced in the art of governing, she had no trusty councillor but Gardiner; every other member of the council had been more or less implicated in the conspiracy against her. And though she valued Gardiner's adrice she was naturally led to rely even more on that of her cousin, the emperor, who had been her mother's friend in adversity, and had done such material service to herself in the preceding reiga. Following the emperor's guidance she determined almost from the first to make his sun Philip her husband, though she was eleven years his senior. She was also strongly desirous of restoring the old religion and wiping out the stigma of illegitimacy passed upon her birth, so that she might not seem to reign by virtue of a mere parliamentary settlement.

Each of these different objects was attended by difficulties or objections peculiar to itself; but the marriage was the most unpopular of all. A restoration of the old religion threatened to deprive the new owners of abbey lands ot their easy and comfortable acquisitions; and it was only with an express reservation of their interesta that the thing was actually accomplished. A declaration of her own legitimacy necessarily cast a slur on that of her sister Elizabeth, and cut ber off from the succession. But tho marriage promised to throw England into the arms of Spain and place the resources of the kingdom at the command of the emperor's son. The Commons sent her a deputation to eutreat that she would not marry a foreigner, and when her resolution was known insurrections broke out in different parts of the country. Suffolk, whose first rebellion had been pardoned, proclaimed Lady Jane Grey again in Leicestershire, while joung Wyatt raised the county of Kent and actually besieged the queen in her own palace at Westminster. In the midst of the danger Mary showed great intrepidity, and the rebellion was presently quelled; after which, unhappily, she got leave to parsue her own course unchecked. She married Philip, restored the old religion, and got Cardinal Pole to come over and absolve the kingdom for its past disobedience to the Holy See.

But the misgivings of those who had disliked the Spanish match were more than sufficiently justified by the course of erents. Mary yielded a loyal and Fomanly derotion to a husband who did not too greatly esteem the treasure of her person. Her health, which was feeble before, was bad for the remainder of her days, and she fell under a delusion at first that it was owing to an approaching confinement. Disappointment and vexation probably added to her heiplessness. The resources of the kingdom were at Philip's command, and be even took ships of the English fleet to escort his father the emperor, on his abdication, to Spain. More extraordinary still, be ultimately succeeded in committing England to a war against France, when France had made an alliance with the pope against him as king of Spain; eo the very marriage which was to confirm England in the old religion led to a war against the occopant of the see of Rome. And it was this

War with France which prodaced the final calanity of the loss of Calais which sank so deeply into Mary's beart some months before she died.

The cruel persecution of the Protestants, which has cast so much infamy upon ber reign, began about six months after her marriage; and it is not difficult to see that it was greatly due to the triumph of ideas imported from the land of the Inquisition. Rogers, the first of the martyrs, was burnt on the 4th February 1555. Hooper, bishop of Gloucester, had been condemned six daya before, and euffered the same fate upon the 9th. From this time the persecution went on uninterrupted for more than three years, numbering among its victims Ridley, Latimer, and Cranmer. It seems to hare been most severe in the eastern and southern parts of England, and the largest number of sufferers was naturally in the diocese of Bonner, bishop of London. From first to last nearly threo hundred victims are computed to have perished at the stake ; and their fate certainly created a revulsion against Rome that nothing else was likely to have effected. How far Mary herselfwho duriug the most part of this time, if not the mhole time, was living in the strictest seclusion, sick in body and mind, hysterical and helpless-was personally answerable for these things, it is difficult to say. 'To her, no. doubt, the propagators of heresy were the enemies of mankiad, and she had little cause to love them from her own experience. Yet perbaps she hardly realized the full borror of what was done under her sanction. But there can be little doubt what cffect it bad upon the people : and when Mary breathed her last, on the 17 th November $15 j 8$, the event was hailed with joy as a national deliverance.
(J. GA.)

MARY II. (1662-1694), queen of England, was the eldest daughter of James, duke of York (aftermards James II. of England), by his first wife Anne Hyde, and was born in London on April 30, 1662. Having been educated io the Protestant faith, she was married to William, prince of Orange, on November 4, 1677. After the eventa of 1688 she followed her husband to England, and was proclaimed by the conrention joint sovereign with him on February 13, 1689. She died of small-pox on Deceraber 28, 1694 (o.s.). See Buraet's Essay upore the Life of Queen Mrary, and the article William III.

MARY (1542-1587), queen of Scots, daughter of King James V. and his wife Mary of Lorraine, was born io December 1542, a fer dass before the death of her father, heart-broken by the disgrace of his arms at Solway Moss, where the disaffected nobles had declined to encounter an enemy of inferior force in the cause of a king whose systematic pulicy had been directed against the privileges of their order, and whose representative on the occasion was an unpopular favourite appointed general in defiance of their ill-will. On the 9th of Septermber following the ceremony of coronation was duly performed upon the infant. A scheme for her betrothal to Edrard, prince of Wales, was defeated by the grasping greed of his father, whose obvious ambition to annex the crown of Scotland at once to that of England aroused instantly the general suspicion and indignation of Scottish patriotism. In 1548 the queen of six years old was betrothed to the dauphin Francis, and aet sail for France, where sbe arrived on the 15th of August. The society in which the child was thenceforward reared is known to readera of Brantôme as well as that of imperial Rome at its worst is known to readers of Suctonius or Petronios, -as well as that of papal Rome at its norst is known to readera of the diary kept by the domestic chaplain of Pope Alexander VI. Only ir their pages can a parallel be found to the gay and easy record which reveals without sign of shame or suspicion of offence the daily life of a court compared to which the court

OF SCOTLAND.]
M A R Y
of King Charles II. is as the court of Queen Victoria to the society described by Grammont. Debauchery of all kinds, and murder in all forms, were the daily matter of excitement or of jest to the brilliant circle which revolved around Queen Catherine de' Medici. After ten years' training uader the tutelage of the woman whose main instrument of policy was the corruption of her orn children, the queen of Scots, aged fifteen years and five montha, was married to the eldest and feeblest of the brood on April 24, 1558. On the 17 th of November Elizabeth became queen of Eaglaad, and the priaces of Lorraine-Francia the great duke of Guise, and his brother the cardinal-induced their niece and her husband to assume, in addition to the arms of France and Scotland, the arms of a country over which they asserted the right of Mary Stuart to reign as legitimate heiress of Mary Tudor. C Civil strife broke out in Scotland between John Knox and the queen-dowager,-between the self-styled "congregation of the Lord" and the adherents of the regent, whose French troops repelled the combined forces of the Scotch and their Eaglish allies from the beleaguered walls of Leith, little more than a month before the death of their mistress in the castle of Edinburgh, on the 10th of June 1560. On the 25th of August Protestantism was proclaimed and Catholicism suppressed in Scotland by a consention of states assembled without the assent of the absent queen. On the 5th of December Francis II. died ; in August 2561 his widow left France for Scotland, having been refused a safe-conduct by Elizabeth on the ground of her own previous refusal to ratify the treaty made with Eagland by her commissioners in the same month of the preceding year. She arrived nevertheless in safety at Leith, escorted by three of her uncles of the house of Lorraine, and bringing in her train her future biographer, Brantôme, and Chastelard, the first of all her voluntary victims. On the 2 lst of August she first met the only man able to withstand her ; and their first passage of arms left, as he has recorded, upon the mind of John Knos an ineffaceable impression of her "proud mind, crafty wit, and iadurate heart against God and His truth." And yet her acts of concession and conciliation ware such as no fanatic on the opposite eide could have approved. She assented, not only to the undisturbed maintenance of the new creed, but even to a scheme for the endowment of the Protestant ministry out of the confiscated lands of the Church. Her balf-brother, Lord James Stuart, shared the duties of her chief counsellor with William Maitland of Lethington, the keenest and most liberal thinker in the country. By the influence of Lord James, in spite of the earaest opposition of Knox, permission was obtained for her to hear mass celebratod in her private chapel, - a licence to which, aaid the Reformer, he would have proferred the invasion of ten thousand Frenchmen. Through all the first troubles of her reign the young queen steered her akilful and dauntless way with the tact of a woman and the courage of a man. An insurrection in the north, headed by the carl of Huntly under pretest of rescuing from justice the life which his son had forfeited by his share in a homicidal brawl, was crushed at a blow by the Lord James against whose life, as well as against his sister'a liberty, the conspiracy of the Gordons had been aimed, and on whom, after the father had fallen in fight and the son had expiated his double offence on the scaffold, the leading rebel's carldom of Murray was conferred by the gratitude of the queen. Esactly four months after the battie of Corrichie, and the subsequent execution of a criminal whom she is said to have "loved entirely," had put an end to the first insurrection raised against her, Pierre de Boscosel de Chastelard, who had returned to France with tho other companions of her arrival, und in

November 1562 had revisited Scotland, expiated with his head the offence or the misfortune of a second detection at night in her bed-chamber. In the same month, twentyfive years afterwards, the execution of his mistress, accorde ing to the verdict of her contemporaries in France, avenged the blood of a lover who had dicd without uttering a word to realize the apprehension which (according to Knox) had before his trial impelled her to desire her brother "that, as he loved her, he would slay Chastelard, and let him never apeak word." And in the same month, two years from the date of Chastelard's execution, her first step was unconaciously taken on the road to Fotheringay, when she gave her heart at first sight to her kinsman Henry, Lord Daraley, son of Matthew Stuart, earl of Lennox, who had suffered an exile of twenty years in expiation of his intrigues with England, and had married the niece of King Henry VIIL, daughter of his sister Margaret, the widow of James IV., by her second husband, the earl of Angus. Queen Elizabeth, with the almost incredible want of tact or instinctive delicacy which distinguished and disfigured her vigorous intelligence, had recently proposed as a suitor to the queen of Scots her own low-born favourite, Lord Robert Dudley, the widower if not the murderer of Amy Robsart; and she now protested against the project of marriage between Mary and Darnley. Mary, who had already married her kinsman in secret at Stirling Castle with Catholic rites celebrated in the apartment of David Rizzio, her secretary for correspondence with France, assured the English ambassador, in reply to the protest of his miatress, that the marriage would not take place for three months, when a dispensation from the pope would allow the cousins to be publicly united without offence to the church. On the 29th of July 1565 they were accordingly remarried at Holyrood. The hapless and worthless bridegroom had already incurred the hatred of two powerful enemies, the earls of Morton and Glencairn; but the former of these took part with the queen againat the forces raised by Murray, Glencairn, aud others, under the nominal leadership of Hamilton, duke of Chatelherault, on the double plea of danger to the new religion of the conntry, and of the illegal proceading by which Darnley had been proclaimed king of Scots without the needful constitutional assent of the estates of the realm. Murray was cited to attend the "raid" or array levied by the king and queen, and was doly denounced by public blast of trumpet for his non-appearance. He entered Edinburgh with his forces, but failed to hold the town against the guns of the castle, and fell back apon Dumfries before the adrance of the royal army which was now joined by James Hepburn, earl of Dothwell, ou his return from a three years' outlarred exile in Trance. He had been accused in 1552 of a plot to ssize the queen and put her into the keeping of the earl of Arran, whose pretensions to her hand eaded only when Lis insanity could no longer be concealed. Another new adherent was the son of the late earl of Huntly, to whom the forfeited honours of his house wore restored a fer months before the marriage of his sister to Bothwoll The quean norr appealed to France for aid ; but Castelnau, the French ambassador, replied to her passionate pleading by sober and earnest advice to make peace with the malcontents. This counsel was rejected, and iu October. 1565 the queen marched an army of 18,000 men against then from Edinburgh; their forces dispersed in face of superior numbers, and Murray, on seeking shelter in England, was received with contumely by Elizabeth, whose half-hearted help had failed to aupport his enterprise, and whose intercession for his return found at first no farour with the queen of Scots. But the conduct of the besotted boy on whom at their marriage she had bestorred the title of king began at ouce to justify the
enterprisa and to play iato tha hands of all his enomica nalike. His father set him on to demand the crown matrimonial, which would at least hare assured to hini the rank and station of iudependent royalty for life. Rizzio, hithorto his friend and adrocate, induced the quean to reply by a reasunable refusal to this hazardous and audacious reguest. Darnley at once threm himself into the arms of the party opposed to the policy of the queen and her socretary,-a policy which at that moment was doubly and trobly calculated to exnsperate the fars of the religiozs and the pride of the patriotic. Mary was invited if not induced by the king of Spain to joiu his langus for the suppression of Protestantism; while the actnal or prospective endowment of Rizzio with Miorton's office of chancellor, ond the projected attainder of Murray and his allies, combined to intlamo at once tha anger and tha apprehension of the Protestant nobles. According to ona account, Darnley privately assured his uncle George Douglas of his wife's infdelity; ha had himself, if ha might be believed, discovered the secretary in tha quaen's apartment at midnight, under circumstances yet more unequivocally compromising than thosa which had brought Chastelard to the scaffold. Another version of the pitiful history represents Douglas as infusing suspicion of Rizzio into the empty mind of his nephew, and thus wianing his consent to a deed already designed by others. A bond was drama in which Darnley pledged himself to support the confedarates who undertook to punish "certain prisy persons" offensive to the atate, "espacially a stranger Italian called Davia"; another was aubscribed by Darnley and the banished lords, then biding their time in Newcastle, which engaged him to procure their pardon and restoration, while pledging them to ensure to him the enjoyment of the titls he covated, with the consequent security of an undisputed succession to the cromn, despita the counter claims of the house of Hamilton, in casa his wifa should die without issue,-a reault which, intentionally or not, he and $Y$ is fellow conspirators did all that brutality could have suggested to accelarate and secure. On the 9th of March the palace of Holyrood was invested by a troop under the command of Morton, while Rizzio was dragged by force out of the quesn's presence and slain without trial in tha heat of tha moment. The parliament was discharged by proclamation issuad in the name of Daruley as king; and in the evening of the next day the banished lords, whon it was to have condemned to outlawry, returned to Edinburgh. On the day following they were graciously raceived by tha queen, who undertook to eign a bond for their sacarity, but delayed the subacription till next morning under plea of sickness. During the night sho escaped with Darnley, whom she had already seduced from the party of his accomplices, and arrived at Dunbar on the third morning after the elanghter of har favomite. From thance they returned to Edinburgh on the 28 th of March, guarded by two thousand horsemen under the command of Bothrell, who had escaped from Holyrood on the night of the murder, to raise a force on the queen's behalf with his usual eoldierly promptitnde. The alayers of Rizzio fled to Eng'and, and wera outlawed; Darnley whe permitted to protest his innocence and denounce his accomplices; after which he becamo the scorn of all partics alike, and ferr men dared or cared to be seen in his company. On the 19 th of Juna a aon was born to his wife, and in the face of his previous protestations he was induced to acknowledge himself the father But, as Murray and his partisans returned to favour and influence no longer incompatible with that of Bothwell and Huntiy, he grew desperate enough with terror to dreams of escape to France. This design was rit onca frustrated by the queen's resolution. She summoned hina to declare bis coasone for it in nresence of the brench aubasador aud
an assembly of the nobles; she besought him for God'b aake to apeak out, and not apare her ; and at last ha left ber presence with an avowal that he had nothing to alloga. The favour shomn to Bothwell had not yat given occasion for scandal, though his character as an adventurous libertine was as notable as his reputation for military hardihood; but as the summer advanced his insolenco increased with his influenca at court and the general arersion of his rivala. He was richly ondowed by Mary from the greater and lesser spoils of the church; aud the three wardenships of the border, united for the first timo in his person, gave the lord high admiral of Scotland a position of unequalled power. In the gallant discharge of its duties he was dangerously wounded by a leading outlaw, whom ha slew in single combat; and while yet confined to Hermitaga Castle ha reccived a visit of two hours from the qucen, who roda thither from Jedburgh and back through 20 milea of the wild borderlaud, where her person was in perpetual danger from tha freabooters whom her father's policy had atriven and had failed to extirpate. The result of this daring rida was a ten daya' fever, after which she removed by short atages to Craigmillar, where a proposal for her divorce from Daroley was lajd bafore her by Bothwell, Murray, Huntly, Argyle, and Lethington, who was chosen spokesman for tha rest. Sho assented ou condition that the divorce could bo lawfully effected without impeachment of her son's legitimacy ; whereupon Lethington :1ndertook in the name of all present that sha should be rid of her husband without any prejudice to the child,-at whose baptism a few days afterwards Bothwell took the place of tha putative father, though Darnley was actually residing under the aame roof, and it was not till after tha ceremony that ha was anddenly atruck down by a eickness so violent as to excita suspiciona of poison. He was removed to Glasgom, and left for tha time in charge of his father; but on tha newa of his progress towards recovery a boud was drawn up for execution of the sentence of death which had secretly been pronounced against the twice-turaed traitor who had earned his doom at all liands alike. On the 22 d of the next month (January 1567) the queen visited her husbaud at Glasgow and proposed to remove him to Craigmillar Castle, where he would hava the benefit of medicinal baths; but instead of this resort he was conveyed on the last day of the month to the louely and squalid shelter of the residence which was soon to be made mamorable by his murder. Between tha ruins of twu sacred buildings, with the town-wail to the sonth and u suburban hamlet known to ill fame as the Thieves' Row to the north of it, a lodging was prepared for the tilular king of Scotland, and fitted up with tapestries takon frum the Gordons after the battle of Corrichie. On the evening of Sunday, February 9, Mary took her last leare of the miserable.boy who had so often and so mortally outraged ber as consort and as qucen. That night the whole cily was shaken out of sleep by an explosion of gunpowder which alattered to fragments the building in which he should have alept and perished; and next morning tha bodies of Darnley and a page were found strangled in a garden adjoining it, whither they had spparently escaped over a mall, to be despateled by the hands of Bothweli's attendant coufederates.

Upon the view which may be taken of Mary'a conduct during the next three months depends the whole debatable question of her character. According to the professed champions of that character, this conduct was a tissua of such dastardly imbecility, such heartless irresolution, and anch braialess inconsistency as for ever to dispose of her time-honoured claim to the credit of intelligence and courage. It is certain that just three months and six daya after the murder of her husbaud sha became tha wife of
her husband's murderer. On the 11 th of February she wrote to the bishop of Glagow, her ambassador in France, a brief letter of simple eloqueuce, anoouncing her providential escape from a design apoo her own as well as her husband's life. A reward of two thousand pounds was offered by proclamation for discovery of the murderer. Bothwell and others, his satelites or the queen's, were instantly placarded by name as the criminals. Voices were heard by night in the streets of Edinburgh calling down judgment on the assassins. Four days after the discovery of the bodies, Darnley was buried in the chapel of Holyrood with secrecy as remarkable as the solemnity with which Rizzio had been interred there less than a year before. On the Sunday followiug, Mary left Edinburgh for Seton Palace, 12 miles from the capital, where scandal asserted that she passed the time merrily in shootingmatches with Bothwell for her partner against Lords Seton and Hantly; other accounts represent Huntly and Bothwell as left at Holyrond in charge oi the icfant prince. Gracefully and respectully, with statesmanlike yet feminine desterity, the domands of Daruley's father for justice on the murderers of his aon were accepted and eluded by his daughter-in-law. Bothwell, with a troop of fifty men, rode through Ediaburgh defiantly denouncing vengeance on his concealed accusers. As weeks elapsed without action on the part of the royal widew, while the cry of blood was up throughout the country, raising echoes from England and abread, the murnur of nccusatiou began to rise against her also. Murray, with his sister's ready permission, withdrew to France. Already the report was abroad that the queen was bent on marriage with Eothwell; whose last year's marriage with the sister of Huntly would be dissolved, and the assent of his wife's brother purchased by the restitution of his forfeited estates. According to the Memoirs of Sir James Melville, bota Lerd Herries and himself resolved to appeal to the queen in terms of bold and earnest remonstrance against so desperate and scandalous a design ; Herries, having been met with assurances of its unreality and professions of astonishment at the suggestion, instantly fied from court; Melville, evading the danger of $\pi$ merely personal protest without backers to support him, laid before Mary a letter from a loyal Scot long resident in England, which urged upon her consideration and ber conscience the danger and disgrace of such a project yet more freely than Herries had ventured to do by word of mouth; but the soie result was that it needed all the queen's courage and resolution to rescue hin from the violence of the man for whom, she was reported to bave said, ahe cared not if ahe lost France, England, and her own country, and would go with him to the world's end in a white petticoat before she would leave him. On the 28 th of March the privy council, in which Bothweli himself sat, appointed the 12th of April as tue day of his trial, Lennos, instead of the crown, being nomed as the accuser, and cited by reval letters to apnear at "the bumble request and petition of the aaid Earl Bothwell," who, on tha day of the trial, had four thousand armed men behind him in the streets, while the castle was ulso at his command. Under these arrangements it was not thought wenderful that Lennox diserectly declined the danger of attendance, even with throo thousand men ready to follow hin, at the risk of desperate strect fighting. To pleaded sickness, asked for more time, and demanded that the accused, insicad of enjoying special favour, should slare the trcatment of other suspected criminals. But, as no particle of evidence on his sido was advanced, the protest of his representative was rejected, and Bothwell, acquitted in default of witnesses against him, was free to challenge any persistent accuser to the anoient ordeal of battle. LIis wealth and power were enlarged by gift of the parliament which met on the

14th and rase on the 19th of April,-2 date made notable by the eubsequent supper nt Ainslie's tavern, where Dothwell obtained the signatures of its leading members to a document affirming his iunocence, and pledging the zubscribers to maintain it against all challengers, to stand by him in all his quarrels, and finally to promete by all means in their power the marriage by which they recommended the queen to remard his services and benefit the comatry. On the second day followiag Mary ment to visit her child at Stirling, where his guardian, the earl of Mar, refused to admit more than tro women in her train. It was well known in Edinburgh that Bothwell had a body of men ready to intercept her on the way back, and carry her to Dunhar,-not, as was naturally inferred, without good assurance of her consent. On the 24th of April, as she approached Edinburgh, Bothwell accordingly met her at the head of eight hundred spearmen, assured her (as she afterwards averred) that she was in the utmost peril, and escorted her, together with Huntly, Lethington, and Melville, who were then in attendance, to Dunbar Castle. On the 3d of May Lady Jane Gordon, who had become countess of Botawell on February 22d of the year preceding, obtained, on the ground of her husband's infidelities, a separation which, however, would not under the old laws of Catholic Scotland have left him free to marry again ; on the 7th, accordingly, the necessary diverce was pronounced, after two days' session, by a clerical tribunal which ten days before had received from the queen a special commission to give judgment on a plea of somewhat apocryphal consanguinity alleged by Bothwell as the ground of an action for divorce against his wife, The fact was studiously evaded or concealed that a dispensation had been granted by the archbishop of St Andrews for this irregularity, which could only have arisen through some illicit connexion of the husband with a relative of the wife between whom and himself no affinity by blood or marriage could be proved. On the day when the first or Protestant diverce was pronounced, Mary and Bothwell returned to Edinburgh with every prepared appearance of a peaceful triumph. Lest her captivity should have been held to invalidate the late legal proceedings in ber name, proclamation was made of forgiveness accorded by the queen to her capter in consideration of his past and future services, and her intention wasannounced to reward them by further promotion; and on the same day (May 12th-ne was duly created duke of Orkney and Shetland. The duke, as a conscientious Proiestant, refused to marry his mistress according to the rites of ber church; and she, the chosen champion of its cause, agreed to be married to him, not merely by a Protestant, but by one who before his conversion had been a Catholic bishop, and should therefore have been wore hateful and contemptible in her eyes than any ordinary Leretic, had net religion as well as policy, faith as well as reason, been absorbed or superseded by some more mastering passion or emetion. This passion or emotion, according to those who deny her attachment to Bothwell, was simply terror,-the blind and irrational prostration of an abject spirit before the cruel force of circumstances and the crafty wickedness of men. Hitherto, according to all evidence, she had shown herself on all occasions, as on all subsequent occasiens she indisputably showed herself, the most fearless, the most keensighted, the most ready-witted, the most high-gifted and high-spirited of women; gallant and generons, skilful and practical, never to be cowed by fortune, never to be cajoled hy craft; neither more unselfish in ber ends nor more unscrupulous in her practice than might have been expected from her trainiog and ber creed. But at the crowning moment of trial there are those who assert their belief that the woman who on her way to the field of Corrichie had
uttered her wiah to be a man, that she might know all the hardship and all the enjoyment of a soldıer's life, riding forth "in jack and knapscull"-the woman who long afterwards wes to hold her own for two days together witheut help of counsel against all the array of English law and English statesmanship, nrmed with irrefragable evidence and supported by the resentment of a nation-shorred herself equally deroid of moral and of physical resulution; too senseless to realize the significance and too heartless to face the danger of a situation from which the simplest exercise of reasen, principle, or courage must have rescued the most unsuspicious and inexperienced of honest women who was not helplessly deficient in self-reliance and selfrespect. The famous correspondence produced next year in evidence against her at the conference of Fork may have becn, as her partisans affirm, so craftily garbled and falsified by interpelation, suppression, perversion, or zbsolute forgery as to be all but historically worthless. Its acceptance or its rejection does net in any degree whatever affect, for better or for morse, the rational estimate of her character. The problem presented by the aimpla existeace of the facts just summed up remains in either case absolutely the same.

That the coarse and imperious nature of the nardy and able ruffian who had now become openly her master should no less openly have shown itself even in the first moments of their inauspicious union is what any bystander of common insight must inevitably have foreseen. Tears, dejection, and passionate ezpressions of a despair " wishing only for death," bore fitful and variable witness to her first sense of a beavier yoke than jet had galled her spirit and he: pride. At other times her affectionate gaiety would givo evidence es trustwerthy of a fearless and improvident satisfaction. They rode out in state together, and if he kept cap in hand as a subject she would snatch ii from him and. clap it on his head again; while in graver thirgs she took all dus or possible care to gratify his ambition, by the insertion of a clause in their contract of marriage which made their joint signature necossary to all documents of state issued under the sign-manual. She despatched to France a apecial envoy, the bishop of Dumbiane, with instrnctions setting forth at length the unparalleled and bitherto ill-requited services and merits of Bothwell, and the necessity of compliance at once with his passion and with the unanimous counsel of the nation,-a people who would endure the rule of no foreign consort, and whom none of their own countrymen were so competent to control, alike by wisdom and by valour, as the incomparable subject of her choice. These personal merits and this political necessity were the only pleas advanced in a letter to her ambassador in England. But that neither plea would avail her for a moment in Scotland she had ominous evidence on the thirteenth day after her marriage, when no response was made to the usual form of proclamation for a raid or levy of forces under pretext of a campaign against the rievers of the berder. On the 6th or 7th of June Mary and Bothwell took refuge in Borthwick Castle, twelve miles from the capital, where the fortress was in the keeping of an adherent rhom the diplomacy of Sir James Melville had succeeded in detaching from his allegiance to Bothwell. The fugitives were pursued and beleaguered by the earl of Morton and Lord Hume, who declared their purpose to rescue the queen from the thraldom of her husband. He escaped, leaving her free to follow him or to join the party of her professed deliverers. But whatever canse she might have found since marriage to complain of his rigorous custody and domineering brutality was insufficient to break the ties by which he beld her. Alone, in the disguise of a page, she slipped out of the castle at midnight, and rode off to meet bim at a tower tro miles dis.
tant, whence they fled together to Dunbar. The confedcrate lords on entering Edinburgh were welcomed by the citizens, and after thrce hours' persuasion Letbington, who had now joined them, prevailed on the captain of the castle to deliver it also into their hands. Proclamations were issued in which the crime of Bothwell was denounced, and the disgrace of the country, the thraldem of the queen, and the mortal peril of her infant son were set forth as reasons for summoning all the lieges of the chief cities of Scotland to rise in arms on three hours' notice and join the forces assembled egainst the one common enemy. News of his approach reached tiem on the night of Juno 14, and they marched before darn with 2200 men to meet him near Musselburgh. Mary meastrhile had passed from Dunbar to Haddington, and thence to Seton, where 1600 men rallied to her side. On the 15 th of June, one month from their marriage day, the queen and Bothwell, at the head of a force of fairly equal numbers but visibly inferior discipliae, met the army of the confederates at Carberry Hill, some six miles from Edinburgh. Du Croc, the French ambassador, obtained permission through the influence of Maitland to convey to the queen the terms proposed by their leaders,-that ehe and Bothwell should part, or that he should meet in siogle combat a champion chosen from among their number. Bothwell offered to meet auy man of euficient quality; Mary would not assent. As the afternoon wore on their force began to melt away by desertion and to break up for lack of discipline. Again the trial by single combat was proposed, and thrice the proposal fell through, owing to objections on this side or on that. At last it was agreed that the queen should yield herself prisoner, and Bothwell be allowed to retire in safoty to Duobar with the few followers who remained to him. Mary took leave of her first and last master with passionate anguish and many parting kisses; but iu face of his enemies, and in hearing of the cries which burst from the ranks, demanding ber death by fire as a murderess and harlot, the whole hereic and passionate spirit of the woman represented by her admirers as a spiritless imbecile flamed out in responsive threats to have all the men banged and crucified, in whosa power she now stood helpless and alone. She grasped the hand of Lord Lindsay as he rode beside her, and swore "by this hand" she would "have his head for this." In Edinburgh she wes received by a yelling mob, which flaunted before her at each turn a banner representing the cerpse of Darnley with her child beside it invoking on his knees the retribution of Diviue justice. From the vielence of a multitude in which wemen of the worst class were more furious than the men abe was sheltered in the house of the provest, where she repeatedly showed herself at the winduw, appealing aloud with dishevelled bair and dress to the mercy which no man could look upon her and refuse. At nine ir the evening she was removed to Holyrood, and thence to the pert of Leith, where sho embarked under guard, with her attendants, for the island castle of Lochleven. On the 20th a silver casket containing letters and French rerseb, miscalled sonnets, in the bendwriting of the queen, was taken from the person of a servant who had been sent by Bothwell to bring it from Edinburgh to Dunbar. Even in the existing versions of the letters, translated frem the lost originals and retranslated from this translation of a text rhich was probably destroyed in 1603 by order of King James on his accession to the English throae, - even in these possibly disfigured versions, the fiery pathos of passion, the fierce and piteous fluctuations of spirit between love and hate, hepe and rage and jealonsy, have an eloquence apparently beyond the imitation or invention of art. Threa days after this discovery Lord Lindsay, Lond Ruthvea, and Sir Roberr Melville were despatched to

Loclaleven, there to obtain the queen's signature to an act of abdication in favour of her son, and another appointing Murray regent during his minority. She submitted, and a commission of regency was established till the return from France of Murray, who, on the 15th of August, arrived at Lochleven with Morton and Atbole. According to his own account, the expostulations as to her past conduct which preceded his admonitions for the future were received with tears, confessions, and attempts at extenuation or excuse; but when they parted next day on good terms she had regained her usual spirits. Nor from that day forward had they reason to sink again, in spite of the close kceping in which she was held, with the daughters of the house for bedfellows. Their mother and the regent's, her father's former mistress, was herself not impervious to her prisoner's lifelong power of seduction and subjugation. Her son George Douglas fell inevitably under the charm. A rumour transmitted to England went so far as to assert that she had proposed him to their common inalf-brother Murray as a fourth husband for herself; a later tradition. represented her as the mother of a child by him. A third report, at least as improbable as either, asserted that a daughter of Mary and Bothwell, born about this time, lived to be a nun in France. It is certain that the vecessary removal of George Douglas from Lochleven enabled him to devise a method of escape for the prisoner on March 25, 1568, which was frustrated by detection of her white hands under the disguise of a laundress. But a younger member of the bousehold, Willie Douglas, aged eighteen, whose devotion was afterwards remembered and his safety cared for by Mary at a time of utmost risk and perplesity to herself, succeeded on May 2d in assisting her to escape by a postern gate to the lake-side, and thence in a boat to the main`nd, where George Douglas, Lord Seton, and others were a waiting ber. Thence they rode to Seton's castle of Niddry, and nest day to Hamilton Palace, round which an army of 6000 men was soon assembled, and whither the now French ambassador to Scotland hastened to pay his duty. The queen's abdication was revoked, messengers were despatched to the English and French courts, and word was sent to Murray at Glasgow that he must resign the regency, and should be pardoned in common with all offenders against the queen. But on the day when Mary arrived at LIamilton Murray lad summoned to Glasgow the feudatories of the crown, to take arms against the insurgent enemies of the infant king. Elizabeth sent conditional offers of help to her kinswoman, provided she would accept of English intervention and abstain from secking foreign assistance; but the messenger came too late. Mary's followers had failed to retake Dunbar Castle from the regent, and made for Dumbarton instead, marching two miles south of Glasgow, by the village of Langside. Here Murray, with 4500 men, under leaders of high distinction, met the 6000 of the queen's army, whose ablest man, Herries, was as much distrusted by Mary as by every one else, white the Hamiltons could only be trusted to think of their own intercsts, and were suspected of treasonablo designs on all who stood between their house and the monarchy. On the 13 th of May the battle or skirmish of Langside determined the result of the campaign in three quarters of an hour. Kirkaldy of Grange, who commanded the regent's cavalry, scized and kept the place of vantage from the beginning, and at the first sign of wavering on the other side shattered at a single charge the forces of the quecn, with a loss of one man to three hundred. Mary fled 60 nilos from the ficld of her last battle before she halted at Sanquhar, and for three days of flight, according to her own account, had to sleep on the bard ground, live on oatueal and sour milk, and fare at night like the owls, in hunger, coll, and fear. On the third day from the rout
of Langside she crossed the Solway, and landed at Workington in Cumberland, May 16, 1568. On the 20th Lord Scrope and Sir Francis Rinollys were sent from court to carry messages and letters of comfort from Elizabeth to Mary at Carlisle. On June 11th Knollys wrote to Cecil at once the best description and the noblest panegyrio extant of the queen of Scots,-enlarging, with a brave man's sympathy, on her indifference to form and ceremony, her daring grace and openness of manner, her frank display of a great desire to be avenged of her enemies, her readiness to expose herself to all perils in bope of victory, her delight to hear of hardihood and courage, commending by name all her enemies of approved valour, sparing no cowardice in her friends, but above all things athirst for victory by any means at any price, so that for its sake pain and peril seerued pleasant to her, and wealth and all things, if compared with it, contemptible and vile. What was to be done with such a princess, whether she were to be nourished in one's bosom, above all whether it could be advisable or safe to try any diplomatic tricks upon such a lady, Knollys left for the minister to judge. It is remarkable that he should not have discovered in her the qualities 80 obvious to modern champions of her claracter,-easiness, gullibility, incurable innocence and invincible ignorance of cvil, incapacity to suspect or resent anything, readiness to believe and forgive all things. On the I5th of July, after various delays interposed by lier reluctance to leave the neighbourhood of the border, where on her arrival she had received the welcome and the homage of the leading Catholic houses of Northumberland and Cumberland, she was removed to Bolton Castle in North Yorkshire. During her residence here a couference was held at York between her own and Elizabeth's commissioners and those appointed to represent her son as king of Scots. These latter, of whom Murray himself was the chief, privately laid before the English commissioners the contents of the famous casket. On the 24 th of Octuber the place of the conference was shifted from York to London, where the inquiry was to be held before Queen Elizabeth in council. Mary was already aware that the chief of the English commissioners. the duke of Norfolk, was secretly an aspirant to the peril of her hand; and on October 2 1st she gave the first sign of assent to tho suggestion of a divorce from Botluwell. On the 20.th of October the charge of complicity in the murder of Darnley was distinctly brougit forward against her in spite of Norfolk's reluctance and Murray's prevous hesitation. Elizabeth, by the mouth of her chief justice, formally rebuked the audacity of the subjects who durst bring such a charge against thicir sovereign, and challenged then to adrance their proofs. They complied by the production of an indictnent under five heads, supported by the necessary evidence of documents. The number of English commissioners was increased, and they were bound to preserve secrecy as to the matters revealed. Further evidence was supplied by Thomas Crawford, a retainer of the house of Lennox, tallying so exactly with the text of the casket letters as to have been cited in proof that the latter must needs be a forgery. Elizabeth, on the close of the evidence, invited Mary to reply to the proofs alleged before she could bo admitted to her presence; but Mary simply desired her commissioners to withdraw from the conference. She declined with scorn the proposal made by Elizabeth through Kuollys, that she should sign a second abdication in favour of lier son. On January 10 , 1569, the judgment given at the conference acquitted Murray and his adherents of rebellion, while affirning that nothiug had been proved against Mary,--a verdict accepted by Murray as equivalent to a practical recognition of his oflice ns regent for the infant king. This position he was not long to hold; and the fierce exultation of Jlary ot the
netrs of his murder gave to taose who believed in her complicity with the murderer, on whom a pension was bestowed by her unblushing gratitude, fresh reason to fear, if her liberty of correspendence and intrigue were not restrained, the likelihood of a similar fate for Elizabeth. On Jannary 26, 1569, she had been removed from Bolton Castle to Tutbury in Staffordshire, where proposals were conveyed to her, at the instigation of Leicester, for a marriuge with the duke of Norfolk, to which she gave a graciously conditional assent; but the discovery of these proposals consigned Norfolk to the Tower, and on the outbreak of an insurrection in the north Mary, by Lord Hunsdon's ndvice, was again removed to Coventry, when a body of her intending deliverers was within a day's ride of Tutbury. On the 23d of January following Murray was assassinated; and a second northern insurrection was crushed in a single sbarp fight by Lord Honsdon. In October Cccil had an interview with Mary at Chatsworth, when the conditions of her possible restoration to the throne in compliance with French demands were debated at length. The queen of Scots, with dauatless dignity, refused to yield the castles of Edinburgh and Dumbarton into English keeping, or to deliver up her fugitive English partisans then in Scotland; upon other points they came to terms, and the articles were signed October 16. On the same day Mary wrote to Elizabeth, regnesting with graceful eurnestness the favour of an interview which might reassure her against the suggestion that this treaty was a mere pretence. On November 28 sho was removed to Sheffield Castlc, where she remained for the next fourteen years in charge of the earl of Shrewsbury. The detection of a plot, in which Norfolk was implicated, for the invasion of England by Spain on behali of Mary, who was then to take him as the fourth and most contemptible of her husbonds, made necessary the reduction of her household nad the stricter confinement of her person. On May 28, 1572, a demand from both houses of parliament for her cxecution as well as Norfolk's was generously rejected by Elizabeth; but after the punishment of the traitorous pretender to her band, on whom she bad lavished many eloguent letters of affectionate protestation, she fell into "a passion of sickness" which convinced her honest kceper of her gennine grief for the ducal caitiff. A treaty projected on the nersa of the massacre of St Bartholomew, by which Mary slould be sent back to Scotland for immediate execution, was broken off by the death of the earl of Mar, who had succeeded Lennos as regent; nor was it found possible to come to acceptable terms on a liko understanding with his successor Morton, who in 1577 sent a proposal to Mary fur her restoration, which she declined, in suspicion of a plot laid to entrap her by the policy of Sir Francis Walsingham, the most unscrupulously patrintic of her English enemies, who four years afterwards sent word to Scotland that the execution of Morton, so long the ally of England, would be answered by the execution of Mary. But on that occasion Elizabeth again refused her assent either to the trial of Mary or to her transference from Sheffield to the Tower. In 1581 Mary nccepted the advice of Catherine de' Medici and Henry III. that she should allow her son's title to reign as king of Scotland conjointly with herself when released and restored to $n$ share of the throne. This plan was but part of a scheme including the invasion of England by her kinsman the duke of Guise, who was to land in the north and raise a Scottish army to place the released prisoner of Sheffield beside her son on the throne of Elizabeth. After the overthrow of the Scottish accomplices in this notable project, Mary poured forth upon Elizabeth a torrent of pathetic and eloquent reproach for the many wrongs she had suffered at the hends of her hostess, and pledged her honour to the
assurance that she now aspired to no kingdom but that of heaven. In the spring of 1583 she retained enough of this saintly resignation to nsk for nothing but liberty, without a share in the govemment of Scotland; but Lord Burghley not unreasonably preferred, if feasible, to reconcile the alliance of her son with the detention of his mother. In 1584 the long-suffering earl of Shrewsbury was relieved of his fourteen years' charge through the involuntary good offices of his wife, whose daughter by her first husband had married a brother of Darnley, and their orphan child Arabelia, born in England, of royal descent on the father's side, was now, in the hopeful view of her grandmother, a mere plausible claimant than the king or queen of Scots to the inheritance of the Eaglisi throne. In Deceniber 1583 Mary had laid before the French ambassador her first complaint of the slanders spread by Lady Shrewsbury and her sons, who were ultimately con:pelled to confess the falschood of their imputations on the queen of Scots and her keeper. It was probably at the time when a desire for revenge on hercalumniatress made her think the epportunity good and safe for dischnrge of such a two-edged dart at the conntess nnd the queen that Mary wrote, but abstained from despatching, the famous and terrible letter in which, with many gracious excuses and professions of regret and attechment, she transmits to Elizabeth a full and vivid report of the hideous gossip retailed by Bess of Hardwick regarding ber character and person at a time when the reporter of these abominations was on friendly terms with her husband's royal charge. In the autumn of 1584 she was removed to Wingfield Manor under charge of Sir Ralph Sadler and John Somers, who accompanied her also on her next removal to Tutbury in January 1585. A letter received by her in that cold, dark, and unhealthy castle, of which fifteen years before she had made painful and malodorous experience, assured her that her son .vould acknowledge her only as queen-mother, and provoked at once the threat of a parent's curse and an application to Elizabeth for aympathy. In April 1585 Sir Amyas Puulet was appointed to the office of which Sadler, accused of careless indulgence; bad requested to be reliever; and on Christmas Eve she was removed from the hateful shelter of Tutbury to the castle of Chartley in the same county. Her correspondence in cipher from thence with her English ngents abroad, intercepted by Walsingham and deciphered by his secretary, gave enger encouragement to the design for a Spanish invasion of England under the prince of Parma,-an enterprise in which she would de her utmost to make her son take part, and in case of his refusal would induce the Catholic nobles of Scotland to betray bim into the hands of Philip, from whose tutclage he should be released only on her demand, or if after her denth he should wish to return, nor then unless he had become a Catholic. But even these patriotic and maternal schemas to consign her cliild and reconsign the kingdom to the keeping of the Inquisition, incarnate in the widower of Mary Tudor, were superseded by the attraction of a conspiracy against the throne and life of Elizabeth. Anthony Babington, in his boyhood a ward of Strewsbury, resident in tha household at Sheffield Castle, and thus subjected to the charm before which so many victims had already fallen, was now induced to undertake the deliverance of the queen of Scots by the murder of the queen of England. It is maintained by thuse admirers. of Mary who assume her to have been an almost absolnte imbecile, gifted with the power of imposing herself on the world as a woman of unsurpassed ability, that, while cognizant of the plot for ber deliverance by English rebels and an invading army of foreign auxiliaries, she might have been innocently unconscions that this conspiracy involved the simultaneous assassination of Elizabeth. In the conduct and detection
of her correspondence with Babington, traitor was played off against traitor; and spies were utilized against assassins, with as little scruple as could be required or expected in the diplonacy of the time. As in the case of the casket letters, it is alleged that forgery was employed to interpolate sufficient evidence of Mary's complicity in a design of which it is thought crediblo that she was kept in ignorance by the traiturs and nuurderers who had eurolled themsclves in her scrvice, -that one who pensioned the actual murderer of Murray and a would be murderer of Elizabeth was incapable of approving what her keen and practised intelligence was too blunt and torpid to anticipate as inevitable and inseparable from the general desiga. In August the conspirators were netted, and Mary was arrested at the gate of Tixall Park, whither Paulet had taken her under pretence of a hunting party. At Tixall she was detained till her papers at Chartley had undergone thorough research. That she was at length taken in her own toils even such a dullard as ber admirers depict her could not have failed to understand; that she was no such dastard ns to desire or deserve such defenders the whole brief course of her remaining life bore consistent and irrefragable witness. Her first thought on her return to Clartley was one of loyal gratitude aud womanly sympathy. She cheerd the wife of her English secretary, now under arrest, with promises to answer for her husband to all accusations brought against him, took her new-born clild from the mother's arms, and in default of clergy baptized it, to Paulet's Puritanic horror, with her own hands by her own name. The next or the twin-born impulse of her indomitable nature was, as usual in all times of danger, one of passionate and high-spirited defance, on discovering the seizure of her papers. A fortnight afterwards her keys and her money were confiscated, while she, bedridden and uable to nuove ber hand, could only ply the terrible weapnn of her bitter and fiery tongue. Her secretaries were examined in London, and one of then gave evidence that she had first heard of the conspiracy by letter from Babington, of whose design against the life of Elizabeth she thought it best to take no notice in her reply, thongh she did not hold herself bound to reveal it. On the 25 th of September she was removed to the strong castle of Fotheringay in Northamptonshire. On the 6th of October she was desired by letter from Elizabeth to answer the charges brought against her before certain of the chief English nobles appointed to sit in commission on the canse. In spite of her first refusal to submit, she was induced by the arguments of the vice-chamberlain, Sir Cliristopher Hatton, to appear before this tribunal on condition that ber protest should be registered against the legality of its jurisdiction over a sovereign, the next heir of the English crown.

On the 14th and 15th of October 1586 the trial was held in the hall of Fotheringay Castle. Alone, "without one counsellor on her side among so many," Mary conducted the whole of her own defence with courage incomparable and unsurpassablo ability. Pathos and indignation, subblety and simplicity, personal appeal and political reasoning, were the alternate weapons with which slie fought against all odds of evidence or inference, and disputed step by step cvery inch of debatable ground. She repeatedly insisted on the production of proof in her own handwritiug as to her complicity with the project of the assassins who had expiated their crime on the 20th nud 21 st of the month preceding. When the charge was shifted to the question of her iutrigues with Spain, slie took her-stand resolutely on her right to convey whatever right she posscssed, though now no kingdom was left her for disposal, to whemseever she might choose. One single slip she made in the whole course of ber defence: but
none could have been more unluckily characteristic and significant. When Burghley brought against her the unanswerable charge of having at that moment iu her service, and in receipt of an annual pension, the instigator of a previous attempt on the life of Elizaheth, she had the unwary audacity to cite in her justification the pensions allowed by Elizabeth to her adversaries in Scotland, and especially to her son. It is "remarkable that just two months later, in a conversation with her keepers, she again made use of the same extraordinary argument in reply to the same inevitable imputation, and would not be brought to adnit that the two cases were other than parallel. But except for this single instance of oversight or perversity her defence was throughout a masterpiece of indomitablo ingenuity, of delicate and steadfast courage, of womanly dignity and genius. Finally she demanded, as sho had demanded before, a trial either before the estatcs of the realm lawfully assembled, or else before the queen in council. So closed the second day of the trial ; and befure the next day's work could begin a note of two or three lines hastily written at midnight informed the commissioners that Elizabeth bad suddenly determined to adjourn the expected judgment and transfer the place of it to the starchamber: Here, on the 25th of October, the commissioners again met ; and one of them alone, Lord Zouch, dissented from the verdict by which Mary was found guilty of having, since the lst of June preceding, compassed and imagined divers matters tending to the destruction of Elizabeth. This verdict was conveyed to her, about three weeks later, by Lord Buckhurst and Robert Beale, clerk of the privy council. At the intimation that her life was an impediment to the security of the received religion, "she seemed with a certain unwonted alacrity to triumph, giving God thanks, and rejoicing in her heart that she was held to be an instrument" for the restoration of her own faith. This note of exultation as in martyrdom was maintained with unflinching courage to the last. She wrote to Elizabeth and the duke of Guise two letters of almost matchless eloquence and pathos, admirable especially for their loyal and grateful renuembrance of all her faithful servants. Between the date of these letters and the day of her execution wellnigh three months of suspense elapsed. Elizabeth, fearless almost to a fault in face of plysical danger, constant in her confidence cven after discovery of her narrow escape from the poisoned bullets of household conspirators, was corvardly even to a crime in face of subtler and moro complicated peril., She rejested with resolute dignity the intercession of French envoys for the life of the queen-dowager of France; she allowed the sentence of death to be proclaimed, and welcomed with bonfires and bell-ringing throughout the lengtlo of England ; she yiclded a respite of twelve days to the pleading of the French ambassador, and had a charge trumped up against lim of participation in a conspiracy against her lifc ; at length, on the 1st of February 1587, she signed the deathwarrant, and then made her secretaries write word to Paulet of her displeasure that in all this time he should not of himself have found out some way to shorten the life of his prisoner, as in duty bound by his oath, and thus relicve her singularly teader conscience from the guilt of bloodshed. Paulet, with loyal and regretful indignation, declined the disgrace proposed to him in a suggestion "to shed blood without law or warrant"; and on the 7th of February the carls of Shrewsbury and Kent arriyed at Fotheringay with the commission of the council for exccuiion of the sentence given against his prisoner, Mary received the announcement with majestic tranguillity, expressing in dignified terms her readiness to die, her consciousness that she was a martyr for her religion, and ber total ignorance of any conspiracy against the life of

Elizabeth. At night she took $\Omega$ graceful and affectionate leavo of her attendants, distributed among them her money and jewels, wrote out in full the various legacies to be conveyed by her will, and charged her apothecary Gorion with her last messages for the king of Spain. In these messages the whole ature of the woman was revealed. Not a single friend, not a single eneny, was forgotten; the slightest service, the slightest wrong, had its place assigned in her faithful and iaplacable memory for retribution or reward. Forgiveness of injuries was as alien from ber fierce and loyal spirit as forgetfulness of beuefits; the destruction of Eagland and its liberties by Spanish iavasion and conquest was the strongeat aspiratiou of her parting soul. At eight next morning she entered the hall of execution, having taken leave of the weaping envoy from Scotland, to whom she gave a brief message for her son; took her seat on the scaffold, listened with an air of even cheerful unconcern to the reading of her sentence, "olemnly declared ber inoocence of the charge conveyed in it and her consolation in the prospect of ultimate justice, rejected the professional services of Richard Fletcher, dean of Peterborough, lifted up her voice in Latin against his in Euglish prayer, and when he and his fellow-worshippers had fellen duly silent prayed aloud for tho prosperity of her own church, for Elizabeth, for her son, and for all the enemies whom she had commended overnight to the notice of the Spanish invader ; then, with no less courage than had marked every bour and every action of her life, received the stroke of death from the wavering hand of the headsman.

Mary Stuart was -a many respects the creature of her age, of her creed, and of her station; but the noblest and most noteworthy qualities of her nature were independent of rank, opinion, or time. Even the detractors who defend ber conduct on the plea that she was a dastard and a dupe are compelled in the same breath to retract this implied reproach, and to admit, with illogical acclamation and incongrucus applause, that the world never saw more splendid courage at the service of more brilliant intelligence, that a braver if not "a rarer spirit never did steer humanity." A kiader or more faithful friend, a deadlier or more dangerous enemy, it would be impossible to dread or to desire. Passion alone could shake the double fortress of her impregaable heart and ever active brain. The passion of love, after very sufficient experience, she apparently and naturally outlived; the passion of hatred and revenge was as inextinguishable in her inmost nature as the emotion of loyalty and gratitude. Of repentance it would seem that she knew as little as of fear, having been trained from her infancy in a religion where the Decalogue was supplanted by the Creed. Adept as she was in the most exquisite delicacy of dissimulation, the most salient note of her original disposition was daring rather than subtlety. Beside or behind the voluptuous or intellectual attractions of beauty and culture, she had about her the fresher charm of a fearless and frank simplicity, a genuine and enduring pleasure in small and harm!ess things no less than in such as were neither. In 1562 she amused herself for some days by living "with her little troop" in the house of a burgess of St Andrews "like a burgess's wife," assuring the English ambassador that he should not find the queen there,-" nor I know not myself where she is become." From Sheffield Lodge, twelve years later, alle applied to the archbishop of Glasgow and the cardinal of Guise for some pretisy little dogs, to be sent her in baskets very warmly packed, - "for besides reading and working, I take plessure only in all the little animals that I can get." No lapse of reconciling time, no extent of comparative indulgence, could break her in to resignation, submission, or toleration of oven partial restraint. .Three months after the massacre of St Bartholomery had caused
some additional restrictions to be placed upon her freedom of action, Shrewsbury writes to Burghley that "rather than contioue this imprisonment she sticks not to say she will give her body, her son, and country for liberty"; nor did she cever show any excess of regard for any of the three. For ber own freedom of will and of way, of passion and of action, she cared much ; for her creed sho cared something; for her country she cared less than nothing. She would have flung Scotland with England into the hellfire of Spanish Catholicisn rather thau forego the faintest chance of personal revenge. Her profession of a desire to be instructed in the doctrines of Auglican Protestantism was so transparently a pious fraud as rather to afford confirmation than to arouse suspicion of her fidelity to the teaching of her church. Elizabetb, 60 shamefully her inferior in personal loyalty, fidelity, and gratitude, was as clearly her superior on the one all-important point of patriotism. The saring salt of Elizabeth's character, with all its wellnigh incredible misture of heroism and egutism, meanness and magnificence, was simply this, that, overmuch as she loved herself, she did yet love England better. Her best though not her only fine qualities were national and political, the ligh public virtues of a good public servant; in the private and personal qualities which attract and attach a friend to his friend and a follower to his leader, no man or woman was ever more constant and more eminent than Mary, Queen of Scots.
(A. c. s.)

MARYBOROUGH, a town of Queensland, Australia, in the county of March, on the left bank of the Mary river, 25 miles from its mouth, about 180 miles north of Brisbane, in $25^{\circ} 35^{\prime} \mathrm{S}$. lat. and $152^{\circ} 43^{\prime} \mathrm{E}$. long. It ia the priacipal shipping port for an extensive district, communicating by steamer and coach with Brisbane and (since 1881) by railway witly the Gympie gold-fields, 54 miles to the south. A large shipbuilding yard, saw-mills, distilleries, breweries, and soap-works are among the industrial establishments of the town, and extensive sugar factories exist in the neighbourhood. Besides a handsome courthouse and town-hall, the public buildings comprise a hospital, a school of arts with a considerable library, and immigration barracks. Gas-lighting and water from the Tinana creek were both introduced in 1879. The popula. tion of the census district in 1876 was 8608 , that of the municipal area about 700. Maryborough had only about 600 inhabitants in 1860; the municipality dates from 1861, and mas reiocorporated in 1875.

## MARYLASD.

IIARYLAND, one of the ee tral Atlantic States, and one of the original thirteen, lies between the parallels of $37^{\circ} 53^{\prime}$ and $39^{\circ} 43^{\prime} 26^{\prime \prime} \mathrm{W}$. lat. and the meridians of $75^{\circ} 4^{\prime}$ and $79^{\circ} 33^{\prime}$ W. long. from Greenwieh. It is bounded on the north by I'ennsylvania and Jedaware; on the east by Delaware and the Allantic ocean; on the south and west by the Potomac river and its estuary. whieh separate it from Virginia and West Virginia. Its width varies from 3 or 4 miles to 120 miles; its extrone length from eas to west is 19 s miles. The total area of the state is 12,210 square miles, of which 9,860 square miles is land surface, and 2,350 square miles is covered by the waters of the Potomac and other rivers, and of Chesapeake bay.

Topoyraphy.-The eatern shore is mostly level, and in portions swampy, hut toward the neek of the peninsula, at the north, more rocky and broken. The western shore is level and sandy as far north as the Great Falls of the Potomac; above that point it rises in terraces, and soon in broken and rugged hills. The conntry is quite momatanous toward the northwest, in the vicinity of Rock wille. The five or six roountain ranges of the Nlleghanies, ineluding Blue Fidge and Laurel Ridge, extend acruss the narrow northwest portion of the State. The


highest mountainare in \{iarrett county In the extreme western part of the St?, but none of them are orer 2,500 feet high. Washington cous, lying between Tusarora mountain and South mountain, a part of the Cumberland valley, and is renowned for its picesigue scenery, and for its rich suil. The Atlantic coast propuhas a length of only 33 miles, with mogood harbons ; hut Chepeake bay, which is the central geographical feature of the sita and extends in a northerly direetion almost to the northem bendary of the Sitate, furnishes a coast line of more than 500 ms . It its ncean month, the hay is 12 miles wide ; its width a he widest point is 40 miles, and its average breatrh is 10 mil. It is nurigable throughont its whole extent, and has murous excellent harbons. The principal river is the Potomae, wich is mavigule for 125 miles to Washingtom city. The lotone rises in the momonans of West Virginia, and flows finst ntheast and then southeast for a distance of about 400 miles. 'he lower part of the river below Alexandria is, in reality, an elary, where it widens out to a great breadh. The l'atuxent, vieh is its largest river wholly within the State, is navigablor small craft abont 40 miles. The Patapseo, on which the cityf Batimure is situatul, is navigable for 24 milew. The otherivers of the State are-on the eastem shore, the Pomomoke, Anokin, Nantieoke, Choptank, St. Nlichaels, Wye, Chester, Saafras and Elk; on the western shore, the Wicomico, South, Seern, Mush and Susçuehanna. Many of these are rather estuars than rivers, especially in the lower part of their conses, amdre not navigable for any distance above their months. The tis rises and falls in all these rivers. Three sounds, known ast. Martin's bay, Sinepuxent buy and (hincotengue bay; lie etween the eastern shore and the island reefs that receive the tlantic surf. There are numerons islands in Chesajeake bayud Pocomoke sound. Tangier somed and liastern bay are a reality only portions of Chesapeake bay, separated from ity these islands, the largest of which are Assateague, 'Tangicismith's, Ilolhwan's, Dloodworth's, and Kent.
(iedoyy.-The wer part of the eastern shore as far north as the Choptank rier, St. Mary's and Calvert counties on the western shore, all the inlands in the hay are wholly allurial. The northemp pai of the eastem shore, hetween the Choptank and the lilk risr, and Am Arundel, Princes (ieorge and Charles comnties o the western shore, are a Tertiary fornation, mainly Pleistocen and Miwecne, with some argillaccons clays and slates of earlir date, which are of great value as a fertilizer. A narrow belt ofthe cretaeeons formation runs southwesterly from New Jemesto the l'otomac. Beyond this is a wide strip of Eoroic rocks, of which the more important are limestone, gneisc, granite, sequentinc, talc-slates and hydrated magnesian silicates. A narriw strip of the new red sandetone mons through the middle of thi l:ozoic belt, entering the state near the head of the bay, aud e:tending sumbest through the eastem jart of Frederick counts to the l'onomac. Westward of the metamorphice rocks is a vide belt of the Silurian formation, eomtaining l'otsdam sandstones, Trenton limestones, etc. Following these are the beronian red shatis and sandstones, which, in the extrome northwesten part of the State, aro overlath liv the earboniferons formation, containing some of the most important bitmoninns conal measures in Amrion. Wf these, the largent are in the vieinty of lienrge's creck valley, east of Havage mountain. In this valley, which is about :" miles long, is the "higs seam," having athickness of 14 fect. (infore, chnome irm, humatitic iron and other minerals, inchuling manganese, matena and bary-
 Breceis and other marbles and bilding sumbtones and limestonem are quarried from these rucks. Liog irom is found on the enternshore.

In inato, Maryland produced 2,225, S. 4 tons of bituminons

 pombls of erplere ingots ; the total rahne of all mineral products


Soil and I'cyrtation.-In the casterme part of the State the snil is composed of clay and samb, is easily tilled, and with a fair anply of fertilizers rields excellent crops. l'eaches and other
frnits are suecessfully euhivated on these lands. It is extimaterl that Maryland, Delaware and New Jersey fumish nearly ninetenths of the peach crop of the Atlantic coast. In the central and northern eountics of the State the valley soil is very fertile, yielding large erops of tohacco, Indian com and wheat. Among the forest trees, the deciluons oaks, maple, hickory, walmut, chestnut, ash, birch, the pine and spruce are enpecially ahundant in the momatanous districts. The beech, ${ }^{\text {nophar, syeamore, }}$ salssafras, red maple, cedar, gum, cypress, elm, cogwonl, magunlia, juniper and holly trees are found in the lowlands. In all, there are about one lumdred species of trees in the State.
(Yimete-The climate of Maryland is equable and generally healthful, removed both from the protracted heat of the sonth and from the extreme cold of the north. Along the marshy lands, bordering the fower I'otomae and the bay, miamatic influmes are prevalent, and fevers of a kindred nature oceur. The average mean temperature in the western part of the State is $50^{\circ}$, in the middle $54^{\circ}$, and in the sonthern $56^{\circ}$. At Baltimore the arerage mean temperature of the year is $54^{\circ} 64^{\prime}$; of spring, $4.2^{\circ}$; of summer, $76.3^{\circ}$; of autumn, $47.2^{\circ}$; of winter, $33.6^{\circ}$. The total rainfall for the year is 48.11 inches. The mean annual barometer is 30.057 inches. In 1880 the death rate in the state was 1.81 per cent.
Fishories.-The oyster fishery is the most important of the Maryland fisheries. In 1880 , the number of persons employed in the fisheries was 26,008 ; the capital inrested was $86,342,443$; the value of products was $\$ 5,221,715$. The number of ressels was 1,4511 , with a tomnage of 43,500 , and a ralue of $\$ 1,750,000$. The number of boats was 2,825 , with a value of $\$ 186,448$. The value of the products of the general fisheries was 8479,388 ; of the menhaden fishery, $\$ 11,851$; of the oyster fishery, 84,730 ,476 .

Manufactures.-In 1880 there were 6,787 mechanical and manufacturing estahlishments in Maryland, employing a capital of $858,742,38-1$, the total number of operatives was 74,945 , of whom $46,6: 18$ were males above 16 years of age ; 21,00 females above ${ }^{15}$ years and 6,547 were chiddren and youths. The total amome paid in wages during the year was $\$ 18,904,965$; the ralue of materials was $\$ 66,93^{7}, 846$, and the value of products \& $1061,7 \times 0,563$.

Railroads.-The railroad spstem of Maryland with the exceprion of a few local roads, is so vitally comeeted with that of otherstates, and is so littic under the control of the state, that it can scarcely be considered by itself. The most important road is the Baltimore © Ohio, which, including its branches, has more than 300 miles of track in the State. In $18860^{*}$ * the total length of line of railroals in the sitate was 1,246 miles; the length of line operated was 1,002 miles. The eapital stock was $\leqslant 16,313,224$; the bonded debt. $84,019,200$; the unfunded debt,家 $-617,520$; the cost of railroads and equipments, $\$ 43,522,155$. The gross earnings from all sources were $\$ 13,075,692$; the net earnings, ${ }^{5} 5,113,596$.

Commerce-The principal imports are coffee, iron and salt; the principal exports, tobiceo, grain and petroleum. The value of the foreign imports in 1880 was $\$ 18,643,245$; of the foreign exports, $874,395,971$. There are three ports of entry, of which the port of lialtimore is the most important. In Is*i), the numher of forcign ressels arriving was 1,5$)$; of foreign cleamonces was 1 , 633 ; the number of vessels registered in the state was 1, F кs.

Agriculture.-The following table gives the farm statistics of Marytand for the ecensus rears $185 \mathrm{c}-\mathrm{s} 0$ :

| L |  |  |  | $\qquad$ <br> Acrea. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \times 50$ | $\because 11.400$ |  | 4,7.7.905 | 212 | + 57.17 S 545 | \$2.473.418 |
| 1866 | 3).124 | $4,435.571$ | 3.1002,207 | 190 | $1+5,976.677$ | 4.010 .502 |
| 1.40 | 27.1001 | 4.512, 575 | 2. 514.107 | 117 |  | 5,24* 5.1076 |
| 1840 | 41,517 | $5.111 \times 31$ | 3,312.710 | 120 | 165,545,341 | 5.7N.19\% |

*From l'oor's Manual of the Raflroads of the C'ntted States for 1 Asi.

Following is a table giving general statistics of agriculture for the State of Maryland in the census years 1850-80:


The staple crops of the State are tobacco, Indian corn and wheat. Maryland ranks seventh among the States in the production of tobacco.

Finances.-In 1880, the net* State debt was $87,627,668$; the net county debt, $81,37,3,325$; the municipal debt, inclading township and schonl district debt, $\$ 1, \$ 91,013$; the total debt, $\$ 10,596,006$. The estimated true valuation of property was $\$ 369,-$ 000,000 . On October 1, 1587, the State debt (funded) was $\$ 10,-$ 960,535 . IBut as an offset to this, the State held $84,518,799$ in interest-paying securities of corpurations, hesides $\boldsymbol{S}^{2} 7,723,287$ in unproductive securities. The amount raised by taxation in 1886 was $\$ 970,860$. The amount of taxable property as assessed was $\$ 485,839,7-2$, including both real and personal. The State tax on $\$ 100$ was $1 \mathrm{~s}_{4}^{3}$ cents. During the year $1885-86 \$ 1,298,997$ was paid in salaries to teachers, and the total expenses of public schools in the 'itate were $\$ 1,532,3 \times 3$.

Education.-In 1880, the whole number of public schools was 2,551, of which 109 were reported as high schools, or as having high school departments, and 436 were separate schools for colored children. The number of school buildings was 1,934 . The total value of school property was $\$ 2,083,013$. The total receipts were $\$ 1,452,557$, of which $\$ 1,343,707$ was receired from State, county, city and other public funds. The total expenditures were $\$ 1,395,284$, of which $\$ 1,117,145$ were paid for teachers' salaries. The total number of teachers was 3,038 , of whom 387 were colored. The whole number of pupils who attended school during the year was 149.981 , of whom 26,533 were colored. The total average daily attendance of pupils was $85,-$ 449. There are ten colleges in the State. They are: Frederick college, at l'rederick, established in 1797 ; Lovola college, at

[^229]Baltimore, established in 1853 ; Mt. St. Clent's college, as llehester, established in 1853 ; Mt. St. Mary's coe, at Emmittsburg, established in 1305; Rock Hill college, Ellicott City, establinhed in 1867 ; St. Charles' college, nearlicott City, established in 1848; St. John's college, at Annais, established in 1789; Washington college, at Chestertowestablished in 1783; Western \$aryland college, at Westmins established in 1867, and Maltimore Female College, at Baltire, established in 1849. Among the schools of a special chare, Jolins llopkins Lniversity stands pre-eminent. It is situa at Baltimore. It was opened in 18it, with an endowment oure than three million dollars. The other schools of a sped character are the Peabody Institute, at Raltimore, with apndownent of S1,171,difi, and the McDonogh School and Ingte, at Owing's Mills. There are in the State three normal scls, five schools of medicine, and one school of science. The UedStates Military Academy, at Annapolis, was established $\$ 850$.
(reneral Social Stutistics.-In 1880 the wholdtal number of insane was 1,857 , of whom 865 were male and? female; the total number of idiots was 1,319 , of whom sonere male and 513 female; the total number of blind was 9 of whom 477 were mate and 469 female; the total number deaf-mutes was 671 , of whom 366 were male and 305 female; total number of paupers was 1,334 , of whom 1,187 were innalot almshouses. Of these 664 were male and 523 female; thetal number of prisoners was 1,262 , of whom 1,089 were maled 173 female. Maryland has one state and four pricate insa asylums; two State blind institutions, one for white and the her for colored inmates; one public and one private institutionr deaf-mutes; one State penitentiary, and one State and threefivate reformatories, and one State house of correction. lan80 there were 143 periodicals published in the State, of whi 10.5 were devoted to news, polities and family reading, ar 10 were religious. The principal religious denominations re the Methodists, Episcopalians, Roman Catholics, I'resbyrians, Baptists and Lutherans.

Administration.-The executive power of the ate is vested in the gosernor, who is chosen by the electors foa term of four years. He holds the pardoning power, and any lls that he may veto can only be passed orer the veto by a thred ths rote of all the rnembers of each house. He nominates, and ith the adrice and consent of the senate, appoints the secretal of State, commissioner of the land office, the adjutant-generaof the militia, the State librarian, and the coroners and notaps public. 11e also appoints an assistant secretary of State, thistate board of health, two commissioners of fisheries, the auconeers of Baltimore city, and other subordinate officers. He redives a salary of $\$ 4,500$ per annum. The comptroller of the trisury is elected by the roters for two years; the treasurer is selpted by the two houses of the legislature for the same term. Te attorney-general and superintendent of labor and agricultur are chosen in the sane manner, and for the same term of office the governor. The governor appoints the State board of edugtion, with the advice and consent of the senate, and the princial of the normal school is ex officio a member of the board, find usually its superintendent of public instruction. The legisiture consists of a senate of 26 members, elected for four years, and a honse of delegates of 91 members, elected for two years. The legislature called the general assembly, meets biennially, ad by the constitution its sessions are limited to ninetr days The judicial power of the state is vested in the court of appens, circuit courts of the counties, several courts of Baltimore city brphans courts, and justices of the peace. These judges must all be citizens of Naryland, must be qualified voters, and have resided in the State not less than fire years, and in the district not less than sir months. They are elected by the people of their respective dis. tricts for a term of fifteen years, unless they soonerattain ho age of seventy years, when their office expires. The court o appeals is composed of the chief judges of the first sev,u judicial circuite of the State, and a : indge from Baltimore city, ele tod specially thereto. The chiet pustice is appointed by the governcr from among the judges of the court, with the advice and consent of the senate. There are eight judicial eircuits, for the courts of each of which there is to be one chiet and two associate justices, except in Baltimore city, where the number of associate judges is necessarily inereased. The orphans' courts are presided over by three judges in each county and in Baltimore city, who are elected for four rears. Their powers are substantially the same with those of the judges of the probate or surrogates in other States. The judges of the peace in each countr are appointed by the gorernor for two years, with the adrice and consent of the senate. The state is entitled to six'representatires in congress.
fipmution.-The following table gives the population at each eensus, 1790-1890:

| ('ensus Year. | د | Free Colared. | $\begin{gathered} \dot{\sim} \\ \stackrel{y}{む} \\ \hline \end{gathered}$ | ~ | E | $\stackrel{\text { e }}{\text { ¢ }}$ | ¢ | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17.90 | $210<6+6$ | 8.043 | 103,086 | 319.728 | * 107, ${ }^{\text {a }}$ - 1 | * 101.395 |  |  |
| 1.40 | 217.3020 | 19, 5.87 | 10.7,135 | 314.548 | * 110.650 | - 105.676 |  |  |
| $1 \times 10$ | 235, 117 | $33.02{ }^{\circ}$ | 111502 | 340, 516 | * 120.220 | * 114.897 |  |  |
| 1.30 | 260,223 | 39, $3: 10$ | 107,3997 | 415,300 | $204,0 \times 12$ | - 200.4 ks |  |  |
| 15:30 | 291.198 | 52,9:88 | 102,94, 4 | $4+7,(\mathrm{H} 0$ | 20.3, $6 \times 4$ | 2121.3502 |  |  |
| 1810 | 318.24-1 | 62,478 | 89.737 | 470.019 | 2:34, 05.5 | $2: 35140$ |  |  |
| 18511 | 117,943 | 71.723 | 90.368 | 54.101 .51 | 297.471 | 94.5.69\% | 531.47\% | 51.203 |
| 18i() | 515.918 | 83,942 | 87,189 | 687.019 | 340.498 | :316,151 | (i09.520 | 78.523 |
| 15.0 | tin 5,417 | 175,351! |  | 70, 214 | 2xt 181 | 30.3 .910 | (iy7,1*2 | 83.412 |
| [ $\times 11$ | 721, 64. | -310,230 |  | 931.943 | 462.187 | 47,2, 5 5 | 853,137 | 82.806 |
| 18.10 |  |  | . | 1,012,890 |  |  |  |  |

* Whites only enumerated.

In 1s90 the following eities and towns lad a population execeling 4,000:

| Baltmore. | 434,439 |
| :---: | :---: |
| Cumberland | 12.729 |
| Hagerstown. | 10.11, |
| Frederlek | - 1983 |
| Antaryolis | 7,404 |

Annapolis, the capital of the State, is the seat of the naval academy of the United States.

The state is divided into 24 eomnties, and the eorporation of the eity of Baltimore. The counties, with jopulation, in 1890, are Alleghany ( 41,571 ); Anne Arundel ( 34,094 ); Baltimore ( 72,909 ); Baltimore eity ( 434,439 ); Calvert ( 9,860 ); Caroline (13,766); Carroll (32,376); Ceeil ( 25,851 ); Charles (15,191); Dorchester (24,843); Frederick (49,512); Garrett (14,213); Harford ( 24,042 ); 1Ioward ( 16,140 ); Kent ( 17,605 ); Montgomery ( 27,759 ); 1'rince (ieorge ( 26,451 ); Queen Anne ( 18,461 ); Saint Mary's (15,819); Somerset (24, 155); Talbot (19,065); Washington(39,561); Wicomico ( 19,016 ); Woreester ( 19,539 ).

History.-William Claybome, of Virginia, made the first white settlement within the present limits of Maryland in 1631. In 1632 , Cecilius Calvert, second Lord Baltimore, obtained a charter from Charles I. with greater power than had ever before been bestowed on any colonial proprietor. In 1634 Cecilius rent his hrother, Leonard Calvert, as governor of the eolony with 200 emigrants. They landed at St. Mary's; named the colony Maryland in honor of the queen, Henrietta Maria, and eommenced a permanent settlement there. Clayborne, who was disposed to make serious trouble for the new colonists, was indicted ly the legislature for murders, piracy and sedition, and to escape punishment he fled to England. Lord Baltimore, thongh himself a Roman Catholie, weleomed men of all religions and of none, to his eolony. Consequently the colony had a rapid growth. In 1642 an Indian war eommenced which was atributed by the colonists to intrigues of Clayborne or his followers. In litis Clayborne led a rehellion from Kent laland. Although formidable, it was suppressed in August of the following year. For the next twelve years the colony was in constant turmoil. The laritans in the vieinity of Providenee (now Annapolis) allied themselves with Claybome. They increased rapidly in numbers, and in $165{ }^{2}$ commissioners fron lingland, with whom 'layborne was associated, visited Maryland, deposed the acting governor, and fully established the anthority of the commonweath. Lord Baltimore, after a determineil effort, succeeded in regaining possestion of the province, and reinstated Ciovernor Stonc, but Clayborme interfered and overturned the govermment, placing it in the hands of commissionars. A civil contest ensucd in whieh the proprictary party was defeated. In 16.5 Lord hattimore regained his proprietary rights, and his brother, Phillip talvert, was appointed governcr. The eolony inereased rapidly, eontaining 12,000 inhab-
 sumesi the government of the provinee. In 1714 Benediet (ibarles C'alvert, fourth Lord liatiunore, stheceeded his father's proprictary rights, and hasing been educated as al l'rotestan, regained his anthority the following year. From that time forward the colony grew rapidly. hattimore was founded in $17 \because 29$. In the two lirench wars slargland bore m honorable part.

From 1754 to 1758 Maryland was kept in constant fear of In. dian raids. Naryland was governed by the laltimores until the revolution of 1786 , into which its people entered with spirit. The "Maryland line" was noted for its daring, taking a prominent part in most of the deeisive battles of the war. It was to the congress assembled at Annapolis that General Washington resigned his commission. Maryland ratified the constitntion of the United States April 28,1788 . The State sustained severe losses in the war of $1 \times 12$. In the late civil war Naryland, although a slave-holding state, was prevented from leaving the ['nion by the prompt and decisiveaction of the federal government. Sinee the war the state has been pushing forward its activitise in every direction, and has been earnestly striving to become more firmly lound to the great West. The present eonstitution was adopted in $186 \%$ E. II. F.

MARYPORT, a market and seaport town of Cumberlaud, England, is situated on the Irish Sea, 29 miles southwest from Carlisle. It is irregularly built, partly on a cliff and partly on the sea-shore. The streets are spacions, but there are no public buildings of importance. Tice town until 1750 consisted of a few huts called Ellenfoot, when a harbour was constructed by Humphrey Senhousc, which gave a great impulse to ils prosperity. The priacipal exports are coal to Ireland and pig-iron to the Continent. the principal imports timber and general merchandise. Shipbuilding is carried on to a small estent. In 1881 the number of vessels that entered from foreign and colonial ports was 72 , of 35,241 tons burden; the number lhat cleared 120 , of 60,840 tons burden. The coasting trade is much more important, the number of vessels that entered leing 1805 , of 215,332 tons burden, and the number that cleared 1753 , of 187,290 tons. There are rope and saileloth works, iron foundries, and saw-mills, also brewing and tanning. The population of the urban sanitary district in 1871 was 7443 , and in 1881 it was 8177. There was a Roman camp in the neighbourlood of Maryport, and the district is rich in Roman antiquities.

MIASACCIO (1402-1429). Tommaso Guidi, son of a notary, Ser Giovanni di Simone Guidi, of the family of the Scheggia, who had property in Castel S. Giovanui di Val d'Arao, was born in 1402, and acquired the nickname of. Masaccio, which may be translated "Lubberly Tom," in consequence of his slovenly dressing and deportment, He loved to be alone and at honie, neglected "appearances" of all sorts, and was constantly wool-gathering when not intently occupied rith his work; he had no vices, however, and would always do a good turn to an acquaintaace. From childhood he showed a great inclination for the arts of design, and he is said to liave studied under his contemporary Masolino da Panicale. In 1421, or perhaps 1423, he was enrolled in the guild of the speziali (druggists) in Floreace, in $142 \pm$ in the guild of painters. His first attempts in painting were mude in Florence, and then in Pisa. Next he went to Rome, still no doubt very young ; although the statement that he returned from Rome to Florence, in 1420 , when only cighteen or ninetcen, seems incredible, considering what were the works which be undertook in the prpal city. These included a serits of frescos still extant in a chapel of the church of S . Clemente, a Crucifixion, and scenes from tha life of St Catherine and of St Clement, or perhaps some other saint. Theugh much inferior to his later productions, these paintings are, for naturnlism aad propriety of representation, in advance of their time. Somo critics, however, consider that the design only, if even that, was furnished by Masaccio, and the exccution left to an inferior haud; this appears highly improbable, as Masaccio, at his early age, can ecarccly have held the position of a master laying out work for subordinates ; indeed Vasari says that Lubberly Tom was held in small csteem at all times of his brief lifc. In the crucifixion subject the group of the Maries is remarikable; the picture most gencrally admired is thet of

Citherine, in the presence of Masentins, argang seanst , perspective of Paolo Uecello and Brunelleschi (whn nar and converting eight learned doctors. After returning to Florence, Masrecio was chiefly occupied iu painting in the eburch of the Carmine, and especially in thast "Bmacacci eliapel" which he has rendered famous alnost beyond rivalry in the annals of painting.
The chapel had been built early in the 15tly century by Felice Nichele di P'iuvichese Brancacci, a noble Florentine. Masacio's work in it began probably in 1423, and continued at intervals until ho finally quitteal Florence in 1428 . There is a whole litraryshelf of discussion as to what particular tiings were done ly Masaccio and what by Masolino, end long ofterwards by Filippino Lippi, in the Brancacci chapel, nud also as to certain other paintings by Masaccio in the Curmine. He began witb a trial piece, a najestic figure of St Paul, not in the chapel; this has perished. A monoclirome of the Procession lor the Consecration of the Chapel, regarled ns a wouderful example, for that early period, of rerspective and of gronpiug, has also disapneared, though there is sonie suspicioulthat it might yet, with due nains nul research, be recovererl; ; it contained portraits of Brunelleschi, Donntello, and many others. In the cloister of the Carmine was discovered in recent yenrs a portion of a fresco by Masaccio representing a procession ; but this, being in colours and not in mnonochrome, does not appear to be the Brancenci procession. As regards the works in the Bravcacci chayel itself, the prevalent opinion now is that Masolino, who nsed to be credited with a considerable portion of them, did eitller nothing, or at the utmost the solitary eompartment which represents St Peter restoring Tabitha to life, and the same saint healing a cripple. The share whiel Filippino Lippi bore in the work admits of little doult ; to him are due various items on which the fame of Masaccio used principully to ba based-as for instance the figure of St Paul alldressing Peter in prison, which Raphael partly anyropriated ; and hence it may be observed that an eloquent anil often-quoted outpouring of Sir Joshua Reyãolds in praise of Masancio ouglit in great part to be transferred to Filippino. What Nasaceio really painted in the chapel appears with tolerable certainty to be as follows, and is ample enough to austain the high reputation he lias al ways enjoyed : -(1) The Temptatien of Adam and Ere; (2) Peter and the TributeMoney; (3) The Expulsion from Eden; ( (4) Peter Preaching; (5) Peter Baptizing ; (6) Peter Alnsgiving ; ( 7 ) Peter and Johu Curing the Sick; ; (8) Peter Restoring to Lite the Son of King Theophilus of Antioch was begun by Massccio, including the separate incident of Peter Enthroued, but a large proportion is by Filippino ; (9) the donble subjeet already allotted to Masolino may perlaps bo by Masaccie, and in that case it mnst laave been one of the first in order of execution. A few words may be given to these pictures individually. (1) Tha Temptation shows a degree of appreeiation of uude form, corresponding to the feeling of the antique, such as was at that date unexanplled in printing. (2) The Tribute-Money, a full, harmonious, and expressire composition, contains a head reputed to be the portrait of Masaccio himself, --one of the apostles, with fall locks, a solid resolute countenance, and a pointed beard. (3) The Expulsion was so much admired by Raphael that, with comparatively slight modiúcations, he adoput it as his own in one of the subjects of the Logge of the Taticun. (5) Peter Baptizing contains some nude figures of strong naturalistic design ; that of the young naan, prepared for the baptismal ceremony, who stards halfshivering in the raw air, has always beea a popular favocite, and an ${ }^{3}$ object of artistic strdy. ( 8 ) The restoration of the young man to life has been open to much discussion as to what precisa subject was in vier, but the most probable opinion is that the legend of Sing Theophilus was intended.

In 1427 Masaccio was living in Florence with his mother, then for the second time a widor, and with his younger brother Giovanni, a painter of no distinction; he possessed nothing but debts. In 1428 be was working, as we bave seens in the Brancacci chapel. Before the end of that year he disappeared from Florence, going, as it vould appear, to Rome, to evade the importunities of creditors. Immediately afterwards, in 1429, when his ago was twenty-seven, he was reported deed. Poisoning by jealous rivals in art was rumoured, but of this nothing is known. The statement that several years afterwards, in 1443, be was buried in the Florentiue church of the Carmine, without any monument, seems to be improbable, and to depend upon a confused nccount of the dates, which have now, after long causing much berilderment. been satisfactorily eleared up from extant doeuments

It bas been said that Masaccio introduced intô pantuñg the plastic boldness of Donatello, and carried out the linear
rpiven him practical instruction), and be was also the first painter who made some considerable advance in atmospherie perspective. He was the first to make the architectural franiework of his pictures correspond in a reasonable way to the proportions of the figures. In the Braneacci chapel be painted with extraordinary swiftuess. The eontours of the feet and articulations in his pictures are imperfect ; and his most prominent device for giving rounduess to the figures (a point in which he made a great adrance upon his predecessors) was a somewhat maucered ray of putting the high lighis apon the edges. His draperies were broad and easy, and his landscape details natural, and superior to his age. In fact, ho led the way in representing the objects of nature correctly, with action, liveliness, and relief Soon after his death, his work was recognized at its right value, and led to notable advanees; and all the greatest artists of Italy, through studying the Brancacei chapel, became his champions and disciples.
Of the works altributel to Massuccio in pullic or private galleries hardly any are autheatic. The one in the Florentive Acadeny, the Virgin and Cluild in the Lap of St Anna, is an exception. The socalled portrait of Masaccio in the Utizi Gallery is more probably Filippino Lippi ; and Filippino, or Botticelli, may be the real author of the head, termed a Masacrio, in tha London National Gallery.

MASANIELLO (an abbreviation of Tommaso Aniello or Avello) was the leader of the Neapolitan revolt in July 1647. For many years the Spanish Goveroment, in straits for money, had exacted large sums from the Two Sicilies, although the privileges grauted by Ferdiband and Charles V. had exempted them both from taxes ou the necessaries of life and from all external payments whatever. Now, however, under Philip III. and Phili IV., the exac. tions, heavy in themselves, were made more oppressive by being farmed out to contraetors, while the aums raised were usually conveyed to Spain and spent on purposes often having no connexion with Naples. Meantime the industrial classes were sccurged by the excesses of the nobility and the lawlessness of banditti. At length, at the end of 1646 , the duke of Areos demanded a million ducats in gold ; and it was resolved after much opposition to raise it from fruit, one of the most important articles of food to a southern people. Petitions delayed but did not remove the tax ; on June 6 a toll-house was aetually blown cp, but the viceroy did not give way. The discontent was fomented by Genorino, who lad been chosen "elect of the people" (that is, of the district of the eity where the common people bad the right of; roting) in 1619 by the duke of Osuna's influence, and had been employed by him as an agitator. After the duke's recall he had been long in prison, and then returned to Naples and became a priest. He selected for his purpose Masaniello, a fisherman of Naples, then twenty-seven years old, well built, intelligent, and very popular in the city. He was so poor, we are told, that he was usually obliged to content himself with selling paper to wrap up the fish that others sold. He had special cause too for hatred to the taxes: his wife had tried to smuggle a bag of flour into the city as an infant ; she had been imprisoned, and his seanty possessions had barely sufficed to pay ler fine. The temporary success of a rising at Palermo Laid otirred tho people to a sense of their porter, and very little was wanted to produce an explosiou. Oo July 16, the feast of $S$. Naria del Carmine, it was customary to make a sort of castle thich was defended by one body of jouths armed with sticks and stormed by another. Masaniello lad been chosen captain of one of these parties, and got together four hurdred young men, with whom he had already raised the cry of "Down with the tases" when the crisis waa precipitated by a quarrel. On Sunday the 7th a dispute arose in the market (on which Masaniello's house looked) whether the gardeners or the buyers of their
frait should pay the tax. Finally the cwner of the fruit (said to have been a kinsman of Lidamello) upset his basket, saying he would sooner let the preple have it for nothing than pay the tax. Masaniello came $u_{i}$; the tax collectors were pelted with froit and then with stones, and the toll-honso was burnt with cries of - "The king of Spain and plenty ; down with misgovernment and taxes." The viceroy attempted without effect to quiet the people by promises; his carriage was surrounded, and he escajped with difficulty to St Elmo. Neanwhile the populace broke open the prisons, and released all charged with offences against the customs. In the evening, by advice of Genovino, a meeting elected officers, and decided on their demands. Masaniello was chosen ciptain, with one Perrone, who had been in the servico of Maddaloni, and at another time a captain of banditti, as his liemtenant. Next day the people went ia search of arms; many louses of persons who had made thenselves obnoxious to the people, and especially of tax farmers, were sacked, and their conteats burnt; but most of the historians of the time state that there were few attempts to appropriate anything, and those few were immediately punished. The duke of Maddaloni, a man of lawless life, but a decided opponent of the viceroy, was selected as a likely intermediary with the people. The latter demanded the original charter granted by Charles V., which was said to have wrongfully come into the viceroy's own hands, the removal of all tazes imposed since Charies V.'s death, and that the elect of the people should bave as many votes as the representatives of the nobles. All ras granted; but the viceroy made entrenchments to guard the approaches to the castle. Next day the sacking of tax farmers' houses went on. The viceroy attempted to cheat the people by sending documents simply drawn up by himself; and then their rage burst out. Maddaloni was seized and given into custody, but escaped in the night by Perrone's connivance. The people were summoned to arms. The cardinal archbishop Filomarino, who did his best to mediate between the parties all through, came to then from the viceroy, and it was arranged that he should bring them the document. The seizure of arms went on, and Masaniello marching out of the city disarmed and took prisoners four hundred soldiers, while another body of people did the same witb six hundred German mercenaries. On Wednesday Perrone mado his appearance at the head of three hundred bandits partly mounted, and fired npon Masaniello, but without injuring him. The people rushed upon them, and they were killed almost without exception. Somo confossed to laving been instigated by Maddaioni, and a price was set upon his head. His brother Giuseppe Caraffa was fouvd in a monastery and killed, and his hearl and foot were set upon pikes. A new elect of the people was chosen, Arpaia, who had been a partisan of Genovino's in the duke of Osuna's time, and had beea condemned to the galleys. On Thursday Maddaloni's house was plundered and his property placed in a heap in the market under guard. The castle being short of provisions, Masaniello sent some as a present to the viceroy: The Neapolitan galleys, under Gianettino Doria, arrived the same day, and Masaniello refused permission to land or to come nearer than a milo to the shore, but sent provisions on board. In fact he was now undisputed master of the city, not only organizing the military force in it with surprising ability, but dispensing strict though severe justice. Often to sat inside his little house on the market, sword or loaded gun in hand, while petitions and complaints wero handed to him ou the cnd of a pike through the mindow; yet ho still went barefoot, dressed ns a simple fisherman. The people baving assembled consulted together on tho terms of agreement; it was settled by the advice of Genovino that Masanicllo should show
the articles agreed on to the cluke at the palace (he would not risk himself in the castle), and that the viceroy should afterwards swear to them in the cathedral. 'Toward! eveuing the procession set out, Masaniello in a dress of cloth of silver pressed upon lịim by the archbishop. An immense concourse of armed men, estimated at one hundred and forty thonsaud, lined the way or accompanied him Before them went a trumpet proclaiming liva il re di Spagna ed il fuldelissimo popolo di Napoli. Before enter ing the palace he exhibited the charter brought by the archbishop, and charged them not to lay down their arms till they had received the confirmation of their rights from the kiag of Spain. "If I do not retura in an hour," he added, "wreck the city." He was reccived by the viceroy as an equal. All the conditions were agreed to, the chief being-that the clect of the people should have as many votes as the nobles; that all tazes shonld be remored except those already existing in Charles V.'s time ; that the viceroy should get the articles ratified by the king within three months; that no punishment should be inflicted on those who had taken part in the rising; and that the people should keep their arms till the ratification. On the Friday Masaniello dismissed most of his followers to their work, keeping a patrol of four men and a corporal in each street. Next day the ceremony in the cathedral tcok place; the duke of Canjano read the articles, Masaniello meanwhile correcting and explaning, and the viceroy solemnly swore to observe them. Then Masaniello tcre off his rich dress; it was thac, he said, to retura to his fish. And indeed from this time began his ruin. For a week the care of a city, with hundreds of thousands of inkabitants, bad rested upon him; he had been general, judge, legislator, and during the whole time he had hardly slept or eaten, the latter through dread of poison; no wonder if the fisherman's brain reeled under all this. His justice had been severe, but hitherto it had struck men who deserved punishment, the oppressor, the robber, the hired cut-throat; henceforth every one who ventured to contradict him risked his life, and the only man who could persuade him to mercy was the good archbishop. Five hundred in all, it is said, were put to deatt by bis order; though it is probable that they were few compared to the lives taken a short timo afterwards by the viceroy in defiance of his plighted word. Next day in fact the duke set to work; Genovino was made president of the chamber in order to detach bim from Masaniello, for which he was the more ready as Masaniello was no longer the tool he wanted. Genorino had already prevented the demand for the surrender of St Elmo, which could easily have been enforced, as the fort was not provisioned. Cerlo and Salvatore Cataneo with two others offered to the viccroy to nurder Masaniello, and he welcomed their services, On Sunday Masaniello gave orders for laying dorn arms and submitting to the viccroy, which were obeyed in some quarters of the city before they could be recalled. He tried in vain to get the viceroy to accompany him to Iosilippo, where he drank deeply, and in reckless extravagance threw gold into the water to be dived for. Nest day his violence continued; he struck his followers in the strect, and condemned several of his officers to death for not immediately executing his orders. He cut out the head from a picture of Maddaloni and set it on a pike. Vitale his secretary, sent on a message to the viceroy; talked of his intention to raise a million ducats for the king by means of forced gifts from the rich; Vitale was detained in the castle on some pretext, and on leaving next morning was killed by the people of the quarter, who had returned to their allegiance. On Tuesday the 16 th, the feast of S . Maria del Carmine, Masaniello went up into the pulpit, and in a wild harangue recapituiated his services. He knew, he
said, his death ras near at band ; then tearing open his dress he showed bis body emaciated by fatigue and want of food. After some more wild talk he was disarmed and confined in a cell in the monastery. There the quiet seems to have restored hiin ; but his assassins soon broke in ; be turned to meet thens ; five shots were at once fired, and he fell dead. His head was cut off and carried through the streets, while his body was dragged about for a while and then buried outsile the city. Next day some boys ment and dug up the body, washed it, and took the head from the guard in clarge of it. The Neapolitans forgot the cacosscs of the last fow days, and only romembered the leader who had won them their great rictory. People plucked out bis bairs and preserved them as relics, some cven prayed to hin as a saint. All the priests of the city officiated at the funeral, and even the wiceroy was represented by eight of his pages.
(c. н. в.)

MASAYA, a town in Nicaragua, Central America, on the east side of the Lako of Masaya, about 55 miles southeast of Managua, and 25 miles north-west of Granada. The population, mostly of Indian blood, is estimated at 15,000 or 18,000 ; but, as nearly every house has its orclard or garden, the buildings are spread over a much larger area than this would suggest. Previous to 1871 , when a steampump mas erected, all the water required had to be carried from the lake, which lies 340 feet below the level of the town. The volcano of Masaya on the opposite side of the lake was active at the time of the conquest of Nicaragua in 1522, and the conquerors, thinking the lava they saw was gold, had themselves lowered into the crater at the risk of their lives; it had a great eruption in 1670, and began to smoke again in 1860 .
MASCARA, a fortified town of Algeria in the prosince of Oran, 60 miles sonth-east of Oran, lies at a height of 1900 feet above the sea, on the sonthern slope of the first chain of the Atlas mountains, and occupies two small hills separated by the Oued Tondman. The walls, upwards of 2 miles in circuit, and strengthened by bastions aud towers, give the place a somewhat imposing appearance; the French part of the town is substantial and clean; and among the public buildings are three mosques (one used as a church, another as a granary), a large bospital, a small theatre, and the usual establishments attaching to the seat of a sub-prefect and the centre of a nilitary subdivision. A public garden of 10 acres has been laid out in the ravinc. The population was 9442 in 1566, aud 9240 in 1872.
Maccara (i.e., place of soldiers) was the capital of a beylik during the Spanish occilpation of Oran from the 16 th to the close of the 18th century ; but for the most of that period it occupied a site nbout 2 miles distant from the present position. On the remoral of the bey to Oran its importance rapidly declinell; and it was quite an insignificant place when in 1832 Abd-el-Kálir, who lad been born in the neighbourhooll, chose it as the seat of his power. It was laid in ruins by the French under Marshal Clausel and the duke of Orleans in 1835, und, being again occupied by Abd-el-Kaidir in 1838, was again cartured in 1841 by Bugeaud and Lamıoricière.

MASCARENE ISLANDS, or MAScarevhas, a group in the Indian Ocean to the east of Madagascar, consisting of Mauritius (ile de France), Rénaion (Bourbon), and Rodrignez. Mauritius and Rodriguez belong to Great Britain, Réunion to France. The collective title is derived from the Portuguese navigator Garcia Mascarenhas, by whom Bourbon, at first called Mascarenhas, was discovered in 1505 .
MASCARON, Jules, was born at Marseilles in 1634, and died at his diocesan city of Agen in 1703. His father was an edrocate, and he way himself intended for the law, but he preferred the church. As a member of the Oratorian congregation be preached in different provincial towns, beginnirg with Saumur, and in all produced a great effect. Then he ivent to Paris and quickly established his reputatiou at a time when the court, dissolute enough in manners,
had already begun to exercise its connoisseurship in matters of sacred eloquence. Several complimentary speeches of Lonis XIV. to Mascaron are handed down by tradition. He was not, however, in the ordinary sense a courtier; or if so he was a very bold and adroit one. In Lent 1609 hepreached before the king against adultery in the strongest terms. Either from respect for him or to get rid of hins Lonis made hin bishoy of Tulle, but he still continued occasionally to preach and to deliver oraigons funelres before the court. His reputation for these was so high that the king not unfrequently indicated subjects to hiu bimself. His crowning success in this way was his funeral sermon on Turenne in 1675. He was afterwards translated to Agen, where he died, as has been said; but his appointment was not a banishment, and he was summoned more than once to proach before the court, notably in his siztieth year, when Louis is said to have remarked to him, "Votre eloquence n'a pas vieilli." Mascaron, though the contemporary of Bossuet, belongs to an older school of oratory. His style is unequal, and his taste not nlways sure, but occasionally be has much vigour. Besides the Turenne address his funeral sermon on the chancellor Séguier ranks as his chief performance. These, with other similar pieces, were collected and edited by Father Borde, a member of the author's own congregation, in 1740.

MASCHERONI, Lorenzo (1750-1800), an Italiaa geometer, was professor of mathematics at the university of Pavia, and published a variety of mathematical works, the best-known of which is his Geonetria del Compasso (Pavia, 1797), a body of constructive geometry in which: the use of the circle alone is postulated. Many of the solutions are most ingenions, and some of the constructions. of cunsiderable practical importance.
Tho Euglish reader will find a copious extract from Mascheroni's work in Lestie's Gcomelry, 3d ed., p. 204. There is a Frcucle translation by Carette (Paris, 1798), who also mrote a hiograpliy of Dascheroni.

MASINISSA, a Numidan prince whose history is closely intertwined with that of the wars between Rome and Carthage. With true barbarian fickleness, and a keen eye to his own interests, he esponsed now one side now the other, inclining however on the whule decidedly in favour of Rome, so much so indeed as to be spoken of by Roman orators and bistorians as "a most faithful ally of the Roman people." He was the son of a Numidian king or chief, Gala, whose dominions coincided with the eastern portions of Numidia, and thus bordered on Carthaginian territory, or what is now Tunis. He was educated, like many of the Numidian chiefs, at Carthage ${ }_{5}$ learnt Latin and Greek, it is said, and was in short an accomplished as well as a naturally clever man. Although his kingdom ras nominally independent of Carthage, it really stood to it in a relation of vassalage; it was directly under Carthaginian influences, and was imbued to a very considerable exteut, with Carthaginian civilization. It was to this that Masinissa owerl his fande and success; he was a barbarian at heart, but he had a varnish of culture, and to this be added the craft and cunning in which Carthaginian statesmen were supposed to excel. While yet a young man, he drove lis neighbour Syphax, prince of western Numidia, out of the country now known as Algiers, and forced him to dy to the Moors in the extreme west of Africa. Soon afterwards be appears in Spain, fighting for Carthage with a large force of Numidian cavalry against the Romans under the two Scipios. The defeat of the Carthaginian army in 206 b.c., whiclo for a time at least gave the Romans complcte mastery of the sonth of Spain, led him to desert his old allies and to cast in his lot with the fortunes of Rome. The famous Scipio Africanus is said to have cultivated his friendshie
and done all he could to secure his services for his country. Masinissa now quitted Spain for a while for Africa, and was again engaged in a war with Syphax, in which he was so decidedly worsted that he found himself at last inerely the head of a small band of marauders, and was obliged to confine liis movements to the coast. Scipio's arrival in Africa in 201 gave him another chance, and no sooner had he joined the Tinman general than he quite crushed his old enemy, Syphax, and captured Cirta (Constantineh), the capital of Syphax. Here occurs the romantic story of Sophonisba, dauglater of the Carthaginian Hasdrnbal, who had been promised in marriage to Masinissa, but who had subsequently become the wife of Syphar. Masinissa, it is said, wedded her infmediately after his victory, but was required by Scipio to dismiss her as a Carthaginian, and consequently an enemy to Rome. To save her from such humiliation he sert her poison, with which she destroyed herself. Masinissa was now accepted as a thoroughly loyal ally of Rome, and was confirmed by Scipio in the possession of his hereditary kingdom. In the decisive battle of Zama, 202 b.c., which witnessed Hannibal's downfall, he commanded the cavalry on Scipio's right wing, and materially assisted the Roman, victory. For his services on that great day he lad givenhim, under a treaty with Rome, the kingdom of Syphax with its capital Cirta, and thus under Roman protection he became master of the whole of Numidia, and his dominions completely enclosed the Carthaginian territories, now straitened and reduced at the close of the Second Punic War.
Masiuissa was still far from satisfied, and it would seem that he almost lad thoughts of aunexing Carthage itself with the connirance of Rome. He spared no opportunity to harass and annoy the city by pressing unfair claims to some of its best and oldest possessions, and threatening perpetual eneroachments. In a war which soon followed he was successful; the remenstrances of Carthage with Rome on the behaviour of their ally were answered by deputing Scipio to arbitrate in tho quarrel, but, as though intentionally on the part of Rome, no definite settlement was arrived at, and thus the relations between Masinissa and the Carthaginians were still unfriendly. Rome, it is certain, deliberately favoured her ally's unjust claims with the view of keeping Carthage weak. Masinissa too was cunning enough to retain the friendship and good opinion of the Roman people by helping them with liberal supplics in their wars in the East, with Perseus of Macedon and with Antiochus. As soon as Carthage seemed to be recovering berself, and some of Masinissa's partisans were driven from the city into exile, his policy was to alarm the fears of Reme, till at last, in 149, war was declared, the Third Punic War, which ended in tho final and utter overthrow of Carthage. The king bore some part in the negotiations which preceded the war, and died soon after its commencement in 148 b.c., after a life of ninety and a reign of sixty years.
Masinissa was an able ruler and a decided benfactor to Numidia, the resoufces of which he developed, while he converted a people which had been little better than a plundering tribo into a settled and civilized population, and out of robbers and marnulders mado efficient and disciplined soldiers. To his sons ho bequeathed a wellatored treasury, a formidable armp, and even a flect. Cirta, his capital, became a famous centre of fheniciana civilization. In fact Masinissa changed for tho better the whole aspect of a great part of northem Africa. He had much of tho Arab nature, was singularly temperate, and eqaal to any amount of fatigne. His fidelity to Romc was not the fidelity of principle, but merely that of tomporary expediency ; it is in the really good work lio did for his country that tho noilest side of lis character comes into display.
For Shasinnesa, Liry and Salluat's Jugurtha must be speclally consanted by schornas. Enylish renders may to recerred to n very fill arilelo in smith's Ditctionary of Classical! Riography; also to Mommsen's Mistory of Rome nol Niefultrs Iectures.

MASK, or Masque Sce Drame, vol. vii p. 431 sq.

MASKELYNE, Neril (1732-181i), astronomer-rayal nt Greenwich for nearly half a century, was born in Landors October 6, 1732. The great solar eclipse of 1748 seems to bave mode a decp impression upon him; and after studying divinity at Trinity College, Cambridge, of which he was elected a fellow in 1756, he determincd to devote himself wholly to astronomy He early became intimate with Bradley, and in 1761 was deputed by the Royal Suciety to make observations of the transit of Vonus at St Helena. During the voyage he introduced into navigation the determination of longitude by lunar distances, a nethod which Mayer's recently publisherd tables lad made practically possible. In 1763 he madertook a voyage to Barbados ta test Harrison's watelies, which, however. he reported ta be inferior to the metind of lumars for determining longitude. In 1765 he succeeded Bliss as astronomer-rayal, and thereafter devoted himself with singular energy to the duties of his office, which he lield till his death, February 9, 18 l.

Maskelyne's first contrilution to astronomical literature mas "A Proposal for Discoveriur the Annual Parallax of Sirius," puhlished in 1760 in the Philosophical Truasactions, in which also most of lis later original memoirs appeared-e.g., his observations of the transit of Venus (1761 and 1769), observations on the tiles at St Helena (1762), astronomical observations at St Helena (1764) and at Barbatos (1764). In 1763 he published a small octavo, The British Marincr's Guide, which contains the valuable suggestion that, in order to facilitate the finding of longitude at sea, lunardistances should he calculated beforehand for each ycar and publial ed in a form accessible to navigators. This sugrestion, the cgerm of the Nautical Almance, was approved of by the Government, and undir the care of Naskelyne the Naulical Almanac for 1767 was pule lished in 1766. During the remainder of his life Maskelyro continued to superintend the publication of this in raluahle amnual, the Nautical Almanac for 1815 being the last which he prepared. Another valuable scrvice which he rendered astronomy was his inducing the Government to print bis observations ammually. Flan:steed's and Bradley's obserrations had been private property, ard were published as sirch. The result of Maskelyne's action was the accumulation and rapid dissemination of a long series of ouservations which from their continuity and accuracy have been of inestimable value to astronomers, and form along with the Nautical Almanac his most lasting monument. The ihole work of the observatory was carricd on by him and his one assistant in a most methodical manner, Greenwich heing in point of organization second to none amongst the obscrvatories of the day. He introduced soveral improvements in the use of the instruments, being, for example, the first astronomer who measured to tenths of a second; and he prevailed npon the Government to replace Bird's munal quadrant, which had become untrustworthy, by a repeating circle of 6 feet in diameter. The new instrument was constructed by Troughton ; but Maskelyne did not live to see it completed. In 1772 ho suggested to the lioyal Society the famous Scheballion experiment for the determination of the earth's density. Forty years previously Bonguer bud demonstrated by experiment that Chimborazo in South America affected the dircction of the plumb-line quite appreciably; but his observations were not made with sufficient care to deduce therefrom any trustworthy result. Maskelyne's experiments were made in 1774 (see Philosophical Trunsactions for 1775), the apparent difference of latitude between two stations on opposite sides of the mountain being compared with the real difference of Intitude obtained by triangulation. From Maskelync's observations IIutton dednced by laborious calculations that the density of tho eartl was $4 \cdot 5$ tames that oi pure rater: Playfair subsequently estimated with greater accuracy the mass of Schehallion, and obtained $4 \cdot 7$ for the earth's menn density. Maskelyne also took a great interest in various geodesical operations, notably the mensurement of the length of a degree of latitude in Maryland and Pennsylvania (Philosophical Transactions, 1769), which was carried out by Masor and Dixon in 1766-68, and Jater the determination of the relativo longitude of Greenwich and Paris (Philosophical Tjonsactions, 1787). Cassini, Legendre, and Mćchain conducted the triangulation on the French side; on the English side the work was carried on under the superintendence of General Roy. This triangulation was the beginning of the great trigonometrieal survey which has since been extended all over the country. A rolume of Sclcetions (London, 1812) contains several papers that were published by Maskelyncas additions to the Nautical Almanac. His ohscrvations fill three largo foliovolumes, and many of them were reprinted in Vince's Astronomy.
masikinonge. See Piee

MASOLINO DA PANICALE (1383-c. 1440). The life and art-werk of this Florentine painter were related by Vasari in a form which is partly demonstrated and partly inferred to be highly iucorrect. We shall follon the account supplied, and in many respects carefully vouched, by Messrs Crowe and Cavalcaselle.

Masolino (a name which correspends to "Tomny") was said to have been bern at Panicale di Valdelsa, near Florence. It is more probable, hewever, that he was bern in Florence itself, his father, Cristoforo Fini, whe was an "imbiancatore" or ohitewasher, having been clomiciled in the Florentiue quarter of S . Croce There is reason to believe that Tommaso, nicknaned Masolino, was a pupil of the painter Starnina, nod was principally influenced in style by Antonio Veneziano; he niay probably eanongh havo hecome in the sequel the master of Masaccio. His birth took place in 1383; his death later than 1429, perhaps as late as 1410 . The only works which can with certainty be assigned to him are a series of wall pantings executed towards 14:8, commssioned by Cardinal Branda Castiglione, in the church of Castiglione d'Olona, not far from Milan, and another series in the ndjoining baptistery. The first set is signed as painted by "Masolinus do Floreutia" It was recorered in 1843 from a coating of whitewash, and is not a little damaged; its subject-matter is taken from the lives of the Virgin and of Sts Larrence and Stephen. The serics in the baptistery relates to the life and death of John the Baptist. The reputation of Masolino had hitherto rested almost entirely upon the considerable share which he ras supposed te have had in the celebrated frescos of the Brancacci chapel, in the church of the Carmine in Florence; be was regarded as the precursor of Masaccio, and by many years toe predecessor of Fulipptuo Lippi, in the execution of a large propertion of these works. Now, heirever, from a comparison of the Castiglione with the Braneacci frescos, and from other data, it is greatly doubted whether Masolina bad any hand at all in the latter series. Possibly be painted in the Brancacci chapel certain specified subjects which are now eitber destroyed or worked over. Of other and still existing subiects, hitherto assignerl to Masolino on the authority of Vasari and later writers, the anthorship is now more reasonably ascribed to Masaccio,-except only that one compartment, that which represents in oue half Peter reviving Tabitha (or curing Petronilla), and in the other half Peter and Jubn healing a cripple, remains in suspenso between Masaccio and Masolino. In the Castiglione frescos there is some tenderness of expression, and tho nude figures are studied with an amount of care superior to their cpuch; generally the parts are well made out, but without unity of composition, or mastery of perspective, or of contrast and chiaroscure. The merit of these works is not to be compared with that of the Braneacci frescos, unless in the single instance abore excepted.

The now assertained facts of Masolino's life are that towards 1423 he entered the service of lilippo Scolari, the Florentine-bora obergespan of Temeswar in Ifungary, that he stayed in consequence some time iu that country, and that, returning tomards 1427 to Italy, he painted the works in Castiglione. Thus he resettled in Lombardy, not in Florence; ner is there anything to show that bo returned to his Tuscan home at a later date.
Mason, Francis (1599-1874), an American missionary, son of a shocmaker in York, England, was born April 2, 1799. Aiter emigrating to the United States in 1818, he practised there the trade he had learned from his father; but, having stadied languages with his minister at Canton, Massachusetts, he in 1827 entered the Nenton theologicai institution. In I 8.30 he was sent by the American Missionary Unıou to labour among the Karens in Burmah,
where be translated the Bible into two dialects of their language, and also conducted a training college for native preachers and teachers. In 1852 he published a bouk of great value on the fauna and flora of British Burmab, of which an improved edition opprenred in 1860 under the title Burmah, its People and Natural Products. He was also the nutber of a grammar and vocabulary of the Pali language, besides various translations from it and other Indian dialects. He died at Ranyoom, Mareh 3, 1874. See bis autubiography, The Story of it I'orking Men's Life with Shetches of Truvel, 1870.

Mason, George Heming (1818-1872), A.R.A, was born at Whitley, in 1818, the eldest son of a Stafurdshire county gentleman. Intended for the medical profession, he studied for five years under Dr Watt of Birming. ham; but he had no taste for science; all•his thoughts were glven to art. In 1844 be abandoned medicine and travelled for a time on the Contiuent, visiting Frauce, Germany, and Switzerland, and finally settling iu Rome. His pencil was busy with the picturesque scenery that surrounded him, and with bardly any instruction, except that reccived from nature and from the Italian pictures that met bis eye, he gradnally aequired the painter's skill At least tro important works are referable to this period,--. 1loughing in the Campagna, shown in the Royal Academy of 1857, and in the Salt Marshes, Campagna, exhibited iu the following year. After Mason's return from the Contlnent, in 1858, when he settled at Wetley Abbey, be continued to paint ftalina subjects from studies made during his foreign tour, and then his art began to touch, in a wonderfully tender and poetic way, the peasant life of bis native England, and especially of his native Staffordshire, and the homely landseape in the midst of which that life was set. The first picture of this class mas Wind nu the Walds, and it was followed-along with much else-by the painter's three greatest works-the Evening Hymn, 1868, a band of Staffordshire mill-girls, seen, their figures dark against the sunset, returaing frem their work, singing as they walk; Girls Dancing by the Sea, 1869 ; and the Harvest Moon, 187.. \$ason had long suffered from heart disease, which carried bin off on the 22d of October 1872. In his work be laboured under the double disadvantage of feeble and uncertain bealth, and a want of thorough art training, and conscquently his pictures were never produced easily, or without strmuous and long-centinued effert. His art is great in virtue of the solemn pathos which pervades it, of the dignity and beauty which it reveals io rustie life, of its keen perception of noble form and graceful mution and of rich effects of colour and subdued light. In motif and treatment it bas most in comsuon with the art of Nillet and Jules Breton, and of Frederick Walker among Englishmen. An interesting collection of Mason's pictures was brought together by the Burlington Club shortly nfter his death.

MASON, William (7725-1797), was about the begin. ning of the last quarter of the 1 Sth century one of the most eminent of liviag poets, but bis eminence was owing to the lowncss of the poetic level at the time. He is now held in remembrance, not by lis poetry, but by his having been the friend, the litcrary exeentor, and the biographet of Gray. Born in 1725, the son of a Yorkshire clergyman, entered of St Joln's Colltge, Cambridge, in 1742, he took his bachelor's degree in 1745, and seems to have at once decided steadily on a literary career, reading little or nothing, Gray says, but writing abundance. Pope died in 1i44. and the aspiring young poet lamented bim as - Musteus" in a careful imitation of Milton's Lycidas. showing an ear for the music of verse and considerable skill in weaving words together, but not a spark of original force. By bis Musxus (1747) Masors attracted the

[Massachusetts]

noties of Gray, and through his influence was clected a fellow of Pembroke College. Mason was Gray's attached frieod, admirer, and poetical pupil to the end of the greater poet's life. More fancy than judgment, and indolence in reading, were the chief faults that Gray foond in his young friend. With his usual penetration, Gray disccrned the defects of intellect that lie at the root of the weakness of Mason's poetry. He was painstaking enough and more than enough with lis rerses, his cuithets, his phrases, his Ggures of epoech, his rhymes; but he was deficient in eacrgy of thought, his intellectual grasp was feeble, and be accepted and polished the easy suggestions of fancy iastend of exerting himself to find exact expression for his subject. For a modest youth, as Gray describes him, he forned a great ambition, nothing less than the reconciliation of the modera with the apcient drama, to be effected by the strict observance of the unities and the restration of the chorus. His Elfirda, a tragedy published in 1752 in pursuance of this ambition, is constructed elaborately upon deeply considered principles, but the principles are drana from pedantic books and not from the dramntic nceds of men, as may be judged from the dramatiat's opinion that Shakespreare, "in compliance merely with the tasto of the time, showed a disregard of all the necessary rules of the drama." Elfvidra is bighly "incorrect" in tro respects-one venial in a play, the other fatal ; it aloounds in anachronistic allusions and noral improbabilities. Mason's second attempt, Caructacus (published in 1759), is unucla stronger in construction and situation, but he did not possess the rare art of making Lis characters speak out of their own thoughts; they only speak as Mason the poet might have done in their circum. stances if his faney had been quite cool. Both Elfrila and Criructacus were aeted in $1 \% 76$, when Mason had made a considerablo reputation by his English Garden (a poem in blank verse, lirst book published in 1772), his Meroic Einistle to Sir ir. Chunbers in 1773, and his Memoirs of Gray in 17ī5. The plays were not successful; Mason did not expcet success, his plays were intended to be read as peems. The manager perbaps lad hopes from the novelty of the choruses of Saxon maidens and Druids. The second book of the English Garden was issued in 1767, the third in 1779 , the fonrth in 1782. Mason took orders in 1754, and soon ofterriards was presented to the vicarage of Asliton in Yorkshire, the canonry of York, the prebend of Driffield, and the preeentorship of York cathedral. Ashton was his residonce till his death in 1797.

MASON AND DIXON'S LINE, a lino in the United States between Peonsylrania on the north and Delaware, Maryland, and West Virginia on the south, coinciding with $39^{\circ} 43^{\prime} 26^{\prime \prime} \cdot 3 \mathrm{~N}$. lat., and famous for a long time as the limit between the "free" and the "slave" States. It derives its name from Charles Mason, F.R.S. (1730-87), and Seremiah Dixon, two English astronomers who, betreen 1763 aurl 1767 , surveyed the line for 244 miles west from the Delarrare river, leaving only 36 miles of the Peunsylvania boundary to be fixed in 1782-84. This line must not be menfounded, ns has often been done, with the parallel of $36^{\circ} 30^{\prime} \mathrm{N}$. lat., which was assigned by the "Missouri compromise" of 1820 as the limit to the north of which slavery could not bo introdaced.

Mass. Seo Eucharist and Missal.
ILASSA. or, to distinguish it from saveral places of the samo mame. Massa Carbara, a city of Italy, the chief town of the province of Massa, lies on the left bank of the Frigido, it small strenm falling into tho Gulf of Genon about 3 miles lower down. It is 785 miles south-cast of Genoa by rail. nud 26 miles north of Pisa. The ancient part of the city slands on a hill. Among the objects of iaterest it is sufficient to mention the old duenl palace,
the new cathedral (erected instead of the building destroyed by Elisa Baceiocehi because it interfered with the view from the palace windows), the technical scluool, and the academy of science and literature, originally known as Dei Derelitti. Like Carrara, Massa is largely engaged in the marble trade; it also manufactures silk, oil, and paper. The population of the city was 4786 in 1871 ; that of the commune was 15,017 in 1861 and 18,031 in 1881 .
Massa is first mentioned in the 9 th century. About the close of the 10th it was bestorred by Otlio tho Great on the bishopls of Luni, and in consenuence it came to be distinguished for a timine as Massa Lunenso. From the bishops it pussell to the marquises of Luni (hence Massa del M/ruchecse), and more particularly to a branch of the Malaspina family. Atter a period in wbich Lucca, Pisa, the Visconti, the Fieschi, and others were successively in possession it returned, under Florentine protection, to Alberica Malaspina, and finally througle the marriage of Ricciarda Malaspina with Lorenzo Cybo becanie (1519) A/ussa Cybea. Raised under Alberico Cybo from being littlo botter than a feudal village to the rank of a fortified town, Mlassa was in 1568 made the capital of a principality by Maximilian II., and in 1664 the capital of a duchy by Lcopold I. By the mamriage of Maria Teresa dei Cybei with Duke Ercole III. of Morlena it passed to the Este family; and after thie period of the Frenclı Revolution, during which it formed partof the ducly of Lucea assigued to Napoleon's sister and biother-in-law, it was restored by the congress of Yienna to Beatrice, duchess of Modena. Massa was made an eן isconal see only in 1828 , though the design of giving it this dignity had been entertained and aln:ost realized in 1757 . The total area of the ducly of Massa and Carrara was 62 square miles, of which 35 belonged to Massa.
See RepetIl. Diz, della Toscona: Visnl, Memorie drlla faniglia Cybo ; Masellinh, Ficriarda Malaspina c Losenzo C'ybo; and Farsett, Ragion storfco int. della elié di Massa.

## MASSACHUSETTS.

MASSACHUSETTS, a New England state of the American Plate IX. Union, is one of the thirteen original states of the Confederaey of 1776-1788. It lies between latitudes $41^{\circ} 14^{\prime}$ and $42^{\circ} 53^{\prime}$ north, and lougitudes $62^{\circ} 53^{\prime}$ and $73^{\circ} 32^{\prime}$ west. The name is an Indian one, applicd at timet to the hills near the coast and afterwards to a tribe of Indians, and linally was given to the state. Massachusetts is lounded on the north by Vermont and New llampshire, on the east ly the Atlantic ocean; on the south by the Atlantic, Rhode 1sland and Connecticut, and on the west by Rhode 1sland and New York. The length of the state from east to west is 160 miles, and from north to sonth it measures 50 miles, except where two projections, one on the southeast and another on the northeast coast, pive it a width of 90 miles. The irregular coast line, which is in the form of the toe of a boot, gives the state abont 150 miles of sea comat line.
The surface of the state is uneren and almost mountainous in places. There are two rauges of the Green monntains in tho state, the lloosac and the Taghkanie. These mountains running north and south througl the western part of the siate firnish some of the must picturengne scenery to be found in all New England. The must westerly of these ranges is the Taghkanic. The principal elevations of the range are, Sathle mountain, more commonly known as (ireylock, which is 3,505 feet high, and Mt. Everett, $2,6,4$ feet high. At. Tom is 1,200 fect in height, and Wachusett, in the eastern lart of the state 2,018 feet. The Commecticut is the largest river in Massachusett, and is fed by several small streams ; but none of the rivers are navigable, execpt for snall eratt. The Housannie river has its conrse parall. 1 with the Comecticut and llows through the western part of the state. It is separated from the (onneectiont hy the 1 lonac montain. The Merrimae, whieh rises in Now Liampshire, tlows for the last 35 miles ne its eunse through the northeast eorner of thestate. This river furnishen valuable water phwer to manufactories in Lowell, Haterhill and hawrence.
The priucipal rivers in the eastern part of the state are the (harles, at whose mouth is the city of Bosinn, and the Blickstme, with inexhanstille water power. In the weet is also the Hoasac river, which rises in the northwest eorner of the state, soon passes beyond its limits, and flowing through Xew Xork, empties into the lludson. The Westifild and Decrfield rivera are both trilutary to the Comecticut. There are many exceedingly beautiful lakes in Massachusetts, but they nretoo small to be of any consequeuce for navigation. Cape C'od and Capo

Ann form the outer arms of Mascachusetts lhay．On the wes－ tern side of this hay is lioston Harhor which is atid to be the finest roadstead on the coase．Drovincetown harbor is on the extreme hook of C＇ape（od and furnishes protection to ves－ sels approaching Boston．It is a - pacious port and stands next to boston among the harbors of the state．salem harbor or Massachusetts hay is a very good roadstead and on Buzzard＇s Ray，New Bedford has a very capacious and safe port．Besides these there are Nantucket，Wedldect，Vineyard，Edgertown， Nahant，Marhehead，Lynn，Beverly，（iloucenter and Annis－ quan．The shore south of Cohasset is low and sandy；about Boston and further north it is rocky and rough．

The principal islands of Massachusetts bie off the southern coast．Martha＇s linerard is 21 miles long with an average width of five or six miles．IIolmes llole is the most spacions harbor on the island．Mayhew＇s missionary efferts among the Indians were conducted liere．The island has a population of about $4,5 \%$ ．Nantucket is about tifteen miles long and cleven miles wide at its castem end．The shape of the istand is that of a triangle．The pepulation is alont 4,014 ．Nost of the male inhahitants are cugaged in seafaring and the fishing busi－ ness．These islands are much frequented now by summer tourists．Besides these islands there are the Elizaheth groups， of sixteen islands，off Cape＇oxd．
Climate－－The climate is conl but rery trying．The winters are long and scvere，the summers short and subject to very hot periods，which are of brief duration．Snow falls during five or six months and sometines even seven in the comse of the year． The rainfall is very equably distributed throngh the seasons，and has been，for a nmber of years，between 40 and 43.5 inches per year．The thermometer ranges from $25^{\circ}$ Fahr，below zero to $100^{\circ}$ abore．The mean average temperature is about $40^{\circ}$ Fahr． The ocean tempers the climate considerably on the sea coast． The changes are often very sudden and the passage from winter to spring is rapid，making the spring seasnn short．The pre－ vailing winds on the coast are from the east；in the interior， from the north．

Iegetation．－Much of the soil of Massachasetts is sterile．The ooutheastern part is sandy and flat．Here there never has been any vegetation of any account；but the other parts of the State were formerly covered with deciduons trees such as oak，chest－ nut，ash，maple，hickory．On the hill tops and mountain sides， pine and hemlock grew．Nearly all the flora found in the New England States and Eastern New York are natives of Massachn－ setts．When the forests were cut down，the land was found to be of poor quality and it has required the ntmost toil to make its cultivation profitable，except in the river valleve．
Zoollogy．－The larger animals have been exterminated；but foxes，squirrels，rabbits and other small game are quite numer－
lime，while on the other hand the sulphate of lime is alnast univenally present．A neculiar variety of soapstone has hetn found in Andover，which，on account of its hardness，may be used in external architecoure．The inexhaustible quantity of the serpentine of Lymnfield，on account of its ricinity to Salem and Buston，renders it of great value．Small and irregular veins of a very surerior bituminnus coal are fonnd in the saad－ stone of the Igawan river in Vest Springtied．

Among the ores in the state are carbmate of iron，found very abundantly at Newborv．The magnetic iron fonnd in War－ wick is not worked on accombt of difficulties experienced in its reduction．The valuable chromic iron ore is found in Chester． It occurs in serpentine，in couches fron： 5 to is inches wide，and is said to contain traces of phatinum．Simonite or hematite is abundant at several places in Berkshire consty．Copperas is manufartured at IIubbardston in large quantitics．
Denegrophical．－Massachusetts is peculiarly mountainous． Dr．Ilitchenck，who made the first geological surver of the State，says of it：＂We find some sconery that is tritiy Alpine， the sharp，towering peak，the overhanging clifis，and lhe rar－ ing torrent beneath，arrest the attention and excite string emotions！Such nhects are numerous in the state，especially in the western part．＂The principal momatans of Masarhin－ setts are Holroke，Tom，1loosac，Wachusett，Toby，Kugar I．onf， Lincoln and I eerficld．

Scientific．－The highest parts of Massachusetts and in fact all the northern parts of the continent of North Imerica have been swept over by a powerful current from the northwet to the southeast．In Massachusetts，we have Mt．Everent，not less than two thousand six hundred feet high，and Wachuset，not less than three thousand feet high，both bearing marks of pow－ erful erosion，and standing as isolated peaks，hundreds of feet above the surrounding country．This erosion must have been due to dilurial waters，icebergs and glaciers．To these agencies also must be attributed the＂drift＂of stones，gravel，etc．，that are found everywhere in the State．

Population．－The population of the State May I，1885，was $1,942,141$ as against $1,651,912$ May 1，1875．The gain for the decade was 290,228 or 17.57 per cent．By the national census of 1890 ，the population was $2,238,943$ ．

| $\begin{aligned} & \text { Census } \\ & \text { Years. } \end{aligned}$ | Males． | Females． | Population． | Percentage． |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Males． | Females |
| 1885 1875 | 932,884 794,383 | ${ }^{1,809.957}$ | $\xrightarrow{1,942,141} \begin{aligned} & 1,551,92\end{aligned}$ | ${ }_{48}^{48.09}$ | （ $\begin{aligned} & 51.97 \\ & 51.91\end{aligned}$ |


| Counties． |  |  |  |  |  |  |  | 易 易 品 |  |  |  | 永 |  | $\begin{aligned} & \dot{\ddot{z}} \\ & \stackrel{y}{c} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$ | 嵓 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Persons | 1.942 .141 | 29，845 | 73．828 | 158．495 | 4，185 | $\underline{263.727}$ | 37.449 | 116.769 | 48.472 | 357.314 | 3，142 | 102，142 | 81.680 | 421．199 | 244，039 |
| Familles．． | 424．415 | 8.330 | 15，746 | 34，802 | 1：218 | 59，263 | 8.407 | 25.150 | 10.559 | ${ }^{75} .968$ | 1，026 | 22，614 | 19．834 | ＊6，97\％ | 54，24．66 40.531 |
| Dwellings | 324.828 | ${ }^{8} 8.388$ | 14．402 | ${ }_{2}^{23,972}$ | 2，${ }^{2} 12$ | 44.914 | 7.757 55.07 | 18.322 14.27 | 9.195 89.76 | 62.739 443.86 |  | 20.127 194 |  | 53，129 .570 .66 | 40.531 157.44 |
| Franities to a square mile． | 52.79 | 28.72 | 15.75 | 65.66 | 10.15 | 118.53 | 12.95 | 37.32 | 19.55 | ${ }^{94.37}$ | 17.10 | 42.07 | 27.36 | 1，976．75 | ${ }_{35.01}$ |
| Land surface in square mile． | 8，040 | 290 | 1.000 | 530 | 120 | 500 | 650 | 670 | 540 | 805 | 60 | 526 | 725 | 14 | 1，550 |

ous still．Bears，wolres，wild cats，panthers and deer were once numerous，but are very marely seen now．Owls，hawks，gulls， ducks，partridges and a great varicty of song hirds are common． The fish in the rivers and along the sea coast are aloundant and many of them edible and of excellent quality．Those that have the best reputation，are the cod，hatibut，mackerel，had－ dock，bass and tautog．L＇nder the state commission the artifi－ cial cultiration of salmon and other species of fish has been suc－ cessfully carried on．

Geology－General．－Dr．Shałer says：＂Topographically as well as geologically，Massachusetts is divided into four sections．＂ The sontheastern part is made up of macial drift．Westward to the Connecticut river the rocks are of the laurentian，Cam－ brian and Carboniferons ages．From the Connecticut valley to the New York line the racks，accurding to Professor Emerson of Amherst College，are Silurian．

Geology－Eeonnmirnl：－All the soils contain phocphates，and the phosphate of lime is invarially prement．With fow excep－ tions the soils of the state are entirely destitute of carbonate of

Popmation and relative rank of the fifteen leading cities of Massuchusetts for 1890 ．There were 31 cities of more than 10,000 inhabitants．

| Citics． | Populaticn． | Rejative Rank． |
| :---: | :---: | :---: |
| Boston | 448.477 | 1 |
| Warcester． | S4．6\％5 | 2 |
| Lowe！t．．．． | 77，696 | 3 |
| Full River | 74， 0.908 | $\stackrel{+}{5}$ |
| Lyun ．．．． | 55， 727 | 6 |
| Lawrence | 44，654 | 7 |
| sprineficld | 44.179 | 8 |
| New ledford．． | 40.733 | － |
| somerville | 40.152 | 16 |
| Holroke． | 35.637 | 11 |
| Salcm． | 30.401 | 12 |
| Chelsca． | 27,909 | 13 |
| Haverhill | 27，412 | $1{ }^{1}$ |
| Tauntor． | 25.448 | 15 |


| colar and Raee. | Year. | Native. | Foreigu. | Total. |
| :---: | :---: | :---: | :---: | :---: |
| The siate....... | 1885 | 1,415,274 | 526,867 | 1,912,14i |
| White | 1585 | 1,998,234 | 524,710 | 1,922,941 |
| 3 Snek | 1885 | 11.917 | 1,082 | 12,999 |
| Mulatco. | 188.9 | 4.731 | ti05 | 5.334 |
| Chinese. | 18x | 2 | 430 | 432 |
| Јаринезе | 18xi |  | 20 | 20 |
| 1 udian | 1885 | 390 | 20 | 410 |

Agricullure. - The soll of Massachustta is, for the greater part, ster1le. The sontheastern part ia barren and sandy. In the uelghborhood of the large clifes there are rieh market gardens made productlve by high cultivation. The valleys are rich and fertile, and the soil fin the Connecticut river valley is as productive as cau be found, even in the Western Sthtes. There was in the State in $18 \% 5$, $239,2 f 0$ acres of eultivated land, $1,479,454$ acres of inmproved land, of which 90,212 acres are unlmprovable. Woodiand comprised $1,389,501$ acres. Of the total acreare of cultivated land in the State, 939 , stio, acreage for seventeen erops нmounted to $75 \% .193$, or 50.20 per cent. of the whole cultivated area. The average value of yield per acre. for the seventeen crops was $\$ 19.15$ on an average value per acre for all cultivated land of sinatio, or a gross retnra of a littile over 30 per cent. per acre. The following ahows these seventeen individual produets.

| Crops. | Acreage. | Value. |
| :---: | :---: | :---: |
| Barley | 2,219.75 | \$ 51.040 |
| Buckwheat | 4,202.21 | 37,347 |
| Indian Corn. | 48.485 .19 | 1,271,349 |
| (iranberriea. | 2,900 19 | 540,909 |
| Clover Hay. | 11,850.11 | 221,822 |
| English Hay | 393,852. 85 | 7,289,829 |
| Meadow Hay. | 137.257.04 | 1,365,411 |
| Millet Hay. | 5,399 82 | 115,379 |
| Salt Hay. | 23,009. 48 | 198,081 |
| Hay not elasaified | $48,110.11$ | 486,371 |
| Qats | 18,235.40 | 273,318 |
| Onions | 1.58044 | - 270,115 |
| Potatoes. | 33.878.34 | 1,904,225 |
| Rye | 18,350.70 | 164,181 |
| Strawberries | 1,324.64 | 406,895 |
| Tobaceo | 2,673.6s | 474,929 |
| Wheat. | 253.95 | 7.492 |

The aggregate value of all products for the year was $\$ 47,756,444$; vaine of farm bulldings, $\$ 20,547,431, n o t$ including houses. Value of farm lmplements and machlnery $\$ 7,397,990$, of domestic animals of 1 arm implements and machanery $\$ 7,397,990$, of domestic animals
$\$ 17,055,153$. There are 41,010 farms owned; 3,243 rented; u83 worked $\$ 17,055,153$.
on ahares.
A large part of the tobncco and onions Is raised In the Connecticut rlver valles. In the portion between Springfield and Greenfield, The farms are largely owned by inmmgrantanow, the native farmlag popalation having gone farther west.

Mranfacturers.-The decrease of capital devoted to production In 1859 as compared with 1888 , amounted to 1.14 per eent. The increage in the value of goods made reached 2.45 per eent. In 1688 the average number of peraons employed in all the eqtabliahmenta represented was 198,914 , and the average number of persons em-
plosed ln the sume establishments in 1889 was 200.685 ; this is an lucrease of 0.89 per cent. In the average number emplosed. The anmber of persons employed at the periods of employment of the greatent nnmber shows an increast of only $0.0 f$ per cent. in 1589 as compured with 18 sh, whlle the number emplayed at periods of emcompured with $18 k 8$, While the number emplayed at periods of em-
ployment of the gmallest number shows an increase of 3.82 yer ployment of the gmallest nmmber shows an increase of 3.82 yer
cent. The range of nnemployment was greater in 185 s than in cent. The range of unemployment was greater in lss than in

 latter year, a deereare in 1889 of 12.27 jur cent. The average number
of persons employed in each entalfanment during lxas was i4t: the average number employed during each month of the year, in ench establiahment, runged from 145 persons to 148 persong.
The average fearly earnings per individual, without regard to acx or are, employcul in the 47 fndustrles were $\$ 413.19$ in 1888 , and $\$ 19.17$ ln 1869 . The range from hlyhest to lowest average yearly earnings was irom $\$ 4.2 .14$ to $\$ 2+i t i .67$ ln $1 \times 48$, and from $\$ 74.74$ to \$305.14in 1859. The hlgher earulngs ruled in the industrles demanding greater gkll amd employlng males chlefly, nud the lower In factory industriey employing u inve proportion of femsles und in factory indus
young persoug.
The average proportion of huslness done reached 77.5 per cent. In 1848 and 78,74 per eont. In 18 k 9 , of the fuil broductive chpacity of the 1 Bita establlshments eompured. In 1 Ni*, 917 estuhlishments, and in 1889,883 establlshments rum pructleally the entlie yent.
in 1888 there were 568 boot and shee establlshments whén turned out coods to the value of $\$ 45,10,51 \%$. There were lif eatton goods establlabmenta, whleh made \$4, FNQ, 148 worth of goods. There wers $2 \Delta 7$ establishments manufncturing inetailie goods. The value of their goods made furlug the sear, was $\$ 3,074.810$. The Value of the goods made by the 103 woolen manufactorles the the State was $\$ 32,2 \times 7,915$

The total number of manninctorles of all indingtrles was 3.254 :
 value of goode made per establishment was: Boota mad ghocs.
 \&rles, slis,939, In the amonnt of food prebarations put un in the State durlmg tho jenr $1 \times \& 9$, Sfasmehnaetts exceeded unarly every


In this line of business: the total Value of their producta was $\$ 52,362,751$, the average valne of products per egtablishment was \$2iJ.665. Dussachusetts stands first in the list of States in the production of cotton and woolen goods, and in the manufacture of boots and shoes. The paper and luper goods iudustry gives evideuce of lnereasing prosherity. There has been a strong tendeuoy towards a decreuse in the mumher of private firms and an inerease in corporations during the past few years.

Total value of manufactured products.
\$674,6:4,269
Total value of agricultural producta
47756,033
Total value of the tisheries
$6.412,699$
Total aggregate
$725,852,994$
$782,244,143$
Total Vahuation of real and personaj estate.
$1,782,244,143$
Total tax for State, country, city and town pur. poses.

$25,850,31 \prime$

14.50
375.28
917.72

Product per individua!
[aluation per individun]
31.28
917.72

Taxation per individual..
13.31

Bunks. - The total assets for iss9 of the 177 aarings banks of the commonwealth, $\$ 350,072,392$, are exceeded by no other state exeept New York, in which they are $\$ 15,889.796$. On Octoler 31,1889 , the number of open accounta was $1.029,694$; number of deposits, 992 , 37̄; amonnt of deposits not including dividends, $67,609,338$; average deposit, $\$ 6 \times .13$; total earnings, $\$ 16,919.069$; total ordinary dividends, $\$ 12,359,518$; total extra dividends, $\$ 162,47 \%$. This showa an increase in every respect over the previous year.
 Stock Exchange atands next to that of New York. The proportion of citizens who hold United States bouds. to the population of the state, is greater than that of any other state in the anion.
Publicatinns.-The earlieat printing in the British colonies was done in this State, in the city of Cambridge. The Cambridge and Riveraide presses are to-day among the foremost in the country, and Boston, with New rork, Philadelphia and Chicago, ranka as one of the first cities in the amount of busiuess done by its publlshing houses. The first regular newspaper, the Boston Neusletter was established as early as 1704 . The principal newapapera are publighed in Boston. The Springfield Republican, which is of considerable influence in the westerm part of the state is published in Springfield. There are in all 418 periodieal papers published in the state. Of these 48 are daily, nine gemi-weekly, 274 weekly, fire bi-weekly, five semi-monthly, 83 monthly, one bi-montbly, 14 quarterly, two annual.
Railroads.-The railrrad system of Massachusetta is the most complete of all the States. The rivers offer nofacilities for transportation, but a perfect network of railvays brings nearly every dity and towniu the State into communieation with the great centers. Trunk and branch lines run out of Boston in almost every direction, thus ciogely connecting the suburban towns with the metropolis. This makes it possible for persons doing husiuess in Boston to have suburban homes, and large numberg take advantage of this opportumity. isut few eities in the United States can equal, tu any respect, the beantiful outlying towns of Boston. The oldest road in the State is the Boston \& Lowell. It was opened for use between these two pointe in 1895. There are about sixty corporations in the State, but the different lines have so com bined that less than twenty-five boards of direction control all the roads. The railroads are nuder the supervision of a board of railroad commissioners, who are appolnted by the State, and vested with large powers. The province of the board is to settle disputer whieh come up between the different roads, between the roads and Wheh come up between the differeat roads, bemeentac amplaints against the roads, to find out and recommend aremedr, to supervise accounta, examine the condjion of tracks, bridges, ete., and to inrestigate examine the condition of tracks, bridges, ete., and to investigate
accidents. The cost of this supervision for ten fearg was onetwentieth of one per cent. of the gross receipts of the roads. The Fitchburg road which runs through the northwest part of the state, goes throngh the iloosac tunnel. This tunnel was began in 1855, but was not completed until 1.74. It was cut through almost aolid rock for a total distance of four and three-fourth. milea. From the top of the mountain a shaft was suak which meets the tunuel at about half the distance from its two opeuings and furuishes a means of veutilation.
It eost $\$ 14,000,000$ to complete this tunnel. for which the State lent its aid and credit. The totul number of miles of rallrond in Ifassachusetts in 1589 was $2,5 \%$; the length of Ifne operated was 3.371 ; the capital stock amounted to $\$ 126503,644$, funded debt. 3.371 ; the capital stock amounted to $\$ 126,313,644$, funded debt,
$\$ 87.788,614$; total jnvestuent, $\$ 224,47,6 \%$ eost of railronds and $\$ 8,778,014 ;$
equipment, $\$ 199,71!1,281:$ yross earnings from passeager trade,
 The net earnings were $\$ 10,330,97$. laterest pald on bondsamounted to $\$ 4,4 \times 2,927$; interest pald on stjek, $\$, 042,256$. Poor's raltroad mamul shows the growth of railroads fo the State since $18 \mathrm{~s}^{\circ} 0$ to have been as follows:

|  | Nıumber of Miler in Operation. | Iear. |
| :---: | :---: | :---: |
| 1.264 |  | 1260 |
| 1,480 |  | 1, 70 |
| 1.915 |  | 1580 |
| $1,097.50$ |  | 1, $1 \times 4$ |
|  |  | 1847 |
| 2,074.32 |  | 184, |
| 2,082.77 |  | 1859 |

Fishorirs. The fisherles have always absorbed considerable attellion from those living nlong the shores of Masamelusetts. The most important conters of this trade nre at ibloncesternad New Bediord-ilouecster is minsurphasind or the magnitude of fa cood
and mackerel inheries: Dew Bedford Is the leading market for the
products of the whale. The number of ressels in the state eugaged In the whale fisherles is about 175, as against 1,000 in the cod and mackerel faneries. According to the ceasus of 1570 nad $15 * 0$, ahout half the products of the whole eastern fisheries of the finited 8tates. excent the whale flsherles. Was the result of Massachusetts labor and criterprise. The followiug table gives the statlstics of bhe fiaberles for 11 assachusctts for the year 1ss5:

| No. of citles and towns engrged | ${ }^{67}$ |
| :---: | :---: |
| Investments in working capital. | 7.867, 8.8 |
| Investment-inajparatus. | $1 .(x \times 0,913$ |
| luveatments in sale and ice | $2 \times 3.340$ |
| cotal invcrturents | \$8.610,581 |
| Falue of food fishtaken | \$4.5666,679 |
| Value of tish product | 227.793 |
| Value of food fish uroducts | 2.346 |
| $V$ atue of shell fish | 359,257 |
| Value of whale and seal product | 1,270,513 |
| Value of other products. | 36,0:1 |
| Total | 6,462,692 |

Schoouers
Sloops.
Barks
Brigs
Stermers
Ships.
Total
 Number of

## Kind of Vessels.

number of von-resident fishermen employed .11,743
loyed 2,933
Number of shore mhorers employed
Number of curers and packers emplosed.
Total
$.15,435$

Cammerce.-There are twelre collection districts io Massachusetts, and the forelgn and domestic commerce of the State is quite extensive. Previous to the age of iron vessels, Massachusetts ranked among the rery first, not only in the construction of ocean craft, butalso in the amount of goods carried by her vessels to aud from her ports. For several years previous to the civil war, steam from her ports. For several years previous to the civil war, steam
bhip lioes had run to Philadelphia and Baltimore, as well as to ports further south. These lines represented Nassachusetts capital. The war and the iutroductiou of iron ships broke up her ncean commerce, and directed the capital to railways and manufacturing interests. In 1572 the fire occurred in Boston, which destroyed $\$ 2.000,000$ worth of properly and crippled busloess enterprises. Business depression thronghout the State, from this and other causes. was followed by an era of prosperity. The following tablegires a summary of her commercial trades for 18.5:

| Kinds of Vessels. | Number of Yessels. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ¢ |  |  |  |  |  |
| The State. | 461 | 259 | 77 | 797 | 695 | 20 | 82 |
| Barks |  | 81 | 5 | 86 | 82 |  | 4 |
| Barkentioes | 2 | 12 | 6 | 20 | 19 | 1 |  |
| Brigs | 2 | 17 | 4 | 23 | 21 |  | 2 |
| Sehooners. | 334 | 25 | 62 | 424 | 408 |  | 16 |
| Ships.. |  | 45 |  | 45 | 43 |  | 2 |
| Sloops.. | 39 | 76 |  | 39 160 | 38 84 | ${ }_{18}^{18}$ | 58 |
|  |  |  |  |  |  |  |  |

KIN゙DS OF COMMERCE AND CNDER WIIAT FLAG. FOK THE STATE.

| L'nder What Flag. |  |  |  | Coastwise Commerce. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Number of Vessels. | Tounage. |
| The state .............................. |  |  |  | 461 | 171,650.37 |
| American..................................... |  |  |  | $\begin{array}{r}459 \\ \hline\end{array}$ | $\begin{array}{r} 1,0.778 .37 \\ 882.00 \end{array}$ |
| The state, aud kind of Commerce. |  | Value of Vessels. | Amount Owned by- |  |  |
|  |  |  | Clitizens of Citizens ofMassa-chusetts.otberStates. |  | Foreigners. |
| The State... | 797 | \$27,910,604 | \$9,765,319 | \$3,928,031 | \$ $14.217,254$ |
| Coastwise. Ocean... Coastwise and Ocera........ | 461 259 | 9.408.050 | $\begin{aligned} & 6.307 .053 \\ & 3.0 .00,070 \end{aligned}$ | $\begin{array}{r} 3,029,972 \\ 611,647 \end{array}$ | $\begin{array}{r} 11,025 \\ 14,206,229 \end{array}$ |
|  | 259 | 17, 2048.45 |  |  |  |
|  | 7 | 631,600 | $348,1 \times 8$ | 286,412 |  |

In 1885 the State contributed more than two and three-quarters millions of dollars as interual reveme to the treasurg of the Fedmillions of dollar

Health-births and Denths.-A state board of health, luuacy and charity has supertisioo of the public bygieue aud of the institutions for the paupers aud insane. The twelve principhl canses of fatality in all ages are in the following order: Consmmption, pueumonia, diphtheria, heart disease, old age, cholera infautum, cancer, scarlet lever, cephalitis, bronchitis and apoplexy. The number of deaths for 1888, and the order of disease, is as follows:

| Miasmatic diseases........ 7,645 | Thelopmental |
| :---: | :---: |
| Euthetic diseases........... 233 | Children |
| Dietic diseases.............. 160 | Adults |
| Parasitic dis | Old people............... . . . 2,02 |
| 1)iathetic diseases.......... 1,759 | Diseases of uutrition....... 95 |
| Tubercular diseases........ 7,408 | Aecident or ueglig |
| Diseases of- | Battle |
| Nersous system........... 5,562 | Homicid |
| Organe of circulation ..... 3,191 | suicide |
| Respiratory organs......... 5,450 | Execution |
| Digestive organs............ 2,240 | Suddea, ce |
| U'rionry organs............... 1,599 | tained |
| Orgaos of generation...... 70 | Causes not stated, or |
| Organs of locomotlou...... 136 | defined. |
| lotegumentars system..... 106 |  |

For 1588 the births to erery 1,000 of the population were more than 26 . The total number registered for the year was $54, \$ 93$, which was larger than that of any year since the beginning of registration in Massachusetts.
The number of deatlis reported for the rear 1848 was $42,02 \%$, which was 1,334 more than the number returned in 1557 , and 4,553 more than the number reported in 1 sso.
It was also greater by 3,929 than the arerage mortality of the fire rears ending with 1887, and was the greatest number reported in any year since the beginning of registration.
Estimating the population in $188 \%$ to bave been $2.04 t, 506$, the death rate for the rear was 20.59 per thousand of the living population, which was greater than that of auy previous year since 18\%5, and was also sufliciently large to increase the average mor1870, and was also suticiently large to increase the arerage mor-
tality rate (19.43) for the thirty-seven fears (18jl-1*N) to 19.45 for tality rate (19.43) for the thirty-seven years (1sul
the period of thirty-eight years ending with isss.
the period of thirty-eight jears ending with 1 Sss .
Education.-I I the year $18 \times 9$ there were six norinal schools in the commonwealth, with an attendance for the rear of $1, \$ 52$ pupils, the largest number for any jear in the history of these iustitutions. Their graduates find steady employment iu teaching as soon as their course is fuished. Of the 8,753 teachers in the State, 3,373 bare receired a professional trajaing. The number of persons la the state between the ages of fire and fifeen was 367,785 . The number of all ages in the public schools during the year was 363, 166 -an increase for the year of 5.000 . There was an iucrease of 5.505 in the arerage membership of the schools, and an increase of

6.0as in the average dally atteadance for the year. The per cent. of dally nttendance was 90. There were 346 prlvite schools-an io cresic of 48 for the year. The number of pupils attending these schools was 37,620 , an increase of 7,000 . The Massachusetts gystem of schools includes the high school, which stands at the head of this system.
There were 836 high schools in the State, an lacrease of slx for the ycar. Over 90 per cent. of the jeople live ia places supporting high achools. A high scbool traloung. such ss may now be ob high whonis. A high scbools in thest high schools, wrepare students for the adtaloed in the best high schools, will prephre students for the advanced studies of the collesesticallife.

Two hundred and fifty eveaing schools were maintslaed during the vear, in flty-one cjtifes nod towns, with an nttridanee of 12.59, punils. The statates require ewery town to provide a suitable place for the coofinement, discluline and instruction of its turant place for the cognaement, disclinasent which wrovides that the achool committee of every city and town shall furchase, at the expense of such elty or town, text books and other echool supplies used In the public schools, to be lonned to the papils frce of charge. used in the publie schools, to he lonined to the piphls free of charge omploved 89 teachers: 901 were nicu, 9,222 were women. The employed as teachers: 901 were nicu, 9,222 were women. Aye
average warespad to male tuachers was $\$ 088$ per mouth. Aver average wages paid to male tenchers was wos.

Arerage number of months the public schools have kept.
Amount of salurles rutd to princinals of high schools. 8-1 Exjease of evening schools
Anount rafed by taxation for suphort of pubilc schools, wages of teachers, fuel and fanitors
$302,209.1$
5,366,605.20 Amoment expended locsery sor for
Income of fuads appropriated by towns, as surplus revenue, dog tax, etc
locome of school fund paid to cities and towns
Tow us using atber thin public school buildings
Number of srhool buildings.
614.505.54

Value of buildings
95,511.19

Value of property
Total ounber who cannot read.
62,924.04

Total number who cannot write
Total anmber who caauot write aor read
Total illiterate.
Ot these the foreign born are
3.439

Bora in Massachusctts
$1,012,128$
25.360
96.770

122,268
$\begin{array}{r}108,369 \\ \hline, 297\end{array}$

At South Boston there is a school for the feeble minded. The following table shows the condition of the school:

|  | $\frac{\text { 先 }}{\text { ¢ }}$ |  | \% E E E |
| :---: | :---: | :---: | :---: |
| Number of pupils present Sept. 24, 1888. | 109 | 85 | 194 |
| Admitted durlag yeur.. | 18 | 10 | $2{ }^{3}$ |
| Whale number jireseat during year | 127 | 95 | 222 |
| Discharged during yeur. | 9 | 8 | 17 |
| Dled duriug year. | 2 | 1 | 3 |
| Number of pupils present Scpt. 30, 1889. | 116 | 86 | 202 |
| Average number present during year....... ..... |  |  | 198 |
| Private puplls now present... | 13 | 5 | 18 |
| Sehnol benefielaries of Xlassachusetts........... | 50 | 36 | 8 |
| Custodin] cuses supported by the State......... | 10 | 4 | 24 |
| Custodinl cnscs supported by cities and towns.. | 31 | 27 | 58 |
| Beneficlarles of other Sew England States...... | 12 | 4 | 16 |
|  | $\stackrel{23}{76}$ | 46 | 28 129 |
|  |  |  |  |

There 1s, also, at the same place, a public school for the blindFerklas institnte-mader whose auspices is hlso coudncterl akiu dergarten for blind children.
Ot the higher institullons, the more important are IIarvard Vaiverulty, founderl in l63k, Amberst College, Williams and Tufts. Sinith, Monnt Holyoke and Wedestey are colleges for women These, together with Clark University rit Worvester, the Massachngetta school of Tecinology, aud the Massachusotta Agricultural College, nlso at Amherst, und a score of lesser Institutions furnish college homes for staduts from everystate adalmost every city aud town fin the linfon.

Masanchasetts has betn the home of some of our most noted Amerlean citizens, in polltics, letters, history, science, philosophy aud relgaon. In her politleal history the names of samivel Adams. John Adams, John Quincy Adams, James Oths, Fisher Ames, WebBtor, Chonte, sumuer, fiverett, Phllips and Winthrop figure prominently in scledice there are such men as John winthrop fenfamin Derce, Morse and Agassiz. In history, Hutchlnaon, Bancroft, l'rescott, Motley, Sparks and l'arkmau are recognized unlversalls ay mithorltles. lin letters there are the names of
 Holmes. As expoumders of rellelon and jhllosophy. Jounthan Fdwards, Chaunlug, Emerson, Tnrker nod Philling Brooks: as
 drleh, not to mention siones of ofhers in all deprartments of polite learning anal letters whose names ure houschold words alfover the rountry
dionvrice and hendiug Ruoms. -There are $19:$ readug rooms in the State. The total number of newspapers sud fertodfeals taken by these reading ronms in 18 s 9 was $\mathrm{k}, 316$; the mumber of hooks of reference was 0 a3s: the total number of persolis who vhitted these
reading rooms w8s 2,107.260. The 2.371 libraries in the State were divided es follows:

## The State

Secular
City public.
Towa pablic
other public
Private circulating
Publie echool.
private school.
Publle and private school
College.
scientlfic.
Gourrumrut eximent-The comstitution of the sitate is the same, with the exception of the addition of some ameudments, under whlch the state was organized io 1780. Under this constitutlon the executive department of the state consists of agoveroor, a lieuteaant-governor, a secretary, trensurer and auditor. The governor and lien-tenabt-governor, witheight others, represeuting the eight divisions of the state, form the executive council. The governor is slso assisted be a military staff, as hels, ix-nfficio, commander in chlef of the militia. The attoruey-gencral is the legal officer for the State. These officers are chosen by the legal voters of the State on the Tuesday after the first Mondsy in Novenber and they hold oftice for one year. Forty seuators and 240 representatives from their several distrlcts are clected at the same time and hold office for one year. These form the leglslature of the State, known as the General Court of Massachusetts. Every male citizen, 21 yenrs of sge, able to read the constitution in Engllsh ado write his oame, who has resided in the state one resr, and io the district in which he yotes. six months, and who has paid a tax within two gears, is entlled to vote. Pauprs. those underguardiauship and those conricted of felony, are prohlhited from rotiag. The supreme judiciars conmipts of one chlef justice aud flve associate justires. The superior court consists of a chiel justice and vine associate justlees. The judges of both conrts hre appointed by the governor, with the advice and consent of the senate. The state is entitled to send twe zearators to congless and twelve members to the National House of Representativesunder the federal constitution. The state house is at Boston. It is bullt on an emineace and its gilded dome makes a landmark for miles around. The original structure was built in $1795-1797$. Siace that time it has been remodeled and ea. built in $1795-1797$. Siace that time it has been remodeled and ea-
larged. A statue of Danlel Webster by the sculptor Powers, and Horace Mana. by Miss Stebbins, stand hefore the entrauce. In the hall are famous staties of Washington, and of the most esteemed governor of late years, John A. Aadrew, known as "the great war governor," who was governor from 1801-66. Every able hodied man between eighteen and forty-five years of age may be obliged to serve in the militia. The actlve volunteer militia is organized in serves as the governor's body guard
History. The shores of Massachnsetts were discovered on the 15th of May, 1602, by Bartholomew Gosnold. These shores may have been and donbtless were seen before this, but the discovery of ciosoold is the first which we are able to authenticate. The Plymouth colour, leaviag their nutive country in order to olutaio a home where they might enjoy a greater relighous ireedom. first went to Holland, in the year 1tiva, and there remained until 1620 , when a portion of them embarked for America. They landed at Cape Cod in November, and on December 22 made a permaneat settlement in Yatuxent. siuce called Plymouth. Anotherand much larger company of Eaglish Puritans settled at salem aud Charlestown in 1625 and 1629 , and in Boston and Roxburs in 1630 . The frst settlemeut of Plymonth anmbered one bnadred and one. The principal meu were William Liradiord, Edward Wioslow, Miles Standish, John Alden, Samuel Fuller aod John Howland, to which list may be added John Carver. the first governor. William Bredford was governor from the spring of 1621 to 1657 . With the settiemeat of Boston and vicitity in liso. begius the history of the col. ony of Massachusetts bar. Wiathrop, the governor of this Bosion colony, ind the people themselves were perfectly friendly to the Plymouth eolouy. The clergy, rom the first settlement and for a loug feriod after, had great influence, unt nnly for the ehureh, that ju the civil goverament. Public exeltement was caused thronghone the colony in 1634 and 1635 on acconnt of the opinions and conduct of Roger Williams. Lie mbde hinself obnoxious to the govern. ment by denying the validity of their title to the soil, and by insisting that the Indians were its only proprictors. He was orderad to leave Massachusctts in the winter of 16 inis- 86 , und went sunth to a place which he "alled providence. The mes who itst settled Plymonth and Massachusetts were friends of higher learumg. In dob the Geueral Court granted ztou inr the support of the school at Cambridge, and in ligh Rev. Jolm harvard bequeathed balf of his estate, about axoo. to the same seminary. It soon after received the in foul the north line of Masamehusetts was rum following the

 what is oow Maine. In lotio the deoeral Const showed its ahhorrence of the slave trade by ordering Chptain sinith to scud back.at his owncharge, some negroes which he had brougtat to l'isquataqua that yar. Ry a law passed lu firg, man-stealing was made a capital crime. The first instance of pretended witcheraft in the colony was in bias, when a Mrs. Jones was condemmed sud executed. After the restoration of Charles 11 . the colnage of money in the coloay was arrested. The coln was lssud for scyeral benrs, but all bore the date of 1 tiaj2. About this time several towns rod settlemeats io Maine were induced to put themselves under the juris. diction of Massachusetts. A portion of the people were willing to become unfted to the rovermment of Massachusetts, bat the proceedings in the case did not escape the charge of bebing unjus?. In 16tid-5, on complaint of some of the Maine reople, the' commissioners of Charles Il. ordered Masshehusette to relimainish its clatm: but it continued its preturinjons until lida, when Malne was in-
cluded in the new charter for the provine. C'nder this same charter, known as the frovinclal Charter, Hymomth colony whs also annexed to Massuchusetts. As early as $168 \%$, the Indians had
hegun to make war upon the coionists. The first trouble was with the Pequot tribe, living between the Connectlent rlver and the Thames. Massachusetts, whin Connceticut, New llaver and New Hymouth, formed aunlon in lGis for better defeuding thenselves against their enemjes. This confederacy was urnential to their preservation in the wars with king blillif in $1675-6$, It was union which seened almost to foreshadow the more mondandinde formed more than a ceatury lnter for the purluose of gaining finge pradence. This spirit of self-gosermmention of power under its the bistory of the cotony in right to conn money, ln lusti Crom charter: as, for instance, for removing the Inhableants of New Eing well meditated the pan of remuorng people were too ilise to fleten land to lrelund or Jamanca. the conduct of the governmeat of Masto this proposul. At thatime the comanctor the severe treatmedt of sachusetts jo justly liable to censure, for baished. The Baptists the Quakers who were persecuted and banlshed. The batits Were trated wlth almost equal severity. All thas whs done, not whlistanding the charter declared that there should always be Hberty of consciente ju matters of relirion. These persecutions ed to complaints to the king. Hon. Slmon Iradstreet and Rev John Norton were instrueted to defend the colonists and assur the king of their lovalts. After more than hall a century of strug gle the king anmulled the charter of the colons in limo. Joseph fudley was ior \& brlef time president of a provincial conncil and governed the colong. At the close of the year in which Jud and roverned his commission, Iosw, lue was quceeded by Aodros who had heen governor of Juw lork. Ite now received a commis sion to goveris all the New Kngland colonies. lu the spriag of dsw, the people, opuressed ly the arbitrury measures of dndros placed himin prison, and continued thelr oll form of government. Iassachusetts was then without a charter until I692, When Jaiae, flymonth and Nova Scotia were united. Sir Wm. Phipps was the first yovernor under this new frovineial charter. ite was au obscure mall irom dlane, near sheepscot The people of Massuchnsetts, with some otber settlements in New England in 1079, were ularmed by menaces of war from the French. 3 y order of fovernor stonghtan the militia were prepared in defend the province. if the French should aypear. The eastern Indians took advantage of the disturhed state of the country, to commit depredationg and aturders. In 1702 when war was declared loetween England and France they wroved bloody allies of the French. This state of affairs continued for several scars, and in 170\% an expedition was Irepared to attack Port lRoyal in Acadie, which proved a failure. In 1708 the Freueb and Indians attacked Haverhill and murdered many of the inhabitants. Another expedition was madeln 1711 against canada; but this expedition, like the one in lito, wiss not successful. The attack of the indaus
made unon Deerfield in 1704 will loag be remembered as one of the deplorable events of this war

By the treaty of Utrecht in 1713 , tbe war witb France was closed, and the ladinns sought for peace with the English. Aswe have before stated the first newspaper in Massarbusetts was called the Boston News Lelter. It was established by samuel Greene in Frot. A secund paper was published iu 1720 called the Boston Gazette. The third wusestablished in 1721, called the New England Courant, and eonducted by an older brother of the celebrnted Beniamin Franklin. Ileantme the colony had beengrowing. At the com. pletion of acuntury irom the first settlement of Massachusetts, its pletion of a was ahout 120,000 . Ir shirleveame into offlce, as gov. population broke ont between Eugland and Frunce Gov. Shirley encouraged broke out betweca England and France. Goy. Shiriey encouraged an expeditlon against Lonishourg, in the dsland of Cape Bretou, which was then a readezvons for the French feet. The troops attact was in er in the Oswego expedition of 1750 , and Massachnsetts encouraged and aided the expedition to Nova Scotia in the same year, wbieb ended in the removeal of the Acadiuns. In IFtr a riot oceurred in Boston on account of the impressment of several of the citizens by a commander of a British squadron then in the harbor on the people sefzed some of the British onfers, rioters were dispersed The inhabitamts of Jassachusetts at this time objeeted to the levy ing of taxes for the support of the parent government, when they were not represented in the legislative liody whleb unde the laws for levying them. However, Massachusetis was never slow to send forth her citizens as soldiers when the province was il droger.
In return for this their zeal, the coln ilsts were not accorded the prlvilcges which they felt they deserved, and active oplosition to the erowu was the result. This was led hy James otis. Ne objected to the issuing of writs by the farent govermment to comped citizens to rid the revenue otlicers in their search for goods. "I clare that will to my dying day oppose, with all the powers lyod has given me, all such instrunents of slavery and villaing as the writ of assistance is." such opposition as this, to the home authority, Was the beginuing of the Stamp Act. When this aet was put in Was the beginuing of the sismebusetis took \& leading bart in setting forth the right of the colonists. not to be taxed in this Indirect manner without of the colonists. sepre This ruined the trade of Massachusetts with the West Indies.
 rired in be harbor of Boston. The jopular Indignation at having royal troops thrist upon then was qreat. fiss quartering of Boston massacre in $] 70$. The citizens assailed the soldiers who fired umon the people in self-defense. Themerchants made acombination to prevent such goods as yielded a reveuue from being imported. The patriots opened commnnaications with the other colonists bs menns of committees. This inter-communication of the colonista did mucle to strengthen tbelr union and knit them togetber as one, for the great struggle which was to come. Iu 177. Jarge quantities of rea were imported into Boston from England. The consignees were destred by the people of Boston not to land. The
receise it. became evident that the owners and factors of the cargoes would uat comply with the reauest of the peopie, a u umber
of aien disgulsed as Indians, hoarded the ship and threw the tea into the water. This was known as the Boston Tea Party in re tirn for this aet England closed the port of bostonijef of tha ernot of assachusetts. rinis wu atother cause of irritation to the peoule, und they lel hemselves sorelr oppressed such men os the Adamses, Dexter hemsefter wher wher were tirm Hancock, Winthrop. Prescott, Sever, Philips aik ward, were him udrocates of the rlghts of the people, but there were many who did mot [nvorextreme neasures. In hit, just after the port of inoston was declared to be blockaded, the jeople assembed, an wh voted to recommend to the other colonists to refuse all com mercinl intercourse with England. A messenger was sent to loll adel Ihla to communleate the vote, and thence another whs sent to Maryland und Virginin, to glre information of the plan froposed in Boston. The conduct of (inge In the short spnce of two months [ulls proved that the arlstrary measures were still to be Husued, and that the volee of the representatives of the weople whs not to be remarded. 'lhe nuw Congress of Massacbusetts met in Feboruary, 17\%i. A committee of sufety, clothed with anthority io call out the mllitia, if necessary, was alpointed. They were slio embowered to oprose all attempts to enforee the ctinoxious buws of parliament. One the istb of Apri, 175 , speral Britisn oncers tary stores of the colonists. The militia of the colony were called out, and an engagement oceurred with the british troous under Lord leres, which arousud the towns. The militia pronred futo Canbridge and lerey returned to isoston. The loss of the hithsh on this oceasion was nearly tbree humarea, of the monda eimaty. It was no nutil July, 1755 , that the Contluental Congress undertook to organlze the urmy of
pointed commander in chief.
On Jume li oceurred the battle of Buaker IIlll. The Royal troops had bewn shut upin Boston by the superior numbers of the pro--inclals, and this battle of Bunker IIIll was brought on by the attempoit the wroviucial troops to galn a higher point in charleston. When Wiashingtou was elected general fuchief he stretched his Sucs around Boston and forced its evacuatlon, in March, 1776. These were the onlyevents of the war that occurred on II assachu.

The blessings of a federal government soon became apparent, in the increased enterprise and prosuerity of the country. But in no part of the United States were these advantages seen more than in Massachusetts; though at one time it seemed likely that the federal constitution would be refused by this commonwealth. It whs finally adopted by a small majority. The first representativea from the state, under the new constitution, in Congress, beld April, 1789, were Fisher Ames, George Partridge, George Leonard, George Thateher, Elbrldge Gerry, Beajamin Goodhue, Theodore Sedgwick sod Jonathan Grant

Massachusetts suffered under the Embargo Act of 1807, and hough she opposed the war with England, in lsiz-14, much of the whe with Muxico chusets sailors. Sue was ars cuphos led one regiment into the field.
Massachusetts bas been foremost in political progress. fiarrison and Phillips led the leophe. who sormed the witurty barty the germ of the Republican party The old Whas Muty fmaly bazame merged into the Resphbliean bartr. fin the change ol parties Charles sumaner entered the political field. He hecane the most eminent statesman of his time, and was sent repentedly by Massachusctts to the Federal Congress. The state bus been largely Kenululiean ia its political principles. Mas achusetts had much the same infuence in tringing on the civil writhat she bad in bringiug alinut the Revolutionary war. She furntshed and monned man vessels for the Lnion navy. In 1804 it was shown hat there were 22,3it Massachusetts men in the us ral service. Ai but welvere fows furgished roops, and there were sup plied iu excess of what was called for. The total aumber of men pithe Federal ranks was 159.165 , of which mumber lese than 1,200 weteralced by drait
Generals Kwox and Lincoln were the most dizting*ished ofticers Nassachusett sent into the Revolutionary war. Out of 231.691 troojs, sunt by al! the colonists into the fieic. Jassachusetts fur uished 47,907 , the largest number furnisher br wny one colony She alwhy contributed more than her sharer. the money tor the Himu Mussachnsetts was, during the war vi, der a provisional gos Hancoc. The irst govermor under tht cons hin were gimel Hincock, The pronninent governorg alter hin were manuel John \&. Andraw, 18iti-ftit. When Xt, Bowdoin was governor, during his second term of office, 1786 , what is known as Shay's Rebel. ing for the lower class of people who were engaged in the rash enterprise, and it was nndertaken on account of confused notion of liberty
The commonwealth spent $\$ 12.606 .517$ in the clvil war, and about $\$ 9,1000,00$ wha given bF private eontributions. Since the war ended Massachusetts has specially turued her attention to manufacturing and mechanical industries, in addition to her shipping inter. ests. $\quad$ s the foreign trade which once distinguished her has gone largely to other ports.

MASSÉNA, ANDRÉ (1758-1817), duke of Rivoli, prince of Essling, and marshal of France, the greatest soldier and greatest general of all Napoleon's marshals, and the one man who with education and ambition might have been Napoleon's rival, was the son of a small wine merchani, it is said of Jewish origin, and was torn at Nice on May 6, 1i58. His parents were very poor, and he began life as a cabin boy. He did not care much for the sea, and in 1705 enlisted in the liegiment Royal Italien, a regiment of Italians in the pay of Frauce. II quickly rose to be underofficer-adjutant; hut finding his birtl? would prevent his ever geting a commission he left the army in 1789, retired to his natire city, and married. At the sound of was
however, and the word republic, his desire to see service increased, and he once more left Italy, and joined the 3d battalion of the volunteers of the Var in 1792. In those days when men elected their ofticers, and nearly all the old commissioued officers were dead or had emigrated, promotion to a man with a knowledge of his drill was rapid, and by April 1793 Masséna was chef de bataillon, or colonel. His regiment was one of those in the army of General Anseline, which was ordered to occupy Nice, and his knowledge of the country, of the language, and of the people was so useful that in December he was already general of division. In command of the advanced guard le won the battle of Saorgio in August 179t, capturing uinety guns, and after many ouccesses he at last, on November 23,1795 , with the right wing of the army of Italy, won the great victory of Loano, in which four thou= sand Austrians and Sardinians were put Hors de combat. In Bonaparte's great campaigns of 1796 and 1797 Masséna was his most trusted general of division; in each battle he won fresh laurels, until the crowning victory of Rivoli, from which he afterwards took his title. It was during this campaign that Bonaparte gare hia the title of enfant cheri de la victoire, which he was to justify till he met the English in 1810. Masséna's next important service was in command of the army in Switzerland, which united the nemy in Germany under Moreau, and that in Italy under Joubert. There he proved limself a grent general; the archauke Charles and Sumaroff had each been successful in Germany aud in Italy, and now turned upon Masséna in Switzerland. That general held his ground well against the archduke, and then suddenly, leaving Soult to face the Austrinns, he transported his army to Zürich, where, on September 20, 1799, he entirely defeated Suwaroff, taking two hundred guns and five thousand prisoners. His campaign and battle placed his reputation on a level with that of his compatriot Bonaparte, and he might have mado the revolution of Brumaire, but he was sincerely attached to the republic, and had no ambitioa beyond a desire to live well and have plenty of money to spend. Bonaparte, now first consul, sent him to Genoa to command the débris of the arny of Italy, and ho nobly defended Genoa from February to June to the very last extremity, giving time for Benaparte to strike his great blow at Marengo. He now went to Paris, where he eat in the Corps Lérislatif in 1803, and defended Moreau, but where Napoleon took his measure, and did not interfere with him. In 1804 he was made one of the first marshals of France of the nety regime, and in 1805 was decorated with the Grand Eagle of the Legion of Honour. In that year Napolcon needed an able general to keep in check the archduke Charles in Italy, while he adranced through Germany with the grand army. Masséna was chosen; he kept the archduke occupied till he got news of the surrender of Ulm, and then on October 30th utterly defeated him in the battle of Caldiero. After the peace of Pressburg had been signed, Masséna was orlered to take possession of the kingdom of Naples, and to place Josepht Bonaparte on the throne. This task done, Napoleon summoned Massena to Poland, where he ns usual distinguishen himself, and where ho for the time gave up his republican principles, and was made duke of hivoli. In the campaign of 1809 he covered himself with glury at Laudshut and at Eckmihh, and finally at the little village of Essling, which he held with such determination that Napoleon had some right to call his otherwise complete defeat of Aspern a victory. When the retreat to the island of Lobau was ordered, it was Masséna who covered tho broken regiments, and hele! the têle dub pont; and on the field of Wagrans it was Masséna who, though too ill to ride, directed from his carriage the movements of the right wing, and re-
corered the honour of France. For hiss great services he was created prince of Essling, and given the princely castle of Thouars. He was then ordered to Spain to "drive the Engliṣh into the sea." The campaigus of 1810 and 1811, the advance to and the retreat from Torres Vedras, are well knowa fron Napier'a history, who does full justice to Wellington's great opponent. Masséna himself ascribed his failure to the frequent disobedience of his three subordinate generals Ney, Reynier, and Junot, and with some justice; but he alone could have stayed so long before the lines, and could have made the long halt at Santarem; which checked Wellington so thoroughly. The retreat was as finely conducted as the adrance, and would have been even more trinmphant had Ney obeyed orders. Even then he was again ready to try his fortune, and nearly defeated Wellington at Fuentes d'Oñoro, though much harupered by Bessières. Recalled with ignominy, his prestige gone, the old marshal felt he had a right to complain of Ney and of Napoleon himself, and, it is said, opened communications with Fouché, and the remnant of the republican party. Whether this be true or not, Napoleon gave his greatest marshal no more employment in the field, but made him nerely.commandant of the 8 th military division, with his headquarters at Marseilles. Tluis command he still held at the restoration of the Bourbons, when Louis XYIII. confirmed Lim in it, and gare him letters of naturalization, as if the great leader of the French armies had not ceased to be an Italian. When Napoleon returned from Elba, Masséna, probably by the advice of Fouché, kept Marseilles quiet to await events, the greatest service he could do the royalists, but afterwards imputed to him as a fauit. After the second restoration Masséna was summoned to sit on the court martial which tried Marshal Ney, but, though he had been on bad terms with that general, and attributed his own disgrace to him, the old soldier would not be his comrade's judge. This refusal was used by the royalists to cruelly attack the marshal, against whom they raked up every offence they could think of, and whose victories they forgot. This annoyance shortened his life, and on the 4th April 1817 the old hero died. He was buried in Père-la-Chaise, with only the word "Masséna" upon his tombstone.
In private life indolent, greedy, rapacions, ill-educated, morose, on the field of battle Massena was a man of genius, prompt in resource, indefatigable, perfectly brave, and never knowing when he was beaten. Italian he always was in his indolence, but in his quickness of resource a real compatriot of Napoleon hiimself.
See Thiébault's Ėloge funèbrc, and Koch's Mémoircs de Sassena, 4 vols., 1849 , a most valuable work, and most carefully compiled. See also the military histories of the epoch, but in reading Napier's pictures of him and Soult it is well to remember that author's personal friendship with the latter.
MASSILLON, a city of the United States, in Stark county, Ohio, is situated on the Tuscarawas, a hend stream of the Muskingum, communicates with Lake Erie by tho Ohio canal, and forms an important junction for various lines of railway. It is well known for its coalmines and whito sandstone quarries; and it also contains blast furnaces, rolling mills, foundries, machine-shops, grist mills, and extensive establishments for the manufacture of agricultural implementz, glass, and paper. The population, 3819 in 1860 , was 6838 in 1880.

MasSillon, Jean Baptiste, was born at Hyères on June 24, 1663, and died at Clermont on September 28, 1712. He was thus, except Saint-Simou and Fontenelle, the longest-lived of the men of the Siecle de Louis Quatorze. It is noterworthy that, like the majority of the great pulpit orators of his own and the preceding generation, he was a southerner. His father, lirançois Massillon, was a notary, and he appears to have been well cducated. In 1681 he joined the congregation of the Oratory, which at that time had a high reputation. But, altbougli he had thus chosen
an order where the rules were by no meaas strict, bo mas not anxious for easy living or sceular renorn. The credit which be received for his first efforts at preaching startled him, and he sought a much more severe discipline, one indeed whieh is said to have been of Trappist rigour. Accident, howerer, made his literary and oratorical talents known to the Cardinal de Noailles, who determined that the church should not lose so well qualified a defender. In obedience to the cardinal, Massillon left the abbey of Septfonds, rejoined the Oratory, and was introduced to the Parisian seminary of Sanot IIagloire in 1600 . He was soon set to work to preach in the Paris churches, and his repatation spread rapidly from city to court. He preached before Louis IIV, for the first time in Adrent 1699. He made a profound inpression, and it is reported that his generous elder, Bourdaloue, from whom Massillon himself had learat much, ssid of bin, "He must increase, but I must decrease." His fame, however, did not lead to mmediate preferment. In the first place, the Oratorians were on bad terms mith the Jesuts, and were considered too liberal to suit the reign of gloomy pietisn and severo orthodory in vihich Louic's rlissolute life closed. In the second, Massillon was neither a flatterer, nor did he resort to the abrupt denunciation of vice which had succeeded in the case of some of his predecessors. Indeed, in the last jears of the reign there was nothing (so far as the king was concerned) to denounce, unless it were an excess of orthodoxy. Louiu's famous saying that other preachers mado him pleased with them, but that Massillon made him displeased with himself, may have been merely a mot, but it may also hare expressed an invo'untary truth. However this may be Massillon, who perhaps desired no office, received none as long as the old king lived. The recency was much more favourable to him, and in 1717 be was nominated to the see of Clermont, with the additional honour of being commissioued to preach the next year's Petit Careme or series of short Lent sermons before the young Lolis XV. Bishop in 1717 , Lent preacher in 1718 , Mussibun receired in 1719 a yet further honour, though this time a secular one, by being elected to the Academy. Varions causes, horrerer, combined to remore him from Paris. His orn standard of duty was high, and be mas not likely in any case to have acquiesced in the position of a nen-resident bishop; the court grew more and more dissolute; and his adrance in jears must have somerhat disqualified him from preaching and travelling. He delivered but few sermons in Paris after the Petit Careme, and preacled there for the last time in 1723 , whea he pronounced the funeral oration of the duchess-dowager of Orleans. The twenty years of life which remained to him were spent at Clermont, whero he mas distinguished for all good worles, especially for exacting the minimum of episcopal dues and expending the maximum on charity.

BIassillon's morks are made up for the most part of sermons, leetores, synodal addresses, and the like. They have been repeatedly edited, and are easily accessible in tro large volumes published by Didot. As a pulpit orator, if not as a theologian, Massillon nrobably deserves the bighest rank amone Frenchmen. His style is very nearly perfect, unition the 1 ,olish of the later age of Louis XIV. with the rigour of the earlier. His thoughts are original and just, and the arrangement of bis discourses lucid and orderly without being anduly scholastic. He has vsur?!! been contrasted with his predecessor Bourdaloue, the latter having the credit of vigorous denunciation, Dassillon of gentle persuasiveness. But few preachers can baro excelled him in vigour when he chose to be steru. Besides the Pcit Careme, his sermons on the Prodimal Son, on Death, for Christmas Day, for the Fourth Sanday in Advent. may be cited as perhaps his masterpieces. But in truth Massillon is singularly free from inequality. His great literary power, his reputation for benevolence, and his known toleration and dislike of doctrinal disputes caused him to be much more farourably regarded than most churchmen by the philosophcs of the 1sth century. He acquired the suruarme of the Facine of the pulpit, but extreme purity of style is almost the onls yoint of contact hetween the two writers.

MASSINGGER, FHiLIT (1504-1640), one of the most prolific, acholarly, and powerful dramatists among the immediate successors of Shakespeare., 気 ras bura in $158 t$, weat to Oxford (St Alban's Hallj in 1602, and left in 1606 . This is all that is known of his early life, except that his father, as appears from the dedication of one of his plays (The Bonclman), was in the service of the Herberts. That his father's service was not menial is proved by his having once been the bearer of letters from the earl of Pembroke to the queen. The industry of antiquaries has discovered only one little fact about Massinger between his leaving Oxford in 1606 and his having a comedy performed at court in 1621. This fact is that he joined with two dramatists, Field and Daborne, in asking an adrance of $£ 5$ from the theatrical capitalist, Henslowe. This painful request, the date of which is conjectured to be about 1614 . sets forth that the three petitioners were "an unfortunate extremitic." In his part of the document Massinger says that he liss "ever found" Henslowe "a true loving friend." The expression scems to point to his haring been connected with plays and plajers for some considerable time. After 1621 many of his plays were acted and pablished; but from the tone of his dedica. tions it is to be inferred that he was often in straits. The entry in tho parish register of St Saviour's-" Mtarch 20, 1639-40-buried Philip Massinger, a stranger"-may menn only that Massinger was not a resident in the parish; but it is sadly out of keeping with the dramatist's place in the respect of posterity.

In the barrenness of authentic fact, conjecture las been busy with Massinger's life and charaoter. One of the questions that have been raised about him, -wheiher or not he was a Toman Catholic, -leads to other questions that have more than a personal interest. Attempts to fix the political or the religious creed of a dramatist aro generally fanciful; as a rule, when a critic finds an opinion expressed by one of a dramatist's personages with exceptional and striking force, he jumps to the conclusion that the dramatist must bare held this npinion himself as a ruling convietion. The evidence that Massinger was a Roman Catholic at a time when the ereed was held under pains and penalties is of a more serious kind, thongh not conclusire. It rests upon three of his plays, The Virgin Martyr (printed in 1622, acted before 1620), The Renegado (acted in 1624), and The Maid of Honour (printed in 1632, but probably acted earlier). In the first of these Massinger was assisted by Dekker. Whether or not the author was a Ruman Catholic, it is certain that only a Roman Catholic audience could be expected to enter into the spirit of these plays and applaud at the end; and they are very remarkable theatrical phenomena to have appeared in the reign of James.

The İirgin AFartyr, founded on the martyrdom of Doroth:a in the time of Diocletian, is, in effect, an ohl miracle play in five acts. The devil himself apperrs on the stage, -first in buman shape as the scrvant of a persecutor, hunting out victims and instigating tho most cruel tortores; afterwards in "a feasful shap"e" with firo flashing round him. The page of tho martyr Dorothea is an anmel in disguise, who also appears in his own proper shape before the end of the play. Dorothea is tortured on tho stage in the most revolt. ing fashion, dragged about by tho hair, kieked, heaten with cudgels, but her page Ange.o stards by, and she is miraculously preserved from burt. Otier miracies are performed on the stage. A persecutor falls down in a fit whea about to proceed to subject tho martyr's constaney to the foulest trials. In the last act a basket of fruit from paradise is brought on, and the chief persecutor cating of it is wholly changed in spirit, and drives away his diabolic serraut by holding up a cross of flowers. At the close the martyrs appear in white robes, transfigured. Tha Virgin Harlyr further, rescmbles the miracle play in the coarseness of the comic somas in:tended to illustrate the power of the devil over the most lase and grovelling natures. The tone of the play throughout is serious and lofty ; the passions of the persecutors and the beroic devotion of the martyrs are given with great dramatic furce. This is a very
remarkable play to have appenred suddenly amidst the run or secular pieces It seems to have been populsr, and was several times aeprinted before the Restoration. That the Rmegado should have round favour is still more reunarkable. In itself it is a powerfully basstructed play, strong in eharscter and incident Massinger's reaning to Roman doctrine is sunposed to be shown by his making one of his heroines-a coaverted Turk, a aultan's sister-experience coraplete a piritual transformation after receiving the rite of baptism. But thera is a more suggestive and stranger fact than this. The liero of the piecc, Fraacisco, is a Jesuit priest, treated with profound reanect thronghont, a man of noblo anseltah aison runoing all risks to save and gain souls, excrcising the strongest moral influence for the wisest and most benevalent purposcs. Francisco's influence perrades the play, and is crowned with triumph at the end. Ile sails baek to Yenice with a noble lady rescued from the infidel, her virtue protected by an amulet during her captivity, a renegade military Trero restored to his conntry and the charch, a noble Venenan rescued from spiritual and physical perils, the beantiful sister of the sultan couverted to Christianity. That a Iondon audience should have tolerated this glorification of a Jesuit sithin twenty years of the Gunpowder Plot is an cextraordioary fact, of which the explanntion is still to seek. In the Maid of Honour the herone relieves a highly complicated situation at the cnd by taking the veil, giving a third of her property to a nunnery, a third for pious uses, and a third to as hovest, faithful, but to ber unattractive lover. For this sbe is held n ) as "to all posterity a fair example for noble maids to tmitara". Only sa andience of very pious Catholics could have eympathized with such a conclusio:
Such plays show that Massinger, if not a Roman Catholic, was at least not blinded by the popular batred of them, but could dwell in rapt admiration on what was noble and lofty in the motives supplied by the Roman Chureh. The strange thing is that he fonnd $n$ manager to produce these plays, or an audience to tolerate them. It may be doubted whether Massinger was ever a popular dramatist. His poverty is not indeed conclusive on this point, for the prices paid for plays were so small that a dramatist could hardly make a liveiiluood by play writing, unless he was also an nctor or a theatrical manager. But the best qualities of his plays appeal rather to thoughtful politicians, moralists, and students of character than to uto simple feelings of the ordinary playgoer. Only one of them, $A$ New Way to Pay O!d Delts (printed 1633), has kept the stage, and that chicly because the leadirg character, Sir Giles Overreach, a sort of commervial Richard IIL, a compound of "the lion and the fos," provides many opportunities for a great actor. Like all Massinger's plays, it is most ingenious and effective in construction, but in this as in others he has been more intent upon tho elaboration of a plot and the exhibition of a raling passion than upon winning the lore and admiration of his audience for heroes and heroines. The other personages besides Sir Giles are either conventional comic figures, or dim, feebly outlined, uninteres:ing characters. The reformed prodigal and the two pairs of luvers who outwit the cunning diplomatist by simple means seem poor, joyless, bloodless plantoms when put side by side with the rich life of Shakespeare's youthful lovers and reckless scapegraces; they are mere foils to Overreach ; their life is not displayed, it is only indicated in the dialogue. With the exception of this play, all Massinger's bare been relegated to the study sinco his own time. The Fatal Doivry) (printed 1632), in which Massinger had the nssistance of Field, was partially resuscitated by Rowe, being mado tho basis of the Fair Penitent. In Massinger's own judgment, the Roman Actor was "tho most perfect birth of his Minerva." It is in effect a stady of the tyrant Domitian, and of tho results of despotic rule on the despot himself and his court; the intrigues and connter intrigues, the rise of sycophancy, the fall of honesty, the growth of the appetite for blood, the growth and final triumph of the spirit of resenge, are addbitod with grent power. Among the dramatists of that great poriod, Massinger comes next to Shakespearo in the art of opening and devcloping a plot. The Bondman, the Duthe of Milan, and the Great Dule of Florence nre olsn
favorrable specimens of Massinger's power. But what was said by one of his admirers in the dedication of the City Madanz is perfectly true, that, "thongh he composed many plays, he wrote none amiss." The manners and the characters are always clearly conceived, although the dranatist's strength is put forth in the portrayal of some one ruling passion. The action always marches forward steadily, with as little as possible of irrelevant digression; so steadily in fact is the main purpose pursued as to produce a certain air of labour and constraint. The language is never mean, and never turgid; in impassioned situations it wants fire and directness. If the stage were ever deliberately employed as an historical school, frequented by audiences anxious to get a clear and vivid impression of important situations, goiog to the thentre not to be intercsted against their will but willing to be interested, the dramas of Massinger would furnish eacellent models.

Several of Massinger's playsare no longer extant. Eight of them were anong those destroyed by Warburton's cook. The most recent edition of those remaining, nineteen in number, is Cunningham's (1870). Gifford edited Massinger with great care. (W. 21.)
 Hebrew word meaning "tradition," is the technical term specially applied to the tradition by which Jewish scholars (Massorets, תivan rect writing and reading of the text of the Old Testa. ment An oral tradition on disputed points of this sort naturally existed from the early days of the Jerrish schools, but the nse of a written Massoral in notes on the margin of Bibles, at the end of Biblical codices or of the individual books contained in them, or in separate works appears to have followed the introduction of the vowel points, and to have been influenced by similar labours of Syrian scholars See Hebrew Language, vol xi. p. 600

MASSOWAH, or Mesomah, a town on the Abyssinian coast of the Red Sea, on a small coral island of the sama name, in $15^{\circ} 30^{\prime} \mathrm{N}$. lat and $39^{\circ} 30^{\prime}$ E long. The height of the island is from 20 to 25 feet obove the sea, the length does not exceed $\frac{1}{4}$ mile, and the brendth is about $\frac{1}{4}$ mila The western half is occupicd by the town; in the eastern half are Mohammedan burying-grounds and dismantled cisterns. Most of the dwelling-houses are mere etras huts; the mosque, the Roman Catholic church, the Governa ment buildings and custom-house, and the residences of the principal merchants are of stone. Water was formerly searce, and had for the most part to be carried from the mainland; but in 1872 an ancient aqueduct from Mokullu was restored, and continued by an embankment to the town. Besides the original Ethiopians, who speak a Tigro dialect corrupted with Arabie, the population, estimated at from 5000 to 6000 , comprises Arabs from Yrmen and Hadramaut, Gallas and Somalis, and Hindus from Surat. The trade, which consists mainly in exporting hides, butter, Abyssinian coffee, nud civet, and importing European and Indian cotton gool's end silks, inereased in value from about $£ 65,000$ per annum in 1805 to frum $£ 240,000$ to $£ 280,000$ betreen 1879 and 1881.
The island of Massowab (locally Basc) has probably been inhabited from a very carly date. It was at Nasowsh (Jatzua, as thov called it) that the Portugnese landed in 1542 under Christovio da Gama. Cantured by the Turksin 1557, t he island has remained moreorlessstrictly a Turkislı possession ever aince. A military colony of Bosuinns settled at Arkiko was appointed, not oaly to defend it in casc of attack from the mainland, but to keen it supplied with water in return for \$ 1400 per month from the town's customs. For some time in tha close of last century Massowah was held by the sherif of Mecca, and it afterwards passed muder Mehemet Ali of Figypt. The Turks were reinstated about 1850 , but in 1865 they hasded the island back to Egypt ior an aanual tribute of 2$\}$ million piastres.

Sce Bruce's Tracts, vol. iv.;Hcuglin in Petermann's Aritheilungen) 1860; Rassam, Briti Mfission to Atyssinia, 1869; l'ennazzi in Nuova Antologia, July 1880.

MASSYS, or Matsys, Quintin (1466-1530), was born at Louvain, where he first learned a mechanical art. During the greater part of the l5th century the centres in which the painters of the Low Countries most congregated were Bruges, Ghent, and Brussels. Towards the close of the same period Louvain took a prominent part in giving employnicnt to workmen of every craft. It was not till the opening of the 16 th century that Antwerp usurped. the lead which it afterwards maintained against Bruges and Ghent, Brussels, Mechlin, aad Lourain. Quintia Nassys was one of the first men of any note who gare repute to the guild of Antwerp. A legend still curreut relates haw the smith of Louvain was induced by affection for the daughter of an artist to change his trade and acquire proficiency in painting. A less poetic but perlaps more real rersion of the story tells that Quintin had a brother with whom he was brought up by his father Josse Massys, a smith, who held the lucrative offices of cluckmaker and architect to the municipality of Lourain. It came to be a question which of the sons should follow the paternal business, nud which carve out a new profession for himself. Josse the son elected to succeed his father, and Quintin then gave himself to the study of painting. But it is not imprabable that as he lived in an age when single individuals were cunning in various branches of design, Quintin was cqually familiar with the chisel and file or the brush and pencil. We are not told expressly from whom Quintin learned the profession in which he acquired repute, but his style seems necessarily derived trom tho lessons of Dierick Bouts, who took to Lonvain the mixed art of Memling and Van der Wejden. When he settled at Antwerp, nt the age of twenty-five, he probably liad a style with an impress of its own, which certainly contributed most importantly to the reviral of Flemish art on the lines of Van Eyck and Van der Weyden. What particularly characterizes Quintin Massys is the strang religious feeling which he inherited from earlier schools. But that again was permeated by realism which frequently degenerated iato the grotesque. Nor would it be too much to say that the facial pecnliarities of the boors of Van Steen or Ostade hare their counterparts. in the pictures of Massys, who was not, howerer, trained to use them in the same homely way. From Van der Weyden's example we may trace the dryness of outline and shadeless modelling and the pitiless finish cren of trivial detail, from the Van Eycks and Memling through Dierick Bouts the superior glow and richness of tramsparent pig. ments, rihich mark the pictures of Massys. The date of his retirement from Lourain is 1491, whea he became a master in the guild of painters at Antwerp. His most celebrated picture is that which he executed in 1508 for the joiners' company in the cathedral of his adupted city. Next in importance to that is the Maries of Scripture round the Virgin and Child, which was ordered for a chapel in the cathedral of Louvain. Bothaltar-pieces are now in public museums, one at Antserp, the other at Brussels. Both challenge attention for the qualities which have alrendy been described. They display great earnestness in expression, great minuteness of finish, and a general absence of effect by light or shade. As in early Plemish pictures, so in those of Massys, superfluous care is lavished on jewellery, edgings, and ornament. To the great defect of want of at unosphere such finults may be added as affectation, the result of excessive straining after tenderness in women, or common gesture and grimace suggested by a wish to render pictorially the brutality of jailers and executioners. let in every instance an effort is manifest to deverop and express individual character. This tendency in Massys is chiefly illustrated in his pictures of male and female market bankers (Louvre and Windsor), in which an attempt is
made to display concentratad cupidity and avarice. The otlier tendency to excessive empliasis of tenderness may be seen in two replicas of the Virgin and Child at Berlin and Amsterdam, where the ecstatic hiss of the mother is quite unreal. But in these examples there is a remarkable glow of colour which takes us past many defects. Expression of despair is strongly exaggerated in n Lucretia at the museum of Vieana. On the whole the best pictures of Massys are the quietest; his Virgin and Christ ol Ecce Huno and Mater Dolorosa (London and Antwerp) display as much serenity and dignity as seems consistent with the master's art. A telling example of his partiality for grotesque character in face is an Epiphany in the collection of Mr H. R. Hughes in England. His skill as a portrait painter has not been sufficiently admired, probalily because iaost of his likenesses have ccrised to be identificd with his name. Egidins at Longford, which drew from Sir Thomas More a eulogy in Latin rerse, is but one of a numerous class, to which we may add the pertrait of Maximilian of Austria in the gallery of Amsterdam, a masterpisce which at some future perind may nfford a clue to other works of similar treatment in English and Continental galleriss. Massys in this branch of practice was much under the intluence of his contemporaries Lucas oí Leyden and Mabuse. His tendency to polish and smoothness excluded to snme extent the subtlety of modulation remarkable in Hulbeiu and Dïrer. There is reason to think that he was well acquaninted with both these German masters. He probalily met Holbein nore than once on his way to Eugland. Lie saw Durcer at Intwerp in 1520. Quintin died at Antwerp in 1530 . The paritan feeling which slumbered in him was fatal to some of his relatives. Ilis sister Catherine and her husband suffered at Lonvain in $15 \ddagger 3$ for the then capital offence of reading the Bille, lic being decapitated, she buried alive in the square fronting the cathedral.

Quintin's son, Jan Massys, mherited the art but not the skill of his parent. The earliest of his works, a St Jerome, dated 1537, in the gallery of Vienna, the latest, a Healing of Tolias, of 1564, in the museam of Antwerp, are sufficient evidence of his tentency to substitute imitation for original thought.

MASTER AND SERVANTT. These are scarcely to be considered as technical terms in law. The relationship which they imply is created when one man lires the labour of anotluer for a term. Thus it is not constituted by merely contracting with annther for the performance of a definite work, or by sending an article to an artificer to be repaired, or engaging a builder to construct a house. Nor would the enployment of a man for one definite act of personal service-e.g., the engagement of a messencer for a single occasion-generally make the one master and the ather serrant. It was held, however, in relation to the offence of embezzlement, that a draver employed on one occasion to drive cattle honse from market was a servant within the statute. (Sec article Enbezzlement for defuitiou of "clerk" or "servaut" in that connexion.) On the other hand, there are many decisions limiting the meaning of "servants" under wills giving legacies to the class of servants generally. Thus "a person who was not obliged to give his whale time to the master, but was yet in some sense a servant," was held not entitled to share in a legacy to the servants. These cases are, however, interpretations of wills where the intention obriously is to beaefit domestic servants ouly. And so in other connexions questions may arise as to the exact nature of the relations between the partics-whether they are master and serrant, or priucipal nud agent, or landlord and tenant, or partners, \&c.

The terms of the contract of service are for the most part such as the parties choose to make them, but in tho absence of express stipulations terms will be implied by the law. Thus, "where no time is linited either expressly or hy implication for the duration of a coatract of hiring and
scrice, the hiring is considered as a general hiring, and in point of law a hiring for a year." But "in the case of domestic and menial servants there is a well-known rule, founded solely on custom, that their contract of service may bo determined at any time by giving a month's warning or paying a month's wages, but a domestic or other yearly servaut, wrongfully quitting lis master's service, forfeits all clain to wages for that part of the current year during which he has served, and cannot claim the sum to which his wages swould have amounted had he kept his contract, merely deducting therefrom one month's wages. Domestic servants have in right by custom to leave their situations at any time on payment of a calendar month's wages in advance, just as a master may discharge them in a similar manner". (Manley Smith's Law of Mraster and Servant, chaps. ii. and iii.). The master's right to chastise a servant for dereliction of duty (which appears to be still recognized in some Americas cases) is no longer sustained in English law, uoless perhaps in the case of servants monder age, to whom the master stands in loco parentis.
The following are assigned by Mauley Smith as in general uflicient grounds for discharging a servant:-(1) wilful disobedience of any lawful order; (2) gross moral miszondect; (3) habitual negligence; (4) incompetence or permanent disability caused by illness.

A master has a right of action against any person who deprives him of the services of his servant, by enticing him away, harbouring or detaining him after notice, confiuing or disabling him, or by seducing his female servant. Indeed the ordinary and only available action for seduction in English law is in form a claim by a darent for the loss of his daughter's services.

The death of either master or servnat in general puts an end to the contract. A servant wrongfully discharged may etther treat the contract as rescinded and sue for services actually rendered, or he may bring a special nction for damages for the breach. A master is bat nd to provide food (but apparently not medical attendance) for a servant living under his raof, and wilful brench of duty in that respect is a misdemeanour under $24 \& 25$ Vict. c. 100.

A servant has no right to demand "a character".from an employer, and lí a character be given it will be deemed 2 privileged communication, so that the master will not be liable thereon to the servantunless it be false and malicious. A master by knowingly giving a false character of a servant to an intending employer may render himself liable-should the servant for examplo rob or injure his new master.
For ponalties incurred by personating masters and giving falso certificites of eharacter, or by persons offering thenselves as scrvante with fulse or forged certificates, see 32 Geo. III. c. 56.
Reference may be made to the article on Linour and Labour Laws for the cases in which special terms lave been introduced into contracts of service by atatuto (e.g., Truck Act), anid for the recent legislation on tho sulbject gencrally, including the Employers' Liability Act, 1880 .
The master's liability on the contracts of his servant depende on altogether different principles from those on which his linbility for negligence has been justifed. It is anbstantially a caso of hability as. principal for the acts of an ageut. The main question in all cnses is whether tho alleged ogent liad authority to make a contract for his principal, and in the relation of master and servent threre may to any variety of circumstances giving rise to that presumption. Ilers tho riglits of third persons lavo to be considercd, and tho master will bo hold hiablo to them whercter ho has "by words, conduct, of demeanour held out his servant as a general agent, whether in alf kinùs of lousiness or in transacting business of a particular kind,"-even if the servent should act contrary to express orders. For esample, a horse.dealer sending lis servant to market with a horso te sell whl be liable on tho scrvant'a warranty, althought he has been positively ordered not to warant; whicreas an owner aending a stranger to sell would not bo liable on a warranty given contrary to exprege directions.

MASTIC, or Mastich, a resinous exndation obtained from the lentisk, Pistacia Lentischs, an evergreen sbrub of the astural ordcr Anacardiaces. The lentisk or mastic plant is
indigeuous to the Mediterranean coast region fiom Syria to Spain, but grows alsa in Portugal, Morocco, aud the Canaries. Although experiments have proved that excellent mastic might be obtained in other islands in the archipelago, the production of the drug has been, sioce the time of Dioscorides, almust exclusively confined to the island of Scio. The mastic districts of that island are for the most part flat and stony, with little hills and few streams. The shrubs are about 6 feet high. The resin is contained in the bark and not in the woon, aud in order to obtain it numerous vertical incisions are made, during June, July, and August, in the stem and chief branches. The resin speedily exudes and hardens into ronndish or oval tears, which are collected, after nbout fifteen days, by women and children. in little baskets lined with white paper or cotton wool. The groand around the trees is kept hard and clean, and flat pieces of stone are often laid benenth them to prevent any droppings of resin from becoming contaminated with dirt. The collection is repeated three or four times between Jnae and September, a fine tree being found to yield about 8 or 10 形 of mastic during the season. Besides that obtained from the incisions, mastic of very fine quality spontaneously exudes from the small branches. The harvest is affected by showers of rain during the period of collection, and the trees are much injured by frost, which is, however, of rare occurrence in the districts where they grow.
Four qualities of mastic are recognized by the dealers in Scio.

1. Cake, consisting of large pieces, sold chiefly for use in the seraclios, being chowed by women of all ranke throughout the Turkish empire, for the purpose of imparting an agreeable odour to the breath. This quality is worth 120 to 130 piastres per oke fof $2.83 \mathrm{ft})$ or even inore.
2. Large tears, worth 90 to 100 piastres.
3. Small tcars, valued at 75 to 80 piastres.
4. Mastic mixed with fragments of leaves and sand, chiefly con. sumed in the mafuracture of the Turkish liqueur, or mastic brundy; called raki, and other cordials.
The third sort, in small tears, is that which is chiefly exported to England, the first and second qualities being sent to Turkey, especially Constantinople, also to Trieste, Vienna, and Marscilles.
 $\pi \hat{\tau} \tau \tau a$, and $\phi \lambda$ о̂õa respectively.
Mastic still forms the princinal revenue of Scio. In 1871, 28,000 to of picked end $42,000 \mathrm{ft}$ of common were explorted from that island, the former being worth 6s. 10d. and the latter 2s. 10d. per 15. The average price in London raries from 2s. 6 d . to 4 s . 6 d . per 1 lt .

During the $15 \mathrm{th}, 16 \mathrm{th}$, and 17 th centuries mastic enjoyed a high reputation as a medicine, and formed an ingredient in a large number of medical compounds, but its use in medicine is now almost obsoiete.
Mastic occurs in English commerce in the form of roundish tears anout the size of peas, some of them, however, being oblong or pear-sbaped. Tliey are transparent, with a glassy fracture, of a paic yellow or fant greenish tinge, which darkens slowly by age. When chewed they rapidly soften, by which character they are casily distingnished from Sandarac resin, which while benting a strong resemblance to mastic occurs in teairs of a more cyliudrical shape. Tho mastic which las been imported of late years presents a lright glassy appearance from having been washed free from dust.
Mastic is soluble in turpentine, chloroform, ether, acetonc, and oil of cloves; but cold alcohol dissolves only 90 per cent. of it. The solublo prorion is callecl $A l l^{\prime} h a$ resis ( $\left(\mathrm{C}^{20} \mathrm{H}^{32} 0^{3}\right)$, and possesses acid properties. The insoluble jortion, Beth resin or Masticin, is somewhat less rich in oxygen, and is a translucent colourless tough substanco insoluble in canstic alkali.
Pistacia Kihinjuk, Stocks, and P. calutict, St, trecs growing thronghout Sindh, Baluchistan, and Cabul, yiefd a kind of mastic which is muct with in the Indian bazara under tho name of $M$ Mustugirimi, i.c., Roman nastic. This when nict with in the Enropean market is known ns East Indian or Bombay mastic. In Algeria P. atlantici, Desf., yielde a solid resiu, which is collected and used by the Arabs as a minsticatory. Cape mastic, uscd by the colonists, hut not exported to England, is the produce of Euryops multififius, the rcsin busl, or harpuis bosch, of the Boers, - a plant of the composite order growing abondantly in the Clanwillians district. Dammar resin is sometinre9 sold under the name of mastic. - The West Indian mastic tree is the Burscra gummifera, end the Peruvian mastic is Schinus. Molle; but weither af theso fuznishes com. mercial resins.

MASTODON (from $\mu$ aco is, "nipple," and isoir, "tooth"), a nanac, strygested by the conical or papillary form of the projections on tha molar tecth of some of the species, given by Cuvier to a genus of extinct elephant-like mimals. Their pusition in the suburder Probuscilea of the great order lingulata lias been indicated in the article Manmila ( $p .425$ of the present volume).

In size, general forat, nud principal ostcological characters the Mastodons resembled the Elephants. It is by the teeth alune that the two groups are to be distinguished, and, ns shown in the article just referred to, so numerous are the modifications of these organs in each, and so insensibly do they pass by a series of gradations into one another, that the distinction between the two is an arbitrary and artificial one, though convenient and even necessary for descriptive purposes.

As in other Proboscidenns, the teeth of Mastodons consist only of incisors and molars. The incisors or tusks are never more than a single pair in each jaw. In the upper jaw they are alrays preseat and of larye size, but apparently never so much curved as in some species of Elephant, nud they often lave longitudinal bands of enamcl, more or less spirally disposed upon their surface, which are not met
with in Elephants. Lower incisors, nerer fomud in true Elephants, are present throughout life in some species of Mastodun, which have the symphysis of the lower jaw greatly clungated to support them (as in IJ. ctingusticens, $1 /$. pentelici, and M. Longirostris (see fig. 1, C'). In the common American species (M. ohioticus, Blunenbach) there were two tusks in the lower jaw in the young of both sexes ; these were soon shed in the female, but oue of them wras retained in the male. In other species no infcrior tusks have been found, at all crents in adult life (seo figure of $\mathrm{d} /$. turicensis).

The molar teeth are six in number on each side, increasiug in size from before backwards, and, as in the Elephants, with a horizontal succession, the anterior teeth being lost before the full development of the posterior tecth, which gradually move formard, taking the place of those that have been destroyed by wear. This process is, horever, not so complete as in the true Elephants, and as many as three teeth may bo in place in each jaw ut one time. There is, moreover, in many species a true vertical succession, affecting either the third, or the third and second, or (in one Ancrican species, M. productus) the first, second. and third of the sis molariform teeth. These three


Fio. 1.-Mastodon turicensis (Pliocene). From Sismonda. A, D, M. ohioticus; C, M. Iongirostris.
are therefore reckoned as milk molars, and their successors as premolars, while the last three, which are never changed, correspond to the true molars of those animals in which the typical dentition is fully developed. The study of the mode of succession of the teeth in the different species of Mastodons is particularly interesting, as it exlibits so many stages of the process by which the very anomalous dentition of the-modern Elephants may have been derived by gradual modification from the typlical beterodont and diphyodont dentition of the ordinary Mammal. It also shows that the anterior molars of Eleplants do not correspond to the premolars of other Ungulates, but to the milk molars, the early loss of which in consequence of the peculiar process of horizontal forward-moving succession does not require, or allow time for, their replacement by premulars. It must be noted, however, that, in the Mastolon in some respects the least specialized in tooth-structure, the $1 /$. ohioticus of North America, до vertical succession of the mulars has yet been observed, although vast numbers of specimens have been examined.

The Mastoduns have, generally speaking, ferser ridges on their molar teeth than the Elephants; the ridges are also
less elevated, wider apart, have a thicker enamet corering, and scarcely any cementum filling up the space between them. Sometinies (as in M. olioticus) the ridges are simple transversc wedge-shaped elerations with straight or


Fia. 2. - U'pler Nolat of Nastodon arvemensis. From Owen. concare culges. In other species the summits of the ridges are more or less subdivided into conical cusps, and may hare accessory cusps clustering around them (as in $I /$. arveruensis, see fig. 2). When the apices of these are morn by mastication, their surfaces resemble circles of dentioe $\mathbf{2}_{2}^{\prime}$
surrounded by a border of enamel, and as the n!tritiou proceeds different patterns are produced by the union of the bases of the cusps, a trilubed or trefoil form beige characteristic of some specics.

Certain of the molar teeth of the middle of the sorics in Both Elephants and Mastodons have the same number of principal ridges, and those in front of them hare fewer and those balind a greater number. These tecth were distioguished as "intermediate "molars by Dr Falconcr, to whose extensive and conscientious researches we owe much of our knowledge of the structure of this gromp of animals. In the restricted genus Elephas there are unly two, the last milk molar and the first truc molar (or the third and fourth of the whole scries), which are alike in tho number of ridges; whereas in the Mastodons there are three such feeth, the list milk molar and the first and second truc molars (or tho third, fourth, and fifth of the whele series). In the Elepharts the number of ridges on the intermediate molars alwnys exceeds five, but in the Mastodons it is noarly always threo or four, and the tooth in front has usually one fewer and that belind one more, so that the ridge formula (i.e., a :cracias expressing the number of ridges on each of the sis molar teeth) of most Mastoduns can be reduced either to $1,2,3,3,3,4$ or $2,3,4,4,4,5$. The former characterizes the section called 2 'rilophodon, and the latter that called I'elraloplodon by Dr Falconer. Theso divisions are very uscful, as under one or the other all the present known specics of Mastodon can be ranged, but observations upon a larger number of individuals have shown that the number of ridges upon the teeth is by no means so constant as implied by the mathematical formuleo giren above. Their exact enumeration is even difficult in many cases, ns "talons" or small accessory ridges at the hinder cad of the teeth occur in rarious stages of development, until they take on the claracter of true ridges. Transitional conditions have also been shown, at least in some of the teeth, between the trilophodont and the tetralophodont forms, and again between the latter and what has been called a "pentalophodont" type, which leads on towards tho condition of dental structure characteristic of the true Elephants.
The rauge of the genus Mastodon in time was from the midde of tho Mieceno peried to the cud of tho Pliccene in the Old World, when they becamo catinct; but in America several speciescspecially the best-known, owing to the abundance of its remains, which has been varionsly called M. ohioticus, M. americanks, and 15. gigankers-survived qaito to a late Pleistncene period.

The rango in spaco will bo best indicated by tho following list of the penerally rccognized species. 1. Trilophodont series- $M$. anjustilens, borsoni, pentelici, pyrenaicus, tajizoides (or turicensis), rirgatidens, from Europe; M. falconcri and pazdionis, from India; 11. ohioticus, obscurus, aid produchus, North America: and M. andium nut humbolditi, South America. 2. Tetralophodont series- $M$. arvernensis, M. dissinilis and longirostris, from Eúrope; Mr. intidens, sivalchsis, and prramensis, from Indis; Mf. mirificus, from Sorth America. The only two of which remains have been found in Great Britain are M. arecrucnsis and M. Borsoni, both from tho crags of Norfolk and Suffolk.
The range of tho genus was thus very extensive, and it has even been supposed to reach to Australia, where no Ungulate mammal has ever been proved to exist. This supposition until very recently has been based upon tho ovitence of a siuglo molar tooth of an animal undoubtedly belenging to Mastodou, and alleged to have been brought from noar Boreo Creck, an afluent of tho Lachlan river in the Ashbumban district, New South Wales, by the late Count Sitrzolecki, and descrileal by l'rofessor Owen in 1844 under tho name of $M$. australis. Its ideutity with tho South American $M I_{\text {. andium }}$ has, howaver, boca ollowa by Dr Falconer, who has thrown grato doubts upon tho locality assigned to the specimen. A fragment of a fusk, of the Australian origin of which there is less question, and whirh presents the characteristic structuro only known at prosent ${ }_{12}$ Elephants nad Mastodons, has been lately deseribed by Piufessor Owen (Proc. Koy. Soc., March 30, 1882). It wa foual in a drift-leposit of a rarine io a district of Darling Downs, 60 miles to tho castwned of Moroton Bay, Qucensland. Unfortanately no other portions of the remains of the animal to which it belonged Lave beca discovered.

Ribliogrophy.-Cullur. Bascmens Fonallez; Falconer and Cantley, Fauna Anfiqua Siralmais, 1sli-47; H. Folconer, Palzontological Blemioirs, editea oy C. Murchlsun, 18ヶ8; Wurren, Description of the Shefeton of Mastodong giganteus, 14is: ; Owen, British Físail Dfamma/s; Lartet, "Sur la dention des I'roboscidiens, dee."' in Bull. de la Soc. ciéongique de France, ser. 2, vol. x以. po 469, 1859; A. Gundry, Animaux Fossiles et Geologie de rAttique, 1882-67; J. Leldy, ConWibutions to Estinct levtebrate Fauna of the Festen Terrifories, vol. 1., 1873: 1h. Lydel'cer, "Siwalith and Naibada Proboscidea." In Memoirt of the Geological Survey of India, 1 sso.
(W. H. F.)

MAS'UDY. Abúl-Hasun "All ibn Hosein ibn "All cl-Mas indy, ${ }^{1}$ was born at Baghdad towards the close of the Dth Christian centary. Great part of his life was spent in travel ; in $91 \stackrel{y}{l}-13$ A.D. Le was at Múltán in the Punjab, and nlso risited Mansuira. Three years later he was at Basra and met Abu Zeid, the geographer whoss remarks on the extrenie East are comprised in Reinaud's Relation des Voyages (Paris, 1845). His writiogs nod those of Masindy are indebted each to the other: In the interval it would seem our traveller had gained that personal acguaintance with Fars and Susiane, and that knowledge of the books of the Persians, of which he speaks in his writings. Once more tnrning eastward he was at Canbay in 915-16, and soon after at Șaimúr. Heace he pushed on to Ceylon and sailed to Madagascar, returning to "Omin in 916-17. In the introduction to the Meadows he seems also to say that lis had journeyed as far as Chinas A northorn journey carried Masúdy as far as the Caspian Sca. In 926 he was at Palcstine, where his curiosity, not limited by religious prejudice, led him to visit the Christia\% church and describe its relics. In 943-14 be made a careful sludy of the ruins of Antioch, and subsequently proceeded to Basra. In the same year he composed the Meadows of Gold. The last ten years of lis life were passed in Syria and Egypt. His last work, The Indicator and Monitor, was written 315. A.m., and his death took place in Egypt the same year ( $956-57$ A.D.). ${ }^{2}$ The vast journeys of Missudy did not pass beyond the lines of commercial enterprise among the Moslems of those days, when "Irak was not unjustly held to be the centre of the world, and the arms, the trade, and the religion of Islám penetrated to tho remotest parts of Asia and Africa. But Mas údy did not travel for gain. His ohject was to study with his own eyes the peculiarities of esery land, and to collect whatever was of interest for archæology, history, and manners. Singularly free from bigairy-he was himself a Mo'tazilite, one of the heretical sect, : I they were reckoned, who held the doctrine of man's free willhe was ready to derive information even from the writings of infidel Persians or of a Christian bishop. ${ }^{3}$. In tho range of his observations and the naive uncritical honesty with which he records them he has naturally suggested comparison with Herodotus, and so competent a judge as Ibu Khaldún gives bim the titlo of imam of Eastcrn historians, an epithet precisely parallel to that borne by Herodotus amoug the historians of the West. The parallel, howover, must be taken with great deductions. Of the IIfadous, the work by which Masiudy is chiefly known, by far the greater part is an listorical compilation, enlirened indeed in some parts by personal recallection of places and the like, but mainly drawn from a vast mass of earlier books ${ }^{4}$ which nro used in the common paste-and-scissors fashion of Eastern Listory. Eren in the carlier cosmographical chapters the author's rast and miscellaneous reading, which included tho Arabic tranklations of Ptolemy nod other Greck writers, is mingled with his original observa

[^230]tions in that ill-digested style so often characteristic of men of prodigious acquisitive porver ; and the presentation of facts falls as far short of freshness and the artistic charm of the inimitable Grecian raconteur as the shapeless details of universal history, as it appeared to tho Noslem, fall short of the epic interest of the great striggle for supremacy betreen Eran and Hellas.

Mas úly lins himself sketched his literary activity in the opening chapter of the Mcedows and in his last book The Indicator. In his luge Annais (Akhboir el-Zemrin) and in a second work of less extent (Kildb cl-Awsat) which followed it he summed up the whole cosmographical and geagraphical science of his age. These morks are lost or kaown only by fragments, but we possess an abridgment in the anthor's third great work The Afeadous of Gold and Mincs of Precious Stones, of which there are many MISS. in European libraries. It wos printeil by Barbier de Meynard with a French translation, 9 vola. 8 ro, Paris, 1861-77, and ai Búlák in 1867 (2 rols. folio). The first volume of a English translation by Sprenger appeared at London in 1841 ; but the rork was not continued. The Kitíb-el-TazLih (Indicator and Monitor) exists in MIS. at Paris, and has been fully described by De Sacy in Nolices ct Extraits, rol. viii., 1810 (reprinted at the eud of the Paris edition of the Alcadoves, where a list of other works of our author is given). See also Quatremére in Jour As. for January 1839, and the article "Mlasoudy," by Reiaaud, in the Nouv. Biog. Genérale.

MASULIPATAM, the chief town of Kistna district, Madras, India, and a seaport, is situated in $16^{\circ} 9^{\prime} \mathrm{N}$. Iat., $81^{\circ} 11^{\prime}$ E. long., with a population in 1871 of $36,316$. The export trade is partly to Eurnpe ; imports are chiefly local. Iu 1874-75 235 vessels of 106,000 tons burthen visited the port; the exports (oil-seeds and cotton) amounted to $£ 171,400$, the imports to $£ 119,600$. The town contains the usual district offices, a jail, and several schools, the chief being the high scheol. It is a flourishing station of the Church Missionary Society.
Masulipatam $\pi$ as the earliest British settlement on the Coroman. del coast. An ageacy was established there in 1611, and a fortificed factory in 1622. During the wars of the Carnatic, the Eoglish ivere temporarily expelled the town, which was held by the French for some years. In 1759 the town and fort were carried by storm by Colone! Forde, and it has been held by the British ever since. Weavers form a large portion of the inhabitants of the town, fhough their trade has greatly declinell since the beginning of this èentury. Their operations, besidea weaving, include printing, oleaching, washing, and dressing. In former days the chintzes of Masulipatam had a great reputation abroad for the freshness and permaneocy of their djes, the colunrs beconing brighter after washing than before. There is still a small demand for these Irticles in Barmah, the Straits, sad the Persian Gulf; but steam machinery has nearly beaten the hand-loom ont of the fiell. Another specinlity was metayollams or kerchiefs for the head; but this industry was ruined by the refusal of the West Indian negroes to wear these kerchiefa after their emancipation. Tartans, ginghams, torvels, and tablo linen are still manufactured to some extent. The importance of the place is now decliniag, and the garrison was fithdrawn in 1865. The heaviest blow to the prosperity of the :own was given by the great storm-wave of 1864 , which swept over the eatire toma, and is said to bare destroyed 30,000 livcs.

MATAMOROS, a city of Mexico, in the province of Tamaulipas, on the sunthern bank of the Rio Graude, about 35 miles from its mouth, and directly opposite Brownsville in T'exas. Built in an oper plain, Matamoros has its streets laid ont with great regnlarity; and the general appearance gires evidence at once of its recent rise Into importance and of the induence of the architectural fashions of the United States. The priocipal building is the large but heary-lonking cathedral An extensive traffic, both legitimate and contraband, is carried on between Matamoros and Brownsrille, and in spite of the bar at the month of the river, which in foul wenther prevents the entrance even of small schooners, the place is not without its ralue to Mexico as a foreign port. The imports of American and of Euronean goods are valued each at about \&1,100,000, with a growing preponderance on the side of the American. Cotton, flax, silk, and woollen goods are the main items in the Europern list; cottons, leaf tobacco, wheat-flour, machinery, and preserved meats ia
the American. Files and skius, live animals, and mon are the prancinal exports apart from coin and bullion, which are largely smuggled to a a oid the export duty. The population is about 20,000 .

Founded in the begianing of the ceatury, and named in honour of the Mexican patriot Mariano Matamoros, the city has playcd a part in att tho more recent mars. It niss captured by Generat Taylor of the United States in 1846, was in tio hands of tho iraperialists under Majia in 1S64, and was occupied by the French in 1380.

MatanZaS, or San Carlos de Matanzas, a city and seaport or the north coast of Cuba, and the chief town of a province, lies 52 miles east of Hasana, with which it is connected by rail. It is a well-built place of from 36,000 to 40,000 inhabitants, occupying a fine site at the head of the Bay of Matanzas, and separated from its suburbs Pueblo Nuevo and Versailles by the San Juan on the one hand and the Yamurri on the other. In the centre of the priocipal square is a statue of Ferdinand VII., and along the east side runs the residence of the commandant. The new theatre is the landsomest building of its kind in Cuba, and the Empresa Academy lias the repute of being one of the best educational institutions in the West Indies. As a commercial centre Matanzas ranks next to Havana, having risen rapidly after the remoral of the old trade restrictions in 1809. The exports are mainly sugar and molasses. The harbour has been deteriorated by the mud brought down by the San Juan; but the bay is well sheltered from all winds except the north-east, which brings in a heary sea. Matanzas was founded in 1693 by a number of immigrants from the Canary Islands, and in the same year Bishop Compostello laid the first stone of the cathedral. The city suffered severely from a cooflagration in 1845. About $2 \frac{1}{2}$ miles to the east are the beautiful stalactite caves of Bellamar, about 3 miles in extent.

MATARÓ, a Mediterranean seaport of Spain, in the province of Barcelona, 21 miles to the north-east of that city, is beautifully situated on the lower slopes and at the foot of the range of bills which skirt the coast, and shelter the town from the cold northern winds. Tho streets of the new tow, lying next the sea, are wide and regularly built ; those of the old town, farther up the hill, still preserve much of their ancient character. The parish church of Santa Maria has some good pictures and wood carvings; other promineut public buildings are the theatre, the civil- hospital, and the establishments of the Padres Escolapios. There are small schools of navigntion and the finearts. The wine of the neighbourhood, which somerhat reşembles port, is shipped in large quantities from Barce. lona; and the district furnishes fine roses, strawberries, and similar produce for the Barcelona market. There is a considerable fishery, the products of which are sent inland to Manresa and other places. The leading industries of Mataró are its lioen, woollen, and cotton manufactures, especially of canvas and tarpaulin; several hundreds of women are employed in the town and neighbourhood in lace-making; there are also potteries, machine-making, and chemical works, and shipbuilding is carried on to some extent. The railway to Barcelona, opened in Octuber 1848, was the first to be constructed in Spain. Mataró lias no artificial harbour, several attempts to make one bariag failed; the trade is carried on chiefly through Barcelona. The population in 1877 was 17,405 . Outside the town is the much-frequented carbonated mineral spring of Argentona.

MATCHES. Till the close of the 1 Sth century flint and steel with tinder box and sulphur-tipped splints of wood-"spunks" or matches-were the common means of obtaining fire for domestic and other purposes. The sparks struck off by the percussion of flint and steel were made to
fall among the tinder, which cousisted of carbonized tragmenss of cotton and linen; the entire mass of the tinder was set into a glow, developing sufficient heat to ignite the sulphur with which the matehcs were tipped, and thereby the splints themselves were set on fire. Instead of tinder, match-paper or touch-paper, a thick bibulous paper impregnated with saltpetre (nitrate of potash), and amadou or German tinder, a thick leathery and porous preparation from the fungus Polyporys fomentarizs, were often used.

It was not till 1805 that any attempt was made to use chemical agency for the ordinary production of fire. In that year MI. Clancel, assistant to Professor Thenard of Paris, introdnced an apparatus conisisting of a small bottlo containing asbestos; saturated with strong sulphuric acid, with splints or matches coated with sulphur, and tipped with a mixture of chlorate of potash and sugar. The matches so prepared, when brought into contact with the sulphuric acid in the bottle, ignited, and thus, by chemical action, fire was produced. It appears alse that in the same year phosphorus matches wero known in Paris, and in 1809 Derepas proposed to lessen the dangerously great inflammability of the phosphorus match by making on igniting misture of that element with magnesia it is also said that M. Derosne made a friction match with a phosphorus tip in 1816. Again in 1823 a phosphorus match was proposed, but it came into little use. In this case the compositien consisted of equal parts of phosphorus and sulphur cantiously melted together in a glass tube. The tube was then securely corked, and, to obtain a light, a splint was introduced into the misture, and a small pellet detached, which on withdrawal and exposure almost spontaneously ignited. In that year ( 1823 ) a decided impetus was given to the artificial evolution of fire by the introduction of the Däbereiner lamp, so called after its inventor Professor Döbereiner of Jena. The action of this elegant invention depends on the remarkable property possessed by spongy or highly porous platinum of determining the combination of hydrogen and oxygen and the formation of water at common atmospheric temperatures. In the Döbereiner lamp hydrogen is evolved in a suitable vessel by the action of zinc on acidulated water. The gas so liberated, when required, is passed through a fine orifice by means of a stop-cock, and impinging on a mass of spongy platinum mounted in a frame it combines with oxygen of the nir, thereby developing an intense heat, which quickly causes the platinum to glow, and ultimately is sufficiently intense to set the stream of hydrogen itself on fire. The Döbereiner lamp is still occasionally seen, but it is chiefly used in connexion with chemical lectures.

The first really practical friction matches were made in Eagland in 1827, by Mr John Walker, a druggist of Stockton-on-Tees. These were known as "Congreves" after Sir William Congreve, Bart., the inventor of the Cougreve rocket, and consisted of wooden splints or sticks of cardbeard coated with sulphur and tipped with a mixture of sulphide of aatimony, chlorate of potash, and gum. With each box of eighty-four, which was retailed at a shilling, there was supplied a folded piece of glass paper, the folds of which were to be tightly pressed together, while the match was drawn through between them. In 1830 the so-called "Pronetheans" were patented by Mr S. Jones of London. These consisted of a short roll of paper with a small quantity of a misture of chlorate of potash and sugar at one end, a thin glass globule of strong sulphuric acid being attached at the same point. When the sulphuric acid was liberated by pinching the glass globule, it acted on the mixed chlorate and sugar, producing fire.

The phospherus friction match of the present day was first introunced on a commercial scale in 1833; and it
appears to nave been made almost simultaneously in several distinct centres. The name most prominently conuected with the early stages of the invention is that of Preschel of Vienna, who in 1833 had a faetory in operation for making phosphorus matclies, fusees, and amadou slips tipped with igniting composition. At the same time also matches were being made by Moldenliauer in Darmstadt; and for a long series of years Anstria and the SouthCerman states were the principal centres of the new industry. Improvements in the manufacture have been numerous; and the industry is now carried on with a complete system of ingevious labour-saving machinery. The use of phosphorus as a principal ingredient in the igniting misture of matches las not been free from very serious disadvantages. It is a dearly poison, the free dissemination of which has led to many accidental deaths, and also to numerous cases of wilful poisoning and suicides. Workers also who arc exposed to phosphorie vapours are subject to a peculiarly distressing disease which nttacks the jaw, and ultimately produccs necrosis of the jawbone; it appears, however, that, with scrupulous attention to ventilation aud cleauliness, almost all risk of the disease may be avoided. Strenuous efforts have been made by numerous inventors to introduce matcles having no phosphorus in their igniting mixture, but hitherto with indifferent success. The most serious objections to the use of phosphorus have, however, been overcome by the discovery of the modified condition of that bedy known as red or amorphous phosphorus, made by Professor Anton Von Schrütter of Vienna in 1845, and the utilization of that substance in the now well-known "safety matches" invented by Lundström of Sweden in 1855, and first manufactured in the United Kingdon by Bryant \& May of London. Red phosphorus is, in itself, a perfectly innocuous substance, and no evil effects ariso from freely working the compositions of which it forms an ingredient. The fact again that safety matches ignite only in exceptional circumstances on any other than the prepared surfaces which accompany the box-which surfaces and not the matches themselves contain the phosphorus required for ignition-makes them much less liable to causo accidental fires than the kinds more commonly in use.

Mfomuacture.-The operations carried on in a match factory may be grouped under the four heads of preparing the splints, dipping the matcles, box-making, and filling. Tho virrietics of wood principally used for matches are poplar, aspen, ycllow pine, and white pine. Splints are cither round or quadrangular, the former laving been at one time exceedingly common, when Austrian manufactures ruled the markets; but, now that Sweder. is the principal matel-manufacturing country, matelhes are nearly all square in section. For cutting square splints many ingenions machines have been devised, some of which, workcd by enginepower, can turn out from $15,000,000$ to $17,000,000$ splints per day. In Sweden the manufacturers use principially nspen or clean. grained pine wood, preferring sections 12 to 20 inches in diameter, newly felled and full of sap. If dry, tho wood must be soaked before it is fit for the operations through which it luases. The timber is cut into blocks about 15 inches long-sulficient for seven matches-and being freed from bark it is fixed in a sprccial form of turning lathe, and by means of a fixced cutting tool aeting on its entiro length a continuous vencer or land the thickness of a match is cut off. With each revolution of the block the knifo advances proportionately to the thickness of the band cut off, snd thus a uniformly thick slice is oltaincd continuously. At tho sarme timo cight small knives cut the veluer into seren serarato bands each the length of a match, nnd thus in one operation soven long ribbons of wood the length and thickness of a matela are obtained. These riblons are next broken into lengths of from 6 to 7 fect, knotty pieces arc removel, and to cut then iuto single matches they are fell into a manchine which ncts aomewlat liko a straw-chopper. From 120 to 140 hands are sctsel on in the apparatus, and a ratchet arrangenenent feeds thena forward the thickness of a matel nt each stroke of the cutter, milich thns cuts off 120 to 140 matches per stroke. Worked by hand the machine delivers about $5,000,000$ splints per day, and by power it can be run to turn out double that nymplor The mathes are next
dricel in revalving drmas in a lieated chamber or store, and theac. after they aro sittell in a kind of partitioned sieve to free them from fragments and spliuters. The sifting brocess also arranges all the splints in parallel order and in uniform quantities, whereby they may be convenicntly bundlen and preparel for the dipping which next follows. For the dippiug process it is necessary to keep each match free from contact with its noighbour, and indeed allow it such a suace that each may be fully coated and yet there be no danger of the inniting composition clotting the heads into ooe mass. To effect this the splints are ly an ingenious maclane separately arranged at uniform intorvals Letween the lathes of a apping frame. The lipping frames are made about 18 inches square, aml are fitted with 44 movable lathes. Between each pair of lathes 50 splints are inserted by the machine, and when tightened "! by screws cuch frame thus contains $44 \times 50=2200$ splints placed at regulate iuturvals, the lieads of whiell are all on the same level. A single attendant can place, by aid of the nachine, about $1,250,000$ matehes in the dipping frames per day. The dippiug is done in a stove of misonry whicli contams three square flat-botfomed shallow pans. In the first the splints aro heaterl so as to facilitate the absorption of paraffin; in the second their points are dipped into unolten parallin scale; and in the third they receive their lieads or tirs of ignteng composition, that mixture being kept in a uniform thin stritun in the pma, or in some cases it is supplied by an endless indir-rubber belt which revolves and dips into the composition. A skilful workonau can dip from 3500 to 4000 frames, or abont $8,000,000$ matehes, a diy: The frames so dipped are afterwards arranged in a heated apartment till the igniting composition is dried, alter which the matclies are taken out and put up in bores by hand.
Matel splints in the factorics of the United Kingdo:n are generally cut in lengths snitable for two matches, and dealt with in that form throughout. The splint-cutting iwachine patentel by John Jex Long of Glasgow in 1871 ditfers essentially from the Swedish aplint-making machinery ahove alluded to ; it acts on squared blocks two-match length, and is mpinin of producing up to $17,000,000$ matches per day.

The object of dipping in melted patattin is, of course, to secure more ready ignition of the wood. Sulphur was formerly employed for that purpose; and enormons quantities of the cheaper matches soade on the Continent and in America continue to be salphur dipped. The cheaper kinds are frequently. "bundle dipped "in the molten solphur, after which their fininta are merely pressed against the igniting composition.

The clidef element in the igniting misture of ordidary matches is strll common [inosphorus, combined with one or more other bodies which readily mart with oxygen under the inflnence of heat. Chief among these latter substances is chlorate of potash, the body which causes the sharp explosive sound when a comion match is strucls, ond to the use of which there is a strong objection on the Continent from the fear of explosions in doeling with the substance in large quantities. The other oxygen-yielding bodies commonly found in matches are red lead, pitrate of lead, bichromate of potash, and peroxide of manganese. The proportions in whirla any of these bodies is present in various igniting compositions are kept trado secrets; they vary greatly, as special regard wust be given to matches for darnp clinates, or for ocean transport, and to other considerations. The igniting agents are made into a paste with glue or grm as an aduesive agent, a little fine sand or powdered glass, and some colouring ingredient such as cinnabar, smalt, magenta, or Prussian blue. Matches in which amorphons phosphorns takes the place of the common variety, notwitbstanding several obvious advantages, have never come into general use. They were shown in the Grent Exhibition of 1801 by Bell \& Black of London; and Foster \& Warwa of Vienna, one of the carliest match-making firms, long continued to make them, as did also Cogniet Pére et Fils of Paris. As made by these and other makers they were difficult to strike, requiring a special rough rulabing surface; the heal frequently broke away in the attempt to light them, and when they did inflamse it was with explosive violence and a loud spluttering noise. Dr Von Schrötter, the discoverer of atnorplions.phosphorns, claims to bave found a means of preparing combinations of amorphous phosphorus with chlorate of potash and other oxygen-yielding compounds of all degrees of combustibility, and he states that Iloclistätter of Frankfort now manufactures matehes with amorphous phosphorus composition which may be ignited by rubbing on a coth surface, which inflame quietly, burn without smell or sparking, are not influenced by damp, and are cheaper than common phosphorus matches. The use of arnorphous phosphorus-bat on the rubbing surface only and not in the dipping camposition (safety matches) - was first suggested by Bottger, but it was not till a patent was secured by Lundström in 1855 that the matches were brought into the market. According to J. G. Gentele, the elements of the dipping nixture for the heads are-chlorate of potash, 32 parts; bichromate of potash, 12 ; red lead, 32 ; sulphide of antimony, 24 ; and the ingredients of a suitable rubbing surface are eight perts of amorphous phoaphorus to nine of sulphide of autimony. Thero is nu doubt, however,
that lace too tlere is considerable diversity in the composition of the mixtures. lguitiug compositions entirely free from phosplorus depend for their moderate degree of cfliciency on the use of sach agents as rhlorate of potash, sulphide of antimony, bichromate of potasli, and red lead.
"Vestas" are matches in which shert pieces of "wax taper" are nsed in place of wooden splints. The taper is prepared by draming a series of wicks or strands of twenty to thirty fine cotton th: iads through molten stcariu, with some propurtion of paraflin. The wax fuickly hardens on the threads, agglutinating them to irregular hard stranis, which are smoothed nid rounded to the required size by being drawn though iron platus perfarated with holes the size of the respuired taper. The tapers are cut to the match lengths, and set in clipping fromes by special marhines. the making of vestas is an industry only secund in extent to the wooden match manufacture,-its headuuarters being London, Manchester, Blarseilles, and the north of laly. Fusees for the use of smokers are made of strips of thick porous paper saturated with saltpetre and bichromale of potash, and tipped with ordinary composition. They are norr almost entively supplanted by vesuvians, Which consist of large oval heads on both ends of a round splint. These heads, inade ly repeated dipping, consist of a porous mixture of charcoal, saluetre, cascarilla or other scented bark, glass, and gum, anrl they also are tipped with common igniting composition.

Ordinary urateh boxes are made of thin veneers or skillets of wool the same as used in splint making. The blocks used yield slillets the cxact size of the box or cover to be made, and the nuachine which shares skillets off the block also senres them alouf the lines $b y$ whicli they nust be bent to form the box. The fold. ing, covering with paper, and labelling are operations perforosed by younur gils with remarkable rapidity. In dealing. with double splints, the matches are at the broxing stace cut asunder in sroall bundles with a lever knife by the box filler, who acquires such delicacy of perception that at each operation slae scizes and divides the exact quantity required to fill two boxes. A good hand will in this way fill 35 to 40 gross of boses per day.

It is calculated that in the principel European conntries from \$1. to ten matebes are used for each inhabitant daily. There is no way by which an cxact estiuate of the extent of the trade in the United Kingdom can be obtained; but competent authorities believe the yearly value of the matches made to be not less than $£ 1,500,000$, aud that the makers turn out about $300,000,000$ matehes daily. Of all the makers Messrs Bryant \& May are by fal the most cxtensive; find next comes the Bell \& Black conpany, formed of a combination of makers in London, Glassow, Manchester, and Jork. In. France the right to mannfacture matches is a Government monopoly farmad to the Compranie gencrale des sllurysycs chimiques for an anmual payment of $16,000,000$ francs, with 6 centimes extra per huadred inatches in excess of forty inilliards sold yearly. The company has concentrated the whole of the mauufacture into twelve establishments, the largest of which are at Marseilles. 'Ihe cffect of the monopoly in France is that matches are very costly, and the average consumption per head throughout the country is considerably less than in other countries. Siveden is the country which in recent years has been most intimately identified with the growth of the industry. In that ecuntry, including with it Norway, there were in 1880 forty-three match factories, many of them large, that of Jönköping being among the most extensive in the world. The quantity of matches exported that year was about $19,000,000$ ii ( $82,900,000$ skal. punds), prob. ably representing $50,000,000,000$ matches. The yearly exports have increased four-fold since 1870 , and are still rapidly extending. In Germany there are two hundred aud twelve factories, which are estimated to make yearly about $60,000,000,000$ matches ; and Anstria-Hungary - the original seat and centre of the mannfacture possesses one hundred and fifty establishments, whence large qquamtities of matches are exported to Russia, Turkey, Asia. Minor, and the neighbouring states of Italy. Throughout Europe ahout 1200 tons of phosphorus are annually consnmed in the maniffacture of matches, the qreater proportion being produced in England.

In the United States a tax of 1 cent per box containing one buodred is levied on matcbes manufactured in the country, in addition to which there is an ad valerem duty of 35 per cent. on all matches imported. The internal revenue tax of a cent per box is subject to a reduction of 10 per cent. to manufacturers, with an additional discount of 5 per cent. on the parchose of tho stamps used for the boxes when quantities exceeding in value $\$ 50$ are pur. chased at one time. The result of these fiscal arrangements has beco to farour large monopolizing companies. Althongh there are nearly thirty manufactories in the States at present, practirally the match trade of the country is in the hands of, or entirely controlled by, the Diamond Datch Company of New York, consisting of a combination of large manufacturers. During the year 1881 the revenue derived from the internal tax amonnted to $\$ 3,272,258$. while the customs duty on imported matches yiclded no more than S6186, these receipts representing probably a consumption of $40,000,000,000$ matches,
(J, PA.)

Mate, or Parageiy Tea, consista of the dried leaves of Hex paragnayensis, St Hil., ${ }^{1}$ an evergrean shrub or small tree belonging to the same natural order as the common holly, a plant to which it bears some rescmblance in size and habit. The leaves are from 6 to 8 inches long, shortlystalked, oblong wedge-shaped, rounded at the upper end, and finely toothed at the margin. The small white flowers


Maté (llex paraguayensis).
fortion el praat, half naturat size. Flower ilrupe and nuts, twice nafural size. purt of underade of lenf showing minute glands, natural size.
grow in forked clusters in the axils of the leares; the sepals, petals, and stamens are four in number; and the berry is 4-sceded. Tho plant grows abundantly in Paraguay, Corrientes, Chaco, and the south of Brazil, forming woods called yerbales. One of the principal centres of the maté industry is the Villa Real, a small town above Asuncion on the Paraguay river; another is the Villa de San Xavier, in the distriet between the rivers Uruguay and Parana.

Although maté appears to bave been used from time immemerial Ly the Indians, the Jesuits were the first to attempt its cultivation. This was commenced at their branch missions in Paragnay and the province of Rio Grande de San Pedro, where some plantations still exist, and furnish the best tea that is made. From this circumstance the names Jesuits' tea, tea of the Missions. St Barthelomew's tea, \&e., are sometimes applied to mate. Under cultivation the quality of the tea improves, but the plant renains a small shrub with numerous stems, instead of forming, as in the wild state, a tree with a rounded hend. From cultivated plants the leares are gathered every two or three ycars, that interval being necessary for restoration to vigorous growth. The collection of maté is, howe ver, chiefly effected by Indians employed for that purpuse by merchants, who pay a money considerntion to Guvernment for the privilege.

When a ycrbal or mate wood is found, the Indians, who usually travel in companies of nbout twenty-five in number, build wigwams and settle down to the work for about six

[^231]months. Their fint operation is to prepare an open space, ealled a tuturenc, about $G$ feet square, in which the surface of the soil is benten hard and smooth with nallets. The leafy branches of the mate are then cut down and placed on the tatacua, where they undergo a preliminary roastin. from a fire kindled around $i t$. An arch of poles, or of Lurdles, is then erected above it, on which the mate is placed, a fire being lighted underneath. This part of the process demands some care, since by it the leaves have to be rendered brittle enough to be easily pulverized, and the aroma has to be developed, the uecessary anmount of heat being only learned by experience. After drying, the leaves are reduced to coarse powder in mortars furmed of pits in the earth well rammed. Maté so prepared is called rume yaza or yerva do polos, and is chiefly used in Brazil. In Paraguny and the province of Parana in the Argentine Republic, the leaves are deprived of the midrib before roasting; this is called cac-mini. A very superior quality, or catcruys, is also prepared in Paramuay from the scarcely expanded buds. Mure recently a different method of dying maté has been adopted, the leaves being heated \% large cast iron pans set in brick work, in the same way that tea is dried in China: it is afterwards pordered by machinery.
The different methods of preparation influcuce to a certain extent the value of the protuct, the maté prepared in Paraguay bcing considered the best, that of Orun and Paranagua very inferior. The leaves when dried are packed tightly in serons or oblong. packnpes inade of raw hides, whiclt are then carefully sewed np. Thesc shriuk by exposure to the sun, ann in a coult le of days form compact. parcels each containing about 200 its of tea; in this form it kivpls well. The tea is gcuerally rreplared for usc in a small silver-mounted ralabash, made of the fruit of Crescentia Canjtc (Cura) or of Cucurbitra lagcnaria (Cabace), usually about the size of a large orangr, the tapering end of the latter serving for a handle. In the top of the calabash, or mate, a cireular hole abont the size of a florin is maite, and through this opeuing the tea is surcked by menuss of a lifunbilla. This instrunent consists of a small tube 6 or 7 inches loug. forned either of metal or a reed, which lias at one cud a bulb matie either of extreurely fine basket-work or of metal perforated with minute holes, so as to prevent the particles of the tea leaves from being drawn up into the mouth. Some sugar and a little hot water are first ntaced in the gourd, the yerra is then alldel, ani fually the vessel is filleil to the brim with boiling water, or nilk previously heated by a spirit lann. A little burit sugar or lemon juice is sometimes added instend of milk. The bevernge is then hamlerl romid to the company, caeh person being furnished with a hoonbilla. The leaves will bear stepying about tlree times. The infusion, if not drunk soon after it is maile, rapidly turns black. Persous who are fond of minte drink it before every meat, and ronsume about 1 az. of the leaves per day. In the neigllibouthocil of Parana it is prepareal and drunk like Clinese tea. Maté is generally considered disasmreable by those unacustomed to it, having a sumenthat bitter raste ; moreover, it is the custom to driuk it so hat as to be mulicasint. But in the sonth-castern republics it is a much-prizell aulisle of luxnry; and is the tirst thing offerell to visitors. The y/urcho of fic plains will travel on horscback for weeks asking no better fare than dried beef washed down with copious draughts of mate, nud for it ho will forego any other luxury, stch as sugar, rice, or bicuit. Maté acts as a restorative after great fatigne in the same manner as tea. Since it docs not lose its flavour so quickly as tea by expostre to the air and dannr, it is more valuable to travellers.
Some writers attribute delectrious effects to its use, while others praise it to an almost incredible degree. 1ts plyysiological action does not appear to havo been earefully workel out, but irs extensive use in ceuntrics where tea and coffec are known seems to iudicate that it may possess virtues peculiar to itself.
Its propertics applear to be chicfly due to theine or caffeine. Analysed by Dr H. Byasson, 100 grains were found to yield
 Malic acid not costmated.

[^232]According to smalyses made by Alonzo Robbins it also contains about 1.5 of a peculiar tannin which does not precipitate potassio－ tartrate of antimony，nor tan leather．The glutinous substance sesembles in consistenco common birdlime，and is considered by Syasson to be a compound ether，the alcohol of which would bo 3 vear cholesterin．Sinco the beginning of tho 17 th century mate has seen drunk by all classes in Paraguay，and it is now used through－ rant Brazil and the neighbouring countries．In 1855 the amonnt of rensté annually consumed in South America was estimated by Von 3 ibra at $15,000,000 \mathrm{lb}$ ，and the consumption is now probably threo we four tines as great；in Brazil it brings in a revenue of about e 410,000 ．In the Argentine Republic alone the consumption is not Eess than $27,000,000 \mathrm{It}$ per annum，or abont 13 tb per head，while ehe proportion of tea and coflee consumed is only about 2 他 of the Trimer and \＆to of the latter pel head．Tho export of maté from Brazil to forcign countries has also inereased from $2,720,475$ kilos in 1810 to $5,206,485$ kilos in $1850,6,808,056$ kilos in $1860,9,507,086$ kilos in 1570，and 14，063，731 kilos in 1879－80．
－Sec Scully，Brasil，London，1866；Mansfield Brazil，dec．London， 1856 ；Phar－ haceutical Sournal（33），vol．vil．p．4：（3），vio．vill．p． 615,1627 ，Clirlsty，Neo
中． 483 ；Zeifschrifi Oeslerreich ischer Apolhekerverein，1882，pp．273，235，m．

MATERA，a city of Italy in the north－east of the province of Patenza， 4 S miles from Potenza，on the high road to Bari． Part of it is built on a level plateau and part in deep valleys －zuljoining，the tops of the campaniles of the lower portions Deing ou a level with the streets of the upper．The prin－ ceipal building is the co－cathedral of the archbishopric of $A$ cerenza nnd Natcra，formed in 1203 by the union of The two bishoprics，dating respectively from 300 and 398. In 1871 the population of the commune was 14,312 （that rof the city 14,262 ），in $188115,700$.

Under the Normans Matera，the ancient Mateola，was a count－ －ship for William Bras de Fer and his successors．It was the chief town of the Basilicata from 1664 till 1811，when the French trsns－ －Ferred the administration to Potenza

MATHEMATICAL DRAWING AND MODELLING． －The necessity for geometrical drawings and models is as cold ns geometry itself．The figure has formed the basis of many a geometrical truth；and demonstration by mere Snspection of this has frequently to do service for more sigorous proof．So necessary is this visual representation of an idea that there is hardly a branch of mathematics which does not make use of it in the form of tables， ：symbols，formule，\＆c．The visual method is especially mportant in geometry．The figure is to the geometer what the numerical example is to the algebraist－on the one hand Limiting the horizon，on the other imparting life to the con－ uception．Herein lies the didactic value of the figure，which ．is the more indispensable the more elementary the stage －of instruction．To be able to dispense with it is a faculty ：acquired only after a long and special training．The power onf mental picturing is a talent which can be so strengthened Thy use that even a slightly gifted mind may acquire the ；power of carrying out a seriea of geometrical operations without the aid of a figure，provided these do not lead Finto unfamiliar regions．But each new group of ideas which the geometer wonld master requires a new graphic csetting forth，which not even the experienced can dispense swith．Drawings are sufficient in plane geometry；but solid geometry requires models，except in specially simple cases，in which delineation by means of perspective or some sconventional method may suffice．Then，again，in passing From the geometry of the plane，straight line，and point in sspace to that of corved surfaces，tortuous curves，dec．，new aznd distinct graphical methods are necessary．The difficul－ むies encountered in understanding new groups of geometrical Sorms are best removed by a careful study of a small soumber of characteristic models and drawings．As a zzeans of education，the model is lively and suggestive， Furming in thia way a completing factor in the course of instruction．We remember the pleasare experienced when， after a discnssion which has yielded a series of hardly reconcilable properties of one and the came geometrical sigure a model is exhibited which combined these pro－
pertics in itself；or the striking manner in whicls $a$ deformable model cither of pasteboard or thread execntes its transformations heforo the eye of the observer ard scientific student．The study of the model raises new and unexpected questions，and can even do valuable service in leading to new truths．

In the more elementary departments of plano and solid gcometry and descriptive geometry，models are abunda it and easily obtainable；but there are comparatively faw collections of drawiogs and models for instruction in higher geometry．There are numerous Arawings of algobraic and transcendental curves in the well－knosn treatises on analytical geometry of Cramer，Euler，Salmon， in Frost＇s Curve Tracing，\＆c．；but there is still a deficiency in systematic enumerations of the forms of curves and surfaces of a given order or class．In this connexion we may mention Plücker＇s System der analytischen Geometree （curves of the third order），and Beer＇s Enumeratio linearum． IV．ordinis．A graphical representation of all the characteristics of the singular points of an algebraic curve of the fourth order is given in Zeuthen＇s Systemer af plane Trerver（1873）．As regards tridimensional figuring，the oldest known models for instruction in the higher geometry are the thread models of skew surfaces constructed about the year 1800 under the direction of G．Monge for the Ecole Polytechnique in Paris．In 1830 Th ．Olivier of Paris got the same executed in movable form．The great development in modern times of certain branches especially of the higher geometry has given a new importance to such methods of graphical representation．

Amongst the larger collections we must mention the elegant series of complex surfaces，consisting of twenty－ seven items，constructed by the celebrated J．Plücker of Bonn．After Plücker＇s death copies，not very satisfactory， were made from zinc casts．The collection of plaster and thread models published by Muret of Paris（now Delagrave）， and intended for instruction in descriptive geometry，con－ tains many architectural forms．The wire models of tortnons curves by Professor Wiener of Carlsruhe，and the thread－ models of developable surfaces by Professor Björling of Lund，merit notice amongst others．Perhaps the largest and most extensive of the collections is that of L．Brill， bookseller in Darmstadt．These represent every depart－ ment of the higher and applied mathematics．The cata－ logue embraces some seventy numbers，with over a hundred plaster，thread，and metal models．Several series of this collection were prepared in the mathematical department of the technical college of Munich．In the preparation of these models，involving the development of a comparatively novel art，certain practical lessons were gained，especially in the working of plaster models，to which we may direct attention．
We assume that the preliminary designs are prepared with the aid of board，ruler，square，compasses，and such well－known instru－ ments as are used by the dranghtsman．
The material to be emploged，whether wire or thread，interlsced pasteboard strips，or plaster，depends apon the special circumstancews of each case，and upon the purpose aimed at in the construction of the model．Two bundles of parallel disks of cardboard or metal－ sheeting，inclincd at an sdjustable angle，may be used with adven－． tage in representing a series of different but mutuslly transformsble surfaces For ruled and developable surfaces the thread model is to be recommended．The surface is enclosed in a cube，or mory generally in a region of apace bonnded by plane walls．Upon theso bounding walls are marked the eeries of points in whieh they are cut by the geherative lines that are to be represented by threads Through these points the thresds are drawn，and parts of the sup－ porting walls are then cut away so as to allow a convenient glance into the interior of the region．The more densely the threads gre strong，the liker is the appearanco to that of a continuons surfcea

In the majority of cases plaster will be found the most convenien： anbstance，being easily worked，and giving a result convenient ard clear to the eye．There is the disd vantage，however，that one of the regions nf enace bounded by a aurface is silled ap．Should the
boundarics of the surface be plane or capable of being turned on the lathe, the desired form is best approximated to by working wood or plaster blacks. Plaster is not easily worked on the lathe, but a plane surface is readily got by rubbing, and if not too dry it may be out with the knife.
A surface which cannot be conveniently approximated to by the alove method may be built up of strips cat to pattern, which are then filled in with seme plastic materinl. To accomplish this, a system of sections either parallel or liaving a single axis is laid through the region to be filled up; the bounding lines of these sections are calculated or obtained by geonetrical construction. Strips of plate ziuc are then cut to the required form and fixed securely by ¢rnss-pieces or soldered if necessary: letwcen the interstices of this kine scaffolding some plastic material is filled in, such as embossing svex or damp clay; and thus the form of the surface is rendered. The substance kuowr in trade as plastilin is especially suitable for use in this way, as it retains its plastic property a long time. The finishing touches'are given to tho surface by means of a sculptor's style. From the clay model a plaster cast is formed and well dried; and its imperfections are removed by means of plasterfiles and other iustr:ments familiar to those who work in plaster. Lines which are to be shown on the model are drawn through points riready marked on the original clay model, and engraved with fine files. A galvanoplastic copy of such a plaster model, not too deeply deposited, shows the surface even better than the plaster itself.

Mathematics. Any conception which is definitely and completely determined by means of a finite number of specifications, say by assigning a finite number of elements, is a mathematical conception. Mathematics has for its function to develop the consequences involved in the definition of a group of mathematical conceptions. Interdependence and mutual logical consistency among the members of the group are postulated, otherwise the group would either have to be treated as several distinct groups, or would lie beyond the sphere of mathematics.
As an example of a mathematical conception we may take "a triangle"; regarded without reference to its position in space, this is determined when three elements are specified, sity its three sides; or we may take a "colour sensation," which, on Young's theory, is determined when the amounts ol the three fundamental colour sensations that enter into it nre stated. As an example of a non-mathematical conception we may take "a man," "a mineral," "iren," no one of which admits of being so determined by a finite number of speeifications that all its properties can be truly said to be deducible from the definition.

A mathematical conception is, from its very nature, nbstract; indeed its abstractness is usually of a bigher order than the abstractness of the logician. Thus, for instance, we may neglect the other nttributes of a body and consider meroly ita form ; we thus reach the abstract idea of "form." But the form of an irregular fragnaent of stone does nut ndmit of being finitely specified, and is therefore not susceptible of mathematical treatment. If, however, we Lave a carefully squared cubical block of granite to deal with, for most practical purposes its form is specified by statiog that it is a cube, and nssigning one element, viz., an odge of the abstract mathematical cubo by which we replace it. This example illustrates at once the limits of nathematical reasoning and the nature of the bearing of mathenatics on practiee.

A variety of words have been used to denote the dependence of a mathematical conception upon its elements. 1 it is frequently said, for instance, that the conception is a "function". of its elements. One word has recently come into use which is sery convenient, inosmuch n.s it draws attention at once to the fundamental iden iuvolved in mathematical conception aud to the prime object of nathematical contenplation, viz., "manifoldness."

Number is involved in the notion of a manifoldness both directly, as any one can see, and also indirectly in a manner which the miud untrained to nathematical thinkiug does not so readily understand. Take on the ons hand the case of a triangle considcred without reference to its position
but merely as composed of three Yimited straight lines, ir: may be completely deternined in various ways by assigning: three elements. A triangle may therefore be called a tripte discrete manifoldness.'. A plane quadrilateral considered in the same way (being fully determined when four sides and a diagonal are knewn) is a quintuple discrete manifold ness; and a plane polygon of $n$ sides a $(2 n-3)$-ple discrete manifoldness. Consider on the other land the assemblage: of points on a given straight line, they are infinite ia number yet so related that any one of them is singled ont by assigning its distance from an arbitrarily chosen fixed poiut on the line. Sucla an assemblage is called a onefold continuous manifoldness, or simply a onefold manifoldnessanother example of the same kind is the totality of instants in a period of time. Tho assemblage of poiuts on a surface is a twofold manifoldness; the assemblage of points in tridimensional space is a threefold manifoldness the values of a continous function of $n$ arguments an $n$-fold manifoldness.

It should be observed that the distinction betweere discrete ancl continuous manifoldaess is not of necessity inherent in the conception. For one purpose we may treat a conception as a discrete manifoldness, for another as a continuous manifoldness, Thus we have seen that aty unlimited straight line may be treated as a onefold con-tinuous manifoldness; but, if we regard it as a whole, and with reference to the fact that its position in space is determined by four data, it becomes a quadruple diserete. manifoldness.
The primary, although not the only, operation in thetreatment of a discreto manifoldness is numbering or counting; hence arises the pure matbematical science of number, comprehendiag (abstract) Arithmetic and ite higher branch commonly called the Theory of Numbers. Without entering into a discussion of the definitions and axioms of the science of number, it will be sufficient hereto remark that all numerical operations are reducible to. three fundamental laws commonly called the commutative associative, and distributive laws. The four fundamental processes, or four species, as they are sometimes called, two of which, addition and multiplication, are direct, and two subtraction and division, inverse, nre solely defined by and derive their meaniog from the three lawa of operation just mentioned.

A careful consideration of the methods in rogue for dealing with continuous manifoldness shows that they reduce themselves to two, which may be called the synoptic method and the analytic method. In the symoptic method we deduce the properties of a manifuldaess by contemplating it as a whole, aiding our understanding, when it is necessary to do so, by a diagram, a model, or any other concrete devico more or less refined according to circumstances. In the analytic method we fix our attention uporn tho individual elenzents of the manifoldness, usually defining each element by a definite number of specifications the variation of which leads us from element to element of the given manifoldness. We cxamine the properties of ane element in the most general manner, and from them we. predicate the properties of the manifoldness ns a whole.

The best and most fomiliar examples of the synoptic treatment of manifoldness are the different varicties of pure geometry. Among theso wo may mention the apagogic geometry of the Greeks, which starts with a collection of definitions and nxioms, enuncintes and proves propositions after proposition with great attention to strict logical forus and with continual reference to the grounds of inference, but pays little attention to tho ordering of theorems with a view to mutual illustration, and carefully suppresses all traces of tho method by which the propositions were or might hare been discovercd. It is true that, the Grcih-
were in possession of a method, called by them analysis, which had for its object the discorery of geometrical truth. But this consisted merely in taking any proposition suspected to be true and tracing its consequences until one was reached which either contradicted a knowo proposition or else was true and capable of leading by a direct process of reasoning (synthesis) to the proposition in question. In this wo have no trace of the systematic development of weometric truth, and the method was apparently regarded by the ancients themselves as imperfect, for it makes no figure in such of their systematic treatises as hare reached us. In somewhat sharp contrast with the Grecian geometry, but still essentially synoptic in method, stand the different varieties of modera geometry,-which aims at greater gederality in its definitions, pars less explicit attention to logical form, but arranges geumetrical propositions as mach as possible in the natural order of development or discovery, and above all makes extensive use of the principle of continuity. As examples of the madern geometry may be cited the descriptive geometry (Gêométrie Descriptive, Darstellende Geometrie) of Monge ; the projective geometry (Géométrie Projective, Geometrie der Lage) of Poncelet, Steiner, and Von Staudt; and the geometry of transformation in general, of which projective geometry is but a particular case. There is one otter highly interesting form of modern geometry, which, although analytic in some of its developments, and often exhibited in close alliance with other analytical methods, is nevertheless synoptic as to its fundamental principle, viz., arithmic geometry (Abzählende Geometrie) or theory of characteristics, which originated in the characteristic equations of Pliicker, and was developed into a porserful special method by Chasles and others. Seo Geometry and Curve.

Geametry, however, is not the only field for the symoptic treatment of manifoldness. This is obvious if we reflect that any magnitude whatever may be represented by a line; so that any function of not more than tro elements may be represented by a geometrical construction and treated by any method applicable in geometry. Since the famous dissertation of Riemann, On the Hypotheses that form the Basis of Geometry, mathematiciaus hose been familiar with the fact that the methods of geometry suitably generalized can be applied to the treatmeut of an $n$-fold mavifoldness; and in point of fact the synoptic treatment of mavifoldness under the name of $n$-dimensional geometry has been usefully employed by Cayley and others as an adjunct to the analytic method.
The fundamental characteristic of the analytical treatment of an $n$-fold manifoldness is the specification of an element by means of $n$ continuously varying quantities or variables (see Measurement). For dealing with continuous as distinguished from discrete quantity we have the special analytical method of the Inflimtesimal Calculus ( $q . v_{0}$ ), built upon the notion of a limit, with its various branches, viz., the differential calculus, the integral calculus including differential equations, the calculus of fanctions, and the theory of functions in general (see Function). But, whether we make use of the algorithm of the infinitesimal calculus or not, we find upon examination that all analytical operations with cantinuous quantity fall under the three laws of commatation, association, aud distribution, so that they are fundamentally identical with the operations with discrete quantity; the difference so far as there is any consists simply in the greater generality of the operand. The same fact may be looked at instructively in another light. Whether we consider analytical processes in cancrete applications or lcok at them abstractly, we are equaily led to the notion of a unit, by the multiplication or subdisision of which all the other quantities that enter into our calculus are derived. The exigencies of continuity are
met by alloring tuat the multiplication or subdívision of the unit can be carried on to an unlimited cxtent; bnt in any case where analytical formule have to be reduced to arithmetical calculation (in which of course only a finite number of figures or arithmetical symbels can be used) the subdivision (or multiplication) of the unit actually stops short at a certain puint ; in other words, all our methods are, iu practice at least, discrete. Here thercfore we have the meeting point of discrete and contiouous quantity, and on this ground alone we might infer the fundamental identity of their laws of operation.

The abstract science of quantity which we hare just seen to be the essential part of the analytic treatment of manifoldness receives the name of Algebra (q.v.). It was found very early in the listory of that science that the full developmeut of which it is capable could not ba attaioed without great extension of the idea of quantity. This necessity first arose in connexion with the inverse operations, such as subtraction, the extraction of roots, anc. the numerical solution of algebraical equations (see EquaTION), of which root extraction is merely a particular case. In this way arose essentially negatire quantities, and the so-called impossible or imaginary quantities. The former may be said to depend on a new abstract unit -1 , and the latter upon new units $\pm \sqrt{-1}$. The numbers having $\pm 1$ for abstract unit are usually classed as real numbers, and in that case we may regard the ordiuary imaginaries of algebra as dependiog on the new unit $+\sqrt{-1}$, or, , defined by the equation $\iota^{2}+1=0$. But the extension was soon carried farther by the classical researches of Hamilton and Grassmann. ${ }^{1}$ The theory of sets and the Quaternions (q.v.) of the former and the Ausdehnungslehre of the latter opened up a boundless field for algebra, and led to a total revolution in our ideas of quantity.

In view of the great extension thus effected in the meaning of quantity, it becomes an interesting if somewhat difficult undertaking to define the word. The following may be taken as a provisional definition:-Quantity is that which is operated with according to fixed mutually consistent laws. Buth operator and operand must derive their meaning from the laws of operation. In the case of ordinary algebra these are the three laws already indicated, in tho algebra of quaternions the same save the law of commutation for multiplication and division, and so on. It may be questioned whether this defiaition is sufficient, and it may be objected that it is vague; but the reader will do well to reflect that any definition must ioclude the linear algebras of Peirce, the algebras of logic, and others that may be easily imagined, although they have not yet been dereloped. This general definition of quantity enables us to see how operators may be treated as quantities, and thus to understand the rationale of the so-called symbolical methods. In combining operations, it is often observed that the combinations of operators fall under a few simple laws, in some cases in fact under the three laws of ordinary algebra; these operators are therefore quantities according to the general definition, and can be treated as such.

From the bistorical development of the analytic method there is little dagger of the error arising that its application is peculiar to any special kind of manifoldoess. As examples of its use in deducing the properties of tridimensional space wo may cite the Cartesian geometry, the Géométrie de Posilion of Carnot, and the line geometry of Plücker (see Geometry). Its nse in the varions branches of applied mathematics, of which geometry is merely one of the simplest, is far more common than thas of the

[^233]synoptic method, although most branches of applied matheinatics are mixtures using the one or the other, as bappens to be convenient. In addition to those already mentioned, we may enumerate the following as among the more important departments of applied mathematics:-Kiuenatics; Abstract Dynamics, includion Statics end Kinetics fohcther of a Particle, of a Kigid Solid, of an Elastic Solid, if a Fluid, or of a Chain; Statistical Mathematics, as esemplified in the Thenry of Anunities, and the lininetic filkeory of Gases; the Mathematical Theory of Diffusion rhether of Heat or of Matter; the 'Theery of Potential; sind so on. See Mechanics, Hydromectianics. Annuiites, Heat, Electricity, Magnetism, dec.
The two great methods employed in the investigation of manifuldness must of course be, at bottom, identical ; and every conclnsion arrived at by the one must be reachable by the otber. The exact nature of the connexion between them will be well seen by studying two instances. One of these is the treatment of areas by Euclid and the treatment by the analytical method, which are carefully compared in the article Geonetry, vol. x. p. 379. The other is the connexion between the descriptive and the metrical 1 roperties of loci. The former include all properties such as intersection, tangency, dc., depending on position merely, and are obviously the natural product of the synoptic method. The latter include all relations involving the lengths of lines and the magnitudes of angles, they depend therefore on expression in terms of a unit, and are the natural product of the analytic method. Nevertheless the analytic method furnishes descriptive properties of loci, and by the introduction of "the absolute" descriptive theorems are mado to furnish metrical relations, as has been fully shown by Cayley, Clifford, and Klein (see Measurement).
(G. CH.)

MATHER, Cotton (1663-1728), was the most learned and widely known of a family which through four generations enjoyed singular consideration, and exercised commanding influence upon New England in its first centnry. Richard, son of Thomas Mather of Lowton (Winwick), Lancashire, Eagland, after sturly:ng for a time at Brasenose, Oxford, and teaching and subsequently preaching at Toxteth Park, went to New England, for nonconformity's salse, in the summer of 1635, where, till his death in 1669, at screnty-three, he was pastor of the Congregational church in Dorchester (now a part of Boston), -acquiring large repute, writing three or four instructivo and constructivo treatises upon polity, and being much trusted as to the foundations of both church and state. His joungest sun Increase took his first degree at Harvard College in 1656, at seventecn,-rcturning, after a visit to the old country, in which ho scrved several pulpits, to take at twenty-five the pastorate of the second (or North) church in Boston, which place ho held till his death in 1723 at eighty-five, while, in addition, he had been acting, or actual, president of the college most of the time from 1681 to 1701, the author of one bundred and sixty books or tracts, and for four of its most perilons years the choice of all its citizens to represent the Massachusetts colony before the English Government. His wife Maria was daughter of the famous Juhn Cotton, and their first-born received bath family names, and when he took bis B.A. degree at less than sixteen, at Harvard, in 1678 , his promise tempted Presidont Oakes to say in his presence, referring to his two "istinguished grandfathers: "Cottonus atque Matherus sam ro quam nomine coalescant et roviviscant." After a short time spent as tutor, and a period of diligent toil ending in the conquest of an impediment of speech which endangered success in the fanily profession, he became essistant to his father, in two ycars being ordained cogastor, and holding the pulpit for nearly three and forty
years, till his death at sixty-five. As a private Christian from his frank diaries, it is clear that he labourer muct with himself, in a single year devoting more than sisty days to fasting and twenty nights to vigil. As a preacher be was conscientious and successfui,-slways diligently study. ing his discourses, in one year delivering more than seventy public sermons, with nearly half as many in private houses, sometimes thus "pressing a glorious Christ" through eleven successive days, and, with six competitors by bis side, maintaining to the last his hold upon the largest congregation in New England, having about fonr bundred gifted communicants. As a pastor he was exceptionally laborious,-systematically exhorting and praying with his people at their hames, making conscience of spirituslizing every casual interview, and now and then spending days upon his knees with the names of his flock beforo him te prompt his intercessions for them, and for himself that he might better reach their peculiar need. As a philany thropist, while abundant in personal benefactions, he origia. ated more than twenty societies for public charity, bora the cost of a school for Christianizing the negroes, and, at the risk of life, in the face of popular opposition medically led, adrocated and vindicated the introduction of iuoculstion as a protection against the then terrible ravages of the small-pex. As an author he was learned-publishing in French, Spanish, and Algonkin as well as English-and voluminous, three huadred and eighty-two of his printed works having been catalogued, several of which are elaborate books, and cne a folio of 800 pages; while his Biblia Americana, by him considered the great work of his life, remains in six huge volumes of mauscript to this day. As a scholar he was better known across the sea than any other American of his time, once contemporaneously corresponding with more than fifty learned Enropeans, in his forty-seventh year being made doctor of divinity at Glasgew, snd receiving election as a Fellow of the Royal Society-in those days eminent distinctions for a colonist. With all this it must be confessed that he had some grave defects. His common sense was not uniformly equal to lis need. Always ambitious and self-opinioned, he was occasionally irritable and conceited. He lacked good taste, and it was his unconcealed grief that he was never elected to preside over Harrard College. His enormous know. ledge did not digest mell, and his use of learning tended to be crude. He was superstitious, and it was his misfortune that, as to witcheraft, he was not, as with vaccination, in advance of his generation, any more than such men as Richard Baxter and Sir Matthew Hale. Of his works, the Magnalia and Ratio Disciplinx are indispensable, to the student of New England bistory.

MATHEW, Tueobald (1790-1856), popularly known as Father Mathew, the "Apostle of Temperance," mas descended from an illegitimate branch of the Llandaft family, and was born at Thomastown, Tipperary, "on October 10, 1790. Ho received his schoul education at Kilkenny, whence he passed for a short time to Maynooth; from 1808 to 1814 he studied at Dublin, where in the latter year he mas ordained to the priesthood. Having entered the Capuchin order, he, after a brief time of service at Kilkenny, joined the mission in Cork, which was the scene of his religious and benevolent labours for many years. Tho movement with which his name is most intimately associated began in 1838 with the establishment of a tutal abstinence association, which in less than nine montles, thanks to lis moral influence and cloquence, enrolled no fewer than 150,000 names. It rapidly spread to Linierick and elsewhere, and some idea of its popularity may bo formed from the fact that at Nenagh 20,000 persons are said to have taken tho pledge in ono day, 100,000 at Calway in two days, and 70,000 in Dublia in five dajes

In 1844 he visited Liverpool, Manchester, and London with almost equal success. Meanmhile the expenses of his enterprise had involved him in heavy liabilities, and led on one occasion to his arrest for debt; from this embarrassment he was only partially relieved by a pension of $£ 300$ granted by the queen in 1847. In 1849 he paid a visit to the United States, returning in 1851. He died at Queenstown on December 8, 1856 . See Father Mather, a Biography, by J. F. Maguire, M.P. (1863).
Mathews, Cuarles (1776-1835), comedian, was born in London, 28th June 1776. His father was what he called "a serious bnokseller," and also officiated as minister in one of Lady Huntingdon's chapels. Mathews was educated at Merchant Taylors' School. His love for the stage was formed in his boyhood, partly from admiration of Elliston, with whom he had taken part in private theatricals. According to his own statement, it ripened into an "overpowering, all-absorbing passion," unfitting him for business when he beoane apprentice to his father, who at length, in 1794, unwillingly permitted him to enter on a theatrical engagement in Dublin. For several years Matherrs had not only to content himself with the most thankless parts at an almost nominal salary, hut his figure, at this period of life thin and ungainly, and the peculiar twist in his countenance generally awakened the unconcealed ridicule of the audience. In 1798 he obtained a conditional engagement from Tate Wilkinson at York. In 1802 Matherrs began to play in London at the Haymarket, and from this time his professional career was an uninterrupted triumph. His special excellence as an actor consisted in his ronderful gift of mimicry, enabling him to grasp the minutest and most individual features of the character he represented. His seuse of the purely ludicrous in all its varied phases was perlaps unequalled, and by his marrellous command of facial expression and of different tones and accents of voice he could, when he so willed, completely disguise his personality mithout even the smallest change of dress. The versatility and originality of his powers were, in public, best seen in his "At Homes," begun in the Lyceum Theatre in 1818, "which," according to Leigh Hunt, "for the richness and variety of his humour, were as good as half a dozen plays distilled." But it was in the social circle that he displayed the finest and rarest traits of geaius, while his simple and truly kind-hearted disposition won him an affection and esteem which mere genius could not have purchased. From his infancy the health of Mathews had been uncertain, and the toils of his profession gradually undermined it. He died at Plymouth, of heart disease, 28th June 1835. See Nemoirs, by Mrs Matherss, 4 vols., 183S-39.

Mathews, Charles James (1803-1878), comedian, son of the above, was born at Liverpoul, 26th December 1803. After attending Merchant Taylors' School he was articled as pupil to an architect, and he contioued nominally to follow this busiocss till 1835. His first appearance on the stage was made at the Adelphi, London. In 1838 he married Madame Vestris, then lessee of the Olympic, but neithr- his management of this theatre, nor subsequeatly of Covent Garden, nor of the Lyceum, resulted in pecuniary advantage. As an actor, however, he held from the first an unrivalled place in his peculiar veia of light eccentric comedy. The inimitable casy grace of his manner, and the imperturbable solemnity with which he perpetrated his absurdities, never failed to charm and amuse; his humour was nerer broad, but always measured and restrained. His range of claracters was exceptionally narrow, and he was wholly incapable of representing any form of strong passion. It was as the leading claracter in such plays as the Gume of Speculation, My Aunful Dad, Cool as a Cuccumber, Patter versus Clatter, and Little

Toodlekins, that he specially excelled. Mathews was one of the few Enghish actors who have played in French successfully-his appearance at Paris in 1863 in a Freach version of Cool as a Cucumber, writtea by himseif, being received with the utinust approbation. After reaching his sixty-sixth year, Matherss set out on a tour round the world, and on his return in 1872 he continued to prosecute his professional duties without interruption till withia a few weeks of his death, on July 26, 1878. See Life of Charles James Matheres, edited hy Cbarles Dickens, 2 vols., 18.9.

MATILDA, countess of Tuscany (1046-1114), popularly known as the Great Countess, was born in 1046 , of a race of nobles of Lombard descent. By the death of her father Boniface the lich, duke and marquis of Tuscany, she was left, at eight years old, under the guardianship of her mother, Beatrice of Lorraine, heiresz to a powerful state, including Tuscany, Liguria, part of Lombardy, Modena, and Ferrara. Her life was a protracted struggle against the schism which rent the church, under a-serres of antipopes, supported by a large section of the clergy and people of Italy and Germany, as well as by the whole strength of the enupire. Against this formidable combination she maintained the cause of the holy see, oftep single-handed, for years, with varying fortune but undaunted resolution. The clampion of sereral successire pontiffs, she is best known as the ally of Gregory VII., and her hereditary fief of Canossa was, in 1077, the scene of the celebrated penance of Henry IV. in presence of this pope. On the same occasion she made the donation, subsequently renewed in 1102, of her possessions to the holy see, in right of which the church owned the greater part of its temporal dominions. Matilda was twice married, first to Godfrey of Lorraine, surnamed the Humpbacked, son of her muther's second husband, and secondly to Guelph of Bararia, -both marriages of policy, which counted for little in her life. She died of gout in 1114, in her sixty-ninth year, and was buried first at Sau Benedetto, and finally in the Vatican. Her steadfastness of purpose, strength of character, and loftiness of aim, made her une of the most striking figures even of the age which produced Robert Guiscard, William the Conqueror, Pope Hildebrand, and Godfrey of Bouillon, her nephew by mariage. The contemporary record of her life in rude Latin verse, by her chaplain Donnizone, is preserved in the Vatican Library.
Au Italian biography was published in Lucea by Francesco Fiorentini in 1642 (ncev edition by Mansi, 1756), and one in French by Amédée Renée, La Grande Italiernc, in 1859.

MATLUCK, a town of Derbyshire, England, is situated an the river Derwent and on the Midland Railway, 149 miles north-west of London and 17 north-west of Derby. It possesses cotton, corn, and paper mills, and in the vicinity there are lead-mines. About $1 \frac{1}{2}$ miles south-east, also on the Derwent, is Matlock Bath, possessing hot medicinal springs. There are in all three spriags, the first of which was discovered in 1692. Their mean tenperature is $65^{\circ}$ Fahr., and applied both externally and internally the water is efficacious in glandular affections, rheumatisn, biliary obstructions, and relaxation of the muscular fibres. The fine scenery of the vale of Matlock, and its proxinity to the thickly peopled districts of Lancashire and Yorkshire, cause the rillage to be much frequented in summer not only by invalids but by holiday visitors. There are several large stalactite caverns. Matlock Bank, a mile to the north-east, in a finely sheltered situation, contains several mell-known hydropathic establishments. The population of the urban sanitary district of Matlock ( 4513 acres) in 1871 was 3834 , and in 1881 it was 4396 ; that of Matlock Bath and Scarthin Nick in the same years was 1386 and 1698 . These two districts are contermioous with the civil parish of Matlock.

Matsts, Quintin. See Massrs.
matter, Properties of. If we knew thoroughly the nature of any piece of matter, the deduction of its propertics would be a question of mere reasoning, just as (for instance) the defuition of a circlo really involves all the properties which mathematical methods have deduced from it. But, as we do not even know what matter is, in the abstract, the converse operation is (at least for the present) the natural and necessary one. We must endeavour from the expcrimentally ascertained properties of matter to discover what it is. The reader will find the limits of our present knowledge in the article ATow. The properties of matter may be arrenged in several classes, thus :-

1. Properties of matter in itself; such as Inertia, Hardness, Brittleness, Elasticity (q.v.), Density, Compressibility, Viscesity, \&c. These depend upon its ultimate atructure and upon the law and intensity of the so-called molecular forces. See Atom_Constitution of Bodies, Attraction.
2. Relative properties of different kinds of matter, chemical, catalytic, \&c. See Capillary Action, Chemistry, Diffusion, de.
3. Preperties relative to different forms of energy :Conductivity (Thermal and Electric), Specific Gravity, Specific and Latent Heat, Transparency, Colour, Specific Inductive Capacity, Radiatiag and Absorbing Power, Magnetic Retentiveness, \&c., Thermo-electric Position, Refractive Index, Reflective Porer, Double Refraction, Rotatory Polarization, \&c. These will be found mainly under the beads Electricity, Heat, Light, Maonetism, \&c.
MATTEUCCI, Carlo (1811-1868), an Italian physicist, was born at Forli, June 20, 1811. In 1832, after completing his atudies at L'E'cole Polytechnique, Paris, he became professor of physics at Bologna, where he had passed his earlier student days. In 1837 he removed to Ravenna, and in 1840 settled as professor of physics at Pisa. From 1847 he took an active part in politics, and in 1860 was chosen an Italian senator. At the same time he became general telegraph director, and later the auperintendent of the meteorelogical bureaus. He died at Leghorn, June 25, 1868.
He is the author of four scientific treatises :-Lesioni di fisica (2 vols., Pisa, 1841 ; вecond edition 1851), Lezioni sui fenomeni fisicoshimici dei corpi viventi (Pisa, 1844; second edition 1846), Manuate di telegrafia clettrica (Pisa, 1850; and several later editions), and Cours special sur l'induetion, le magnetisme de rotation, \&c. (Paris, 1854). His numerous papers wera published in the Annales de Chimic et de Physique (1829-58) ; and most of them also appeared at the time in the Italian scientitic journals. They relate almost entirely to electrical phenomena, such as the magnetic rotation of Yight, the action of gas batteries, the effects of torsion on magnetism, the polarization of electrodes, \&c., sufficiently complete accounts of which aro given in Wiedemann's Galvanismus. Nino memoirs, entitled "Electro-Physiological Rescarches," were published in the Kilosophical Transactions, 1845-60. See Bianchi's Carlo Mata uccie l'llalice del suo tempo (Rome, 1874).
 ened form of Mattaniah or Mattithiah, equivalent to T'heodorus; comp. vol. xi. p. 370), one of the twelve apostles of Jesus Christ, and, according to tradition, the auther of the First Gospel. In its full Hebrew form t'ie name occurs several times in the Old Testament, being korne by more than one person of priestly or Levitical family. Matthew, in tho Gospel which bears his name, is described as having been a tax gatherer ( $\tau e \lambda \omega$ '́rms, Matt. x. 3), and the circumstances of his call to become a follower of Jesus, which he received as he sat at the "receipt of custom" or "tax office" in one of the towns by the Sca of (ialilee, are briefly related in chap. ix. 9. It has sometimes been doubted, but without any good reason, whether the precisely parallel narrative relatiog to "Levi the son of Alphæus" (Mark. ii. 14; Luke v. 27, 28) has reference Io the same person (compare the double nanies Simon and Peter, Juses and Barnabas, and others). In the lists of
the names of the apostlea given in the synoptical Gospels and in the Acts, Matthew ranks third or fourth in the second group of four. Little is recorded of him except the feast which he gave in his house at the beginning of his discipleship; tho way in which this is related seems to indicate that he was (comparatively at least) a wealthy man. He was also present in "the upper room" at Jerusalem after tho ascension, when Mattlias was elected to be the successor of Judas. Tradition has nothing trustwortly to tell about his subsequent career, but there is nothing inherently improbablo in the allegation of Eusebius (II. E., iii. 24) that he spent several years in Jerusalem preaching to the Hebrews (and writing the Gospel which bears his name), or that he afterwards extended his missionary activities in other directions. Socrates (II. E., i. 19) speaks of him as having carried the gospel to Ethiopia; the earlier legends, however, embodied in the apocryphal Acta Andrex et Matthai and Acta et Martyrium Matthai, unanimously point to the regions bordering on the Black Sea ("Pontus" and the land of the Anthropophagi) as having been the scene of his labours (see the article of Lipsius on the "Apocryphal Acts of the 'Apostles" in Smith'a Dict. of Christ. Biog.; also his Apokr. Apostelgesch., 1883). According to the Gnostic Heracleon, whose statement is quoted and apparently homologated by Clement of Alexandria (Strom. iv. 9), Matthew died a natural death. He is commemorated as a martyr by the Greek Church ou November 16, and by the Roman on September 21, the scene of his martyrdou being placed by the Breviary in "Ethiopia"; the same anthority affirms that his body was afterwards translated to Salerno, where it now lies in the church built by Robert Guiscard. In Christian art (following Jerome) he is generally regarded as symbolized by the "man" in Ezek. i. 10, Rev. iv. 7.

Matthew, Gospel of. See Gospels, vol. x. p. 789 sqq.

Matthew of Paris, one of our most important writers in connexion with English mediæval history was born about the year 1200, or possibly somewhat earlier.' His surname was probably derived either from his having been born in Paris or having studied in the university there; but his English origin is proved by the tone in which he uniformly speaks of foreigners, especially the French, whila his knowledge of the French language is attested by tEa fact of his having written in that language, and also by the introduction of many French words in his Latin writings.
We have it on his own authority, as recorded in an autograph marginal note (MS. Cott., Nero, D. 1, fol. 165b), that he assumed the monastic habit at the abbey of St Alban's on the 21st of January 1217. In 1236 he accompanied the newly-elected prior of his abbay, Joln of Hertford, to London, to attend the ceremony of the nuptials of Henry III. and Eleanor of Provence ; and in October 1247 be was at Westminster, in order to be present at the celebration of the feast of St Edward the Confessor, when he was desired by tho king himself to write an account of the proceedings. The most important event in his tranquil and uneventful life (which was passed chicfly within the walls of his monastery) occurred in the year 1248, when he was sent on a mission to the Benedictine monastery of Holm (Throndhjem), which had become involved in difficulties owing to the maladministration of one of its abbots. He rcturned to England after more than a year's absence, and we can trace him as attending the royal court at Winchester in July 1251, and as present at York on the occasion of the marriage of Henry's dauighter with Alexander II. of Scotland, some six months loter. In March $12 \overline{5} 7$ Henry himself visited St Alban's. ond
remained at the monastery for a whole week. During chis time he not only admitted Matthery to his table and co conversations in his private chamber, but also communicated to him facts and details of an historical character derived from his own personal knowledge and experience. Among other information, Jatther: tells us that IIcnry repeated to him from memory the titles of the English baronies to the number of two hundred and fifty. The last iocident recorded by the historian hinself with respect to his own carecr is the fact that he exerted his influence with Henry on behalf of the uaiversity of Oxford, when that body found its privileges endangered by the encroachmeats of the bishop of Lincoln. In his latter jears, Mathews growing infirmitics compelled him to have recourse to the aid of a fellow-monk in order to complete his works; this assistance is to be traced in the Historia Angloram from 1252 to the end of the work (1253); in the Allreviatio Chronicorum or the years 1253, 1254, and 1255; and in the Chronica Majora for the years 1258 and 1259. Natthew died after the month of May 1259, and his portrait, as be lay on his couch when dead, was dramn by his fellow-monk.

Works. - Matthew Paris's chief work, the Historia Major, -often styled the Chronice Majora, - is a narrative professing to record the outlines of human history from the creation, and terminating with the year 1259. It was long supposed that Roger of Wendover was the author of a much larger proportion of the work than was really the case; lut the question may be regarded as finally set at rest by the decisive investigations and coaclusions of Dr Luard, as stated at length in his preaiaces to the volumes of his edition of the rork in the Rolls Series. He conclndes that the Historia Mfojor domn to the year 1189 was the work of John de Cella, abbot of St Alban's from the year 1195 to 1214 ; that it was then continued by Roger of Wendorer on the same plan and from the same sources to the year 1235, the whole work down to this date passing for a long time as the production of the latter writer exclusively, and being known as the Flores Histor:~runc ; that it was then transcribed by Mattlew Paris, who, howaver, made numerous corrections and additions, but, in the opinion of Professor Stubbs, "interpreted" rather than "interpolated"; that it was then continued by the same writer, and is, from $12 \$ 5$ to the year 1259, exclusively his Tork. In style, in vividness of narration, and in descriptive power Matthew far excels hio two predecessors. He is also entitled to the praise of hering been a warm adrocate of English rights and liberties, and a sturdy oppohent alike of regal and papal tyranny; in fact, ihe national sentiment may be said first to receive adequate expression in his pages. The work, moreover, is not only the best sonrce of information with resprect to events in England during the reign of Henry III. down to the cominencement of the Barons' Wars, but is also an anthority with respect to Continental affairs, especially those of France and the empire.
The Historia Anglorem of Matthew is manly an abridgment of his larger work, -the chief feature of difference being the omission of almost everything relating to foreign events. Sometimes, homever, details and more particularly persoual anecdotes are introduced, Fith many minute facts and circumstances which would be sought for in vain elsewhere, and largely illustrate contemporary usages and the general condition of society. Besides the above, Hattlew wrote an Abbreviatio Chronicorum, extending from the year 1100 to 1255. Of this only one manascript exists, - that in the author'e own handwriting, preserved in the Cottonian collection in the British Museum, and printed in the third volume of the Historia Anglorum, edited by Sir Francis Dadden. Matthew also compiled a Liber Additamentorum or Supplementorum, containing documents illustrative of the Greater Chronicle. This is contained in the folio edition of Matthev's writings edited by Wats, and published is. 1640.

The Vite rignti trium Abbatum $S$. Albani, or Lives of the Abbots of S\& Alban's, does nat bear Jlatthew's naine, hut is nuyuestionably the prodaction of his pen. The biographies which belong to the period preceding the Norman Conquest contain valuable and interesting notices, but also include much of what is eridently fabulous. The Vite duorum Offamm, or Lives of the two Ofas, the one a mythical character, the other the historic monarch of Mercia, - is a composition of little value, and some doubt attaches to the authorship. Both tho foregoing, however, are included in the edition by Wats.

Edutions. - The oest editiun of the Historia Jajor is that by Dr Laard, published in five volumes in the Rolls Series, 1872-80. Of the Historia Minor an edition in three volumes in the same series was edited by Sir Franeric Madden, 1866-69.
(J. B. M.)

MATTHIAS (1555-1619), holy Romen emperor, tide fourth son of the emperor Maximilian II., was born on tha 24th of Febrnary 155\%. He was educated in Germany by the diplomatist Busbecq, while his brother, afterwards the emperor Rudolph II, was traned at the court of Philip IL of Spain. In 1577 Mathias went secret!y to the Netherlands, the sorereignty of which be unlawfully assumed; but in 1580 be was compelled to withdraw into private life. He was vain, iestless, and ambitions, nnd intrigued incessantly against the emperor Rudolph, a man of weak character, with a constitutional tendency to insarity. ludolph passed wholly under tae dominion of the Jesuits, and this rendered it easy for Matthias to stir up his Prutestant subjects against him. In 1595 Matthies was made regent in Anstria, and in 1606 the archclukes recognized him as head of the house of Hapsburg. Rudolph lad to relax his hold over one country after another, and in 1611 Maithias was ruler of Hungary, Moravia, Silesia, Lusatia, and even Bohemia; whose logalty the emperor had tried to secure by many concessions, especially by the letter of majesty granting religious freedom to Protestant sects. In 1612, after the death of Rudolph, Matthias was elected emperor; and his reign was not less disturbed than that of his predecessor. The intervention of Turkey in Transylvania led to war, and in 1615 Matthias, being unsupported by the empire and by his own estates, found that he hed no alternative but to conclude peace for twenty years on humiliating terms. Protestants and Catholics, bitterly hating each other, formed respectively the Union and the Leagne; and the rising power of the arcbduke Ferdinand, afterwards emperor, a bigoted prince who became king of Bohemia in 1617 and king of Hungary in 1618, indicated that even mure serious troubles mere. approaching than those with which Rudolph had contendel. In the last two years of the reign of Matthias, the Bohemians having rebelied, the first blows in the Thirty Years' War were struck. He died on the 20th of March 1619

MATTHLAS CORVINUS (1443-1490), king of Han. gary, was born at Klausenburg in Transylvania on March 27, 1443, and died at Vienna on April 6, 1490. He was the younger son of John Huayady (Corvinus) who died in 1456 after having been "governor of Hungary " from 1446 to 1453 . On the death of John, the elder of his two sons (Ladislans) was executed by command of Ladislaus Posthumus, while Matthias was imprisoned at Prague; but shortly after the king's own death without issue in 1457, Matthias Hunyady (Corvinus) was elected by the Hungariaa magnates to the vacant throne (January 24, 1458). The leading events of his reign are summarized in the article Hungary (vol. xii. p. 368, 369).
)MATTING. Under this name are embraced many coarse woven or plaited fibrous materials used for coveriag floors or furniture, for hanging as screens, for wrapping up heary merchandise, and for other miscellaneons purposes. .In the United Kingdom, under the name of "coir" matting a large amount of a coarse kind of carpet is made from cocoa-nut fibre; and the same material, as well as strips of cane, SIanila hemp, vacioas grasses and rushes, is largely eniployed in various forms for making door mats. Perforated and otherrvisc prepared india-rubber is also largely uthlized for door and floor mats. Matting of various kinds 19 very extensively employed thronghout India for floor corerrngs, the bottoms of bedsteals, fans and fly flaps, dic.; and a considerable export trade in such mar.ufactures is carried on. The naterials used are numerous; but the priacipal substances are straw, the bulrushes Typha elephantina and T. angustifolia, leaves of the date palm (Phomixs sylnostris), of the drarf pa!m (Chamærops Ritchiana), of the Palmyra palm (Borassus jiabelliformus), of the conoe.
nut palm (Cocos nucifera), and of the screw pine (Pandanus dodoratissimus), the munja or munj grass (Saccharum Ifunja) and allied grasses, and the mat grasses Cyperus lextilis and C. Panyorei, from the last of which the well-known Palghat nats of the Madras Presidency are made. Many of these Indian grass mats are admirable examples of elegant design, and the colours in which they are woven are rich, harmenious, and effective in the highest degree. Vast quantities of coarse matting used for packing furniture, heavy and coarse goods, and plaats, \&cc., are made in Russia from the bist or inner bark of the lime tree. This industry centres in the great forest governments of Viatka, NijaiNovgorod, Kostroma, Kazan, Perm, and Simbirsk.
MATTOON, a city of the United States, in Coles county, Illinois, 172 miles south-south-west of Chicago, on the Central Illinois Railroad, which at that point intersects the Indianapolis and St Louis and the Peoria, Decatur, and Evanswillo Railroads. It had 5742 inhabitants in 1880, has railway carriage works and repair shops, and is rising rapidly is commercial importance.

Maturin, Cearles Robert (1782-1824), novelist and dramatist, perplexed the serimus and served as a butt for the more light-minded critics of the first quarter of the 19th century. The bombastic extravagance of his language, the incoherence of his plots, the wild improbability of many of his incideats, the inconsistency of his characters, were obvious and undeniable; but there were so many passages of extraordinary eloquence in his novels, especially in his descriptions of turbulent passion, that, though some pronounced him evidently mad, all admitted that it was a madness allied to genius. At first he published only sermons in his own name, being curate of St Peter's, Dublin. His first novels, The Fatal Revenge (1804), The Wild Irish Boy (1808), The Milesian Chief (1811), were issued under the pseudonym of Dennis Jasper Marphy. All these wero mercilessly ridiculcd by the press and neglected by the public, bnt the irregular porer displayed in them attracter the notice of some social and literary magnates; and through the influedce of Byron and Scott Maturin's tragedy of Bertram was produced at Drury Lane in 1816, with a prologue by Hobhouse, an epilogue by the Hon. George Lamb, and with Kean and Miss Kelly in the leading parts. The magnificent scenic situations, and the character of Bertrarn (like one of Byron's sombre heroes), mako this an effective stage play. It was the first and only success of the author; le returned to "the baffled efforts and the bighted hopes" of which Hobhouse speaks in his prologue. Two more tragedies, Manuel (1817) and Fredolpho (1819), were failures. A poem, The Universe (1821), fell flat. Three novels, Women (1818), Mclmoth (1820), and The Albigenses (1821), produced a considerable impression. In the preface to Women ho admitted that his previous novels had been justly condemned, being an impossible attempt to revire the exploded stylo of Mrs Radcliffe, and promised that be would enter on a new vein. But be could not alter his character. The new vein was as wild, fantastic, incoberent, interspersed with passages of really splendid eloqueace, as the old. The Albigenses was to be the first of a series of historical romances, illustrating periods of European history, and it was noticed in the He? ninster Review as giving, with all its faults, promise of Letter thugs; but tho author died in the year of its publication.
MAUBEUGE, a fortified place of northern Franee, situated on both banks of tho Sambre, 142 miles by rail north east from Paris, and nbout 2 miles from the Belgian fr mtier. Its fortifications were planned by Vauban; the encointo is pierced ly two gaterays, that of France and that of Mons. Maubeuge, besides containing an arsenal and several old conventa, is an industrial torn, manufac-
turing sword3, files, axles, tools, hardware, machinery, porcelain tiles, and paper; in the neighbourhood there are numerous forges. The population in 1876 was $14, \sharp 00$.
Maubeuge oves its origin to a dooble monastery for men and women founded in the 7 th century by St Aldegonde. It was burnt by the Normans, by Lonis XI., by Francis 1 ., and by Henry II., and was finally assigned to France by the treaty of Nimeguen. It was fortified by Vauban at the commaud of Louis XIV., who first saw military service there, under Turenae. Besieged in 1793 by the prince of Coburg, it was relieved by the victory of Wattignies. It was unsuceessfully besieged by the duke of Saxe-Weimar in 1814, but was compelled to capitulate, after a vigorous resistance, in the following year.
MaUlilain, or Moulmeis, a town in Amherst district, British Burmah, situated on the left bank of the Salwía river, in $16^{\circ} 30^{\prime} \mathrm{N}$. lat. and $97^{\circ} 38^{\prime} \mathrm{E}$. long. At the time of the cession of this part of the prorince to the British in 1826, Maulmain was a mere waste. It has now developed into a thriving commercial town, ranking next to Rangoon in importance, with a rapidly increasing population and trade. The population, which in $185 \%$ was 23,683 , had increased in 1872 to 46,472 , and in 1881 to 53,107 ( 32,895 males and 20,212 females). The principal buildings are Salwin House, originally a private residence, but now the property of the municipality, tha hospital, the jail, Protestant and Roman Catholic churches, the custom-house, and other public offices, and the barracks for the garrison of Madras native infantry. For many years timber formed the only export, but with ihe gradual settlement of the country and increase in agriculture rice and cotton began to be also exported ; besides these, tho other staple exports are hides, horns, lead, copper, yellow orpiment, and stick-lac. The principal imports are cotton twist and cloth, woollen piece-goods, wines and spirits, sugar, and betel-nuts. In 1880-81 573 vessels ( 266,010 tons) entered the port, and 536 ( 265,147 tons) cleared. The value of merchandise imported was $£ 666,810$, of treasure $£ 312,190$, of merchandise exported $\mathfrak{L}, 389,763$, and of treasure $£ 92,817$. Shipbuilding forms an important ins dustry of the town.

MAUNDY THURSDAY, the day preceding Good Friday. The word "maundy" (Middle-English, maundee or maunde, a command) is identical with the "mandatum" of the rubric and anthem of the Missal for the fifth day in Holy Week, sometimes called "Dies Mandati" (see this shown at length by Skeat in Etym. Dict., and in note to Piers Plowman, xvi. 140). The "mandatum" of "maund" referred to is the "new commandment" of John xiii. 34, but moro particularly the precept given to the disciples in the same chapter "to wash one another's feet." The practice by prelates and others of literally and form wly carryiag out this injunction in a public manner on a given day has long been established both in the East and intne West. Perhaps an indication of it may be discerned as early as the 4th century in a custom, current in Spain, northern Italy, and clsewhere, of washing the feet of the catechumens towards the end of Lent before their Laptism, it was not, however, universal, and in the 4 sth canon of the synod of Elvira ( 306 A.D.) it is expressly prohibited (comp. Corp. Jur. Can., c. 10t, caus. i. qu. 1). Be this as it may, the "pedilavium," or ceremony of wash: ing the feet of twelve beggars on this day, has now for centuries been observed by the prelates of the Church of Rome, including tho popo himself, according to a ritual minutely preseribed in the Missal; it is also practised by the Austrian emperor, the king of Bavaria, and other European sovereigns in the Latin obedience, as well as hy the enperor of Russia and others at the head of the Greek Church. In England it was continued by the sovereign even after the Reformation; the last recorded instance of its full performance is in the case of Jumes 11., but a distribution of roval $\begin{aligned} & \text { alms, cunsistiug of money and cluthing }\end{aligned}$
is still continued. It is on Maundy Tharsday also that in the Church of Rome the sacred oil is blessed, aud the chrism prepared, according to an elaborate ritual which is given in the Pontificale.
MaUpertuis, Peter Louis Moreat de (1698-1759), a mathematician and sstronomer of considerable reputation in his day, was born at St Malo, July 17, 1698. When 3 wenty years of age he entered the army, becoming lieusenant in a regiment of cavalry, and employing his leisure on mathematical studies. After five years he quitted the anny and was admitted in 1723 a member of the academy. of aciences. In 1728 he visited London, and was elected 3 fellow of the Royal Society. In 1736 he acted as chief of the expedition sent by Louis XV. into'Lapland to measure the length of a degree of the meridian withiu the zolar circle, in order to settle the then much disputed question of the oblate figure of the earth, and, on his return home, he became a meraber of almost all the scientific societies of Europe. In 1740 Maupertuis went to Berlin on the invitation of the king of Prussia, and took part in the battle of Mollwitz, where he was taken prisoner by the Austrians. On his release he returned to Berlin, and thence to Paris, where he was elected director of the academy of sciences in 1742, and in the followiog year was admitted into the Academy. Returning to Berlio in 1744, Maupertuis marued a lady of rank and great beauty, and in 1746 was chosen president of the royal academy of sciences. Finding bis health declining, he repaired in 1757 to the sonth of France, but went in 1758 to Basel, where he died July 27, 1759. Maupertuis was unquestionably a man of considerable ability as a mathematician, but his restless, gloomy disposition involved him in constant quarrels, of which his controversies with König and Voltaire during the latter part of his life furnish examples.

The following are his most important works:-Essay on Cos. 3nology; Discourse on the Different Figures of the Stars ; Essay on Soral Philosophy ; Philosophical Refexions, \&c.; Animal Physics; System of Nature ; Elemonts of Geography; Account of the Expcdiwion to the Polar Circle, \&c.; Lazes of Motion; Laws of Rest; Parallax of the SIoon; The Comet of 1742; On the Progress of the Sciences. He also contributed a large number of interesting papers so the Micmoirs of the acadcmies of Paris and Berlin.

MAU RANIPUR, a town in Jhánsí district, ia the North-Westera Provinces of India, in $25^{\circ} 15^{\prime} \mathrm{N}$. lat., $79^{\circ} 11^{\prime} \mathrm{E}$. long. The population in 1872 was 16,428 . Although now a large trading centre, the town is of quite modern commercial importance, haring risen from the position of a small agricultural village through the influx - of merchants seeking relief from extortionate demands made by the raja of a neighbouring native state. It consains a large community of wealthy merchants and bankers. A special variety of clotb, known as kharna, is manufactured and exported to all parts of India. The principal imports are sugar, English piece-goods, silk, metals, and coffee. Trees line many of the streets, and handsome temples ornament the town.

MaURER, Geors Luding von (1790-1872), a distinguished German jurist and statesman, was born at Erpolsheim in the Bararian Palatinate, November 2, 1790. FIe was the son of a Protestant pastor. He received his education at the university of Heidelberg, and afterwards followed for some time the profession of an edvocate. In 1812 he went to reside in Paris, where, with the aid of the great libraries of that city, be entered on a systematic atudy of the ancient legal institutions of Germany. On his return to Davaria he was appointed substltute for the attorney-general in the district of Spires and Landau. In 1824 he published at Heidelberg bis first work, Geschichte des alt-germanischen uind namentlich alt-bairischen öfentlichbaindlichen Gerichtsverfahren, which ootained the arct prize
of the academy of Munich. In 1826 be was made one of the professors of law in the university of Munich. In 1832, Otho, son of King Lonis of Bavaria, having been chosen to fill the throne of Greece, a council of regency was nominated to conduct the government of that country during his minority. Of this council Von Maurer was appointed a member, the others being the Count von Armansperg, who was president, Major-General K. W. von Heideck, and $\pi$. von Abel. They applied themselves energetically, and at first apparently in a spirit of concord, to the task of creating for the new kingdnm institutions adapted to the requirements of a modern civilized commnnity. But grare differences soon made themselves felt, Maurer being at variance with the president on important administrative questions. These being referred to King Louis, he decided in farour of the president, and Maurer and Abel were suddenly recalled in 1834. The loss of Maurer was a serious one for Greece; he was the ablest, most energetic, and most liberal-minded member of the regency, and had already done important work in the juridical and educational organization of the kingdom. It was through his enlightened efforts that Greece had obtained a revised penal code, regular tribunals, and an improved system of civil procedure. Soon after his recall, he published his work entitled Das griechische Volk in affenllicher, kirchlicher, und privalrechtlicher Beaiehung vor und nach dem Freiheitskampfe bis zum 31 Juli 1834 ( 3 vols., Heidelberg, 1835-36). This book is a valuable source of information on the history of Greece during the preceding years, its condition before the call of Otho to the throne, and the labours of the council of regency down to the time of 'the anthor's recall. Notwithstendiog his removal from office, he does not appear to have forfeited the esteem or goodwill of King Lonis. After the fall of the ultramontane ministry of Abel in 1847, he became minister of foreigo affairs and of justice, but on attempting to carry out reforms he was overthrown; retiring then from political life, he devoted himself altogether to historical and juristic studies, the fruits of which he gave to the world in successive publications. He died at Mnnich, May 9, 1872.

The following is believed to be a complete list of such of his writings as have not been already mentioned:-Grundriss des deutschen Privaircchts, 1828; Ueber die bairischen Städte und ihre Ferfassung unter der römischen und fränkischen Herrschaft, 1829; Ueber die deutsche Rcichsterritorial-und Rcchtsgeschichte. 1830; Das Stadt und das Landrechtsbuch Ruprechts von Frcising nach 5 munchener Handschriften, ein Beitrag zur Geschichte dics Schwabenswiegcls, 1839 ; Ucber die Freipflegc (plegium liberale), und dis Entstehung der grosscn und h-lcinen Jury in England, 1848; Einlcitung zur Geschichte der Mark-, Hof-, Dorf-, und Stadt-Ver. fassung und der offentlichen Gewalt, 1854; Geschichte der Marken. Verfassung in Deutschland, 1856; Rede bei der 100-jährigen Stiftungsfeier der K. Akademic der Wissenschaften am 28 März, 1859; Geschichte der Dorf-Verfassung in Deutschland, 2 vols., 1865-66; Gcschichte der Fronhöfc, der Bauernhöfe, und der Hofverfassung in Deutschland, 4 vols., 1862-63; Geschichte der Stäu crfassung in Dcutschland, 4 vols., 1869-71. He also superintended the prepara. tion of a part of the continuation of Jacob Grimm's Weisthumer, published nuder the auspices of the academy of Mnninh, $1866^{\circ}$. His researches on the ancient village communities of Gernany are of special interest and importance.
mauretania, or Mapritania (the former is the more correct form of the asme, according to coins and inscriptions), was the name given in ancient geography to the district which constituted the north-westera angle of the African continent. It comprised a considerable part of the modern empire of Morocco, together with the mestern portion of Algeria. But its limits varied mach at different times. Wheu it first appears in history the river Mulucha constituted its eastern limit, which separated it from the Numidian tribe of the Massyli, who held all the country from that river to the Ampsaga; but at a later period the kingdom of Mauretania was extended to tho
latter river so as to include the whole terntory from the Ampsaga to the Atlantic Ocean. Towards the south it was bounded by the great range of Mount Atlas. and it appears to have been regarded by geographers as extending ulong the coast of the Atlantic as far as the point where that clain descends to the sea, in about $30^{\circ} \mathrm{N}$. lat., though the Roman province of the name extended but a little beyond Sala (Sallee), and it is probable that there wiere no towns or permanent settlements farther south. The magnificent plain, or rather plateau, in which the city of Morocco is situated seems to have been unkrown to ancient geographers, and was certainly never included iu tho Roman empire. On the other hand the Geetuliaus, who inhabited the narrow strip of fertile date-producing territory on the southern slopes of the Atlas, though not included under the name of Mauretania, seem to have always owned a precarious subjection to the kings of that country, and in after days to its Roman governors.
The physical geography of the country will be described under the heading Monocco, though it must be observed that the term Mauretania, as used by the Romans, comprised also the greater portion of the French colony of Algeria, including the provinces of Oran and Algiers, and even a part of that of Constantine. The range of Mount Atlas forms throughout the backbone of the country, from which the streams descend to the Mediterranean and the ocean. The most important of those on the north coast is the Mulucha or Molochath, which in the earliest times conetituted the eastern limit of the country; it is still called Muicuya. Farther east are the Chinala, the Usar, and the Ampsaja. Of those that flow westward towards the Atiamtu, the most considerable were the Lixus, Subur, and Sala. But from the proximity of the mountain ranges to thes sea none of these streams were of any importance, or navizable beyond $\Omega$ short distance from the sea.

A large part of the country is of great natural fertility, and was in ancient times extensively cultivated, and produced large quautities of corn, while the slopes of Mount A tlas were clothed with vast forestz, which, besides other kinds of timber, supplied the celebrated ornamental wood called Citrus, for tables of which the Rowans gave such fabulons priezz.

[^234]the Mulucha Cartenna (now Tenes); Iol, surnamed Cæsarea, which was made his capital by Juba 11., and continued to be that of Mauretania Cæsariensis under the Romans (ite site is now called. Cherchell); Icosium (the modera Algicrs); Saldx (Bajeyalı): Igilgili (Jijeli) near the eastern limit of the province; and Sitifis (Setif) nt no great distapce in the interior, a town of considerable impertance, which after the time of Constantine gave the name of Mauretana Sitifensis to this eastern pertion of the pravince. The prosperity of this part of Africa under tha Roman enpire, previous to the irruption of tho Vandals in 429 A.D., is show hy the face that no less than one hundred and seventy towus wbicla wer. episconal sees are enumerated in the Notitia in the two provinces ot Mauretania.

MAURICE (MaUricius), St, aud his companions are commemorated as martyrs by the Roman Church ori Scptember 22. The earliest extant form of the legenc relating to them is that of Eucherius, bishop of Lyons about the middle of the 5 th century, who tells us that' Miurice was in command of the Theban legion (so callec? because raised in the Thebais) when it was sent into the: West and attached to the army of Maximian. Themselves Christians to a man, its members refused to persecute theircoreligionists, and for this, after having twice beetz decimated, the legion was utterly destroyed by command of the emperor at Octodurum (Martigny) near Geneva. A later form of the legend connects it with the expedition of Maximian against the Bagaudæ, who are taken to have beer* Christians; the martyrdom of the legion arises out of ites refusal to take part in a great sacrifice which had beet ordercd at Octodurum; and another name-that of Exsuperius-is associated with Maurice's. Later still. Gregory of Tours knows of a company of the same legiora which suffered at Cologne (their leader subsequently became known as Gereon). The date usually assigned to the martyrdom of the Theban legion is 286 A.D.; but it is matter of bistory that at that period the Christians were everywhere unmolested in the exercise of their religion throughout the Poman enpire. On the other hand, at no later date have we any evidence of the presence of Maximian in the Valais; and, apart from the great a 1 miore improbability of the extirpation of a whole legion under any circumstances on account of its Christian profession, 3 it is practically impossible to get over the fact that suck: writers as Eusebius, Lactantius, Orosius, and Sulpicius Severus know nothing of such a noteworthy and startling event having taken place. But in the long and voluminons. coutroversy as to the historical character of this legend it has of course never been attempted to deny that isolated cases of officers being put to death on account of their religion occurred during the reign of Maximian. The cultus of St Maurice and other members of the Thebaw legion occurs chiefly in Switzerland, the region of the Rhine ${ }_{2}$ and northern Italy; the foundation of the abbey of St Maurice (Agaunum) in the Valais is usually ascribed tes Sigismund of Burgundy (515).

MaURICE (Mauricius Flavius Tiberies), emperor as the East from 582 to 602 , was of Roman descent but a native of Arabissus in Cappadocia, where he was born about 539 . He spent bis yeuth at the court of Justin II., and, havirg joined the army, fought with distinction in the Persian war (578-581). At the age of forty-three he was declared Cæsar by the dying emperor Tiberius II., who bestoweat upon him the hand of his daughter Constantina. In the meagre annals of the reign of Maurice the most conspicuon events are the termination of the long struggle in the Eass with the restoration to the Persian throne of Chosroes II. by the Roman general Narses (not the conqueror of Italy) ir 591, and the successes of Priscus in the protracted was against the Avars. Some inopportune attempts at army' reform, and an ill-judged refusal to provide a ransom whicls might have prevented the massacre of twelve thousanc? prisoners in the hands of the enemy, led to a rebclion
among the legions on the Danube, who declared Maurice unworthy to roign, and, commanded by Phocas, then a simple centurion, but destined to become empernr, marched upon Constantinople. The capital having declared against him, Maurice abdicsted and withdrew to Chalcedon, but was pursued and put to death there after having witnessed the murder of five of his sons (November 27, 602). He was the author of a mork on military art (отратпүскá) in twelre books, of which there is an edition by Scheffer, published at Upsals in 1664. There is a Jita Mauricii by Theophylsct Simocatta.

MAURICE of NASSAU, prince of Orange, the younger son of Willism the Silent, was born st Dillenburg in 1567, and was made governor of the United Provinces after the assassiastion of his father in 1584. He succeeded his brother as prince of Orange in 1618, sud died at the Hague on April 23, 1625. For the leading features of his character and erents of his life see Holland, vol. sii. pp. 77, 78.

MAURICE (1521-1553), duke and elector of Saxony, the son of Duke Henry the Pious, was born on the 21st of March 1521. He receiver a learned educstion, and at an early age gave evidence of au energetic and ambitions temper. In 1541 he married Agnes, daughter of the landgrave Philip of Hesse, and succeeded his father as duge of Sazony, of the Albertine live. Although a Protestaut, he held cautiously aloof from the League of Smalkald; and in 1542 and 1543 he received imperial favour by supporting Charles V. against the Turks and the French. In 1546, when Charles V. attacked the League of 'Smalkald, Maurice sided with the emperor, the result being that he was made elector of Saxony in place of his couisin John Frederick (of the Ernestine line), who was taken prisoner and deposed. At this time Msurice was detested by the German Protestants, who considered him a traitor to his religion; but the tide soon turned. -Fearing that the emperor's ultimate aim was to strike at the authority of the princes, he began silently to make preparations for war ; aad Chsrles V. was imprudent enough to provide him with a pretext for oppusition by detaining the landgrave Philip of Hesse, whose freedom Maurice had guarenteed. In 1551 Msurice concluded a eecret treaty with Henry. II. of France against the emperor, and an alliance was also formed with several German princes. Charles V. refused to believe in the reality of the dsnger ; but in March 1552 he was startled by the intelligence that Henry II. had entered Germany as an invader, and that Maurice mas hastening southward at the head of a powerful army. John Frederick and Philip were at once released, and the emperor, after an ignominious flight, was compelled to sign the treaty of Passau. After the re-establishment of peace Maurice fought for some time against the Turks in Hungary; he then returned to Saxony, and associated himself with the alliance against Margrave Albert of Brsudenburg, by whom the treaty of Passsu had not been recognized. At Sievershausen, on the 9th of July 1553, the margrave was defeated; but during the battle Maurice was wonnded, and tro dsys afterrards be died in his tent. He was not only a great diplometist and general, but one of the most enlightened rulers of his age, and his early death was sincerely deplored by his subjects. In his last years he was content "with small diet and little sleep." "Therefore," says Roger Ascham, who had seen him, "he had a waking and working head, and became so witty and secret, so bardy and ware, so skilfnl of ways, both to do harm to others and to keep hurt from himself, as he never took enterprise in hand wherein he put not his adversary always to the morse."

See Roger Ascham, A Report and Discourse of the Affairs and Slate of Germany ; Langenn, Morilz, Heraog und Kurfürst von Sachsen. 1841; G. Voigt, Moritz von Sachsen $1541-4 \overline{7}, 1876$.

MaURICE, John Frederic Denison (1805-1872), better known without his first namc, an English clergyman and theologian, was born in the year 1805. He was the son of a Unitarian minister, and educated in his father's fsith, entering Trinity College, Cambridge, as a Nonconformist, for the sake of the university course, nt a timo when it was impossible for any but members of the Established Church to obtain a degree. Together with John Sterling, Maurice migrated to the smaller coliege of Trinity Hall, whence he obtained a first class in civil law in 1827 ; he theu came to London, and gave himself to literary work, editing for a short time the Athenaum newspaper. During this period of his life he came under the influence of S. T. Coleridge, -an influence which drew Maurice into conformity, and issued through him in what was known as the Broad-Church school of thought.

When Msurice joined the Church of England, he might no doubt have returned to Cambridge for his degree, or, when he chose Oxford, his terns at Cambridge would hare been allowed him, but with characteristic thoroughness he elected to go through the whole Oxford course. He entered Exeter College, and obtained a second class in classics in 1831.

The intellectual stir of Oxford life, and the vebement contreversies in the clash of which sparka of truth seemed struck out, were probably among the csuses which attracted Maurice to Oxford, and he afterwards took his full ahsre in them, always in a liberal, tolerant, jet strongly Protestsnt spirit. He was ordained in 1834 , and after a short interval spent in parish work in the country was appointed chaplain of Guy's Hospital, and became thenceforward a sensible factor in the intellectual and socisl life of London. Carlyle has told us how "going to Guy's" Sunday after Sunday was a part of Sterling's routine, aud an appreciable number of persons far above the average were attracted to the hospital chapel. In 1840 Maurice was appointed professor of history and literature in King'a College, to which in 1846 was added the chair of dirinity. These chsirs be held till 1853. , In that year he published Theological Essays, wherein were stated opinions which savonred, to the principsl, Dr Jelf, aud to the council, of unsound theclogy in regard to eternal punishment. Msurice maintained with great warmth of conviction that his views were in close accordance with Scripture and the Anglican standards, but the council ruled otherwise, and he was deprived of his professorships. .He held at the same time the chaplaincy of Lincoln's Inn (1846-60), but no attempt was made to deprive him of this. Neither was he assailed in the incumbency of St Peter's, Vere Street, which he held for nine years.(1860-69), and where, though his congregation was never large, partly perhaps because no parish or district was apportioned to his church, he drew round him a circle of thoughtful persona, attached in no common degree to himself and to his teaching.

During his residence in London Naurice was specially identified with two important movements for educstion, the Working Men's College, and Queen's College for the education of women, while he threw himself with great energy into all that affected the social life of the people. Certain abortive cfforts at a true co-operation among work ing men, and the morement known as Christian Socialism, were the immediate outcome of his teaching, and directly fostered by himself. • In 1866 Maurice was appointed professor of meral philosophy in the unirersity of Cambridge. He died on the lst of April 1872.

Maurice was before all things a preacher. The actual message he had to proclaim was apparently simple; his two great convictions, which he strove to impress on all other men, were the fatherhood of God, and that all religious systems which had any stability lasted becauss of a portion of truth which had to be disentangled from the error differentiating them from the doctrines
of the Church of England as understood by himaself. His love to God as his Fatler was a passionate adoration which filled his whole heart. No one who ever heard Maurico read the Lord's Prayer ean possibly forget it; the intensity of his coavictions in the palpit made his message seem as luminons and clear as it waq brief and concentrated, though his teaching apart from the living voice liad by 110 means the same character.

It was the peculiarity of his congregation that those who wanted his alvice sought him; haring no parish, he liad no definite ancre of work beyond the church. Thus his preaching took the forms now of exposition and now of the resolution of metaphysical difficulties, rather than of direct dealing with the facts, the sins, and the tentptations of humar life common to all. Feeling this defect, he took ior a time a district for parochial visitation, but was perplexed and distressed at the experience to which he was unequal. With all his affectionateness and desire to give sympathy he was unable even to conceive intellectual difficulties which were not his own. To those who did not demand of him all they needed, but took thankfully what he had to give, he was aftogether a stimulating and lelpful teacher. He opeaed new views, and encouraged mea to think for themselves, and see what their words meant. He was evea morbidly feariul of founding a Tarty, and was decply distressed at the name Broad-Church. Those who surrounded him, and were kept together by his persomal charm and influcnee, were learniug to thiak for themselve日, and lave disjersed in many directions. There are probably not half a dozen jersons who, even nominally, reflect the precise shades of Maurieian teaching.

As a writer it is extremely doubtful if his work will heve a great and permaneat place in the future. His one novel, Eustace Conzeryy, is even now unread; his theological works, though abounding in passages of great beauty, full now aud tlien of a fiery eloquence, are as a whole somewhat olscare. He published too much, and a large number of his works aro sermons recast. We miss the human veice, and we find a class of writing which only the bighest excellence can make tolerable out of the pulpit.

Dlaurice's greatest effect on his time is in his educational work. The Working Men's College, which owes more to him than to any ove else, for which he rendered great sacrifices, and which was and ia more full of his spirit than are most institutiong of that of their fonnders, was a totally new departure in education. It was intended to give, and it has largely succceded in giving, not what is called 2 propular education, but "higher education "to working men, and in combining teachers and taught in a college with its social life, and a bond of common iuterests. Queen's College, in like manaer for the higher cducation of girls, is scarcely less identified with his life, though its influence is not 80 great, nor can its work be so widely known.

Joth at King's College and at Carabridge Maurice gathered round him a band of earnest students, to whom he directly taught much that was maluable drawn from wide stores of his own reading, wide rather than deep, for he never was, strictly speaking, a learned man. Still 1 aore did he encourage the habit of inquiry and research, more valuablo than his direct teaching. In his power, which lias been truly called Socratic, of conviacing his papils of their ignoranco he did more than perhaps any other man of our time to awaken in thoae who came under his sway the desire for knowledge and the process of independent thonght.

If, as a aocial reformer, Maurice's name be forgotten in tho future, it will be because in much he was before his time, and gave his eager support to schemes for which the rorld was not ready. From a very carly period of his life in London the courlition of the peor pressed upon him with consuming force; the enormons magaitude of the social questions involved was a burthea which he conld hardly bear. Ho threw himself with characteristic energy into schemes for a true co-operative syatem, in which some ardent young mea were thea engaged, and in apite of his dialike for syatems and pariy names did not shrink from being known as a Christian Socialist, and taking a keen interest in the paper which bore that name, and was the organ of the movement. That and the Politics for the People, much the samo paper under a different name, receivod his sanction and aid; many strifes between masters and workmen wero appeased, if not directly by himself, hy thuso who were aided by his counsel, and were in constant intercourse with him. For many years he ras the clergyman whom working men of all opinions gcemed to trust even if their faith in other religious inen and all religious systems had faded, and his power of attractiug the zealot and the outcast resembled that of the Slaster whom he followed.

Mourice was trico married, first to a stster of Jolna Sterling, secondly to a aister of his friend Archdeacon Hare. By his family the and his closest friendships he cano in contaet with few bnt intellectual people. Thus while le wrote and spoke and worked for the averago man he set that average somewhat high. Those who sere privileged to know him did not know a more beautiful sonl.
Tho followlag are Marice's moro important works. Somo of them were rewrittes and is a measare recast, and the dato givea is not pecceanally that of
the first appearance of the book, bat of its more complete and abjelne furm. Einstare Comeray, or the Brother and Sister, n nuvel, 1834: The Kingdom of Cirtst, 1842: Christmas Day and other Sermons, 1813; The Unily of the Deec Testament, 1st4; The Epitlle to the lfetreus, Ist6; The Relfoions of lie Worid. 18t5; Mowl and Metaphysical Philosophin (at Arst an artlele In the Encyelopadia Afetropothtana), 1818; The Churdi a Family, 18s0; The Ofd Testament, 1851; Theologicaf Exsays, 1853: The Proptrts and Kiings of the Uld Testament, 1853; Lectures on Eirclesiastical Mastory, 1s54: The Doetrine of Snersfice. 1854: The Patriarchs and Largicers of the OHd T+stanient: 1835 : The E'pustles of SI John, 1857; The Comnandments as Inatruments of Nafiont Reformntion, 186G; On the Cospel of St Lule, 1868: The Conscience: Lectures on Casutsiy, 1808; The Lord's Prayer. a I/anaaf, 1870. The greater part of these works were, os lus been ulready notietd, first delivered as sermans or lecturcs. Besides thls move formul work, Mautice
 specehes, periodical wiltiga, atid letters to valtous newspapers need not be hera noticed, though they were at the time evilenec of his interest in all the life of his t!me, and hils etger and abonnding entrgy.

MaURitiUS, formerly called the Isle of Fraxce, an island in the south-western portion of the Indian Ocean, between $57^{\circ} 18^{\prime}$ and $57^{\circ} 48^{\prime}$ E. long., and $19^{\circ} 58^{\prime}$ and $20^{\circ}$ 31 ' S. lat., 550 miles east of Madagascar, and 115 miles north-east of the island of Réunion, 340 miles south-east of the Seychelles, 2300 miles from the Cape of Good Hope, and 9500 miles from England vica Aden and Suez. The island is irregularly elliptical-somewhat triangular-in shape, and is 36 miles long from north-north-east to south-south-west, and about 23 rniles broad. It is 130 miles in circumference, and its total area is about 713 square miles. The island is surrounded by coral reefs, so that the ports are difficult of access.


Map of Mauritius.
From its mountainous character Mauritius is a most picturesque island, and its sceaery is very varied and beautiful. The most level portions of the coast districts are the north and north-east, all the rest being broken by hills, which vary from 500 to 2700 fcet in beight. There are three principal masses of mountain: the north-western or Pouce range, in the district of Port Louis; the south-western, in the districts of Rivière Noire and Savanne ; and the aoutheastero range, in the Grand Port district. In the first of these, which consists of oac principal ridge with several lateral spars, overlooking Port Louis, aro the singular peaks of the Pouco ( 2650 feet), so called from its supposec resemblance to the humas thumb; and the still loftier Pieter Botte ( 2676 feet), a tall obelisk of bare rock, crownec with a globular mass of stone. The kighest summit in $\mathfrak{i}^{2}$.
island is in the south-western mass of hills, the Montagne de la Rivière Noire, which is 2711 feet above the sea. The principal ranges in this mountain mass are three in number, arranged in a triangular form, and are called respectively the mountains of La Pierre Rouge, La Riviere Noire, and Saranne. The south-eastera group of bills consists of one chief range, the Montagne du Bambou, with several spurs running down to the sea. In the interior are estensive fertile plaius, some 1200 feet in height, and forming the districts of Moka, Vacois, and Plaines Wilhelms; and from nearly the centre of the island rises an abrnpt peak, the Piton du Milicu de l'Ile, to a height of 1932 feet above the sea-level. Other prominent summits are the Trois Mamelles, the Montagne da Corps de Garde, the Signal Mountain, near Port Louis, and the Morne Brabant, at the south-west coiner of the island.

The rivers are of course small,-and none of them aro navigable beyond a few hundred yards from the sea. Iu the dry season most of them are little more than brooks, although they soon become raging torrents when swollen by the heavy rains of the wet period of the year. The principal stream is the Grande Riviere, with a course of about 10 miles. A remarkable and very deep lake, called Grand Bassin, is found in the south of the island, and is probably the extinct crater of an ancient volcano; other similar lakes are the Mare aux Vacois and the Mare aux Joncs, and there are some other deep hollows which have a: like origin.
The geological structure of Mauritius is undoubtedly a result of volcanic action, all the rocks being of basalt and greyish-tinted lavas, excepting some beds of upraised coral. Columnar basalt is seen in several places. There are many caverns and steep ravines, and from the character of the rocks the ascents are rugged and precipitous. The island has few mineral productions, although iron, lead; and copper in very small quantities have in former times been obtained.

The climate is plessant during the cool season of the year, but oppressively hot in summer (December to April), except in the interior plains, where the thermometer ranges from $70^{\circ}$ to $80^{\circ}$, while in Port Louis and the coast generally it ranges from $90^{\circ}$ to $96^{\circ}$. The mean temperature for the year at Port Louis is $78^{\circ} \cdot 6$. During the last thirty years the island has been subject to severe epidemics, which have been extremely fatal. In 1854 a visitation of Asiatic cholera swept off 17,000 people; and in 1867 a still more destructive inroad of malarial fever, of an nnusually fatal type, almost paralysed the whole community for many weeks, carrying off 30,000 people, and greatly affecting the finances of the colony. The seasons are divisible into two, the cool and comparatively dry season, from April to November, and the hotter season during the rest of the year. From the month of Januery to the middle of April, Mauritius, in common with the neighbouring islands and the surrounding ocean from $8^{\circ}$ to $30^{\circ}$ of S . lat., is subject to severe and destructive cyclones, accompanied by torrents of rain, which often cause great destruction to houses and plantations. These hurricanes generally last about eight hours, but they appear to be now less frequent and violent than in former times, owing, it is thought, to the destruction of the ancient forests and the consequent drier condition of the atmosphere.

The soil of the island is of considerable fertility; it is a ferruginous red clay, but so largely mingled with stones of all sizes that no plough can be used, and the hoe has to be employed to prepare the ground for cultivation. The woods with which the island was largely clothed when first discovered have been to a great extent cut down, and the greater portion of the plains is now a vast sugar plantation. The bright green of the augar felds is a atriking feature
in a view of Mauritius from the sea, and gires a peculiar beauty and freshness to the prospect. The soil is suitable for the cultivation of almost all-kinds of tropical produce, and it is to be regretted that the prosperity of the colony depends entirely on one article of production, for the corsequences are serious when there happens to be a failure, more or less, of the sugar crop. Guano is extensively imported as a manure, and by its use the natural fertility of the soil has been increased to a wonderful extent.
For purposes of law and government Mauritius is divided into nine districts, named respectively Port Louis, Pamplemousses, Rivière du Rempart, Flacq, Grand Port, Savanne, Moka, Plaines Wilhelms, and Rivière Noire. The capital and seat of government, the city of Port Louis, is situated on the north-western side of the island, at the head of an excellent harbour, a deep inlet about a mile long. This is protected by two forts, - Fort William and Fort George,-as well as by the citadel in the city, and its value is further increased by three graving docks connected with the inner barbour. Lighthouses have been erected on Flat Island and at Cannonier's Point. Port Louis has a population of about 70,000 , but from the lofty mountains by which it is enclosed its situation is tiot, and from the small amount of tide in the harbour effectual drainage is difficult, so that it is not a very healthy town. The public buildings are of no great architectural beauty, the government house being a three-storied structure with broad verandas, of no particular style of architecture, while the Protestant cathedral was formerly a powder magazine, to which a tower and spire has been added. The Roman Catholic cathedral is more pretentious in style, but is tawdry in its interior. In the city are large barracks and military stores. A maximum contribution of $\mathfrak{£ 4 5 , 0 0 0}$ is paid to the imperial government by the colony towards the expenses of the troops stationed in the island, buy this sum is reduced when the garrison is below a certain standard. In 1880 the amount paid was $£ 29,972$. The governor and chief officers of government reside out of Port Louis in the cooler uplands of the interior, as do also a large number of the principal inhabitants, especially since the completion of the railways bas made access easy to many portions of the island. The most favourite place of residence is at Curepipe, a place situated about 1800 feet above the sea; here the climate resembles that of the south of France, and it has been so much resorted to of late years that it is rapidly becoming a large town. The construction of the Mauritian railways has given a great inupetus to the trade of the colony ; the system embraces two lines, of a total length of 87 miles. The main roads of the island are kept in good order, but much yet remains to be done before the road system can be aaid to be complete throughout all the districts.
The prosperity of Mauritius, as already mentioned, depends alnost entirely upon ita sugar-crop, and the export trade of the island has grcatly increased during the last twenty years, as will be seen by the following statistics:-

|  | 1864. | 1868. | 1873. | 1877. | 1880. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Imports... | £2,582,980 | £2,200,098 | £2,454,101 | ¢2,359,449 | £2.169,672 |
| Exports... | 2,249,740 | 2,339,312 | $3,375,401$ | 4,201,286 | 8,634,788 |

Of the imports the principal items are rice (about a fifth of the whole), wheat, and other grains, plain and coloured cottons, and haberdashery. Madagascar aupplies cattle to the colony, and also rice, although the greater portion of the latter import comes from India. Horses are imported from the Cape, ponies from Burmah and Pegu, mules from Spain, and sheep from Bombay and the Cape. Of the exports, sugar forms of course the great item, amounting, on an average, to nearly nineteen-twentieths of the whole; the increase in its production is shown
by the following figures, giving ralues of the sugar exported :-
c2,126,511
1871.
$\sum_{2} 811,820$
1977.
18:8.

In 1877 the quantity of sugar exported was 189,164 tons; while in 1854 the quantity was 102,000 tons. The next item is rum, which was exported to the value of
 has increased from 7569 gallons in 1864 to 253,263 gallons in 1878 , the latter quantity being worth $\mathcal{£ 3 7 , 2 6 3 .}$ The value of tho coffee exported in 1879 was $£ 25,064$. The currency consists of rupees and cents; and on the lst of May 1878, the metric system of weights and measnres came into use in the island.
Mauritius being an oceanic isiand of small size, its present fauna is very limited in extent, and docs not contain much that is interesting. When first seen by Europeans it contained no mammals except a laige fruit-eating hat (Fitcrouus vulgaris), which is plentiful in the woods; but several animals of this class have bean introduced, and are now numerous in the uncultivated region. Among these are two monkeys of the genera Macacus and Cercopithecits, a stag (Cervus lippclaphus), a small hare, a shrew-mouse, and the ubiquitons rat. $A$ lemur and one of the curious hedgehoglike Inscctivora of Marlagascar (Centetes ccaudatus) have prohably both been brought from the larger island. The avifauns resembles that of Madagascar ; there are apecies of a peculiar genus of caterpillar shrikes (Campcphagidx), os well as of the genera Pratincola, Hypsipetes, Phedina, I'chitrca, Zosterops, Foudia, Collocalia, and Coracopsis, and peculiar forms of doves and parroquets. The living reptiles are small and few in number, but in the aurroundiag seas are great numbers of fish; the coral reefs abound with a great variety of molluses; and there are mumerous land-shells. The extinct fauna of Mauritius has considerable ioterest. In common with the other Mascareqe islands, it was the home of the Dodo (Didus incptus), one of a group of birds incapable of flight ; there were also Aphanappryxa, a apecies of rail, and a short-winged heron (Ardca megacephala), which probably seldom flew. The defenceless condition of theso birds has led to their extinction since the island was colonized. Several species of large fossil tortoises hava been dis. covered; but, strange to say, they are quita different from the living ones of Aldabra, in the same zoological region.

Owing to the extensive destruction of the primeval forests of the island for the formation of sugar plantations, the indigenous flora of Mauritius is only scen in parts of the interior plains, in the river valleys, and on the hills; and it is so much mingled with trees and plants introduced from otlser parts of the world that it is not very easy to distinguish between what is native and what has come from abroad. The principal timber tree is the ebony (Diospyros ebeneum), which growa to a considerable size. Besides this there are bois de cannelle, olive-trec, benzoin (Croton Bcñ̃oc), colophane (Colophonia), and lron-rood, all of which are useful in carpentry ; the cocoa-nut palm, an importation, but a tree which has been so extensively planted during the last hundred years that it is extremely plentiful; the palniste (Palma dactylifcra latifolia), the latanier (Corypha umbraculifera), and the datc-palm. The vacoa or vacois, a apecies of Pandanus, is largely growa, the long tough leaves being manufactared into bags for the export of sugar, and the roots being also made of nse"; and in the few remnants of the original forests the tree which is such a prominent one in the const florn of Madagascar, the traveller's trea (Urania speciosa), grows abuodantly. A species of bamboo is very pleatiful in the river valleys aod in marslyy situations. A large variety of fruit is produced, iocluding the tamarind, mango, banana, pineapple, guava, shaddock, fig, a vocado pear, litchi, custard-apple, and the mabolo (Diospyros discolor), a fruit of exquisita flavour, hut very disagrceable odour. Many of the roota and vegetables of Europe have been introduced, as well as soma of those peculiar to the tropics, including maize, millet, yams, manioc, dhol, gram, \&c. Small quantities of tea, rice, and sago have been grown, as well as many of the apices (cloves, nutmeg, ginger, pepper, and allspice), and also cotton, indigo, betel, camphor, turmeric, and vanilla.

Mauritius appears to hava beea unknowa to European nations, if not to all other peoples, until tho jear 1507 , when it was discovered by the Portuguesc. It had thon no inhabitants, and thero seem to be no traces of its previous occupation hy any poople, either savage or civilized. The island was retained for most of the 16 th century ly its discoverers, but they mado no colonics in it. In 1598 the Dutch took possession, and named the island "Mauritius," in honour of their princo Maurico. It had been previously called by tha Portugucse "1tha do Cerne," from the belief that it was tho island 80 named by Plinj. But, elthougls the Dutch built a fort at Grand Port, they mado no permanent actilement in Mauritius, finally abandoving the island in 1710 . Five years afterwards the French, in their turn, took peascssion of what had acened ao worthlea to
two European powers, out it was half a century before the Government of France appreciated the value of their colony, since from 1715 to 1767 it was held by agents of the Fiench Fast India Company, by whom its name was again changed to "Île de France." The Company was fortunate in having several able men as povernors of its colony, especially the celebrated Mahé de Labourdonnais (1735-46), "a man of eminent talents and virtuc," who intro. duced tha culture of the sugar-cane, aod thus laid a firm foundation for the future prosperity of the island. Under his direction roads were inade, forts built, and considerable portions of the forest were cleared, and the present canital, Port Lonis, was founded. I abourdonnais also promoted the planting of cotton and indigo, and is justly remenbered as the most enlightened and best of all the French governors. The colony continued to rise in value during the time it was held by the French crown, and to one of the later governors, De Poivre, was dus the introduction of the clove, nutmeg, and other splees. Another governorwas D'Entrecasteaux, whose name is kept in remembranco by a gronp of islands cast of New Guinea.

During the long war between France and England, at the com. meocement of this century, Mausitius was a continual source of much mischief to Eoghish Indiamen add other merchant vessels: and at length the British Governmeut determined upou an expedition for its capture. This was effected in 1810 ; and upon the restoration of peace in 1814 the possession of the island was confirmed to England by one of the provisions of the treaty of Paris. By the eighth articla of capitulation it was agreed that the inhabitants should retain their own laws, cnstoms, and religion; and so it happeas that, althongli a British colony, the island is still largely French in language, habits, and predilections; but its name has again been changed to that given by the Dutch. Perhaps the most distioguished of the English governors of the island was Sir Robert Farquhar (1810-23), who did so much to abolish the Malagasy slave trade and to establish friendly relations with the rising power of the Hova sorereign of Madagascar.

Mauritius is one of the crown colonies of Great Britain, and at the head of its administration is a governor, who is assisted by an executive council of seven members, holding the most important Government posts. There is also a legislative council, which consists of the same members as the foregoing, with thee others, together with eight of the chief landed proprietors of the island, who are nominated by the crown. The average annual revenue of the colony for the ten years from 1871 to 1880 was $£ 723,876$, the average annual expeaditure during the same periol being $£ 710,261$. Up to 1854 there was a surplus in hand, but since that time ex. penditure Jas exceeded income, and the public debt is now about £700,000.

The island has largely retained the old French laws, the Codes Civile, de Procédure, du Commerce, and d'lnstruction Crimivelle being still in force, exccpt so far as altered by the later laws for the adauinistration of justice of April 13, 1831. By these the caurt of appeal was reconstitutel, and a suprema court of civil and criminal justice was established, under a chief judge and three puisne judges. The police force in 1850 included 689 mea.

During the last few years great improvements have been effected in the educational system of the colony. The department of public instruction has two branches, the Royal College, for higher education, and the selnool department, for primary instruction. In 1880 the number of Government schools was 38 , with 5077 scholars, and of schools aided by grants 54 , with 4316 scholars, the total teaching staff numbering 178. The annual education vote is about $£ 18,000$; and of the scholars 73 per ceat. are Roman Catholic, 14 per cent. Hiadı, 8 per cent. Protestant, and 5 per cent. Moham. medan. It will be seen from the above figures that the Roman Catholic religion is that professed by the large majority of the white population of Mauritius. The clergy supported by the stata ioclude the Protestaot bishop of Mauritins, with an archdeacon and seven clergsmen of the Church of England, and three clergymen of the Church of Scotland; and the Roman Catholic bishop of Port Louis, with a ricar-general and thirty-four pricsts.

The population of the Island Is a very varied ooe, and consists of tro great divisions:-those of European blood, chicfly French and English, as well as numerous half-caste people ; and o large coloured population, cliefly Hindu coolies, but with representatives from various African and Asiatic regions, Negroes, Malagasy, Farsees, Sioghalese, Chinamen, Maloys, \&c. Tho Hindu immigrants now form more than two-thirds of the inhabitants of Mauritins, as will be seen from the following figures for the year 1881:-

| General........ 111,783 | Indlan........949,064 | Total........360,847 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| slale. | Female. | Male. | Femaic. | $31 a l e$. | Female. |
| 68,137 | 53,646 | 151,423 | 97,641 | 209,360 | 151,287 |

The increase of population during the last thirty years is shown by the following figures :-

$$
\begin{array}{cccc}
1851 . & 1861 . & 1871 . & 1851 . \\
183,50 \mathrm{C} & 813,669 & 817,069 & 800,8+7
\end{array}
$$

The system of coolie immigration lias been of great malue to tho colony ; and the arrangements for shipping thesa Hindu people
sre ander Governmeat control, Bat many of the lama have been so anjust to the coloured pcople, and so much to the advantage of the planters, that gross evils and abuses have arisen. And, unjust as the Jawa are, their edministration has often been still more unfair. The ovil grew at length so glaring that in 1871 a royal commission was appointed, which sat for a long time investigating the subject. Varjous reforms were recommended, and since then some improvements have been effected. But many of the creole planters are not renarkable for their respect for the rights of coloured people, and the system is liable to gross abuge anless under vigilant control by higher authority. Much yct remains to be done for the moral and religious instruction of the labourers; sad the presence of a large hesthen population, and the prevalence of crime, has been at times a very sprious consideration for the colony. The number of coolies arriving in and Jeaviog the island varies very largely, from a few hundreds anoually to scveral thousands

The dependeacies of Mauritius are the Scychelles gropp, the islands of Rodriguez and Diego Garcia, the Chagos group, and serenty other smaller islands scattercd over a large extent of the fadian Ucean, and haring a total population of about 16,000 souls. Rouriguez is situated 300 miles east of Mauritius. snd is cultivated chiefly by colonists from that island.
Literafure.-The following worka aupply fuller detais than can be given in this artlcle:-Ch. Grant, Jlstory of Mauritus, or the Iste of France and Neigh couring Jslands, 1801; J. Milbeit, Vayage pittovesque a f'lle-d-France, \&c., 4 vols, 1812; Ang. Blllard, Joyage aur Colonies orientales, 1822: D' Unleorille, Statistipue de 「ite Maurice, \&c., 1838 ; J. Backhonse. Narrative of a lisit to the Nouritsus and South Africa, 1844 ; P. Beasoo, Creoles and Coolies, or Five Jears In Mruritius, 1859; Paul Chastean, Jistaive et Deseription de Fil Nasrice. 1860; F. P. Flemyng, Mauritius, or the Isle of France, 186.2; James Morris, "Mauritius, Its Commerclal and Soclal Bearings," Soc. Arrs four., 1862: A. Erny. "Séjour à lise Maurice" In vol. N1. of Tour du Nonde, 1863: Ch. J. Boyle, Far Away, or Stetches of Scenery and Socicly in Masritius. 1867 ; L. Sirnonin, Les Pays lointains, Jotes de Foyage (Maurice, drc.), 186.: N. Pike, Sub-Tropicat Rnmbles in the Land of the Aphanapteryx. 1873; A. R. Wallace, "The Mascarena 1slands," in chap. xi. vol. L. of The Geographical Disiribution of Animals, $187^{76}$ K . Möbius, F. Richter, nod E. von Eartens, Beilnüge sur Sheresfa wna der Insel Mauritius, und der Seychellen, Berlin, 1830; G. Clark, A Brief siotice of the Fauma of Sfauruius, 1881.
(J. S., jr.)

MAURUS, St, according to the Roman Breviary (January 15), was a Roman of noble birth, and while still a clild was placed by his father Eutychius under the discipline of St Benedict, where he soon became a model of all the virtnes and endowed with the gift of miracles. Sent by his master into Gaul, he founded a monastery over which be presided for forty jears. When he died in 565 be was over seventy. The monastery referred to is that of Glanfeuil or St Maur-sur-Loire. In point of fact it may be said that everything relatitg to the introduction of the Benedictine order into France, unless the name of him who introduced it be made an exception, is purely legendary. The famous "Congregation of St Maur" dates from the 17 th century, baving received papal sanction in 1621 and 1627 ; it arose out of an earlier "congregation" of reformed Benedictines, which took its name from St Vannes near Verdun, and was sanctioned by Clement VIII.

MaURy, Jean Stffrein (1746-1817), cardinal and archbishop of Paris, the great opponent of Mirabeau in the constituent assembly, and esteemed his rival in eloquence, was the son of a puor cobbler, and was born at Valreas in the Venaissin, the district in France which belonged to the pere. His quickness was soon observed by the priests of A rionon, where he was educated and took orders, and he determined to get what he could by it. He tried his fortune by writing éloges of famous persons, then a favourite practice ; and in 1771 his éloge on Fénelon was prononnced next best to Laharpe's by the Academy. The real foundatiou of his fortunes was the success of a sermon he preached on St Lonis before the Academy in 1772, which caused him to be recommended to the king for an abbacy on the spot. In 1772 he published his Essai sur Téloquence de la chaire, which, as well as his Principes d'éloquence, containa much good c:iticism, and remains a French classic. He became a favourite preacher in Paris, and was Lent preacher at court in 1781, when King Louis XVI. said of his sermon, "If the abbe had only said a few words on religion he would have discussed every possible subject." In 1781 he otiained the rich abbey of Lions, worth 20,000 livres a
year, and in 1785 he was elected to the Academy. His morals were as loose as those of his great rival Mirabeau, but he was famed in Paris for his wit and gaiety as well as for his eloqucnce and his immorality. In 1789 he was elcetcd a member of the states-general by the clergy of Peronne, and from the first proved to be the most able and persevering defender of the ancien rigime. It is said that he attempted to emigrate both in July and in October 1789; but, whether he did or not, he after that time held firmly to his place, when almost universally deserted by his friends. His life was often in danger amoog the people, but his ready wit always saved it, and it was said that one bon not mould preserve him for a month. At last, in 1792, he found it necessary to fly from Paris; the Revolution had gone too far. When be did emigrate he found himself regarded os a kiod of martyr to the church and the kiug, and was at once named cardinal, archbishop in partibus, and extra uuncio to the diet at Frankfort. He was finally made bishop of Montefascone, aud settled down in that little Italian town,-but not for long, for io 1796 the French drore him from his retreat, and he became ambassador, but with hardly any pay, of the exiled king Lozis XVIII. to the pope. Such a life soon wearied a man who had been accustomed to wealth and reputation, and in 1804 he began to prepare his return to France by a well-turned letter to Napoleon, congratulating him on restoring religion to France once more. In $1806^{\circ}$ he did return; in 1807 he was again receised into the Acadeiny; and in 1810, on the refusal of Cardinal Fesch, was made archbishop of Paris. On the restoration of the Bourbous he wiss summarily turned out of the Acadeny; and sent to Rome to anstrer for his disobedience to the pope. There he was imprisoned in the castle of St Angelo for six months, and died in 1817, a year or two after his release, of disease contracted in prison, and of chagrin.
There are tro aides to Maury's eharacter to be discassed. As a critic he was a very able writer, and Sainte-Beure gives him the credit of discovering Bridaine, and giving Bossuet his rightfol place as a preacher abore Massillon; as a politician, his wit and eloquenco make him a worthy rival of Mirabeau, and an interesting character in the early years of the Revolution. If in later years be fersook his old tenets, and joincd Napoleon, his punishment was terribly severe, and it would hare been a graceful act if Louis XYIII. had semembered the courageons supporter of Louis XVI., and the pope the one intrepid defender of the church in the states-general.
The Eucres choisis c'u Cardinal Maury ( 5 vols., 1842) contain what Is worth preserving. For his $1 \mathrm{li/e}$ and character see tie du Cardinal Marry par son neces, 1827; Poojoulat, Cardinal Jfuury, sa rie ef ses ceurres, 1855; Salnte-Beave, rauseries du Lundi, vol. \%.
MaURy, Matthew Fontaine (1806-. 873 ), American naval oflicer and hydrographer, was born iu Spottsylvani.. county, Virginia, January 14, 1806. In 1825 he entered the American navy as midshipman, circumnavigating the globe in the "Vincennes," during a cruise of four years. In 1836 he was made lieutenant, and gazefted astronomer to an exploring expedition. In 1839 he met with an accident which resulted in permanent lameness, and unfitted him for active service. Maury was placed in charge of the Depôt of Charts and Instruments, out of which have grown the United States Naval Observatory and the Hydrographic Office. He laboared assiduously and with complete success tn place the depôt in a state of efficiency. While in the " Vincennes," and in subsequeat cruises, Maury made many observations as to the winds and currents, and when in charge of the Hydrographic Office he set himself to collect further data by distributing to captains of vessels specially prepared log-books. So successful was he in this enterprise that in the course of nine years he had collected a sufficient number of logs to make two hundred manuscript volumes, each with about two thonsand fire hundred days' observations. One result was to show the necessity for combined action on the part of maritime aations in regard to ocean meteorology. This len to an
interational conterence at Brussels in 1853, which proonced the greatest benefit to navigation as well as indirectly to meteorology. One result was the establishment of the meteorological department of the Engtish Board of Trade, now known as the Meteorologieal Ufiee, which adopted Maury's model log-books. In 1853 he published his Letters on the Amazon and Atlantic Slopes of South America, and in 1855 he was promoted to the rank of commander. On the outbreak of the American civil war in 1861, Maury threw in his lot with the South; and, having lost nearly his all, retired to England, where he was presented with a handsome testimonial raised by public subscription. Afterwards he became imperial commissioner of emigration to Maximilian of Mexico, on whose death be took up his residence in Virginia, where he died on February 1, 1873.

In 1848 Maury published a Treatise on Navigation, which was 3ong used as a text-book in the United States navy. The work, lonvever, by which he is best known is his Physical Gcoogray hy of the Sea, the first edition of which was pullished in London in 1855, and in New York in 1556; it was translated iuto sevoral European languages. The theories which it coutains are now generally admitted to be guite erroneous. Maury's reputation rests on the eminent services he rcudered to navigation aud meteorology, ho having been the first to show how the latter could be raised to the certainty of a scienee. He was escentially a practical man; hiss great aim was to render natigation more secure and coonomical, and $3 n$ this ho was eninently sucessful. Other works published by Maury ure the papers contributed by him to the Astronomical. Observations of the United States Observatory, Lotlcres concerning Lincs for Stermers crossiigg the Allantic (1854), Physical Geography (1804), and Manual of Gcography (1871). In 1859 ho began the yroblication of a series of nautical monographs.

MAUSOLUS, or according to his cioioa Meussolus (Mari $\sigma \sigma \omega \lambda$ os), a king of Caria, whose reign probably began in $37 \%$ and terminated with his death in 353 B.C. The part be took in the revolt against Artaxerxes Memnon, his conquest of Lydia, Jonia, and several of the Greek islands along the coast, his co-operation with the Rhodians and their alliea in the war against Athens, and the removal of his capital from Nylasa, the ancient seat of the Carian kings, to the city of Haliearnassus are the leading facts of his history. He is best known, however, from the tomb arected for him by his widow Artemisia with such cultured magnificence that the name of mausolenm has becorse the greneric title of all similar monuments. One of the most carious of the inseriptions diseovered at Mylasa details the punishment of certain conspirators who had attempted the Sife of Mausolus when he was attending a festival in a tomple at Labranda. See Halicarnassus.

Maxentius, Marcus Aurelius Valerius, Roman emperor from 306 to 312, was the sen of Masimianus Herculins, and the sen-in-lnw of Galerius, but on account of his vices and ineapacity was left out of account in tho division of the empire which took place in 305. A variety of couses, however, had produced strong dissatisfaction at Rome with many of tho urrangements established by Diocletian, and the public discontent on .October 2S, 306, found expression in tho massaere of those magistrates who maintained their loyalty to Severus and in the election of Maxentios to tho imperial dignity,-an election in which the rost of Italy, as well as Africa, concurred. With the help of his father, Maxentius was enabled to put Severus to death and to repel the invasion of Galerius; his nest steps were first to banish Maximisn, and then, after uchievinga military suceess in Africa against ono Alexander, so declare war against Constantinc for the conduct towards tho old enperor of which ho in turu had been guilty at Marseilles. The contest resultod in the defeat of Maxentius at Saxa Rubra, and his death by drowning in the Tiber at the Milvian Bridge on October 28, 312 . (Sce Coxstanting.) The gonaral testimony to tho worthleseness and brutality of his anaracter is unambiguous and unaninous; less asparent are the grounds for tho particular statemeut of

Gibbon that he was "just, bumane and even nartua' towards the afflicted Christians."

MAXIMA AND MINLMA. The consideration of the greatest or the least value of a variable quantity, that if restricted by certain cooditions, is a problem of whiob several simple cases were investigated by the early Greek geometers. Thus in Euclid iii. 7, 8 we find the determina: tion of the greatest and least right lines that can be drawt from a point to the circumference of a circle. But the most characteristic problem of the kind in Euelid is that contained in vi. $27,28,29$. Thus prop. 27 , when redueed to its simplest form, is equivalent to the statement that if a right line be bisected the rectangle under the segments is greater than that under those made by any other point of division. Props. 29 and 30 are, when considered algebraically, reducible to the solution of the equations $x(a-x)=1,8$ and $x(a+x) \doteq l^{2}$, coupled with the determination of the maxinum value of $b$ for which the solution of the former is possible (see Matthiessen, Grundzüge der antiken und modernen Algelra, Leipsic, 1878). Apollonius extended the investigation of Euclid, bk. iii., to the problem of the greatest and least distances of a point from an ellipse. showing that it depended on drawing normals from the point to the curve; and he reduced the latter problem te finding the points of intersection of the ellipge with a certain hyperbola.

The next remarkable problems on maxime and minima are said to have been investigated by Zenodoras, ${ }^{1}$ and were preserved by Pappus and Theon of Alexandria. Of these we may mention the following:-(1) among regular polygons of equal perimeter that of the greatest number of sides contains the greatest area; (2) of polygons of tha same perimeter and the same number of sides the regnlar polygon contains the greatest area; (3) the circle contains a greater area than any other cnrve or polygon of the same perimeter ; (4) the sphere contains the greatest volume for a given superfical area.
In the progress of mathematies the terms maxima and minima have come to be used to imply, not the absoleseld greatest and least values of a variable magnitucle, but the value which it has at the moment it ceases to increase and begins to decrease, or vice versa. For example, if it be said that the height of the barometer is a maximum at any instaut it means that up to that time the barometer was rising and then began to fall. In this way it is possible that there should be several maxima and minima in the course of one day, and that one of the minima should be greater than one of the masima.
The theory of maxima and minima, in the differential calculus point of view, is very simple. Thus, if $u$ be a given function of a variable $x$, the values of $x$ for which $u$ has a maxinum or a minimum value are, in generat, determined by the equation $\frac{d u}{d x}=0$. Again, if $u$ be a function of two variables $x$ and $y$, then the maximum or mininum values of $u$ must satisfy the equations $\frac{r u t}{d x}=0$ and $\frac{d u}{d y}=0$. There is, however, no real maximum or minimum solution if $\left(\frac{d^{2} l u}{d x d y}\right)^{2}$ is greater than $\frac{d^{2} u}{d x^{2} x^{2}} \frac{d y}{d l^{2} 2}:$ A short acconut of this method, illustrated by examples, is given in vol. xiii. pp. 23, 24.

John Bernoulli's problem (Aeta Eruditorum, Jnne 1696) of the "brachystochrone." i.e., of the curve" of quickest descent under the action of gravity, differed essentially

[^235]from all probloms on mazima and minima which had been previously aolved. In this ha introduced into mathematics the conception of a ner and most important class of problems. James Bernonlli, also, in his solution of this problem of his brother, proposed a more general question, which may be stated CS follows:-"Of all curves of the same length described on a given base to determine one such that the area of a second curve, each of whosa ordinates is a given function of the corrcsponding ordinate, or are, of the first, may ba a maximum, or a minil um." Such problems wera styled "isoperimetrical," and come under a class now called relative maxima and minima, in which the maximum or minimum curre is to be determined, not from. all possible curves, but from among those which possess a given property. The investigations of the Bárnoullis wera extended and generalized by other eminent mathematicians, but more especially by Euler, and culminated in the invention of the calculus of variations, with an appropriate notation, by Lagrange.
Maximilanus, Marcus Aubelius Valerius,surnamed Herculius, Roman emperor from 286 to 305, and again in a doubtful manner for some time prior to 308 , was by birth a Pannoniau peasant, but achieved great distinction in the course of long service in the army in almost every quartar of the empire, and, having been made Cesar by Diocletian in 285, receired the title of Augustus in the following year (April 1, 286) with the honorary appellation of Herculius. In 287 he suppressed the rising of the peasants (Bagaudæ) in Gaul, but in 289, after a three years' struggle, his colleague and he were compelled to ncquiesce in the asaumption by his lieutenant Carausius of the title of Augustus in Britain. After 292, Maximian left the care of tha Rhine frontier to Constantius Chlorns, wha had been designated Casar in that year, but in 297 his arms achieved a rapid and decisive victory over the barbarians of Mauretania, and in November 303 he shared at Rome the triumph of Diocletian, the last pageant of the kind ever witnessed by that city. On May I, 305, the day of Diocletian's abdication, he also, but without his colleague's sincerity, divested himself of the imperial dignity nt Milan, which had been his capital, and retired to a rilla in Lucania; in the following year, howerer, he mas induced by his son Jasentius to reassums the purple. In 307 he brought the emperor Severus a captive to Rome, and also compelled the retreat of Galerius, but in 308 he was himself driven by Maxentius from Italy into Illyricum, whence again he was compelled to seek refuge at Arles, the court of his aon-in-law Constantine. Here a false report was received, or invented, of the death of Constautine, at that time absent on the Rhine, acd Maximian at ance grasped at the succession, but was soon driven to Marseilles, where, having been delivered np to his purauers, he strangled himself in 310 (February).

MaXimiantos, Galerios Valerius, usually referred to by his nama Galerios, Roman emperor from 305 to 311, was born near Sardica in Dacia, and originally followed his father's occupation, that of a herdsman, whence his surnama of Armentarius. Ho served with distinction as a soldier under Aurelian and Probus, and in 292 was designated Cæsar along with Consstantius, receiving in marriage Diocletian's daughter Valeria, and at the same time having assigned to him as his special charge the care of the Illyrian provinces. In 296, at the beginning of the Persian war, he was removed from the Danube to the Euphrates; his firat campaign ended in a crushing defeat on the same field as that which had proved fatal to Crassus, but in 297, advaucing through the mountains of Armenia, and taking the enemy by surpriae, he gained a victory orer Narsea by which his military reputation was more than restored. In 305 , on tha abdication of Diocletiau and

Maximian, he nt once assumed the title of Augustus, elong with Constantius his forner colleague, and, laviug procured the promotion to the rank of Cesar of Severus, a faithful servant, and Daza (Mariminus), his nephew, he hoped on the death of Constantins to become sole master of the Roman world. This scheme, however, was defeated by the sadden eleration of Constantina at York on the death of his father, and by the nction of Maximian aud Maxentins in Italy. After au unauccossful invasion of Italy in 307 he elevated his friend Licinius to the rank of Angustus, and, moderating his nmbiţion, devoted the fers remaining years of his life "to the enjorment of pleasure and to the execution of soma worlss of public utility." Hs died-of the morbus pedicularis, it is, said-in May 311. It was at the instance of Galerius that the first of the celebrated edicts of persecution against the Christiana wa. published, on February 24,303, and this policy of repres. sion was maintained by him until the appearance of the geoeral edict of toleration, running in his own name and in those of Licinius and Constantine.

MAXIMILIAN I. (1459-I519), holy Roman emperor; the son of the emperor Frederick III., was born on the 22,1 of March I459. In I477 he married Mary, daughter of Clarles the Bold of Burgundy, thus securing for his family the possessions of the housa of Burgundy ; and by the marriage of his son Philip with the infanta Joanna in 1496 he prepared the way for the association of Spain with the empirs under his grandson, Charles V. In 1486 Maximilian wns closen king of the Romaus, and in 1493, after tha death of his father, he succeeded to the imperial throne. During the reign of Frederick IIL the system of private war created profornd discontent, and thera were urgent demands for the seform of imperial institutions. Maximilian was never thoroughly in sympathy with this movement, but at has first diet, in 1495 , he declared e perpetual public peace ; and he did something for the restoration of order by the establishment, in the same year, of the imperial chamber (lieichskammergericht), and, in 1501, of the imperial Aulic council (Reichshofrath). Another important changa was the division of Germany into six, afterwards (in 1512) into ten, circles (Kreise), over each of which was placed a captain with a force for tha punialmment of disturbers of the peace. Standing troops, called Landsknechta, were for the first time organized by Maximilian, who also improved tho artillery then in use, and issued good police regalations. He encouraged science, art, and literature, deroted much attention to the universities, especially thase of Vienna and Ingolstadt, coliected mediæval poems, and caused copies to be made of ancient chronicles and other important manuscripts. Through the influence of his second wife, Blanca Sforza, daughter of Duke Galeazzo Sforza of Milan, he was induced to contend for supremacy in Milan and Naples; but his resources were inadeqnate for war on equal terms with the kings of France, Charles VIII. and Lonis XII. In 1499 he carried on an unsuccessful war with the Swiss confederates, the result of which was that; by the peace of Basel, the confederates became practically independent of the empire. On the otleer hand, he was singularly fortunate in increasing the power of the house of Austria. By the death of his cousin, the archduke Sigismund, he inherited Tyrol; be also received Gör., Ǧradisca, the Pusterthal, and a part of Eavaria; and by the marriage of two of his grandchildren with children of the king of Hungary and Bohemia ha took tho first step towards the ultimate incorporation of these countries with the Anstrian hereditary territories. He wrote several books, and planned tha "Weiss-Kunig," a kind of poetical autobiography, completed by hia private secretary, Treizsaurwein ron Erentreiz. Maximilian had some part also in the preparation of Theuerdank, $i a$
sulegory setting forth adrentures in connexion with bis marriage with Mary of Burgundy. At Wels, is Upper A astria, on the 12th of January 1519, he died.
See kliupfel, Kaiser Mfaximiziann I., 1864 .
MaXIMILIAN II. (1527-1576), boly Roman emperor, son and successor of Ferdinand I., was born at Vienna on the lst of August 1527. He was of a mild and tolerant disposition, and in youth received a favourable impression of Protestantism from bis tutor, Woligang Severus, -an impression which was not effaced by a residence of three years at the Spanish court. In 1562 he became king of Bonemia and king of the Romans, in 1563 king of Hungary, and in 1564 emperor. At the time of his necession to the imperial throne Hungary was at war with Turkey. The sultan Soliman II. was conciliated by the cession of all the territories he had conquered in Hungary, and by the promise of a yearly tribute of 300,000 florins. Soon afterwards Soliman renewed the war on bebalf of the prince of Transylvania; but after bis death in 1566 bis suceessor, Selim, concluded with Maximilian an arnistice of eight years. Maximilian's brothers, Ferdinand and Charles, fought iacessantly against Protestantism ia their respective lands; but it was tolerated by Maximilian in A ustria, Bohemia, and Hungary. His authority, however, was greatly limited by the influenee of the Jesuits. He died on the 12 th of October 1576. Of his eight children (six sons and tro daughters) two-Rudolph II. and Matthias-became emperors.
See Koch, Quellen zur Geschiche des Kaisers Mraximilian II.,
$1857-61$; and Wertheimer, Zur Geschichte des Turkenhriegs MIaxi-
nilians II., 1875 .
MAXIMILIAN (1832-1867), arehduke of Austria (Ferdinand Maximilian Joseph) and emperer of Mexico, was the second son of the archduke Francis Charles, and was born in Vienna on July 6, 1832. He was trained for the navy, and ultimately attaioed a high command in that braneh of his couatry's service. In February 1857 , he was nppoiated governor of the Lombardo.Tenetian kingdom, and in the same year he married the Princess Charlotte, danghter of Leepold I., king of the Belgians. On the outbreak of the war of 1859 , he retired into private life, chiefly at Trieste, until 1863, when at the instance of Napoleon III. he accepted the crown which had been officred to him by the notables of Mexico. He landed at Vera Cruz on May 28, 186t, but from the commencement of his reign found bimself involved in difficulties of the most serious kind, which in 1866 made apparent to almost every one outside of Mexico the neesssity for his ahdicating. This, however, he declined to da Withdrawing, ia February 1867, to Querétara, he there sustaiaed a siege for several weeks, but on May 15 resolved to attempt an escape through the enemy's lines. He mas, bowever, arrested before be could earry out this resolution, and, efter trial by court martial, was condenned to death. The eentence was carried out on June 19, 1867. His remsins were conveyed to Vienna, where they were buried in the imperial vault early in the following year. Seb Mexico. Maximilian's papers were published in 1867 in seven volumes, under the title $A u s$ meinem Leben, Reiseskizen, Aphorismen, dec.
maximinus, Caucs Julius Verus, Roman emperor from 235 to 238 , was of barbsrian parentage, his father being a Goth and bis mother an Alan, and was born in a rillage on the cenfines of Thrace, where his immense stature and eaormeus feats of strength first drew the atteation of the emperor Septimius Severus. From being a shepherd be became a soldier, and under Caracilla robe to the rank of centurion. He carefully absented himself from court during the reign of Eligabalus, but rose to the first military command under his successor Alexander

Severus. On March 19, 235, the troojls saluted nim emperor, and shortly afterwards Alexander was put to death. The three years of his reign, which were spent wholly in the camp, were marked by great cruelty and oppression; the widespread discontent thus produced culminated in a revalt in Africa and the assumption of the purple by Gordianus (q.v.). Masimin, who was in Pannonia at the time, marched against Rome, and passiag over the Julian Alps descended on Aquileia; while detained before that city he and his son mere murdered in their tent by a body of pretorians. Their heads were cut off and despatclat to Rome, where they were burnt on the Campus Martius by the exultant crowd (May 238).

Maximinus, Galerius Valerius, Roman emperor from 303 to 314, was originally an Illyrian shepherd, and bore the name of Daza. His mother was a sister of him who afterwards became the emperor $\mathrm{Galerius}$. high distiaction after he had joined the army, and in 305 he was raised by his uncle to the rank of Cæsar, with the boncrary appellation of Jovius, Syria and Egypt being the gorernment assigned to bim. In 308, after the elevation of Licinius, he insisted on receiving the title of Augustus; on the death of Galerius in 311 be sueceeded to the supreme command of the provinces of Asia, and, when Licinius and Constantine began to make common cause with one another, Maximin entered into a secret alliance with Maxentius. He came to an open rupture with Licinjus in 313, sustained a crushing defeat in the neighbourhood of Heraclea on April 30th, and, laving fled with extraordiaary eelerity first to Nicomedia and afterwards to Tarsus, perished at the latter city in August following. His death was variously ascribed "to despair, to poison, and to the Diviae justice." Maximin, in every respect a worthless character, has a bad eminence in the annals of the Christian church as having renewed persecution after the publication of the toleration edict of Galerius.

MAXIMUS, the aame of four Roman emperors. In ehronological order the first was M. Clodius Pupienus Maximus, who was associated with Balbinus in the imperial dignity by the senate for a short time in 238 , before and after the death of the bated Maximin. The second was Maguus Clemens Maximus, a native of Spain, who shared the imperial dignity with Valentinian and Theodosius from 383 to 388 . He had accompanied Theodosius on several expeditions, and from 368 held high military rank in Britain. The disaffection of the Roman troops towards the emperor Gratian found expression in 383 in the proclamation of Maximus as emperor, - whether with or without his complicity in the act is uncertain. Voluntarily or uader compulsion Maximus forthwith attacked Gratian in Gaul, and drove him from Paris to Lyons, where the fugitive was nurdered. Circumstances made it difficult for Theodosius at the time to avenge the death of his colleague by war, and an agreement was therefore come to by which Maximus was recognized as Augustus and sole emperor in Gaul, Spain, and Britain, while Valentinian was to remain uamolested in Italy and Illyricum, Theodosius retaining his sovereignty in the East. A prosperous reign of four years having tempted Maximus, in 387, to pass the Alps, Valentinian was speedily put to flight, while the invader established, himself in Jilan, and for the time became master of Italy. Theodosius now took vigorous measures: adrancing a powerful army by land, he utterly defeated the western tronps at Siscia (Sciszek) in Pannonia, and, passing the Julian Alps with great rapidity, came upon Maximus, who had fled to Aquilcia, seized him, and cansed him to bo beheaded (August 388). The third, Maximus Tyrannus, was made emperor in Spain by the Romaa geveral Gerontius.
who had rebelled against Constantine in 408. After the defeat of Gerontius at Arles, and his subsequent death in 411, Maximus renounced the imperial title and was permitted by Constantine to rctire into private life. About 418 he reballed again, but, failing in his attempt, was seized, carried into Italy, and put to death at Ravenna in 422. Lastly, Petronius Maximus was a member of the higher Roman nobility, and had held a large number of public offices, including those of prefectus Romæ (420) and of prefectus Italixe (439-441 and 445). Ho was one of the intimate associates of Valentinian, who received his assistance in the palace intrigues which led to the death of Aetius in 454 ; but a brutal outrage committed on the wife of Maximus by the emperor turned his fricudship into the bitterast hatred. Maximus was preclaimed emperor immediately after Valentinian's murder in March 455 , but reigned for less than three months, Laviog been murdered by some Burgundian mercenaries as he was Hying before the Vandals, Who, invited by Eudoxia, the widow of Valentinian, had landed at the mouth of the Tiber (May or June 455).

MAIIMUS, St, abbot of Chrysopolis, known as "the Confessor" from his orthodox zeal in the Monothelite controversy, or as "the monk," was born of noble parentage nt Coustantinople about the year 580. Educated with great care, he early becamo distinguished by his talents and acquirements, and some time after the accession of the emperor Heraclius in 610 was made his private secretary. In 630 he abandoned the secular life and entered the monastery of Chrysopolis (Scutari), actuated, it was believed, less by any longing for the life of a recluse than by the dissatisfaction he felt with the Monothelite leanings of his master. The date of his promotion to the abbacy is pacertain. In 633 he was one of the party of Sophronius at tho council of Alexandria; and in 645 he was again in Africa, when ho lield in presence of the governor and a number of bishops cho disputation with Pyrrhus, the deposed and banished patriarch of Constantinople, which resulted in.the (temporary) conversion of his interlacutor to the Dyothelito view. In the following year several African synads, held under the influence of Maximus, declared for orthodoxy. In 649, after the accession of Martin I., ho went to Rome, and did much to fan the zeal of the new pope, who in October of that year held the (first) Lateran synod, by which not only the Monothelite doctrine but also the moderating ecthesis of Heraclius and typus of Constans II. were anathematized. About 653 Maximus, for the part he had taken againat the latter document especially, was apprehended by order of Conatans and carried a prisonar to Constantinople, and in 655 , after repeated examinations, in which he maintained his theological opinions with memorable constancy, was banished to Byzia in Thrace, and afterwards to Perberis. In 662 he was again brought to Constantinople and was condemned by a synod there to be ecourged, to have hia tongue cut out by the root, and to have his right hand chopped off. After this sentence had been carried out he was again banished to Lazica, where he died on August 13, 662. He is venerated as a saint both in the Greek and in the Latin Charch,-in the former on January and on Angust 12 th and 13 th , in the latter on August 13 th.

A collection of his works, which are of importance for the history of the Monothelite controversy, was undertaken by Combefis, who published two rolumes in 1675 ' (S. Maximi Confessoris, Græcorum Theologi, eximitque Philosophi Cpera), but dia not live to complete his labours. A list of the mare impurtaiat of the writings of sisximus, with bioliographical details, will be found in Smith's Dictionary of Biography and Jy ${ }^{\text {thoulogen ; an exhanstive "Catalogue raisonné," }}$ by Warenmann, occu:s is vol. ix. (1881) of the new edition of Herzog's Real-Ercyklopda':. The details of the disputation with Prrthos and of the matisrdom are given very fully and clearly in Il cfsic's Conc. -geseh., vol. bii

MAXWELL, James CeErik (1831-1879), was the las representative of a younger branch of the well-known Scottish family of Clerk of Penicuik. He was educated at the Ediuburgh Academy (1840-47) and the university of Edinburgh (1847-50). Entering at Cambridge in 1850, he spent a term or two in Peterhouse, but afterwards migrated to Trinity. Ho took his degree in 1854 ns second wrangler, and was declared equal with the scnior wrangler of his year in the higher ordeal of the Smith's prize examination. He held the chair of natural philosophy in Marischal College, Aberdeea, from 1856 tin the fiaion of the two colleges there in 1860. For cight years aubsequently he held the chair of physics and astronomy in King's College, London, but resigned in 1868 and retired to his estate of Glealair in lirkeudbrightshire. Ho was sunimoned from his seclusion in 1871 to become the first holder of the newly-founded professorship of experimental physics in Cambridge ; and it was under his direction that the plans of the Cavendish laboratory were prepared. II superintended every step of the progress of the building and of the purchase of the very valuable collection of apparatus with which it mas equipped at the expense of its munificent founder the duko of Devonshire (chancellor of the university, and one of its most distinguished alumni). So far for the outline of Maxwell's career, as regards dates, official work, \&c. The rest belongs alnost exclusively to mathematical and physical science. For more than half of his brief life he held a prominent position in the very foremost rank of natural philosophers. His contributions to scientific societies began in his fifteentli jear, when Professor J. D. Forbes communicated to the Royal Society of Edinburgh a short paper of his on a mechanical method of tracing Carteaian ovals. In his eighteenth year, while ztill a student in Edinburgh, he contributed tro valuable papers to the Transactions of the same society-one of which, "On the Equilibrium of Elastic Solids," is remarkable, not only on account of its intrinsic power and the youth of ita author, but also because in it he laid the foundation of one of the most singular discoveries of his later life, the temporary double refraction produced in viscous liquids by shearing stress. Immediately after taking his degree, he read to the Cambridge Philosophical Society a.very novel memoir On the Transformation of Surfaces by Bending. This is one of the few purely mathematical papers he published, and it exhibited at once to experts the full genius of its author. About the same time appeared his elaborato memoir On Faraday's Lines of Force, in which he gave the first indication of some of those extraordinary electrical investigations which culminated in the greatest work of his life. He obtained in 1859 the Adams prize in Cambridge for a very original and powerful essay On the Stability of Saturn's Rings. From 1855 to 1872-he published at intervals a scries of valuable investigations connected with the ?erception of Colour and Colour-Blindiness. For the earlier of these he received the Rumford medal in 1860. The instruments which he devised for these investigations were simple and convenient, but could not have beer thought of for the purpose except by a man whose knowledge was co-ertensive with his ingenuity. Ons of his greatest investigations bare on the Kinetic Theory of Gases. Originating with D. Bernonlli, this theory; was advanced by the successive lakcurs of Herapath, Joule, and partis cularly of Clansiun, to such an extent as to put its general accuracy beyon? a donlot. But by far the greatest derelopments is las recoived are due to Maxwell, part of whose mathematical work has recently beeo atill further extended in sonse directions by Bolzmann. In this field slaxmell appears as an experimenter (on the laws of geseons frictinn) as well as a mathematician. His two latest papers dea\}
with this brancl of physics; one is an extension and simplification of some of Bolzmann's chief results, the other treats of the kinetic theory as applied to the motion of the radiometer. He bas written an admirable text-hook of the Theory of IHeat, which has already (1882) gone through several editions, and a very excellent elementary treatise on Matter and Motion. Even this, like his other and larger works, is full of valuable matter, worthy of the most attentive perusal not of students alope but of the very foremest scientific men.

But the great work of his life was devoted ta electricity. He began by reading with the most profound admiration and attention the whole of Faraday's extraordinary selfrevelations, and proceeded to translate the ideas of that master inte the succinct and expressive notation of the mathematicians. A considerable part of this translation was accomplished during his enreer as au uvdergraduate in Cambridge. The 9 rriter liad the opportunity of perusing the MS. on Faralay's Lines of Force, in a form little different from the final one, a year hefore Maxwell took his degree. His great object, as it was also the great object of Faraday, was to overturn the idea of action at a distance. The splendid researches of Poisson and Gauss had shown how to reduce all the phenomena of statical electricity to mere attractions and repulsions exerted at a distance by particles of an imponderable on one another. Sir W. Thoinson had, in 1846, shown that a totaliy different assumption, based upon other analogies, led (by its own special mathematical methods) to precisely the same results. He treated the resultant electric force at any point as analogous to the flux of heat from sources distributed in the same manner as the supposed electric particles. This paper of Thomson's, whose ideas Maxwell afterwards developed in on extraordinary manner, seems to have given the first hint that there are at least two perfectly distinct methods of arriving at the known formulx of statical electricity. The step to magnetic phenomena was comparatively simple; but it was otherwise as regards electromagnetic phenomena, where current electricity is essentially involved. An exceedingly ingenious, but highly artificial, theory had been devised by Weber, which was fnuid capable of. explaining all the phenomena investigated by Ampere, as well as the induction currents of Faraday. But this was based upon the assumption of a distance-action between electric partieles, whose intensity depended on their relative motion as well as on their position. This was, of course, evell more repugnant to Maxwell's mind than the statical distance-netion developed by Poisson. The first paper of Maxwell's in which an attempt at an admissible physical theory of electromagnetism was made was communicated to the Royal Society in 1867. But the theory, in a fully developed form, first appeared in his great treatise on Electricity and Magnetism (1873). This work, already in a second edition, is one of the most splendid monuments ever raised by the genius of a single iudividual. Arailing himself of the admirable generalized coordiate system of Ingrange, Maxwell has shown how to reduco all electric and magoetic phenomena to stresses and motions of a material medium, and, ns one preliminary, but excessively severe, test of the truth of his theory, has shown that (it the eleetromagnetis medium be that which is required for the explanation of the phenomena of light) the relocity of light ir vacuo should be numerically the same ns the ratio of the electromagnetic and electrostatic units. We do not as yet certainly know either of these quantities very exactly, but the means of the best determinations of each separately ngree with one another more elosely than do the various values of cither. There seems to be no longer any possibility of doubt that slaxwell has taken the first grand step towarls the discovery uf the trus maturo of
electrieal phemomena. Had be done nothing but this, his fame would lave been secured for all time. But, striking as it is, this forms only one small part of the contents of his truly marvellous work.

One of his last great contributions to science was his editing (with copious original notes) the Electrical Researches of the Hon. Henry Cavendish, which lad been altogether unappreciated by the witlings to whom they had previously been confided. It now appears that Cavendish, already famous by many other researches (such as the mean density of the earth, the composition of water, \&c.), must be looked on as, in his day, a man of Maxwell's own stamp as a theorist, and an experimenter of the very first rank.

This encyelopredia has been, in its scientific aspects, greatly indebted to Clerk Maxwell. The articles Atom, Attraction, Capillarity, Diffuston, Ether, de., were intended as parts merely of one comprehensive system, in which a general resume of all that is known of the properties of matter should be given in simple yet profound completeness. The render of these articles cannot but feel how much has been lost when this splendid series cannut be completed by its initiator.

In private life Clerk Maxwell was one of the most lovable of men, a sincere and unostentatious Christian. Though perfectly free from any trace of envy or ill-will, he yet showed on fit oceasion his contempt for that psendo-science which seeks for the applause of the ignorant by professing to reduce the whole system of the universe to a fortuitous sequence of uncaused events.

His collected works will shortly be issued from the Pitt press; and an extended biography, by his former schoolfellow and lifelong friend Professor Campbell, has just been pullished (1882).
(p. G. т.)

MAXWELL, Sir William Stirling-, Bart. (18181848), man of letters, the only son of Mr Archibald Stirling of Keir, Perthshire, and of Elizabeth, second daughtur of Sir Joho Maxwell, seventh baronet of Pollok, Renfrewshire, was born at Kenmure, near Glasgow, in 1818. William Stirling was educated at Trinity College, Cambridge, where he graduated in 1839, and afterwards he spent some years on the Continent chiefly in France and Spain. Having succeeded his father as proprietor of Keir in 1846 (when he was made vice-licetenant of Perthshire), he in 1852 entered parliament as member for that county; and he was several times re-elected. On the death of his unele in 1865 he succeeded to the baronetey and estates of Pollok, in respect of which he assumed the additional name of Maxwell. In the same year he became deputylieutenant of Lanarkshire, and a like office was conferred on him in Renfrewshire in 1870. The services which his talent, energy, and wealth enabled him to render to literature were recogoized in a great variety of ways by numerons universities; in 1863 he was chosen lord rector of St Andrews, in 1871 the same honour was conferred by Edinburgh, and in 1875 be became chancellor of Glasgow. In the following year he was crented a Kivight of the Thistle, being the only commoner of the order. He died at Venice ou January 15, 187 S .
Sir W. Stirling.Maxwell's works, which are invariably characterized by thoroughness of workmanship and refinement of literary taste, were in some cases issucd for private circulation only, and almost all of them are now exceedingly rare. They include an carly volume of versc (Songs of the Holy Land, 1847), and several volumes containing costly reproducsions of old engravings, along with valuable explamatory matter. His best-known publications are Annals of the Arists of Spain (1848; 2d ed., 1850), The Cloister Life of Charles $F$. (1552; 3d cu., 1853), and V"elazquez and his Forks (1855). A life of Don John of Austria, from his posthumous papers, is now ( 1852 ) in the press.

MAY, the fifth month of our modern year, was the ihird of the old Roman calendar. The name is of doubtful origin. Ovid (Fari, v. 483-90) suggests the three derivations of,
majestas, majores (the patres of the old Roman city), sud Maia, the mother of Mercury, to whom the Romaus were accustomed to sacrifice ou the first day of the month. It was considered unlucky anong the Romans to contract marriages during this month, on account of the celebration of the Lemuria,-a superstitiou of which traces are still to be found among ourselves. In the Roman Catholic Church May is known as "the month of Mary."

May-day is the name given to the first day of the month in England, when, according to ancient custom, all ranks of the people rose at early dawn and went out "a-Maying" to welcome the adrent of spring. The customs of the day chiefly took their rise with the Romans. In the southern counties of England they differ materially from those of the northern and western. That of gathering branches of trees and flowers, to deck the person, is still observed in many places.
The May-Pole was once general throughout the country. The assemblage of the people, sanctioned by the prosence of the priests, marching on May morning in procession to some neighlouring wood, returned in triumph with the pole, round which were suspended fowers, boughs, and other tokens of the spring season. On one of these festive occasions, Henry VIII. assembled bis court at Shooter's Hill; and Queen Elizabeth also used to keep "May Games" at Greenwich. The May-pole, once fixed, often remained until nearly the end of the year ; and there were sone specially made of durable wood, whicll remained for many years, and were from time to time resorted to at other seasons of festivity. The last May-pole erected in London, 100 feet in height, was on the spot where the church in the Strand now stands, dear Somerset House. Being taken down in 1717-18 it mas conreyed to Wanstead Park in Essex, where it was fixed as part of the support of a large telescope set up by Sir Isaac Newton. The May Lady, Maulkin, Jack in the Green, and Morris Dancing are merely rariations in the mode of representing the goddess Flora. The chimoey sweepers, who are now the principal performers, are probably more interested than any other class in May sports. For, as the commencement of summer deprives them in a considerable degree of their business occupation, they naturally seek to avail themsebres of the customary liberality of festive meetings.

The other principal fixed days observed and noted in the month are May 9, Half-Quarter-Day, and May 15, Whitsunday term,-not to be confounded with Whit Sunday, which is a movable feast.
maya. See Mexico.
MAYBOLE, a burgh of barony and market-tomn of Scotland, in the county of Ayr, 9 miles south of Ayr on the railmay to Stranraer, is built on the face of a hill gently sloping to the south. The characteristic features of the place are the old family mansions in the main street, the castle of the earls of Cessilis, and the old church ruins with the Cassilis burial-place. It bas recently increased considerably in size, and it is now busy with various manufacturing industries in addition to its staple trade of shoemaking. The population was 3797 in 1871 and 4474 in 1881. New waterworks to supply 60,000 gallons daily were commenced in 1882 ; the site of the reservoir, about 3 miles south-east of the town, is almost that of the remarkable Lochspouts crannog (see Ayr and Wigton Arch. and Hist. Collections, vol. iii. ; and Mnoro, Ancient Scottish Lake Dwellings, 1882).
A charter was granted to the tokn by Duncan in 1193; and the charch was bestowed in 1216 on the Cistercian nunnery at North Berwick. In 1516 Maybole became a burgh of regality, and in 1639 the seat of the head courts of Carrick ; bnt the independence of its local government was long contested by tha superiors, tha earls of Cassilis. Cotton weaving was introduced in the 1 sth century. See J. Paterson, History of Ayr and Wigton, vol., iii, 1864.

Mayence. See Mainz.
MAYENNE, a department of north-western France ${ }_{\text {t }}$ three-fourths of which formerly belonged to Lower Maine and the remainder to Anjou, lies between $47^{\circ} 45^{\prime} 10^{\prime \prime}$ and $18^{\circ} 34^{\prime} 30^{\prime \prime} \mathrm{N}$. lat., and $0^{\circ} 2^{\prime} \mathrm{E}$ and $1^{\circ} 14^{\prime} \mathrm{W}$. long., and is bounded on the N. by Hanche and Orne, on the E. by Sartle, on the S. by Maine-et-Loire, and on the W. by Ihle-t-Vilaine, having a maximum length from north to south of 51 miles, a breadth of 39 milcs, and an area of 1996 square miles. Its ancient geological formations connect it with Brittany. The surface is agreeably undulated; forests are numerous, and the beauty of the cultivated portions is enbanced by the hedgerows and lines of trees by which the farms are divided. The bighest point of the department, and iodeed of the wholo north-mest of Framee, is the Mont des Avaloirs ( 1368 feet). Hydrographically Mayenne belongs to the basins of the Loire, the Vilaice, and the Selune ; the first-mentioned has the larger part of the entire area. The principal stream is the Mayenne, which passes successively from north to south through the three most important townsMayenne, Laval, and Château-Gontier; by means of weirs and sluices it is navigable below Mayeune, but steamers do not ascend past Château-Gontier. The chief affuents are the Jouanne on the left, and on the right the Colwont, the Ernee, aud the Oudon. A small area in the east of the department drains by the Erve into the Sarthe ; the Vilaine rises in the west, and in the north-west the Sélune flows into the English Channel. The climate of Mayenne, which is that of the Sequanian. region, is generally bealthy except in the neighbourhood of the numerous marshes. The temperature is lower and the moisture of the atmosphere greater than in the neighbouring departments ; the rainfall is above the average for Frence.

## Of the entire area two-thirds are arable, and a twenticth is nnden

 rood. A large namber of horned cattle are reared ( 98,000 oxen, 150,000 cows), and in no other French departnent are so many horses $(92,500)$ found within the same area; the breed, that of Craon, is famed for its strength. Craon has also given its name to the most prized breed of pigs in western France. There are 83,000 pigs in the department, 80,000 sheep, and 5000 goats. Mayenne produces excellent butter, poultry, and game, and a large quantity of honey. The cultivation of the vine is very limited, and the most common beverage is cider, of which nearly $9,000,000$ gallons are annually made. Agriculture is in a flourishing condition; in 1878 were produced upwards of $3 \frac{1}{2}$ million bushels of wheat, $\frac{3}{2}$ million of meslin, nearls an equal amount of rye, $1 \frac{1}{2}$ million of barley, 2 million of oats, and nearly 2 million hushels of potatoes, besides a large quantity of flax and hemp. The timber grown is chiefly beech, oak, birch, elm, and chestnut. The department produces a little iron-ore and manganese; it is rich in anthracite.and coal, of which, howerer, the annual production has recently decreased from 80,000 tons to 60,000 . Narble and granite, limestone, slate, and porphyry are quarried ; the last-namcd material is capable of a fine poliah, and is also used for paring the streets of Paris. There are sereral chaly beate springs. The industries include iron and brass founding, brick and tile making, brewing, the mannfacture of candles, cotton, linen, and woollen thread, and the production of rarious textile fabrics (that of ticking being the specialty of the departuent), agricultural implement making, wood and marble sawing, tanning, dyeing, and the like. The population in 1881 was 343,167. The arrondissensents are those of Laval, Château-Gcntier, and Mayenne.Mayexye, capital of an arrondissement in the above department of France, is an old feudal town irregularly built on two hillocks which overlook the river Mayenne, st the point where the railmay from Caen to Laval is joined by that from Fougères to Alençon. The old castle atill has towards the river five tomers, one of which has retaiued its conical roof; the vaulted chambers and cbapel are ornamented in the style of the 13th century; the building is nom used as a prison. The church of Notre Dame, dating partly from the 12th century, is the only other building of any special interest. In the Place de Cheverus is a statue, by David of Angers, to the cardinal of that name, who was born in Mayenne. The chief
industry of the place is the cloth manufacture, which occupies 8000 persons in the town and neighbourhood. The population in 1876 was 10,098.
Mayenue had its origin in tha caste built here by Juhel, the son of Geoffroy of Maine, in tha beginoing of tha 11th ceantury. It was beaieged by William the Conqueror, and afterwarda by the eart of Salisbury; and tha possession of it was disputed hy the Royalists and the Leaguers, as also by the Republicans and the Vendeans.

Mayer, Johann Toblas (2723-1762), one of the greatest of last century's astronomers, was born at Marbach in Würtemberg, February 17, 1723. He was brought up at Esslingen in compsratively poor circumstances, and as a mnthematician was mainly self-taught. He bad already published several original geometrical tracts when, in 1746, he entered Homann's cartographic establishment at Nuremberg. Here he introduced many improvements in map-making, and gained a scientific reputation which led (in 1751) to his election to the chair of economy and m 2thematics in the university of Gottingen. In 1754 he became superintendent of the observatory, where he la')ourer/ with great zeal and success till his death, February $2^{\prime \prime}, 1762$. His first important astronomical work was a ca "cfu' investigation of the libration of the moon (Kosmographische Nachrichen, Nuremberg, 1750), the elements of whic's and the position of the moon's axis of rotation he drter mined with much greater accuracy than had previously b!en done. His great fame rests on his lunar tables, which were published in 1753 along with new solar tables, and rausmitted to England in 1755 . These tables, which no:e compared by Bradley with the Greenwich observations, and found to be sufficiently accurate to determine the longitude at sea to within half a degree, solved the pioblem of practically determining longitude anywhere on the earth's surface. An improved set was afterwards published in London (1770), as also the theory (Theoria Liunz juxta Systema Newtonianum, 1767) upon which the talles are based. They were sênt to England by his widow, who in consideration received from the British Governinent $\varepsilon$ grant of $£ 3000$. Appended to the London edition of the solar and lunar tables are two short tracts, --the ore on determinirg longitude by lunar distances, tugether with a description of the repeating circle (invented by Niayer in 1760), the other on a formula for atmospberic sefraction, which applies a remarkably accurate correction for temperature.
Mayer left behind him a considerable quantity of manuscript, part of wheh was collected by Lehtenberg and published in one volume (Opera Inedila, Gottingen, 1775) It centains, amongst ither papers, an easy and accurate method for calculatiog celipses; an essay oo colour, in which three primary colourg are recegnized; a catalogue of nine hundred and ninety-ight zodiacal stars ; and a memeir, the carliest of any real value, on the proper mation of fixed stara, which was originally communcated to the Gottingen Royal Socioty in 1760. The other part still remains in manuserpit, and includes papers on atmespheric refraction (dated 1755), on the metion of Mars as affected by the perturbations of Jupiter and the Earth (1/56), and on terrestrial magnotism ( 1760 and 1762). In these last Mujer zeeks to explain the magnetic action of the earth by a simpla hy pethesis. He auproses a small bar-mageet to be placed with its ceutre at the earth's centre, and calculates the position of equili. brium of a aecond small nagnet at any given point on the earth's au face, assuming the law of magnetic attractious and repulsion to be that of the inverse square. Thougb the values of the declinatinn and dip calculated according to this theory do not agree with tha observed values, Mayer must be credited with the first really ©if inite attempt to establish a mathematical theary of magnetic action, and as the first whe gave any experimental evidence in favour of the ioverse square of the distance as the law of forcc. See Hanateen's Mragnetismus der Erde.

Mayer, Julius Robert (1814-1878), was born at Ileilbronn, Nor. 25, 1814, studied medicine at Tübingen, Munich, and Paris, and, after a journey to Java in 1840 as surgeon of a Dutch rcssel, obtained a medical post in his mative torm. He claims recognition as en independent $a$ priori propnunder of the "First Liw of Thermodvnamics,"
but more especially as having early and ably applied that law to the explanation of many remarkable phenomena, both cosmical and terrestrial. His first little paper on the subject, "Bemerkungen über die Krälte der unbelebten Natur," appeared in 1842 in Liebig's Annalen, five yeara subsequent to the republication, in the same journal, of an estract from the great memoir of Mour (q.v.). Mayer's statements as to the "indestructibility of force" (as he calls it) were based almost entirely upon scholastic dicta, such as causa æquat effectum, dec. The main experimental fact which he adduces in support of his reasoning as to the convertibility of work and beat is a mere repetition, in a very inadequate form, of a curious experiment made by Dr Reade of Cork, who found (Nicholson's Journal, xx., 1808, p. 113) that water was sensibly beated after being violently shaken in a phial. But Dr Reade etates explicitly the precautions he had taken to protect the phial and its contents from heating by the hand of the operator,an important detail which is unnuticed by Mayer.
It has been repeatedly claimed for Mayer that he calcnlated the value of the dynamical equivalent of heat, iodirectly no doubt, but in a manner aitegether free from error, and with a result according almost exactly with that obtained by Joula after years of patient labour in direct experipenting. Mayer assumed thet the heat developed by compression of air is the equivalent of the work spent in the compression. If we had independent proof of this the result weuld undoubtedly follow. ${ }^{1}$ And it has been nrged that the man who, by a single burst of genius, reached at once the goal which others had been painfully seeking, merits an amount of fame commensurate with that due to discoverers like Newton or Galilen. This clain on Mayer's belalf was first shown to be baseless by Thomson and Tait ("Energy," Good Words, 1862). This articla gava risa to a long but lively discussion. A calm and judicial annihilation of the clain is to be found in a brief article by Stokes, Proc. Roy. Soc., 1871, p. 54 . See also Maxwell'a Theory of Hert, chap. xiii. Mayer entirely igoored the grand fundamental principla laid down by Sadi Carnot, a principle which bas done even more for physies than has the conservation of energy itself, viz., that aothing can be concluded as to the relation between heat and work from an experiment in which the working substance is left at the end of an operation in a different physical atata from that in which it was at the commencement. Mayer has also been styled the discoverer of the fact that heat consists in (the energy of .motion, a matter settled at the very end of the 18th century by Ri:miford and Dary. In the teeth of this statement we have Mayer's own wards, "We might much rather assume the centrary, -that in order to become heat, motion must cease to be motion."
Mayer'a real merit consists in the fact that, having for himself made eut, on inadequate and even questienable grouids, the conservation of energy, and having obtained (though by inaccurate reasooing) a numerical result correct so far as his data permitted, he applied the principle with great power and insight to the explanation of numerous physical phenomena. His papers, which have been republished in a single volume with the titla Dic Mcchmizic der Warme (2d ed., Stuttgart, 1874), are of extremely unequal merit. But some, especially those on Celcstial Dynamics and Orgunic Motion, are admirable examples of what really valuable werk nay be effected by a man of high intellectual pawers, in spite of 1 mperfect information and defective logic.
Different, and, it would appear, exaggerated, estimates of Mayer are given in Dr Tyndall's papers in the Phil. Mag., 1863-64 (wbose avowed oliject was "to raise a neble and a sufficring man to the position which his labours entitled hiim to occupy "", and in the extraordinary treatise by Duhring, liobert Blaycr, der Galitei des neunzehnten Jahrhunderts, Chemnitz, 1880. Some of the simpler facts of the case aro summarized by Tait in the Phil. Mag., 1864, ii. p. 28 .
MAYHEM (Maist), an old term of the law signifying an assault whereby the injured person is deprived of a member proper for his defence in Gight, e.g., an arm, a leg, a fore tooth, \&c. The loss of an ear, jaw tooth, \&'c., was not mashem. The most anciont punishment in English law was retaliative-membrum pro membro, but ultimately at common law fine and imprisonment. Various statutes were passed aimed at the offence of maiming and dis-

Séguin, three years befcre, had assumed that the work done by ateam or any other expanding substance is the equivalent of the heat which disappears during tho expansion. A similar idea, but more accurately expressed, is to bo found in Molr's paper, above referred to.
figuring, which is now deait with bs section 18 of $24 \& 2 t$ Vict. c. 100. Mayhem may also be the ground of a civil astion, which had this peculiarity that the court on sight of the wound might increase the damages amarded by the jary.

MAYKOP, a town of the Caucasus, Russia, in the province of Kuban, on the Byelaya, a tributary of the Kiuban, 93 miles to the south-east of Yekaterinodar, the capital of the province. Formerly it was merely a fortified "stanitsa" (village of Cossacks) and the centre for military operations against western Caucasus. But, owing to its position in a very fertile country where settlers from Russia found plenty of rich soil which bad been abandoned by the natires, Maykop has become a wealthy town, and its population has rapidly increased to 22,550 . Most of them are still agriculturisis, but others are eugaged in a brisk trade in the produce obtained from the large and wealthy stanitsas of the surrounding district.

MAYNOOTH, a village in the county of Kildero, province of Leinster, Ireland, is situated on the Royal Canal and on the Midiand Great Wes'.ern Railway, 15 miles northwest of Dablin. The Rogal Catholic College of Maynooth, institated by the Irish parlisment in 1765 , is the chief seminary for the education of the Roman Catholic clergy of Ireland. It was supported by a parliamentary grant of $£ 26,000$ a year, which at the disestablishment of the Irish Church in 1869 was commuted by the payment of a capital sum fourteen times its amount. The building is a fine Gothic structure by Pugin, erected by a parliamentary grant obtained in 1846. Near the college stand the ruina of Maynonth Castle, built in 1426, and formerly the residence of the Fitzgerald famils. It was besieged in the reign of Henry VIlI., in that of Edward VI., and during the Cromwellian wars, when it was demolished. The beactiful mansion of the duke of Leinster is about a mile from the torn.

MAYO, a maritime county on the west coast of Ireland, prorince of Connangit, is bounded N. and W. by the Atlantic Ocean, N.E by Sligo, E. by Roscommon, S.E. and S. by Galway. Its greatest length from north to south is about 75 miles, and its greatest breadth about 65 miles. The total area is $1,318,129$ acres, or 2060 square miles.

About two-thirds of the boundary of Maso is formed by sea, and the coast is very much indented, and abounds in picturesqne scenery. The principal inlets are Killary Harbour between Maso and Galway; Clew Bar, in which are the harbours of Thestport and Newport; Blacksod Bay and Broad Haven, which form the peninsula of the Mullet, and Killala Das between Mayo and Sligo. The islands are rery numerous, the principal being Inishturk (area 1445 acres, and population 132 in 1881), near Killary Harbour ; Clare Island (area 3949 acres, population 62) at the mouth of Clew Bay, where there are many islets all formed of drift; and Achil (area 35,838 acres, population 5070 ), the largest island in Ireland. In the eastern half of the county, whe:e Carboniferous rocks prerail, the surface is comparatively lerel, with cecasional hills cousisting chiefly of granite and slate. The mestern half is vers mountainous, but ihero are a few valleys adjoining the sea-shore. A great portion of the coast eztending from Killala to Clew Bay consists of Old Red and Yellow Sandstone. The remainder of the mountaizous regisa consists chiefly of quartzite or alteroating beds of c,uartzite and granite or gneiss schist. Mrilrea (2688 feet) is incladed in a monnteia range, lying between Killary Eiarbour and Lough 3 riak, which belorgs to the Upper Silurian formation. The next bighcst summite are Nephn ( $\sim 530$ feet), to the west of Lough Conn, and Croagh Patzick ( 2370 fect), to the routh of Clew Bay. The rirer Moy fors northwards, forming the boundary of the county
with Sligo, and falls into Killala Bas. The counses or the other streams are short, and except when swollen by rains their volume is small. The principal lakes are Lough Mask and Lough Corrib, on the borders of the county with Galmay, and Loughs Conn, Carrab, Castlebar, Cullin, and Carrowmore. Limestone is abundant, aud also iron ose, which, however, is not smelted, from want of fuel. There are several valuable slate quarries; and ochres, grenite, and manganese are found.
Agricu!!ure.-There are some very fertile regions in the lerel prattons of the countr, but in the mountainous diistricts the so:l is poor, the holdinga are subdivided beyond the possibility of affording proper sustenance to their occupiers, and, except where fishing is combined with agricultural cperations, the circumstances of the peasantry are among the most wretched of any district of Ireland.
In $188 i$ there were 179,343 acres, or less than one-eighth of the whole area, under crops, while 545,040 were pasture, 10,702 woods and $52 \mathrm{i}, 573$ waste. The total number of holdings in 1881 mas 37,533 , of which 22,914 wera less than 15 acres in extent, and 3338 between 15 and 30 acres. The following table showa the areas under the principal crops in 1855 and 1882 :-

|  | Whes:. | Oats. | Other Cereals. | Potatoes. | Tumips. | Other Green Crops. | Flas. | Mesdow and Closer. | Total. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1855 | 4.638 | 93,543 | 3,396 | 59,037 | 9,558 | 2,193 | 745 | 18.229 | 188.887 |
| 1882 | 1,083 | 61,125 | 3,016 | 64,594 | 7,960 | 8,964 | 286 | 43,363 | 175,891 |

Horses between 1355 and 1882 increesed from 17,531 ta 18,050, of which 12,150 mers used solely for agricultural purposes. The number uf cattle in 1855 was 153,583, and in 1882 it was 182,831, of which 53,153 were milch cows. Sheep in 1855 numhered 265,448 , and in 1882 only 225,509 , although in 1880 there Fere as many as 271,282. Pigs in 1832 numbered 62,227, goats 5987, and poultry 632,432. According to the latest retarn the land was divided among 1483 proprietors, who possessed $1,308,367$ acres, at an annual rateahlo value of $£ 310,140$, the rateable value per acra being 4 s .8 d . The averaga size of the properties was 882 acres. No ferter than 21 proprietors, possessed uprards of 10,000 acres, and of these 8 possessed uprards of 20,000, viz., Marquis of Sligo, 114,881 acres; Yiscount DiLion, 83,749; Sir R. W. H. Palmer, Bart., 80,990 ; Earl of Lucan, 60,570; T. S. Carter, 37,773; G. Clive, 35,229; Earl of Arran, 29, 844; C. H. Knor, 24,374.

Manufactures and Trade. -Coarse linen and woollen cloths are manufactured to a small extent. There are very productivo fishing banks on the coast, especially in the neighbourhood of the islands, and the Moy is a fine river for saimon."

Railways.-The Great Northern and Western Railway crossea the county from near Ballyhaunis to Westport. and a branch from it runs north to Ardnaree near Killals Bay.

Administration and Population. The connty includes nine baronies and aerenty-three parishes. It is in tho Connanght circuit. Assizes are held at Castlebar, and quarter sessions at Ballina, Ballinrobé, Bellmullet, Castlebar, Claremorris, Smineford, and Westport. There are trenty-two patty sessions districts within the connty, and portions of two other districts. It includes the seven poor-law unions of Bellmullet, Castlebar, Claremorria, Killala, Newport, Smineford, and Westport, and part of the anions of Ballina, Ballinrobe, and Castlerea. It is in the Dublin military district, subdistrict of Galray ; and there are barrack etations at Castlebar, Balliarobs, Westport, Fosford, and Ballaghaderreen. In the Irish parliament two members were returned for the county, and two for tho borough of Castlebar, but at the Union Castlebar was disfranchised.

From 77,508 in $1760^{\text {th }}$ the population gradually increased till in 1841 it was 383,887 , but in 1851 it had diminished to 274,499 , in 1871 to 246,030 , and in 1881 to 245,212 , of whom 119,421 were males and 125,791 females. The county contains a portion (with 4318 inhahitanta) of the tomnship of Ballina, the townships of Castlebar, 3855 , and Westport, 4469, and the town of Ballinrobe, 2286. The number of emigrants from 1st JIay 1851 to 81st December 1881 was 85,431 . The number of emigrants in 1881 was $\$ 469$, or a proportion of 15.4 to erery 1000 of the population. The death-rate to every 1000 of the poinlation for 10 years ending 31 st March 1881 was 13.8, the birti-ra:e $57 \cdot 1$, add the marriage-rate 3.9 . Roman Catholics in 1851 numbered Eis 5,262 , Episcopalians 5575, Presby. terians 225, and Methodists 275. In 1881 as many as 8808 nersons could speak Irish only, and 138,930 Irish and English.

Gwtory and Antiquitics. - The name given by Ptblemy to thr iohabitants of this district of Ireland was Nagnuta. Erris it Blayo wias the acens of the landing of the chi s colony of the Fiy bolgs, and the battle which is said to hare resuliod in the overthrg

Ind almost annibilation of this tribe took place also in this county, at Dloytura near Cong. Along with the greater part of Connauglit it was granted by King Jolin to Hubert de Burgo, but after the rebellion arainst William de Burgo, third earl, headed by Mac William Oughter, the whole province of Connaught remained nearly independent of British rule till the tine of Elizabeth, In the eleventh year of her reign Mayo was made shire ground, taking its name from the monastery of Jlaio or Mageo, which was the see of a bishop. Even, however, after this period the Mac Williams continned to excreise very great authority. Large confiscations of the eslates in the county were mude in 1586, on the termination of the wars of 1641 , and after the restoration of the Stuarts. Killala was the scene of tho landing of a Freuch squadron in connexion with the rebellion of 1798.

There aro four round towers in the county, -at Iillala, Turlogh, Deelick, and Bal or Ballagh. The monasteries were numerous, and many of them of considerable importance-the principal being those at Mayo, Ballyhannis, Cong, Ballinrobe, Ballintober. Burrishoole, Closs or Holycross in the poninsula of Mullet, Moyne, Rosserick, and Strade. Of the old castles the most Hotable are Downpatrick, on a cliff 300 feet in height projecting into the sea, Rockileet near Newport, sasd to have been built by the eclebrated Grace O'Alalley, Ballylalian Castle near Foxford, and Deel Castle sear Ballina, at one time the residence of the earls of Aman.

## MAYOR. See Muxicipality.

MAYOTTA. See Comores, vol. vi. p. $2: 0$.
MAYSVILLE, a city of the United States, the capital of Mason county, Kentucky, lies on the south bank of the Ohio, 69 miles north-east of Lexington by rail. Settled in 1784 and incorporated in 1833, it has grown into a busy place of 5220 inhabitants (1880), with several good qudlic buildings, flour-mills, plough-factories, de., and is one of the principal hemp-markets in the States.

MAZAMET, an industrial town in the department of Tarn, France, stands on the northern slope of the Montagnes Noires (part of the Cevennes), and on the Arnette, a tributary of the Tarn by the Agout. In last century it was an insignificant village, but at present it has 14,000 inlabitants, an increase of prosperity due to the introduction by 11. Houlès (whose statue stands in the public square) of the manufacture of a particular kind of woollen fabric sold almost exclusively in France. The factories, driven by water-power, lave a total of 45,000 spindles, and an annual turnover of from 15 to 18 millions of franes. Mazanct is connected by a branch line of railray with the tuwn of Castres.

MAZANDARAN, a provinco of northern Persia, lying oetween the Caspian Sea and the Elbúrz range, and bounded E. and W. by the provinces of Astribád and Glion respectively, is 220 miles iu length and 60 miles in (mean) breadth, with an area of about 10,000 square miles and a pepulation estimated at from 150,000 to 200,000 . Mazandarân comprises two distinct natural regions presenting the sharpest contrasts in their relsef, climate, and products. In the north the Caspian is encircled by the level and swampy lowlands, varying in breadth from 10 to 30 milcs, partly under impenetrable jungle, partly under rice, cotton, zingar, and other crops. This section is fringed northwards by tho sandy beach of the Caspian, here alinost destituto of natural barbours, and rises somewhat abruptly iuland to the second section, comprising the northern slopes and spurs of the Elbure, which approach at some points within 1 or 2 miles of the sea, and which are almost everymbere covered with dense forest. The lowlands, rising but a few feet above the Caspiau, and subject to frequeut floodings, are extremcly malarious, while the highlands, culminating with the hagnuificent Damitwand (18,600 fect), enjoy a tolerably salubrious elimate. But the climate, generally hot and moist in summer, is everywhere capricious and liable to sudden changes of temperature, whence the prevalence of rheumatisni, dropsy, and especially oplathalnia, noticed by all travellers. Snow falls heavily on the uplands, where it often lies for weeks on tho ground. Tho direction of the lung sandbauks at the river moutls, wbich firiect with
remarkable uniformity from west to east, shors that the prevailirg winds blow from the west and north-west., Th? rivers themselves, of which there are as many as fifty, are little more than mountain torrents, all rising on the northern slopes of Elbúrz, flowing inostly in independent channels to the Caspian, and subject to sudden freshets and inundations along their lower coursc. The chief are the Safed-rtid on the Gllan frontier, the Lar, Hari-rid, Alam-rúd, Rústana-rid, and Hárez, and all are well stocked with trout, mullet (safed máhi), carp, sturgeon, and other fish, which with rice form the staple food of the inluabitants, and supply large quautities of caviare for the Russian market. . Near their mouths the rivers, rumning counter to the prevailing winds aud waves of the Caspian, form long sand-hills 23 to 30 feet high and about 200 yards broad, behind which are developed the so-called muird-cib, or "clead waters," stagnant pools and swamps characteristic of this ccast, and a chief cause of its unhealthiness.

The province abounds in iron ores and in mineral pitch iu every state of transition from pure petroleum to the fuest naphtha. The chief cultivated plants are rice, cotton, sugar, a little silk, and fruits in great variety, including several kinds of the orange, lemen, and citron. Some of the slopes are covered with extensive thickets of the pomegranate, and the wild vine climbs to a great height round the trunks of the forest trees. These woodlands are baunted by the tiger, panther, bear, wolf, and wild boar in considerable numbers. Of the domestic animals, all remarkable for their small size, the chief are the black, humped cattle somewhat resembling the Indian variety, the yabu (a sturdy breed of horses), and sheep and goats.

Kinneir, Frazer, and other observers speak unfavourably of the Mazandaráni people, whom they describe as rery ignorant and bigoted, arrogant, rudely ingruisitive, and almost insolent towards strungers. "The peasantry, however, although called the "Bootians of Persia," are far from dull, and betray much shrewdness where their interests are concerned. In tho healthy districts they are stout and well made, and are the most wallike race in Persia, furnishing 5000 cavalry and 12,000 foot te the Government. Of the latter 2000 are always in attendance on the shah at Tehrin. They speak a marked and somewhat rude Persian dialect; but a Turki idiom closely akin to the Turkoman is still current amongst the foreign tribes, although they have mostly already passed from the nomad to the settled state. Of these intruders the most numerous are the Modaunli, Khojehrand, and Abdul Maleki, originally of Lek or Kurd stock, besides branches of the royal Afshár aud Kijair tribes of Turki desecnt. All these are exempt from taxes in consideration of their nilitary service.

The export trade is chiefly with Russia through Baku, where broadcloths, flour, saffron, and bar iron are taken in exchange for the white and coloured calicoes, caviare, rice, and raw cotton of Mazandaran. Owing to the almost inpenetrable character of the conntry, there are scarcely any roads accessible to wheeled earringes, and the great causeway of Sliah Abbas has in many places even disappeared under the jungle. Two routes, however, lead to Thlirin, one hy Firoz Koh, 180 miles long, the other by Larijan, 141 miles long, both in tolerably good repair. Except where crossed by thcso routcs the Elbire forms all almost impassable barrier to the south.
The administration is in tho hands of the prince governor, who appoints most of the beglerbegs and governors of the nine distriets of Amol, Birfatosh, Mashhad-i-Sar, Siri, Ashraf, Farah-ailaid, Tennacorben, Kellauristak, and Kiujur into which the province is divided. Where is fair seeurity for life and property ; and, although otherwise indifferently administered, the country is quite free from marauders or local disturbances. Tho revenuc is aloult 105,000 tomans, of whieh nothing goes to the state treasury, all being requiled for the governors, troops, ponsions, and police. The eapitul is Suri, the other chief towns being Barfarosh, Hashhad-i-Sar, Ashraf, and Faralı-ábid.

MAZATIN, JULES (1602-1661), cardinal, the successor of Richelicu, and forcrunner of Louis IIIV., was tho elder son of l'ietro Mazarini, the intendant of the bousebold of Philip Colonna, and of his wife Ortensia Doffalini, a comnexion of the Colonnas, and was born at Piscina in the Abruzzi on July 14, 1602. He was educated by the Jesuits at Rome till his seventceuth year, when he necom-
panied Jereme Colonna as chamberlain to the university of Alcala in Spain. There he distinguished himelf more by his love of gambling and his gallant adventures than by study, but nade himself a thorough master, net only of the Spanish language and character, but also of that romantic fashion of Spanish lore-makiog which was to help him greatly in after life, when he became the aervant of a Spanish queen. On his return to Rome he took his degree as Doctor Utriusque Juris, and then became captain of iafantry in the regiment of Colonna, which took part in the war in the Valtelline. During this war he gave proofs of much diplomatic ability, and Pope Urban ViII. entrusted him, in 1629, with the difficult task of putting an end to the war of the Mantuan succession. His success marked him out for further distinction. He was presented to two canonries in the churches of St John Lateran and Sta Maria Maggiore, although he had only taken the minor orders, and had never been cunsecrated priest ; he negotiated the treaty of Turin between France and Savoy in 1632, became vice-legate at Avignon in 1634, and nuncio at the conrt of France from 163i-36. But he began to wish for a wider sphere than papal negotiations, and, seeing that he had ne chance of becoming a cardinal except by the aid of some great power, he accepted Richelieu's offer of entering the service of the king of France, ar.d in 1639 became a naturalized Freachman. In 1640 Richelien sent him to Savoy, where the regency of Christine, the duchess of Savoy, and sister of Louis XIII., was disputed by her brothers-in-law, the princes Maurice and Thomas of Savoy, and he succeeded not only in firmly establishing Christine but in winning over the princes to France. This great service was rewarded by his promotion to the rank of cardinal on the preseatation of the king of France in December 1641. On the 4th December 1642 Cardinal Richelieu died, and on the very next day the king seat a circular letter to all officials ordering them to send ia their reports te Cardinal Mazarin, as they had formerly done to Cardinal Richelieu. Mazarin was thus acknowledged anpreme minizter, but he still had a difficult part to play. The king evidently could not live long, and to preserve power he must make himself necessary to the queen, who would then bo regent, and do this without arousing the suspicions of the king or the distrust of the queen. His measures were ably taken, and when the king died on Nay 14, 1643, to every one's aurprise her husband's minister remained the queen's. The king had by a royal edict cumbered the queen-regent with a council and other restrictions, and it was necessary to get the parlement of Paris to overrule the edict, and make the queen absolute regent, which was done with the greatest complaisance. Now that the queen was all-powerful, it was expected she would at once dismiss Mazarin and summua her own friends to power. One of them, Potier, bishop of Beauvais, already gave himself airs as prime minister, but Mazarin had had the address to touch both the queen's heart by his Spanish gallantry and her desire for her son's glory by lis skiliul policy abroad, and he found himself able easily to overthrow the clique of Importants, as they were called. That skilful policy was shown in every arena on which the great Thirty Years' War was being fouglt out. Mazarin had inherited the policy of France during the Thirty Years' War from Richelieu. Ha bad inherited his desire for the bumiliation of the bouse of Austria in both its branches, his desire to push the French frontier to the Rhine and maintain a counterpoise of German states ngainst Austria, his alliances with the Netherlands and wits Sweden, and his four theatres of war-on the Rhine, in Flanders, in Italy, and in Catalonia. This is not the place to examine the campaigns of the last five years of the great war (see Condé, Turenine), but it was Mazarin
alone whe directed the Frencl diplomacy of the period. Ha it was who made the peace of Brömsebro between the Danes and the Swedes, add turned the latter once again against the empire; he it was who sent Lionne to make the peace of Castro, and combine the priuces of North Itsly against the Spaniards, and who maeie the peace of Ulin between France and Bavarix, thus detaching the emperor's best ally. He made one fatal nistake,--he dreamt oi the French frontier being the Rhine and the Scheldt, and that a Spauish princess might bring the Spanish Netherlands as dowry to Louis XIV. This roused the jealousy of the United Provinces, and they made a separato peaco with Spain in January 1648; but the valour of the French gencrals made the skill of the ${ }^{\circ}$ Spanish diplomatists of no a vail, for Tureane's victory at Zusmarshausen, and Conde's at Lens, caused the peace of Westphalia to be definitely signed in October 1618 . This celebrated treaty belongs rather to the history of Germany than to' a Lifo of Mizasio but two questions bave been often asked, whether Mazarln did not delay the peace as long as possible in order to more completely ruin Germany, and whether Richeliea would have made a similar peace. To the first question Mazarin's letters, published by M. Cheruel, prove a complete negative, for in them appears the zeal of Mazarin for the peace. On the second point, Richelicu's letters in many places indicate that his treatment of the great question of frontier would have been more thorough, but then he would not have been hampered in France itself.

We must now notice that strange peried of the Fronde which has always been variously traated, for modern historians have written its histery from many different standpoints, all of which can be categorically supported from the varying mémoires of the principal actors. Now, however, thanks to the labours of MI. Cousin on the carnets of Mazarin, which contain the substance of $k \leqslant s$ inmost theughts, and of M. Cheruel on the letters written to aad by Mazario, it is possible to construct a more accurate and trustworthy history of the Fronde than has ever yet been attempted. It is not, however, intended here to trace the whole history of tha Fronde, interesting as that would be, but nerely to trace the policy of Mazarin throughout the epoch. The origin of both the Frondes was partly Mazarin's fault.. In I645 the parlement of Paris had protested against certain taxes, and bad been checked by a lit de justice; and when, in 1648, it united its members in the Chambre da Saint Louis for the general reform of the kingdom, Mazarin and the queen, instead of holding another lit de justice, calling the states-general, or trausferring the parlement out of Paris, any of which measures would have broken its power, foolishly believcd in the influence of the victory of Lens, and threw the people af Paris on the side of the parlement by the arrest of Broussel. The Fronde of the princes and the nobles, on the nther hand, was largely due to Mazarin's absorption of poitical power. These Frondeurs were not, like their ancestors, moved by great religious and political sympathies, but by merely selfish aims for restoring the old licence of duel and intrigue, and $\begin{gathered}\text { nere only united in one sentiment, }\end{gathered}$ hatred to Mazarin. That this was so nas greatly Mazarin's own fault; he had tried consistently to play off Gaston of Orleans against Condé, and their respective followers ggairst each other, and had also, as his carnets prove, jealously kept any courtier from getting into the good graces of the queen-regent except by his means, so that it was net unnatural that the nobility should late him, while the queen found herself surrounded by his creatures alone. Events followed each other quickly; the day of the barricades was followed by the peace of Ruel, the peace of Ru:el by the arrest of the princes, by the battle of Rethel, and Mazarin's exile to Bruhl before the union of the two

Frondes. It was while in exile at Brübl that Xazarin saw the mistake he had made in isolating himself and the queen, and that his policy of balancing every party in the state agninst each other had made every party distrust him. So by his counsel the queen, while noninally in league with De Retz and the parliamentary Fronde, laboured to form a purely royal party, wearied by civil dissensions, who should act for her and her son's interest alone, under the leadership of Mathieu Mole, the famous premier president of the parlement of Paris. The new party grew in strength, and in January 1652, after exactly a year's absence, Mazario returned to the court. Turenne lazd now become the royal general, and out-mancuured Condé, while the royal party at last grew to such strength in Paris that Condé bad to leave the capital and France. In order to promote a reconciliation with the parlement of Paris, Mazarin lad again retired from court, this time to Sedan, in August 1652 , but he returned finally in February 1653. Long had been the trial, and greatly had Mazarin been to blanse in allowing the Frondes to come into existence, but he had retrieved his position by founding that great royal party which steadily grew until Louis XIV. could fairly have said "L'Etat, c'est moi." As the war had progressed, Mazarin had steadily followed Richelieu's policy of weakening the nobles on their country estates. Whenever he had an opportunity he destroyed a feudal castle, and by destroying the towers which commanded nearly every town in Froace, ha freed such towns as Bourges, for instance, from their long practical subjection to the aeighbouring great lord.

The Fronde over, Mazarin had to build up afresh the power of France at home anc abroad. It is to his shame that he did so little at ioome. Beyond destruying the brick and mortar remains of feudalism, he did nothing for the people. But abroad his policy was everywhere successful, and opened the way for the policy of Louis XIV. He at first, by means of an alliance with Cromwell, recovered tha north-western cities of France, though at the price of yielding Dunkirk to the Protector. On the Baltic, France guaraoteed the treaty of Oliva between her old allies Sweden, Yoland, and Brandenburg, which preserved her intuence in that quarter. In Germany he, through Jionne, formed the league of the Rhine, by which the states along the Rhino bound themselves under the headship of France to ba on their guard against the house of Anstria. By such measures Spaia mas induced to sue for peace, whick was finally signed in the Isle of Pheasants on the Bidassoa, and which is known as the treaty of the Yyrenees. By it Spain recovered Franche Comté, but ceded to France Rnussillon, and much of French Flanders; and, what was of greater ultimate importance to Europe, Louis XIV. was to marry a Spanish princess, who was to renounce ber claims to the Spanish succession if her dowry wa3 paid, which Mazarin knew could not happen at present from the emptiness of the Spanish exchequer. He returned to Paris in declining health, and did not long survive the unhealthy sojourn on the Bidassoa; after some political instruction to his young master, he passed array at Viucennes on March 9, 1661, learing a fortuna estimated at from 18 to 40 million livres behind him, and his nieces married into the greatest families of France and Italy.
Tho man who couid have had such success, who could have made tho treatics of Westrhalia and the Pyrences, whe could hava weathered the storn of the Fronde, and left Franco at pease with itself and with Europe to Louia XIV., must have becn a great man ; and historians, relying too much on tho brilliant memoirs of his adversaries, like De Retz, are apt to rank lim too low. That he had many a petty fault there can bo no doubt ; that he was avaricious and doublo-dealing was also undoubted; and his carnets show to what unworthy means he had recourse to maintain lis influence over the qucen. What that influence was will be always debated, but

Loth his carnces and the Bruhl letters show that a rcal personal affection, amounting to passion on the queen's part, existed. Whether they were ever married may be doubted; but that hypothesis is made more possible by DI. Cheruel's having been able to prove from Mazarin's letters that the cardinal himself had never taken more than the minor orders, which could always be thrown off: With regard to France he played a more patriotic part than Conde or Turenue, for he never treated with the Spaniards, and his letters show that in the midst of his dilficulties lie followed with intense cagerness every morement on the fronticrs. It is that immense mass of letters, now in course of pubfication, that prove the real greatness of the statesman, and disprove De Ketz's ${ }^{\text {bortrait, }}$ which is carefully arranged to show oll his cucmy against the might of Richelien. 'lo coneede that the master was the greater man and tho gieater statesman does not imply that Mazarin was but a foil to liss predccessor. It is true that we find nonc of those deep plans for the internal prosperity of France which shine through Richelicu's policy. Mazarin was not a Frenchman, but a citizen of the world, and always paid most attention to forcign alfairs; in his letters all that could teach a diplomatist. is to be found, broad general views of policy, ninute details carcfully elaborated, keen insight into men's characters, cunning directions when to dissimulato or when to be frank. From first to last the diplonatist peens forth, and gives the key to his character, and to the causes of his success. Italian though he was by birth, education, and nature, France owed him a great delt for his skilful management during tho early years of Louis XIV., and the king owed him yet nore, for he had not only transmitter to him a nation at peace, but had edncated for lim his great servants Le Tellier, Lionne, and Colbert. Literary men owed him also much; not only did he throw his famous library open to them, but he pensioned all their leaders, inchuding Descartes, Voiture, Balzac, and Pierre Corneille. The last-named, the greatest of them all, did not care for Mazarin as a paymaster only, but as a statesman; he was a profound royalist, believing that absolutism alone could save France from the horrors of religious wars, or the selfish turbulence of a Fronde, aud to Nazarin he applied, with an adroit allusion to hia birthplace, in the dedication of his Pompve, the line of Virgil-

## "Tu regere imperio populos, Romaue, memento."

All the earlier works on Mazarin, and early accounts of his administration, of which the best were Bazin's Histoire de France sous Louis XIII. et sous le Cardinal Mazarin, 4 vols., 1846, and Saint-Aulaire's Histomre de la Fronde, have been superseded by DI. Cheruel's admirable Hrstoire de France pendant la minorite de Louis XIV., 4 vols., 1879-80, which covers from 1643-51, and its sequel Histoirc de France sons le Ministere de Cardinal Mazarin, 2 vols., 1881-82, which is the first account of the period written by one able to sift the statements of De Retz and the memoir writers, and rest upon such documents as Dazarin's letters and carnets. To M. Cheruel the Government of France has entrusted the task of editing Mazarin's Letters, of which two volumes have at present appeared, which must be carefully studied by any student of tha history of France. For his "carnets" reference must be made to 3. Consin's articles in the Journal des Savants; for his early llfe to Cousin's Jeunesse de DLazarin, 1865, and for the careers of his nieces to Renée's Les Nicces de Mazarin, 1856. For the Mazarinadea or aquibs written against him in Paris during the Fronde, see Moreau's Bibliographie des Mazarinades, 1850, containing an account of 4082 Mazarinades. On the Fronde, also, consult Gaillardin's Histoire de Louis XIV., 6 vola, 1876-78, and Feillet'a interesting Mfistre au temps de la Frondc. For his foreign policy, besides his Lelters, see Valfrey's Hugues de Lionne, and Miguet \& Hisloire des Négociations relatives a la Succession त'Espagne.
(H. M. S.)
mazatlan, a city and seaport of Mexico, in the state of Cinaloa, on the coast of the Pacific, near the mouth of the Gulf of California, in $23^{\circ} 18^{\prime} \mathrm{N}$. lat. and $106^{\circ} 56^{\prime} \mathrm{W}$. lonf. It occupies an attractive situation, but, as the houses are for the most part low, bas not an imposing appearance. The port is often visited by English and American vessels, and is conscquently the seat of several consular agents. A large smuggling trade was formerly carricd ou in much the seme lines as the present legitimate trafic-export of bullion, dye-stuffs, and pearls, and import of manufactured goods from Europe and fruits and vegetables from San Francisco. In 1878 the value of tho imports was about $£ 600,000$, that of the exports about £500,000. The populatio, which contains a large floating element, was stated at 12,706 in 1871.

Mazeppa, Ifan St sphanotiter (IG44-1709), a Cossack chief, best knows as the hero of one of Lord Byron's poems, was born in 1644, of a poor but noble
family, at Mazepistzui in the palatimate of Pociulia. At an carly age lie became a page at the con:at of Juhn Casinit, king of Poland. After some time he returned to his native province; but, engaging in all intrigue with a Polish matron of high rank, lie was detected by the injured husband, and was sentenced to be bound naked on the back of an untamed horse. The animal on being let lunse galluped off to its native wilds of the Uleraine. Mazerpa, halfdead and insensible, was released from his fearful positiun, and restured to auimation by sone pour peasants. In a short timse his agility, courage, and sagacity rendered him [- ounlar among the Cussacks. He was appointed secretary and adjutant to Samoilovitch, their hetman or chief, and succeedel that furctionary in 1687 . The title of prince was afterwards conferred upou him by his friend and patron, Peter the Great, who long believed confidingly in his good faith, and banished or exccuted as calumnious truitors all who, like Palei, Kotchubey, and Iskra, ventured to accuse him of couspiring with the enemies of Russia. Lent, however, upon casting off the Russian joke, Mazeppa became, in his seventieth year, and after much nesitation and inconstancy of purpose, an ally of the Swedish monarch, Charles XII. After the disastrous battle of Pultowa, fought, it is said, by his advice, Baturin, his capital, was taken and sacked by Menshikoff, aud his name auathematized throughout the churches of Russia, and his effigy suspended from the gallows. A wretched fugitive, he escaped to Bender, but only to end his life by poison in 1709. Pusbkin made Mazeppa the hero of his drama "Pultowa"

MAZZAR. 1 DEL VALLO, a city of Italy, on the coast of Sicily, in the province Trapani, 13 miles by rail southeast of Marsala. It is surcounded by a wall 37 feet in height, streng thened by towers rising at intervals; and it possesses a castle and a cathedral, both founded by Count Foger in the 11th century. The barbour is spacious but badly sheltered from the south winds. The population of the city was 11,756 in 1871 ; that of the commune was 10,999 in 1861 and 13,505 in 1581.
Mazara or Mazaris aprears from Diodorus Siculas (xiii 64) to have been a trading establishment of Selinus, and it was captured by the Carthaginian general in 409 b.c. on his march agaiust that city. It was in this neighbourhood that the Saracens landed in 827 A.n.; and the name of Val di Mazzara long indicated one of the three divisions of Sicily.

MAZZINI, Gicsepre (1805-1872), Italian patriut, was born on June 22, 1S05, at Genoa, where his father, Ciacomo Mazzini, was a physician in good practice, and a professor in the university. His mother is described as having been a woman of great personal beauty, as well as of active intellect and strong affections. During infancy and childhood his health was extremely delicate, and it appears that he was nearly six years of age before he was quite able to walk; lnng before this, however, he had learned to read, and otherwise begun to show great intellectual precocity. His first tutor was an old priest who taught him Latin, but his omnivorous reading was not directed by any master. At the age of thirteen he $b \in$ gan to attend classes in the faculty of arts at the university; he afterwards studied anatomy with a view to following his father's profession, but finally (1826) graduated in laws. Apart from his professional studies, he took lessons in music, English, and fencing. Of his student days little more is recorded than that his exceptional abilities as well as the remarkable generosity and benevolence of his impulses and aims were quickly recognized by bis comrades, - Lis professors, horrever, having frequent occasion to complain of his disregard for convention al rules. As to his inner Jife during this period, we have c nly one brief but significant sentence; "for a short time," he says, "my mind was somewhat tainted bo the doctri: es of the foreign material.
astic school; but the stady of history and the intuitionm of conscience-the only tests of truth-soon led me back to the spiritualism of our Italian fathers." For some time after his admission as an advocate Mazzini was occupied iu the Ufficio dei Poveri ; but, although hc seenis to havs discharged the duties arising from this with zeal and snccess, he never really overcante his repugnance to the dry and technical details of legal practice. The natural bent of his genius was towards literature, and, ia the coursa of the four years of his nominal connexion with the legal professiun, he wrote a considerable number of essays and revierss, some of which have been wholly or partially reproduced in the critical and literary volumes of his Life and Writings. His first essay, characteristically enough on "Daute's Love of Country," was sent to the editor of the Antologict Fiorentina in $15 \geqslant 6$, bnt did not appear until some vears afterwards in the Subalpino. He was an ardent supporter of romantictsm as against what he called "literary servitude under the aame of classicism"; and in this interest all his critiques (as, for example, that of Giannoni's Exile in the Iudicatore Livornese, 1829) were penned. But in the meantime the "republican instincts" which he tells us he had inherited from his mother had been developing, and his sense of the evils under which Italy was groaning had been intensifed; and at the same time he became possessed with the idea that Itelians; and he hinoself in particular, "could and therefore oughi to struggle for liberty of country." His literary articles accordingly became mose and more suggestive of advanced liberalism in politics, and led to the suppression by Government of the Indicatore Geanvese and the Indicatore Livornese successively. Having joined the Carbonari, he soon rose $t \leq$ one of the higher gradea in their hierarchy, and was entrrasted with a special secret mission into Tuscany ; but, as his acquaintance grew, his dissatisfaction with the organization of the society increased, and be was already meditating the formation of a new association having closer bonds of union and more definite aims when shortly after the French revolution of 1830 he was betrayed, while initiating a new member, to tha authorities of Piedmont. He was imprisoned in the fortress of Savona on the western Riviera for abont six months, when, a conviction having been found impracticable through deficiency of cvidence, he was released, but upon conditions involving so many restrictions of his liberty that he preferred the alternative of leaving the country. He withdrew accordingly into France, living chiefly in Margeilles. While in his lonely cell at Savona, in presence of "those symbols of the infinite, the sky and the sce," with a greenfinch for his sole companion, and having access to no books but "a Tacitus, a Byron, and a Bible," he had finally become aware of the great mission or "apostolate" (as he himself called it) of his life; and soon after his release his prison meditations took shape in the programme of the organization which was destined soon to become so famous throughout Europe, that of La Giovine Italia, or Young Italy. Its publicly arowed aimes were to be the liberation of Italy both from foreign and domestic tyranny, and its unification under a republican form of government; the means to be used were education, and, where advisable, insurrection by guerrilla bands; the mottn was to be "God and the people," and the bauner was to bear on one side the rords "Unity" and "Independence" and on the otber "Liberty," "Equality," and "Humanity," to describo respectively the national and the international aims. In April 1831 Charles Albert, "the ex-Carbonaro conspirator of 1821 ," succeeded Charles Felix on the Sardinian throne, and torvards the close of that year Mazzini, making himself, as he afterwards confessed, "the interpreter of a hope which he did not share," wrote the new king a letter, published at Marseilles, urging him to take the lead in the impending
struggle for Italian independenee．Clandestinely reprinted， and rapidly circulated all over Itziy，its bold and ontspoken words produced a great sensation，but so deep was the offence it gave to the Sardinian Government that orders were issued for the immediate arrest and inprisonment of the author should be attempt to cross the frontier． ＇Towards the end of the same year appeared the importaut Young Italy＂Manifesto，＂the substance of which is given in the first volume of the Life and IYritings of Mazzini； and this was followed soon afterwards by the society＇s Journal，which，smuggled across the Italian frontier，had great success in the objects for which it was written， numerous＂congregations＂being．formed at Genoa， Leghorn，and elsewhere．Representations were conse－ quently made by the Sardiaian to the French Government， which issued in ar．order for Mazzini＇s withdrawal from Marseilles（August 1832）；he lingered for a few montbs 111 concealmeat，but ultimately found it necessary to retire into Switzerland．From this point it is somewhat difficult to follow the career of the niysterious and terrible con－ spirator who for tweaty years out of the next thirty led a life of voluntary imprisonment（as he himself tells us） ＂mithin the four walls of a room，＂and＂kept no reeord of dates，made no oingraphical uutes，and preserved $n 0$ copies of letters．＂In l 833 ，however，he is known to have been concerned in an abortive revolutionary movement which took place in the Sardinian army ；several exenntions took place，and he himself was laid under sentence of death． Before the close of the same year a similar movement in Genoa had been planned，but failed through the youth and isexperience of the leaders．At Geneva，also in 1833， Mazzini set oa foot L＇Europe Centrale，a journal of which one of the main objects was the emancipation of Savoy； but he did not confine himself to a merely literary agita－ tion for this end．Cliefly through his agency a consider－ able body of German，Polish，and Italian exiles was organized，and an armed invasion of the duchy planned． Tha frontier was actually crossed on February 1，1834，but the attacik ignominiously broke down without a shot having bnen fircd．Mazzini，who personally accompanied the expedition，is no doubt correct in attributing the failure to dissensions with the Carbonari leaders in Paris，and to want of a cordial understanding between himself and the Savoyard Ramorino，who had been ehosen as military leader．In April 1834 the＂Young Europe＂association ＂of men believing in a future of liberty，equality，and fraternity for all mankind，and desirous of conseerating their thoughts and actions to the realization of that future＂was formed，also under tho influence of Mazzini＇s enthusiasm；it was followed soon afterwards by a＂Young Switzerland＂society，having for its leading idea the forma－ tion of an Alpine confederation，to include Switzerland， Tyrol，Savoy，and the rest of the Alpine chain as well． Yut La Jerne Suisse newspapor was compelled to stop within a year，and in other respects tho affairs of the struggling patriot berame enbarrassed．He was permitted to remain at Grenchen in Solothurn for a while，but at last the Swiss diet，yielding to strong and persistent pressure from abroad，exiled him about the end of 1836．In January 1837 he arrived in London，where for many months ho lad to carry on a hard fight with poverty and the sense of spiritual loneliness so touchingly deseribed by himself in the first yolume of the Life and Hreitings．Ultimately，as he gained command of the English lantuage，he began to carn a livelihood by writing review articles，some of which have since been reprinted， and are of a high order of literary merit ；they include papers on＂ltaliaa Literature since 1830 ＂and＂Paolo Sarpi＂in the Itestminster Revič，articles on＂Lamennais，＂ ＂George Sand，＂＂Byron and Cueine＂in this Alonelily

Chronicie，and on＂Lamartine，＂＂Carlyle．＂and＂The vinor WWorks of Dante＂in the liritish and loreign lievievo In 1839 be entered into relations with the revolutionary cum mittees sitting in Malta and P＇aris，and in 1840 he origioated a working men＇s assuciation，and the weekly juuraal entitled spostolato Popolare，in which the aulmirable popular treatise＂On the Duties of Xlan＂was commeuced． Among the patriotic and philanthropic labnurs undertaken by Mazzini during this period of retiremeat in London may be mentioned a free eveaing school conducted by himiself and a few others for some years，at which several hundreds of Italian children received at least the rudiments of secular and religious education．The most memorable episode in his life during the same period was perhaps that which arose out of the conduct of Sir Janes Grabam，the home seeretary，in systematically，for some montbs，opening Mazzini＇s letters as they passed through the British post－ office，and communicating their contents to the Neapolitan Government－a proceeding which brought about the arrest and execution of the brothers Baudiera，Austrian subjects， who bad been planning an expedition against Naples． The prolonged discussions in parliament，and the report of the committee appointed to inquire into the matter，did not，however，lead to any practical result，unless indeed the iucidental vindieation of Mazzini＇s character，which had heen reeklessly assailed in the course of debate． Mazzini did not share the enthusiastic bopes everywhere raised in the ranks of the Liberal party thrulghout Europe by the first acts of lius $I X$. ，in $18{ }^{\circ} 6$ ，but at the sane time he availed himself，towards the end of 1847，of the opportunity to publish a letter addressed to the new pope，indicating the nature of the religious and national mission which the Liberals expected hine to undertake． The leaders of the revolutionary outbreaks in Milan and Messina in the beginning of 1848 had long been in secret correspondence with Mazzini ；and their action， along with the revolution in Paris，brought him early in the same year to Italy，where he took a great and activo interest in the events which dragged Charles Albert into an unprofitable war with Austria；he actually for a short time bore arms under Garibaldi immediately before the re－ occupation of Milan，but ultimately，after vain attempts to maintain tho insurrection in the mountaia districts，found it neeessary to retire to Lugano．In the beginning of the following year he was nominated a member of the shurt－ lived provisional government of Tuscany formed after the flight of the grand duke，and almost simultaneously，when Rome had，in consequence of the withdrawal of Pius IX．， been proelaimed a republic，he was declared a nember of the constituent assembly there．A month afterwards，the battle of Novara having again decided against Charlos， Albert in the bricf struggle with Austria，into which he had once more been drawn，Mazzini was appointed a member of the triumvirate，with supreme executive puwer The opportunity be now had for showing the administrative and pulitieal ability which he was beliered to possess was more apparent than real，for the approneh of the pro－ fessedly friendly French troops spon led to Lostilities，and resulted in a siege which terminated，towards the end of June，with the assembly＇s resolution to discontinue the defence，and Mazzini＇s indignant resignation．That he suc eeded，however，for so long a time，and in circum－ stances so adverse，in maintaining a high degree of order within the turbulent city is \＆fact that sicaks for itself． His diplomacy，lacked as it was by no adequate physical force，naturally showed at the time to rery great disadvan． tagc，but his oftieial correspondence and proclamations can still be read with admiration and intellectual pleasure，as well as his eloquent vindication of the revolution in has bulliti n＂Le＊ter te MAl．de Toccuevillo and De Fallous＂

The surrender of the city on June 30 was follorred by Mazzini'e not too precipitate flight by way of Marscilles into Switzerland, whence he once mere found bis way to London. Here in 1850 be became president of the National Italian Comnittee, and at the same time entered inte close relations with Ledru-Rollin and Kossuth. He had a hand in the abortive rising at Mantua in 1852, and again, in February 1853, a considerable share in the formidable insurrection which broke out at Milan; once more, in 1854 , he had gone far with preparations for renewed action when his plans were completely disconcerted by the withdrawal of professed supporters, and by the action of the French and English Governments in sending ships of war to Naples. The year 1857 found him yet once more in Italy, where, for complicity in short-lived emeutes which took place at Genea, Leghorn, and Naples, he was again laid under sentence of death. Undiscouraged in the pursuit of the one great aim of his life by any such incidents as these, he returned to London, where be edited his new journal Pensiere ed Azione, in which the constant burden of his message to the overcantious practical politicians of Italy was-"I an but a voice crsing fection; but the state of Italy cries for it also. So do the best men and people of her citics. Do you wisb to destrey my influence? Acl." The same tone ras at a somewhat later date assumed in the letter be wrote to Victor Emmanuel, urging him to put himself at the head of the movement for Italian unity, and promising republicon support. As regards the events of 1859-60, however, it may be questiened whether, through his characteristic ioability to distinguish betreen the ideally perfect and the practically possible, he did not actually hinder more than he helped the course of events by which tine zealization of so much of the great dream of his life was at last bronght about. As has been said elsewhere (vol. xiii. p. 487), if Mazzini was the prophet of Italian uuity, and Garibaldi its knight errant, to Cavour alene belongs the honour of having been the statesman by whem it was finally accomplished. After the irresistible pressure of the popular movement had led to the establishment not of an Italian republic but of an Italian kingdom, Mazzini could honestly enough mrite, "I too have striven to realize unity under a monarchical flag," but candonr compelled him to add, "The Italian people are led astray by a dolusion at the present day, a delusion which has induced them to substitute material for moral unity and their own recrganization. Not so I. I bow my bead serrowfully to the sovereignty of the national will; but monarchy will nerer number me amongst its servants or followers." In 1865, by way of protest against the still uncancelled sentence of death under which he lay, Mazzini was elected by Messina as delegate to the Italian parliament, but, feeling bimself unable to take the oath of allegiance to the monarchy, he never took his seat. In the following year, when a general amnesty was granted after the cession of Venice to Italy, the sentence of death was at last removed, but he declined to accept such an "offer of oblivion and pardon for having loved Italy above atl earthly things." In May 1869 he was ayain expelled from Switzerland at the instance of the Italian Government for having conspired with Guribaldi; after a few months spent in England he set out (1870) fer Sicily, but was promptly arrested at sea and carried to Gaeta, where he was inprisoned for two montlus. Events soon made it evident that there was little danger to fear from the contemplated rising, and the occasion of the birth of a prince was seized for restoriog bim to liberty. The remainder of his life, spent partly in London and partly at Lugano, presents no noteworthy incidents. For some time his health had been far from satisfactory, but the immediate cause of his reath was an attack of pleurisy with which he was seized
at Pisa, and which terminatéd fatally on March $10,187 ?$ The Italian parliament by a unanimous vote expressed the national sorrow with which the tidings of his death had been received, the president pronouncing an cloquent eulogy on the departed patriot as a model of disinterestedness and self-denial, and one who had dedicated his whole life ungrudgingly to the cause of his country's freedum. A public funcral took place at Pisa on March 14, and the remains were afterwards conveyed to Genoa.
The published writings of Mazzini, mostly occasiomn, are yery voluminous, and have nowhere becn e::haustively collected. The fullest edition of the:n is that begun by himself and contimed lyy Satti (Scritli cdili c incliti di Ginscppc M[a=ini, 10 vols., 1861-50); many of the most innortant are found in the partially auto jiograpliocal work already referred to (Lifc and Writings of Joscph Mazinit, 6 rols., $1864-70$ ), and the two most systematic- "Thoughts up on Democracy in Europe," a remarkable series of criticisms on E(11. thamism, St-Simonianism, Fourierism, and other cconomic a ad socialistic schools of the day, and the treatiso "On the Dutics of Man," an admirable primer of ethics, dedicated to the Italiun rorking class-will be found in a volume entitled Joscph Mazini, a Mcmoir", by Mrs E. A. Veuturi (London, 1875). Mazzini's "first great sacrifice," he tells us, was "the renunciation of the career of litereture tor the moro direct path of political action," and as late as 18111 we find hin still recurring to the long-cherished hope of being ablo to leave the stormy arena of nolitics and cousecrate the last years of his lifo to the dream of his youth. He had specially contemplated three considerablo literary under:akings, - a volume of Thoughes on Religion, a popular History of Italy, to enable the working classes to apprehend what he conceived to be the "mission" of Italy in God's providential orlering of the word, and a comprebensive collection of translations of ancient and modern classics iuto Italian. Nono of these was actualiy achieved. No one, however, can read even the briefest and most occasional writing of Mazzini withont gaining some impression of the siaple grandeur of the man, the lofty elevation oi his moral tone, his unwavering faith in the living God, who is ever revenling Himself in the progressive development of humanity. His last public utterance is to be found in a highly characteristic article on Renan's Reforme Norale el Intellecluclle, finished on March 3, 1872, and published in the Fortnightly Reviczo lor February 1874.
(J. S. BL.)
mazzola. See Parmigiano.
MEAD, Richard (1673-1754), physician, was born on August 11, 1673, at Stepney (near Londnn), where his father, at one time minister of the parish, had been ejected for nenconformity in 1662. He was sent to Utrecht, where he studied for three years under Grævius; having decided to follew the medical profession, he then went to Leyden and attended the lectures of Hermann and Pitcairn. In 1695 he graduated in philosophy and physic at Padua, and in the following year he returned to his pative place, entering at once on a successful practice. His Mechanical Account of Poisons appeared in 1702, and in 1703 he was admitted to the Royal Seciety, to whose 'Transactions he contributed in that jear a paper on the parasitic nature of scabies. In the same year ho was also elected physician to St Thomas's Hospital, and appointed to read anatomical lectures at the Surgeons' Hall. On the death of Radcliffe in 1714 Nead became the recognized head of his profession; be attended Queen Anne on her deatb-bed, and in 1727 was appeinted physician to George II., having previously served him in that capacity when be was prince of Wales. He died on February $16,175 \frac{1}{2}$. For his place in the annals of medical science see Medicing, p. 811 of the present volume.

Bcsides the Mechanical Account of Poisons, of which a second edition appeared in 1708, Mead published a treatise De Impcrio Solis el Lunæ in Corpora Humana ct Morbis inde Oriundis (1704), A Short Discourse conccrning Pestilential Conlagion, and the Method to be zesed to prevent it (1720), Da Variolis al Aforkillis Dissertatio (1747), Mcdica Sacra, sive de Morbis insignioribus qui in Bibliis nincmorantur Commentarius (1748), On the Scurvy (1749), and Monita et Pracepta Mcdicx (1751)., A Life of Dlead by Dr MIaty appeared in 1755.

MEADVILLE, a city of the United States, county seat of Crawford county, Pennsylvania, on the left bank of French Creek, a tributary of the Alleghany river, and_a
tno junction of the Franklin branch with the main line of the New York, Pennsylvania, and Ohio Railroad, 102 miles from Salamanca It is a well-built town, maintains a large trace with the oil regions, and has railway and other pachine works, glass works, woollen mills, and paper mills. The Meadville theological achool was established by the Unitarians in 1844; and Allegheny College, opened in 1816 as a Presbyterian Church institution, has been carried on aince 1833 by the Methodist Episcopal Chntch. Meadville was foanded by General David Mend as a fortified post in 1789. In 1816 it bad only 400 inhabitants; but the number was 3702 in 1860, 7103 in 1870, and 8860 in 1880.

MEASLES (Morbilli, Rubeola; German, Masern; Freuch, Rougeole), an acute infectious disease occurring mostly iu children. It appears to have been known from an early period in the history of medicine, mentiou being made of it in the writing of Rhazes and others of the Arabian physicians in the 10th century. For long, however, its specific pature was not recognized, and it was held to be a variety of small-pos. After the non-identity of these two diseases had been cstablished, measles and scar!et fever continued to be confounded with each other; and in the account given by Sydenham of epidemics of measles in London in 1670 and 1674 it is evident that even that accurate observer hed not as yet clearly perceived their pathological distinction, although it would aeem to have been made a century carlier by Ingrassias, a physician of Pslermo. It is only within a comparatively recent period that measles has come to be universally regarded as a distinct and independent malady.
Like the other eruptive fevers (exanthemata), to which class of diseases measles belongs, its progress is marked by several stages more or less sharply defined.
After the reception of the contagion into the system a peried of incubation or latency precedes the development of the discase, during which siarcely any disturbance of the health is perceptible. This period appears to vary in duration, but it may be atated as generally lasting for from ten to fourteen days, when it is follorved by the invasion of the symptonis specially characteristic of measles. These consist in the somerrhat sudden onset of acute catarrh of the mucous membrancs. Sneezing, accompanied with a watery discharge, sometimes blecding, from the nose, iedness and watering of the cyes, cough of a short, frequent, and noisy character, with little or no expectorasion, hoarseness of the roice, and occasionally sickness and liarrhoes, are the chief local phenomens of this stago. But along with these there is well-marked febrile disturbance, the temperature being clevated ( $102^{\circ}-104^{\circ} \mathrm{F}$.), and the pulse rapid, while headache, thirst, and restlessness are usually present to a greater or less degree. In some instances, however, these initial symptoms are so slight that they almost escape notice, and the child is allored to associate with others at in time when, as will be afterwards secn, the contagion of the disease is most active. In rare cases, especially in young children, convulsions usher in, or occur in the course of, this stago of invasion, which lasts as a rule for four or five days, the febrile aymptoms, however, ehowing some tendency to undergo abatement after the second day. On the fourth or fifth day atter the invasion, eometimes later, rarely carlicr, the characteristic cruption appears on the skin, being first noticed on the brow, cheeks, chin, also behind tho ears, and on the nock. It consists of emall apots of a dusky red or crimson colour, Elightly elovated above the surface, at first isolated, but tending to become grouped together into patchesof irregular, occasionally creecentic, outline, with portions of skin freo from the cruption intervening. The face aequires a swollen and bloated appearance, which, taken along with the catarrh of the nostrils and ejes, is almost characteristic,
and renders the diagnosis at this stage a matter of no difficulty. The eruption spreads downwards over the body and limbs, which are soon thickly studded with tho red spots or patclucs. Sometimes these become confluent over a considerable surface, giving rise to a larger ares of uniform redness. The rash continues to come out for two or three days, and then begins to fade in the order in which it first showed itself, namely, from above down wards. By the eud of about a week after its first appearance scarcely any trace of the eruption remains beyond a faint staining of the skin. Occasionally during convalescence slight peeling of the epidermis takes place, but mnch less frequently and distinctly than is the case in scarlet fever. At the commencement of the eruptive stage the fever, catarrli, and other constitutional disturbance, which were present frour the beginning, become aggravated, the temperature often rising to $105^{\circ}$ or more, and there is headache, thirst, furred tongue, and soreness of the throat, upon which red patches similar to those on the surface of the body may be obseroed. These aymptoms usually decline as soon as the rash has attained its maximum, and often there occurs a sudden and extensive fall of tomporature, indicating that the crisis of the disease has been reached. In favourable cases convalescence proceeds rapidly, the patient feeling perfectly well even before the rash has faded from the skin.
Measles may, however, occur in a very severe or malignant form, in which the symptoms throughout are of urgent claracter, the rash but feebly developed, and of dark purple hue, while there is great prostration of strength, accompanied with intense catarrh of the respiratory or gastro-intestinal mucous membrane. Such cases, always of serious import, are happily rare, occurring mostly in circumstances of bad hygiene, both as regards the iodividual and his.snrroundings. On the other band, cases of measles are often met with of so mild a form throughout that the patient can scarcely be persuaded to submit to freatment.

Measles as a disease derives its chief importance in the view of medical men from the risk, by no means slight, of certain complications which are apt to arise during its course, more especially inflammatory affections of the respiratory organs. These are most liable to occur in the colder seasons of the year and in very young and delicate children. It has been already stated that irritation of the respiratory passages is one of the symptoms characteristic of measles, but that this subsides with the decline of the eruption. Not unfrequently, however, these symptoms, instead of abating, become aggravated, and bronchitis of the capillary form (see Broncmitis), or pneumonia, generally of the diffuse or lobular variety (see Penemonia), impart a gravity to the case which it did not originally possess. By far the greater proportion of the mortality in measles is due to its complications, of which those just mentioned are the most common, but which aiso include inflammatory affections of the laryns, with attacks resembling croup, and also diarrbea assuming a dysenteric character. Or there may remain as direct results of the disease chronic ophthalmia, or discharge from the cars, with deafness, and occasionally a form of gangrene affecting the tissucs of the mouth or checks and other parts of the body, leading to distigurement and cven endangering life.

A part, however, from those immediate risks, it descrves to be borue in mind that in measles there appers to be a tendency in many cases for the disense to leave behind a weakened and vulnerable condition of the general health. which may render children, previously robust, delicate and liable to chest complaints, and is in not a few instances the precursor of some of thuse tubercular affections to whic:a the period of childhood and youth is lizble.

These various effects or sequelæe of measles plainly indicate that although in itsclf a comparatively mild
ailment, it cannot safely be regarded with indifference. Indeed it is doubtful whether any other disease of carly life demands moro careful watching as to its influence on the health. Happily many of those attending evils now alluded to may by proper management be averted.

Meastes is a disease of the earlier years of childbood. Like other infectious maladies, it is admittedly rare, though net unknown, in nurslings or infants under six months old. It is comparatively seldom met with in adults, but this is simply due to the fact that most persons bave undergone an attack in early life, s:nce, where this bas not been the case, the old suffer equally with the young. All races of mon appear liable to this disease, provided that which constitutes the essential factor in its origin and spread exists, namely, contagion. Some countries enjoy long immunity from outbreaks of measles, but it has frequently been found in such cases that when the contagion has once been introduced the disease extends with great rapidity and viruleuce. This was ahown in two well-known instances in recent times,-namely, the epidemic in the Faroe Islands in 1846, where, within six months after the arrival of a single case of measles, more than three-fourths of the entire population were attacked and many perished; and the similarly produced and still more destructive outbreak in Fiji in 1875, in which it was estimated that about one-fourth of the inbabitants were cut of by the discase within a period of about three months (sce FiJi). In both these cases the great mortality has been ascribed to the complications of the malady, specially induced by orer-crowding, by insanitary surroundings, the absence of proper nourishment and nursing for the sick, and the utter prostration and terror of the people, rather than to any marked malignancy in the type of the disease. ${ }^{2}$ Not n ficw authorities, however, while fully recognizing the baneful effect of these unfarourable conditions, are yet dispused to hold that epidemics of this kind, when occurring in what might be termed a virgin soil, are apt to possess an innate severity. In many lands, such as the United Kingdom, measles is rarely nbsent, especially from large centres of population, where sporadic cases are found in greater or less number at all seasons. Every now and then epidemics arise from the extension of the, disease among those members of a community who have not been in some measure protected by a previous attack. There are few diseases so contagious as measles, and its rapid spread in epiridemic outbreaks is no donbt due to the well-ascertained fact that contagion is most potent in the earlier stages, even before its real nature bas been evinced by the characteristic appenrances on the skin. Hence the difficulty of timely isolation, and the readiness with which the disease is spread in schools and families. There is little doubt too that the contagion may be carried from one place to another by persons themsel:es unaffected, as well as by clothing, de., although its tenacity and activity in this respect is apparently much less marked than that of small-pox or icarlet fever. Of the nature of the infecting agent nothing certain is known. Recent investigations into the mode of origin of others of the acute infectious diseases, and the discovery in the blood and tissues in the case of some of them of lower forms of organic life (bacilli), which can be isolated and can by inoculation be made to communicate the particular malady to which they are related, give countenance to the opinion, now widely entertained, that the infecting principle of the exanthemata is of this nature. The subject, however, is still under investigation, and more information is wanting before definite statements can be made. Second attacks of measles are occasionally observed, but they are rare.

[^236]Treatment.-The treatment of measles embraces the preventive measures to be adopted in the case of an outbreak by the isolation of tho sick at as early a period as possible. Epidemics bave often, especially in limited localities, been curtailed by such a precautiou. In fanilics with little house accommodation this measure is frequently, for the reason already referred to regarding the conmunicable period of the disease, ineffectual ; nevertheless where practicable it ought to be tried, for it is a grave error needlessly to expose the healthy children in a family to the risk of infection under the idea that they must necessarily take the disease at some time or other. The unaffected children should likewise be kept from school for a time (probably about three weeks from tho outbreak iu the family would suffice if no other case occur in the interval), and all clothing in contact with the patient should be subjected to disinfection or thorough washingIn extensive epidemics it is often desirable to close tho schools of a locality for a time. As regards special treatment, in an ordinary case of measles little is required beyond what is necessary in febrile cunditions generally. Confinement to bed in a somewhat darkened room, into which, however, air is freely admitted in such a manner as to avoid the risk of draughts, light nourishing liquid diet (soups, milk, \&c.), and mild diaphoretic remedies such as the acetate of ammonia or ipecacuanha, are all that is necessary in the febrile stage. When the catarrhal symptoms are very severe, the hot bath or warm packing to the body generally or to the chest and throat afford relicf, and the same measures may with advantage be adopted should the eruption be but feebly developed or tend to recede, and especially should convulsions set in. The serious chest complications of measles are to be dealt with by those measures applicable for the relief of the particular symptoms (see Bronchitis, Pseumonia). The inbalation of vapour and the use of the preparations of ammonia are of special efficacy. Diarrhoea is treated by the usual remedies, including carefully administered doses of Dover's powder, chalk, \&c. During convalescence the patient must be guarded from exposure to cold, and for a time after recovery the state of the health ought to by watched with the view of averting the evils, both local and constitutional, which but too often follow this disease.

German Measles (Rotheln, or Epidemic Roseola) is a ternapplied to a contagious eruptive disorder having certain points of resemblance to measles, and, according to some observers, also to scarlet fever, but exhibiting its distinct individuality in the fact that it protects from neither of these diseases. It occurs most commonly in children, and is occasionally seen in extensive epidemics. Beyond confinement to the house in the eruptive stage, which, from the slight symptoms experienced, is often difficult of accumplishment, no special treatment is called for. There is little doubt that the disense is often mistaken for true measles, and many of the alleged second attarks of the latter malady are probably cases of rütheln. . The chief points of difference are the following:-

1. The absence of distinct premonitory symptoms, the stage of invasion, which in measles is usually of four days duration, and accompaoied with well-marked fever and catarrh, being in rotheln either wholly absent or exceedingly slight, enduring ooly for one day.
2. The cruption of rötheln, which, although as regards its locality and manuer of progress similar to measles, differs somewhat in its appearance, the spots being of smaller size, paler colour, and with less tendency to grouping in crescentic patches. The rash attains its maximum in about one day, and quickly disappears. There is no accompanying increase of temperature in this stage as in measiles.
3. The milder character of the symptoms of rutheln throughont its whole course, 'and the absence of complications and of liability to sulsequent impairment of health such as have been seen to appertain to incasles.
(J. O. A.)

MEASUREMENT. We propose in the first place to enter into some detail on the fundamentsl priaciples of the theory of measurement, and in doing so it will be necessary to sketeh the very remsrksble theory established by Riemann and other mathematicians as to the foundations of our geometrical knowledge.

Every system of geomatrical measurement, as indeed the whole science of geometry itself, is founded on the possibility of transferring a fixed figure from one part of space to another with unchanged form. We are so familiar with this process that we are apt not to reslize its importance until very special attention has been directed to the subject. We therefore proposs to make a logical examination of the nature of the assumptions involved in the possibility of moving a figure in space so thst it shall undergo no alteration. We shsll find that we require to postulate certain suppositions with regard to the natare of space and to the measurement of distances.
It will facilitste the conception of this somewhat difficult subject to consider the case of hypotheticsl reasoning beings which Sylvester described as being infinitely attenuated bookworms confined to infinitely thin sheets of paper. We suppose such two-dimensional beings to be absolutely linited to a certain surfsce. They could have no conception of space except as of two dimensions. The movement of a point would for them form a line, the morement of a line would form a surface. They could conduct their messurements and form their geometrical theories. They would bo able to draw the shortest lines between two points, these lines being what wo would call geodesics. To these two-dimeasioued geometers geodesics would possess many of the attributes of straight lines in ordinary space. If the surface to which the beings were confined were ectually in plsne, then the geometry would be the same as our geometry. They would find that only one straight line could be drawn between two points, that through a point only one parallel to a given line could be drawn, and that the ends of a ling would never meet even though the line bo prolonged to infinity.

We might also suppose that intelligent beings could exist on the surface of a sphere. Thair straightest line between two points wotld be the arc of the great circle joining those two points. They would also find thst a second geodesic could be drawn joining the two points, this being of course the remaining part of the great circle. A curious exception would, however, be presented by two points diamstrically opposite. An infinite number of geodesics can be drawa between these points and all those geodesics are of equal length. The axiom that there is one shortest line between two given points would thus not hold without exception. There would be no parallel lines known to the dwellers on the sphere. It would be found by them that every two geodesics must intersect, not only in ode, but even in two poiats. The sum of the thres angles of a triangle would for them not be constant. It would always bo greater than two right angles, and would incrcase with the ares of the triangle. They would thus have no conception of similarity between two geometrical figures of different sizes. If two triangles be constructed which have their sides proportional, the angles of the larger triangle would be greater than the corresponding angles of the smaller trianglo.

It is thus plain that the geometrical nxioms of the spheredwellers must be very different from those of the planedwellers. The different axioms depend upon the different kinds of space which they rospectively inhabit, whilo their logicsl powers are identical. In one sense, however, the dircllers on the ephere and on the plane have an axion in common. In each case it will bs possible for a figure to be moved about without alteration of its dimensions. A
spherical triangle can be moved on the surface of a sphere without distortion just as a plane triangle may be moved in a plane. The sphere-dwellers and the plane-dwellers would be equally able to apply the test of congruence. It is, however, possible to suppose reasoning beings confined to a space in which the translation of a rigid figure is impossible. Take, for instance, the surface of an ellipsoid or even a spheroid such as the surface of the earth itself. A triangle drawn on the earth at the equator could not be transferred to the surface of the earth near the pole and still preserve all its sides and all its angles intact.
If a surface sdmits of a figure being moved about thereon so as still to retsin sll its sides and all its angles unaltered, then that surface must possess certain spccial properties. It can be shown that, if a surface is to possess this property, a certain function known as the "measure of curvature" is to be constant. The measure of curvature is the reciprocal of the product of the greatest and least radii of curvature. We do not now enter into the proof, but it is sufficiently oovious that a sphere of which the radius is the geometric mean between the greatest and least radii of curvature at each point will to a large extent osculate the surface, so that a portion of the surface in the neighbourhood of the point will, generally speaking, have the same curvature as the sphere. If the sphere thus determined be the same at all the different points of the surface, then the curvature of the different parts of the surface will on the whole resemble that of the sphere, and therefore we cannot be surprised that the surface possessing this property will admit the displacement of a rigid figure thereon without derangement of its form.

We are thus conducted to a kind of surface the geometry of which is similar to that of the plane, but in which the axiom of parallels does not bold good. In this surface the redii of curvature at every point have opposite signs, so that the measure of curvature which is zero for the plane and positive for the sphere is negstive for the surface now under consideration. This surface has been called the "pseudosphere,": and its nature has been investigated by Beltrami. ${ }^{1}$ In the geometry of two dimensions we can thus bave either a plane or a sphere or a pseudosphere which are characterized by the property that a surface may bs moved, about in all directions without any change either in the lengths of its lines or in the magnitudes of its angles. The axiom which assumes that there is oaly one geedesic connecting two points marks off the plane and the pseudosphere from the sphere. The axiom that ouly one parallel can be drawn through a given point to a given line marks off the plane from the pseudesphere. The geometry of Euclid is thus specially characterized among all conceivable geometries of two dimensions by the following thres axioms-(1) the mobility of rigid figures, (2) the single geodesic between two points, (3) the existeace of parallels.

A very interesting account of this theory will be found in Clifford's Lectures and Essays, vol. i. p. 317. We shsll follow to some extent the method employed by him in order to obtain an iden of the important conception which is called the "currature of space." Supposo a geodesic bo drawn on a surface of constant curvature. Then a piece of the surface adjoining this geodesic csn be slid along the curre so as all the time to fit in close contact therewith. If the piece of surface be turncd to the other side of the geodesic it will still fit nlong this side. A

[^237]line posscssing this property is called by Leibnitz a straight line. It can be easily shown that a geodesic drawn on a figure will also be a geodesic when the figure is transferred to any other position. Suppose that the figure be divided into two parts $A$ and $B$ by the geodesic ; then the part B can be mored round so as to lic upon $A$, and the boundary lines of the tro portions will be coincident. Now let the tro parts while superposed be translated to any other position, then the piece B way be slid off and back to its origioal position with regard to A. It must still fit, because the whole figure might have been translated before the subdivision took place. It follows that the division between A and B having heen a geodesic in its original position will continue to be a geodesic horever the figure may be translated.

In a similar way we obtain the conception of a plane. according to Leibnitz's definition a plane is a surface such that if a portion of the space contiguous thereto be slid along the surface it will continuously fit, and if the portion of space be transferred to the other sido of the surface it will fit also. This defiaition has no meaning except tre asoúme that the hodies may be translated in space without derangement of their dimeasions. From any peint we can imagine a doubly infinite number of geodesics radiating in all directions; if a plane be drawn through the point, then all the geodesics touching the plane nt that point form what may be called a "geodesic surface." It is shown that geodesic surfaces of this description can alone fulfil the cooditions by which planes are to be defined. A doubly infinite number of geodesic surfaces can be drawn through every point. If a rigid body be divided into tro parts by a geodesic plane, then no metter hor the body. be displaced the plane of section will still be geodesic. The plane of section may be made to pass through any puint, and the Lody may then be given such on aspect as shall cause the section to coincide with any geodesic surface through the point, hat this necessarily involves that the section shall fit each geodesic surface, in other words, that all the geodesic surfaces shall have a constant curvature.
The point which we bave now gained is one of very great importance. In our ordinary conceptions of space the geodesic surfaces are of course our ordinary planes, and the common currature they possess is zero, but the condition that rigid bodies shall be capable of translation with unaltered features does not require that the curvatares shall be zero, it merely requires that the curvatures shall be constant. If tee add, however, the postulate of similarity, then the curvatures must be zero. The postulate of similarity requires that it shall be possible to construct a figure on any scale and anywhere similar to a given fignre. This practically includes the ordinary doctrine of parallels. Lobatchewsky dereloped the system of geometry on the supposition that the space had a constant currature different from zero. In this geometry the parallels can be dramn through a giren point to a given line, and, to quote Clifford-
"The sum of the three angles of a triangle is less than two rimht angles by a quantity proportional to the area of the triangle. The whole of this geometry is worked out in the style of Euclid, and the most interesting conclusions are arrised at, particularly in the theory of solid space, in which a surface turns up which is not plane relatively to that space but which for the purpose of drawirg figures upon it is identical with the Euclidean plane."
The most comprebensive mode of viewing the tribole theory is that adopted by Riemann in his celebrated mernoir "Ueber die Hypothesen welche der Geometrie zu Grunde liearen," 1854 (.1bhandl. der königl. Gesellsch. zu Göttingen, vol. siii.). ${ }^{1}$ The namelytical treatment of this

[^238]subject possesses one obvious advantage. The use of symbols only admits of deductions on purely logical prin ciples. There is not therefore the risk of tacitly intro. ducing other axioms in addition to those with which we started.

Magnitudes mhich hare ooly one dimension present the theory of measarement in its simplest form. The length of a straight line may be taken as an illustration of a one-dimensioned magnitude. The -velocity of a moring particle, the temperature of a beated body, the electric resistance of a metal, all these and many others are instances of one-dimcosioned magnitude, the measure of which is to be expresscd by a single quantity. But there may be magnitudes which require more than a single measurement for their complete specification. Tnke, for instaace, a four-sided field which bas been duly survesed. Of what is the measurement of this field to consist? If the number of acres in the field be all that is required then the area is expressed by a simple reference to a number of standard acres. If, however, the catire circumstances of the field are to be bronght into vier, then a simple statement of the area is not sufficient. It can he easily shom that the survegor must ascertain five independent quantities before the details of the shape of the field can be adequately defined. Four of these quantities may naturally be the lengths of the four sides of the field, the fifth may be one of the angles, or the area, or the length of one of the diagonals. Speaking generally, we may say that five distinct measurements will be necessary to define the field adequately. The actual choice of the particular measurements to be made is to a great extent arbitrary. The only condition absolutely necessary is that they shall be all independent and free from embignity. Once these five quantities are ascertained then all the other features of the figure are absolutely determined. For instance, the four sides and the diagonal being ascertsined by measurement, then the other diagonal, the four aogles, and the area can all be computed by calculation. The five quantities mould determine everything sbout the field except its actual position on the surface of the earth. If we further desired to have the field exactly localized certain other quantities must be alded. The latitude and the longitude of one specified corner of the field would enmpletely indicate that corner, while the azimath of one side from that corner would complete the definition of its position. We are thus led to see that for the compiete deiineation of every circumstance relating to the siape of the field and its locality eight different measurements have been required. Two sets of eight measurements differing in any particular can never indicate the same field. It is very important to notice that the number of quantities sequired is quite independent of the particular nature of the measurements adopted. We might for instance have simply measured the latitnde and the longitude of each of the four corners of the field. Once these quantities are known, then the shape of the field, its area, its angles, and its diagonals have all been implicitly determined. Here again we see that as two quantities are required to localize each of the four corners, so eight quantities will be required to fully determins the whole field.
In the operstions of analytical geometry we are accustomed to specify the positiou of a point by the relation which it bears to certain fised axes. By means of certain quantities, either altogether linear or partly linear and partly angular, we are enabled to specify the position of the point with absolute definiteness. . These quantities in the collected edition of Clifford's Woris, 18a \% pp. 55-69. For a biblıcgraphy of higher-space and non-Euclidean geometry, see sricics by George Bruce Halsted in the American Journal of Math ratics Pure and Appled, i. 261-276, 334, 385; in, 65-70.
are called tho coordinates of the point. In a similar though moro extended sense we may use the word "coordinates" to express the group of eight magnitudes which we have found to be adequate to the complete specification of the field. By the measurement of the ficld in the most complete sense of the term we mean the measurement of its eight coordiuates.
Suppose that an object is completely specified by $n$ coordinates, then every different group of $n$ coordinates will specify a different object. The entire group of such objects will form what is called a continuously extendod manifoldness. The singly extended manifoldness may be most conveniently illustrated by the conception of time, the various epochs of which are the elements in the manifoldness. Space is a triply extended manifoldness whercof the elcments are points. All conceivable spheres form a quadruply extended manifoldness. Allconceivable triangles in space form a manifoldness of nine dimensious. The number of coordinates required to specify the position of an elenient in a manifoldness is thus equal to the order of the manifoldness itsclf. It is important to observe that the clements of the manifoldness may be themselves objects of 110 little complexity. Thus, for instance, the conies forming a confocal group constitute the clements of a singly ext.ended manifoldness.

The cssential feature of a singly extended manifoldness is that $n$ continuous progress of an element can take place only in two direntions, either forwards or backwards. But a singly extended manifoldness may be regarded as itself an elcment in a manifoldness of a higher order. Thus the points on a circle form a singly extended manifoldness, while the circle itself is one element of the manifoldness which consists of a serics of concentric circles. The system of concentric circles may in like manner be regarded as an elcment in the manifoldness which embraces all systems of concentric circles whose centres lie along a given line. We are thus led to conceive of a multiply extended manifoldness as made up by the successive composition of singly extended manifoldnesses.

It follows from tho conception of $\mathrm{a}^{2}$ manifoldness that in the case of a singly extended manifoldness the position of evcry clement must be capable of being completely specified by a single quantity. It becomes uatural to associate with each clement of the manifoldness a special numerical magnitude. Theso magnitudes may vary from $-\infty$ to $+\infty$; to each magnitude will correspond ono clement of the manifoldness, and conversely cach element of the manifoldness is completely specified whenever tho appropriate number has been assigned. It is quite possible to have this association of numcrical magnitudo with the actual position of an elcment independent of any ordinery metrical relations of the system; it will, however, most usunlly be found that the numerical màgnitudes chosen nro buch as admit of direct interpretations for tho particular manifoldness under consideration. Thus, for instanco, in the case of the system of concentric circles it will be natural to associnte with each circle its radius, and the position of each circle in the manifoldness will thus be completely defined by the radius. So also in the case of that singly oxtended manifoldness which consists of colours, it will be-natural to employ us the number which specifies each particular colour tho wave-length to which that particular colour correaponds.

If the olements of such a manifoldness can recelvo a simultsncous displacement, then it is plain that to cach element in the original position will correspond an cloment in the second position. Let $x$ and $y$ be tho numerical magnitudes correlated to these tra elensents. Then, since the relation must be of the one-to-one type, it is necessary that the magaitudes $x$ aud $y$ must bo conneoted by an equation of tho typo

$$
a x y+b x+c y+d=0
$$

It follors from this that there are a pair of elements rlich aro common to hoth systems, for if $x=y$ wc hare the equatiou

$$
a x^{2}+(b+c) x+d=0
$$

The original equation may be written in the form

$$
a x y+(b-\omega) x+(c+\omega) y+d=0
$$

and whatever ralue may have this equation will lead to the same quadratic for the two common elcments. We thus have a singly infinite number of displacements which are compatible with the condition that the two fundamental elements shall remain unaltered, and it is displacements of this kind which express the movements of a rigid system.

The position of a point is to be defined by three coordinates. In our ordinary conception of coordinates the position of the point is defined by certain mensurements, and thus it would seem that the very mention of coordinates had already presupposed the idea of distance. This, however, need not be the case. We csn assume a point in space to be completely defined by three purely numerical quantities. It will be supposed that to each group of three coordinates corresponds one point, and that conversely to one point will correspond three coordinates and no ambignity is to be present. This latter consideration will exclude from our present view such cases as those where the position of a point is defined by a line and two angles, because angles are subject to a well-known ambiguity anounting to any even multiple of $\pi$. In this case it would nut be true that to one point corresponds one set.of coordinates, although the converse may be correct.

It is necessary to understand clearly the nsture of the suppositions which are made with regard to space by this assumption. Let $x, y, z$ and $x^{\prime}, y^{\prime}, z^{\prime}$ be the coordinates of two points $a$ and $a^{\prime}$. Now $x, y, z$ can chauge coutinuously by any law into $x^{\prime}, y^{\prime}, z^{\prime}$. Each intermediate stage will give the coordinates of a point. It must thus be possible to pass continuously in an infinite number of ways from the point $a$ to the point $a^{\prime}$. We thus assume that space is continuous when we have assumed that its points are represented by coordiuates. It must be observed that we predicate nothing as to apace which is not involved in the fact that to each point corresponds one group of thres coordinates. To some extent the considerstions now before us will apply to any other continuous manifoldness which requires three coordinates for the complete specification of its elements. Take, for instance, a musical note. It can be specified accurately by its pitch, intensity, and timbre. These three quautities may be regarded as the three coordinates which will discriminate one sound from the rest. The manifoldness comprising all musical notes is, however, very different from the manifoldness which embraces all the points of space. Each of theso manifoldnesses is no doubt continuous, and each of them is of three dimensions, but the conception of distance can have no placo in the musical manifoldness. This is due to the absence from the musical manifoldness of noything parallel with the conception of rigidity in the space manifoldness. These remarks will show that the conception of "distance" is something of a specinl type even in a three-dimensioned continuous manifoldacss.

Thero nro also other three-dimensioned and continuous manifoldncsses from which the conception of distance is also nbsent. Take, for instance, tho manifoldness which embrace: all the circles that can lio in a giren plane. The points of such a manifoldness are the circles. It is threedimensioned, for two coordinates will be required for the centre of cach circle nnd one for its radius. It is obviously a continuous manifoldness, for one circle may by infinitely graduated modifications pass into any other. Iet from this manifoldness also the conception of distance is nbsent. There is no intelligible relation of one circle to another
which is analogous to the distance which te require ic determine.
We shall now give the investigation of Helmboltz, by which the analytical form of the function expressing the distance is to be ascertained (Göllingen Nachrichten, 1868, pp. 193 sq.).

It must be remembered that our definition of a poiat will be purely analytical. Suppose three different scales of pure quantity ench extending from $-\infty$ to $+\infty$. Each of these scales is perfectly contiouous, so that, no matter how cluse any tro elcments in the scale may be, it is always possible to conceive the insertion of an infinite number of intermediate elements. A point is to be defined for our present purpose as a group of three numerical magnitudes taken one from each of the three scales. This conception may bestated more generally. We can conceive $n$ diferent numerical scsles. Then a group of $n$ numbers, one from each scale, will define an element of a contiouous $n$-fold manifoldness.
It will be obvious that unless the theory of distance possess a special character it will not be possible for a rigid body to exist. Take, for instance, five points in a rigid body ABCDE . There are ten different pairs of puints and ten corresponding distances; all theso ten distances must remain unchanged when the body is displaced. We may assume the position of A arbitrarily. Then after the dislpacement B must be placed at the right distance from A, but will only be limited by this condition to a certain surface, $C$ must be placed at the right distance from $A$ and from B, thus C will be limited to a certain cures. D must be placed at the proper distances from A, from B, and from C. These conditions will be sufficient to denine D with complete definiteness. In the same way E will to completels defined by its distances from $\Lambda, B$, and $C$, but as $D$ and $E$ are thus fully defined we have no guarantes that the distance DE shall retain, after the translation, the same ralue which it had before. This then indicates that the function which is to express the distance must have a very special form. Any arbitrary function of the six coordinates of the tro points rould in general not fulal the condition that the distance DE after the transformation will retain the same ralue as it had before. If a greater number of points than five be taken, the conditions which a rigid system must fulfil become still more numerous.
Let $x, y ; z$ be the coordinates of a poiut in a rigid body free to rosate around a point. We shall assume that $x, y, z$ is in the ricinity of the fixed point, and that the displacement of the body is such that a second point remains unaltered. In other words, the displacenient is to be a rotation around a line joining the two points, and we shall also assume that when this rotation has been completed every point will be restored to its original position. Let $\eta$ be the angle of rotation around the axis, then $x, y, z$ will all be furctions of $\eta$, and we may assume that the following equations will lold-

$$
\begin{aligned}
& \frac{d x}{d \eta}=a_{0} x+b_{0} y+c_{0} z \\
& \frac{d y}{d \eta}=c_{1} x+b_{1} y+c_{1}= \\
& \frac{d z}{d \eta}=c_{2} x+b_{2} y+c_{2} z .
\end{aligned}
$$

Iir the first place it is plain that these differential coefficients must be functions, of $x, y_{2}$, and, these functions being expanded in ascending powers, we mayomit all powers above the first. It will also be obvious that the absolute terms must be zero as tha origin is by h.ppothesis to be a fixed point. As the displacement is a rotation, it follows that the differential coefficicnts must be zero for certain ralues of $x, y, z$ different froni zero, but this involves the condition

$$
\left|\begin{array}{lll}
a_{0}, & b_{0}, & c_{0} \\
\pi_{1}, & b_{1}, & c_{1} \\
a_{2}, & b_{2}, & c_{2}
\end{array}\right|=0
$$

We now procced to solve fhe three linear differcntial equations by
the well-known process. if wo multiply the thrce equations b : $2, m, n$ resocetively, and if we determine $l, m, n$ so that

$$
\begin{aligned}
& l h=l a_{0}+2 n n_{1}+n n_{2} \\
& m l_{l}=l b_{0}+m b_{1}+n b_{2} \\
& n h=l c_{0}+m n c_{1}+n c_{2},
\end{aligned}
$$

There $h$ is another constant determined by the equation

$$
\left|\begin{array}{lll}
a_{0}-h & \pi_{1}, & a_{2} \\
b_{0}, & l_{1}-h, & l_{2} \\
c_{0}, & c_{1}, & c_{2}-h
\end{array}\right|=0
$$

the differential cquations then give

$$
\frac{d}{d \eta}(l x+m y+n z)=l(l x+m y+n z),
$$

whence

$$
l x+m y+n z=\mathrm{C}^{2 n} \text {. }
$$

We have already secn that ane of the values of $h$ most be zero, whence if the other values be $h_{1}$ and $h_{2}$ wo have the three cquations

$$
\begin{aligned}
& l_{0} x+n_{0} y+n_{n}=-A \\
& l_{1} x+2 n_{1} y+n_{1}=-B c^{\lambda_{1} \eta} \\
& l_{2} x+m_{2} y+n_{2} z=C C^{\lambda_{2}} .
\end{aligned}
$$

It is plain that $h_{1}$ and $h_{3}$ cannot be real quantities, for then the quantities $l_{1} x+n_{1} y+n_{1} z$ and $l_{2} x+m_{2} y+n_{2} z$ could attain any values from $-\infty$ to $+\infty$ according to the variations in $\eta_{1}$. If $h_{1}$ and $h_{2}$ are imaginary then will also the corresponding values of $l, n, \pi$ be imagibary. We therefore write

$$
\begin{array}{cc}
h_{1}=\theta+\omega i & h_{2}=\theta-\omega i \\
l_{1}=\lambda_{0}+\lambda_{1} i & \lambda_{2}=\lambda_{0}-\lambda_{1} i \\
m_{1}=\mu_{0}+\mu_{1} i & m_{2}=\mu_{0}-\mu_{1} i \\
n_{1}=\nu_{0}+\nu_{2} i & n_{2}=\nu_{0}-\nu_{1} i
\end{array}
$$

so that

$$
\lambda_{0} x+\mu_{0} y+\nu_{0}=A c^{\theta \eta} \cos (\omega y+c)
$$

in which caso we have

$$
\lambda_{1} x+\mu_{1} y+\nu_{1} z=\lambda c^{\theta \eta} \sin (\omega y+c)
$$

$$
\left(\lambda_{0} x+\mu_{0} y+\nu_{0} z\right)^{2}+\left(\lambda_{1} x+\mu_{1} y+v_{1} z\right)^{2}=A c^{2 \theta} \eta_{1} .
$$

But it is plain that unless $\theta$ be zero the left-hand side of this equation will he susceptible of indefinite increase, which is contrary to our hypothesis. Wa are therefore entitled to assume that $\theta=0$. The two roots of the cubic for $\%$ must, therefore, be pare imaginaries, and thus we hava the condition

$$
a_{0}+b_{1}+c_{2}=0
$$

Finally tre have for the determination of $x, y, z$ the following threa equations:-

$$
\begin{aligned}
& \lambda_{0} x+m_{0} y+n_{0} z=\text { const. } \\
& \lambda_{0} x+\mu_{0} y+\nu_{0} z=A \cos (\omega y+c) \\
& \lambda_{1} x+\mu_{1} y+\nu_{1} z=A \sin (\omega y+c) .
\end{aligned}
$$

It will simplify the subsequent calculations if we now make such a transformation of the coordinates as will enable as to writa

$$
\begin{aligned}
& X=l_{0} x+m_{0} y+n_{0} z \\
& Y=\lambda_{0} x+\mu_{0} y+\nu_{0} z \\
& Z=\lambda_{2} x+\mu_{1} y+\nu_{2} z .
\end{aligned}
$$

We shall then have from the results just obtained

$$
\begin{aligned}
& \frac{d X}{d \eta}=0 \\
& \frac{d I^{\prime}}{d \eta}=-\omega Z \\
& \frac{d Z}{d \eta}=+\omega Y .
\end{aligned}
$$

The movement corresponding to $\eta$ is such as. leaves unaltered all points of which the Y and the Z are equal to zero.

Let us now suppose another dusplacement to be given to the system by a rotation $\eta^{\prime}$ about another axis so chosen that all the points for which $\mathrm{X}=0$ and $\mathrm{Z}=0$ shall remain unaltered. For this condition to be fulfilled we must have the equation

$$
\begin{aligned}
& \frac{d X}{d \eta^{\prime}}=a_{0} X+0+v_{0} Z \\
& \frac{d Y}{d \eta^{\prime}}=a_{1} X+0+v_{1} Z \\
& \frac{d Z}{d \eta^{\prime}}=a_{2} X+0+v_{2} Z .
\end{aligned}
$$

for then each side of these equations will be equal to zero for points which make $X$ and $Z$ zero. The condition that the roots of $h$ shall be purely imaginary gives us

$$
a_{0}+\nu_{2}=0
$$

If the bally receives both the retation $\eta$ and the rotation $\eta^{\prime}$ then tbo joint effect of these two rotafions must be equal to that of a siugle rotation $\phi_{1}$ so that

$$
\begin{aligned}
& \frac{d \mathrm{X}}{d \phi}=\frac{d \mathrm{X}}{d \eta}+\frac{d \mathrm{X}}{d \eta^{\prime}} \\
& \frac{d \mathrm{Y}}{d \phi}=\frac{d \mathrm{Y}}{d \eta}+\frac{d \mathrm{Y}}{d \eta^{\prime}} \\
& \frac{d Z}{d \phi}=\frac{d Z}{d \eta}+\frac{d \mathrm{Z}}{d \eta^{\prime}}
\end{aligned}
$$

or nniting the two sets of equations we have

$$
\begin{aligned}
& \frac{d X}{d \phi}=a_{0} X+0+\nu_{0} Z \\
& \frac{d Y}{d \phi}=\alpha_{1} X+0+\left(\nu_{1}-\omega\right) Z \\
& d Z \\
& d \phi \\
& d \phi \\
& a_{2} X+\omega Y+\nu_{2} Z .
\end{aligned}
$$

Asthis movement must also bo a rotation, the three right.hand members must be capable of boing rendered zero for certain values of $X, Y, Z$, and therefore we have (remembering that $a_{0}+\nu_{3}=0$ )

$$
\left|\begin{array}{l}
a_{0}, 0, \nu_{0} \\
a_{1}, 0, \nu_{1}-\omega \\
a_{2}, \omega,-a_{0}
\end{array}\right|=0 .
$$

This condition reduces to

$$
\begin{aligned}
& \omega a_{0}\left(v_{1}-\omega\right)-\omega a_{1} \nu_{0}=0, \\
& a_{0} \omega^{2}+\omega\left(a_{1} \nu_{0}-a_{0} v_{1}\right)=0 .
\end{aligned}
$$

or
This equation must be satisfied for every ralue of $\omega$; for, whatever be the amplitudes of the two rotations, they must when compounded be equal to a single rotation. We tbercfore have the conditions

$$
\begin{aligned}
a_{0} & =0 \\
a_{2} v_{0} & =0 .
\end{aligned}
$$

To aatisfy the latter condition either $a_{1}$ or $\nu_{0}$ must be equal to zero. We must exarnine which of these two conditiens is required by the problem. Since $a_{0}$ is equal to zero we have

$$
\begin{aligned}
& \frac{d X}{d \eta^{\prime}}=\nu_{0} Z \\
& \frac{d Y}{d \eta^{\prime}}=a_{1} X+\nu_{1} Z \\
& \frac{d Z}{d \eta^{\prime}}=a_{2} X .
\end{aligned}
$$

If $\nu_{0}$ were zere then the first equation rould show $X$ to be constant $;$ and the result would be that

$$
\mathrm{Y}=a_{1} \mathrm{X} \eta+\frac{3 a_{2}}{2} \nu_{1} \mathrm{X} \eta^{2}+\text { const. } ;
$$

or, in other words, $Y$ would be susceptible of indefinite increage with the incresse of $\eta$. , The supposition $\gamma_{0}=0$ is therefore precluded, and we are forced to admit that $a_{2}=0$. The three equations then reduce to

$$
\begin{aligned}
& \frac{d \mathrm{X}}{d \eta^{\prime}}=\nu_{0} \mathrm{Z} \\
& \frac{d \mathrm{Y}}{d \eta^{\prime}}=\nu_{1} \mathrm{Z} \\
& \frac{d Z}{d \eta^{\prime}}=a_{2} \mathrm{X} .
\end{aligned}
$$

If the body receives s rotation $\eta^{\prime \prime}$ about an axis $\pi$ thich lesves $X$ and $\checkmark$ unaltered, we then havo

$$
\begin{aligned}
& \frac{d \mathrm{X}}{d \eta^{\prime \prime}}-f_{0} \mathrm{X}+g_{0} \mathrm{Y}+0 \\
& \frac{d \mathrm{Y}}{d \eta^{\prime \prime}}-f_{1} \mathrm{X}+g_{1} \mathrm{Y}+0 \\
& \frac{d Z}{d \eta^{\prime \prime}}-f_{2} \mathrm{X}+g_{2} \mathrm{Y}+0
\end{aligned}
$$

The condition that the two roots of $h$ ehall be purely imaginary dives us

$$
f_{0}+g_{1}=0
$$

Let this rotation and the first rotation be communicated together. The resulting rotstion could have been produced by a retation $x$, and thus we have

$$
\begin{aligned}
& \frac{d \mathrm{X}}{d x}=\frac{d \mathrm{X}}{d \eta}+\frac{d \mathrm{X}}{d \eta^{\prime \prime}} \\
& \frac{d \mathrm{Y}}{d x}=\frac{d \mathrm{Y}}{d \eta}+\frac{d \mathrm{Y}}{d \eta^{\prime \prime}} \\
& \frac{d Z}{d x}-\frac{d Z}{d \eta}+\frac{d Z}{d \eta^{\prime \prime}} .
\end{aligned}
$$

Substituting, we obtain as before

$$
\begin{aligned}
& \frac{d \mathrm{X}}{d \chi}=f_{0} \mathrm{X}+g_{0} \mathrm{Y}+0 \\
& \frac{d Y}{d \chi}-f_{1} \mathrm{X}+g_{1} \mathrm{Y}-\omega L \\
& \frac{d Z}{d X}-f_{2} \mathrm{X}+\left(g_{2}+\omega j \mathrm{Y}+0 ;\right.
\end{aligned}
$$

and as before the condition must be fulfilled

$$
\left|\begin{array}{ll}
f_{0}, g_{0}, & 0 \\
f_{2}, g_{5} & , \\
f_{2}, g_{2}+\omega, & 0
\end{array}\right|=0 ;
$$

or, expanding,

$$
\omega f_{0}\left(g_{2}+\omega\right)-\omega f_{2} g_{0}=0
$$

This can only be satlsfied for all ralues of $\omega$ if $f_{0}=0$ and if

$$
f_{2} f_{0}=0 .
$$

To determine whether $g_{0}$ can be zero, tre lave the equatiode

$$
\begin{aligned}
& \frac{d \mathrm{X}}{d \eta^{\prime \prime}}=g_{0} \mathrm{Y} \\
& \frac{d \mathrm{Y}}{d \eta^{\prime \prime}}=f_{1} \mathrm{X} \\
& \frac{d Z}{d \eta^{\prime \prime}}=f_{2} \mathrm{X}+g_{2} \mathrm{Y} .
\end{aligned}
$$

It can be shown that if $g_{0}$ were zero then we should have 2 capable of indefinite increase; and hence we see that $f_{2}$ must be zero, so that the three equations have the form

$$
\begin{aligned}
& \frac{d \mathrm{X}}{d \eta^{\prime \prime}}=g_{0} \mathrm{Y} \\
& \frac{d \mathrm{Y}}{d \eta^{\prime \prime}}=f_{1} \mathrm{X} \\
& \frac{d \mathrm{Z}}{d \eta^{\prime \prime}}=g_{2} \mathrm{Y}
\end{aligned}
$$

Let us now see whether these equations will fulal the necessars; condition for a rotation $\psi$. If

$$
\begin{aligned}
& \frac{d X}{d \psi}=\frac{d X}{d \eta^{\prime}}+\frac{d X}{d \eta^{\prime \prime}} \\
& \frac{d Y}{d \psi}=\frac{d Y}{d \eta^{\prime}}+\frac{d Y}{d \eta^{\prime \prime}} \\
& \frac{d Z}{d \psi}=\frac{d Z}{d \eta^{\prime}}+\frac{d Z}{d \eta^{\prime \prime}},
\end{aligned}
$$

we shall then hare by substitution

$$
\begin{aligned}
& \frac{d X}{d \psi}=0+g_{0} Y+\nu_{v} Z \\
& \frac{d Y}{d \psi}=f_{1} X+0+\nu_{1} Z \\
& \frac{d Z}{d \psi}=a_{2} X+g_{2} Y+0 .
\end{aligned}
$$

But, if this is to represent a rotation,

$$
f_{1} g_{:} v_{0}+a_{2} g_{0} v_{1}=0 .
$$

As this is always to be true, even suppose $g_{00} f_{1}$, and $g_{2}$ for instance were multiplied by a conmon factor, it is plain that we must have

$$
\begin{aligned}
& f_{1} g_{2} \nu_{0}=0 \\
& a_{2} g_{0} \nu_{1}=0 .
\end{aligned}
$$ neither of the other possible solutions is admissible if the coordinates are to be presented from indefinite increase. In a similar way the second condition requires that $\nu_{1}$ must be zero.

Resuming row the three groups of equations, they are as follows:-

$$
\begin{aligned}
& \frac{d X}{d \eta}=0 \quad, \frac{d X}{d \eta^{\prime}}=\nu_{0} Z, \frac{d X}{d \eta^{\prime \prime}}=g_{0} Y \\
& \frac{d Y}{d \eta}=-\omega Z, \frac{d Y}{d \eta^{\prime}}=0, \frac{d Y}{d \eta^{\prime \prime}}=f_{2} \mathrm{X} \\
& \frac{d Z}{d \eta}=+\omega Y, \frac{d Z}{d \eta^{\prime \prime}}=a_{2} \mathrm{X}, \frac{d Z}{d^{\prime \prime} \eta^{\prime \prime}}=0 .
\end{aligned}
$$

Finslly let us suppose thast the body receives all three motions aimultancously. The resulting motion must still be a rotation, and thus we have the condition

$$
\left|\begin{array}{ccc}
0, g_{0}, \nu_{0} \\
f_{1}, 0, & -\omega \\
a_{2},+\omega, & 0
\end{array}\right|=0,
$$

$$
\begin{aligned}
& \text { Wlich when expandel gives } \\
& \omega\left(f_{1} v_{0}-\alpha_{2} y_{0}\right) . \\
& \text { It is thereiore necessary that } \\
& \qquad f_{1} v_{0}-\alpha_{2} y_{0}=0 .
\end{aligned}
$$

But, as this is honogeneous in the two component rotations inrolved, it does not follow that the scparate terms of this equation must neressarily be zero. We stanfy this conditiou by writing

$$
\begin{aligned}
& b \cdot f_{1}=-g_{0} \\
& k \cdot a_{2}=-v_{0} .
\end{aligned}
$$

Let the body next receive any displacement, $\delta \eta, \delta \eta^{\prime}$, and $\delta \eta^{\prime \prime}$, then we have in geucral

$$
\delta X=\frac{d X}{d \eta} \delta \eta+\frac{d X}{d \eta^{\prime}} \delta \eta^{\prime}+\frac{d X}{d \eta^{\prime \prime}} \delta \eta^{\prime \prime},
$$

with sumilar equations for $\delta \mathbb{I}$ and $8 Z$.
By substitution these cquations become

$$
\begin{aligned}
& \delta X=-\alpha_{3} k Z \delta \eta^{\prime}-k /_{1} Y^{\prime} \delta \eta^{\prime \prime} \\
& \delta Y=-\omega Z \delta \eta+f_{1} X \delta \eta^{\prime \prime} \\
& \delta Z=+\omega \eta^{\prime} \delta \eta+a_{2} N \delta \eta^{\prime} .
\end{aligned}
$$

If re multiply the first of these equations by $X$, the second by $K \cdot{ }^{F}$, and the third by $k: Z$, and add, we fiad

$$
\begin{aligned}
& X \delta X+k Y \delta Y+k Z \delta Z=0 \\
& X^{2}+2 \cdot Y^{2}+Z Z=\text { const. }
\end{aligned}
$$

or
Here me have attsincl tho fundamental property which the coordinates must satisfy. If $h$ be equal to unity then we have the well-known coadition of ordinary spaco and ordinary rectangulat coordinates, but it will be seen that there is nothing in the preceding investigation to make it necessary that $z$ should be unity. There are therefore a singly infinite variety of spaces in which it is nossible for a rigid body to be displaced. The different values of it thus correspond to the different "eurvatures" which a space might have while it still retained the fundamental property which is necessary for measurement by congruence.

It will now be proper to study the special eharac. teristics of the space with which we are familiar. It has been called flat space or homaloidal space to distinguish it from onder spaces in which the curvature is not zero. It is manifest that the characteristic features of our space are not necessarily implied in the general notion of an extended quantity of three dimensions and of the mobility of rigid figures therein. The characteristic features of our space are not necessities of. thought, and the truth of Euclid's axioms, in so far as they specially differentiate our space from other conceivable spaces, must be establisbed by experience and by experience only.

The special feature of our space, by which it is distinguished from spherical space on the one band and psendospherical space on the other hand, depends upon what Riemann calls the measure of curvature. If the sum of the three angles of a triangle is to be two iight angles, and if the geometrical similarity of large figures and small figures is to be possiblc, then the measure of curvature must be zero. Now all measurements that can be made seem to confirm the axiom of parallels and seem to show the measure of curvature of our space to be indistinguishable from zero.

It can be proved that the amount by which the three angles of a triangle would differ from two right angles in curred space depends upon the area of the triangle. The greater the area of the triangle the greater is the difference. To test the famous proposition, Euclid i. 32, it will therefore not be sufficient to measure small triangles. It might be contended that in small triangles the difference between the sum of the three angles and two right angles was so small as to be inextricably mixed up with the unavoidable errors of measurement. Seeing therefore that small triasglos obey the law, it is necessary to measure large triangles, and the largest triangles to which we bave access are, of course, the triangles which the astronomers hare found means of measuring. The largest available triangles are those which have the dianceer of the earth's orbit as a base and a fixed star at the vertex.". It is a rery curious
|circumstance that the investigations of annual parallas of the stars are preciscly the investigations which mould be necessary to test whether one of these mighty triangles had the sum of its three angles equal to two right angles. It must be admitted that the parallax-seeking astronomers have never yct found any reason to think that there is any measurable differonce. If there were such a difference it would probably be inextricably mixed up with the annual parallex itsclf. Were space really pseudospherical, then stars would exbibit a real parallax even if they werd infinitely distant. Astronomers have sometimes beer puzzled by obtaining a negative parallax as the result of their labours. No doubt this has generally or indeed always arisen from the errors which are inevitable in inquirics of this nature, but if spaco were really curved then a negative parallax might result from observations which possessed mathematical perfection.

It minst, however, be remembered that even the triangles of the parallax investigations are utterly itsignificant when compared with the dimensions of space itself. Even the whole visible universe must be only an unconceivably small atom when riewed in its true relation to infinite space. It may well be that even with the parallax triangles our opportunities of testing the proposition are utierly inadequate to pronounce on the presence or absence of curvature in space. It must remain an open question whether if wo had large enough triangles the sum of the three angles would still be two right angles.

Felmboltz illustrates the subject by considering tha representation of space which is obtained in a spleerical miroor. A mirror of this kind represents the objects in front of it in apparently fixed positions behnd the mirror. The images of the sun and of other distant objects will lie bebind the mirror at a distance equal to its focal length, or, to quote the description of Helmholtz-
"The image of a man measuring with a rule a straiglit line from the mirror would contract more and more the farther lic went, but with his shrunken rale the man in the image would count out eractly the same number of ceutimetres as the real man. And in general all geometrical measurements of lines or angles made with regularly rarying imagers of real instruments would yield exactly the same results as in the outer world. All congritent bodies woulhl coincide on being applied to one another in the mirior as in the onter world. All lines of sight in the outer morld would be represented by straight lines of sight in the mirror. In slutt I do not see how men iu the mirror are to discover that their bodics are not rigid solids and their experiences good examples of the correctnes of Fuclid's axioms. But if they could look out upon our trorld as we can look into theirs, without overstepring the boundary, they must deelare it to be a picture in a spherieal mirror, and would speak of us just as we speals of them; and If two inhabitants of the different woilds could communicate with one anotler, neither so far as I can see wonld be able to convineo the other that he bad the true, the other the distorted relations. Indeed I cannot sec that such a question would have any meanines at all so long as mechawical considerations are not mixcd up with it."

A very important contribution to this subject has been made by Professor Simon Newcomb, entitled "Elementary Theorems Pelating to the Geometry of a Space of Three Dimensions and of Uniform Positive Curvature in the Fourth Dimension," sec Jour. f. d. reine und angeuandte Math., vol. Ixxxiii., Berlin, 1877.

## He commences by assuming the three follorint postulates:-

1 wThat space is triply extended, unbounded, without properties dependent either upon position or direction, and possessing sueh planencss lin its smallest parts that loth the postulates of the Fuclidesn geometry and our common coneeptions of the relations of the parts of space are true for cerery indefinitely sumall region in space."
2. "That this space is affected with sueh curvaturc "lant a right line shall always return into itself at the end of a finite and real distance 2D without Iosing in any part of its course that symmetry witl respeet to space on all sides of it which coustitutes tbe fundamental property of our conception of it."
3. "That if two right lines emanate from the same pont making the indefinitcis small angle a with each other, their distance apat
of the distance $r$ from the point of intersection will be giren by the equation:

$$
s=\frac{2 a \mathrm{D}}{\pi} \sin \frac{r \pi}{2 D} .
$$

Newcomh also assumes that two straight lines intersect only in a single point. He defines a "completeright lino" as one returning into itself, as supposed in postulate 2. Any small portion of it is to be conceived as a Euclidean right line. The locus of all conplete right lines passing throngh the same point and touching a Euclidean plane through that point will he called a "complete plane."
A "region" will mean any indefinitely small portion of space in which we are to couceive of the Euclidean geometry as holding true.
Newcomb then proceeds to demonstrato the following propositions.

1. All complete nght lines aro of the same length 2 D . Hence D is the greatest possible distance at which the points can be situated, it heing supposed that the distance is measured on the line of least ahsolute length:
2. The complete nlane is a Euclidean plane in every region of its extent.
3. Every system of right lines passing through a common point $A$ and making an iddefinitely small angla with tach other are rarallel to each other in the region $A^{\prime}$ at distance $D$.
IV. If a system of right lines pass in the same plane through a the locus of their most distant points will be a complete right line.
I. The locus of all the points at distance $D$ from a fixed point A is a complete plane, and indeed a double plane if we consiler as distinct the coincident aurfaces in which the two opposite lines meet.

Yi. Conversely, all right lines perpendiculer io the same complete plane mett in a point at the distance $D$ on each side of the jhlane.
VII. For every complete right line there is a conjugate complete right line such that every point of the one is at distance $D$ from every point of the o:her.
VIII. Any two planes in space hava as a common perpendicular the right line joining their poles, and iatersect each other in the conjugate to that riglit line.

1X. If a system of right lines pass through a point, their conjagates will be in the polar plane of that point. If they also be in the same plane the cenjugates will all pass through the pole of that plane.
X . The relation between the sides $a, b, c$ of a plane triangle in curved space and their opposite angles $A, B, C$ will be the sance as in a Euclidean spherical triangle of which the corresponding sides are $\frac{a \pi}{2 D}, \frac{b \pi}{2 D}, \frac{c \pi}{2 D}$.
XI. Space is finite, and its total volume admits of being definitely expressed by a aumber of Euclidear solid units which is a function of $D$.

## XII. The total rolume of space is $\frac{8 \mathrm{D}^{3}}{\pi}$.

XIII. The tro sides of a complete plane are not distinct, as in a Eaclidean surface.
XIV. If moving along a right line we erect an indefinite series of perpendiculnrs each in the sama Euclidean plane with the ona Which preceles it, thon on completing the line and returning to our atarting point, tho perpendiculars will bo found pointing in a diroctien the upposito of that wish whieh we started.

Newcomb concludes thus: "It may bo also semarked that there is nothing within our experience which will justify a denial of tha possibilizy that the space in which we find ourselves moy be curved In the manner here anpposed. It nitht bo clained that the distance of tho farthest visible star is but a small fraction of the greatest distance D, but nothing more. The subjective impossibility of conceiving of the relation of the most distant points in such a appaco does not render its existence incredible. In fact our dificulty is not unlike that which must have been felt by the first man to whom the idea of the sphericity of the earth was suggested in conceiving how by travelling in a constant direction he could return to the point from which ho started without during his journey feeling eny sensiblo change in the direction of gravity."
A sketch of tho non-Euclidean geometry is given by Professor (t. Chrystal in tho Proc. Roy. Soc. Edin., vol. X., session 1879-80. The stuly of this papor is reeommended to nll who desire to atudy the elements of what hes been called "pangeometry." A more extensive work, which contains the theories of Riemanna and Melmholtz, is J. Frischaufs Elemente der absoiulen Giometrie, Leipsie, 1876.

A fundamental step in the abstmet theory of measurement was taken by Profcssar Cayley in his "Sixth Memoir upon Qurntics," Philosophical Transactions, vol. exlix. (1859). The thcory thus originated by Caylcy has been
more fully developerl by Klein in his memoir "Eicber dio nicht-Euclidische geometrie," Mathematrsche Annalen, vol. iv. p. 573. We shall here eater into this theory iu somo detail, for in it lies the true foundation of geometrical measurement. A sketch of the thenry was given by the author of the present article in IIermathena, No. vi. po 500-541, Dublia, 1879.

This theory may be regarded merely as a more generalized method of measuring distances and angles in ordinary space, but the results to which it leads are in many respects identical with those to which we are conducted by the theory just discussed. For instance, Newcomb's principle as to the length of the shortest distance between two points never exceeding a certain magnitude is common to his theory and to Cayley's. The theory of Cayley has, however, clains on our attention of a special kind. We here deal with the space with which Euclid has made us familiar, only observing that it is the measurements in that space which are to be conducted on a more general principle.

We commence by assuming the existence of a certain surface called the "fundamental quadric," often called "the absolute." By the aid of this quadric and an arbitrary constant $c$ we determiue the generalized distance betwecn the points in accordance with the following definition:The distance between two points is equal to ctimes the logarithm of the anharmonic ratio in which the line joining the two points is divided by the fundamental quadric.

Let us first test this theory by a very obvious prineiple which any theory of distance ought to fulfil. It is plain that, it P, Q, R be three collinear points, then in ordinary measurement we ought to have

$$
P Q+Q R=P R ;
$$

but it is casy to soe that this condition is fulfilled in the generalized measurement. Let the line $P Q$ cut the fundamental quadric in the two points $X$, " ${ }^{\text {, then we have }}$

$$
\begin{aligned}
& \mathrm{PQ}=c \log (P X \div P Y)-c \log (\mathrm{QX} \div \mathrm{QY}) \\
& \mathrm{QR}=c \log (\mathrm{QX} \div \mathrm{QY})-c \log (\mathrm{KX} \div \mathrm{RY}) \\
& \mathrm{PR}=c \log (\mathrm{PX} \div \mathrm{PY})-c \log (\mathrm{RX} \div R Y) ;
\end{aligned}
$$

whence, as in the ordinary measures,

$$
\mathrm{PQ}+Q \mathrm{R}=\mathrm{PR}
$$

It is also obvious that ir the generalized as in tho ordinary measures

$$
(P Q)=-(Q P),
$$

and that the distance between the coidcident points is cound to zero.
From an obvious property of logarithms we also learn the important fact that the generalized distance between tho points is indeterminate to the extent of any integral number of tho periods 2ciт.
The distance from any point to its harmenic conjugate rith respect to the two fundamental points is equal to cim. We thus see that the distance between any two harmonic conjugntes is constant. It is usual to make the arbitrary constant $\varepsilon$ equal to $-i \div 2$, in which ease we see that the distance between the two harnonic conjugates is equal to $\pi \div 2$. It can nlso be slown that. if the tro absolute points on a right line coalesce, then the geaernlized system of measurement degrades to the ordinary system. The two absoluto points aro at as infinite distance from every other point, so that in the generalized system of measurement every right line has two points at infinity, and in general all the points in spaco which lie at infinity are situated on the fundamental quadric.

In ordinary geometry we define a circle to be the locus of a point which is at a constant distance from a given point. In the moro generalized geometry wo retain the saino definition of the circle, only observing that the distance to bo constant must bo expressed in the generalized manner. Tho plane of course cuts the absolute in a conic soction, so that the determination of the circlo whose centro is C is the following problem in conic sections:-Through a fixed point O a straight line OP is drawn which cuts a given conic in the points $X, Y$; determine the locus of $P$ so thot the anbarmonic ratio ( $\mathrm{O}, \mathrm{P}, \mathrm{X}, \mathrm{Y}$ ) shall renain constant.
This problem is most readily solved by projecting the conic inta a circle the centre of which is tho projection of $O$. The problem then assumes the rery siople form. On tho diameter of a fixed circle a point $P^{\prime}$ is taken so that the anhormonic ratio of the four points cansisting of $\mathrm{P}^{\prime}$, the centre $\mathrm{O}^{\prime}$, and the two points in which tho liae O'P' cuts the circle remains forstant. It is required to dind
the locus of $1^{\prime \prime}$. The solution is obvious, and hence we learn that a conic which has double contact with the fundamental conic is a circle in the generalized sensc, sud the centre ot that circle 18 the pole of the chord of contact.

A systen of couics which have double contact with the furdamental conic in the same two points form a system of concentric circles, and the centre of the system is the pule of the chord of contact. We are accustomed in ordinary geumetry to adout that every circle passes through the two imngmary ciccular notots at infinity. This is the specialized form of the general theorem which asserts that every circle has double contact with thie fuadameutal come The two theorems indeed coincide if the fundamental cumte degrades to the infinity of ordinary measurement.

A critical case is presented wher the chord through 0 coincides with either of the trio tangents which may be drawn from 0 to the fundamental conc. The two fundamental pounts then concide, and hence the distance between any tro pointa on a tangent to the fuodamental come is equal to eero. We have thus the curnons result that in every system of concentric circles, including even the fundamental conic itself, the two points common to the system of circles are at the distance zero from the centro of the system. In fact the pair of tangents from the centre niay be regarded as a conte having double contact with the fundamental conic, and therefore forming one of the circles of the concentric system of which the radius is zero.
The reader will at once perceive the analogy to a well-known phenonienon in ordinary geometry. The equation in rectangular coordinates

$$
x^{2}+y^{2}=0
$$

denotes cilher a circle of which the radius is zero or the pair of lines

$$
x \pm \sqrt{-1} y=0
$$

in the latter we are obliged to admit that the distance of any pont on either of these lines from their intersection is equal to zero.
We have now to consider the displacement of a rigid figure, and we shall for the present apeak only of a plane roovement. Wo ahall first show that it is possible for a plane figure to receive such a displacement that the distance between every two points in the figure after the displacement is equal to what it was before.

Let $x, y, z$ be the trilinear coordinates of a point in a plane, and suppose that $x^{\prime}, y^{\prime}, z^{\prime}$ are tho coordioates of the poaition to which this point is transfersed in accordance with the linear transformation

$$
\begin{aligned}
& x=a x+b y+c z \\
& y^{\prime}=a^{\prime} x+b^{\prime} y+c^{\prime} z \\
& z^{\prime}=a^{\prime \prime} x+b^{\prime \prime} y+c^{\prime \prime} z .
\end{aligned}
$$

There are in general three points in the plaze which are not altered by this transformation ; for, if we assume

$$
x^{\prime}=p x, \quad y^{\prime}=p y, \quad z^{\prime}=\beta z,
$$

We have for $\rho$ the cubic equation

$$
\left|\begin{array}{ll}
a-\rho, b & c \\
i^{\prime} & , b^{\prime}-\rho, \\
a^{\prime \prime}, & b^{\prime \prime} \\
c^{\prime \prime} & c^{\prime \prime}-p
\end{array}\right|=0 .
$$

The three valnes of $\rho$ which satisfy this equation determine the coordinates of the three peints. It is natural to take the sides of the triangle formed by these three points as the three lines of refer. ence, in which case, it a, $\beta, \gamma$ be constants, the system of equations essume the simple form

$$
x^{\prime}=a x, \quad y^{\prime}=\beta y, \quad z^{\prime}=\gamma z .
$$

It is easily ahown that four collinear points before the transformation are collivear after the transformation, and that their anharmonic ratio is unaltered.
This general form of linear transformation must be specialized in order to represent the movement. As no finite movement can either bring a point to infinity or from infinity, it is obvious that the displacement must be such as to leave the fundamental conic unaltered. It is easily seen that the specification of the transformation in its general form requires eight constants; riz., the ratios of the nine quantitics $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}, a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}$. We may imagine five of these constants to be disposed of by the provision that the conie shall remain maltered. There will still remain tbree disposable constants to give variety to the possible displacements.

Although the fundamental conic will coincide with itself after the transformation, yet it gencrally happens that each point thereon will slide along the conic during the transformation. It is, however, very important to observe that there are two exceptions to this statement.
Let $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ be four points upon the fundamental conic which by travsformation move in to the positiona $O^{\prime}, \mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$. If OX be pas of the double rays of the systems $\mathrm{OA}, \mathrm{OB}_{3} \mathrm{OC}$ and $\mathrm{OA}^{\prime}, \mathrm{OB}^{\prime}$.
$O C^{\prime}$, and if we usc the ordinary notation for auharmonic pencils, then we have

$$
O(A, B, C, X)=O\left(A^{\prime}, B^{\prime}, C^{\prime}, X\right)
$$

But tho anlarmonic ratio subtenderl by four points on a conic at any fifth point is coustant, whence

$$
O\left(A^{\prime}, B^{\prime}, C^{\prime}, X\right)=O^{\prime}\left(A^{\prime}, B^{\prime}, C^{\prime}, X\right)
$$

and therefors

$$
O(A, B, C, X)=O^{\prime}\left(A^{\prime}, B^{\prime}, C^{\prime}, X\right)
$$

Suppose the transformation moved X to $\mathrm{X}^{\prime}$, then since the anbarmonic ratio of a pencil is unaltered by transformation we have

$$
O(A, B, C, X)=O^{\prime}\left(A^{\prime}, B^{\prime}, C^{\prime}, X^{\prime}\right) ;
$$

whence

$$
O^{\prime}\left(A^{\prime}, B^{\prime}, C^{\prime}, X\right)=O^{\prime}\left(A^{\prime} B^{\prime} C^{\prime} X^{\prime}\right)
$$

but this can only be true if the rays $O^{\prime} X$ and $O^{\prime} X^{\prime}$ are coincident, in which caso $X$ and $X^{\prime}$ are coincident, whence it follows that tho point $\lambda$ his remained unaltered notwithstanding tho transforma: tion. Similar reasoning applies io the point $Y$ debincd by the other double ray, and hence we have the following theorem:-
In that lincar transformation of the points in a plane whicic anstatutes a gencralizad movement, there are two points ation the jundamental conuc which remain unchanged.

It also follows that the tangents to the fundamental conic at tho points $X$ and $Y$, as well as the chord of contact, must remain unaltered. These two tangents and their chord of contact must therefore form the triangle of reference to which we were previously conducted by the general theory of this transformation.

It will now easily appear how a transformation of this kind is really a displacement of a rigid plane. The distance between cacla pair of points is expressed by an anharmonic ratio; such ratios are nachanged by the transformation, and the two points which lay on the absolute originally are also there after the transformation. It therefore appears that the distance in the generalized sense betwen every pair of points is unchanged by the transformation. In other words, a rigid system will admit of a displacement of the kind nors under consideration.

If we denote the tro tangents at the unaltered points on the conice by $x \propto 0, y=0$, and the chord of contact by $z=0$; then the equation to the absolute is

$$
x y-\Sigma_{2}^{2} z^{2}=0 .
$$

Transforming this equation by the substitution

$$
x^{\prime}=\alpha x, \quad y^{\prime}=\beta y, \quad z^{\prime}=\gamma^{2},
$$

we see that the condition $a \beta=\gamma^{2}$ must be fulfilled.
It is very remarkable that the fundamental conic is ouly ono of a family of couics, each of which remains unaltered by the transformation. In fact every generalized circle of which the intersection of the two tangents is the centre has for its equation $x y-h^{\prime} z^{3}$; and, whatever $h$ may be, this circle remains unaltered by the transformation. Hence we have the following remarkable theoren:-

When a plane rigid system is displaced upon itself there is one point $O$ of the systcm which remains unaltcred, and all the cirelcs uchich have 0 as their ecntre remain unaltered also.

It is quite natural to speak of this motion as a "rotacion," sad thus we may assert the truth in generalized measurement of the well-known theorem in ordinary gcometry that

Every displacement of a plane upon atself could have becn produceed by a rotation of the plane around a ccrtain point in the plane.

Notwithstanding the rotation of the plane ronnd $O$, the two tangents from O to the iundamental conic and also their chord of intersection, or the polar of 0 , remain unaltered; each point on the polar of O is displaced along the polar, and we would in ordinary geometry call this motion a translation parallel to the polar. It thus appears that, in the sense now attributed to the words rotation and translation, a rotation round a point is identical with a translation along the polar of the point.

Another point on which the present ineory throws light on tho ordinary geometry must be here alluded to. We have seen that the two tangents from 0 to the fundamental conic remain unchanged during the rotation of the plane round 0 . It certainly does seem paradoxical to assert that a plane, and all it contains are rotated around a point, and that nevertheless this operation does not altcr the position of a certain pair of lines in the plane which pass through the point. But have we not precisely the same difficulty in ordinary geonictry? Let us suppose that a plane pencil of rass is rotaicd tbrough an angle $\theta$ about the origin. Then a line through the origin whose equation before the rotation was

$$
x+h y=0
$$

becomes after the rotation

$$
x \cos \theta+y \sin \theta+h(y \cos \theta-x \sin \theta)=0 \ldots
$$

The lines thus represented are of course in general different, but they will be the same if

$$
1+\pi^{2}-0
$$

It follows that even in ordinary geometry the two lines $x \pm i y=0$ remaiu unaltered notwithstanding the rotation of the plane which
contains theur around their intersection. The tro lines here reforred to are of course those which are drawn through the two circular points at infaity. This paradox is therefore only a degraded form of the property of the tangents to the fundamental conic.

It can also be radily shown that, if a plane reccive two small rotations round two points, then the total rotation produced coutd have becn produced by a single rotation about a certain point on the tine joining the two points.

Let $A, B$ be the two points and $P$ the pole of the line $A B$, then a rotation round A will displace 13 along the line PB to an adjacent point B'. The rotation around $B$ will displace $A$ to $A^{\prime}$ along the line PA; but, if $\Lambda^{\prime} B^{\prime}$ intersects $A B$ in $O$, then a single rotation about $O$ would hare effected the required displacement of $A$ and $B$, and therefore of the whole line. For, as the point $O$ in the line $A B$ could only move by displacement into the line $A^{\prime} B^{\prime}$, while is can also only move in the direction $O P$, it must obviously remain uaaltered.

We are now in a position to inquire how the mannitude of an angle is to be expressed in the preseat system of measurement. Our definition of the magnitude of an angle must be made consistent with the supposition that when the angle is carried round by rotation about the vertex the magnitude shall remain unaltered. As anharmonic ratios are unaltered by the rotation, it follows that the anharmonic ratio of the pencil formed by the two legs of the angle and the two tangents to the fundamental conic must remain unaltered. Remembering that the tangents do not move by the rotation, it is natural to choose a function of this anharmonic ratio as the appropriate measure of an angle. The question still remains as to what function should be chosen. The student of ordinary Feometry is doubtless a ware that the angle between two lines ault iplied into $2 i$ is equal to the logarithm of the anharmonic ratio of the pencil formed by joining the intersection of the two lines to the two imaginary circular puints at infinity. This consideration suggests that the angle between the straight lines in the generalized sense may be appropriately measured by the logarithm of the anharnonic ratio of the pencil formed by the two legs of the angle and the two tangents drawn from their point of intersection to the fundamental conic. There is also a convenience in assuming the augle to be actually cqual to c times the logarithm of the anharmonic ratio, where $c$ is the same constant as is employed in the expression of the distance. In this case the angle between two lines is by a well-known theorem equal to the distanco between their poles. There is licre an analogy to a well-known theorem in spherical geometry:

It will now be obvious that, however the angle be situated, its magnitude is unchanged by any displacement of the plane; for, as we have already scen that the displacement does not alter the distance between the poles of the two lines forming the angle, it follows that the magnitude of the angle itself is unaltered.

Just as in the measurement of distance we find a pair of fundamontal points on cach straight line, so in the measurement of angles we find a pair of fundamental rays in each plane pencil. These rays are the two tangents from the vertex of the pencil to the fundamental conic. In ordiuary geometry the two fundamental points on each straight line coalesce into the single point at infnity; but it is exceedingly interesting to observe that even in ordinary geometry the two fundamental rays on each pencil do not coincide. It should also be observed that in the degraded circumstances of ordinary geometry it would be impracticable to employ the same constant $c$ for the purpose of both linear and angular measurement.

It is casy to sec that the definition of a right angle in the gencralized scnse is embodied in the statement that "if two correaponding legs of an harmonic pencil touch the fundamental conic then the two other legs are at right angles." We also see that all the perpendiculars to a given line pass through a point, i.c., the pole of the giveu line; and from a given point a perpendicular can bo drawn to a given linc by joining the point to the polo of the line. The common perpendicular to two lines is obtained by joining their poles.

The student of modern geometry is already accustomed to think of parallellines as lines which intersect at infinity, or as lines whose inclination is zero. In speaking of the generalized geometry in a plane, we may define that lwo straight lines which interscet upon the fundamental conic are parallcl. It thus followa that through any point two distinct parallels ean bo drawn to a given straight line. The nuly exception will arise in the case where the given line touches the fundamental conic. This is preciscly the ease in which the generalized system of measurement degrades to the ordinary oystem. It will follow that in the present theory of measurement the three angles of a triangle are together not equal to two right angles. In fact, to take an extreme case, we may suppose the three vertices of the triangle to lie upon the fundameatal conic. In this case each of the three angles, and therefore their sum, is equal to zero.

A sphere in the gencralized system of measurement is the locus of a piut which norea at a constant distance from a fixed peint.

It can therefore be easily shomn that a sphere is a quadric which touches the fundamental quadric aloag its intersection with the polar plane of the ceatre of the sphere.

In discussing the general case of the displacement of a rigid system it will simplity matters to suppose that the fundamental quadric has real rectilinear gencrators. It must, however, bo understood that the results are not on that account less general. A displacement must not alter the quadric, and must not deform a straight line. Hence it follows that the only effect of a displacement upon a generator of the fundamental quadric will be to convey it to a position previously occupied by a different generator. We shall further suppose that the displacement is such that the two generators to which we have referred belong to the same system. Let A, B, C, D be four gencrators of the first system which by displacemert are brought to coincide with four other generators $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$. Let $X$ be one generator of the second system which the displacement brings to $\mathrm{X}^{\prime}$. Since the anharmonic ratio of the four points in which four fixed generators of the one system are cut by any generator of the other system is constant, we must have, using an olivious notation for anharmonic ratio,

$$
X(A B C D)=X^{\prime}(A B C D)
$$

but, since anharmonic ratios arc unaltered by displacement, we have

$$
X(A B C D)=X^{\prime}\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)
$$

## whence

$$
X^{\prime}(A B C D)=X^{\prime}\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)
$$

It therefore follows that the anharmonic ratio in which four generators cut a fixed generator $X^{\prime}$ is equal to the anharmonic ratio in which the four generators after displacement cut the same generator $\mathrm{X}^{\prime}$.
If $P$ be a generator which passes throurh one of the double points on $X$ determined by the two systems of points in which $X$ is cut by the four generators before and after displacensent, we must llave

$$
\mathcal{X}(A, B, C, P)=\mathcal{X}^{\prime}\left(A^{\prime}, B^{\prime}, C^{\prime}, P\right)
$$

Neuce we $s \in z$ that the generator $\mathbf{P}$ will be unaltered by displacement. Similar reasoning applies to the generator which passes through the other double point, and of course to a pair of generators of the second system, and hence we have the following remarkable theorent :-

Tu the most general displacement of a rigid system two generators of each of the systcms on the fundamental quadric remain unaltered.
These four fixed generators are the edges of a tetrahedron. Denoting the four faces of this tetrabedron by the equations

$$
x=0, y=0, z=0, w=0
$$

the equation of the fundamental quadric is

$$
x z+h^{2} y w=0 .
$$

If the quadric be unaltered by the transformation

$$
x^{\prime}=\alpha x, y^{\prime}=\beta y_{1} z^{\prime}=\gamma z, w^{\prime}=\delta u,
$$

then we must have
$a \gamma=\beta 5$.
When this condition is satisfied, then, whatever $h$ may be, crery quadric of the family

$$
x z+h y w=0
$$

will remain unaltered,
The family of quadrics here indicated are analogous to the right - circular cylinders whieh have for a common axis the screw olong which any displacement of a rigid body in ordinary space may be effected.

The two lines
and

$$
x=0, z=0
$$

and

$$
y=0,20=0
$$

are conjugato polars with respect to the fuadamental quadric, and both these lines are unaltered by the displacement. Hence we see that in any displacement of a rigid system there are two right lines which remain unaltered, and thesc lines are conjugate polars with respeet to the furdamental guadric.

Since the pole of a plane through ono of these lines lics on the other line, it appears that a rotation of a rigid system about a straight line is identical with a translation of the system along its conjugate polar.

Clifiord has pointel out the real mature of the lines which are to be called parallel in the generalized system of measurement. We lare explained that in the plano two piarallel lines intersect upon the fundamental conic; in a certain sense also we may consider two lines in space of three dimensions to bo parallel whenever they intersect npon tho fundamental quadric. This is the view of parallel lines to which we aro conducted by simply generalizing the property that two parallel lines intersect at infiuity. But we can take a different definition of two parallel lines. Let us, for example, call two lines parallel when they admit of an ind-finitely large number of common jerperdiculars. It is exseedingly interesting
to observe that when this condition is fulfiled in the generalized systom of mensurement the parallel lines so obtained enjoy many of the properties of ordinary parallel lines. The perpendicular distance between such a pair of parallels is constant, and the angles which they make with any common transversal are equal.

It will be shown in a moment that any pair of strainht lines which intersect the same two generators of the same system on tho fundamental quadric are parallel in this new sense. The fact is that in the degraded circumstances of ordinary geometry two quite different conceptions have become confused, A pair of lines which intersect on the fundamental quadric and a pair of lines which intersect the same pair of generajors of tho snme kind on the funda. mental quadric are quito different conceptions; but when the fundamental quadric degrades to the ordinary infinity then the conceptions coalesce, and cach of them is merely a pair of parallel lines in the ordinary sense of the word. The ordinary properties of parallel lines have all their analogues in the generalized geometry, but these analogues nre distributed between the two original sources of parallels. Clifford proposes to retain tho word "parallel" in nonFuclidean space for that coaception which exhibits the more remarkable properties of ordinary space, and defines as follows :-

Straight lines which intersect the sanc two gencrators of the same system on the fundamental quadric are parallel.

Let $X$ and $I$ be two rectilinear generators of the fundamental quadric belonging to the same system, and let $A$ and $B$ be two straight lines which intersect both $X$ and $Y$. Since $A X$ and $A Y$ are tangent planes their poles inust lie on $X$ and $Y$ respectively, and therefore $A^{\prime}$ (and $B^{\prime}$ ), the polar of $A$ (and B), must intersect botll $X$ and $Y$. The anharmonic ratio of the four points in which $X$ intersects $A B, A^{\prime} B^{\prime}$ respectively is equal to that of the tangent planes drawn at the points where $X$ intersects $A^{\prime} B^{\prime}, A B$ respectively; and, as all these tangcnt planes contain $X$, their anharmonic ratio must be eqoal to that in which they are cut by the line I . It henco follows that the lines $X$ and $Y$ are divided equianharmonically by the four rays $A, B, A^{\prime}, B^{\prime}$, and therefore the four rays $A, B, A^{\prime}, B^{\prime}$ must be all generators of the samo system on an hyperboloid. An infinite number of transversals can therefore be drawn to intersect these fonr rays, that is to say, an infinite number of common perpendiculars can be drawn to the two rays $A$ and $B$, and it is easy to show that the lengtbs of all these perpendiculars are equal.

Clifford has proved the very remarkable theorem that rotations of equal amplitude about two conjugate polars have simply the effect of translating every point operated on through equal distances along parallel lines. This property leads to most important consequences, but it would lead us too far to enter into the subject at present.

A meinoir by the preseut writer on the extension of the theory of screws to space of this description will be found in the Transretions of the Royal Irish Academy, vol. xxvii. pp. 157-18t.

Units of Measurement.-A most excellent account of the units employed in scientific measurements will be found in Professor J. D. Everett's Units and Physical Constants, London, 1879. We shall here only give a very brief outline of this branch of the general theory of measurement, referring inquirers to Everett's volume for further details.
luost of the quantities for which measurements are needed can be ultimately expressed by means of (1) a definite leagth, (2) a deinite mass, or (3) a definite interval of time.

It is rery important that the units thas referred to should be chosen judicionsly, and it must be allmitted that the units ordinarily used do not fulfil the conditions which a well-chosen system of units should fulfil. The most acientific system is beyond doubt that which has been suggested by the units committee of the British Association. In this system the unit of length is the centimetre, the unit of mass is the gramme, and the unit of time is the sccond, and the system is therefore often referred to for brevity as the C.G.S. system. The unit of force is termed the dyne, and it is defined to be the force which, acting upon a gramme of matter for a sccond, generates a velocity of a centimetre per second. The unit of work is the work done by this force working through a centimetre, and this unit is termed the erg. The nnit of power is the power of doing work at the rate of one erg per second, and the power of an engine can be specified in ergs per second. By the prefixes deca, hecto, kilo, mega, we can express a magnitude equal to the unit nultiplied by 10 , 100, 1000 , or $1,0 \cdot 0,500$ respectively. On the other hand
the prefixes deci, centi, milli, micro, signify the units divided by $10,100,1000$, or $1,000,000$ respectively.

For comparison with the ordinary units the following statements will be useful. The weight of a gramme at any part of the carth's surface is abnut 980 dynes, or rather less than a kilodyne. The weight of a kilogramme is rather less than a megadyne, being about 980,000 dynes.

The application of these wnits to electrical and many otlocr measuremients will be found in Professor Everett's book already referred to. On the general principles of applinices for mueasureuent, see a paper by Clifford in the Mandbook to the Special Loan Collcetion of Scientific Apparatus, 1876 , pe. 55-59, reprinted in Clifford's Mralhemalical Papers, pp. 419-23.
(R. S. B.)

MEATH, a maritime county of Ireland, in the province of Leinster, is bounded E. by the Irish Sea, S.E. by Dublin, S. by Kildare and King's county, W. by Westmeath, N.W. by Cavan and Monagban, and N.E. by Louth. Its greatcst length north and south is about 40 miles, and its breadth east and west about 45 milcs. The total area comprises 578,247 acres, or 904 square miles.

The county forms part of the great limestone plain that occupies the central portion of Ireland. In aome districts the surface is variegated by hills and awells, which to the west reach a considerable elevation, although the general features of a fine champaign country are never lost. The coast, which is low and shelring, extends to about 10 miles, but there is no harbour of importance. The Boyne, whose banks are specially beautiful, enters the county at its aouth-west extremity, and flowing north-east to Drogheda divides it into two almost cqual parts. At Navan it receivcs the Blackwater, which flows south-west from Cavan. The Boyne is navigable for barges as far as Navan, where a canal is carried to Trim. The Royal Canal passes along the southern boundary of the county to Dublin. There are no lakes of importance.

Climate and Agriculture-The climate is genial and favourable for all kinds of crops, there being less rain than even in the neighbouring counties. The principal suhstratum is limestone, but there are some districts of clay slate. Except a small portion occupied by the Bog of Allen, the country is very verdant and fertile. The soil is principally a rich deep loam restiug on limestone gravel, but varies frum a strong clayey loam to a light sandy gravel.
The total number of holdings in 1881 was 11,867 , of which 1632 were less than 1 acre in extent, and 4300 between 5 and 15 acres. Only 93 were above 500 acres. According to the agricultural statistics for 1881, the area of arable land was 532,708 acres, or $92 \cdot 4$ per cent. of the whole area of the county, wbile 9599 acres were ander plantations, 11,260 bog and marsh, and 201 barren mountain land. Of the arable land, 60,11I were uader tillage, 85,893 meador and clover, and $3 \$ 6,374$ pasture. The following table shows the area under the different crops in 1,555 and 1882:-

|  | Wheat. | Oats. | Other Cereals. | Potatoes. | Turalps. | Other Green Crops. | Flax. | Meadow and Clover. | Total. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 185.5 | 18,764 | 86,831 | 4.836 | 12,235 | 9.904 | 4,005 | 266 | 64,646 | 108.527 |
| 1882 | 2,783 | 31,202 | 1,587 | 12,0:1 | 6,i24 | 3,109 | 59 | 82,572 | 140,097 |

Horses between 1855 and 1882 have diminished from 23,310 to 15,316 , an a verage of 2.9 to every 100 acres under cultivation, the sverage for Treland bcing 3.2. Cattle in 1855 numbered 135,485, and in 1882 had increased to 176,121 , an average of 33 to every 100 aeres under cultivation, the arerage for Ireland heing $26 \cdot 2$. Sheep in 1855 numbered 170,582 , and in 1882 only 146,749 , although in 1880 they were 174,573. Pigs in 1882 numbered 19,709, goats 639s, and poultry 318,969 .

According to the latest return the land ras divided among 1322 proprietors, who possessed 577,846 acres, with a total annual value of $£ 5 \pm 4,550$. The average size of the properties was 436 acres, and the average annual value per acre was 18s. 10d. The following four proprietors possessed more than 10,000 acres each: viz. Earl of Daraley, 21,858 acres; J. L. Naper, 18,863; Marquis of Lans: dowite, 12,995; and Lord Athlumney, 10,213.

Mamufactures. - Almost the sole industry of the county is
ggriculture, but coarse linen is woven by hand-looms, and thero are a few woollen manufactories.

Railuays. - The Dublin and Meath line intersects the colnty in a north-westerly direction, and separates into several branches, wlide the Great Western line skirts the southern boundary.

Administration and Poprention.-The conaty includes 18 baronies, 146 parishes, and 1626 townlands. Assizes are held at Trim, and quarter aessions at Dunshauglin, Duleek, Kells, Navan, and T'rim. Two poor-law unions, Navan and Trim, aro wholly within the county, and parts of Ardee, Celbridge, Droghcda, Dunshsuglin, Ellenderry, Kells, and Old Castle. It is in the Dubtin military dis. t::ict, subdistrict of Birr, with barrack stations at Navan and 'I'rian. Ecclesiastically it is in the Meath diocese, with portions in Armagh aod kilmore. Previous to the Union it sent fourteen members to parliament, but now only the two memhers for the colunty are returacd.

From 81,516 in 1760 the population in 1821 had increased to 159, 183, and in 1941 to 183,828 , but by 1851 had dimiaished to 140,768, in 1871 to 95,558 , and in 1881 to 87,469, of whom 44,315 were males and 43,154 femsles. The principal towns are Navan, 3873 ; Kells, 2822 ; and Trim, 1586. A portion of the parliamen. tary borough of Drogheda, including 933 of the inhabitants, is also within the county. The number of births in the county during tho ten years ending 3d March 1881 was 21,293, an average of $23^{\circ} \cdot 3$ to every 1000 of the population; of deaths 16,878 , an average of 18.4 ; of marriages 3165 , all average of 3.5 ; and of emigrants 10,521 , an average of $12 \%$. From lat May 1851 to 3 . March 1881 the total number of emigrants was 49,375 . Of the population five years old and upwards in 1881, 22.7 per cont. were illiterate, the percentage In 1871 being 29.9 . In 1881 there were 3531 persons able to speak lrish, but none were unable to spesk Eaglish.

IIistory and Antiquitics.-According to Ptolemy, Meath was originally inhabited by tha Eblani, whose territory extended from the Boyne to the Lifley. A district known as Meath, and including the prescat ,ounty of Meath as woll $6 s$ Westmeath and Longford, with parts of Cavan, Killare, and King'e county, wss in the $2 d$ century formed by Tuathal into a kingdom to serve as mensal land of the Ard Ré or over-king. Afterwards it was divided into Oireamhsin, now known as Mesth, and Eireamhain, which included the remaiader of the old kingdom. The district was frequently subject to invasions from the Danes; they were totally defeated at 'I'ara in 950 . About 800,000 acres, including all the present county of Meath, was granted by Heary II. to Hugh de Lacy.
The most remarkable antiquarian remains are two round towers, the one at Kells, and the other in the churchyard of Donoughmore, near Navan. At New Grange, near Slane, there is an artilicial careru of a rery peculiar construction. A large rath on Tara hill was the meeting place of the princes before the Danish invasion, and the seat of a roysl palace referred to in the vell-known lines of Moore. A stone on the top of the rath is supposed by some to be the stone of destiny where the ancient mozarchs of Ireland were crowned. Monastic buildings were very numerous, among the inore imnortant ruins being those of Duleek, which is said to have been the first ecelesiastical edifice in Ireland built of stone and mortar ; the exteasive remains of Eective ; and those of Clonand where also were a cathedral and a very famous college. Of the oic fortresses, Trim Castle on the Boyne still presents an $i_{1}$ losir.g anpearance. There aro slso many fine old mausious.

MEAUX, capital of an arrondissement, and an episcopal see, in the department of Seine-et-Marne, France, and formerly chief town of Haute Brie, is situated 28 miles east of Paris, on the Marne, which runs through the town, and on the Paris and Strasburg Railway. The cathedral, dedicated to St Stephen, dates from the 12th ceutury; its restoration was begun thirty years ago. From tho top of its western tower ( 250 feet high), in fine weather, the heights of Moutmartre and Mont Valérien, near Paris, can be scen. The building, which is 275 feet long and 105 fect ligh, consists of a nave, two aisles, a fine transcpt, a choir, and a sanctuary. The choir contains the statue and the tomb of Bossuct, and the pulpit of the cathedral has been reconstrueted with the pancls of that from whieh the "Eagle of Meaux" used to preach. The great window of the south transept contains some magnificent stained glass. The episcopal ralace, behind the cathedrul, has scveral very curions old rooms; the buildings of the choir sehool, which also adjoins the cathedral, are likewise of some architectural and archeologieal interest.

Mcaux is the centre of a considerable trado in corn, checse, eggs, and poultry ; and its mills, on the Mnrne, provide a great part of the meal with which Paris is suryliod. -The Caual de l'Oureq, which surrounds the town.
and the Marne, furnish the means of transpert. A stareh manufactory, a copper and iron foundry, and manufactories of food-pastes, of preserved vegetables, and of agricultural implements are the other principal industrial cstablishments. About a mile from the town is the sugar factory of Villenoy, which is one of the largest in France. The population of Meaux is 11,740 .

In the Roman period Mcaux was the capital of the Meldi, B small Gallic tribe. It formed part of the kingdom of Austrasia, and afterwards belonged to the counts of Vermandois and Champagae. Its communal charter dates as far back as 1179. Meaux sulfered much from the disorders of the Jacquerie, from the Hundred Years' War, and from the religious wars, during which it was an important Protestant centre. After the Leagne, it was the first town which opened its gates to Henry 1V., in 1594. Placed as it is on the highroad of invaders marching on Paris from the cast of France, Heaux saw its environs ravaged by the army of Lortaine in 1652, and was laid under heavy requisitions in 1814, 1815, and 1870.

MECCA (郑, Makka), the clief town of the Hijaz in Arabia, ${ }^{1}$ and the great holy city of Islám, is situated two camel marches (the resting-place being Bahra or Fadda in the Batn Marr), or about 45 miles, almost due east, from Jidda, on the Red Sea. ${ }^{2}$ Thus on a rough estimate Mccea lies in $21^{\circ} 30^{\prime} \mathrm{N}$. lat. and $40^{\circ} \mathrm{E}$. long.

It is said in the Koran (sur. xir. 40) that Mecea lies io a sterile valley, and the old geograpbers observe that the whole Haram or sacred territory round the city is almost absolutely without cultivation or date palms, while fruit trees, springs, wells, gardens, and green valleys are found immediately beyond. Mecea in fact lies in the heart of a mass of rough hills, intersected by a labyrinth of narrow valleys and passes, and projecting into the Tiháma or low country on the Red Sea, in front of the great mountain wall that divides the coust lauds from the central plateau, though in turn they are themselves separated from the sea by a second curtain of hills forming the western wall of the great Wady Marr. The inner mountain wall is pierced by two and only two great passes, and the valleys descending from these embrace on both sides the Mecea hills. The north-western pass, through which the Nejd traffic descends to the coast, and which also affords the easiest though longest routs from Jidda and Mecca to Taif and thence through the true Hijáz to Yemen, is the Derb el-Seil or torrent path down the well-watered Wady Marr. ${ }^{3}$ This Wady skirts the complex of Mecca hills on the north-rest from Zeima by Wády Fátima (where it is joined by the great coastroadfrom Medina andSyria) to Hadda on the Mecca and Jidda road, a distance of perhaps 50 miles. Main roads converge to Mecca from the three points of the Wady just named, the distance of the city from the last two bcing about 20 miles. From this side the most prominent of the Mecca hills is the northern "Mountain of Light" (J. Núr). The other nass, which affords a shorter mule road to Taif and the southern bighlands, but is not practicable for ordinary baggage camels, descends from the summit of J. Kara, and leads through the great W. Naimán, the Widy of the Hodheil, to the phnin beneath 'Arafa, the most

1 Higaz is here taken in the usual political sense of the word. The Turkish Wály of the lIijáz has his winter residence at Mecca and his summer quarters at Traif. In a narrower sense tha Ilijaz is the lolity mountainous country between the central platean of Nejd (or Negd, as it is called by tha natives) and the lowlands of the coast (Tihama). In this senso El-Asma'i reckons Mecca to the Tihána, and well-informed Arabs still follow him.
2 A variant of the name Makka is Bakka (sur. iii. 90 ; Bekri, 155 sq.). For other names and honoritic epitheta of the city sce Bekri, uf supra, Azraki, p. 197, Yákút, 'iv. 617 s\%. Tho lists are ia part cer. rupt, and some of the names (Kitha and "Arsh or 'Ursh, "the buts") are not properly aames of the town as $n$ whole.
${ }^{3}$ The upper part of this wady lias two branches, W. Leimún and W. Nakhln. In the latter lic the gardens of Sola and the village of Zeima wilh its great hot spriog (comp. lókút, iij. 197). Above Zcima the path is desert
easterly of the holy sites connected with Mecar. From this point a tolerably level route skirts the Mecca lills on the south, passing very close to Mecca under the opposite side of J. el-Thaur, is joined or crossed by several roads from the south, ineluding the great lowland Yenier road, and ultimately falls inte the road from Mecca to lladada, a little beyond the pillars that define the Haram. The broad valleys through which this southern road leads are not so well watered as W. Marr, but have several fertile spots and a good deal of land cultivable after rain. ${ }^{1}$ From this description the importance of the situation of Mecea will be easily puderstood." It commands both the great routes coonecting the lowlands with central Arabia, and thus has the advantage over Taif, its former commercial rival, which lies indeed on the inland mountain road from Yemen to Nejd behind Mount Kara, but has no ready counexion with the Tihima. Necca, on the contrary, though apparently secluded in its hills from the main valleys- it is in fact not visible from any point till one is quite close to the tomu-lies in the focus of all the great roads from north to south or from the coast inland, with the single exception of the mountain road behind Kara; and the low passes that intersect the Mecea hills form a series of practicable short cuts connecting all the chief noints of the circle of valleys already described. ${ }^{2}$
Holding this position, and situated in a narrow and barren valley quite incapzble of supporting an urban population, Mecca must have been from the first a commercial town. ${ }^{3}$ In the palmy days of South Arabia it was probably a station ou the great incense route, and thus Ptolmy may lave learued the name, which he writes Makoraba. At all events, long before Mohammed we End Mecca established in the twofold quality of a comzercial centre and a privileged holy place, surrounded by on inviolable territory (the Haram), which was not the Eanctuary of a s::?gle tribe but a plaee of pilgrimage, where seligions observances were associated with a series of ennual fairs at difierent points in the vicinity. ${ }^{4}$ The combination of commerce with religion was no unusual thing in Arabia. Of old the incease trade haả its religions features, and indeed in the unsettled state of the country commerce was possible ouly under the sanctions of religion, and through the provisions of the sacred truce which prohibited war for four months of the gear, three of these being the month of pilgrimage, with those immediately preceding and following. The first of the series of fairs in which the Meccans had an interest was at 'Okéz on the easier road between Mecca and Taif, where there was also a sanctuary, and from it the visiters, drawn from tribes far and near, moved on to points still nearer Mecca (Majanna, and finally Dhu'l-Majáz, on the flank of J. Kabkab behind 'Arafa) where further fairs were held, ${ }^{5}$ culminating in the

[^239]special religious ceremones of the great feast at 'Arafa Kizah (Nozdalifa), and Mecea itself. The system of inter calation in the lonar calendaroof the leathen Arabs was designed to secure that the feast should always fall at the time when the hides, fruits, and other merchandise were ready for market, ${ }^{6}$ and the Meccans, who knew how to attract the Bedouins by profuse and systematic hospitality, bought up these wares in exchange for imported goods, and so became the leaders of the international trade of Arabia. Their caravans traversed the length and breadth of the peninsula. Syria, and especially Gaza, was their chief goal, and we read that the Syrian caravan intercepted, on its return, at Ijedr represented capital to the value of む20,000, an enormous sum for those days.?

The vietory of M fohammedanism made a vast clange is the position of Mecca. The merehant aristocracy became satraps or pensioners of a great empire; but the seat of dominion was removed beyond the desert, and though Mecca and the Hijazz strove for a time to maintain political as well as religious predommance, as will be related under Moifammedan Eapire, the struggle was vain, and terminated on the death of Ibn Zubeyr, the Meccali pretendant to the caliphate, when the city was taken by Hajjaj ( 692 A.D.). On the other hand, the sanctuary and feast of Meeca received a new prestige from the victury of Islam. Purged of elements obviously heathenish, the $\mathrm{K} \mathrm{K}^{i}$ ba (Caaba) became the holiest site, and the pilgrmage the most sncred ritual observance of Mohammedanism, drawing worshippers from so wide a circle that the confluence of the petty traders of the desert was no longer the main feature of tho holy season. The pilgrimage retained its importance for the commercial wellbeng of Mecca; to this day the Meccana live by the Hajj-letting rooms, acting as guides and cirectors in the sacred ceremonies, as contractors and touts for land and sea transport, as well as exploiting for their own advantage the many benefactions that flow to the holy city; while the surrounding Dedouins derive a chief part of their support from the cameltransport it demands and from the subsidies and gifts by w..ich they are engaged to protect or abstain frum molest. ing the pilgrim caravaus. But the ancient "fairs of heathenism" were given up, and the traffic of the pilgrin season, sanctioned by the Prophet in sur: ii. 194, was concentrated at Miná and Mecca, where most of the pilgrims still lave something to buy or sell, so that Miná, after the sacrifiee of the feast day, presents the aspect of a luge international fancy fair. ${ }^{\text {a }}$ In the Middle Ages this trade was much more important than it is now. Ibn Jubair in the 12 th century describes the mart of Mecca in the eight days following the feast as full of gems, unguents, precious drugg, and all rare merchandise from India, 'Irák, Khorásán, and every part of the Moslem world. ${ }^{9}$
Mecea, as has been already indicated, lies in a narrow sandy valley running approximately from north to south between the Red Mountain on the west and the loftier chain of J. Abu Kobeys on the east. These ranges, which are partly built on and rise several hundred feet above the valley, so enclose the city that the ancient walls only barred the valley at three points, where three gates led into the town. In the time of Ibn Jubair the gates still stood though the walls were ruined, but now the gates have only left their names to

Bekri, p. 66I. Jelel Kabkah is a great monntain occapying the aagle between W. Na'mán and the plain of 'Arafa. The peak is due north of Slieddád, the hamlet which Burcklardt (i. I]5) calls Shedad. According to Azraki, p. 80, the last shrime visited was that of tho three trees of 'Uzrat in W. Nakhla.
\& So we are told by Bírúni, p. 62 (E. T., p. 73).
7 Wákidi, cd. Kremer, pp. 20, 21 ; Muh. in Med., p. 39.
${ }^{6}$ The older fairs were not entirely deserted till the troubles of the last days of the Omayyads (Azraki, p. 131).

9 Ibn Jubsir, ed. Wright, n. 118 sq:
quarters of the town. At the northern or upper eud was the Bab el Ma'lí, or gate of the upper quarter, whence the road continues up the valley towards Miná and 'Arafa as well as towards Zeima and the Nejd. Beyond the gate, in a place called the Hajún, is the chief cemetery, said to be the resting-place of many of the companions of Mohammed. Here a cross-rond, running over the hill to join the main Merina road from the western gate, turns off to the west by the pass of Kada, the point from which the troops of the Prophet stormed the city (A.II. 8). ${ }^{2}$ Here too the body of Iba Zubeyr was lung on a cross by Hajjaj. The lower or soothera gate, at the Masfala quarter, opened on the Yemen road, where the rain-water from Mecca flowa off into an open vallcy. Beyond, there are mountains on both sides; on that to the east, commanding the town, is the great castle, a fortress of considerable strength. The third or westera gate, Báb el-Omra (formerly also Báb elZáhir, from a village of that name), lay almost opposite the great mosque, and opened on a road leading westwards round the southern spurs of the Red Mountain. This is the way to Wady Fatima and Mediua, the Jidda road branching off from it to the left. Considerable suburbs now lie outside the quarter named after this gate ; in the Middle Ages a pleasant country road led for some miles through partly cultivated land with good wells, as far as the boundary of the sacred territory and gathering place of the pilgrims at Tan'ím, near the mosque of "Aisha. This is the spot on the Medina rond now called the 'Omra, from a ceremonial connected with it which will be mentioned below.
The length of the sinuous main axis of the city from the furthest suburbs on the Medina road to the suburbs in the extreme north, now frequented by Eedouins, is, according to Burckhardt, 3500 paces. ${ }^{2}$ About the middle of this line the longitudinal thoroughfares are pushed aside by the vast courtyard and colonnades composing the great mosque, which, with its spacious arcades surrounding the Kába and other holy places, and its seven mibarets, forms the only prominent architectural feature of the city. The mosque is enclosed by houses with windows opening on the arcades and commanding $a$ view of the Ká ba. Immediately beyond thesc, on the side facing J. Abu Kִobeys, a broad atrect runs south-cast and north-west across the valley. This is the Masia or sacred course between the eminences of Şafí and Merwa, and has been from very early times one of the most lively bazaars and the centre of Meccan life. The other chief bazars are also near the mosque in smaller streets. The rest of the town presents no points of individual interest, but its general aspect is picturesque ; the streets are fairly spacious, though ill-kept and filthy; the houses are all of stone, many of them well-built and four or five storics high, with terraced roofs and large projecting windows as in Jidda-a style of building which has not varicd materially since the loth century (Mokaddasi, p. 71), and gains in effect from the way in which the dwellings run up the sides and apurs of the mountains. Of public institutions there are baths, ribats or hospices for poor pilgrims from India, Java, \&c., a hospital with ffty beds, a public kitchen for the poor, badly administered yy the 'Turkish authorities. A settler from India has recently set up a theological school; but the old colleges arourd the mosque have long since been converted iate lodgings. ${ }^{3}$ The miner places of visitation for pilgrims, such as the birth-places of the Prophet and his chicf fellowers, are not

[^240]notable. ${ }^{4}$ Both these and the court of the great mosque are obscrved to lie beneath the general level of the city, so that it is evident that the site of the town has been gradnally raised by accumulated rabbish. The town in fact has little air of antiquity; genuine Arab buildings do not last long, especially iu a valley periodically ravaged by tremendous floods when the tropical rains burst on the surrounding hills. The history of Mecca is full of the record of these inuadations, unsuccessfully combated by the great dam drawn across the valley by the caliph 'Omar (Kaṭb el-Dín, p. 76 ), and later works of El-MahdL. ${ }^{5}$
The fixed population of Mecca in 1878 was estimated by Assistant-Surgeon 'Abd el-Razzík at 50,000 to 60,000 ; but the naterials for an estimate are very inadequate where there is so large a floating population-and that not merely at the proper season of pilgrimage, the pilgrims of one season often beginning to arrive before these of the former season have all dispersed. At the height of the zeason the town is much overcrowded, and the entire waut of a drainage system is severcly felt. Fortunately good water is tolerably plentiful; for, though the wells are mostly undrinkable, and eren the famous Zamzam water very unwholesome and tainted. with sewage, the uaderground conduit from beyond 'Arafa, completed by Sultan Selim II. it 1571, supplies to the public fountains a sweet and light water, containing, according to 'Abd el-Razzak, a large amount of chlorides. The water is said to be free to townsmen, but is sold to the pilgrims at a rather high rate. ${ }^{6}$

Mediæval writers celebrate the copious supplies, especially of fuc fruits, brought to the city from Taif and other fertile parts of Arabia. These fruits are still famous; rice and other foreign products are brought by sea to Jidda; mutton is pleatifully aupplied from the desert. ${ }^{7}$ The industries of Mecca all centre in the pilgrimage; the chief object of every Meccan-from the notablea and sheikhs, who use their influence to gain custom for the Jidda speculators in the pilgrim traffic, down to the cicerones̄, pilgrim brokers, lodging-house keepers, and semi-mendicant hangers on at the holy places-being to pillage the risiter in every possible way. Thus the fanaticism of the Meccan is an affair of the parse; the mongrel population (for the town is by no means purely Arab) has exchanged the virtues of the Bedouin for the worst corruptions of Eastern toma life, without casting off the ferocity of the desert, and it is hardly possible to find a, worse certificate of character than the three parallel gashes on each cheek, called Tashrit, which are the customary mark of birth in the holy city. The unspeakable vices of Mecca are a scandal to all Islám, and a constant source of wonder to pious pilgrims. ${ }^{8}$ The slave trade, which still

[^241]subsists and is very dear to the Arab heart, has connexions with the pilgrimage which are not yet thoroughly cleared up; but there is no doubt that under corer of the pilgrimage a great deal of kidnapping and importation of slaves goes on.
Since the fall of Ibn Zubeyr the political position of Mecca has always been dependent on the movements of the greater Mohammedan world. In the splendid times of the caliphs immense sums were lavished upon the pilgrimage and the holy city; and conversely the decay of the central authority of Islam brought with it a long period of faction, wars, and misery, in which the most notable episode was the sack of Mecca, with circumstances of great Larbarity, by the Carmathians at the pilgrimage season of 930 A.D. The victors carried off the "black stone," which was not restored for twenty-two jears, and then only for a great ransom, when it was plain that even the loss of the palladium could not destroy the sacred character of the city. Under the Fatimites Egyptian influence began to be strong in Mecca; it was opposed by the sultans of Yemen, while native princes claiming descent from the Prophet--the Hásbimite emír of Mecca, and after them the emirs of the house of Katada (since 1202)-attained to great authority and aimed at independence; but soon after the fiual fall of the Abbasids the Egyptian orerlordship was definitively established by Sultan Bíbars (1269 A.d.). The Turkish conquest of Egypt transferred the supremacy to the Ottoman sultans (1517), who treated Mecca with much favour, and during the 16th century executed great works in the sanctuary and temple. The Ottoman power, Lowever, became gradually almost nominal, and that of the zmirs or sherifs increased in proportion, culminating under Thálib, whose accession dates from 1786. Then followed She wars of the Wahhabis (see Arabia, vol. ii. p. 260) and the restoration of Turkish role by the troops of Mohammed Ali. By him the dignity of sherif was deprived of much of its weight, and in 1827 a change of dynasty was effected oy the appointment of Ibn 'Aun. Since that time the Turkish authority has again decayed, though Mecca is still nominally the sapital of a Turkish province, and has a governor-general and a Turkish garrison, while Mohammedan law is administered by a judge sent from Constantinople. But, except within the larger towns, at which troops are stationed, the Turks are practically powerless, and the real sorereign of Mecca and the Hijizz is the sherif, who, as head of a princely family claiming descent from the Prophet, holds a sort of feudal position in the country. The dignity of sherif (or grand sherif, as Europcans usually say for the sake of distinction, since all the kin of the princely houses reckoning descent from the Prophet are also named sherifs), is often conceived as a religious pontificate, and anti-Turkish Arabs contend that if the sultan and the sherif were together in \& mosque the latter would lead the prasers as imán; but it is more correct to regard the sherif as the modern counterpart of the ancient emirs of Mecca already referred to, who were named in the public prayers immediately after the reigning caliph. This dignity long ran in the family of Hasan, son of the caliph 'All, with which the present sherifs, in spite of changes of dynasty, still count kindred. The influence of the princes of Mecca has raried from timo to time according to the strength of the foreign protectorate in the Hijaz or in consequence of feuds among the branches of the house; at present it is for most purposes much greater than that of the Turks. The latter are strong enough to hold the garrisoned towns, and thus the sultan is able within certain limits-playing off one against the other the tro rival branches of the aristocracy, viz., the kin of Ghalib and the house of Ibn 'Aun-to assert the right of desigpating or removing the sherif, to whom in turn he owes
the possibility of maintaiuing, with the aid of considerable pensions, the semblance of bis mucl-prized lordship over the holy cities. The grand sherff can muster a considerable force of freedmen and clicuts, and his kin, holding wells and lands is variona places through the Hiijáz, act as his deputies and administer tho old Arabic customary law to the Bedocins. To this influence the Hij $j$ z owes what little of law and order it enjoys. After the sherifs the principal family of Mecca is the house of Sheyb, which Lolds the hereditary custodianship of tho Ká ba.

The Great Mosque and the Kiaba.-Long before Mohammed the chief sanctuary of Mecca was the Ká ba, a rude stone building, so named from its resemblance to a monstrous astragalus or die, of about 40 feet cube, though the shapeless mass is not really an exact cube or cren exactly rectangular. ${ }^{1}$ The Ka' ba has been rebuilt more than once since Mollammed purged it of idols and adopted it as the chief sanctuary of Islám, but the old form has been preserved excent in secondary details ; ${ }^{2}$ so that the "Ancient House," as it is titled, is still essentially a heathen temple, adapted to the worship of Islám by the clumsy fiction that it was built by Abraham and Ishmacl by divine revelation as a temple of pure monotheism, and that it was only temporarily perverted to idol worship from the time when'Amr ibn Lohay introduced the statue of Hobal from Syria ${ }^{3}$ till the victory of Islam. This fiction has involved the superinduction of a new mythulogy about Abraham, Hagar, and Ishmael over the old heathen ritual, which remains practically unchanged. Thus the chief object of veneration is the ancient fetish of the black stone, which is fixed in the external angle facing S.afi. The building is not exactly oriented, but this may for convenicace be called the south-east corner. Its technical name is the black corner, the others being named the Yemen (south-west), Syrian (north-west), and 'Irák (north-east) corners, from the lands to which they approximately point. The black stone is a small dark mass a span long, with an aspect suggesting rolcanic or meteoric origin, fixed at such a height that it can be conveniently kissed by a person of middle size. It was broken by fire in the siege of 683 A.D. (not as nany authors relate by the Carmathians), and the pieces are kept together by a silver setting. The listory of this heavenly stone, given by Gabriel to Abraham, dues not conceal the fact that it was originally a fetish, the most renerated of a multitude of idols and sacred stones which stood all round

[^242]the sanctuary in the time of Mohammed. The Prophet destroyed the idols, but he left the characteristic form of worship-the tawaf, or sevenfold circuit of the sadctuary, the worshipper kissing or touching the objects of his veneration-and besides the black stone he recognized the so-called "southern" stone, the same presumably with that which is still touched in the tawif at the Yemen corner ( M uh. in Med., pp. 336, 425). The ceremony of the tawáf and the worship of stone fetishes was comunon to Mecea with other ancient Arabian sanctuaries. ${ }^{1}$ It was, as it still is, a frequent religious exercise of the Meccans, and the first cluty of one who returned to the city or arrived there under a vow of pilgrimage; and thus the outside of the Káloa was and is more important than the inside. Islím did away witk the worship of idols; what was lost in interest by their suppression has been supplied by the invention of spots consecrated by recollections of Abraham, Ishmael, and Hagar, or held to be acceptable places of prayer. Thus the space of ten spans between the black stone and the door, which is on the east side, between the black and 'Trik corsers, and a man's beight from the grouad, is called the Multuzam, and here prayer should be offered after the tawaf with outstretched arms and breast pressed against the bouse. On the other side of the door, against the same wall, is a shallow trough which is said to mark the original site of the stone on which Abraham stuod to bnild the Kaiba. Here the growth of the legend can be traced, for the place is now called the "kneading-place" (Májan) where the cement for the Ká ba was prepared. This name and story do not appear in the older accounts. Once more, on the north side of the Kaba, there projects a low semicircular wall of marble with an opening at each end between it and the walls of the house. The space within is paved with mosnic, aud is called the IYijr. It is ineluded in the theaff, and two slabs of verde antico within it are called the grares of Ishmael and Hagar, and are places of acceptable prayer. Even the golden or gilded mazab (waterspout) that projects into the Hijr marks a place where prayer is heard, and another such place is the part of the west wall close to the Yemen corner.

The feeling of religious conservatism which has preserved the structural rudeness of the Ka'ba through so many centuries did not interfere with the adoption of costly surface decoration. In Mohammed's time the outer walls were covered by a vail (or kiswa) of striped Yemen cloth. The magnificence of the caliphs substituted a covering of figured brocade, and the sultau still sends with each pilgrim caravan from Cairo a new kiswa of black brocade, adorned with a broad band embroidered with golden inscriptions from the Koran, as well as a richer curtain for the door. The aspect thus given to the Ka ba is seen in the woodeut; there are openings to show the two sacred stones. ${ }^{2}$ The door of two leaves, with its posts and lintel, is of silver gilt.

The interior of the Kaba is now opened but a few times every year; there is a great scramble for admission-the portable staircase being seldom brought forward-and a great clamour for backshish ; thus the modern deseriptions, from observations made under difficulties, are not very complete. Little change, however, seeins to have been made since the time of Ibn Jubair, who describes the floor

[^243]and walls as overlaid with richly variegated marbles, and the upper half of the walls as plated with silver thickly gilt, while the roof was vailed with coloured silk. Modern writers describe the place as windowless, but Ibn Jubair mentions five windows of rich stained glass from 'Irák. Between the thrce pillars of teak hung thirteen silver lamps. A chest in the corner to the left of one entering contained Korans, and at the 'Irák corner a space was cut off eaclosing the stair that leads to the roof. The door to this stair (called the door of mercy-Báb el-Rahma) was plated with silver by the caliph Mutawakkil. Here, in the time of Ibn Jubair, the Makám or standing-stone of Abraham was usually placed for better security, but brought out on great occasions (pp. 131, 161). ${ }^{3}$
The houses of ancient Mecca pressed close upon the Kaba, the noblest families, who traced their descent from Kosay, the reputed founder of the city, having their drellings immediately round the sanetuary. To the north of the Kába was the Dár el-Nadwa, or place of assembly of the Koreysh, where all matters of public interest were discussed. The nultiplication of pilgrims after Islám soon made it necessary to clear away the nearest dwellings and enlarge the place of prayer around the Ancient House. 'Omar, 'Othmán, and Ibn Zubeyr had all a share in this work, but the great founder of the mosque in its present form, with its spacious area and deep colonnades, was the caliph ElMahdí, whu spent enormous sums in bringing costly pillars from Egypt and Syria. The work was still incomplete a* his death in 785 A.d., and was finished in less sumptuou 3 style by his successor." Subsequent repairs and additions, extending down to Turkish times, have left little of EIMahdi's work untouched, though a few of the pillars probably date from his days. There are more than five hundred pillars in all, of very various style and workmanship, and the enclosure- 250 paces in leagth and 200 in breadth, according to Burckhardt's measurement-is entered by nineteea archways irregularly disposed.

After the Ka' ba the principal points of interest in the mosque are the well Zamzain and the Makám Ibráhim. The former is a deep shaft enclosed in a massive raulted building paved with marble, and, according to Mohammedan tradition, is the source (corresponding to the Beer-lahai-roi of Gen. xvi. 14) from which Hagar drew water for her son Ishmael. This of course is pure invention, and indeed the legend tells that the well was long covered up and rediscovered by'Abd el-Muttalib, the grandfather of the Prophet. Saered wells are familiar features of Semitic sanctuaries, and Islám, retaiuing the well, made a quasi-Biblical story for it, and endowed its tepid waters with rairaculous curative virtues. They are eagerly drunk by the pilgrims, or when poured over the body are held to give a miraculous refreshment after the fatigues of religious exercise, and the manufacture of bottles or jars for carrying the water to distant countries is quito a tradc. Ibn Jubair (p. 139) mentions a curious superstition of the Meceans, who believed that the water rose in the shaft at the full moon of the month Shai bán. On this oceasion a great crowd, especially of young people, thronged round the well with shouts of religious enthusiasm, while the servants of the well dashed buckets of water over their heads. The Makim or standing place of Abrabam is also connected with a relic of heathenism, the ancient holy stone which once stood on the Majan, and is said to bear the prints of the patriarch's

[^244]feet. The whole legend of this stone, which is full of miraculous incidents, seems to hare arisen from a misconception, the Makinn Ibrihim in the Korin meaning the sanctuary itself; but the stone, which is a block about 3 spans in height and 2 iu breadth, and iu shape "like a potter's furnace " (Ibn Jubair), is certainly very ancient. It is now corered up, and no one is allowed to see it, though the box in which it lies can be seen or touched through a grating in the little chapel that surrounds it. In the Middle Ages it was sometimes shomn, and Ibn Jubair describes the pious cnthusiasm with which he drank Zamzam water poured on the footprints. It was covered rith inscriptions in an unknown character, one of which was copied by Fikihi in his history of Mecca. To judge by the facsimile in Dozy's Israeliten te Mekka, the character is probably essentially one with that of the Syrian Şafí inscriptions, which re now know to have extended through the Nejd and into the Hiijaz?

The geveral aspect of the great mosque will be best understood by reference to the woodent, which is taken from a photograph. The pliotographer has taken his stand on a lofty building facing the black stone corner of the Ka'ba, so that house tops, with high parapets serving to protect the privacy of the romen, who spend mnuch of their time on these terraces, form too prominent a feature in the foreground, and obstruct the view of part of the cloistered area. The backgrouvd is the Red Mountain; the fort which is seen abore the torn is not the great castle but a building of the sherii Ghalib, dating from about the beginning of this century. It will be observed that at two places there are smaller cloistered courts annexed to the main
colonnade. That to the right, with a polygonal minaret, correspands to the ancient Dir el-Nadwi, which was included in the mosque by the caliph Do'tadid. The other minor court is at the Bab lbrahim. Of the two walls of the Ka'ba conccaled from view, thast to the right is the one adjoining the Hijr. The two-storied fragoda-like building facing this wall is the Makam or station for prayer of orthodox Moslems of the Mansfi rite, to which the Turks belong. The similar stations of the other orthodox sects have but one story; that of the Maliki rite is seen to the left of the lia ${ }^{\circ}$; the roof of the Hanbali station is just visible in the foreground a little to the left of the "black ".corner; the Shafíi station, which stands on the roof of the Zamzam building, is more prominent a little to the right. Between this and the Makám Hanafí rises the slender geilt spire of the white marble pulpit from which sermons arc preached on Fridays and high days. Between the pulpit and the Zamzam is the snall chapel of Abraham's stone. It does not rise high enough to be seen in the cut. The two small and ugly domes to the right of the Zamzamare the dome of 'Abbas and the dome of the Jericss. They are used as storerooms, but the former, which has its rame from the uncle of the Prophet, was formerly the drinking-place of the pilgrims. In the time of Ibn Jubair it was still used for cooling the Zamzam water. The oval part of the court next to the Iisba within the railing is paved with marble; parts of the area beyond are a!so paved, part being strern with gravel. Around the reiling a yumber of glass lamps are lighted at night.
Safi and Merva. - In religious importance these two points or "hills," connected, as we have seen, by the Mas'á, stand second only to the Nia'ba. Safá is an elevated platform surmounted by a triple arch, and approached by a flight of steps. ${ }^{2}$ It lies south-east of the Ka"ba, facing the black corner, and 76 paces from the "Gate of Șafa," which is architecturally the chief gste of the mosque. Merwa is a similar platform, formerly covered with a single arch, on the opposite side of the valley. It stands on a spur of the Red Mountain called J. Ḳuaykian. The conrse between theso two


Mecca-the Great Mosque.
sacred points is 493 paces long, and the religious ceremony called the "sa"y" consists in traversing it seven times, beginning and ending at Safa. The lowest part of the course, between the so called green milestones, is done at a run. This ccremony, which, as wo shall presently see, is part of the omra, is generally said to be porformed in memory of Hagar, who ran to and fro betreen the tro eminences vainly seeking water for her son. The ohservance, however, is certainly of pagan origin; and at one time there were idols on both the so-called hills (see especially Azraki, pp. 74, 78).

The Cercmonies and the Pilgrimagc.-Before Islam the Ea'ba was the local sanctuary of the Neccans, where they prajed and did sacrifice, where oaths were administered and hard cases submitted to divine sentence according to the immemorial custom of Semitic shrines. But besides this, as we have seen, Mecea was already a place of pilgrimage. Pilgrimage with the ancient Arabs was the fulfilment of a row, which appears to have generally terminatedat least on the part of the rell-to-do-in a sacrificial feast. A vow of pilgrimage might be directed to other sanctuaries than Meces-the technical word for it (ihlál) is applied for example to the pilgrimage to Manát (Bekrf, p. 519). He who was under such a vow was bound by ceremonial observances of abstinence from certain acts (c.g., hunting) and sensual pleasures, and in particular was forbidden to shear or comb his hair till the fulglment of the vorv. This old Scmitic usage has its close parallel in the vow of the Nazarite. It

[^245]Was not peculiarly connected with Mecca; at Táif, for example, it was customary on return to the city after an absence to present oneself at the sanctuary, and there shear the hair (Muh. in INcd:, p. 381). Pilgrimages to Dlecea were not tied to a single time, but they were naturally associated with festive occasions, and especially with the great annual feast and market already spoken of, when by extensire hospitality the citizens did all in their power to attract the worshippers who were at the same time their customers. The pilgrimage was so intimately connected with the wellbeing of DIecca, and had already such a hold on the Arabs round about, that the politic Mohammed could not afford to sacrifice it to an abstract purity of religion, and thus the old usages were transplanted into Islám in the double form of the ounra or vow of pilgrimege to Decea, which can be discharged at any time, and the hajj or pil. grimage at the great annual feast. The latter closes with a visit to the Ka'ba, but its essential ceremonies lie ontside Mecca, at the neighbouring shrines where the old Arabs gathered before the Jeccan fair.
The 'omra begins at some point outside the Haram or holy teritory, generally at Tan'im described above, both for convenience sake and because 'Aisha began the omra there in the year 10 of the Flight. The pilgrim enters the Haram in the antique and scanty pilgrimage dress (ihram), consisting of two cloths wound reund his person in a way prescribed by ritmal. His devotion is expressed in
${ }^{2}$ Ibn Jubair speaks of fourteen ateps, Aly Bey of four, Burckhardt of three. The surrounding ground no doubt has risen so that the old name "hill of Safa" is now inapplicable.
shints o) Lajve; ( a rord of obscure ongin and meaning); ne enturs the fters inosque, performs the tawal and the say with circunsta.$c e s 3$ prajers which it is unnecessary to detail, and then bas lice head shaved and resumes his common dresa. This ceremony is now gencrally combined with the linjj, or is performed by every shancer or traveller when lic enters Dleeca, and the fluam (wheh involves the acts of abstinence alrealy referred to) is assumerl at a considurable distase from the eity. But it is also juoper during one's residenee in the holy city to periom at least one oura from limitn in connexion with a visit to tho mosque ef . Aesha there. The absurd tiviality of these ntes is ill concealed by the legends of the any of Hagar and of the tawaf being first performed by Adam in insitation of the circuit of the angels nbout the thome of Cod fut in tunth the meaning of their ceremonies scems to lave been almost ablank to the Arabs hefore Lslam, whose religion had become a incte formal tradition. We do not even know to what deity the worship expressed in the tawal was properly addressed. There is a tradition that the lia'ba was a temple of Saturn (Slahrastani, p. 431); lerhaps the most distinctive feature of the slurine may be sought in tho sacied doves which still enjoy the protection of the sanetuary. Theso recall the sacred doves o[ Ascalon (Philo, vi. 200 of Richter's ed.), and sugrest Venus-worship as at least one element (comp. 1 Lerod., i. 131 ; ii1. ४; Eplir. Syr., Op. Syr., ii. 457).

To the oldiuaty pilgrina the 'wnit has become somucla nn episode of tho hajj that it is often describuri os a mere visit to the mosque of 'Aislia; a bettor coneeption of its original aignificonce is got from tho Meccan feast of the seventli month (Rajab) graphically deseribed by lun Jubair from his observations in 1184 A. D. liajab was one of the anciont sacied months, and the feast, whieh exteaded through the whole montli, and was a joyful season of hospitality and thanksgiving, 110 doubt represents the nencient feasts of Jecen more exactly than the ecremomes of the hajj, in which old usage has been overlaid by traditions and glosses of Islám. The omra was performed by crowds from day to day, especially at new and cull moou. ${ }^{3}$ The new moon celebration was noclurnal; the road to T'an'im, the Masia, ard the mosque were bralliantly illuminated; and the appearing of the moon was greeted with noisy music. A genuine old Arab market was leld, for the wild Bedouins of the Yemen mountains came in thousands to barter their cattle and fruits for clothing, and deemed that to nlosent themselves would bring dronght and cattle plague in their homes. Though ignorant of the legal ritual and prayers, they performed the tawif with cathusiasm, throwing themselves agninst the Kaba and clinging to its curtaios as a child clings to its mother. They also made a point of entering the $K a^{\circ} \mathrm{ba}$. The 29th of the month was the feast day of the Meccan women, when they and their little ones liad the lia ba to thenselves without the presence oven of the Slecybis.

The central nud essential ceremonies of the hajj or greater pilgrinage are those of the day of "Arafa, the 9 th of the "pilgrimage montli" (Dlu'l H!ijja), the last of the Arab year ; and every.Moslem who is his own master, and can comanad the neressary means, is bounl to join in these once in his life. By them the pilgrim becomes as pure [rom sin as when he was born, and gains for the rest of his life the honourable title of laijj. Neglect of other parts of the pilgrim cercinoainl may be compensnted by offerings, but to miss the "stand " (wokuf) at'Arafa is to miss the pilgrimage. "Arafa or - Arafit is a aprace artificially limited, round a smatl isolated hill carlled the Hill of Mercy, a little way outside the holy territory, on the road from Mecen to Taif. One leaving Decea after midday ean easily reacli the place on foot the semo evening. The road is first northwards along the Mecea valley end then turns eastward. It leads througle the atriggling villare of MLna, occupying a long narrow Falley (W. Miní), two to three Lours from Mecea, and thence by tho mosque of Muzdalifa over a narrow pass opening out into the flan "of Arafa, which is an expansion of the great W. Numán, through which the Taif road deseends from Mount liara. The lofty an I ruged monntains of the Ilodheyl tower over the lain on the porth sile and overshadow the little IIll of Mercy, whicle is one of those bosses of weathered granite so common in the Hijáz. 'Arafa, as we havo alrendy seen, lay quito near Dhu'l-Majiz, where, according to Arabian tradition, a great fair was held from the 1 st to the 8 tli of the pilmtimane month; ami the ceremonies from whielı tho hajj wis derived were ongimally an appendix to this fair. Now on the contrary the pilerim is expected to follow as closely as may be the movearents of the Irophet at his "farewell pilgrimage" in the year 10 of the Flight (632 A D ). He therefore leaves Mecca in pilgrian garl, on the 8th of Dhúl Iluja, ealleal the day of tarwíya (an obscure and pre-Islamic mame), and strictly speaking sloould spend the night at Dlink. It is now, liowever, elnstomary to go right on and eneanp at once at 'Arafa. The night should be spent in devotion, but the colfeo bootha do a lively trade, and songs are as conimonas prayers. Next foresoon the pilgrim is free to move abont, nud towards midday he may if he plcase hear n sernon. In tho after-

[^246]noon the esecntial ceremony berins; it consists simply in "standing " on Araia shoutirg Labbey la a ad reciting prayers and texts till sunset. After the sua is down the vast asseinblage breaks up, and a rush (technieally ifala, claf, nafr) is made in tho utmost confusio: to Muzdahfa, where the night prayer is said and the night spent. Before sunrise next mornang (the 10th) a second "stand" like that on Arafa is made for a short time by torchlight round the mosque of Muzdalifa, but before the sun is fairly up all must be in motion in the second ifiela towards Miná. The day thus commenced is the "day of sacrifice," and las fone ecremonies-(1) to pelt with seven stones a cairn (jomu) ut cl "akaba) at the eastern end of W. Miná, (2) to slay a victım at Mina and hold a sacrificial meal, part o[ the flesh being also dried and so preserved, or given to the poor, ${ }^{3}$ (3) to be shaved and so terninate the in $r d m$, (4) to make the third ifida, i.e., go to Mecea and perform the tawal and sa'y ("omrat cl-ifatia), returuing thereafter to Miná. The saerifice and visit to Mecca may, lowever, be delayed till the 11th, $12 t h$, or 13th. These ore the days of Miná, a fair and a joyous feast, with no special eeremony except that each day the pilgrim is expected to throw seven stomes at the jamrat cl'akaba, and nlso at each of two similar cairns in the valley. The stones are thrown in the name of Alláh, and are gene. rally thought to be directed at the devil. This is, lowever, a custom older than Islam, and a tradition in Azraki, p. 412, represents it as an aet of worship to idols at Mina. As tlie stones are tlurown on the days of the fair, it is not unlikely that they have something to do with the old Arab mode of closing a sale by the purchaser throwing a stome (Biruinf, p. 328). ${ }^{4}$ The pilgrims leave Dlina on the 12 th or 13th, and the hajj is then orer.

The colourless character of these ceremonies is plainly due to the fact that they are nothing more than expurgated heathen rites. In Islám proper they bave no raison d'étre ; the legends about Adara and Eve on 'Arafa, about Abrahan's sacrifice o[ the ram at Thabir by DIna, imitated in the sacrifices of the pilgrimage, are mere clumsy afterthoughts, as appears from their veriations and anly partial acceptance. It is not so easy to get at the nature of the original rites, whiclı Islám was care[nl to suppress. But old usiges were not quickly eradicated, and we find mention of practices condemned by the orthodox, or forming no part of the Dloslem ritual, which may be regarded as traces of an older ceremoniah. Such are nocturnal illuminations at Miná (Ibn Batnta, i. 396), 'Arafa, and Muzdalifa (Ibn Jubair, p. 179), and tawáfs performed by the ignorant at holy spots at 'Arafa not recognized by law (Snouck-Hurgronje, p. 149 sq .). We know that the rites at Muzdalifa were originalls connected with a holy hill bearing the name of the god luzah (the Edomite Kozé) whose bow is tho rainbow, and there is reason to think that the ifaclus from 'Arafa and Kuzah, which were not unado as rnow after sunset and before suarise, but when the sun rested on the tops of the mountains, were ceremonies of farewell and salutation to the sun-god.

The statistice of the pilgrimage cannot be given with certainty and vary much from year to year. The quarantine office keeps a record o[ arrivals by sea at Jiddah ( 30,271 for the year 1878 A.D., or 1295 A.H.) ; but to these must be added the great overland caravans from Cairo, Damascus, and 'lrak, the pilgrims who reach Medina from Ianbu' ond go on to Mecca, and those from all parts of the peninsula. Burckhardt in 1814 estimated the cromd at "Arafa at 70,000 , Burton in 1853 at 50,000 , Abd el-Razzók in 1858 at 60,000 . This great assemblage is always a dangerous centre of infection, and the days of Mina especially, spent under circumstences origianlly adapted only for a Bedouin fair, with no provisions for proper cleanliness, and with the air full of the smell of putrefying offal and flesh drying in the sun, produce much sickness.

Literoture.-Besldes the Arabic gcogrophers and ceamegraphers, many of whom have bean alieady clled, we have jon 'Abd habbih's descripllen of the mosque,
 admirable record of Iba Jubuir (1184 A.D.), by far the best account extant of Mecea and tho pitgrimage. It has been much pllaged by Ibn Batuta. The Arable historiana ure largely occupled with fabuloua matter as to Necea beforo Islam; Iur theso Jegenús the leader may refer to C. de J'erceval's Essat. How litue confldence can be placed in the pre-Istamic history appears very clearly from lise
 years before the birth of the Prophet, and is the frat event in Mecean history which has confrmatlon fiom other smuces. See Nöldekata version of Tobarf, p. 204 sq. For the perlod of the Brophet Ibn Misham and Wakldf aro viluable sources ha topography as well as hiseory. Of the speclal histories and descriptions of stecea published by Wustenfeld (Chroniken det Stadt Beckio, 3 vols, $1807-59$, whin an abstract in German 1801), the most valuable is that of Aziotef. If has passed through the hands of several editers, but the eldest part goes back to the beginning of the 9th Cliristian century. Kutbel-Den's history (vol. Ill. of the C\%romiden) gees down with the additions of his nephew to 1592 A.D.
gees down why er mepeandiuns of Mecen fiom personal observatlen the best is Burckhordt's Traseds in Arabia (efted above (10m the 8vo ed., 1829). The Tracels of hordt's Tratels (Badla), London, 1816, describe a visit io 1807 ; Bulton's Pilgrimage (30 Aly Bey (Badia), London, 1816, describe a vit Maltan's Wallfaht nach Mha,

 nlarimagu see portlcularly Snouek-Hurgroule, Het aldhadotche Ficest, Leyden, 1850.

[^247]
## MECHANICS

SUTRICTLY speaking, the derivation of this word should have prevented the use of it as the desiguation of a pure science. It has been, however, employed for a long period in Eaglish speech in the identical sense that the French attach to Mécanique pure or the Germans lo Reine Mechanik. These terms are all employed to denote what we should much prefer to call Abstract Dynamics,-the pure science which (as the derivation implies) treats of tho aetion of Foree upon Matter, but which is, correctly, the Science of Matter and Motion, or of Matter and Entrgy.

With the view of making clear from the ontset the reason for the arrangeonent adopted in this article, we commence by stating in Newton's own words (accompanied by a paraphrase) the Axiomata, sive Leges Motus, which form the entire basis of our subject. These laws will at once iudicate the order in which the subject may most logically be treated. We defer to the end of the article the more clase consideration of the idea introduced by the word "force," as well as general remarks on "energy," \&ce. For the present we are content to regard force as defined for us by Newton's Laws.

## Newton's Laves of Mrotion.

Newton': first law.

## Scrond

 law.§ 1. Lex I. Corpus omne perseverare in statu suo quiescendi pol movendi uniformiter in directum, nisi quatenus illud a viribus impressis cogitur statum suum mutare.

Every body continues in its state of rest, or of uniform motion in a straight line, except in so far as it is compelled by force to change that slate.

Les IT. Mutationem motus prozortionslom esse ri motricı impresse, et fieri secundum lineam rectam qua vis illa imprimitur.

Cluange of (quantity of) motion is proportional to force, and takes place ins the straight line in which the force acts.

Lex III. Actioni contrariam semper et requalem esse reactionen; aire corporum duornm actiones in se mutuo semper esse æquales et in partes contrarias dirigi.

To every astion there is always an eqzal and contrary reaction; or the mutual actions of any two bodies are always equal and oppositely directed.
§5. In 1863 Thomson and Tait (upon whose Treatise on Tatural Philosophy much of what follows is based) called attention to the fact that, as regards Lex III., Nerrton gives in a scholium a second sense in which the words may be interpreted. In the first sense the action and reaction are mere forces, in the second they are the rates at which forces do voork. Heuce, and for another reason which will appear later, the word "activity" has been introduced as the English equivalent of the word actio in Nerrton's second sense. Here is the passage :-

Si restimetur agentis actio ex ejus vi et relocitate cenjunctim; et similiter resistentis reactio æstimetur conjunctim ex ejus partium singularum velocitatibus et viribus resistendi ab carum attritione, colresione, pondere, et acceleratione oriundis; erunt ectio et reactio, in omni instrumentoram nsu, sibi invicem semper æequales.

If the activity of an agent be measured by its amount and its ielocity conjointly; and if, similarly, the coutur-activity of the resistance be measured by the velocities of its several parts and their several amounts conjointly, whether these arise from friction, molecular forces, weight, or acceleration; -activity and counter-activity, is all combinations of machines, will be equal and opposite.

This may be looked upon as a Fourth Law. But, in strict logic, the First Law is superfloons, because its consequences are all imulied (by negation) in the statoment of
the Second. (See $\$ 8$ below.) Hence there are, virtually, ouly three laws, so far as Newton's system is concerned.
§ 3. These laws are to be considered as deductions from Rasis of observation and experiment, und in no sense as having an Newton'r a prioni foundation. Their proof, 80 far as rigorous proof laws. is attainable in physical matters, is commonly looked on as being furnished in the most conclusive form by obserrational astronomy. The Nautical Almanac, published usually about four years in advance, contrins the predicted places of the sun, moon, and principal planets from day to day, in some eases from hour to hour, throughout the year. The predictions are entirely based upon the laws of motion (along with the law of gravitation), and could not possibly be accurate unless these laws are true. So thoroughly satisfactory has hitherto been the coincidence between prediction and observation that, when a deviation occurs, no one dreams of a defect in the principles of the reasoning. On the contrary, such deviations are utilized for the purpose of correcting our knowledge of the "elements" of the orbits of the moon and planets, or our estimates of the masses of these bodies; and, as in the brilliant investigations of Adams and Leverrier, they sometimes enable us to discover the existence and even assign the pasition of a planet never before seen.
§4. It is not clear in what order, or by whom, these laws Newton", were first discovered. Galileo was undoubtedly acquainted predeWith the first two; and Huygens, Wren, Hooke, and cessnrs. others were acquainted with the Third Law in some of its many applications. But they were first systematized and, as we have seen, extended in a most important manner by Newton. Though they were sadly disfigured in Britain during the fifty years which elapsed after the revival of mathematics in the eariy part of this century, they have of late been restored to the form in which Newton gave them. This readoption of Newton's simple but comprehensive system has of itself aided in no small degree the recent rapid advance of science.

One peculiarity of Newton's language must be noticed Anthrohere, though very briefly, as we rill return to the subject ponorp: towards the end of the article. A foree is said to "compel" 18 ms . a change of state in a body; bodies are said mutually to "act" on one another, \&e. Such language is, of course, in its literal acceptation, of an authropomorphic character; but, if one thinks of the habitual use cren in scientife books of such expressions as "the sun rises," "the wind blows," \&c., it cannot be construed into an assertion that foree has real objective existence.

## Conments on the Laws of Motion.

§5. Law I. First of all this law tells us what happens nenntto a piece of matter which is left to itself, i.e., not acted tion o $0^{\circ}$ on by forces. It preserves its "state," whether of rest or force of uniform motion in a straight line. This property (which, as wo shall presently show, § 7, is considerably extended by Newton himself) is commonly called the "jnertia" of matter, in virtne of which it is incapable of varying in any way its state of rest or motion. It may be the sport of forces for any length of time, but so soon as they cease to act it remains in the state in which it was left until they recommence their action on it. Hence, whenever we find the state of a piece of matter changiog, we conclude that it is under the action of a foree or forces. Thus, for the present, we have the definition of "force" as part of this First Law :-

Force is whatever changes the state of rest or uniform motion of a bndy.

When a body; originally at rest, begins to move, we conclude that force is acting on it. And when a moving body is seen to change either the speed or the direction of its motion, we conclude that this is due to force. ${ }^{1}$
§ 6 . But there is much more than this, even in the First Law. What is "rest"? The answer must he that the term is relative. Absolute rest and absolute motion are terms to which we find it impossible to assign a meaning. Naxwell has well said (in his Matter and Motion):-
"All our knowledge, both of time and place, is esseutinlly relative. When a man has acquired the habit of puttiug words togecher, without troubling himself to form the thoughts which oughit to correspond to them, it is easy for him to frame an antitlesis between this relative knowledge and a so-called absolute knowledne, and to point out our ignoranco of the nbsolute position of a point as an instanee of the linitation of our faculties. Any one, however, who will try to imegine the state of a mind conscious of knowing the absolute position of a point will ever after be content with our relative knowledge."

As will be aeen later, the First Law gives us also a rhysical definition of "time." and physical modea of weasuring it.
1 § 7 . Newton'a own comment on this law is as follows:-
Projectilia perseverant in motibus suis, nisi quatenus a resistentia aeris retardantur, et vi gravitatis impelluntur deorsum. Trochus, cujus partes cohærendo perpetno retrahunt sese a motibus rectilineis, non cessat rotari, misi quatenus ab aere retardatur. Majora nutem planetarum et cometarum corpora motus auns et progressives et eirculares, in spatiis minus resistentibus factos. conservant diutius

It is particularly worthy of notice that we have here the undisturbed rotation of a body abont an axis introduced as another of those "states" in, which it will continue, in virtue of the First Law, until force acts to compel it to change that state. Also it is to be noticed that Newton adduces a hoop, whose axia is fixed in direction both in the body and in space, as an example of this new form of state maintaiaed ia virtue of inertia. Later, it will be seen that the same thing is true of a body free in space and rotating about the principal axis of greatest or of least moment of inertia through its centre of mass. ${ }^{2}$
§8. Law II. What Newton designates by the word notus Thenees is, as he has clearly pointed out, the same as is expressed by of sequind guantitas motus, that for which we now usually employ the Зи". term " momentum." Its numerical value depends not only on the rate of motion, but also on the amount of matter, or "mass," of the moving hody, and is directly proportional to cither of these when the other is uaaltered. But it is rogarded by Newton as having direction as well as magnitude. It is, iu fact, what in the language of quaternions is called a "vector." The change of such n quantity may be either in numerical magnitude, or in direction, alone, or simaltaneously in both. We now see what this Sccond Law enables us to do. For
(a) Given the mass of $n$ body, the forco acting on it , and the time during which it acts, we can calculate the chango of motion. This is the direct problem of dynamics of a particie.
(b) Given the mass, and the change of velocity, we can

[^248]calculate the magnitude and direction of the force actiug. This is the inverse problem.
(c) We can compare, and ao measure, forces by tha changes of motion they produce in one and the same body.
(d) We can compare the masses of differeat bodies by finding what changes of velocity one and the same force produces in them.
(e) We can find the one force which is equivalent, in its nction, to any given set of forces. For, however many changes of motion may be produced by the separate forces, they must obviously be capable of being compounded into a single change, aud we can calculate what force would produce that. ${ }^{3}$
§ 9. Hitherto, we have spoken of the motion of a body,thus implying (except, of course, in the case of Newton's hoop or that of the earth) that all its parts are moving in exactly the same way. From this point of view every body, however large, may be treated as if it were a single particle. But when the parts of a body bave different velocities, as when a rigid body is rotating, or as when a non-rigid body is auffering a change of. form, the question becomes much more complex. We cannot at this stage enter into a full explanation, but will take a couple of very simple cases to show the nature of the new difficultieg, and thence the necessity for an additional law.

Suppose a ballet to be thrown in any direction. If we know with what force the earth attracta it, the calculation of the path it will pursue depends on the Second Law, whiclx gives all the necessary preliminary information. But let two bullets be tied together by a string: we know by trial that each moves, in general, in a manner very different from that in which it would move if free. The path of each is now, usually, a tortuous curve, while its free path would be plane. It is no longer zubject to gravity alone Wit also to what is called the "tension" of the string. If we knew the amount of this tension on either of the bullets and its direction, we could calculate, by the help of the Second Law alone, all the circumstances of the motion of that bnllet. But how are we to find this tension? Is it even the same for each bullet 3 This, if answered in the affirmative, would simplify matters considerably, but we should still require to know the amount and direction of the tension. It is clear that, without a further axiom, we cannot advance to a solution of the question.
§10. Law III. Furnishcd with this, in addition to our conseprevions iuformation, we can attack the question with more quences hope. We see by this law that, whatever force be exerted of third by the atring on one of the bullets, an equal and opposite ${ }^{1}$ force, which must therefore be in the direction of the ripid string, is exerted on the other. Still, the magnitnde of con these equal forces remains to he found. But the string in straitut. no way interferes with the motion of either bullet unless it is tight, i.e., unless the distance between the bullets is equal to the length of the string. Heuce,. whenerer the unknown force comes into play, at the same timo there comes in a geometrical relation of relative position between the two bullets. This supplies the additional equation necessary for the determination of the new unknown quantity.
§ 11. As an ndditional illustration, suppose the string to be made of india-rubber. The Third Law tells us that the tensions it exerts on the bullets are still cqual nad opposite. But we no longer havo the geometrical concuition we had beforc. We have, however, what is quite sufficient, a

[^249]knowledge of how the tension of the string depends on its length．Thus the tension can be calculated from the relative position of the bullets．
S12．Scholium to Law III．On this we will，for the present，remark unly that it furnishes us with the means of studying directly the transfereace of energy from one body or system to another．Experiment，howerer，was required to complete the application of this part of Newton＇s aystematic treatment of the subject．What was wanted， and how it has been obtained，will be treated of later．The first words of the scholium，homever，claim for Newton the discovery of the clause wo have extracted from it．For they run thus ：－Hactenus principia tradidi a mathematicis recepta，et experientia multiplici confirnata．
§ 13．What has now been said enables us to see the order in which the fundamental ideas should be taken ap，so that the necessities of each should be provided for before its turn comes．An indispensable preliminary is the study of motion in the abstract，i．e．，without any reference to nethat is moving．This is demanded in order that we may be able to apply the Second Law．The scieuce of pure motion，without reference to matter or force，is an extension of geometry by the introduction of the idea of time and the consequent idea of velocity．Ampére anggested for it the term Cinenatique，or，as we shall write it，hinematics． We include under it all changes of forin and grouping siich can occur in geometrical figures or in groups of points．

We sinall then be prepared to deal with the action of force on a single particle of matter，or on a body which may be treated as if it were a mere particle．Thus we have the Dynamies of a Particle．＝This，agaiu，splits into two heads，Statics and Kinetics of a Particle．But all this requires the Second Law only．When we have two or more connected particles，or two particles attracting one another or impioging on one another，the Third Law is required．Nest in order of simplicity come the Statics and Kinetics of a Rigid Solid．Then we have to deal with bodies whese form，isc．，are altered by forces－flexible bodies，elastic solids，fluids，\＆c．Finally，we must briefly consider the general principles，such as＂conservation of energy，＂＂least action，＂dce．，which are deducible by proper mathematical methods from Newton＇s Laws，and of which aome at least，if we could more clearly realize their intrinsic nature，would probably be found to express even more simply than do Nemton＇s Laws the true fuadamental prin－ ciples of abstract dynamics．

We will not restrict ourselves to one uniform course in the application of mathematical methods：Rather，as cen－ siderations of space require to be attended to，we will vary our methods from one part of the subject to another，so as to exhibit，each at least unce，all the more usual processes． Aud we will endeavour to make the large－type portions of she article，in which only the most elementary mathematics will be introduced，a self－contained treatise which may be read by students of very moderate mathematical knowledge．

## KINEMATICS．

## Position and the Means of Assigning it．

§ 14．Motion（or displacement）consists simply in ＂change of positioa．＂Hence，to describe motion，we must hare the means of assigning position．This is，of course， a question of Geometry（q．r．）．See also Quaterntons．

From these articles it appears that the position of one free point with reference to another（all these space relations pre relative，as we have already said）depends on three numbers，of which one at least must involve the unit of length．In Cartesian rectangular coordinates，we denote these by $x, y, z$ ．Thich indicate respectiveir the distance of
the point from each of three planes at right angles to eact other，and all passing throuçl the origin（or reference point）． From another point of view they may be called＂degrees of freedom．＂When the value of one is assigneed，say by

$$
2:=a,
$$

the point is said to have lost one degree of freedom，or to have had imposed upou it ouc＂degree of constraint．＂It must now lic in a plane parallel to the first of the reference planes，and at a distance a from it．When a second degree of constraint is applied，say by

$$
y=b,
$$

another degree of freedom is lost．The point＇s position is limited to lie in a second plane in a given position at riglt angles to the first．It must therefore lie somerthere on the straight line which consists of the eries of points commons to the two planes．A third degree of constraint

$$
\approx=c
$$

takes amay its one remaining degree of freedonn；and it⿳亠口冋口 position is now definitely assigued as tho single point of intersection of three given planes．
§ 15．But constraint may be applied in other ways． Thus if we assign the condition

$$
x^{2}+y^{2}+z^{2}=a^{2},
$$

We deprive the point of one degree of freedom by com－ pelling it to remain at a distance a from the erigin．It io now limited to the surface of a sphere，but its latitude and longitude on that sphere may be any whatever．Here again the inposition of one degree of censtraint has takou a way one degree of freedorn．
§ 16 In general，one degree of constraiat may be ex－Example pressed as

$$
f(x, y, z)=\xi
$$

This，when $\dot{\xi}$ has an assigned value，is the equation of a defuite surface on which the poiut must lie．Three suci） conditions determine the position of the point，and may therefore be looked upon as introducing $\xi, \eta, \zeta$ ，another set of coordinates，which may be used in place of $x, y, z$ ．The number of such systems is．of course，unlimited；but it is often possibie to choose one in which the conditions of a problem are much more simply expressed than they wero Wher expressed in $x, y, z$ The whele question belongs to what is called＂change of variables．＂To give an clemen－ tary instance of its use，－suppose we take the ordinary simple pendulum，a pellet supported by a fine thread or wire，and oscillating in a vertical nlane．If the origin be placed at the peint of suspensiou，and the axis of a be vertical，we have two conditions：－

$$
z^{2}+y^{2}+z^{2}=a^{2},
$$

where $a$ is the length of the thread；and

$$
y / x=\operatorname{tav} a,
$$

where a denotes the azinuth of the plane of oscillation． There is but one degree of freedom left，because two degrees of censtraint have been imposed．We nay choose for this either $x, y$ ，or $z$ ；but we should in each case be led to complex expressions．If，hewever，we consider that all the freedom left to the pendulum is to oscillate in a given plane，we may denote its sole remaining degree of freedom by $\theta$ ，the angle which the string makes with the vertical ； and form our dynamical equation in terms of this．Wheo $\theta$ is found by dynamical considerations，we have

$$
x=a \sin \theta \cos a, y=a \sin \theta \sin \alpha, z=a \cos \theta \text {. }
$$

Here $\theta$ comes in as what is called a＂gencralized simera？ coordinate．＂
If the pendulum be not limited to one plane，the azimuth， as well as the angle，of the displacement from the vertical may be any whatever．Hence there are two degrees of frecdom，which are indicated by the generalized coordinater $a$ and $f$ ．
§17. In general, in any system originally with any number $m$ of degrees of freedom, and subjected to a number $n$ of degrees of constraint, the whole motion can he fully characterized by $m-n$ indepeudent quantities, called gencralized coordinates, and corresponding to the degrees of freedom which remain. The elegance and simplicity of a solution often depend in a marked manner upon the choice of these; and the transfurmation of the general equations from Cartesian to generalized coordinates forms one of the most powerful and elegant contributions to abstract dynamics which Lagrange made in the Mécanique Aualytique.
§ 18. A rigid system has only six degrees of freedom:three translations for any one of its points, and three independent rotations about axes passing through that point.

When one point is fixed, it loses the three translations, and has only three degrees of freedom. When a second point is fixed, it loses other two ; in fact it can no longer move except by turning round the line joining the fixed points. When a third point, not in line with the other two, is fixed, there is no degree of freedom left; the system is fixed.
§ 19. It may be well to notice here that, in all eases whieh we shall require to consiler, whatever be the relations among two different sets of variables which we employ alternatively to determine the relative positions of the parts of any system, the equations which give the relations between corresponding small inerements of these variables are always linear ao far as these increments are concerned. Thus, for instance, if we have as above a coudition of the form

$$
f(x, y, z)=\xi,
$$

Tro deduce from it at once

$$
\left(\frac{d f}{d x}\right) \delta x+\left(\frac{d f}{d y}\right) \delta y+\left(\frac{d f}{d z}\right) \delta z=\delta \xi
$$

## Here the differential coefficients are partial.

In anch cases, any homegencous funetion of the second order in $\delta x, \delta y, \delta z, d c c$, will be represented by a homogeneous function, also of the secon! order, in $\delta \xi$, $\delta \eta$, \&e.., however many be the coordinates in the aeparate systems. When, however, une or more of the equations of condition inrolves the element of time explicitly, the relations among corresponding small inerements of the alternative sets of coordinates, though still linear, will not be homogeneous. Thus a homogencous function of the second order in one set will be a function of the second order in the other set, but not homogencous, unless the increments are produced instantaneously.
To give a single instance, suppose that the string of a simple pendulum (not necessarily oscillating in one plane) contraets unifornily. We shall now have

$$
x^{2}+y^{2}+z^{2}=(a-c l)^{2}
$$

instead of the equation in the example $\$ 15$, and one of our equations a mong increments is

$$
x \delta x+y \delta y+z \delta z=-c(a-c t) \delta t \text {, }
$$

which, though still linear, is no longer homogeneous in the increments of coordinates.

## Irinematics of a Point.

20. The one necessary characteristic of the path described by a moving point is its continuity. There can be no break or gap in it. But, as we study kinematics, at present, solely for its physical applications, we impose a restriction on such complete generality. The path of a moving particle must be one of continuous curvature, unless either (1) the mation ceases and commences again in a different direction (in which case wo have two separate and successive states of motion to consider), or (2) an infinite force is applied to the particle (a case which wo need not consider). A similar renarlk, we may say in passing, applics to velocity also. So that, for our purpose, we may confine oursel ves to the geometrical properties of the motion of a point whoso rate and direction of motion change continuously, if at all, and not by fits and starts.
§ 21. If the point describe a straight line, that line gives the direction of its motion at every instant. If it describe a curve, the dircction of its motion is at every iustant that of the corresponding tangent to the curve.

Let A, B, C, D represent four points on the path taken in close succession, in the order in which the moving point reaches them. From A the point moves to B , so that the line joining $A$ and $B$ (the tangent) is the direction of motion at A. Similarly the line joining B and C gives the direction of motion at B . The points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of course lie in one plane. This is the plane in which, for two successive elements of its path, the point is moving. It is therefore that in which the change of direction of motion takes place, and is called the "osculating plane." And, just as the straight line through $A$ and $B$ gives the direction of motion at $A$, so the circle passing through the points $A, B, C$ determines the "curvature" of the path at A. If we apply the sane reasoning to the three successive points $B, C, D$, we see the difference between a "plane" and a "tortuons" curve. For, if $D$ lie in the plane $A B C$, the osculating plane is the same at A and at B; and if the same holds for other successive points the whole bending takes place in one plane. But if $D$ be not in the plane $\mathrm{ABC}, \mathrm{BCD}$ is the osculating plane at $B$, and we thus see that successive positions of the osculating plane of $n$ tortuous curve are produced by its rotation about the tangent $B C$ to the path; for DC is in both planes ABC and BCD. We shall not have space here to deal in detail with cases of tortuosity; but it was necessary to point out their cssential nature.
§ 22. The curvature of ABC obviously depends apon the change of direction from AB to BC , and is directly proportional to it. But it is obviously greater, for the same nmount of change of direction, as ABC is less. In a circle the curvature is the same at all points, and, as the radius is everywhere perpendicular to the tangent, the change of its direction is the same as that of the tangent. Hence the curvature, being the change of direction per unit length of the are, is measured simply by the reciprocal of the radius.
Generally, if $\phi$ be the angle between the tangent at A and any fixed line in the osculating plane, and if $s$ represent the length of the curve measured from any fixed point on it to $A$, we have, by tho fundamental property of infinitesimals,

$$
\mathrm{L} \frac{\delta \phi}{\delta \rho}=\frac{d \phi}{d s}=\text { curvature }
$$

(We will use, as above, the letter L for a limit, in the sesso in which that term was introduced by Newton.)

In a circle we have always (a being the radius)
and hence the curvature :

$$
\delta=\alpha \phi
$$

$$
\frac{d \phi}{d s}=\frac{1}{a}
$$

so that in general the measure of curvature is the reciprocal of the radius of the cirele passing tbrough three consecutive points of the path. For other analytical expressions for curvature see vol. xiii. p. 26.

For a curve in space (whether tortuous or not) we bave

$$
\text { Curvature }=\frac{1}{p}=\sqrt{\left(\frac{d^{3} x}{d s^{2}}\right)^{2}+\left(\frac{d^{3} y}{d s^{2}}\right)^{2}+\left(\frac{d^{3} z}{d s^{2}}\right)^{2}}
$$

while tho direction cosines of the radius of curvature are

$$
\cdot \rho \frac{d^{3} x}{d s^{2}}, \quad \rho \frac{d^{2} y}{d s^{3}}, \quad \rho \frac{d^{d^{2}} z}{d s^{3}} .
$$

§ 23. The chief properties connected with the curvature of a plano curve are made very clear by the artifice of regarding it as an "involute." This idea introduces us to the kinematics of a flexible and inextensible line. Suppuse such a line, held tight, to be wrapped round a cylinder of any form, in a plane perpendicular to its axis, each point of it, when it is unwound in its own plane, will describe a curve whose form depends upon that of the transverso
 scction of the cylinder. Let $\mathrm{P}_{0} \mathrm{M}^{\prime} \mathrm{M}$ (fig. 1) be such a section of the cylinder; MP, M ${ }^{\prime}$ ', two positions of the free part of the cord; $\mathrm{P}, \mathrm{P}_{1}^{\prime}$ the corresponding positions of
a definite point of the cord; $\mathrm{PP}^{\prime} \mathrm{P}_{0}$ the path described ly that point. Then $P P^{\prime} P_{0}$ is one of the involutes of $M_{1} I^{\prime} P_{0}$; the others are the curves traced by other points of the string. But, with reference to $P P^{\prime} P_{0}$, the curve MM' $P_{0}$ is the "evolute." The evolute of such a curre is, in fact, unique; for it is obvious that the line MP, in any of its positions, is revolring about the point of contact $M$ with the evolote; so that $P$ describes an infinitesimal are of a circle of which MI is the centre. Thus the evolute of a plane curve is the locus of its centre of curvature. And it is clear from the genesis of the involute that

$$
P M=P^{\prime} M+M^{\prime} M I=P_{0} M^{\prime} M
$$

Fur the analytical discussion of evolutes, see vol. siii. p. 26.
The subject of evolutes is of importarice in various branches of physics, especially in optics. In mechanics its chief use is connected with the theory of the pendulum, as it shows how to cause the bob to move in a cycluid, the only path in which the time of oscillation is the same whatever be the extent of the oscillations.
§24. When the line, curved or straight, in which the motion takes place is given, the position of the moving poiat is at once assigned in terus of a single numerical quantity. In fact it has only one degree of freedom, and its position is known by the length of the arc of the curve from any fixed point to the given position. In such a case as this we are not concerned with the direction of the motion, for that is already assigned at every point of the path. We are conccrned only with what we niay call the "speed" of the motion. (We purposely aroid the use of the term "velocity" here, because it properly includes direction as well as speed, as will be seen later.)
§25. Suppose an observer to be watching the motion (as, for instance, a traveller by rail notes the teiegraph posts which le passes, referring at each to his watch), and to find that at any time $t_{1}$ the moving point was at $\varepsilon_{1}$, while at time $t_{2}$ it was at $s_{2}$.

Then it is clear that the average speed during this part of the motion is to be found by dividing the number of units of space passed over by the number of units of time employed. For it must be greater as the former is greater and less as the latter is greater. Hence the average speed
Measure- is $\frac{s_{2}-s_{1}}{t_{3}-t_{1}}$ If the speed has been uniform during the ment of unifurm motion observed, this ererage value has coincided with the actual value all through; and, if the measures of space and time are accurate, we shall get exactly the same value of this ratio whether the interral of time is small or large. Hence, if $v$ be the speed of a uniformly moving point, the space it describes in time $t$ is $v t$. But if the speed has been rariable, it must at some parts of the interval have variable been greater, at others less, than this average. And the sireed. shorter we take the interval the less will be the difference between the greatest and least speeds during its lapse, so that the average speed will coincide more and more nearly with the actual speed. In the language of "fluxions" (which was invented for the sake of this subject) the measure of the speed at any time $t_{1}$ is

$$
\dot{s}=\frac{s_{2}-s_{1}}{t_{2}-l_{1}},
$$

when the interval $t_{2}-t_{1}$ is shortened indefinitely. The accuracy of the preceding process depends entirely upon the limitations we have introduced for the purpose of confining ourselres to cases which can occur in ordinary physical problems. For the general reasoning on which it is based is obviously inapplicable to cases in which the speed alters by jerks-at least during the interval considered, small as it may be. But we are fortunately not required to discuss here the very delicate questions to which this may give rise. Considerable difficulty is aometimes.
felt by a student when he is told that at a certain rari of its course a point has a speed say of 10 miles an hour, while the whole course may bo only a few inches. But this arises from the novelts of the conception. It is not meant, when we speak of a speed of 10 miles per bour, that the motion necessarily lasts for an hour, or even for a second, but only that, if the then speed vere to be maintained constant for an hour, the moving point's path, of whatever form, rould be cxactly 10 miles long. In actual experience in a railway train we can judge the speed (roughly at least), and we find nothing strange in saying "Now we are going at trenty miles an hour," "Now at six," and so on. And it is clear that, after the steam is put on, the train, however short its run, must go through all rates of speed from zero to its maximum, and then through all of then to zero again, when the steam is cut off and the brake applied.

In the language of the differential calculus this becomes

$$
s=\mathrm{L} \frac{\delta s}{\delta l}=\frac{d s}{d l}
$$

The fluxional notation of Newton, in which the dot orer a quantity expresses the rate of its increase, i.c., its differential coefficient with regard to time considered as the independent variable, is still very convenient in abstract dynamics, and is, in fact, indispensable when we come to the higher generalizations. We shall, therefore, freely employ it when it is specially useful.
§ 26. Whether uniform or variable, speed depeads for Dimen. its numericall value upon the units cliosen for linear space sions of and for time. Its dimensions are [ $\mathrm{LT}^{-1}$ ], and consequently. ${ }^{\text {speed }}$ its numerical expression is increased in proportion as the unit of time is increased, and diminished in proportion as that of length is increased. Thus the speed represented by 10 in feet per second becomes

$$
\frac{3600}{5280} \cdot 10=\frac{75}{11}
$$

when expressed in miles per hour.
§27. The zate at which the speed (when not uniform) Rate on changes is found by a process precisely similar to that hange cmployed for the speed itself. Let the speed
at time $t_{1}$ be obscrved to be $v_{1}$,

$$
" \quad t_{2} \quad \# \quad, \quad v_{2} \text {; }
$$

then the average rate of increase of speed during the interval is

$$
\frac{r_{2}-t_{1}}{t_{2}-t_{2}}
$$

The dimensions of this quantity are obviously [ $\mathrm{LT}^{-2}$ ]. Thus its numerical value is diminished, like that of speed, in propertion as the unit of length is iocreased. But it is increased in the duplicate of the proportion in which the unit of time is increased. For inslance a rate of increase of speed of 32.2 feet per second per second (the mere statement is enough to show the doable dependence on the time unit) becomes

$$
32 \cdot 2 \frac{(3600)^{2}}{5280}=79,036 \text { near]y, }
$$

whev expressed in terms of miles and hours.
$\S 2 S$. When the rate of iocrease of speed is uniform, the above average value is its actual value throughout the interval. Hence with uniform rate of increase $=a$, a speed $V$ becomes iu time $t$

$$
v=T+a t
$$

Also, as it increases uniformly, its average value during time $t$ is half way between its values at the beginning and end of that time; i.e., it is

$$
\mathrm{V}+\frac{1}{2} a t
$$

The space described during the interval is at once found ( $\$ 25$ ) as the product of the interval and the average, speed during its lapse ;-i.e., it is
$s=V t+\frac{1}{2} a t^{2}$

And it is casy to see from these expressions that

$$
v^{2}=V^{2}+2 a s,
$$

which gives the speed acquired in terms of the space traversed.
§ 29. This is tho only caso in which the result can be reached withont formally using the methods of the integral calculus. These expressions cnable us at once to solve a great number of simple questions comnected with the motion of a stone or bullet, under tho action of gravity, in a vertical line. For it is found by oxperiment that gravity impresses, in every second, a dowaward speed of $32 \cdot 2$ feet per second on an unsupported borly; aad, by the Second Law, this is independont of the body's previous motion.

IIence, if a stone be let fall, its speed after $t$ seconds is $32 \cdot 2 t$, and the spaco fallen through is $16 \cdot 1 t^{2}$. Also, if it fall through $s$ feet, it will aequire a speed whose squaro is $v^{2}=64 \cdot 4 s$.

Again, if a stone be thrown upwards with a speed of 300 feet per second, after $t$ seconds its speed will be $300-32 \cdot 2 \ell$, and the lieight to which it has then ascended is $300 t-16 \cdot 1 t^{2}$. Thus it stops, and turns, after $\frac{300}{32^{\prime 2}}$ seconds ; and the greatest height it reaches is $\frac{300^{3}}{64^{\prime 4}}$ feet.

From the statement above, putting $\dot{s}=v$, we find

$$
s=\dot{v}=\mathrm{L} \frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{d v}{d t}
$$

From this expression the preceding results aray be at once abtained. Thus, assuming


As an instance of the indirect preblem-i.e., to find the speed, and its rate of increase, when the law of the metion is giren:-suppese

$$
s=a \cos \omega t
$$

(This equatien describes tho eimplest form of vibratery motion, and will bo fully treated later.) We have, by taking the fluxion,

$$
\begin{aligned}
& \text { and ogain } \\
& \delta=-\alpha \omega \sin \omega t \text {, } \\
& \bar{s}=-\alpha \omega^{2} \cos \omega t=-\omega^{2} s .
\end{aligned}
$$

§ 30. Volocity, as we have already said, involves the ideas of speed and of direction of motion conjoiatly. ${ }^{1}$. To compouarl two velocities (as is required in the application of Newten's Second Law), we have the following obvious construction. From any fixed point O (fig. 2), draw a line DA represonting, in magaifade and direction, oue of tho two velocities. From its extremity A draw AB representing in the same way, and on the same scale, the other. Complete the trianglo OAL. Then OB represents, in magnitude and direction (still on the same scale), the resultant velocity. Wo have


Fig. 2. called the construction obviens because one haz only to think of how a point can be said to have simultaneous velocities, in order to see its truth. Thns, if OA represents the velocity of a railway traia, AB that of a passenger walking in a saloon carriago, O may be looked upon as the position of the point of the carriage at which ho began his walk, at the moment when he did begin it; while L represents the position of the point of the carriago which ho has reached at the end of his walk, just at the

[^250]moment when he did reach it. Here OA is the velocity of the carriage relative to the earth, AB that of the pas. senger relative to the carriage. This proposition may be called the triangle of velocities. Another obvious mode of stating it is to complete the parallelogram of which $O B$ is a diagoual (fig. 3); and then we have the same construction in the form :-If the two velocities to be compounded, represented by OA and OC, be taken as coa-


Fig. 3. tiguous sides of a parallelogram, the conterminous diagoal OB represents their resultant.
§ 31. From the triangle of velocities we may pass at once to the polygon of velocities, which gives ns the resultant of any number of simultaneous velocities. Thus, beginning as above at any point $O$ ( 6 g .4 ), lay off $\mathrm{OA}, \mathrm{AB}, \mathrm{BG}$ (however many there may be) as snccessive sides of a polygon all taken in the same direction round. Tho separate velocities may be in one plane or not. When this is done, the final poiat $C$ is easily seen to bo independent of the order in which the separate velocities were taken, and is thus a perfectly definite point. OC, completing the polygon,


Fig. 4. represents the resultant velocity. But it is taken in the orposite direction raund. If C coiacide with O , there is no resultant;-i.e., a point which has, simultaneousiy, velocities represented by the snccessive sides of any polygon, all taken the same way round, is at rest.

In what precedes, we have denoted the pesition of the moving point in its knowa path by the single quantity $s$. But if we think - of its.Cartesian coordinates $x, y, z$, we sec that in general oach of these must vary duriog the motion. And just as we represented the whole speed by $\dot{s}$ se we may speak of $\dot{x}$ as the speed in the direction of the axis of $x$, \&c. And now wo have a hint of a most important character. For, by the orciinary laws of the differential calculus, we have three equatious of the form

$$
\frac{\dot{x}}{\dot{s}}=\frac{d x}{d s} \text { or } \dot{x}=\frac{d x}{d x_{6}} \dot{s} .
$$

Now $\frac{d x}{d s}$ is the cesine of the inclination of the tungene at \& to the axis of $x$. And so with $\dot{y}$ and $\dot{\sim}$. These gira us

$$
\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}=s=\left(\left(\frac{d x}{d s}\right)^{2} \div\left(\frac{d \dot{y}}{d s}\right)^{2}+\left(\frac{d z}{d s}\right)^{2}\right)=\dot{s}^{2}
$$

Heaco to see that a speed in any direction may be resolved into three in any assigned directions at right angles to ono another ; that the speed in any ono of these is determiaed by multiplyiag the wholo speed by the cosine of the angle between its direction and that of its resolved part ; and that the square of tho whole speed is the sum of the squares of the epeeds in the reselved motions. These results, however, can be obtained more directly, and in a nioro instructive manner, by the consideration of "velocities," and not of mero " speeds." 1But, before we take this step, let us take the second fluxions of the coordinates, and see to what they lead us.
From

$$
\begin{gathered}
\dot{x}=\frac{d x}{d s} s \\
x=\frac{d x}{d s} \xi+\frac{d^{2} x}{d s^{2}} s^{2}
\end{gathered}
$$

we oltain at onco
or, introducing in the last term, beth as a multiplicr and as a diviser, the radius of curvature of the path,

$$
s=\frac{d x}{d s} s+\rho \frac{d^{2} x}{d s^{2}} \cdot \frac{s^{3}}{\rho},
$$

with similar expressiens for 17 and $\ddot{z}$. These show that the rates of increaso of speed, parallel to the three axes respectirely, may bo considered as made up of the resolved parts of the two directed quas ities 3 and $\dot{s}^{3} / \rho$. The first is in the direction of the tangent to the $p^{\text {nth }}$, the second in the direction of the radius of curvature; and the law of resolution is, for cach, multiplication hy the cosine of tho angle between tho two directions concerned. Wio shall presently rocegnize these as the components of the acceloration.
§ 33 . To resolvo a velocity 13 of course a perfectly indefinite problem, unless the number of conditions requisite for definiteness be imposed. For, in general, it may be taken as one side of auy complete polygon, whether in one plane or not ; and the other sides, all taken in the opposite order round, reprosent its components.

The only cases which re need consider, in which the conditions are such as to ensure one definite solution, are-(1) when a velocity is to be resolved into components parallel and perpendicular to a given iine; and (2) an extension of the same case to components parallel respectively to three lines at right angles to one another. In case (1) the given relocity is to be taken as the hypotenuse of a right-angled triangle of which one of the sides is parallel to the given line. In case (2) it is to be taken as the diagonal of a rectangular parallelepiped of which the edges are parallel to the three lines respectively. In either case the magnitude of each component is found by multiplying the amount of the velocity by the cosine of the angle betreen its direction and that of the component; and the square of the whole sclocity is equal to the sum of the squares of the components. The are now prepared to take up the requisite preliminaries for the application of the Second Law. What, in fact, is "change of velocity"? The preceding statements at once enable us to give the answer. For let OA (fig. 5) be the velocity of a proint at one instant, OB at a succeeding instant. To convert OA into OB, we must compound with it a velocity represented by AB. AB represents the change. Hence if, during any motion thatever of a point, a line OA be constantly drawn from a fixed point $O$, so as to represent at every iostant the mag.


Fig. 5. nitude and direction of the velocity of the moring point, the extremity of OA will describe a curve (plane if the original path be plane, but not otherwise, except in certain special cases) which possesses the folloring important but obvious properties :-(1) the tangent at A is the direction of the change of velocity in the original path ; (2) the rate of rootion of A is the rate of change of velocity in the original path. Hence in this auxiliary curre, called the Hodograph ( $q \cdot v$. ), the relocity represents, in magnitude and direction, what is called "acceleration" in the original path. And, because the acceleration can thus be represented as a velocity, the laws of composition and resolution of velocities hold good for accelerations also.
§ 33. Hence, if we desire to know the whole acceleration in any case of motion of a point, we need only find its components in, and perpendicular to, the tangent to the path. That in the tangent has already been found; it is $\dot{v}$ or $\bar{s}$ as in $\$ 29$. For that perpendicular to the path "re may study the simple case of uniform motion in a circle.
§ 34. If a point move with uniform speed V in a circle,
the hodograph is evidently a circle of radius $V$, and is described uniformly in the same time as the orbit (see fig. 6). Hence the speeds in the tro circles are as their radii. Let $R$ be the radius of the


Fig. 6. orbit. Then the magnitude of the acceleration in the orbit (the speed in the hodograph) is found from

$$
\begin{aligned}
& A: V:: Y: R ; \\
& A=V: / R .
\end{aligned}
$$

that is,

The direction of this acceleration, being that of the tangent to the hodograph, is perpendicular to the corresponding radius of the hodograph, i.e., to the tangent to the orbit. Hence it is along the radius of the orvit and directed inwards to its centre.
§ 35. In other words, to compel a mass to describe an unnatural (because curved) path, it must be acted on by a foree directed towards the centre of curvature of the path: We anticipate so far as to introduce here mass and force, although, strictly, we are dealing with kinematics. But the student cannot be too early warned of the daugerous crror into which so many have fallen, who have supposed that a mass has a tendency to fly outwards from a centre about which it is revolving, and therefore exerts a "centrifugal force,", which requires to be balanced by a "centripetal force." The centripetal force is required if the path is to be curved; it is required for the purpose of producing the curvature and not berause there is any tendency to fly out from the celitre.
§ 36. Thus, in any motion of a point, the whole acceleration is the resultant of tro parts-the ûrsi in the direction of motion and of magnitude equai to the rate of increase of speed, the second directed towards the centre of curvature and of magnitude as the curvature and the square of the speed conjointly. The sole effect of the first component is to alter the speen, of the second to alter the direction, of the motion. There is no acceleration perpendicular to the osculating plane, because two successive values of the velocity, and therefore also the corresponding change of relocity, are in that plane.
§ 37. A very convenient expression for accelcration which changes the dircction of motion is furuished in terms of what is called the "angular velocity," i.e., the rate at which direction changes. This also is properly a vector, or directed line, perpendicular to the plane in which the change of direction takes place, and of length proportional to the rate at which the angle assigning tle direction changes.
§38. In the case of uniform motion in a circle of radius F, with speed V, the time of describing the complete circumference ( $2 \pi \mathrm{R}$ ) is $2 \pi \mathrm{R} / \mathrm{V}$. Hence the angular velocity is $\mathrm{V} / \mathrm{R}$, usually denoted by $\omega$. Thus the above expression for the acceleration in a direction perpendicular to the path of a point (§34) may be written in the form $\rho \omega^{2}$, where $\rho$ is the radius of curvature of the orbit and $\omega$ the angular relocity of that radius. The direction of this acceleration, as we have seen, is always towards the centre of curvature.
§ 39. The general difficulty of nny question concerning acceleration is usually a purely mathematical one, involring only such physical considerations as are required for the formation of the differential equations, and for the determination of the so-called arbitrary constants or arbitrary functions involved in the integrals. We will not now discuss the various forms in which the difficulty may present itself, because in the course of the article many of the more important of these will be fully treated in connexion with motions actually observed among terrestrial or cosmical bodies.
§40. We have sufficiently considered (\$\$27-29) uniform acceleration in the line of motion. Let us now consider pniform acceleration in a fixed direction, whether the motion of the point be in that direction or not. This is the must general case of the motion of an unresisted projectile, on the supposition that its path is confined to a region throughout which gravity is sensibly coostant alike in direction and in intensity. Two well-known properties of the parabola lead to an immediate solution of our problem.
Let fig. 7 represent a parabola, defined completely by
ite fociss $S$ and its directrix MN. We suppose it to be placed with its axis vertical, and vertex upwards. Take any point P, join PS, and draw PM perpendicular to the directrix. Then
(a) If PQ bisect the angle SPM, it is the tangent to the parabola at P .

Let $Q$ be any point iu the tangent, and let QR, drawn pirallel to MP,


Fig. 7. meet the eurve in R . Then we have
(b)

$$
\mathrm{PQ}^{2}=4 \mathrm{SP} \cdot \mathrm{QR} .
$$

rath of an untesisted pros. ectile.
§ 41. Now auppose a point, originally moving alang $P Q$ with uniform speed $V$, to have its motion accelerated in a direction parallel to MP, the acceleration being $a$, a constant. 'Chen, after $t$ seconds it would have noved along PQ through a space $\mathrm{V} t$, and parallel to MP through a spuce $\frac{1}{2} a t^{2}$. Hence, it R be its position at that time,

$$
P Q=V i, \quad Q R=\frac{1}{2} a f^{2} .
$$

From these equations we find at once

$$
\mathrm{PQ}^{3}=\frac{2 \mathrm{~V}^{2}}{a} \mathrm{QR} .
$$

This relation is of the same form as that already written for a parabola, and (as it does not invelve $t$ ) it holds for every point of the path. Hence the point moves in a parabola whose axis is vertical, which touches $P Q$ (the direction of projection) in P , and in which $\mathrm{SP}=\mathrm{V}^{2} / 2 \alpha_{0}$ But these three data determine the parabola. For we have only to draw PM vertical, make the angle QPS = QPM, and measure off the lengths PM and PS each equal to $\mathrm{V}^{2} / 2 a$. $M$ is a point in the (horizontal) directrix, and $S$ is the focus. Hence the path is completely determined.

It is well to natice that, as $\mathrm{V}^{2}=2 a \mathrm{PM}, \mathrm{M}$ is the point which the projectile would just reach if it were projected vertically upwards (§ 29).
§42. If the speed of projection be kept constant, while the direction of PQ alters in a vertical plane, S describes a circle about $P$ as centre. This consideration enables us easily to find the direction of projection that a given object may be struck. Let O (fig. 8) be the objeot. Join PO, and let it cut in B the cirele MBS (whose centre is P). Draw ON perpendicular to the common directrix, and with radius ON describe a circle about 0 . This will (in general) cut MBS in two points $F$ and $\mathrm{F}^{\prime}$. These are the foci of the two puths by either of which the
 projectile can reach 0 . For by construction $\mathrm{FO}=\mathbf{O N}$, so that $C_{1}$ lies on the path whose focus is $F$. Similariy for $F^{\prime}$.

Tolind the most distant point along PO which can be reached, with the given speed of projection from $P$, we have merely to note that, as $O$ is taken farther and farther from $P, F$ and $F^{\prime \prime}$ approach $B$, and finally coincide with it. If $O$ be then at $A$, we have $A T=A B$, where AT is perpendicular to the directrix. Hence, if we produce AT to $t$ so that $\mathrm{T} t=\mathrm{BP}$, we have $\mathrm{A} t=\mathrm{AP}$. Draw through $t$ a line $t m$ parallel to TM. . Then $A$ lies on the parabola whose focus is P.and directrix mt. This parabola is the envelop of all the possible paths from F. Any point within it can be reached by two differant paths. These become coincident when the point lies on the curve; and sou puint outside it can be reached.
§43. Nany of the most impertant cases of motion of a point involve a ceeleration whose direction is always torards a definite " eentre " as it is called. In such cases the motion is cbviously confined to the plane which, at any instant, containa the centre and the line of motion of the point.
Also the "moment" of the point's relocity about the centre remains constant. Here a slight digression is necessary
DEF.-Given a directed quantity (a velocity, force, de.) in a line $A D$ (fig. 9). If a perpendicular $O P$ be draven to $A B$ from any point $O$, the "noment" of the directed quantity about $O$ is the product of its amount by the length of the perpendicular.

If the directed quantity be reversed, the sign of the moment is changed. The moment is, in fact, properly a directed quantity (or vector) perpendicular to the plano OAB. And its


Fig. 9. numerical magnitude is double the area of the triangle OAB.
[ $\$ 44$. The convention usually made ss to the sign of rota- Consention about an axis is to regard it as positive when it is in tion as 4 the same sense as that in which the earth turns about sign of its axis, as seen by a spectator above the north pole. angle, This is in the opposite direction to that of the hands of a velocity watch. Hence the plane angle AOP (fig. 10), represent- \&c. ing the change of direction of a line originally coincident with OA, is positive, and is looked on as due to rotation about an axis drawn from O upwards from the plane of the figure. Thus the rotation of the 0 sun and the orbital motions of the


Fig. 10. planets take place in the positire direction about axes drawn on the whole northwards from the plane of the ecliptic; or we may put it thus:-seizing an axis by the positive end, we must inscrew- by the negative end, we must screw - to give positive rotation. And when, later, we consider rotations about three rectangular axes, $\mathrm{O} x$, $\mathrm{O} y, \mathrm{O} z$, we shall snppose them so drawn that rotation through a positive right angle

$$
\text { about } \mathrm{O} x \text { changes } \mathrm{O} y \text { into } \mathrm{O} z \text {, }
$$

the three letters "being throughout arranged in cyclical - order, $x y z, y z x, \& c$.]
§45. Here we must introduce a simple geometrical pro- Geometr position :-
If any point be taken in the plane of a parallelogram, $p$ and triangles be formed with the point as vertex and with contiguous sides and the contervinous diagonal as their respective bases, the sum of the areas of the first two triangles is equal to the area of the third.

Thus, in areas (fig. 11),

$$
O A B+O A C=O A D
$$

If O lie within the angle BAC , as in fig. 12, the proposition becomes

$$
O A C-O A B=O A D
$$



Fig. 11.

§46. Remembering that these areas represent half the moments of the bases of the respective triangles about tha
point $O$ (that of OAB beiug negative in the second case above), we see that

The moment of a diagozal of a parallelogram about any point in the plane of the figure is the (algebraic) sum of the moments of two conterminous sides.

Now, suppose the sides of the parallelogram to represent a velocity and its change. If the direction of the change pass through O , its monent is nil. Hence, for acceleration dircted towards a fixed point the moment of the relocity about that point is corstant.

This is commonly expressed by saying that the radiusyector describes equal areas in equal times about the point to which the acceleration is directed. For the moment of the velocity is duable the area so traced in unit of time.

Another way of expressing the same thing is to say that the angular velocity of the radius-vector is inversely as the square of its length. For the product of the square of the radius-vector and its angular velocity is double the area deseribed by it in unit of time.

The converse of this proposition is also evidently true; i.e., whenen a point moves so that the moment of the velocity about a point in the plane of its motion is constant, its acceleration relative to that point (if any) is directed towards or from that point.

Analy
tica!
treat
ment of
central
accelera tivil.
§47. Analytically: if P be the acceleration, directed towards a fixed point which we chooso as origin, we have

$$
\begin{aligned}
& x=-P \cos \theta=-P x / r, \\
& y=-P \sin \theta=-P y / r,
\end{aligned}
$$

( $r$ and $\theta$ being the polar coordinates of the moving point; me have already seen that the path is necessarily plane). Eliminating P, we have

$$
0=x y-y \bar{x}=\frac{d}{d t}\left(r^{2} \hat{\theta}\right)
$$

Thus

$$
x \dot{y}-y \dot{x}=r^{2} \hat{\theta}=\text { const. }=r .
$$

This may be transformed, at once, by the methods of the differential calculus, into

$$
p_{s}=p v \Rightarrow \pi,
$$

where $p$ is the leagtly of the perpendicular from the origin to the tangent to the path. Conversely, if 'eqnal areas be described by the radius-vector in equal times, we havo

Whence

$$
\begin{gathered}
r^{2} y=x \dot{y}-y \dot{x}=\pi . \\
x \dot{y}-y \dot{x}=0, \\
\vec{x}=Q x, \vec{y}=Q y .
\end{gathered}
$$

r
Hence the whole acceleration is Qr , and is directed towards or from the origin.

While we are dealing with these formule we may investigate the general expressions for velocity and acceleration in terms of folar coordinates for a point moving in a plane.

We have

$$
x=r \cos \theta, y=r \sin \theta
$$

From these

$$
\begin{aligned}
& \dot{x}=r^{2} \cos \theta-r \dot{\theta} \sin \theta, \\
& \dot{y}=\dot{r} \sin \theta+r \dot{\theta} \cos \theta
\end{aligned}
$$

Hence the speed along the radius-vector is

$$
\dot{x} \cos \theta+\dot{y} \sin \theta=\dot{r} ;
$$

sad that perpendicular to the radius-vector (in the direction io which $\theta$ increases) is

$$
\dot{y} \cos \theta-\dot{x} \sin \theta=r \hat{\theta} .
$$

These expressions might have been written down at once, if we note that $\delta r$ and $r \delta \theta$ are the resolved parts of $\delta s$ along, and perpen. dicular to, $r$. But we must be careful how we carry thia species of reasoning one step further: Taking the second fluxions of 2 and $y$, we have

$$
\begin{aligned}
& \dot{x}=\left(\ddot{r}-r \hat{\theta}^{2}\right) \cos \theta-(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \sin \theta, \\
& y=\left(\ddot{r}-r \hat{\theta}^{2}\right) \sin \theta+(2 \dot{r} \hat{\theta}+r \dot{\theta}) \cos \theta .
\end{aligned}
$$

Hence the acceleration along the radius-vector is

$$
\ddot{x} \cos \theta+y \sin \theta=\vec{r}-r \theta^{2}
$$

and that pernendicular to it (positive when in the direction in which $\theta$ increases) is

$$
y \cos \theta-x \sin \theta=2 \dot{r} \theta+r \ddot{\theta}=\frac{1}{r} \frac{d}{d t}\left(r^{2} \theta\right)
$$

Thus, although $r$ represents truly the speed along $r, \ddot{r}$ does not represent the acceleration in that direction. It represents, in fact,
only the acceleration of specd along $r$. But ro linve seen that thero is acceleration along $r$, if its direction changes, even when its length is constant, $i$ e.e, when the path is circular; and in that case $r \theta^{2}$ is the quantity which we designated as $p \omega^{3}$ in $§ 38$.

As a verification of these formulic. let us consider miform motion in a straight line.

Here $r \cos \theta=a$,
the equation of the stralght line, and

$$
a \tan \theta=V \ell
$$

the condition of aniform motion. We lave

$$
\begin{gathered}
\dot{r}=a \sec \theta \tan \theta \cdot \theta, \\
\mathrm{~V}=a \operatorname{scc}^{2} \theta \cdot \theta=r^{2} \hat{\theta} / a ; \\
\dot{r}=\mathrm{V} \sin \theta, \\
\bar{r}=\mathrm{V} \cos \theta \cdot \hat{\theta}=\frac{a \mathrm{~V}}{r} \theta=\frac{a^{2} V^{2}}{r^{3}}
\end{gathered}
$$

Here, although there is no acceleration, $i$ has a definite value. But

$$
\ddot{r}-r \theta^{2}=a^{2} V^{2} / r^{3}-a^{2} \mathrm{~V}^{2} / r^{3}=0,
$$

From the expressions for the acceleration along and perpendicular to the radius-vector we at once oltain the result above (§ 46). For, if there be no acceleration perpendicular to the radius-vector,
we have

$$
\frac{1}{r} \frac{d}{d t}\left(r^{2} \theta\right)=0
$$

from which

$$
r: \hat{\theta}=\text { const. } \approx h .
$$

We have, in addition to this, the expression for the acceleratiou towards the origin,
Elimiaating $\theta$, we have

$$
\ddot{r}-r \theta^{2}=-\mathrm{P} .
$$

$\ddot{r}-\mu^{2} / r^{3}=-\mathrm{P}$ 。
This gives $r$ in terms of $t$, and thas reduces (if wo please) any case Reuno of a central orhit to a corresponding cnse of rectilinear motion. tion to The difference between the accelerations in the revolving radias- case of vector and in the fixed line is a term depending on the inverse recticube of the radius-vector. But the usual mode of proceeding is as linear follows.
Multiply by $r d t$ and integrate, then
or

$$
\begin{gathered}
\dot{r}^{2}+\frac{h^{2}}{r^{2}}=\mathrm{C}-2 \int \mathrm{P} d r \\
\left(\frac{d r}{d \theta}\right)^{2} \frac{h^{2}}{r^{2}}+\frac{h^{2}}{r^{2}}=\mathrm{C}-2 \int \mathrm{P} d r .
\end{gathered}
$$

The left-hand member obviously represents the square of the velocity, as it is the sum of the squares of $\dot{r}$ and $r \theta$. For we have

$$
\dot{r}=\frac{d r}{d \theta} \theta=\frac{d r}{d \theta} \frac{\hbar}{r^{2}},
$$

This gives a relation between $r$ and $\theta$, which is thercfore the polar equation of the prath described. It is usual to employ, instead of $r$, its reciprocal $1 / \tau=u$. With this the equation becomes

$$
h^{2}\left(\left(\frac{d u}{d \theta}\right)^{2}+u^{2}\right)=C+2 \int \frac{P d u}{u^{2}} .
$$

Differentiating with regard to $\theta$, and dividing by $2 A^{2 \pi} \frac{d \theta}{d \theta}$, we obtain finally

$$
\frac{d^{2} u}{d \theta^{2}}+u=\frac{\mathrm{P}}{h^{2} u^{2}}
$$

an equation of very great imprortance.
When there is acceleration $T$ perpendicular to the radius.vector. as well as - P along it, this equation takes the form

$$
\frac{d^{2} u}{d \theta^{2}}+u=\frac{\frac{\mathrm{P}}{u^{2}}-\frac{\mathrm{T}}{u^{3}} \frac{d u}{d \theta}}{h^{2}+2 \int \frac{\mathrm{~T}}{u^{3}} d \theta}
$$

§ 48. There are two specially important cases of central acceleration. The first is that of the gravitation law, the other that of Hooke's law. We will take these in order, but by very different methods.
§ 49. Planetary Motion.- With the gravitation law the acceleration varies inversely as the square of the distance from the point to which it is directed. But, as we have just seen, the angular velocity of the radius-vector, i.e., of the direction of acceleration, varies according to the samo law. Hence in the hodograph, the linear velocity (whoso magnitude is that of the acceleration in the path) is pro-
portional to the angular velocity of the tangent (whose direction is parallel to the acceleration).

Thus, in the hodograph, the angle between snccessive tangeats is proportional to the arc between their points of contact; and therefore the curvature is constant;-i.e., the hodograph is a circle.

Iet A (fig. 13) be the centre of this circle, $O$ the pole of the hodograph, P any position of the tracing point. Then OP is, in magnitude and direction, the velocity in the orbit. But it may be looked on as cousisting of two parts, OA and AP. Of these both are constant in magnitude; but OA is constant in direction, while AP is perpendicular to the direction of accelcration in the orbit. Hence the velocity in the orbit is the resultant


Fig. 13. of two constant parts,-one always in a fixed direction, the other always perpendicular to the radius-vector.
This gives the form of the orlit as follows:-

$$
\begin{array}{lc}
\text { so that } & \dot{x}=a(e-y / r), \dot{y}=a x / r ; \\
\text { or } & n^{\prime}=x \dot{x}+y \dot{y}=e r y ; \\
\text { or } & r=e(y+b) ;
\end{array}
$$

where the meanings of the quantities are ohvious.
But if PO cut the circle again in $p, \mathrm{O} p$ is proportional to the perpendicular on the tangent to the orbit from the centre of accelcration (because PO.Op is constant) and is nt right augles to it (because it is in the direction of the velecity). Hence the path is such that the locus of the foot of the perpendicular from the centre of acceleration on the tangent is a circle. This property belongs exclusively to conic sections, one focus being the point from which tho perpendiculars are drawn.

A third and even simpler mode of treating this most important problem is as follows. Draw OM perpendicular to PA (produced if necessary) and PN perpendicular to OA. Then OM is the reselved part of OP parallel to the tangeat at $P$, i.e., it is the speed with which the leagth of the radius-vector clanges. Also PN is the resolved part of OP perpendicular to the fixed line OA, i.e., it. is the speed with which the moving point travels in a fixed direction. But by sinilar triangles OANS, PAN, we have $O M: P N:: O A: A P=a$ constant ratio.
Hence the increment of the radius-vector bears a constant ratio to the simultaneeus increment of the distanco of the moving point from a fixed line in the plane of motion. This is only a slightly altered form of statement of the focus and directris property of conic sections.

When $O$ is within the circle, the censtant ratio is less than unity, and the conic is an cllipse; when without, the ratio is greater than unity, and we have an hyperbola. When $O$ is on the circumference of the hodograph, the path is a parabola; for tho ratio is unity.

In a subsequent section we will return to this question, and treat it frem the peint of view of Kepler's Laws of Planctary Mution.
Simplo as are tho geometrical metheds above, the direct analytical ono is atill simpler. For we have

$$
P=-\frac{\mu}{r^{y}} .
$$

so that

$$
x=-\frac{\mu}{r^{2}} \cos \theta, y=-\frac{\mu}{r^{2}} \sin \theta .
$$

IIence, as before (\$ 47),

$$
x y-y \dot{x}-r^{2} \theta-h ;
$$

and tharcfore, by eliminating $r^{3}$, wo have

$$
x=-\frac{\mu}{h} \cos \theta .0, y=-\frac{\mu}{h} \sin \theta . \theta,
$$

क) that

These give at once, by squaring and adding,

$$
(\dot{x}-\alpha)^{2}+(\dot{y}-\beta)^{2}=\mu^{2} / h^{2},
$$

the equation of the circular hodograph. Also, by maltin?ying the first by $y$, and subtracting it from the second multiplied by $x$, wo have

$$
h-\beta x+\alpha y=\tau_{\mu} / h,
$$

the equation of the orbit. This is evidently a conic section of which tho origin is a focus. The directrix correaponding is the liue
and the excentricity is

$$
\alpha y-\beta x+h=0,
$$

$$
h \sqrt{a^{2}+\beta^{2}} / \mu .,
$$

From these the major axis can be caleulated.
§50. Elliptic Motion about the Centre.-When a point moves uniformly in a circle, the motion presente very differ ent appearances according to the spectator's point of view. If we suppose him to be situated at a distance very greal compared with the radius of the circle, he sees what is practically an orthographic projection of the orbit on a plan: perpendicular to the line of sight. In general, an orthographic projection of a circle is an ellipse-whose ceatre is the projection of that of the circle. As equal areas aro projected orthographically iato equal areas, the appearance is therefore elliptic mution, in which the radius-recter from the ceatre describes equal areas in equal times. Hence (§ 46) the acceleration is directed towards the centre. But accelerations are projected like velocities, and like lincs. Hence, as the acceleration in uniform circular motion is constant, and directed towards the centre, so in elliptic motiou, with equable description of areas about the ceutre, the acceleration is towards the centre, and is proportional to the length of the radius-vector. ${ }^{1}$ Bit this projected orbit may again be projected orthegraphically, as often as we please, on different planes. It will always remain elliptical, and with the radius-vecter from the centre describing equal areas in equal times. And the acceleration will always be in the same propertion as before te the radius-rector. However different in size and shape these clliptic orbits may be, they have one common property, the time of describing them is the same.
Thus we see that when the orbit is an ellipse described about its centre of figure the acceleration is, icentral, and proportional to the radius-vector. The time of describing such an ellipse depends only upon the ratio of the acceleration to the length of the radius-vector; or, if we cherse, upon the magnitude of the acceleration at unit distance. And the converse of this proposition is alse evidently truc. When we look edgewise at the uniformlydescribed circular path with which we commenced, it is seen projected into a stmight line, in which the moving point appears to oscillate. This is the case, for instance, very approximately, with the satellites of Jnpiter as seen from the earth Sun-spots, the red-spot on Jupiter, dic., all appear to move approximately io this way. But the extreme importance of this species of motion is that it is the simplest type of oscillation of a particle of matter displaced from a position of stable equilibrum. Tho vibrations of the ether when homogeneeus plane-polarized light is passing through it, of the air when a pure musical note is sounded, the oscillations of a pendulam (through small arcs), the simplest vibrations of a pianoforto wire or a tuning-ferk, the indications of a tide-gauge when the sea is calm,-all are instaces of it. Hence the special necessity for studying it in detail.
§ 51. Def.-Simple harmonic motion is the resolved part, parallel to a diameter, of uniform circular motion.

[^251]Let a point P (fig. 14) move uniformly in the circle APA'. Then, drawing any diameter AOA', and PMI perpendicular to it, the motion of $M$ is simplo harmonic.

The apeed and acceleration of 31 are obriously the resolved parts, alung $A A^{\prime}$, of tho speed and acceleration of $P$. Heace if $V$ be the apoed of P we have

$$
\begin{aligned}
& \text { spced of } \mathrm{M}=\frac{\mathrm{PM}}{\mathrm{PU}} \mathrm{~V}, \\
& \text { acceleration of } \mathrm{M}=\frac{\mathrm{MO}}{\mathrm{PO}} \times \text { acccleration of } \mathrm{P} \\
& \\
& =\frac{\mathrm{MO}}{\mathrm{PO}} \cdot \frac{\mathrm{~V}^{2}}{\mathrm{PO}}=\frac{\mathrm{V}^{2}}{\mathrm{PO}^{2}} \mathrm{MO} .
\end{aligned}
$$

From these expressions we see that, if we call $\omega$ the angular velocity of $O P$, so that $\omega=V / P O$, we have

$$
\begin{aligned}
& \text { sped of } M=\text { PMI. } \omega \text {, } \\
& \text { acceleration of } M=M 1 O \cdot \omega^{2} \text {. }
\end{aligned}
$$

Thus the speed of $M$ iocreases from $A$ to $O$,-being zero at A , and V at O ; then it falls off to zero at $\mathrm{A}^{\prime}$, and goes through the same numerical values in the opposite order, when the direction of motion is reversed at $A^{\prime}$.
The acceleration of $M$ is always directed towards O . It has its greatest value at A and again at $\mathrm{A}^{\prime}$, and is almays proportional to the distanse from $O$. If $T$ be the period of the simple harmonic motion, i.e., the peried of rotation of $P$ in the circle, we have

$$
\mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \pi}{\mathrm{~V}} \pi,
$$

Where $a$ is the radius of tha circle, or, as it is also called,

Ampli lude. the "amplitude" of the simple barmonic motion. We may now write as the characteristic of this species of motion
or

$$
\begin{gathered}
\text { acceleration }=\frac{4 \pi^{3}}{\mathrm{~T}^{z}} \times \text { displacement }: \\
\mathrm{T}=2 \pi \sqrt{\frac{\text { displacement }}{\text { atceleration }} .}
\end{gathered}
$$

Phase and epoch.
§52. In our further remarks about simple larmonic motion the fullowing terms will be found convenient. P is the position at time $t$ of the point moving in the circle. Let E be its position at the zero of reckening, when $t=0$. Then the angle AOP may be called the "phase" of the simple harmonic motion, and AOE the "epoch." In time units the values of the phase and epoch are found frem their circular measure by dividing by $\omega$.

If the position of the point moving with simple harmonic motion be denoted by $x$, we obviously have

$$
\begin{aligned}
x & =0 M I=O P \cos \mathrm{POA}, \\
& =O P \cos (\mathrm{POE}+\mathrm{EOA}) . \\
& =\alpha \cos (\omega t+\epsilon) .
\end{aligned}
$$

This expression is to be found, perkaps more frequently than any other, in all branches of mathematical physics. It is in terms, or series of terms, of this form that every periodic phenomenon can be described mathematically, as will be aeen later. From the expressions for the longitude and radius-vector of a planet or a satellite to these of the most complex undulations whether in water, in air, or in the luminiferous medium, all are alike dependent upon it.
The results obtained geometrically above are easily reproduced from this form :-
thus $\dot{x}=-\alpha \omega \sin (\omega t+\epsilon)$;
and $\quad x=-\alpha \omega^{2} \cos (\omega l+\epsilon)=-x \omega^{2}$.
Graphic §53. The simplest graphical method of exhibiting the senta. b:ob.
tepre.
senta. with a uniform velocity in a direction perpendicular to tho line in which it is executed. This is, in fact, what is done in the majority of self-registering instruments, where a
slip of paper is drawn by clock-werk uniformly past the moving point, in a direction perpendicular to its line of motion, and a record is made by mechanical means, by a pencil, by an electric spark, or (best of all) by photographic processes. When this process is applied to a simple harmonic motion the record is of the general form of the curve in fig. 15. This curve has long been known as

the "curve of sines," or the "harmonic" curve. All ita forms can be deduced from any one of them by mere extension or foreshortening in the vertical or horizontal directions in the figure. It represents the simplest forms into which a vibrating string can be thrown, as well as the instantanecus form of a section of the surface of water along which a aimple series of oscillatory waves or ripples is passing. In this case the form of the section remains the same as time goes on, but the whole figure moves steadily onwards in the direction in which the waves are travelling.
This is expresscd analytically by the form

$$
y=a \cos (n t-m x)
$$

where $x$ and $y$ are horizontal and vertical coordinates of a point at the surface of the water, $y$ bcing measured from the level of the undisturbed aurface. Whem $x$ is constant we srudy, for all time, the simple harmonic rise and fall at a particular place. When $t$ is constant we have the above-figured instantaneous glance of a seca tion of the whole water-surface.

The rate at which the wave travels is obviously $n / m$; for, if we increase $t$ by any quantity $\tau$, and $x$ by the corresponding quantity $n \tau / m$, the value of $y$ is unaltered.
§54. We have next to consider the result of superposing or compounding two simple harmonic motions which take place in the same line. The geometrical method amply suftices for this purpose provided the periods of the two are equal, however different may be their amplitudes and their phases. For, if we suppose PQ (fig. 16) to turn ahout $P$ in the same plane and with the same angular velocity as OP about O , the angle $O P Q$ will remain unaltered, and therefore the triangle $O P Q$ will remain of constant size and form while turning about $O$. Thus $Q$ describes a circle about $O$ in the given period. The resolved parts of $\mathrm{OP}, \mathrm{PQ}$, along any diameter OA, together make up the resolved part of $O Q$ along the


Fig. 16. same line. Hence two simple harmonic motions, of the same period and in the same line, are equivalent to n single simple harmonic motion of the common period. The amplitude of the resultant simple harmonic motion is $O Q$, and depends only upon $O P, P Q$, and the angle $O P Q$,-the amplitudes of the two compenent simple harmonic motions and the supplement of the diference of their phases.
§55. When the difference of phase is nil, or any whole number of circumferences, the resultant amplitude is the sum of the amplitudes of the components, which is its greatest value. When the difference of phase is an odd number of semi-circumferences, the amplitude of the resultant is the difference of those of the components.

If we produce QP to meet OA in R, we see that QOA, the phase of the resultant simple harmonic motion, is intermediate in value to the plases of the components, which are POA and QRA respectively. Its excess over the one, and its defect from the other, are the angles at Oand $Q$ in the triangle $O P Q$; and their sines are to one another as the separate amplitudes QP, PO. Hence, when these amplitudes differ, the phase of the resultant coincides more nearly with that of the component whose amplitude is the greater.

Auaijtically the resuitant motion is expressed by

$$
\begin{aligned}
x & =a \cos (\omega t+\varepsilon)+a^{\prime} \cos \left(\omega t+\epsilon^{\prime}\right), \\
& =\left(a \cos \varepsilon+a^{\prime} \cos \epsilon^{\prime}\right) \cos \omega t-\left(a \sin \epsilon+a^{\prime} \sin \epsilon^{\prime}\right) \sin \omega t, \\
& =P \cos (\omega t+Q),
\end{aligned}
$$

provided that

$$
\begin{aligned}
& P \cos Q=a \cos \epsilon+a^{\prime} \cos \epsilon^{\prime}, \\
& \text { all } \\
& \text { These expressions give for the amplitude of the resultaut } \\
& P=\sqrt{\left(a \cos \epsilon+a^{\prime} \cos \epsilon^{\prime}\right)^{2}+\left(a \sin \epsilon+a^{\prime} \sin \epsilon^{\prime}\right)^{\prime}} \\
& =\sqrt{\left(a^{2}+2 a a^{\prime} \cos \left(\epsilon-\epsilon^{\prime}\right)+a^{\prime 2}\right.} .
\end{aligned}
$$

This may be put in cither of tho forms

$$
\sqrt{\left(a+u^{\prime}\right)^{2}-4 a a^{\prime} \sin } \frac{1}{2}\left(6-\epsilon^{\prime}\right) \text { or } \sqrt{\left(a-a^{\prime}\right)^{2}+4\left(u a^{\prime} \cos ^{2}-1\left(\epsilon-\epsilon^{\prime}\right)\right.}
$$

from which the ahove conclusions follow at once.
Also, for the epoch of tho resultant, we have

$$
\tan Q=\frac{a \sin \epsilon+a^{\prime} \sin \epsilon^{\prime}}{a \cos \epsilon+a^{\prime} \cos \epsilon^{\prime}}
$$

When and s are botls positive aml less than $\frac{1}{2} \pi$, this is obriously intermediate in value to $\tan \in$ aud $\tan \epsilon^{\prime}$.

When the periods of the components are not exactly equal, the simple artifice which follows enables us still to apply the same ruethod of composition. We have now

$$
\begin{aligned}
x & =a \cos (\omega t+\epsilon)+a^{\prime} \cos \left(\omega^{\prime} t+\epsilon^{\circ}\right) \\
& =a \cos (\omega t+\epsilon)+a^{\prime} \cos \left(\omega^{\prime} t+\epsilon^{\prime}+\left(\omega^{\prime}-\omega\right) l\right)
\end{aligned}
$$

Hence the abovo values of $\mathbf{P}$ and $Q$ will still satisfy the conditions if we writo $\epsilon^{\prime}+\left(\omega^{\prime}-\omega\right) t$ instead of $\epsilon^{\prime}$. Thus we may treat tho two compronents as bcing of the same period, but make the epoch of one of then steadily increase with an angular velocity equal to the difference of the angular velocities in the generating circles of the components.

The triangle OPQ will no longer preserve its form ; it will pass continuously through all the rarions forms which we have seen would be given to it by various differences of plase in the component simple harmonic motions. The time in which it returns to a former value is evidently $2 \pi /\left(\omega^{\prime}-\omega\right)$, which is greater tho more nearly equal are the periods of the components.
§56. One of the best examples of the principles we lave just diseussed is furnished by the tides. If there were but one tide-produciug body, we should have (approx:mately) a simplo harmonic rise and fall of the sea-level at any given place twice over in the course of about twenty. four hours, and the phase rould depend simply upon the distance of the tide-producing budy from the meridian (whether above or below the pole). The joint effect of the sun and moon is practically the resultant of the effects which they would separately produce. Hence, when these bodies are in conjunction or in opposition (i.e., at new or at full moon), the whole rise of the tide is the sum of the solar and lunar tides; and we have what are called "spring
tides." When the moon is in quadrature, the amplitude of the tidal rise or fall is the excess of the lunar over the solar tide, for it is low water as regards the sun when it is high water as regards the mnon. In intermediate positions the effect lies between these extremes, but the joint hightide lies nearer to the crest of the lnnar than to that of the solar tide. In the first and third quarters of the monn, hich tide is earlier than the high tide due to the moon alone ; in the second and fourth later. This is what is called "priming" nad "lagging" of the tides, and is seen at oneo to follow from the construction given above. Had the lunar and solar tides been of equal amplitude, spring tides would have been of double the altitude of either, and there would have been no tide at all at the time of neap.

The mode in which we have treated this special case is an illustration of the general method (above described) of combining simple harmonie motions in which the periods are slightly different.
§ 57 . What we have said of the tide-waves holds of course of all waves in which the separate disturbances are so small that the joint effect is found by superposing the separate effects. Thus when, at sea, two series of waves of equal length mees at any place, the resultant is still a set of waves of the same length, but the altiturles and phases of the components determine those of the resultant. When crest meets crest, we have waves of the sum of the original amplitudes; when crest meets trough, the difierence. In the latter case we have still water when the amplitudes of the components are equal. What is called a "jabble,"-where, for a shnrt time, a portion of a stormy sea is almost calm, and after a little it is violently agitated,-is the result of a number of "cross seas."
§58. If we now consider the instantaneous form of a section of the surface, instead of the suecessive displacements of one portion of it, we can easily account for a striking phenomenon which is very frequently observed on a shelving beach. We often notice that every ninth or tenth wave or so is higher than those immediately before or after it. This is the result of superposition of tro or more sets of waves in which the distance frem crest to crest is different in the different sets. In the joint system we have, represented as in $\$ 53$, phenomena akin to the spring and neap tides, and the priming and lagging of the tides.

Fig. 17 shows part of the result when the amplitudes aro equal, and the wave-lengths ns 15 to 17 . It gives also a rough approximation to the whole result when the lengths are as 7 to 8 or as 8 to 9 .
§59. To compound nny number of simplo harmonic motions, of equal periods, in one line, we may obviously take them two by two, and apply the preceding process over and over again till we have as final resultant another simple harmonic motion of the common period.

## Or thins:-

$x-\Sigma a \cos (\omega l+\epsilon)-\cos \omega l \leq(a \cos l)-\sin \omega l \Sigma(a \sin \epsilon)=\Gamma \cos (\omega l \tau Q)$, where $\quad P \cos Q-\leq(a \cos \epsilon), \quad P \sin Q=\Sigma(a \sin \epsilon)$.

When the separate periods nre not equal, nad not even nearly equal, it is only in special cases that nny simplification can be effected by analytical processes. But this is not much to bo regretted, beeause for most purposes a graphic method is sufficiently accurate, and it ean always Lo casily carried out.
$\$ 60$. We must now consider the composition of simple harmonic motions in directions at right angles to each other;-but for the present wo confine ourselves to the caso in which their periods aro egual. In this caso wo
know that the accelcration is in the same ratie to the displacement in each of the two rectangular dircctions. Hence by the general theorem of $\$ 50$ the motion is elliptie, with uniform description of areas about the centre.

To analyse this, suppose, at startiog, that their nmplitudes also are equal. Let $O A$, OB (fig. 18) represent the two rectangular directions. With contre $O$, and radius equal to the common nomplitude, describo a circle. Let
 AOE, BOF represent the

$$
\text { Fig. } 18 .
$$ cpochs of the two components (the corresponding circulat motion being supposed positive for each), then obviously EOF exceeds by a right nagle the difference betreeu the

simule． harmenia motions のtrばんt angles．

Perinds －enarly ยяบи！
plases of the motions in $O B$ and $O A$ ．Then if $P, Q$ represent at time $t$ the correspoding pusitions in the common circle，we hare arc $\mathrm{FQ}=\operatorname{arc} \mathrm{EP}$ ；and if perpen－ diculars bo drawn，PM to $O A$ ，and $Q N$ to $O B$ ，their intersection $S$ is the position at time $t$ in the resultant motion．The locus of $S$ is，by what has been proved abore，an ellipse which touches the sides of the square CDC＇D＇．

When EOF is a right angle，i．e．，when the phases are alike，this ellipse becomes the diagonal $\mathrm{CC}^{\prime}$ of the square touching the circle at the extremities of $\mathrm{AA}^{\prime}$ and $\mathrm{BB}^{\prime}$ ． When EOF is three right angles，the ellipse becomes the diagonal DD＇．When it is two right angles，or four，i．e．， when OB is one quarter，or three quarters，of a period in advance of $O A$ ，the ellipse becomes the circle $A B^{\prime} B^{\prime}$ ． To find in any case whether it is described pusitively or negatively（ $\$ 4 \frac{1}{4}$ ），we have ooly to notice how OS turns． Now while $P$ is near $A, \lambda I S$ remains closely coincident with $A C$ ．If，then，$Q$ be anywhere in the semicircle $\mathrm{BA}^{\prime} \mathrm{B}^{\prime}$ ， N impes in the direction $\mathrm{BB}^{\prime}$ and the angle AOS diminisles． Hence the ellipsc is described negatively（or in the direction of the hands of a watch）if the epoch of the motion in $O B$ exceeds that of the motion in OA by anything up to tro right angles．And similar reasnning shows that，if the excess be from tiro to four right angles，the ellipse is described positively．

If the amplitudes be not equal，we have only to extend or foreshorten the figure parallel to OA or to OB ．Tlie square $\mathrm{CDC}^{\prime} \mathrm{D}^{\prime}$ becomes a rectangle，in which the orbits （all of which，with the exception of the diagooals，are now elli，
§61．When the periods in the two component motions are acarly，but not quite，equal，the phase of one gains gradually on the other，and the path passes continuously through the forms of all the possible ellipses，but remains possessed of the one property common to them all．It becomes a species of spiral；but in crery convolution it touches，in succession，each side of the square or rectangle above discussed．
§62．Similar reasoning shows that the superposition of any number of simple harmonic motions in any directions and with any amplitudes and differences of phase，prosided the period is the same for all，gives rise to motion in an ellipse about the centre．But this follows more easily from analysis．

Take，first，two simple harmonic motions of the same period parallel to the axes of $x$ and $y$ ．We have

$$
\begin{aligned}
& x=a \cos (\omega t+\epsilon), \\
& y=a^{\prime} \cos (\omega t+\epsilon) .
\end{aligned}
$$

Eliminating $t$ between these equations，we have at once

$$
\frac{x^{2}}{a^{2}}-2 \frac{x y}{a a^{\prime}} \cos \left(\epsilon^{\prime}-\epsilon\right)+\frac{y^{2}}{a^{2}}=\sin ^{2}\left(\epsilon^{\prime} \cdots \epsilon\right),
$$

the equation of an ellipse．
It becomes a circle when and only when

$$
a=a^{\prime}, \quad \operatorname{co:}\left(\epsilon^{\prime}-\epsilon\right)=0,
$$

i．c．，when the amplitudes arc equal，and the phases differ by an odd number of right angles．
It becomes the straight line
When $\epsilon^{\prime}-r$ is ecto；and

$$
x / a-y / a^{\prime}=0,
$$

Whárisemo and

$$
v / a+y / a^{\prime}=0,
$$

when $\epsilon^{\prime}-\epsilon$ is two right angles．
If $S O A$ be called $\theta$ ，we have

$$
\begin{gathered}
\tan \theta=\frac{y}{x}=\frac{a^{\prime} \cos (\omega t+\epsilon)}{a \cos (\omega t+\epsilon)} \\
=\frac{a^{\prime}}{a}\left(\cos \left(e^{\prime}-\epsilon\right)-\sin \left(\epsilon^{\prime}-\epsilon\right) \tan (\omega t+\epsilon)\right) .
\end{gathered}
$$

Hence，taking the fluxion of each side，

$$
\sec ^{2} 0 . \theta=-\frac{a^{\prime}}{a} \omega \sin \left(\epsilon^{\prime}-\epsilon\right) \sec ^{2}(\omega t+\epsilon)
$$

Thus，as before，$\theta$ is essentially nematire，i．e．，the rotation in tha ellijise is right－handed if $\epsilon^{\prime}-\epsilon$ lie between 0 and $\pi$ ，left－handed if it lie between $\pi$ and $2 \pi$ ．
For a simple harmonic motion，denoted by

$$
\xi=a \cos (\omega t+\epsilon),
$$

in a line whose direction cosines are $l, n$ ，$n$ ，we have the com－ ponents $\langle\xi, m \xi, u \xi$ parallel to the three axes respectively．Hence fir the resultant of any number of such，all having the same poriod． we have

$$
x=\Sigma, a l \cos (\omega t+\epsilon)=\cos \omega t \Sigma(a l \cos \epsilon)-\epsilon \operatorname{in} \omega l \Sigma(a l \sin \epsilon) .
$$

Thus we have threo equations of the form

$$
\begin{aligned}
& x=A \cos \omega t-\Lambda^{\prime} \sin \omega t, \\
& y=B \cos \omega t-B^{\prime} \sin \omega t, \\
& z=C \cos \omega t-C^{\prime} \sin \omega t .
\end{aligned}
$$

If we take three quantities $\lambda, \mu, \nu$ ，such that

$$
\begin{aligned}
& \lambda A+\mu B+\nu C=0, \\
& \lambda d^{\prime}+\mu \mathrm{B}^{\prime}+\nu C^{\prime}=0,
\end{aligned}
$$

we have also

$$
\lambda x+\mu y+\nu z=0 .
$$

The first two cquations determine without ambiguity the ratios of $\mu$ and $\nu$ to $\lambda$ ．Hence the thirl is the equation of a definite plane in which the path lies．We may now choose this plano as that of $x, y$ ．The value of $z$ above hecomes identically zero；and tho climination of $t$ betreen tho equations for $x$ and $y$ gives the cllipso as before．
$\S 63$ ．When the perivds of the simple harmonic motions Pera） are not equal we have

$$
x=a \cos (\omega t+c), \quad y=a^{\prime} \cos \left(\omega^{\prime} t+c^{\prime}\right)
$$

It is easy to trace the corresponding curre ly points； but，except when there is a simple numerical ratio between $\infty$ and $\omega^{\prime \prime}$ ，the equation cannot be presented as an algebraic one betreen $x$ and $y$ ．If $2 \omega^{\prime}=\omega$ ，we may shift the epoch so that the equations may be written

$$
x=a \cos \left(2 \omega^{\prime} t+a\right), \quad y=a^{\prime} \cos \omega^{\prime} t .
$$

Eliminating $t$ from the first，by the help of the sccond，we bare

$$
\frac{x}{a}=\left(\frac{2 y^{2}}{a^{2^{2}}}-1\right) \cos \alpha-\frac{2 y}{a^{\prime}} \sqrt{1-\frac{y^{3}}{a^{3}}} \sin \alpha
$$

This denotes，in general，a curve of the fourth order，of a figure－of－ 8 form，as in fig．19．When $a=n \pi$ the curve is a portion of a


Fig． 19.
parabola，its vertex being to the right or left as $n$ is odd or ercn． This parabola corresponds，in the present case，to the straight lines is the casp of $\S 62$ ．When the periods differ slightly from the ratio 2：1，the path passes in succession through the forms traced，for－ ward and backward alternately；and，each time that it opens ont from the prarabolic form，the tracing．point describes it in the opposite direction to that in which it described it before the path collapsed into the parabola
§64．The principles already illustrated are sufficient for the examination of every case of this kind．But one or two particular cases merit special notice．The case of tro uniform circular motions of equal periods，in one plane，we have already noticed（ $\$ 54$ ）．Q describes its circle about $P, P$ its circle about $O$ ，and the result is uniform circelar motion of $Q$ about $O$ ．The radius of this circle may be equal to the sum or difference of the radii of the separate circles，or may have any intermediate value，according to the difference of phase．If the periods be not exactly equal，the motion takes place virtnally in a circle whose radius continuously oscillates between the above limits．The path is a species of spiral，which lies betreen tro concentric circles of these radii．
$\S 65$ ．When the component circular motions are in opposite directions，we have an extremely interesting and important case．It is obvious that there must now be posit：ons in which $O P$ and $P Q$ are in the same straight
liae. Let $\mathrm{OA}, \mathrm{AB}$ (fig. 20) be one of these. Then, in any other position, $O P$ and $P Q$ are equally inclined tö $O A$. The path of $Q$ is an ellipse, of which the major semi-axis $O B$ is the sum of the radii, and the minor axis their difference. Hence when the radii are equal the result is simple harmonic motion in the line OBE' Thus we havo the proposition, of very great importance in opties, that a simple harmonic motion may be looked upon as the resultant of two equal and opposite circular mutions in one plane.


Fig. 20.

When the periods are not exactly equal, the motion may be regarded as simple harmonic motion, in a line which rotates with uniform angular velocity in a plane. This is the case of Foucanle's peadulum, and of plane polarized light passing along the axis of a crystal of quartz, or through a piece of glass or other transparent substance in the magnetic field.
§ G6. Uuiform circular motions, of differeat periods, give epicycloids, de. A particular case is uniform circular motion superposed on uniform rectilinear motion, in which case we have cycloids, \&c. But these we merely mention,
$\$ 07$. By far the most important of the applications of simple harmonic annlysis is summed up in what is called
Focrier's Tueorem. - A complex harmonic function, with a constant term added, is the proper expression for any periodic single-valued furction, and, consequently, can express any single-valued function whatever between any assigned values of the variable.
To show the importance of this in physics we need take but a single example. The one essential characteristic of a musical sound is its "periodicity." Hence it may be nalysed into a series of simple harmonic disturbances. Their respective periods are the fundamental period, its half, third, fourth part, \&c. The first gives the pitch of the note; the others determine its quality. The investigation which follows is not intended to prove the theorem; it is merely introduced as readily suggesting it.

Tho essence of prriodicity of $n$ function $f$ is that we must have

$$
\int\left[x+\frac{1}{2} a\right]=\int\left[x-\frac{1}{2} a\right]
$$

whaterer be $x$, provided $a$ be the period.
We may write this as

$$
\varepsilon^{\frac{d}{2} d x} f(x)=\varepsilon^{-\frac{a}{3} \frac{d}{d x}} f(x)
$$

or
Now tlo cquation

$$
\left(\varepsilon^{\frac{n}{2}} \frac{d}{d x}-\varepsilon^{-\frac{\alpha}{2} \frac{d}{d \varepsilon}}\right) \int(x)=0 .
$$

$$
\text { - } \varepsilon^{1 \xi}-\varepsilon^{-3 \xi}=0
$$

has the real root

$$
\xi=0
$$

and the infinite serics of pairs of inaginary roots

$$
d \xi= \pm i \pi \sqrt{-1}
$$

where $i$ is any integer. Hence

$$
\varepsilon^{1 \xi}-\xi^{-1 \xi}-\xi\left(1+\xi^{2} / 2^{2} \pi^{2}\right)\left(1+\xi^{2} / 4^{2} \pi^{2}\right)\left(1+\xi^{2} / 6^{2} \pi^{2}\right) \ldots
$$

so that the differentinal equation for $f(x)$ gives, besides a constant term, the infinito series of terms due to solutions of equations of the secoud order of which the type is

$$
\left(\frac{n^{2}}{2^{2} i^{3} \pi^{2}}\left(\frac{l l}{d x}\right)^{2}+1\right) f(x)-0 .
$$

The solutlon of this representatire equation gives the following particular iutegral of the completo equation,

$$
f(x)=\mathrm{P}_{1} \cos \left(2 i \pi x a^{-1}+Q_{i}\right)
$$

Hence the general solution is

$$
\begin{aligned}
f(x) & =\Lambda_{0}+\Sigma_{1}^{\infty} P_{1} \cos \left(2 i \pi \pi \alpha^{-1}+Q_{i}\right) \\
& -\Lambda_{0}+\sum_{1}^{\infty} \Lambda_{i} \cos 2 i \pi x \pi^{1}+\Sigma_{1}^{\infty} R_{1} \sin 2 i \pi x \pi^{-1}
\end{aligned}
$$

where the constants are to be determined by special integration; according to the process already described in the article Harsanic Analysis (q.v.).
As a single example, suppose that the value of $f(x)$ is unity from $x=0$ to $x=a$, and zero from $x=a$ to $x=2 a$. This has many applications, as, for iostance, to alternate heating, and cooling of one surface of a solid, alternate "make and lreak"" with a battery and a telegraph wire, \&c. In this case wo have

$$
f(x)=\frac{1}{2}+\frac{2}{\pi} \Sigma_{1}^{x} \frac{1}{2 i+1} \sin \frac{(2 i+1) m x}{a} .
$$

§68. A point clescribes a logarithmic spiral with coustant Resisted angular velocity about the pole; find the acceleration. ${ }^{3}$ harmonic

Since the angular velocity of SP (fig. 21) and the incli- motion. nation of this line to the tangent are each ronstant, the linear velocity of P is as SP . Take a length PT, equal to e.SP, to representit. Then the hodograph, the locus of $p$,
where $S p$ is parallel and equal to PT , is evidently another logarithuic spiral, similar to the former, and described with the same constant angular velocity. Hence $p t$, the acceleration required, is equal to $e . S p$, and makes with $S p$ an angle equal to SPT. Hence, if $\mathrm{P} u$ Lo drawn parallel and equal to $p t$, and $u v$ parallel to PT, the whole


Fig. 21.
acceleration $\mathrm{P} u$ may be resolved into $\mathrm{P} v$ and $v u$; and Pere is an isosceles triangle, whose base angles are each equal to the angle of the spiral. Hence $\mathrm{P} v$ and $v u$ hear constant ratios to $\mathrm{P} u$, and therefore also te SP or PT.

The acceleration, therefore, is composed of a central acceleration proportional to the distance, and a tangential retardation proportional to the velocity. And, if the resolved part of P's motion parallel to any liue in the plane of the spiral be considered, it is obvious that in it also the acceleration will consist of two parts-one directed towards a point in the line (the projection of the pole of the spiral) and proportional to the distance from it, the other proportional to the velocity but petarding the motion. Hence a particle which, unresisted, would have a simple harmonic motion has when subject to resistance proportional to its velocity a motion represented by the resolved part of the spiral motion just described.

If $a$ be the angle of the spiral, $\omega$ the angular velocity of SP, we lave evidently PI'. sina-SP. $\omega$.
Hence

$$
\mathrm{P} v=\mathrm{P} u=p t=\frac{\mathrm{PT}}{\mathrm{SP}}=\frac{\omega}{\sin a} \mathrm{PT}=\frac{\omega^{2}}{\sin ^{2} a} \mathrm{SP}=n^{2} . \mathrm{SP}(\text { suppose })
$$

and $\quad v z=2 \mathrm{Pv} \cdot \cos \alpha=\frac{2 \omega \cos \alpha}{\sin \alpha} \mathrm{PT}=2 k . \mathrm{PT}$ (suppose).
Thus the central acceleration at unit distance is $n^{2}=\omega^{2} / \sin ^{2} a$, and the coefficieut of resistance is $2 k=2 \omega \cos a / \sin a$.

The time of oscillation is evidently $2 \pi / \omega$; but, if there had been no resistance, the properties of simple harmonic motion show that it would have $r$ cen $2 \pi n$; so that it is increased by the resistance in the ratio coseca: 1 , or $n: \sqrt{n^{2}-h^{2}}$.
The rate of diminution of SP is evidently

$$
\mathrm{PT} \cdot \cos a=\frac{\omega \cos a}{\sin a} \mathrm{SP}-\lambda \mathrm{SP}
$$

that is, SP diminishes in geometrical progression as time increascs, the rate being $k$ per unit of time per unit of length. By an ordinary result of arithmetic (compound interest payable overy instant) the diminution of $\log S P$ in unit of time is $k$.

[^252]Hence, in the resolved part of the motion, the logarithm of the amnlitude is diminished, every lalf vibration, by $k \pi / \omega$.

This process of solution is only applicable to resistance of harmunic vibrations when $n$ is greater than $k$. When $n$ is not greater than $k$ the auxiliary curve can no longer be a logarithmic spiral, for the moring particle never describes more than a finite angle about the pole; and then the geometrical method ceases to be simpler than the analytical one.
$\S 69$. What we have said about composition of motions is merely a particular case of the general question of relative motion, which in its main pranciples is exceedingly simple. It is entirely comprehended in the following propositions, -which may be regarded as almost self-evident.

Given the motion of $A$ with regard to a point $O$, and that of $B$ with regard to $A$, to find that of $B$ with regard to $O$.

By compounding the vectors of relative position OA, $A B$, we have at once the required rector $O B$. Thus it is obrious that we bave only to add the separate components of the velocity of $A$ with regard to $O$, and those of $B$ with regard to $A$, to obtain those of $B$ with regard to $O$. And, of course, the same rule applies to the accelerations.

If $x, y, z$ be the coordinates of A (referred to 0 ) at time $\ell ; x^{\prime}$, $y^{\prime}, z^{\prime}$ those of B referred to parallel axes from $\mathrm{A} ; \xi, \eta$. $\zeta$ those of $B$ referred to $O$; we have at once

$$
\xi=x+x^{\prime}, \quad \eta=y+y^{\prime}, \quad \delta=z+z^{\prime} .
$$

They give, by differentiation with regard to $t$,

$$
\dot{\xi}=\dot{x}+\dot{x}^{\prime}, \& c, \xi=\vec{x}+\dot{x}^{\prime}, \dot{d} c .
$$

Which constitute the analytical proof of the statement above
$\S 70$. Hence we have the solution of the further question: Given the motions of $A$ and $B$ with regard to $O$, to find the relative motion of $B$ with regard to $A$. In this case, of course, before compounding, the vector of $A$ must have its sign changed.

Another very important case is that in which the motion is referred to ares which are themselves moving. So long as their directions remain unchanged, this reduces itself to the former investigation as a mere question of changed origin; so that we need consider nuly the effect of the change of direction of the axes. And this is at once deducible from the results of last section. For we have only to consider, instead of the moving poiut, its projections on the moving ases, and find their velocities and accelerations relative to fixed axes.
Revolv. ing axes.
-
the result of a definite rotation about a definite axis per- Motion os pendicular to the plane.

The proof of this follows at once from the fact that, figure in under the assigned conditions, the figure has only three its place. degrees of freedom; and consequently its pinsition is determinate whenever the positions of any two of its points are given. Also, a single rotation can, in general, be found which vi:ll transfer these two points from one pair of assigned positions to another.

Let $A, B, A^{\prime}, B^{\prime}$ (fg. 23 ) be successive positions of tro points of the figure. Bisect $A A$ bv the line $O$ o perpendi ${ }_{1}^{1}$


Fig. 23.

Fif. 24.

cular to it, and let $\mathrm{O} b$ do the same for $\mathrm{BB}^{\prime}$. Let these perpendiculars meet in $O$. Then it is clear that the two triangles $\mathrm{OAB}, \mathrm{OA}^{\prime} \mathrm{B}^{\prime}$ are similar and equal. Hence AB may be regarded as having passed to the position $A^{\prime} B^{\prime}$ by rotation about an axis tbrough $O$ perpendicular to the plane of the paper. The angle of rotation is $\mathrm{AOA}^{\prime}$ or $\mathrm{BOB}^{\prime}$.

The construction fails when $\mathrm{O} a$ and $\mathrm{O} b$ cuincide, but in this case it is evident that the required point $O$ is the point of intersection of $B A$ and $\mathrm{B}^{\prime} \mathrm{A}^{\prime}$ (fig. 24). It also fails when the bisecting perpendiculars are parallel (fig. 25) a But then $A A^{\prime}$ and $\mathrm{BB}^{\prime}$ are equal and parallel, and the displacement is a pure translation, the same for every point of the plane figure, which may be regarded as an infinitely small rotation about an infinitely distant axis.


Fig. 2j.
§ 72. Since any displacement iu one plane corresponds comin general to a rotation, any two or more rotations about position parallel axes can alrays be compounded into a single one of Of two equal and opposite rotations the resultant is simple about translation. This is evident from fig. 26. In both cases paraluel A and B are the initial positions, $A^{\prime}$ and $B^{\prime}$ the final positions of the two axes. In the first we begin with the rotation about $A$, in the second with that about B.
$\S 73$. When these equal rotations are simultancous instead of successive, the figure becomes a rectangle; -i.e., the translation is per-


$$
\xi-\eta \theta \text { and } \eta+\xi \theta
$$

in the same way it is easy to see, by $\S 47$, that the corresponding components of the acceleration are

$$
\xi-\xi \theta^{2}-\frac{1}{\eta} \frac{d}{d t}\left(\eta^{2} \theta\right) \text { and } \eta-\eta \theta^{2}+\frac{1}{\xi} \frac{d}{d t}\left(\xi^{2} \theta\right) .
$$

Kinematics of a Rigid Plane Figure, displaced in its own Plane.
§71. When a rigid plane figure is displaced anyhow in its own plane, the displacement mas always be regarded as

Giving the position of the noving axes in terms of the tione. Let
P bo the moving point, and PMI perpendicular to O (6g. 22). Then, as the polar coordinates of Mara $\xi, \theta$, we have, for its velocity,
$\xi$ along $\mathrm{O} \xi, \xi \hat{\theta}$ along MP.
But these must be colobined with the velocity of P relative to Dt , which consists of $\eta$ along MP and $\eta \dot{\theta}$ parallel to $\xi 0$.
Thus tho velocities parallel to fixed lines corresponding to the instantaneous


Fig. 22. lines corresponding to the instantaneous
positions of $O \xi$ and $O \eta$ are, respectively,

Thus, if the rectangular axes of $x$ and $y$ be fixed, and those of $\xi$ and $\eta$ be rotating in the same plane, we have a datum of the form,

$$
\theta=\text { angle } \xi(O x=f(t),
$$

fiving the position of the moving axes in terms of the tiane. Let

Tho consideration of simultaneves rotations is very iinportant. Suppose a plane figure to rotate in its own plane, with angular veloeity $\omega$, about ilte origin. Then it is obvious that $r \omega$, in a direction perpendicular to $r$, is the velocity of a point whose distanco from the origin is $r$. The components are, therefore,

$$
\dot{x}=-y \omega, \dot{y}=r \omega .
$$

If the rotation be about the point $a, b$, these become

$$
\dot{x}=-(y-b) \omega, \dot{y}=(x-a) \omega .
$$

Hence, when there is any number of simultaneous rotations about parallel axes, we have

$$
\dot{x}=-y \Sigma \omega+\Sigma(l \omega), \quad \dot{y}=x \Sigma \omega-\Sigma(\alpha \omega)
$$

If we write

$$
\Omega=\Sigma \omega,
$$

and

$$
\alpha=\frac{\Sigma(\prime \prime \omega)}{\Sigma \omega}, \quad \beta=\frac{\Sigma(l \omega)}{\Sigma \omega}
$$

we liave $\quad \dot{x}=-(y-\beta) \Omega, \quad \dot{y}=(x-a) \Omega$.
These are tha compouent velocities which the point $x, y$ wuakl fave if there were only a single rotation, wath angular velucity $\Omega$, about an axis jussiur through the point $a, \beta$.

When

$$
\Sigma(\omega)=\Omega=0
$$

$$
\text { We sec that } \quad \dot{x}=\Sigma(b \omega), \quad \dot{y}=\Sigma(a \omega) \text {, }
$$

so that all points of the figure lave equal relocities. This is the case of pure translation. Here a and $\beta$ are (in general) each infinite $;-i . c$. , we have as resultant a ranishing angular velocity about an intinitely cisiant axis.
§ 74. As any displacement of a plane figure in its own plane is equivalent to a rotation, we may represent a series of displacenents by a series of rotations. Also if -we know the positions, in the figure itself, of the points which are successively the axes, and likewise the position which each of them occupies in space at the instant when the rotation about it takes place, we can construct the whole motion. Let them be $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$, sec., and $\mathrm{O}, a, b, c$, ite., respectively (fig. 27). Then the figure turns about $O$ till A coincides with a. Nest it turns about A (or a) till B coincides with $b$, and so on. Hence the motion will-be represented by the rolling of the polygon OABC, fixcd in the moving figure, on the polygon Oabc fixed in the planc of the motion.

In the limit, when the axis continuously shifts its position in the figure while the ratation goes on round it, the polygons become plane curves.


Fio. 27.

Thus we have the fundamental proposition that any motion of a plane figure in its own plane can be represented by the rolling oi a curve attached to it, on a curve fixed in space. Both curves are situated at an infnito distance whea the motion is one of pure translation.

## Kinematics of a Rigid Figure.

§75. When a spherical cap, or skin, mores on the surface of a sphere of equal radius with which it is everywhere in contact, we may make the construction of $\$ 71$ with great circles bisceting the ares $A A^{\prime}$ and $B B^{\prime}$. Two great circles (unless they coineide) nlways intersect at the extremitics of one definite diameter. The case of coincidence is met exaetly as it was in §71. IIcnce every motion of a spherical skin on a spbere is equivalent to a rotation about a definite axis through the centre of the sphere. Thus any number of successive or simultáncons rotations about axes passing througl one point ean be compounded into a single rotation abont an axis passing through that point. And the construction of $\$ 4$ can be carried out with spherical nolygons or curves, so that we see that any motion of a rigid figure, one point of which is fixed, cau be represented by the rolling of a pyramid or cone, fixed in the figure, upon another fixed in space.
$\$ 76$. The law of composition of simultancons angular velocities about axes which pass through one point is pre-
ciscly the sanie as that for simultaneons linear velocities Com-r of a moving point. The following simple geometrical pro- yosittor cess establishes the proposition for two intersecting axes; ; rotation
and it is easy to see that it can be extended to any number about and it is easy to see that it can be extended to any number about of such. Let $O A$ and $O B$ (fig. 28) represent the two axes, ases and let the lengths of these lines (both drawn in the positive direction for the rotation about them) represent the angular velocities corre sponding. Then a point $P$, in the angle between the positive ends of the ases, is raised abore the plane of the paper by rotation about OA , but depressed below it by the rotation about OB. The amounts of the eleration and depression are pro-


Fig. 28. portional to the distance from either axis, and to the angular velocity about it, conjointly. Hence they will annihilate one another if, perpendiculars PM, PN beiog drawn to the ases, we have

$$
O A \cdot P M=O B \cdot P N
$$

This is equivalent to saying that the areas of the triangles OAP, OBP, are equal, - which nccessitates that $P$ should lie on the diagonal of the parallelogram of which OA, OB are conterminous sides. Let OC be the diagonal of this parallelogram. From what has been said above it is evident that the displacement of any point in the plane is neccssarily proportional to the algebraie sum of the moments of OA and OB about it, and therefore (§46) to the moment of OC. Hence all points in the linc OC remain at rest, and the figure turns about that line with an angular velucity represented by its length. This analogy to moments shows the reason for the remarkable proposition that angular velocities, about axes whicb intersect, are to be compounded according to the same law as linear velocities.
§ 77. Any proposition regarding simultancous linear Anaıog. velocities or accelerations has thus its counterpart in angular between velocities and accelerations. Thus, as we have seen (§ 36) lind ar that under acceleration in one plane, always perpendicular to and ${ }_{\text {angular: }}$ the direction of motion, a point moves with uniform velocity, velociso, if a figure be rotating about one axis, and have angular ties. acceleration about a second axis always perpendicular to the first, the direction of the axis about which it rotates is clanged, but not the angular velocity.

It is to be noted that in such a case the direction of the axis changes not only in space, but also in the rotating figure itself. This, however, is merely the result of $\S 36$ in a slightly altered form.

If $\omega_{z}$ be the angular relocity of a figure about the line which, for the moment, coincides with the axis of $z$, the consennent displace; ments during time $\delta t$ of a point $x, y, z$ are ( $\$ 73$ )

$$
\delta x=-y \omega_{3} \delta t, \quad \delta y=2 \cdot \omega_{2} \delta t
$$

Of comrse sinilar results hold for the angular velocities about lines for the moment coinciding with the axes of $x$ and of $y$. The joint effect therefore is found by adding the various separate values obtained by permnting the letters $x, y, z$ in cyclical order. Thus

$$
\begin{aligned}
& \delta x=\left(z \omega_{y}-y \omega_{z}\right) \delta t, \\
& \delta y=\left(x \omega_{z}-z \omega_{z}\right) \delta t, \\
& \delta z-\left(y \omega_{x}-x^{2} \omega_{y}\right) \delta t .
\end{aligned}
$$

The right hand members of these equations ranish if

$$
\begin{equation*}
\frac{x}{\omega_{x}}=\frac{y}{\omega_{y}}=\frac{z}{\omega_{z}} \tag{1}
\end{equation*}
$$

These correspond to the tro equations of the instantancous axis, and reprolluce, in an analytical form, the resuli of $\$ 76$.

The angular velocity about this axis is

$$
\Omega=\sqrt{\omega_{z}^{\frac{2}{2}}+\omega_{y}^{2}+\omega_{z}^{2}} .
$$

For it is clear that the direction cosines of the asplacement of $x, y, z$ are proportional to

$$
z \omega_{y}-y / \omega_{z}, x \omega_{1}-z \omega_{x}, y / \omega_{x}-x \omega_{y}
$$

slowing that at takes place in a line perpendicular to the plar.
passing throung $x, y, z$ and (1). It is thercfore nerpendicnlar to 1).

Also the whole displacement is
$\sqrt{(\delta x)^{2}+(\delta y)^{2}+(\delta z)^{2}}=\delta \iota \sqrt{\left(z \omega_{g}-y \omega_{g}\right)^{2}+\left(x \omega_{z}-z \omega_{x}\right)^{2}+\left(y \omega_{x}-x \omega_{y}\right)^{2}}$

$$
=\delta \sqrt{\omega_{x}^{z}+\omega_{y}^{2}+\omega_{z}^{z}} \sqrt{x^{2}+y^{2}+z^{3}-\frac{\left(x \omega_{x}+y \omega_{y}+z \omega_{z}\right)^{3}}{\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}}} .
$$

The last factor is the listance of $x, y, z$ from (1). Hence the second is the angular velocity about (1).

It appears at once from this result, and from the form of (1), that

$$
\frac{\omega_{z}}{\Omega}, \frac{\omega_{y}}{\Omega}, \quad \frac{\omega_{z}}{\Omega}
$$

ore the direction cosines of the instantaneous axis.
If the figure be rotating simultaneously about a number of axes, -say with angular velocity $\omega_{1}$, about an axis whose direction cosines are $l_{1}, n_{1}, n_{1}$, \&c., -we have evidently

$$
\omega_{x}=\Sigma(l \omega), \omega_{y}=\Sigma(m \omega), \omega_{z}=\Sigma(\eta \omega)
$$

From these the single instantaneous axis is found immediatcly as abuve.
§ 78. Any displacement whatever of a rigid figure may be effected by means of a screw-motion, i.e., translation parallel to some definite line, accompanied by a proportinnate rotation about that line. Let $\bar{A}$ and $A^{\prime}$ be successive positions of any point in the figure, and suppose the body to be brought back by a mere translation so that $\mathrm{A}^{\prime}$ coincides again with $A$. Then we have seen (§ 75) that one line of the figure through $A$ is necessarily restored to its original position. Let P be any plane section of the figure, perpendicular to this line, $\mathrm{P}^{\prime}$ its position after displacement. These fully determine the initial and fanal positions of the whole figure. S!ift $P$ into the plane of $P^{\prime}$ by a translation perpeadicular to either, and let $\mathrm{P}^{\prime \prime}$ be its position. $\mathrm{P}^{\prime \prime}$ cau ( $\$ 71$ ) be brought to coiacide witl $l^{2 \prime}$ by a rotation in its own plane. Hence the proposition. There is an exceptional case when $\mathrm{P}^{\prime \prime}$ requires only translation to make it coincide with $\mathrm{P}^{\prime}$. But then the whole figure is merely translated.
Angular accelers. tion about a suoviug axis.
§ 79. We lave seen that the straight line representiag an angular velocity is to be resolved by the same process as that representing a linear velocity. If we consider a figure to be rotating about axes fixed relatively to it, accelerations of angular velocity abont these will be represented by clanges in the lengths of the lines representing the angular velocities, nnd will therefore be subject to the same conditions as the angular velocities themselves. Thus, as it is obvious that a figure is rotating at any instant with the same angular velocity about an axis fixcd relatively to itsclf, and about another axis fixed in space, which at the given instant coincides with the former, it follows that the angular accelerations about these axes are equal at that instant.

This is really the same proposition as tlat $\dot{r}$ is the velocity along a fixed line coinciding with the radius-vector $r$ ( $\S 47$ ). But, just os $\ddot{r}$ is not the complete acceleration parallel to $r$, if $r$ be rotating, so the proposition above, though true for the first fluxion of the angular velocity about a moving line, is not generally true for fluxions of higher orders.
As this sulject is commonly regarded as somewhat obscure, we may give a utoro formal exanimation of it by an analytical process. Suppose $\omega_{11} \omega_{2,}, \omega_{3}$ to be the angular velocities about rectangular axes $O A, O B, O C$ fixed relatively to a figure, and $\alpha$ the angular velocity of the figure relatively to a line OS fixed in space. Let $l$, $m, n$, be the direction cosines of the latter line with regard to the former three, theu

$$
\begin{aligned}
& \text { and } \quad \begin{array}{l}
\omega=l \omega_{1}+m \omega_{2}+n \omega_{3}, \\
\text { But }
\end{array} \quad \dot{\omega}=l \dot{\omega}_{1}+m \dot{\omega}_{2}+n \dot{\omega}_{3}+\dot{l} \omega_{1}+\dot{m} \omega_{2}+\dot{n} \omega_{3}, \\
& l \dot{l}+m \dot{n}+n \dot{n}=0 ;
\end{aligned}
$$

and if, at a particular instant, we havo $l=1, n=0, n=0$, this gives also $i=0$, so that we have

Now $\quad m=\cos B O S=\cos \theta$ supposo. Henco

$$
\dot{\omega}=\dot{\omega}_{1}+\dot{n} \omega_{2}+\dot{n} \omega_{3} .
$$

$\dot{n}_{t}=-\sin \theta .0$.

But, at the instant in question, $\theta=\frac{1}{2} \pi$ and $\theta=\omega_{3}$. so that

$$
\dot{m}=-\omega_{3}
$$

In the same way we sce that

$$
\dot{n}=+\dot{\omega}_{2}
$$

and thus we lave $\dot{\omega}=\dot{\omega}_{1}$,
which is the proposition above given.
§ 80. To complete the kinematics of a rigid figure of which Position one poiat is fixed, we require to lave the means of calculat- of rigil ing its position, after the lapse of any period during which figure io it has been rotating with given angular relocities about trotation given axes.
al:out
If the axes about which the angular velocities are given axes be fixed in space, the formulx of $\$ 77$ gire at once, for a fixed in unit line fixed in the figure, the expressions

$$
\begin{aligned}
l & =n \omega_{y}-m \omega_{z}, \\
\dot{\mu} t & =l \omega_{z}-n \omega_{x}, \\
\dot{n} & =m \omega_{x}-l \omega_{y} .
\end{aligned}
$$

Here $l, n, n$ are the direction cosines of the unit line at time $t$; and they satisfy, of course, the condition

$$
-n i+m \dot{n}+n \dot{n}=0 .
$$

But, except in some special cases, these equations are intractable. This, however, is of little consequence, because in the applications to kinetics of a free rigid body the physical equations usually give the angular velocities about lines fixed in the body. Our problem, then, takes the form
§ 81. Given the angular velocities of a figure about each of fixed io a system of three rectangular cexes which are rigidly attoched the to $i t$, find at any time its position in space.

It is clear that, if we know the positions of the revolving axes, referred to a fixed system, with which they at one instant coincided, the corresponding position of the figure is determined. The method usually employed is as follows.

About the common origin of the two sets of axes suppose a sphere of unit radius to be described. Let X, Y, Z (fig. 29) be the traces on this splere of the fixed axes, and $\mathrm{A}, \mathrm{B}, \mathrm{C}$ those of the revolving axes. Draw a great circle ZC so as to meet in $A^{\prime}$ the quadrant BA produced. Then it is clear that the figure can be constructed (i.e., that the data are sufficient for calculation) if wo know (a) the angle XZC,-this we call $\psi$; (b) the arc $Z \mathrm{ZC}$, called $\theta$; (c) the angle $\mathrm{A}^{\prime} \mathrm{CA}$, or the arc $\mathrm{A}^{\prime} A$, called $\phi$. For $X, I, Z$ are given. Then


Fig. 29. (a) shows how to draw the great circle ZC, whose pole is N on the great circle XY. Hence (b) gives us the points $C$ nad $A^{\prime}$. We can next draw the great circle. $A^{\prime} N$, and $A$ and $B$ are found on it by $(c)$, for $A^{\prime} A=N^{\prime} B=\phi$. We have now ouly to determine these angular coordinates in terms of the augular velocities of the figure about $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$, which we denote by $\omega_{1}, \omega_{2}, \omega_{3}$ respectively.

The velocity of C along ZC is $\dot{\theta}$. But it is produced by the rotations about A and B . Thus we have

$$
\theta=\omega_{2} \cos \phi+\omega_{1} \sin \phi
$$

The velocity of C perpendicular to ZC is $\sin \theta . \psi$. This also is part of the result of the rotations about $A$ and $B$, so that

$$
\sin \theta \cdot \psi=\omega_{2} \sin \phi-\omega_{1} \cos \phi .
$$

The velocity of $A$ along $A B$ is that of $A^{\prime}$ together with the rate of increase of ' $A$ ' Also it is entirely due to rotation about OC. Hence

$$
\cos \theta \cdot \psi+\phi=\omega_{3} .
$$

These three equations determine $\theta, \psi, \phi_{\text {, when }} \omega_{1}, \omega_{2}, \omega_{x}$ are given as fanctions of $t$.;
§82. The process above is essentially unsymmetrical. Tho first suggestion of a symmetrical system is due to Euler, and depends upon the gencral proposition of § 75. What we must seek is the single axis, and the angle of rotation about it, which (by one operation) will bring the system or figure from its initial state determined by X, Y, Z tio its state at time $t$, determined by $\mathrm{A}, \mathrm{B}, \mathrm{C}$.

Let $l, m, n$ be the direction cosines of this axis, $m$ the angle of rotation about it. Then by the elementary theorems of spherical trigonemetry we find

$$
\begin{aligned}
& \cos X A=l^{2}+\left(1-l^{2}\right) \cos = \\
& \cos Y B=m^{2}+\left(1-m^{2}\right) \cos = \\
& \cos Z C=n^{2}+\left(1-n^{2}\right) \cos
\end{aligned}
$$

Thus, as we have an independent relation ameng $l^{2}, m^{2}, n^{2}$, these quantities, as well as $\varpi$, can all be expressed in terms of the cosines of the three angles between the original and final directions of the three axes severally.

We have other six equations, of which only one need be writtcu, viz. :-

$$
\cos Y A=l m(1-\cos \pi)+n \sin =
$$

§ 83. If we put

$$
w=\cos \frac{1}{\pi}, x=l \sin \frac{1}{3} x, y=m \sin \frac{1}{2} \pi, z=n \sin \frac{1}{3} \pi,
$$

which involve the equation of condition

$$
w^{2}+x^{2} \pm y^{2}+z^{2}=1
$$

the nine direction cosines of the now positions $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$, referred to the fixed lines $O X, O Y, O Z$, become

$$
\begin{array}{rcc}
w^{2}+x^{2}-y^{2}-z^{2}, & 2(w z+x y), & 2(x z-w y), \\
2(y x-w z), & w^{2}-x^{2}+y^{3}-z^{3}, & 2(y z+w x), \\
2(x z+w y), & 2(y z-w x), & w^{2}-x^{3}-y^{2}+z^{2} .
\end{array}
$$

These expressions, rational in terms of the four quantiLies $v, x, y, z$, are due to Rodrigues, who, however, gave them in a slightly different form.

If $\omega_{1}, \omega_{2}, \omega_{3}$, he tha angular velocities about $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$, rospectively, we have

$$
\begin{aligned}
& 2 \dot{\omega}=-x \omega_{1}-y \omega_{2}-z \omega_{3}, \\
& 2 \dot{x}=w \omega_{1}-z \omega_{3}+y \omega_{3}, \\
& 2 \dot{y}=z \omega_{1}+w \omega_{2}-x \omega_{3}, \\
& 2 \dot{x}=-y \omega_{1}+x \omega_{2}+w \omega_{3} .
\end{aligned}
$$

If $\omega_{z}, \omega_{y}, \omega_{s}$ bo tha angular velocitics about $\mathrm{OX}, \mathrm{OY}, \mathrm{OZ}$, respectively, wo hava

$$
\begin{aligned}
& 2 \dot{w}=-x \omega_{x}-y \omega_{y}-z \omega_{z}, \\
& 2 \dot{x}=20 \omega_{x}+2 \omega_{y}-y \omega_{z}, \\
& 2 \dot{y}=-2 \omega_{x}+w \omega_{y}+x \omega_{z}, \\
& 2 \dot{z}=y \omega_{z}-x \omega_{y}+2 \omega \omega_{z}
\end{aligned}
$$

Each of theso acts is eqnivalent to three independent equations only, on accoant of tha relation

$$
w \dot{w}+x \dot{x}+y \dot{y}+z \dot{z}=0
$$

## Iinematics of a Deformable Figure. Strain.

§84. So far we have considered change of position of a figure of invariable form. We must now cousider changes of form and volume in the figure itself. This is required for application to physical problems, such as compression of a liquid or gas, the distortion of a piece of india-rubber, \&e. Any such change of volume or form is called a "strain." The treatment of strains is entirely a kincmatical question, until we come to regard them as produced in physical bodics, and consider their cause.

The system of forces which is said to produce a strain is called a "stress." But, just as we study velocity as a reparation for the discussion of the effect of foree on a free body, eo we study sirrains ns a preparation for tho discussion of the effects of stress.
§85. In order to fix the ideas, it is convenieat to suppose the figure which is to undergo etrain to be cut up into an infinite number of similar, equal, nnd similarly situated parellelepipeds This is effccted at once by supposing it to
parallel to one another, and equidistant. No two of thess three series must be parallel, but the distance from plsne to plane need not be the same in say two of the series. If the strain be continuous there will be no faite difference of effeet upon any two neiglibouring parallelepipeds;-but in general their edges, which originally formed three series of parallel straight lines, will become series of curves. No two parallelepipeds of the system will in general be altered in precisely the same manuer. This is called "heterogeneous strailu."
§86. We found it convenient to study uniform speed before proceeding to consider variable speed, and so we find it eonvenient to take up first what is called

Homogeneous Strain.-A figure is said to be homogeneously strained when all parts of it originally equal, similar, and similarly situated remain equal, similar, and similarly situated, however much they may individualls have been altered in form, volume, and position.

Now recur to our set of parallelepipedz. After a homogeneous strain these remaiu equal, similar, and similarly situated. Henec they must remain parallelepipeds, for they must together still continuously make up the volume of the altered figure. Thus planes remain plsnes, andi straight lines remain straight lioes. Equal parallel straight lines remain equal and paralleL. Parallel plaues remain parallel, ellipses remain ellipses (as is obvious from their properties relative to conjugate diameters), ellipsoids remain ellipsoidz, \&c.

But we can now easily see how many conditions fully determine a homogeneons straiu. For if we know how each of three conterminous edges of any oue of the original parallelepineds is altered in leagth and direction, we can build up the whole altered system. Hence, to fully require describe a homogeneous strain, wo require merely to ${ }^{1}$ know ${ }^{\text {nine }}$ con what changes tabe place in the lengths and directions of three unit lines not in one plane. Three numbers are required for the altered lengths, and two (analogous, say, to altitude and azimuth, or latitude and longitude, or R.A. and N.P.D.) for each of the altered directions. Hence, in general, a homogeneous strain depends apon, and is fully characterized by, nine independent numbers.
§ 87. The simplest form of strain is that which is due Uniform to uniform hydrostatic stress aeting on a homageneous dilataisotropic body. Here directions remain unaltered, and ${ }^{\text {tion }}$ the lengths of all lines are altered in the same ratio. Every portion of the original figure remains similer to itself, its linear, superficial, and volume dimensions being altered as the first, second, and third powers of that ratio.

Next in order of simplicity is the case in which there Pure are three directions, at right angles to one another, which strald, suffer no change except as regards length. This state of things would be produced in a homogeneous isotropic body by three longitudinal extensions or compressions in lines at right angles to one another, or by hydrostatic pressure in a homogeneons non-isotropic solid. In this ease, if the changes of length above spoken of are all differcnt, an originally spherical figure becomes an ellipsoid, with three unequal axes parallel respoctively to the lines whose directions remain unaltered. Every line in the body not originally parallel to one of these is altered in direction. If one of the principal changes of length be an extension, and another a shortening, there will bo a cone formed of lines which are not altered in length. This is seen at once by describing from the contre of the ollipsoid $a$ ephere equal to the original sphere. One axis of the ellipsoid being greater than the radius of the sphere, and another less, the ellipsoid and sphere must intersect; and all lincs drawn from the common centre to the curve of intersection are unaltered in length (though all altered, as .before remarked, in direction).

## II ECHANICS

tional
strain.
Strain ellipsoid.

Conju. gate of a strain

Then tro only of the changes of length are equal, the ellipsoid becomes one of rotation, nblate or prolate as the case may be; and if the radius of the sphere be intermediate in value to the axes of this rotation-ellipsoid, we have a right cone of rays unaltered in length.

When all three changes of length are equal we have the simplest possible case,-which has been already trcated.
§ 88 . The essential elcment in these particular cases is that three lines at right angles to one another are unaltered in direction by the strain. Here there is a mere change of form, and the strain is said to be "pure," or "free from rotation." Such a strain, in its most general form, is fully characterised by six independent numbers. For a system of three mutually perpendicular lines is fully given in direction by three numbers, and three more are required for the changes of length which they severally undergo.

But, in general, a strain is not pure. It will be shown, however, below that the principal axes of the ellipsoid into which a sphere is changed by any strain, and which is called the "strain ellipsoid," were originally radii of the sphere at right angles to one another. Hence the strain may be looked upon as made up of two operations, viz., a pure strain, and a rotation through a definite angle about an axis in a definite position in space. The axes of the pure strain are lines fixed in the figure.
§ 89. It is useful, in farther cunsidering the subject, to introduce along with the original strain (thus analysed), auother which is called its "conjugate." This is defined as composed of an equal pure strain with the first with an equal but opposite rotation. And the separate component operations must be taken in the opposite order in the strain oud in its conjugate.

The successire application of the strain and its conjugate thus necessarily leads to the reduplication (or squaring) of the pure part of the strain, and to the annihilation of the rotation. For, call the parts, as operators, P and R. The strain and its conjugate, referred to axes fixed in space, may be either

$$
R P \text { and } \mathrm{PR}^{-2}
$$

$$
P_{1} R \text { and } R^{-1} P_{3} \text {, }
$$

## or

according as the pure strain or the rotation is first applied. The operations in each group are written, from right to left, in the order in which they are performed. Thus RP means the pure strain P , followed by the rotation R .
portion of a figure into an ellipsoid, and as an ellipsoid has two series of parallel circular sections, it appears that in every strain there are two series of planes of no distortion. ${ }^{1}$ The consideration of these planes leads us to a second and very different mode of aualysing a straiu into simpler components. Perhaps the most elementary mode of considering this subject is by thinking of the motion of water flowing slowly down a uniform channel. We know that water, at ordinary pressures, is practically incompressible; also that the upper layers of the water in a canal flow faster than those below them. Hence the definition of a " simple shear." Let one plane of a figure be fixed, and let the various planes parallel to it slide over it and over one another, all in the same direction, and with velocities proportional to their distances from the fixed plane. It is clear that this shear produces homogeneous strain in the figure, but it is mere change of form without change of volume. The fixed plane and all those parallel to it, are $1^{\text {llanes }}$ of no distortion. But we have seen that there must be troo sets of such planes. To find the second set, let us suppose the plane of fig. 30 to be prarallel to the common direction of sliding, and perpendicular to the fixed plane. This plane, so defined, is the plane of the shear. Let $A B$ be the trace on it of the fized plane, $P Q$ that of one of the sliding planes, $\mathrm{PP}^{\prime}$ the amount of its sliding. Bisect $\mathrm{PP}^{\prime}$ in M by a perpendicular,


Fig. 30. meeting $A B$ in $A$. Join $A P$, take $A B=A P$, and draw $B Q$ parallel to AP. Consider the strain of the rhomboidal portion $A P Q B$ of the figure. $P$ moves to $P^{\prime}$, and $Q$ to $Q^{\prime}$, where $Q Q^{\prime}=P P^{\prime}$. Hence the rbombus remains a rhombus, for $A P^{\prime}=A P=A B$. But the lengths of its diagonals have been interchanged. It has been subjected to an elongation of AQ , and a contraction of BP , each in the same ratio (so that their prodact, i.e., double the area of the rbombus, remains unaltered), while all lines perpendicular to the plane of the figure remain unaltered. From the symmetry of the rhombus it is obvious that $A Q^{\prime}$ and $B P^{\prime}$ are the greatest and least axes of the strain ellipsoid, while AB and $A P^{\prime}$ are parallel to its circular sections. Planes originally parallel to AP and perpendicular to the paper are therefure the second set of planes of no distortion. The rutational part of the shear may be measured in terms of the angle PAM, but is given directly by PBP', and its axis is perpendicular to the plane of the figure. The most convenieut measure of the shear is the ratio of $\mathrm{PP}^{\prime}$ to AM, or, what involves the same, the angle PAP'. Another mode of measuring it is by means of the ratio $\mathrm{BP} / \mathrm{AQ},=1+e$, suppose. If $e$ be a small quantity, as is usually the case with solids, we may write $1 \pm e$ for the measure of the shear. Here $e$ indicates the extension per unit of leugth along one diagonal of the rhombus, and the contraction per unit of length along the other.
§ 92 . It is quite clear from what has been said that we can analyse a strain by the help of simple shears compounded with different forms of pure strain. For the shears may be taken in an infinite number of ways so as, to produce the rotational part of the given strain, while alsa producing deformation without change of volume. The final adjustment is to be made by a pure strain, whose axes are those of the strain ellip.soid due to the shears.'. As a shear depends on four quautities only, two shears and a dilatation furnish the nine constants required for a homogeneous strain.

[^253]The successive application of $t$ wo pure strains does not, except in special cases, give rise to a pure strain. This is, physically, a most important proposition. Thus, for instance, the instantaneous strains of each element of a perfect fluid in which there is no vortex motion are pure; and yet, if the element be followed in its motion, it will be found in general to rotate. Its moticn is said to be "differentially irrotational."
To prove this proposition by the belp of a particular case is simple enougb. Take, for instance, a compression in one direction, fullowed by an equsl extension in a different direction. Only when these directions are at right angles to one another is the resultant strain pure.
$\S 93$. The analytical theory of strains is, at least in its elements, an immediate application of the properties of determinants, usually of the third order. We subjoin a slight sketch of it.

We have acen that it is only necessary, for the full characterizing of a strain, that we ahould know what becomea of three unit lines not originally coplanar. Take these parallel to the axca (generally oblique) of $x, y, z$. Then if the $x$ unit becomes a line which is the diagonal of a parallelepiped with sides $a, d, g$ parallel to the axes, $y$ similarly that of $b, e, h$, and $z$ of $c, f, z$, we gee at once that the coordinates of the point originally at $x, y, z$ become

$$
\left.\begin{array}{l}
x^{\prime}=a x+b y+c z  \tag{A}\\
y^{\prime}=d x+e y+f z \\
z^{\prime}=g x+h y+i z
\end{array}\right\}
$$

Here it is ohvious, from the premises, that the niue quantities $a, b, \dot{i} ; d, c, f ; g, h$, aro all real, and altagether independent, at least ao far as kinematics is concerned. ${ }^{1}$ To obtain an idea of their nature from another point of view, let us auppose the axes to be rectangular. Let unit parallel to $x$ becume $c_{1}$, iu the direction given by the cosinca $l_{1}, m_{1}, n_{1}$. Similarly, let $c_{2}, l_{2}, m_{2}, n_{2}$ belong to a unit originally parallel to $y$, and $e_{3}, l_{3}, m_{3}, n_{3}$ to a unit parallel to $z$. Than the broken line $x, y, z$ becomes $x^{\prime}, y^{\prime}, z^{\prime \prime}$, where

$$
\left.\begin{array}{l}
x^{\prime}=c_{1} l_{1} x+c_{2} l_{2} y+c_{3} l_{3} z \\
y_{1}^{\prime}=c_{1} m_{2} x+c_{c} m_{2} y+c_{3} m_{3} z \\
z=c_{1} n_{1} x+c_{2} n_{2} y+c_{3} n_{3} z
\end{array}\right\}
$$

Though we have introduced three numbera $c$ aleng with nine direction cosines, no greater generality is secured, for there are three necessary relations, one among each set of cosines.
To tind the characteristic property of a pure strain, let us take it in its most general form. Thus let $l_{1}, m_{1}, n_{1}$ nows denote a line which, without change of direction, has its length altered by the strain in the ratio $c_{1}$ : 1. Let $l_{2}, m_{21}, n_{2}, e_{2}$ and $l_{3}, n_{3}, n_{3}, e_{3}$ be similar data for the other two of the system of rectangular axea of tho pure strain. Then to these axes the coordinates of $x, y, z$ are

$$
\begin{aligned}
& \xi=l_{1} x+m_{1} y+n_{1} z, \\
& \eta=l_{2} x+m_{2} y+n_{2} z, \\
& \zeta \Leftrightarrow l_{3} x+m_{3} y+n_{3} z
\end{aligned}
$$

The strain co $\eta$ verts $\xi$ into $\xi=c_{1} \xi$, $\eta$ into $\eta^{\prime}=e_{2} \eta$, and $\zeta$ into $\zeta^{\prime}=c_{3} \zeta$. Hence the final coordinates (to the original axes) of the point originally at $x, y, z$ are

$$
\begin{aligned}
& x^{\prime}=l_{1} \xi^{\prime}+l_{2} \eta^{\prime}+l_{3} S^{\prime}, \\
& y^{\prime}=m_{1} \xi^{\prime}+n_{2} \eta^{\prime}+m_{3} \zeta^{\prime}, \\
& z^{\prime}=n_{1} \xi^{\prime}+n_{2} \eta^{\prime}+n_{3} \zeta^{\prime} ;
\end{aligned}
$$

or, in terms of $x, y, z$,

$$
\begin{align*}
& x^{\prime}=\left(c_{1} l_{1}^{2}+c_{2} l_{2}^{2}+e_{3} l_{3}^{2}\right) x+\left(e_{1} l_{1} m_{1}+c_{2} l_{2} m_{2}+e_{a} l_{3} m_{3}\right) y \\
& +\left(c_{1} l_{1} n_{1}+c_{2} l_{2} n_{2}+c_{9} l_{3} n_{3}\right) z \\
& y^{\prime}=\left(e_{1} m_{1} l_{1}+c_{2} m_{2} l_{2}+e_{3} m_{3} l_{3}\right) x+\left(c_{1} m_{1}^{x}+c_{2} m_{2}^{2}+e_{3} m_{2}^{2}\right) y  \tag{B}\\
& +\left(c_{1} n_{1} n_{1}+c_{2} n l_{2} n_{2}+c_{3} n_{3} n_{3}\right) \approx \\
& \begin{aligned}
z^{\prime} & -\left(\varepsilon_{1} n_{2} l_{1}+\varepsilon_{2} n_{2} l_{2}+e_{3} n_{3} l_{3}\right) x+\left(e_{1} n_{1} m_{1}+e_{2} n_{2} m_{2}+e_{3} n_{8} m_{3}\right) y \\
& +\left(e_{1} n_{3}^{2}+e_{2} n_{3}^{2}+c_{8} n_{3}^{2}\right) z
\end{aligned}
\end{align*}
$$

If we compare this with the general expression above given for $a$ etrain, we see that the coefficient of $y$ in the value of $x$ is equal to that of $x$ in the value of $y^{\prime}$. Similarly that of $z$ in $x^{\prime}$ is equal to that of $x$ in $z$; and that of $z$ in $y^{\prime}$ is equal to that of $y$ in $z$; or finally

$$
b=d, c=g, f=h .
$$

[^254]Conversely, when these thrce conditions are satisfild, and not Purb otherwise, the strain is pure. It is to be observed that $\xi, \eta, \zeta$ form atrain a rectangular aystem, and thus the pine direction cosinea (usnally depend involving six arbitrary numbers) depend here on three numbers on six alone. Thus there are six independent numbers, corresponding to condi$a, e, i, b, c, f$, in the general expression for the strain.
It is clear, from the elements of coordinate geometry, that the Changed determinaut

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|
$$

by otruia
represents the ratio in which the volume 25 increased by the strain. ${ }^{2}$
Let us uow introduce, in succession to the atrain
Conjagate
(1), atraina

$$
\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}
$$

the connected strain

$$
\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & \imath
\end{array}
$$

which obviously produces an equal change of volume with the former.

Applying these strains in succession, we have as the final result

$$
\begin{aligned}
& x^{\prime \prime}=a x^{\prime}+d y^{\prime}+g z^{\prime}, \\
& y^{\prime}=\delta x^{\prime}+c y^{\prime}+h z^{\prime}, \\
& z^{\prime \prime}=c x^{\prime}+f y^{\prime}+i z^{\prime},
\end{aligned}
$$

or, substituting for $x^{\prime}, y^{\prime}, z^{\prime}$ their values in terms of $x, y, z$, $x^{\prime \prime}=\left(a^{2}+d^{2}+g^{2}\right) x+(a b+d c+g h) y+(a c+d f+g i) z$, $y^{\prime \prime}=(b c+e d+h g) x+\left(b^{2}+c^{2}+h^{2}\right) y+(b c+c f+h i) z$, $z^{\prime \prime}=(c a+f d+i g) x+(c b+f c+i h) y+\left(c^{2}+f^{2}+z^{2}\right) z$.
Chus the resultant strain is

| $a^{2}+d^{2}+g^{2}$ | $a b+d e+g h$ | $a c+d f+g i$ |
| :--- | :---: | :---: |
| $b a+c d+h g$ | $b^{2}+c^{2}+h^{2}$ | $b c+c f+h$ |
| $c a+f d+i g$ | $e b+f e+i h$ | $c^{2}+f^{2}+\imath^{2}$ |

which, for simplicity, we will writo as

$$
\begin{array}{lll}
\alpha & \delta & \gamma \\
\delta & \epsilon & \beta  \tag{2}\\
\gamma & \beta & \ddots
\end{array}
$$

It will be obscrved that this group of nirfe numbers, if treated as a determinant, constitutes the product of the determinants formed of the two systems above.

Thas satisfies the criterion of a "pure strain," as given above: and we thus see that in the successive application of the atrains -

| $a$ | $b$ | $c$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $d$ | $c$ | $f$ |
| $g$ | $h$ | $i$ |$\quad$ and $\quad$| $a$ | $d$ | $g$ |
| :--- | :--- | :--- |
| $b$ | $e$ | $h$ |
| $c$ | $f$ | $i$ |

the rotation produced by the first is annihilated by the second.
Let A, B, C, \&c., be the miners of

$$
\Delta=\left|\begin{array}{lll}
a & b & c \\
d & c & f \\
g & h & i
\end{array}\right|
$$

correspondirg to $a, o, c, \& c$.
Then by our original equations we have
$\Delta x-\mathrm{A} x^{\prime}+\mathrm{D} y^{\prime}+\mathrm{G} z^{\prime}$
$\Delta y-\mathrm{B} x^{\prime}+\mathrm{E} y^{\prime}+\mathrm{H} z^{\prime}$,
$\Delta z=\mathrm{C} x^{\prime}+\mathrm{F} y^{\prime}+\mathrm{l} z^{\prime \prime}$

Thus the reciprocal of the strain

| $a$ | $b$ | $c$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $i$ | $e$ | $f$ |
| $g$ | $j$ | $i$ |$\quad$ is $\quad$| $\Lambda / \Delta$ | $\mathrm{D} / \Delta$ | $\mathrm{G} / \Delta$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{B} / \Delta$ | $\mathrm{E} / \Delta$ | $\mathrm{H} / \Delta$ |
| $\mathrm{C} / \Delta$ | $\mathrm{F} / \Delta$ | $1 / \Delta$. |

Recipre:
cal of
strua

This is evident from the formulx just written. For they express that the new strain converts $x^{\prime}, y^{\prime}, z^{\prime}$ into $x, y, \ldots$
Apply the resultant strain in succession to this rectprocal. The result ia casily foreseen from separate terms like the following:-

$$
\begin{aligned}
& \Lambda\left(a^{2}+d^{2}+g^{2}\right)+\mathrm{B}(a b+d c+g h)+\mathrm{C}(a c+d f+g i) \\
& \quad-a(\mathrm{~A} a+\mathrm{B} b+\mathrm{C} c)+d(\mathrm{~A} d+\mathrm{Be}+\mathrm{C} f)+g(\mathrm{~A} g+\mathrm{B} h+\mathrm{C} i) \\
& \quad=a \dot{\Delta} ; \& \mathrm{c} .
\end{aligned}
$$

${ }^{2}$ When thia strain is produced in a piece of maller, tha numerical valuo of the determinaut obviously cannot be negatits.

Hence when reoapply (2) to a figure preriously strained by the aiprocal of (1)'the result is the atrain ( $1^{\prime}$ ). Hence me verify that the latter is the conjugate of (1) ; as it possesses the properties described in $\S 90$, all of which are thus established.
To analyse a strain in the simplest manner, we must find the axes of the strain ellipsoid ( $\$ 88$ ), as well as the original radii of the nait sphere which wero distorted into then. It is more direct, howerer, to consider the ellipsoid which becomes a unit sphere in consequeuce of the strain. The equation of that ellipsoid is

$$
(a x+b y+c z)^{2}+(d x+e y+f z)^{2}+(g x+h y+i z)^{2}=1 ;
$$

or, with the potation employed in (2) abore,

$$
a x^{2}+\epsilon y^{2}+z^{3}+2 \delta x y+2 \beta y z+2 \gamma=x=1 .
$$

But the square of any radius-vector is

$$
x^{2}+y^{2}+z^{2}=r^{2}, \text { suppose }
$$

The maximam radius-vector, therefore, of the ellipsoid is found from the tro equations

$$
\begin{gathered}
(a x+\delta y+\gamma z) d x+(\delta x+\epsilon y+\beta z) d y+(\gamma x+\beta y+z) d z=0, \\
x d x+y d y+z d z=0 .
\end{gathered}
$$

Hence, $p$ being a numeriesl quantity to be fond,

$$
\begin{align*}
& a x+\delta y+\gamma=p x, \\
& \delta x+\epsilon y+\beta z=p y,  \tag{4}\\
& \gamma x+\beta y+\omega=p z .
\end{align*}
$$

Multiply respectively by $x, y, z$, add, and take accomat of the two preceding undifferentiated equations. We thus hare

$$
1=p r^{2},
$$

or $p$ is the reciprocal of the square of the maximum semi-axis required.
But, if we eliminate $x, y$, and a simultanecusly from the preceding linear equations, me hare

$$
\left|\begin{array}{ccc}
\alpha-p & \delta & \gamma \\
\delta & \epsilon-p & \beta \\
\gamma & \beta & 1-p
\end{array}\right|=0
$$

Axes of the strain ellipsoid.

## One line,

 at least, nnaltered in diree. tion.80 that
This equation is known to hare three real positire roots, becanse the determinant is symmetrical. The roots are the squared reciprocals of the semi-axes of the ellipsoid, i.c., they are the squares of the semi-axes of the strain ellipsoid.

When the three values of $p$ have beeu found from this equation, any two of the equations (4) give in an nasmbiguous form the cortesponding ralues of the ratios $x: y: z$ for esch of them. Thus we know the original positions of the lines which become the axes of the strain ellipsoid. Their final positions are found from these by means of (A). Aad, since we thus koow the original and final positioos of the rectangular system, the method of Rodrigues enables us to calculate the axis and amoont of the rotation.

In homogeneous atrain, one direction at least is unchanged. This is an addition to, or extenaion of, the siogular result of $₹ 75$.

For, if $x, y, z$ be shifted to a point on its radius-vector, we must

$$
\left.\begin{array}{l}
a x+b y+c z=\epsilon z \\
d x+c y+f z=\epsilon y \\
g x+h y+i z=\epsilon z
\end{array}\right\} ;
$$

$$
\left|\begin{array}{ccc}
a-\epsilon & b & c \\
d & e-\epsilon & f \\
g & h & i-\epsilon
\end{array}\right|=0
$$

a cubic equation, which must have one real root.

## Strain a

 mere rotation.Or troo of them may be each $=-1$, but then (to avoid perversion. the thind mast be $=1$. Then we have
$(1+\epsilon)^{2}=0$.
In the first case the figure hes no rotation. In the second it rotates throngh an angle $\pi$ about the axis of $\epsilon=1$.

The proposition that two pure strams succeeding one aacther Composs asually give a rotational strain is prored at once by analysis. Let tion off the pure strains be such that

$$
\begin{aligned}
& x^{\prime}=a x+d y+c z, \\
& y^{\prime}=d x+c y+b z, \\
& z^{\prime}=c z+b y+i z ; \\
& x^{\prime \prime}=a^{\prime} x^{\prime}+d^{\prime} y+c^{\prime} z^{\prime}, \\
& y^{\prime \prime}=d^{\prime} x^{\prime}+e^{\prime} y^{\prime}+b^{\prime} z^{\prime}, \\
& z^{\prime \prime}=c^{\prime} x^{\prime}+b^{\prime} y^{\prime}+i^{\prime} z^{\prime}
\end{aligned}
$$

Then, writing ooly the second term of $x^{\prime \prime}$ and the first of $y^{\prime \prime}$ in terms of $x, y, z$, we have

$$
\begin{aligned}
& x^{\prime \prime}=\ldots \\
& y^{\prime \prime}=\left(d^{\prime} a+c^{\prime} d+b^{\prime} c\right) x+\left(a^{\prime} d+d^{\prime} c+c^{\prime} b\right) y+\ldots . \\
& z^{\prime \prime}=\ldots \ldots+\ldots
\end{aligned}
$$

It is clesr that, in general, this is not a pure strain. But it is also clear that a third pure strain caa be found whose opplication io snccession to the other two will give a pure atrain.

For let the last equations be written

$$
\begin{aligned}
& x^{\prime \prime}=a^{\prime \prime} x+b^{\prime \prime} y+c^{\prime \prime} z, \\
& y^{\prime \prime}=d^{\prime \prime} x+e^{\prime \prime} y+f^{\prime \prime} z \\
& z^{\prime \prime}=g^{\prime \prime} x+h^{\prime \prime} y+i^{\prime \prime} z
\end{aligned}
$$

and let us apply further the pure strain

$$
\begin{aligned}
& z^{\prime \prime \prime}=a x^{\prime \prime}+\delta y^{\prime \prime}+\gamma z^{\prime \prime}, \\
& z^{\prime \prime \prime}=\delta x^{\prime \prime}+\epsilon y^{\prime \prime}+\beta z^{\prime \prime \prime}, \\
& z^{\prime \prime \prime}=\gamma x^{\prime \prime}+\beta y^{\prime \prime}+z \sim^{\prime \prime} .
\end{aligned}
$$

Thea re hare

$$
\begin{aligned}
& x^{\prime \prime \prime}=\ldots \cdots+\left(a b^{\prime \prime}+\delta e^{\prime \prime}+\gamma h^{\prime \prime}\right) y+\ldots . . \\
& y^{\prime \prime \prime}=\left(\delta a^{\prime \prime}+\epsilon \bar{d}^{\prime \prime}+\beta y^{\prime \prime}\right) x+\ldots \ldots+\ldots \\
& z^{\prime \prime \prime}=\ldots
\end{aligned}
$$

There are but three conditions to satisfy, that this strain may be pure. But we may accomplish this in an infinite number of waya, for we have five disposable quantities, viz., the ratios of any five of $a, \epsilon, t, \beta, \gamma, \delta$ to the remaining one. In a precisely aimilar Inanier we may show that three pure strains can be found, auch that their resultant is a mere rotation. In fact, all we hsro to do, siace two yure strains in general produce a distortion accompanied by rotation, is to aprly a pure atrain to anoihilate the distortion, which can of course slways be done.
§ 94. In gencral when a figure is continuously strained, Hetere which is usually the case in physical applications, at least geneon until cracks occur, the strain is not homogeneous. But, on account of the continuity of the strain, portions indefinitely near one another are strained indefinitely nearly alike. Hence we may treat such a case by the ordinary process for homogeneous strain, so long as we confine our attention to small regions of the figure strained. When there is discontinuity in the motion of a fluid, it is the common practice to treat the motion as continuous by the fiction of an infinitely thin vortex-sheet separating the two discontinuously moving portions. This is, in all likelihood, physically true in ordinary fluids; but, so far as the imaginary frictionless fluid of the mathematicians is concerned, it is a mere analytical artifice to enable us to carry out the investigation. See Aton and Hydromechanics, in which the mathematical theory of "vortex motion" is very fully considered.

Suppose space to be uniformly acenpied by points which are displaced in a continoous manyer. Let $\xi, \eta, \xi$ be the reetangular compozents of the displacement of a point originally situated at $x, y, z$. The continuity of the displaeement requires merely that the differential coeffieients, of all orders, of $\xi, \eta, \delta_{0}$ with respect to $x, y, z$ (and any combination of them) shall be finitc. That being assumed, the diaplacement, parallel to $x$, of the point whose initinl coordinates were $x+\delta x_{0} y+z y, z+\delta z$ (where $\delta x_{1} \delta y, \delta z$ are indefinitely small quantitles of the first order) is necessarily expressed by

$$
\xi+\frac{d \xi}{d x} \delta x+\frac{d \xi}{d y} \delta y+\frac{d \xi}{d z} \delta z .
$$

Hence the relative coordinate of the recond point with regard to the first is changed fram $\delta z$ to $\delta x+\frac{d \xi}{d x} \delta x+\frac{d \xi}{d y} y y+\frac{d \xi}{d z} \delta$. And
ienstonts similarly for the other relative coordinates. Hence the strein in of the consequent avain.

| $1+\frac{d \xi}{d x}$ | $\frac{d \xi}{d y}$ | $\frac{d \xi}{d z}$, |
| :--- | :--- | :--- |
| $\frac{d \eta}{d x}$ | $1+\frac{d \eta}{d y}$ | $\frac{d \eta}{d z}$, |
| $\frac{d \zeta}{d x}$ | $\frac{d \zeta}{d y}$ | $1+\frac{d \zeta}{d z}$. |

If the differential coefficients are all small quantities, whose aquares and products two and two may be neglected, i.e., if the otrain is slight, we have for the ratio in which the volume is in. creased

$$
1+\frac{d \xi}{d x}+\frac{d \eta}{d y}+\frac{d \xi}{d z}: 1
$$

Hence the condition of no change of volume is

$$
\frac{d \xi}{d c}+\frac{d \eta}{d y}+\frac{d \zeta}{d \xi}=0
$$

To examine this case more closely, let us suppose thet it consists of ${ }^{\text {r }}$ pure atrain as in $\S 93(B)$, auperposed on a rotation $\omega_{x}, \omega_{y}, \omega_{z}$ about the axes of $x, y$, and $z$ as in $\$ 77$. Let these be so small as not to interfere with one another. That compound strain would bo $e_{1}^{1} 1_{2}^{2}+e_{2} l_{2}^{2}+e_{2}^{l_{2}^{\prime 2}}$ $e_{1} m_{2} l_{1}+e_{2} m_{2} l_{3}+e_{3} m_{3} l_{2}+\omega_{k} \quad e_{1} m_{2}^{2}+e_{1} m^{2}+e_{2} m^{2}$ $e_{1} n_{1}^{\prime} l_{1}+e_{2} n_{2}^{\prime} l_{2}+e_{3} n_{3} l_{2}-\omega_{g} \quad e_{1} n_{1} m_{1}+\ldots \ldots . .+\omega_{x} \quad e_{1} n_{1}^{2}+e_{2} n_{2}^{2}+e_{d} n_{2}^{2}$. Comparing with the above, we find

$$
1+\frac{d \xi}{d x}=e_{1} l_{1}^{2}+e_{2} l_{2}^{2}+e_{3} l_{3}^{\prime},
$$

or, if we put for the "elongation," so that $e=1+\varepsilon$,

$$
\frac{d \xi}{d x}=\epsilon_{1} l_{1}^{2}+e_{2} l_{x}^{2}+\epsilon_{3} l_{3}^{2},
$$

with similar expressions for $\frac{d \eta}{d y}$ and $\frac{d \zeta}{d z}$.
These give

$$
\frac{d \xi}{d x}+\frac{d \eta}{d y}+\frac{d \zeta}{d z}=e_{1}+\epsilon_{2}+\epsilon_{3}
$$

Again we have

$$
\begin{aligned}
\frac{d \eta}{d x}+\frac{d \xi}{d y} & =2\left(\varepsilon_{1} l_{3} m_{1}+c_{2} l_{2} m_{2}+c_{3} l_{3} m_{3}\right) \\
& =2\left(\epsilon_{1} l_{1} m_{1}+\epsilon_{2} l_{2} n_{2}+\epsilon_{3} l_{3} m_{3}\right)
\end{aligned}
$$

with other two of the same kind.
Also we have three equations of the form

$$
\left.\begin{array}{l}
2 \omega_{s}=\frac{d \zeta}{d y}-\frac{d \eta}{d z} \\
2 \omega_{y}=\frac{d \xi}{d z}-\frac{d \zeta}{d x} \\
2 \omega_{s}=\frac{l \eta \eta}{d x}-\frac{d \xi}{d y}
\end{array}\right\}
$$

Coodition These expressions show, simply, that when there is no elementary of no rotation the quantity
rota:lod.

$$
\xi d x+\eta d y+\int d z=d \phi
$$

is the complete differentiol of a function of three independent variables. If we combine the condition that there shall be no change of volume with these that there shall be no retation, we cau eliminate $\zeta, \eta$, $\zeta$; und we arrive at Laplace's equation

$$
\frac{l^{2} \phi}{d x^{2}}+\frac{d^{3} \phi}{d y^{3}}+\frac{d^{2} \phi}{d s^{2}}=0
$$

This ahows at once how a graphical representation of staticnary distributions of tempcrature, electric potential, \&c., may be given by means of a otrain.

If $d S$ be na element of a surface at the point $x, y, z$, nnd $l, n, n$ the direction cosines of its normal, tha rotation about the pormal is obviously

$$
l \omega_{x}+m \omega_{y}+\eta \omega_{s}
$$

The integral of double of this over a finite pertion of surface is

$$
\begin{aligned}
& \iint \mathrm{d}\left(1\left(\frac{d \zeta}{d y}-\frac{d \eta}{d z}\right)+n\left(\frac{d \xi}{d z}-\frac{d \zeta}{d x}\right)+n\left(\frac{d \eta}{d x}-\frac{d \xi}{d y}\right)\right) \\
& \iint\left\{\left(\frac{d \zeta}{d y}-\frac{d \eta}{d z}\right) d y d z+\left(\frac{d \xi}{d z}-\frac{d \zeta}{d x}\right) d z d x+\left(\frac{d \eta}{d x}-\frac{d \xi}{d y}\right) d x d y\right\}
\end{aligned}
$$

Chis, ns scems to have been first pointed out by Stokes, can we expressed as a siruple integral in the form

$$
\int(\xi d x+\eta(l y+\zeta d z)
$$

extended round the boundary of the surface. Hence the double integral has the same value for all finite surfaces luving the same boundary; and, as a consequence, it ranishes when taken over a closed simply-counected aurface. Hence we see at once that it vanishes for multiply-connected surfaces also. The prsof of the cquality of the single and double integral has only to be established for a mere surface element. For, when that is done, the common boundary of each pair of clemeats gives equal portions, with opposite signs, in the single integral.

Directly conaected with the displacements of a group of points, We have the question, What is the mathematical expression of the fact that the number of points is not altered? There are many waya of answering this; but the following, which is immediately deducible from our recent investigation, seems sufficiently simple. If $l, n, n$ be the direction cosines of the normal to an element $d S$ of a singly-connected closed surface, the number of points which pass throngh the element in the time $\delta t$ in consequence of the displacement $\xi \delta t, n \delta t$, $\delta \delta t$ at the point $x, y, z$ is

$$
(l \xi+m \eta+n \zeta) \rho d \mathrm{~S} \delta t
$$

where $\rho$ is the number of points per unit volume at $x, y, z$. But at every point inside the closed aurface the density is altered from $\rho$ to $\rho+\dot{p}$ ot. It will be noticed that $\xi, \eta, \zeta$ now stand for the $x, y, z$ components of velocity.

Hence, if tho excess of the number of points passing into the surface over those escaping be equated to the increase of the number of points included in the closed space, which is calculated from the change of density inside, we have

## $\delta t \iint(l \xi+1 n \eta+n \zeta) \mu d \mathrm{~S}=\delta t \iiint \dot{\beta} d x d y d z$.

If we take for $S$ an elementary rectangular parallelepiped, with edges $\delta x, \delta y, \delta z$, this becomes at once

$$
-\left(\frac{d(\rho \xi)}{d x}+\frac{d(\rho \eta)}{d y}+\frac{d(\rho \zeta)}{d z}\right) \delta x \delta y \delta=\delta t=\rho \delta x \delta y \delta z \delta t
$$

or

$$
\frac{d \rho}{d l}+\frac{d(\rho \xi)}{d x}+\frac{d(\rho \eta)}{d y}+\frac{d(\rho \zeta)}{d z}=0
$$

If the arrangement is incompressible this becomes, as abeve,

$$
\frac{d \xi}{d x}+\frac{d n}{d y}+\frac{d \zeta}{d z}=0
$$

In any one of the last four forms the expression is called the "equation of contiauity," another of the preposterously ill-chosen terms which have been introduced with only too great auccess into the nomenclature of our subject.
§ 95. In the strains which we hare hitherto considered Changes all parts of a figure were regarded as capable of changing of figaro their form and volume; and the straiu of any element, of a when not identical with that of a proximate element, was jointed supposed to differ only infinitesimally from it. But there of rigid is another class of changes of form, for which this restriction does not hold. The mest important case, and the only one we can here consider, is that of "link-work." Here each finite piece is treated as incapable of change of form, and the change of form of the whole depends merely upon the relative motions of the parts. We will furthen restrict ourselves by the condition that the link-work if such that its form is determinate when the relative position of two of its parts is assigned. Thus, a jointed parallelo, gram is completely determined in form if the angle between two of its sides is assignod. Iustead of an angle, we may assign the length of a diagonal; theu the fact that the su'm of the squares of the diagonals is equal to that of the squares of the sides determines the other diagonal. This gives us the kinematics of the more comples srrangement called "lazy-tongs." The most inportant applications of this Lazs: branch of our subject are to what is called "Mechanism." tong One important- practical problem in that brauch was suggested by a stationary steam.enginc, in which it was required to connect, by link-work of some kind, a point (of the piston-rod), which had a to-and-fro motion in a straight line, with anether point (of the besm) which bad a to-and-fro motion in a circular arc. Watt's original watt's solution of the problem depends ultimately upon the nesr parallo approach to rectilinearity of the motion of any point of a motion rod whese catromities move in two circles in the same plane. Thus, if $\mathrm{OP}, \mathrm{PQ}, \mathrm{QO}^{\prime}$ (fig. 31) be three bars jointed together at $P$ and $Q$, having $O$ sud $O$ fixed, and.
the whole constrained to more in one plane, it is easy to see that the complete path of aoy point $R$ of $P Q$ is a species of figure of eight. A portion of that curve on each side of a puint of intlexion (where the currature vanishes) was found to be sufficiently straight for practical purposes.
Pesucel. But the rigor-


Fig. 31.
ser cell. ous solution of this problem has only been arrived at in recent times; and the beautiful device of Peaucellier, r:hich we will briefly explain, has led to a host of remarkable investigations and discoveries in a field regarded till lately as perfectly hopeless. A simple mode of arriving at Peaucellier's result is as follows.

Let PQ, PR (fig. 32) be equal links, and PO a link of a different length, all jointed together at $P$. Suppose $O$ to be fixed, and $Q$ and $R$ constrained to move in a fixed straight line $O Q R$, what is the relation between $O Q$ and OR? We have, if PS be perpendicular to QR,

$$
\begin{aligned}
& O P^{2}=O S^{2}+S P^{2} \\
& Q P^{2}=\mathrm{QS}^{2}+S P^{2}
\end{aligned}
$$

whence

$$
O P^{2}-\mathrm{QP}^{2}=\mathrm{OS}^{2}-\mathrm{QS}^{2}=\mathrm{OQ} . \mathrm{OR}
$$

Thns the rectangle under $O Q$ and $O R$ is coristant; so that, if $R$ were to describe a straight line, $Q$ would describe a circle having $O$ on its circumference. In practical application, to keep $\mathrm{O}, \mathrm{Q}, \mathrm{R}$ in one line, the parts of the link-work are doubled symmetrically
 about that line, so that it takes the form of a jointed rhombus PQP'R (fig. 33) with two equal links, PO, OP' nttached at the extremities of a diagonal. As a very 'curious result of this arrangement, if $O Q$ have its length changed by any very small amuunt, the corresponding change of length of $O R$ is directly as $O R^{2}$
 or inversely as $\mathrm{OQ}^{2}$. Hence, as will be seen later, a constant force (towards or from O) acting at $Q$ will be balanced ty a force (from or towards 0 ) acting at R and varying inversely as the square of $O R$.

## DY゙NAMICS.

## Definitions and General Considerations.

Defini-

## son of

pbysical preticle.
§ 96. We commence with a few necessary definitions. A "physical particle" is a purely abstract conception, embodying together the ideas of inertia and of a geometrical point. It is, so to speak, a mathematical fiction, embracing only those properties which are required for our temporary purpuse. Any mass, however large, can be treated as a particle, provided the forces to which it is subject, are exerted in lines passing through its "centre of inertia" pr "centre of mass" (this term will presently be defined), po as to be incapable of setting the mass into rotation. Chis is, to a frist appruximation, true of planetary motions, but when we look more closely into that question, so ns For instance to take account of the oblate forms of the
planets, we have to deal with forces which produce rotatory effects, such as "precession" and "nutation."
§97. The "quantity of matter" in a body, or the "mass," is proportioulal to the "rolume" and the "density" conjointly. The "density" may therefore be defined as the quantity of matter in unit volume.

If $M$ be the mass, $\rho$ the density, and $V$ the rolume of a homiogeneults body, we have at once

$$
\mathrm{M}=\mathrm{V}_{\rho} \rho_{2}
$$

provided we so take our units that unit of mass is the mass of unit volume of a body of unit density. Hence the dimensions of $\rho$ are $\left[\mathrm{ML}^{-3}\right]$.
-As rill be presently explained, the most convenient unit mass is an imperial pound, or a granme, of matter.
§ 98. The "quantity of mation," or the "momentum," Momes of a moving body is proportional to its mass and velocity tum. conjointly. As already stated this is, like velocity, a directed quantity, or "rector." Its dimensions are, of course, $\left[\mathrm{MLT}^{-1}\right]$.
§ 99. "Cbange of quantity of motion," or "change of Change o momentum," is proportional to the mass moving and the momen. change of its velocity conjointly.

Change of velocity is to be understood in the general sense of § 32. Thus, with the notation of that section, if a velocity represented by $O A$ be changed to another represented by OB, the change of velocity is represented in magnitude and direction by AB .
$\S 100$. "Rate of change of inomentum," or "acceleration Rate of of momentum," is proportional to the mass moving and change, the acceleration of its velocity conjointly. Thus (§ 36$)^{\text {tum. }}$ the acceleration of momentum of a particle moring in a curve is $M \ddot{z}$ along the tangent, and $M v^{2} / \rho$ in the radius of absolute curvature. The dimensions of this quantity are [ $\mathrm{MLT}^{-2}$ ].
§ 101. The "vis viva," or "kinetic energy," of a moving Kinetic body is proportional to the mass and the square of the energy. speed conjointly. If we adopt the same units of mass and velocity as above, there is particular advantage in defining kinetic energy as half the product of the mass into the square of its speed. Its dimensions are $\left[M^{2} \mathrm{~T}^{-2}\right]$.
$\S 102$. "Rate of change of kinetic eurergy," thus defined, Rate of is the product of the speed into the component of accelera- of it it tion of momentum in the direction of motion.

For

$$
\frac{d}{d t}\left(\frac{\mathrm{M} v^{2}}{2}\right)-\mathrm{M} r i=r(\mathrm{M} \hat{\mathrm{~s}})
$$

The dimensions are $\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$.
§ 103. The "space-rate of change of kinetic energy" is Space-

$$
\frac{d}{d s}\left(\frac{\mathrm{M} r^{2}}{2}\right)=\mathrm{M} v \frac{d v}{d s}=\mathrm{M} \frac{d v}{d t}=\mathrm{M} \tilde{s} ;
$$

and its dimensions are [MLT- ${ }^{-2}$ ], the same as those of "force" (\$ 104).
§ 104. "Force," as we have already seen, is any canse Force. which alters a body's natural state of rest, or of uniform motion in a straight line.
The three elements specifying a force, or the three elements which must be known before a clear notion of the force under consideration can be formed, are-its place of application, its direction, and its magnitude. The place of application may be a surface, as when one body presses on another; or it may be throughout the whnle mass of a body, as in the case of the earth's attraction for it.
The " measure of a force" is the rate at which it produces momentum, or the momentum which it produces in unit of time, which is the same as what we have already called "rate of change of momentum." According to this method of measurement the standard or unit force is that force which, acting on the unit of motter during the unit of

Fime, generates the unit of velocty. The dimensions of foree are therefure [MLT-"].
§ 105. Hence the Lritish absolute unt force is the foree
xisolsts which, acting on one pound of matter for one second, generates a velacity of one foot per sceond.
[According to the system followed till lately in treatises un dynamies, the unit of mass is $g$ times the mass of the standard weight, $y$ being the numerical value of the acceleration produced (in some particular locality) by the earth's attraction. This definition, giving a varying unit of mass, is exceediugly meonvenient. In reality, standards of weirlt are masses, not forces. They are employed primarily for the purpase of measuring out a definite quantily of matter, not an amount of matter which shall be attracted by the carth'with a given foree.]
§106. To render our stanuard intellizible, all that has to be done is to fiod how many absolute units will produce, in any particular locality, the same effect as does gravity. The way to do this is to measure the effect of gravily in produciug acceleration on a body unresisted in any way. The most accurate method is iudirect, by means of the pendulam. The result of pendulum experiments made at Leith Furt, by Captain Kater, is that the velocity aequired by a body falling unresisted for one second is at that place $32 \cdot 207$ feet per second. The variation in gravity for one degree of difference of latitude about the latitude of Leth is only 0000832 its own amount. The everage vulue for the whole of Gireat Britain differs but little fron 322 ; that is, the attraction of gravity on a pound of matter in the country is 32.2 times the force which, acting on a pound for a sccond, would generate a velucity of one foot per second. Thus, speaking very roughly, the British absoluto unit of force is equal to the weight of about half an ounce. The quantity of $32 \cdot 2$ fent per second per second is usually called $g$. Its dinensions are obriously [ $\mathrm{LT}^{-2}$ ]. And, if M bo the mass of a body, its weight is IIg. In the Centimetre-GrammeSecond system of units, the absolute unit of force produces in one second, in a mass of one gramme, a velocity of one centimetre per second.
§107. Forces (since they involve only direction and magnitude) may be represented, as velocities are, by vectors, that is, by straight lines drawn in their direetions, and of leagths proportional to their magnitudes respectively.

Also the laws of composition and resolution of any number of forces acting at the same point are, as we shall presently show (\$ 117), the same as those which we have already proved to hold for velocitíes; so that, with the substitution of force for velocity, $\$ 30$ is still true.
§ 108. The s" component" of a force in any direction is therefore found by multiplying the magnitude of the force , by the casine of the angle between the directions of ti.e force and the conponent. The remaining component in this case is perpendicular to the other.

It is very generally convenient to resolve forces into components parallel to three lines at right augles to carh other, cach such resolution being effected by multiplying by the cosine of the angle coucerned.

The magnitude of the resultant of two or of three forces in directions at right angles to each other is the square root of the sum of their squares.

S 109. The "eentre of inertia or mass" of any system of material praticles whatever (whether rigidly connected with one another, or comnected in any way, or quite detached) is a point whose distaneo from any plane is equal to the sum of the products of each mass into its distance from the same plane, divided by the sum of the masses.

The distasce from the plane $y$ : of the centre of inertia
of masses $m_{1}, m_{2}$, sc., whose aistances frum the plane are $x_{1}, x_{2}$, \&e., is therefore

$$
\bar{\alpha}-\frac{\Sigma(m x)}{\Sigma(n)} ;
$$

and similarly for the other coordinates.
Henec its distance from the plane

$$
\begin{gathered}
\delta=\lambda x+\mu y+\nu z-a=0 \\
\text { is } \quad D-\lambda \bar{x}+\mu \bar{y}+\nu \bar{\Sigma}-\alpha=\frac{\left.\sum m(\lambda x+\mu y+\nu z-a)\right\}}{\Sigma(1 / i)}=\frac{\Sigma(m \delta)}{\Sigma(m)},
\end{gathered}
$$

as stated above. Aud its vclocity perpeudieular to that plane is

$$
\frac{d \mathrm{D}}{d l}=\frac{1}{\Sigma m} \leq\left\{m\left(\lambda \frac{d x}{d t}+\mu \frac{d y}{d t}+\nu \frac{d z}{d t}\right)\right\}=\frac{\Sigma\left(m \frac{d \delta}{d t}\right)}{\Sigma m i} .
$$

from which, by matiplying by $\Sigma m$, and noting that $\delta$ is the distance of $x, y, z$ from $\delta=0$, we see that the sum of the momenta of the parts of the system in any direction is equal to the monentum in that direction of the whole mass collected at the centre of mass.

The prublem of finding the centre of inertia of any given distribution of matter is a question of mere mathematies. We must confine ourselves to a few examples only. And, first, we may note that when a body is symmetrical abuut a plane the centre of inertia must ebviously lie in that plane. Thus, as an ellipsoid and a reetangular parallelepiped have each three planes of symmetry, their centres of inertia lie at their centres of figure, where these planes meet. Again, it is obvious that, if a body can be divided into parts the centres of inertia of which lie on a straight line, the centre of inertia of the whole is in that line. Thus, as a triangular plate may be divided into strips parallel to one side, every one of which has its centre of inertia at its middle point, the centre of inertia of sueb a plate is the point of intersection of the bisectors of the sides. Its distance from any one side, treated as base, is therefors one-third of the height. Again, if a triangular pyramid (or tetrahedron) be divided into triangular slices by planes parallel to one face treated as base, the centres of inertia of all the slices lie in a straight line. Hence the distance of the centre of inertia from the base is one-fourth of the height. If the base be of any other forn, it may be divided into triangles, and thus the whole pyramid (or cone) into tetrahedra, for each of which the same property holds. Hence the centre of inertia of a pyramid divides the line joining the vertex to the centre of inertia of the base in the ratio $3: 1$. All this is on the supposition that the solids treated of are of uniform density. When we deal either with more complex forms or with heterogentous bodies, we must in general have recourse to integration.

For a continuous body we must take an element of mass, say p $\delta x \delta y \delta z$, at the point $x, y, z$ instead of the mass $m$ in our original formula. The suins then become integrals, and we have three expressions of the forms

$$
\bar{x}=\frac{\iiint p x d x d y d z}{\iiint p d x d y d z},
$$

Fiero $\rho$ represents the density at $x, y, z:$ and the integration extends through the whole volume of the mody.
Thus, for a homogeneous hemispluce of radits $a$ we bave, taking tho base as the plane of $\mu \approx$,

$$
\bar{x}=\frac{\left.\int_{0}^{a} \pi^{\prime} a^{2}-x^{2}\right) x d x}{\frac{3}{3} \pi u^{3}}=\frac{3 \pi}{8}
$$

The same valne would be obtained for any semiellipsoid, whatever bo the diametral section, provided a be the height measured perpendicular to tho base; and, in gencral, from the position of the centre of inertia of any body wo may at once find that of the sanue body homogencously strained.

Recurring to the hemisphere, suppose its density to be at every point proportional to the distance from the centre. Then wo have, omitting womacio constant factors of mmerator and denominator
$x-\frac{\int_{0}^{a} x^{2} d x \int_{0}^{\sqrt{a^{2}-x^{2}}} r \sqrt{2^{3}+r^{3}} d r}{\int_{0}^{a} d x \int_{0}^{\sqrt{a^{2}-x^{2}}} r \sqrt{x^{3}+r^{3} \omega^{\prime} r}}=\frac{2 \pi}{5}$.

## A uniform hemispherical shell gives

$$
x=\frac{1}{2} a
$$

by the well-known result due to Archimedes. From this, by taking coucentric hemispherical elements, we may reproduce the preceding result for a solid hemisphere in the form

$$
\bar{x}=\frac{\int_{0}^{a} 2 \pi x^{2} d x \cdot x \cdot \frac{1}{2} x}{\int_{0}^{a} 2 \pi x^{2} d x \cdot x}=\frac{2 a}{5}
$$

Here the first factor under each integral sign is the volume of the hemispherical element of radius $x$, and the second is proportional to its density.

If the density of a thin unhorm spacrical shell be everywhere proportional to the anverse cubo of the distance from an internal point, that point is the centre of inertia. For, if a double cone of small angle be drawn, having that point as vertex, the volumes of the portions of the shell which it cuts out are as the squares of their distanees from the rertex. Hence their masses are inversely as their distances from the vertex, which is thus their centre of inertia. The whole shell may be divided into pairs of elenents for each of which this is true.
The reader may easily prove that, if the aensity of a solid sphere be inversely as the fifth power of the distance from an external point, the "electric image" of that point is the centre of inertia.
It may be proved in the last two examples that this point is not merely the centre of incrtia of such distributions of matter, but that it is also a true "centre of gravity" in the sense that the whole attracts, and is attracted by, any other body whatever, as if its whole mass were concentrated in this point.

Moment of no. mentum.
§ 110. By introducing in the definition of moment of relocity (\$ 46) the mass of the moring particle as a factor, we have an important element of dynamical science, the "moment of momentum." The laws of composition and resolution are the same as those alrcady explained. Its dimensions are $\left[M I L^{-1} \mathrm{~T}^{-1}\right]$.
§ 111. A force is said to "do work" if it moves the body to which it is applied; and the work done is measured by the resistance overcome, and the space through which it is overcome, conjointly. The dimensions of work are therefore [MLT ${ }^{-2}$. L] or $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right.$ ], the same as those of kinetic energy.
Thus, in lifting coals from a pit, the amount of work dons is proportional to the weight of the conls lifted; that is, to the force overcome in raising them; and also to the beight through which they are raised. The unit for the measurement of work, adopted in practice by British engineers, is that required to overcome the weight of a pound through the height of a foot, and is called a "foot-pound."

In purely scientific measurements, the unit of work is not the foot-pound, but the absolute unit force ( $\$ 105$ ) acting through unit of length.

If the reight be raised obliquely, as, for instance, along a smooth inclined plane, the distance through which the force has to be overcome is increased in the ratio of the length to the height of the plane; but the force to be overcome is not the whole weight, but only the resolved part of tho weight parallel to the plane; and this is less than the weight in the ratio of the height of the plane to its leagth. By multiplying these two expressions together, we find, as we might expect, that the amount of work required is unchanged by the substitution of the oblique for the vertical path.

Generally, if $s$ be an are of the patlo of a particle, $S$ the tangential component of the applied forces, the work dons on the particle between any two points of its path is

$$
\int s d s
$$

taken betreen limits corresponding to the initial and final positlons. Referred to rectangular coordinates, it is easy to see, by the law of resolution of forces, § 117, that this becomes

$$
\int\left(\underset{d}{d x}+\mathrm{V} \frac{d y}{d s}+Z \frac{d \dot{v}}{d s}\right) d s
$$

where $X$ is the component force parallel to the axis of $x$.
§112. Thus it appears that, for any force, the work done
during an indefinitely small displacement of the point of application is the product of the resolved part of the force in the direction of the displacement into the displacement.

From this it follows that, if the motion of a body be always perpendicular to the direction in which a force acts ou it, the force does no work. Thus the mutual normal pressure between a fixed and a moring body, the tension of the cord to which a pendulum bob is attached, the attraction of the sun on a planet if the planet describe a circle with the sun in the ceatre, are all cases in which no work is done by the force.

In fact the geometrical condition that the resultant of $\mathrm{X}, \mathrm{V}, \mathrm{Z}$ shall be perpendicular to $d s$ is

$$
\mathbf{X} \frac{d x}{d s}+V \frac{d y}{d s}+Z \frac{d z}{d s}=0
$$

and this makes the above expression for the mork vanish.
§ 113. Work done on a body by a force is always sborn by a corresponding increase of kiuetic energy, if no other forces act on the body which can do work or have work done against them. If work be done against any forces, the increase of kinetic energy is less than in the former case by the amount of work so done. In virtue of this, however, the body possesses an equivalent in the form of "potential energy," if its physical conditions are such that these forces will act equally, and in the same directions, when the motion of the systerc is reversed. Thus there may be no change of kinetic energy produced, and the work done may be wholly stored up as potential energy.
Thus a weight requires work to raise it to a height, a spring requires work to beud it, air requires work to compress it, \&c.; but a raised weight, a bent spring, compressed air, \&c., are stores of energy which can be made use of a: pleasure.

As an illustration of the calculation of work, take the following question.

Suppose one end of an elastic string to be attached to a mass resting on the ground, what amount of work must be done, in raising the other end vertically, before the mass is lifted?
If $x$ be at any instant the length of the string, $l$ its original lengtb, its tension is

$$
\mathrm{E} \frac{x-l}{l} .
$$

Hence the ralue of $x$, when the mass is just lifted, is

$$
x_{1}=l\left(1+\frac{\mathrm{W}}{\mathrm{E}}\right)
$$

where W is the weight of the mass.
The whole work done is the sum of all the elementary instalments of the form

$$
\mathbf{E} \frac{x-l}{l} d x
$$

These must le summed up from $x=l$ to $x=x_{1}$, so that the result required is

$$
\frac{1}{2} \frac{W^{2}}{E_{0}}
$$

It is to be observed that this quantity becomes less in proportion as $\mathbf{E}$ is greater, i.e., the less extensible is the string.
An interesting variation of the question consists in supposing the upper end of the atring to be attached to the rim of a wheel, rough enough to prevent slipping. Here the various portions of the string are wound on in a more and more stretched state et the operation proceeds.
At any stage of the operation let $x$ be the unstretched length of the part already wound on the wheel. The tension of the free part is then

$$
E \frac{l-(l-x)}{l-x}
$$

During the next elementary step of the process a portion $d x$ is womnd on. But its stretched length is

$$
\frac{l d x}{l-x}
$$

Hence the elument of work is

$$
\mathrm{E} l \frac{l-(l-x)}{(l-x)^{\frac{1}{2}}} d x,
$$

This must be integrated between the limits 0 and W of

$$
\mathrm{E} \frac{l-(l-x)}{l-x} \text {; }
$$

or from $l-x=l$ to $l-x=\frac{\mathrm{E} l}{\mathrm{E}+\mathrm{W}}$; and the result is

$$
b\left(W+E \log \frac{E}{E+W}\right) ;
$$

which, when E is very great compared with W, gives the previous result.

## Further Coniments on the First Tivo Laws of Motion.

§ 114. We are now prepared to consider, more closely than we could at starting, the bearing of the various clauses of each of Newton's Laws. Thus, from the first law we may draw the following immediate consequences.
.The times during which any particular body, not compelled by force to alter the speed of its motion, passes through equal distances are equal. And, again, every other body in the universe, not compelled by force to alter the specd of its inntion, mores over equal distances in successive intervals, during which the particular chosen body moves over equal distances. The earth, in its rotation about its axis, presents us with a case of motion in which the cundition of not being compelled by force to alter its speed is moro nearly fulfilled than in any other which we can easily or accurately observe. Hence the numerical measurenent of time practically rests on defining "equal intervals of time" as times during which the earth turns through equal angles.
$\S 115$. It has beea objected to this statement that we begin by defining uniform motion by the description of equal spaces in equal times, and then employ this definition as a mode of measuring equal times. The objection, horever, is not valid; for, if we agree to measure equal intervals by the undisturbed motion of any one physical mass, we find that in the successive intervals so determined all other absolutely free physical masses describe successive cqual spaces.
110. Again, from the second law we see that, if we multiply the change of velocity, geometrically determined, by the mass of the body, we have-the change of motion (§99) referred to in the law as the measure of the force which produces it. In the statement of the second law there is nothing said about the actual motion of the body before it was acted on by the force; the same force will rroduce precisely the same change of motion in a body whether the body be at rest or in motion with any velocity whatever. Again, nothing is said as to the body being ander the action of one force only; so that we may logically put part of the second law in the following (apparently) amplified form :-

When any forces whatever act un a body, then, whether the body be originally at rest or moving with any velocity and in any dircction, each force produces in the body the pact change of motion which it would have produced if it Had acted singly on the body originally at rest.
§ 117. Since now forces are measured by the changes of motion they produce, and their directions assigned by the directions in which these clanges aro produced, and since the changes of motion of one and the same body are in the directions of aud proportional to the changes of velocity, a single force, measured by the resultant change of velocity, and in its direction, will be the equivalent of any number of simultancously acting forces. IIence

The resultant of any number of forces (applied at one point) is to be found by the same geametrical process as the vesultant of any number of simultaneous velocities.

From this follows at none ( $\S 30$ ) the construction of the "parallelogran of forces" for finding the resultant of two forces acting at the same point, and the "polygon of forces" for the resultant of any number of forces acting at a point. And, so far as a single particle is concerned, we have at onee the whole subject of Statics.
§118. The second law gives us the means of measuring force, and also of measuring the mass of a body.

For, if ree consider the actions of various forces upon the same body for equal times, we evidently have changes of velocity produced which are proportional to the forces. The changes of velocity, then, give us in this case the means of comparing the magnitudes of different forces Thus the speeds acquired in one secoud by the same mas 5 (falling freely) at different parts of the earth's surface give us the relative amounts of the earth's attraction at these places.

Again, if equal forces be exerted on different bodies, the changes of velocity produced in equal times aust be inversely as the masses of the varions bodies. This is approximately the case, for instance, with trains of various lengths drawn by the saine locomotive.

Again, if we find a case in which different bodies, each Gravity. acted on by a force, acquirein the same time the same changes of velocity, the forces must be proportional to the masses of the bodies. This, when the resistance of the air is romored, is the case of falling bodies; and from it we conclude that the weight of "body in any given locality, or the force with which the earth attracts it, is proportional to its mass. This is no mere truism, but an important part of the grand Luen of Grautation. Gravity is not, like magnetism for instance, a force depending on the quality as well as on the quantity of matter in a particle.
§ 119. It appears, lastly, from this law that every Transla: theorem of kinematics connected with acceleration has its tion froy counterpart in kinetics. Thus, for instance (\$ 36 ), we kine- $/$ see that the force under which a particle describes any into curve may be resolved into two components, one in the kinetics tangent to the curve, the other torectels the centre of cur-vature,-their magnitudes being the rate of change of momentum in the direction of motion, and the product of the momentum into the angular velocity about the centre of curvature, respectively. In the case of uniform motion, the first of these vanishes, or the whole force is perpendicular to the direction of motion. When there is no force perpendicular to the direction of motion, there is no curvature, or the path is a straight line.

Hence, if we resolve the forces acting on a particle of mass $m$, whose coordinates are $x, y, z$, into three rectangular components $\mathbf{X}, \mathrm{Y}, \mathrm{Z}$, we have the equations originally given by Maclaurim, viz.

$$
2 n^{d^{2}-x} d l^{2}=X, \quad 1 n^{d^{2} y}=1, \quad m \frac{d^{2} z}{d l^{2}}=Z .
$$

In several of the examples which follow, these equations will be somewlat simplified by assuming unity as the mass of the moving particle. When this cannot be clone, it is sometimes convenient to assume $X, Y, Z$ as the component forces on unil mass, and the previous equations become

$$
{ }^{n} \frac{r^{2} y}{d l^{3}}=m . X, \& c .
$$

from which un may of course be omitted.
[Some confusion is often introduced by the division of forces into "accelerating" 8nd "moving" forces; and it is eren stated occasionally that the former are of one, ond the latter of four lincar dimensions. The fact is, however, that an equation such as

$$
\frac{d^{2} x}{d b^{2}}=x
$$

may be interpreted cither as dynamical or as merely kinematical. If kinematical, the meanings of the terms are obvious; if dynamical, the unit of mass must be understood as a factor on the left-hand side, and in thst case $\mathbf{X}$ is the $x$-component, per unit of inass, of the whole forco exerted on the moving body.]

- If there bè no acceleration. we have of course equilibrium amoer
the forces. Hence the equations of motion of a particle aro changed into those of equilibriun by putting

$$
\frac{d^{-} x}{d d^{2}}=0, s c .
$$

§120. We have uow all that is neeessary for the dynamics of a single particle, with exception of the experimental laws of friction. These, very nearly as they were established by Conlomb, we will naw give.
To produce slidiug of one flat-faced solid on another requires a tangential furce which is directly proportional to the normal pressure between the surfaces, and whose actual magnitude is found from this pressure by means of a factor called the "coefficient of statical friction." This coefficient depeuds upon the nature of the solids, the roughness or smoothness of the surfaces in contact, and the amount of tallow, oil, de., with which they have been smeared: It also depends upon the time during which they have been left in contact. It is only in extreme cases dependent on the area of the surfaces in contact.
$\S 121 .{ }^{\text {. When the forces applied are insufficient to pro- }}$ duce sliding, the whole amount of friction is not called into play; it is called out to an amount just sufficient to balance the other forces. Thus there are two quite distinct problems connected with the statics of friction:the first, to determine the amount of friction called into play' under given circumstances; the second, to find the limiting circumstances under which, with friction, equilibrium is pussible. When motion is produced, there is still frietion (now called "kinetie"). It follows the same laws as does statical friction, only that the coefficient, which is appreximately independent of the velocity, is usually considerably less than the statical coefficient.

## Statics of a Particle.

§ 122. By § 117, forces acting at the same point, or on a same material particle, are to be compounded by the ine laws as velocities. Therefure the sum of their reived parts in any direction must vanish if there is equiibrium; wherce the necessary and sufficient conditions are found by resolving in three directions at right angles to one another.
They follow also directly from Newten's statement with fegard to work, if we suppose the part:?le to have any velocity, constant in direction and maguitude (and by § 6 this is the only general supposition we can make, since absolute rest has for us no meaning). For the work done in any time is the product of the displacement during that time into the algebraic sum of the effictive components of the applied forces, and there is no change of kinetic energy. Hence this sum mast vanish for every direction. Practically, as any displacement may be resolved into three, in any three directions not coplanar, the vanishing of the work for any one sucb set of three suffices for the criterion. But, in general, it is convenient to assume them in directions at right angles to each other.

Hence, for the equilibrium of a material particle, it is necessary, and sufficent, that the (algebraic) sums of the apphed forces, resolved in any one set of three rectangular directions, should vanish.
This statement gives at once the result that, if $\mathbf{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}$, $X_{2}, Y_{2}, Z_{2}$, sin, be the components (parallel to the three axcs) of the forces $P_{1}, P_{2}, 8$. ., acting on the paatiele, we must lave $\mathbf{I}(X)=0, \mathbf{X}(Y)=0, \quad \mathbf{X}(Z)=0$.
When these conditions are not satisfied, there is a resultant force $P$, with direction cosines $\lambda, \mu$, $\nu$, such that

$$
P_{\lambda}-\Sigma(X), P_{\mu}=\mathbf{I}(Y), P_{\nu}=\Sigma(Z)
$$

§ 123. By far the most extensive series of examples of the composition of forces acting on a single particle is furnished by the theory of "attraction," where each particle of the a!tracting mass exerts upon the attracied particle a
foree in the dircetion of the lave joining then, and of nagnitude depending on their masses and their mutual distance only. See lotential.
§ 12t. When there aro but three furces acting on the particle, their directions to give equilibrimm must cobviously be iu one plane. For, if the third were nut in the plane of the other two, it would have an uncompensated component perpendicular to that plane. Hence this case is always at once reducible to the triangle or the parallelogram of forces; and the magnitudes of each of the three forces are respectively proportional to the sines of the angles between the directions of the uther two.
Thus, when a ${ }^{\text {rellet }}$ is supported by two strings, as io fig. 34, we nay proceed as follows to determine thein tensions. Let $P$ be the pellet, of weight W, and let A ${ }^{\prime}$ ', BP be the strings attached to points $A$ and $B$ respectively. Let their tensions be $T$ and $T$ '. The remark above shows that the strings must hang in a vertical plane, since the force W acts in a vertical line. Since $\mathrm{A}, \mathrm{B}$, and the length of the strings are given, the figure is perfectly defnite. Draw $\mathrm{P} \gamma$ vertically apwards, and make. its length represent, on any assumed seale, the value of W. Draw $\gamma \beta$


Fig. 34 parallel to AP, and lat it meet BP in $\beta$. Then $\beta \gamma$ represents T , and $\mathrm{P} \beta$ represents T , in direction and also in magnitude, on the same scale in which $\gamma \mathrm{P}$ represents $W$. This case leads to nothing but the detcrmination of the tensions, since the form of the figure is definite.

Next, let one of the tensions be given in magnitude. To effect this, we may suppose the end of PB not to be fastened at B, but to pass over a smooth pulley and support a weight Q. Let fig. 35 represent the state of equilibriam, and let the same coustruction as before be made. Then we must bave $\gamma \mathrm{P}: \mathrm{P} \beta:: \mathrm{W}: \mathrm{Q}$; or, writing it in terms of angles,

$$
\sin A P B: \sin A P_{\gamma}:: W: Q .
$$

$A$ and $B$ and the direction of $\gamma \mathrm{P}$ being given, this datum suffices for the drawing of the figure; i.e., for the calculation of the angles. A little consideration will show that, however small $Q$ be, provided the string supporting


Fig. 35. it be long enough, there is always one definite positiou of equilibrium. The actual calculations in such a case as this are troublesome. It was chosen mainly on that account, so as to show, in a simple case, how pure geometrical processes may occasionally save the nocessity of a tedious trigonometrical investigation. But a still simpler method will be afterwards explained, viz., that, for a position of stable equilibrinm,


Fig. 36. the potential energy must be a minimum. Now, to apply this to our example, we see that any downard dispiacement of $Q$ produces an upward motion of P. But when AP is nearly vertical the vertical displacenent of $P$ is indefnitely smaller than that of $Q$, so that $Q$ must go down. On the other hand if APB be nearly a straight line, a displacement of $P$ produces an indefinitely smaller displacement of Q . Hence P must go down. And these results are in character independent of the relative magnitudes of $P$ and $Q$, provided both be finite.

Finally, let both tensions be constant. Here we mus imagine pulleys both at A and at B (tig. 36), with weighty

## MECHAN゚C N

R and $Q$ attached to the ends of the strings. But now we see that we must have the limiting condition

$$
R+Q>W
$$

This is merely the geometrical condition that

$$
P \beta+\beta \gamma>P \gamma
$$

Hero the magniturles of all three sides of $\mathrm{P} \beta \gamma$ are given. Hence its angles are given, and the sols position of equilibrium is at once found. ${ }^{1}$

## Partiele

 on fixed§ 125. Now take the case of a particle resting on a surface. surface. . we are concerned only with the portion of the surface immediately contiguous to the position of the particle, we may substitute for it its tangeut plane at that point (except, of course, at siugular points, where there may be an inf:nite number of tangent planes; but such cases we do not consider). Hence the problent reduces itself in all cases to that of a particle resting on an inclined plane.

If the plane be smooth, the particle cannot renain in equilibrium unless some force is present to prevent its sliding down. Let us suppose it to be supported by a force, F , acting upwards along the plave (fig. 37 ). Then we have three forces at work:the weight P acting vertically clownwards; the supporting pressure of the plane R , which uecessarily acts perpendicularly to the surface; and the third force, just mentioned, which we see by previous considera-
 tions must be in the plane of the other two, and must therefore lie along the line of greatest slope of the plane. We might construct a triangle of forces as in the previous examples, but.we will now vary the process, add resolve the forces in two directions at right angles to one another in their common (vertical) plane.

Let $a$ be the angle of incliation of the plane to the horizon, then the algebraic sum of the components of the forces must vanish both horizontally and vertically This gives us the tro conditions

$$
F \cos \alpha-R \sin \alpha=0, \quad F \sin \alpha+R \cos \alpha-P=0
$$

From these we outain at once

$$
F=P \sin a, \quad R-P \cos \alpha
$$

Now the choice of mutually perpendicular directions in which to resolve was at our option, and we see that had we chosen to resolve along and perpendicular to the plane we should have obtained the last two equations, which are equivalent to, but simpler than, the former ones, which were obtained by resolving horizontally and vertically. Theoretically speaking, it does not matter which system we chonse ; in practice, however, it is well to select the directions which will give the required results in the simpleyt form. The full value of a proper selection will not be felt till we come to the statics of a rigid solid.
Iriction. If we suppose the plane to be rough, friction alone may suffice to develop the requisite force $F$. But the utmost value of the friction is ( $\$ 120) \mu \mathrm{R}$. Hence the particle will be on the point of sliding if.

$$
\mu \mathrm{R}=\mathrm{F}=\mathrm{P} \sin \alpha,
$$

Divide the members of this equation by those of
and we find

$$
R-P \cos \alpha,
$$

$$
\quad \mu=\tan a
$$

Hence, so lung as tho coefficient of friction is greater than the tangent of the inclination of the plane to the horizon,

[^255]the friction will suffice to prevent slidiag. More and more is called into play as the ioclination of the plaue iucreases, aod finally wheo
$$
\tan a=\mu
$$
the particle is just about to slide down. This simple idea, taken along with Coulomb's results ( $\$ 120$ ), points to a very easy method of determining the coefficient of friction between any two substances. The limiting angle defined by
$$
a \propto \tan -1^{-1} \mu
$$
is called, on account of this propert ${ }^{7}$, the "angle of repose." \$126. Let us now suppose the particle to be, in part, Suppor, supported by an elastic string fixed at a point in the plane, by elasad and lying in the line of greatest slope. (This modification ${ }^{\text {string }}$ is introduced to shorr the nature of cases in which there are limits between which equilibrium is possible.) We assume "Hooke's Law," viz., that the tension of an elastic string, drawn out from its natural length $l$ to length $l$ ', is expressed by
$$
\mathrm{E} \frac{l^{\prime}-l}{l},
$$
where E is a definite constant, representing theoretically the tension which would just double the leagth of the string.
Our equations are exactly the same as before, only that $F$ consists now of two parts, -one due to friction, the other to the elasticity of the string. Thus
$$
F=F_{1}+E \frac{l^{\prime}-l}{l}=P \sin \alpha, \quad R=P \cos \alpha .
$$

Now, when sliding is about to commence downwards we have

$$
F_{1}=\mu \mathrm{R},
$$

If the particle is about to be dragged upwards,

$$
F_{1}=-\mu R \text {, }
$$

Hence for the two extreme positions of equilibrium

$$
\pm \mu \mathrm{P} \cos \alpha+\mathrm{E} \frac{l^{\prime}-l}{l}=\mathrm{P} \sin \alpha
$$

Hence the limiting positions of equilibrium of the particle are given by its distance from the fixed end of the string-

$$
l^{r}=l+\frac{\mathrm{P}}{\mathrm{E}}(\sin a \mp \mu \cos a) .
$$

If $l^{\prime}$ be less than the smaller of these, gravity pulls the particle down; if it be greater than the larger of them, the tension of the string pulls the particle up. In intermediate positions the full available friction is not called into play.
§ 127 Next, let a small ring P (fig. 38) be attached to one Equlliend of a string. Let the string pass round two smooth minum pulleys $B, C$, at different points, then be passed through with a
the ring, then round two moro pulleys $D$, E, and through of equal the ring again, and so on,-the other cod being either foress fastened to the ring or attanbed to a fixed point. It is required to find the position of equilibrium of the ring when the string is drawn tight, by operating on the lap of it behind two of the prlleys.

This is equivalent, from the physical point of view,


Fig. 33. to finding the fosition of equilibrium of a particle acted on by a number of equal forces each directed towards a giscn point. From the geometrical point of view its solution obviously answers the question, "Find tho point the sum of whose distancess from a number of given points is the least possible." The points need not lie all in one plane. The solution is, from the polygon of forces, that in
the equilibrium position the laps of the string, from the ring outwards, are parallel to the respeciive sides of a
closed equilateral polygon, taken all in the same direction. That the solution is unique will be seen at once by considering a displacement of tine ring, for the resultant of the forces obviously tends to dimivish the displacement. When there are but three forces, their directions must be inclined at


Fig. 39 . angles of $120^{\circ}$ to one another (fig. 39). Thus me lave immediately the solution of the celebrated geometrical problem, "Find the point the sum of whose distances from three given points is the least possible."
§ 128. If, in the first problem of $\$ 124$ abore, the particle were supported by three etrings, instead of two, each attached to a fixed point, we should first have to assure oursclves that all three are bronght into play. For, if not, the problem is reduced to the former case. The obvions condition is that, when the three strings are simultaneonsly tight, and the points of suspension are not in one vertical plane, the particle supported shall be situated within the triangular prism formed by vertical planes passing through each pair of points. If this condition be satisfied, the process for determining the tensions of the strings is merely to construct a parallelepiped, three of whose edges lie aloug the strings, while the conterminous diagonal is rettical. This leads to an obvious geometrical construction; and, when it is carried out, the lengths of the various edges are -o the diagonal as the corresponding tensions to the weight of the particle. When the three points are in one vertical plane, uotbing short of infinitely perfect fitting will, in general, bring all three strings simultaneously tight ; and in this case the problem, mathematically considered, is indeterminate. ${ }^{1}$ When the strings are sufficiently extensible, all will be brought into play; and, with sufficient data, tie problem is determinate.

## Kinetics of a Particle avith One Degree of Freedom.

$\$ 129$. Here the motion is rectilinear, or at least takes place in some assigned curve.

The simplest case is that of a falling stone, when the effect of the resistance of the air is set aside and the acceleration due to gravity is reckoned the same at all elevations. This has already been treated with sufficient detail as a matter of pure kinematics, $\S \$ 28,29$.
§ 130. When the particle, instead of falling freely, is constrained by a smooth inclined plane on which it slides, we see that (so long as it moves on the line of greatest slope) its weight $\mathrm{Mg} g$ has components, $\mathrm{Mg} g \sin$ a tangential to the plane and Mgcosa perpendicular to it, a being the iuclination of the plane to the horizon. The latter compunent produces the normal pressure on the plane, and is the only contributor to it , since there is no curvature. The former produces the acceleration of the motion. Thus the acceleration is now $g \sin a$ only; but, with this change, the results of $\$ 29$ still hold.
§ 131. If the plane be rough, with coefficient of statical friction $\mu$, it can furnish ( $\$ 120$ ) a force of friction tending to prevent motion, of any amount up to

$$
\mu M g \cos \alpha
$$

If this be less than Mgsina, motion will commence, and the force accelerating it will be

$$
B \lg \sin a=\mu^{\prime} M g \cos a
$$

where $\mu^{\prime}$ is the coefficient of kinetic friction (\$121). Thusthe

- Of course, physically, there is no indeterminatemess, even with porfectly inextensible strings.
same results as in $\$ 29$ still hold, but with $g$ (sion $\alpha-\mu \cos a$ ) instead of $g$. As we have seen that $\mu^{\prime}<\mu$, accelerated motion can take place dowir an inclined plane in certain cases where the mass, if once at rest, wonld not start.
§132. As a slightly more conplex case, let ns now take sois again the problen of free motion in at vertical line, but falling to allow for the diminution of grarity as the distance from earth the earth increases.
from a
- great

The weight of a particle of mass $r$ at tha earth's surface is mg. distance. At a distance $x$ from the centre, it is, therefore,

$$
\operatorname{ll} y_{x^{2}}^{b^{2}}
$$

Where $R$ is the radius of the earth, supposed spherical. This acts dowurvards, or in the direction opposite to that in which $x$ increases Heace, equating it, with its proper sign, to the rate of accelerstion of momentum, we have for the equation of alotiou

$$
m \dot{x}=-m y_{x^{2}}^{R^{2}}
$$

Here the right hand member is a function of $x$ only.
Multiply by $\dot{x} d t$, and integrate, and we hare, leaviug out the extraneous factor $m$ (the possibility of doing this showiog that the motion is the same for all masses),

$$
\frac{1}{2} \dot{x}^{n}+\mathrm{C}=\frac{\mathrm{R}^{2} g}{2}
$$

If V be the speed at the earth's surface (where $x=R$ ),

$$
\frac{1}{2} \mathrm{~V}^{2}+\mathrm{C}=\mathrm{Rg}
$$

Also if the particle turns, to come down again, at the height $h$ abcre the surface.

$$
\mathrm{C}=\frac{\mathrm{R}^{2} a}{\mathrm{~K}+\bar{h}}
$$

Hence

$$
\frac{1}{2} V^{2}=R g\left(1-\frac{\mathrm{R}}{\mathrm{R}+h}\right)=g h \frac{\mathrm{R}}{\mathrm{R}+h} .
$$

This shows the amount of error in the appreximate formula ( $\$ 28$ ) for projectiles, -

$$
\frac{1}{2} V^{2}=g h
$$

If the particle be supposed to have been originally at rest, at a Meteurito practically infinite distance from the earth (a case which may occur with a meteorite for instance), we have $\dot{x}=0$ when $x=\infty$, and our formula becomes

$$
\frac{1}{2} \dot{x}^{2}=\frac{\mathrm{R}^{2} g}{x}
$$

The speed with which the mass ruaches the surface (where $x=\mathrm{R}$ ) is therefore $\sqrt{2 g \bar{R}}$, i.e., that which it would acquire by falling, under coustant acceleration $g$, through a height coulal to the earth'a radius.

In this speciul case, the second integral is

$$
\frac{8}{3} x^{\frac{3}{2}}=\sqrt{2 y} R t+C^{\prime}
$$

Tha second integral, in its gemeral form, is a little complex; but we may avoid it by means of a geometrical construction, founded on the results of the investigation of planetary motion soon to be given.
§133. Let us nest take a case in which the accelera- Hantiou depends upon the speed of the moring body. A traine a sufficieutly simple one is furnished by a falling raindrop, drop or bailstone, when the resistance of the air is taken into account. For the moderate speeds with which such bodies move, the resistance varies, at least approximately, as the square of the speed. To avoid needlese complexity, we neglect lere the rariation of gravity due to changes of vertical height.

Suppose the particle to have becu projected vertically upwards from the origin with the speed $V$, and let $v$ be its speed at any time $\ell$, and $x$ its distance from the origin at that time.

If we assume $Z$ : to be the speed with which the particle must move so that the retardation due to the resistance may be equal to $g$, the retardation when the speed is $v$ will be represented by $g \frac{v^{2}}{k^{2}}$.

Let the axis of $x$ be drawn vertically upwards; then the resist. ance acts with gravity, and the equation of motion upwards is

$$
\begin{aligned}
& \frac{d v}{d l}=-\frac{g}{k^{2}}\left(h^{2}+v^{2}\right) \\
& v^{2} \frac{d v}{d \alpha}=-\frac{g}{k^{2}}\left(l^{2}+v^{2}\right)
\end{aligned}
$$

Integrating, and deterwining the constants so that, when $z=0, \ell=0$ and $v=\mathrm{V}$, we obtain

$$
\begin{gathered}
\frac{g l}{k}=\tan ^{-1} \frac{V}{k}-\tan ^{-1} \frac{v}{k}=\tan ^{-1} \frac{h(V-v)}{k^{2}+V v} \\
\frac{2 g x}{k^{2}}=\log \frac{k^{2}+V^{2}}{k^{2}+v^{2}}
\end{gathered}
$$

Let $T$ be the time at which the sjeed becomes zero, and $a$ the corrcsponding value of $x$, theu

$$
\mathrm{T}=\frac{k}{g} \tan ^{-1} \frac{\mathrm{~V}}{\hbar^{2}}, \text { and } h=\frac{k^{2}}{2 g} \log \left(1+\frac{\mathrm{V}^{2}}{k^{2}}\right)
$$

After this the particle begins to return ; the resistanco therefore acts against gravity, and the equation of motion is

$$
\frac{d v}{d t}=-\frac{g}{k^{2}}\left(k^{3}-v^{2}\right),
$$

or

$$
j \frac{i v}{d x}=-\frac{g}{k^{2}}\left(k^{2}-v^{2}\right)
$$

Integrating, and determining the constants so that, when $v=0$, $x=h$ and $\ell=\mathrm{T}$, we obtain

$$
\begin{aligned}
& \frac{2 g}{k}(\ell-T)=\log \frac{k-v}{k+v} \\
& \frac{2 g}{k^{2}}(h-x)=\log \frac{k^{2}}{k^{2}-v^{2}}
\end{aligned}
$$

It must be remembered that $v$ is now negativa.)
Lat U be the speed with which the particle returns to the point of projection; than, putting $x=0$ iu the latter equation, we obtain

$$
\frac{\mathrm{U}^{2}}{k^{2}}=1-\varepsilon-\frac{2 g h}{\delta^{2}}
$$

or, substituting for $h$ its ralue.

$$
\frac{\mathrm{J}^{2}}{k^{2} 2^{2}}=\frac{\mathrm{V} 2 / \hbar^{2}}{1+\mathrm{V}^{2} / k^{2}}
$$

Whence

$$
\frac{1}{\mathrm{U}^{2}}-\frac{1}{\mathrm{~V}^{2}}=\frac{1}{k^{2}} .
$$

It is to be obscrved that $k$ : is the "terminal relocity," as it is colled, i.c., the speed to which that of a falling body continually tends, whetber its original speed have been greater or less than this limit.
It is to be ohserved also that (strictly) we shonld write $g^{\prime}(1-a)$ for $g$, where a is the specific gravity of air, to take account of the appareut loss of weight of a raindrop on account of immersion in air.
When $k$ is very large, i.c., the absolute amount of resistance very small, as in the case of air, the general integrals in the secend case abore become, by expandmg the logarithms,

$$
\begin{aligned}
& -\frac{2 g}{k}(l-T)=\frac{2 v}{k}+\frac{2 v^{3}}{3 k^{3}}+\ldots \\
& \frac{2 g}{k^{2}}(h-x)=\frac{v^{2}}{k^{2}}+\frac{i^{4}}{2 k^{4}}+\ldots
\end{aligned}
$$

of which tho teirns independent of $k$ aro

$$
\begin{aligned}
& v=-g(l-\mathrm{T}), \\
& v^{2}=2 g(h-x) .
\end{aligned}
$$

These, if wo remember that $t-\mathrm{T}$ is the time of fall, and $t-r$ tho space fallen through, are at onec recognizel os the ordinary formulx of $\S 28$. Tho modification due to the resistance is shown approximately by the second terms on the right-haud side of the developments above.
The necessity for this double investigation, one part for tho ascent, the other for the descent, is due to the non-conservative, or "dissipative," character of the force of resistauce.
$\S 134$. As an illustration of constraint by a smooth curve, let us take the case of a simple pendulum. Let $O$ (fig. 40) be the point of suspension, $P$ the position of the hob at any time $t$. 'Then, if $P G$ represent the weight of the bob, and be resolved into PII, HG respectively along, and perpendicular to, the tangent at $P$, wo see that PII produces the aceelcration of the motion, while the tension of tho cord balances 1 GG and also furnishes the ac-


Fig. 3. celerntion perpendicular to the direction of motion which is required to produce the curvature of the path. PII is
(cxteris paribus) propertional to the sine of PGH, that is, of POA. Hence the acceleration is proportional to the sins of the angular displacement. When that angle is small if may be used in place of its sinc. Hence, for small vibra. tions, the acceleration is proportional to the displacement, and the motiou is "simple harmonic." The time of vibra. tion, being (§ 5l) $2 \pi$ displacement/acceleration, is belf

$$
2 \pi \sqrt{\frac{l \theta}{g \sin \theta}}=2 \pi \sqrt{\frac{l}{g}, \text { approximately. }}
$$

The rigorous solution of the pendilum rroblem requir's the use of elliptic functions.
§ 135. Some very curious properties of pendulum motion are easily proved by geometrical processes. The whole theory of the motion in a vertical plane of a particle attached by a meightless rod to a fixed point, whether it oscillate as a pendulum or perform continuous rotations, may be deduced from the two following propositions, which are easily established by geometrical processes in which corresponding in definitely small motions are compared.
(I) To compare different cases of continuous rotation. Let DA (fig. 41) be taken equal to the tangent from $D$ to the circle $\mathrm{BPC}^{\prime}$, whose centre C is vertically under D . Let PAQ be any line through $A$, cutting


Fig. 41 in Q the semicirele on AC. Also make $\mathrm{DE}=\mathrm{DA}$. ' Then, if P move under gravity with speed due to the level of $D, Q$ moves with speed due to the level of $E$, the acceleration due to gravity being reduced in the ratio $\mathrm{AC}^{2}: 2 \mathrm{BC}^{2}$.
(2) To compare continuous rotation with oscillation. Let two cireles toueh one another at their lowest points $O$ (fg. 42); compare the areual motions of points $P$ and $p$, which are always in the same horizontal line. Draw the horizontal tangent AB. Then, if P move,


Fig. 42. with speed due to $g$ and level $a$, continuously in its cirele, $p$ oscillates with speed due to level AB and aec?!eration

$$
g_{A U^{2}}^{a O^{2}}
$$

§ 136. Two particles are projected from the same point, Motion in the same direction, and with the same speed, but at in verdifferent instants, in a smooth circular tube of small bore circle whose plane is vertical, to show that the line joining them constantly touches another circle.

Let the tube be called the circle $A$, and the borizental line, to the level of which the speed is due, L. Let M, M' (fig. 43) be simultaneous positions of the particles. Suppose that MM' passes into its next position by turning about O , these two lines will intereept two iodefinitely


Fig. 43. small ares at $M$ aod $M^{\prime}$ which (by a property of the cirele) are in the ratio $\mathrm{MO}:$ OM'. Let another circle B be deseribed tuuching MM' in $O$, and such that $L$ is tho radical axis of $A$ and $B$. Let MP, M'P' be drawn perpendicular to $L$. Let $\mathrm{I}^{\prime} \mathrm{M}$ cut L in C . Then, by the property of tho radieal axis, $\mathrm{CO}^{2}=\mathrm{CM} . \mathrm{CM}^{\prime}$; frem which we have by geoonctry,

$$
C M: C M^{\prime}=O M^{2}: O N^{2}
$$

$\stackrel{\text { rat }}{\text { But }}$

$$
O M^{2}: O M^{\prime 2}=P M: P^{\prime} M^{\prime}
$$

(specd at M) ${ }^{2}$ : $\left(\text { speed at } M I^{\prime}\right)^{2}=P M: P^{\prime} M^{\prime}$.

Hence the speeds of $M$ and $\mathrm{M}^{\prime}$ are as $M O$ : OM', and therefore, by what wo havo stated above about elementary arcs at $M$ and $M^{\prime}$, the proximato position of $M \mathrm{M}^{\prime}$ is also a tangent to $B$, which proves the proposition.
Geome-
trical theore arn. It is casily scen from this that, if one polygon of a given number of sides can be inscribed in one circle and circumscribed about another, an infinite number can bo drawn. For this we have only to suppose n number of particles noving in A with speeds due to a fall from $L$, and then if they form at any time the angular points of a polygon whose sides touch B they will continue to do so throughout the motion. Fig. 44 shows two forms of a quadrilateral possessing this property.


Fig. 44.


Fig. 45.

Cyctel-
dal me. sion.
§137. To find the time of fall from rest duron any are of an inverted cycloid.

Let $O$ (fig. 45) be the point from which the particle commences its motion. Draw OA' parallel to CA, and on $\mathrm{BA}^{\prime}$ describe a semicircle. Let $\mathrm{P}, \mathrm{P}^{\prime}, \mathrm{P}^{\prime \prime}$ be corresponding points of the curre, the geaerating circle, and the circle just drawn, and let us compare the speeds of the particle at $P$ and the point $P^{\prime \prime}$. Let $P^{\prime \prime} T$ be the tangent at $P^{\prime \prime}$.

$$
\begin{gathered}
\text { Speed of } P^{\prime \prime} \\
\text { speed of } P=\frac{\text { element at } P^{\prime \prime}}{\text { element at } P} \\
=\frac{P^{\prime \prime} T}{B_{P}^{\prime \prime}}=\frac{P^{\prime \prime \prime} T}{\mathrm{BP}^{\prime \prime}} \sqrt{\frac{A^{\prime} B}{A B}=\frac{A^{\prime} B}{2 A^{\prime} P^{\prime \prime}} \sqrt{\frac{A^{\prime} B}{A B}} .}
\end{gathered}
$$

But speed of $P=\sqrt{ }\left(2 g . A^{\prime} J\right)=\sqrt{\frac{2 g}{A^{\prime} B}} \cdot A^{\prime} P^{\prime \prime}$.
Hence speed of $P^{\prime \prime}=\sqrt{\frac{g}{2 A B}} \cdot A^{\prime} B$, a constant.
$A 0 d$, as the length of $A^{\prime} P^{\prime} B$ is $\frac{1}{2} \pi$. $A^{\prime} B$,
time from $A^{\prime}$ to $B$ in circle $=$ time from 0 to B in cycloid

$$
=\pi \sqrt{\frac{\Lambda B}{2 g}}
$$

Tautochrone.

Resisted motion of pendilum.

The time of fall to the vertex from all points of the curve is therefore the same. Heace the crcloid is called a "tautochrone."
§ 138. As an instance of cases in which the acceleration depends upon the speed and the position jointly, take the motion of a simple pendulum in a medium whose resistance varies as the relocity directly. This is the law, at least approximately, for very small speeds, whether the pendulum oscillate in a gas or in a liquid,-and even when the resistance is due to magneto-electric induction, as when the pendulum is a maguetic needle vibrating in presence of a conducting plate or a closed coil. A synthetical solution of this problem has already been given under Kinematics in § 68 .

Analytically: if $z$ be the length of the string, $\theta$ its defiexion from the vertical at time $t, m$ the mass of the bob, we have evidently

$$
m l \theta=-m g \sin \theta-\kappa \theta .
$$

The ratio $\kappa / m l$ may be increased (theorcucally) without limit by increasing the surface which the bob exposes, without changing its mass. But it cannot.be indefinitcly diminished. We will write $2 k$ for it. If we assume the angle of conillation to be small, we may write the equation in the form

$$
\ddot{\theta}+2 k \theta+n^{2} \theta=0,
$$

where $n^{2}=g / l$, and $k$ is essentially positive, being greater as the reaiatance (whether on account of the viscosity of the medium or
the large surface of the beb in proportion to its mass) is greater. A particular integral of this equation is evidently

| previded | $\theta=\varepsilon^{p t} ;$ |
| :--- | :---: |
| or | $p^{2}+2 k p+\iota^{2}=0$, |
|  | $p=-k \pm \sqrt{h^{2}-u^{2}}$. |

Hence there are two quito distinct cases of motion, distinguished by dilferent forms of solution, dependiag on the relative magnitudes of $k$ and $u$. These are separatcd from one another by the unique case in which $k=u$.
(a) Let $k>n$, and let $k^{2}-n^{2}=n^{\prime 2}<h^{2}$.

Then both values of $p$ are real and negative. Thus

$$
\begin{aligned}
\theta & =\Lambda \varepsilon^{p_{1} t}+B \varepsilon^{p_{n} t} \\
& =\varepsilon^{-k t}\left(\Lambda \varepsilon^{n^{\prime} t}+\mathrm{B} \varepsilon^{-n^{\prime} t}\right)
\end{aligned}
$$

If $A$ and $B$ have the same sign, $\theta$ dimnishes, without changing sign, as $t$ increases. But if $A$ and $B$ lave different signs, the facter in brackets may vanish for one definite value of $t$, ani thin change siga. After that the whele reaches a maximum and then dimin. ishes without futher change of sign. Examples of these cases are furnished - (1) when the pendulum is displaced frotn the vertical and allowed to fall back; it then approxinates asymptotically to its pesitinn of equilibrimu ; and (2) when it is drawn aside and flung back; in this case it may pass once througls the position of equilibrium and then asynuptutically return to it.
(b) Let $u>k$ and let $u^{2}-\kappa^{-2}=u^{\prime 2}<u^{2}$.
llare buth valucs of $p$ are imaginary, and we have

$$
\begin{aligned}
\theta & =\varepsilon^{-k \prime}\left(\lambda \varepsilon^{\prime}+n^{\prime}\left(\sqrt{-1}+\mathrm{D} \varepsilon^{-n^{\prime} t \sqrt{-1}}\right)\right. \\
& =P \varepsilon^{-k t} \cos \left(n^{\prime} l+Q\right)
\end{aligned}
$$

This may be looked upon as a "simple larmenic mation" (\$ 52), of which the nmplitude diminishes in a geometric ratio with the time, the decrement deneading on the resistance alone, while the period is permanently lengthened in tho ratio $n: n$. This ratio depends both upon the original period and the resistance, so that for the same merium and same bob it is different for strings of different lengths. This investigation gives un approximation to the gradual dying away (by internal friction or by imperfect elasticity, \&c.) of all vibratory movements. The ratc of diminution of amplitude, say of torsional vibrations of a wire. is tbus a valuable indication and measure of a semowhat recondite physical quantity, which, without this methoil, would (at present at least) bo hard to measure.
(c) When $n=k$, i.c., in the transition case, the equation becomes

$$
\ddot{\theta}+2 n \theta+n^{2} \theta=0
$$

whose integral is known to be

$$
\theta=\varepsilon^{-m}(A+B l)=\varepsilon^{-k \prime}(A+B l)
$$

This, ulso, ultimately diminishes indefinitely as $t$ increascs; but, as in case (a), it may cither do so continnously or after having once passed through the value zere and reached a maximum, according to the relative magnitude aud the signs of $A$ and $B$.
§ 139. When the path is given, the determination of the motion under given forces is, as we have seen, a mere question of integration of the equation for acceleration along the tangent. But more is required if we wish to find the normal pressure on the constraining curve. This is at once supplied by compounding the resolved part of the applied forces in the direction perpendicular to the tangent, with the additional force $m \mathrm{~V}^{2} / \rho$ acting from the centre of curvature. But, strictly speaking, all such questions require the applicatiou of Law IIL

## Finetics of a Purticle with Tiro Degrees of Freedom:

§ 140. The simplest case is that of a projectile, when Project gravity is supposed to be uniform and to act in parallel tile und lites throughout the whole path, and the resistance of the resistel air is neglected. This has been snfficiently discussed in $\$ \$ 40-42$. It is merely the combination of (1) the uniformly accelerated motion of a stone let fall, with (2) a uniform velocity in a definite direction. Looked at from this point of view, it gives an interesting example of the graphic method applied in § 53 to indicate the uature of simple harmonic motion.
§141. We can extend these projectile results so as to take account of the alteration of direction and of intensity

L:unple of gravity at different points of the path, by reniembering motlon of projuctile. that, as shown in § 49 , the path of an unresisted projectile is an ellipse, one of whose foci is at the centre of the carth. The following, among many other analognus
propnsitions, are easly proverl.
(1) The locus of the second foci of the paths of all projectiles leaving a given point with a geven speed, in a verticad plane, is a circle.
(2) The direction of projection, for the greatest range on a given line passing through tho point of projection, bisects the angle between the vertical and the line.
(3) Any other point on the line which can be reached at all can be reached by tro different paths, and the directions of projection for these are equilly inclined to the direction which gives the maximum range.
(4) If a projectile meet the line at right angles, the point which it strikes is the vertex of the other path by which it may be reached.
(5) The envelop of all possible paths in a vertical plane is an ellipse, one of whose foci is the centre of the earth, and the other the point of projection.

To prove these propositious, let E (fig. 46) be the earth's centre, $P$ the point of projection, A the point which the projectile would reach if fired vertically uprards. With centre E, and radius EA, describe a circle in the common plane of projectiou. This, the circle of zero velocity, corresponds to the common directrix of the parabolic paths in the ordinary theory. If F be tiee second focus of aoy path, we must have $E P+P F$ constant, because the azis major depends on the speed, not the direction, of projection. Hence (1) the locus of $F$ is the circle AFO, centre P. Again, sioce, if $F$ be the focus of the path which meets $P R$ in $Q$, we must have $F Q=Q S$, it is obvious
 that the greatest range $P_{q}$ is to be found by the condition $\mathrm{O} q=q$ s. O is therefore the second focus of this trajectory, and therefore (2) the direction of projection for the greatest range on $P R$ bisects the angle APli. If $Q F=Q F^{\prime}=Q S$, F and $\mathrm{F}^{\prime}$ are the second foci of the two paths by which 2 may be reached; and, as $\angle F^{\prime} P O=\angle F P O$, we see the ruth of (3). If $Q$ be a point reached by the projectile when moving in a direction perpendicular to $P$, we must evidently have $\angle \mathrm{PQF}^{\prime}=\angle \mathrm{PQF}=\angle \mathrm{SQR}=\angle \mathrm{EQP}$; i.e., EQ passes through $F^{\prime \prime}$. When this is the case, the ellipse whose second focus is F evidently meets PR at right angles; and that whose second focus is $F^{\prime}$ has (4) its vertex at $Q$. The locus of $q$ is evidently the envelop of nll the trajectorics. Now

$$
\begin{aligned}
& \mathrm{Pq}=\mathrm{PO}+\mathrm{Oq}=\mathrm{P} A+\mathrm{O} q \\
& \mathrm{E} q-\mathrm{E} q-s q=\mathrm{E} A-\mathrm{O} q
\end{aligned}
$$

## Hence

$$
\mathrm{P} q+\mathrm{E} q-\mathrm{PA}+\mathrm{AE},
$$

or (5) tho envelop is an ellipse, whose foci are $E$ and $P$, and which passes through A.
§ 142. One of the most important problems in this brand of our subject is that of planetary motion, which forms a good typical example of tho processes to be cmployed in the treatment of central orbits. Onc or two definitions, and a general property of central orbits, must be premised.
§ 143. Def. An "apse" is a point, in a central orbit, at which the path is perpendiculer to tho radius-vector along which the central force acts.

The length of the radius-vector is therefore, at such a poiot, generally a maximum or a minimum. This radius vector, drawn to an apse, is called an "apsidal line."
A central orbit is symmetrical about every apsidal line. The simplest proof of this theorem depends upon the general pricciple of "reversibility," which holds in all cons servative systems. In fact if, at any instant, the velocityvector of a particle, moving under the action of a conservative system of forces, be reversed, the particle will simply retrace its previous path. For if we suppose a smooth tube, in the form of the previous path, to be employed to guide it back, the speed at every point will be of the same magnitude as before. The curvature also of the path will be the same; and thus the normai componeat of the applied forces will balance the so-called centrifugal force,-i.e., will suffice to produce the requisite curvature,-so that there will be no pressure on the tube, and it is not required. Hence since, at an apse, the velocity is perpendicular to the radius-vector, the two halves of the orbit on opposite sides of the apsidal line are similar and equal. Hence, however many anses there may be, there can be at most only two apsidal distances. For the property of symmetry about each 'apsidal line shorss that, if there be more apses than one, the first, third, fifth, \&c., must have their apsidal distances equal, as also must the second, fourth, sixth, \&c. If there be one apse only, it may correspond either to a minimum or to a naximum value of the radius-vector; but, if there be more than one, they must be maxima and minima alternately.
§ 144. We now proceed to the gravitation case already promised. We will take, first, the direct problem as in \$49, where the force is assigned and the orbit is to be found.

A particlc is projected from a given point in a given direction and Planewith a given speed, and moves under the action of a central attrac- tary. tion varying inversely as the square of the distance: to deternine motion the orbit.
We have $\mathrm{P}=\mu u^{2}$, and therefore by the last part of $\$ 47$

$$
\frac{d^{2} u}{d \theta^{3}}+u-\frac{\mu}{l^{2}}=0
$$

Where $\pi$ is double the constant area, or

$$
\frac{a^{2}}{d u^{2}}\left(u-\frac{\mu}{h^{2}}\right)+\left(u-\frac{\mu}{h^{2}}\right)=0,
$$

the integral of which is

$$
u-\frac{\mu}{h^{3}}=A \cos (\theta+B),
$$

or, as it is usually mritten,

$$
\begin{equation*}
u=\frac{\mu}{h^{2}}\{1+e \cos (\theta-a)\} \tag{1}
\end{equation*}
$$

This gives by differentiation

$$
\begin{equation*}
\frac{d u}{d \theta}=-\frac{\mu}{h^{2}} \cos (\theta-a) \tag{2}
\end{equation*}
$$

Let $R$ be the distanee of tho point of projection from the centre, and $\beta$ the angle, and $V$ the speed, of projection; then, when $\theta=0$

$$
u=\frac{1}{\mathrm{~K}}, \quad \cot \beta=-\left(\frac{1}{u} \frac{d u}{d \theta}\right)_{\theta=0}
$$

IIence, by (1)

$$
\frac{\lambda^{2}}{\mu R}-1=c \cos a
$$

and by (2)

$$
\frac{h^{2}}{\mu R} \cot \beta=-c \sin \alpha
$$

From these

$$
\begin{equation*}
\tan \alpha=\frac{h^{2} \cot \beta}{\mu R-h^{2}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
c^{2}=\frac{h^{4}}{\mu^{2} R^{3}} \operatorname{cosec}^{2} \beta-\frac{2 h^{3}}{\mu \mathrm{R}}+1 \tag{4}
\end{equation*}
$$

3ut
wherefore

$$
\tan \alpha=\frac{V^{2} R \sin \beta \cos \beta}{\mu-V^{2} R \sin ^{2} \beta}
$$

and

$$
1-c^{2}=\frac{\Gamma^{2} R^{2} \sin ^{*} \beta}{\mu}\left(\frac{2}{1}-\frac{\Gamma^{2}}{\mu}\right)
$$

Now (1) is the general polar equation of a coare section, focus the pole, and, ay its nacure depends on the value of the excentricity e girea by ( $4^{\prime}$ ), we see that

> if $V^{2}>2 \mu / R, c>1$, aod the orbit is an hyperbola;
> if $V^{2}=2 \mu / R, c=1$, and the orbit is a parabola;
> if $V^{2}<2 \mu / R, c<1$, and the orbit is an ellipse.

But the square of the speed from rest at infinity to dintance $R$, for the law of attraction we are consideriag, is $2 \mu / \mathbb{R}$, and the above conditions may therefore be expressed more concisely by saying that the orbit will be an hyperbola, a parabola, or an ellipsc, accord. ing as the speal of projection is greater than, equal to, or less than, the speed froo intinity. Illustrations of this proposition are foond in the cases of comets and of meteor swarms.

The speed of a particle moving in a circle is:lso often taken as the standard of comparison for estimating the velocities of bodies in their orbits. For the gravitation lav of attraction the square of the speed in a circle of radius K is $\mu / \mathrm{R}$; and the above conditions may be expressed in another form by saying that the orbit will be au hyperbola, a parabola, or an ellipse, according as the speed of projection is greater than, equal to, or less than $\sqrt{ } 2$ tiures the speed in a circle at the same distance.

Supposing the orbit to be an ellipse, Te shall obtain its major axis and latus rectum most easily by a different process of integrating the differential equation. Multiplying it by $h^{2} \frac{d u}{d \theta}$ and integrating, we obtain

$$
\frac{1}{2} h^{2}\left\{\left(\frac{d u}{d \theta}\right)^{2}+u^{2}\right\}-\frac{1}{2} v^{9}=\mathrm{C}+\mu u .
$$

But when $i t=\frac{1}{\mathrm{R}}, v=\mathrm{V}$; which gives

$$
\begin{equation*}
C=\frac{1}{2} V^{2}-\frac{\mu}{R} ; \tag{5}
\end{equation*}
$$

hence $\quad \frac{1}{2} h^{2}\left\{\left(\frac{d u}{d \theta}\right)^{2}+u^{2}\right\}=\frac{1}{2} v^{2}=\frac{1}{2} \mathrm{~V}^{2}-\frac{\mu}{\mathrm{K}}+\mu u$
Now to determine the apsidal distances, we must put

$$
\frac{d u}{d \theta}=0 ;
$$

aud this gives us the condition

$$
\begin{equation*}
u^{2}-\frac{2 \mu}{h^{2}} 2 t+\frac{2 \mu}{h^{2} \Omega}-\frac{V^{2}}{h^{2}}=0 \tag{6}
\end{equation*}
$$

which is a quadratic equation whose roots are the recip:ocale of th.e two apsidal distances. But if $a$ be the semi-axis major, and $e$ the excentricity, these distances are

$$
a(1-e) \text { and } a(1+c)
$$

Hence, as the coefficient of the second term of (6) is the sum of the roots with their signs changed, We have

$$
\begin{gather*}
\frac{1}{a(1-e)}+\frac{1}{a(1+c)}=\frac{2 \mu}{h^{2}} ; \\
a\left(1-c^{2}\right)=\frac{h^{2}}{\mu} . \tag{7}
\end{gather*}
$$

And the third term is the product of the roots, so that

$$
\frac{1}{a^{2}\left(1-e^{2}\right)}=\frac{2 \mu}{h^{2} h}-\frac{V^{2}}{\hbar^{2}}
$$

pr, by (7),

$$
\begin{equation*}
\frac{1}{a}=\frac{2}{\mathrm{R}}-\frac{\mathrm{V}^{2}}{\mu} \tag{8}
\end{equation*}
$$

Thns

$$
\frac{1}{2} \nabla^{2}=\frac{\mu}{R}-\frac{\mu}{2 a},
$$

and therefore

$$
\begin{equation*}
\frac{1}{2} v^{2}=\frac{\mu}{r}-\frac{\mu}{2 a} . \tag{9}
\end{equation*}
$$

Equations (7) and (8) give the latus rectum and major axis of the orbit, and show that the major axis is indepandent of the direction of projection.
Equation (9) gives a useful expression for the speed at any point, and sbows that the radius of the circle of zero speed is $2 a$.

The time of describing any given angle is to be obtained from the formula,

$$
r^{2} \frac{d \theta}{d l}=h=V\left\{\mu a\left(1-c^{2}\right)\right\}, \text { by equation (7). }
$$

From this, combined with the poler eqnation of the ellipse about the focus, we have

$$
\frac{d l}{d \theta}=\frac{r^{2}}{\sqrt{\left\{\mu a\left(1-c^{2}\right)\right\}}}-\sqrt{\left(\frac{a^{3}\left(1-c^{2}\right)^{2}}{\mu}\right) \frac{1}{1+e c c s} \overline{\theta_{1}^{2}}},
$$

measuring the angle from the nearer apse.
linterrating, we find the time of describing abont the focus an
angle $\theta$ measured from the nearer apse, in the eltipse or liyperbola, expressed as $2 / h$ of the sectotial arca 1 SP (fignre to $\$ 147$ ), whict might have been written down fron the condition of uniform moment of mourentum.

In the paraboia, if $a$ be the apsidal aistance, the integral becomes

$$
\begin{gathered}
{\left[\text { since } \ell=1, a(1-c)=d, a\left(1-e^{2}\right)=2 d\right],} \\
t=\sqrt{\frac{2 d^{3}}{\mu}}\left(\tan \frac{\theta}{2}+\frac{1}{3} \tan ^{3} \frac{\theta}{2}\right) .
\end{gathered}
$$

From the result for the ellipse we sce that the periodic time is

$$
2 \pi \sqrt{a^{3} / \mu}
$$

In the notation commonly emplojed for the further development of this most important question we write

$$
\mathrm{T}=2 \pi / n
$$

where 22 , which is called the "rnean motion," is $\sqrt{\mu / a^{3}}$.
$\S 145$. By lnborious calculation from nn immense series of observations of the planets, and of Mars in particular, Kepler was led to enunciate the following as the kinematical laws of the planetary motions about the sun.
I. The planets describe, relatively to the sun, ellipses of which the sun occupies a focus.
II. The radius vector of each planet traces ont eqiad areas in equal times.
III. The squares of the periodic times ot any tro planets are as the cubes of the major axes of their orbits.
$\S 146$. We proceed to the inverse problem of $\S 8(b)$, the consedetermination of the force from the observed motions.

From the second of the above laws we conclude that the planets are retained in their orbits by an attraction tendiug laws. to the sun. If the radius-vector of a particle moving in a plane describe equal areas in equal times about a point in that plane, the resultant attraction on the particle tends to that point. For the datum is equivalent to the statement that there is no change of moment of momentum about the sun, or that the accelerations all pass through the sun viewed as a point.

From the first law it follows that the law of the intensity of the aturaction is that of the inverse square of the distance.
The polar equation oi an ellipse referred to its focus is

$$
u=\frac{2}{l}(1+c \cos \theta)
$$

where $l$ is the latus rectum.
Heace $\quad \frac{d^{2} u}{d \theta^{3}}=-\frac{2 c}{l} \cos \theta$,
and therefore the attraction to the focus requisite for the deseription of the ellipse is ( $\$ 47$ )

$$
\mathbf{P}=h^{\imath} u^{2}\left(\frac{d^{\imath} u}{d \theta^{2}}+u\right)=\frac{2 h^{2}}{l} u u^{2}
$$

Hence, if the orbit be an ellipsc described about a ccntrc of attraction at the focus, the law of intensity is that of the inverse squarc of the distance.

From the third law it follors that the attraction of the sun (supposed fixed) which acts on unit of mass of each of the planets is the same for each planet at the same distance.

For, in the last formula in $\& 144, \mathrm{~T}^{2}$ will not vary as $a^{3}$ unless $\mu$ be constant, i.e, unless the strength of attraction of the sun be the same for all the planets.

We shall find afterwards that for more reasons than one Fepler's laws are only approximate, but their enunciation was sufficient to enable Newton to propound the doctrine of universal gravitation, viz., that crery particle of mattcr in the universe attracts every othct with an attraction whose direction is that of the line joining them, and whose magnitudc is as the product of the masscs dircetly and as the square of the distance inversely; or, according to Maxwell'a formulation, betwcen cvery pair of particles therc is a stress of the nature of a tension, proportional to the product of the masscs of the particles divided by the square of their distance.

If we take into account that the sua is not absolutely fired, then. neglecting the mutual attractions of the planets, Kepler's third law should be stated thus:-

The cubes of the major axes of the orbits are as the squares of the periodic times and the sums of the masses of the sun and the planct.
§ 147. We will now indicate, as briefly as possible, the more ordinary transformations by which the preceding formulæ are adapted (for astronomical applications) to numerical calculation.

Suppose APA' (fig. 47) to be an clliptic orbit described about a centre of attraction in the focus S. Also suppose P to be the position of the particle at any time $\ell$. Draw PM perpendicular to the major axia ACA', and produce it to cut the auxiliary circle in tho point Q . Let C be the common centre of tho curves. Join CQ.

When the moving particle is at A, the nenrest point of the orlit to $S$, it is aaid to be in "peribelion."

The angle ASP, or the excess


Fig. 47.
of the particle's longitule over that of the nerihelion, is called the "true anomaly." Let us denote it by $\theta$.
The angle ACQ is called the "excentric anomaly," and is generally denoted by $\mu$. And, if $2 \pi / n$ be the tinie of a complete revolution, ut is the circular measure of an imaginary angle called the "mean anomaly;" it would evidently be tho tw wo elvomaly if the particle's angular velocity about $S$ were constant.

It is easy from known properties of the ellipse to deduce the following relations between the mean and excentric, and also betwern the true and excentric, anomalies:-

$$
\tan \frac{u}{2}=\sqrt{u t=u-e \sin u}
$$

By far the most important problem is to find the values of $\theta$ and $r$ as functions of $c$, so that the direction and length of a illanet's radius-vector may be determined for any given time. This gencrally gocs by the name of Kepler's Problem.

Before indicating the systematic development of $u, r$, and $\theta$ in terms of $t$ from our equations, it may be useful to remark tbat, if $e$ Le so amall that higher terns than its square nay be neglected, we may easily obtain developments correct to the first three termas. Thus

$$
\begin{aligned}
u & =n t+c \sin n t \\
& =n t+c \sin (n t+c \sin n t) \text { nearl } y, \\
& =n t+c \sin n t+\frac{1}{2} c^{2} \sin 2 n t .
\end{aligned}
$$

Also

$$
\begin{aligned}
& \frac{r}{a}=1-e \cos u \\
&=1-c \cos (n t+c \sin n t) \\
&=1-c \cos n t+1 c^{2}\{1-\cos 2 u t) \\
& r^{2} \frac{d \theta}{d \ell}-\sqrt{ }\left\{\mu \pi\left(1-\epsilon^{2}\right)\right\}
\end{aligned}
$$

And
which may be written
or

$$
\begin{aligned}
& \frac{a^{2}\left(1-c^{2}\right)^{2}}{(1+e \cos \theta)^{2}} \frac{d \theta}{d t}=n a^{2}\left(1-c^{2}\right)^{2} \\
& \left(I-c^{2}\right)^{2}(1+\varepsilon \cos \theta)^{-2} \frac{d \theta}{d!}=n
\end{aligned}
$$

Eeeping porers of e lower than the third,

$$
\left(1-2 c \cos \theta+\frac{3}{2} c^{2} \cos 2 \theta\right) \frac{d \theta}{d t}-n
$$

or $\quad n t-\theta-2 e \sin \theta+\frac{3}{2} e^{2} \sin 2 \theta$;
whence

$$
\begin{aligned}
\theta & =n t+2 c \sin \theta-3 c^{2} \sin 2 \theta \\
& =n t+2 c \sin (n t+2 c \sin n t)-\frac{3}{4} c^{2} \text { ain } 2 n t \\
& =n t+2 c \sin n t+4 e^{2} \cos n t \sin n t-1 c^{2} \sin 2 n t, \\
& =n t+2 c \sin n t+4 c^{3} \sin 2 n t .
\end{aligned}
$$

Kepler's Problem. - To find $r$ and 0 as finctions of $t$ from the quations

$$
\begin{align*}
& n t=u-c \sin u . \tag{3}
\end{align*}
$$

Theso cquations evidently give $r, \theta$, and $\ell$ directly for any assigned value of $u$, but this is of littlo ralue in practice. The method of solution which is commonly adopted is that of Lagrange, and tho general principlo of it is this:-
Wó can dovelop $\theta$ from equation (2) in a acries ascending by powers of a amall quantity, a function of $c$, the cocfficients of these powers involving $u$ and the sines of multiples of $u$. Now by Lagrange's theorem we may from equation (3) express $n, 1-e \cos u$, $\sin u$, $\sin 2 u$, \&cc., in series ascending by powers of $e$, whose coeffi.
cients are sines or cosines of multiples of $u t$. Hence, by substituting these values in equation (1) and in the development of (2), wr have $\tau$ and $\theta$ expressed in series whose terms rapidly decrease, nnil whose coelficients are sines or cosines of multiples of $n \ell$. "This is the complete practical solution of the prollen. But we must refet the reader to sjesial treatises for the full development of this subject. Compare § 52.
§ 148 . We may take an opportunity here of giving ì sketch of a particular case of the important question ol "kinetic stability." The general treatment of this subject is entirely beyond our limits. But re may investigate its conditions, in the case of a central orbit naturally circular, by a very slight modification of our equations.

Whatever be the law of central force, provided it depend on the distance alone, we cau write the acceleration due to it as

$$
\mu u^{2} /(u),
$$

where $u$ is the now reciprocal of the radius-vector, as an § 144. The kinematios of the motion is then entirely summed up ia tho equations

$$
\frac{d^{2} u}{d \theta^{2}}+u=\frac{\mu}{h^{2}} f(u), \text { and } \frac{d \theta}{d \ell}=h u u^{2} .
$$

If $1 / a$ be the radius of the circle, tho first eņuation becoınes simply

$$
a=\frac{\mu}{h^{2}} f(a)
$$

Now let a slight disturbance be given to the motion, such that $h$ is unaltered, but that $u$ becones $a+x$. Then we have

$$
\frac{d^{2} x}{d \theta^{3}}+a+x=\frac{\mu}{h^{\prime \prime}} f(a+x)
$$

Expanding to first powers of $x$ only, and thereby assuming that $x$ ia always exieedingly small, we hava

$$
\frac{d^{2} x}{d \theta^{3}}+x\left(1-\frac{\mu}{h^{3}} f^{\prime}(a)\right)=0
$$

the terms independent of $x$ vanishing by the condition for a circular orbit. By eliuinating the ratio $u / h^{2}$ we have

$$
\frac{d^{2} x}{d \theta^{2}}+x\left(1-\frac{a f^{\prime}(a)}{f^{\prime}(a)}\right)=0
$$

To secure stability, $x$ must not be capable of increasing iadenmately. This leads to the result that the multiplier of $x$ in tho aivove equation must be positise; i.e.,

$$
1-\frac{a f^{\prime}(a)}{f(a)}>0
$$

For, if tho multiplier were negative, the Falue of $x$ would consist of two real exponential terms, one of which would increase ind finitely with the angle $\theta$, and would disanpear from the value of $x$ under special conditions enly.
If the multiplier were zero, $x$ would be a linear function of $\theta$. Hence, in the only case we need consider, we have

$$
x=A \cos \left(\theta \sqrt{1-\frac{a f^{\prime}(a)}{f(a)}}+I B\right)
$$

The radins-vector is thercfurc a moximum and minimum (i.c.e apses occur) alternately as the aggle $\theta$ increasca by successive incrementa cach equal to

$$
\frac{\pi}{\sqrt{1-\frac{a f^{\prime \prime}(a)}{f(a)}}}
$$

Suppose the force to vary as the inverse uth power of tho distancu. Here $f(a) \propto \alpha^{n-2}$, and we have $1-\frac{a f^{\prime}(a)}{J(a)}=1-(n-2)-3-n$. Thus un minst be less than 3 ; i.e., a circular orbit, witl, the centre of foreo in tho centre, is easentially unstable if tho forco vary as the inverse third, or any higher inverse power of the distance.
If $n=2$, which is the cravitation case, the apsidal angle is cvidently $\pi$.
§ 149. A very curious result, due to Newton, may be indicated here, viz., that, if any central orbit be made to revolve in its own plane with angular velocity proportional at each instant to that of the radius.vector in the fixed orbit, it will still be a central orbit ; and the additional force required will bo inversely as the cube of the radius. rector.
-Generally, in a central orbit,
$r-r \theta^{2}=P . \quad r^{2} \theta=h_{1}$.

But sujprose $\theta$ to become co ${ }_{3}$, where is a constant, and we have

$$
\theta=c \theta_{1},
$$

which is Jiewton's byrothesis. The abore equations become

$$
\ddot{r}-r \theta_{1}^{2}=\mathrm{P}+\left(c^{2}-1\right) r \theta_{1}^{2}, \quad r^{2}\left(\theta_{1}=h ;\right.
$$

or, as thuy may be rritten,

$$
\dot{r}-r \theta^{\tilde{z}}=\mathrm{P}+\left(e^{3}-1\right) h_{1}^{2} / \imath^{3}, \quad r^{2} \theta_{1}=h_{1} .
$$

From these the proposition is obvious.
Other examples of central orbits will be given when we discuss general priucioles, such os "least action" and "varying action."

## Special Problem. The Erachistochrone.

§150. A celeorated problem in the history of dynamics is that of the "curve of swiftest descent," as $i$ is was called:-

Two points being given, which are neither' in a vertical nor in a horizontal line, to find the curve joining them down $u$ iich a particle sliding under gravity. anil gherting from rest at the figher, vill reaci the other in the least possible timp.

The curre must evidently lie in the vertical plane passing turough the pointa For suppose it not to lie in that plane, project it orthegonally on the piane, and call serrespending elements of the curve and ite projectiou $\sigma$ and $\sigma^{\prime}$. Then if a particie siide down the pmojected curve its speed at $\sigma^{\prime}$ will be the same as the speed in the other nt $\sigma$. But $\sigma$ is never lees than $\sigma^{\prime}$. and is gencrally greater. Heace the time terough $\sigma^{\prime}$ is generally less than that through $\sigma$, and never greater. That is, the whole time of falling through the projected curve is lese than that through the curve itself. Or the required curve lies in the vertical plane through the points.

Also it is easy to sec that, if the time of descent throngh the entire curve is a minimum, that through any portion of the curve is less than if that portion were charged into any other curve.
Conditions for ynum.

And it is obvious that, between any two contiguoxs equal values of a continuously varying quantity, a maximum or minimum must lie. [This principle, though excessirely simple (mitness its application to the barometer or thermometer), is of very great power, and often enables us to solve problems of maxima aad minima, such as require, in analysis, not merely the processes of the differential calculus but those of the calculus of variations. The present is a good examnla?

Let, then, $P Q, Q R$ and $P Q^{\prime}, Q^{\prime} R$ (fig. 48) be tro pairs of iodefinitely small sides of polygons such that the time
of descending threagh either pair. starting from $P$ with a given speed, may be equal. Let $Q Q^{\prime}$ be herizontal, and indefinitely small cempared with PQ and QR . The brachistochrone must lis between these paths, and must possess any property which they possess in common. Heuce if $v$ be the speed down FQ (supposed uniform) and $v^{\prime}$ that down QR, draw-

ing $\mathrm{Q} m, \mathrm{Q}^{\prime} n$ perpeodicular to liQ', PQ , we must hare

$$
\frac{Q n}{v}=\frac{Q^{\prime} m}{v^{\prime}} .
$$

Now if $\partial$ be the inclination of PQ to the herizon, $\theta^{\prime}$ that of $\mathrm{QR}, \mathrm{Q} n=\mathrm{QQ}^{\prime} \cos \theta, \mathrm{Q}^{\prime} n_{c}=\mathrm{QQ}^{\prime} \cos \theta^{\prime}:$. Hence the above equation becomes

$$
\frac{\cos \theta}{v}=\frac{\cos \theta^{\prime}}{v^{\prime}}
$$

This is true for any two censecutive elements of the required curve; and therefore thronghout the curvo

```
v\propto\operatorname{cos}0.
```

But $v^{2} \propto$ verticai distence fallen through ( $\$ 28$ ).
the curve required is surk that the cesine of the angle it makes with the horizontal line through the point of departure varies as the square roat of the distance from that line,-which is easiiy seen to be a property of the cjecloid, if we remember that the tangent to that curre is parallel to tho corresponding cherd of its generating circle For in fig. 45, § 137 ,

$$
\cos B P^{\prime} \mathrm{M}=\cos \mathrm{BA} A \mathrm{P}^{\prime}=\frac{A \mathrm{P}^{\prime}}{A B}=\sqrt{\frac{A M}{A B}} \propto \cdot \sqrt{A M K} .
$$

The bracuistecàrone thea, under gravity, is an iaverted cycloid whosc cusp is at the point from which the pasticle desceads.
$\$ 151$. Whatever iso the impressen forces, reasoning similar to that in last section would show that the osculating plane of the braciistechrone always contains the resultait force, and that

$$
2 v^{\prime} \cos \theta=v \cos \theta,
$$

whero $\theta$ is now the complement of the-argie vetween tia curve and the resultant of the impressed ferces.
Let that resultant $=F$, and let the element $P Q=\delta s$, and $\theta^{\prime}=\theta+\delta \theta$ Then

$$
v^{\prime \theta}-2^{2}=2 F \partial \Delta \sin \theta,
$$

$$
\text { or } \quad \therefore \quad \partial \partial v=\bar{r} \delta \bar{s} \sin \theta .
$$

But var $\cos \theta$; mhich gives

$$
\frac{\delta v}{\theta}=-\frac{\sin \theta}{\cos \theta \theta} \delta,
$$

Непсв

$$
\varepsilon_{i_{\delta \theta}^{2}}^{2} \delta_{\delta \theta}^{\delta s}-\mathrm{F} \cos \theta .
$$

But in the limit $\frac{\delta s}{\delta \bar{\theta}}-\rho$, the radius oi a assointe currature at $u$; and $F$ coos ts the normal compnnent of the impressed force. Hence wo obrain the result that, tu aus brachistochrone, the pressure on the crrre is double of that due to the force acting.
§ 152. Now for the unconstrained path froun $\bar{\Gamma}$ to it we have fodqd a minimum ( $\S 2(2)$ - Hence in the same, way as before, $\phi$ being tho angie corresponding to $\theta$, veos $\phi=v^{\prime}$ cos $\phi^{\prime}$ from element to element, and therfore liroughout the curve, if the direction of the force be constant. Now, if the velocitics in the uxconstrained and irrachis tochrone paths be eqnai at any equipotential surface, thes will to cqual at every other. Hence, taking the argies for auy equipoten, tual surrace,

## $\cos \theta \cos \phi=$ constant.

As an example, suppose a parabola with its vertax opwards to have for directrix the base of sn inverted crcloid; these curves evidently satisfy the above condition, the one being the free path, the other the brachistochrone, for gravity, and the velocities being fn pazk due to the same horzontal line. And it is seen at once that the product of the encines of the angles which they make mith any herizontal straight line which cuts both is a constant whose mag. nitude denends on these of the cycloid and parabola, its value being $\sqrt{l, 4 a}$ where $I$ is the latus rectum of the parabola, and $a$ the diameter of the generating circle of the cycloid.

## Finetics of a Partiele Generally.

3.153. Hare wo mast content onrselves with a few special Genera cases, which will be varied as much as possible.
A unit particle moves on a smoold curve, under the action of any system of forccs; find the motion.

All we lncw dirantly abuut the pressure $R$ on the cirro in that it is perpendicular to the tangent line at any point.
Resolve then the given forces aeting upon the particle into three, - one, $T$, along the tangent, which in all cases in nature will be a function of $x, y, z$ and therefore of $s ;$ another, $N$, in the wino of intersection of the normal and osculating planes (or radiua of absolato caratare), and the third, $P$, perpendicular to the osculating plase.
pet the resel rea parts of $R$ in the directions of $N$ and $P$ be $R_{1}$, $\mathrm{R}_{9}$. Now the acceleration of a point moving in any manner is compounded of two accelerations, one $\frac{d^{2} s}{d q^{2}} \sigma 0 \frac{d v}{d s}$ along the tangent to the wath, and tho other $\frac{v^{2}}{\rho}$ tomards the centre of absolate curri-
ture, the acceleration perpendicular to the osculating plane being ture, the acceluration perpendicular to the osculating plane being zero; and therefore

$$
\begin{equation*}
\frac{d^{2} s}{d t^{2}}-T \tag{1}
\end{equation*}
$$

This equation, together with the two equations of the curve, is sufficient to determine the motion completely.

$$
\begin{equation*}
\text { Also } \quad \frac{v^{2}}{\rho} \doteq \mathrm{R}_{1}+N \tag{2}
\end{equation*}
$$

$R_{1}$ and $N$ heing considered positive when acting towards the contre of absolute curvature ; this equation determines $R_{1}$.

Now $R_{2}$ is the reactiou which prevents P's withdrawing the particle from the osculating I lane; and therefore

$$
\begin{equation*}
R_{2}=-P . \tag{3}
\end{equation*}
$$

(2) and (3) give the resolved parts of the pressure on the cirve.

Also $R=\sqrt{ }\left(R_{1}^{2}+R_{2}^{2}\right)$, and its dircetion makesanangle $=\tan ^{-1}\left(\mathrm{~K}_{2} / R_{1}\right)$ with the osculating plane.

If the result of the investigation should show that at any time I . could ranish, the particle must be treatel as free until the equations of its free motion show that it is again in contact with the curve.
A particle moves, under given forecs, on a given smooth surfuce; to detcrinine the motion, and the pressurc on the surface.

## Let

$$
\begin{equation*}
F(x, y, z)=0 \tag{1}
\end{equation*}
$$

be the eqnation of the surface, R the reaction, acting in the normad to the surface, which is the only effect of the constraint. Then, if $\lambda, \mu, \nu$ be its direction cosines, we know that

$$
\begin{equation*}
\lambda=\frac{\left(\frac{d F}{d x}\right)}{\sqrt{\left\{\left(\frac{d F}{d x}\right)^{2}+\left(\frac{d F}{d y}\right)^{2}+\left(\frac{d F^{2}}{d z}\right)^{2}\right\}}} \tag{2}
\end{equation*}
$$

with similar expressions for $\mu$ and $\nu$, the differential coefficients being partial.
, If $\mathbf{X}, \mathbf{Y}, Z$ be the applied forecs on unit of mass, our equatious of motion are, evidently,

$$
\left.\begin{array}{l}
\ddot{z}-\tilde{I}+I i \lambda  \tag{3}\\
y=I+\Gamma \mu \\
\ddot{z}=Z+I \nu
\end{array}\right\}
$$

Maltiplying equations (3) respectivels loy $\dot{x}, \dot{y}, \dot{z}$, and adding, wo obtain

$$
\begin{equation*}
\dot{x} \dot{x}+\dot{y} y+\ddot{i}=v \dot{v}=\underset{x}{x}+Y \dot{j}+Z \dot{i} \tag{4}
\end{equation*}
$$

R disappears from this equation, for its coefficient is

$$
\lambda \dot{x}+\mu \dot{y}+\nu \dot{z}
$$

and vanishes, bceanse the line whose direction cosines are proportional to $\dot{x}$, sec., being the tangent to the path, is [erpendicular to the normal to the surface.
$\therefore$ If we suppose $X, I, Z$ to he a conservative systen of forces, the integral of (4) will be of the form

$$
\begin{equation*}
\frac{1}{2} v^{2}=\phi^{\prime}(x, y, z)+C \tag{5}
\end{equation*}
$$

and the velacity at any point will depend only on the initial circumstances of projection, and not on the form of the path pursucd. To find $R$, resolve along the nornial, then

$$
v / p=I \lambda+J^{\prime}+Z v+R
$$

Which gives the reaction of the surface; $\rho$ being the radius of curvature of the normal section of the surface through the tangent to the patfl, and the mass of the particle being taken as unity.

To find the curve which the parlicle describes on the surface.
For this purpose we must climinate $R$ from equations (3). By this process we oltain

$$
\begin{equation*}
\frac{\ddot{Z}-X}{\lambda}=\frac{\ddot{i}-V}{\mu}=\frac{\ddot{i}-7}{\nu} \tag{6}
\end{equation*}
$$

two equations, between which if $t$ be climinated, the result is the differential equation of a secoud surface intersecting the first in the curve deseribed.

If there be no applied forces, or if the component of the applied force in the tangent plane caincide with the direction of motion of the particle, then the osculating plane of the path of the particle, which contains the resultant of It and
the applied force, will be a normal plane, and therctore the path will be a geolesic on the surface. Thus a particle under no forces an a smooth (or rough) surface will describe a geodesic.
§151. An excellent and important cxamplo is furnished by the simple pendulum, when its vibrations aro not confined to ono vertical plane. When the bob moves in a borizontal plane, the arrangement is callerl a


J'ig. 49. "conical" pendulum, and il is a very simple maller, as follows, to find the molion. For tho vertical component
of the tension of the string must support the weight of the bob; i.c.,

$$
\Gamma \cos a=m g
$$

Where $a$ is the inclination of the string to the vertical. Also the horizontal component of the tension must supply the force $m V^{2} / \mathrm{R}_{\text {( }}(\$ 49$ ) requisite for the productiou of the curvature of the prath, i.e.,

$$
\mathrm{T} \sin c_{a}=m \frac{\^{\prime 2}}{l \sin a}
$$

Elimiuating $\pi / T$ from illese equalions, wa have

$$
\frac{\cos \alpha}{\sin ^{1} \alpha}=\frac{y^{l}}{1 z}
$$

But, if $\tau$ be the timo of revolution of the bob,

$$
\mathbf{V} \tau=2 \pi l \sin \alpha
$$

Hence

$$
\frac{\cos a}{\pi^{2}}=\frac{m l}{4 \pi^{2} l^{2}}
$$

or

$$
\tau=2 \pi \sqrt{\frac{\cos \alpha}{g}} ;
$$

i.e., the conieal pendulum revolses in the period of the small vibrations of a simple pendulum whose lencth is the vertieal component of that of the conical pendulum ( $\$ 134$ ).
To earry the investigation to cases in whieh the pentulum ilescribes a tortuous curve, we require (except for approximate results) the use of elliptic functions. We thus obtain, among others, tho follawing results:-
The motion will he comprisell hetween two herizontal circles. Let the depitlis of these cireles below the centre be $b+c$ and $b-c$; then the vertical motien of the bob of the pendulum will be the same as that of a point on a simple pendulum of length $l^{2} / \mathrm{c}$ performing complete revolutions an the samo periodic time as the splherical pendulum.

But for one of the most important applieations the deflexion from the vertical is always very small, and it is easy to olitain a sulficiently accurate working appreximation without the use of elliptic functions if we pint $p$ and $q$ for the semidiameters of the small elliptic mrlit which will then be described by twe pendulum bol, we find for the apsital angle

$$
\frac{\pi}{2}\left(1+\frac{3 p q}{8 v^{2}}+\ldots\right)
$$

Heuce, when a pendulum is slimhtly disturbed in any way, the motion is to a first approximation elliptie as in $\S 50$. But the sceoml approximation shows that this chlipse otates in its own plane, amel in the same sense as that in which it is describect, with an angular velocity proportional to its arca. Hence the necessity for extreme care, in making Foucault's experiment (presently to be described), lest the path should cren slightly deviate from a vertical plane.
$\S 155$. Another very important and useful example is Blackburr furnished by Blackburn's pendulum, which is simply a rendupellet supported by three threads or fine ufres knotted lum. together at one puiut C (fig. 50). The two other cuds of two of them are attacherl to fixed points $A$ and $D$, and the third supports tho pellet $P$. The motion of $P$ is virtually executed on a smooth surface, whose principal entvatures near the lowest point are $1 / C P$ in the plane of the threo threuds, and $1 / \mathrm{I}^{2} E$ in the plane perpendieular to them,-E being the intersection of the vertical through C with the line $A \mathrm{E}$. Hence for small disturbances of this system, P has a simple harmonic motion in the plane of the paper whose period is $2 \pi \sqrt{\bar{C}} \bar{P}, \sqrt{\prime}$, and another at right angles to it, wilh period $2 \pi \sqrt{\overline{P E} / 4}$. The amplitudes of these motions are arbitrary, and, with the difference of phase, depend entirely on the initial disturbance. Thus we have a very simple mechanical means of producing the combinations treated in $\S 63$; for wo have only to make

$$
\text { PE:PC: : } \omega^{2}: \omega^{\prime 3}
$$

and give the bob its proper initial motion.
§ 156 . Whon CE is very small compared with CP, wo havo a roalization of tho caso of $\$ \mathrm{CI}$, in which the
orbit is (at aoy in'stant) an ellipse, but in which the ellipse gradually changes its form and position, so as to be almajs inscribed in a definite rectangle. This experimental arrangement is exceedingly instructive. -To avoid as far as may be the effects of resistence of tho air, the vibrations should be slow, i.e., the wires should be as long as possible. The bob should be a ball' of lead, containing a tube full of ink which slowly escapes from a fine orifice at its lower eud, so as to make a permanent record of the path on a sheet of paper placed below the plane of motion of the bob, but parallel and very close to it. Or, the bob may be furnished with a spike at its lorser end, from which induction sparks may be taken so as to pierce a sheet of praper laid on a copper plate below it.
By mere alterations of the point of suspension A, tho ratio of $\omega$, $\omega^{\prime}$ may be varied at pleasure, provided that AC and BC are long enough compared with CP.

Lissa-
joux'a
taning.
forks.
§ 157. Lissajoux produced similar curves by attaching plane mirrors to the legs of tuning-forks, and allowing a ray of light, after successive reflexions from two suc i mirrors, to full oul a sereen. But it seems to have been first pointed out much earlier by Sang, and afterwards devel sped by Wheatstone, that the same result is obtaned by fixing firmly one end of a steel rod, and setting the free end in vibra. tion. There are two planes of greatest and least flexural rigidity (§274) in all wires, however carcfully drawn. ? ieso are at right angles to one aivilacr ; and the motion of the free end of the wire when slightly disturbed is thercfore precisely that of the bob of the Blackburn pendulum. Another interesting mode of producing the same result is by causing a ray of sunlight to be reflected in succession from four mirrors, all attached, nearly at right angles, to parallel axes. One pair is made to rotate, the two in opposite directions, with ono angular velocity. A ray reffected in succession from these is (\$ 65) mede to oscillate according to the simple harmonic law, in a plane which can be varied at pleasure by altering the relative position of the normals to the two murrors. The other pair of mirrors supplies the other simple harmonic motion, also in any desired plane.
Foucault §15S. We must next consider the effect of the carth's pendu-- rotation unon the motion of a simple pendulum. Strange to say it was left for Foucank to point out, in February 1851, that the plane of vibration of a simple pendulum suspended at either pole would appear to turn through four right angles in twenty-four hours, -the plane, in fact, remaining constant in position while objects beneath the pendulum were, carried round by the diurnal rotation. At the equator, $i t$ was pretty obvious that no such effect would occur, at least if the original plane of vibration was east and west. By some process, of which he gives no account, Foucault arrived at the restilt that the plane of oscillation must, in any latitude, appear to make a complete revolution in $24^{n} \times$ cosec latitude. This curious result has been amply verified by experiment.

The equations of motion of the pendulum, referred to rectangular nxes fixed in direction in space and drawn from the earth's centre, the polar axis beng that of $z$, are obriously

$$
m \frac{d-x}{d l^{2}}=-\mathrm{T} \frac{x-a}{l}+m \mathrm{~K},
$$

with similar expressiona in $y$ and $z(c, b, c$ being the coordinates of the point of suspension, $T$ the tension, $l$ the length of the string, and $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ the coroponents of gravity).
The equations of motion referred to a new set of axes parallel to the former, but drawn through the point of snspension, are

$$
\left.\begin{array}{rl}
m \frac{d^{2}(\sim-a)}{d t^{2}} & =-\mathrm{T} \frac{x-a}{l}+m\left(\mathrm{X}-\frac{d^{2} a}{d l^{2}}\right)  \tag{1}\\
d c & =\delta \mathrm{c}
\end{array}\right\}
$$

Let us now refer the motion to axes turning with the earth, but drawn from the point of auspension. If the axis of $\xi$ be drawn sertically, and the axes of $\eta$, $\zeta$ respectively southrwards anu east-
wards; and if $\omega$ 约 be the angle at time $l$ between the planes of $z$ and $\xi \eta, \lambda$ being the co-latitude of the point of euspension, we have (assuming that $\xi$ intersecta $\approx$ )

$$
\begin{aligned}
& \cos x \xi-\sin \lambda \cos \omega t, \\
& \cos y \xi=\sin \lambda \sin \omega t, \\
& \cos z \xi=\cos \lambda, \& c .
\end{aligned}
$$

By means of these expressions we can at once find the values of $x-a, y-\ell_{2} z-c$ in terms of $\xi, \eta, \zeta, t$, as follows:

$$
\begin{aligned}
& x-a=\xi \sin \lambda \cos \omega t+\eta \cos \lambda \cos \omega t-\zeta \sin \omega t, \\
& y-b=\xi \sin \lambda \sin \omega t+\eta \cos \lambda \sin \omega t+\delta \cos \omega t, \\
& z-c=\xi \cos \lambda \quad-\eta \sin \lambda .
\end{aligned}
$$

Let $\gamma$ bo the acccleration due to the attraction of gravity alone, and $\nu$ the angle (nearly e: 'al to $\lambda$ ) which its direction makes with the polar axis. [We have above in effect assumed that its directiony lies in the piane of $\approx \xi$, as we have assuned that the axis of intersects the polar axis, while we know that the contrifugal foreo lies in their common plane.] Let $r$ be the distance of the point of snapension from the earth's centre, $\mu$ the angla its direction makes with the polar axis. 'Then

$$
a=r \sin \mu \cos \omega t, b=r \sin \mu \sin \omega t, c=r \cos \mu
$$

With these data we transform equations (1) from $x, y, z$ to $\xi, \eta$, $\zeta$. The equations immelliately obtained are inconveniently long for our cofumns. But they are easily simplified as follows.
We contemplate small vibrations only; so we maj treat $\xi$ as being practically equal to $-l$, and omit its differential coefficienta. We also omit powers end products of $\eta$, $\zeta$, and atl terms in $\omega^{2}$, except those in whieh it is multiplied by a larya quantity. For it is known that the centrifugal foree at the cquator is about $1 / 289$ th of gravity, or that upproximately

$$
x w^{2}=2 y / 285
$$

With these considerations, nud the condition that to the degree of approximation desired wo have $T=m g$, we still further.simplify our equations. We are led to recognize that $\gamma \cos j=g \cos \lambda$; and thus wo have finally

$$
\left.\begin{array}{l}
\frac{d^{2} \eta}{d t^{2}}-2 \omega \cos \lambda \frac{d \zeta}{d t}+\frac{g}{l} \eta=0  \tag{と}\\
\frac{d^{2} \zeta}{d t^{*}}+2 \omega \cos \lambda \frac{d \eta}{d l}+\frac{g}{l} \zeta=0
\end{array}\right\}
$$

These are the equations of the motion of tine bob, referred to horizontal plane fixed to the earth. The middle terms abvioasly depend upon the earth's rotation.
To interpret eqcations (2) it is convenient to cmploy a second shange of coordinates-to refer the motion to axes revolving uniformly in the plane of $\eta$, $\delta$ with angular velocity $\Omega$. If $n, \xi$ be the coordinates referred to the new axes, we have by analytical geometry

$$
\eta=\mathrm{v} \cos \Omega t-\xi \sin \Omega t, \quad \delta=\mathrm{n} \sin \Omega t+3 \cos \Omega t
$$

the substitution of which in (2) leads to the equations

$$
\begin{equation*}
\frac{d^{2} \underline{\underline{v}}}{d l^{2}}+\frac{g \underline{v}}{l}=0, \quad \frac{d^{2} \bar{j}}{d l^{2}}+\frac{g \bar{j}}{l}=0 \tag{3}
\end{equation*}
$$

proviced we tako

$$
\begin{equation*}
\Omega=-\omega \cos \lambda . \tag{4}
\end{equation*}
$$

and omit as before terms of the order $\omega^{2}$.
(4) ahows that the new axes rotate, in the oppositc direction to tha of the carth, with the component of the earth's angular velocit: about the vertical at the place. And, in the plame so revolving we see by (3) that the bob of the pendulum describes an approxi mately elliptic orhit, of which a straight line is a particular case.
A circuiar path being obviously possible, let us assume as particular integrals of (2)

$$
\eta=\cos (p t+a), \zeta=c \sin (p t+a) .
$$

The subatitution of these values gives the same result

$$
p^{2}+2 \omega p \cos \lambda-g / l=0
$$

in each of equations (2).
Put $g / l=n^{3}$, then the ralues of $p$ are, to tho degree of approxi, mation above employed, $\pm n-\omega \cos \lambda$, so that the (apparent) angula velocity of a conical pendulum is increased or diminished by $\omega$ cos according as its direction of rotation is negativo or positive.
§ 159. The preceding problem is a particular case of the following generas one. To find the motion of a particle subjected to the action of given forces and under varying constraint. It would lead us to details incompatible witt our limits to enter upon a full discussion of so wide a question, but we give one or two simple and useful cases to show the commoner forms of procedure.
A particle under any forces, and resting on a smooth horizonlal planc, is attached by an incxtersiulle sti-ing to a point which moves
in a given manter in that plane: to determine the motion of the particle.

Let $x, y, \vec{x}, y$ be the coonlinates, at time $t$, of the particle and point, a the length of the string, lit the tension of the string, and $m$ the mass of the particle.

For the motion of the particle wo harre

$$
\left.\begin{array}{l}
m \frac{\tau^{2} x}{d l^{2}}=m \mathrm{X}-\mathrm{R} \frac{x-\vec{x}}{a} \\
m \frac{d^{2} y}{d l^{2}}=m \mathrm{l}-\mathrm{R} \frac{y-\bar{y}}{a} \tag{1}
\end{array}\right\}
$$

witl the condition $(x-\bar{x})^{2}+(y-\bar{y})^{3}=a^{2}$.
Now $\bar{x}, \bar{y}$ are given functions of $t$. Take from both sides of the equations ( 1 ) the quantitics $m \frac{c l^{2} \bar{x}}{d t^{2}}, m \frac{r l^{2} \bar{y}}{d l l^{2}}$, respectively, and we bave the cquations of relatize imotion

$$
\left.\begin{array}{l}
m \frac{d^{2}(x-\bar{x})}{d t^{2}}=m \mathrm{X}-\mathrm{R} \frac{x-\bar{x}}{a}-m \frac{d^{2} \bar{x}}{d t^{2}}  \tag{2}\\
m \frac{d^{2}(y-\eta)}{d t^{2}}=m \mathrm{I}-\mathrm{R} \frac{y-\bar{y}}{a}-m \frac{d^{2} \bar{y}}{d t^{2}}
\end{array}\right\} .
$$

These are preciscly the equations we should hace had if the point halveen fixed, and in addition to the forces $\mathcal{X}, Y$, and $R$ acting on the particle, wo had applied, reversed in direction, the accelerations of the point's motion with the mass as a factor. It is evident that the same theorem will hold in three dimensions. The accelerations $\frac{d^{2} \bar{x}}{d t^{2}}, \frac{d^{2} \bar{y}}{d t^{2}}$ are known as fuoctions of $t$, and therefore the equatioos of relatire motion are completely determined.

Let there bo 210 impressed forces, and suppose first that the point moves with constent velocity in a straight line.

Here $\frac{d \bar{x}}{d t}, \frac{d \bar{y}}{d t}$ are constant, and therefore no ternas are intro. duced in the equations of motion.

Again, suppose the point's molion to be tectilinear, but uniformly accelerated.

The relative motion will evidently be that of a simple pendulum from side to side of the point's lide of motion. In certain cases, when the angular velocity exceeds a certain limit, we shall have the string occasionally uatended; and this will give rise to su impact when it is again tended. While the string is untended the particle moves, of course, in a straight line.

Suppose the point to move, with constent angular viclocily $\omega$, in a circle whosc radius is $r$ and contre origin.

Here, supposing the point to start from the axis of $x$,

$$
\bar{x}=r \cos \omega t, \bar{y}=r \sin \omega t .
$$

Hence the equations of motion are, eince

$$
\left.\begin{array}{l}
\frac{d^{2} \bar{x}}{d t^{2}}=-\omega^{2} \bar{x}, \quad \frac{d^{2} \bar{y}}{d t^{2}}=-\omega^{2} \bar{y} \\
\frac{d^{2}(x-x)}{d L^{2}}=-\mathrm{R}^{x-x} \frac{x}{a}+\omega^{2} x \\
\frac{d^{2}(y-\bar{y})}{d t^{2}}=-\mathrm{R}^{y \prime-\bar{y}} \frac{a}{a}+\omega^{2} \bar{y}, \\
(x-\bar{x})^{2}+(y-\bar{y})^{2}=a^{2}
\end{array}\right\}
$$

Whonco

$$
\begin{gathered}
(\bar{x}-\bar{x}) \frac{d^{2}(y-\bar{y})}{d t^{2}}-(y-g) \frac{d^{2}(x-\dot{x})}{d t^{2}} \\
\infty \omega^{2}\{(x-\bar{x}) y-(y-\bar{y}) x\}
\end{gathered}
$$

or, in polar coordinates, for the relative motion,

$$
\frac{d}{d t}\left(a^{2} \frac{d \theta}{d t}\right)=-\omega^{2} a r \sin (\theta-\omega t)
$$

or

$$
\frac{d^{2}(\theta-\omega t)}{d t^{3}}=-\omega^{2} \frac{T}{a} \sin (\theta-\omega t)
$$

Now $\theta$ - wh is the inclination of tho striog to the rodius passing through the point; call it $\phi$, and we havo

$$
\frac{d^{2} \phi}{d t^{2}}=-\alpha^{2} \frac{r}{a} \sin \phi
$$

the equation of motion of a aimple pendulum whose length is $\frac{g a}{r \omega^{x}}$.
The particle theroforo moves, with reference to the uniformly revolving radius of the circie described by the point, just as a iumplo pendulum with reference to the vertical.

A particle moves in a smooth straight tube which revolues with onstant angular velocily round a verlical axis to which it is pereen. licular; to determine the motion.

Hore, referring the particle to polar coordinates in tho plane of notion of the tube, we bave $\theta=$ constaut $=\omega, \xi=0(\S 47)$, nud
thus for the accileration aloug the tube

$$
\begin{array}{cc}
\ddot{r}-\gamma \omega^{2}=0 ; \\
\text { Whence } & r=\lambda \varepsilon^{i t}+\mathrm{D} \varepsilon^{-\omega^{\prime}} .
\end{array}
$$

Suppose the motion to commence at time $t=0$ by the cutting ol a string, length a, attaching the particle to the axis. The velocity of the particle at that instant along the tube is zero. Hence at $\ell=0$

$$
\begin{aligned}
& r=a-A+B \\
& \dot{r}=0=A-B
\end{aligned}
$$

so that $A=B=\frac{1}{2}\left(c\right.$, and $\left.r=\frac{1}{2} a^{\prime} \varepsilon^{\omega t}+\varepsilon-\omega t\right)$.
lnf fig 51 let OMI be the initial losition of the tube and A that of the particle, and let OL and $Q$ le the tube and particle at tinte $t$. Then $\mathrm{OA}=\pi, \operatorname{arc} \mathrm{AP}=c \tau \omega t$, $\mathrm{OQ}=r$, and we lave

$$
O Q=\frac{1}{2} O A\left(\varepsilon^{\frac{\operatorname{arc} A P}{U A}}+\varepsilon^{-\frac{\operatorname{arcdP}}{0.1}}\right)
$$

From this we see that $O Q$ and the are $A P$ are corresponding values of the ordinate and abscissa of a catenary whose parancter is OA. Here the vertical pressure


Fig. 51.
on the tube is equal to the weigint of the particle, while the horizontal pressure is

$$
-\frac{m d}{\tau d t}\left(\gamma^{2} \hat{\theta}\right)=-\Omega m \omega r^{\dot{r}}=-m^{\prime} \omega^{?} \pi\left(\varepsilon^{\omega l}-\varepsilon^{-\omega l}\right) .
$$

From this equation, combined with the value of $\tau$, we easily deduce for the horizontal pressure the value

$$
2 m \omega^{2} \sqrt{ }\left(r^{2}-\alpha^{2}\right)
$$

and it is therefore proportional at any instant to the taugent drawn from $Q$ to the circle APN.

Let the tube be in the form of a circle turning with constant angular relocily about a vertical dianmeter. Let AO (fig. 52) be the axis, $P$ the position of the particle at any time. Let $P() A=\theta$ denate the particie's posi- Fis. 52 .
tion, and $R$ the pressure on the tube in the direction of $O P$.


We have

$$
\begin{aligned}
& a \frac{d^{2} \cos \theta}{d t^{3}}=g-R \cos \theta \\
& a \frac{d^{2} \sin \theta}{d t^{2}}-\omega^{2} a \sin \theta=-R \sin \theta .
\end{aligned}
$$

Eliminatiog l?,

$$
\begin{equation*}
a \frac{d c^{2} \theta}{d l^{2}}-c \omega^{2} \sin \theta \cos \theta=-g \sin \theta \tag{1}
\end{equation*}
$$

The pasition of equilibrium will therefore be giren by
$\sin \theta=0$; or by $\theta=\gamma$, where $\cos \gamma=\frac{q}{a \omega^{2}}$.
Integrating (1),

$$
\begin{equation*}
\left(\frac{d \theta}{d t}\right)^{2}=C+2 \omega^{2} \cos \gamma \cos \theta-\omega^{2} \cos ^{2} \theta \tag{2}
\end{equation*}
$$

Suppose the particle to pass through the lowest point with velocity $\pi \omega_{1}$, we have

$$
\begin{aligned}
& \left(\frac{d \theta}{d t}\right)^{2}=\omega_{1}^{2}-2 \omega^{2} \cos \gamma(1-\cos \theta)+\omega^{2} \sin ^{2} \theta \\
& =\omega^{2}\left\{(1-\cos \gamma)^{2}+\frac{\omega_{1}^{2}}{\omega^{2}}-(\cos \theta-\cos \gamma)^{2}\right\}
\end{aligned}
$$

and $\frac{d \theta}{d l} \operatorname{can}$ never vanish if $\frac{\omega_{1}^{2}}{\omega^{2}}>4 \cos \gamma$, ur $\omega_{1}^{2}>\frac{4 g}{a}$, that is, if the relocity at the lowest point be greater than that due to the lerel of the highest point.
lf $\omega_{i}^{2}<\frac{4 g}{a}$, the particle will oscillate; and, if $\frac{d \theta}{d l}=0$, when $\theta=a$.
then

$$
\begin{aligned}
\left(\frac{d \theta}{d t}\right)^{2} & =\frac{2 g}{a}(\cos \theta-\cos a)-\omega^{2}\left(\cos ^{2} \theta-\cos ^{2} a\right) \\
& =\omega^{2}(\cos \theta-\cos a)\left(\frac{2 g}{\frac{2}{2}}-\cos a-\cos \theta\right) \\
& =\omega^{2}(\cos \theta-\cos a)(2 \cos \gamma-\cos a-\cos \theta)
\end{aligned}
$$

and therefore, if $2 \cos \gamma-\cos a>1$, the particlo will oscillate through the lowest point.

If $1>2 \cos \gamma-\cos a>-1$, then, putting

$$
\left(\frac{d \theta}{d t}\right)^{2}=\begin{gathered}
2 \cos \gamma-\cos \alpha=\cos \beta \\
\omega^{2}(\cos \theta-\cos \alpha)(\cos \beta-\cos \theta)
\end{gathered}
$$

aod the particle will oscillate on one side of the vertical diameter.

In each of these three cases the complate solation of the problem cinn be exhibited in terms of elliptic functions. In the last two zases, when the arcs of oscillation are very simall, a sutficient solndion may easily be obtained by the usual methods of approxima. tion. This is a particularly instructive example.
$\S 160$. As a final example of constrained motion of a particle, let us find the form of a curve such that a particle will slide down any arc of it, from the origin, in the same time as down the chord of that arc. If $O A, O B$ (fig. 53) be any tro chords, it is plain that the difference of the times down these chords must be equal to the time of deseribing the aro AB. But, if OA make.
 an angle $\theta$ with the vertical, the time of descent along it is

$$
\sqrt{\frac{20 A}{2 \cos \bar{\theta}}}
$$

And the velocity at $A$ is $\sqrt{2 g O A \cos \theta}$, so that the time of describing $A B$ (considered as infinitesiona!) is

$$
\mathrm{AB} / \sqrt{2 \mu 0.1 \cos \theta}
$$

If we pat $r$ for OA, onr condition gives at once

$$
\frac{d}{d \theta} \sqrt{\frac{2 r}{g \cos \theta}}=\frac{\frac{d s}{d \theta}}{\sqrt{2 g r \cos \theta}}
$$

where $s$ is the length of the arc OA. This equation is easily integrated, and the resultiug relation is

$$
r^{2}=a^{2} \sin 2 \theta,
$$

which belongs to the well-known lemniscate of Dernoulli. From its form we see that the rertical line from which $\theta$ is measured is a tangent at $O$; so that the motion in are commences vertically
Disturbed § f61. To complete this elementary sketch of the dycotion. namics of a single particle we take an instauce or two of "disturbed motion." The essence of this question is usually that the disturbing forces are, at any instant, small in comparison with the forces producing the motion; so that, during any bricf period, the motion is practically the same as if no disturbing cause had been at work. But, in time, the effects of the disturbance n!ay become so great as entirely to change the dimensions and form of the orbit described. The mathematical method which has been devised to meet this question depends upon what has just been said. The character of the path is not, at any particular instant, affected by the disturbance; but its form and dimensions are. Hence, as the first depends upon the form of the equations which represent it, while the latter depend upon the actual and relatire magnitudes of the constants involved, we settle, once for all, the form of the equation as if no disturbiog cause had acted. Bnt we are thus entitled to assume that the constants which it involves are quantities which vary with the time in consequence of the slight, but persistent, effects of the disturbaoce. And, as we kuow that, if at any moment the disturbance were to cease, the motion would forthwith go on for ever in the orbit then being described, we may assume that in the expressions for the components of the velocity no terms occur depending on the rate of alteration of the values of the constants. This, as will be seen below, very much simplifies the mathematical treatment of such questions.

Suppose a cycloidal pendulun, or a simple pendulum wibrating through very small ares, to oe subjected to a simple harnonic disturbance in the direction of ats motion. The equation of motion will obviously be of the form

$$
\ddot{\theta}+n^{2} \theta=\mathrm{A} \cos m t,
$$

where $\quad n^{2}=l / g$, as in $\S 134$.
The integral of this equation is

$$
\theta=\mathrm{P} \cos (n t+\mathrm{Q})-\frac{\mathrm{A}}{m^{2}-n^{2}} \cos m t
$$

We see then that the result is the superposition of a new sinnpla
harmonic motion on the natural simple harmonic motion of the undisturbed loob, and that it is altogetleer independent of the amplitude and phase of the undisturbed motion. So long as the disturbance is very small, this new part of the motion may be neglected, unless $m$ is very wearly equal to $n$. For in that case the amplitude of the disturbance mat lecome much greater than that of the original niotion. When $m$ is equal to $n$, the iutegral changes its form, and we have

$$
\theta=P \cos (n t+Q)+A \frac{t}{2 n} \sin n t
$$

This shors that, in the special case of a disturbance of the same period as the undisturbed motion, the nature of the motion is entirely changed. Thus, suppose the peu dulum to be at rest at its lorest point when the disturb:' ance is applied; then we have merely

$$
\theta=A \frac{t}{2 n} \sin n t
$$

a simple harmonic motion whose amplitude increases in proportion to the time elapsed since the disturbance consmenced.
§162. As another illustration, suppose the point of sus- Pulntx pension of a simple pendulum to have a simple harmonic sion dio. motion of smali amplitude in a horizontal line.

Here the èquations of motion are (to horizontal and vertical akes)

$$
\begin{aligned}
& m \hat{x}=-\mathrm{T} \frac{x-\xi}{l} \\
& m \dot{y}=m g-\mathrm{T} \frac{y}{l}
\end{aligned}
$$

But if we suppose the oscillations to be small, we mas write $x-\xi$ 70, $y=l$, where $l$ is the lenith of the pendulum, and $\theta$ the angle it makes with the rertical. Then we have

$$
\bar{x}=l \ddot{\theta}+\xi=l \dot{\theta}+A \cos m t \text {, supnose, and } \eta=0 \text {. }
$$

Hence
aud

$$
m g=\mathbf{T}
$$

$$
l \ddot{\theta}+A \cos m t=-g \theta,
$$

which is precisely the equation of the preceding investigation.
We see from this how to explain the somewhat puzzling yotion phenemenon which we observe when we produce complete rotations of a stone in a sling by a comparatively trifling motion of the hand. All that is necessary is that the band should have a slight to and fro horizontal motion, in a period nearly equal to that in which the sling and stone would vibrate as a pendulum. This result of particle kinetics is (like that in § 161) of great salue in other branches of physics, especially sound, light, and radiant heat.

To illustrate the general principle, let us take the case of one Disturb degree of freedom. Then the equation of motion of an unit mass ance aneras must be of the form

$$
\theta=\theta+\theta_{1},
$$

Where $\Theta$ represents the normal force, ond $\theta_{1}$ the abnormal or dis. turbing force. Leaving ont $\Theta_{1}$ for the moment, let the iniegral of $\dot{\theta}=\mathrm{e}$ be

$$
\theta=f(\alpha, \beta, t),
$$

in which $\alpha$ and $\beta$ are two arbitrary constants. We may now sup: pose a and $\beta$ to be variable in such a way that the equation shall still be satisfied by this value of $\theta$ when the disturbing forces are included. This imposes only one condition on the two independent quantities $a$ and $\beta$, so that to determine them completely we must impose a second. This we do, as already explained, by making the expression for the speed independent of the rates of alteration of $\alpha$ and $\beta$, and we gain the advantage that our solution will accord at every instant with what would be the actual future motion if tho disturbance were suldenly to sense The speed is

$$
\dot{\theta}=f^{\prime}(a) c+f^{\prime}\left(\hat{\beta}, 3+f^{\prime}(t) .\right.
$$

We therefore assume

$$
f^{\prime}(\alpha) \dot{\alpha}+f^{\prime}(\beta) \beta=0 .
$$

Taking account of this and diterentlating agam, we have

$$
\ddot{\theta}=\frac{d}{d \alpha} f(t) \cdot \dot{\alpha}+\frac{d}{d \beta} f^{\prime}(t) \cdot \dot{\beta}+f^{\prime \prime}(t) .
$$

Hence we bave, for the determivation of $a$ and $\beta$, the equations

$$
\begin{gathered}
f^{\prime}(a) \frac{d a}{d l}+f^{\prime \prime}\left(\beta^{d \beta}\right. \\
\frac{d \xi}{d}=0 \\
\frac{d}{d a} f^{\prime}(l) \cdot \frac{d a}{d l}+\frac{d}{d \beta} f^{\prime}(l) \cdot \frac{d \beta}{d l}=\theta_{1} .
\end{gathered}
$$

These givo the values of $\frac{d a}{d l}$ and $\frac{d \beta}{d l}$, and so completely solve the 1 roblem.
§ 163. In a somewhat similar way we may treat the effects of a slight disturbance, made once for all, in the motion of a particle describing a definite path under given forces. A single example must suffice.

Thus, we have in an elliptic orbit about the forms, $\$ 114$ ( 9 ),

$$
\frac{1}{2} v^{2}=\frac{\mu}{r}-\frac{\mu}{2 a} .
$$

At the end of the major axis farthest from the focns this becomes

$$
V^{2}=\frac{\mu}{c} \frac{1-c}{1+c} .
$$

Now if at this point $V$ be made $V+\delta V$, without change of direction, we have the condition that in the new orbit $a(1+c)$ shail have the same value as in the old, siuce this will still be the apsidal distance.

Hence

$$
\delta\left(V^{3}\right)=\delta\left(\frac{\mu}{a} \frac{1-c}{1+c}\right)
$$

and

$$
\delta\{a(1+e)\}=0
$$

$$
\therefore 2 Y \delta V=-\frac{\mu}{a} \frac{\delta c}{1+c} .
$$

or

$$
\left.\delta c=-2 \sqrt{\left\{\frac{\alpha}{\mu}\right.}\left(1-c^{2}\right)\right\} \delta \mathrm{V}
$$

and

$$
\begin{gathered}
\delta a=-\frac{a}{1+e} \delta c_{.} \\
=2 \sqrt{ }\left(\frac{a^{3}}{\mu} \frac{1-e}{1+e}\right) \delta \mathrm{V},
\end{gathered}
$$

which determine the increase of the najor axis and the diminution of the excentricity; and the same method is applicable to more complicated cases.

A very excellent series of examples of the elementary geometrical trentment of disturbed orbits is to be found in Airy's Gravitation.

## Third Law. Kinetics of Two or More Partucles.

§ 164. We have, by means of the first tro laws, arrived at a definition and a measure of force, nnd have found how to compound, and therefore how to resolve, forces, and also how to investigate the conditions of equilibrium or motion of a single particle subjected to given forces. But more is required before wo can cumpletely understan's the more complex cases of motion, especially those in which we have mutual actions between or amongst two or nore bodies,-such as, for instance, tensions or pressures or transference of energy in nny form. This is perfectly supplied by the third law, on which Newton comments nearly as follows.
§165. If ono body presses or draws another, it is pressed or drawn by this other with an equal force in the opposite direction. If nny one presses a stone with bis finger, his finger is pressed with an equal forco in the opposite direction by the stone. A herse, towing a boat on a camal, is dragged backwards by a force equal to that which ho impresses on tho towing rope forwards. By whatever amonnt, and in whatever direction, one body has its "motion" changed by impact upon another, this other body has its " motion" changed by the same amount in tho opposito direction; for at each instant during the impact they exerted on each other equal and oppositc pressures. Wheu neither of the two bolies has any rotation, whether before or after impact, the changes of velocity which they experience are inversely as their masses. When one body attracts another from a distance, this other attracts it with nu equal and opposito force.
§ 166. Wo shall for the present take for granted that tho mutual action between two particles may in every case bo imagined as composed of equal and opposite forces in the straight line joiving them, two such equal and opposite furces constituting a "stress" between the particles. From
this it follows that the sum of the quantities of motion, Conserparallel to any fixed direction, of the particles of any vation of system influercing one auother in any possible way, momenremains unchanged by their mutual action; also that the of moment sum of the monents of momentum of all the particles of memes. round any line in a fixed direction in space, and passing tum.' through any point moving uniformly in a straight line in any direction, remains constant. From the first of these propositions we infer that the centre of mass of any system of mutually influencing particles, if in motion, contimues moving uniformly in a straight line, except in so far as the direction or speed of its motion is changed by stresses between the particles and some other mattep not belonging to the system; also that the centre of mass of any system of particles moves just as all their matter, if concentrated in a point, would move under the influence of furces equal and parallel to the forces really acting on its different parts. From the second we infer that the axis of resultant rotation through the centre of mass of any system of particles, or through any point either at rest or moving uniformly in a straight line, remains unchanged in direction, and the sum of moments of momentum round it remains constant, if the system experiences no force from without, or only forees whose resultant passes through the centre of inertia of the system. This principle is sometimes called "conservation of areas." a very misleading designation.
§167. Newton's scholium, which we treat as a fourth conselaw, points out that resistances against acceleration are to quences or be reckoned as reactions equal and opposite to the actions scholinm by which the acceleration is produced. Thus, if we consider any one material point of a system, its reaction against acceleration must be equal and opposite to the resultant of the forces which that point experiences, whether by the actions of other parts of the system upon it, or by the influence of matter not belonging to the system. In other words, it must be in equilibrium with these forces. Hence Newton's view amounts to this, that all the forces of the system, with the renctions against acceleration of the material points composing it, form groups of equilibrating systems for thesc points considered individually. Hevce, by the principle of superposition of forces in equilibrinm, all the forces acting on points of the system form, with the reactions against acceleration, an equilibrating set of forces on the whole system. This is the celebrated D'Alem principle first explicitly stated and very usefully applied principlo. by D'Alembert in 1742, and still known by his name.
$\$ 168$. Thus Newton lays, in an admirnbly distinct and Abstracs compact manner, the foundations of the abstract theory of energy. "energy," which recent experimental discovery has raised to the position of the grandest of known physical laws. Fe points out, however, only its application to mechanics. The actio agentis, as he defines it, which is evidently orgivainat to tho product of the effective component of the force into the velocity of the point at which it acts, is simply, in modern English phraseology, the rate at which the agent works, called the "power" of the agent. The subject for measurnment bere ia precisely the same as that for which Watt, a hundred years later, introduced the practical unit of a "horse-power," or the rate at which an agent works when overcoming 33,000 times the weight of a pound througi the distauce of a foot in a minute, - that is, producing 550 foot-pounds of work per second. The unit, bowever, wheh is olost generally ennvenient is that which Newton's detimition implies, namely, the rato of doing work in which tho unit of work or energy is produced in tho unit of time.
§ 169. Looking at Newton's rords in this light, we see that they ray be convellei into the jollowing:-
"Whork done on apy system of bodies (in Newton's

Nemion's statement, the parts of any machinc) las its equivalent trholium in work done against friction, molccular forces, or gravity; if there be no acceleration; but if there be acceleration, part of the work is espended in overcoraing the resistance to accelcration, and the additional kinetic cuergy developed is equivalent to the work so spent."

When part of the work is done against molecular forces, Es in bending a spriug, or against gravity, os in raising a weight, the recoil of the spring and the fall of the reight pre capable, at any future time, of reproducing the work originally expended. But in Newton's day, and long aftersrards, it was supposed that work was absulutely lost by friction.
§170. If a system of bodies, given either at rest or in motion, be intluenced by no forces from without, the sum of the kinetic energies of all its parts is augmented in any time by an amount equal to the whole work done iu that time by the stresses mich we may imagine as taking place between its points. When the lines in which these stresses act remain all uachanged in length, the sund of the kinetic energies of the whole system remains constant. If, on the uther hand, one of these lincs varies in length during the motion, the stress in that lipe will do work or will consume work, according as the distance varies with 'or agaiust it.
Conservative system.
§ 171. Experiment has sloomn that the mutual actions between the parts of any system of natural bodies always perform, or always consume, the same amouut of rork during ony motion whatever, by which the ssstem cau pass from one particular configuration to another ; so that each configuration corresponds to a definite amount of kinetic 'euergy. Hence no arrangement is possible in which a gain of kinetic energy can be obtained when the system is restored to its initial configuration. In other words, "the perpetual motion" is impossible.
Potential The "potential energy" ( $\$ 113$ ) of such a ssstem, in the

## mergy.

 configuration which it has at any instant, is the amount of work that its mutual forces perform during the passage of the system from any one chosed configaration to the configuration at the time referred to. It is generally convenient so to fix the particular configuration chosen for the zero of reckoning of potential energy that the potential energy in every other configuration practically considered shall be positive.As particular instances of this we may notice many of the results already given: for instance, the ordinary expressiou for the velocity acquired by a falling stone ( $\$ 28$ ), $\frac{1}{2} v^{2}=g x$; for here $\frac{1}{2} m v^{2}$ is the kinetic euergy acquired, vhile mg. $x$ is the work done by the weight ( $m g$ ) during the fall: Similarly, we have in the motion of a planet, the expression $v^{2}=\mu\left(\frac{2}{r}-\frac{1}{a}\right)$, whech teads to $m_{3} \frac{r^{2}-v_{1}^{2}}{2}-\frac{m \mu}{m r_{1}}\left(r_{2}-r\right)$. Here $\frac{m \mu}{r r_{1}}$ is the "mean value" of the force fur distances from ' $r$ to $r_{11}$ and therefore the right.land side is the work done by the force, while the lefthuni side is the macrease of kinetic ènergy produced.
To put this in an analytical forn, we have merely to notice that; by what has just been said, the value of

$$
\sum \int\left(x_{d s}^{d x}+\mathrm{v}^{d y s}+\mathrm{z}_{\frac{d z}{d s}}^{d s}\right) d s
$$

is independent of the paths pur-ued fiom the initial to the final positions, and therefore that

$$
\Sigma(X d x+Y d y+Z d z)
$$

is a complete differential. If, in accorlance with what las just been said, this be called $-d \mathrm{~V}, \mathrm{~V}$ is the potential energw, and

$$
x_{1}=-\frac{d}{d} x_{1}, \cdots
$$

also, by the second law of notion, if $n_{1}$, be the masso of a partiele of the system whose coordinates are $z_{3}, y_{1}$, $z_{1}$ Te lave

$$
m_{i}=\frac{c x}{d l_{1}}=X_{1}+\& c_{1}-\& c
$$

and
 I'lie integral is

$$
\xi \mathrm{z}\left(m v^{2}\right)+\mathrm{V}=\mathrm{H},
$$

that is, the sum of the hinetic and potential eneryies is constam. This is called the "conservation of cnergy."
In abstract dynamics, with which alune this article is concerned, there is loss of energy by friction, impact, \&c. This we simply leave ns luss, to be accountol for by Thermodyuanics.
§ 172. Hitherto, as we hare beeu dealing with the motion of a single particle ouly, we have not reguired the assistance of even the third law. For, in tuse cascs, nlready treated, in which one of the forces was nut given, it was at all events dine to o. given cunstraiut, and the geometrical circumstances of the constraint supplied the ureans of determining it. In fact we were mot, in any case, coacermed with reaction; or, to use the more modern furm of exyression, we were engaged with one half, only, of a stress. When a stone's motion was investigated, no accuunt was taken of the stone's attraction fur the carth; - when we dealt with ceutral furces, the centre was supposed to be fixed; and, even in the cascs in which rariable constraint was supposed, the curve which produced it was assumed to move in a manaer absolutely determined befurehand, and in no may affected by the reaction of the mass acted upon.

But, in nature, circumstances are not so simple. Though, for all practical purposes, we may calculate the motion of an ordinary projectile as if its attraction had no influence upon the motion of the earth, we cannot do so in the case of the motion of the moon abont the earth. The mass of the moon is about $\frac{3}{50}$ th of that of the enrth, and its gravitation effects on the motion of the carth canout be neglected. The moon, in fact, moves faster round the earlh than would a projectile of less mass, though moving in precisely the same relative orbit (\$ 146). If the earth's motion were not accelerated by the reaction of the moun, the sole crest of the lunar tide-wave would le on the side of the earth next the moon, and there would be full-tide once only in a single rotation of the earth about its axis. We need not give further instances here; they will preseat themselves in olmost erery case we investigate.
§ 173. To give a general notion of the applications of, Example and necessity for, the third law, we choose a few special law.
cases, selected so as to give, in short compass, a sufficiently general glance at the whole subject,

We take, first, the case of two stones or bollets connected by an inestensible string. passing over a smooth pulley. Let their masses be $m$ and $m^{\prime}$. Our physical condition is that the tension of the string, whatever be its value, is the same throughout; and this is accompanied by the geometrioal condition that the length of the string is constant, or that the speeds of the two masses are equal but in opposite directions. Hence the amounts of increass of momentum in a given time are as the masses. Bnt they are also as the forces, by the second law. Thus

$$
m: n^{\prime}:: T-m g: m^{\prime} g-T .
$$

This gives, al oace,

$$
\mathrm{T}-\frac{2 m m^{\prime}}{m+m^{\prime}} ;
$$

so that the whole downward force on $r^{\prime}$ ' is

$$
n^{\prime} g-\mathrm{T}-m^{\prime} \frac{m^{\prime}-m}{m^{\prime}+m} g,
$$

and the wiole upward force on $m$ is

$$
\mathrm{T}-m g=m^{m^{\prime}-m} m^{\prime}+m
$$

The motion of the ssstem is therefore of precisely the same
character as that of a free mass falling in a vertical tine, hut the acceleration is less, in the ratio of the difference of the two masses to their sum.
§ 174. This is tho essence of the arrangement called Alwood's Muchine, which used to be employed for the demonatration (in a rough way) of the first and second laws of rotion, in certain simplo cases. The man feature of the tnethod is the artifivial reduction of the acceleration, so that the motion of the falling body is reudered slow enough to be followed by the eye with some degree of accuracy. To prove the first law, a bat of metal was laid across one of two equal masses suspended as in tho example; and the system was allowed to movo under acceleration until the preponderating mass passed through a ring which arrested the bar. The subsequent motion, with no acceleration, was then observed by noting the passnge of the falling mass in front of a vertical scale, while tho observer also listened to the ticking of a peudulum cscapement. For the verification of the second law, so fur as uniform force is concerned, tho npparatus was adjusted by trial so that the extra load was detached from tho prepunderating mass after $1,2,3, \& c$., beats of tho pendulum ; and the subsequent uniorm speed was found to be nearly in proportion to theso numbers. And, again, to prove that momentum acquired is, cxteris paribus, proportional to the force, the effects of bars of different masses were compared by the same process.

If $x$ and $l-x$ be the portions of the string on orposite sides of the pulley at time $l$, we have

$$
\begin{aligned}
& m \frac{d^{2} x}{d t^{3}}=m g-\mathrm{T}-m \dot{x} \\
& m^{\prime} \frac{d^{3}}{d l^{2}}(l-x)=n_{n^{\prime}}^{\prime} g-\mathrm{T}=-m^{\prime} \dot{x}
\end{aligned}
$$

Heace by elimination of $T$ we na $s$

$$
\frac{m-m^{\prime}}{n t+n} g=\ddot{x}
$$

and by climination of $\dot{x}$

$$
\mathbf{T}=\frac{2 m m^{\prime}}{m+n^{\prime}} g, \text { ss before. }
$$

When one of the masses is vibrating nendulum- wise, the problem assumes a very much more difficult aspect. We will take it later ns an example of the application of Lagrange's general method.
$\S 175$. Let us now suppose these masses, so connected, to be thrown like a chain-shot. We see by $\S 166$ that their centre of inertia moves as if tho masses were concentrated there. Also that the moment of momeatum is unaffected. Hence wo have ouly to find the initial position and motion of the ccatre of inertia, and the plane and amount of the iuitial moment of momentum ; and tho complete determination of the motion follows. This case is precisely the same as that of a well-thrown quoit, tho rotation of which is about its axis of symmetry. It is, 60 far as $\$ 166$ goes, the case of an ill-thrown quoit, which appears to wabble about in an irregular manner. But these aro matters properly to bo trented uncler Kinetics of a Kigid System.
$\S 176$. Suppose, next, two masses $m_{1}$ and $m_{2}$ to be connected togother by an clastic string, the extension of the string being proportional to the tension. Let $m_{1}$ be held in the hand, while $m_{2}$ hangs at rest. Then let the system bo allowod to fall. What is tho nature of the motion? Without mathematical investigation it is casy to see that, the moment the masses are left freo to fall, the tension of tho stretched string will gradually draw them togcther. When it has thus contracted to ite normal length, $l$, the relative speed of the two masses will havo o definito value. This will continue to bo the relativo specd until they have passed one another and again erriver at a mutual distance l. At that instant the tension of the string comes into play again; the relative speed becomes less and less, finally vauishing when the distance between the masses is what
it was at starting. Then the relative speed becomes again one of approach, increasing steadily till the distance between the masses is $l$. This maximum speed of approach conlinucs till, after again passing ono another, the particles once more reach the relative distance $l$. And so on. All this time, however, their common centre of inertia lins been stcadily falling with uniformly accelerated suecd, as if the masses had been concentrated at it into one. Since $l$ is tho unstretched length of tho string, if we call $E$ its modulus of clasticity, its tension at any other length, $\lambda$, is

$$
T=E \frac{\lambda-l}{l}
$$

hy Hooke's law. Hence, if initially $m_{1}$ were at the origin, and the axis of $x$ be taken vertically downwards, we have for the iutial coordinate of $m_{2}$

$$
\left(x_{2}\right)_{0}=\left(\frac{n_{2} g}{\mathrm{E}}+1\right) l
$$

When the masses are noring, the third law informs us that the tension of the string acts equally and in opposite directions on tuem. Thins the equations of motion are

$$
\begin{aligned}
& m_{1} x_{1}=m_{1} g+\mathrm{T} \\
& m_{2} x_{2}=m_{2} g-\mathrm{T}
\end{aligned}
$$

By climinating $T$ wo have at once

$$
m_{1} \dot{x}+m_{2} x_{2}=\left(n_{1}+m_{2}\right) g
$$

But

$$
m_{1} x_{1}+m_{2} x_{2}=\left(m_{1}+m_{2}\right) \xi
$$

if $\xi$ be the coordinate of the centre of inertia of the tivo masser IItuce

$$
\xi=g,
$$

the ordinary equation for the fall of a stono. Thus

$$
\begin{aligned}
& m_{1} x_{1}+m_{2} x_{2}=A+B t+\frac{1}{2}\left(m_{1}+m_{2}\right) g t^{2} . \\
& \text { Since } x_{1}=0, \dot{x}_{1}=0, x_{2}=\left(\frac{m_{2} g}{t_{1}}+1\right) l_{1} \dot{x}_{2}=0 \text {, when } t=0 \text {, we have } \\
& A=m_{2}\left(\frac{m_{2} g}{E}+1\right) r, B=0, \\
& \text { and thus } \quad m n_{1} x_{1}+m m_{2} x_{2}=m_{2}\left(\frac{m_{2} g}{E}+1\right)^{l+\frac{1}{2}\left(m \cdot+m m_{2}\right) g t^{2} .}
\end{aligned}
$$

So long as $x_{2}-x_{1}=l$ we have also

$$
\mathrm{T}=\mathrm{E}\left(\frac{x_{2}-x_{1}}{l}-1\right)
$$

Hence, multiplying the first of the equations of motion by $m_{2}$, and the second by $m_{1}$, and taking tho dilference, we havo

$$
m_{1} m_{2}\left(x_{3}-x_{1}\right)=-\left(m_{1}+m_{3}\right) E\left(\frac{x_{2}-x_{1}}{l}-i\right)
$$

The integral is

$$
x_{3}-x_{1}=l+P \cos (n t+Q)
$$

where

$$
n^{2}=\frac{m_{1}+n_{1}}{l n_{1} n_{2}} e_{2} \mathrm{E}
$$

Also, by the data at atarting, we have

$$
\mathrm{Q}=0, \quad \mathrm{P}=\frac{m_{2}, t}{E}
$$

Hence, finally;

$$
\begin{gathered}
x_{1}=\frac{1}{m_{1}+m_{3}}\left(m_{2}\left(\frac{m_{2} q}{E}+1\right) l+\frac{1}{2}\left(n_{1}+m_{2}\right) g l^{2}-m_{2} l-\frac{m_{2}^{2} n l}{\mathrm{E}^{2}} \cos n t\right) . \\
\\
=\frac{1}{2} g t^{2}+\frac{n_{2}^{2} g l}{E\left(m_{1}+m_{2}\right)}(1-\cos n t)
\end{gathered}
$$

whence the value of $x_{2}$ can easily be found.
As soon as we liave $n t>\frac{1}{1} \pi$ these values cease to represent the coorlinates of the two masses, because they are deduced from equations involving constraint which, in the case supposed, hay ceased for a time.
At the instant $n t-\frac{1}{2} \pi$ the relatase speed of the masses is
and their distance $l$.

$$
-\frac{m_{2} q l}{E_{1}} \sqrt{1} \frac{\left(\frac{\left(q_{1}+m_{2}\right) F_{l}}{m_{1} m_{2} l}\right.}{1}
$$

This distance diminishes thenceforward with the aboro speed until tho uppermost stone, having passed the lower one, falls below it to a disfance 1 . We must, in order to trace the next part of the motion, reapply the differential equations above,-integrating them, and determining tho
constants by tho nerr conditions. This re leave to the reader.
Complex § 177. Next let us take the case of a Complex Pendy-pendu- hem, 一the molion of two or more pellets attached, at tum.
$\psi$ having one or other of the two positive values given by the equation above, and being therefore the length of the equivalent simple pendulum. Thus the double complex pendulum supplies at ouce the mechanical means of tracing (by ink, sand, electric sparks, \&c., § 156) a graphical represeutation of the composition of two simple hermonic motions, of different periods, in one line.
Analytically thus. For any displacement in one plape wo bava, $\theta$ and $\phi$ heing, as before, the deflexions and $\mathrm{T}, \mathrm{T}^{\prime}$ the tensions of the strings,

$$
\begin{aligned}
& m a\left(\frac{d}{d t}\right)^{2} \sin \theta=-\mathrm{T} \sin \theta+\mathrm{T}^{\prime} \sin \phi, \\
& m a\left(\frac{d}{d t}\right)^{2} \cos \theta=m g-\mathrm{T} \cos \theta+\mathrm{T}^{\prime} \cos \phi, \\
& \mathrm{M}\left(\frac{d}{d t}\right)^{2}(\pi \sin \theta+b \sin \phi)=-\mathrm{T}^{\prime} \sin \phi \\
& \mathrm{M}\left(\frac{d}{d t}\right)^{2}(a \cos \theta+b \cos \phi)=\mathrm{Mg}-\mathrm{T}^{\prime} \cos \phi,
\end{aligned}
$$

four equations to determine $\theta_{3} \phi, T$, and $\mathrm{T}^{\prime}$. They becoma muck more manageable if we assume that $\theta$ and $\phi$ are so small that their squares may be neglected. For then we liave $\sin \hat{\theta}=1, \cos \theta=1$, \&c., and the equations become

$$
\begin{aligned}
& m \sim \vec{\theta}=-T \theta+T^{\prime} \phi, \quad 0=m g-T+T^{\prime}, \\
& \mathrm{M}(a \ddot{\theta}+b \ddot{\phi})=-\mathrm{T}^{\prime} \phi, \quad 0=\mathrm{M}_{g}-\mathrm{T}^{\prime \prime} . \\
& \mathrm{T}^{\prime}=\mathrm{Mg}_{\mathrm{g}}, \mathrm{~T}=(\mathrm{M}+m) \mathrm{m} . \\
& m a \ddot{\theta}=-(\mathrm{M}+n) g \theta+\mathrm{M} g \phi, \\
& a \hat{\theta}+b \bar{\phi}=-y \phi .
\end{aligned}
$$

Thus
and we hare
Iutrodncing an arvitrary multiplier $\lambda$, wa bave

$$
\left(\frac{d}{d t}\right)^{2}\{(m+\lambda) a \theta+\lambda b \phi\}=-g\{(M+m) \theta+(\lambda-M) \phi\}
$$

If we choose $\lambda$ so that

$$
\begin{equation*}
\frac{\lambda b}{(m+\lambda) a}=\frac{\lambda-M}{M+\mu \Omega}=\varepsilon, \tag{1}
\end{equation*}
$$

the equation can be put in the form

$$
\left(\frac{d}{d t}\right)^{2}(\theta+e \phi)=-\frac{g\left(\frac{31}{(m+\lambda)}\right.}{(m+\lambda)}(\theta+e \phi) .
$$

Now (1) is a quadratic equation in $\lambda$, and has obrionsly real roots, 2. positive root greater than 35 , and a negativa root numerically less than $\eta$. Write (1) as the equation of an hyperbola. In the form

$$
\mu=\frac{\lambda b}{(m+\lambda) a}-\frac{\lambda-M}{M+m},
$$

and wa see that $\lambda+m=0$ is an asymptota. The branch on ths positive side of this asymptote lies mainly below the axis of $\lambda$. But $\mu$ is positive for $\lambda=M$, and also for $\lambda=0$.

Hence $\mu$ must pass threugh tha valua zero while $\lambda$ ia greater than M , and for another valne of $\lambda$ between zero and $-m$. Eut it is obvious that, for each of these valnes of $\lambda, m+\lambda$ is positive. Hence the equation may be written

$$
\left(\frac{d}{d t}\right)^{2}(\theta+c \phi)=-n^{2}(\theta+c \phi),
$$

where $e$ and $n$ have tro sets of real values given as abore; and thus we have the cemplete solution, with the four requisite arbitrary constants, in the form

$$
\begin{aligned}
& \theta+c_{1} \phi=\mathrm{P}_{1} \cos \left(n_{1} t+Q_{1}\right), \\
& \theta+c_{2} \phi=\mathrm{P}_{2} \cos \left(n_{2} t+Q_{3}\right) .
\end{aligned}
$$

This applies to every possibla set of values of $a, b, m, \mathrm{M}$; for, as We have seen, tha two valnes of $\lambda$ are essentially different, at least so long as neither of the masses becomes zero. Thus, in this particnlar case, we are not met by the difficulty of equal roots. But it is very interesting to contrast this case, when $m$ is much greater than M , and $a=b$, with the casa discussed in $\S 162$ where the point of suspension of a simple pendulum has a horizontal simple harmonic motion of the period of tha pendulum and in the vertical plana in which it vibrates. There the oscillations increase indefinitely; here they are in all cases essentially finita, in eccooslance with the assumptions made. There is, in fact, no increase of the energy of the system:

A very slight modification of tho process gives us the result of small displacements not in one plane.

## Finetics of a System' of Free Particles.

§ 179. A system of free particles is subject only to their mutual attractions; to investigate the motion of the system.

Let, at timo $\ell, x_{n}, y_{n}, z_{n}$ lu the coordinates of the particle whoso mass is $m_{n}$, and let $\phi^{\prime}(\mathrm{D})$ be the law of attraction. Let ${ }_{p} r_{q}$ express the distence between the particlea $m_{p}$ and $m_{q}$; then we have. for tho motion of $m_{1}$,

$$
\begin{align*}
& m_{1} \frac{d^{2} x_{1}}{d l^{2}}=\Sigma\left\{m_{1} m_{n} \phi^{\prime}\left({ }_{2} r_{n}\right) \frac{x_{n}-x_{1}}{1^{r_{n}}}\right\}  \tag{1}\\
& m_{1} \frac{d^{2} y_{1}}{d l^{2}}=\Sigma\left\{m_{1} m_{n} \phi^{\prime}\left({ }_{1} r_{n}\right)^{\frac{y_{n}-y_{1}}{1_{n}}}\right\}  \tag{2}\\
& m_{1} \frac{d^{2} z_{1}}{d l^{2}}=\Sigma\left\{m_{1} m_{n} \phi^{\prime}\left({ }_{1} r_{n} \frac{\Sigma_{n}-z_{1}}{1^{r_{n}}}\right\}\right. \tag{3}
\end{align*}
$$

with eimilar eqnations for each of the others, the summstions leing taken throughout the syatem. Before we can make any attempt at a solution of these equations, we must know their number, and the lawa of attraction between the several pairs of particles. But come general theorems. indevendent of these data, may easily be obtained.
Conser- - First, we have Conservation of Afomentum. In the expression vation of for $m_{p} \frac{d^{2} x_{p}}{d t^{2}}$, we ha $\because . .2$ term $m_{p} m_{q} \phi^{\prime}\left({ }_{p} r_{q}\right) \frac{x_{q}-x_{p}}{{ }_{p} r_{q}}$,

Another general expression for the kinetic energT of a system of particles, in terms of a function of the rautaal forcca, and the constraining forces if there be such, is readily found as followa.
If $x, y, z$ be the coordinates, at time $\ell$, of the particle $m$, we have

$$
\left(\frac{d}{d t}\right)^{2} \leq m\left(x^{2}+y^{2}+z^{2}\right)=2 \Sigma m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+2 \leq m\left(x i x+y y+z^{2}\right)
$$

But if $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ be the componcnts of the forces (of whatever kinc acting on $m$, we have (§ 119)

$$
\begin{aligned}
& \text { Thus } \\
& \qquad\left(\frac{d}{d l}\right)^{2} \leq m\left(x^{2}+y^{2}+z^{2}\right)=2 \leq m\left(x^{2}+y^{2}+z^{2}\right)+2 \leq(X x+y y+Z z) \text {. }
\end{aligned}
$$

This expression was oriminally devised by Clausius for application to the kinetic thcory of gases. The quantity $\leq m\left(x^{2}+y^{2}+z^{2}\right)$ is obviously balf the sum of the three principal moments of inertia of the group of particles about the origin (§ 234).
In all casca of motion of a groun, in which this sum is cither con. stant or oscillates in an extremely short period about a constaut value, the left-hand side may be regarded as (on the average at least) a vanisling quantity. Thus an equivalent of the kinetic encrgy is expressible as ${ }^{\circ}$

$$
-\frac{1}{2} \Sigma(X x+Y y+Z z) .
$$

This expression is called the "virial."
In so far as it arises from the mutual action between two pal* ticles $m_{p}$ aud $m_{q}$, its value is (in the notation above)

$$
\left.\cdot \frac{1}{2}\left(m_{p} m_{q} \phi^{\prime}{ }_{p} r_{q}\right) \frac{x_{q}-x_{p}}{r_{q}} x_{p}+m_{q} m_{p} \phi^{\prime}\left({ }_{p} r_{q}\right) \frac{x_{p}-x_{q}}{p_{q} x_{q}}\right),
$$

with corresponding terms in $y$ and $z$, altogether

$$
=\frac{1}{2} m_{p} m_{q} \phi^{\prime}\left({ }_{p} r_{q}\right)_{p} r_{q} .
$$

Hence if we write, generally, $r$ for the distance between two of the particles, and $R$ for the stress between them as depending on their mutnal action, the corresponding part of the virial is

$$
\frac{1}{2} \Sigma(\mathrm{R} r) .
$$

This is positive when the :resses are of the nature of tension
When the mutual action is due to gravity only.

$$
\phi^{\prime}\left({ }_{p} r_{q}\right)=\frac{1}{p r^{-\dot{q}}},
$$

and the part of the virial corresponding to this is

$$
\frac{1}{2} m_{p} \pi_{q} / p r_{q}
$$

expressing balf the exheustion of the potential energy of the system.
When the particles are in very great numbers, and eoclosed in \& Virisl of vessel from the sides of which they rebound-as is supposed in the a gas kinetic gas theory - the pressure $p$, per unit of surface, on the walls containe of the vessel must be taken into account. If $l, m, n$ be the direc- in a tion cosines of the normal to the element $d \mathrm{~S}$ of the wall of the ressel vessel whose coordinates are $x, y, z$, the corresponding part of the virial is

## 7. $p \iint d \mathrm{~S}(l x+m y+n z)$

extended over the whole internal surface. We here assume that $p$ is coustant. But $l x+m y+n z$ is the perpendicular from the origiu on the plane of $d \mathrm{~S}$, so that the integral expresses three times the volume $V$ of the vessel. Hence this part of the virial is

$$
\frac{3}{3} p \mathrm{~V}
$$

Thus, in the case of a gas not acted on by external forces, the kinetic energy is

$$
\frac{3}{2} p \boldsymbol{V}+\frac{b}{2}(\mathrm{R} r) .
$$

Impact of Smooth Spheres.
§180. There remains to be treated, so far as particle dynamics is concerned, the self-contained subject of Impart. In connexion with it we must once more refer to the second and third of Newton's larrs. We are now dealing with forces which produce, in finite masses, finite changes of momentum in excessively short periods of tume It is clear from this statement that their effects may be treated altogether independently of fiuito forces, which may be actiug along with them, but which produce dnring the very ehort poriods in question only infinitesimal results. And, as in goneral we have no knowledge of the actual force exerted at any instant during the impact, nor of the time during which the action lasts, we confine ourselves to tho quautity, called the "impulse," which measures the amount of momentum lost by one of the impinging bodies and acquired by the other.
§ 181. When two balls of glass or ivory impinge on one another, the portions of the surfaces immediately in contact are disfigured and compressed until the molecular reactions thus called into play are sufficient to resist further distortion nud compression. At this iustant it is evident that the points in contact are moving with the same relocity. But ns solids in general possess a certain degree of clasticity Loth of form and of rolnme, the balls teud to recover their splicrical form, and an additional impulse is generated. This is proportional, as Newton found by experiment, to that exerted during the compression, provided neither of the bodies is permanently distorted. The coefficient of proportionality is a quantity determinable by experiment, and may be conreniently termed the "cocfficient of restitution." It is always less than unity.
§ 182. The method of treating questions involving nctious of this nature will be best explnined by taking as aut example the case of direct impact of one spherical ball on another. It is evident that in the case of direct impact of smooth or non-rotating spheres we may consider them as mere particles, sinco everything is syminetrical about the line joining their centres. If the impiugiug masses are of large dimensions, of the size of the earth, for instance, we cannot treat the effects of the impact iudependently of the other forces involved; for the duration of collision in such a case may be one of hours instead of fractions of a second.
$\S$ 183. Suppose that a sphere of mass M, moving with a speed $v$, orertakes and impinges on another of mass $M^{\prime}$, moving in the same straight line with speed $v$, and that, at the instant when the mutnal compression is completed, the spheres are moving with a common speed $V$. Let $\mathbf{R}$ be the impulse during the coinpression, then

$$
\begin{gather*}
\mathrm{M}(v-\mathrm{V})=\mathrm{M}^{\prime}\left(\mathrm{V}-v^{\prime}\right)=\mathrm{R} ; \\
\text { Whence } \quad \mathrm{V}=\frac{\mathrm{M} v+\mathrm{M}^{\prime} v^{\prime}}{\mathrm{M}+\mathrm{M}^{\prime}} \text {, and } \mathrm{R}=\frac{\mathrm{MM} \mathrm{M}^{\prime}}{\mathrm{M}+\mathrm{M}^{\prime}}\left(v-v^{\prime}\right) \tag{1}
\end{gather*}
$$

From these results we see that the whole momentum after impact is the same as before, and that the common epeed is that of the centre of inertia before impact. The quantity V cau vanish ouly if

$$
\mathrm{M} v+\mathbb{M}^{\prime} v^{\prime}=0,
$$

that is, if the momenta were origiually equal and opposite.

This is the complete solution of the problem if the balls be iuelastic, or have no tendency to recover their originel form after compression.
$\S 184$. If the balls be elastic, there will be generated, hy tineir tendency to recover their original forms, an ndditioual inpulse proportional to $R$.

Let $e$ be the coefficient of restitution, and $v_{1}, v_{2}^{\prime}$ the epeeds of the balls when finally separated. Theu, as before,

$$
\begin{aligned}
& \mathrm{M}\left(\mathrm{~V}-v_{1}\right)=c \mathrm{R}, \\
& \mathrm{MI}^{\prime}\left(v_{1}^{\prime}-\mathrm{V}\right)=c \mathrm{R} ;
\end{aligned}
$$

rhence

$$
\Delta v_{1}=M\left[\frac{M v+M M^{\prime} v}{M+M^{\prime}}-c \frac{M M^{\prime}}{M+M_{i}^{\prime}}\left(v-v^{\prime}\right),\right.
$$

and

$$
v_{1}=\frac{\left(M-e M^{\prime}\right) v+M^{\prime}(1+e) v^{\prime}}{M+I^{\prime}}=v-\frac{M^{\prime}}{M+M^{\prime}}(1+e)(v-v) ;
$$

with a similar expression for $v_{1}^{\prime}$.
These results may be more easily obtained by the simple consideration that the rhole impulse is $(1+e) R$; for this gives at once $\mathrm{M}\left(v-v_{1}\right)=M I^{\prime}\left(v_{1}^{\prime}-v^{\prime}\right)=(1+e) R$.

If $M^{\prime}$ be infuite, and $v^{\prime}=0$, we have the result of direct impact on a fixed surface, viz., $v-v_{1}=(1+e) v$ or $v_{1}=-e v$. The ball rebounds from the fixed surface with a speed e times that with which it impinged.
§ 185. Suppose, now, $M=M^{\prime}, e=1$; that is, let the balls be of equal mass, and their coefficient of restitution unity (or, in the usual but most misleading phrasenlogy, suppose the balls to be "rerfectly elastic"); then $2 \mathrm{R}=\mathrm{M}\left(v-v^{\prime}\right)$;
$v_{1}=v^{\prime}$, and similarly $v_{1}^{\prime}=v$; or the balls, whatever be theie speeds, interchange them, and the notion is the sane as if they lad passed through oue another without exerting any mutual action whatever.

Thus if a number of equal solitaire balls or billiard balls be arranged iu contact in a horizontal groove, and anotl er equal ball impinge ou une extremity of the row, it is reduced to rest, aud the ball at the other end of the row goes off with the original speed of impact. If two inspinge, $t$ Tro go off, aud so on.
§186. We may write the above expressions in terms of the impulse, thus

$$
\left.\begin{array}{r}
r_{1}=v-\frac{R(1+c)}{M L}  \tag{2}\\
\varepsilon_{1}^{\prime}=v^{\prime}+\frac{R(1+c)}{I^{\prime}}
\end{array}\right\}
$$

Hence $\mathrm{Iv}_{2}+\mathrm{M}^{\prime} v_{1}^{\prime}=\mathrm{M} v+\mathrm{M}^{\prime} v^{\prime}$; whatever e be, or there is $n$ momentum lost. This is, of course, a direct consequence of the third law of motion.
Agaitı

$$
\begin{aligned}
& \frac{1}{2} M r_{2}^{2}+\frac{1}{2} M L^{\prime} v^{\prime 2}=\frac{1}{2} M v^{2}+\frac{1}{2} M V^{\prime} v^{\prime} \\
- & \mathrm{M}(1+e)\left(v-v^{\prime}\right)+\frac{1}{2} \mathrm{R}^{2}(1+e)^{2} \frac{M+M I^{\prime}}{M \Delta L^{\prime}} \\
= & \frac{1}{2} M v^{s}+\frac{1}{2} M^{\prime} v^{\prime 2}-\frac{1}{2} R^{2}\left(1-c^{2}\right) \frac{M+M M^{\prime}}{M M^{\prime}} \\
= & \frac{1}{2} M v^{2}+\frac{1}{2} M M^{\prime} v^{\prime 2}-\frac{1}{2}\left(1-e^{\prime}\right) \frac{M\left[M^{\prime}\right.}{M+J 1^{\prime}}\left(v-v^{\prime}\right)^{2} .
\end{aligned}
$$

The last terny of the right hand side is therefore the Loss of kinetic energy apparently destrojed by the impact. When energy, $e=0$, its magnitude is greatest, and equal to

$$
\frac{1}{2} \frac{\mathrm{MM}^{\prime}}{\mathrm{I}+\mathrm{II}^{\prime}}\left(v-v^{\prime}\right)^{2}=\frac{1}{2} \mathrm{R}\left(v-v^{\prime}\right)
$$

When $e=1$, its magnitude is zero; that is, when the coefficient of restitution is unity no kinetic energy is lost.

The kinctic energy which appears to be destroyed in any of these cases is, as we see from § 171, ouly transformedpartly it may be into heat, partly into sonorous vibrations, as in the impact of a liammer on a bell. But, in spite of this, the elasticity may be "perfect." Hence the absurdity of the designation alluded to in §185. Also by (2)

$$
\begin{aligned}
\tau_{1}^{\prime}-\tau_{1} & =\overline{v^{\prime}}-v+\mathrm{P}(\tau+i) \frac{M+M t^{\prime}}{M \mathrm{M}^{\prime}} \\
& =e\left(v-v^{\prime}\right) \text { by (1). }
\end{aligned}
$$

Hence the relocity of separation is e times that of approach.)
§187. Two sinooth spheres, moving in given puths and roith giver-speeds, impinge; to determine the impulse and the subsequent motion.

Let the masses of the spheres be $M, M^{\prime}$, their speeds before impact $v$ and $v^{\prime}$, and let the original directions of motion make with the line which joins the centres at the instant of impact the angles $a, a^{\prime}$, which may be calculated from the data, if the radii of the spheres be giveo.

Since the spheres are smooth, the entire impulse.takes place in the line joining the centres at the instant of impact, and the future motion of each sphere will be in the plano passing through this line and its original direction of motion.

Let $R$ be the impulse, $e$ the coefficient of restitution; then, since the specds io the line of impact are $v \cos a$ and $v^{\prime} \cos a^{\prime}$, we hare for their final values $v_{1}, v_{1}^{\prime}$, after restitution, by $\S 184$ the expressions

$$
\begin{aligned}
& v_{1}=v \cos a-\frac{M^{\prime}}{M+I^{\prime}}(I+c)\left(v \cos a-v^{\prime} \cos a^{\prime}\right), \\
& v_{1}^{\prime}=v^{\prime} \cos a^{\prime}+\frac{M}{M I+I^{\prime}}(I+e)\left(v \cos a-v^{\prime} \cos a^{\prime}\right),
\end{aligned}
$$

and the ralue of $R$ is

$$
\frac{M J I^{\prime}}{M I I^{\prime}}(1+c)\left(v \cos a-r^{\prime} \cos a^{\prime}\right)
$$

Hence, the sphere $M$ has finally a speed $v_{\mathrm{l}}$ in the lind
juibug the centres, and a speed $v \sin$ a in a known direction perpendicular to this, uamely, in the plane through this and its uriginal direction of motion. And similarly for the sphere $\mathrm{I}^{\prime}$. Thus the consequences of the impact are completely determined.
§ 188. When a sphere of mass II impinges directly, with speed $V$, on another 'II' at rest, the speed acquired by $\mathrm{MI}^{\prime}$ is

$$
\frac{M V^{\prime}(1+c)}{M+M L^{\prime}}
$$

But, if another sphere of mass $\mu$, also at rest, be interposed between then, JI' will acquire a speed

$$
\frac{\mu M V^{\prime}(1+c)^{*}}{(M+\mu)\left(\lambda L^{\prime}+\mu\right)} .
$$

This is greatest when $\mu$ is the geometric mean of Mand M', and its value is then

$$
\frac{M V(1+c)^{2}}{\left(\sqrt{I} \sqrt{I}+\sqrt{\left.M^{\prime}\right)^{2}}\right.}
$$

The ratio of this to the speed which $\mathrm{II}^{\prime}$ would have acauired without the interposition of the third sphere is

$$
\frac{1+e}{1+\frac{2 \sqrt{M M^{\prime}}}{M+M^{\prime}}} .
$$

There is thus a gaiu by the iuterposition if, and only if,

$$
e>\frac{2 \sqrt{M M^{\prime}}}{M+I^{\prime}}
$$

Tbis coulitiou is always satisfied when the coefficient of restitution is unity, except in the special case of equal masses. If an intinite number of spheres be interposed between MI and $\mathrm{M}^{\prime}$, so adjusted as to give the greatest possible speed to $\mathrm{Mr}^{\prime}$, that greatest speed is $V \sqrt{\mathrm{M}^{\prime} / \mathrm{MI}}$, provided we have $e=1$.

## Continuous Succession of Indefinitely Small Impacts.

§ 189. We may nuw consider the case of a continuous series of indefnitely small impracts, whose offect is comparable with that of a fiaite force. One obvious method of considering such a problem is to estimate separately the chsuges in the velocity produced by the finite forces and by the impacts, in the same indefinitely snall time $\delta t$, and compound these for the actual effect on the motion in that period.
Another way, of course, is to equate the rate of increase of momentum per unit of time to the force producing it.
A mass, under no forces, maves through a uniform cloud of little particles which are at rest. Those it meets adlhere to it. Find the motion.
At time $\zeta$ let $\mu$ bo the mass, and let $x$ denote its position in its line of motion. Then, as there is no loss of momentum, we have

$$
\frac{d}{d l}(\mu \dot{x})=0 .
$$

But if 3 be the original mass, $\mu_{0}$ the mass of the particles picked up in unit of length, obviously

$$
\mu=\mathrm{M}+\mu_{0} x .
$$

Substitute and integrate, supposing $x=0, \dot{x}-\mathrm{V}$, when $t=0$; and
we get we get

$$
\left(M+\mu_{0} x\right) \dot{x}=M V,
$$

from which $x$ can be easily found.
It is interesting to observic thet we havo

$$
z=-\frac{\mu_{0} M^{2} v:}{\left(M+\mu_{0} x\right)^{3}} ;
$$

so that the mass mores as if seted on by an attraction mrying inversely as the cube of tho distace from a poist in its live of motion.
This problem obviously leads to the same result as the following :-A cannon-ball attached to one end of a chain, which is cailed up on a smooth horizontal plane, is projected along the plane. Determine its motion.
§ 190. Ancther excelleat instaace of the application of this process is furuished by the mution of a rocket, where
the metive power depends on the fact that a portion of the mass is detached with considerable relative velocity. The inerease of the moaleutam of the rocket due to this cause is equal to the relative momentum with which the products of combustion escape. If we suppose the rocket, originally of mass M, to lose e.I in unit of time, projected from it with relative velocity V , the gain of moneutum in time $\delta \iota$ due to this eause is

> exi'st.

The total upward acceleration is therefore

$$
\frac{e M V}{M-c \mathbb{M}}-g
$$

Unless this be positive the rocket caunot rise. It will rise at once if $\mathrm{V}>g^{\prime} e$, and it cannot rise at all unless $\mathrm{MV} / \mathrm{Ml}^{\prime}>g^{\prime} e, \mathrm{M}^{\prime}$ beiug the mass of the case, stick, \&e., which are not burned away.

From the above data it is essy to calculate that the greatest speed acquired during the flight (the resistance of the air being left out of account) is

$$
\mathrm{V} \log \frac{\mathrm{I}}{\mathrm{I}} \mathrm{I}^{\prime}-\frac{g}{c}\left(1-\frac{\mathrm{M}^{\prime}}{\mathrm{M}}\right)
$$

## Dynamics of a System of Particles Generally.

§ 191. The law of energy, in abstract dynamics, may be Motion expressed as follows:-the whole work done in any time, of a sy on any limited materisl systen, by applied forces, is eqnal tem of to the whole effect in the forms of potential and linetic ${ }^{\text {particle }}$ energy produced in the system, together with the work lost in friction. This principle may be regarded as comprehending the whole of abstract dynamics, because the conditions of equilibrium and of motion, in every possible ease, may be derived from it.
§192. A material system, whose relative motions are Condiunresisted by friction, is in equilibrium in any configuration tion o if, and is not in equilibrium unless, the rate at which the equiapplied forces perform work at the instant of passing through it is equal to that at which potential energy is gained, in every possible motion through that configuration. This is the celebrated prineiple of "virtual velocities," Virluna which Lagrange made the basis of his Mécanique Analy-velocit tique.
§ 193. To prove it, we have first to remark that the system caunot possibly move away from any particular configuration except by work being done upon it by the forces to which it is subject; it is therefore in er ailibrium if the stated condition is fulfilled. To ascertain that nothing less than this condition can secure the equilibrium, let us first consider a system baving only one degree of fretdon to move. Whatever forces act on the whole system, we may always hold it in equilibriam by a single force applied to any one poiut of the system in its line of motion, opposite to the direction in which it tends to move, and of such magnitude that, in any infiaitely small motion in either direction, it shall resist or shall do as much work as the other forees, whether applied or internsl, altogether do or resist. Now, by the principle of superpositiou of forces in eyuilibrium, we might, without altering their effect, apply to any one point of the system such a force as we have just scen would hold the system in equilibrium, and another force equal and opposite to it. All the other ferves bcing balanced by one of these two, they and it might again, by the principle of superposition of forces in equilibrium, be removed; and therefore the wholo set of given forces would produce the same effect, whether for equilibrium or for motion, as tho single force which is left actiug alone. This single force, since it is in a line in which the poiat of its application is free to move, must mave the system. Heace tho given forces, to which the single force has been proved equiralent, cannot possibly bo
in equilibıum unless their whule work for an infinitely amall motion is nothing, in which caso the single equivalent force is reduced to nothing. But whatever amount of freedom to move the whole system may have, we may alrays, by the application of frictionless constraint, limit it to one degree of freedom only; and this may be freedom to execute any particular motion whatever, possible noder the given conditions of the system. If, therefore, in any such infnitely small motiou there is variation of potential energy uncompensated by work of the applied forces, constraint limiting the freedom of the, system to only this motion will bring us to the case in which we have just denoonstrated there cannot be equilibrium. But the application of constraints limiting motion cannot possibly disturb equilibrium, and therefore the given system under the actual conditions cannot be in equilibriumin any particular configuration if the rate of doing work is greater than that at which potential energy is stored up in any possible unotion through that configuration.

Sontral equitibriam. internal and a naterial system, under to infuence of definite lar, is balanced by them in auy position in which it may be placed, its equilibrium is said to be neutral. This is the case with any spherical body of uniform material resting on a horizontal plane. A right cylinder or cone, bounded by plane ends perpendicular to the asis, is also in neutral equilibrium on a horizontal plane. Practically, any mass of moderate dimensions is in neutral equilibrium when its centre of iuertia only is fised, siace, when its longest dimension is small in comparison with the earth's radius, the action of gravity is, as we shall sce ( $\$ 232$ ), approximately equivalent to a single furce through this point.
§ 195. But if, when displaced infuitely little in any direction from a particular position of equilibrium, and left to itself, it commences and continues vibrating, without ever experienciog more than infinitely small deriation, in any one of its parts, from the position of. equilibrium, the aquilibrium in this position is said to be stable. A weight suspended by a string, a uniform sphere in a hollow bowl, a loaded sphcre resting on a horizontal plane with the loaded side lowest, an oblate body resting with one end of its shortest diameter on a horizontal plane, a plank, whose thickness is small compared with its leogth and breadth, floating on water, are all cases of stable equilibrium,--if we neglect the motions of rotation about a vertical asis in the second, third, and fourth cases, and borizontal motion in general in the fifth, for all of which the equilibrium is neutral.
Unstable § 106. If, on the other hand, the system can be displaced equi-
librium.
mining whether the equilibrium is neutral, stable, or Euergy unstable, in any case. If there is just as much potential test of energy stured up as there is work performed by the applied and interual forces in any possible displacement, the equilibriom is neutral, but not unless. If in every possible infinitely small displacement from a position of equilibrium there is more potential energy stored up than work done, the equilibrium is theroughly stable, and not unless. If in any or in every infinitely small displacement from a position of equilibrium there is more work done than energy stored up, the equilibrium is unstable. It follows that if the system is influencel ooly by internal forces, or if the applied forces follow the law of doing always the same amount of work upon the system while passing from one configuration to another by all possible paths, the whole potential energy must be constant in all positions for neutral equilibrium, must be a minimum for positions of thoroughly stable equilibrium, and must be either a maximum for all displacements or a maximum for some displacements and a minimum for others when there is unstable equilibrium.
§ 199. We have seen that, according to D'Alembert's Formaprinciple, as explained above, forces acting on the different tion of points of a material system, and their reactions against the general accelerations which they actually experience in any case of motion, are in equilibrium with one another. Hence, in any actual case of motion, not only is the actual work by the forces equal to the kinetic energy produced in any infinitely small time, in virtue of the actual accelerations, but so also is the work which would be done by the forces; in any infivitely small time, if the velocities of the points constituting the system were at any instant changed to any possible infinitely small velocities, and the accelerations unchanged. This statement, when put into the concise language of mathematical analysis, constitutes Lagrange's application of the "principle of virtual velocities" to express the conditions of D'Alembert's equilibrium between the forces acting and the resistances of the masses to the acceleration. It comprehends, as we have seen, every possible condition of every case of motion. The "equa-" tions of motion" in any particular case are, as Lagrange has shown, deduced from it with great ease.

Commencing again with the equations of motion of a particle

$$
=\mathrm{X}+\mathrm{X}^{\prime}, m \mathrm{j}=\mathrm{Y}+\mathrm{Y}^{\prime}, m \ddot{z}=\mathrm{Z}+\mathrm{Z}^{\prime},
$$

let us introduce quantities $\delta x, \& c$., consistent with the conditions, otberwise perfectly arlitrary, and we have the general equation

$$
\leq m(\bar{x} \delta x+\ldots)=\leq(X \delta x+\ldots)
$$

in which, by D'Alembert's principle, the forces $\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}, \mathrm{Z}^{\prime}$, due to the constraints, do not appear.
If the system be conservative the right-hand meinher of this is, of course, equal to the loss of notential energy, so that

$$
-\delta V=\Sigma(X \delta x+\ldots)
$$

and therefore, quite generally in such a system,

$$
\begin{equation*}
\leq m(x \delta x+\ldots)=-\delta V \tag{1}
\end{equation*}
$$

In the actual motion of any system we have, for each particle, $\delta x=\dot{x} \delta t$, \&c., so that we have

$$
\leq m(\dot{x} \dot{x}+\dot{y} y+\dot{y})=\leq(X \dot{x}+\bar{y} y+Z \dot{z}) .
$$

This is the complete statement of Newton's scholium, $\S 2$ above.
The right-hand member is the expression of the algebraic sum of the actiones agentium and of the reactiones resistentium, 80 far as these depend upon gravity, friction, \&c., and the left-hand member that of the reactioncs due to the accelerations of the several particies.

If the system be conserrative, this becomes

$$
\sin (\dot{x} \ddot{x}+\dot{y} \dot{i}+\dot{z} \dot{z})=-\frac{d V}{d t},
$$

whose integral

$$
\frac{1}{2} \leq m\left(x^{2}+\hat{y}^{2}+\dot{z}^{2}\right)+V=\mathrm{H}
$$

is of conrse, the general statement of the conservation of energy.
In Lagrangc's general equatiou above, as we have stated, the variations $\delta x$, \&c., are not usually independent. We must take account of the varions constraints imposed ou the systcm. If these
retain the samo chatacter thronghout the inotion they may be c.xbressed by a (generally finite) number of equations of the form

$$
f\left(x_{1}, y_{1}, z_{1}, x_{n 1}, y_{2}, z_{2}, \ldots\right)=0 .
$$

Each of these gives rise to a purely kinematical relation affecting some one or more of the quantities $\delta \dot{r}$, $\&$ c., of the form

$$
\leq\left(\binom{d f}{d x} \delta x+\binom{d f}{d y} \delta y \div \ldots\right)=0
$$

By intioducing, as usual, a set of maletermined multipliers $\mu$, one for each of tho conditions of coustraint, we obtain on adding all these equations to the genoral equation above
$\sum n(x \delta x+\because)=\Sigma\left[\left(X+\mu\left(\frac{d f}{d x}\right)+\mu_{1}\binom{d f_{1}}{d x}+\ldots\right) \delta x+\ldots\right](2)$.
If there be " $p$ particles of the system, there are $3 p$ coordinates $x, y$, $z$, connected by (say) q equations of constraint, so that thero are $3 p-q$ degrees of freedom, and therefore $3 p-q$ independent coordinates.
Equating separately to zero the multipliers of $\delta \cdot x_{1}, \delta y_{1}$, se., in the resultant equatiou above, we have 3 p equations of which we prite only one as a type, siz,

$$
m x=X+\Sigma \mu\left(\frac{d f}{d x}\right) ; \because \cdot \cdots x^{2} \cdot(3)
$$

Takeu along with tho $q$ equations of the form

$$
f=0
$$

these form a group of $3 p+q$ equations, theoretically necessary and sufficient to determine the $3 p$ quantities $x_{1}, y_{1}, z_{1}$, se., and the $Q$ quantities $\mu$, in terms of 6 . Thus we have the complete analytical statement of the conditions, and the rest of tho solution is a question of pure inathematics.
When we deal with a non-conservative system (which is equivalent in nature to saying "when we take an incomplete view of the question"), sone of the conditions may vary in character during the motion. This will be expressed analytically by the entrunce of $t$ explicitly into one or more of the equations of condition $f$. But, if we think of the mode of formation of Lagrange's equation, we sce that it was built up of separate equations, such as

$$
m \dot{x}=X+X^{\prime}
$$

Which are true whether the equations of condition involve $\ell$ explicitly or not. Each of these was multiplied by a quantity $\bar{\delta} x$, \&c., the only limitation on which was that it should be consistent with the conditions of the system at the instant considercd, whatever instant that night be. Hence equation (2) still holds good.
When, however, we introduce in that equation multiphiers conresponding to the actual motion of the system, so that

$$
\delta x=\dot{x} \delta t, \delta c .
$$

we find a remarkably ample expression for the energy given to, or wihdrawn from, the systen in consequence of the varying connitions. For the uuintegrated equation (2) now lecomes

$$
\frac{d}{d t}\left(\frac{1}{2} \mathrm{~m}\left(\dot{x}^{2}+\dot{y}^{\hat{}}+\dot{z}^{2}\right)\right)=\Sigma\left(X \dot{x}+Y^{\prime} \dot{y}+Z \dot{z}\right)-\Sigma \mu\left(\frac{d f}{d t}\right)
$$

wiere the differeutial coefficient of $f$ is partial. This follors at Ance from equations of the form

$$
\left.\frac{d f}{d l}=\left(\frac{d f}{d l}\right)+\left(\frac{d f}{d x}\right)\right)^{i}+\delta c_{0}=0
$$

wnicis aro obtained by differentiating tho eqnations of condition with regard to $l$. When tho conditions do not vary, the quantities $\left(\frac{d f}{d t}\right)$, \&e, all vanish, and wo see that the constraint does not alter tho energy of the system.

## Least aned I'arying Action.

ACtM
§200. To complete our sketch of kinetics of a particle we will now brietly consider the important guantisy called "action." This, for a single particle, may be defined either as the space integral of tho momentum or as double the time integral of the kinctie energy, calculated from any assumed position of the moviug particlo, or from on assigned epoch. For a system its value is tho sum of its separato values for the varinus particles of the system. No one has, as yet, pointed out (in the simple form in which it is all but certain that they ean be expressed) the true relations of this quanlity. It was originally introdured into kinetics to suit the metaphysieal necessity that something should bo a minimum in the path of a luminous corpuscle (sce an extract from Ilamiliom in the article Lacut, vol xiv.
[. 595). Thut lhere can be little douot that it is destmed to play an important part in the fual systematizing of the fundamental laws of kinctics.

The impurtance of the guantity callcd action, so far as is at present known, depends ujuon the two principles of "least action" and of "varying action," the first as uld as Maxpertuis, the other discovered by IIamilton about hatf of century ago.
The first is-If the sum of the potential and kinetic energies of a system is the same in all its confignerations, then, of all the sets of praths by which the purts of the system con be grided by frictionless constrant to pass from one given contiguration to anuther, thut one fur which the action is least is the suaterab one or requires $n o$ constraint.
§201. Unfortunately it is not easy to give examples of this important principle 11 ielr can be satisfactorily treated by elementary methods,-exeept, indeed, the very simplest, such as those furnished by the corpuscular theory of light Thus it is obvious that, as longe as a medium is homogencous and isotropic, the speed of a corpuscle in it is constant.' The action is thus reduced to the product of the constant speed of the corpuscle by the length of its path. Hence the prineiple at once shows that the path innst be a straight line. When the corpuscle is refracted from onet such medium into another, the path is a broken line such that the product of each of its parts by the corresponding speed of the corpuscle is the last possible. This gives the law of the sines, but to agree with experimeut the speed would have to be greater in the denser medium than in the rarer.
§ 202. The problem to finct change of actions as depensling on chenge (nowheric finite) of the molle of passage from one given configurcution to enuther (restrictel lig the condition already men. tioncel), is expressed mathematically by

$$
\begin{aligned}
& \delta .1=\delta / \sin \dot{s} l s=\delta / \Sigma \sin (\dot{c} l x+\dot{y}(l y+\dot{i} l()), \\
& \mathrm{T}=\frac{1}{2} \Sigma(u) s^{2}-\frac{1}{2} \leq m\left(\dot{c}^{2}+\dot{y}^{2}+\dot{\xi}^{2}\right)=\mathrm{II}-\mathrm{Y} \text {, }
\end{aligned}
$$

while
1I being the constant enerify of the system, and the iulegral being taken between liuits supplied by the two "iven configurations.
The first equation gives


by partial integration. Eut the integrated part $\sin (\dot{x} \delta x+y \delta y+\dot{z} \delta=)$,
obvionsly ranshes at both limitu, becaute the initial and uinal confgurations are criven.
If we now tuke the corresponding variation of the expressione lor the kinetic energy, we have

$$
\delta \mathrm{T}=\leq m \dot{x} \delta \dot{s}=\leq m(\dot{x} \delta \dot{c}+\dot{j} \delta \dot{j}+z \delta \dot{\delta})
$$

"om which we have

$$
\int \leq m(d x \delta \dot{x}+l l y \delta j+c l=\delta=)=\int \delta T d l .
$$

Also we have :

$$
d x \delta c+c l y 0 y+c i \delta \delta=(x \delta x+y \delta y+z \delta z) a t ;
$$

so thint fimally

$$
\delta .1=\int d t[\delta \mathrm{~T}-\leq m(x \delta x+j 5 y+z \delta z)]
$$

Which an far is a mete kinernatical result. Fut it can be rendered flysical thy juttins- $\delta V^{\prime}$ for $\delta 1$, in accordance with the above condition. This we "ill supprose done.
If now we dasire to llake $\delta .1$ vanish, so as to obtain what is callem the "stationnry combition," we must make the factor in square bruckets in the integral samsh; i.c., we must have

$$
\leq m(\delta \delta x+j \delta y+z \delta=)+\delta V=0
$$

for nll acinnissilhe simultaneoius values of $\delta x, \delta y, \delta=$ for the various fratieles of the system. Dint hise is prenisely the general equation which, an wefond tia § 199 (1), deternines the undisturbed motion of the sysw mm .
§203. The expression $\delta .1-0$ realty smmifies that any infinitesimal chonge from the natumb mole of passage prorluces an in finitels smaller change in the corresponding anomut oi the action be tween the terminal configurations.
§ 204. It "ill lue noticel that the essential chafacteristic of zle moles of passage ennsilered in this investigation is that all slrall have the same terminal configuations, and that the system shan
aurays have tho same definite amount of cuergy. All, cxcept the natursl mode of passage, in gencral require constraint in order that they may be described. Hamilton's grand extension of the subject depended on comparing the actions in a mumber of matal inodes of passage, differing from one another by slight changes in their teraninal configurations, and slight changes in the whole initial cnergy. In this ner form of statement the unintegrated part of the cx Gression for $\delta \mathrm{d}$ vanishes, since all the modes of passage contemplated ere natural. The alteration of the whole energy, however, adde a special term to the equation, and we can at once write, from the expression (A) § 202, the cquation for the clange in tho nction under the new conditions, riz.,

$$
\delta A=[\Sigma m(\dot{i} \delta x+\dot{y} \dot{\partial} y+\dot{z} \delta \dot{z})]+18 \mathrm{H},
$$

the part in brackets hariny to be taken between limits corresponcting to the terminal configurations, and the variations $\delta x, \delta y, \delta=$ at these being subject to the conditions of the system.
We camnot here consider this cquation in its general form. We content ourselves with the simpler specisl deductions from it required for completing our sketch of Kinetics of a Particle.
The last given equation, written in full for a single particle of unit mass, is

$$
\delta \mathrm{A}=[\dot{x} \delta x+\dot{y} \delta y+\dot{z} \delta z]-\left(\dot{x}_{0} \delta x_{0}+\dot{y}_{0} \delta y_{0}+\dot{v}_{0} \delta \delta_{0}\right)+18 I I,
$$

where $x_{0}, y_{0}, z_{0}$ is the initial point, and $x, y, z$ any other point, of the path. If the particle he altogether free, the seven variations on the right-hand side are independent of one another; and thus we have the following remarkable properties of the quantity A, regarded as a function of seven independent variables (the initial and final coordinates of the particle, and its constant energy), viz.,

$$
\begin{gathered}
\left(\frac{d \mathrm{~A}}{d x}\right)=\frac{d x}{d l},\left(\frac{d \mathrm{~A}}{d x_{0}}\right)=-\frac{d x_{0}}{d l}, \\
\left(\frac{d \mathrm{~A}}{d y}\right)=\frac{d \psi}{d t},\left(\frac{d \mathrm{~A}}{d y_{0}}\right)=-\frac{d y_{0}}{d l}, \\
\left(\frac{d \mathrm{~A}}{d z}\right)=\frac{d z}{d l},\left(\frac{d \mathrm{~A}}{d z_{0}}\right)=-\frac{d z_{0}}{d l}, \\
\left(\frac{d \mathrm{~A}}{d \mathrm{H}}\right)=\ell .
\end{gathered}
$$

From these we gather at once that A satisfies the partial differentisl equations

$$
\begin{align*}
& \left(\frac{d \mathrm{~A}}{d x}\right)^{2}+\left(\frac{d \mathrm{~A}}{d y}\right)^{2}+\left(\frac{d \mathrm{~A}}{d z}\right)^{2}=v^{2}=2(\mathrm{H}-\mathrm{V}) .  \tag{1}\\
& \left(\frac{d \mathrm{~A}}{d x_{0}}\right)^{2}+\left(\frac{d \mathrm{~A}}{d y_{0}}\right)^{2}+\left(\frac{d \mathrm{~A}}{d z_{0}}\right)^{2}=\nu_{0}^{2}=2\left(\mathrm{H}-\mathrm{V}_{0}\right) . \tag{2}
\end{align*}
$$

§ 205. The whole circumstances of the mation are tlins dependent on the function A, called by Hamilton the "characteristic function." The determination of this function is troublesome, even in very simple cases of motion ; hut the fact that such a mode of representation is possible is extremely remarkable.
§ 206. More generally, omitting all reference to the initial point, and the equation $\S 204(2)$ which belongs to it, lct us cousider A simply as a function of $x, y, z$. Then

Any function, $A$, which satisfics the partial clificrantial cquation

$$
\begin{equation*}
\left(\frac{d \mathrm{~A}}{d x}\right)^{2}+\left(\frac{d A}{d y}\right)^{2}+\left(\frac{d \mathrm{~A}}{d z}\right)^{2}=v^{2}=2\left(\mathrm{H}-V^{\prime}\right) \tag{1}
\end{equation*}
$$

possesses the moperty that $\frac{d A}{d x}, \frac{d A}{d y}, \frac{d A}{d z}$ represent the rectengentar components of the velocity of a particle in a motion possibte under the forces whos? potential is $V$.

For, by partisl differentiation of (1) we liave

$$
\frac{d}{d l}\left(\frac{d x}{d l}\right)=\frac{d^{2} x}{d l^{2}}=\mathrm{X}=-\frac{d V}{d x}=\frac{d \mathrm{~A}}{d x} \frac{d^{2} \mathrm{~A}}{d x^{2}}+\frac{d \mathrm{~A}}{d l^{2}} \frac{d^{2} \mathrm{~A}}{d x d^{l y}}+\frac{d \mathrm{~A}}{d z} \frac{d^{2} \mathrm{~A}}{d x d z},
$$

with other trro equations of the samo form.
But we have also three equations of the form

$$
\frac{d}{d t}\left(\frac{d \mathrm{~A}}{d x}\right)=\frac{d x}{d l} \frac{d^{2} \mathrm{~A}}{d x^{2}}+\frac{d y}{d l} \frac{d^{2} \mathrm{~A}}{d x d y}+\frac{d z}{d t} \frac{d^{2} \mathrm{~A}}{d x d z} .
$$

Comparing, we see that

$$
\frac{d x}{d t}=\frac{d \mathrm{~A}}{d x}, \frac{d y}{d l t}=\frac{d \mathrm{~A}}{d y}, \frac{d z}{d l}=\frac{d \mathrm{~A}}{d z}
$$

satisfy simultaneously the tro sets of equations.
$\S 207$. Also if $\alpha, \beta$ be constants, which, along with H , are involved in a complets integral of the obove partial differential equation the corresponding path, and the time of its description, are given by

$$
\left(\frac{d A}{d \alpha}\right)=a_{1},\left(\frac{d A}{d \beta}\right)=\beta_{1},\left(\frac{d \mathrm{~A}}{d \mathrm{H}}\right)=t+\epsilon,
$$

where $a_{1}, \beta_{1}, \in$ are three additional arlitrary constants.

For these equations give, by completo differentiation with regurd to $\ell$,

$$
\begin{align*}
& \frac{d^{2}-t}{d x d \beta} \frac{d x}{d t}+\frac{d^{2} \Lambda}{d y d \beta} \frac{d y}{d l}+\frac{d^{2} A}{d=l \beta} \frac{d z}{d t}=0  \tag{a}\\
& \frac{d^{2} \mathrm{~A}}{d x d \mathrm{H}} \frac{d x}{d t}+\frac{d^{2} \mathrm{~A}}{d y d \mathrm{I}} \frac{d y}{d t}+\frac{d^{2} \mathrm{~A}}{d z d \mathrm{H}} \frac{d z}{d t}=1
\end{align*}
$$

But, differentiating $\S 206(1)$ with respect to $\alpha, \beta, H$ respectively. we get

$$
\left.\begin{array}{l}
\frac{d^{2} A}{d a d x} \frac{d .1}{d x}+\frac{d^{2} \mathrm{~A}}{d \alpha d y} \frac{d A}{d y}+\frac{d^{2} \mathrm{~A}}{d \alpha d_{z}} \frac{d \mathrm{~A}}{d z}=0 \\
\frac{d^{2} A}{d \beta d x} \frac{d A}{d x}+\frac{d^{2} A}{d \beta d y} \frac{d A}{d y}+\frac{d^{2} A}{d \beta d^{2}} \frac{d A}{d z}=0  \tag{b}\\
\frac{d^{2} A}{d H d x} \frac{d A}{d x}+\frac{d^{2} A}{d H d y} \frac{d A}{d y}+\frac{d^{2} A}{d H d z} \frac{d A}{d z}=1
\end{array}\right\}
$$

The valucs of $\frac{d x}{d l}$, \&c., in (a) are evidently equal respectively to those of $\frac{d \lambda}{d x}, \& c$., in (b). Hence the proposition.
§ 208. "Elpuiactionsl surfaces," i.c., those whose common equa- Surfaces tion is

## $A=$ coust.,

are cut at right angles by the trajectories.
For the direction cosines of the normal are obviously proportionsl to

$$
\left(\frac{d A}{d x}\right),\left(\frac{d A}{d y}\right),\left(\frac{d A}{d z}\right) \text {, that is, to } \frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t} \text {. }
$$

Thus the determination of cquiactional surfaces is resolved into the problem of finding the orthogonal trajectories of a set of given curves in space, whenever the conditions of the motion ere given.
The distance betwecre conscoutive cquiactional surfaces is, at any paint, inversely as the velocity ins the corresponding path.
This may be seen at once as follows: the element of the action. which is the same at all points, is $\tau \delta s$ (where $\delta s$, being an element of the path, is the normal distance between the surfaces).
§ 209. In consequence of the importance of the method we will Planetake two examples of its application. First a direct examole, then tary one depending on the equiactional surfaces.

To deduce fram the principle of "varying action": the form and, mode of description of a planet's orbit.
Ir this case it is obvious that $-\frac{d V}{d r}$ represents the attraction of gravity $\left(-\mu / r^{2}\right)$. Hence the right-hand membe; of $\S 206(1) \mathrm{may}$ be written $2(\mathbf{H}+\mu / r)$.
Let us take the plane of $x y$ as that of the orbit, then the equations § 206 (1) becomes

$$
\begin{equation*}
r^{2}=\left(\frac{d \mathrm{~A}}{d x}\right)^{2}+\left(\frac{d \mathrm{~A}}{d y}\right)^{2}=2\left(\mathrm{H}+\frac{\mu}{r}\right) \cdots \cdots \tag{1}
\end{equation*}
$$

It is not difficult to obtsin a satisfactory solution of this equation, but the operation is very much simplified by the use of polar coordinates. With this change, (1) bccomes

$$
\begin{equation*}
\left(\frac{d A}{d r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{d A}{d \theta}\right)^{2}=2\left(H \pm \frac{\mu}{r}\right) \tag{2}
\end{equation*}
$$

which is obwiously satisfied by

$$
\left.\begin{array}{l}
\left(\frac{d \lambda}{d \theta}\right)=\text { constant }=a, \\
\left(\frac{d A}{d r^{2}}\right)^{3}=2\left(\mathrm{H}+\frac{\mu}{r}\right)-\frac{a^{2}}{r_{n}^{2}}
\end{array}\right\}
$$

Hence

$$
\begin{equation*}
A=a \theta+\int d r \sqrt{2(H+\mu / r)-a^{2} / r^{2}} \tag{4}
\end{equation*}
$$

The final integrals are therefore, by $\S 207$,

$$
\begin{equation*}
\left(\frac{d \Lambda}{c a}\right)=a_{1}=0-a \int \frac{d r}{r^{2} \sqrt{2(H+\mu / r)-a^{2} / r^{2.2}}}, \tag{5}
\end{equation*}
$$

nnd

$$
\begin{equation*}
\left(\frac{d \mathrm{~A}}{d \mathrm{H}}\right)=t+\epsilon=\int \frac{d r}{\sqrt{2(\overline{\mathrm{I}}+\mu / r)-a^{2} / r^{2}}} \tag{6}
\end{equation*}
$$

These equations contain the comprete solution of the problem, for they involve four constants, $a_{2}, a_{,}, H, \epsilon$. (5) gives the eauation of the orbit, and (6) the time in terms of the radius-vector.
$\%$. To complete the investigation, let us assume

Fliere $l$ and e are two new arbitrary constants iutroduced in place of $\alpha$ and $H$. With these (5) becomes
or

$$
\begin{gathered}
a_{1}-\theta-\int \frac{d r}{r^{2} \sqrt{\left(c^{2}-1\right) / l^{2}+2 / l r-1 / r^{3}}} \\
=\theta-\int \frac{d r}{r^{2} \sqrt{e^{2} / l^{2}-(1 / r-1 / l)^{2}}}=\theta-\cos -1 \frac{l}{e}\left(r^{-1}-l^{-1}\right), \\
\quad r=\frac{1}{1+\cos \left(\theta-a_{1}\right)},
\end{gathered}
$$

the general polar equation of conic sections referred to the focus. Also by differentiating (5) with respect to $r$, we have

$$
\frac{\alpha(l r}{r^{2} \sqrt{2(H 1+\mu / v)-\alpha^{2} \sqrt{r^{2}}}}-d \theta
$$

from which, by (8), we immediately olatain

$$
t+\epsilon=\frac{1}{a} \int \operatorname{rin}^{n} l \theta=\frac{1}{\sqrt{\mu l}} \int r^{n} l \theta
$$

This invelves, again, the equation of equable description of areas. Compare § 144.
Actjonin \& 210 . In a pianet'a elliptic orbit the time is measurect by the arca srbit. of described about one fucts, and the action by that deseribed about the, ohonet. - olher.

For with the usnal notation we have

$$
d \Lambda=i d s=\frac{\hbar}{p} d s
$$

hy the result of $\S 47$. Dut in the ellipse or hyperbola, p' being the perpendicular from the second focus,

$$
p p^{\prime}= \pm b^{2}
$$

Hence

$$
d \Lambda= \pm \frac{h}{b^{a}} p^{\prime} d s
$$

Which expresses the result stated above.
It is easy to extend this to a parabolic orbit, for whicls, indeed, the theorem is even more simple.
§ 211. Unit particles cre projecled simullancously and horizonlally
in all directions fiom every point of a rertical axis, all having the same total encrgy at starting; find the surfaecs of equal action.

We may obviously confine ourscives to a plane section through the axis. Let $x$ be the vertical coordinate of a particle, measured downwards from the level at which the common energy is wholly potential, $k$ the coordinate of the point in the axis from which it was projected. Then we have, after the lapse of timel,

$$
\left.\begin{array}{l}
x=k+\frac{1}{2} g t^{2} \\
y=\sqrt{2 g k t}
\end{array}\right\}
$$

Eliminating $l$, we have the equation of the parabolic path-

$$
x=k+\frac{y^{9}}{4 k}
$$

To find the orthegenal trajectory (the meridina section of the surlace of equal action), differentiate, put - $\frac{d x}{d y}$ for $\frac{d y}{d x}$, and eliminate $z^{\prime}$. Wo thus havo
or

$$
\begin{aligned}
& -\frac{d y}{d x}=\frac{y}{2 k}=\frac{y}{x+\sqrt{x^{2}-y^{2}}}=\frac{\sqrt{x+y}-\sqrt{x-y}}{\sqrt{x+y}+\sqrt{x-y}} \\
& -\sqrt{x+y}(d x+d y)+\sqrt{x-y}(d x-(l y)=0
\end{aligned}
$$

so that
If we tum the axes through $\frac{1}{\pi}$ in their own plane, tne coordinates boing now $\xi$ and $\eta$, A
thisequation becomes

$$
\xi^{3}+n^{2}=a^{3} .
$$

In fig. 55, AM is the axis. $A$ few of the patha ara ahown by full linea, and two of the sections of aur. faces of equal action by dotted lines. These sections indicate cuspe lying on the line AH, which makes an angle $i \pi$ with the vertical, and is touched by all the paths. The path whose vertex is $G$ toncles this line in II, and therefore passes through the cuap of
 which the branclies are HK and IIL. IIK belongg to all paths whose vertires are above $\mathrm{O}, \mathrm{HL}$ to these (such as ML ) whose vertices are helow G .

It is wortly of nole that, by the first equations sloove,

$$
x \pm y=\left(\sqrt{k} \pm \sqrt{\frac{1}{2} y \cdot l}\right)^{n}
$$

by the substitution of which in the equation of action we see ho the time of reaching a particular surface of cqual action dependy ינon the position of the startigg point.
§ 212. A very interesting plane example, which has elegant applications in fluid motion, and in the conduction of electric currents in plates of uniform thickness, is furnished by assuming

$$
A=\log r, \text { or } A^{\prime}=\theta
$$

where $r$ and $\theta$ are the polar coordinates of the moving particie.
In the former, where the chirves of equal action aro circles with the origin as centre, we lave

$$
\frac{d \lambda}{d x}=\hat{x}=\frac{x^{2}}{r^{2}}, \quad \frac{d \lambda}{d y}=\dot{y}=\frac{y}{r^{2}},
$$

so that the paths are radii veclores deseribed with velocity $1 / r$, Alon tre have

$$
2(\mathrm{H}-\mathrm{V})=\left(\frac{d A}{d x}\right)^{2}+\left(\frac{d \Lambda}{d y}\right)^{3}-\frac{1}{r^{2}}
$$

of that tho force is central, and its ralue is

$$
-\frac{d \mathrm{~V}}{d \gamma^{*}}=-\frac{1}{\gamma^{3}}
$$

In the sccond casc, where the curves of equal action are radif diawn from the pole aud

$$
A^{\prime}=\theta=\tan -\frac{y}{x},
$$

Tre haso

$$
\frac{d A^{\prime}}{d \dot{x}}=\dot{x}=-\frac{y}{r^{2}}, \quad \frac{d A^{\prime}}{d y}={ }^{\prime} \dot{y}=\frac{x}{r^{2}}
$$

The kinetic energy is still $1 / 2 r^{\circ}$, and the contral force $-1 / r^{3}$, but the patha are circlea with the origin as centre. Thus the lines of equal action and the paths of individual particles are convertible.

We have also, iu each of these cases,

$$
\left(\frac{d \dot{x}}{d x}\right)+\left(\frac{d \dot{y}}{d y}\right)=0
$$

This shows (as in § 94) that, whatever be originaliy the groupitg of a set of particles moving all accerding to one or other of thest conditions, the density at any part of the group remains unchanged during the motion, In fact, as it is easy to prove, $A$ and $A^{\prime}$ are elementary solutions of the partial differential equation

$$
\begin{equation*}
\frac{d^{2} A}{d x^{2}}+\frac{d^{2} A}{d y^{2}}=0 \tag{1}
\end{equation*}
$$

and they are conjugale, in the sense that

$$
\frac{d \Lambda}{d x}=\frac{d \Lambda^{\prime}}{d y}, \quad \frac{d \cdot \Lambda}{d y}=-\frac{d A^{\prime}}{d x}
$$

For this reason the paths belonging to the two systems are every where orthogonal to one another.

Also, as the differential equation (1) for A is linear, any linea function of particular integrals is an integral. Thus, for inatanca we may take ( $p$ being any constaat)

$$
\begin{aligned}
& \mathrm{A}=\log r-p \theta \\
& \mathrm{~A}^{\prime}=p \log r^{2}+\theta
\end{aligned}
$$

with
These, representing orthegonal sets of logarithmic apirals, possest the asme properties with regard to oction as did the concentris circles and their radii, which, in fact, are the mere particular case when $p=0$.
§ 213. It is easy to give graphic methods of tracing these curres of action by means of an old process recently much developed bs Clerk Maxwell. The present example, thongh a very simple one, is quite autficient to illustrate the proceas.
Dram, as in fig. 56 , n act of circles whose radii are $\varepsilon^{n}, \varepsilon^{2 a}, \varepsilon^{a,}$ ! \&ic., and $a$ sut of radii vecteses making with the initial line the successive anglea $\frac{a}{p}, 2 \frac{a}{p}, 3 \frac{a}{p}$, *c., a being a quantity which may have any convenient. value. These lines will form a netrork, finer as a is amaller. Now auppose wo wish to trace tha curre

$$
A-n a
$$

The take the intersection of the circle whose radius is $\varepsilon^{\prime 0}$ with the radius-vector corresponding to the angle

$$
(s-n) \frac{a}{p} .
$$

Thus re hase for the value of $A$ at the point of interseclion

$$
\begin{aligned}
A & =\log \varepsilon^{*} a \\
& -n a, \text { as required. }
\end{aligned}
$$

By marking the intersections corresponding to different values ors wo bave a series of pointa in the remiured curre which, by adjunt
ment of the value of $a$, may be made to lie as cluse tngether as is found necessary for tacing the curve of action through Them libera э゙ルий.

In fic. 56 portions of three siparate sets of mutually orthogomal lomarithmic spimals liare lieen tracel. by using the intersections of blie fundamental sitaighlt lines and circles.


Fig. 56.
Tre may pursue the subject much farther, by combining particular solutions like those given but taken from ditferent origins. We can afford space for one only. Let P, Q (fig. 57) be points on the axis of $x$, distant $a$ and $-a$ from the origin, $\mathbb{R}$ any point in the plane of the figure. Let $P R=r, \angle R P x=\theta, 1 R Q=r_{1}, \angle K Q x=\theta_{1}$. Then if

$$
\begin{aligned}
& A=\log r-\log r_{1} \\
& \Lambda^{\prime}=\theta-\theta_{1}
\end{aligned}
$$

we must have, not only the equation

$$
\frac{d^{2} \mathrm{~A}}{d x^{2}}+\frac{d^{2} \mathrm{~A}}{d y^{2}}=0
$$

satisfied by cach of $A$ and $A^{\prime}$, but also the conditions

$$
\frac{d \mathrm{~A}}{d x}=\frac{d \mathrm{~A}^{\prime}}{d y}, \quad \frac{d \mathrm{~A}}{d y}=-\frac{d A^{\prime}}{d x}
$$

This follows at once from the fact that all the equations are linear.


Fig. 57.
$\S 214$. In fig. 57 we have $\varepsilon^{A}=P R / Q R$. Hence the locus of $R$ is a circle, whose centre, $B$, is on QP produced.

Again $\mathrm{A}^{\prime}=\angle \mathrm{PP} x-\angle \mathrm{RQ} x=\angle \mathrm{PRQ}$. The locus of R is, in this cuse, nny circle passing through $P$ and $Q$.
lhese circles evidently cut one another orthogonally in $R$; for BR , which is a radius of the one, is a tangent to the other.
Thus particles moving in a plane, so that the speed at any point $R$ is iuversely as PR. RQ, may describe cireles in which PQ is a chord. In this case the curves of equal action are circles detined by the condition that the ratio $P R$ : RQ is constant. Or they may move in the latter system of circles, in which case the former system gives the lines of equal action. For the equations in the greceding section give

$$
v^{2}=\left(\frac{d A}{d x}\right)^{2}+\left(\frac{d A}{d y}\right)^{2}=\left(\frac{d A^{\prime}}{d x}\right)^{2} \quad\left(\frac{d A^{\prime}}{d y}\right)^{2}=\frac{4 a^{2}}{n^{2} y^{\prime} \cdot}
$$

from which the conclusion is obvious.
We may ensily extend this example to otler sets of orthogonal purres whose equations are

$$
\begin{aligned}
& A_{2}=p A+A^{\prime} \\
& A_{1}^{\prime}=-A+p A^{\prime}
\end{aligned}
$$

where $A$ and $A^{\prime}$ have their recent values. Or we may extend the example by assuming at starting

$$
A=m \log r-m n_{1} \log r_{1}
$$

in which case it will be fonnd that we monst have

$$
A^{\prime}=m \theta-m_{2} \theta_{1}
$$

These pairs may again be combined into
$p A+A^{\prime}$ and $-\Lambda+2 \cdot A^{\prime}$, and so on.

It will bo noticed that in these examples the curres of equal action Analogy and the patlis of the particles correspond in steady fluid motion betweon to curves of equal pressure and lines of flow, and in electric con action eluction to equipotential lines and current lines.. In such cases in and fact, where there is no vortex-motion, the action is closely analogous velocity to what is called the "velocity potential" in a fluid.
potentisd

## Generulied Courdinates.

$\$ 215$. By the help of the result already obtained in com-Generas nexion with least action, we may easily obtain in a simple, ized co: though indirect, way the remarikable transformation of the errlin ${ }^{2}$ equations of motion of a system which was first given by Lagrange. We are not prepared to give here the transformation to Generalized Coordinates in its most gencral form; but, cven in the restricted form to which we proceed, it is almost invaluable in the treatment of the motion of conservative systems of particles in which the number of degrees of freedom is less than three times that of the praticles. The one point to be noticed is that, when we restrict ourselves to a systen of this kind, the expression for the kinetic energy, $T$, is necessarily a pure quadratic function of the rates of increase of the generalized coordinates. This is obvious from $\S 19$. Repeating with generalized coordinates the investigation of $\$ 202$, wo have

$$
A=2 \int \mathrm{~T} d t=\int(\mathrm{T}+\mathrm{H}-\mathrm{V}) d t .
$$

Hence $\quad \delta \mathrm{A}=\int\left(\delta \mathrm{T}+\delta \mathrm{H}-\delta \mathrm{V}^{2}\right) d t$.
Now let $\theta, \phi, \psi, \& . c$, he the generalized coordinates, and we hare

$$
2 \mathrm{~T}=\mathrm{P} \dot{\theta}^{2}+2 Q \theta \dot{\phi}+\mathrm{R} \dot{\phi}^{2}+
$$

where $P, Q, R, \ldots$ are in general functions of $e, \phi, \psi, \ldots$ Of conrse $V$ is a function of $\theta, \phi, \psi \ldots$ alone, and does not involve $\theta, \dot{\phi}, \dot{\psi}, \& c$.

Thus we have, witing for one only of the generalized coordinates,

$$
\begin{aligned}
\delta \mathrm{A} & =\Sigma \int\left(\left(\frac{d \mathrm{~T}}{d \theta}\right) \delta \theta+\left(\frac{d \mathrm{~T}}{d \theta}\right) \delta \theta-\left(\frac{d V}{d \theta}\right) \delta \theta\right) d t+t \delta \mathrm{H} \\
& =\Sigma\left(\frac{d \mathrm{~T}}{d \theta} \delta \theta\right)+t \delta \mathrm{H}-\int d l \Sigma\left[\left(\frac{d}{d t}\left(\frac{d \mathrm{~T}}{d \theta}\right)-\frac{d \mathrm{~T}}{d \theta}+\frac{d V}{d \theta}\right) \delta \theta\right]
\end{aligned}
$$

But we saw that, for any natural motion, the unintegrated part of $\delta A$ necessarily vanislies. Thus, as $\theta, \phi, \psi \ldots$, and, therefore, their variations, are by their very natmre independent of one another, the vanishing of the unintegrated part gives us one equation of motion for eacli derree of freedom, the type being in all of them the same, viz.,

$$
\frac{d}{d t}\left(\frac{d \mathrm{~T}}{d \theta}\right)-\left(\frac{d \mathrm{~T}}{d \theta}\right)+\left(\frac{d \mathrm{~V}}{d \theta}\right)=0
$$

To exemplify the use of these equations we will take again a few Exof the more important eases of constraint alfeady treated, and will amples. then proceed to some others of iuterest as well as of somerrhat greater complexity.

In tlie simple pendulum, $l$ being again the length of the string, and $\theta$ the iuclination to the vertical at time $t$, we have obvionsly

$$
\mathrm{T}=\frac{1}{2} m l^{2} \theta^{2}, \mathrm{~V}=\mathrm{C}-m g l \cos \theta
$$

Hence

$$
\left(\frac{d T}{d \theta}\right)=m l^{2} \theta,\left(\frac{d T}{d \theta}\right)=0,\left(\frac{d V}{d \theta}\right)=m g l \sin \theta
$$

Thus the equation of motion is

$$
\begin{gathered}
m l^{2} \ddot{\theta}+m g l \sin \theta=0 \\
\ddot{\theta}+\frac{g}{l} \sin \theta=0
\end{gathered}
$$

or
as in $\S 134$.
Suppose the same yendulum to be moriag anyhow, $\theta$ still denoting its inclination to the vertical, and $\phi$ denoting the azimuth of the jlane in which it is displaced, we have

$$
\mathrm{T}=\frac{1}{2} m l^{2}\left(\theta^{2}+\sin ^{2} \theta \cdot \dot{\phi}^{2}\right), \quad \mathrm{Y}=\mathrm{C}-m g l \cos \theta
$$

These give at once

$$
\begin{gathered}
\left(\frac{d \mathrm{~T}}{d \theta}\right)=m l^{2} \theta, \quad\left(\frac{d^{T} \mathrm{~T}}{d \theta}\right)=m z^{2} \sin \theta \cos \theta \cdot \dot{\phi}^{2},\left(\frac{d \mathrm{~V}}{d \theta}\right)=m g l \sin \theta \\
\left(\frac{d \mathrm{~T}}{d \dot{\phi}}\right)=m t^{2} \sin ^{2} \theta \cdot \dot{\phi}, \quad\left(\frac{d \mathrm{~T}}{d \phi}\right)=0, \quad\left(\frac{d \mathrm{~V}}{d \phi}\right)=0
\end{gathered}
$$

Hence the two equations ar3

$$
\begin{gathered}
\ddot{\theta}-\sin \theta \cos \theta \cdot \dot{\phi}^{2}+\frac{g}{l} \sin \theta=0 \\
\frac{u}{d t}\left(\sin ^{2} \theta \cdot \dot{\phi}\right)=0
\end{gathered}
$$

Pendu- Still keeping to ensy examples, suppuse the card of the ordilum with nary simple pendulum to be extemible, accerding to Hooke's law. exien- Let $\lambda$ bo its length at time $l$. Then the tension is $E(\lambda-l) l$, sible and the work it can do in contracting is the iutegral of this with cord. regard to $\lambda$ from $l$ to $\lambda, i . c .$,

$$
\mathrm{E}(\lambda-l)=1 / 3 l .
$$



$$
I^{\prime}=\frac{1}{2} m\left(\lambda^{2} \dot{\theta}^{2}+\dot{\lambda}^{2}\right) \text {. }
$$

Thus Lagrange's equations becomo

$$
\begin{gathered}
r^{l}\left(\lambda^{2} \theta\right)+g \lambda \sin \theta=0, \\
m \ddot{\lambda}-m \lambda \dot{\theta}^{2}+\mathbb{E}^{\prime}(\lambda-l), l-m y \cos \theta=0 ;
\end{gathered}
$$

equations which could be obtained immediately from the applieation bit tha second law, with the help of the kinematical expressions for heceleration perpendicular to, and along, the ralius-vector of a plane curve ( $\$ 47$ ).
lastead of the complex pendulum treated in § 15\%, we will now take tho case of two masses attached at different points to an elastic string, or light helical spring, and consider their vertical vibrations.
Let $a, b$ be the unstreteleel lengths of the parts of the string, M and $m$ the masses. Then if $\xi, \eta$ be the vertieal displacements at time $t$, we have

$$
\begin{aligned}
& T=\frac{1}{2}\left(\mathrm{M} \xi^{2}+m(\xi+\eta)^{2}\right), \\
& \boldsymbol{V}=\frac{E}{2}\left(\frac{\xi^{2}}{a}+\frac{\eta^{2}}{b}\right)-\mathrm{M} g \xi-2 m g(\xi+\eta) ;
\end{aligned}
$$

so that Lagrange's equations ara

$$
\begin{aligned}
& \frac{d}{d l}(\mathrm{M} \dot{\xi}+m(\dot{\xi}+\eta))+\mathrm{E}_{c}^{\xi}-(\mathrm{II}+m) g=0, \\
& \left.\frac{d}{d l}(m(\xi)+\eta)\right)+\mathrm{E} \frac{b}{b}-m g=0 .
\end{aligned}
$$

Tho equilibrium positions are found by supposing thec accelera. tions to vanish, so that, if we suppose $\xi$ and $\eta$ to he inearared from them, the terms in $g$ will disappear. Henee the solution is of exactily the same nature as that already given for an apparently different problem ( $\$ 17 \mathrm{~S}$ ).
We may mention that equations practically the samo as these are obtained when we consider the motions of a waten and its balance. whecl, the watcly being supported in a horizontal position by means of a wire, and oscillating in its own plaue by the torsion-elasticity of the wise. Tho reader of $\$ 242$ below will hare no difficulty in obtaining this result. It suggests a praotical method of "setting" a watels to true time, without turning the hands forward or backward, and without letting it run down.

The following is a simple, but very instructive, cxample of the transference of cnergy (back and forward) between two parts of a system. Two bar-magnets of equal mass, length, and strength (fig. 58), are supported horizontally by pairs of parallel strings, so that when at rest they are in one line. Ono of them is slightly displaced in the direction of its length, find the subsequent motion of both. ${ }^{1}$

If we can, by any process, find two fundamental states of motion which, once established, will be jermanent, any other possible motion


Fg. 58. of the system will be n suporposition of these two. Tho amplitudes and phases in the components may have any values, so long as the whole disturbance is small. This follows from the fact that the systeus has two degrees of freedom only,--since we are concerned only with motions in the plane of the figure.
(A) Nuw one obrionsly possible motion is a simple harmonic vibration of the whole, withaut change of distance between the magnets. The period of this vibration is obviously the sane as that of cither magnet if the other were removed.
(B) Another obviously possible motion is that in which the magnets are, at every instant, equally and oppositely

[^256]deffected. The period of this uscillation will be less or greater than that of the former necording as the poles attract or repel one another.

Now the initial state of motion proposed eridently consists of the superpusitiou of (A) and (B) in such a way that there is, at starting, no displacement of either mass, but a definite velucity of one of them only. This corresponds to simultarncus zero of displacement, with equal velocitics, for each of $(A)$ aud (B). There is therefore at that instant no displacement of cither mass; and one is at rest while the other is moving with double the assigned velocity. If $2 \pi^{\prime} n, 2 \pi^{h} n^{\prime}$ be the periods of the two mutions, it is obrious that after the time $\pi\left(n-n^{\prime}\right)$ the magnets will have interchanged their states so that the arrangement will present exactly the same appearance as at first, if looked at from the other side.
Let $a$ he the distance between the ends of the bars when all four strings are vertieal. Then, if $\theta, \phi$ be at time $t$ the inclinations of tho pairs of strings to the vertical, a beconres

$$
\mathrm{D}=a+l(\phi-\theta),
$$

Where $l$ is the common length of the strings. The expression for the patential encrgy due to magnetisn is of the form $\mu / \mathrm{D}$, where $\mu$ is positive if like pales be turned to one another.

Hence

$$
\begin{aligned}
& \mathrm{T}=\frac{1}{2} m l^{2}\left(\theta^{2}+\phi^{2}\right), \\
& \mathrm{V}=\frac{1}{2} m g l\left(\theta^{2}+\phi^{2}\right)+\frac{\mu}{a+l, \phi-\theta)} .
\end{aligned}
$$

Forming tho equations as usual, and omitting pareers of $\theta$ and $\phi$ above the first, we have

$$
\begin{aligned}
& m l^{3} \dot{\theta}=-m g l \theta+\frac{\mu^{l}}{c_{i}}\left(1-\frac{\partial l}{a}(\phi-\theta)\right), \\
& m l^{2} \ddot{\phi}=-m g l \phi-\frac{\mu^{?}}{c^{?}}\left(1-\frac{2 l}{a}(\phi-\theta)\right)
\end{aligned}
$$

from which the results aheady given may be deduced.
Finally, let us take the case of Atwood's machine (§ 1/3) when Atwoor", the masses are equal, and one of them is vibrating through small machine arcs.

Let $r, \theta$ be tha polar coordinates of the vibrating mass; then, One mase neglecting prowers of $\theta$ ligeher than, the second, we have the general- vibrati-n ized equations

$$
\begin{aligned}
& 2 \ddot{r}-\gamma^{2}=-\frac{1}{2} y^{2}, \\
& \frac{d}{d t}\left(r^{2} \theta\right)=-g r \theta .
\end{aligned}
$$

Put $\frac{1}{2} y r$ for $r$, and $\theta \sqrt{ } 2$ for $\theta$, and we get.

$$
\begin{aligned}
& \ddot{i}-r \cdot \theta^{2}=-\theta^{2}, \\
& \frac{1}{r} \frac{d}{d t}\left(r^{2} \theta\right)=-2 \theta .
\end{aligned}
$$

Transform to rectangular caorlinates in the plane of motion, $x$ being vertically downwards; then

$$
x=y^{2} \mid x^{2}, \quad y=-2 y / x .
$$

This slows that the vertical acceleration of tho vilrating particla is very small, but canstantly downward. Hence the chergey of the vibratory motion is steadily converted into energy of translation of tho masses.
When both the equal masses vibrate through small ares, it is found that the mass whase nngular range is the greater has downward aceeleration with diminishing angular range. Hence it would appear that, if the string be long cnough, tha entire mation would be periodic.
§216. Before leaving this sulject we may form, from the completa value of $\delta, \mathrm{A}$ given in last scotion, the generalized equations correspouding to those of llawilton's "varying action," as given ia

We lave at once

$$
\left(\frac{d \Lambda}{d \theta}\right)-\left(\frac{d \mathrm{~T}}{d \phi}\right),\left(\frac{d \Lambda}{d \phi}\right)-\left(\frac{d \mathrm{~T}}{d \phi}\right), \ldots,\binom{d \Lambda}{d \| \mathrm{I}}-\ell .
$$

But, by the value of 1 , we have

$$
\begin{aligned}
& \left(\frac{d T}{d \theta}\right)=\Gamma \theta+Q \phi+\ldots \\
& \left(\frac{d T}{d \phi}\right)=Q \theta+R \phi+\ldots \\
& \quad \& c .-\& c
\end{aligned}
$$

These equations give $\boldsymbol{\theta}_{,} \boldsymbol{\phi}_{3}$. . . as homogeneous linear functions of $\left(\frac{d \mathrm{~T}}{d \theta}\right),\left(\frac{d \mathrm{~T}}{d \phi}\right)$, that is, of $\left(\frac{d A}{d \theta}\right),\left(\frac{d A}{d \phi}\right)$,
if we substitute these expressions in the cquation

$$
2 T=\Sigma\left[\theta\left(\frac{d T}{d \theta}\right)\right]-\Sigma\left[\theta\left(\frac{d A}{d \theta}\right)\right]
$$

Which is obviously truc, because $T$ is a liomogeneous function of $\theta$, $\phi, \ldots$. of the second degree, we have a partial diffcrential equation of the form

$$
p\left(\frac{d \mathrm{~A}}{d \theta}\right)^{2}+2 q\left(\frac{d \mathrm{~A}}{d \theta}\right)\left(\frac{d \mathrm{~A}}{d \phi}\right)+r\left(\frac{d \mathrm{~A}}{d \phi}\right)^{2}+\ldots=2(\mathrm{H}-\mathrm{V})
$$

from which $A$ is to be found.
The coefficicuts $p, q, r \ldots$ are, in general, like P, Q, R, ... functions of $\theta, \phi, \ldots$,

As an illustration, take again the example in last section, where two masses aro attached to a helical spring, and vibrate in a vertical line. From the value of $T$ there given we have

$$
\begin{aligned}
& \left(\frac{d \mathrm{~A}}{d \xi}\right)=\left(\frac{d \mathrm{~T}}{d \dot{\xi}}\right)=(\mathrm{I}+m) \dot{\xi}+m \dot{\eta} \\
& \left(\frac{d \Lambda}{d \eta}\right)=\left(\frac{d \mathrm{~T}}{d \dot{\eta}}\right)=m \dot{\xi}+m \dot{\eta}
\end{aligned}
$$

From these we have the equation for $A$

$$
n\left(\frac{d A}{d \xi}\right)^{2}-3 m\left(\frac{d A}{d \xi}\right)\left(\frac{d A}{d \eta}\right)+(\mathrm{I}+1 n)\left(\frac{d \mathrm{~A}}{d \eta}\right)^{2}=2 \mathrm{I} m(\mathrm{H}-\mathrm{V})
$$

The value of $V$ is given above. This equation is, of course, to be treated according to the process illustrated in $\S 209$.

## Statics of a Rigid Solid.

§217. A rigid body, as we have already seen, has at the atmost six degrees of freedom, three of translation and three of ratation. According to Newton's scholium, the oonditions of equilibrium of snch a body, under the action of any system of forces, are that the algebraic sum of the rates of doing work by and against the forces shall be nil Whatever uniform velocity of translation or of rotation the body may have. For, if this were not so, there would be work done against acceleration, and the body would gain or lose kinetic encrgy. And this gain or loss would take place even ii the body were originally at rest, $i . e$. , it would not be in equilibrium. To ensure equilibrium then, all that is necessary is that the sums of the components of the forces in any three non-coplanar directions shall vanish, along with the sums of their moments about any three non-coplanar lines. For simplicity it is usual to assume for these directions a system of rectangular axes, and for the lines another system parallel to them and passing through some definite point (say the centre of inertia) of the body.
Thus we have at once

$$
\begin{gathered}
\Sigma(X)=0, \Sigma(Y)=0, \Sigma(Z)=0 \\
\Sigma(Z y-Y z)=0, \Sigma(X z-Z x)=0, \Sigma(Y x-X y)=0
\end{gathered}
$$

where $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are the components, parallel to the axes, of a force acting at the point $x, y, z$ of the body. If P , with direction cosines $\lambda, \mu, \nu$, represent the force acting at $\psi, y, z$, these equations may be written in the form

$$
\begin{gathered}
\mathrm{Z}(\mathrm{P} \lambda)=0, \mathrm{\Sigma}(\mathbb{F} \mu)=0, \mathrm{Z}(\mathrm{P} \nu)=0 \\
\mathrm{Z}[\mathrm{P}(\nu y-\mu z)]=0, \mathrm{Z}[\mathrm{P}(\lambda z-\nu x)]=0, \mathrm{\Sigma}[\mathrm{P}(\mu x-\lambda y)]=0 .
\end{gathered}
$$

These equations correspond to the sis degrees of freedom involved.
It is easy to see that it is a mere matter of convenience through what point of the body we draw the lines about which moments are taken. For, if we shift it by quantities $a, b, c$ respectively, the moments become

$$
\leq\{Z(y-b)-Y(z-c)\}, \& c . ;
$$

but these are ... $\Sigma(Z y-Y z)-b \Xi(Z)+c \leq(Y) \quad$ \&o. ;
and, by the first three equations, these quantities are secn to reduce themselves to their first terms. Hence, in forming the equations of equilibrium, eimplicity will be gained by choosing as orisin a point through which the line of action of one or more of the applied forces passes.

Again, the point of application of any one of the forces may be
slifted at will anywhere along the linc in which the force acts. Fol the equations of the line in which the force at $x, y, z$ acts are

$$
\begin{aligned}
& \frac{x^{\prime}-x}{X}=\frac{y^{\prime}-y}{Y}=\frac{z^{\prime}-z}{Z} \\
& Z y^{\prime}-\mathrm{Y} z^{\prime}=\mathrm{Z} y-\mathrm{Y} z, \quad \& \mathrm{c}_{\mathrm{c}},
\end{aligned}
$$

and these give
so that the expressions for the mements are unaltered if the ponnt of application of the lorce be shifted to any position along the line in which it acts.
§ 218. In the great majority of treatises on Statics the fundamental propositions of the subject, above given, are deduced from the assumption (as a thing to be proved experimentally) of the result just established, which is desige nated the "principle of the transmission of force." Along with it are assumed the parallelogram of forces, and the principle of the "superposition of systems of forces in equilibrium." Since the publication of the Principia, the continued use of such methods must be looked upon as a retrograde step in science.
§ 219. From this category we caunot quite except (so far Couplto at lenst as the usual modes of treating it are concerned) the valuable idea of the "couple," due to Poinsot. But the term is in such common use, and the idea in its applications sometimes of sucl importance, that it cannot bel omitted here.
A couple is a pair of eqzal forces acting on the same bodyl in opposite directions and in parallel lines.

From the general conditious already given we see that a couple produces a definite moment of force about a particus lar axis, but that the axis is determinate merely as regards, direction, and not as regards position in space. The forces of a couple do not appear in the first three of the equations of equilibrium. On the other hand, the left hand members of the other three equations may all be regarded as moments of couples. All the properties of couples are contained in these statements. Thus, for instance, it is obvions that, so far as its effects are concerned-

1. A couple may be shifted by trauslation to any other Trans- ference of position in its own plane.
2. It may be shifted to auy parallel plane.
3. Iu either of these it may be turned through any angle.
4. Its forces may be increased or diminished in any Armo of ratio, provided the distance between their lines of action couple. (which is called the "arm" of the couple) be proportionately diminished or increased.

A couple is therefore completely determined by means Axis of, of its "axis," which is a line drawn perpendicular to its couple. plane, and of length representing its moment. : And two couples are obviously to be compounded by treating their axes as if they-rere forces acting at one point.
$\S 220$. We will now examine the consequences of the Redrcsix conditions of equilibrium (§ 217) in some of the more tion of common cases which present themselves. But, before a systeme doing so, it may make matters clearer if we restate these and a for conditions in a somewhat different form.

The resultant of any number of forces, acting at any points of a rigid body, may be represented by a single force acting at the origin, and a couple of definite moment about a definite. line passing through the origin.

For equilibrium of the body this force and sounte mist separately vanish.

Thus if, in fig. 59, P, acting at Q, be any one of the forces, and $O$ the origin (chosen at random), we may introduce at O a pair of equal and opposite forces $\pm \mathrm{P}$, parallel to P. The original force, taken along with - P at the origin, gives a couple; and in addition there is +P acting at the origin.


Fig. 59.
§221. When only two forces act on a body, the first
condition above shows that they must be equal and oppoeite, and the second that they must act in the same line, if they are to maiatain equilibrium. When only three forces act, the first condition ebows that their directions must lie in one plane, the second that their lines of action must be parallel or must meet in one point, if they are to maintain equilibrium.

If their directions meet in one point we have again the problem of the equilibrimn of a single particle under three forces; for there can be no moment about this point.

When the directions are parailel, one of the forces must obviously be equal to the sum of the other two, and must nct in the opposite direction. Also its line of action must lie between those of the other two, for their moments about any point in it must be equal and opposite. Hence it is impossible that any single force slionld balance a couple, unless we adopt the mathematical fiction of an infinitely small force acting in a line everywhere at an infinite distance; se that its moment may be finito, and equal and epposite to that of the couple.
§ 222. When any number of parallel forces act simultaueously on a rigid body, their resultant is a single force eğual to their algebraic sum, with a couple whose plane is obviously parallel to the common direction of the forces. The forces of this couple may be made, by lengthening or shortening the arm, equal to the resultant force. One of them will nentralize it, and the other remains the final resultant, which passes through a definite point called the "centre of parallel forces." Thus any set of parallel forces necessarily has a single force as a resultant, excenting in the epecial case when their algebraic sum is zero.
§ 223. Excellent examples are furnished by heavy bodies of moderate dimensions, where the weights of their parts are forces practically in parallel lines. The single resultant force, in such casea, is the whole weight of the body. Its direction always passes through the centre of inertia (§ 109) because weight (in any one locality) is proportional to mass. For this reason all heavy bodies of moderate dimensions are said to hare a "centre of gravity," which coincides with the centre of inertia. But it mast be noticed that the two ideas are radically different, and that, whils eyery piece of matter has a true centre of inertia, it is, in goneral, only a pproximately that we can predicate of it that it has a centre of gravity. In fact a body has a true centre of gravity only when it attracts, and is attracted by, all other gravitating matter as if its whole mass were concentrated in that point. See Potential. When there is a centro of gravity in a body, it is necessarily coincident with the centre of inertia. In gravitation cases, where bodies of moderate size ure concerned, the resultant is, at lenst approximately, a single force. But, when we deal Whith large non-barycentric bodies like the carth, we find that the resultant of the sun's attraction is a force (determining the orbit) and a couple (producing precession, \&e.).

When a mass is laid on a three-legged table, we find the pressure which each leg supports by simply taking moments ahout the line joining the upper ends of the other two. The Feg is thus seen to support a fraction of the weight of the mass, whose numerator is the distance of the centro of gravity of tho mass from this line, and its denominator the distance of the leg from the same line. Thus wo have a physical proof of the geomet-


Fig. 60. rical proposition that if any point, P , be taken in tho plano of a trianglo ABC (fig. 60 ), and perpendiculars bo drawn from it and from the angles, we havo

$$
\frac{P a}{A a}+\frac{P_{B}^{\prime} B}{B b}+\frac{P \gamma}{C_{c}}=1 .
$$

If the mass of the table is torbe reckoned, P must be taken as the centre of gravity of the system of table and luad together. If the tabie be of uniform material, triangular and supported by legs at its corncrs, similar reasoning shows that when it is unloaded (or loaded at its centre of gravity) each leg supports one third of the weight.
§224. Examples in whin the resultant is a single couple are found in rigidly magaetized bodies placed in a uniform maguetic field. As the amounts of N , and 8 . magnetism in a body are always equal, there is no force of translation in a uniform field. The resultant conple depends for its magnitude on the orientation of the body, and the positions of equilibrium are those for which its moment vanishes.
§225. Let Pat $x, y, z$, bo onc of a system of parallel forces, their direction cosines brimg $\lambda, \mu, \nu$. Let $\dot{Q}$ be the resultant force, and R. with direction cosines $\lambda^{\prime}, \mu^{\prime}$, $\nu^{\prime}$, the axis of the resultant couple. Then our conditions become

$$
Q=\Sigma(P)
$$

$\dot{\lambda}^{\prime} \mathrm{R}=\mathrm{\Sigma}\left[\mathrm{P}\left(\nu y-\mu^{\prime}\right)\right], \mu^{\prime} \mathrm{R}=\mathrm{\Sigma}[\mathrm{P}(\lambda z-\nu x)], \nu^{\prime} \mathrm{R}=\mathrm{\Sigma}[\mathrm{P}(\mu x-\lambda y)]$.
The last three equations give the following conditions determining $R, \lambda^{\prime}, \mu^{\prime}, \nu^{\prime}:-$

$$
\begin{aligned}
& \lambda^{\prime} \mathrm{R}+\mu \Sigma(\mathrm{P} z)-\nu \Sigma\left(\mathrm{P}_{y}\right)=0 \\
& -\lambda \Sigma(\mathrm{Pz})+\mu^{\prime} \mathrm{R}+\nu \Sigma(\mathrm{P} x)=0 \\
& +\lambda \Sigma(\mathrm{P} y)-\mu \Sigma(\mathrm{P} x)+\nu^{\prime} \mathrm{R}=0
\end{aligned}
$$

From these we have the equation of condition

$$
\lambda \lambda^{\prime}+\mu \mu^{\prime}+\nu \nu^{\prime}=0
$$

showing that the axis of the couple is at right angles to the commo direction of the parallel forces.

We have also
$\mathrm{R}^{2}=(\Sigma(\mathrm{P} x))^{2}+(\Sigma(\mathrm{P} y))^{2}+(\Sigma(\mathrm{P} z))^{2}-(\lambda \Sigma(\mathrm{P} x)+\mu \Sigma(\mathrm{P} y)+\nu \Sigma(\mathrm{P} z))^{2}$.
This expression is of the same form as that in $\S 77$, and we therefore conclude that, if $\lambda^{\prime \prime}, \mu^{\prime \prime}, \nu^{\prime \prime}$ be the dircetion cosines of a line iu the body such tlat

$$
\frac{\lambda^{\prime \prime}}{\Sigma(\mathrm{P} \bar{x})}=\frac{\mu^{\prime \prime}}{\Sigma(\overline{\mathrm{P}} \bar{y})}=\frac{\nu^{\prime \prime}}{\Sigma\left(\mathrm{I}^{\prime} z\right)},
$$

the magnitude of the resultant couple is directly as the sine of the angle between this line and the common disection of the praralle] forces. In fact the mere form of the threa conations above proves this result.

In the casc of a body of moderate dimensions, acted on by gramity, $P$ is the weight of the element at $x, y, z$, nnd therefore proportiona] to its mass, so that if the centre of mertia be taken as the origin we have

$$
\Sigma(\Gamma x)=0, \Sigma(\Gamma y)=0, \quad \Sigma(P z)=0
$$

and there is no couple. The whole cffect is therefore the same as if the mass were condensed at the centre of incrita.

In the case of a magnet,

$$
\Sigma(\mathrm{P})=0
$$

and there is no translatory force. The couphe, as we have seen, depends upon the mreutation of thu body as regards the ditection of the line of the earth's magnetic force.
§ 226. We have seen that any system of forces acting on a rigid body may be reduced to a force and a couple; also that when the force is in the plane of the couplo the resultant can always be put in the form of a single force acting in a definite line in the body. When the force is not in the plane of the conple, we may resolve tho couple into two components, the plane of one being paralle\}, of the other perpendicular, to the force. The first, when compounded with the force, mercly shilts the line in which it acts. Thus any system of furecs may be reduced to a single force, acting in a definite line called the "central axis," and a couple in a plane perpendicular to it. One of the forces of the couple mny now be compounded with the single force, and thus we obtain, as the resultant of any system of forces, a pair of forces in non-intersecting lines not perpendicular to one another. This is only one of an infinite number of ways in which fancy, or convenience, may lead us to represent the equivalent of a group of forces. Many very eurious theorems have been met with in investigations on this subject. For instance, by compounding one of tho forces of the resultant couple with the resultant force (nut
now necessarily perpendicular to ite plane) we have a systom of two forces acting in non-intersecting lines. Then we have the following curious proposition, which may easily be proved from the formulo alrcady given:-

When a system of forces is reduced in any manner whataver to two, the volume of the tetrahedron of which these are opposite edges is constant.
§ 227. TLe most symmetrical pair of resultant forces is sound thus. Tslee any point $P$ (fig. 61) in the central axis, end draw through it a line $\mathrm{APA}^{\prime}$, perpendicular to it, and bisected at P. Wabstitute for the singlo force at $P$ its halres acting at A and $A^{\prime}$ respectively. Combine these respectively with the forces $A Q, A^{\prime} Q^{\prime}$ of the couple when $A A^{\prime}$ is madeits arm. The system


Fig. 61. is thus reduced to two equal forces $A R, A^{\prime} R^{\prime}$, whose directions are interchangeable by a rotation of two right angles about the central axis.

Let P with direction cosines $\lambda, \mu, \nu$ be one of the forces, and let $x, y, z$ be its point of application. Then

$$
X=\Sigma\left(P_{\lambda}\right), Y=\Sigma\left(P_{\mu}\right), Z=\Sigma\left(P_{\nu}\right)
$$

are the compenents of the single force at the origin.
Also

$$
\begin{aligned}
\mathrm{L} & =\mathrm{E}[\mathrm{P}(\nu y-\mu z)] \\
\mathrm{M} & =\mathrm{E}[\mathrm{P}(\lambda z-v x)] \\
\mathrm{N} & =\mathrm{\Sigma}[\mathrm{P}(\mu x-\lambda y)]
\end{aligned}
$$

are the components of the resultant couple.
If we shift the origin to the poiot $a, b, c$ the first three quantitics are unaltéred, but the couples become

$$
\begin{aligned}
& \mathbf{L}^{\prime}=\mathrm{L}+c \mathrm{Y}-b \mathrm{Z} \\
& \mathrm{I}^{\prime}=\mathrm{M}+a \mathrm{Z}-c \mathrm{X} \\
& \mathrm{~N}^{\prime}=\mathrm{N}+b \mathrm{X}-a \mathrm{Y} .
\end{aligned}
$$

The point $a, b, c$ is on the central axis if the axis of tho resaltant couple be parallel to the single force, i.e., if

$$
\frac{\mathrm{L}^{\prime}}{\mathrm{X}}=\frac{\mathrm{M}^{\prime}}{\mathrm{Y}}=\frac{\mathrm{N}^{\prime}}{\mathrm{Z}}=c \text {, suppose; }
$$

or

$$
\begin{aligned}
& \mathrm{L}=c \mathrm{X}-c \mathrm{Y}+b \mathrm{Z}, \\
& \mathrm{M}=c \mathrm{X}+e \mathrm{Y}-a \mathrm{Z} \\
& \mathrm{~N}=-b \mathrm{X}+a \mathrm{Y}+e \mathrm{Z}
\end{aligned}
$$

Either of these sets gives the equations of the central axis.
The resultant force and couple are in one plane, and therefere the resultant is a single force in the central axis, when

$$
L^{\prime} \mathrm{X}+\mathrm{M}^{\prime} \mathrm{X}+\mathrm{N}^{\prime} \mathrm{Z}=0
$$

By the values of $\mathrm{L}^{\prime}, \mathrm{II}^{\prime}, \mathrm{N}^{\prime}$, above, we see that this is equivalent

$$
L X+M Y+N Z=0
$$

When this last condition is not satisfied, we see that the value of the left hand member which, from the way in which it occars, must obviously be an invariant, is

$$
e\left(X^{2}+Y^{2}+Z^{2}\right)
$$

where $c$ has the same value as in the threc equations above.
$\S 228$. One of the most remarkable of the many curious theorems connected with the single resultant of a system of forces is that of Minding. We have seen that, in general, the resultant may be put in the form of a single force and a couple in a plane perpendicular to it. If me now suppose the system of forces to be shifted into 2 new position such that their points of application, their magnitudes, and the angles between their directions two and two, all remain unchanged, the resultant force will be of the same magaitude as before, but the couple will in general be different. Of the infinitely infinite number of possible positions which the forces may assume, an infinite number correspond to a zero couple. Minding bas shown that the lines of action of these single resultants consist of all lines passing through each of two curves, fixed in the body, an ellipse and an liyperbola, iu planes perpendicular to each other. The proof of the proposition gives an interesting example of the use of Rodrigues's coordinates ( $\$ 83$ ).

The most obvious modeof attacking this question would be to resolve the applied forces into three groups, parallel respectively to three rectangular axes which revolve with them, and to choose those axes so that the sum of the resolved parts does not vanish parallel to any one of the three. Each of these systems of parallel forces has its own "centre" ( $\$ 222$ ), -so that the final resolution gives three forees, each of a givan magnitude, acting in any mutually perpendicular directions at three definite points in the body. This, howcer, is not analytically so simple as the following.
We refer the body to fixed axes $0 x, \mathrm{O}_{y,} \mathrm{O} z$, to be afterwards spee.. fied. As the origin and the directious of these axes are at our disposal, We anay impose six conditioos. Now suppose the forees to be rcsolved parallel to a set of rectangular axes $\mathrm{O} x^{\prime}, 0 y^{\prime}, \mathrm{O} z^{\prime}$ which will be considered efterwards to rotate with them. Such a system of axes may, at starting, have any assigned position. .'This gives us three conditions morc. Let then A, B, C be the compowents, parallel to the eecond set of axes, of the force applicd at the point whose coordinates referred to the first system are $a, b, c$. Let tho direction cosines of the secoud system in any of its future positions, referred to the first system, be $l_{1}, m_{1}, n_{1} ; l_{2}, m_{2}, n_{2} ; l_{3}, m_{3}, n_{3}$ respectively.
.Then the force at $a, o, c$ has the following compenents :-

$$
\begin{array}{lc}
\mathrm{A} l_{1}+\mathrm{B} ?_{2}+\mathrm{Cl}_{3}, & \text { parallel to } \mathrm{O} x \\
\mathrm{~A} m_{1}+\mathrm{B} m_{2}+\mathrm{C} n_{3}, & \quad \\
\mathrm{~A} n_{1}+\mathrm{B} n_{2}+\mathrm{C} n_{3}, & \quad, \quad, \mathrm{O} y \\
\mathrm{Oz}
\end{array}
$$

The expressions for the resultant force avd couple at the oripin will evidently depend upon the following twelve quantities, besides the direction cosines, viz :-

Assume $\Sigma \mathrm{B}=0, \Sigma \mathrm{O}=0$, i.e., let $0 x^{\prime}$ be always parallel to the direction of the resultant force. Next, let

$$
\Sigma(A a)=0, \Sigma(A b)=0, \Sigma \Sigma(A c)=0,
$$

i.c., let the origin be chosen as the "centre" (§ 222) of the forces parallel to the resultant force. As we inave still foar conditions to impose, we select the following:-

$$
\Sigma(\mathrm{B} a)=0, \Sigma(\mathrm{~B} c)=0, \Sigma(\mathrm{C} a)=0, \Sigma(\mathrm{C} b)=0 .
$$

These express that the plave of the couple due to the forces $C$ passes through $O y$, while that of the forces B passes through Oz .
Write now

$$
\Sigma(A)=\left\{, \Sigma(B u)=c_{c} \beta, \Sigma(C c)=8 \gamma .\right.
$$

The force and couple at the origin are

$$
\begin{array}{ll}
g l_{1}, & \underset{c}{ } m_{2},-g n_{1}, \\
d\left(n_{3} \beta-m_{3} \gamma\right), & g l_{3} \gamma_{1}-g l_{2} \beta
\end{array}
$$

These are equiralent to a single force if ( $\$ 22 \%$ )

$$
\begin{array}{r}
\left(l_{1} n_{2}-n_{1} I_{3}\right) \beta-\left(l_{1} m_{5}-m_{1} l_{3}\right) \gamma=0, \\
m_{3} \beta-n_{2} \gamma=0 \tag{1}
\end{array}
$$

or
This is the required condition. When it is satisfied, the equations of the line in which the single force $g_{c}$ acts arc any two of

$$
\left.\begin{array}{l}
n_{1} \eta-m_{1} \zeta=n_{2} \beta-m_{3} \gamma_{1}  \tag{2}\\
l_{1} \zeta-n_{1} \xi=l_{3} \gamma, \\
m_{1} \xi-l_{1} \eta=-l_{2} \beta
\end{array}\right\}
$$

$$
\begin{aligned}
& m_{1} \xi-l_{1} \eta=-l_{2} \beta \\
& \text { : these three agree being (1). }
\end{aligned}
$$

the condition that these three agree being (1).
Eliminate $l_{1}$ between the last two, add we get

$$
\begin{equation*}
\xi\left(m_{1} \xi-n_{1} \eta\right)=l_{3} \gamma \eta-l_{3} \beta \zeta . \tag{3}
\end{equation*}
$$

Now introduce in (1), in the first of (2), and in (3), Rodrigucu's values of the cosines ( $\$ 83$ ), and they become respectively

$$
\begin{aligned}
(y z-u x) \beta-(y z+u x) \gamma & =0, \\
(x z-w y) \eta-(w z+x y) \zeta & =(y z+u x) \beta-(y z-w x) \gamma, \\
\zeta \xi(u z+x y)-\xi \eta(x z-v y) & =(x z+v y) \gamma \eta-(x y-u z) \beta \zeta .
\end{aligned}
$$

Reartanging according to $y, z$, aud $y z$,

$$
(\beta-\gamma) y z-(\beta+\gamma) w x=0 \text {, }
$$

$$
\begin{aligned}
& (\beta-\gamma) y z+(w \eta+x) y-(x \eta-w) w+(\beta+\gamma) z x=0, \\
& {[S(\xi+\beta) x+\eta(\xi-\gamma) w] y+[S(\xi-\beta) w-\eta(\xi+\gamma) x]=0,}
\end{aligned}
$$

the second of which may be pat, by means of the first, in the iorm

$$
(u \eta+x \zeta) y-(x \eta-u \zeta) z+2(\beta+\gamma) u x=0 .
$$

These three equations involve $v, x, y, z$ io the form of the ratios only of the last three to the first. The last two are linear in $\frac{y}{w}, \frac{z}{w}$, Solving them, and substitutiog io the first me find, finally, a biquadratic in $\frac{x}{w}$.

$$
\begin{aligned}
& \text { इA, } \pm B, \quad \Sigma C \text {, } \\
& \Sigma(A a), \Sigma(A b), \leq(A c) \text {, } \\
& \Sigma(\mathrm{Ba}), \Sigma(\mathrm{Bb}), \Sigma(\mathrm{B} c) \text {, } \\
& \Sigma(\mathrm{Ca}), \Sigma(\mathrm{Cb}),: \Sigma(\mathrm{Cc}) \text {. }
\end{aligned}
$$

Hence, if particular valu $=s$ be assigned to $\xi, \eta, \zeta$, we find four values of $\frac{x}{w}$. Thus, in genelal, there are four positions of the single resultant force parsing through any frint.

But, without forning the biquadratic, we may casily obtain Minding's theorem. Suppose tre seck the locus of nli peints in which the plane $\xi \eta$ can be cut by the line of action of the singleforce. We have $\delta=0$, and the cquations above are reduead to

$$
\begin{aligned}
& (\beta-\gamma) y z-(\beta+\gamma) u x=0 \\
& \eta\left(u^{\prime} y-x z\right)+2(\beta+\gamma) x x=0 \\
& (\xi-\gamma) x y-(\xi+\gamma) x z=0
\end{aligned}
$$

From the last two we find

$$
\begin{aligned}
& -\gamma \eta==(\beta+\gamma)(\xi-\gamma) w \\
& -\gamma \eta J=0(\beta+\gamma)(\xi+\gamma) x
\end{aligned}
$$

so that Gually, by tise first,

$$
\begin{gather*}
\left(\beta^{2}-\gamma^{2}\right)\left(\xi^{2}-\gamma^{n}\right)=\gamma^{2} \eta^{2} \\
\frac{\xi^{2}}{\gamma^{2}}-\frac{\eta^{2}}{\beta^{2}-\gamma^{2}}=1 . \tag{4}
\end{gather*}
$$

or
Had tre put $n=0$, we should have found, by a similar process,

$$
\begin{equation*}
\frac{\xi^{2}}{\beta^{2}}+\frac{\zeta^{2}}{\beta^{2}-\gamma^{2}}=1 \tag{5}
\end{equation*}
$$

(4) and (5) represent an hyperbola and an ellipse, or an cllipse and an hyperbola, rcspectively, according as $\beta^{\prime}$ is greater or less than $\gamma^{\circ}$. In either case the vertices of the hyperbola coincide with the foci of the ellipse; $\theta$ that the two curres are linked together.
It is now easy to seo that, from any assimned point of space, the two curves will appcar to intersect one anotherin four points. Two, or all, of theso may in special cases coincide. Lines drawn to these points give the four positions of the single force which can pass through the assigned point.

## Examples of Statical Methods and Theorems.

§ 220. Suppose a ladder to be leaning against a vertical rgainst \& wall. If there be no friction, what force, applied at the

In the treatment of all questions of this kind the student should commence by making a rough sketch of the situation, indicating all the forces concerned, with the directions in which they act. As shown in fig. 62, the wall exerts an outward thrust $S$ on the upper ead of the ladder, the ground an upward thrmst $R$ on the lower ond. The only other force is gravity, which may be supposed to produce a downward force at the middle of the Jadder, equal to its whole weight. Unless there be some other horizontal force to balance S , the ladder will obriously slido down. Suppose then a borizoatal force $F$ to be applicd


Fig. 62. at the lower end, and let the ladder be inclined at an angle $a$ to the borizon. Then our conditions become
horizontally $S-F=0$, vertically and for the couple in the plane of the figure, $l$ being the length of the ladder,

$$
\frac{1}{2} W l \cos a-S l \sin a=0 \text {. }
$$

[The last equation is obtained by taking moments about the lower end of the ladder, this point-being chosen (§217) because the directions of two of the forces pass through it.] From these equations wo find at once

$$
F=S=\frac{1}{2} W \cot a .
$$

It is to bo observed that the requisite force $F$ is very amall while the ladder is nearly vertical, but increascs without limit as it becomes more nearly horizontal.
$\S 230$. Next let us vary the question by supposing the coofficient of friction on the ground to be $\mu$. The equations are preciscly the same as before, and the limiting value of a for which equilibrium is possible is now to be found by putting

$$
\mathrm{F} \sim \mu \mathrm{R} \sim \mu \mathrm{~W} .
$$

Thus

$$
2 \pi-\cot a
$$

gires the smallest value of a for which equilibrium is possible. For any larger value of a less friction is called into play.
§ 231. If next we assume the wall also to be rough, a new friction force, $\mathrm{C}_{\mathrm{l}}$, comes ic. The equations (for any given value of $a$ ) are

$$
\begin{gathered}
S-F=0, \\
W-R-G=0, \\
\frac{1}{2} l l \cos a-S l \sin a-G l \cos a=0 .
\end{gathered}
$$

Here there is a certain amount of indeterminateness whick our formule cannot escape (although of course it does not exist in nature) so long as we are not dealing with the limiting case in which motion is about to commence. In that case we have the additional conditions

$$
\mathrm{G}=\mu \mathrm{S}, \mathrm{~F}=\mu \mathrm{R}
$$

Thus, in all, there are fire equations. These are requisite and necessary because there are four forces $S, G, R, F$ to be determined, as well as the special value of the angle a The result of climinating the four forces is

$$
\tan \alpha=\frac{1-\mu^{2}}{2 \mu}
$$

§ 232. We may still further vary the question by sup- Man ab posing a man of weight $2 v$ to ascend the ladder. Let $e$ ladines represent the fraction of the ladder's length which he has asceuded. The equations are

$$
\begin{gathered}
\mathrm{S}-\mathrm{F}=0, \\
\mathrm{~W}+w-\mathrm{R}-\mathrm{G}=0, \\
\left(\frac{1}{2} \mathrm{~T}+c w\right) l \cos a_{1}-\mathrm{S} l \sin a_{1}-\mathrm{G} l \cos a_{1}=0 .
\end{gathered}
$$

Iutroducing the condition that slipping is jnst about te commence, we obtain

$$
\tan \alpha_{1}=\frac{1+2 \frac{w\left(1+\mu^{2}\right) e-\mu^{2}}{W} \frac{1-\alpha^{2}}{\tan a}}{1+\frac{\omega}{W}}
$$

where a has the vaiue given in § 231. Heace the limiting angle is increased or diminished by the load on the ladder according as

$$
2\left(1+\mu^{2}\right) \dot{e}-2 \mu^{2}<1-\mu^{2}
$$

i.e.,

$$
2 c>1
$$

The ratio $w /$ W does not appear in this cendition. But it shows its importance when $e$ is either greater or less than $\frac{1}{2}$.

Hence, when the ladder is just about to slip, a man makes it more stable if be stands anywhere on the lower half of it, but brings it down if he monnts higher. We conclude that, so far as sliding is concerned, it is advantageous to make the lower half of a ladder more massive than the upper balf.
§233. Suppose a ladder, with its lower end resting against a wall, to be supported by a horizontal rail oarallel to the wall (fig. 63). This case is chosen becauso it illustrates defnite limits within which stability is ensured.

Let $a$ bo tho half length of the Indecr, a its inclination to the horizon, $b$ the distance of the rail from the $F$ wall. Suppose the ladder in anch a position that if there were no friction it would slip dornwards. Then tho oquations of equilibrium are


$$
\begin{gathered}
R+G \cos \alpha-S \sin \alpha=0 \\
F+S \cos \alpha+G \sin \alpha-W=0 \\
S \delta \operatorname{acc} \alpha-W a \cos \alpha=0
\end{gathered}
$$

In the third of these equations the lower ead of the ladder has been chosen as the point about which moments are taken, because the lines of action of three of the forces
pass through it. Here agaiu there is indeterminateness, because there are two places at which friction comes in, 'and we do not know at. which it is most freely exerted.
But if the thole be on the point of slipping, we have as before the sarcitional data

$$
\mathrm{F}-\mu \mathrm{R}, \mathrm{G}-\mu \mathrm{S} .
$$

These lead to the equation

$$
\left(1-\mu^{2}\right) \cos a+2 \mu \sin \alpha=\frac{b}{a} \sec ^{2} a .
$$

If we introduce an angle $r$, such that

$$
\cos \nu=\frac{1-\mu^{2}}{1+\mu^{2}}, \quad \operatorname{ain} \nu=\frac{2 \mu}{1+\mu^{2}}
$$

this equation becomes

$$
\cos ^{2} \alpha \cos (\alpha-\nu)-\frac{b}{a\left(1+\mu^{2}\right)}=\frac{b}{a} \cos ^{5} \frac{\nu}{2},
$$

the right-hand member of which must necessarily be less than 1 .

This determines the lowest position of the lower end consistent with equilibrium, and the mere change of sign of $\mu$, and thercfore of $\nu$, alters it into the equation for tho highest. The signs of the friction terms are clanged when the direction of slipping is supposed to be reversed.

## Kinetics of.a Rigid Solid.

§ 234. The motion of a rigid body is, as we have seen, completely determined when we know the motion of one of its points and the relative motion of the body abont that point. The point usnally chosen is the centre of inertia of the body, and the investigation of its inntion comes under the kinetics of a particle, which me lave allready snfficiently discnssed. For we are permitted to suppose the whole mass to be coucentrated at tlat point, and to be acted on by all the separate forces, each unaltered in direction and magnitude. Hence we may now confine ourselves to the study of the motion abont the centre of inertia which, for the moment, we may look on as fixed.

To illustrate, in a very simple manner, the new conceptions which are required for the stady of this question, let us take a uniform circular ring of matter, of radius R ; revolving with angular velocity $\omega$ about an axis throngh its centre, and perperdicular to its plane. Its moment of momentum is obviously

$$
\mathrm{M} \cdot R \omega \cdot R \text { or } M R^{2} \cdot \varphi \text {. }
$$

Its kinetic energy is

$$
\frac{1}{2} 3(\mathrm{R} \omega)^{2} \text { or } \mathrm{x}^{2} \mathrm{RR}^{2} \cdot \omega^{3} \text {. }
$$

If it be acted on by a conple C , in its plane, C is the rate of increase of the moment of momentnm, of

$$
M R^{2} \cdot \dot{\omega}=\mathrm{C} .
$$

The work done by the conple in time $\delta t$ is

$$
C_{\omega} \delta t
$$

and the increase of kinetic energy is

$$
M R^{2} \cdot \omega \dot{\Delta} t
$$

By equating these me have (after dividing both sides by *) the same equation as we obtained from the rate of increase of moment of momentum. It will be observen that these equations are of exactly the same form as those for the motion of a particle parallel to one of the coordinate axes, only that $\omega$ takes the place of a velocity (such as $\dot{x}$ ) While the expression $M R^{2}$ takes the place of M, and the right-hand side is the moment of a force, not a force simply.
§ 235. Hence, gencrally, we define as follows :-
DeF. The "moment of inertia" of a body abont any asis is the sum of the products of the mass of each particle of the body into the square of its (least) distance from the axis.

The following theorem enables us at once to find the
moment of inertia alont any line, as axis, from that about' a parallel axis through the centre of inertia.
Let the line be chosen as the axis of $z$, then the moment of inertia alout it is

$$
\leq m\left(x^{9}+y^{2}\right)
$$

But, if $x, y$ he the coordinates of the centre of icertia, $\xi, \eta$ the coordinates ol in vith reference to that centre, wo have

$$
x=\bar{x}+\xi, y=\bar{y}+\eta,
$$

and the abore expression for the moment of inertia becomes

$$
\operatorname{sm}\left(\bar{x}^{2}+\bar{y}^{2}+2 \bar{x} \xi+2 \bar{y} \eta+\xi^{2}+\eta^{2}\right) .
$$

By the property of the centre of inertia, $\S 109$,

$$
\Sigma(m \xi)=0, \Sigma(m \eta)=0
$$

Hence the above axpression consists of two parts:-

$$
\Sigma m\left(\xi^{2}+\eta^{2}\right)
$$

the moment of inertis about a parallel axis throngh the centre of inertia, and

$$
\Sigma(m) \cdot\left(x^{2} \div \hat{y}^{2}\right)
$$

the moment of inertis of the whole mass aupposed roncentrated at its centre of inertia.
$\S 236$. Hence we need study ouly the moments of inertia about axes passing throngh the centre of inertia. Bnt we will commence with an origin assumed at hazard.
If the direction cosines of an axis through the origin be $\lambda, \mu, \nu$, the square of tho distarce of the mass $m$ at $x, y, z$ from it is

$$
x^{2}+y^{2}+z^{2}-(\lambda x+\mu y+\nu z)^{2}
$$

Hence the moment of inertia is

$$
y=\sin \left(x^{3}+y^{2}+z^{2}-(\lambda x+\mu y+\nu z)^{2}\right)
$$

$=\operatorname{sm}\left(\left(y^{3}+z^{2}\right) \lambda^{2}+\left(z^{2}+x^{2}\right) \mu^{2}+\left(x^{3}+y^{2} \nu^{2}-2 x y \lambda \mu-2 y z \mu \nu-2 x z \nu \lambda\right)\right)$,
which may be written

$$
C^{2}-A \lambda^{2}+2 G_{3} \lambda \mu+B \mu^{2}+2 G_{1} \mu \nu+2 G_{2} \nu \lambda+C \nu^{2} .
$$

If we measure off, on the axis, a quantity $\rho$ whose square is the reciprocal of of, and call its terminal coordinates $\xi, \eta, \zeta$, this equation becomes by multiplying both sides by $\rho^{2}$

$$
1=A \xi^{2}+2 G_{3} \xi \eta+B \eta^{2}+2 G_{1} \eta \xi+2 G_{2} \xi \xi+C \zeta^{2} .
$$

As the moment of inertia is essentially a positive quantity, this equation represents an ellipsoid. It must of course bave three principal axes; and, when these are taken ns the coordinates axes, the terms in $\xi \eta, \eta \zeta$, and $\zeta \xi$ in the above expression must disappear.
$\$ 237$. Hence at every point of every rigid body there Principat are three "p principal axes" of inertia, at right angles to one azes of another. One of them is the axis of absolnte maximum ${ }^{\text {inertia. }}$ moment, another that of absolute minimum.
Our equation now becomes, when referred to these axes,
or, dividing by $p^{3}$,

$$
\begin{aligned}
& 1=A \xi^{2}+B \eta^{2}+C \zeta^{2}, \\
& \\
& y=A \lambda^{2}+B \mu^{2}+C \nu^{3} .
\end{aligned}
$$

Thus the moment of inertia about any axis is found from those about the principal ares at that point by multiplying each by the square of the corresponding direction cosine, aud adding tha results.
For the quantity $A$.was written originally as

$$
\operatorname{sm}\left(y^{2}+z^{2}\right),
$$

i.e., it is the moment of inertia about the axis of $x$. We see also that, at every polnt of a body, there are threa rectangular axea such that the expressions

$$
\mathbf{Z}(m x y), \mathbf{I}(m y z), \mathbf{Z}(m z x)
$$

ranish when these are taken as coordinate ares.
T To find how thess axes are distributed in a body, let us suppose it referred to the principal axes through its centre of inertia, and let $\mathrm{ML} \mathrm{h}^{2}, \mathrm{M} k_{5}^{2}, \mathrm{M} k^{3}$, be tha inoments of inertia about them. The quantities $k_{1}, k_{2}, k_{3}$ are called the principal "radii of gyration." Then, by the results above, the moment of inertia aboat a line $\lambda, \mu, v$ through the point $a, \beta, \gamma$ is

$$
y=M\left\{\alpha^{2}+\beta^{2}+\gamma^{2}-(\lambda a+\mu \beta+v \gamma)^{2}\right\}+M\left(\lambda\left(\lambda k_{1}^{2}+\mu^{2} k_{\frac{2}{2}}^{2}+\nu^{2} k_{\mathrm{j}}^{2}\right) .\right.
$$

For a principtl axis this is to be a maximum or minimum, with the sole condition

$$
\lambda^{2}+\dot{\mu^{2}}+\nu^{2}=1
$$

Hence, if $p$ be an undetermined multiplier, we hava

$$
\begin{aligned}
& \left(k_{1}^{2}+p\right) \lambda-a(\alpha \lambda+\beta \mu+\gamma \nu)=0, \\
& \left(k_{2}^{3}+p\right) \mu-\beta(\alpha \lambda+\beta \mu+\gamma \nu)=0, \\
& \left(k_{2}^{3}+p\right) \nu-\gamma(\alpha \lambda+\beta \mu+\gamma \nu)=0 .
\end{aligned}
$$

But, if we consider a surfaco of the second order

$$
\frac{x^{2}}{k_{1}^{2}+p}+\frac{y^{2}}{k_{2}^{-i}+p}+\frac{z^{2}}{k_{j}^{2}+p}=1,
$$

confocal with the ellipsoid

$$
\begin{equation*}
\frac{x^{2}}{k_{1}^{2}}+\frac{y^{2}}{k_{3}^{3}}+\frac{z^{3}}{k_{3}^{3}}=1, \tag{a}
\end{equation*}
$$

the direction cosines of its normal at $x, y, z$ ara

$$
\lambda: \mu: \nu:: \frac{x}{k_{1}^{2}+p}: \frac{y}{k_{2}^{z}+p}: \frac{z}{k_{3}^{z}+p} .
$$

Heace, if this surface pass through tho point $\alpha, \beta, \gamma$, we have

$$
\begin{aligned}
& \left(k_{1}^{\prime}+p\right) \lambda=\mathrm{Pa}, \\
& \left(k_{3}^{3}+p\right) \mu=\mathrm{P} \beta, \\
& \left(k_{3}^{3}+p\right) \nu=\mathrm{P},
\end{aligned}
$$

where $P$ is deterniued by the equation

$$
\mu \lambda+\beta \mu+\gamma^{\nu}=\mathrm{P}\left(\frac{\alpha^{2}}{k_{1}^{2}+p}+\frac{\beta^{2}}{k_{2}^{2}+p}+\frac{\gamma^{2}}{k_{3}^{2}+p}\right)=\mathrm{P} .
$$

Substitute this value of $P$ in the preceding eqnations, and they become identical with those ahove giveu for determining the grincipal axee at $a, \beta, \gamma$. Hence Binet's Theorem:-

The principal axes at any point of a body are normats to the threc surfaccs of the sccond order which pass through that point and are confocal with the cllipsoul (a).
Priscipul §238. We will here tabulate the values of the moments morsent of incrtia about principal axes through the centre of inertia, of her. tha'
in a for specially useful cascs.

1. Plane uniform circular disk.

Divido it into concentrio rings, of radius $r$, of breadth $\delta r$. Then the moment of inertia about the axis through tho centre, and perpendioular to the plane, of the circle is

$$
\rho \int_{0}^{a} 2 \pi r^{3} d r-\frac{1}{2} \pi a^{4} \rho,
$$

where $a$ is the radius, and $\rho$ the mass of a square unit, of the disk. But tho mass is $* a^{2} p$,

$$
\text { oo that } \quad k_{1}^{2}-\frac{1}{2} a^{2} \text {. }
$$

This of course, arplies to a circular cylinder. Obviously, in the disk

$$
h_{3}^{2}-k_{3}^{3}=\frac{1}{2} k_{1}^{2}-\frac{1}{4} a^{2} .
$$

In fact the moment of inertia about an axis drawn perpendicular to any plane figure at any point is equal to the emm of the other $t$ wo about rectangular axes which lio in the plane. The one is $\S m\left(x^{2}+y^{2}\right)$, nut the others are $\Sigma m x^{2}$ and $\Sigma m y y^{2}$ respectively.
12. Uniform rod of tength $l$, $p$ mass per unit tength.

$$
\begin{aligned}
& \mathrm{M}-l_{\rho}, \mathrm{M} k_{1}^{3}=0, \mathrm{M} k_{2}^{2}=\mathrm{M} k_{3}^{2}=2 \rho \int_{0}^{\frac{1}{2} l} x^{2} d x=\frac{\rho \rho^{3}}{12} ; \\
& k_{2}^{2}=k_{2}^{2}=\mathrm{H}_{3}^{1} l^{2} .
\end{aligned}
$$

3. Uniform rectangelar plate, sides $a$ and $b$, axis parallel to $\delta$.

60 that

$$
\begin{array}{r}
M k^{2}=2 b p /_{0}^{\frac{a}{3}} x^{2} d x=\frac{a^{3} b}{12} p, \\
k_{1}^{3}=\frac{1}{2} a^{2}, \text { and } k_{8}^{2}=1_{1}^{3} b .
\end{array}
$$

Hence, by the remark above,

$$
h_{3}^{3}=\frac{1}{2}\left(a^{2}+b^{2}\right) .
$$

4. Uniform sphere, radius $a, \rho$ rasss por unit volume Here

$$
\mathbf{\Sigma}\left(m x^{2}\right)=\mathbf{\Sigma}\left(m y^{2}\right)=\mathbf{\Sigma}\left(n z^{2}\right),
$$

and thcrefore the sum of any two is

$$
-y \leq m\left(x^{3}+y^{2}+z^{2}\right)
$$

Thus

$$
\mathrm{M} k_{4}^{2}-\mathrm{M} k_{2}^{3}-\mathrm{M} k_{3}^{2}-34 \pi \rho \int_{0}^{a} r^{4} d r=\frac{\Sigma^{n} \delta \pi \rho a^{5} .}{}
$$

But

$$
M-\frac{1}{3} \pi a^{3}
$$

ond thus

$$
k_{1}^{2}=k_{2}^{2}-k_{3}^{3}=\left\{a^{3} .\right.
$$

5. Plano uniform eltiptic disk, eemiaxes $a, b$; omass of nnit area Momont of inertia about $a$ is

$$
M k_{i}^{3}-2 \rho \int_{0}^{a} \frac{y^{3}}{3} d x=\frac{\pi a b^{3} \rho}{4}
$$

fo that

$$
k_{1}^{*}=\frac{1}{6} 6^{2} .
$$

From this follows inmediately
6. Ellipsoid, scmiaxes $a, b, c$, and of uniform density :-
$k_{i}^{2}-\frac{1}{f}\left(l^{2}+c^{2}\right), \quad k_{3}^{2}=\frac{1}{8}\left(c^{2}+a^{2}\right), \quad k_{3}^{-}=\frac{1}{f}\left(a^{2}+b^{2}\right)$.
From these we can, of course, reproduce the resile for a sphere.
7. Rectangular parallelepiped, ediges $a, b, c$ :-

The determination of moments of inertia is, like that of centres of inertia, a purely mathematical matter, the full discussion of which would lead us a way from the proper oljects of this artiete.
$\S 239$. The simplest cases that can present themselves 80 far as rotation is concerued (for the translational effecta on a rigid body are treated precisely as if it were a mere particle, - a process already sufficiently illustrated) are those in which there is one degree of freerlom to rotate, i.e., when the body is rigidly attached to a fixed axis. Here the physical conditiou is simply that the rate of increase of moment of 1 nomentum is equal to the moment of the resultant couple about the axis of rotation.
§ 240. Let us recur to A twoud's machine as a first example, Pulley o and suppose the string not to slip on the pulley, so that the Atwood pulley must turn. In this case $w e$ must observe that the machine. two free parts of the string are now, as it were, separate strings, so that we have no right to assume their tersions to be equal. In fact if they were equal there would be no acceleration of the rotation of the pulley, nor of course of the common velocity of the tro masses. We assuma that the pulley is symmetrical, and the axis through its centre of inertia.

Let $a$ be the radius of the pulley, and $\omega$ its angular velocity, theu $a \omega$ is the linear velocity of either mass. Thus the linear acceleration of each of the masses is equal to a times the angular accelcration of the pulley. But the linear acceleration multiplied by the mass is the measure of the force produciog it; while the angular acceleration multiplied by the moment of inertia is the measure of the moment of the couple produciug it. Thws we have (M being the mass of the pulley, and $k$ its radius of gyration)

$$
\begin{aligned}
& \mathrm{M} k^{2} \times \text { angular acceleration }=\left(\mathrm{T}^{v}-\mathrm{T}\right) \alpha, \\
& m^{\prime} \times \text { linear acceleration }=m^{\prime} g-\mathrm{T}^{\prime}, \\
& m \times \text { linear acceleration }=\mathrm{T}-m g .
\end{aligned}
$$

Eliminating T and $\mathrm{T}^{\prime}$, and taking account of the above rclation between the accelerations, we find at once

$$
\text { Linear Acceleration }=\frac{m^{\prime}-m}{m^{\prime}+m+M k^{2} / a^{2}} g \text {; }
$$

from which, by the last two of our equations, the separate valucs of ' T and T ' may be found.

If we compare this result with that obtained in § 173 , on the supposition that the pulley was perfectly smooth, we see that the only difference is in the addition of $M k^{2} / a^{2}$ to the sum of the two masses. Otherwise the nature of: the metion remains unaffected.
§241. Let us next take the case of a body of any form C คmattached to a horizontal axis which does not pass through pourit its centre of idcrtia. In auch a caso gravity is tha force nemiuy producing motion, and we have what is called a "compound . pendulum." Draw through the centre of inertia a line parallel to the axis; let $l l$ be the distauce between these lines, and 0 the angle which their plane makes (at a given time) with the vertical. The momont producing angular acceleration is obviously

$$
-m g h \sin \theta
$$

Divide by the moment of inertia about the axis, which by a previous proposition ( $\$ 235$ ) is

$$
m\left(h^{3}+h^{2}\right)
$$

(where $k$ is the radius of gyration about the line drawn through the centro of inertia), and we have for the angular acceleration

$$
-\frac{g h \sin \theta}{k^{3}+h^{2}}
$$

In the case of a simple pendulum of length $l$ ，we suw that the angular acceleration is

$$
-\frac{q \sin \theta}{l}
$$

Hence the motion of the compound pendulum will be identical with that of the simple pendulum mhen，and only when，

$$
l=\frac{h^{3}+h^{3}}{h}=2 k+\frac{(k-h)^{2}}{h}
$$

As $h$ and $k$ are necessarily positire（or rather signless） quantities，the smallest value of $l$ is evidently when $k=h$ ． Hence the shortest time in which the mass can vibrate about any axis parallel to the original one corresponds to that of a simple pendulum of length $2 k$ ．When $h$ is made either less or greater than $\pi$ ，the length of the equivalent simple pendulum increases，and for any assigned value of $l$ greater than $2 k$ there are tro corresponding values of $h$ ， one less and the other greater than $k$ ．Their sum，however， as we see hy the coefficient of the second term in the equation

$$
h^{2}-l h+k^{2}=0,
$$

is almnys equal to l．
If then we can find two parallel axes in a rigid body， lying in one plane with the centre of inertia，and on epposite sides of that point，such that the time of oscilla－ tion is the same for ench，the distance betreen thent is the length of the equivalent simple pendulum．Kater made use of this proposition in his determination of the length of the second＇s pendulum，under the circumstances in which it wrs defined by Act of Parliament as a datum for restoring，in case of loss，the standard yarcl．
Cumplex $\$ 242$ ．Suppose now thas a second body is attached to the donr－first by an axis parallel to that about which the first is con－ ponvod
pendiu
此異管 strained to move；and，for simplicity，suppose the centre of inertia of the first body to be in the plane containing the two axes．Here we have a complex compormd pendulum， and it is interesting to compare the motion with that of the complex simple pendulum of $\$ \$ 177,178$.

Let $m^{\prime}, h^{\prime}, \phi$ correspond，for the second body，to $m, k, \theta$ for the first，and let $a$ be the distance between the axes．For variety wo will adopt Lagrange＇s method．We have clearly
$\mathrm{T}=\frac{1}{2}\left(m k^{2} \phi^{2}+m h^{2} \dot{\theta}^{2}+\dot{m}^{\prime} k^{\prime 2} \dot{\phi}^{2}+m^{\prime}\left(a^{2} \phi^{2}+\hbar^{\prime 2} \dot{\phi}^{2}+2 a h^{\prime} \cos (\phi-\theta) \phi \theta\right)\right.$ ， $\mathrm{V}=\mathrm{C}-m g h \cos \theta-m^{\prime} g\left(a \cos \theta+\pi^{\prime} \cos \phi\right)$.
These mould enable us at once to write down the equations of motion， however large he the disturbance，but they are too complex for our present work．Let us then assume $\phi$ and $\theta$ to be very snall，and we have

$$
\begin{gathered}
\left\{m\left(k^{2}+l^{2}\right)+m^{\prime} a^{2}\right\} \ddot{\theta}+m^{\prime} a l^{\prime} \ddot{\phi}=-\left(m h+m^{\prime} \alpha\right) g \theta, \\
m^{\prime}\left(k^{\prime 2}+h^{2}\right) \ddot{\phi}+m^{\prime} a l^{\prime} \ddot{\theta}=-m^{\prime} g h^{\prime} \phi .
\end{gathered}
$$

Combining，as before，by means of an undetermined multiplier，we have

$$
\begin{aligned}
\left(m\left(k^{2}+h^{2}\right)\right. & \left.+m^{\prime} a^{2}+\lambda m^{\prime} a l^{\prime}\right) \theta+\left(n n^{\prime} \alpha \pi^{\prime}+\lambda n^{\prime}\left(k^{2}+l^{\prime 2}\right)\right) \ddot{\phi} \\
& =-g\left\{\left(m m^{\prime} \alpha+m^{\prime} \alpha\right) \theta+\lambda m^{\prime} l^{\prime} \phi\right\} .
\end{aligned}
$$

Thus the two values of $\lambda$ are giren by the equation

$$
\frac{m^{\prime} a l^{\prime}+\lambda m^{\prime}\left(k^{\prime 2}+h^{2}\right)}{m\left(k^{\prime \prime}+h^{2}\right)+m^{\prime} a^{2}+\lambda m^{\prime} \alpha h^{\prime}}=\frac{\lambda m^{\prime} h^{\prime}}{m h^{\prime} h+m^{\prime} G} .
$$

This may be written in the form

$$
\frac{A+\lambda}{B+\lambda}=\frac{\lambda}{C}
$$

Where $B$ is greater than $A$ ；and $A, B, C$ are all essentially positive， if the bodies have been only slightly displaced from the position of atable equilibrium．The equation gives

$$
\lambda^{2}+(B-C) \lambda-A C=0,
$$

so that the values of $\lambda$ are essentially real and of opposite signs．If wo write $\mu-\mathrm{B}$ for $\lambda$ ，this cquation becomes

$$
\mu^{2}-(B+C) \mu+(B-A) C=0
$$

30 that the ralues of $\lambda+B$ are both positive，and therefore the motion of either mass is the resultant of two simple harmonic motions．
§243．A woll－known puzzle in connexion with this subject
used to be＂How to distingnish between two hollow shells，Rolrirs one of gold the other of silver，if their dimmeters and masses of holins． be alike，and both be painted．＂If we observe that the shells． volumes of equal masses are inverscly as the densities，the rolume of the gold shell is seen to be less than that of the silver one，and therefore，on the whole，its mass is farther from the centre，and its moment of inertia greater．Hence any form of experiment in which the moment of ivertia comes in will suffice to decide the question．Thas they might be alternately clamped tight to the end of a rod， and the system swung as a pendulum，when the gold sphere would vibrate more slowly than the silver one．Or they might be allowed to roll，not slide，down a rough planc． In this case the work done by gravity on each is the same when they have fallen through equal spaces．But its equivalent is in the form of kinetic encrgy，partly transla－ tional und partly rotational．The relative amounts of these two depend on the moments of inertia of the spheres，for the ratio of the translational velocity to the angular velocity is the same for each．Hence the gold sphere，having the greater moment of inertia，will have the smaller velocity of translation．Another form of this question was to have a shell with a splrerical mass inside，which might be either free to rotate orr gimbals，or else be keyed to the outer skin．The keying would of course retard the motion of the whole down a rough plane，for part of the energy due to gravity would then be slarenl by the internal mass in the form of energy of rotation，from which it would ather－ wise have been free．Another very instrnctire form is that of a spherical shell full of fluid．If the fluid bo perfect， the moment of inertia is that of the shell alone；if it be infinitely viscous，the moment of inertia is that of shell and fluid as if they constituted one rigid solid；and we may have every intermediate amount．If we suppose the rotation of the outer shell to be suddenly stopped，the infinitely viscous contents would be reduced to rest also． But if they be not infinitely viscous they will not at once be brought to rest，but will be able to put the shell in rotation again if it be at once set free．Thus，in practice， we can tell a rat egg from a harl－boiled egg．The first is with difficulty made to rotate，and sets itself in motion again if it be stopped and at once les go．The second behares，practically，like a rigid solid．
§244．The problem of the rolling of a sphere down arough inclined plane is solved at once，as above，by applying the couservation of energy．For，if $x$ be the coordinate of its centre parallel to the plane，$\theta$ the angle through which it has turned，and $a$ its radius，wo have the kinematical condition

$$
x=\alpha \theta
$$

（due to the perfect roughness of the plane）．
Also the potential energy lost is

$$
\mathrm{M} g x \sin a
$$

where $a$ is the inclination of the plane to the horizon；and the kinetic energy gained is made up of the two parts，－ $\frac{1}{2} \mathrm{M} \dot{x}^{2}$ translational，and $\frac{1}{2} \mathrm{M} k^{2} \dot{\theta}^{2}$ rotational．
Honce

$$
\begin{gathered}
\mathrm{M}\left(x^{2}+a^{2}\right) \theta^{2}=2 \mathrm{Mg} \theta \sin a, \\
\dot{x}^{2}=2 \frac{a^{2} g}{k^{2}+a^{2}} 2 \sin a
\end{gathered}
$$

or
This shows that the motion is the same as that of a particle sliding down a smooth plane of the same inclina． tion，under gravity diminished in the ratio $a^{2}: k^{2}+a^{2}$ ． And it shows how friction may retard motion withont pro－ ducing any dissipation of energy．
§ 245．Suppose one point of a rigid plane sheet be made to more in any manner in the plane of the slreet，what will be the consequent rotatic．a？

Let MI be the mass，and ：．，$\eta$ ，given in terme of $t$ ，the coordinates

Tarylng of the point of the shoet whose motion is assigned. Let $a, 0$ be the on- relative polar.coordinates of the centre of inertion then

$$
\begin{gathered}
M[\xi+a(\cos \theta)]-X, \quad M[\eta+a(\sin \theta)]=Y, \\
M L^{2} \theta=-I a \cos \theta+X a \sin \theta ;
\end{gathered}
$$

. hody. Where $X$ ond $Y$ are tho forces requisito to produce the motlon. Eliminating them, wo find

$$
\left(x^{2} \cdot \xi a^{2}\right) \theta=-a(4 \cos 0-\xi \sin )
$$

with which we can do no more until further dato are specified.
Suppose $\xi, \eta$ to move with uniform acceleration $p$ in a dicection assigned by $a$, then

$$
\xi-p \cos \alpha, y-p \sin \alpha, \text { ond }
$$

$$
\left(x^{2}+a^{2}\right) \theta=-a p(\sin a \cos \theta-\cos \alpha \sin \theta)=a p \sin (\theta-a)
$$

The contre of inertia of tho mass therefore noves, relatively to tho constrained point, precisely as does a simple pendulum ; but the direction of $p$ is reversed.

Again suppose tho constrained point to move uniformly in u circlo of radius $b$, with angular velocity w. We heve

$$
\xi \approx \delta \cos \omega \ell, \eta=b \sin \omega t,
$$

2nd $\left(r^{2}+a^{2}\right) \theta=+\omega^{2} \alpha b(\sin \omega l \cos \theta-\cos \omega(\sin \theta)$,
or

$$
\left(l^{2}+a^{2}\right)\left(\frac{d}{d t}\right)^{2}(\theta-\omega t)=-\omega^{2} a b \sin (\theta-\omega t)
$$

This is, again, tho oquation of motion of a simple pendulitm, but the angle of displacenient $\theta$ - wt'js no longer'measured from a fixed lino but from the uniformly rotating radius of the guide circlo, Hence the mass oscillateo, pendulum-rvise, about this-uniformly revolving.line.
§ 240.. Let us take, as an instance of impulse, the ease of
impulsive pressare at this point. It is easy to see that Impulss this is exactly the same question as to find the impulse, required and its point of anplication, so that it may produce a for a given motion of a body in a plane perpendicular to one $\begin{aligned} & \text { given } \\ & \text { of its principal axes. }\end{aligned}$

The impulse must obvionsly act in a plane passing through the centre of inertia. And the ghysical conditions are that the change of momentum of translation is equal to, and in the direction of, the impulse, while the change of moment of momentum about the ceutre of inertia is equal to the moment of the impulse. Let the impnise acting at the point $\xi, \eta$ have components $R, S$ parallel to rectaogular coordinates in tho plane of motion, nod let $\omega$ be the angular velocity, $u, v$ the linear velocittes, generated by it Then the physical conditions are

$$
\mathrm{M} u=\mathrm{R}, \quad \mathrm{I} \mathrm{~L} v=\mathrm{S}, \quad 3 \mathrm{k}^{2} \omega=\mathrm{S} \xi-\mathrm{R} \eta .
$$

When $u, v, \omega$ are given, R and S are found from the first two equations, and the third is then the equation of the line in which the impulse must aet. Similarly, when the impulse and its line of action are given, we have in terms of these data the quantities $u, v, \omega$.
§248.' As a-simple practical example, suppose one strikes Centre of a hard object with a stick in such. a way that his hand is at percus. rest at the instaut of the impact; with wiat part of the ${ }^{\text {sion. }}$ stick must he strike so that there may bo no jar on his hand?
Let $\xi$. he measured along the stick from its centre of ${ }^{2}$ inertia in the direction which it has at the instant of. impact. Then the hinematical condition is

$$
v=a \omega,
$$

Where $a$ is the distance from the hand to the centro oi inertia of the stick, This, as the impulse S is the sole cause of the stick's being brought to rest, we have.
so that

$$
M v+S=0, \quad M \sum k_{\xi}^{:} v / a+S \xi=0 ;
$$

Hence if the stick be uniform and be held by one end. so that its length is $2 a$, and therefore $3 K^{2}=a^{2}$, we hove

$$
\xi=\frac{1}{3} a ;
$$

and $a+\xi$, the distance of the poiat of impact from the hand, is

$$
a+\frac{1}{3} x=\frac{2}{3} .2 a
$$

$i$ e., it is at troothirds of the length of the stick.
If, however, the hand be moving, at the instant of impact, perpendicularly to the stick with velocity $V$, the kinematical condition is $v-V=a \omega$, which introduces a corresponding. chango in the result.
§ 249. The reaction of the axis is casily calculated. If Reaction the axis about which the body is constrained to rotate on avia be perpendicular to a plane though the centre of inertia about which the body is symmetrical, and if tho applier ferees aet in that plane, it is clear that the reaction of the axis is a single force iu that plane. Let its compenents b吊 and II. Then

$$
\begin{gathered}
\Sigma(m y)=\Sigma(X)+\Xi, \quad \Sigma(m y)-\Sigma(Y)+H \\
\Sigma m(x y-y x)=\Sigma(x I-y X)
\end{gathered}
$$

Let $\alpha, \theta$, be the pelar coordinates of the centre of inerti then $\hat{\theta}, \ddot{O}$ are the angular volocity and the angular acceler tion for all particles of the mass, and we have

$$
\begin{aligned}
& -\mathrm{M} a \cos 0.0^{2}-\mathrm{M} a \sin \theta . \theta-\Sigma(X)+\Xi, \\
& -M \alpha \sin 0.0^{2}+M a \cos 0.0-\Sigma\left(Y^{2}\right)+H \text {, }
\end{aligned}
$$

From tho third we find $\theta$, and the others gire $\Xi$ aud H.
When there is no plane of symnelry perpendicular to the axis, thero must be two points of it at which reactions sre exerted on tho revolving body. Let the coorlinates of these bearings be $c, c$, sud the reactions there $\bar{E}, H, Z, \Xi^{\prime}, H^{\prime}, Z^{\prime}$ respectively:

Theo we have the six equations (in which $\ddot{z=} 0$ )

$$
\begin{aligned}
& \Sigma(m \ddot{x})=\Sigma(\mathbb{X})+\Xi+\mathbf{\Xi}^{\prime}, \\
& \Sigma\left(m^{\prime} y\right)=\mathbf{\Sigma}(\mathrm{Y})+\mathbf{H}+\mathbf{H}^{\prime} \text {, } \\
& \Sigma(m \dot{Z})=\Sigma(Z)+Z+Z^{\prime} ; \\
& \Sigma m(x \dot{y}-y \bar{x})=\Sigma(x \mathbf{Y}-y \mathbb{X}) \text {, } \\
& \Sigma m\left(y \ddot{z}-z j^{\prime \prime}\right)=\Sigma\left(y Z-z J^{\prime}\right)-\mathrm{cH}-c^{\prime} \mathrm{H}^{\prime}, \\
& \Sigma m(\ddot{x}-x \dot{z})=\Sigma(\tilde{x}-x Z)+c \Xi+c^{\prime} \Xi{ }^{\prime} .
\end{aligned}
$$

The fourth equation, as beforc, determines $\theta$, and we have then fear equations to determine $\bar{E}, \bar{E}^{\prime}, H, H^{\prime}$. The remaining equation determines ouly the sum $\mathrm{Z}+\mathrm{Z}^{\prime}$. In fact hy more or less pertect filling We can throw more or less of the force parallel to the axis on one on other of the bearings. There is weally no indeterminateness in nature, but we cannot get the information reguired to evaluate separately $Z$ and $Z^{\prime}$.
$\S 250$. When impulswe forces are applied to the body, exactly the same methods may be employed, with the exception that $u^{\prime}-u$ must be written for $\ddot{i}$, \&c., and $a^{\prime}-\omega$ for $\ddot{\theta}$. The quantities $X, Y, Z, \Xi, H, Z, \Xi \prime, H^{\prime}, Z^{\prime}$ now denote impulses and not forces.
As a single example of the use of these formilre, take the case of is body rotating, under the aetion of no force, about an axis through its centro of inertia. Here $\leq(m x)=0$, see, and $z$ is constant. The first two of the six equatious last written show that the pairs of fores $\Xi, \Xi^{\prime}$ and $H_{1} H^{\prime}$ form couples. The fourth equation gives $\theta=\omega t$; and with this the remaining two become

$$
\begin{aligned}
& \Sigma(m z y) \cdot \omega^{2}=-c H-c^{\prime} H^{\prime}=-\left(c-c^{\prime}\right) H, \\
& \Sigma(m z x) \cdot \omega^{3}=-c \Xi-c^{\prime} \Xi^{\prime}=-\left(c-c^{\prime}\right) \Xi .
\end{aligned}
$$

The multipliers of $\omega^{2}$ are eacli zcro if the axis of rotation be a principal axis, and thus, in this case, there is no stress perpendicular to the axis. When the axis is not a principal axis the left hand terms are generally finite but they vary as the body tums. It is easy to see, horrever, that together these terms constitute a constant couple always in a plane passing through the axis, rotating with the body and dependent direetly oll the square of the angular velocity: Thus, to analyse the factor $\Sigma(m z y)$, we note that $z$ is constant, and

$$
y=r \sin (\omega t+a)
$$

Where $r, a$ were the polar courdinates of the mass $m$ at tinic $\ell=0$.
Hence $\quad \Sigma(n z y)=\sin \omega t \Sigma\left(n z=x_{1}\right)+\cos \omega t \Sigma\left(n z y_{1}\right)$,
where $x_{1}=r \cos \alpha$ and $y_{1}=r \sin \alpha$ were the coerdinates of $m$ at $t=0$. Similarly we have
$\Sigma(m z x)=\cos \omega i \Sigma\left(m z x_{1}\right)-\sin \omega t \Sigma\left(m z y_{1}\right)$.
These expressions prove the preeeding statements.
§ 251. As a final instance of inpulse in this branch of the subject, suppose that a rigid plate, moviag anylow in its orn plane, has onc of its points suddenly tixed, what will be the subsequent motion? Let the position in space at which the point is to be fixed be chosen as origin, and let the axis of $x$ be chosen so as to pass through the centre of iaertia at the moment of fisture. Then, if $u, v$ be the velocities of the centre of inertin, $\omega$ the angular velocity about it, a its distance from the Doint to be fixed, the conditions of the impact are

$$
\begin{aligned}
& u^{\prime}=u-\Xi / \mathrm{M}, \\
& v^{\prime}=v-\mathrm{H} / \mathrm{M}, \\
& \omega^{\prime}=\omega+\mathrm{H} i^{\prime} \mathrm{I} / k^{2},
\end{aligned}
$$

-three equations with five unknown quantities. But the conditions that the point in question is reduced to rest are evidently

$$
u^{\prime}=0, \quad v^{\prime}-\omega^{\prime} a=0
$$

These furnish the requisite additional data, and the solution is complete. If we eliminate $H$ between. the two equations which contaia it, we have

$$
k^{2} \omega^{\prime}+a v^{\prime}=k^{2} \omega+a v,
$$

whence by the relation between $v^{\prime}$ and $\omega^{\prime}$ we have

$$
\left(k^{2}+a^{2}\right) \omega^{\prime}=k^{2} \omega+a v
$$

These equal quantities, each multiplied by M, represent respectively the moment of momentum about the point before and after its fixture.
§ 252. Thus, as a little consideration will show, we might have solved the problem at onee, so far as the impulsive charge of motion is concerned, by noticing that as the im-
pulse is applied at the origin, the moment of momentum about that point will not be altered by it. In fact many problems, which present serious complexity when treated by the direct methods, are solved with comparative case by such general considerations as the conservation of momeat of momentum, or the conservation of energy. The first principle holds good when there is no resultant couple, or impulsive comple, round the origin; the second when no rork on the whole is done bv or agninst the forces or impulses.
§253. We lave given instances ot pure sliding, and of pure rolling, in oue plane, and will nuw give a single instance of combined rolling and sliding. A common but instructive case of the problem we propose to consider is that of a hoop thrown forwards and at the same tine made to rotate, so that after a time it stops, and finally rolls backwards to the hand. Other cases are furnished by a "folluwing stroke" or a "screw-back" with a billiard ball.

Let the axis of $x$ be parallel to the motion of translation of a sphere or cylinder moving on a horizontal plane. Then we have, if $F$ be the friction, $a$ the radius of the honp or ball, the rate of clange of momentum $=F$, and that of moment of momentum about the centre $=\mathrm{Fa}$.

So long as sliding continues, $F$ is constant, and equal to the product $\mu \mathrm{M} g$ of the normal pressure and the coefticient of kinetic friction. Hence at time $t$, if $\|_{0}$ and $\omega_{0}$ be tho iuitial velucities of translation and of rotation,

$$
\begin{aligned}
u & =t_{0}-\mu g l, \\
h^{2} \omega & =k^{2} \omega_{0}-\mu g a t .
\end{aligned}
$$

These equations cease to be true when the sliding ceases, i.e., when we have pure rolling, of which the geometrical condition is

$$
\begin{array}{lc}
\text { This gives } & u+\alpha \omega=0 \\
\text { ol } & u_{0}+\tau \omega_{0}-\mu g\left(n^{2} / h^{2}+1\right) t_{0}=0, \\
t_{0}=\frac{\hbar^{2}\left(u_{\theta}+\tau \omega_{0}\right)}{\mu g\left(a^{2}+k^{2}\right)} .
\end{array}
$$

At time $t$, and ever after we have

$$
\begin{aligned}
& u=\iota_{0}-\frac{k^{2}\left(u_{0}+a \omega_{0}\right)}{k^{2}+a^{2}}=a \frac{a u_{0}-k^{2} \omega_{0}}{h^{2}+a^{2}}, \\
& \omega=\omega_{0}-\frac{\pi u_{0}+\pi^{2} \omega_{0}}{k^{2}+a^{2}}=\frac{k^{2} \omega_{0}-\pi u_{0}}{k^{2}+a^{2}} .
\end{aligned}
$$

Hence, if the body be projected in the positive direction, its ultimate motion will be in the negative direction if au $0-k^{2} \omega_{\theta}$ be negative, i.e., if the initial angular velocity be positive, and greater than $a u_{0} / k^{2}$; which is $\frac{5}{2} u_{0} / a$ in the case of a sphere. Thus, at starting, the linear velocity of the point of contact with the plane must bear to that of translation of the ball a ratio of over $7: 2$ if it is to stop and returu. In the case of $a$ hoop this ratio must be at least $2: 1$.
$\S 254$. We pass now to the case of a rigid body one point only of which is fixed. As we have already seen ( $\$ 234$ ) this has only to be compounded with the motion of the whole mass, supposed concentrated at the point, io order to give the most general motion of which a rigid body $\mathrm{i}^{\prime \prime}$. capable. The geometrical processes which have beer applied to this problem, though in many respects of great power and elegance, cannot be iatroduced here. We will therefore give the more important results in a brief analytical form, and then geometrically exhibit their application.

Recurring to the general equations

$$
\Sigma m(x \ddot{y}-y \ddot{x})=\Sigma(x Y-y X)=N, \& c
$$

we may transform the left hand nembers as follows.
Let $\omega_{z}, \omega_{y}, \omega_{z}$ be the angular velocities of the hody about the tixed axes of $x, y, z$ respectively. Tlien ( $\S 77$ ) we have

$$
\dot{x}=z \omega_{y}-y \omega_{z}, s e .
$$

From these we have three equations of the type

$$
\begin{aligned}
\ddot{x} & =z \dot{\omega}_{y}-y \dot{\omega}_{z}+\dot{z} \omega_{y}-\dot{y} \omega_{z} \\
& =z \dot{\omega}_{y}-y \dot{\omega}_{z}+\left(y \omega_{z}-x \omega_{y}\right) \omega_{y}-\left(x \omega_{z}-z \omega_{z}\right) \omega_{z}
\end{aligned}
$$

Thus me have

$$
\begin{aligned}
& x y-y x-\left(x^{2}+y^{2}\right) \dot{\omega}_{z}-y z \dot{\omega}_{y}-x z \dot{\omega}_{x}+x z \omega_{y} \omega_{z}-z y \omega_{z} \omega_{z} \\
&+\left(x^{2}-y^{2}\right) \omega_{z} \omega_{y}-x y\left(u_{z}^{2}-\omega_{y}^{2}\right) .
\end{aligned}
$$

Now if the fixed axes be taken so as to coincide et a particular Gostant with the principal axes of the body passing throagh the point which is regarded as fixed, tha terms involving factors of the form $\Sigma(m x y)$, \&c., zecessarily vanish ( 8 237). Also we have

$$
\operatorname{s} m\left(x^{2}-y^{2}\right)=\operatorname{Im}\left(x^{2}+z^{2}-y^{2}-z^{2}\right),
$$

so that, if the principal moments of inertia of the budy be $\mathrm{A}_{2} \mathrm{~B}, \mathrm{O}$ respectively, the dynamical equationa become

$$
\mathrm{C} \dot{\omega}_{z}+(\mathrm{B}-\mathrm{A}) \omega_{z} \omega_{y}-\mathrm{N}, \mathrm{~s} \cdot \mathrm{C}
$$

But it was proved in $\$ 79$ that when the angular velocities of a rigid body aro referred to moving and to fixed axes, which coincide at a particular instant, not only are the angular velocities but nlso the angular accelerations eqnal at that instant in the two aystens. Thus, if $\omega_{1}, \omega_{2}, \omega_{3}$ be the nngular velocities of the body abont its principal axes, the equatious just obiaiued take the form (duo to Euler)

$$
\begin{aligned}
& A \dot{\omega}_{1}+(C-E) \omega_{2} \omega_{3}=L, \\
& B \dot{\omega}_{2}+(A-C) \omega_{3} \omega_{1}=M, \\
& C \dot{\omega}_{3}+(B-A) \omega_{1} \omega_{2}=N
\end{aligned}
$$

When $\omega_{1}, \omega_{2}, \omega_{3}$ ere found, in any rarticular case, trom these cquations, tha actual orientation of the boly at any time can be calculated from them by the kinematical processes of $\$ 81$. The position in space of tho point of the body which has been hitherto treated as fixed is to be calcalated separately by the processes nlready explained for kinetics of a particle, and thus the motion of the body ia completely determined-in the sense that the difficulties of the further steps aro of a purely mathematical nature.

When the forces applied to the body have a single resultant, which either venishes or passes through the origin, the rigbt-hand forces. terms disappear from Euler's equations. Nultiply the equatons by $\omega_{1}, \omega_{y}, \omega_{3}$ respectively, and add. We thus obtain

$$
A \omega_{1} \dot{\omega}_{1}+B \omega_{2} \dot{\omega}_{3}+C \omega_{7} \dot{\omega}_{3}=0
$$

Whence

$$
\begin{equation*}
\mathrm{A} \omega_{1}^{2}+\mathrm{B} \omega_{2}^{2}+\mathrm{C} \omega_{3}^{2}=2 T \tag{1}
\end{equation*}
$$

-the statement that the kinetic energy is constant. Again, multiply by $\mathrm{A} \omega_{1}, \mathrm{~B} \omega_{2}, \mathrm{C} \omega_{3}$ respectively, and add. Then we hate

$$
\begin{align*}
& A^{2} \omega_{1} \omega_{1}+B^{2} \omega_{2} \dot{\omega}_{2}+C^{2} \omega_{3} \dot{\omega}_{3}=0, \\
& A^{2} \omega_{1}^{2}+B^{2} \omega_{2}^{2}+C^{2} \omega_{3}^{2}=D^{2} . \tag{2}
\end{align*}
$$

whence
cxpressing the constancy of amount of moment of momentum.
But if, in these equations, we now choese to regard $\omega_{1}, \omega_{2}, \omega_{3}$ ns the coordinates, parallel to tho principal axes, of the extremity of a line which represents, in magnitudo and direction, tho instantaneous axis, wa aee that that axis is a central vector of each of the ellipsoids (1) and (2). Hence the instantaneous axis describea, relatively to the bods, a cone of the second ordor. Sinco T and D are tho only arbitrary coefficients in the oquations, all the ellipsoiss (1) or (2) are similar and aimilaily gituated. The curse of intersection of (1) and (2) projected on the plane of the axes A and B bas the equation

$$
\mathrm{A}(\mathrm{C}-\mathrm{A}) \omega_{1}^{2}+\mathrm{B}(\mathrm{C}-\mathrm{B}) \omega_{2}^{*}=2 \mathrm{TC}-\mathrm{D}^{?}
$$

This repregents an ellipse if the terns on the left havo the same sign, i.e., if $C$ is eithor greater or less than each of $A$ and $B$. Ifence, if tho body bo originally rotating about an nxis nearly coinciding either with the axis of greatest or that of least moment of inertia, it will continue to do so. These two cases are exemplified respectively by a quoit oud by on elongnted rife bullet, -at least in ao far as the resistanco of tho air docs not interfero with their motion. But if tho body be origiually rotating about an axis pearly coinciling with tho axis of intermediato moment of inertia, the corvo indicated by the equation above is an hyperbela or n pnir of straight lines through tho origin; and tho instantancous axis travels, in general, far away from its first position in tho body. We will henceforth look on $\Delta, B, C$ ns in descending order of magnitude. It is obvious from tho modo in which they are formed that $A=B+C$ only when the body is a plate. Hence, generally, any two of $A, B, C$ aro together greater than the third. Also by multiplying (1) by A, and comparing it term ty term with (2), We seo that $2 A T>D^{3}$; ainilarly $2 \mathrm{CT}<\mathrm{D}^{2}$.
To completo the examination of tho inmedinto results of Euler's equations in this case, lot us find how the tength of the instantancoua axis, considered as a common vector-radius of the ellifroids (1) and (2), depends on tho tlenc.

Let $\quad \Omega^{2}=\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}$.

$$
\begin{align*}
& \Omega \hat{\Omega}-\omega_{1} \dot{\omega}_{1}+\omega_{8} \dot{\Delta}_{3}+\omega_{3} \dot{\omega}_{3}  \tag{3}\\
& -\left(\frac{C-B}{A}+\frac{A-C}{B}+\frac{B-A}{C}\right) \omega_{1} \omega_{2} \omega_{3}=-\frac{\Delta}{A B C} \omega_{1} \omega_{3} \omega_{3},
\end{align*}
$$

where $\Delta$ is the determinant

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
A & B & C \\
A^{2} & B^{2} & C^{2}
\end{array}\right|=-(C-B)(B-A)(A-C) .
$$

Now (1), (2), (3) are lincar equations in $\omega_{1}^{2}, \omega_{2}^{2}, \omega_{3}^{2}$, and from them wo have three cquations liko

$$
\begin{gathered}
\quad \Delta \omega_{1}^{2}=B C(C-B) \Omega^{2}+2 T\left(B^{2}-C^{2}\right)+D^{2}(C-B) \\
\quad \therefore B C(C-B)\left\{\Omega^{2}-a\right\}, \\
\text { Where } \quad a=\frac{2 T(B+C)-D^{2}}{B C}
\end{gathered}
$$

is, by the remark above, essentially positive Hence

$$
\begin{aligned}
\Delta^{3} \omega_{1}^{2} \omega_{2}^{2} \omega_{2}^{2} & -A^{2} B^{2} C^{2}(C-B)(B-A)(A-C)\left(\Omega^{2}-a\right)\left(\Omega^{2}-b\right)\left(\Omega^{2}-C\right) \\
& =A^{2} B^{2} C^{2} \Delta\left(a-\Omega^{2}\right)\left(b-\Omega^{2}\right)\left(C-\Omega^{2}\right) .
\end{aligned}
$$

Thus

$$
\Omega \dot{\Omega}=\sqrt{\left(a-\Omega^{2}\right)\left(b-\Omega^{2}\right)\left(c-\Omega^{2}\right)} ;
$$

whence $\Omega^{2}$ is at once found by elliptie functions. $\Omega$ known, we hare $\omega_{1}, \omega_{y n} \omega_{3}$, and then by tho method of $\$ 81$ we have the complets analytical determination of the position of the body in terms of the time.
§ 255. Such a solution, horever, fails to give so clear a poinsot's conception of the nature of the motion as is afforded by rolling. the very elegant geometrical representation discovered by eltrpois Poinsot. We mey arrive at it by considering the tangent plane to (1) at the extremity of the radius $\Omega$. If $x, y_{2}$ be the current coordinates of that plane, its equation is

$$
\mathrm{A} \omega_{1}\left(\omega_{2}-x\right)^{+}+\mathrm{B} \omega_{2}\left(\omega_{2}-y\right)+\mathrm{C} \omega_{3}\left(\omega_{3}-z\right)=0,
$$

so that tho perpendicular from the originrupon it is equal, by (2), to $2 \mathrm{~T} / \mathrm{D}$, a constant. I he direction cosines of this perpendicular are proportional to $\mathrm{A} \omega_{1}, \mathrm{~B} \omega_{2}, \mathrm{C} \omega_{3}$, the cumponent moments of momentum. Hence it is the axis of resultant moment of momentum, and is therefore (§ 166) fixed in direction in space. The tangent plane to (1) at the extremity of the instantancous axis is therefore a fixed plane, and the eilipsoid (1) rolls upon it as if it were perfectly rough. From this we can of course find the equation of the curve of contact with the plane, and thence that of the cone, fixed in epace, on which the cone of lustantaneous axes in the body rolls, as in $\S 75$. The latter cone is of course given by ths jutersection of (1) and (2).
To complata this beautiful representation of the motion, all that Sylves-: is necessary is a method of mensuring time, something to show the ter'a. rate of rolling of the ellipsoid on the fized plaze. Many construc- addition tiona have been given for this purpose, such as Poinsot's "rolling to and sliding cone," \&c., but none can compare in elegance with that Poinsot's invented by sylvester. We can only sketch a particular case- construcsufficient, hoverer, to completely solve the question.

Writing $l$. $m_{n} n$ for the direction cosines of the fixed line referred to the principal axes, we have

$$
\begin{equation*}
l=\mathrm{A} \omega_{2} / \mathrm{D}, m \backsim \mathrm{~B} \omega_{2} / \mathrm{D}, n=\mathrm{C} \omega_{3} / \mathrm{D} \tag{4}
\end{equation*}
$$

Our equations (1) and (2) may now bo written

$$
\begin{equation*}
c^{2} / \mathrm{A}+m^{2} / \mathrm{B}+n^{2} / \mathrm{C}=2 \mathrm{~T} / \mathrm{D}^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
l^{2}+m^{2}+n^{2}=1 \tag{2}
\end{equation*}
$$

Introducing a facter $p$, of dimensions the same as $1 / 4$, we have from these a third equarion

$$
r(1 / \mathrm{A}+p)+m^{2}(1 / \mathrm{B}+p)+n^{2}(1,0+p)=2 \mathrm{~T} / \mathrm{D}^{3}+\mathrm{p}
$$

Nors consider an cllipsoid

$$
\begin{equation*}
\frac{x^{2}}{1 / \mathrm{A}+p}+\frac{y^{2}}{1 / \mathrm{B}+p}+\frac{z^{2}}{1 / \mathrm{C}+p}-\mathrm{E} \tag{6}
\end{equation*}
$$

which is similar, and aimilarly situated, to one of the ellipsolds confocal with (1) of $\$ 254$. Draw to it a tangent plano perpendicular to the line OL, whose direction cosines aro (4). Wo obtnin for the determination of tho point of contact $Q$ three equations of the form
where

$$
\begin{gathered}
l=\frac{x}{\mathrm{~S}(1 / \mathrm{A}+p)}, \quad m=\frac{y}{\mathrm{~S}(1 / \mathrm{B}+p)}, n-\frac{\tilde{\mathrm{S}}(1 / \mathrm{C}+p)}{} \\
\mathrm{S}^{2}=\frac{x^{2}}{(1 / \mathrm{A}+p)^{2}}+\frac{y^{3}}{\left(1 / \mathrm{B}+z^{2}\right)^{2}}+\frac{z^{2}}{(1 / \mathrm{C}+p)^{2}} .
\end{gathered}
$$

Here $x, y, z$ are the coordinates of $Q_{0}$ ond the distance of the tengeat plane from the origin is $\mathrm{E} / \mathrm{S}$.

New (b) gives at once by means of ( $\bar{j}$ )
$\mathrm{S}^{2}\left[r^{2}(1 / \mathrm{A}+p)+m^{2}(1 / \mathrm{B}+p)+n^{2}(1 / \mathrm{C}+p)\right]-\mathrm{E} ;$
whence, by (5),

$$
\mathrm{S}^{2}=\frac{\mathrm{E}}{2 \mathrm{~T} / \mathrm{D}^{2}+p} .
$$

This is constant, and therefore the new tangent plane is fixed in space.

Let un now find the angular velocity about the fixed line OL of this plane's point of contact $Q$ with the ellipsoid (G).

The direction cosines of the instantaneons axis OP are as $\omega_{1}, \omega_{2}, \omega_{3}$. Those of OQ are as $x, y, z$.
And we have obriously by (4) and (i)

$$
\left|\begin{array}{lll}
\omega_{1} & \omega_{2} & \omega_{3} \\
x & y & z \\
\Delta \omega_{1} & B \omega_{2} & C \omega_{3}
\end{array}\right|=0
$$

Hence the line $O Q$ lies in the plane containing the instantancous (axis OP and the fixed line OL. The motion of ellipsoid (6) is $H_{\text {therefore one of combined sliding and rolling along the new tangent }}$ plane. To find the sliding, we must find the angular velocity of $Q$ about the line OL. It is to that abont $O P$, which is $\Omega$, iu the ratio of the simes of the angles $P O Q$ and $Q O L$.
But

$$
\sin ^{2} \mathrm{POQ}=1-\frac{\left(x \omega_{1}+y \omega_{2}+z \omega_{3}\right)^{2}}{\left(x+y^{2}+z^{2}\right) \Omega^{2}}
$$

and

$$
\sin ^{2} \mathrm{QOL}=1-\frac{\left(\Lambda \omega_{1} x+\mathrm{B} \omega_{2} y+\mathrm{C} \omega_{3}\right)^{2}}{\left(x^{3}+y^{2}+z^{2}\right) \mathrm{D}^{2}} .
$$

By means of the cquations (1) and (7) above we find easily

$$
\frac{\sin ^{2} P O Q}{\sin -(Q U L}=\frac{D^{2} p^{2}}{\Omega^{2}}
$$

Hence the angular velocity of $Q$ about $O L$ is $D p$, a constant. Now suppose the plane on which the ellipsoid (6) rolls and stides to become perfectly rougli, and to be capable of rotating round OL as an axis, there will no longer be sliding of $Q$, but the plane will be made to rotate with the constant angular velocity $\mathrm{D} p$. Thus the time of any portion of the motion of the body will be measured out by the angle of forced rotation of this plane.
§ 256. As a simple example, let us take the ease of a quoit, in which $A$, the momeut of inertia about the axis of figure, is greater than either of the equal qnantities $B$ and $C$, which may be Jeferred to any two perpendicular lines in the plane of the quoit. The equatious hecome

$$
\begin{aligned}
& A \dot{\omega}_{1}=0, \text { so that } \omega_{1} \text { is constant, } \\
& B \dot{\omega}_{2}+(A-B) \omega_{3} \omega_{1}=0 \\
& B \dot{\omega}_{3}+(B-A) \omega_{1} \omega_{2}=0
\end{aligned}
$$

Put for a mornent $\frac{A-B}{B} \omega,=n$, then whe have

$$
\dot{\omega}_{2}+n \omega_{3}=0, \quad \dot{\omega}_{3}-n \omega_{2}=0
$$

These give by climinating $\omega_{3}$

$$
\ddot{\alpha}_{2}+n^{2} \omega_{2}=0
$$

Hence

$$
\begin{aligned}
& \omega_{0}=P \cos (n t+\mathrm{Q}) \\
& \omega_{\mathrm{g}}=-\varkappa^{-1} \dot{\omega}_{2}=\mathrm{P} \sin (n t+\mathrm{Q})
\end{aligned}
$$

The resultant of these is an angular velocity $P$, abont an axis in the plane of the axes of $B$ and $C$, and making an angle $n t+Q$ with the axis of B . Hence the instantaneous axis describes in the body a right cone whose axis is that of figure; it moves round it in the same direction as that in which the body is rotating, and with angular velocity $n$. The fixed cone in space is also, obviously, - a right cone and the other rolls on it externally.
ylinder. If instead of a quoit the body be a long stick or cylinder, we , have $\mathrm{A}=\mathrm{B}>\mathrm{C}$, and the equations become

$$
\begin{aligned}
& \left.A \dot{\omega}_{1} \therefore C-A\right) \omega_{2} \omega_{3}=0 \\
& A \dot{\omega}_{2}+(\lambda-C) \omega_{3} \omega_{1}=0 \\
& C \dot{\omega}_{3}=0
\end{aligned}
$$

The last gires $\omega_{3}=$ constant, and, if

$$
n_{2}=\frac{A-C}{A} \omega_{3}
$$

the first two equations are

$$
\begin{array}{cc} 
& \dot{\omega}_{1}-n \omega_{2}=0, \quad \dot{\omega}_{2}+n \omega_{1}=0 \\
\text { Thus } & \ddot{\omega}_{1}+n \omega_{1}{ }_{1}=0, \quad \omega_{1}=P \cos (n t+Q),
\end{array}
$$ and $\quad \omega_{2}=-P \sin (n t+Q)$.

This indieates a rotation ef the axis of constant angular velocity $P$ in the neghtive direction. Everything else is as belore, but the cone fixed in the body rolls on the inside of that fixed in space.
§257. Next let us take the case of a pendulum bob, supported by a flexible but untwistable wire, and containing a gyrospope whose axis is in the direction of the length of the pendiluin. Here we may use, for rariety, Lagrange's equations. For simplicity we suppose the centres of inertia of the bob and gyroscope to lie in the axis, and the hol to be symmetrical about the direction of the length of the pendulum.

Let the moment of inertia of the whole about the axis of symmetry be A when the gyroscope is supposed to be prevented from turning relatively to tho bob, and let the other two princinal moments about the point of suspension be $B$. Let that of the gyroscope about its axis be C. Then, if $\theta$ be the inclination to tho vertieal, $\phi$ tlie azinuth of the pendulum, and $\psi$ a quantity denoting the position of the gyroseope with reference to a definite plawe in the bob passing through its axis, we easily find

$$
\begin{gathered}
\left.2 T=A(1-\cos \theta)^{2} \dot{\psi}^{2}+B^{\prime} \theta^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)+C\left[\psi-(1-\cos \theta) \dot{\phi^{2}}\right]^{2}, \\
\left.V=H_{y} l(1-\cos \theta)=V_{0}^{\prime} 1-\cos \theta\right) \text {, su } 11 \text { lose, }
\end{gathered}
$$

Where M is the whole mass, and $l$ the distance from the pount of suspension to the centre of inertia of the. whole.
The general treatment of this complex problem cannot be attempted here. We may, however, ensily obtain useful ond characteristie results in some special simple eases, which will enable us to form a general idea of the mature of the motion.
Thus, suppose if possible 0 to be constant. This is the Conical ventea!
Gyrosconic Pendulumi. TVe easily find the equations

$$
\begin{gathered}
\psi-\{1-\cos \theta) \phi=\Omega=\text { const. } \\
(A(1-\cos \theta)+B \cos \theta) \dot{\phi}^{2}-C \Omega \dot{\phi}=V_{0}
\end{gathered}
$$

For any assigned ralues of $\Omega$ and $\theta$, this shows what will be the corresponding value of $\dot{\phi}$. But it also shows that if we change simultaneonsly the signs only of $\Omega$ and $\phi$, the value of $\theta$ is unaltered. Thus, reversal of the direction of rotation of the gyroscope involves reversal of the direction of motion of the bob, if the time of rotation is to be unalfered. Sut to any assigued values of $\theta$ and $\Omega$ two values of $\phi$ correspond. As 8 cannot, in the case considered, exceed $\frac{1}{2} \pi$, the multiplier ol $\dot{\varphi}^{2}$ is essentially positive. So is $\mathrm{V}_{0}=\mathrm{Mgl}$. Hence the ralues of $\phi$ are real ; and one is positive, the other negative. Thus the pendulum, with any rale of rotation of the gyroscope, may be nade to move in any horizontal circle; bnt the angular velocity will. be greater when it" is in the same sense os that of the rotation of the gyroscope than when it is in the 01 posite seuse When $\theta$ is so small that $\theta^{2}$ may be neglected, we have:.

$$
\mathrm{B} \dot{\phi}^{2}-\mathrm{C} \Omega \dot{\phi}=\mathrm{T}_{0}
$$

or

$$
2 \mathrm{~B} \bar{\phi}=\mathrm{C} \Omega \pm \sqrt{4 \mathrm{BV}_{0}+\mathrm{C}^{2} \Omega_{2}^{2}} .
$$

To give a mumerical example, let the mass ol the gyroscope bo $\frac{n-1}{n} M$; let $\mathrm{B}=\mathrm{M} t^{2}, \mathrm{C}=\frac{n-1}{n} \mathrm{M} \frac{t^{2}}{c^{2}}$, then

$$
2 \dot{\phi}=\frac{(n-1) \Omega}{n c^{2}} \pm \sqrt{4 \frac{g}{t}+\left(\frac{n-1}{n c^{2}}\right)^{2} \Omega^{2}}
$$

If $n=5, c=10, g=10 l$ (which are fair approximations to the dimensions of the ordinary form of the instrument),

$$
\phi=\frac{2 \Omega}{500} \pm \sqrt{10+\frac{4}{(500)^{2}} \Omega^{n}}
$$

Suppose the grroseope to rerolve 100 times per second, then $\Omega=200 \pi$ pactically, and

$$
\begin{aligned}
\dot{\phi}=\frac{5}{4} \pi \pm \sqrt{10+\frac{1}{2} \frac{2}{5} \pi^{2}} & =2 \cdot 513 \pm 4.039 \\
& =6.552 \mathrm{or}-1.526
\end{aligned}
$$

The angular relocity, when the gyroseope is not rotating, would bo that of the corresponding conical pendulum,

$$
\sqrt{g / l}= \pm 3 \cdot 162
$$

so that in this ease the gyrosconic pendulum would rotate about twice as fast, or only about half as fast, as the ordinary conieal lendulum, according as it rotated with or against the gyroscope.

If tre had takeu $\Omega=10 \pi$ we should have found $\phi=3 \cdot 29$ or $-3 \cdot 04$, nearly.
Thus the slower the gyroscope rotates the slower is the conical pendulum motion in the same direction, and the quieker that in the opposite direction.

## Statics of a Chary or Perfectly Flemifle Cord.

§ 258. Axion. - When a body or system is in cquitibrium under the action of any forces, additional constraints will not disturb the equilibrium. Compare $\$ 193$.

This principle is of very great use in forming the fundamental equations of fluid equilibrium, and thence those of motion. And we find it of advantage, as will be presently; seen, in reducing to elementary geometry the problem of the equilibrium of a chain, or perfactly flexible cord.

We may treat this problem, called that of a "catenary," Cate" by any one of the fullowing methods:-(1) by inresti-nat gating, as a question of statics of a particle, the conditions of equilibrium of a single link; (2) by imagininer a. finite portion of the chain to beeome rigid in its,
equilibrium form,-assumine by the axiom above, that it will remain in equilibrium, and then treating the question by the methods employed for a rigid body; (3) by employing the energy test of equilibrium as in 5198 .
S. 259. We exemplity each of these mothods in cine specially important case of the ordinary catenary.

A uneform chain hengs bclucen two jixed points, finel the tension at any. poine and the curve is which the chain heretys.

First Mechod. - Let $\mu$ bo the nass of unit length of the chain; T' the tension at the point $x, y, z$; s the length of the chain to $x, y, z$ from some assigned point ; and let the axis of $y$ bo taken vertically. Then we have for the eqnilibrium of tho clement $\delta$ s, considercd as a material oarticle,

$$
\begin{aligned}
& \mathrm{T} \frac{d x}{d s}-\left(\mathrm{T} \frac{d x}{d s}+\frac{d}{d s}\left(\mathrm{~T} \frac{d x}{d s}\right) \hat{\partial s}\right)=0, \\
& \mathrm{~T} \frac{d y}{d s}+\mu g-\left(\mathrm{T} \frac{d y}{d s}+\frac{d}{d s}\left(\mathrm{~T}_{d y}^{d s}\right) \delta s\right)=0, \\
& \mathrm{~T}_{d \xi}^{l \xi}-\left(\mathrm{T} \frac{{ }^{l} \overrightarrow{d s}}{d s}+\frac{d}{d s}\left(\mathrm{~T} \frac{d \xi}{d s}\right) \delta s\right)=0 .
\end{aligned}
$$

Omitting the terms which cancel one another, and dividiag by $\delta \mathrm{s}$, these become

$$
\frac{d}{d s}\left(\mathrm{~T}^{\prime \lambda x} \frac{d s}{d s}\right)=0, \quad \frac{d}{d s}\left(\mathrm{~T} \frac{d y}{d s}\right)=\mu g, \quad \frac{d}{d s}\left(\mathrm{~T} \frac{d z}{d s}\right)=0 .
$$

From the first and third it follows that di/here is cunstant, i.c., the chain hangs in a vertical plane. We may take it as that of $x y$, and tho eqnations are reduced to the first two.
The first gives

$$
\mathrm{T} \frac{d x}{d s}=\mathrm{T}_{0}
$$

showieg that the horizontal component of the tension is constant throughout tho whole length of the chnin. Substituting for I 'in the second, it becomes

$$
\frac{d}{d l s}\left(\frac{d y}{c h x}\right)=\frac{\mu q}{\mathrm{~T}_{0}}
$$

The quantiry on the right is evidently of $\left[L^{-1}\right]$ dimensions, because that on the left is so ; and thus we may write

$$
\frac{\mu g}{\mathrm{~T}_{0}}=\frac{1}{a}, \quad \text { or } \quad \mathrm{T}_{0}=\mu g a
$$

Ifeace $a$ is the length of a portion of the chain whoso weight is equal to the coustant horizontal component of the tension.
The equation now becomes

$$
\frac{d^{2} y}{c l x^{2}}=\frac{1}{a} \frac{d s}{d x}=\frac{1}{a} \sqrt{1+\left(\frac{d y}{d x}\right)^{3}}
$$

Integrating, tre have

$$
\frac{d y}{d x}+\sqrt{1+\left(\frac{d y}{l d}\right)^{2}}=C \varepsilon^{\frac{z}{d}}
$$

If we now assume that the axis of $y$ passes tbroogn the point at which the chain is horizontal, wo have at that point $x=0, \frac{d y}{d x}=0$, and therefore $\mathrm{C}=1$. Thus

$$
\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}+\frac{d y}{d x}=\varepsilon^{\frac{x}{a}} .
$$

Taking the reciprocal of cach side, wo have

$$
\sqrt{1+\left(\frac{(l!\prime}{c l_{i}}\right)^{3}-\frac{d l y}{d x}-\varepsilon^{-\frac{x}{d}} .}
$$

Subtracting,
or

$$
\begin{aligned}
& 2^{2 l y} \\
& i x \\
& -\varepsilon^{\frac{x}{a}}-\varepsilon^{-\frac{x}{4}} \\
& 2 \frac{y}{a}=\varepsilon^{\frac{x}{4}}+\varepsilon^{-\frac{x}{4}}
\end{aligned}
$$

no conshant being ndeled if wo assume the axis of $x$ so that $y=a$, $x=0$ together. This is the equation of the curve required.
If wo tako the sum, instead of the differeace, of tho above equarions, we find
m that

$$
2^{d s} d x=\varepsilon^{z}+\varepsilon^{-\frac{z}{a}}
$$

sbeing measurcu from tho axis of $y$.

But the tension at $x, y$ is, as above,

$$
\mathrm{T}=\mathrm{T}_{0} \frac{d s}{d x}=\mathrm{T}_{0} \frac{y}{a}=\mu J y
$$

Hence the tension at any point f eho chain is aqual to the meight of a length of the choin ergual tiv tho ordiuate at that point.
Thus if a chaim of tiusite length bo laid ovor two smooth paralle? rails, its ends, when tho whole is eqnilibrium, will be in the horizontal lina corresponding to the axis of $x$ in the above investigation, the midulle part of the chain forming part of the cateuary. When a given length $2 l$ of chain rests in equilibrium on two smooth parallel rails at tho same level, we have therefore $s+y=l$, while $x=b$, the half distance betweca the rails.

By the above cxpressions for $y$ aad $s$ in terme of $x$, this leads to the equation

$$
a \varepsilon^{\frac{b}{a}}=l
$$

Which detcrmines $a$ when $b$ and $l$ are given. From this equation, as the minimum value of the left-band side occurs when $a=b$, we see that the least length of chain for which equilibriven is possible under the conditious is cqual to $\varepsilon$ times the distance between the rails.
§ 260. Second Method.-The chain heing in equilibrium, suppose any finite arc of it , as FQ (fig. 64), to become rigid. The forces acting on PQ are three-the tensions $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ at its ends, and its weight W actins at its centre of inertia. But thrce forces in equilibrinm are in onc plane ( $\$ 221$ ). Hence the curve is in one vertical plane. Also, as the two tensions are not parallel to one another, the lines of action of all three forces meet


Fig. 64. in one point. Hence there is no couple, and the conditions. are simply

$$
\begin{aligned}
& \mathrm{T}_{3} \cos \theta_{3}-\mathrm{T}_{1} \cos \theta_{1}=0, \\
& T_{2} \sin \theta_{2}-T_{1} \sin \theta_{1}-W=0 ;
\end{aligned}
$$

where $\theta_{1}, \theta_{2}$ are the inclinations to the horizon of the taugeuts at the ends of the portion solidified. The first asserts that the horizontal part of the tension is the same at $P$ and $Q$, i.e., all through the chain. The second asserts that the difference of the vertical parts of the tensions at any two points is equal to the weight of the part of the chain between them. By proper mathematical methods these data lead to the results already obtained. In fact this equations we hare just obtained are the first integrals of the equations in § 250 .
§ 201. Third alfohroul. -Tho poteatial cuergy of the chain is

$$
\operatorname{mg} \int y \frac{d s}{d x} d x
$$

with tho sole condition

$$
\int \frac{d s}{d x} d x=\text { constint }
$$

the liunits of integmation leing fixed, nime the same for cache expression. Itence, by the rules of tho calculas of mriations, we have the same equations as before.
§ 262. Still supposing gravity to be the only applied forve, there nre many forms of iuplortint questions which can be solved by cither of these methols. Wio will take sumo simple, but viried, axamples. Find how the mass of unit lemyth of a chain must vary from going to point so that the catcnary may! be an assigned plano curce.
Wo have, as before,

$$
\frac{d}{d s}\left(T \frac{d s}{d s}\right)-0
$$

but our second equation is now

$$
\frac{d}{d s}\left(\Gamma^{\prime d y}\right)-\mu s
$$

where $\mu$ is an unknown function of a The thind cquatlon, being of the samo form as the first, shows that the carvo is in a vertical planec, and is thonccforth numecessary:
ds before, re have
and

$$
\begin{gathered}
\mathrm{T} \frac{d t}{d s}=\mathrm{T}_{0} \\
\frac{d}{d s}\left(\frac{d y}{d x}\right)=\frac{\mu g}{\mathrm{I}_{0}^{\prime}} .
\end{gathered}
$$

Norr, from the assigned equation of the catenary, the left-land member can be expressed as a function of $s$, and thus we have the solution of the problen. For example, suppose the chain is to hang in an arc of an assigned circle. Referred to the lowest point of the circle, the equation is

$$
x^{2}=2 a y-y^{2},
$$

where $a$ is the radius. From this we hare

80 that

$$
\begin{gathered}
\frac{d y}{d a^{\circ}}=\frac{x^{2}}{a-y}=\tan \frac{s}{a}, \\
\mu=\frac{T_{0}}{a g} \sec ^{2} \frac{s}{a}
\end{gathered}
$$

The tension at the lowest poiut is thus equal to the weight of a picce of chain like that at the vertex, and of length equal to tire radius of the circle; the mass per unit length becomes infuite at the end of a horizontal diameter.
Suspenaion: ridide

Next fund the form of the chain when the mass of ciny are is pro. portional to its horizontal projection. This is a rough approxinatiou to the case of a suspension bridge where the roadway is uniform, and much more massive than the chains, to which it is attached throughout by vertical ties. The equatious are as before, but the additional condition takes the form

$$
\mu \frac{d s}{d x c}=\mu_{0}, \text { a constant. }
$$

This gires

$$
\frac{d^{2} y}{d x^{2}}=\frac{\mu_{n} q}{T_{0}},
$$

and the chain forms a parabola whose rertex is dornwards, and whose axis is vertical.
Catenary As a final example, we bave what is called the catenary of iwiiof nui- forn strength; that is, the form in uchieh a chain hangs when the form tension at every point is proportional to the breaking stress at that strength. point. Here we snppose the strength to be proportional to the section, i.e., to the mass per unit length. This gires the condition

$$
\frac{d}{d s}\left(\frac{d y}{d x}\right)=\frac{g}{e \mathrm{~T}_{0}} \mathrm{~T}=\frac{g}{c} \frac{d s}{d x},
$$

Hence
or
where $a=c / g$.

$$
\frac{d^{2} y}{d x^{2}}=\frac{1}{a}\left(\frac{d s}{d x}\right)^{2}=\frac{1}{a}\left(1+\left(\frac{d y y}{d x}\right)^{2}\right)
$$

This gives

$$
\frac{d y}{d x}=\tan \left(\frac{x}{a}+C\right)
$$

And the complete integral may be written, by proper selection of origin, in the final form

$$
\varepsilon^{\frac{y}{a}}=\sec \frac{x}{a}
$$

Linit of This curre has obviously trro rertical asymptotes dis--pan. $\operatorname{tant} \pm \frac{1}{2} \pi a$ from the axis of $y$. The quantity $a$ is directly as the tenacity of the material; and thus we see that there is a limit (eren in this simplest case) to the span of a chain, however strong, formed of auy known kind of matter.

It is a very curious fact that, if we write the equation of this catenary in toms of the arc and the radius of curvature, it becomes iileutical with that of the common catenary in terms of Cartesian coordinates, horizontal and vertical. For we see at ouce that

$$
\frac{d s}{d x}=\sec \frac{x}{a}
$$

so that
mile by the previons countions

Thrus finally,

$$
\frac{1}{\rho}=\frac{\frac{d^{2} y}{d d^{2}}}{\left(\frac{d s}{d x}\right)^{3}}=\frac{1}{a \frac{d s}{d x}}=\frac{\cos \frac{x}{a}}{a}
$$

$$
\frac{2 p}{a}=\varepsilon^{\frac{1}{s}}+\varepsilon^{-\frac{-}{\omega}} . \quad \text { Compare } \$ 253
$$

§ 263. When the chain is not uniform, and when it is subject to Catenim. the action of other forces than, or besides, gravity, the equations are general.

$$
\frac{d}{d s}\left(\mathrm{~T} \frac{d x}{d s}\right)=-\mu \mathbb{X}, \quad \frac{d}{d s}\left(\mathrm{~T} \frac{d y}{d s}\right)=-\mu \mathrm{Y}, \quad \frac{d}{d s}\left(\mathrm{~T} \frac{d z}{d i s}\right)=-\mu Z,
$$

where $X, Y, Z$ are the compenent forces on unit mass. These threo equations involve the unknown quantities $T, x, y, z$, and $s$ only; for $\mu$ is supposed to be given in terms of s. Two relations only among $a, y$, and $z$ are wanted (for $s$ is known in ternis of $x$, $y, z)$; so that the equations are necessary and sufficient to give these relations and the remaining unknown T .

The first members of these equations consist each of two terms:-

$$
\frac{d T}{d s} \text { multiphied respectively by. } \frac{d x}{d s}, \frac{d y}{d s}, \frac{d y}{d s},
$$

and

$$
\frac{T}{\rho} m u l t i p l i e d ~ b y ~ \rho \frac{d^{2} x}{d s^{2}}, \rho \frac{d^{2} y}{d s^{2}}, \rho \frac{d^{2} z}{d s^{2}} ;
$$

$\rho$ being the ralius of curvature of the chain. Hence ( $\$ 22$ ) $\pi 0$ concluile that, so far as the tension alone is concerned, the forccs on an elementary unit of length of the chain are $d \mathbf{T} / d s$ in the direction of the tangent, and $\mathrm{T} / \mathrm{\rho}$ in the direction of the radius of absolute curvature. These must balance the corresponding components of the external forces on the element. Hence we see that the resultant of the applied forces lies, at every point, in the osculating plane. Thus we have

$$
\begin{aligned}
& \frac{d T}{d s}=-\mu\left(X \frac{d x}{d s}+Y \frac{d y}{d s}+Z \frac{d z}{d s}\right)=-S \\
& \frac{T}{\rho}=-\mu\left(X \rho \frac{d^{2} x}{d s^{2}}+\mathrm{Y} \rho \frac{d^{2} y}{d s}+\ddot{Z} \rho \frac{d^{2}-}{d s^{2}}\right)=-\mathrm{N}
\end{aligned}
$$

Here S and N are the tangential and normal components of the applied forces per unit length of the chain.
But when a unit particle mores in a curve, we have always

$$
\frac{d v}{d t}=v \frac{d v}{d s}=\mathrm{S}^{\prime}, \text { and } \frac{t^{2}}{\rho}=\mathrm{N}^{\prime}
$$

where $S^{\prime}$ and $N^{\prime}$ are the normal and tangential components of the requisite force. If we write these in the form

$$
\frac{d v}{d s}=\frac{S^{\prime}}{v}, \frac{v}{\rho}=\frac{N^{\prime}}{v},
$$

and suppose that the curve in which the particle mores is the same as the catenary above, while the speed at each point has the same numerical value as the tensiou, we see that we must have

$$
\begin{array}{ll}
\frac{S^{\prime}}{v}=\frac{S^{\prime}}{T}=-S, & \frac{N^{\prime}}{v}=\frac{N^{\prime}}{T}=-N ; \\
S^{\prime}=-S T, & N^{\prime}=-N T
\end{array}
$$

or
Thus the catenary will be the free path of the particle provided the force applied at any point is equal to the reverse of the product of that acting on the chain by the numerical value of the tension of the chain at that point.

Conversely, if tre take any case of free motion of a particle, a uniform chain will hang in the corresponding orbit under the action of the same forces each reversed, and divided by the numerical value of the speed at the corresponding point of the orbit. Thas we can at once pass from particle kinetics to corresponding cases of catenaries.
In the case of a projeetile, the path is a parabola, the force is Parabc constant and parallel to the axis, and the speed is as the square- catena root of the distance from the directix. Hence, that the parabola may be a catenary under gravity, it must be tmrned vertex downwards; and the mass of the chain per unit length at any point must bc inversely as the square root of the distance from the directrix. It is easily found from this that the mass of any arc of the chain must be proportional to the length of its horizontal projection, as in the second problem solved in § 262.

In the case of a planet we hare

$$
v^{2}=\mu(2 / r-1 / a) .
$$

Hence a chain will hang in an ellipse if it be repelled from ons. focus by a force varying inversely as the square of the distance, the mass per unit length of the chain being directly as the square root of the distance from that focus and inversely as the square root of the distance from the other. If the chain be uniform, the law of the repulsive force from the first focus must be $1 / \sqrt{r^{3} r^{\prime}}$ instead of $1 / r^{2}$, where $r, r^{\prime}$ are the distances from the two foci.
$\S 261$. When a chain or string is stretched over a curved surface, the surface must exert a reaction on it to keep it in its curved form. The preceding investigation has shown that the force normal to a chain per unit length at any point is balanced by T/ $\rho$ per unit of length, which must therefore be the magnitude of the reaction. Wa
may establish this, however, in a very simple manner, as follows:-

Let $A B$ (fig. 65) be a small portion of the cord, and $A C$, $C B$ the tangents at its extremitios; and let the (small) exterior angle at C be $\theta$. Then, $p$ being the pressure per unit length of the


Fiz. 65. string, we have at once

$$
p \cdot \mathrm{AB}=2 \mathrm{~T} \sin \frac{1}{2} \theta=\mathrm{T} \theta
$$

ultimately. But $A B=\rho \theta$, so that

$$
p=T / \dot{\rho}
$$

If there be friction, and if the element of the rope be just about to slip, in consequence of the difference of the tensions at its ends, we have

$$
\mathrm{T}^{\prime}-\mathrm{T}=\mu p \cdot \mathrm{AB}=\mu \mathrm{T} \theta
$$

so that

$$
T^{\prime}=T(1+\mu \theta) .
$$

This leads to the formula for the growth of a sum at componad interest at $\mu$ per cent. payable every instant. Hence for a finite angle $a$ we have

$$
\mathrm{T}_{a}=\xi^{\mu a} \mathrm{~T}_{0}
$$

It is to be remarked here that neither the dimensions nor the form of the curre on which the cord is stretched, provided only it be plane, have any influence on this result, which iavolves oaly.the coefficient of friction and the aggle between the two free portioas of the cord.

## Kinetics of a Chain or Perfectly Flemible Cord.

$\S 265$. The equations of motion of a chain, under the action of ary. finito forces, are at once formed from those of equilibrium by introducing the forces of resistance to acceleration according to Newton's principle. Here we enter on a subject of extreme importance, but also (at least in the majority of cascs) of great mathematical difficulty. One valnable result, however, can 'be obtained by very simplo means.

A uniformly heavy and perfectly flexible cord, placed in the interior of a smooth tabe in the form of any curve, and subject to $n \frac{1}{}$ external forces, will exert no pressure on the tube if it have everywherc the same tension, and move with a certain definite speed.

For, as in § 264, the statical pressure due to the curvature of the rope is $T \theta / \sigma$ per unit of length (where $\sigma$ is the length of tho arc $A B$ in that figmre) directed inwards to the centre of curvature. Now, the element $\sigma$, whose mass is $m \sigma$ (if $m$ bo the mass per unit of length), is moviag in a carve whose curvature is $0 / \sigma$, with speed $v$ (suppose). The requisite forco is $\frac{m v^{2} \sigma \theta}{\sigma}=m v^{2} \theta$, and for unit of lengtl $m v^{2} \theta^{\prime} \sigma$. Hence if $T=m v^{2}$ tho theorem is true. If we supposo a portion of the tube to be straight, and the wholo to bo moving with spced $v$ parallel to this line, and against the motion of the cord, we shall have the straight part of the cord reduced to rest, and an undulation, of any, hut unvarying, form and dimensions, running alorig it with lincar speed $\sqrt{\mathrm{T} / m}$.

Suppose the teasion of the cord to he equal to the meight of W pounds, and suppose its length $l$ fect and its orn mass ${ }^{\text {w. }}$. pounds. Then $\mathrm{T}=\mathrm{W} g, l m=u$, and the speed of the andulation is $\sqrt{\bar{W} l l_{i} w}$ feet per second.
thus (in a piano or harp) administers periodic shocks to the sounding board, causing it to give ont a musical note. The interval between these periodic shocks is of course the time taken by the disturbance in running from end to end of the string. Dividing the length $l$ of the string by the speed above reckoned, we find for this interval the value

$$
\sqrt{v l W^{2} g}=l \sqrt{m / W g},
$$

the reciprocal of which is the number of impulses per second. It is thus seen to be directly as the square-root of the tension of the string, inversely as the square-root of its mass per unit of length, and also iaversely as its length. These are well-known facts in Acoustics. It is to be - observed that there is no necessity for limiting the proposition above to a plane curve, though we have treated the question as if it weresuch. The demonstration applies even to a knot of any form.
267. We will now consider more particularly the vibra. Vlbration tions of a musical string, whose tension is great and its of musical own mass small.
string.
Forming the equations of motion as above hinted, we have three of the type.

$$
\frac{d}{d s}\left(\mathrm{~T} \cdot \frac{(x x}{d s}\right)=-\mu(\mathrm{X}-\dot{x})
$$

In the special case of a tightly stretched inextensible string, performing very small transverse oscillations, we may greatly simplify these by assuming that no external forees act. This practically means that the weight of the string is negligible in coniparisor with the tension. If the axis of $x$ be taken to coincide with tho undisturbed pesition of the string, we have to the secand order of small qusntities

$$
s=x
$$

With this the equation above written becomes

$$
\frac{d T}{d s}=0
$$

or the tension is the same througlout. The second and third equations now become

$$
\Gamma \frac{d^{2} y}{d x^{2}}=\mu \dot{y_{n}}, \quad \Gamma \frac{d^{2} *}{d x^{2 i}}=\mu^{2}
$$

The $y$ and $z$ disturbances are therefore of the same general character, and perfectly independent of one another: We will therefore confine our sttention to one of them. From the equations. we see that T'/ must be of tro linear dimensions, and we will therefore write for it $a^{3}$. As this quantity must also be of tro negative dimensions in time, a represents a speed. . What speed will be scen immediately.

The equation in $y$ is now

$$
a^{2} \frac{d^{2} y}{d x^{2}}=y ;
$$

whose integral is known to be

$$
y=f(a t-x)+\mathrm{F}(a t+x)
$$

where $f$ and $F$ are arbitrary functions. As we have already seen ( $\$ 53$ ), the first part of the value of $y$ expressee a ware running with speed a slong the axis of $x$ in the posilise direction; tho second part a wave in the regative direction mith the same speed. Thus we seo that ariy small disturbanoe whaterer, of a stretched string, gives rise to two series of waves propagated in opposite directions with equal speeds. Also, as the equation is linear, the sum of any two or mole particular integrals is also an integral.

If we suppose one extremity of the string to be fixed at the origin, we havo tlio condition $x=0, y=0$, and therefore

$$
0=f(a l)+F(a t)
$$

As this holds for all ralues of $t$, the function $F$ is simuply the wegative of $f$, so that

$$
y-f(a t-x)-f(a t+x)
$$

To investimate that becomes of a disturbance which runs along the cord to the fixed end, let us suppose that $f(r)$ (which, by the remark above, may represent any pari of a disturbance of the string) is a function which vanishes for all values of $r$ which do not lie between tho positive limits $p$ and $q$, but which for valucs of $r$ between theso limits takes definito values. Then at time $t=0$ we have

$$
y=-f(x)
$$

for, by hypothesis, $f(r)$ vanishes for oll negative values of $r$. This denotes a disturbauce of the string origimally extending from $x=p$
to $x=q$, which runs op to the origin. After the lapse of any interval greater than $g^{\prime} a$ we have

$$
y=f(a t-x),
$$

for at $+x$ has now become greater than q. This is a wave of exaetly the same form as before, but the sign of the disturbance aml the direction of its propagation are both reversed. Every portion of a wave is therefore reflected, with simple reversul of the displacement, as soon as it reaches the fixed eid. For we may take the limits $p$ and $q$ as close together as we choose.
Now suppose the string to bave another fired point at $x=l$. Then we have

$$
0=j(a t-l)-f(a t+l)
$$

Thus $f$ is (§ 67) a periodic fuction, of period $2 l / a$, and ean therefore be expressed as a series of simple larmonic terins of the full period, half period, one-third period, \&c. Hence we may write, the coefticient $\downarrow$ being $p$ nt iu for convenicnce,

```
y-\frac{1}{2}\mp@subsup{\Sigma}{1}{\infty}}\mp@subsup{|}{m}{}\operatorname{cos}\pim\mp@subsup{l}{}{-1}(at-x)+\frac{1}{2}\mp@subsup{\Sigma}{1}{\infty}\mp@subsup{\textrm{B}}{m}{}\operatorname{sin}\pim\mp@subsup{l}{}{-1}(at-x
    -\frac{1}{2}\mp@subsup{\Sigma}{1}{\infty}}\mp@subsup{\textrm{A}}{m}{}\operatorname{cos}\pim\mp@subsup{l}{}{-1}(at+x)-\frac{1}{2}\mp@subsup{\Sigma}{1}{\infty}\mp@subsup{}{}{\infty}\mp@subsup{\textrm{B}}{m}{}\operatorname{sin}\piml-1(at+x
```



This expression contaias tlio complete solution of the problem. To sdapt it to any partieular case, we must know at some definite time (sey $t=0$ ) the value of $y$ in terms of $x$, i.c., the initial disturbance; also the correspondiog value of $\dot{y}$. We have then

$$
\begin{aligned}
& y_{0}=-\Sigma_{1}^{\infty} \mathrm{B}_{m} \sin \pi m l^{-1} x, \\
& \dot{y}_{0}=\frac{\pi a}{l} \Sigma_{1}^{\infty} m \mathrm{~d}_{2} \sin \pi m l^{-1} x .
\end{aligned}
$$

As $y_{0}, \dot{y}_{0}$ are given in terms of $x$, we can find, by the process of $\S 167$, the values of $A_{m}$ and $B_{m}$, and thence the required valua of $y /$

Qucilla tions of 3 chain fixed at nne end 268. As another example, suppose a uniform chrin to be suspendar by one end, and to make small oscillations in a vertical plawe.
We camnot enter here into details; so we simply assume that elementary persistent harmonic solutions are possible, or, what comes to the same thing, that there are permanent forms in which the chain can rotate about the vertical from the point of suspension.
If the axis of $x$ be vertical, the equations of motion are

$$
\frac{d}{d s}\left(\mathrm{~T} \frac{d x}{d s}\right)=-\mu(g-\ddot{x}), \quad \frac{d}{d s}\left(\mathrm{~T} \frac{d y}{d s}\right)=\mu \ddot{y} ;
$$

where $\mu$ is the mass of unit length of the chain. As the oscillations are supposed to be small, we may neglect the change in the vertieal ordinate of any point of the chaio, beeause it must be of the second order of small quantities if the horizontal displacement is of the first order. Hence we may put everywhere $x$ for $s$, and therefore consider $x$ to be independent of $t$. Thus the first equation becomes

$$
\frac{d \mathrm{~T}}{d x}=-\mu g
$$

whence $T=\mu g(l-x)$,
where $l$ is the length of the chain. The second equation then becomes

$$
(l-x) \frac{d^{2} y}{d x^{3}}-\frac{d y}{d x}=\frac{1}{g} ;
$$

or, if we measure $x$ from the lower end of the chain upwards,

$$
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=\frac{1}{g} y
$$

The complete integral of this equation would be mnch more general than we require, for it would express every possible small motion of che chain, bowever apparently irregular. What we seek are the fundamental modes of simple harmonic oscillation, any number of which, as in the case of a musical string, may be superposed. Hence we may write

$$
y=\eta \sin (n t+\alpha)
$$

Where $n$ is a numerical quantity as yet undetermined, but which is confined to one or other of a serifs of definite values; $\eta$, on the other hand, is a function of $x$ only. With this value of $y$ the equation becomes

$$
x \frac{d^{2} \eta}{d x^{2}}+\frac{d \eta}{d x}+\frac{2 i^{2}}{g} \eta=0
$$

By the usual method of undetermined coofficients we casily find the particular integral

$$
\begin{equation*}
\eta_{0}=A\left(1-\frac{x^{2} x}{g}+\frac{n^{4} x^{2}}{2^{2} y^{2}}-\frac{x^{6} x^{3}}{2^{2} \overline{3}^{2} g^{3}}+\& c_{0}\right) \tag{1}
\end{equation*}
$$

This series is obviously convergent for all finite values of $n^{2} x / g$.
The general integrai is of the form

$$
\eta=\mathrm{B}\left(\eta_{1}+\eta_{0} \log x\right)+\mathrm{A} \eta_{0} ;
$$

There $\eta_{1}$ is a function of $x$, finite for all values of $x$, but whieln we
need not retermine. For it is c'ear that, to suit our present purpose, we must put $\mathrm{B}=0$; otherwise we should have $\eta$ infinite at $x=0$. Thus (1) is the expressiva we require under the limitations above imposec.

The quantity $A$ represents the semi-smplitude of oscillation of the lower extremity of the chain. l'he condition that the upper end is fixed gives $\eta_{0}=0$ for $x=l$, $i$.c.,

The roots of this equation (which are all real and positive) give the values of $n$ for the several fundamental modes of vibrstion.

We have $\eta_{0}=0$ for the following values of $n^{2} / / g: 1 \cdot 454,7 \cdot 62$, 18.74, 3479 , sc.

From these we find for the periols of the various simple disturbanees the following multiples of the period of a simple pendulum equal in length to the chain, viz., $0.83,0.36,0.23,0.17$, sic. When $n^{2} 2 / g$ bas the least of the above values, the chain is always entirely on one side of the vertical, and the time of a complete oscillation is to that of a simple pendulum of the samo length as 5: 6 nearly.
269. When a free chain, at rest, has an impulsive tension applied Impul. at one end, the calculation of the consequent impulsive tension at sive different parts of the chain and the velocities generated is very teusior simple.
For, calling the instantaneous speeds along the tangent and along the radius of absolute curvature $v_{s}$ and $v_{\rho}$ respectively, we heve

$$
\delta \mathrm{T}=\mu v_{;} \delta s, \quad \mathrm{~T} / \rho=\mu v_{\rho},
$$

where $\mu$ is the mass of unit length of chain at s. It is obrious that there can be no inpulsive speed perpendicular to the osculating plade. The kinematical condition is simply that an elementary are $\delta s$ is not altered in length. But the tangential increment of speed slone nould imply an increase of tho length of $\delta$ in tha, ratio $1+\frac{d v_{s}}{d s} \delta: 1$ in time $\delta \%$. Also the impulsive speed $v \rho$ would, imply a diminution of its length in the ratio $1-v_{\rho} \delta t / \rho: 1$ by virtu. ally making it an arc of a cirele of smaller radins, but subtending the same angle at the centre. Hence, neglecting the square of of as compared with ite first power, we find for the lonematical con dition

$$
\frac{d v_{s}}{d s}-\frac{2^{2} \rho}{\rho}=0 .
$$

This gives, by eliminating the impuisive velocities,

$$
\frac{d l}{d s}\left(\frac{1}{\mu} \frac{d T}{d s}\right)-\frac{1}{\mu} \frac{T}{\rho^{2}}=0
$$

If the chain be umform, this becomes

$$
\frac{d^{2} \mathrm{~T}}{d s^{2}}-\frac{\mathrm{T}}{\rho^{2}}=0
$$

The whole kinetic exergy generated in the chain by the impulse is

$$
\frac{1}{2} \int \frac{d s}{\mu}\left(\left(\frac{d T}{d s}\right)^{2}+\frac{T^{2}}{p^{2}}\right) ;
$$

and the coudition that this slall be a maximum is the differential equation above. This is a particular case of a general theorern due to Sir W. Thomson, viz.:-

A natemal system of any hind, given at rest, and subjected to ane impulse in any syccifod direction and of any given magnitude, moves off so as to takic the yreatest anount of kinctic encray wikich the specificed impnetse ean give it.
The direction in which an clement of the chain begins to nove is ioclined to the tangent at an angle $\phi$ where

$$
\tan \phi=\frac{v_{\rho}}{v_{s}}=\frac{\mathrm{T}}{\rho \frac{d \mathrm{~T}}{d s}} .
$$

2\%0. It is to be observed that, in such questions as those just treated, the possibility of an inplact's being propagated instan taneously along the whole length of a chain depends mpon its assumed inextensibility. Whei a wire (such as that employed for a distance-sigual on railways) is rergarded as cxtensible, there is a definite speed with which a disturbanee of the nature of exjension is transmitted along it.
Thus, recurring to the equations of $\S 267$, we see thar for the motion of a stretched elastic string in the direction of its length we have

$$
\frac{d \mathrm{~T}}{d s}=-\mu(\mathrm{X}-\ddot{x})
$$

If there be no applied forces, $\mathrm{X}=0$. Also, if wo use $x$ instead of $s$ to characterize a particular point of the string, we must put $x+\xi$ for $x$ and $x$ for $s, \xi$ being a function of $x$ and $\ell$ which denotes at any instadt the displacement of that point.

The physical condition is repressed by Hooke's Law in the form

Hence

$$
\begin{array}{r}
\mathrm{E} \frac{d \xi}{d x}=\mathrm{T} \\
\mathrm{E} \frac{d^{\prime} \xi}{d x^{2}}=\mu \xi .
\end{array}
$$

This expresses (as in § 267) the passage of simultancous waves. They are now waves of condensation nnd extension, not of trans. verse displacement. The nature of the interpretation of the equation is of the same general character as before, the speed being $\sqrt{\mathrm{E} / \mu}$.

## Dynimics of an Elastic Solid.

§271. This subject, which is a very extensive and difficult one, and in its generality quite unsuitable for discussion here, has already been to some extent treated of under Elasticity. We therefure content ourselves with one or two examples, whose treatment is comparatively simple, while their applications are frequent and of considerable practical importance:
Oylin- $\quad \$ 272$. Even so restricted a problem as that of determin. drical or ing the form assumed by a wire or thin rod of homogeneous pris- isotropic elastic materinl, under the action of given forces matic
wire, and couples, presents somewhat formidable difficulties unorigin. less in its unstrained state the wire be straight and truly ally cylindrical or prismatic. And, even with these limitations, straight. the problem agnin becomes formidable if we introduce the consideration of non-isotropic material; while, in any case, if the radius of curvature at each point is not very large in proportion to the thickuess of the rod in the plane of bending, the problem is to no appreciable extent simplified by the limitation of form of the body. We will therefore give the comparatively simple case of the mere bending and twist of a homogeneous isetropic wire whose natural form is cylindrical or prismatic, the amounts of these from various sources being so small as to be superposable. Buadlng. Bending lengthens one set of lines of particles originally parallel to the axis of the wire and shortens others.
Twist. Twist lengthens all but one such line, forming them into helices. The more detailed investigation, which we cannot give here, shows that there is one line of particles (the "elastic central liue") which passes through the centro of incertia of eisch transerse section, and which may be treated (under our present limitations) as rigorously unchanged in length. The mutual molecular action of the parts of the wire on opposito sides of any transverse section may of course be reduced to a force and a couple, and the force may be conveniently treated as passing through the centre of ioertia of the section. Also the twist and curvature of the wire near this section obviously depend on the couple and nat on the ferce. For the moment of the conple is in general, finite. while that of the force <about any point in the corresponding element of the wire) is infinitesimal.
§ 273. Lot any two planes, at right angles to one another, be dramn through the elastic central line before distertion; and let them be cut in lines PR and PS by a transverse section tbrough a point $P$ of the central line. Also let PT be a tangent to that linc. Suppose a similar construction to be carried out for every point P of the central line. Then it is clear that the form of the distorted wire will be connletely determined if we knew the form assumed by the central line, and the positions taken by the lines PR and P'S drawn from each point in ${ }^{1 t}$. In their new pesitions $P^{\prime \prime} T{ }^{\prime}, P^{\prime} R \prime$, nud $P^{\prime} S^{\prime}$ will still form (in cousequence of the limitations we have imposel) a rectangular system; nnd the nature of the distortion will bo clearly indicated by the chango of position of this rectangular system as it passes from point to point of the distorted central line. The plane of rotation of $\mathrm{l}^{\prime} \mathrm{T}$ ' is the osculating plane of the bending ; its rate of rotation in that plane per unit length of the central lino is the aroount of beuding; and the rato of rotation of the system P'R',

P'S', about P'T', per unit leagth of the central liae, is the rate of twist. Suppose $\mathrm{P}^{\prime}$ to move with unit velocity along the disturted central line, and let $\rho, \sigma, \tau$ be the angular velocities of the system about $\mathrm{P}^{\prime} \mathrm{L}^{\prime}, \mathrm{P}^{\prime} \mathrm{S}^{\prime}, \mathrm{P}^{\prime} \mathrm{T}^{\prime}$ respectively, then $\rho$ represents the curvature (or bending) resolved in the plane $S^{\prime} P^{\prime} T^{\prime}, \sigma$ that in $11^{\prime} \mathrm{P}^{\prime} \mathrm{T}^{\prime}$, while $\tau$ represents the twist.
Now, if the elastic forces constitute a cunservative system, the Expresanount of work done on an clement of the borly corresponding to a sions for leogth $\delta s$ of the central line is to be calculated eatircly froin its force and change of form. It mast therefore be expressible ia the form couple in

$$
\pi \delta \delta
$$

where 20 is a function of $\rho, \tau$, which rnust be such that the bending coluples producing the bending are

$$
\frac{d w}{d_{\rho}} \text { and } \frac{d v}{d \sigma}
$$

while that prolucing the trist is

$$
\frac{d w}{d r} .
$$

These agan, are functions of $\rho, \sigma, r$, and they must, on account of the principle of superposition, be lincar and homogeneons. For, within the limits to which we have restricted ourselves, the doubling alike of bending and twist must involve the doubling of each of tho couples. Thas $w$ must he a homogeneons function of $\rho, \sigma, \tau$ of the scoond degree. Hence we may assume

$$
w=\frac{1}{2}\left(\mathrm{~A} \rho^{2}+\mathrm{B} \sigma^{2}+\mathrm{C} \tau^{\dot{\delta}}+2 \mathrm{D} \rho \sigma+2 \mathrm{E} \sigma \tau+2 \mathrm{~F} \tau \rho\right),
$$

where $A, B, C, D, E, F$ are quantities depending on the form of tho section of tho wire and the nature of its material at each point. This gives

$$
\frac{d \tau}{d \rho}=\mathrm{A}_{\rho}+\mathrm{D} \sigma+\mathrm{F} \tau, \quad \frac{d w}{d \sigma}=\mathrm{D} \rho+\mathrm{B} \sigma+\mathrm{E} \tau, \quad \frac{d w}{d \tau}=\mathrm{F} \rho+\mathrm{E} \sigma+\mathrm{C}_{\tau} .
$$

Hence, when the couples are assigned, the amounts of bending and twist are at onse calenlated from them. But the expression abovo is much more general than we require for the limited case we are considering. For, if the only couples applied to a portion of tho prism or cylinder considered be in plaaes perpendicular to its length, twist only will be produced. Thus, for $\frac{d w}{d \rho}=0, \frac{d w}{d \sigma}=0$, we ought to have also $\rho=0, \sigma=0$. Hence E and F both vanish and we have simply

$$
w=\frac{1}{2}\left(A \rho^{2}+2 D \rho \sigma+B \sigma^{2}+C \tau^{2}\right)
$$

This may be reduced, by properly selecting the planes criginally drawn through the elastic central line, to the form

$$
v==\frac{1}{2}\left(A \rho^{2}+B \sigma^{2}+C \tau^{2}\right)
$$

Now we see that

$$
\frac{d w}{d \rho}=\mathrm{A} \rho, \frac{d w}{d \sigma}=\mathrm{B} \sigma, \frac{d w}{d \tau}=\mathrm{C} \tau .
$$

§274. Iu a prismatic or cylindrical wire of homogeneons isctropic naterial, the elastic central line is thus a torsion axis simply. Equal and opposite ceuples, applied to the ends of such a wire, in planes perpendicular to its length, produce twist in direct proportion to the moments of the couples There are two planes perpendicular to one ancther, and passing through this line, such that, if equal and opposite couples in either of these planes be applied at any parts of the wire, the prortion between is bent into a circular are in that plauc. These are the principal planes of flexure. The quatitics $A$ and $B$ which, when multiplied by the amount of bending in cither of these planes, give the moment of the corresponding couple are called the principal " texure rigidities" of the aire. When they are equal Flexure (as in the case of a wire of circular, square, equilateral rigidity. triagular, d.c., section) any plane through the axis is a principnl plane of flexure. C is the torsional rigidity of Torvioms the wire. In general, when the wire is fixed at one end rigidity. and a couple applied at the other, the wiro assumes the form of a circular helix. The exceptions (or rather particular cases) are:-(a) when the plane of the couple contains the elastic central line, and there is more flexure, without twist; (l) when the plane of the eouple is perpendicular to the wire, and there is trist simply.
$\S 275$. As an exemple of the preceding theory, take firs

Flexure the case of a uniform plank clamped horizontally at one end, of plank and otherwise unsupported. This is obviously the same by its own weight, as the case of a plank of double the length, supported by a trestle placed under its middle. We assume as before that the radius of curvature is always very large compared
with the thickness of the plank.

In all such cases we may at once apply the principle of § 258 , and suppose one portion of the plank up to a section $\mathbf{P}$ to be fixed in its equilibrium position. The curvature immediately contiguous to P will then be simply proporsional to the moment about P of the forces acting on the unfixed portion. Hence at the free end there will be no curvature, and the curvature at points near that end will be of the second order of infinitesimals; i.e., its rate of increase at the end vanishes.
Let $x$ be the length of the fixed portion, $l$ the whole length of the plank. Then, as the deflexion $y$ from the horizontal is always very small, the curvature is expressed (\$22) by

$$
\frac{d^{2} y}{d x^{2}},
$$

30 that we have at once

$$
\mathrm{E} \frac{d^{2} y}{d x^{2}}=-\mu y \int_{0}^{l-x} x^{\prime} d x^{\prime}=-\frac{1}{2} \mu g(l-x)^{2},
$$

whers $E$ is the "flexural rigidity" of the plank, and $\mu$ its mass per unit of length.
Successive integrations give

$$
\mathrm{E} \frac{d y}{d x}=\mathrm{B}+\frac{1}{b} \mu g(l-x)^{3},
$$

and

$$
\mathrm{E}_{y}=\mathrm{A}-\mathrm{B}(l-x)-\frac{1}{2} \boldsymbol{2} \mu g(l-x)^{4} .
$$

The terminal coulditions are

$$
\begin{array}{ll}
\text { for } x=0 & y=0, \quad \frac{d y}{d x}=0 \\
\text { and for } x=l, & \frac{d^{2} y}{d x^{2}}=0, \frac{d^{3} y}{d x^{3}}=0
\end{array}
$$

The last two are obviously satisfied
The two former give

## Hence

$$
\mathrm{B}=-\frac{\mu g l^{3}}{6}, \quad \mathrm{~A}=\mathrm{B} l+\frac{7}{2} \pi \mu g l^{4}--\frac{1}{8} \mu g l^{4} .
$$

Thus the droop of the free extremity $(x=l)$ is

$$
\frac{\mu g}{8} \frac{l^{4}}{\mathrm{E}}=\frac{\mathrm{W} l^{3}}{8 \mathrm{E}}
$$

where W is the whole weight.
, If the plank had been weightless, but loaded at the free end with a weight W, our equation would have been

$$
\mathrm{E} \frac{d^{2} y}{d x^{2}}=-\mathrm{W}(l-x),
$$

and we shonld have had

$$
\begin{gathered}
\mathbf{E} \frac{d y}{d x}=\mathrm{B}^{\prime}+\frac{1}{2} \mathrm{~W}(l-x)^{2}, \\
\mathrm{E}_{y}=\mathrm{A}^{\prime}-\mathrm{B}^{\prime}(l-x)-\frac{1}{6} \mathrm{~W}(l-x)^{3} .
\end{gathered}
$$

The terminal conditions at $x=0$ are as before, so that

$$
\mathrm{B}^{\prime}=-\frac{1}{2} \mathrm{~W} l^{2}, \mathrm{~A}^{\prime}=-\frac{1}{2} \mathrm{~W} l^{3}+\frac{1}{6} \mathrm{~W} l^{3}=-\frac{1}{3} \mathrm{~W} l^{3},
$$

and the droop of the free end is $\frac{\mathrm{W} l^{3}}{3 \mathrm{E}}$, greater than before in the ratio of $8: 3$.
If the plank be again looked on as heavy, but its free end he supported on a trestle which is pressed upwards till it acts with a force

$$
\begin{aligned}
& \mathbf{E} \frac{d^{2} y}{d x^{2}}=\mathrm{W}(l-x)-\frac{1}{2} \mu g(l-x)^{2}, \\
& \left.\mathrm{E} \frac{d y}{d x}=\mathrm{B}^{\prime \prime}-\frac{1}{2} \mathrm{~W}(l-x)^{2}+\frac{1}{d} \mu g^{3} l-x\right)^{3}, \\
& \mathrm{E} y=\mathrm{A}^{\prime \prime}-\mathrm{B}^{\prime \prime}(l-x)+\frac{1}{6} \mathrm{~W}(l-x)^{3}-\frac{1}{2} \mu \mu g(l-x)^{4} .
\end{aligned}
$$

The terminal conditions, at $x=0$, are still as in the first case, and they give

$$
\mathrm{B}^{\prime \prime}=\frac{1}{2} \mathrm{~W} l^{2}-\frac{1}{6} \mu g l^{3},
$$

when the amount by which the free end is raised is

$$
\frac{A^{\prime \prime}}{\mathrm{E}}=\left[l\left(\frac{1}{3} \mathrm{~W} l^{2}-\frac{1}{6} \mu g l^{3}\right)-\frac{1}{6} \mathrm{~W} l^{3}+\frac{1}{2} \pi \mu g l^{4}\right] / \mathrm{E}=\frac{5 \mathrm{~W} l^{3}}{24 \mathrm{E}}
$$

This is obvionsly the same as the amount of depression of the midulle of a plank of length $2 l$ supported by trestles at cack end.
$\S 276$. Hence the droop of the middle of a plank resting on trestles at its ends is to that of the ends when the plank rests on a single trestle at the middle in the ratio of $5: 3$.

If the equation expressing the curvature in the first or third cases above be twice differentiated, the common result is

$$
\mathrm{E}_{\mathrm{al}}^{d l^{4} y}=-\mu g
$$

The simplicity of this expression leads us to seek for the Horizoumost general form. Suppose the plank to be exposed to tal phank any system of forces in lines perpendicular to its length under and breadth. Then, if any transverse section be made, vertical the stress between the two portions of the plank will con-forces. sist of forces $( \pm G)$ and conples $( \pm H)$ in the plane of length and thickness. Let the applied forces be $N$ per unit of length. Suppose also, as before, that the radius of curvature is very great compared with the thickness.! Then the equations of equilibrium of an element are

$$
\frac{d G}{d x}+\mathrm{N}=0, \quad \frac{d \mathrm{H}}{d x}+\mathrm{G}=0
$$

We have also the condition of bending, viz.,

$$
\mathrm{E} \times \text { curvature }=\frac{\mathrm{E}^{l^{2} y}}{l x^{2}}=\mathrm{H} .
$$

Eliminatiug H and G among these equations, we have

$$
\mathrm{E} \frac{l^{4} y}{d x^{4}}=\frac{d^{2} \mathrm{H}}{d x^{2}} \quad \quad \frac{d \mathrm{C}}{d x}=\mathrm{N}
$$

which of course includes all the previous particular cases. We may now determine (under the limits imposed) the form of a uniform plank of any length, supported in a uearly horizontal position at different points in its lengtb, and loaded at any assigned points with any weights. The importance of this in practice is obvious.
$\S 277$. But we may easily take a further step, and in- Vibra.vestigate the oscillatory motion, so long at least as the tion of acceleration parallel to the length of the plank and its rota- plank or tion are negligible. For in such a case, if $\mu$ be the mass spring: per unit of length, the equation of motion is (§ 199)

$$
\mathrm{E} \frac{d^{4} y}{d x^{4}}=\mathrm{N}-\mu \dot{\mu} .
$$

We will consider only the case in which the applied force N may be neglected. This is practically the case of a uniform wire or flat rectangular spring. Suppose, further,' that it is fixed at one end and free at the other, like Wheatstone's "kaleidophone," or like the tongue of a reed organ-pipe.
Then, writing $n^{4}$ for the fraction $\mu / E$, we have

$$
\frac{d^{d} y}{d x^{4}}+n^{4} \ddot{y}=0 .
$$

A particular integral mey obviously be found in the form

$$
\begin{equation*}
y=\eta \cos \left(i^{2} l / n^{2}+a\right) \tag{1}
\end{equation*}
$$

where $\eta$ (a function of $x$ ) and $i / n$ (a constant number) have to be found; $a$ is any coustant. The substitution of this value of , leads to

$$
\frac{d^{4} \eta}{d x^{4}}-i^{4} \eta=0
$$

the complete integral of which is

$$
\eta=\mathrm{A} \varepsilon^{i x}+\mathrm{B} \varepsilon^{-i x}+\mathrm{C} \cos (i x+\mathrm{D}) .
$$

Now, provided the value of $i$ be properly determined, the motion represented by (1), with the above value of $\eta$, can exist by itself, and the most general motion of which the spring is capable (under the limits imposed) consists of superposition of a number of separate motions of a similar character. Hence this may be treated by itself. Our limiting conditions in the present case are
and

$$
\begin{array}{ll}
x=0, & \eta=0, \frac{a \eta}{d x} \neq 0 \text { at the fixed cnd } ; \\
x=l, & \frac{d^{2} \eta}{d x^{2}}=0, \frac{d^{3} \eta}{d x^{3}}=0 \text { at the free end. }
\end{array}
$$

Now, from the value of $\eta$ alove, we have

$$
\frac{1}{i} \frac{d \eta}{d x}-A \varepsilon^{i x}-B \varepsilon-i x-C \sin (i x+D)
$$

$$
\begin{aligned}
& \frac{1}{i^{3}} \frac{d^{2} \eta}{d x^{3}}=A \varepsilon^{i x}+B \varepsilon^{-i x}-C \cos (i x+D), \\
& \frac{1}{i^{3}} \frac{d^{3} \eta}{d x^{3}}=A \varepsilon^{i x}-B \varepsilon^{-i x}+C \sin (i x+D) .
\end{aligned}
$$

Hence tre have

$$
\begin{aligned}
& 0=\mathrm{A}+\mathrm{B}+\mathrm{C} \cos \mathrm{D}, \\
& 0=\mathrm{A}-\mathrm{B}-\mathrm{Cain} \mathrm{D}, \\
& 0-\mathrm{A} \varepsilon^{i l}+\mathrm{B} \varepsilon^{-\mu}-\mathrm{C} \cos (i l+\mathrm{D}), \\
& 0=\mathrm{A} \varepsilon^{\prime \prime}-\mathrm{B} \varepsilon^{-\prime}+\mathrm{C} \sin (i l+\mathrm{D}) .
\end{aligned}
$$

Eliminating C and D , we havo

$$
\begin{aligned}
& 0=A \varepsilon^{i l}+B \varepsilon^{-i}+(A+B) \cos i l+(A-B) \sin i l, \\
& 0=\Delta \varepsilon^{2}-B \varepsilon^{-i l}-(A+B) \operatorname{ain} i l+(A-B) \cos i l .
\end{aligned}
$$

Eliminste the ratio $A / B$, which is all that theso equations furnish and we have

$$
\left(\varepsilon^{i l}+\varepsilon-i\right) \cos i l+2=0 .
$$

From this equastion the values of $i$ must be determince. It is clear that the multiplier of cos $i l$ is always greater than 2 , excent in the apecial case of $i=0$, which we obviously need not consider, as it gires $y-0$, and therefore belongs to tho statical problem already considered. Hence as, to make cosil ncgative, il must be greater than $\frac{1}{2} \pi$; and, as $\varepsilon^{\frac{1}{2 \pi}}+\varepsilon^{-\frac{1 \pi}{2}}-5$ nearly, it ia clear that the excess of the first value of il ovel $\frac{1}{2} \pi$ is somewhero about 0.3 . The next value falls short of $\frac{3}{8} \pi$ by a quantity of the order for, the next exceeds $\frac{f}{\hbar} \pi$ by a quantity of the order शुण्ठ, \&c. The required values arrange themselves in tro grouns, one of either group being taken alternately. The first group involves arcs a little greater than hut rapidly approaching to the values of $(4 m+1) \frac{1}{2} \pi$; the second consists of arcs a little less than but rapidly approaching to those of $(4 m+3) \frac{1}{2} \pi$.
Erectsil § 278 . Some of ihe simplest, but at the same time pressurs most practically useful, of questions connected with elas-
ticity of solids relate to the changes of form or volume experienced by circular cylindrical tubes or spherical shells exposed to hydrostatic pressure. A stean-boiler, the cylinders and tubes of an bydraulic press, a fowling-pliece or cannon and (on a much smaller scale) Örsted's piezometer, deep-sea thermometers, \&c., affurd cominon instances. All that is necessary for attacking such questions is given in $\$ \$ 45,46$ of the article Elasticity. For it is there shown that, if a homogencous isotropic elastic solid be subjected to a simple longitudinal stress $P$, uniform and in a definite direction throughout its whole substance, the esolt will be linear extension $=P\left(\frac{1}{3 n}+\frac{1}{9 k}\right)$ in the direc. tion of $P$, and linear contraction $=P\left(\frac{1}{6 n}-\frac{1}{9 \grave{k}}\right)$ in all directions perpendicular to $P$. The quantities $n$ and $k$, as explained in the article referred to, are respectively the "rigidity" and the reciprocal of the "compressibility" of the solid operated on.
\$ 279 . The case of the piezometer, in which the vessel holding the liquid whose cotapression is to be measured is exposed both inside and outside to the same hydrostatic pressure, is seen to correspood to threo equal stresses in directions at right angles to ono another. These directions may be any whatever, and in each of them the linear extension is obriously

$$
\mathrm{P}\left\{\left(\frac{1}{3 n}+\frac{1}{9 k}\right)-2\left(\frac{1}{6 n}-\frac{1}{9 k}\right)\right\}-\frac{\Gamma}{3 \dot{k}} .
$$

$\boldsymbol{P}$ is negative, as the stress is a pressure. Hence the strain consists in a simple alteration of volumo measured by $\mathrm{P} / \mathrm{L}$. Every part of the walls of the ressel, as well as its external oulk, and its interior content, is altered to the same extent.
§ 230. In the case of a cylinder, when the internal and external pressures are different, it is clear from symmetry thai the stresses may be resolved at any point of tho walls tinto three at right angles to one nnother, the first $\left(\mathrm{P}_{1}\right)$ parallel to, the sccond $\left(\mathrm{P}_{2}\right)$ at right angles to, the axis, ond the third $\left(\mathrm{P}_{3}\right)$ perpendicular to each of the other
two. In a transverse section. - ithe cylinder, the seeond of these is radial and the third is tangential to a coaxal cylinder passing through the elements considered. We suppose the cylinder closed at both ends, and tre malke the further assumption (quite exact enough for practical applications, and most important from the point of vieu of simplicity of calculation) that all transverso sections of the cylinder remain, after distortion, transverse sections. This is equivalent to assumiog $P_{1}$ to be constant throughout the walls of the cylinder. Hence, if there be interior pressure only, the value of this stress must be

$$
P_{1}=\frac{\text { pressure on end of interior of cylinder }}{\text { area o! transverse section of walls of cyliuder }}=\frac{n c_{0}^{2}}{a_{1}^{2}-a_{0}^{2}} \text {, }
$$

where $\Pi$ is the interior hydrostatic pressure, and $\pi_{0}, a_{1}$ are the internal and external radii. This stress represents a longitudinal tension of the walls of the cylinder.
Let us consider an elcment of the cyliudrical wall, defined as follows in the unstrained state:-

Draw two transverse sections at distances $x$ and $x+\hat{o} x^{2}$ from one end, two plancs through the axis making an (infinitesimal) angle $\theta$ with one another, and two cylinders of radii $r$ and $r+\delta r$ about the common axia. lin the slramed state $\theta$ is unclianged, but $x$ becomes $x+\xi$, and $r$ becomes $r+p$. The distance between the transverse sections was $\delta x$; it becomes $\delta x+\frac{d \xi}{d x} \delta x$. so that the linear extension parallel to the axis is $\frac{\mathrm{d} \xi}{\mathrm{d} x}$. The distance letween the cylinders Was $\delta r$; it becomes $\delta r+\frac{d \rho}{d r} \delta r$, so that the radial extension is $\frac{d \rho}{d r}$. The breadth of the base of the wedge-shaped element was $r \theta$; it bacomes $(r+\rho) \theta$, so that the linear exteusiou perpendicular alike to the radial line and to the axis is $\frac{\rho}{r}$
If we now write, for simplicity;

$$
c=\frac{1}{3 n}+\frac{1}{9 \dot{h}^{\prime}}, f=\frac{1}{6 n}-\frac{1}{9 R^{i}}
$$

the three requisite cquations between stresses and statios ars at once obvious in the form

$$
\begin{aligned}
& d \xi \\
& d d_{i}-c \Gamma_{2}-f \mathrm{P}_{2}-f \mathrm{P}_{3}, \\
& \frac{d \rho}{d}=-f \Gamma_{1}+c \Gamma_{2}-f P_{3}, \\
& \frac{\rho}{r}=-f \Gamma_{3}-f P_{2}+c \Gamma_{3} .
\end{aligned}
$$

We have, horever, four unknown quantitics $\xi,{ }^{-} \rho, P_{9}$ and $P_{3}$, so that another equation is required. This nust be supplied by one of the statical conditions of equilibrium of the clement above defined, when in its strained state. There is obviously equilibrimm in the axial direction, and also parallel to tho base of tho element: but radially we have a case resensbling that of an element of a cord as in §264. Neglecting small quantities of a higher order than those retained, this consideration givea

$$
\mathrm{P}_{3} \delta 08 . r \delta r=\frac{d}{d r}\left(\mathrm{P}_{2} r \delta 08 x\right) \delta r, \text { or } \mathrm{P}_{3}=\frac{d}{d r}\left(\mathrm{P}_{2} r\right)
$$

Solving the four cquations, and taking account of tha bonndary conditioua

$$
\Gamma_{2}=-\Pi \text { wnen } r=c_{0} \text {, and } \Gamma_{3}=0 \text { when } r=a_{1} \text {, }
$$

we obtain the following values:-

$$
\begin{aligned}
& \frac{d \xi}{d \dot{j}}=\pi \pi_{a_{j}^{3}-a j}^{n_{j}^{2}}(e-2 \Omega), \\
& \frac{\rho}{r}=\Pi_{a_{1}^{3}}-a_{v}^{2}=\left[(c-2 \Omega)+\frac{a_{1}^{2}}{j_{i}^{2}}(c+\Lambda)\right] \text {, } \\
& \frac{d \rho}{d r}=\pi_{a_{1}^{2}} \frac{n_{0}^{2}}{n_{0}^{2}}\left[(c-2 n)-\frac{n_{3}^{2}}{r^{2}}(c+f)\right]
\end{aligned}
$$

or, reintrodacing the valucs of $c$ aud $f$,

$$
\begin{gathered}
\frac{d \xi}{d x}-\frac{\Pi a_{0}^{2}}{a_{1}^{2}-a_{0}^{2}} \frac{1}{3 k} \\
\frac{p}{r}=\frac{i n a_{0}^{2}}{a_{1}^{2}-a_{0}^{2}}\left(\frac{1}{3 k}+\frac{a_{1}^{2}}{r^{2}} \frac{1}{2 n}\right), \\
\frac{d \rho}{d v}=\frac{\Pi a}{u_{1}^{2}-u_{0}}\left(\frac{1}{3 k}-\frac{a_{1}^{2}}{y^{2}} \frac{1}{2 n}\right) .
\end{gathered}
$$

§251. Thus the mature of the distortion produced in the ralls of a cylindrical tube by internsl pressure may be described as modo up
'of a uniform dilatation, whese linear measure in every direction is $\frac{\Pi a_{0}^{2}}{a_{1}^{2}-a_{0}^{2}} \frac{1}{3 k}$, combincd with a shcar in each transverse section, whose measure is $1 \pm \frac{\Pi a_{0}^{2} a_{0}^{2}}{\left(a_{1}^{2}-a_{0}^{2}\right) r^{2}} \cdot \frac{1}{2 n} . \S 91$.

The sherter axis of this shear is radial, and the magnitude of the shear is obviously greater for smaller values of $r$. The inser layer of the walls is thus the most distorted. The amount of the distortion is directly as the pressure, and inversely as tha area of the section of the walls.

When the walls are very thin the snear is practically the same throughout their thickness. When they ara very thick, the shear near the inner surface is nearly $1 \pm \frac{\pi}{2 n}$, however fine be the bore. That near tha outer surface is nearly $1 \pm \frac{a_{0}^{2}}{a_{1}^{2}} \frac{\Pi}{2 n}$, which vanishes when the bore is very fine. Thus it appears that, if a stout tube bursts by the shear preduced by internal pressure, little is gained either by making it of extremely great thickness or by making it of rery small bere.

The diagrams $A$ and $B$ in fig. 66 show, necessarily on a greatly exaggerated scale, the nature of the distortion produced at different

A

B

C

D

Fig. 66.
parts of the wall of the tube. They represent transverse sections of small, originally spherical, elements made by plaees at right angles to the axis. The radial diameters ara horizontal. A is an element close to the exteraal surface, $B$ an element near the inner surface. The increase per unit volune of the interior of the tube is

$$
\frac{\Pi a_{n}^{2}}{a_{2}^{2}-a_{0}^{2}}\left(\frac{1}{k}+\frac{a_{1}^{2}}{a_{0}^{2}} \frac{1}{n}\right) ;
$$

so that, if the tube be very thick in comparison with its bore, the increase is nearly $\pi / n$. In flint glass this is approximately about गंगु, when $\Pi$ is a ton-weight per square inch.
Cylinder $\S 282$. Tha reader who has followed the abova investigation will ander find no difficulty in obtaining the corresponding results for a cylin. external drical tube, closed at both ends and exposed to external pressure $\Pi$, oressure. in the form

$$
\begin{aligned}
& \frac{d \xi}{d x}=-\frac{-1 a_{1}^{2}}{a_{1}^{2}-a_{0}^{2}} \frac{1}{3} \overline{J_{i}}, \\
& \frac{\rho}{r}=-\frac{\Pi \pi}{a_{1}^{2}-a_{0}^{3}}\left(\frac{1}{3 h^{2}}+\frac{a_{n}^{j}}{r^{2}} \frac{1}{2 n}\right) \text {, } \\
& \frac{d_{0}}{d r}=-\frac{\Pi a_{1}^{2}}{a_{1}^{2}-a_{n}^{7}}\left(\frac{1}{3 k}-\frac{e_{0}^{2}}{r^{2}} \frac{1}{2 u}\right) .
\end{aligned}
$$

The only comments we need make are (1) that. the sigus of these distortions are now negative; (2) that thes are (so far as change of volume is concerned) greatet than for the internal pressure, is $a_{1}^{2}$ has taken the place of $a_{0}^{2}$ as a factor in each term involving $z$; (3) that the terms involving the rigidity are, except as regards sign, uncbanged.

The change of volume of every part of the ralls is

$$
-\frac{\Pi a_{1}^{2}}{a_{1}^{2}-a_{0}^{2}} \frac{1}{k^{2}}
$$

and the change of volume of the interior is

$$
\frac{\Pi a_{1}^{2}}{a_{1}^{2}-a_{0}^{3}}\left(\frac{1}{k_{0}}+\frac{1}{n}\right)
$$

The numerical value of the factor $\pi\left(\frac{1}{k}+\frac{1}{n}\right)$ is avout $\frac{1}{1000}$ for flint glass and about $30^{2} \sigma$ for stecl, when $\pi$ is a ton-weight per square inch. There is, however, a peculiarity which (when the walls are thick eoough) distinguishes thia from the preceding casa. For $k$ is usually considerably greater than $n$, so that a fortiori $3 k$ is greater than $2 n$. Hence, in the value of $d \rho_{i}^{\prime} d r$, the term in $n$ is always greater than that in $k$ so long as the pressure is internal. Thus the radial effect is compression at all parts of the walls. But, when the pressure is external, wo may (if the walls be thick enough) find a value of $r$ for which

$$
\frac{1}{3 k}=\frac{a_{0}^{2}}{r^{2}} \frac{1}{216}
$$

In glass, this occurs wnen $r=1 \cdot 6 a_{0}$ nearly. At this distance from the axis there is no radial clange of lewgth; at greater distances there is radial compression, aud at smaller radial extension. This is indicated in the diagrams $C$ and $D$ in fig. 66 , which like the formacr are greatly ezaggerated. They represeut the distortion
of sman spherical elements of a thick tabe, - the first at the inner wall, the secoud at the outer surface. As before, these are sections made by a plane perpendicular to the aris of the cylinder.
§ 283. In a spherical shell of internal and external radii $a_{0}$ and Sphericai $a_{1}$, the equations become a little more simple on account of the shell mere complete symmetry.

Using the sante notation, so far as it is now applicable, we have

$$
\frac{d \rho}{d r}=-2 f \mathrm{P}_{1}+c \mathrm{P}_{2}, \quad \frac{\rho}{r}=(e-f) \mathrm{P}_{1}-f \mathrm{P}_{3}
$$

The statical cquation is

$$
2 r \mathrm{P}_{1}=\frac{d}{d r}\left(r^{2} \mathrm{P}_{\Delta}\right)
$$

With these we obtain, for external pressure $\pi$, the result

$$
\frac{\rho}{r}=-\Pi \frac{a_{1}^{3}}{a_{i}^{3}-a_{b}^{3}}\left(\frac{1}{3 k}+\frac{a_{0}^{2}}{r^{3}} \frac{1}{4 n}\right),
$$

from which the other equation may be derised by differentiation.
§284. The propagation of plane wares in an elastio solid has been discussed in Elasticity, and the mechautcs of fluids is discussed under Hydronechanics.

## General Considerations.

§285. The preceding view of the subject of Abstract Genera Dynamics has been based entirely upon Newton's Laws of coni.i. Motion, which were adopted without discussion, as a com- dersplete and perfectly defiuite foundation; and the terms tions. employed, as well as the mode of treatment in general, have somewhat closely followed Newton's system. The only. considerable apparent departare from that system is connected with the development of the idea of energy, and its application to the simplification of many of the methods and results. This also was, as we have seen, really introduced by Newton; but it has been immensely exteaded since his time both by mathematical and by experimental processes. It is time that we should now return to the laws of motion, and examine more closely, in the light of what we have learned, one or two of the more prominent ideas which they embody. To do so fairly we must go back to Nervton's own defiaitions of the terms which he employs. About many of these, which have already been quoted in $\$ 97-113$, there is no difference of opinion. But it is otherwise when we come to the defnition of "force" (\$S 5, 104).

There can be no doubt that the proper use of the term Forca "force" in modern science is that which is implied in the statement of the first law of motion, as we rendered it in § 1 from Newton's Latin. It is thus seen to be the Euglish equivalent of the term vis impressa. Newton uses the word vis in other connexions, and with a certain vagueness ineritable at a time when the terminology of science was still only shaping itself ; but his idea of "force" was perfectly definite, and when this is in his mind the vague worl vis is (when necessary) always qualified and rendered precise, either by the addition of impressa or in some equally unambiguons way. To render vis by "force, "wherever it stands without the impressa or its equivalents, is to introduce a quite gratuitous confusion for which Newton is not responsible. We bave only to think of the multitude of terms, such as vis insila (inertia), vis acceleratrix (acceleration), vis viva (kinetic energy), \&c., \&c., to see that all such complex expressions must be regarded as wholes, and that vis does not mean "force" in any one of them.
§2S6. Thus in Newton's view force is whatever changes (but not "or tends to change") a body's state of rest or of uniform motion in a straight line.

He mentions, as instances, percussion, pressure; and central force. ${ }^{1}$ Under the last of these heads he expressly includes magnetic as well as gravitational force. Thus
${ }^{1}$ Vis centripeta. It has been already explained that such word as centripeta include impressa, so that the above renderieg of Newton' phrase is the obvious one
foree n:ay have different arigins, but it is always one and the same ; and it produces, in any body to which it is applied, a change of momentum in its own dircetion, and in amount propertional to its magnitude and to the time during which it acts.
$\$ 287$. Thus, from Newton's point of view, equilibrium is not a balancing of forces, but a balaneing of the effects of ferces. When a mass rests on a table, gravity produces in it a vertieally downsard velocity which is continually neutralized by the equal upward velocity produced by the reaction of the table ; and these forces, whese origins and places of application are alike so widely different, are (as furces), in every respect execpt direction, similar and equal. And they are so because they produce, in equal times, equal and opposite quantities of motion.
§ 2SS. The idea of "force" was undoubtedly suggested force. Wy the "muscular sense"; and there can be no question as to the vividness of the sensation of effort we experience when we try to lift a heavy weight or to open a massive gate. In this, as in other eases, it is the busiuess of science to find what objective fact corresponds to the subjective data of sensation. It is very difficult to realize the fact, certain as it is, that light (in the senso (f brightness) is a mere sensation or subjective impressien, and has no objective existence. Yet we know that, beside those radiations which give us the sensation of light, there are others, in:endless series both higher and lower in their refrangibility, to which our eyes are absolutely blind. And the only difference between these and the former is one of mere wave-length or of period of vibration. Similarly, it is very hard to realize the fact that sound (in the sense of noise) is only a seusation; and that outside us there is merely a serics of alternate compressions and dilatations of the air, the great majority of which produce no sensible effect upon our ears. Thus because we know that we should seek in vain for brightness or noise in the external world, familiar as our senses have rendered ns with these conceptions, we are driven to iaqnire whether the idea of force may not also be a mere surgestion of sense, crirresponding (no doubt) to some process going on outside ns, but quite as different from the seasation which suggests it as is a priodic sheating of the ether from brightness, or a periodic change of density of air from noise.
§ 289. Su far, we have treated of force as acting on a body without inquiring whence or why ; we have referrel to the first and second laws of motion only, and have thus seen only one balf of the phenomenon. As soon, however, as we turn to the third law, we find a new light cast on the question. Foree is always dual. To ecery action there is alvays an equal and contrary reaction. Thus the weight Which we lift or try to lift, and the massive gate which we open or try to open, looth as truly exert forre upon our hands as we do upon them. This looking to the other side of the arcount. as it were, puts matiers in a very different aspect. "Do you mean to tell me," said a medical man of the old schnol, "that, if I pull a 'subject' by the hand, it will pull me with an cqual and opposite fnrce?" When he was convinced of the truth of this statement, he gave up the objectivity of force at once.
§ 290. The third law. in modern phraseology, is merely this:-

Every action lepimech turn bodies is a stress.
When we pull one enal of a string, the other end being fixed, we produce what is called tension in the string. When wo push one end of a beam, of which the other end is fixed, we produce what is called pressure throughout the beam. Leaving out of account, for the moment, the effects of gravity, this merely nmounts tosaying that there is stress across every transverse section of the string or bean. But, in the caso of the string, the part of the stress which every
portion exerts on the adjoining portion is a pall; in the case of the beam it is a jmsh. And all this distribution uf stress, though exerted across every one of the infinitely nuarerous cross sections of the string or leam, disappears the moment we let go the end. We can thus, by a toucl, call into action at will an infinite number of stresses, and put them out of existence again as easily. This, of itself, is a very strong argament against the supposition that force, in any form, can bave objective reality.
$\S \bumpeq 91$. We must now say a word or two on the question of the objective realities in the physical world. If we inquire carefully into the grounds we have for believing that matter (whatever it may be) has objective existence, we find that by far the most convincing of them is vihat may be called the "conservation of matter." This means that, do what we will, we cannot alter the mass or quantity of a portion of natter. We may clange its form, dimensions, state of aggregation, de., or (by chemical processes) we may eutirely alter its appearance and properties, but its quantity remains nnchanged. It is this experimentai result which has led, by the aid of the balance, to the immense developments of modern chemistry. If we receive this as eridence of the objective reality of matter, we 口ust allow objective reality to auything else which we find to be conserved in the same sense as matter is conserved Now there is no such thing as negatire mass; mass is, in mathematical language, a signless quantity. Hence the conservation of matter dues not contemplate the simultaneous production of equal quantities of positive and negative mass, thus leaviog the (algebraic) sum unchanged. But this is the nature of consersation of momentum (§ 165) and of moment of momentum. The only other known thing in the physical universe, which is conserved in the same sense as matier is conserved, is cnergy. Hence we naturally consider cnergy as the other objective reality in the physical unirerse, and look to it for information as to the true nature of what we call force.
§ 292. When we do so, the answer is casily obtained, True and in a completely satisfactory form. We give ouly a very nature $\ddagger$ simple instance. When a stone, whose mass is II and force weight W , has fallen through a space $h$ towards the earth: it has acyuired a speed 2 ; which (\$28) is giren by the equation

$$
\frac{1}{2} \mathrm{M} v^{2}=W h
$$

This is a particular case of the conserration of energs, but the terns in which it is expressed are those suggested, by Newton's laws of motion, and are therefore based on the recognition of "force." The first member of the equation reiresents the kinetic energy acquired; the second the potential energy lost, or the work done by gravity upon the stone during its fall. Both members therefore express real thingra, having objective existence.

But the "force" (so-called) which is said to have prodaced the motion, has the value

$$
W-\frac{1}{2} \cdot t_{2}=2 / 2,
$$

i.e., it is the rate prer unit of length, at which potential energy is convertel into kinetie energy during the fall. In other words, it is merely an expression for the space-rate at which energy is transiormat.
§ 293. Another mode of presenting the cars will make this still more clear. Tho average speed with which the stone falls is (s.28) m ? . Divide both sides of tho equation above ly this quantity, remembering that $2 h^{\prime} n$ is the time of falling, which we calt $t$. We have thos, as anvther perfectly legitunate deductiou from our premises, Time:.

$$
W=M v / l .
$$

§ 294. The statements in the last two sections are, in fact, merely particular cases of Newton's two interpretat:ons of action in the third law, which have already been discussed ( $\$ 8165,167$ ).
Analytically, the whole affair is merely this: if $s$ be the space described, $v$ the speed of a particle,

$$
\ddot{s}=\dot{v}=\frac{d v}{d t}=\frac{d v}{d s} \cdot \frac{d s}{d t}=v \frac{d v}{d s} .
$$

Hence the eouation of motion (formed by the second law)

$$
m \dot{\vec{s}}=m \dot{v} \sim f,
$$

which gives $f$ as the time-rate of increase of momentum, may be written in the new form

$$
m v \frac{d v}{d s}=\frac{d}{d s}\left(\frac{1}{2} m v^{n}\right)=f
$$

giving $f$ as the space-rate of increase of kinetic energy.
§ 295. But a mere rate, be it a space-rate or a tıme-rate, is not a thing which bas objective existence. No one would confound the bank rate of interest with a sum of money, nor the birth or death rate of a country with a group of individual human beings. These rates are, in fact, mere abstract numbers, by the help of which a man may compute interest per annum from the amount of capital, or the number of infants per annum from the amount of the population. The gradient of temperature, in an irregularly beated body, is a mere vector-rate, by the help of which we can calculate bow much energy (in the form of heat) passes in a given tione across any assigned surface in the body. To attribute objectivity to a rate is even more ridiculous than it would be to attribute it to a sensation, or to a thought, or to a word or phrase which we find useful in characterizing some material object.
§ 296. On the other hand, all these different kinds of rates have been introduced and continue to be employed, because they bave been found to be useful. There is no harm done by retaining them, provided those who use them know that they are introduced for convenience of expressien, and not because there are objective realities corresponding to them. Even such a term as "centrifugal force" is sometimes useful; but always under the proviso that he who employs it shall remember that it is only one side of the stress under which a particle of matter is compelled, in spite of its inertia, to move in a curved line. "But the term must be taken, like "algebra," "theodolite," "Abracadabra," or nny other combination of letters whose derivation is uncertain or unknown, as one and indivisible, to which a certain definite meaning is attached, and as laving nothing whatever to do with the meaning or derivation of the word centrifugal, whose embodiment in it is a perennial monument to the memory of an old error.
Potential energy Yisetic.
$\S 297$. The main characteristics of energy, especially from the experinental point of view, have already been discussed under Dynamics (q.v.) and Energy (q.v.). But there is one point of importance connected with it which comes more naturally here than in either of the articles referred to.

When two measurable quantities, of any kind, are equivalent to one another, their numerical expressions must involve the same fundamental units, and in the same maner. This is obvious from the fact that an alteration of any unit alters in the inverse ratio the numerical measure of any quantity which is a mere multiple of it. And equivalent quantities must always be expressed by equal numbers when both are measured in terms of the same system of units. It appears, therefore, from the conservation of energy directly, as well as from the special data in $\$ 8111,113$, that potential energy must, like kinetic energy, be of dimensions [ $\mathrm{ML}^{2} \mathrm{~T}^{-2}$ ].

Now it is impossible to conceive of a truly dormant form of energy whose magnitude should depend in any way on the unit of time; and we are therefore forced to the conclusion that potential energy, like kinetic energy, depends
(in some as yet unesplaived, or rather uninagined, way upon motion. For the immediate purposes of this article the question is not one of importance. We have been dealing with the more direct consequences of a very compact set of laws, exceedingly simple in themselves, originally based upon observation and experiment, and, most certainly, true. But reason cannot content itzelf with the mere consequences of a scries of observed facts, however elegantly and concisely these may be stated by the help of new terms and their definitions. We are forced to inquire into what may underlie these definitions, and the laws which are obscrved to regulate the things signified by them. And the conclusion which appears inevitable is that, whatever matter may be, the other reality in the physical universe, energy, which is never found unassociate with matter, depends in all its widely varied forms upon motion of matter: In some cases we are sure, in others we can as yet only suspect, that it depends upon motions in a medium which, unlike ordinary matter, has not yet been subjected to the scrutiny of the chemist. But the question, in its generality, is one of the most obscure in the whole range of physics. In the articles Atom, Attraction, Ether, will be found nearly all that is yet known on this profoundly difficult subject. But to what is there said must be added the remark that a state of strain of the ether, whether associated with the propagation of light and radiant beat or with a statical distribution of electricity, represents so much "potential" energy, and must in its turn in some way depend on motion.
§ 298. The remarks of Clerk Maxwell on the nature of Maxwel the evidence for Newton's first law of motion raise a on question, in some respects novel, but in all respects well inertiz, worthy of careful study. He says :-
"Our conviction of the truth of this law may be greatly strengthened by considering what is involved in a denial of it. Given a body in motion. At a given instant let it be left to itself and not ncted on by any force. What will happen? According to Newton's law it wil] persevere in moving uniformly in a straight line ; that is, its velocity will remaiu constant botly in direction and magnitude.
"If the velocity does not remain constant let us suppose it to vary. The change of velocity must have a definite direction and magnitude. By the maxim that the same-causes vill alucays produce the same cffects, thia variation must be the same whatever be the time or place of the experiment. The direction of the change of motion must therefore be deternined either by the direction of the motion itself, or by some direction fixed in the body. Let us, in the first place, suppose the law to he that the velocity diminishes at a certain rate, which, for the sake of the argument, we may suppose so slow that by no experiments on moving bedies could we lave detected the diminution of velocity in hundreds of ycars. The velocity referred to in this hypotheticnl law can only be the velocity referred to a point absolutely at rest. For if it is a relative velucity, its direction as well as its magnitude depends on the velocity of the point of reference. If, when referred to a certain point, the body appears to be moving northward with diminisling velocity, we have only to refer it to another point moving northward with a uniform velocity greater than thint of the bolly, and it will appear to be moving southward witl increasing velocity. Hence the hypothetical low is without menaing, unless we admit the possibility of defining absolute rest and absolute velority.
"It may thus be shown that the denial of Newton's Jaw is in' contradiction to the only system of consistent doctrine about spacs and time wlich the human mind has been able to form."

This is a good example of a valuable application of a principle which, in its widest scope, is inconsistent with the true foundations of physical science. It is, in fact, the exceedingly dangerous "principle of sufficient reason"which requires for its legitimate use the utnost talent and knowledge on the part of the user.
§ 299. But in all methods and systems which involve the True idea of force there is the leaven of artificiality. The true laws of laws of motion, based entirely on experiments of the most extensive and most varied kinds, are thase of the conservation and of the transformation of energy. With the help
of kinematical ideas, it is easy to buse the whole science of dynamics on these principles; and there is no necessity fur the introduction of the word "force" nor of the sensesuggested ideas on which it was originally based.
$\S 300$. Nothing beyond a mere mention has been made above of virtual velocities, and of the so-called elementary mechines. These belong to the subject of Applied Mechanics, separately treated below.
$\S 301$. The references which have been made to various grand theories, such as action, impulse in general, \&c., liave been illustrated by simple cases only. For a detailed examination of these theories the reader is referred to Thomsou and Tait's Natural Philosophy, chap. ii. To the same work be is reforred for the gencral "theory of small oscillations," the "dissipative function," the "ignoration of coordiuates," the treatment of "gyrostatic systems" and of "kinetie stability." All of these have been exhibited, though iu mere particular instances, in the preceding pagès.

## Treatises on Mechanics.

§ 302. The following works on Mcchanics are indispensable :-

1. Newton's Principia (1st ed.., 1687; latest ed., Glasgow, 1871). Here, for the first tine, the fundamental principles were aystematized, extended (as we have seen) in a ruost vital particular, and applied, by the aid of a new mathe:natical method of immense porver (based entirely on kinematical considerations), to many of the most imporiant questions of cosinical and terrestrial dynamics.
Newton's system was first tcught in the unirersity of Edinburgh ; and, with brief intervels, his methods also have been habitually kept before tho students there. From the time of Maclaution to that of Forbes the value of the quasi geometrical methods in giving a clenr insight ioto the problems treated has rarely been overlooked. In Cambridge these methods were of later introduction, but they still deser redly figure as a necessary part of the reading of candidates for "mathematical honours." It is to be feared, llowever, tlat in some other Britislı universities the study of Newton's methods is not prosecuted to anything like the same extent. But the very reverse seems to be the case in Annerica, where, probably to a considerable extent on this account, mathematical physics is advancing in a most remarkuble manner.
2. Lagrange's Mécamique Analytique (1st cd., 1788). Thongh objections may fairly bo taken to the fundamental method of this work, there can be no question as to the immense power and origiaality of its author. His "generalized coordinates," and the equations of motion of a system in terms of these, form one of the most important contributions to the science since the days of Tewton. The nethod of Lagrange, though he was not aware of the fact, is really lased upon tha consideration of energy ; and when, in quite recent times, experiacnt had shown what are the graud laws of energy, Lagranges magnificent mathematical methods and results were ready for translation into the new language of science.
3. Hamilton's papers in tho Philosophical Transactions for 1833 and 1834 . Hero the principla of varying action, and the characteristic fanction, were first applied to meclanirs ;-though they had been given, some years before, to the Royal Irish Academy, in their optical applications. Grand as have been the extensions of these new ideas made by Hamilton himself, and by many others, among whom Jacobi and Liouville may be especially mentioned, they have been mainly in a purely mathematical direction. Wo wait for what cannot now be long delayed, the coming of the philosipher who is to tell us the true dynamical haarings of varying action and of the characteristic fuoction.
4. If to these we ndd some of the works of Calileo, Iluygens, Euler, Maclaurio, and D'Alenibert, wee have the great landmerks in the history of the aubject, as distinguished froni its development.
5. The mere enumeration of the more important developments which the aubject has reccived, as distinguished from the absolutely new grand idens and methods introduced, wbuld require a loug article: Brilliant examples of what may be done in this direction aro furnished by. Stokes'a "Report on Recent Researchea in. Hydrodynamics" and by Cayley a "Reporta on Theoretical Dynamics" (printed in tho British A.ssociation Feports for 1846, and for 1857 and 1862). These ahould be consulted by every stulent who deairea to trace the growth of the aubject. They have beea sne ceeded, in tho same Reports (1880; 1881) by two excellent summaries, by Hieks, of "liecent Progress in Hydrodynamics."
But Laplace's Mécernique Celeste, Poisson'a Mécanique, Poinsot's Thborie Noivelle de la Rotation, se., moro or less parts of the immediate outcome of tha period wincn France intellectually dwarted the rest of the world, are still of far more than mere historic value. For the English-reading student of mondern times, tho work of Thomson end Tsit will b e found suitable. 'The authors of this
work claim the position of "restorers," not of innorators; aud they have (siuce 1863, when the first short sketch of their work was published) striven witb auccess to re-establish in Britain Newton's grand yet simple foundations of the subject. But these foundations, us stated above, are only temporarily the best. We have not, us yet, anything vearly so good.

Other modern works of value are the Aualylic Jechanics of the late Professur Peirce (Boston, 1855) and Kirchilioffs Forlesungen uiber Aathematische Physik (Leipsic, 1876). Loth ore rather of the nature of collections of short treatises on epecial questions than organized wholes, but both will well repay careful reading. This, in the case of Peirce's work, is rendered extreacly puzzling and laborious ly the peculiar notations and modes of reference adopted by the author. It is particularly interesting to study the ways in which the fundsmental principles are introduced in these works, and to compare them with the corresponding parts of the works of Newton aud Lagrange. Lagrange, Peirce, and hirchhotf constrnct each a system as free from anything but analysis as possible. In fact Lagrange prefaces his work by the characteristic statement, "Ou ne trouvera point de Figures dans cet ouvrage. Les méthodes que j'y expose me demandent ni constructions, ni raisonnemens géométriques ou méchaniques, maís seulement des opérations algébriques, assujetties à une marcho réguliere et uniforme. Ceux qui aiment l'Aualyse veront avec plaisir la Méchanique en deveuir une nouvelle branche.": . How far we have considered it expedient to differ from such an authority, a glance at the precediog patges will show.
A part of the detailed work of several of the examples above given iu Dymamics of a Particle has been taken from the elementary treatise (rith that title) of Tait and Steele. The English reader who wishes to pursue elementary Statice way profitably consult the treatise of Miachin. The higher parts are discussed in the work of Somoff, Theorctische MLcchanik (Leipsic, 1879). An excellent introduction to the use of Generalized Coordinates has been published by Watson and Burbury (1879). On Lagrange's Generolized Equatious the student sloculd also read in Maxwell's Treatise on Electricity and Magnetism, part iv. chap. V. And Maxwell's briaf treatise on Matter comel Motion should be in the lisnds of every one commenciag tha subject.

## Analysis of tue Precedina Article.

Newton's Laws of Motion, wili Comments, assiumed as the basis of the article, §§ 1-13.
Kinematics : Position, §§ 14-19; Kinemalics of fivent, §s 20-70; of Plane Figure in its ourn Plane, 5s 71-74; of Rigid Figute, §5 75-83; of Deformable Figure, si 84-95.
Dynamics of a Pariicle: General Considerctions, §§ $96-113$; Further Comments on the First Tico Lau's of Motion, §§ 114119: Friction, §s 120-121; Statics of a Particle, §§ 122-128; Kinetics of a Parlicle with One Degree of Frecdow (Meteorite, ISailstone, Pendulum, Cyeloidal and Eesisted Pendulum), §§ 129-139; with Tuo Degress of E'recdom (Planalary Jfo tion, Kepler's Laus and their Consequences, K'inctic Stability), §§ 140-149; The Brachistochronc, $\$ \S 150-152$; Kinetics of a I'article generally (Conical Pendulum, Elackburn's and Foucault's I'endulanns, Varying Constraint, Disturbed Motion), §§ 153-163; Third Law, Kinetics of Two or More Particles (Aluood's Machine, Chain-shot, Complex Perldulum), §§ 164178; Kinctics of Fric Particles generally, Virial, § 179 ; Impact (Continuous Scrics of Infinitcly Small Impacts, Ilocket), §s 180-190; Dynamics of a System of Particles generally (Equilibrium-Neulral, Stable, and Unstable; Lagrange's Gencral Equation), $\S \$ 191-199$; Action, $\S S_{\text {200-214: Gene: }}$ relized Coordinates, $\S \S 215,216$.
Statics of a Rioid Solin: Ricduction of Forces to Force and Couple, Minding's Theorem, Examples of Statical Problcms, $\S \$ 217-$ 233.

Kinetics of a Rigid Solid: Momenl of Incria, Binet's Theorem, Compound Pendulum, Ballistic Peudulum, Folling and Sliding of Sphers, Motion about Fixad Point, Poinsot's and Syluester's Construclions, Quoil, Gyroscopic Pendulum, ss 234-257.
Statics of a Cirain : Common. Catenary, Catenary of Uniformr Strengh, Kinetic Analogy, Chain Striched on Surface, 5s 258-264.
Kinetics of a Chain : Wave Propagation, Nusical Siring, Chain with Onc Lind Frec, Impulsive Tension, Longiludinal Wave, §§ 265-270.
Dixamics of Elastic Solid: Fexure and Torsion of Wirt, Fending of Plank, Oscillation of Flat Spring, Distortion of Cylinders and spheres by Internal and External Hydrostatic P'ressurc, §§ 271-284.
Ceneral Considerations abolt Force and Enemot: Neuton's Idia of Furce, Origin of the Coneeption, Stress, Objective Physical Iiealitics, True Nature of Force, liates in Gencral, Potential Energy in its Nature Kinctic, Naxuell on Inertia, Trie Laws of Motion, 8s 285-299.
Refercuces lo $\mathbb{A}$ uthoritative Works, $8 \$ 301,302$.
(P. G. T.)

- 1. Tho practical applications of mechanics may be divided into two classes, according as the assemblaces of material objcets to which they relate are iatended to remain fixed or to move relatively to each other, - the former class being comprehonded under the term "Theory of Structures," and the latter under the term "Theory of Machinos." As the details of the theery of structures are dealt with in other articles, it wall be treated of here to such extent only as may be necessary in order to state certain general principles applicable to all these subjects. The greater part of the srticle will relate to machines.


## PART I. OUTLINE OF THE THEORY OF STRUCTURES.

2. Sutport of Stmectures.-Every structure, as a whole, is main: tained in eqnilibrium by the joint action of its own weight, of the extemal load or pressure applied to it from without and tending to displace it, and of the resistance of the material which supperts it. A structure is supported either by resting on the solid crust of the earth, as buildings do, or by fioating in a fluid, as ships do in water and balloons in air. The principles of the support of a floating structure form an impertant part of Hynromechanics ( $q . v$. ). The principles of the support, as a whole, of a structure resting on the fand, sre se far identical with these which regulate the equilibrium and stability of the several parts of that structure, and of which a summary will presently be given, that the only principle which seems to require special mention here is one which comprehends in one statement the power both of hquids and of loose earth to sizpport structures, and which was first demonstrated in a paper "On the Stability of Loose Earth," read to the Royal Socrety on the 19th of Jnne 1856, and published in the Philosophzcal Transactions for that year, riz.

Let $E$ represent the reight of the portion of a horizental stratum of earth rbich is displaced by the foundation of a structure, $S$ the ntmost weight of that structure consistentl $J$ mith the power of the earth to resist displacement, $\phi$ the ang e of repose of the earth; then

$$
\frac{\mathbb{E}}{\mathrm{F}}-\binom{1+\sin \phi}{1-\sin \phi}^{3}
$$

To apply this to li!uds, $\phi$ must be made $=0$, and then $\frac{S}{E}=1$, as Is well known.
3. Composituon of a Structure, and Connexion of its Picecs.- A structure is composed of picces, -such as the stones of a building in masonry, the beams of a timber frame-work, the bars, plates, and bolts of an iron bridge. Those picces are connected at their joints or surfaces of mutual contact, either by simple pressure and friction (as in masonry with moist mortar or without mortar), by pressura and adhesion (as in masonry with cement or mith hardened mortar, and timber with glue), or by the resistance of fastenings of different hinds, whether made by means of the form of the joint (as dovetails, notches, mortises, and tenons) or by separate fastening pieces (as trenails, pins, spikes, nals, holdfasts, screws, bolts. rivets. hoops, straps, and sockets)
4. Stabituty, Stifficss, and Strength. - A structure may $l o$ damaned or destreyed in thrie ways -first, by displacement of its pueces from them proper positions relatively to each other or to the earth, secondly, by disfigurcment of one or mare of those pieces, owing to their belug unable to preserve thear proper shapes under the pressures to which they are subjected, thirdly, by breaking of one or more of those pieces The power of resisting displacemen: constitutes stability; the power of each prece to resist disfigurement is its stiffess; and its power to resist brcakiug, its strengih

5 Conditions of Stabrity.-The pronciples of the stabilaty of a stracture can be to a certain extent investrgated indenendently of the stiffoess and strength, by assuming, in the first instance, that each piece has strength sufficient to be safe against being broken, and stiffness aufficient to prevent its being disfigured to an extent inconsistent with the purposes of the structure, by the greatest forces which are to be applied to it. The condition that each piece of the structure is to bo maintained in oquilibrium by having its gress lead, consisting of its own weight and of the external pressure applied to it, balanced by the resistanccs or pressures exerted between it and the contiguous piaces, furnishes the means of determining the magnitude, pestion, and direction of the resistances required at each joint in order to preduce equilibrium ; and the conditions of stability are, first, that the position, and, secondly, that the direction, of the resistance required at each joint sball, under all the rariations to which the load is subject, be such as the joint is capable of exert-ing,-condstions which are fulfilled by suitably adjusting the figures and positions of the joints, and the ratios of the gross loads of the pieces. As for the magnitude of the resistance, it is limited by conditions, not of atability, but of strength and stiffness.
6. Principle of Least Resislance. - Where more than one system of resigtances are alike capahle of kalancing the same svstem of leads
applied to a giren structnre, it has been demanstrated by Moseley that the smallest of those altermative systems is that which will actually be exerted, -because the resistances to displacoment are the effect of a strained state of the pieces, which strained state is the effect of the load, and when the loal is applied the strained stata and the resistances produced by it increase until the resistances acquire just those maguitudes which are sufficient to balance the load, after which they increase no further.

This princinle of least resistance renders determinato many problems in the statics of structures which were formerly considered indeterminate.
7. Relations between Polygons of Loads and of Revistences.-In a structure in which each piece is aupported at tro joints only, tho well-known laws of statics show that the directions of the gress load on each piece and of the two resistances by which it is supported mast lie in ono plane, must either be parallel or meet in one point, sud must bear to each other, if not parallel, the proportions of the sides of a triangle respectively parallel to their directions, and, if parallel, such preportions that each of the three forces shall be propertional to the distance between the other two,-all the thrce distances being measured along one direction.

Considering, in the first place, the case in which the load and the two resistances by which each piece is balanced meet in one point, which may be called the ecntre of load, there will be as maby such peints of intersection, or centres of load, as there sre pieces in the structure: and the directions and pesitions of the resistances or mutual pressures exerted between the preces will be represented by
the sides of a polygon joinıng those points, as in fig 1 , where $P_{1}, P_{2}, P_{3}, P_{4}$ centres of load in a structure of four preces, and the sides of the polygon of resist. ances $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{5}$


Fig. 1.
represent respec.
tively the directions and position of the resistances exerted at the joints. Further, at any one of the centres of load let PL represent the magnitude and direction of the gross lead, and $\mathrm{P} a, \mathrm{~Pb}$ the two resistances by which the piece to which that lead is applied is supported; then will those three lines be respectively the diagonal and sides of a parallelegram ; or, what is the same thing, they will be eqnal to the three sides of a triangle; and they must be in the same plane, alchough the sides of the pelygon of resistances may be in different planes

According to a well-known principle of statics, because the leads or external pressures $P_{1} L_{1}$, \&c., balance each other, they must bo proportional to the sides of a closed polygon drawn respectrely parallel to their dircetions In fig 2 construct snch a polygon of loads hy drawing the lines $L_{1}$, \&ic., parallel and propertional te, and joined end to end in the order of, the gross loads on the pleces of the structure. Then from the proportionality aad paral. lclusm of the load and the two resistances applied to each piece of the structure to the three sides of a triangle, there results the following theerem [ongtrally due to Rankine]:-
If from the angles of the polygon of


Fig. 2. loads there be drawn lines ( $\mathrm{R}_{1}, \mathrm{R}_{2}, \& c$. ), cach of which is parallel to the resisiance ( $\alpha$ s $\mathrm{P}_{1} \mathrm{P}_{2}$, \&c.) excrted at the joint between the pieces to which the two loads represented by the contiguous sides of the polygon of loads (such as $\mathrm{L}_{1}, \mathrm{~L}_{2}$, \&c.) vire applied; then will all those lines meet $2 n$ one point ( 0 ), and their lengths, measured from that point to the angles of the polygon, will represent the magnitudcs of the resistances to. which they are raspcotively parallel.

When the load on one of the pieces is parallel to the resistances which balance it, the nolygen of resistances ccases to be closed, two of the sides becoming parallel to each other and to the load in question, and extending indefinitely. In the pelygon of loads the direction of a lead sustained by parallel resistances traverses the veint 0 .
8. How the Earth's Resistance is to be treated. - When the pressare exerted by a structure on the earth (to which the earth's resistance is equal and opposite) consists either of one pressure, which is necessarily the resultant of the weight of the structure and of all the otlicr forces applied to it, or of two or more parallel vertical forces, whose amount can be determined at the outset of the
investigation, the resistance of the carth can be treated as one or more upwerd lowds applied to the structure. But in other cases the earth is to be treated as once of the picess of the structure, loaded with a force equal and opposite in direction and position to the resultint of the weight of the structure and of the other pressures applied to it.
9. Parlial Polygons of Resistance. - In a sturcture in which thero are pieces supported at more than tiro joints, let a polygon be constructed of lines connecting the centres of loal of any continuous series of picces. This may be called a partial polygon of resistunces. In considering its properties, the lord at cach centre of load is to be held to inclule the resistances of those joints which are not compreliented in the partial polygon of resistances, to which the theorem of aection 7 will then apply in every respect. By constructiog several partial polygons, and compoting the relations between the loads and resistances which are determined hy the application of that theorem to each of them, with the aid, if necessary, of Moseley's principle of the least resistance, the whole of the relations amongst the loads and resistances may be found.
10. Line of Pressures-Centres and Linc of licsistance. - The line of pressurcs is a line to which the directions of all the resistances in one polygon are tangents. Tho contre of resistance at any joint is the point where the line representing the total resistance exerted at that joint intersects the joint. The line of resistance is a line traversing all the centres of resistance of a series of joints, -its form, in the positions intermediate between the actual joints of the structure, being determined by supposing the pieces and their loads to be subdivided by the introduction of intermediate joints ad infinilum, and fipling the continuons line, curved or straight, in which the intermediate centres of resistanca aro all situnted, however great their number. Z'he difference between the live of resistauce and the line of pressures was first pointed out by Moseley.
11. Stability of Position, and Stability of Friction.-The resistances at the several jnints having been determined by the principles aet forth in aections $6,7,8,9$, and 10 , not only under the ordinary load of the structure, but under all the variatinas to which the load is subject as to amount oul distribution, the joints are now to be placed and shaped so that the pieces shall not suffer relative displacemeat under any of those loads. The relative displacement of the two pisces which abut aguinst cach other at a joint may take place sither by turning or by sliding. Safety against displacement by turning is ealled straitity of position ; safety against displacement by sliding, stability of friction.
12. Condilion of Stadility of Position. - If tho materials of a struc. ture rere infintely stiff and strong, stability of position at any joint would be insurod simply by making the centre of resistance fall within the joint under all possible variations of load. In order to allow for the finite stiffess and strength of materials, the least distance of the centre of resistance inward from the nearest edge of the joint is made to luear a definite proportion to the depth of the joint measured is the samo direction, which proportion is fixed, sonetimes empirically, sometimes by theoretical deduction from the laws of the strength of materials. That lenst distance is catled by Moseley thic modiulits of stability. The following are some of the ratios of the modulus of stability to the depth of tho joint which ocenr in practice :-
Retuintig walls, as designell by Bithsh engineers.
Ret alnlag walls, as desjmed by Erench eaglneers................................
Rectangular plers of bridges and other buildings, and aiclistones.
Rectungular foundalons, firm ground
tectuokular foondations, yery soft ground.
Ifectangular foundatons, Intermediate kiads of fround..........................
Thln, hollow towers (such an fumace chimneys exposed to high winds), zquare.
wimds) square ......................... ..................... ...................
Thin, hollow bowers, clicular.
Frames of thaber or osetal, under thelr ordinary or average distinbuthen of Jnal
Frames of thember or metul, inder tho greatost. Irregrisuritics if

$$
1: 3
$$

In the case of the towers, the depth of the joind is to be understood to mean the diameter of the lower.
13. Condition of Stability of Friction. - If the resistance to lie exertel at a joint is always perpendicular to the surfaces whichabut at and form that joint, there is no tenduncy of the pieces to be displaced by aliding. If the resistance be oblique. let $1 k$ (fig. 3) be tho joint, C its centre of resistance, CR a line representing the resistance, $C N$ a perpendicular to the joint at the centre of resistonco. The anklo NCR is tho oblignily of the resistance. From TR draw RP [arallel and IN grerpendicular to tho joint ; then, by the principtes of statics, tho "nmponent of tho rusistance normal to the joint is-


Fig. 3.

If tho joint be provided cicirer witil projections and recesses, such as mortises and tenous, or with fastenings, such as pins or Lolts, so as to resist displacement by sliding, the question of the utmost anount of the tangential resistance CQ which it is capable of exertmg depends on the slicugth of such projections, recesses, or fastenings, and beloags to the subject of strength, and not to that of stabilityIn other cases the safety of the joint against displacement by slidiner depends on its power of exerting friction, and that pawer depends on the law, known by experiment, that the friction between two surfaces bears a constant ratio, depending ou the nature of the surfaces, to the force by whiel they are pressed torether. In order that the surfaces which abut at the joint JK may be pressed together, the resistance required by the conditions of equilibrium, CR , must be a thrust and not a mull; and in that case the foree by which the surfaces are pressed together is equal and opposite to the normal component CP of the resistance. The enadition of stability of friction is that the tangential component CO of the resistancer required shall not exceed the friction due to the normal component; that is, that

## $\mathrm{CQ}>f . \mathrm{CP}$,

where $f$ denotes the cocfficicnt of friction for the surfaces in question, The anglo whose tangent is the coefficient of friction is called the angle of reposc, and is expressed symbolically by-

$$
\phi=\tan ^{-1} f
$$

## Now $C Q=C P \cdot \tan \angle P C R$;

consequently the condition of stability of friction is fulfilled if

$$
\angle \Gamma C R \ngtr \phi
$$

that is to say, if the olliquity of the resistance required at the joine docs nol exced the angle of repose; and this condition ought to bo fultilled under all possible variations of the load.

It is chiefly in niasoury ond earthwork that stability of friction is relied on.
14. Stability of Friction in Enrth. - The grains of a mass of loose earth are to be regarded as so many sciarate jieces abutting against each otler at joints in all possible positions, and depending for their stability on friction. To determine whether a mass nf earth is stable at a given point, conccive that point to be traversed by planes in all possible positions, and determine which position gives the greatest obliquaty to the total pressure exerted between the portions of the mass which abut against each other at the plane. "'le condition of stability is that this oblipuity shall not exceed the angle of repose of the earth. The consequences of this principle are developed in a paper "On the Stability" of Loose Earth," already cited in sect. 2.
15. P'erallel Projections of Figures. - If any figure be referred to a system of coordinates, rectangular or oblique, and if a second figure be constructed by means of a second system of coordinates, rectangular or oblique, and either agreeing with or dillering from the first system in rectangularity or obliquity, but so related to the coordinates of the first figure that for each point in the first bigure there shall be a corresponting point in the sceond figure, the leugths of whose coordinates shall bear respectively to the three colrespondiog coordinates of the corresponding point in the first figure three ratios which are the same for every pair of corresponding points in the two figures, these corresponding figures are called pratallel projections of each other. The properties of parallel projections of most importance to the subject of the present article are the following :-
(1) A paral\}el projection of a straight line is a straight line.
(2) A parallel projection of a plane is a plane.
(3) A parallel projection of a straiglit line or a plane surface divided in a given ratio is a straight line or a plane sulface dividad in the same ratio.
(1) A parallel projection of a pair of equal and parallel strainht lines, or plain surfaces, is a pair of equal and parallel straight lines, or plane surfaces; whence it follows
(5) That a parallel projection of a parallelogram is a parallelogram, and
(8) That a parallel projection of a parallelepiped is a parallelepiped.
(i) A parallel projection of a pair of solids having a given ratio is a pair of solids hasing the same ratio.

Though not essential for the purposes of the present article, the following consequener will serve to illustrate the principle of jurallel jrojections:-
( $\delta$ ) A parallet projection of a curve, nr of a surfaca of a given algelbraical order, is a curve or a surface of the same order.

For example, all ellipsoids refurmd to coordizates parallel to any three conjusate diameters are parallel projections of each other aud of a spisere ruferred to rectangular coortinateg.
16. J'arallel Jrojections of Siystems of forccs. -If a balanced system of forces be represontel by a system uf lines, then will every parallel projection of that systen of lises represent a balanced aystem of forces.

For the condition of equilibrium of forces not parallel is that they shall be represented in direction and magnitude by the sides and diagonals of certaiu parallelograms, and of parallel forces that they shall divide certain straight lines in certan ratios; and the parallel projection of a parallclogram is a parallelogram, and that of a straight line divided in a given ratio is a straight line dirided in the same ratio.
The resultant of a parallel projection of any system of forces is the projection of their resultant; and the centre of gravity of a paraltcl projection of a solid is the projection of the centre of gravity of tho first solid.
17. Princinte of the Transformation of Structurcs.-Here we have the following theorem:-If a structure of a given figure have stability of position under a systen of forces represented by a given 9ystem of lines, then will any structure whose figure is a praillel projection of that of the first structure have stability of position inder a system of forces represented by the corresponding projection of the first system of lines.

For in the second structure the weiglits, external pressures, and resistances will balance each other as in the first structure; the weights of the pieces and all other parallel systems of forces will hara the same ratios as in the first structure; and the several centres of resistance will divide the depths of the joints in the same proportions as in the first structure.
If the first structure have stability of friction, the second structure will have stability of friction also, so long as the effect of the projection is not to increase the obliquity of the resistance at any joint beyond the angla of repose.
The lines representing the forecs in the second figure show their relative directions and magnitudes. To find their absolule directions and magnitudes, a rertical line is to be drawn in the first figure, of such a length as to represent the weight of a particular portion of the structure. Then will the projection of that lina in the projected figure indicate the rertical direction, and represent the weight of the part of the second structure corresponding to the beforementioned portion of the first structure.
The foregoing "principle of the transformation of structures" was first announced, though in a somewhat less comprehensivo form, to the Royal Society on the 6th of Blarch 1856. It is useful in practice, by enabling tha eagineer ensily to deduce the conditions of equilibrium and stability of structures of coniplex and unsymmetrical figures from thosa of structures of simple and symmetrical figures. By its aid, for example, the whole of the properties of elliptical arches, whether square or skew, whether level or slopiug iu their span, are at once deduced by projection from those of aymmetrical circular arches, and the properties of ellipsoidal and elliptic-conoidal domes from those of hemispherical and circu-lar-conoidal domes; and the figures of arches fitted to resist the thrust of earth, which is less horizontally than vertically in a certain given ratio, can be deduced by a projection from those of arches fitted to resist the thrust of a liquid, which is of enual intensity, horizontally and vertically.
18. Conditions of Stifficss and Strength.-After the arangement of the pieces of a structure and tho size and figure of their joints or surfaces of contact have been determined so as to fulfil the conditions of stabitity,-conditions which depend mainly on the position and direction of the resultant or total load on each piece, and the rclative magnitude of the loads on the different pieces, -the dimenaions of each piece singly have to be adjusted so as to fulfil the conditions of stifficess and strength, -conditions which depend not ouly on tha absolute magnitude of the load on each piece, and of the resistances by which it is balanced, but also on tha mode of distaibution of the load over the piece, and of the resistances over the joints.

The effect of the pressums applied to a piece, consisting of the load and the supporting resistances, is to force the piece into a stata of strain or disfigurement, which increasea until tha elasticity, or resistance to strain, of the material causes it to exert a slress, or effort to recover its figure, erqual and opposite to the system of applied pressures. The condition of stifficess is that the strain or disfigurement shall not be greater than is consistent with thee purposea of the structure ; and the condition of strcngth is that the stress shall be within the limsits of that which the material can bear with safety against breaking. The ratio in which the utmost stress before breaking exceeds the safe working stress ia called the factor of safcly, and is determined empirically. It varies frow three to twelve for varions materials and structures.
Tho Strenctul of Materials forms the subject of a special article, to which the reader is referred.

## PART II. THEORY OF MACHINES.

19. Parts of a Machinc-Frame and Mechentism. - The parts of a machine may be distinguished into two principal divisions, -the frame, or fixad parts, and the mechanism, or moving parta. The frame is a structure which supports the pieces of the mechanism, and to a certain extent determines tha nature of their motions.

The form and amangement of the pieces of the frame depend upon the arangement and the motions of the mecbanism ; the dimensions of the pieces of the frame requircd in order to give it stability aud strength are determincd from the pressures applied to it by means of the mechanism. It appears thicrefore that in goneral the mechanism is to be clesigncd first and tho frame afterwards, and that the designing of the fiame is regulated by the principles of the stability of structures and of tho strength and stiffiress of materials, - care being taken to adapt the frame to the most severe load which can be thrown upon it at any period of the action of the mechanism.

Each independent picce of the mechanism also is a structure, and its dimensions are to be adapted, according to the principles of the strength and stitfness of materials, to the nost severe load to which it cail be subjected during the action of the machinc.
20. Definition and Divisions of the Theory of Machincs.-From what has been said in tha last section it appears that tha department of the art of designing machines which has reference to the stability of the frame and to the stiffness and strength of the frame and mechanism is a branch of the ant of construction. It is therefore to be separated from the theory of machizses, properly speaking, which has reference to the action of machines considered as moving. In the action of a machine the following three things take place:-
First, Some uatural solmre of euergy communicates motion and force to a piece or pieces of the mechanism, called the recciver of 2ouct or prime morct:

Sccoidly, The notion aud force are transmitted from the prima mover through the brain of mochanism to the roorking picce or pieces, and during that transmission the motion and force are modified in amount and direction, so as to be rendered suitable for the purpose to which they ara to be applied.

Thirdly, Tho working piece or pieces by therr motion, or by their motion and force combined, produce some useful effect.
Such are the phenomena of the action of a machine, arranged in the order of causation. But in studying or treating of the theory of machines, the order of simplicily is the best; and in this order the first brancla of the subject is the modification of motion and force by the train of mechanism ; the next is the effect or purposa of the machine; and the last, or most complex, is the action of the prime mover.
The modification of motion and the modification of force taka place together, and are connected by certain laws; but in the study of the theory of machines, as well as in that of pure mechanics, much advantage has been gained in point of clearness and simplicity by first considering alone the principles of the modification of motion, which are founded upon what is now known as Kinematics, and afterwards considering tha principles of the combined modification of motion and force, which are founded both on geometry and on the laws of dynamics. The scparation of kine. matics from dynamics is due mainly to Nonge, Ampère, and Willis.
The theory of machines in the present arlicle will be considerca under the folloiring fout heads :-
I. Pure Mechanism, or Applied Kisematics; being tha theory of machines considered simply as modifying motion.
aI. Applied Drsianics; being the theory of maclines considered as modifying both motion and furce.
1II. Purposes and Effects of Machines.
IV. Aptlied Esergetics; being the theory of prime movers amel somes of power.

## Chap. I. Of Pure Mechlitsm.

21. Division of the Sultject.- Proceeding in the order of simpucity, the subject of Pure JIechanism, or Applied Kinematics may be thas divided :-
Division 1. - Motion of a point.
Dirision 2.-Motion of the surface of a flnid.
Division 3.-Motion of a rigid solid.
Dirision 4.-Motions of a pair of connected picces, or of an " elementary combination" in mechanism.
Division 5.-Motions of trains of pieces of mechansm.
Dirision 6.- Motions of seta of more than two connected pieces, or of "aggregata combiuatious."
A point is the boundary of a line, which is the boundary of a surface, which is the boundary of a rolume. Points, lines, and surfaces have no independent existence, and consequently those divisions of this chapter which relate to their motions are only preliminary to the subsequent divisious, which relate to the motions of bodies.

## Dirision 1. Motion of a Point.

22. Path and Dircction-Sce abore, p. 679, § 21.
23. Unifform Velocity.-Sec p. 680, $\$ 25$.
24. Varicd Velocity,-See p. 680, § 25.
25. Dircel Dcviation, or Accelcration and Rctardation.- See pp. 680, 681, §§ 27-29.
26. Lateral Deviation or Deflexion-Angular Velocity of Deria. tion-Lierolution. - See pp. 681, 682, §s 31-38.
27. Comparative Sotion. -The comparative motion of tro points is the relation which exists between their motions, without liaving regard to their absalute amounts. It consists of two elcments, the relocily ratio, which is the ratio of any two magnitudes bearing to each other the proportions of the respective velocities of the two points at a given instant, and the directional relation, which is the relation borue to each other by the respective directions of the motions of the tro peints at the sanse given instant.

It is obvious that the motions of a pair of points may be varied in any manner, whether by direct or by Jateral deriation, and yet that their comparative motion may remain constant, in consequence of the deviations taking place in the same propertions. in the same directions, and at the same instants for both points.

Willis has the merit of having heen the first to simplify con. siderably the theary of pure mechanism, by pointing ont that that branch of meshanies relates wholly to comparative motions.

The comparative motion of two points at a given instant is capable of beine completely expressed by ene of Sir William Hamilton's Quateraions, -the "tenser" expressing the velocity ratio, and the "verser" the directional relatien.
23. Resolution and Composition of Motion.-See p. 681, $\S \$ 30,31$.
29. Rectangular Projection, Kesolution, and Composition. See p. 681, § 31.
30. Resolution and Composition of Deriations.-See p. 681, § 31.

## Division 2. Motion of the Surface of a Fluid Mass.

31. General Principle. - A mass of fluid is used in mechanism to transmit motion and force between two or more movable fortions (called pistons or plungers) of the solid envelape or vessel in which the fluid is contained ; and, when sucli transmission is the sole oction, or the ouly appreciable action of the fluid mass, its volume is either absolutely constant, by reason of its temperature and pressure being maintained constant, or not sensibly varied.

Let a represent the area of the section of a piston made by a plane perpendicular to its directron of motion, and $v$ its velocity, which is to be considered as positive when outsard, and negative when inward. Then the variation of the cubic contents of the vessel in a unit of time by reason of the motion of one piston is va. The condition that the volume of the fluid mass shall renain unchanged requires that there shall be more than one piston, and that the velocities and areas of the pistons slall be connected by the equation -

$$
\Sigma \cdot r a=0
$$

(1).
32. Comparative Motion of two Pistons, - If there be but two pistons, whose areas are $a_{1}$ and $a_{2}$, and their velacities $v_{1}$ ond $v_{2}$, their commarative motion ia expressed by the equation-

$$
\begin{equation*}
\frac{v_{2}}{v_{1}}=-\frac{a_{3}}{a_{2}} \tag{2}
\end{equation*}
$$

that is to say, their velecities are opposme as to inwerdness and ontwardness, and inrersely proportional to their areas.
33. Applications-Hydrautic Press-Pacumatic Power- Trans. mitter.-In the hydraulic press the vessel consists of two cylinders, viz., the pump-barrel and the press-barrel, each baving its piston, and of a passage connecting them baving a valve opening towards the press.barrel. The action of the enclosed water in transmitting motion takes pl cee during the inward atroke of the pump-plunger, when the above-mentioned valre is apen; and at that time the press-plunger moves outwards with a velocity which is less than the inward velecity of the jump-planger, in the aame ratio that the area of the pump-plunger is less than the aree of the pressplunger. (Sce liydhosmechanics.)

In the preamatic powcr-transmitter the motion of one piston is transmitted to another at a distance by means of a mass of air coutained in two cylinders and an intervening tube. When the pres. sure cad temperature of the air can be maintained coustant, this machine fulfils eq̧uation 2, like the hydraulic press. The amenat and effect of tue variations of pressure and temperature undergone by the air depend on the priociples of the mechanical actiou of heat, or Thermadrnamics (q.v.), aud are foreign to the aubject of pure mechanlsm.

## Dirision 3. Motion of a Rigit Solid.

31. Motions Classed.-In problerus of inechanism, each solld piece of the machine is anpposed to be 60 atill and strong as not to undergo any sensiblo change of figure or dimensions by the forces applied to it, $\rightarrow$ a supposition which is realized in practice if the niachine is akilfully designed.

This being the case, the various possible motions of a rigid aolid body may all be classed under the following heads:-(1) Shifling or Translation; (2) Tuming or Rotation; (3) Motions compounded of Shifting and Turning.

The most common forms for the paths of the points of a piece of mechanism, whose motion is slmple shifting, are the atraight line and the circle

Shifting in astraight line is regulated either by straight fixeu guides, in contact with which the noving piece slides, or by combinetiens of Jink-irork, called parallel motions, which will be described in the scquel. Shifting in a straight line is usnelly reciprocaling; that is to say, the piece, after shifting througlt e certain distance, returus to its original pasition by reversing its motion.

Circular shifting is regulated by attaching two or more points of the shifting piece to ends of equal and parallel notating crabs, or by combinations of wheel-work to be afterwards described. As an example of circular shifting may he cited the motion of the coupling rod, by whicli the paiallel and equal cranks upon two or more axles of a locomotive engine ore connected and made to rotate oimultaneously. The coupling rod remains always parallel to itself, and all its points describe equal and similar circles relatipely to the frame of the engine, and move in parallel dircctions with cousl velocities at the same instant.
35. Rotation about a Fixed Axis-Levcr, I'heel, and Axlc.-The fixed axis of a tuming body is a line fixed relatively to the body and relatively to the fixed space in which the body turns. Io mechanism it is usually the contral line either of a rotatiog shaft or axle having journals, gudgeons, or pivots turning in fixed beerings, or of a fixcd spindle or dead ceutre round which a rotating bush turns; but it may sometimes be entitely Leyand the limits of the turuiog body. For example, if a sliding piece moves in circular fixed guides, that piece rotates about an idesl fixed axis traversing the centre of those guides.

Let the angular velocity of the rotation be denoted by $a=\frac{d \theta}{d t}$, then the linear velocity of any point $A$ at the distence $r$ fron the axis is ar; and the path of that yoint is a circle of the radius $r$ described about the axis.

This is the principle of the modification of motion by the lever, which consists of a rigid body turning about a fixed axis called a fulcrum, and baving two points at the same or different distances from that axis, and in the same or different directions, one of which receives motion and the other transmits motion, modified in direction and velocity according to the above law.
In the wheel and axle, motion is received and transmitted by tro cylindrical surfaces of different radii described about their common fixed axis of turniag, their velocity-ratio beino that of their redii.
36. Velocity Ratio of Components of Motion. - As the uistance between any two points in a rigid bodj is invariable, the projections of their velocities upou the line join. ing tbem must be equal. Heace it follows that, if $A$ in tig. 4 be a point in a rigid body $C D$, rotating round the fixed axis $F$, the component of the relocity of $A$ in any direction AP parallel to the plane of rotation is equal to the total velocity of the point $n$, found by letting fall Fu perpendicular to AP; that is to say; is conal to
a. F\%:-

Heace nlso the ratio of the components of the velocities of two


Fig. 4. points A and B in the directions AP and BW respectively, both in the plane of rotation, is equal to the ratio of the perpendiculars $\mathrm{F}_{m}$ and $\mathrm{F} n$.
37. Instantancous Axis of a Cyliuler rolling on a Cylinder. - Let a cylinder $b b b$, whose axis of figure is 13 and angular velocity $\gamma$, roll on a fixed cylinder ana, whose axis of figure is $A$, either outside (as in fig. 5), when the rolling will be tewards the same liand as the


Fig. 5.


Fiz. 6.
ratation, or inside (as in fig. 6), when the rolling will be towards the opposite handy and at a given iustant let $T$ be the line of contact of the two cyindrical surfaces, which is at their comumon interaection with the plane $A B$ traversing the two axcs of fagure.

The line $T$ oo the surface $b b b$ lias for the instant no velority iu

B directiou perpendicular to $A B$; because for the instant it touches, without sliding, the live $T$ on the fired surface aaa.

The line T ou the surface $b b b$ has also for the instant no relocity In the plane $A B$; for it has just ccased to move towards the fixed surface aaa, and is just about to begin to move away from that surface.

The line of contact $T$, therefore, on the surface of the cyliader bub, is for the instant at rest, aud is the "instantaneous aria" about which the cylinder 688 turns, together with any body rigidly attached to that cyliuder.
To find, then, the direction and veiocity at the given anstant of any point $P$, either in or rigidly attached to the rolling cylinder $m$, draw the plane PT ; the directiou of motion of $P$ will be perpendicular to that plane, and tonards the right or left land according to the direction of the rotatiou of $b b b$ and the velocity of $P$ will be

$$
\begin{equation*}
\imath_{P}=\gamma \cdot \mathrm{PT} \tag{3}
\end{equation*}
$$

PT denoting the perpendicular distance of P from T The path or P is a curve of the kind called epitrochoids. If P is in the circum. ference of $b b b$, that path becomes an epicycloid.
The velacity of any point in the axis of figure $B$ is

$$
r_{s}=\gamma \cdot \mathrm{TB}
$$

and the path of such a point is a circle described about $A$ with the radius $A B$, being for ontside rolling the sum, and for inside rolling the difference, of the radii of the cylinders.

Let a denote the angular vclocity with which the plane of ares $A B$ rotates about the fixed axis $A$. Then it is evident that

$$
\begin{equation*}
\varepsilon_{\mathrm{a}}=a \cdot A B \tag{5}
\end{equation*}
$$

and consequently that $a=\gamma \cdot \frac{T B}{A B}$
For internal rolling, as in fig. $6, \mathrm{AB}$ is to be treatod as negative, which will give a gegative value to $a$, Indicating that in this case the rotation of $A B$ round $A$ is coutrary to that of the cylinder $b b b$.

The angular velocity of the rolling cylinder, relatively to the plane of axes $A B$, is obviously given by the equation-

$$
\left.\begin{array}{r}
\beta=\gamma-a ;  \tag{7}\\
\text { whence } \beta=\gamma \cdot \frac{T A}{\overline{A B}}
\end{array}\right\}
$$

care being taken to attend to the sign of $a_{1}$ so that when that is negative the arithmetical valnes of $\gamma$ and $a$ are to be added in order to give that of $\beta$.

The whole of the foregoing reasonings are applicable, not merely when ana and $b b b$ are actnal cylinders, but also when they are the osculating cylinders of a pair of cylindroidal surfaces of varying curvature, $A$ and $B$ being the axes of curvature of the parts of those suffaces which are in contact for the instant under consideration.
38. Composition and Resolution of Rotations about Parallel Axcs. -See above, p. 691, § 73.
39. Instantaneous Axis of a Cone rolling on a Conc.-Let Oaa (fg. 7) be a fixed cone, OA its axis, Obb a cone rolling on it, OB the axis of the roll-
ing cone, . OT the line of contact of the two cones at the instant under consideration. By rea. soning similar to that of sect. 37 , it appears that OT is the instantaneous axis of rotation of


Fig. 7. the rolling cone.

Let $\gamma$ denote the total angular relocity of the rotation of the cone B about the instantaneons axis, $B$ its angular velocity about the axis $O B$ relatively to the plane $A O B$, and a the angular relocity with which the plane $A O B$ turns round the axis $O A$. It is required to find the ratios of those angular velocities.

Solution. - In O'T take any point $E$, from which draw EC parallel to OA, and ED parallel to OB, so as to construct the parallelogram OCED. Then

$$
\left.\begin{array}{c}
O D: O C: O E  \tag{8}\\
: a: \beta: \gamma
\end{array}\right\}
$$

Or because of the proportionality of the sides of triangles to the aines of the opposite angles,

$$
\begin{array}{rc}
\sin \angle \mathrm{TOB}: \sin \angle \mathrm{TOA}: \sin \angle \mathrm{AOB} \\
:: & \alpha:
\end{array}
$$

( $8, \mathrm{~A}$ ) ;
that is to say, the angular relocity abont each axis is proportional to the sine of the angle between the other two.

Demonstration. -From C draw CF perpendicular to OA, and CG perpendicular to OE

$$
\begin{aligned}
& \text { Then } C F-2 \times \frac{\text { area } E C O}{C E}, \\
& \text { and } C G-2 \times \frac{\text { area } E C O}{O E} ; \\
\therefore C G: C F: & : C E=O D: O E .
\end{aligned}
$$

Let $\tau_{c}$ denote the linear rclocity of the point $C$. Then

$$
\begin{gathered}
v_{\mathrm{c}}=a \cdot \mathrm{CF}=\gamma \cdot \mathrm{CG} \\
\therefore \gamma: a:: \mathrm{CF}: C G:: O E: O D,
\end{gathered}
$$

which is one part of the solution above stated. From E draw EF parpendicular to O13, and EK to OA. Then it can be shown as before that

$$
\mathrm{EK}: \mathrm{EH}:: \mathrm{OC}: O D
$$

Let $r_{z}$ be the linear relocity of the point E fixed in the plane of axes $\triangle O B$. Then

## $r_{z}=a$. EK.

Now, as the line of contact OT is for the instant at rest on the rolling cone as wel. as on the fixed cone, the linear velocity of the point E fixed to the plane $A O B$ relatively to the rolling cone is the same with its velocity relatively to the fixed conc. That is to say,

$$
\beta \cdot \mathrm{EH}=v_{x}=a \cdot \mathrm{EK} ;
$$

therefore $\quad a: \beta:: E H: E E: O D: O C$,
which is the remainder of the solution.
The path of a point $P$ in or attached to the rolling sone is a spberical epitrochoid traced on the surface of a spbere of the radius OP. From P draw PQ perpendicular to the instantaneous axis. Then the motion of $P$ is perpeudicular to the plane $O P Q$, and its velocity is

$$
\begin{equation*}
\tau_{P}=\gamma, P Q \tag{9}
\end{equation*}
$$

The whole of the foregoing reasonings are applicable, not merely when $A$ and $B$ are actual regular cones, butalso when they are the osculating regular cones of a pair of irregular conical surfaces, having a common apex at 0 .
40. Composition of Rotations about Two Axes meeling in a Point.See p. 691, § 76.
41. Screv-like or Helical Motion.-Since (see p. 690, §s 71, 72) any displacement in a plane can be represented in general by a rotation, it follows that the only combination of translation and rotation, in which a complex movement which is not a mera rota. tion is produced, occurs when there is a translstion perpendicular to the plane and parallel to the axis of rotation.

Such a complex motion is called screv-like or helical motion; for each point in the body describes a helix or serev round the axis of rotation, fixed or instsntaneous as the case may be. To cause a body to move in this manner it is usually made of a helical or screw-like figure, and moves in a guide of a corresponding figure. Helical motion and screws adapted to it are said to be right- or left - handed according to the appearance presented by the rotation to an observer dooking towards the direction of the translation. Thua the screw $G$ in fig. 8 is right-handed.

The translation of a body in helical motion is


Fig. 8. called its advance. Let $v_{x}$ denote the velocity of advance at a given instant, which of course is common to all the particles of the body; a the angulsr velocity of the rotation at the aame instant ; $2 \pi=6.2832$ nearly, the circumference of a circle of the rrdius unity. Then

$$
\begin{equation*}
T=\frac{2 \pi}{a} \tag{10}
\end{equation*}
$$

is the time of one turn at the rate $a$; and

$$
\begin{equation*}
y=v_{x} T=\frac{2 \pi v_{x}}{a} \tag{11}
\end{equation*}
$$

is the pilch or adrance per turn,-a length rbich expresses the comparative motion of the translation and the rotation.
'The pitch of a screw is the distance, measured parallel to its axis, between tro successive turns of the aame thread or helical projection.
Let $r$ denota the perpendicular distance of a point in a body moving helically from the axis. Then

$$
\begin{equation*}
r_{r}=a r \tag{12}
\end{equation*}
$$

is the component of the velocity of that point in a plane perpendicular to the axis, and its total velocity is

$$
\begin{equation*}
v=\sqrt{ }\left\{v_{x}^{2}+v_{r}^{2}\right\} \tag{13}
\end{equation*}
$$

The ratio of the two components of that velocity is

$$
\begin{equation*}
\frac{v_{x}}{v_{r}}=\frac{p}{2 \pi r} \leftrightharpoons \tan \theta \tag{14}
\end{equation*}
$$

Where $\theta$ denotes the angle made by the halical path of the point with a plane perpendicular to the exia
42. To find the Motion of a Rigid Borly from the Motions of Three Points in it. -Sce p. 620, § 71 , and p. $892, \$ 78$.

## Dirision 4. Elementary Combinations in Mechanisut.

13. Definitions. - An elementary combination in mechavism consists of two pieces whose kinds of motion are deternined by their connexion witl the frame, and their comparative motion by their connexion with each other, - that condexion leing ellected either by direct contact of the pieces, or ly a connecting piece, which is nut connected with the fiane, and whose motion depends entirely on thm motions of the pieces which it conncets.

The piece whose motion is the cause is called the dricer; the piece whose motion is the effect, the folloncer.

The connexion of each of those two pieces with the frame is in general snch as to determine the path of every joint in it. In the investigation, therefore, of the comparatire motion of the driver and follower, io an clementary combination, it is unnecessary to consider relations of angular direction, which are nlready fixed by the commexion of cach piece with the frame; so that the inquiry is contined to the determination of the velecity ratio, and of the directional relation, se far only as it expresses the connexion between forward and backward movements of the driver and follower. When a continnous motion of the driver produces a continuons motion of the follower, forwajd or backward, and a reciprocatiog motion a ruotion peciprocating at the same instant, the directional relation is said to be constrnt. When a contimnous motinn produces a reciprocatiog motion, or vice zersa, or when a recipracating motion produces a metion not reciprocating at the same instant, the dircetional relation is said to be trarinble.

The line of action or of connexion of the driver and follower is a line traversing a pair of points in the driver and follower respectively, which are so connected that the component of their velocity re. latively to each other, resolved alang the line of connexion, is null. There nay lie several or an indefinite number of lines of connexion, or there may be but one; and a line of connexion may connect either the same pair of poiuts or a succession of different pairs.
44. Gencral Principle - From the definition of a line of convexion it follows that the components of the relocities of a pair of connected points alung their line of conncxion are equal. And from this, and from the property of a rigid hody, already stated in sect. 36 , it follows, that the components along a line of counexion of all the points traversed by that line, whether in the driver ar in the follower, are equal ; and consequently, that the rclocities of any pair of points traversed by a lise of commexion are to each other inversely as the cosines, or directly as the secants, of the angles made by the paths of those points with the linc of connexion.
The general principle stated above in different forms serves to solre every problem in which-the mode of connexion of a pair of pieces being given-it is requared to find their comparative motion at a given instant, or rice versa.
45. Application to a Pair of Shifting Picces.-In fig. 8, lot $P_{1} P_{2}$ be the line of condexion of a pair of pieces, cach of which has n motion of translation or shifting. Throngh any point $T$ in that line drav TV ${ }^{2}, T V_{s}$, respectively parallel to the simultancous direction of motion of the pieces; through any other point $A$ in the line of connexion draw a plane perpendicular to that lime, cutting $\mathrm{TV}_{3}, \mathrm{TV}$, in $V_{1}, V_{y}$; then, velocity of piece 1 : velocity of piece 2::TV $:$ TV.


Fig. 9. Alon TA represents the equal compenents of the velocities of the pieces parallel to their line of conmexion, and the line $V_{1} V_{\text {g }}$ represonts their velocity relatively to each other.
40. Application en a Pair of Turning Fiecrs. - Let $a_{3}, a_{2}$ be the augular velucities of a pain of turning pieces; $\theta_{2}, \theta_{2}$ the angles which their line of connexion makes with their respective planes of rotation; $r_{1}, r_{2}$ the common perpendiculars let fall from the line of connexion ujon the respractive axes of rotation of the pieces. Then the eanal components, along the line of connexion, of the velocitics of the pmints where those perpendiculars meet that line are-

$$
\alpha_{1} r_{1} \cos \theta_{1}-\alpha_{2} r_{3} \cos \theta_{2}
$$

consequently; the comparative motion of the pieces is given by the equation

$$
\frac{a_{3}}{a_{2}}-\frac{r_{1} \cos \theta_{1}}{r_{1} \cos \theta_{3}}
$$

47. Applatan to a Shifting Piece and a Turning Fiece.-Let e shifting jiece be connected mith a turning piece, and at a giren intant let $a_{1}$ be the angular velocity of the iuming piece, $r_{1}$ the conmon perpendicular of its axis of rotation and the line of connexion, of the angle made lyy the line of connexion with the plane of rotation, $f_{1}$ the augle made by the lue of conuexion with the
direction of motion of the shifting piece, $r_{3}$ the linex velocity o that piece. Then

$$
\begin{equation*}
a_{2} r_{3} \cos \theta_{1}=r_{2}^{\prime} \cos \theta_{2} \tag{16}
\end{equation*}
$$

Which equation expresses the comparature motion of the tro pleçe - 48. Classification of Elenenkary Combinations in Mechanisne.The first syistematic classification of elementary conbinations in mechanism was that foursded by Nonge, and fully developed by Lanz and Bétancourt, which has been generally received, and has been adopted in most treatiscs on applied mechanics. I But that classitication is founded on the absolute instead of the comparatire motions of the pieces, and is, for that reason, defective, as Willis has pointel ont in lis atmirable treatise On thic Frimciples of Mechanism.

Ilillis's classitication is fomdel, in the first place, on comparative motion, as expressed by velocity ratio and directional relation, and in the second place, on the mode of conuexiou of the driver and follower. He divides the elementary combinations in mechanism into three classes, of which the characters are as follows:-

Class A: Directional relation constant ; velocity ratio constant,
Class $\mathrm{F}:$ : Dircctional relation constant ; velocity ratio varying.
Class C: Directional relation clanging periodically; velocity ratio constant or varying.

Each of those classes is subdivided by Willis into five divisions. of which tlie characters are as follows:-

Division A: Conmexiou by rolling contact.

$$
\begin{array}{lllll}
" & \mathrm{~B}: & \text { " } & \text { ", } & \text { sliding contact. } \\
" & \mathrm{C}: & \text { " } & \text { ", } & \text { linkpiag connectors. } \\
\text { " } & \mathrm{D}: & " & \text { ", } & \text { reduplication. }
\end{array}
$$

In the present article the principle of Ẅllis's classification is followed; but the arrangement is modified by taking the mode of connexion as the basis of the primary classification, and by remoring the subject of connexion by reduplication to the section of aggregata combinations. This modified prrangenent is adopted as being better suited than the original arrangement to the limits of an article in an encyclopredia; but it is not disputed that the original arrangement may be the best for a separate treatise.
49. Rolling Contact-Snooth IH゙hccls and Facks.--In arder that two pieces may move in rolling conerct, it is necessary that each pair of points in the two pieces which touch each other should at the instant of zontact be moving in the same direction with the same velocity. In the case of two shifting pieces this would involve equal and parallel velocities for all the points of each piece, so that there could be no rolling, and, in fact, the two pieces would move like one; hence, in the case of colling contact, either one or both of the pieces must rotate.

The direction of motion of a joint in a turning picce being perpendicular to a plane passing through its axis, the condition that each pair of points in contact with each other must more in the same direction leads to the following consequences:-
I. That, when both pieces rotate, their axes, and all their points of contact, lie in the same plane.

1I. That, when one piece rotates and the other slifts, the axis of the rotating piece, and all the points of contract, lie in a plape perpendicular to the direction of motion of the shifting piece.

The condition that the velocity of each pair of points of contact must be equal leads to the folloning consequences:-

II1. That the angular velocities of a pair of turning fileces in rolling contact must be inversely as the perpendicular distonces of any pair of points of contact from the respective axes.
I.. That the linear relocity of a shifting liece in rolling contact with a turning piece is equal to the product of the angular velocity of the turning piece by the perpendicular distance from its axis to a pair of points of contact.
The line of contad is that line in which the points of contact are all situated. Respecting this line, the above principles III. and 1V. lead to the following conclusions:-
V. That for a pair of turning. Jieces with parallel axes, and for a turning piece and a shifting piece, tha line of contact is straight, and parallel to the axes or axis ; and hence that the rollivg sarfaces are cither planc or cylindrical (the term "cylindrical" includ. ing all surfaces generated by the motion of a straight line perallel to itself.

V1. That for a pair of turning pieces with infersecting axes the line of contact is also atraight, and traverses the point of intersection of the axes; and hence that the rolling surfaces are conical, with a common arex (the term "conical" ioclading all surfoces genorated by the mation of a atraight line which traverses a fixed point).
Turning pieces in rolling contact are called smook or toothless rchecis. Shifting pieces in rolling contact with turning pieces mav be called smooth or toothless racles.
VII. In a pair of pieces in rolling cootact every straight line traversing the line of contact is a line of connexion.
50. Culindrical Wheels and Smooth Racis. - In desigoing cylndrical wheels and smooth racke, and determining their comparatave motion, it is aufficient to consider a section of the pair of pieces made ly a plane perpendienler to the axia or axes.
'The points where axes intersect the plane of section are called centres ; the point where the line of contact intersects it, the point of contact, or pitch-point ; and the wheels ars described as circular, elliptical, \&ic., according to the forms of their sections made by that plane.

When the point of contact of two wheels lies between their centres, they are said to be in autside gcaring; when beyond their centres, in inside gearing, lecause the rolliog surface of the larger wheel must in this case be turned inward or towards its centre.

From Principle 11 I. of sect. 49 it appears that the angular re'ocity-ratio of a pair of wheels is the inverse ratio of the distances of tlie poiut of coutact from the centres respectively.

For outside geariug that ratio is negative, becausa the wheels turn contrary ways; for inside gearing it is positive, because they turn the same way.

If the velocity ratio is to be constant, as in Willis's Class $\Lambda$, the wheels must be circular ; and this is the most common form for wheels.

If the velocity ratio is to be variable, as in Willis's Class B, tha figures of the wheels are a pair of rolling curves, subject to the condition that the distanca between their poles (rhich are the centres of rotation) shall be constant.
The folloring is the geometrical relation which must exist between such a pair of curves. See fig. 10.

Let $C_{1}, C_{2}$ bo the poles of a pair of rolling


Fig. 10. curves; $\mathrm{T}_{1}, \mathrm{~T}_{2}$ any pair of points of contact ; $\mathrm{U}_{1}, \mathrm{C}_{2}$ any other pair of points of contact. Then, for every possible pair of points of contact, the two following equations must be simultaneously falflled:-

$$
\begin{gather*}
\text { Sum of radii, } \mathrm{C}_{1} \mathrm{U}_{1}+\mathrm{C}_{2} \mathrm{U}_{2}=\mathrm{C}_{1} \mathrm{~T}_{1}+\mathrm{C}_{2} \mathrm{~T}_{2}=\text { constant ; }  \tag{17}\\
\text { are, } \mathrm{T}_{2} \mathrm{U}_{2}=\mathrm{T}_{1} \mathrm{U}_{1}
\end{gather*}
$$

A condition equivalent to the above, and necessarily connected sith it, is, that at each pair of pornts of contact the inclinations of the curres to their radii-sectores shall be equal and contrary ; or, denoting by $r_{1}, r_{2}$ the radii-rectores at any giren pair of points of contact, anil $s$ the length of the equal arcs measured from a certan fixed pair of points of contact-

$$
\begin{equation*}
\frac{d r_{2}}{d s}=-\frac{d r_{1}}{d s} \tag{18}
\end{equation*}
$$

Fhich is tha differeutial equation of a pair of rolling curves whese poles are at a constant distance apart.

For full details as to rolling curves, see Willis's $\pi$ ork, already mentioned, and Clerk Maxriell's paper on Rolling Curves iu the Transactions of the Royal Socicty of Edinburgh, 1819.

A rack, to work with a circular wheel, must be straight. Tu work with a wheel of any other figure, its section must be a rolling curve, subject to the condition that the perpendicular distance from the pols or centre of the wheel to a straight line parallel to the direction of the motion of the rack shall be constant, Let $r_{1}^{-}$be the radiusvector of a point of contact on the wheel, $x_{2}$ the ordinate from the straight line before mentioned to the corresponding point of contact on the rack. Then

$$
\begin{equation*}
\frac{d r_{2}}{d s}=-\frac{d r_{1}}{d s} \tag{19}
\end{equation*}
$$

is the differential equation of the pair of rolling curves.
To illustrate this subject, if may be mentioned that an ellipso rotating about ode focus rolls completely round in outside geariog with an equal and similar ellipse also rotating abont one focus, the distance between the axes of rotation being equal to the major axis of the ellipses, and the velocity ratio varying from $\frac{1+\text { eccentricity }}{1 \text {-eccentricity }}$ to $\frac{1 \text {-eccentricity }}{1+\text { eccentricity }}$; an hyperbola rotating about its further focus rolls in insillo gearing, through a limited arc, with an equal and similar hyperbola rotating about its nearer focus, the distance betrean the axes of rotation being equal to the axis of the hyperbolas, and the velocity ratio varying between $\frac{\text { eccentricity }+1}{\text { eccentricity }-1}$ and unity; and a parabola rotatiog about its focos rolls with an eqnal and similar parahole, shifting parallel to its directrix.
51. Conical or Berel and Disk Wheels.-From Principles III. and VI. of sect. 49 it appears that the angnlar velacities of a pair of wheels whose axes meet in a point are to each other inversely as the sines of the angles which the axes of the wheels make with the ling of contact. Hence follows the following constraction (figs. 11 and 12). -Let $O$ be the apex or point of meeting of the two axes $O C_{1}, O C_{2}$. The angular relocity ratio being given, it is required to bind the line of contact. $\mathrm{On} \mathrm{OC}_{1}, \mathrm{OC}_{2}$, take lengths $\mathrm{OA}_{1}, \mathrm{OA}_{2}$, respectively proportional to the auguler relecities of the pieces on
whose axes they are taken. Complete the parallelogram $O_{1} E A_{3}$ the diagonal OET will be the line of contact. required.

When the velocity ratio is variable, the line of contact will shift its position in the plane $\mathrm{C}_{1} \mathrm{OC}_{2}$, and the wheels mill ba cones, with eccentric or irregular bases. In every case which accurs in practice, how. ever, the velocity ratio is constant ; the line of contact is constaut in position, and the rolling surfaces of the wheels are regular circular cones (when they are called bercl wheels); or ode of a pair of wheels may have a flat disk for its rolling surface, as $\mathrm{W}_{8}$ in fig. 12 , in which case it is a disk wheel. The rolling surfaces of actual wheels consist of frusta or zones of the conplete cones or disks, as shown by $\mathrm{W}_{1}, \mathrm{~W}_{2}$ in figs. 11 and 12.
52. Sliding Contacl (latcral): Skeu-


Fig. 11. Bevel Wheels. - An hyperboloid of rarolution is a surface resembling a sheaf or a dice box, generated by the rotation of a straight line round an axis from which it is at a constant distanca, and to which it is incliaed at a constant adgle. If two such byperboloids, equal or unequal, be placed in the closest passible contact, as in fig. 13, they will touch cach other along ons of the generating straight lines of each, which will


Fig. 12. form their line of contact, and will be inclined to the ares AG, BH in opposita directions. Tha axes will not be parallel, nor will they intersect each other.
The motion of two sach hyperboloids, turning in contact with each other, has hitherto been classed amongst cases of rolling contact; but tbat classification is not strictly correct, for, although the component velocities of a pair of points of contact in a direction at right angles to the line of contact are equal, still,


Fig. 13. as the axes are neither parallel to each other nor to tha line of contact, the velocities of a pair of points of contact hare components along the line of contact which are unequal, and their difference constitutes a lateral sliding.

The directions and positions of tha axes being given, and the roquired angular velocity ratio, tha following construction eerves to determine the line of contact, by whose rotation round the two axes respectively the byperboloids are ganerated:-

In fig. I4, let $\mathrm{B}_{1} \mathrm{C}_{1}, \mathrm{~B}_{2} \mathrm{C}_{3}$ be the two axes; $\mathrm{B}_{1} \mathrm{~B}_{2}$ their common perpendicular. Through any point O in this common perpendicular dram $\mathrm{OA}_{1}$ parallel to $\mathrm{B}_{1} \mathrm{C}_{1}$ and $\mathrm{OA}_{3}$ parallel to $\mathrm{B}_{3} \mathrm{C}_{2}$; make those lines proportional to the angular velocities about the axes to mbich they are respectively parallel; complete the parallelogram $\mathrm{OA}_{1} \mathrm{EA}_{2}$ and draw the diagonal $O E$; divide $\mathrm{B}_{1} \mathrm{~B}_{3}$ in D into tro parts, inversely proportional to the angular velocities about the axes which they reapectively adjoin; through D parallel to OE draw DT. This will be the line of contact.

A pair of thin frusta of a pair of hyperboloids are used in practice


Fig. 14. to commnnicate motion between a skew-berel wheels.
In skew bevel wheels the properties of a line of connexion are not possessed by every line traversing the line of contact, but only by every line traversing the lime of contact at right angles.
If the velocity ratio to be communicated were variable, tha point D wonld alter its position, and the lina DT its direction, at different periods of the motion, and the whesls would ba hyperboloids of an eccentric or irregular cross-section ; bnt forms of this kind are not used in practice.
53. Sliding Contact (circular): Grooved Whecls.-As the adbesion or friction batween a pair of smooth wheels is seldom anfficient to prevent their slipping on each other, contrivances are nsed to increase their mntual hold. One of those consists in forming the rim of each wheel into a series of altornate ridges and groores
parallel to the plane of rotation ; it is applicable to cylindrical and bevel rheels, but not to skew-bevel wheels. The comparative motion of a pair of wheela so ridged and grooved is the same with that of a pair of amooth wheels in rolling contact, whose cylindrical or conical surfaces lie midway between the tops of the ridges and battonis of the grooves, and those ideal smooth surfacea are called the pitch surfaces of the wheela.
The relative motion of the faces of contact of the ridges and groares is a rotalory sliding or grinding motion, about the line of contact of the pitch-surfaces as an instantancous axis.
Grooved wheels have hitherto been but little used.
54. Sliding Contact (direct): Tceth of Wheels, their Number and Pitch. - The ordinary method of coanecting a pair of wheels, or a wheel and a rack, and the only method which ingures the exact maintenance of a given numerical velocity ratio, is by means of a series of alternate ridges and hollows parallel or nearly parallel to the successive lines of contact of the jideal smooth wheels whose velocity ratio would be the same with that of the toothed wheels. The riuges aro called tecth; the hollors, spaccs. The teeth of the driver push those of the follower before them, and in so doing sliding takes place between them in a direction across their lincs of contact.
The pitch-surfaces of a pair of toothed whecls are the ideal smooth surfaces which would have the same comparative motion by rolling contact that the actual whec's have by the sliding contact of their teeth. The pitch.circles of a pair of circular toothed wheels are ecctions of their pitch-surfaces, mode for spur-wheels (that is, for *heels whose axes are parallel) by a plane at right sngles to the axes, and for bevel wheela by a sphere described about the common apex. For a pair of akew-bevel wheels the pitch-circles are a pair of contignous rectangular sections of the pitch-surfaces. The pitch-woint is the point of contact of the pitch-circles.
The pitch-burface of a wheel lies intermediate between the points of the teeth and the bottoms of the hollows between them. That part of the acting surface of a tooth which projects beyor "the pitchaurface is called the facc; that part which lies within the jitchsurface, the flank.
Teath, when not otherwise specified, are understoed to be made In one piece with the wherl, -the material being generally caat-iron, brasa, or bronze. Separate teeth, fixed into mortises in the rim of the wheel, are called cogs. A pinion is a small toothed wheel; a Grundle is a pinion with cylindrical stares for teeth.
The radius of the pitch-circle of a wheel is called the gcometrical radius ; a circle touching the ends of the teeth is called the addendum circle, and ita radins the real radius; the difference between these radii, being the projection of the teeth beyond the pitch-surface, is called the addendum.
The distance, measured along the pitch-circle, from tho face of one tooth to the face of the next, is called the pilch. The pitch and the number of teeth in wheels are regulated by the following principles:-
I. In wheels which rotate continuously for one revolution or more, it is obviously necessary that the pitch should be an aliqueot pare of the circumference.
In wheels which reciprocate without performing a complete revolution this condition is not necessarv. Such wheels are called sectors.
II. In order that a pair of whell, or a wheel and a rack, may work correctly togother, it is in all cases essentisl that the prich thould be the same in each.
III. Hence, in any pair of circular wheels which work together, the numbere of tecth in a complete circumference are directly as the radii and inversely as the angular velocities.
IV. Hence also; in any pair of circular wheels which rotate contimnously for one revolution or more, the ratio of the numbers of teeth and its reciprocal tho angular velocity ratio must be expressible in wholo numbers.

From this pinciple arise problems of a kind which will be referred to in treating of Trains of Mechanism.

V . Let $n, \mathrm{~N}$ be the respective numbers of tecth in a pair of *hella, N heing the greater. Let $t, \mathrm{~T}$ be a pair of tecth in the amaller and larger wheel respectively, which at a particular instant work together. It is required to find, first, how many pairs of teeth must pass the line of contact of the pitrh-surfaces before $t$ and Twork together again (let this number be called a) ; and, secondly. with haw many different teeth of the langer wheel the tooth $\ell$ will work at different times (let this number be called b); thirdly. with how many different teeth of the smaller wheel the tooth T will work at lifferent times (let this be called $c$ ).

Cabe 1. If $n$ is a divisor of $N$,

$$
\begin{equation*}
a-\mathrm{N} ; b=\frac{\mathrm{N}}{n} ; c=1 \tag{20}
\end{equation*}
$$

Case 2. If the grantest common divisor of $N$ end $n$ be $d$, number less then $n$, so that $n=m d, N-M d$; then

Case 3 If N and $a$ be prime to cach other.

$$
\begin{equation*}
a=n \mathbf{N} ; b=\mathbf{N} ; c=n \tag{22}
\end{equation*}
$$

It is conaidered desirable by millwrights, witl a view to the pro servation of the unifornity of shape of the tecth of a pair of wheels, that each given teoth in one wheel should work with as mony different teeth in the other wheel as possible. They therefore study that the numbers of teetli in each pair of whecls which worls together shall either be prime to each other, or shall have theil greatest common dirisor as smaly as is cousistent with a velocity ratio suited for the purposes of the machine.
55. Sliding Contact-Fims of the Tceth of Spur-ucheets and Racks.-A line of connexion of two pieces in sliding contact is $\frac{g}{}$ line perpenticular to their surfaces at a point where they touch. Bearing this in mind, tho principle of the comparative motion of a pair of teeth belonging to. a pair of spur-wheels, or to a spur-whet and a rack, is found by apply. ing the principles stated generally in oucts 16 and 47 to the case of parallel axes for a pair of spur-wheela, and to the case of an axis perpendicular to the direction of shifting for a wheel and a rack.
In fin. 15, let $\mathrm{C}_{1}, \mathrm{C}_{2}$ be the centres of a pair of spurwheels; $\mathrm{B}_{1} \mathrm{IB}_{1}^{\prime}, \mathrm{B}_{2} I \mathrm{~B}_{2}^{\prime}$ portions of their pitch-circles, tonching at I, the pitch-froint. Let the wheel 1 be the driver, and the wheel 2 the follower.


Let $\mathrm{D}_{1} \mathrm{~TB}_{2} \mathrm{~A}_{1}, \mathrm{D}_{2} \mathrm{~TB}_{2} \mathrm{~A}_{2}$ be the positions, at a given instanf,-of the acting surfaces of a pair of teeth in the driver and follower respectively, touching each other at $T$; the line of connexion of those teeth is $P_{1} P_{2}$, perpendicular to their surfaces at $T_{.} \rightarrow$ Let $C_{2} P_{1}$, $\mathrm{C}_{2} \mathrm{P}_{3}$ be perpendicularg let fall from hie centres of the wheels on the line of contact. Then, by sect. 46, the angular velocityratio is

$$
\begin{equation*}
\frac{a_{2}}{a_{1}}-\frac{C_{1} P_{2}}{C_{2} P_{2}} \tag{23}
\end{equation*}
$$

The following princinles regulate the forms of the teeth and their relative motiona:-
I. The angular velocity ratio due to the aliding contact of the teeth will be the same with that lue to the rolling contact of the pitch-circles, if the line of comnexion of the teeth cuts the lina of centres at the pitch-point.
For, let $\mathrm{P}_{1} \mathrm{P}_{2}$ cut the line of centres at I ; then, hy aimilar triangles,

$$
\begin{equation*}
a_{1}: a_{2}:: C_{2} P_{2}: C_{1} P_{1}:: I C_{8}:: I C_{1} \tag{24}
\end{equation*}
$$

which is also the angular velocity ratio due to the rolling contact of the circlea $\mathrm{B}_{1} 1 \mathrm{~B}_{1}^{\prime}, \mathrm{B}_{9} \mid \mathrm{B}_{9}^{\prime}$.
This principte determines the forms of all teeth of spur-wheels. It also determines the forms of the teeth of straight racks, if one of the centres be removed, and a straight line ElE', parllel to the direction of motion of the rack and perpendicular to $\mathrm{C} \cdot \mathrm{lC}_{2}$, be substitnted for a pitch-circle.
11. The component of the velocity of the point of-contact of the teeth $T$ along the line of connexion is

$$
\begin{equation*}
a_{1}, C_{1} P_{1}=a_{3}, C_{3} P_{2} \tag{25}
\end{equation*}
$$

III. The relative velocity jerpendienhar to $P_{1} P_{2}$ of the teeth at their point of contact,-that is, their velocity of sliding on each other, - is found by supposing one of the wheels, such as 1 , to be fixed, the line of conires $C_{1} C_{2}$ to rotate hackwards roun' $C_{1}$ with the angular velocity $a_{1}$, and the wheel 2 to rotate round $C_{3}$ as before, with the angnlar velocity $a_{2}$ relatively to the lino of centres $\mathrm{C}_{2} \mathrm{C}_{2}$, so as to have the same motion as if its pitcl-circle rolled on the pitch-circle of the first whecl. Thus the relatire motion of the wheels is unchanged ; but 1 is considered as fixed, and i2 has the total motion given by the 1 rnciples of sects. 37 and 38 , -that is, a rotation alout the instantancous axis 1 , with the angular relocity $a_{1}+a_{2}$. llence the eclocity of sliding is that due to this rotation about l, with the radius 1'1 ; that is to soy, ita value is

$$
\begin{equation*}
\left(a_{1}+a_{2}\right) . \text { IT } \tag{نـا}
\end{equation*}
$$

so that it is greates the farther the point of rontact is from the line of centres; and at the instant when that point passes the lin of centres, and coincides with the pitch-point, the velocity of sliding is mull, and tho action of the teeth is, for the instant, that of rolling contnct.
IV. The path of contact is the line traversing the various positione of the point T. If the line of connesion presurves always the samo
position, the path of contact coincides with it, end is straight; in other cases the path of contart is curved.

It is divided by the pitch-poiat I into two parte, - the arc or line of approach described by T in approaching the line of centres, and the arc or line of recess described by $T$ after having passed the liae of centres.

During the approach, the fank $\mathrm{D}_{2} \mathrm{~B}_{1}$ of the driving tooth drives the face $\mathrm{D}_{3} \mathrm{~B}_{2}$ of the following tooth, and the teeth are sliding cowards each other. During the recess (in which the position of the tecth is exemplified in the figure by corves marked with accented letters), the face $\mathrm{B}_{1}^{\prime} \mathrm{A}_{1}^{\prime}$ of the driving tooth drives the flank $\mathrm{B}_{\mathrm{e}}^{\prime} \mathrm{A}_{8}^{\prime}$ of the following tooth, and the teeth are eliding from each other.

The path of contact is hounded where the approach commences by the aldendum-circle of the follower, and where the recess terminates by the addendum-circle of the driver. The length of the path of contact should be such that there shall always be at least one pair of teeth in contact ; and it is better still to make it so long that there shall always be at least two pairs of teeth in contact.
V. The ebliquity of the action of the teeth is the angle EIT $\mathrm{IC}_{1} \mathrm{P}_{1}=1 \mathrm{CO}_{2} \mathrm{P}_{2}$.

In practice it is found desirable that the mean value of the obliquity of action during the contact of tecth should not exceed $15^{\circ}$, nor the maximun value $30^{\circ}$.

It is unnecessary to give separate figures and demenstrations for inside gearing. The only modification required in the formula is, that in equation 26 the difference of the angular velocities should be substituted for their sum.
56. Involute Tecth. - The simplest form of tooth which fulfils the conditions of sect. 55 is obtaiaed in the following manner (sce fig. 16). Let $C_{1}, C_{2}$ be the centres of two wheels, $B_{1} I B_{1}^{\prime}, B_{2} 1 B_{2}^{\prime}$ their pitch-circles, I the pitch-poiat; let the olliquity of action of the teeth be constant, so that the same straight line $\mathrm{I}_{1} I \mathrm{P}_{2}$ shall rapresest at once the constant line of connexioa of teeth and the Fath of contact. Draw $C_{1} \mathrm{P}_{1}, \mathrm{C}_{8} \mathrm{P}_{9}$ perpendicular to $\mathrm{P}_{1} 1 \mathrm{P}_{2}$, and vith those lines as radii describe abont the centres of the wheels the circles $D_{1} D_{1}^{\prime}, D_{2} D_{g}^{\prime}$, called basc-circles. It is evident that the redii of the basc-circles bear to each other the same proportioos as the radii of the pitch-aircles, and also that

$$
\left.\begin{array}{l}
\mathrm{C}_{1} \mathrm{P}_{1}=\mathrm{IC}_{1}, \text { cos obliquity }  \tag{27}\\
\mathrm{C}_{2} \mathrm{P}_{8}=\mathrm{IC}_{2}, \text { cos obliquity }
\end{array}\right\}
$$

The obliquity which is found to answer best in practice is about $14 \frac{\circ}{3}$; its cosiae is about $\frac{31}{3}$, and its sine about $\frac{1}{6}$. These values, though not absolutely exact, are pear enough to the truth for practical purposes.)
Suppose the base-circles to ke a pair of circular pullefs connected by means of a cord whose course from pulley to pulley is $\mathrm{P}_{1} \mathrm{I} \mathrm{P}_{2}$. As the line of connexion of those pulleys is the same. with that of the proposed teeth, they will rotate With the required velocity ratio. Now, auppose a tracing point T to be fixed to the cord, so as to be carried olong the path of contact $P_{1} I P_{2}$, that point will trace on a plane rotating along with the wheel 1 part of the involuta of the base-circle $D_{1} D_{1}^{\prime}$, and on a plane rotating along with the wheel 2 part of the involuta of the base-circle


Fig. 16. $\mathrm{D}_{8} \mathrm{D}_{3}^{\prime}$; and the two curves so traced will always touch each other in the required point of contact $T$, and will therefore fulfil the condition required by Principle 1. of sect. 55.
Consequently, one of the forms suitable for the teeth of wheels is the iovolute of a circle; and the obliquity of the action of such teeth is the angle whose cosine is the ratio of the radius of their base-circle to that of the pitch-circle of the whecl.

All involute teeth of the same pitch mork smoothly together.
To find the length of the path of contact on either side of the pitch-point $I$, it is to be obscrved that the distance betwecn the fronts of two successive teeth, as measured along $\mathrm{P}_{2} I \mathrm{P}_{2}$, is less than the pitch in the ratio of "cos obliquity : 1 ; aud consequently that, if distances equal to the pitch be marked off either ray from I towards $P_{1}$ and $P_{2}$ respectirely, as the extremities of the path of contact, and if, according to Principle 1 V . of sect. 55 , the adden-dum-circles be described through the points so found, there will always be at least twe pairs of teeth in action at once. In practice it is nsual to make the path of contact somewhat longer, viz., about 2 isth times the pitch; and with this length of path, and the obliqnity already mentioned of $144^{\circ}$, the addendum is about $\frac{3}{0}$ ths of the pitch.

The teeth of a rack, to work correctly with wheels having involute teeth, should hare plane surfaces perpendicular to the line of connexion, and consequeatly making with the direction of motion of the rack angles equal to the comploment of the obliquity of action.
57. Teeth for a given Path of Contact-Mir Sang's Mcthod.-In the preceding section. the form of the teeth is found by assuming a figure for the path of contact, viz., the straight line. Any other convenient figure mey be essumed for the path of contact, and the corresponding forms of the teeth found by determining what curres a point $T$, moving along the assumed path of contact, will trace on two disks rotating round the centres of the whecls with angular velocities bearing that rolation to the component velocity of T aloog T1, which is given by Principle Il. of sect. 55, and by equation 25. This method of finding the forms of the teeth of wheels forms the auhject of an elaborate and most interesting treatise by Mr Edward Sang.

All wheels having teeth of the same pitch, traced from the same path of contact, work correctly together, end are said to belong to the same set.
68. Tceth traced by Folling Curies. - If any curve R (fig. 17) be rolled on the inside of the pitch-cirole BB of a wheel, it appears, from sect. 37 , that the instaataneous axis of the rolling curve at any instaat will be at the point 1 , where it touches the pitch-circle for the moment, and that consequently the line $A T$, traced by a tracing. point $T$, fixed to the rolliog curve upon the plane of the wheel, will he everywhere perpendicular to the straight line TI; so that the traced curve AT will be


Fig. 17. auitable for the flank of a tooth, in which $T$ is the pornt of anntact corresponding to the position I of the pitch-peint. If the same rolling curve $R$, with the same tracing-noint $T$, be rolled on the outside of any other pitch-circle, it will have the face of a tooth suitable to work with the flank AT.

In like manner, if either the same or any other rolling curre $R^{\prime}$ be rolled the opposite way, on the outside of the pitch-circle BB, so that the tracing point $\mathrm{T}^{\prime}$ shall start from A , it will trace the face $A X^{\prime}$ of a teoth suitable to work with a flarik traced by rolling the same curre $\mathrm{R}^{\prime}$ with the same tracing-point $\mathrm{T}^{\prime}$ inside any other pitch circle.

The figure of the path of contact is that traced on a fixed plane by the tracing-point, when the rolling curve is rotated in such a manner as always to touch a fixed straight line EIE (or $\mathrm{E}^{\prime} \mathrm{I}^{\prime} \mathrm{E}^{\prime}$, as the case may be) at a fixed point I (or l').

If the same rolling curve and tracing point be used to trace both the faces and the flanks of the teeth of a number of wheels of different sizes but of the same pitch, all those wheels will wort correctly together, and will form a set. The teeth of a rack, of the same set, are traced by rolling the rolling curve on both sides of a straight line.

The teeth of wheels of any figure, as well as of circular wheels, may be traced by rolling curves on their pitch-surfacea; and all teeth of the same pitch, traced by the same rolling curve with the eame tracirog-point, will work together correctly if their pitch-sur. faces are in rolling coetact.
59. Epicycloidal Teeth.-The most convenient rolling curve is the circle. The path of contact which it traces is identical with itself; and the flanks of the teeth ara internal and their faces ex-
ternal epicycloids for wheels, and both flanks and faces are cycloids for a rack.

For a pitch-circle of twice the radius of the rolling or describing circle (as it is called) the interual epicycloid is a atraight line, being, in fact, a diameter of the pitch circle, so that the fianks of the teeth for such a pitcl-circle are planes radiating from the axis. For a smaller pitch-circle the flanks would be convex and incurced or under-cut, which would be inconrenient; therefore the smallest wheel of a set should have its pitch-eircle of twice the radius of the describing


Fig. 18. circle, so that the flanks may be either straight or concave
In Gig. 18, let $\mathrm{BB}^{\prime}$ be part of the pitch-circle of a wheel with epi cycloidal teeth : CIC the line of centres : I the pitch-point Eld
a straight tangent to the pitch-circle at that noint; $R$ the internal and $\mathrm{R}^{\prime}$ the equal external describing circlea, 80 placed as to touch the pitch-circle and each other at I. Let DID' be the path of contact, consisting of the arc of approach Dl and the are of recess $1 \mathrm{D}^{\prime}$. In order that there may always be at least two pairs of tecth in action, each of those arcs abould be equal to the pitch.

The obliquity of the action in passing the line of centres is nolliog; the maximum obliquity is the angle $\mathrm{EID}-\mathrm{E}^{\prime} \mathrm{ID}$ : and the meau obliquity is one-half of that aogle.

It appears from experience that the mean obliquity should not exced $15^{\circ}$; therefore the maximum obliquity ahould be about $30^{\circ}$; therefore thie equal arcs DI and $1 \mathrm{D}^{\prime}$ should each be one-sixth of a circumference; therefore the circumference of the describing circle should be six times the pitch.

It follerse that the smallest pinion of a set in which piumon the flanks are straight should have twelve teeth.
00. Searly Epicycloidal Teeth-Willis's Method.-To facilitate the drawing of epicycloidal teeth in practice, Willis has shown how to apuroximato to their figure by maans of two circular arca, -ono concave, for the flank, and the other convex, for the tiace, -and each linving for ita radius the nean radius of curvature of the epicycloidal arc. Willis's formule aro founded on the fol. lowing properties of epicycloids:-

Let P be the radins of the pitch-circle ; $r$ that of the describing circle; $\theta$ the angle made by the normal TI to the cpicycloid at a given point $T$, with a tangent to tho circle at I; that is, the abliquity of the action at T .

Then the radius of carvature of the enicycloid at $T$ is-
For an interual opicycloid, $\rho=4 r \sin \theta \frac{\mathrm{R}-r}{\mathrm{R}-2 r}$ \}
For an external epicycloid, $\left.\rho^{\prime}=4 r \sin \theta \frac{R+\gamma}{R+2 r}\right\}$
Also, to find the poaition of the centres of currature relatively to the pitch-circle, we have, denoting the chord of the describing circle TI by $c, c-2 r \sin \theta$; and therefore

$$
\left.\begin{array}{l}
\text { For the flank, } \rho-c=2 r \sin \theta \frac{\mathrm{R}}{\mathrm{R}-2 r}  \tag{29}\\
\text { For the face, } \rho^{\prime}-c=2 r \sin \theta \frac{\mathrm{R}}{12+\theta_{r}}
\end{array}\right\}
$$

For the proportions approred of by Willis, $\sin \theta=\{$ nearly ; $r-p$ (the pitch) nearly; $c-\frac{1}{2} p$ nearly ; and, if $N$ be the number of tecth in the wheel, $\frac{r}{\mathrm{~N}}-\frac{6}{\mathrm{~N}}$ nearly ; therefore, approximately,

$$
\left.\begin{array}{l}
\rho-c-\frac{p}{2}  \tag{30}\\
\rho^{\prime}-c-\frac{N}{2} \cdot \frac{N}{N-12}
\end{array}\right\}
$$

Heaco the following construction (fig. 19). Let $B$ B be part of the pitch-circle, and a the paint where a tooth is to cross it. Set off $a b-a c-\frac{1}{} p$. Draw radii $b d$, ce; draw $j b$, cg, making angles of $75 \mathrm{~h}^{\circ}$ with those radii. Make bf $-p^{\prime}-c, \quad c q-p-c$. From $f$, with the radius fa, Hraw the circular arc $a h$; from $g$, with the radius ga, draw the circular arc $a L_{\text {: }}$ Then $a h$ is the face and ak the thank of the tooth required.

To facilitato tha application
 of this rule, Willis pl lished tables of $\rho-c$ and $\rho^{\circ}-c$, and invented an instrument called the "odontograph."
61. Trundles and Pin- Wheels. -If a whecl or trundla have cyligdrical pins or staves for teeth, the faces of the teeth of a whes suitabla for driving it aro dascribed by firat tracing external epicycloids, by rolling the pitch-circlo of the pin-whed or trundle on the pitch-circle of the driving-wheel, with the ceutra of a stavo for a tracing-point, end then drawing curves parallel to, and within the epicyeloids, at a distancs from then equal to tho radius of $n$ save. Trundles having only six ataves will work with larga whecls.
i2. Bach's of Teeth and Spaces. - Toothed whecls bsing in general intended to rotato either way, tho backs of the tecth are mado aimilar to the fronts. The sjrace batseen two tecth, racasured on the pitch-circle, is made abont th part wider than the thickness of the tooth on *he nisch-circls ; that is to asy,

$$
\begin{aligned}
& \text { Thickness of tooth }- \text { in }^{n} \text { pltch: } \\
& \text { Width of space }- \text { is }^{3} \text { pitch. }
\end{aligned}
$$

The difference of it of tha pitch is called the back-lash. The clearance allowed between the puints of tecth and the bottoms of the apaces between the teeth of the other whecl is about 子isth of the pich.
63. Stepyed and Helical Tecth.-Hooke invented the making of the fronts of tecth in a aeries of steps with a view to increase the smoothness of action. A wheal thus formed resembles in shape a series of equal and similar toothed disks placed side by side, with the tecth of each a little behind those of the preceding disk. He also invented, with the same olject, teeth whose fionts, instead o: being parallel to the line of contart of the jitch-circles, cross it obliquely, so as to be of a scresp-like or helical form. In wheel. work of this kind the contact of cach prair of teeth conmences at the foremost end of the helical front, and terminates at the aftermost end; and the helix is of auch a pitch that the contact of one pair of testh shall not terminate until that of the next pair has com. mienced.

Stepped and helical teeth have the desired effect of increasing the smoothness of motion, but they require more dilficult and expensive workmanship than common teeth; and helical teeth.are, besides, open to the objection that they exert a laterally oblique pressure, which tends to increase resistance, and unduly strain the machiners.
64. Tecth of Bercl-Whecls. - The acting sarfaces of the teeth of bevel-wheels are of the conical kind, generated by the motion of a line passing through the common aper of the pitch-cones, while its. extremity is carried ronnd the outlines of the cross section of the teeth made by a spliere described about that apex.

The operations of describing the exact figures of the teeth of bevel-wheels, whether by involutes or by rolling curves, are in every respect analogous to those for describing the figures of the teeth of spur-wheels, except that in the case of bevel-wheels all those operations are to be performed on the surface of a splace described about the apex instead of on a plane, substituting poles for centres, and great circles for straight lines.

In consideration of the practical difficulty, especially in the case of large wheels, of obtaining an accurato spherical surface, and of drawing upon it when obtained, the following approximate method, proposed originally by Tredgold, is generally used:-
Let $O$ (fig. 20) be the common apex of a pair of bevel-wheals; $O B_{1} I, O B_{2} I$ their pitch cones; $\mathrm{OC}_{1}, O C_{2}$ their axes; OI their line of contact. Perpenlicnlar to $O 1$ draw $A_{2} I A_{2}$, cutting the axes iu $A_{1}, A_{2}$; make the outer rims of the pattems and of the wheels portions of the cones $A_{1} B_{1} 1, A_{2} B_{2}$ l, of which the marrow zones occupied by the teeth will bo sufficiently near to $n$ spherical surface described about 0 for practical purposes. To find the figures of the teeth, draw on a flat surface circular ares ID 1D $_{2 \text {, with the }}$ radii $A_{1}$, those ares will be the $\mathrm{A}_{2} \mathrm{I}$; those ares will be the


Fig. 20. pitch-circles $B_{1} I, B_{2} I$, when the conical surfaces $A_{1} B_{1} I, A_{8} B_{9} I$ are spreal ont flat. Sescribe the figures of teath for the developed ercs as for as pair of spur-wheels; then vrap the developed arca on the cones, so as to make them coincile with the pitch-circles, and trace the tecth on the conical surfaces.
65. Teeth of Sticu-Devel IVheels. -The crests of the teeth of a akew-bevel wheel are parallel to the generating straight line of the hyperboloidal pitch-surface; and the transverse sections of the teeth at a giren pitch-circle are similar to those of the teeth of a bevel-wheel whose pitch-surface is a cone touching the hyperboloidal surface at the given circle.
66. Cams.- A cam is a single tōoth, cither rotating continuously or oscillating, and driving a aliding or turning plece either conatantly or at interrals. All the principles which have been stated iu scct. 55 as bcing applicablo to teeth are applicable to cams; but iu designing cams it 19 not usual to deternine or take into consideration the form of the ideal yitch-surface, which wonht give the sama comparative motion by rolliag coutact that the cam gives by sliding contact.
67. Screves. - The figuro of a serew is that of a convex or concare cylinder, with ono or more helical projections, called threads, winding round it. Conrex and concaro screws are distinguished technically by tha respective names of male and female; a short concave ecrev is called a nut; and when a screw is spoker of with. out qualification a conver scrow is usually understood.

Tho relation botween the allvance and the rotation, which compose tha motion of a serew Forking in contact with a fixcd screw or helical guide, has already been demonstrated in sect. 41 ; and the same relation exists between the maguitudea of the rotation of a acrem about a fixed axis and tha adrance of a shifting nut in which it rotates. Tho advance of the nut takes placa in the opposite direcion to that of the adrance of tho screw in the case in whick tha mut is fixed. Tha piech or axial pitch of a screw has the mean ing esecnel to it in that section, riz., the distance, measured
parallel to the axis, between the corresponding pornts in two auccessive turas of the same thread. If, therefore, the screw has several equidistaut threads, the true pitch is equal to the diredcd axinl pilh, as measured bétweeu two adjacent thresds, multiplied by the number of threads.

If a helix be described round the screm, crossing each turn of the thread at right angles, the distance between two correspouding points ou two successive turns of the same thread, measured along this normal helix, may be called the normal pitch; nad when the screw has more than one threal the normal pitch from thread to thread mny be called the normal divided pitch.

The distance from threal to thread, neasured on a circle described about the axis of the screw, called the pitch-circle, may be called the circumferential pitch; for a screw of one thread it is oue circumfereace; for a screw of $n$ threads, $\frac{\text { one circumfereace }}{n}$

Let $r$ denote the radius of the pitch circle;
$n$ the number of threads ;
$\theta$ the obliquity of the threads to the pitch circle, and of the normal helix to the axis;

$$
\left.\begin{array}{l}
\frac{\mathbf{P}_{a}}{2 t}-p_{a}
\end{array}\right\} \text { the axial }\left\{\begin{array}{l}
\left\{\begin{array}{l}
\text { pitch }, \\
\text { divided pitch } ;
\end{array}\right. \\
\frac{\mathbf{P}_{n}}{n}=p_{n}
\end{array}\right\} \text { the nerioal }\left\{\begin{array}{l}
\text { pitch, } \\
\text { divided pitch ; }
\end{array}\right.
$$

> Pe the circumferential pitch ;
the: $\left.\quad \begin{array}{l}p_{c}=p_{a} \cot \theta=p_{n} \cos \theta=\frac{2 \pi r}{n} \\ p_{a}=p_{n} \sec \theta=p_{c} \tan \theta=\frac{2 \pi r \tan \theta}{n} \\ p_{n}=p_{c} \sin \theta=p_{c} \cos \theta=\frac{2 \pi r \sin \theta}{n}\end{array}\right\}$.
If a screw rotates, the number of threads which pass a fixed point in one revolution is the number of threads in the screw.

A pair of convex screws, each rotating about its axis, are used as an clementary combination to transmit motion by the olidiag con. tact of their threads. Such screws are commonly called endless screns. At the point of contact of the screws their threads must be paraliel ; and their line of connexion is the common perpendi. cular to the acting surfaces of the threads at their point of contact. Heace the following pribciples:-
I. If the screws are both right-handed or both left-handed, the angle between the directiona of their axes is the onm of their obliquities; if one is right-handed and the other left-handed, thatangle is the difference of their obliquities.
11. The normal pitch for a screw of one thread, and the normal divided pitch for a screw of more than one thread, must be the same in each screw.
III. The angular relecities of the screws are inversely as their numbers of threads.

Hooke's wheels with oblique or helical teeth are in fact screws of many threads, aud of large diametera as compared with their lengtlis.

The ordinary position of a pair of endless screws is with their axes at right angles to each other. When ono is of considerably greater diameter than the other, the larger is commenly called in practice a wheel, the name screw being applied to the smaller only; but they are nevertheless both screws in fact.

To make the teeth of a pair of eadless screwa fit correctly and work smoothly, a hardened ateel screw is niade of the figure of the smaller scrow, with its thread or threads notched oo as to form a cutting tool ; the larger screw, or "Wheel," is cast approximately of the Jequired figure; the larger screw and the ateel acrew are fitted up in their proper selative position, end made to rotate in contact with each other by turning the oteel screw, which cuts the threads of the larger screw to their true figure.
68. Coupling of Parallel Axes-Oldham's Coupling.-A coupling is a mode of connectiog a pair of shafts so that they absill rotate in the same direction with the same trean sugular velocity. If the axes of the shafts are in the same straight line, the coupling consists in so connecting their contiguous eods that they shall rotate as one piece; but if the ares are not in the same atraight line combinations of mechanism are required. A coupling for parallel shafts which acts by sliding contact was invented by Oldham, and is represented in fig. 21. $C_{2}, C_{8}$ sre the ares of the two


Fig. 21. parallel ohafts ; $D_{1}, D_{2}$ two disks faciog each other, fixed on tha
ends of the two shafts respectively; $E_{1} E_{1}$ a bar sliding in a diametral groove in the face of $D_{1} ; E_{1} E_{3}$ a bar sliding in a diametral groove in the face of $D_{2}$ : those bars are fixed together at $A$, so as to form a rigid cross. The angular velocities of the two disks and of the cross are all equal at every instant ; the middle point of the cross, at. A, revolves in the dotted circle described upon the line of centres $\mathrm{C}_{1} \mathrm{C}_{2}$ as a diameter twice for each turn of the disks and cross; the instantaneous axis of rotation of the cross at any instant is at $I$, the point in the circle $\mathbf{C}_{1} C_{2}$ diametrically opposito to $A$.
Oldham's coupling may be ased with odvantage where the axes of the shafts are iotended to be as mearly in the same straight line as is possible, but where there is some doubt as to the practicability or permaneucy of their exact continuity.
69. Wrapping Connectors-Belts, Cords, and Chains.-Flat belts of leather or of gutta percha, round cords of catgut, hemp, or other material, and metal cheins are used as wrspping connectors to transmit rotatory motion betwreen pairs of pulleys and drums.

Belts (the most frequently used of all wrapping connectors) require nearly cyliudrical pulleys. A belt tends to move towards that part of a pulley whose radius is greatest ; pulleys for belts, therefore, are slightly swelled in the middle, in orler that the belt may remaio on a pulley, unless forcibly shifted. A belt when in motion is ahifted off a pulley, or from ane pulley on to another of equal size alongside of it, by pressing against that part of the belt which is moving towards the pulley.

Cords require either cylindrical drums mith ledges of grooved pulless.

Chains require pullegs or drums, groored, notched, and toothed, so as to fit the links of the chain.
Wrapping connectors for communicating continuous motion are eadless.

Wrapping contectors for communicating reciprocating motion have usually their ends made fast to the pulleys or drums which they connect, and which in this case may be sectors.

The line of connexion of two pieces connected by a mrapping connector is the centre line of the belt, cord, or chain; and the comparative metions of the pieces are determined by the principles of sect. 46 if both pieces turn, and of sect. 47 if one turns and the other ahifts, in which latter case the motion mint be reciprocating.

The pitch-line of a pulley or drum is a curve to which the line of connexion ia always a tangent; that is to say, it is a curve parallel to the acting aurface of the palley or drum, and distant from it by half the thickness of the wrapping cennector.

Palleys and drums for communicating a constant velecity ratio are circular. The effectire radius, or radius of the pitch-circle of a circular pulley or drum, is equal to the real radius added to half the thickness of the convector. The angular velocities of a pair of connected circnlar pulleys or drums are inveraely as the effective radi.

$\Delta$ crossed belt, as in fig. 22, A, reverses the direction of the rotation cotomunicated; an uncrossed belt, os in fig. 22, B, preserves that direction.
The length $L$ of an endless belt connecting a pair of pulleys wliose effective radii are $r_{1}, r_{2}$, with parallel excs whose distance apart is C , is given by the fellowing formulæ, in each of which the first term, containing the radical, expressea the length of the straight parts of the belt, ond the remainder of the formula the leogth of the curved parts.

For a crossed belt,-

$$
\mathrm{I}_{1}=2 \sqrt{c^{3}-\left(r_{2}+r_{3}\right)^{2}}+\left(r_{1}+r_{2}\right)\left(\pi-2 \operatorname{ain}-\frac{r_{1}+r_{2}}{c}\right)(32, \mathrm{~A})
$$

and for an uncrossed belt, -

$$
\mathrm{L}=2 \sqrt{ }\left\{c^{2}-\left(r_{1}-r_{2}\right)^{2}\right\}+\pi\left(r_{1}+r_{2}\right)+2\left(r_{1}-r_{2}\right) \text { sin } \frac{r_{1}-r_{3}}{c}(32, \mathrm{~B}) ;
$$

in whish $r_{1}$ is the greater radius, and $r_{2}$ the less.
When the bies of a pair of palleye are not parallel, tbe palleys ahould he ao placed that the part of the belt which is approaching each pulley shall be in the plane of the pulley.
70. Speed-Cones (see fig. 23). - A pair of epeed-cones is a contrivance for varying and adjusting the velocity ratio commanicated between a pair of parallel shafts by meane of a belt. The speedcones are either continuous cones or conoids, as $A, B$, whose velocity ratio can be varied gradually while they are in motion by ahifting the belt, or aets of pulleye whese radii vary by ateps, as C, D, in which case the velocity ratio can be changed by ohifting the belt from one pair of pullese to another.

In order that the belt may fit accurately in cvery possible position on a pair of apeed－cones，the quantity $L$ must be constant，in cquations $32, \mathrm{~A}$ ，or $32, \mathrm{~B}$ ， nccorliug as the belt is crossed or uacrossed．
For a crossed belt，as in A and C，tig．23，L depends solely on $c$ and on $r_{1}+r_{3}$ ． Now $c$ is constant becanso the axes are parallel；there－ fore the ntm of the radii of the pitch－circles connected is every position of the belt is to be constant．That condition is fulfilled by a pair of continuous cones generated by the revolu． tion of two atrajght lines inclined opposite waya to their reapectiveaxes at equal anyles．


For an uncrossed belt，the quantity $L$ in equation $32, B$ is to be made constant．The exact fultilment of this condition requirea the solution of a transcendental equation；but it may be fulfilled with accuracy autficieat for practicol purposes by using，inatead of $32, \mathrm{~B}$ ， the following approximale equation ：－
$L$ dearly $-2 c+\pi\left(r_{3}+r_{2}\right)+\frac{\left(r_{1}-r_{2}\right)^{2}}{c}$
The following is the moat convenient practical rule for the appli－ cation of this equation：－
Let the speed－cones be equal and similar conoids，as in $B, f \%$ 23，but with their large and amall eads turned opposite ways．Let $r_{1}$ be the radius of the large end of each，$r_{3}$ that of the amall end， $r_{0}$ that of the middle ；and let $v$ be the sagilla，measured perpendi－ cular to the axes，of the arc by whose revolution aach of the conoids is generated，or，in other Fords，the bulging of the conoids in the pidule of their leagth．Thea

$$
\begin{equation*}
\theta=r_{0}-\frac{r_{1}+r_{2}}{2}-\frac{\left(r_{1}-r_{3}\right)^{2}}{2 \pi c} \tag{34}
\end{equation*}
$$

$2 \pi-6.2832$ ；but＇ 6 may be uscd in most practical cases without sensible error．

The radii at the middle and end being thus determined，make The generating curve an arc either of a circle or of a parabola．

71．Linkwork in General．－The piecen which are connected by linkwork，if they rotate or oscillate，are naually called cranks，bermis， and levers．The link by which they are connected is a rigid rod or bar，which may be atraight or of any other figure；the straight figure，being the most favourable to strength，is always used when there is no apecial reason to the contrary．The link is known by various names under various circumstancea，auch as coupling－rod， connecting－rod，crank－rod，eccentric－rod，\＆．c．It is attachad to the pieces which it conaects by two pins，about which it ia free to turn． The effect of the link is to maintain the distance between the axes of these pins invariahle；hence the common perpendicular of the axes of the pias is the line of connexion，and its extremities may be called the connected points．In a turniog piece，the perpendicular let fall from its coanccted point upon its axis of rotation is the arm or crank－arm．

The axes of rotation of a pair of turning pieces coonected by a lipk bre almost alway＇s parallel，and perpendicular to the line of connexion；is which case the angular velocity ratio at any instant is the reciprocal of the ratio of the common perpendiculars let fall front the line of connexion upen the respective oxca of rotation．

If at any instant tha direction of one of the crank－arms coincidea with the line of connexion，the conmon perpendicular of the line of connexion and the axis of tbat crank－arm vapishes，and the firectional relatim of the motions becemes indeterminate．The position of the conncuted point of the crank－aras in question at such 80 instant is called a dead－point．The velocity of the nther connected point at such an instant is null，unless it also reaches a dead point at the asmie iostant，so that the line of connexion is in the plane of the two axes of rotation，in wlich casc the velocity ratin in indeterminate．Examplea of dead－pointa，and of the uncans of preventing the inconvenicace wbich they tead to occasion，will nppear in the sequel．

72．Conpling of Parallel Axys－Two or moro parallel shafts （such as these of a loconotive engine，with two or more paira of driving whecls）ore made to rotatu with coustantly equal angulor velocities by having equal cranks，which are maintained perallel by a coupling－rod of such a length that the line of connexion is equal to the disteace betwecn the axes．The cranks pass their dead－pointa simultancously．To obviato tho unsteadiners of motion which this tends to cause，the shafts are provided with a sccond set of crauks at right nngles to the first，connected by means of a similar coupling． roll，so that one sct of cranks pasa their dead points at tho instant weon the other sot aro furthest from theirs

73．Comparatire Jotion of Connected Points．－As the link is a rigid body，it is obvious that its action in communicuting motion may be determined by finding the comparative motion of the con－ nected points，according to the principles laid down in $\S \S 71,78$ ， fp．690，692，and this is often the mest convenient uethod of pro． ceeding．

If a connected point belongs to a turning piece，the direction of its motion at a given instaut is purmendicular to the plane rootain－ ing the axis nnd crank－arm of tbe piece．If a connected point belongs to a shifting piece，the direction of its motion at say instant is given，and a plane enn be drawn perpendicular to that direction．

The line of intersection of the planes perpendicular to the pathy of the two connected points at a given instant is the instantaneous axis of the link at that instant；and the relocitics of the connected points are dircetly as their distrnces from that axis．

In drawing on a plane surface，tho two planes perpedicular to the paths of the coanected points are represented by two lines（bing their aections by a plane norual to them），and the instantaneous axis by a point（fy．24）；and，ahould the length of the tro lines render it impracticable to pro－ duce them uatil they actually intersect，the velocity ratio of the connected pointa may be found by the principle that it is equal to the ratio of the aegmenta which a line parallel to the line of connexion cuts off from any two linea drawa from a given point，perpen－ dicular respectively to the paths of the connected pointo．

To illustrate this by one ex－ ample．Let $C_{1}$ be the axis，and $\mathrm{T}_{1}$ the connected point of tha beam of a steam－engine； $\mathrm{T}_{1} \mathrm{~T}_{2}$

 the centre of the crauk－pin；${ }_{2}$ the axis of the crank and its shaft． Let $v_{1}$ denote the velocity of $I_{1}$ at any given instant ；$v_{3}$ that of $\mathrm{T}_{8}$ ．To find the ratio of these relecities，produce $\mathrm{C}_{1} \mathrm{~T}_{1}, \mathrm{C}, \mathrm{T}_{9}$ ，till they intersect in $K ; K$ is the instantsneous axis of the connecting rod，aud the velocity ratio is

$$
\begin{equation*}
v_{1}: v_{2}:: \mathrm{KT}_{1}: \mathrm{KT}_{2} \tag{35}
\end{equation*}
$$

Should $K$ bo inconveniently far off，draw any triangle with its aides respectively parallel to $\mathrm{C}_{1} \mathrm{~T}_{1}, \mathrm{C}_{3} \mathrm{~T}_{2}$ ，and $\mathrm{T}_{3} T_{3}^{\prime}$ ；the ratio of the two aides first mentioned will bu the velocity ratio required．For oxample，draw $\mathrm{C}_{2} A$ pasulel to $\mathrm{C}_{1} \mathrm{~T}_{1}$ ，cutting $\mathrm{T}_{1} \mathrm{~T}_{2}$ in $A$ ；then

$$
\begin{equation*}
v_{2}: v_{2}:: \mathrm{C}_{2} \mathrm{~A}: \mathrm{C}_{2} \mathrm{~T}_{2} \tag{36}
\end{equation*}
$$

74．Eccentruc．－An eccentric circular disk fixed on a shaft，and uscd to give a reciprocating motion to a rod，is in effect a craak－pin of aufficiently large diameter to surround the shaft，ond 80 to avoid the weakening of the ahaft which would arise from bending it so as to form an ordinary crank．The centre of the eccentric is ita con－ nected point ；and its ecrentricity，or the distance from that centre to the axis of the shaft，is its crank－nrm．

Aa ecceatric may bo mado capable of having its ecceatricity altered by areans of an adjusting screw，so as to vayy the extent of the reciprecating motion whicl it communicates．
75．Reciprocaling．Pieccs－Stroke－Dead－Points．－The distance between the extremities of the path of the connected point in a reciprocating pieco（such as the piston of a stesm－engine）is called the strokic or congth of stroke of that piece．When it is connected with a contianously turning piece（such as the crank of a steom． engine）the ends of the stroke of the reciprocating piece correspond to the dead－points of the path of the connected point of the turning piece，where the line of counexion is contiauous with or coincides with the crank－arm．
Let $S$ be the leggth of stroke of the reciprocating piece，$L$ the length of thie line of coanexion，and $R$ the cmuk－artn of the con－ tinuoualy turning piece．Then，if the two eads of the etroke be is one atraight line with the axis of tbe crank，

$$
\begin{equation*}
S-2 R \tag{87}
\end{equation*}
$$

and if these ends be not in one straight line with that axis，thes $\mathrm{S}, \mathrm{I},-\mathrm{R}$ ，and $\mathrm{L}+\mathrm{K}$ ，are the three sides of a trisngle，haring thi angle opposite $S$ at that axis； 60 tlat，if $\theta$ be the supplement of the arc betweeu the dead－points，

$$
\left.\begin{array}{c}
S^{2}=2\left(L^{2}+R^{2}\right)-2\left(L^{2}-R^{2}\right) \cos \theta \\
\cos \theta=\frac{2 L^{3}+2 R^{3}-S^{3}}{2\left(L^{3}-R^{3}\right)} \tag{38}
\end{array}\right\}
$$

76．Congling of Interseding Axes－Hooke＇s C＇niversal Joint，－Inter secting axca are colljled by a contrirsoce of Hooke＇s，know＇ll as thi ＂universal joint，＂which belongs to the class of linkwork（see fig 25）．Let 0 be the point of iatersection of the nxes $O C_{1}, O C_{8}$ ，ant $\boldsymbol{\theta}$ their angle of inclination to each other．Tha pair of shaft $C_{11} C_{8}$ terminate in a pait of forks $F_{11}, F_{9}$ ，in bearinga at the extreoci
ties of which turn the gudgeons at the ends of the nrms of a rectangular cross, having its centre at 0 . This cross is the link ; the connected points ere the centres of the tearings $F_{1}, F_{2}$. At each
instant each of those points moves at right anglea to the ceatral plana of ita shaft and fork; therefore the line of intersection of the central planes of the two forks at any instant is the iastantancous axia of the cross, and the relocity ratio of the points $\mathbf{F}_{1}, \mathbf{F}_{3}$ (which, as the forks are equal, is also the argular volocity ratio of the shafts) is equal to the ratio of the distances of these


Fig. 25. points from that instantaneous axis. The mean value of that relocity ratio is that of equality, for each anccosaiva quartcr-turs is made by both shafts in tha same time; but its actual valne flactuatea between the limita-

$$
\left.\begin{array}{rl}
\frac{a_{2}}{a_{1}} & =\frac{1}{\cos \theta} \text { whan } F_{1} \text { is the plane } O C_{1} C_{2} \\
\text { and } \frac{a_{2}}{a_{2}} & =\cos \theta \text { when } F_{2} \text { ia in that plane }
\end{array}\right\} \text {. }
$$

Its value at intermediate instnnta is given by the following equa-tiens:-lat $\phi_{1}, \phi_{0}$, be the angles respectively made by the central planes of the forks and abaits with the plans $\mathrm{OC}_{1} \mathrm{C}_{2}$ at a given iastant; then

$$
\left.\begin{array}{c}
\cos \theta=\tan \phi_{1} \tan \phi_{3}  \tag{40}\\
\frac{a_{2}}{a_{1}}=-\frac{d \phi_{2}}{d \phi_{1}}=\frac{\tan \phi_{1}+\cot \phi_{1}}{\tan \phi_{2}+\cot \phi_{2}}
\end{array}\right\}
$$

77. Intermittent Linkwork-Click and Natchet.-A click actiog apon a ratchet-wheel or rack, which it pushes or pulls throagh : certain arc at each forward stroke and leaves at rest at each backward atroke, is an example of intermittent linkwork. Duriag the forrsid stroke the action of the click ia govarned by the principles of linkwork; during the backward streke that action ceases. A catch or pall, turning on a fixed axia, prevents the ratchet-wheel or rack from reversing its motion.

## Division 5. Trains of Mechanism.

78. General Principles. - A train of mechaniom consists of series of pieces each of which is follower to that which drives it and driver to that which follews it.
The comparative motion of the first driver and last follower is obtained by combining the proportions expressing by their terms the velocity ratios and by their signs tha directional relations of tha sereral elementary combinations of which the train eonsists.
79. Trains of Wheclwork:-Let $A_{1}, A_{v}, A_{v} \& c_{1}, A_{m-1}, A_{m}$ depote a aeries of axes, and $a_{1}, a_{3}, a_{3}$, sca, $a_{n-2}$, cmen their angular velocities. Lat the axis $A_{1}$ carry a wheel of $N_{1}$ tceth, driviag a wheel of $n_{9}$ teath on the axis $A_{3}$, which carrics also a whel of $N_{3}$ tecth, driviag a wheel of $n_{3}$ teath on the axis $A_{3}$, and se on ; the numbers of teeth in drivera being denoted ly N 's, and in followers by $n$ 'a, and the axes to which the whels are fixed being denoted by numbers. Then the resulting velocity ratio is denoted by

$$
\begin{equation*}
\frac{a_{m}}{a_{1}}=\frac{a_{2}}{a_{1}} \cdot \frac{a_{3}}{a_{2}} \cdot \& \operatorname{sc} \ldots \frac{a_{m}}{a_{m-1}}=\frac{N_{1}}{n_{3}} \cdot N_{2} \ldots \text {. sc. } \ldots N_{m-1} \tag{41}
\end{equation*}
$$

that is to eay, the velocits ratio of tha last and first axes is the ratio of the product of tha numbers of teeth in the drivers to the product of the zumbers of teeth in the followers.
Supposing all the wheels to be in outside gearing, then, as each elementary combination reverses the diraction of retation, and as the namber of alementary cembinations $m-1$ is one lese than the number of axes $m$, it ia evdent that if $m$ is odd the direction of rotation is preserved, and if even reversed.

It is often a question of importance to determine the nember of teeth in a train of wheals beat enitad fer giving a determinate velocity ratio to two axes. It was shewn by Young that, to do this with the least lotal number of teeth, the velority ratio of each elementary combination should approximate as nearly as posaiblo to 3.59. This mould in many cases give too many axes; and, as a useful practical rule, it may be laid down that from $\delta$ to 6 ought to be the limat of the velocity ratio of an elementary combination in Wheel work. The amalleat number of teeth in a pinion for epicycloidal teeth onght to be qwelve (see nect. 59), --bet it is better, for smoethness of motion, not to ge below fiffeen; and for involute teeth the smallest number is ahout twonty-four.
Let $\frac{B}{\bar{C}}$ be the velocity ratio required, reduced to its least terms, sud let B be greater than C . If $\frac{\mathrm{B}}{\mathrm{C}}$ is not greater than 6 , and $C$ lies between the prescribed minimum number of tecth (r-bich may be
called $t$ ) and its double $2 t$, then ono pair of waeers will answer the purpose, and $B$ and $C$ will themselves be the numbers required. Should B and C be inconveniently large, they are, if possible, to he resolved into factors, aud those factors (or if they are tos 8 mall , multiples ci them) uscd for the number of teeth. Should B or C , or both, be at once inconveniently large and prime, then, instead of the exact ratio $\frac{\mathrm{B}}{\mathrm{C}}$, some ratio appreximating to that ratio, and capable of resolution into convonient factors, is to be found by the method of continucd fractions.
Should $\frac{B}{\bar{C}}$ be greater than 6 , the dest number of elemeatary combinations $n-1$ will lie betwecu

$$
\frac{\log B-\log C}{\log 6} \text { and } \frac{\log B-\log C}{\log 3} \text {. }
$$

Then, if possible, $B$ and $C$ themserves are to be resolved ench into-$m-1$ factors (counting 1 as a factor), which factors, or multiples of them, ahall be not less than $t$ nor greater than $6 t$; or if $B$ and $C$ contain inconventently-large prime factors, an approximate velocity ratio, feund by the method of continued fractions. is to he substituted for $\frac{B}{\mathrm{C}}$ as before.
So far as the regultant velocity ratio is concerned, the order of the drivers N and of the follewers $n$ is immaterisl; lutt to secure equable wear of the teath, as explained in sect. 54, the wheels onght to be so arranged that, for each elementary combination, the greatesi commen divisor of $N$ and $n$ shall be either 1 , or as small as peessible.
80. Double Hookc's Coupling.-It las beell shown in section 76 that the velocity ratio of a pair of shafts coupled by a universal joint fluctuates between the limits $\cos \theta$ and $\frac{1}{\cos \theta}$. Hence one orkoth of the shafts must have a vibratory aud unsteacly motion, injurions. to the mechanism and framework. To obviate thia evil a short intermediate shaft is introdoced, making equal anglea with tho first and last shaft, coulled with each of then hy a Hooke's joint, and havieg its own twe forks in the same plane. Lat $a_{1}, a_{2}, a_{3}$ be the angular velocities of the first, intermediate, and laat sliaft in thia train of two Hooke's coreplings. Then, from the principles of sect. 76 it is evident that at each instant $\frac{a_{2}}{a_{1}}=\frac{a_{2}}{a_{3}}$, nud consequently that $a_{3}-a_{1}$; 60 that the fluctuations of angular velorily ratio consed lyy the first coupling are exactly neutralized by the sccond, and the Arst and last shafta liave equal angular velocities at each instant.
81. Canverying and Direrging, Frains of Mcchanim.-'Two or mora trains of mechanism may conrergo into one,-as when the twe pistons of a pair of steam-engines, carh through its own connectingrod, act upen ona crank-shaft. One train of micchanism mny dircrige into two or more, -as when a siggle shaft, driven by a prinic mover, carriea several pullcys, each of which drives a different machinc. The principlea of comparative motion in such converging and divergiag trains are the same as in simple trains.

## Division 6. Aggregatc Combinations.

82. General Principles. - Willis has designated as "aggregate combinations" those assemblages of picces of mechanism in which. the motion of one follower is the rcsullant of companent motions. impressed on it by more than ona driver. Two classes of aggregats combinations may be distingnished which, though nut diflerent is. their actual naturc, differ in the data whech they present to the designer, and in the method of solution to be followed in questions respecting thens.

Class i. comprises those cases in which a piece $A$ is not carricd directly lyy tha frama C, but by another piece B, relatively to which the motion of $A$ is given, -the motion of the piece $B$ relatively to the frame $C$ being also given. Then the motion of $A$ relatively to the frame $\mathbf{C}$ is the resullant of the motion of A relatively to B and of $B$ relatively to $C$; and thst rcsultant is to be found by tho principles already explained in division 3 of this chapter, sects. 34 to 41.

Clase II. commises those cases in which the motions of threo points in one follewer are determined by their connexions witls two or with three different drivers, so that the metion of the follower, as a rhele, is to be determined by the principles of $\$ \S 71$, 78, pp. 690, 692.

This classification is founded on the kinds of problems arising from the comhinations. . Willis adepts snother classification, founded on the objcets of the combinations, which objects he divides into two clasaes, viz, (1) to produce aggregale eclacity, or a velocity which is the reaultant of two or more components in the same path, and (2) to produce an aggreyate rath, that is, to make a given point in a rigid body move in an assigned path by communicating certain motions to other points in that hody.
It is seldom that one of thesa effects ia produced without st the aame time producing the other; but the classification of Willis
depends upon which of those two elfects, even supposing then to occur together, is the practical object of the mechanism.
83. Redsulication of Cords-Differential Windlass-Blocks, Sheaves, and Tackle. - The axis C (fig. 26) carries a larger barrel AE and a smaller barrel DB, rotating as oue pieca "ith the angular velocity $a_{1}$ in the direction AE. The pulley or sheave FG has a weight $W$ lang to its centre. A cord has one end made fast to and wrapped round the barrel $A E$; it passes from $A$ under the sheave FG, and has the other end "rapped rourd and made fast to the barrel I3D. Recquel the relation between the velocity of translation $r_{2}$ of W and the angular velocity $a_{1}$ of the diferential baracl.
In this case $v_{2}$ is an aggregate relocily, producce by the juint action of the two drivers $A E$ aud BD , transmitted by wrapping comuectore to FG, and combined by that sleave so as to act on dio follower $W$, whose motion is the same with clant of the centre of FG.
Tho velocity of tire joint $F$ is $a_{1}, A C$, repward motiou beug considered positive. The velocity of 1 p . 20. - ${ }^{0}$. $-a_{1} . \mathrm{CB}$, downward motion being negative. Heace ( $\mathrm{p} .690_{3} \S \S 71$, i2) the instantaneous axis of the sheave $F G$ is is the diameter FG, at the distauce

$$
\frac{F G}{2} \cdot \frac{A C-B C}{A C+B O}
$$

frow the centre towards $G$; the angular velocity of the sheave ia

$$
a_{2}=a_{1} \cdot \frac{A C+B C}{F G}
$$

and, consequently, the velocity of its ceatre is

$$
\begin{equation*}
v_{3}=a_{2} \cdot \frac{F G}{2} \cdot A C-B C=\frac{a_{1}(A C-B C)}{2} \tag{42}
\end{equation*}
$$

or tho mean between the velocitics of the two vertical parts of the cord.

If tha cord be fixed to the frama-work at the point $B$, instead of being wound on a barrel, the velocity of $W$ is half that of AF.
A casc containing several slaonves ia called a block. A fall-block is attached to a fixed point ; a running-block is movable to and from a fall-block, with which it ia connacted by two or wore plies of a rope. The whole combiuation constitutes a tackle or purchase.
The two plics of a rope at opposite aides of a abeave in the fallblock have squal and opposite velocities. Tha two pliea at opposite sides of a sheave in the runuing-block hava velocities (as ia the caso of the aheavo FG ) difering equally in opposite directions from the velocity of the rumaing-block.

One end of the rope is fastoned either to the fall-block or the rumaing.block. Tha other, or frce end, ia called the fall. Let $v_{1}$ be the velocity of tho fall, $v_{2}$ that of the rmnniag-block ; and let it Lo riquired to find their ratio ; and let velocities towurds tho fallblock be positive, null from it negative.

Caze 1. If the fasteaed eud of the ropre be attached to the fallblock its velocity is 0 , and this also is the velocity of the first ply. The ropo passos under a sheave in the running-block, so that the velocity of the aecond piy is $2 v \%$. It then passes over a aheava in the full.block; the velocity of the third ply is $-2 v_{2}$; than uader a sheave in the running-block; the velocity of the fourth ply is $4 v_{2}$; and so on, 一the general lav being this:-let $u$ bo an ever number, then

Case 2. If thie fastened end of the rope bo attached to the running.block, the velocity of the first ply is $v_{2}$; of the second, $-v_{2}$; of the third, $3 v_{2}$; of the fourth, $-3 v_{3}$; ond, generally, if $n$ be an odd number,

Gcnerally, -

$$
\left.\begin{array}{c}
\text { relocity of the } n^{\text {th }} \text { ply }=n v_{2} \\
\text { (n+1 })^{\text {th }} \text { piy }=-n v_{1} \\
-v_{1} \text {, if the fall be the }(n+1)^{0_{0}} \text { ply }
\end{array}\right\}
$$

$$
\begin{equation*}
\frac{v_{1}}{i_{3}}=-n \tag{46}
\end{equation*}
$$

where $n$ is the number of plies of rope by thich the rumning-block hangs.
The alicaves in a block are usually made all of the anme dinmeter, and turn ou $n$ fixed pin, and they have, consequently, difierent angular velocities. Thut by making the dinmeter of ench sheave proportional to the velocity, relatively to the block, of the ply of ropo which it is to cnery, the angular velocities of the aheavea in one black may be rondered equal, so that the sheaves may bo made all in oae piece, and may lavo jommals turning in fixed bearings. Chis is called IVhile's tackle, from the inventor.
Foi details and technical terus bee Seipdisidina

$$
\begin{align*}
& \text { tha velocity of the } n^{\text {th }} \quad \mathrm{p}^{\prime \prime} \mathrm{y}=\pi v_{3} \\
& \left.(n+1)^{\text {th }} p l y=-n v_{2}\right\}  \tag{43}\\
& \text { - } v_{1} \text {, if 'the fall be the }(n+1)^{\text {nh }} \text { ply }
\end{align*}
$$

84. Differential Screw. - On the same axia let there betwo screws of the reapective pitches $p_{1}$ and $p_{2}$, mada in one yiece, and rotating with the angular velocity $a$. Let this piece be called $B$. Let the first scraw turn in a fixed rut $C$, and the secoad in a sliding uut A. Tho velocity of advance of B relatively to C is (according to aect. 41) $a p_{1}$, aud ci A relatively to B (according to sect. 67) - a $y_{2}$; lence the velocity of $A$ relatively to $C$ is

$$
\begin{equation*}
a\left(p_{1}-p_{2}\right) \tag{46}
\end{equation*}
$$

being the same with the velocity of advance of a scresw of the pitcla $p_{1}-p_{2}$. This combination, called Huner's or the differential'screw, combines the streugth of a large thread with the slowness of motion due to a awall one.
85. Epicyclic I'rains.-Tta term epicyclic train is used by Willis to denote a train of wheels carried by an orm, and having certain rotations rolatively to that arm, which itself rotates. Tha arm may either bo driven by the wheels or assist in driving thems The comparative motions of the wheels and of the arm, and the ajgregate pethes traced by points in the whecla, are determiaed by the principles of the composition of rotations, and of the description of rolling curves, explained in secta. 37 to 40.
86. Link. Molion.-Let S (fig. 27) be the shaft of a steam-engine, 0 its axis, Es the forward cccentric, suitably placed for moving the alide-valve when the shaft rotates forwards, $F$ its ceatre, $O$ F its crank-arm, $\mathrm{C}_{f}$ its rod, $\mathrm{E}_{b}$ the backward eccentric, suitably placed for moving the slide-valve when the alaft rotatea backwards, B its centre, $O B$ ita crank-arm, $C_{b}$ ita rod. L is a long uarrow box called the link, jointed at $T_{s}$ aad $T_{0}$ to the eccentric rods; $R$ is the valverod whicli works the slide-valve, jointed to $P$, a alider, which, by moving either I , or l , or both, can be adjusted to any required posj-


Fig. 27.
tion in the link. When $P$ is at $T_{f}$ the valve is said to be in full forward gearing, being acted upon by Ef alone. When P is at $\mathrm{T}_{b}$ the ralva is said to be in full backward gearing, being acted upon by Eb alons. When $P$ is placed in an iaternediate nosition, the valve has an aggregate motion due to the joint action of $E_{f}$ and $E_{b}$. Thie most axact mode of determining that motion is to make a skeletoa drawing of the apparatus in valious positions; but an approximation to the motion of the valve may be obtained by joining FB, and taking $Q$ so that

$$
T_{f} P: T_{S} P:: F Q: B Q ;
$$

then the ralpa will move nearly as if it were worked by one eccentric, having ita centre at $Q$.
87. Parallel Blotions (exact). - A parallel motion is a combination of turning pieces in mechanism designed to guide the motion of a reciprocating piecc either exactly or approximately in a straight line, so ess to avoid the friction Whicly arises from tha use of 6traight guides for that purpose.
Fig. 28 represents an exact parallel motion, first proposed, it is believed, by Mr Scott Russell.
Tha arm CD turns on the axis $C$, ond is jointed at $D$ to the middle of the bar ADB, whose length is doublo of that of $\mathrm{CD}_{\text {, and }}$ anlo of whose cuds $B$ is jointed to a slider, sliding


Fig. 28. in straight guides nluug the lino CB. Draw BE perpendicnlar to CB , cutting CD produced in $\mathrm{E}_{1}$ then E is the inginntaneous axia of the bar ADB ; and the direction of motion of $A$ is at every instant jerpeadicular to E.L, that is, along tho straight line ACa. While the atroko of $A$ is $A C a$ extcuding to equal distances on Wlther side of C , and equal to twice the chord of the are $\mathrm{Dd}_{1}$ the stroke of $B$ is ouly equal to twise the sagitta; and thus $A$ is guited through a comparatively long atroko by the slidiag of B througls a comparatively short stroke, and by rotatory motious at tho joints C, D, B. (For details, see Steast-Enolse.)
88. Parallcl Notion- Wati's Approximate (see fig. 29)-Let CT, of he a pair of levers cuunected by a link ' 5 t, and ascillatsng - bbout the axes $\mathrm{C} c$ between the positions marked 1 and 3. Let tho iuidule positions of the levers $\mathrm{CT}_{21} c l_{1}$ be parallel to each other. It Is sequired to find a point $P$ in the link $T$ such that ita middle
position $P_{1}$ and its extreme positions $P_{1}, P_{3}$ shall he in the same straight liue $S S$, perpendicular to $\mathrm{CT}_{4}, c t_{s}$, and so to place the axes $\mathrm{C}, \mathrm{c}$ oll the lines $\mathrm{CT}_{2}$, ct., that the path of P between the positiona $\mathcal{Y}_{1}, P_{21}, P_{1}$ shall be is near as possible to a straight line.


Fig. 29.
The axes $\mathbf{C}, c$ are to be so placell that the middle M of the versed sine $V_{2}$, and the middle $m$ of the versed sine $2 t_{2}$, of the respectiva arcs whose equal chords $\mathrm{T}_{1} \mathrm{~T}_{3}, t_{1} t_{3}$ represent the stroke, may each be in the line SS. Then $\mathrm{T}_{1}$ and $\mathrm{T}_{3}$ will be as far to one sida of SS as ' 1 ' is to the other, and $t_{1}$ and $t_{3}$ will bo as far to the latter side of $\mathrm{SS}_{5}$ as $\ell_{2}$ is to the former ; consequently, the two extreme positions of the links $\mathrm{T}_{1} t_{1}, \mathrm{~T}_{3} t_{3}$ are parallel to each other, and inclined to SS at the same angle in one direction that the middle position of the link $T_{2} \ell_{3}$ is inclined to that line in the other direction, and the three intersections $P_{1}, P_{2}, P_{3}$ are at the same point on the link.
The position of the point $P^{\prime}$ on the liak is found by the following proportional equation:-

$$
\left.\begin{array}{r}
\mathrm{T}: \mathrm{PT}: \mathrm{Pt}  \tag{47}\\
:: \mathrm{TV}+t v: \mathrm{TV}: t \mathrm{v} \\
:: \mathrm{CA}+\mathrm{cm}: \mathrm{cm}: \mathrm{CDL}
\end{array}\right\}
$$

Suprose the axes $C$, $e$ to be given, the line of stroke $S S$, and the leogth of atroke $L=T_{1} T_{3}=t_{1} t_{3}$, and that it is required to find the dimensions of the levers and link. Let fall CAI and cm perpendicular to SS ; then

If $C$ ond $c$ are at the same side of SS , the smaller of the two perpendiculars is to be treated as negative in the formulx, and tha difference of the versed sines used instead of their aum; and the point $P$ will lie in the prolongation of the link beyond ' $T$ t to the side of the longer lever. When the arcs of oscillation of the levers on rither sida of their middle positions do Dot exceed $20^{\circ}$, the intermediata portions of the path of $P$ between $P_{1}, P_{2}$, and $\dot{P}_{3}$ are near enough to a straight line for practical purposes; and that point may be used to guida a sliding piece, such as the piston-rod of a ateam-engine, for which purgose this parallel motion was originally invented by Watt.

## Chapter II. On Applied Dinamics.

89. Laws of Motion.-The action of a machine in transmitting force and motion simultancously, or performing work, is governed, in common with the phenomena of moving bodies in general, by tro " laws of motion," for which see pp. 676 sq.
90. Conparison of Dcviating Force with Gravity.-See pp. 698, 699, §s $104-106$.
91. Derialing Forces Classcd-Deflecting Force-Accelerating and Relarding Forces.-See P. 701, §§ 114-119
92. Division of the Siebject. -On this classification of the deviating forces in plachines is founded the following division of the aubject of dypamics as applied to machines:-
Division 1.- Balanced forces in maclines of uniform velocity.
Division 2.-Deflecting forces in snch machines.
Division 3. - Working of machines of raryiog velocity.
Division 1. Balanced Forces in Machines of Uniform Velocily.
93. Application of Force to Mechanisnı. - Forces ara applied in naits of weight ; and the unit most commonly employed in Britain is the pound a voirdupois The action of a force appliell to $\Omega$ borly
is always in reality distributed over some definite space, eiciner , volume of three dimensions or a aurface of two. An example a force distributed throughout a roluma is tha vocight of the boit. itself, which acts on every particle, however sinall. The pressur exerted betwean two bodies at thcir surface of contact, or between the two parts of one body on either side of an ideal aurface of separation, is an example of a force distributed over a surface. The mode of distribution of a force applied to a solid body requires to be considered when its stiffess and strength ara treated of; but, in questions respecting the action of a force upon a rigid body cousidered as a whole, the ressultant of the distrihuted force, determined according to the principles of statica, and considered as acting in a single line and applied at a single point, may, for the occasion, be substituted for the force as really distributed. Thua, the weight of each separate piece in a machine is treatel as activg wholly at its centre of gravity, and each pressure applied to it as acting at a point called the centric of pressure of the surface to which the pressure is really applied.
94. Forces applied to Jechanism Classed. -If $\theta$ be the obliquity of a force F applied to a piece of a machine,-that is, the angla made by the direction of the force with the direction of motion of its point of application, -then by the principles of Statics, F may be resolved into two rectangular componenta, viz. 1-

$$
\begin{align*}
& \text { Along the direction of motion, } \mathrm{P}=\mathrm{F} \cos \theta \text { \} } \\
& \text { Across the direction of motion, } \mathrm{Q}=\mathrm{F} \sin \theta\{ \tag{49}
\end{align*}
$$

If the componeut along the dircction of motion acts with the motion, it is called all effort; if against the motion, a resistance. Tha component across the direction of motion is a lateral pressure; the unbalanced lateral pressure ou any piece, or part of a piece, is deffcting force. A lateral prossure may increase resistedce by causing friction; the friction so caused acts against the motion, and is a resistance, but the lateral pressura causing it is not a resist. ance. Resistances aro distinguiahed into useful and prejudicial, according as they arise from the useful effect produced by the machine or from other canses.
95. Work.-Work consists in moving against resistance. The work is said to be porformed, and the resistance overcome. Work is measured by the product of the resistance into the distance through which its point of application is moved. The unit of work commonly used in Britain is a resistance of one pound overcoma through a distance of one foot, and is called a foot-pound.

Work is distinguished into useful work and projudicial or lost work, according as it is performed in producing the useful effect of tha nachioe, or in overcoming prejudicial rcsistanca
92. Fnergy-Potential Energy.-L'nergy means capacity for porforming work. The encrgy of an effort, or potcntial energy, is measured by the product of the effort into the distance through which its point of application is capable of being moved. The unit of energy is the same with the unit of work.

When the point of application of an effort has been moved through a given distance, edergy is said to have been exerled to an anount expressed by the proiluct of the effort into the distance through which its point of application has been moved.
97. Varicble E'fort and Resistancc. - If an effort haa different magnitudes during different poitions of the motion of its point of a pplication through a given distance, let each different magnitude of the effort $P$ be multiplied by the length $\Delta s$ of the correspondiog portion of the path of the point of application; the sum

$$
\begin{equation*}
\Sigma . P \Delta s \tag{50}
\end{equation*}
$$

is the whole energy exerted. If the effort varies by insensible gradations, tha energy exerted is tha integral or limit towards which that sum approaches continuelly as the divisions of the path are made amaller and more numerous, and is expressed by

$$
\begin{equation*}
\int \mathrm{P} d s \tag{51}
\end{equation*}
$$

Similar processes are applicable to the fiuding of the work performed in overcoming a varying resistance
98. Dynamometer or Indicator. - A dynarnometer or indicatos is an instrument which measuree and records the energy exerted by an effort. It usually consists essentially, firat, of a piece of paper moving with a velocity proportional to that of the point of application of the effort, and having a straight line marked on it parallel to its directiou of notion, called the zero line; and, secondly, of a spring acted upon and bent by the effort, and carry. ing a pencil whose perpendicular distance from the zero line, as regulated by the bending of the spring, is proportional to the effort. The pencil traces on the piece of paper a line such that its ordinate perpendicular to the zero line at a given point represents the effort $P$ for the correspondiug point in tha path of the point of effort, and the area beticeen two ordinates represents the energy exerted, $\int \mathrm{P} d s$, for the corresponding partion of the path of the point of effort.
99. Principle of the Equality of Energy and Work.-From the first lav of motion it follows that in a machine whose pieces moye with uniform velocities the efforts and resistances must balance each
other. Now frem the laws of statics (sec above) it is known that, in oriler that a gyatem of forces applied to a system of connected points may be in equilibrium, it is necessary that the sum formed by putting together the products of the forces by the respective distonces through which their points of application are capablo of moving aimultaneously, each along the direction of the force applied to it, shall be zero, - prulucts being considered pesitive or negative eccorling as the direction of the forces and the possible motions of their points of application ara the same or opposite.

In other words, the sum of the negative products is equal to the sum of the positive products. This principle, applied to a machine whese parts zoove with uniform velocities, is equivalent to saying that in any given interval of time the energy cxertcel is equal to the work performed.

The aymbolical expression of this law is as follows:-let efforts be applicd to one ur any number of points of a machine; let any one of these efforts be represented by $P$, and the distance traversed by its point of application in a given interval of tima by $d s$; let resistances be overcoina at one or any number of points of the same machine ; let any ouc of these resistances be denoted by $R$, and tho distance traversed by its point of application in the given interval of time by $d s^{\prime}$; then
$\Sigma . \mathrm{P} d s=\mathrm{\Sigma} . \mathrm{R} d s^{\prime}$
(52).

The lengths $d s, d s$ ' are proportional to tha relocities of the points to whose paths they belong, and the proportions of thase velocitiea to each other are deducible from the construction of the machina by the principles of pure mechanism explaived in Chapter I.
100. Eficiency. - The efficiency of a machine is the ratio of the rsiful work to the cotal work, - that is, to the energy exerted, -and is represented by
$R_{\text {u }}$ being taken to represent useful aud $R$, prejudicial resistancas. The more nearly the efficiency of a machine ajproaches to unity the better is the nachine.
101. Power and Effect.-The power of a machine is the energy oxerted, and the effect the useful work performed, in aoms interval of time of definite length, such as a second, an hour, or a day.

The unit of power, called conventionally a harse-power, is 550 foot-pounds per scrond, or 33,000 foot- pounds per minute, or 1,980,000 foot-pounda per hour.
102. Modulus of a Machinc. - In the in veatigation of the properties of a machinc, the useful resistances to be overcone and the useful work to be performed ara usually given. Tha prejudicial resistances ara gencrally functions of tha useful resistances of the weights of the pieces of the mechanism, and of their fora and arrangement; and, having been determined, they serve for the computation of the lost work, which, being added to the useful work, gires the expenditure of energy required. The result of this investigation, expressed in the form of an equation between thia energy and the useful work, ia called by Noseley tha modulus of the machina. The gencral form of the modulus may be expresaed thus-

$$
\begin{equation*}
E=U+\dot{\phi}(U, A)+\psi(A) \tag{54}
\end{equation*}
$$

where $A$ denotes some quantity or set of quantities depanding on the form, arrangement, weight, and othar preperties of tha mechanism. Moseley, however, has pointed out that in most cases this equation tskes the much more simple form of

$$
\begin{equation*}
E=(I+A) U+B \tag{55}
\end{equation*}
$$

where $A$ and $B$ are constants, depeading on the form, arrangement, and weight of tha mechanism. The efticiency corresponding to tho lest equation is

$$
\begin{equation*}
\frac{U}{E}-\frac{1}{1+A+B / U} \tag{56}
\end{equation*}
$$

103. Trains of Mechanisn. - In applying the preceding pria. ciplas to a train of mechanism, it may tither be treatel as a whole, or it-niay be considered in scctions consisting of aingla pieces, or of iny convanient portion of the train, -each section being treated as a machine drivan by the effort applicd to it and energy exerted upon it through its lino of connexion with the preceding section, performing useful work by driving the followiag aection, and losing work by overcoming its own prejudicial resistauces.

It is evident that the efficiency of the whale train is the product of the efficiencies of its rections.
104. Notating Pieces-Comples of Forces. $-1 t$ is often convenient to express tho energy exerted upoo and the work performed by a turning pioce in a machise in tuma of the moment of the couples of forces actiog on it, and of the angular velocity. Sce 1. 728, § 219.

The orlinary British unit of momeat is a foot-pound; but it is to be remembered that this is a foot-pound of a different sort from the unit of energy end work.

If a force be applied to a turning piece in a line not passing through its axis, the axis will press against its bearings with an equal sad parallel force, and the equal and opposita reaction of the bearings will coustitute, together with tlie first-ineutioned force, a couple whose arm is the perpendicular distance from the axis to the line of action of the first force.
A couple is said to be right or left hand. $d$ withe reference to the oberrier, accerding to the direction in which it tends to turn the body, and is a driving couple or a resisting couple according as its tendency is with or against that of the actual rotation.
Let $d \ell$ be an interval of time, a the angular velocity of the piece; then adl is the angle through which it turns in the interval $d t$, and $d s=v d l=$ radl is the distance through which the point of application of the force moves. Let $P$ represent an effort, so that Pr is a driving couple, then

$$
\begin{equation*}
P d s=P v d t=P i \cdot a t l=\text { ILadt } \tag{57}
\end{equation*}
$$

is the energy exerted by the couple SI in the interval $d t$; and a similar equation gives the work performed in overcoming a resisting couple. When several couples act on one jiece, the resultant of their moments is to be multiplied by the common angular velocity of tha whole piece.
105. Reduction of Forecs to a given Point, and of Couples to the Axis of a given Piece. - In computations respecting machiaes it is often convenient to substitute for a force applied to a given poins or a coupla applied to a given piece, the equavalent force or coupla applied to some uther point or yiece; that is to say, the force ot couple, which, if applied to the other point or piece, would exert equal eaergy or employ equal work. The priasiples of this reduction are that the ratio of the given to the equivalent forca is the reciprocal of the ratio of the velocities of their points of application, and the ratio of the given to the pquivaleat cutupla is the reciprocul of the retio of the angular velocities of the pieces to which they are applied.

These velocity ratios are known by tha canstruction of the mechanisn, and are independeat of the absolute speed.
106. Balanced Latcral Pressure of Guides and Bearings. - The most important part of the lateral jressure on a piece of nechanisn is the reaction of its guides, if it is a sliding piece, or of the bearings of its axis, if it is a tuming piece; and the balanced portion of this reaction is equal and opposita to the resultant of all tha other forces ayplied to the piece, its owa weight iucluded. There may be or may not be an unbalaneed component in this pressure, due to the deviated motion. Its laws will be considered in the sequel.
107. Friction - Unguents. - The inost important kind of resistauca in machines is tha friction or rubbing resistance of sufaces which alide over each other. The direction of the resistance of friction is opposite to that in which the alidiag takes place. Its magnitude is the product of tha nomnal pressure or force which presses the jubbing surfaces tngether in a direction jer peadicular to themselves into a apecific constant already mentioned in Part 1., sect. 13, as the coefficient of friction, which depends on the nature and condition of the aurfaces of the uugueat, if any, with which they are corered. I'he lolal pressure exerted between tha mbbing surfaces is tha resultant of the normal pressure and of the friction, end its obliquity, or inclination to the common perpeadicular of the surtaces, is tha angle of repose formerly mentioned in sect. 13 , whose tangent is the cocfficient of friction. Thows, let $N$ bo the normal pressure, R tho friction, I the total jressure, $f$ the coefficient of friction, and $\phi$ the angle of repose ; then

$$
\left.\begin{array}{c}
f=\tan \phi  \tag{58}\\
\mathrm{R}-f \mathrm{~N}=\mathrm{N} \operatorname{tsu} \phi=\mathrm{T} \sin \phi
\end{array}\right\}
$$

Experiments on friction have been made by Coulomb, Viace, Renne, Wood, D. Rankinc, and others. . Tha most conplete and elaborate experiments are those of Morin, published in his Notions Fondanentales de Mecanique, and republished in Britain in the works of Moseley and Gordon. The followiag is an exceediagly condensed abstract of the most important results, as regards machivea, of these experiments :-


It is to bo nuderstood that the abore-stated law of friction is only true for dry surfiees when the pressure is not suticient to indent or abrade the surfaces, and for greased surfaces when the pressure is not sufficient to force out the unguent from between the surfaces. If the proper limit be exceeded, the friction increases wore rapilly thau in the simple ratio of the normal pressure.
'Ilic linit of pressure for unguents diminishes as the speal increases. The following are some of its approxinute values as inferred from exprieuce in railway locomotive and cuntage axles:-

$$
\begin{aligned}
& \text { - Velocily of mbbing in feet per second.................. } 1 \text { In } \quad 2\} \quad 5
\end{aligned}
$$

la pirots, tha intensity of the pressuro is usually fixed at about oue ton jer square inch.
Unguents should be comparatively thick for heavy pressures, that they may resist being forced out, and connparatively thiu for lighlt pressures, that their viscidity may not add to the resistance.

- Uugnents are of three classes, viz:-

1. Fatty: consisting of animal or refctahle fixed oils, such as tallow, lard, lard-oil, seal-oil, whale-oil, olive-oil. Drying oils, which absorb oxygen aud harderi, are obriously unfit for unguents
2. Soxpyy: couposel of fatty oil, alkali, and water. The best grease of this clnss should not contain nore than about 25 or 30 per cent. of water; bad kinds contain 40 or 50 per cent. The additional water diuinishes the cost, but spoils the unguent.
3. Biturninous: composed of solid and liquid mineral corapounds of hydrogen and carbon.
4. Work of Friction-STomone of Friction.-The work performed in a unit of time in overcoming the friction of a pair of surfaces is the product of the friction by the velocity of sliding of the surfaces orer each other, if that is the same throughout the whole exteut of the rubbing surfaces. If that velocity is different for different portions of the rubbing surfaces, the velocity of each portion is to be multiplied by the friction of that yortion, and the results summed or integrated.
When the relative notion of the rubbing surfaces is one of rotation, the work of friction in a unit of time, for a portion of the rubbing surfaces at a given distance from the axis of rotation, may be found by multiplyiug together the friction of that portion, its distance from the axis, aun the angular velocity. The product of the force of fiction by the distance at which it acts froin the axis of rotation is called the moment of friction. The total moment of friction of a pair of rotating mabliug snrfaces is the sum or integral of the moments of friction of their several portions.
To express this symbolically, let diz represeat the area of $s$ portion of a pair of rulbing surfaces at a distance $r$ from the axis of their relative rotation; $P$ the intensity of the nornal pressure at $d u p$ per unit of area; and $j$ the coefficient of friction. Then the moment of fiction of $d u$ is
fprdu;
the total moment of friction is
$f \int p r . d u$;
and the work performed in a unit of
time in overcoming frictiou, when the
angular velocity is $a$, is
af $\int p r . d u$.
It is erident that the moment of friction, and the work lost by being perfarmed in overcoming friction, are less in a rotating piece as the bearings are of smaller radius. But a limit is put to the diminution of ths radii of journals and pirots by the conditions of durability and of proper: lubrication stated in sect. 107, and ulso by conditions of strength and stifiness.
5. Total Pressure betwcen Journal and Bearing.-A single piece rotating with on uniform relocity has four nutually balanced forces applied to it :-(1) the effort exerted on it by the piece which drives it ; (2) the resistance of the piece which follows it,which may be considered for the purposes of the present question as nseful resistance ; ( 3 ) its weight; and ( 4 ) the reaction of its own cylindrical bearings. There are given the following data :-
The direction of the effort.
The direction of the useful resistance.
The wtight of the piece and the direction in which it acts.
The maruitude of the useful resistance.
The radius of the bearing $r$.
The angle of repose $\phi$, corresponding to the friction of the journal on the bearing.
Aud there are required the following:-
The direction of the reaction of the bearing
The mnagnitude of that reaction.
The magnitude of the effort.
Let the useful resistance and the weight of the piece be compounded by the principles of statics into one force, and let this be called the given force.

The directions of the effort and of the given force are either
parallel or nect in a point. If they aro parallel, the direction of the reaction of the bearing is also parallel to them; if they meet in a point, the direction of the reaction troverses the same point.

Also, let AAA, lig. 30, be a section of the bearing, aud C' its axis ; then the direction of the reaction, at tho point where it intersects the circle Add, must make the angle $\phi$ with the rudius of that circlo; that is to say, it ruust be a liue such as PT touching the smaller circlo Bl3, whose radius is $r$.sin $\phi$. The side on which it touches that circle is determined by the fact that the obliquity of the reaction is such as to oprose the rotation.
'Thus is determined the direction of the reaction of the learing; nnll the magnitude of that renction and of the elfort are then fonnd by the pininciples of the equili-


Fig. 30. brium of three forces aliculy stated in Part 1 ., sect. 7 (sce ulso - $702, \S 124$ ).

The work lost in overcoming the friction of the bearing is the same with that which would le performed in avercoming at the circumference of the small circle l3B a resistance equal to the whole pressure between the journal and bearing.

In order to diminish tlat pressure to the sinallest possible amount, the effort, sud the resultant of the useful resistance, and the weight of the piece (called above the "given force") ought to be opyoscd to each other as directly as is practicable consistently with the purposes of the machine.
110. Friction of Pizots and Collars.- When a shaft is acted upon by a force tending to shift it lengthways, that force must be balanced by the resction of a bearing against a pivol at the end of the shalt ; or, if that le impossible, against one or more collars, or rings projecting from the body of the shaft. The bearing of the pivot is called a step or footstep. Pivots require great hardness, and are usually made of steel. The flat pivot is a cylinder of stce] having a plane circular end as a rubbing surface. Let $N$ be the total pressure sustained by a flat pivat of the radius $r$; if that pressure be uuiformly distributed, which is the case rhen the rubbing surfaces of the pivot and its step are both trne planes, the intersity of the pressure is

$$
\begin{equation*}
p=\frac{\mathrm{N}}{\pi r^{2}} \tag{60}
\end{equation*}
$$

and, introducing this value into equation 59 , the moment of friction of the flal pivot is found to be

$$
\begin{equation*}
\frac{2}{3} f \mathrm{Nr} \tag{61}
\end{equation*}
$$

or two-thirds of that of a cylindrical journal of the same radios under the same normal pressure.

The friction of a conical pivot exceeds that of a flat pivot of the same radius, and under the same pressure, in the proportion of the side of the cone to the radius of its base.

The moment of friction of a collar is given hy the formula-

$$
\begin{equation*}
\frac{2}{3} f \mathbb{N} \frac{r^{3}-r^{\prime 3}}{r^{2}-r^{3}} \tag{62}
\end{equation*}
$$

where $r$ is the external and $r$ the internal radius.
In the cup and ball pivot the end of the shaft and the step present two recesses facing each other, into which are litted two shallow rups of steel or bard bronze. Between the concare spherical surfaces of those cups is placed a steel ball, being either a complete sphere or a lens haring convex surfaces of a somewhat less radius than the concave surfaces of the cups. The moment of friction of this pirot is at first almost inapprecisble from tbe extreme smalluess of the radius of the circles of contact of the ball and cups, but, as they wear, that radius and the moment of friction increase.

It appears that the rapidity with which a rubbing surface wears anvay is proportional to the friction and to the velocity jointly, or nearly so. Hence the pirots already mentioned wear unequally at different points, and tend to nlter their figures. Schiele has invented a pivot which preserves its original figure by wearing equally at all points in a direction parallel to its axis. The following are the principles on which this equality of wear depends :-

The rapidity of wear of a surface measured in an oblique direction is to the rapidity of wear measured normally as the secant of the obliquity is to unity. Let/OX (6g. 31) be the axis of a pirot, and let RPC be a portion of a curve such that at any point $P$ the secant of the obliquity to the normal of the curve of a line parallel to the axis is inversely


Fig 31. proportional to the ordinate PY , to which the velocity of $\mathbf{P}$ is proportional. The rotation of that curve round $O X$ will generate the form of pivot required. Now let PT be a tangent to the
corve at $\mathrm{l}^{\prime}$, cntting OX in $\mathrm{T} ; \mathrm{PT}=\mathrm{P}^{2} \times$ secanl obliquily, ond this is to be a constant quantity, bence the curce is that known as the tractory of the straight line $O X$, in which $\mathrm{PT}=\mathrm{OR}=$ constant. This curve is deseribed by having a fixed straight cdge parallel to OX, along which slides a sluler carrying a pin whose centie is $T$. On that pin turns an arm, carrying at a print l'a tracing-point, pencil, or pen. should the pen have a nib of two jaws, like those of an ordinary draming-pen, the plane of the jaws must pass through PT. 'Then, while $T$ is slid along the axis from $O$ towards $X,]^{\prime}$ will be drawn after it from K towarls C along the thactory. This curve, being an asyuntote to its axis, is capable of being in. definitely prolonged towards $X$; but in designing jivots it should stop before the anmle PTY becomes less than the nngle of repose of the rubuing surface, otherwise the pivot will be liaule to stick in its bearing.

The moment of friction of "Schicie's anti-friction pivot," as it is called, is equal to that of a cylindrical journal of the radins $\mathrm{OR}=\mathrm{PT}$ t?e constant tangent, under tho same pressure.
111. Friction of Tceth. -Let $N$ be the normal pressure exerted between a pair of tecth of a pair of wheels; s the total distance through which they slide upon each other; $n$ the number of pairs of teeth which pass the jlaue of exis iu a unit of time; then

$$
\dot{n} f N s
$$

(63)
is the work Jost in unity of time by tho friction of the teeth. The sliding $s$ is composed of two parts, which take place during the approach and recess respectively. Let those be denoted by $s_{1}$ and $3_{3}$, so that $s=8_{1}+s_{n}$. la sect. E5 the relocily of slidling at any instant has been given, viz., $u=c\left(a_{1}+a_{2}\right)$, where $u$ is that velocity, $\varepsilon$ the distance TI at any instant from the pinint of contact of the teeth to the pitch-point, and $a_{1}, a_{2}$ the respective angular velocities of the wheels.

Let $v$ be the common velocity of tho two pitcli-circles, $r_{1}, r_{2}$ thoir radii; then the above equation becomes

$$
u=c v\left(\frac{1}{r_{2}}+\frac{1}{r_{2}}\right)
$$

To apply this to involute tectly, let $c_{1}$ be tho length of tho approseh, $c_{2}$ that of the recess, $u_{1}$ the mean velocity of eliding during the approach, $u_{2}$ that during the resess; then

$$
u_{1}=\frac{c_{1} v}{2}\left(\frac{1}{r_{1}}+\frac{1}{r_{3}}\right) ; u_{2}=\frac{c_{2} v}{2}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)
$$

also, let 9 se the obliquity of the action; then the times occupied by the approach and recess are resjectively

$$
\frac{c_{1}}{v \cos \theta}, \quad \frac{c_{3}}{v \cos \bar{\theta}}
$$

giring, finally, for the length of sliding between each pair of teeth,

$$
\begin{equation*}
s=s_{1}+s_{2}=\frac{c_{1}^{2}+c_{2}^{2}}{2 \cos \theta}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right) \tag{64}
\end{equation*}
$$

which, oubstituted in equation 63, gives the work lost in $n$ unit of timo by the firction of involute teeth. This result, which is exact for involute tecth, is approximately true for teeth of any figure.

For inside gearing, if $r_{2}$ be the less vadius and $r_{2}$ the greater. $\frac{1}{r_{1}}-\frac{1}{r_{2}}$ is to be substituted for $\frac{1}{r_{1}}+\frac{1}{r_{2}}$.
112. Friction of Cords and Bclts. - A flexible band, such as a cord, rope, belt, or strapi may be used cither to exert an effort or a resistance npon a pulley rouml which it wraps. In either case the tangential force, whether elfort or resistance, cxerted between the hand and the pulley is their mutual friction, caused by and yroportional to the normal pressure between them.

Let $T_{1}$ be the tension of the free part of the hand at that side towards which it tends to draw the pulley, or from which the pulley tends to draw it; $\mathrm{T}_{2}$ the tension of the free part at the other side; $T$ the teusion of tho band at any intermediate point of its are of contact with tho pilley; $\theta$ the ratio of the length of that are to the radius of the pulley; $d \theta$ the ratio of an indefinitely small element of that are to the ralius; $F=T,-T$, the total friction between the band and the julley; dF the elementary portion of that friction due to the clementary are do; $f$ the cocfficient of friction lietween the materials of the band and pulley.

Then, aecording to a mell-kunwit pineiple in staties, the normal pressure nt the elementary are do is Tdo, T being the mean tension of the band at that elementary arc ; consequently the frietion on that are is $d F=f T d \theta$. Now that frietion is also the difference between the tensinns of the band ne the two ends of the elementary -arc, or $d \mathrm{~T}=d \mathrm{~F}=f \mathrm{~T} d \theta$; which equation, being integrated tlirougliout the entire are of contact, gives the following formulat:-

When a belt connecting a pair of puileys has the tensions of its twn sides originally equal, the pulless being at rest, and when the pulleys are next set in motion, so that one of them drives the other by means of the belt, it is found that the advancing side of the belt is exactly as much tightened as the returning side is slackened, so that the mican tension remaims unchanged. Its ralue is given by this formula-

$$
\begin{equation*}
\frac{T_{1}+T_{2}}{2}=\frac{c^{f \theta}+1}{2\left(c^{f \theta}-1\right)} \tag{66}
\end{equation*}
$$

which is usefol in determining the original tension required to enable a helt to transmita given force between two pulleys.

The equations 65 and 66 are applicable to a kind of brake called a friction-strap, nsed to stop or moderate the velocity of machine: by being tightened round a pulley. The strap is usually of iron; and the pulley of hard wood.

Let $a$ lenoto the arc of contact expressed in turns and fraction! of a turu; then

$$
\left.\begin{array}{c}
\theta=6.2832 \alpha \\
c^{f \theta}=\text { number whose common logarithm is } 2.7288 f a \tag{67}
\end{array}\right\}
$$

113. Stiffness of Ropics.-Ropes offer a resistance to being bent, and, when bent, to leing straightened again, which arises from the mutnal friction of their tilbres. It increases with the sectional area of the rope, and is inversely proportional to the radius of the curve into which it is hent.

The work lost in pulling a given length of rope orer a pulley is found by anultijlying the length of the rope in feet by its stiffiness in pounds, that stiffness being the excess of the tension at the leading side of the rope above that at the following side, which is secessary to bend it into a curve fitting the pulley, and then to straighten it agajn.
The following empirical formula for the stiffeess of hempen ropes have heen dedtued by Morin fiom the experiments of Coulomb :Let $F$ be the stiffices in pounds svoirdupois; d the diameter of the rope in inches, $n=48 d^{2}$ for whitc ropes and $35 d^{2}$ for tarred ropes; $r$ the cffcctive radius of the pulley in inches; $T$ the tension in pounds. Then
$\left.\begin{array}{l}\left.\text { For white ropes, } F=\frac{n}{r}(0.0012+0.001026 n+0.00127)\right) \\ \text { For tarred ropes, } F=\frac{n}{r}(0.006+0.001392 n+0.00168 \mathrm{~T})\end{array}\right\}$ (68).
114. Fridion-Couplings. - Friction is useful as a means of communicating motion where sudden changes either of force or velocity take place, because, being limited in anount, it may be so adjusted as to limit the forces which strain the picces of the mechanisin within the bounds of safety. Amongst contrivances for effecting this object are friction-concs. A rotating shaft carrics upon a cylindrical portion of its firmen whecl or palley tuming loosely on it, and consequently capable of remaining at rest when the shatt is in motion. This pulley has fixed to one side, and concentric with it, a short frustum of a hollow cone. At a amoll distance from tho pullcy the shaft carrics a short frustum of a solid cone accurately turncu to lit the hollow cone. This frustum is made always to turn along with the shaft by being fitted on a square portion of it, of hy means of a rib and groove, or otherwise, but is capable of a slight longitudinal motion, so as to le pressed into, or withdrawn from, the hollow cone by means of a lever. When the cones are pressed together or engaged, their friction causes the polley to rotate along with the ehaft; when they are disengared, the pulley is free to stand still. The anglo made by tho sides of the cones witl. the axis should not be less than the angle of repose. In the frictionclutch, a pulley loose on a shaft has a hoop or gland made to embrace it more or less tightly by means of a serew; this hoop hias short projecting ams or ears. A fork or clutch volates along with the shaft, and is capatble of being meved lougitudimally ly a liandle. When the clutch is moved towards the loop, its arms eatch those of the hoop, nnd causo the hoojs to rotate and to communicato its rotation to the pulley by friction. There are many other contrivances of the same class, but the two just meationcd may serve for examples.
115. Heat of Friction-C゙ngumts. -The work lost in friction is employed in producing heat. This fact is very obvious, and has been known from a remote period; but tho cxacl determination el the proportion of the work lost to the heat produced, and the experimental proof that that proportion is the samo under oll cir* cumstances, and with all materials, solid, liquid, and gascons, are comparatively recent nehicements of donle. The quantity of work which produces a British unit of heat (or so much heat na elevates the lemperature of one pound of pure water, at or near ordinary atmosplieric temperatures, by one degree of Fahrenheit) is 772 foot-pounds. This constant, now desigoated as "Joule's equivalent," is tho principal experimental datum of the science of thernodynamics.

The hent produced by friction, when moderate in amount, is useful in softening and liquefying thick unguents; but when excessive it

Iq prejudicinl. by decomposing the unguents, and sometimes eve:I by seftening the metal of the bearings, and raising their temperature -o high as to set fire to neighbouring combustible matters.

Facessive heating is preveuted by a constant and copious supply of a good minguent. The elcvation of teniperature produced by thie friction of a jourual is sometimes used as an experimental test of the quality of unguents. When the velocity of lubbing is about 4 or 5 feet per sccond, the elevation of temperature has been found by solne recent experiments to be, with good fatty and sospy unguents, $40^{\circ}$ to $50^{\circ} \mathrm{Fa}$ hr.; with grod mineral unguents, about $30^{\circ}$.
116. Relling Resistance. - By the rolliog of two surfaces nrer cach other witheut aliling a resistance is caused which is called sonietimes "rolling friction," but more correctly rolling resistance. It is of the nature of a couple, resisting rotation. lts momend is found ly multiplying the normal pressure between the rolling surfaces by an arm, whose length depends on the nature of the rolling surfaces, and the work lost in a nnit of time in overconing it is the product of its moment by the angular relocily of the rolling sumfaces relatively to each other. The following are spproximate values of the arm in decimals of a foot:-

$$
\begin{aligned}
& \text { Onk upod oak ...................................... } 0 \text { nnf (Coulomb) } \\
& \text { IJgnum vita ou oak } \\
& 0 \text { nne (Coulomb). } \\
& 0.002 \text { (Tredgold). } \\
& \text { Casl fron on cast iron }
\end{aligned}
$$

117. Reciprocating Forces-Storal and Restored Energy. - THicn a force acts on a inachioe alternatcly as an effort and as a resistance, it may be called a reciprocaling force. Of this kind is the weight of any piece in the mechanism whose centre of gravity alternately rises aul falls; for during the rise of the centre of gravity that weight asts as a resistance, and energy is employed in lifting it to an amount expressed by the product of the weight into the vertical height of its rise; and during the fall of the centre of gravity the woight acts as an effort, and exerts in assisting to perform the work of the machine an amount of energy exactly equal to that which had previously been employed in lifting it. Thus that amount of eocroy is not lost, but has its operation deferred; and it is said to be slored when the weight is lifted, and restored when it falls.
ln a machine of which each piece is to move with a uniform velocity, if the elfart aud the resistance be constant, the weight of each piece must be balanced on its axis, so that it may produce lateral pressure only, and not act as a reciprecating force. Bat if the effort and the resistance be alternately in excess, the uniformity of speed maystill be preserved by so adjusting some moving weight io the mechanism that when the effort is in excess it may be lifted, and so balance and emplny the excess of effort, and that when the resistance is in excess it naly fall, and so balance and overcome the excess of resistauce, -thus storing the periodical excess of edergy, and restoring that energy to perform the periodical excess of work.
Other forces lesides gravity may be used as reciprocating forces for storing and restoring energy,-for example, the elasticity of a spring or of a mass of air.
In most of the delusive machines commonly called "perpetual motions," of which 90 many are patented in cach year, and which are expected by their inventors to perfeitm work without receiving energy, the fundamental fallacy consists in an expectation that some reciprocating force shall restore more energy than it has been the means of storing.

## Division 2. Deflecting Forccs.

118. Deffecting Force for Translation in a Curved Path. - In nachinery, deflecting force is aupplied hy the tenacity of some piece, such as a crank, which guides the deflected body in its curved path, sud is zunbrlanced, being employed in producing deficxion, and not in balancing another force.
119. Centrifitgal Force.-See P. 682, §35, and p. 701, § 119.
120. Reclangular Resolution of Centrifugal Force.-See In 701, §s 117 and 119.
121. Centrifugal Force of a Rotnting Body. - The centrifugal force excrted by a rotating body on its axis of rotation is the srme in magnitude as if tie mass of the body were concontrated at its sentre of gravity, and acts in a plane passing through the axis of rotation aud the ccntre of gravily of the body.
The particles of a rotating body exert centrifugal forces on each ther, which strain the body, and tend to tear it asunder; but these forces balance each other, and do not affect the resultant centrifugal ferce exerted on the axis of rotation. ${ }^{1}$
If the axis of rotation traverses the centre of gravity of the body, the centrifugal force exertcd on that axis is nothing.
Hence, unless there be some reason to the contrary, each piece of a machine should be balariced on its axis of rotation; otherwise the centrifugal force will cause strains, vilration, and increased friction, and a tendency of the shafts to jump out of their hearings.
122. Centrifugal Couples of a Rotating Body. - Besides the tend. ency (if any) of the combined centrifugal forces of the particles of

[^257]a rotating body to shif the axis of rotation, they may elso ted so turn it out of its original direction. The latter tenilency is called a centrifugal couple, and vanishes for rotation about a principal axis (see p. 732, § 237 ).

It is essential to the steady motion of every rapidly rotating pie ee in a machine that its axis of rotation should not merely traverse its centre of gravity, bot should be a permanentaxis; for otherwice the centrifugal couples will increase firction, produce oscillation of the shaft, and tend to make it leave its bearings.
The principles of this and the preceding section are those which regulate the adjustment of the weight and position of the counterpoises which are placed between the spokes of the driving- wheely of locamotive engines.
123. Revolving Pendulum-Gorernors.-In fig. 32 AO represents an upright axis or spindle; $B$ a weight called a bob, suspended by rod

OB from a lerizontal axis at $O$, carried by the rertical axis. When the spiodle is at rest the hob hangs close to it : when the spindle rotates, the hob, being made to revolve round it, direrges until the resultant of the centrifugal force and the reight of the bob is a force acting at $O$ in the direction $O B$, and then it revolves stesdily in a circle. This combination is called a revoluing, centrifugal, or conical pendulum. Revolsing pendulums are usually constructed with pairs of rods and bobs, as $\mathrm{OB}, \mathrm{Ob}$, huvg at opposite sides of the spindle, that the centrifugal forces exerted at the point 0 may balance each other.

In fillding the position in which the

bob will revolve with a given angular velocity $a$, for most practical cases connected with machioery the mass of the rod may be considered as insensible compared with that of the bob. Let the bob be a sphere, and from the centre of that sphere draw $\mathrm{BH}-y$ perpendicular to OA . Let $\mathrm{OH}-z$; let W be the weight of the bob, $F$ its centrifugal force. Then the coodition of its steady revolution is $\mathrm{W}: \mathrm{F}:: z: y$; that is to say, $\frac{y}{z}=\frac{\mathrm{F}}{\mathrm{W}}=\frac{y a^{2}}{g}$; consequently

$$
\begin{equation*}
z=\frac{g}{n^{2}} \tag{69}
\end{equation*}
$$

Or, if $n=\frac{\pi}{2 \pi}-\frac{n}{6 \cdot 2832}$ be the number of turns or fractions of a turn in a second,

$$
\begin{equation*}
\left.z-\frac{g}{4 \pi^{3} n^{2}}-\frac{0.8165 \text { foot }}{n^{2}}=\frac{9 \cdot 79771 \text { inches }}{n^{2}}\right\} . \tag{70}
\end{equation*}
$$

$z$ is called the allitude of the pendulum.
If the rod of a rerolving pendulum be jointed, as in fig. 33, not to a point in the vertical axis, but to the end of a projecting arm C, the position in which the bob will revolve will be the same as if the rod were jointed to the point 0 , where its prolongation cuts tha rertical axia.
"A revolving pendulum is an essential part of most of the contrivances called governors, for regulating the speed of prime novers.

The earlier kinds of governors act on the prinue mover by the variations of their alti-
 tude. Thus in Watt's steam-engine goveruor

Fig. 33. the rods, through a combination of levers and linkwerk $\mathrm{C}, \mathrm{c}, \mathrm{D}, 16$ (fig. 32), act on a lever EF, which acts upon the throttle-valve for the ndmission of steam so as to enlarge or contract its opening wheit the speed becomes too small or too great.

In a more receot kind of governors invented by the Messrs Siemens, which may be called differentialgovernors, the regulation of the prime mover is effected by ineans of the difference between the velocity of a wheel driven by it and that of a wheel regulated by a revolving pendulnm. Fig. 34 illustrates this class of governors. A is a vertical dead-centre or fixed sbaft, about which the after-mentioned picces turn; C is a pulley driven by the prime mover, and fixed to a bevel-wheel, which is seen


Fig. 34. same apex. To this wheel are hung the bebs B. of which there are
usually four, although two only are shown. Thoso bobs form sectors of a ring, and are suriounded by a cylindrical casing $F$. When the bobs revolse with their proper velocity, they are ad. justed so as nearly to touch this casing; shnuld they exceed that velocity, they fly outwards and touch the casing, and are retarded by the friction. For practical purposea their velocity of rotation about the vertical axis may be considered constant. G, G are horizontal arms projecting from a socket which is capable of rotation about $A$, and carrying vertical bevel wisels which rest on $E$ and support C , and transmit motion from C to E . There are nsually four of the arms $G, G$ with their wheels, though two ouly are shown. H is one of those arms which projects, and has a rod attached to ita extremity to act on the throttle-valve of a ateam-engine, the sluice of a water-wheel, or the regulator of the prime nover, of Whatever sort it may be.

When C rotates with an angular velocity eqnal and contrary to that of E witl its revolving pendulums, the arms $\mathrm{G}, \mathrm{G}$ remain at rest; but should C doviate from that velocity, those arms rotate in ona dircction or the other, as the case may be, with an angular velocity enual to one half of the difference between the angular velocity of Cand that of $E$, and continue in motion until the regulator is adjusted so that tho prime mover shall impart to $C$ an angular velncity exactly equal to that of the revolving pendulums.

There are various modificatious of the differeutial governor, but they all act on the same priociple.

## Division 3. Working of Sfachincs of Varying Velocity.

124. General Principlcs.-In order that the velocity of every piece of a machine may be uniform, it is necessary that the forces acting on each picce should be always exactly balanced. Also, in order that the forces acting on each piece of a machine may be almays exactly lalanced, it is necessary that the velocity of that piece ahould be uniform.

An excess of the cffort exerted on any piece, above that which is necessary to balance the resistance, is accomponied with acceleration; a deticiency of the affort, with retardation.

When a machine is being started from a state of rest, and brought by degrees up to its proper speed, the effort must be in excess; when it is being retarded for the purnose of atopping it, the resistance must bo in excess.

An excess of effort abore resistance involves an excess of energy exerted above work perfor.ned; that excess of energy is employed in producing acceleratiou.

An excess of resistanco above effort involves an excess of work performed above energy expended; that excess of rork is performed by means of the retardation of the machinery.

When a machine nudergoes alternate acceleration and retariatinn, so that at certain instants of time, occurring at the end of Intervals ealled periods or cycles, it returna to ita original speol, then in each of thosa periods or cycles the alternata excesses of energy and of work neutralize cach other; and at the cnil of each cycle the principle of the equality of energy and work atated in sect. 96, with all its consequences, is verified exactly as in the caso of machines of uniform speed.
At intermediate instants, however, other principles have also to be taken intn account, rhich aro deduced Irom the second law of motion, sect. 89, as applied by the aid of the principles of sect. 90 , to direct deviation, or accelcration and retardation.
125. E'nergy of Acceleration and Work of Retardation for a Shifting Body. - Let 20 be the weight of a body which has a motion of translation in any path, and in the coursa of the interval of time $\Delta t$ let its velocity be increased at a uniform rate of acceloration from $v_{1}$ to $v_{3}$. The rate of acceleration will be

$$
\frac{d v}{d l}-\text { constant }-\frac{v_{2}-v_{1}}{\Delta l} ;
$$

and (p. 693, § 106) to produce this acceleration a uniform effort will be required, expressed by

$$
\begin{equation*}
\mathrm{P}=\frac{w \cdot\left(v_{2}-v_{1}\right)}{g \Delta t} \tag{71}
\end{equation*}
$$

(The proinct $\frac{w v}{g}$ of tho inass of a body by its velocity is called Its momentum; so that the effort required is found by dividing the increase of momentum by the time in which it is produced.)
To find the energy which has to be exerted to produce tho accel. sration from $v_{1}$ to $v_{2}$, it is to be observed that the distance through which the effort P acts during the acceleration is

$$
\Delta s \sim \frac{v_{2}+v_{i}}{2} \Delta l ;
$$

sonsequently. tho energy of icceleration is

$$
\begin{equation*}
P \Delta s=\frac{v\left(v_{2}-v_{b}\right)\left(v_{2}+v_{1}\right)}{2 g}=\frac{v\left(v_{2}^{2}-v_{2}^{2}\right)}{2 g} \tag{72}
\end{equation*}
$$

beng tropertional to the incsuase in tha cozare of ibn velocitw r.and indepeudent of lie time.

In onler 20 proluce a retardasion from the preater volocity $r_{2}$ to the less velocity $v_{1}$, it is necessary to apply to the body a resistance. connected with the retardation and the time by an equation ulentical in every respect with eduation 71, except by the substitu tion of a resistance for an effort ; and in overcoming that resistance the body performs work to no anount determined by equation 72 , lutting Rds for Pds.
126. Energy Stored and Restored by Deviations of Velocily. -Thus a body alternately accelerated and retarded, so as to be brought back to its original speed, peaforms work during its retardation exactly equal in amount to the energy exerted upon it duriog its acceleration; so that that enerry may be considered as slored duriog the acceleration, and restored during the retardation, in a mavoer analogous to the oneration of a recinrocating force (sect. 117).

Let there be given the mean velocity $V=\frac{1}{2}\left(v_{3}+v_{1}\right)$ of a body whoss weight is $w$, and let it be required to determine the fluctuation of velocity $v_{2}-v_{1}$, and the extreme relocities $v_{1}, v_{3}$, which that body must have, in order alternately to store and restore an amount of energy E. By equation 72 we have

$$
\mathrm{E}=\frac{w\left(v_{z}^{2}-v_{i}^{2}\right)}{2 g}
$$

which, being divided by $\mathrm{V}=\frac{1}{2}\left(v_{\mathrm{a}}+r_{1}\right)$, gives

$$
\frac{\mathrm{E}}{\mathrm{~V}}=\frac{w\left(r_{2}-r_{1}\right)}{g}
$$

and consequently

$$
\begin{equation*}
\tau_{2}-\tau_{1}-\frac{g E}{r_{\omega}} \tag{73}
\end{equation*}
$$

The ratio of this fluctuation to the mean velocity, sometimes ralled the unsteadiness of the motion of the body; is

$$
\begin{equation*}
\frac{r_{g}-r_{1}}{V}-\frac{g E}{V^{2}{ }^{2} l} \tag{74}
\end{equation*}
$$

127. Actual Encrgy of a Shifting Body.-The energy which must be exarted on a body of the weight $w$, to accelerate it from a state of rest up to a given velocity of translation $v$, and the equal amount of work which that body is capabla of performing by over. coming resistance while being retarded from the same velocity $d$ translation $y$ to a state of reat, is

$$
\begin{equation*}
\frac{2 v^{2}}{2 g} \tag{75}
\end{equation*}
$$

This is called the achual encrgy of the motion of the body, and is half the quantity which in some treatises is called vis vive.
Tha energy stored or restored, as the case may be, by the deviations of velocity of a body or a system of budies, is the amount by which the actual energy is inereased or diminished.
128. Principle of the Conservation of Encrgy in Mrachines. -The following pritciple, expressiog the general law of the action of Inachines with a velocity naiform or varying, includes the law of the equality of energy aud work stated in sect. 99 for machines of uniform speed.

In any given interval during the working of a machine, the energy excred added to the energy restored is erual to the energy slored added to the work performed.
129. Actual Energy of Circular Translation-Moment of Incrtia. -Let a body of the weight $w$ undergo translation in a circular path of the ralins $\rho$, witl the angular velocity of deflexion $a$, so that the common linear velocity of all its particles is $v=a p$. Then the actual eneigy of that bodv is

$$
\begin{equation*}
\frac{w v^{2}}{2 g}=\frac{1 c a^{2} \rho^{2}}{2 g} \tag{76}
\end{equation*}
$$

By comparing this with the expression for the centrifugal forco ( $\mathrm{wa}^{2} / \mathrm{\rho g}$ ), it appears that the actual edergy of a revolving body is equil to the potential cnergy $F p / 2$ dua to the action of the deflecting force along one-half of the radius of curvature of the patb of the body.
The product $w \rho^{2} / g$, by which the half-square of the angular velocity is dultiplied, is called the moment of incrlia of the revolving body:
130. Actual Energy and Moment of Inerlia of Rolation-Radius of Gyration. -See P. 732, §§ 234-237.
131. Exumplis of Radii of Gyration. -Sce P. 733, § 238.
132. Fly-wheels.-A fly-whicel is a rotatiog piece in a machine, generally shaped like a wheel (that is to say, consisting of a rim with a pokes), anil suited to store 3 ad restore energy by the periodical variations in its angular velocity.
Tho principles according to which variations of angular velocity storn and restore energy are tho same with those of sect. 126. ooly substituting momens of incrlia for mass. and angular for linea, reisuity.
iet $W$ bo the reight of a fly-wheel, $R$ its radius of gyration, $a_{3}$ its maximum, $a_{3}$ its minimum, and $A-1\left(a_{2}+a_{1}\right)$ its mean angula: velocity. Let

$$
\frac{1}{s} \frac{a_{1}-a_{1}}{A}
$$

denote the unsteadiness of the motion of the fly-wheel; the dcnom inator $S$ of this fraction is called the stcadiness. Let $\ell$ denote the quantity by which the energy exertad in each cycle of the working of the machina alternately exceeds and falls short of the work performed, and which has consequently to be alternately atored by acceleration and restored by retardation of the fl -wheel. The value of this periodical excess is-

$$
\begin{equation*}
e=\frac{\mathrm{R}^{2} \mathrm{~W}\left(a_{i}^{2}-a_{i}^{2}\right)}{2 g} \tag{77}
\end{equation*}
$$

from which, dividing both sides by $A^{2}$, we obtain the following equations:-

$$
\left.\begin{array}{l}
\frac{c}{\mathrm{~A}^{2}}=\frac{\mathbf{R}^{2} W}{g S}  \tag{78}\\
\frac{\mathrm{R}^{2} W A^{2}}{2 g}=\frac{\mathrm{Se}}{2}
\end{array}\right\}
$$

The latter of these equations may be thus expressed in words:The actual energy duce to the rotation of the fly, with its mean angnutar velocity, is cqual to one-half of the periodical excess of energy multiplied by the stcainess.

In ordinary machincry $\mathrm{S}=$ about 32 ; in machinery for fine purposes $S=$ from 50 to 60 .
The periodical excess e may arise either from variations in the effort exerted by the prime mover, or from variations in the resistance of the work, or from both these callses combined. When but one fly-wheel is. used, it should be placed in as direct cnonexion as possible witle that part of the mechanism where the greatest amount of the periodical excess originates; but when it originates at two or more points, it is best to have a Hy-wheel in connexion with each of those points. For example, in a machinework, the steam-engine, which is the prime nover of the various tools, has a fly-wheel on the crauk-shaft to store and restore the periodical excess of energy arising from the variations in ther effort exerted by the connecting-rod upon the crank; and eacli of the slotting machines, punching machines, rivetting machines, and other tools has a fly-wheel of its own to store and restore energy, so as to ensble the very different resistances opposed to those tools at differcnt times to be overcome without too great unsteadiness of motion.
According to the computation of Gcneral Moria, the periodical excess $c$ in steam-engines with single cranks is from ${ }_{1} \frac{1}{0}$ th to nearly fth of the energy exerted during one revolution of the crank. For a pair of ateam-enginea driving one shaft, with a pair of cravks at right angles to each other, the value of $e$ is one-fonrth of its value for a single cranked engine of the same kiad, and of the same power with the two combincd.
The ordinary radius of gyration of a steam-engine fly-wheel is from three to five times the length of the crank-arm. .(For further particnlars on this subject, see Steam-En(ine.)
Fer tools performing useful work at intervals, and having only their own friction to overcerne during the intermediate intervals, $c$ should be assumed equal to the whole work pertormed at each separate operation.
133. Brakes.-A brake is en apparatus for stopping end diminishing the velocity of a machine by friction, such as the friction-strap already referred to in sect. 112. To find the distance $s$ through which a brake, exerting the friction $F$, must rub in order to atop a machine haviag the total actual energy E at the moment when the brake begins to act, reduce, by the principles of sect. 105, the rarious efforts and other resistances of the machine which act at the same time with the friction of the brake to the rubbing surface of the brake, and let R be their resultant -positive if. resistance, negative if effort prepooderates. Then

$$
\begin{equation*}
s=\frac{E}{F+R} \tag{79}
\end{equation*}
$$

134. Energy distributed between two Bodies-Projection and Propulsion. - Hitherto the effort by which a machine is moved has been treated as a force exerted between a movable body and a fixed body, so that the whole enargy exerted hy it is employed upen the movable body, and none upen the fixed body. This conception is senaibly realized in practice when one of the tro bodies between which the effert scts is either so heavy as compared with the other, or has so great a resistance opposed to its motion, that it may, without senaible error, be treated as fixed. But there are cases in which the motions of bath bedies are appreciable, and must be taken into sccount, -such as the projection of projectiles, mhere the velocity of the recoil or backward motion of the gun hears an appreciable propertion to the forwerd motion of the projectile; and anch as the propulsion of vessela, where the velocity of the water thrown backward by the peddle, screw, or other propellar bears a very conaiderable proportion to the velocity of the water moved forwards and aideways by the ahip. In cases of this kind the energy exerted by the effort is distributed between the two bodies between which the effort is exerted in shares pronortional to the velocities of the tro bodies during the action of the
effort: and those velocities are to each other directly as tho pertions of the effort unbalanced by resistance on the respectivo hodies, and in versely as the weights of the houlies.
To express this symbulically; let $W_{1}, W_{2}$ be the weights of the bodies; P the cffort excrtell thetweeu them ; S the distance through which it acts; $R_{1}, \mathcal{R}_{2}$ the resistances opposed to the effort overcomo by $W_{3}, W_{2}$ respectively; $E_{1}$, $E_{2}$ the shares of the whole energy $E$ exerted urou $W_{1}, W_{2}$ reapectively. Thieu

$$
\begin{equation*}
\left.:: \frac{W_{2}\left(P-R_{1}\right)+W_{1}\left(P-R_{2}\right)}{W_{1}}: \frac{P-E_{1}}{W_{2}}: \frac{E_{4}}{W_{1}}: \frac{P-R_{2}}{W_{2}}\right\} \tag{80}
\end{equation*}
$$

If $\mathrm{R}_{1}=\mathrm{R}_{2}$, which is the case when the resistance, as well as the effort, arises from the mutusl actions of the two bodies, the above becomes,

$$
\begin{equation*}
\left.:: W_{1}+W_{2}: E_{1}: F_{2}: F_{3}\right\} \tag{81}
\end{equation*}
$$

that is to say, the cnergy is exerted on the hodies in slares inversely proportionsl to their weights; and they receive accelerations inversely propartional to their weights, occording to the principle of dynamics, already quoted in a note to sect. 121, that the mutual actions of a system of bodics do not affect the motion of their common centre of gravity.

For example, if the weight of a gun lie 160 times that of its hall. $\frac{78 \%}{8} \frac{0}{2}$ of the encrgy excrtell hy the powder in exploding will be employed in propelling the ball, and tion in producing the recoil of the guo, provided the ginn up to the instant of the ball's quitting the muzzle meets wlth no resistance to its recoil except the friction of the ball.
135. Centre of Percussion.-It is obvionsly desirable that thie deviations or changes of motion of oscillating rieces in machinery should, as far as possible, be cffected by forces applied at their centres of percussion.
If the deviation be a translation, -that is, an equol change of motionsof all the particles of the bory, 一the centre of percussion is obviously the centre of gravity itself; and, according to the second law of dotion, if $d v$ be the deviation of velocity to be produced in the interval $d l$, and $W$ the weiglit of the hody, then

$$
\begin{equation*}
\mathrm{P}=\frac{\mathrm{W}}{g} \cdot \frac{d v}{d l} \tag{82}
\end{equation*}
$$

is the unbalanced effort required.
If the deviation be a rotation about an axis traversing tlie centre of gravity, there is no ceatre of percussion; for such a deviation can only be produced by a couple of forces, and not by bny single force. Let da be the deviation of angular velocity to be produced in the interval $d l$, and 1 the moment of the inertia of the body; thell $\frac{1}{2} 1 d\left(a^{2}\right)=I$ ada $a$ is the variation of the bod $y^{\prime} g$ actual energy. Let M he the moment of the unbalanced couple required to produce the Tlevistion; then, by equation 57, sect. 104, the energy exerted by this couple in the intervel $d t$ is Mart, which, being equated to the veriation of eaergy, gi"es

$$
\begin{equation*}
\mathrm{M}=1 \frac{d a}{d t}=\frac{R^{2} W}{I} \cdot \frac{d a}{d l} \tag{83}
\end{equation*}
$$

Now (fig. 35), let the required deviation be a rotation of the bolly BE about an axis 0 , not traversing the centre of grsvity G , da being, as before, the deviation of angnlar velocity to be produced in the interval $d \%$. A rotation with the angular velority a abont nn axis 0 may be coasidered as compeundcd of a rotation with the eame angular velocity about an axis drasn threugh $G$ parallel to $O$ snd a translation with the velocity a. OG, OG being the perpendicular distance between the two axes. Hence the required deviation may be regarded as compounded of a deviation of translation $d v=O G . d \alpha$, to produce which there would be required, according to equstion 82, a force applied at $\mathbf{G}$ perpendicular to the $\mu$ lane OG-

$$
P=\frac{W}{g} \cdot O G \cdot \frac{d a}{d l}
$$



Fig. 35.
and a deviation da of rotition about an axis dawn through $G$ parallel to $O$, to produce which there would be required a couple of the moment $M$ given by equation 83. According to the principles of statics, the resultant of the force $P$, opplied at $G$ perpendicular to the plane $O G$, and the coulle N is a force equal and parallel to $P$, butapplied at a distance $G C$ from $G$, in the prolongation of the perpendicular OG , whose ralue is

$$
\begin{equation*}
\mathrm{GC}=\frac{\mathrm{M}}{\mathrm{P}}=\frac{\mathrm{R}^{2}}{\mathrm{OG}} \tag{85}
\end{equation*}
$$

Thus is determined the position of the centre of percussion C , cerresponding to the axis of rotation 0 . It is obvious front this equation that, for at axis of rotation parallel to 0 trssersing $n$. the
centre of percussion is at the point where the perpendicuiar $O G$ meets 0 .
136. Invact. - Impact or collision is a pressure of sliort duration exerted between two bodies. For the detailed investigation of its laws the reader is referred to Mecifanics, 1. 719 , § 18 u sq.

The effects of inmact we sometimes an alteration of the elistriburtion of ectual energy between the two lodies, and nlways a loss cf a portion of that energy, depending on the imperfection of the elasticity of the bodics, in permanentily altering their figures, and producing licat. 'I'he determinatinn of the distribution of the actual energy after collision and of the loss of encrgy is etfecter] by means of the following principles :-
I. The motion of the common centre of gravity of the two bodies is unchanged by the collision.
II. The loss of energy consists of a certain proportion of thet part of the actual energy of the bodies which is due to their motion relatively to their common centre of gravity.

Unless there is some special reason for using impact in machines, it ought to be evolded, on account not only of the waste of energy which it causes, but from the damage which it occasions to the frame and mechanisu.

## Cilapter III. Purposes and Effects of Machines.

13\%. Observing Machincs and Working Mackines.-The present chapter most necessarily be limited to somo very general observations on the principal classes into which machines may be divided, with refereoce to their purposes and effects, leaving details of partimlar examples for treatment onder tho respective apecial headings.

Machines may be divided, in the first instance, into two great divisions, viz.:-

1. Observing Mfachines, in which either the modification of motion alone, or the balaneing of forces nlone, is the object in view, - tho performance of work being either null or incidedtal, and heing fimited to that which arises from the resistance of the machiue.

JT. Working machines, in which the performance of work is the main object.
138. C'lassification of Obscrung Machincs.-Observing machines might very properly havo been classed as instruments, being desigoed to aid the luman senses and memory in obtaining and recording information. They may be divided, in the first instance, into four classes, sccoriling as the subject of observation by their sid is number, measure, or weight, into-

> A. Counting machines. B. Measuring machines. C. Conying and drawing machines. n Weiching machines
D. Weighing maclines.

And to these may be added a fifth class, in which the functions of the inmet-four are more or less conilined, viz.:-

## E. Recording machines.

132. (A.) Counting Machincs. -The most imporlant as well es the most common of comnting machines are time-kerpers, which count nal indicate the numbers of oscillations of bollies which oscillate isochrononsly (viz., pendulums for clocks, balanee-whecls for watelies and marina chronometers) so as to measure time. In constructing such machines, the objects to be aimed at are the cxact isochronisin of the pendulum or balance, and the equable action of the motive power, 80 that it shall overcome tho friction of the mechanism without affecting the rate.

Other counting machines count the oscillations of tho beam of a steam-angine, or the revolutions of the cylinder of a gas-meter or of the wheel of a water-meter.

Others perform nulditions, subtractions, and nultiplications, and of these the most elaborato kind (as, e.g., that of Babbage) compute tables of functions by the nddition of dilferences.
140. (B.) Mcasuring Machines. Mcasuring machines nre pieces of mechanism, by meaus of which the motion of some body of the nature of an index through some geometrical magnitude, such as a distance or an angle, is connceted with samo other motion, cither cqual or greater or smaller in some given ratio, and capable of being more readily compared with some standard of measure.

To this class belong all thoso astronomical and aurveying instruments in which the motion of a lino of aichlt (generally the line of collimation of a telescope) through n given anglo is connected with the motion of an index or vernier round a corresponding are of a graduated circle; also those micrometers in which tho advance of tho end of a screw of fine pitch is measuret] by observing tho aimutltaneous are of rotation of a graduated circle attached to it.

Such mierometers linve attained increased importance by the discovery of Whitworth, -that the mechanical magnifying of amoll distances by a train of screws affords a more accurate means of measurement than optical magoifying by the micruscope,-and by the perfection to which that cogineer hos brought that art of accu. rato rorkmanship which is necessary in order to reader mechanical naguifying possible.

Amongst measuring machines aro included the platometers or olanimeters of Sang, Morin, and Clerk Maxwell, which measuro
areas by nneans of meclanism. The amount of resistance in a measuring machine should be perfectly unitorm, and sufficiently great to prevent accidental forces from disturbing the machine, without being so grent as to render it incooveniently stilf. To combine these objects requires grent aceuracy of workmenship, together with strength and rigidity in the structure of the frame and mechanism.
141. (C.) Copying and Draving Mrachtnes.-In copying mochines for enlarging or reducing drawings there is usually a combination of levers nnt linkwork commecting a tracing-point, which is moved over the lines of the origimal figure, with a klawing point, which draws the copy in such a manner that tho velocity ratio of their motions is a given constant quantity, and that the directions of their motious miake a constant angle.

Mechanism depencing for its priuciple on the theory of the composition of rotations is used to draw ellipses, epicycloids, epitrochoids, and other eurves.
142. (D.) Wcighing Suchencs. - In weighng machines the motion of the mechanisul is used only for the purpose that its cessation, or its becoming an oseillation abont a certain position, may indicate the equilibrium of the forces spulied to the mnehine. Those forces may either bo weights, which are to be compared with each otlier, or lorers of other kinds, to be compared directly or indirectly with weights.

The mactiae for comparing weiglits which is capable of tho most minute accuracy is also the simplest, being the balence, in Which the eynality of two weights is ascertained by their balancing each other at the ends of a lever of egual arms. In the steclyard, consisting either of one lever or of a train of levers, the unknown weight las an uuchangeable point of npplication, and is compared with a known weight ly shifting the latter along the lever to which it is applied until the machine is balanced; the ratio of the weights is then the reciprocal of the velocity ratio of their points of applieation. The steclyarl is more convenient for weighing very heary loads than the balance, but is not capable of such minute aceuracy.
It is essential to necuracy in balances and stcelyards that the friction sloould be less than the smallest admissible amount of error. To diminish the friction as much as possible, the axes of motion are all hnife-celges, as they sre termed, of steel or handened iren, resting on hard surfaces of hardened iron or steel for ordinary porposes, and of some hard mineral, such as agate, for sciertific purposes.
The weight of a column of fluil is determined ly Lalancing it against a column of fluid whose weight is known, as in the barometer, whese the weight of a column of tho atmosphere is balanced agaiost that of a column of mevelury:
Weights are comparel vith each other indirectly, and other forces compared with weights, by means of their effects in bending a suring, -a convenient method, but not susceptible of minute accuracy.
The elastic pressure exerted by a fluid may be compared with weight, either by balancing the pressune against the weight of a calimu of a liquid, or by maintaining a piston in eqailibrium agniost that pressure, by means of a weight pressing it directly, or of a weight acting through a steelyard, or of the elasticity of a spring which has been compared with weights.
143. (E.) Recording Machincs.-Recording machines may be divided into two classes:-self-registering instmments, whicb, by the aid of clockwork, record measurements either of space or of force, torether with the instants of timo at which these measurements were made; and dyuamometers, alrcady mentioned in Chap. 1I. of this article, which register measurements of Soree, together with the s]ace through which it bas acted, thas recording energy or work.
144. Wonking Machines Classed. - The objcet or purpose of working nachines is to perform useful work; and their classification relatively to their objects and purposes is sonnded on the kind of nseful work which they perform. In this point of view they may be classed as follows:-
A. Machines for lifting or lowering solid weights.
B. Machines for the horizontal transport of weights, cilles combined or not with lifting or lowesing.
C. Machincs for projecting solids.
D. Machincs for fifting lluids.

1:. Machines for propelling or projecting fluids.
F. Machines for dividing bodies.
C. Machines for slaping bodies by removing portions of them.

1I. Machines for shaping bodies by pressure.
J. Machincs for uniting bolics into fabries.
J. Dlachines for printing.
\%. Mfachines for producing sound.
L. Miscellancous machines.

It is not pretended that the above classification (taken to a considerabls extent from tha writings of Young nad of Babbage) exhausts all kinds of machines; it is bronglt forward merely as au attempt to intraduce method to a certain extent into a subject whieh would otherwise be exccedingly confused.
145. (A.) Mrachincs for Lifling and Lovecring Solids. -The most common machince of this class are capstuns, cranes, and windlasser.

They are naually worked by manual labour, but sometimes by hydraulic engipes, or by steam-engines. The useful resistance, when a load is lifted, being the weight of that load, is in general greater than the effort exerted by the prinie mover, so that the mechanian has to be adapted to giving the working. piece a less velocity than the piece to which the effort is apllied. In lowering solid loads the weight of the load acts as the eflort, nind the energy exerted hy it is expended in overcoming the frictivo of a brake iu order that the speed of descent may not be exressive.
146. (B.) Trunsporting Machincs. -The mechanism of transporting machines consists of two parts:- that by which the resistance is diminished, as the whecls and axles of vehicles; and that by which the resistance is overcome and the load propulled, comprising all kiuds of locomotive and propelling machinery. In the present work transporting machines are treatell of in the articlea relating surcially to the linns of conveyance to which they are appied.
147. (C.) Jachines for Projecting Solids. -This class comprehends all kinds of artillery.
148. (D.) Machines for Lifting Fluids. - Sce Hyfromectinars.
149. (E.) Nachines for Propelling or Projecting Fluids. See the anue article.
150. (F.) Machines for Dividing Bodics. - This class comprehends all machines for separating solid masses into parts, whetlee. by digging, cutting, sawing, grinding, tcaring, crushing, pounding. pressing out fluids, or otherwise ; and whether applied to earth, atones, metals, timber, fruit, grain, filses, or other naterials.
151. (G.) Machines for Shaping Bodics by Fiemoring Portions of them. --'llis olass of machines to a certain extent resenules the precuding. It includes machines for cutting, grinding, and polishing blocks of stone into required figures, and fur shajing pieces of wood, metal, or other material, whether by turning, to produce spherical, cylindrical, and other curved surfaces, - by boring, punching, slotting, or gouging, to produce cylindical, rectangular, or other orifices and grooves,-by screa-cutting, ly planing, by grinding and polishing, to produce curved or plane sulfaces. The most ditticult and important of all these onerations is to produce a surface truly plane; and tlie perfecting of this operation by Whitworth is the most inportant step recently made in Consiructive Mechanics, or the art of making machines and instruments. Next in point of difficulty may be placed the art of forming the concave reflecting surfaces of great specula for telescopes, such as those of the Herschels, of Lassell, and of Lard Rosse.
152. (H.) Jachines for Shaping Bodics by Bressure comprehend, amongst others, rolling-mills for inon, stiam-hammers, wiredrawing machines, pinmaking and naimakiny machincs, coining and other stamping inachinery, brickmaking machines, presses for jacking and compressing, \&e.
153. (I.) Afachincs for ľniting Bodics into Fabrics comprise pinning machinery, whether apllied to ropes, yarn, or thread, weaving machinery of all kinds, popermaking machinery, felting Dachinery, and scroing machinery.
151. (1.) Machines for Printing are used to apply cither colouring matters or matters for discharging colour to paper, clath, and other materials.
155. (K.) Machincs for producing Sound.-See Acoustucs and Mesic.
156. (L.) Miscellancous Afachines.-There are numerons machines which perform processes, especially in the preparation of textile fabrics for the market, which it would le almost impossible to class. Examples of such maclines will be found by referring to the articles relating to the various branches of manufacture.

## Chapter IV. Apflied Eseroetics, or Theory of Prime Morers.

157. Prime Movers in general-Their Efficicney.-Prime movers, or receivers of power, are those pieces or combinations of piecus of mechanism which receive motion and force directly from some natural source of energy. The point where the mechanism belong. ing to the prime mover ends and that belonging to the train for modifying the force and motion begins is somewhat arbitrary; in general, however, the mechanism belonging to the prime mover may be held to include all picces which regulate or assist in regulating the transmission of energy from the source of energy. Tluss, in the ordinary rotative steam-engine, the crank-ahaft belongs to the prime mover, because it carries the eccentric which moves the valves and the fly-wheel which stores and restores the periodical excess of energy of the engine, and drives the governor (when there is one) which regulates the admission of steam.
The useful work of the prime mover is the energy exerted by it aron that piece which it directly drives; and the ratio which this bears to the eacrgy exerted by the source of energy is the efficiency of the prime mover.

It is often convenient to divide the prime nover into sections, and resolve its efficiency into factora, each factor being the efficiency of one of those apctiona. Thus the efficiency of a steam-engiae may beiresolved into the following factors:-

Efficiency of the furnace and boiler, -being the proportion of the total heat of combustion of the fuel which takes effect in beating and evaporating the water.

Efficiency of the steam in driving the piston, - being the proportion of the energy exerted by the ateam on the piston (called the indicatal energy or jower, as being measured by an indicator) ta the mechanical equivalent of the heat received by the water.

Eficiency of the mechanism from the piston to the crank-shafl inclusire, - being the proportion of the effective energy tramsnitted by the crank-shaft to the iudicated energy.

The product of those three factors is the efficiencv of the engine as $n$ whole.

Io all prime movers the loss of energy may be distinguished into two parts,-one being the uuaroidable effect of the circumstancea under which the machine necessarily worka in the case under conaideration; the other the effect of canses which are; or may be, capable of indefinite diminution by practical improvements. Those two parts may be distinguished as necessary laws and waste.

The efficiency which a prime nover would lave under given circumstances if the waste of energy were altngether prevented, and the loss reduced to neeessary loss alone, is called the maximum or the theoretical efficiency under the given circumstancea.

For some prime movers there is a comlination of circumstances Which makpa the theoretical eficiency greater than any other com. bination dres. The theoretical efficience under those circumatances the nbsol.ate maximum effriency.
The duty of a prime mover is its usefnl work iu some given unit of time, as a sccood, o minute, an hour, a day. In some cases, such as that of the work of animals, the duty can be ascertained, while the efficiency can only be inferred indirectly or conjecturally from the want of precise data as to the whole euergy expended.
58. Sources of Energy Classed. -The somece of energy used in practice may be classed as follows:-

> A. Strength of men and animals.
> B. Weight of liquids.
> C. Dfotion of fluds.
> D. Heat.
> E. Electricity and maguetism.
159. (A.) Strength of Men and Animals. -The mechanioal daily duty of a man or of a beast ia the product of three quautities-the effort, the velocity, and the aumber of uuits of tims per day during which work is continued. It is well known that for each individual man or animal there is a certain set of values of thoae three quantities which make their product, the daily duty, maximum, and that any departure from those values dinniniahes the daily duty. Atteinpts have been made to represent by a forminla the low of this diminution; but they have met with imperfect auccess. That which agrees on the whole best with the facts is the formula of Maschek, which is as follows :-let $P_{1}$ be the effort, $V_{1}$ the velocity, and $T_{1}$ the timp of working per day, which give the maximum daily cluty, and let P, V, T, be any other set of values of those quantities; then

$$
\begin{equation*}
-\frac{P}{P_{1}}+\frac{V}{V_{1}}+\frac{T}{T_{1}}=3 \tag{86}
\end{equation*}
$$

One consequence of this formola is, that the beat time of working per day for men, and for all suimals, is one-third part of a day, or eight houra, - a conclusion in accordance with experience.

The best effort $\mathrm{P}_{1}$, and the best velocity $\mathrm{V}_{1}$, are much less certain, the difficulty of determining tueir true m+an values for particular species being rendered very great by the differences, not only between individuals, but between races or varieties of the same apecies. The following table of values is proposed by Maschek as aplroximately true:-

| Animals. |  | $\mathrm{P}_{1}$. | $\stackrel{1}{1}$ | $\frac{\mathrm{T}_{1}}{\frac{1600}{}}$. | $\mathrm{P}_{1} \mathrm{~V}_{1}$. | $1_{1} V_{1} T_{1}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \$. | Feet per second. | Hours per day. | Foot-5 per sec. | Foot-tio |
| Man.................... | 150 dz | 30 | 2.5 4.0 |  | 75 480 |  |
| Horse (draught)..... | coo mb | 120 | 4.0 | 8 | 480 | 13,824,000 |
|  | 600 m | 120 | 2.5 2.5 | 8 | 300 180 | 8,640,000 |
| Mule....................... | 500 do | 100? | 2.5 3.5 | 8 | 180 | 10,080,000? |

Of the numbers in this table thnae for the dranght horse are probably the most accurate. For the thoronghbred horae it ia certain that the value of $V_{1}$ is much greater, and that of $P_{1}$ moch lass, than for the dranght horse, - the effect being probably that the moximum laily duty $\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{I}_{1}^{\prime}$ is pearly the anme; but experimental data are wanting to determine these quantities with precision.

The following table, chiefly extracted from the works of Poncelet and Morin, with the aduition of some reaults of experinieats by Lieutenant David Rankine and by the author of this article, ahows - the daily duty of men and horses under certain specified circumstances :-

|  | P. | v. | $\frac{T}{3 \sin } \cdot$ | PV. | PVT. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | tb. | $\left\lvert\, \begin{aligned} & \text { Feet } \\ & \text { P Bee. } \end{aligned}\right.$ | $\begin{aligned} & \text { 1Iours } \\ & \text { p. dny. } \end{aligned}$ | Font.tb рег вec. | Foot-10 per day. |
| Man-1. Rusing his nwn weight apatalr or ladder.................2. Do. do. do........ | 113 | 0.5 | 10 | 72.5 | 2,088,000 |
|  | ... | ... | 10 | ... | 2,616,000 |
|  | 40 | $0 \cdot 75$ | 6 | 30 | 648,000 |
|  | 4 | 0.53 | 6 | 24.2 | 692,720 |
| e. Cairyling welghta up eteirs. <br> 2. Shovelling up earth to a! <br> helght of $5 \mathrm{ft} .8 \mathrm{in} . . . . . .$. | 143 | 0.13 | 0 | 18.5 | 399,800 |
|  | 6 | 1.3 | 10 | 7.8 | 280,800 |
| 8. Wheeling earth in berrow) up olope of 1 im 12 ; horiz. veloc. 0.9 ft. per sec. (returning empty).. | 132 | 0.075 | 10 | $8 \cdot 9$ | 350,400 |
| 9. Pu-hing or pulilng horizontolly (capstan or car)) | 20.5 | 2.0 | 8 | 33 | 1,320,400 |
| 10. Turning a crank or winch $\{$ | 12.5 18.0 0.0 | 5.0 2.5 14.4 | ( ${ }_{\text {¢ }}$ | 62.5 45 989 | 1,20G,000 |
| 11. Working pamp. <br> 12. Hammeilng. | 20.0 1.32 | 14.4 2.5 | 2 mm. | 283 3 3 | 1,188,000 |
|  | 15 | ? | ? | ? | 480,000 |
|  |  |  |  |  |  |
| 13. (Thoroughbred) canterion |  | 14.6 | 4 | 4675 | 6,447,000 |
| 14. Horse (dreoght) drawing cart or bosf, welking.... | 120 | $3 \cdot 8$ | 8 | 432 | 12,411,600 |

160. Honizontal Transporl. - When men and unimals carry burdeus, or draw or propel loads in certain velicles, it is difficult, and sometimes impossible, to determine the duty performed in iootpounds of work, because of the uncertainty of the amount in pounds of the resistance overcome. In this case, for the purpose of comparing performances of the same kind with each other, a unit is employed called a foot-pound of horizontal transport, meaning the conveying of a load of 1 pond 1 foot horizontally. The following table, compiled from the sources referred to in aect. 159 , gives some examples of the daily duty of men and horses in units of horizontal transport, $L$ denoting the load in $\mathrm{H}, \mathrm{V}$ the velocity in feet per recond, and T the number of seconds per day of working:-

|  | L. | V. | $\stackrel{T}{3600}$. | 1.V. | L'T. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | D. | Feet per second. | $\begin{gathered} \text { Houra } \\ \text { per day' } \end{gathered}$ | th conveyed 1 forit. | to conveyed 1 font. |
| MaN- <br> 15. Walking unlouded, Irans-I | 140 | 5 | 10 | 700 | 25,200,000 |
| polt of own welght.....) Do. | 140 | 6 | 10 | 840 | $\begin{aligned} & 20,24,000 \\ & 30,240,000 \end{aligned}$ |
| 16. Wheeling lood $L$ in two-) wheek barrow, return. | 224 | 1.6 | 10 | 373 |  |
| wheemply; $V=1$ velocity | 224 | $1 \cdot 6$ | 10 | 37.3 | 13,428,000 |
| 17. Do.one-whaeled batrow, da. | 135 | 1.6 | 10 | 225 | 8,100,000 |
| 18. Travelling with burden...... | 50 | 2.5 | 7 | 225 | 8,670,000 |
| 19. Conveying burden, reluin- Ing unioaded............. | 140 | 2.6 | 6 | 233 | 5,032,800 |
| 20. Carrying burden for 30 \{ |  |  |  |  | ... |
| aeconds only .............. ? | $\left.\begin{array}{r} 126 \\ 0 \end{array} \right\rvert\,$ | 11.1 23.1 | ... | 14.72 0 | ... |
| Horsx- - |  |  |  |  |  |
| 21. Walking whth cart nlwayat loaded. | 1500 | 3.6 | 10 | 5400 | 194,400,000 |
| -22. Troting do. do...... | 750 | $7 \cdot 2$ | 41 | 5400 | 87,480,000 |
| 23. Walking wath cart, goluk) loaded, returning empty; $\mathrm{V}=1$ man velocity | 1500 | 20 | 10 | 3000 972 | 108,000,000 |
| 84. Carizing burden, walking... | 270 | $3 \cdot 6$ | 10 |  | 34,992,000 |
| 25. Do. wrotting... | 180 | $7 \%$ | 7 | 1296 | 32,653,200 |

161. (B.) Weight of Liquids. -(C.) Motion of Fluids. -In waterwheals and other hydraulic engines tho weight and motion of a jeyuid usually act together as sources of energy.
To determine the necessary loss of energy and the theoretical , Ficiency, we have the following formule:-
The power or energy exerted per second is

$$
\mathrm{Q}\left(\mathrm{H}+\frac{\mathrm{V}}{2 g}\right) ;
$$

the necessary loss-
Q $\cdot \frac{V_{3}^{2}}{2 g}$;
the theoretical effect or useful work per second-

$$
\begin{equation*}
Q\left(\mathrm{H}+\frac{\mathrm{V}_{1}^{2}-\mathrm{V}^{2}}{2 g}\right) \tag{87}
\end{equation*}
$$

it ", theoretical efficiency-

$$
\left(\mathrm{II}+\frac{\mathrm{V}^{2}-\mathrm{V}^{z}}{2 g}\right) \div\left(\mathrm{II}+\frac{\mathrm{V}_{i}}{2 g}\right)
$$

wi ere $Q$ denotes the weight of liquid which acte on the wheal or $0_{i}$ - er eagine per aecond; $H$ the vertical fall from the point whero t.e liquid first hegins to act directly or indirectly on the whel or
other engine to the point where it ceases to act; $\Gamma_{1}$ the velocity of tha liquid when it begins to act; and $V$, the least velocity, when it ceases to act, which will properly discharge the liquid, and prevent ita accumulating so as to impede the wheel or eligina.
(For details as to the actual efficieocy and duty and the construction of hydraulic eagines, see Hydromechavics.)
In winlmills, tho air, being in wotion, presses against and moves four or five radiating vares or sails, whose surfaces are approximately helical, their axis of rotation being parallel, or slightly inclined in a vertical plane, to the direction of the wind. The best forna and proportions for windmill sails, as determined experimentally by Sneaton, are as follows (see fig. 36):-

$\mathrm{OD}=\frac{1}{8}$ of whip OA ; bar $\mathrm{DE}-\frac{1}{8} 0 \mathrm{~A}$; bar $\mathrm{BC}-10 \mathrm{~A} ; \mathrm{AC}-\mathrm{DE}$
162. (D.) Hcat. -10 sact. 157 the three factors into which the efficienry of an engine noved by hent can be resolved have already been atated. The efficiency of the furnace and boiler in stcam-engines vories from 0.4 to 0.85 . It way be considered that the loss of heat to tha extent of 0.15 by the chimney is nucessary in order to produce a anfticient draught ; any loss beyond this is waste. The theoretical efficiency of the steam, or other elastic fluid, which serves as the mechanism for converting heat into me. clanical energy, is regulated by a law which will now be explained.
Heat acts on bodies in two ways-to elevate temperature and make the bodies hotter, and to proluce meclianical changes.


Fig. 36. Heat employed in producing mechanical clanges disappears or hecomes latent, a.s it is termed, and can be reproduced by reversing those mechanical changes. When a cycle of nechanical changes, ending by the restoration of the body to its original condition, produces mechanical energy, heat disappears to an amount equal to that which would be geatrated by employing the mechanical energy in overcoming frictiod, - that is to say, a British unit of heat (orone degree Fahr. in one to of liquid water) for every 772 foot-pounds of energs (being the coustant already mentioned in sect. 115 as Joulc's equivalent). This is called the conversion of heat into mechanical cncrgy.
The efficiency of the fluid in a heat-engine is the proportion which the heat converted into mechaniral energy bears to the whole heat received hy the water or other fluid; and the theoretical or maximun value of that efficiency depeads solely upon the respective temperatures at which the flinid reccives heat and rejects the unconverted heat, according to the following law :-let $t_{1}$ represent the tempera. ture at which the fluid receives heat, and $\boldsymbol{t}_{2}$ the temperature at Which it rejects the uncon verted heat, $a^{9}$ neasured from the absolute zero, -that is, from \& poiut $493^{\circ} \cdot 2^{2}$ Fabr. or $274^{\circ}$ C. below the temperature of nielting ice (teniperatures so measured are called absolute tenperatures): then the maximun theorctical efficiency of the water or other filuid iza a steam-engine or other heat-engine is

$$
\begin{equation*}
\frac{t_{1}-t_{3}}{t_{1}} \tag{88}
\end{equation*}
$$

The necessary loss of heat by the fluid is $t_{2} / t_{1}$ of the whole heat received by it ; and any loss beyond this is waste.
The theoretical effictency of the steam in ordinary steam-engines acldom exceeds $\frac{1}{6}$ th ; the greatest actual efficiency is about $\frac{1}{2}$ th ; the efficiency in good ordinary engines is about 0.1 or 0.08 , and is tuad and wasraful engines 0.04 , or even less. (For details see Steam-Engint.)
163. (E.) Elcetricity and Mragnctism. - Electricity dereloped by chemical actiod in a galvanic battery has becn to a small extent used to produce mechanical energy by alternately magnetizing and unmagnetizing soft-iron bars.
The dota for determining the actual efficiency of such engines are deficient. Their theoretical eflicieacy depends on the following law demonstrated ly Joula :-
Let $\gamma_{1}$ denote the strength of the electric current which would be developed in the conducting wire of tha battery if there were $u 0$ iron bar to be magnetized; $\boldsymbol{\gamma}_{2}$ the strength to which the current is reduced by the reaction of the iron bar, tending to induce a contrary curreat. Then the theoretical efficiency of the engine is

$$
\begin{equation*}
\frac{\gamma_{1}-\gamma_{2}}{\gamma_{1}}, \cdot \cdot . . \cdots(89) \tag{89}
\end{equation*}
$$

The pronortion of the enargy expended which is necessarily last is $\boldsymbol{\gamma}_{2} / \boldsymbol{\gamma}_{1}$, and is employed in producing heat in the conducting circuit.
This law is exactly analogous to that of the theoretical efficiency of heat-engines gircn in equation 83 .

There iareason to belicye that electromagnetic engines are capable of $n$ higher efficiency than heat-engines; but the greater cost of the materials consumed readers them much less economical commercially.
(W. J. M. R.)

MECHITHANISTS, a congregation of Armenian monks, io commuaion with the church of Tome, which has enjoyed papal recogaition siuce 1712. Its founder Mechithar, or Mechitar da Pietro, o native of Sebasto (Siras) in Armenia, Was boru ou February 7, 1676 ; his original name was Manuk, which he exchanged for that by which le was subsequently knomn ("Comforter") when he eutered the cloister of the Holy Cross in his native town. In the pursuit of knowledge he visited various seats of learning iu Armeuia, and in the years 1691, 1696, and 1699 respectively he attaiued tho office of deacon, priest, and vartabed or doctor in theology. Having removed to Coustantinople, he founded there in 1701 a religious iustitute for the intellcetual, moral, and spiritual elevation of his countrymen, and for the cultivation of their languafy and literature. In 1703 sectarian jealousy obliged him to retire to the Mores, where he ultimately fonnd a settlement at Modon, and built a cloister aud church (1706-8). The outbrenk of hostilities between the Turks and Venetians in 1715 compelled lim to take refuge in Tenice, where in 1717 he received from the senate the island of San Lazzaro, which ever since las been the home of his order. Mechithar, who died on April 27, 1749, was the auther of a Gramnatica Armena, printed in 1770, of an Armeaian Lexicon, printed in 1744, of an Armenian translation of the Bible, printed iu 1734, and of several zommentaries on Biblical books. The order of Mechitharists, which, as already mentioned, received formal recugnition (from Clement III.) in 1712, uses the Armeniau language and the Syrian rite; its rule resembles the Benedictine, prominent among the duties of its members being the proclamation of the gospel and the diffusion of good literature. They have accumulated at San Lazzaro a large library, specially rich in Armeniai MSS. ; aud their lingaistic attainments are considerable. Amuag their services to the cause of learning may be mentioned, in addition to the preparation of critical texts of the Araneuian classies and of the Armenian version of the Biole, the publication in old translations of various works of Ephraem Syrus, Philo, and Eusebius, of which the origiuals lanre been lost. There are establishments belunging to the order elsewhere in Italy (Padua), as well as in Russia and Turkey, in Paris, in Austria-Huugary, and in Germang. Of these the most importaut is that of Vienua, which has existed sunce 1810, sud has become a sort of learned "academy," receiving honorary members eren from beyond the pale of the Roman Catholic Church.
MECHLIN, or Malines, a city of Belgium, in the proviuce of Antwerp, on the river Dyle, shont 14 miles north of Brassels. The general aspect of the torn, belted by a fine avenue of trees, with well-built houses, extensive gardens, and broad airy streets and squares of proverbial clesnliness, is plcasiug to the eye; there is, however, a lack of life and motion, a repose bordering on stagnation; snd the area occupied by the town is much too extensive fol the population. Mechlin was for many centuries, and is to this day, the religious metropolis of Flanders, and its inonameuts and curiosities are in general of a eacred description. Among the most remarkable is the cathedral church of St Rombold or Rombaut, mainly built in the latter half of the 14 th century; the eqnare massive tower, rising 300 feet high and bearing four dials, each 48 feet in - diameter, is visible from all the country round. The interier proportions of the edifice are grand, and it contains some fine works of art-statues of the apostles, standing against the pillars of the nave, Vandyck's picture of the Trucifxion, the Adoration of the Shepherds, by Erasmus Qnellin, and others. The charch of St John possesses a celebrated triptych of Rubens, and aapther by the same master is to be seen at Notre Dame. The "Halle" or
market still retains some restiges of the splendid palace raised on the site by Charles V. in 1530, and on the chief market-place is a menument erected to Margarct of Austria, daughter of the emperor Maximilian. Mechlin is an archiepiscopal see, occupied by a cardinal, primate of Belgiun, deriving his spiritual power from Rome, and quite independent of (at times even opeuly opposed to) the civil Government. His palace is the headquarters of the Catholic party, and the seut of considerable moral and political influence extending over every parish in the land; the university of Louvain, the Cithelic schools, more thuts four thousand in number, and the great seminary of Meclilin, the nursery of the Belgian priesthoed, are entirely under the direction of the archbishop. The industriat activity of the town, formerly very great, las constantly decreased in the present century, and is now almost extinct. The important corporation of weavers was scattered by the political troubles of the 15 thand 16 th centuries; and the lace trade has gradually been trausferred to Brussels and other towns. There still exist a few special manufactures, those of carved oak furniture, straw chairs, and wool aud liuen tissues being among the foremost; some tanyards and breweries are also to be found, and the meuns of communication furnished by the Dyle suppiy a tolerably brisk market in corn, oils, flax, hemp, and hops. As a railway station Mechlin possesses peculiar importauce, being a junction of the chief Belgisn Government liues and the great central murkshop for constructing and repairing the rolling-stock. The population of Mechlin in 1880 was 42,381.

Mechlin appesrs to have been about the 8 ih century a mere group of cabins surrounding a noted monastery where St Rombaut, now the patron saint of the town, suffered martyrdom on the 24 th of Jnne 775. After having belonged to the first Frankish monarchs, it mas given by Pippin the Little to his relative Adon, and passed, at the commencement of the loth century, under the domivion of the bishops of Liége, in whose name it was governed by the powerful bouse of Berthold uutil the year 1333. When this family became extinct, Mechlin and the surrounding district were divided in tro portions and sold by the bishops to the duke of Prabant and the count of Flanders, the former of whom, ten years later, once more united the whole territory under his own sway. By the marriage of Margaret of Brakant with Philip the Bold, Dechlin was brought under the sceptre of the honse of Burgundy, whose fate it shared from that time. Stormed by the French in 15\%2, by the prince of Crange in 1078 , by the English in 1580 , the town suffered much during the wars of the 17th and 18 th centuries. Napoleon I. had its fortitications razed in 1804, and mode it the capital of the French "Département des deux Nêthes" nntil1814, when it was comprised in the kingdom of the Netherlsads, and it fina!ly became part of Belgium in 1830 .

MECKLENBURG, a teritory iu North Germany, on the Baltic Sea, extending frem $53^{\circ} 4^{\prime}$ to $54^{\circ} 24^{\prime} \cdot \mathrm{N}$. lat., nud from $10^{\circ} 35^{\prime}$ to $13^{\circ} 57^{\prime}$ E. long., corresponds vith tolerable closeness to the old lower Saxon province of the same name, and is now unequally divided into the tro grandduchies of Mecklenburg-Schwerin sud Mecklenburg-Strelitz. These are so closely related in history, political orgonization, natural features, and general development that it is conveniont to treat them in a single article.

Mecklenburg-Schwerin, the seventh state of the Germsn empire in size and the eighth in population, is bounded on the N. by the Baltic Sea, on the W. by the principality of Ratzeburg and Laueuhurg, ou the S. by Brandenburg and Hanover, and on the E. by Pomerania and Mecklenburg-Strelitz It embmes the duchies of Schwerin and Guistrow, the district of Fostock, the principality of Schwerin, and the barony of Wismar, besides several small "enclaves" in the adjacent territories. It total area is abont 5117 square miles

Mecklemburg-Strelitz, the eleventh state of the German empire in area and the nineteenth in population, consists of two detached parts, the duchy of Strolitz on the east of Mecklenbarg-Schwerin and tha principality of

Ratzeburg on the west. The first of these is bounded by Mecklenburg-Schwerin, Pomerania, and Brandenburg, the second by Mecklenburg-Schwerin, Laueaburg, and the territory of the free town of Lübect. Their joint area is. 1126 square miles.
Meeklenburg lies wholly within the great North-Europican plain, and its flat surface is interrupted only by one range of low hills, intersecting the country from sonth-e2st to north-west, and forming the watershed betweea the Baltic Sea and the Elbe. Its highest point, the Helpter Berg, is 580 feet above the sea-level. The cuast-line runs for 65 miles along the Baltic (without iacluding indeotations), for the most part in flat sandy stretches covered with dunes. The chief inlets are the baya of Wismar, Grosse Wiek, Salzhaff, and Kroy, and the roads of Warnemïnde. The river3 are nunaerous though small ; most of them are affluents of the Elbe, which itself traverses n small portion of Mecklenburg. Several of the streams are navigable, ond the facilitics for ioland water traffic are increased by a tolerably exteusise sybtem of canals. Lakes are very numerous; about four hundred of fair size, covering au area of 500 equare miles, are reckoned in the nvo duchies. The largest is Lake Miuritz, 52 square miles in extent. The climate on the whole resembles that of (ireat Britain, but the winters are generally more severe; the mean annual temperature is $48^{\circ} \mathrm{F}$., and the annual sainfall is about 28 inches. Although there are long stretches of marsby moorland along the coast, the soil is on the whole productive. According to the official returns of 1878 , about 57 per cent. of the total area of Mecklenburg.Schwerin consisted of cultivated land, 17 per cent. of forest, and 13 per cent. of heath and pasture. ln Mecklevburg-Strelitz the corresponding figures were 48,20 , and 9 per cent. Agriculture is by far the most important industry in both duchies. The following table shows the areas and products of the chief crops in 1880 :-

| Crops. | Mecklenburg-Schweiln. \| Necklenburg-Strolitz. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Acres. | Tons. | Acres. | Tons. |
| Ryc. | 411,627 | 243,818 | 68,530 | 29,619 |
| Oats. ............. | 285,257 | 188,166 | 49,422 | 26,743 |
| Wheat. | 108,550 | 43,420 | -6,240 | 93,378 |
| Barlog. ............ | 41,687 | 33,487 | 10,722 | 7,244 |
| Potatoes. | 92,942 | 345,233 | 16,410 | 70,537 |
| Hiny. | 259,497 | 333,737 | 46,805 | 93,464 |
| Totals. ..... | 1,202,560 | 1,187,861 | 218,159 | 320,985 |

Besides these, smaller oreas are devoted to maize, buckwheat, pease, rape, hemp, flax, hops, and tobacco. The estensivo pastures support large herds of shecp and caitle, including a noteworthy breed of nerinu sbeep. The horses of Mecklenburg are of a fine sturdy quality, and are highly estecmed in Germany. In 1878 the two duchies contained 100,651 horses, 315,712 cattle, and 1,321,916 sheep. Red decr, wild swine, and various other kinds of game are fuund in the ferests. The manufactures of Necklenburg are of little importance. Its industrial establishnents include a few iron foundries, wool-spinning mills, carriage and mochine factorics, dye-works, tanneries, brick-Gelds, seanworks, breweries, distilleries, numerous limekilns and tarboiling works, tebacco and cigar factories, and nbout cight hundred mills of varinus kiuds. Nining is also insignificant, thongh a fair variety of minerals is represented in tha district. Amber is found on and near the Baltic cosst. Trade, mainly confined to the larger duchy, is tolerably active. Rostock, Warnemuincle, and Wismar are the principil commercial centres. The chicf exports are grain and other agricnltural produce, live stock, spirits, wood, and wool; the chief imports are coloniel preduce, irrn, ccal, salt, wine, beer, and tebacco. The horse and
wool markets of Mecklenburg are largely attended by buyers from various parta of Germany. Fishing is carried on extensively in the numerous inland lakes. Within the last decade the mercantile fleet of Mecklenburg.Sclwerin las donbled the number and quadrupled the tonnage of its ships, these censisting in 1881 of 370 sailing vessels aad 11 steamers, with an aggregate burden of 112,388 tons. Mecklenburg-Strelitz has nu seaboard.

Mecklenburg-Schweria and Mecklenburg-Strelitz are both limited mnnarchies under grand-dukes, who are hereditary in the male live. The reigning families are closely related, and possess mutaal rights of succession; should both families become extinct, their possessions 1 1ass to Prussia. The constitution, which is conimon to both the duchies, exhibits few traces of the liberal teadency of modern politics. The lemporary modifiations brought about by the agitation of 1848 were quickly rescinded, and matters returned to the old semi-fendal arrangements, which deprive the bulk of the people of all share in tha government. The constitution as it now exists is based upon an agreement made between the duke of MeckleaburgSchwerin and his estates in 1755, and adupted in the same year hy Mecklenburg-Strelitz. The Landes-Unioin, or common assembly of the two duchies, consists of representatives of the Ritterschaft, or landed proprietore, and of the Landschaft, which embraces iorty-seven tuwns. The peasantry is unrepresented, and the principality of Ratzebnrg, in Mecklenburg. Strelitz, is governed directly by the grand-duke. The Landes-Union meets once annually, alternating between Steraberg and Malchin. When not sitting it is represented by a committee of nine members. Distinct from the Landes.Union are the convocation diet and the deputation diet, which are assemblies of the estatesof one or other duchy for special business. In MecklenburgSchwerin the exccutive is placed in the hands of foar ministers, holding the pertfolios of foreign affairs, doniestis affairs, finance, and justice (including education and religion). In Mecllenburg-Strelitz there is ne midister, who is aided by a small cuancil. In both duchies the military administration is in the hands of the cremo. Mecklenburg-Schwerin has two votes in the federal council of the German empire, and sends six members to the imperial diet, while the smaller duchy bas one representative in each assembly. As no official budget is published in either duchy, it is impossible to give accurate details of their financial position. In Meckleaburg-Schwerin it is usual to distinguish three brancles of revenue, one noder the coatrol of the sovereign, one under the joint control of the sovereign and estates, nad the third (of small amount) under the sole managenient of the estates. The incone under the first heading is derived from the royal domains, the ordinary taxes, and specinl rotos for special purposes, and amounts to about $£ 600,000$. With this sum are defrayed the ordinary oxpenses of government, including the aunual coatribution to the imperial treasnry. The revenue under the second head is about $£ 100,000$. The public debt in 1880 amennted to $£ 1,100,000$. The revenues of Mecklenburg-Strelitz are nuknown; its debt is cstimated at about $£ 300,000$. The private income of the duke, derived from the royal domains, makes him one of the richest princes in Germany. The duchies of Mecklenburg contribute three regiments of infantry, a battalion of rifles, tro reginents of dragoons, and four batteries of ficld artillery to the imperial army.

The educational institutions partake of the high character enmmen to those of the German empire. The two duchies contzin nine gymnasia, seven "Realschulen," three normal schonls, and an adcquate number of schools of a lower grade. There is a university at Rostock, which in 1882 had a teaching start of 36 professers and an attend-
ance of about 250 students. In 1880-81 only 0.56 per cont. of the recruits in Mecklenburg. Schwerin were unable to read and write their names, while all the recruits in Mecklenburg-Strelitz were able to do both. The predominant confession in Mecklenburg is the Lutheran, which is professed by both the grand dukes. The proportion of Roman Catiolics, Jews, and members of the lieformed Church is insignificant. 'I ho ultinuate spiritual authority is exercised by consistories ut Schwerin and Strelitz. Jlceklenburg also contains a fair share of learned societies and bencrolent institutions. The supreme court ot appeal for both duchies, in all crimiral and ctvil cases, is nt liostock.

The population of Mecklenburg-Schwerin in 1861 was 548,449; in $1871,557,707$; in $1875,553,785$; and in $1880,577,055$. The capital is Schwerin ( 30,146 imhabitants $)$, but the most important town is Rostock $(36,967$ inhabitants). The population of Mecklenburg-Strelitz in 1861 was 90,060 ; in $1871,96,982$; in $1875,95,673$; in 1850, 100,269. The chief town is Neu-Strelitz. About 71 per cent. of the iulabitants are engaged iu agricultural pursuits. "The proportion of the rural to the urban population is as 3 to l, or exactly the reverse ratio to that in the neighbouring Prussia. The peasantry of Mecklenburg still retain numerous traces of their Slivonic origin, especially in their speech, but thoir peculiarities have been much modified by amalgamation with the German culonists who settled within this district at varions times. The townspeople and nobility are almost wholly of Saxon strain. The slow rate of increase in the population of Mecklenburg is chicfly accounted for by the constant stream of emigration. Between 1870 and 1880 the two duchies contributed in the lighest proportion to the enigration from Germany. Out of 595, 151 Geiman emigrants who sailed from Bremen, Hamburg, Stettin, and Antworp within that period, 24,570 came front MecklenburgSchwerin and 2481 from Mecklenburg-Strelitz, representing respectively 4.38 aad 2.50 per 1000 inlabitants as the yearly average. Probably auother cause of the slow growth of population is to be sought for in the difficultics thrown in the way of the marriage of the peasants by the semifeudal character of their tenure. It is a significant fact that in 1880 the proportion of illegitimate births in the $t$ wo duchies amounted to $1 t$ per cent. as compared with 9 per cent. in the entire German empirc.
History. - The Vandals, who in the time of Tacitus occupied the region noir knoirn as Mecklenburg, were succeeded in the 6 th century by a Slavonic race. Thourh partly conquered by Charlemagne in 789, this people soon regained their independence, nud long offered a successful resistance to all atlempts on the jnit of the German emperors to overcome and Christianize them. At last, in 1160, Duke IIenry of Saxony made himself master of the country. The native prince was, however, permitted to retain his sovereignty, and has transmitted to his desecndunts and successors of the present day the distinction of being the only ruling princes of Slavonic origin in Germany. In $1160^{\circ}$ he was raised by the emperor Frederick 1. to the dignity of a prince of the empire. From 1202 till 1227 Mecklenburg was under Danish supremacy ; and in 1229, two years after its restoration to Germany; there occurred the first of a long series of divisions of the teritory, which, with subsequent reunions, constitute so much of its complicated history. In 1348 Charles 1 l : made Mecklenburg a duchy. In 1523 the trials and commotions springing from the rivalry and jealousy of two joint rulers incited the prelates, nobility, anil burghers to form a union among themselves, the effects of which are visible to the present day,-most prominently in the existence of the common Landes-Union. The Reformation was welcomed by the inlabitants of Mecklenburg in 1524; and about 1555 nearly all the monasteries were suppressed. In 1621, when a new partition took place, the town of Rostoek "with its university and high court" was declared to be held in common. The diet also retained its joint character, and henceforth alternated between Sternberg and Malchin.

In the Thirty Years' War both Mecklenburg-Sehwerin and Mecklenburg.Giistrow-as the parts were then called-incurred the suspicion of the emperor, who secretly sold them to Waflenstein, and expelled the dukes in his behalf. They wero rcinstated, how.
ever, hy Gustavus Adolphus, ond at the peace of Prague in 163a they both mada their peace with the empetor. At tho pcace of Westphalia lostock and some other parts of Mecklembure telif. tory were given in pledge to Sweden, and they were not redeenad till 1803. The sufterings of the Merkhenbung jeasantry during the Thirty Years' War were excected in 110 other part of sorety-tried Germany. "Most were reduced to serfiloar thongh porerty ; in some eases whole villages nitterly vanished. In 1895 the Mecklenbur\%Gustrow line became extinct ; and, after some contention between the bother nad the nephew of the list duke of Mecklenburg-: Schaterin for the vac:ant succession, the "Hamburg Division" (March 8,1701 ) apportioned to each shares that are represented by the present duchies. The affixes Schwerin and Strelitz are derivel from the capital towns of the two dukes.
Mecklenburg-Sclawerin began its new independent existenco by a series of constitutional struggles betwoen its nolility onel its rulers. The leavy debt incured by C'lialles Leopold, who had joined Russia in a war egainst sweden, brooght matters to such a pitch that in 1728 the emperor Clarkes Y1. deposed the duke in havour of his brother Christian I.onis. ["uder this pince, the "Rostock Con: tract," which is still the basis of the constitution, was framed in 1755. Durng tha Seven Years' War Mecklenburg. Schwerin nssumed a hostile altitude towarls Frwlerick the Great; and was in consequence orcolpied by l'russian trooj's. In 1806 it was ovemun by the French, and in 1808 it joined the confederation of the Rhine. The duke, however, though he assistell Napoleon in 1812, was the first meniber of the confederation to renounce it, and in the following year his troops fought against lrance and Denmark. On joining tho Germanic confederation he assmued the title of graindduke, with the stylo of royal highess. In and aftrr 1818 the duchy witnessed a considerable nyitation in favour of a new and more liberal constitutinn, but the sulusequat reaction mescinded all the concessions that had been made, and reducel matters to their former feudal condition. In 1819 and 1820 sefflom and personal bondage were abolished, and varions slight ameliorations of the state of the peasantry have since been introduced.
Mecklenburg-Streliza odopted the constitution of the sister duchy by an "Amnitions-Act" in 1755. In 1806 it was spared the infliction of a French occupation through the interest of the king of Bavaria; but in 1813 it was muleted in the sum of twe nillion thalers for the French army. In 1808 it enterrd the Rhenish conIederation, but repuliated it in 1813 and joincl the alliance against Napoleon. In 1815 the cluke assumed the title of grand-luke.
Authorifics,-Boll, Gesehirlife Afechlenbwns, $18 . s^{\prime}:$ Nizze, Iolksurthschafliche Zurände in Mechlenbury, 1861: Jloll, -1brixx der Afrekler.buger Landeshunde; Böger, Topographishes Handbuch f.d. Gros:herznghtimer Jlechlenbuig. Schuepm und Slechlenburg-Shelhz, Kilel, 1881: the nffichal Siaalshalender, published

 18:36-188. For the recent constitulimal struggles sect the various worls of $\$ t$. Wiggers, the most prominent leader of the den,ocratic raity.
(J. F. Bt.)

## MEDALS. See Numismatics.

MEDEA, the daughter of Aetes, king of the Colchians, who were believed to be of Egyptian descent (Herod., ii. 101), and are said to have found a settlement on the cnst of the Euxine and to the sout' of the Caucasus. Medea was ouc of the "wise women" (witches or surceresses) of antiquity, and perhaps, like Helen, was a human emhodiment of sone goddess connected wih Eastern. elementworship, possibly with Hera. For the story of her love for Jason the Argonaut, and of the revenge slie took for his desertion of her for another bride, a Corinthian princess, Glauce, daughter of Creon, see Argonauts and Jason. A more interesting inquiry is tho origin of the tale, and its connexion, with solar myths.

The legend of the Argonautic expedition is a very ancient one. It is alluder to in the Odyssey (xii. 70), in more than one passage of Esclyylus, ${ }^{1}$ and is given nt some length in the fourth Pythian ode of Pindar, the close agreement of which with the Alexandrine compilation by Apollonius Rhodius, entitled Argonautira, in four books, shows that, according to the general law of mythology, the main features of the legend differed but little. The original story, it is probable, was contained in a still older epic poem called $\dot{\eta}$ Mtviàs $\pi 0$ oinats, the authorship of which was ascribed to Prodicus of Phocæa. ${ }^{2}$

The "Golden Fleece," in quest of which the adventurere

[^258]made a voyage from the home of Jason, Iolchus in the Thessalian Magnesia, is virtually identical with the fiery robe which Medea prepared for ber rival Glauce, the new bride, with the Homeric "ægis," and with the garment sineared with phosphorus which was sent by Deianira to Hercules, and burst into a Hame when brought near to a sacrificial fire. ${ }^{1}$ Jason, as the story went, was not allowed hy the guardian of the fleece, King Жetes, to approach it till he had performed a certain task in putting to the yoke fire-breathing bulls, which he effected by the aid of Medea. The bull is a well-known symbol of the sun, and it occurs in the bull-slaying group representing the Persian sua-god Mithras. Again, the slaying of a father by a son (the old sun killed by the new one) is seen alike in (Edipus having caused the death of his father Laius, in Eson, the father of Jason, having been restored to life by the magic arts of Medea, and in Pelias having been killed and boiled in a caldron by his own daughters at the instigation of the sorceross. Lastly, the legend that Medea was herself the grandlaughter of the Sun, and that she escaped in a car drawn by flying dragons, given to her for safety hy her grandsire, ${ }^{2}$ equally tends to prove that the whole stnry is of solar origin, and can be explained on that theory alone.

This, indeed, has been well stated by Sir G. W. Cox. ${ }^{3}$ The "dragon clariot is simply the chariot of Indra, Lelios, and Achilles; and it is drawn by dragons because the word denoted simply beings of keen sight, and was Naturally applied to the creatures "hich may be aupposed to bear the sun across the heaven."

In all these legends about the sun the performance of sertain ionposed "toils" or labours is included, the idea expressed being the hard necessity of the sun going lis daily course in the appointed time in spite of thickening storm-clouds and opposing powerz of darkness, through which he has to fight his way, both visibly above and invisibly underneath the earth. Thus Hercules has Lis twelve labours (the number corresponding to the lunar months), while Jasna is not ouly required by his uncle King Pelias to bring the golden fleece, but is commanded by Æetes to tame the bulls as a condition of obtaining it. The name M $\bar{\eta} \delta \epsilon \in a$ may possibly be referred to $\mu \dot{\eta} \delta \epsilon \sigma \theta a c, \vartheta$ "to care for," as Jason may contain the root iä $\sigma \theta a t$, "to heal," which is the meaning that Pindar attaches to it, ${ }^{4}$ or to iov, the violet-coloured dawn, as in Iocaste, Iamos, ant Iulaus. ${ }^{5}$ In his relation to the snake, which guarded the flesce, and to the dragons' teeth which he rowed on the ground ploughed by the fiery bulls, compared with the serpent entwining the staff of the bealing god Asclepius, we see that almost invariable connexion that aubsists between solar and plallic worship. ${ }^{6}$ This view is confirmed by the "ship Argo," one of the many rexual symbols of cיpl-shaped and boat-like form. ${ }^{7}$ It is the "ship," which was the Teutanic symbol of the goddess Isis. ${ }^{8}$
The existing literature on the love of Medea for Jason shows how pupulur was the story in antiquity for its pathos and its sentinentality. Thus the Medca of Euripiles was rendered by Ennius; Neophron of Sicyon and Melanthius ${ }^{9}$ wrote plays of the sanien name ; we have the long ond fine Pythian ode of Piidar, already referred to, the touching epistle "Medea Jasoni" in the Heroides of Ovid, and the interesting, beautiful, and too little read Argonnutica of Apollonius.
Of course, the similarity of the names Mñ $\delta o$ and Mingla led to

[^259]etymological speculations on the identity of the nommelature, and one Medus, a son of Medea, was belioved to have Leen an eponym hero. ${ }^{20}$ The author of the compilation known as Hesiod's Theogony says that Dtedens, was a son of Itedea by Jason, ${ }^{11}$ and was brouglit up, as Jasen limself had been, by Chiren in the mountains. Eurinjues assigns but two children to Medea and Jason, ${ }^{12}$ and A polludorus ${ }^{13}$ gives their names as Mermerus and Pleres.

MEDELLIN, a town of Colombia, South America; capital of the state of Antioquia, is situated at a height of 4845 feet above the sea, in the valley of the Rio Purce, a right-hand tributary of the Rio Cauca, and, though 100 miles from the conflucnce, not more than 16 miles mst from the valley of the larger stream. 1 it is a clean and well-built place, but has no public buildings of note. Though the population is estimated at 14,000 , there is no great activity except on the uarket days, twice a week, when the bayers and sellers flock in from the country. See Fr. von Schenck in Petermann's Mittheil., 1880.

MEDFORD, a town of the United States, in Middlesex county, Massachusetts, at the head of narigation on Mystic river, and 5 miles north-west of Boston ly a branch of the Boston and Maine Railroad. It is at busy place, with a considerable variety of manufactures-woollens, carpets, buttons, bricks, leather, \&c. Tufts Cullege, situated near the town on Walnut Hill, was founded by the Universalists in 1853, and named in honour ul Clantles Tufts, the donor of the 70 acres occupied by the building and its grounds. The endownent amounts to more than $\$ 1,000,000$. The populatioa of Medford was 5717 in 1870 and 7537 in 1880.

MEDHURST, Walter. Henry (1796-I857), one of the most distinguished Protestant missionaries to the Chinese, was born in London in 1796. His education began at St Paul's Cathedral school. As he grew upl; be learned the business of a printer; and, laving become interested in missions to the heathen, he sailed in 1816 for the London Missionary Society's station at Malacca, which was likely to be a great printing-centre. His linguistic powers sonn showed themselves. He became proficient in Malay, in a knowledge of the written characters of Chinese, and in the colloquial use of more tban one of its dialects. He was ordained at Malacea in 1819, and was in all missionary lnbours "more abundant,"-first at Penal.g, then at Batavia, and finally at Shangbai. To give only the nomes of his various works, some in English, some in Chinese, would take a considerable space. A dictionary of one of the Fuh-Kien dialects is still valuable; and his ChineseEnglish and English-Clinese dictionaries (Batavia, 1842) are inore complete and reliable than any earlier or later works of the same kind. After the conclusion of the first English war with China he remeved to Shanghai in 1843, and there he continued till 1856, laying the foundations, broad and deep, of a successful mission. His principal labour for several years, as one of a committee of delcgates of whom he was facile princeps, was in the revision of existing Cbinese versions of the Sacred Scriptures. The result was what should be called a new version of the Bible, marvellously correct in idiom, and faithful to the meaning of the original. The university of New York conferred upon him in 1843 thic degrec of D.D. Medhurst left Shanghai in 1856, with several members of his family, to try the effect of a visit to England for his failing health. He died, however, two days after reaching London, on the 2.thi January next jear. Strong, sprightly, versatile, and genial, he was a man of extraordinary gifts and gencrous soul. No efforts (and many were made) could draw him from his devotion to the work of missions.

MEDIA. See Persia.

[^260]MEDICAL JURISPRUDENCE, or, as it is now more usually termed, Forersic Medicine, is that branch of state medicine which treats of the application of medical knowledge to the purposes of the law. The term medical jurisprudence, though sanctioned by long usage, is not au appropriate cue; since the subject is, strictly speaking, a branch of medicine rather than of jurisprudence; it does not properly include sanitation or Hygiene (q.v.), both this and medical jurisprudence proper being distinct Liauches of state medicine. The connexion betwecn medicine and the law was perceired long before medical jurisprudence was recognized, or had obtained a distinct appellation. It first took its rise in Germany, aud sul. sequeatly, but more tardily, received recognition in Great Britain.

Furcasic medicine, or medical jurisprudence proper as distiuguished from hygiene, embraces all those questions which bring the medical man into contact with the law, and embraces (1) questions affecting the civil rights of individuals, and (2) injuries to the persou.

## I. Questions Affecting tie Civil or Social Rigets of Individuals.

1. Development of the Human Frame.-Tha development of the physical and mental powers of the luman being is a matter of the highest importance, and is a factor of great consequence in determining criminal responsibility, civil responsibility, or the power of giving ralidity to civil contracts, and in determining the personal identity of a living person or of a corpse. Human life is usually divided into the fire periods of infancy, childhood, youth, manhood, and old age. Some writers increase the number of these, unnecessarily, to seven periods, without any practical advantage.

Infancy is the period from birth till the first or milk set of teeth begin to be shed-usually about the seventh year. During this period the body increases in size and stature more, relatively, than at any other period of existence; and the mental faculties undergo great development. The milk teeth, twenty in number, are evolved in a definite order, beginning with the central incisors at about six months, and ending with the second molars about the termination of the second year. From the size and stature of the body, the development of the tecth, and the mora or less advanced state of ossification or solidification of the boay skeleton, conclusions may be drawn as to the probable age of the infant.

Childhood extends from the commencement of the shedding of the milk teeth to the age of puberty-usually from the seventh to the fourteentlo or fifteenth year. During this period the body expands, as well as the bnny structures, without any clearly marked difference in structure being observable between the sexes except as regards the genitals, so that it is impossible to distinguish absolutely between the male and the female skeleton during this period, The milk-teeth are shed, and are replaced by the second or permanent set, thirty-two in number, though these do not usually all make their appearance during childhood. Marked difierences between the proclivities of the sexes are noticeable even at an early period of childhood, and long before the characteristic functions begin to be developed.

Touth is marked at its commencemeal, by the changes which occur at puberty-the development of the genitals in both sexes, the arpearance of hair on the genitals, the appearance of a beard in the male, the development of the breasts in the female, the appearance of the monthly flow in the female, and the ability to secrete semen in the male. Marked mental changee now occur, and the generative fuactions are periected. louth terminates at tise cge
of legal majority, twenty-one years; or perbaps the period ouglat to be extended to twenty-iva years of age, as it is with some nations.

Manhood (or Womanhood) is the period of perfection of all the bodily and mental powers. It ceases in womar with the cessation of the monthly flow at about forty-five ycars of age; but in man it often extends to a mucl later period of life.

Old Age begins with the decay of the bodily and mental facultics, and is characterized by wrinkling of the skin, loss of the teeth, whitening of the hair, and feebleness of the limbs. In its later stages decay of tha mental faculties, deafness, obscurity or loss of vision, and bowing of the spine are added.
2. Duration of Human Life.- The chances of human life form an important subject of inqniry, which has been elucidated by the labours of Price, Milne, Farr, and others; and on deductions from comparisons of birth and death rates is founded the system of annuities, insurance against loss in sickness, and the insurance of lives. Since the establislument of corapulsory registration of deaths, our knowledge of the ordinary and extraordinary chances of human life has been much extended, and surer data ara now available for calculations of probabilities of life, of survivorships, and of the parments which ought to be made in benefit clubs. See Insurance and Longevity.
3. Personal Identity. -It might be imagined that there is little danger, with the exercise of ordinary care, of mistaking one person for another; but the remarkable case of the Tichborne claimant, and some other less-known but perhaps equally singular instances, bare demonstrated that mistakes as to the identity of individuals are easily made, and are more frequent than is commonly supposed. Where the identity bas to be established or disproved after long absence, cxposure to foreign climates and great hardships, wounds, \&c., the problem is often one of extreme dilficnlty. The data for identifying a person are individual and family likeness, stature, the colour of the ejes, peculiarities of garb and manner, recollection of antecedent events, but more especially marks on the person either congenital or acquired. Such are nevi or mother's marks, scars, and disunited or badly united fractures, known to have existed upon the missing person. An accurata solution n' the question is, nevertheless, often a matter of the greateri difficulty.
4. Marriage.-Under this head the medical jurist has te deal principally with the nubile age, viewed in the light of ratare and according ta legislative enactments, and with such physical circomstances as affect the legality of mar riages, or jnstify divorce.

In Great Britain the age at which the sexes are first capable of propagating the species is later than in more southern climes. Ordinarily it does not occur beforo fifteen years of age for the male and fourteen for the female; exceptionally, however, it occurs at the ages of thirtcen and of twelve (or eren less) respectively in tha male and female. By legislative enactment, nevertheless, parents and guardians may, in England at all events, furbid the marriage of young pcople till the age of legal majority. The only physical circnmstances which in Great Britain form a bar to marriage are physical inability to consummate, and the insanity of ono of the parties at the time of marriage. Both those circumstances have been pleaded and sustained in the law courts. In other countries minor physical circumstances, as disease, are Le\}d to invalidate marriage.
5. Impotence and Stcrility.-These may arise from organic or from functional causes, - the former being aleno irremediable. and as sucl taken cognizance of by the law courts. On this subject it is unnecessary to eularge here
6. Pregnancy.-This subject presents one of the widest fields for medico-legal evidence. The limits of age between which it is pessible, the limits of utero-gestation, and the signs of pregnancy may all in turn be the subjects of in?estigation.
The limits of age between which pregnancy is possible are usually fixed by the appearance and cessation of the monthly flow; and these ordinarily begin about fourteen and cease at forty-five years of age. Exceptionally they appear as early as the tenth year, and inay not cease till the end of the fifth decade of life. Cases, however, lave occurred where a woman has conceived before menstruating; and a few donbtful cases of conception are recorded in women upwards of fifty, or evell sisty, years of age, The general fact of pregnancy being limited by the age of puberty on the one hand and the cessation of the monthly flow-or fifty years as the extreme limit of agemust be accepted as the safest guide in practice.
The linits of utero-gestation are not in England fized by legislntion. The French code fixes the extreme limit of three handred days. The ordinary period is forty riceks and a half, or two lundred and eighty-three days from the cessation of the last monthly flux. The limit of three handred days, as fixed by the French code, is perhaps never exceeded, if ever reacled. The uncertainty of females in fixing the exact date of couception has given rise to the discrepaut opinions of physiologists on the subject. It is well known, however, that nmoug the higher animals the period is not a precise one; and impregnation and conception are doubtless not necessarily coincident.
The signs of pregnancy are of the utmost importance to the anedical jurist. He may be called upon to pronounce upon the virtue of a female, to sustain or rebnt a plea for diverce; to deternine whether a capital sentence shall be carried out, or to determine whether it is prebable that an heir will be born to an estate. Should he err in his judg-ment-and mistakes are very possible in the earlier months of utero-gestation-he may commit a grievous wroog. Medical jurists are in the habit of classifying the signs of pregnancy as uncertain or certain; it is the former which are most regarded by the public, but the latter are alone of probative value to the jurist. The usual and uncertain sigas are the cessntion of the montlily flow, nansea, sickness, a darkening of the areola and the formation of a secondary areola around the nipple, enlargement of the breasts, incrensed size of the abdemen, the formation of a tumour in the womb, quickening, and the motions of the feetus. There are nlso other minor signs of less importanee. The certain signs nre the uterine souffe, which is a peculiar soft sonnd heard over the abdomen, and eynchronous with the materbal pulse ; ballottement, or the examination for a floating tumour in the abdomen between the fifth and eighth months of prognnacy; and the pulsations of the fuetal heart, heard by means of the stethoscope. These pulsations are much quicker than, and not synchronous with, the maternal pulse. This is the only indubitaile sign of pregnancy. It is inapplicable before the fourth month of gestation.
7. Parturition.-The imminence of the process of partarition is of comparatively little interest to the medical jurist; but the signs of recent delivery nre nll-important. These signs aro the bruised, swollen, and lacerated state of the external genitals, relaxation and dilatation of the vagina and wemb, the existence of a peculiar vaginal discharge known as the lochia, a relaxed and fissured condition of the abdeminal walls, a peculiar aspect of the countenance, and the distended state of the breasts dne to the secretion of milk. The lochial discharge is the most characteristic sign. All the argne may disappear within ten days of delivery, though this is not usual.

Connected with parturition, the question of viability of the child is not unimportant. After the intra-uterine age of seven months is reacled a child is certainly viable. The period at winich the feetus beeomes viable cannot be stated with certainty; but fire calendar months, or one hundred and fifty days, is perhaps the nearest approximation which can be made. The viability of a chiid is judged by its size and weight, its general state of development, the state of the skin, hair, and mails, its strength or fecbleness, the ability to cry, and its lower of taking maternal nourishment. The question of viability has important bearings upon the crime of infanticide, and the euccession. to property.

The subject of supcrfeetation, or the possibility of two conceptious having occurred resulting in the hirth of twins with a considerable intervening interval, is a very obscure one, and has given rise to much controversy, - its existence being affirmed by some medical jurists, and denied by others. There is much, however (e.g., the existence of a double or bifid womb), to conntenance the view that a double conception is possible.

In the curious case of a man narrying a moman laving possession of an estate of iuheritance, and by her having issue born alive and capable of inheriting her estate, the man on the death of lis wife holds her lands for life as a tenant by the "curtesy" of England. Here the meaning of "born nlive" is different from the meaning of the sams expression as used respecting infanticide. In questions of tenancy by the curtesy it has heen deeided that any kind of metion of the child, as a twitching and tremulous motion of the lins, is sufficient evidence of live-birth. As regards infantieide, proof of a conclusive separate existence of the child is demanded before live-birth is admitted.
8. Afonsters and IIermaphrodites.-To destroy any living humau birth, however unlike a human creatnre it may he, is to commit a crime. Blackstone states that a monster which bath not the shane of mankind bath no iaberitable blood; but the law has not defined a monster, nor what constitutes a human ferm. The same author states that if, in spite of defermity, the product of birth has human shape, it nlay be an heir. Hermaphrodites are beings with malformations of the sexual organs, simulating a double sex. Physiologists do not admit, however, the existence of true hermaphrodites with double perfect organs, capable of performing the functions of both sexes.
9. Paternity and Affliation.-Thess are often matters of great doubt. A cousiderable time may elapee between the absence or death of a father and the birth of his reputed child. As has already been said, three hundred days is the utmost limit to which physiologists would extend the period of utero-gestation. This subject invelves questious respeeting clildren born during a second marriage of the mother, posthumous children, bastardy, and alleged cases of posthumons childreu.
10. Presumption of Survivorship. - When two or moro persons perish by a common accident, when a motber and leer new-born child are found dead, nnd in a few annlogous cases, important civil rights may depend upen the question which lived the longest; and great ingenuity has been displayed in elucidating the disputce which have arisen in the law courts in sucla cases.
11. Mraladies Exempting from Discharge of Public Duties frequently demand the attention of the medical man. Ile may be called upon to decide whether a man is able to undertake military or naval service, to act as a juryman without serious risk to life or health, or to attend ns a witness nt a trial. An endearour to give a feafless and honest certificate should animato the medical man in the diselarge of this delicate duty.
12. Feigned and Simulated Diseases often require much
skill and acuteness in order to detcet the imposture. Where there is reason to suppose that a disease is simulited, much caution as to procedure is also required.
13. Insanity or Mental Alienation.-This subject presents an enormous field to the medical jurist. A medical man may bo required to give evidence in any of the law courts, civil, criminal, or ecclesiastical, befure commissions de lumatico inquirendo, or before a magistrate, as to the sanity or iosanity of an individual ; and lee may have to sign certificates of unsounduess of mind with the view of providing for the safe custody and proper treatment of a Junatic. Hence he must be familiar with the chief forms of insanity (see Insanity), and be able to distinguish aud treat each of theso. He will also be required to detect feigned insanity, and to examine persons charged with crime with the view of preventing real lunatics from being treated as criminals.

The terms "unsoundness of mind," apllied to the condition of the mind itself, and "non compos mentis" to the persor whose mind is affected, are legal terms applied to iasanity. Lawyers have disputed as to whether imbecility ahould or should not bo iacluded under the head of insanity; but micdical men include under this category all disorders or defects of the mind which disqualify a person for managing lis affairs, and enteriug into a binding contract, or which render the individual murally irrespousible for his or her otherwise criminal actious. There is good legal authority for recognizing four forms of unsoundness of mind-idiocy, dementia, mania, and monomanic.

The chief questions respecting unsomaness of mind which present themselves to the medical jurist are-is the person of sound or unsound mind; if unsound, are there real lucid intervals; is he fit to manage his affairs, to contract a marriage, or to exceute a will; is he dangerous to others?

As grounds for restraint, the law recognizes only these conditions-danger to himself, inability to manage his own affairs and property, and clanger to the jerson of others. Before an individual can be placed under restraint in an usylum the certificates of two niedical men must be obtained, and the formal order of a relation or friend. The certificates to be valid must be signed by legally qualified medical practitioners having no interest, direct or indirect, in the patient, or in the asylum to which he is to be sent. The modital examiners must pay separate visits, each medical man examining the patient separately. The certificates, which remain valid fur seven days only, must bear the exact address of the lunatic, his occupation, and the date of the examination; they must also set forth distinctly the grounds of the opinion they express, under the separate heads of facts observed by the examiuer, and facts (to be specified) communicated by others. In the case of pauper lunatics one medical certificate only is required, which is supplemented by an order from a justice of the peace. In urgent cases also one medical certificate suffices for incarceration in an asylum, provided that within three days of the patient's reception two other such certificates are signed by two other medical practitioners, not heing connected with the asylum, upen a like examination. The superintendent or proprictor of the asylum must in all cases forward to the commissioners of lunacy a notice of admission within one clear day from the patient's admission. Any infringement of the statutory regulations aubjects the persou who commits it to a heavy penalty.

## iI. Injeries to the Person.

1. Deforation. - The aigns of defloration are obscura and uncertain ; and it is rather.hy the coexistence of several of the usual marks than tha existenca of any one sign, that any just conclusion can be arrived at.
2. Rape. -This crime consists in the carnal knowledge of a wonan
forcibly and against her will. The resistance must be to the utmost, elso the crime of rape has not been committed in tha legal sensa of the word. The proofs of rape, accordingly, apait from the consiatency of tha womin's story, mainly depand on the presenca of the signs of delloration, and on marks of injury on the man.
3. Mutilation.-This nuay consist in the cutting or maining of any member ; castration iy the most important, and perlaps but rarely cffectelt as a crime. Self-mutilation, giving risa to false accusations, is occasionally resorted to.
4. Criminal Aborlion. - The ctine of abortion consists in unlawfully administering to a woman, or causing to ba taken by her (whether she be with child or not), with intent to procura her miscarriage, any poison or noxlous thing, or using for tho same purposs any instrument or other meana whatsocver ; also in the use of tho sano means, with the same intent, by any womau being with clild.
5. Homicile.-The legal sense of tho term homicide excludes auch injuries ns me the result of either accident or of suicide. It embraces murder or wilful homicide, manslanghter or culpablo homicide, casual homicide, and justiliable homicilc.
As a preliminary in all cases of honicide, it is the duty of the medical jurist in the first place to ascertain the fuct of death, and to distinguish between real and apparent death; and then to determine, if possible, the period at which death took place.

Iufonticide or child murder is by the British law treated with the same severity as the murder of an adult. Indeed infanticide as a crime distinct from nurder has no legal recognition. Practically this severity defeats itsclf, and offences which are really cases of child murder aro often treated simply as cases of conccalment of birth. The iniquity of the old law which thres the onus of proos of still-birth on the mother now no longer cxista, and the law demanda strict proof of live-birth at tha liands of the prosecution. Hence the subject involves very nice pointa of forensic madicine. The child must ba proved to have arrived at the period when thero was a probability of its living (proof of viability); and as the establishment of respiration is necessary to provelive-birth tha evidences of this act must be carefully investigated. Thasize and position of the lungs, ard the statc of the vessels concerned in feetal circulation, must ba carcfully noted. The foetal lungs aro dark, dense, and liver-like in appearance and consistence, and sink when immersed in water; whitst the fully respired lungs are rosy, marbled, and boft and crepitant when handled. Ninor degreea of respiration aro recognized by the appearanco of little groups of dilated air-veaicles, and by the fact that, althongh the lungs as a whole may sink in water, certain portiona of them, into which respired air has peuetrated, float in water even after subjection to firm pressure in the hand. Care must he takch, nevertheless, to excluda buoyaucy of the lung due to putrefaction; in thia case tha air may be cxreelled by gentle pressure, and the praviously buoyant portion of lung now sinks in water. It is impossible, however, to distinguish certainly between a lung maturally inflated and one artificially insuflated.
It must bo berne in mind that, although live-birth cannot be affirmed in the absence of aigns of respiration, the prescnce of these signs is not proof of live-birth in tha legal sense of the term. The lav demands for live-birth a separate existence of the child after delivery; and breathing may take place whilst the child is stull either wholly or partially within the maternal passagea, and in some special cases whilst still within the wonb itself.

When proofa of respiration-it may ba to such an extent as to leave no dorbt ae to live-birth-have been found, the cause of death is then to ba investigated. Wounds, and other forns of injury, must be songht for. There may be signa of strangulation, suffocation, puocture of tha fontanelles, and consequcut injury to the brain, the adntinistration of a poison, or other means of procuring desth. It must be borna in mind that some of these causes may be brought about by omission, or even by accident. Thus strangulation may arise from natural and unrelieved pressure of the navel string on the neck of the child ; suffocation from immersion of the face of the child in tho maternal discharges, or by pressure of clothes on the mouth. Death may result from hemorrhage through neglect to tio the navel string, or tha infant may perish from exposure to colld.
In the case of exposed infants it is very important to ascertain the real mother. As such exposure usualiy takes place soon after birth, comparison of the age of the infant with the sigus of recent delivery in the suspected mother is the best method of proving thio relation.
Ordinary homicide may be accomplished by several modes that may sometimes be ascertained by examination of the body. Of ona of the most important of these consideration is deferred to tha articlo Porsons.
Death by asphyxia is a common mode of accomplishing homicide, as by suffocation, drowning, hanging, strangulation, or by exposura to mephitic air. Suicide and accidental death from thesa causea are still more common. (1) Drourning is thouglit to produca death occasionally by tha suddenness of tha shock causing suspension of tha functiona of circulation and respiration-by ahock without a struggle. The usual mode of death appears, however,
to be by the circulation of unoxygenated blood througn the brain acting as a poison upon that organ; and this is attended with all the plicnomena of asphyxia, as in suffocation. The phenomena attending asplyyxia are as follows. As soon as the oxygen in the arterial blood, through exclusinu of air, sinks below the normal, the resuiratory movements frow deeper and at the same time more frequent; both the inspiratory and expiratory phases ate exaggerated, the supplementary respiratory minseles are bronght into play, aud the breathing becomes huried. Is the bload becomes more and more renous, the respiratory inovensents continne to increase both in force and frequency. Very soon the expiratory movenents become more marked than the inspiratory, and every musele which can in any way nssist in expiration is brought into play. The orderly expiratury movenints culminate in expiratory convolsions; these violent eflorts speedily exhanst the nervous system, nad the convulsions suddenly cense and are followed by a period of calm. The calm is one of exhaustion ; all expiratory active movements laveceased, and all the muscles of the body are flaccid ond quict. But at long intervals ledgtiened deep inspiratory movements take place; then these movements become less frequent; the rhythom becomes irregular, so that each breath becomes a moreand more prolonged gasp, which becomes at last a convulsive stretching of the whole body; and with extended limbs and a straightened trunk, with the head tluown brack, the mouth widely opeo, the faee drawn, and the nostrils dilated, the last breath is taken. Tho above phenomena are not all observed except in cases of sudden and cntire exclusion of ain from the lungs. In slow asphyxia, where tho supply of air is gradually diminished (e.g., in drowning), the phenonena are fuda. mentally the same, but with minor differences. The appearances of the body after death from drowning are various. There may he pallor of the conntenance, or this may be livid and swollen. The air passages are filled with frothy mucus, and there may be water in the stomach. The ends of the fingers are often excoriated from grasping at objects; and weeds, \&cc., are sometimes found grasped in the hands. The diatinction between murder and suicide by drowning can rarely be made ont by examination of the body alone, and is nismally decided from collateral circumstances or marks of a stinggle. Attention must also be paid to the existence of wounds on the body, marks of strangulation on the neck, and the like. (2) Ifanging may result in death from asphyxia, or, as is more particularly the case in judicial hanging, some injury is inflicted on the upper portion of the spinal cord, resulting in instant death. The ordinary appearances of death from asplyyia may be found: dark fluid blood, congestion of the brain, inteusely congested lungs, the right cavities of the heart full, and the left comparatively enupty of blood, and general engorgenient of tha visecra. Ecehymosis may be found beneath the site of the cord, or a mere parchmenty appear. ance. There may even be no mark of the cord visible. The mark, when present, usually follows an oblique conrse, and is high up the neck. The fact that a body may be suspended after death, and that if this be done speedily whilst the body is still warm there may be post-mortem murk undistinguishable from the mark observed in death from hanging, must not bo forgotten. (3) Suffucation may occur from the impaction of any substance in the glottis, or by covering $u p$ the mouth and nose. It is frequently of accidental origin, as when aubstances become accidentally impacted in the throat, and when infanta are overlaid. The phenomena are those of pure asphyxia, which have nlready becn detailed. On post-mortcm examination the gurface of the lungs is found covered with ininuteextravasations of blood, known as punctated ecelymosis. (4) Slrangulation may bo occomplished by drawing a cord tightly round the neck, or by forcibly compressing the vind pipe (throttling). Hence there may be either a circular mark ronnd the neck, not so oblique as nfter hanging, or the marks of the fingers may be found about the region of the larynx. The cartilaginous structures of the larynx and windpipe may be broken. The mark of the ligature is often low down in the neck. The eigns of asplyyxia are present in n marked degree. (5) Mephilism. - Death from the inhalation of irreapirable gases is a mode of assassination seldom employed, but is frequently resorted to on the Contiment by suicides, charcoal fumes being commonly used for the purpose (see Polsons).
6. Death from Starvalion. - Cases occur in which it is important to distinguiah this from other modes of death. In such cases the akin becomes harsh and dry, and may acquire a peculine odour ; the subcutaneous fat disappeare; the guns alırink away from the tecth; the tongue and mouth become dark-coloured and dry'; the eyes me bloodshot; the intestincs become thin and their coata transheent; the gall-blalder is distended. The perlod of total abstiuence from food required to kill an adult is unknown, and greatly depends upon whether there be access to liquid. In some cases persons liave been able to subsist on little or no nourishment for loog periods, the body being in a atate of quasi-hibernation.
7. Dealh from Eixtremes of Tcmperalurc.-(1) Death from cold is not often observed in the Iritish Isles. A portion only of the body, as the extremity of a limb, may perish from extrenie cold. Alter the first eensation of tingling experienced on exposure to severe cold, loss of senaation supervencs, with languor aud an irre.
sistible propensity to aleep. The tendency to this fomos an extrems danger in such cases, (2) Death from extreme beat usually occurs in the form of burning and scalding, attended with destruction of a large portion of the entareous structures. Here the canse of death is obvions. The homare body is canable of exposure to very hot air-as is seen in Turkish baths-for a considerable period with impunity. Sun-stroke is a cercural affection brought on by too great exposure to a hot atmosphere, especially whilst undergoing [atigue.
8. Death by Lighenialy. - Lightoing or an artificial electric current may cause instant deatl. Nio visible marks of the effects of the electric current may be left, or the body may be singed or dis. coloured, or the skin niay be perforated at one or two spots.
8. Wounds.-The exanination of wounds, whetlier latal or not, often becomes an important banch of forensic medicine. Wonnds are usually divided into contuscd, laccrated, incised, punclured, and gunshol wounds. For poisoned wounds see Porsosis. Each kind of wound requires to be minutely examined and described, as theyare in approved works on surgery. The degree of danger from each should befamiliar to the medical jurist ; and he should secollect that there is no wound which may not beconse incidentally fatal from inmproper treatment, peculiarities of constitution, or accidental inoculation with sentic material. Punctured wounds or stabs require minute attention; for there heve been instances in which death has been produced by an instrmment so suall as a pin thrust into a rital part. Wounds of the hoed are always dangerous, especially if the blow has been aevere. I'he person so wounded may die without division of the akin, or fracture ol' the bones, as happeos in what is known as conciussion of the brain. Contusions whicli do not divide the skin may fracture the skull; or the inner table of the skull may be fractured withont the onter being broken or depressed. Even wonnds of the scalp may prove fatal, from ioflammation extending towards tbe brain. Punctured wounds of the head are more dangerous than cuts, as more likely to excito fatal inflammation. Wheu the brain ind its membranes are injured, all snch wounds are generally fatal. Wounds ol the face or organs of senge are often dangerous, always disfiguring, and productive of sevious inconvenience. Wounds of the nech ale always very serious wherever more than the skin is divided. The danger of opening large blood-vessels, or wounding inportant nerves, is imminent; even the division of a large vein in the seck has proved immediately fatal, from the entrance of air into the vessel, and its speedy conveyance to the heart. A blow on the neck has instantly proved fatal, from injury to an important nerve, generally the pmeumogastric or the sympathetic. Dislocations and fractures of the bones of the neck prove iustantly fatal. Wounds of the chest are always scrious when the cevity is penetrated, thongh persons may rccover from wounds of the lungs, and have even survived for some time considerable nounds of the leart. This last is an infortant fact: because we are not always to consider the spot where the body of a person killed by a wound of the heart, and apparently remoining where lie fell, is found as that in which the fatal wound was inflicted. Instances have occurred of persons surviving severe wounds of the heart for several days. Hroken ribs are never withont danger ; and the same may be said of severe contusions of the chest, from the chance of inflammation extending inwards. Wonnds penetraling both sides of the chest are generally cousidered as fatal; but possibly there may be recorery from such. Wounds of the abdonen, when they do not completely penetrate, may be consilered as simple wonnds, unless when inflicted witl great force, so as to bruiso the contents of the abdominal cavity ; in that case they may produce death without breach of surface, from rupture of some viscus, as sometimes happens from blows or kicks unon the belly. Wounda injuring the peritoneum are highly perilons, from the risk of severe inflammation. Wounds of the stumach or intestines, or of the gall-bladder, generally prove mortal, from the effusion of their contents into the peritoneal cavity produciog fatel inflammation. Wounds of the livcr, spleen, or kidneys are generally soon mortal, from the great vascularity of those organs. Wonnds of the extremities, when fatal, may generally be considered so from excessive hrmorrhage, from the conseģuences of iuflammation and gangrene, or from tho slook to the system when large fortions of the limb ore forcibly removed, as in accidents from machinery, and in wounds from firearms.
10. Poisonous Food:-Under certain conditions, various articles of dict, especially buteler meat, eggs, nilk, butter, cheese, ond boney, may become possessed of poisonous pruperties, and this may arise from a variety of causca besides the introduction of known and apecific poisous. Moreover, certain kinds of animal food-fish chiefly - may have defunte toxic properties. Food may be more or less joisonous-(1) from unsoundness, either from putridity or decom. josition or disease: (2) from the presence of purasites; (3) front mouldiness, or presence of deleterious microscopic fungi ; and (4) where the flesh is that of enimals which have fed on noxious plants, -aul under this head may also be classed poisonons honey, which bees have gathered from noisonous plants. (5) It may be of the nature of poisonous fisb, using the term tish in the popular sense. (6) Certain fungi or mushrooms are poisonons. I'arasitic diseases wonh, strictly speaking, coma under the first head; but the pre.
ventive measures to be adopted in thg use of food infested with parasites will alone be trested of in this place.
(1) Poisonors Tegetables. - Unsound or even retten vegetahles and fruits may be consumed, and become fertile sources of varied forms of poisoning, especially in hot aummers. The symptoms produced by the ingestion of large quantities of unsound fruit or vegetables are of a diarrlical character, not of ten of an alarming aeverity, except in tho cases of the young ond feeble. They may, howerer, sometimes attain a fotal severity. The ceuse is usually obvious, and the treatment is simple; mild purgatives, as rhubarb or castor oil, with or followed by opiates, to remove peccant matters from the istestines; and stimulants, as ammonia or alcohol, if there bo much collspse. Certain fungi or mushrooms are known to bo specifically poisonous, such as the Amanita muscaria, or flo-fungus, and others. Certain kinds of mushrooms, nsually innocuous, are occasionally poisonous or dcleterious; and the cause of this is not always clear. Poisonous fungi produce narcotic and irritant symptoms.
(2) Poisonous, Tainted, or Putrid Meal. -The obvious characteristics of good sound flesh meat are that ita colour is red-neitber pale pink nor deep purple ; that it is marbled in appearance; firm and elastic to the touch, scarcely meistening the fingers; having a alight and not unpleasant odour; and that when exposed to the air for a day or two it should neither became dry on the aurface nor wet and sodden. Sound meat is acid to litmus psper; unseund meat :nay be neutral or alkaline. Deat may be tainted with physic administered to the animal. It is a common practice, when a fat ond valuable animal is unwell, to physic it, and if its recovery be not speedy to slaugliter it. The meat of such animals may often be met with in our markets, and may induce illness from the physic with which it is contaminated. The effects of simple putridity are most varied. It is well known that bome nations habitually eat nutrid meat, and even prefer it to fresh; and the development of rottenness in egrs for the enicure is an art in Chioa. There is no doubt that fabit has much to do with the tolerance by the stomsch of putrid meat, whether cooked or uncooked. But tainted game, and indeed all kinds of jnest in which putrefaction has commonced, may indubitably produce disease. This is chiefly of a diarrhcal character, preceded by rigora, and attended with cellapse and, it may be, convulsiens and other signs of a profound affection of the nervona aystem. The effects of each tainted meat are slight as compared with thoso which are produced by the sausage-peison, develeped by a sort of modified putrefaction in certain German sausages. These sausages, when they become musty and soft in their interior, nauseous in odour and flavour, and strongly scid to test paper, acquire a highly poisonous character, and are frequently fatal in their cifects. The symptems produced by the use of peisonous tlesh are gastric pain, vemiting, disrrhcea, depression, celdness of the limbs, and weak irregular action of the heart. Fatal cases end in convulsions and oppresser respiration, death ensuing from the third to the eighth day. The nature of the sausage-poison, which is probably akin to that of putrid and indeed all non-specifically tainted meata, has been a matter of considerable controversy. Some have held that the poisonnus action is due to the devalopment-of rancid fatty acida ; others believe that a so-called catalytic body is produced, canable of setting up by centact a similar catalytic action. Others have regarded the sausage-poison as due to the formation of pyrogeneous acids during the drying or amoking of the sausages. The recent discovery by Selmi of a class of poisoneus alkaloids or amides, termed plomaines, developed during putrefaction of animal matters, on the one hand, sind the discovery by Ballard and klein, still more recently, that the fatally poisonous properties of lams prepared according to the American methed may be due to the presence of a parasitic bacillus, point to one or other of thesc two latter causesas tbat of the effects of sausage-poison. Others again have referred the effects to the presence of a microscopic fungus-Sarciua botulina.

The poisonous nature of the flesh of animals which liave fed on certain plants-for example, lares which hava fed on certain species of rhododendron, pheasanta en the kalmia shrub, \&c. -has been sbundantly demonstrated, and need only be referre:l to here. The honey from bees which lave garnered on poisonons plants, as the azalea, may likewise be deleterious; and the fact is of classic interest. The milk even of goats which have browsed on porsonous herbs has also proved noisoneus.
(3) Diseased Mreat. - The poisonous effects of mest affected with certain parasites-trichinæ, cysticerci, trematodes, \&c., is an undoubted fact. Great quantities of meat pass through our markets which is undoubtedly the flesh of animals affected with disease, auch as foot-and-mouth disease, pleuro-pneumenia, pig typhoid, the so-called scarlatina of swine, sheep-pox, \&c.; and the question is quite undecided as to whether such flesh produces any injurione effects. To stop the sale of auch meat would be to cut of large sonrces of our meat supplies. The evils attending the use of such diseased meat, when rell cooked, have nndoubtedly been exagger. ated ; but, on the other hand, there is eneugh evidence to show that the use of certain kinds of diseased meat may be tollowed by serious
results. Thus it is generally admitted that the flesh of animals which have suffered from pleuro-pneumenia and murain will give rise to boils and carbuncles. Braxy mutton may also preduce disease when eaten. Trichinæ will produce trichinosis, flukes, the tape-werm, \&c. Hams are occasionally fatally poisonous; and this has been traced to the presence of certain lew organismus knewn as bacilli:
(4) Poisonous Fish.-Fish is sometimee a poisonous article of food. Cascs of peisoning ly the so-called shell-fish of the British islands are not unfrequently met with. Generally it is the eating of crabs, lobstcrs, and mussela which produces such results. These are asually of a distressing rather than of a serious claracter, nettle-rash being a common symptom. Occasionally, hewever, fatal resulta have ensued from the use of mussels. In tropicat scas poisonous fish are more plentiful-the gelden sardine, the bladder fish, the grey suapper, \&c. ; and, these being eaten by larger fish, as the barracuda, perch, glebe-fisb, cenger eel, \&c., the latter may in turn beceme poisoneus.
Good cookery, that is, exposure to a sufficiently high temperaturo for a sufficiently lengthened time, is undoubtedly the best measure to adopt short of absolute destruction of unsound and diseased meat. So long aa meat is high-priced, and the effects of diseased meat so little understood and so undefined, it will he impossible to induce medical officers of health and sanitary inspectors to seize all the diseased snd unseund meat which ia daily offered for sale. Notwithatanding all that has been aaid to the contrary, experienced obscrvers are pretty well agreed that thoreugh exposure of the meat thronglout to the temperature at which albumen ia ceagulated is destructive to the parasites of flesh. Smoking is less effective. Salting is more effective than smoking; but there is some evidence to show tbat salting may merely hold the life of organisms in susplense without cntirely deatroying their vitality; and thua in thic conversion of salted pork inte hams-a process of re-salting and subscquent drying-the specific germ (a bacillus) has lieen knoun to be again rendered harmful. It is not known whether efficient cooking entirely semores the deleterious effects of flesh affected with other than parasitic disease, as for example pleuro-pmeumonia.

The curative measures for the results of cating poisonous foed cannot be specifically described. They are those which must be arrived at on general priuciples. Symptoms are to ho treated, and the porers of the patient suatained until the deleterieus matter is remorcd by the ordinary clannels, of the trichinæ bave become encysted.

## Histony of Fonensic Medicine.

The true origin of medical jurisprudence is of comparatuvely rccent dote, although traces of its principles nuay be perceived in remote times. Anong the encient Greeks the principles of medical scicnce appear only to haye been applied to legislotion in cortain questions relating to legitimncy. In the writiugs of Galen we find, however, remarks on the differences between the feetal and the ailult lungs; he also treats of the legitimacy of seven months' children, and discussea feigned diseases. Turning to Rome, wa find that the laws of the Twelve Tables fix three hundred days as the extreme duratiou of utero-gestation. It is denbtful whether the Roman law authorized medical inspections of dead bodies. In the code of Justinion we find De Statu Hominum ; De Penis ct Mantemisss; De Sicariis; De Inspiciendo Ventre Custodiendoque I'artu; De Mulicre quæ pcperit undccimo mense; De Impotcutia; De Hermaphroditis, -titles which show obrious traces of a recognized connexion betwicen medicine and law. It was not, however, ly the testimony of living medical witnesses that such questions were to be settlcd, but on the authority of Hippocrates.

Medical jurisprudence, as a science, dates only from the 16 th century. In 1507 the bishop of Bamberg introduced a penal code in which the nocessity of medical evidence in certain cases was recognized; and in 1532 tho emperor Charlea $V$. persuaded the dict of Ratisbon to adopt an uniform code of German penal jurismudence, in which the civil nogistrate wss enjoined in all cases of doubt or difficulty to obtain the evidence of medical witnesses, -as in cases of personal injuries, infanticide, pretended pregnancy, simulated discases, and poisoning. The true dawn of forensic medicme dates, however, from the publication in 1553 of the Constitutro Criminalis Carolza in Germany. A few years later Weiber, a physician, having undertaken to prove that witches and demoniacs arc, in fact, persons subject to hypochondriasis and hysteria, and should not be punished, aroused popular indigastion, and was with difficulty rescued from the flames by his patron, William duke of Cleves.
At the close of the 16 th century Ambrose Pare wrote on monstere, on simulated diseasea, and on the art of draving up medico-legal reports; Finesu also published his treatise on rirginity and defloration. About the same time as these stimuli to the study of foreneic medicine were being made known in Y'sris, the first systematic treatise on the science appeared in Sicily in the form of a treatise De Relationibus Medicorum by Fidele. Psulo Zacchia, the illuatrioua Roman medical jurist, moreover, publighed from 1621
co 1635 u Wut entitied Quxsliones Medico-Legules, Which marks a new era in the history of the science, -a work which displays an ummense rmount of learning and sagaeity in an age when chenlistry was in its infancy, and physialogy very imperfactly underatood The discovery of the cirenlation of the blood by Harvey soon followed, and gave a new impetur to the stndy of those branches of forensic medicine having direct relations to physiology; and to Harvey we awe tho idea how to apply Galen's observations on the differonces between the foetal and the adult lungs to the elucidation of cases of supposed infanticide. About this time, too, Sebiz publishel two treatises, on the sirns of virginity and on the examina. tion of wounds respectively. In tha former he contended that the hynucu was the real mark of virginity; but this was denied by Augenio anel Gassendi. In 1663 Bartnalin, a Danish physician, investigated the period of human uterine gestation, a subject which had engaged the attention of Aristotle. Ile also proposed the "liydrostatic test" for tho determination of live-birth-a test still in use, and applied by observing whether the lungs of an infant float or sink in water. Swammerdam explained the rationale of the process in 1677 ; but it was not tiLl 1082 that it was first practically applied by Jan Schreyer.

Germany, ever the leader in questions of forensic medicine, introduced tha first public lecturea on mediral jurisprudace. Michaelis gave the first course abeut the middle of the 17 th ecatury in the university of Leipaic; and these were followed by the lectures of Bohn, who also published De Renunciatione Vuluerum; cui accesscrant Dissertationcs binæ de partue cnecato, et an quis vivus martuusve aquis submersus, strangulatus, aut whlncralus fucrit, and Dc Offei部 Medici Duplicis, Clinici et Forcusis. Welsch and Amman wrote on the fatality of wounds, and Licetus on monsters.

From the time of Ambrose Pare the mode of conducting investigations in Corensic medicine had attracted attention in France; and in 1603 Henry IV. authorized his physician to appoint persons skilled in medicinc and surgery to make medico-leral inspections and reports in all cities and royal jurisdictions ; in 1692, dilf. culties haviug arisea, Iouis XIV. created hereditary royal plysicians and surgeons for tho performance of like duties. Thesc, having become a corrupt and venal body, were suppressed in 1790 . The only works on forensic modicine which appeared in France during the 17 th century, however, wero Gendry's Sur les Moyens de dien rapporter is Justice, and Blegny's Doctrine des Rapports en Chirurgic. At the beginning of the 18th century the latter was superacded as a text-book by Devaux's L'art de faire des rapports en chirurgic. Valentini followed with two works, which wero finally incorparated in his Corpus Juris Medico-Legale which appearod in 1722. This work is a vast sterelouse of medico-logal information, and a sumnary of the knowledge of the time.

Professorships for teaching the subject were founded in the German universities early in the 18th century, and numerous treatises on formsic medicina wero published. Teichmeyer's Institutiones Midicine Logalis long formed the text-book of the subject; and Alberti, professor of legal medicino at Halle, is his syslema gave to the worll a most complate and laborious treatise on the science. Ilis industrious collection of facts renders hia works a precions mine of information. Indecd towarda the close of last century tho Germans were almost the only cultivators of legal medicine. lut in France the celcbrated case of Villeblancho athracted attemtion to the subject, and called forth Louia, who in a memoir on uteroogestation attacked with powerful argumenta the pretended instancea of protracted pregnancy, and paved the way for the ruloption in the Code Napolion of three hundred days as the limit of utero-gestation, a period in precise accordance with the a acient Roman law of the Twalve Tables. Louis alse wrote on death from hanging, and peinted out the mode by which we may diatinguish murder from suicide under anch circumstances. It is ho who is credited with having been the firat in France to publicly teach the just application of medical knowledge to jurisprudeace. Forlcrés celubrated 7'onité de Médecine Légale appeared in 1798, and marks a new era in the annala of legal medicine.

No Britiah anthor wrote ayatematically on forensic medicine till 1788, when Dr Samucl Forr published a short treatise on the Elcments of Medical Jurispurulence; but thls was merely an abridgment of no aarlier work of Fazelins. l'revious writers, as Mead, Munro, Denian, Percival, and the two IIunters, had, howaver, dealt witl fragnicnta of the subject; noverthetese the sciencte лs $\mathfrak{a}$ "hole was little appreciated or rocognized in inis country during the last century.

In the present century Franco took the lead; and the institution of three professorships of forensic modicine at the end of the 18 th century produced excellent fruita. In 1814 Oifiln, a Spaniard by birth, but naturalized in France, published his Toxicologie, a work which ravolutionized this branch of madical jurisprudence, and first placed the knowlelge of poisoma upon a scientific baaia. Since the time of Orfila, France lins never ceased to have one or more living medical jurists, among the most reeent of whom we must ennmerate Tardi-u, whose treatises on aboltion, on poisons, on wounds
\&c., rre justly celcurated. Germany too has industriously yursmed the subject, and Casper's great work on foreosic medicine will ever ramain a classic in the science. In Russia Dragendorlf has greatly contributed to our knowledge of joisons.
Though iorensic medicine may bo said to have Been entirely neglected in England till the beginning of the presentecentry, its progress has since been by no meaus slow or unimportant ; and the subject now forms a recognized and obligatory pultion of anedical study. The firat lectures delivered in Great Britnin were given in the university of Edinburgh in 1801 by the eller Dr Duncan ; and the first protessorship was held by his son in 1803. Dr Alfred Swaine Taylor gave tha first course of lectures delivered in England, at Gny's llospital in 1831 ; and in 1863 the university of Londou made forensic medicine a separate subject for examination and honours for medical graduates. In 1822 there was not in the English lauguage any treatise of authority either on medical jurispudence or on any important division of the subject; for it was not till the following year that the useful compendium of Paris and Fonblanque was published; nud even half a century ago medical jurisprudence may be said to have been almost in its infancy as compared with what it is now. Since 1829 Creat Britain has proluced an abundant crop of literature on forensic medicine. Sir Robert Cliristison's admirable treatise on Toxicology, Dr A. S Taylor's Principles and Practice of Dredical Jurisprudence, the same author'a Elements of Medical Jurisprudence, Dr Guy's Forensic Medicinc, and Ogston's Lectures on Medical Jurirprudence are well-known and widely circulated works. The separate memoirs of Taylor, Christison, Guy, and others are also storeheuses of facts and deductions in the science.

America, too, has not been behind land in the race. Wharton and Stille's Manneal and Wormley's Toxicology are the best-known works of American authors.
(T. S. *)

MEDICI. This family is renowned in Italian history for the extraordinary number of statesmen to whom it gave birth, and for its magnificent patronage of letters and art. It emerged from private life and rose to power by means of a very subtle policy that was persistently pursued from generation to generation. The origin of the family is buried in obseurity. Some court historians indeed deelare it to have lieen founded by Persens, and assert that Benvenuto Cellini's bronze Persens holding on high the head of Medusa was executed and placed in the Loggia dei Lanzi to symbelize the vietory of the Medici over the republic. But this only proves that the real origin of the family is unknown, and equally uuknown is the preciso signifieation of the Medicean aruns-six red balis on a field of gold.
The name appears in Florentine chronicles as early as the close of the 12 th century, although only casually mentioned in connexion with various offices of the republie. The first of the family to be a distinet figure in histore was Salvestro dei Mediei, who, in the year 1378, took an actives part in the revolt of the Ciompi-so-called because it was led by a wool-earder (ciompo), one Miehele di Lando, and beeause the chief share in it was taken by the populace, whe held the reins of government for some time, and souglit to obtain extended political rights. But, althongh Michele di Lando was the nominal ehief of the revalt, Salvestre dei Medici was its real leader. The latter, although a nember of the greater guilds, had joined the lesser and seught to be at their head, in order to lay the foundation of his own power and that of his kindred by attaeking the Albizzi, who wera the leading men of the greater guilds. The wietory of the Ciompi, however, was brief, for the excesses of the lower classes brought about a reaction, in which they were erushed, and Miehsle di Lando sent into banishment. Nevertheless the lesser guilds lad gained some ground by this riet, and Salvestro dei Mediei the great popularity at which he had aimed. His poliey during tbat period bad traced the scle possible read to power in liberty-loving Florence. And this was the road heneeforth pursued by the Medici.
On Salvestro's death in 1388 the Albizzi repossessed themselves of the government, and conducted the wars of the republic. Vieri dei Medici, whe seems to have been the nest bead of the family, understanding the temper of
the time3, abstaincd from becoming a popular leader, and left it to his successors to prosecute the task under easier conditions. Then, in the person of Giurami, son of Bicci dei Medici ( $1360-1429$ ), another branch of the family arose, and becane from that time forward its representative braacl. Indeed this Giovanni may be considered the actual founder of Medicean greatness. He took little part in political affuirs, but realized an imonense fortune by trade,-establishing bauks in Italy and abroad, which in his successors' hands became the most efficieut engides of political power. The council of Constance (l4141418) enabled Giovanni dei Medici to realize enormuls profits. Besides, like his ancestor Salvestro, he was a constant aupporter of the lesser guilds in Florence. . Historians record his frequent resistance to the Albizzi when they sought to oppress the people with heavier taxntion, and his endeavours to cause the chief weight to fall upom the richer classes. For this reason he was in favour of the so-called law of catasto, which, by assessing the property of every citizen, prevented those in power from arbitrarily imposiag taxes that unjustly bardened the peopla. In this may, and by liberal loans of inooey to all who were in need of it, he gaived a reputation that was practically the foundation-stone of the grand family edifice. Giovanui dei Medici died in 1429 leaving two sons, Cosimo (13891464) and Lorenzo (1395-1440). From the furmer proceeded the branch that held absolute sway for many generations over the nominal republic of Florence. and gave to Italy popes like Leo N . and Clement VII. On the extinction of this elder line in the 16 th century, the younger branch derived from Lorenzo, Cosimo's brother, seemed to acquire uew life, and for two centuries supplied gradd-dukes to Tuscany. Cosimo, surnamed Cosimo the Elder, to distinguish him from the inany others bearing the same name, and hoaoured atter his death by the title of Pater patrix, first succeeded ia solviag the strange problem of becoming absolute ruler of a republic that was keenly jealous of its liberty, withont holding any fixed office, wlthout suppressing any previous form of goverament, and always preserving the appearance and demeanour of a private citizen. Born in 1389 , he had already reached the age of forty at the time of his father's death. He had a certain amount of literary culture, and througlinut his life showed much taste and an earuest love both for letters and art. But his fatber had mainly trained him to commerce, for whicht he had a special liking and aptitude. In fact he was devoted to business to the day of hia death, and like his forefathers derived pecuniary advantage from his friendly relations with the papal court. He accompanied Pope John XXIII. to the council of Constance, transicted a vast amount of business in that city, and made very large gains. He then travelled in Germany, and after his return to Florence discharged several ambassadorial inissions. At the death of his father he was possessed of a vast fortune and an exiended experience, and iaherited the leadership of the opposition to the then dominant party of the grenter guilds headed by Rinaldo degli Albizzi, Palla Strozzi, and Niccolo da Uzzaño. Of gentle and kindly manners, generous in lending and even in giving money whenever he could gain popularity by that means, at critical moments he frequently came to the succour of the Government itself. He was very dexterous in turaing his private liberalities to account for the increase of his political prestige, nad showed no less acumen and still fewer scruples in making use of his political prestige for purposes of pecuniary profit. Indeed, whenever his own interests were at stake, he showed himself capable of positive rillainy, although this was always tempered by calculatiou. Cosimo proved his skill in these knavish arts during the war between Florence and Lucca. He had joined the Albizzi in urging on this war, and many writers assert
that he turned it to mach pecuuiary ndrantage by meanis of luans to the Govermuent and other banking operations. When, however, military affairs went ladly, Cusino jeined the discontented populace in iurectives against the war and those who had conducted it. This won him nu enormous increase of popularity, but the haticd of the Albizzi and their friends uugnented in equal degree, and a conflict becaue inevitable. The Albizzi, who were far more impetuous and impatient than Cosinio, were now bent upoa revenge. In 1433 one of their own friends, Bernardo Guadagni, was clected gonfalonier, and thereupon Cosimo dei Medici was called to the palace and summarily imprisoned in the tower. A general assembly of the people was convoked and a "balia" closen, which changed the Goverument and sent Cusimo into exile. Undoubtedly the Albizzi party would have preferied ulicavier sentence, but they did not dare to attempt their enemy's life, being well aware of the great number of his adherents. Cosino had some apprehension that he uight be poisoned in prison, but Federigo dei Mala volti, captuin of the palace guard, showed him the utinost kindness, and, in order to soothe his fears, voluntarily shared his meals. On the 3 d October the prisoner wns seut to Padun, his allottcd place of exile.

The Albizzi speedily sam that they had done either too much or too little. While seeking to keep the gorernment entirely in their own hands, they beheld the continual growth of the Medici party. When it was necessary to make a campaign in Romagna against the mercenary captaina commanding the furces of the duke of Milan, it was plainly seen that in bonishing Cosimo the republic had lost the ouly citizen banker in a position to assist it with considerable loans. The Florentines were defeated by Picciaino in 1434, and this event greatly incrensed the public exasperation against the Albizzi. Meanwhile Cosimo, who had gone to Padua as a private individual, was entertained there like a prince. Then, being permitted to transfer his residence to Venice, le entered on a course: of lavish expenditure. He was over whelmed with letters and appeals from Florence. Finally, on the 1st of September 1434, a aignory was elected composed of his fi iends, and his recall was decreed. Rinaldo degli Albizzi deterniaed to op posm it by force, and rushed to the Piizza with a band of ormed men; but his attempt failed, and be left the country to return no more. The Medici were now reinstated in all their former dignities and honours, and Cosimo, on the, evening of September 6th, rode past the deserted mansions of the Albizzi aud reentered his own dwelling nfter an exile of a year. For three centuries, dating from that moment, the whole history of Floreuce was connected with that of the house of Medici.

Cosimo's first thought was to sccure himsclf against all future risk of removal fron Floreuce, and accordingly he drove the most powerful citizens into exile to all parts of Italy. Nor did he spare even his former political adrersary, Palla Strozzi, although the latter had been fnvourable to him during the recent changes. His rigour in this particular case: was universally censured, but Cosimo would tolerate no rivals in the city, and was resolved to abase the great families and establish his power by the support cf the lower classes. He was accustomed to say that states could not be ruled by paternosters. Still, when cruelty seemed requisite, he always contrived that the chief odiaun of it should fall upon others. When Neri Capponi, the valiant soldier and able diplomatist, gained great public favour by his military prowess, and his influence was further iacreaser by the friendship of Baldaccio d'Anghiari, captain of the infantry, Cusimo resolved to meaken his position by indirect ineans. Accordingly, when in 14418 partisan of the Medici was elected gonfalonier, Baldaccis was instantly summoned to the palace, imprisoned
murdered, and his body hurled from the window. so ono could actually fix this crime upon Cosimo, but the majurity believed that he had thus coutrived to rid himself of one eneny and cripple another without showing inis land. It was impossible for Cosimo openly to assume the position of tyrant of Flurence, nor was it worth his while to become goutalonier, since the term of office only lasted two munths. It was necessary to discover soma other way without resurting to violence ; he accordingly employed what were then designated "civil methods." He menaged to attain his wbject by means of the "balic." These magistracies, which were generally renewed every fivc years, placed in the ballot bags the namez of the candidates from whom the signory and other chief magistrates were to be chosen. As soon as a "balia" favourable to Cosimo was formed, he was assured for five years of having tho government in the hands of men devoted to his interests. He had comprehended that the art of politics depended rather upon individuals than institutions, and that he who ruled men could also dictate laws. His toreign policy was no less astute. His great wealth enabled him to supply money not only to private individuals, but even to foreign potentates. Philippe de Conines tells us that Cosimo frequently furnished Edward IV. of England with sums amounting to many hundred thousand tlorins. When Tummaso Parentucelli was still a cardinal, and in needy circumstances, Cosimo made hin considerable loans without demanding gurrantees of payment. On the cardinal's accession to the tiara as Nicholas V. he was naturally very well disposed towards Cosimo, and employed the Medici bank in Rome in all the affairs of the curia, which brought immense prufits to the house. At tho time when Francesco Sforza was striving fur the lurdship of Milan, Cosimo foresaw his approaehing triuniph, showed hin great friendship, and aided him with large sums of money. Accordingly, when Sforza becanie lurd of Milan, Cosimo's power was doubled. Without the title of prioce, this merchant showed ruyal geuerosity in his expenditure for the promotion of letters and the fine arts Numerous edifices were raised and public works accomplished wath his pursc. Besides his palace in the city, he constructed noble villas at Careggi, Fiesole, and other places. He built the basilica of Fiesole, aud that of St Lorenzo in Florence, and enlarged the church and monastery of St Mark. Even in distant Jerusalent he cudowed a hospice for the use of pilgrims. The artists of the day comprised men like Domatello, Brunelleschi, Gliverti, Luca della liobbia, and nany others, and Cosimu's magnificent commissions not only develuped their powers but stimulated other men of wealth to the patronago of art. Without being a seholar, Cosino had a geumine taste for letters, and gave them much and etlicient patronago. He purchased many Greek and Latin inanuscripts; he opened the first public library at St Mark's at his own expense, and founded another in the abbey of Fiesule. The Greck refugces from Constantinople found a constant welcomo in his palace. During the council of Florence ( $1439-1442$ ), Genısthus Pletho spoke to him with enthusiasm of the Platonic philosephy. Cosimo was so decply attracted by the thene that be deeided to bave tho young Marsilio Fienso traiued in philusophy and Greck learning in order to make a Latin translation of the complete works of llato. And thus a version was pruduced that is still considered one of the best extant, and that llatonic ncademy was founded which led to such important results in the history of Italian philosephy and letters. On the lst of August $146+$ Cosimo brcailhed his last, at the age of seventy-five. while engaged in listening to one of Plato's dialogucs.

The concluding yoars of his life had been years of hittle happiness fur Florencc. Bcing old and infirm, he had left
the gnvernment to the management of his frieuds, among whom Luca Pitti was one of the mure powerful, and they had ruled with disorder, corruption, and cruelty. The lordship of Flurence accordingly did not pass without somo difficulty and danger into the hands of Piero, suruamed the Gouty, Cosimo's only surviving legitimate son. Afflicted by gout, and so terribly crippled that he was often only able to use his tongue, the new ruler soon discorered that a plot mas un foot to uverthrow his power. Howereer showing far more conrage than he was supposed to possesu he had himself borue on a litter from his villa to Florence, defeated his enemies' designs, and firmly re-established his anthority. But his success may be mainly attributed to the enormons prestige bequeathed by Cosino to his posterity. Piero died at the end of five years' reign, on the 3d December 1469, leaving two sons, Lorenzo (144-92) and Giuliano (1453-78). The younger, the gentler and less ambitious of the pair, was, as we shall presently see, quickly remuved from the world. Lorenzu, on the contrary, at once seized the reins of state with a firm grasp, and was, chronologically, the second of the grest men bestowed upon Italy by the house of Medici. In literary talent he was immensely superiur to Cosimo, but greatly his inferior in the conduct of the commercial affairs of the house, for which he lad neither aptitude nor inclination. In politics he had nobler conceptions and ligher ambitions, bat he was more easily carried away by his passions, less prudent in his revenge, and more disposed to tyranny. He had studied letters from his earlest years under the guidance of Ficino and other leading literati of the day, who were constant habitués of the Medici palace. At the age of eighteen he visited the different courts of Italy in order to gain experience of the world and maukind. At his father's death he was only twenty-one years old, but instantly showed lis determiaation to govern Florence with greater despotism than his father or grandfather. He speedily resorted to the aystem of the "balie," and was very dexterons in causing the first to be chosen to suit his purpose. He then proceeded to humiliate the great families and exalt those of little acccunt, and this was the poliey he constantly pursued. His younger brother Giuliano, being of a mild and yiclding disposition, had only a nominal share in the government.

Lorenzo's policy was not exempt from danger, but, although prosecuted mith less cauton, it was still the old astute and fortunate policy intiated by Cosimo. But the grandson bestowed no care upon his commercial intereste, although squandering his fortune with far greater lavishness. Accordingly he was sometimes driven to help himself from the public purse without ever being able to assist it as Cosimo had done. All this excited blame and enmity aganst him, while his greed in the matter of the alum mines of Volterra, and the subsequent sack of that unlappy city, were crinics for which there was no excuse. Among his worst enennies were the Pazzi, and, ns they formed a very powerful clan, he sought their ruin by competing with them even in business transactions. They were just on the point of inheriting the large property of Giovami Borromeo when, in order to prevent this, Lorenzo hurriedly cansed a law to be passed that altered the righ of succession. Tho hatred of the Pazzi was thercby exas perated to fury And in addition to these things there ensued a desperato quarrel with Pupe Sixtus IV, a man of very impetuous teniper, who, on endenvouring to crect a state on the frontiers of the Florentine republic for the benefit of his nepherss, fonnd a detcrmmed and successful opponent in Lorenzo. Consequently tho Pazzı and Archbishop Salvinti, another enemy of Lorenzo, sided by tho nephews of the pontiff, who was himself scquainted with the whole matter, determined to put an end to the family:

On the 26 th April 14 is, whilo Giuliano and Lorenzo were attending high mass in the cathedral of Florence, the former was mortally stabbed by conspirators, but the latter was able to beat back his assailants and escapo into the sacristy. His life sared; and, no longer having to share the goreroment with a brother, Lorenzo profited by the opportunity to wreak cruel vengeance upon his foes. Several of the Pazzi and their followers were hanged from the palaco rindows; others were hacked to pieces, dragged through the streets, and cast iato the Arno, vhile a great many more were condemned to death or sent into exile. Lorenzo seemed willing and able to become a tyrant. But he stopped short of this point. He knew tho temper of the city, and had also to look to fresh dangers threatening him from without. The pope had excommanicated him, put Florence under an interdict, and, being seconded by the Neapolitan king, made furious war against the republic. These hostilities specdily assumed alarming proportions, and the Florentines begau to tire of submitting to so many hardships in order to support the yoke of a fellow-citizen. Lorenzo's hold over Florence seemed endaugered. But he did not lose heart, and, on the contrary, rose superior to the difficulties by which he was cucompassed. He boldly journeyed to Naples, to the court of King Ferdinand of Aragon, who was reputed to be as treacherous as he was cruel, and succeeded in obtaining from him an bonourable peace, that soon led to a recouciliation with Sistus. Thus at last Lorenzo found himself complete master of Florence, and was in a position to turn his power to account. But, as the "balie" changed every five years, it ras always requisite, in order to retain his supremacy, that he should be ?repared to renew the usual mancourre at the close of that term and bare another clected equally favourable to his aims. this was often a difficult acbievement, and Lorenzo showed much dexterity in overcoming all obstacles. In 1480 he compassed the institution of a new council of seventy, which was practically a permaneut "balia" with extended powers, inasmuch as it not only elected the chief magistrates, but had also the administration of numerous state affairs. But, this permanent comncil of his own devoted adherents once formed, his security was firmly established. By this means, the chroniclers tell us, "liberty was buried," but the chief affairs of the state were always conducted by intelligent and experienced men, who promoted the public prosperity. Florence was still called a republic ; the old institutions were still preserved, if only in name. Lorenzo was absolute lord of all, and virtually a tyrant. His immorality was scandalous; he kept an army of spies, and frequently meddled in the citizens' most private affairs, and exalted men of the lowest condition to important offices of the state. Yet," as Guicciardini remarks, "if Florence was to hare a tyrant, she could never have fourd s better or more pleasant oue." In fact all indastry, commerce, aud public works made cnormous progress. The civil equality of moderu states, which was quite unknown to the Middle Ages, was nure develuped in Florence than in any other city of the world. Even the cundition of the peasantry was far mure prosperous than clsewhere. And Lorenzo's authority was not cuntined to Tuscany, but was also very great throughout the whole of Italy. Fie was on the friendliest terms with Pope Innocent VIII., from whom he obtained the exaltation of his son Giovanni to the cardinalate at the age of fourteen. This boy cardinal was afterwards Pope Leo X. From the moment of the decease of Sixtus IV., the union of Flurence and Rome became the basis of Lorenzo's foreign polics. By its means he was able to present the hatreds and jealousies of the Sforzas of Milan and the Aragonese of Naples from bursting into the open conflict that long threatened, and after bis death ectually catised, the beginning of new and irrenarable
calamities. Henee Loreuzo was styled the needle of the Italian compass.

But the events we have narrated cannot suftice for the full comprehension of this complex character, unless we add the record of his deeds as a patron of letters and his achicvements as a writer. His palace was the school and resort of illustrious men. Within its walls were trained the two young Medici afterwards kuown to the world as Leo X. aud Clemeut VII. Ficino, Puliziano, Pico della Mirandola, and all members of the Platonic academy were its constant habitués. It was here that Pulci gave readings of his Morycurte, and Michelangelo essayed ṭe first strokes of his chisel. Lorenzo's intellectual powers were of exceptiooal strength and versatility. He could speak with equal Huency on painting, seulpture, music, philosoply, and poetry. But his crowuing superiority over every other Hiecenas known to history lay in his active participatiou in the intellectual labours that he promoted. Indeed at certain moments he was positisely the leading spirit amung the literati of his time. He was an clegant prose writer, and was likewise a poct of real originality. At that period Italians were forsaking erudition in order to forward the revival of the national literature by recurring to the primitive sources of the spoken tongue and popular verse. It is Lorenzo's lasting glory to base heeu the initiator of this movement. Without beiug-as somo lave maintained-a poet of genius, be was certainly a writer of much finish and eloquence, and one of the first to raise popular poetry to the dignity of art. In his $A m b r a$, his Caccia del Falcone, and bis Nencia da Barberino, he gives descriptions of nature and of the rural life that he loved, with the graphic power of an acute and tasteful observcr, joined to an ease of style that occasionally sins by excess of homeliness. Both in his art and in his politics he leaut upor the people. The more oppressive his government, the more did he seck in his rerses to ineite the public to festivities and lull it to slumber by sensual enjoyments. In his Ballate, or sungs for dancing, and more especially in his carnival songs, a kind of verse invented by himself, Lorenzo dinplayed all the best qualities and worst defects' of his muse. Marvellously and spuntaneously elegane. very trnthful and fresh in style, fertile in faucy and rich in colour, they are often of a must revolting indecency. And these compusitions of one filling a princely station iu the cits were often sung by their author in the public streets, in the midst of the populace.

Lurenzo left three sons,-Pietru (1471-1503), Giovanni (1475-1521), and Giuliano (1479-1516). He was succceded by Pietro, whuse rule lasted but fur two years. During this bricf tern he performed no goud deeds, and only displayed inurdinate vanity and frivolity. His conduct greatly lielped to foment the hatred between Lodovico Sfurza and Ferdinand of Naples, which hastencd tho coming of the French under Charles YIII., and the renewal of foreign invasions. No suoner did the French approach the frontiers of Tuscany than Pietro, crazed with fear, bastencd to meet them, and, basely yielding to every demand, accepted terms equally humiliating to himself and the state. But, returning to Florence, he found that the euraged citizens had already decreed his deposition, in order to reconstitute the republic, and was therefore compelled to escape to Venice. His various plots to reiustate himself in Florence were all unsuccessful. At last he went to the south of Italy with the French, was drowned at the passage of the Garigliano in 1503, and was buried in the eloister of Monte Cassino.

The ensuing period was adrerse to the Medici, for a republiean gorernment was maintained iu Florence from 1494 to 1512 , and the city remained faithful to its alliance with the F'zench, who were all-nowerful in Italy. Cardinal

Giovanini, the hend of the family, resided in liome, playing the patron to a eircle of literati, artists, and friends, seeling to increase his popularity; and calmly waiting for better days. The battle of Ravenua wrought the downfall of the fortunes of France in Italy, and led to the rise of those of Spain, whose troops entered Flurence to destroy the republic and renstate the Medici. Pietro had now been dead for some time, learing a young son, Lerenzo (14921519), who was aftervards duke of Urbino. The following year (1513) Cardinnl Giovanni was elected pope, and bssumed the name of Leo X. He accordingly remored to Rome, leaving lis brother Giuliano with his neplew Lorenzo in Florence, and accompanied by his cousin Giulio, who was n natural son of the Gialiano murdered mo the conspiracy of the Pazzi, and was suon destined to be a cardinal and ultimately a pope. Meanwhile his kinsmen in Florenee continued to govern that eity by means of a "balia," although preserving an empty show of republican institutions. And thus, being masters of the whole of central Italy, the Mediei enjoyed great authority throughout the country, and their ambition plumed itself for still ligher fights. This was the moment when Niccold Machiavelli, in his treatise The Prince, counselled them to accomplish the uaity of Italy by arasing the whole country, and expelling its foregin invaders.

Leo $X$., who is only indirectly convected with the history of Florence, gave his name to the age in which he lived in consequence of his magnificent patronage of art and letters in Rome. But he was merely a clever amateur, and had net tha literary gifts of his father Lorenzo. He surrounded himself with versifiers and inferior writers, who enlivened his board and accompanied him wherever he went. He liked to lead a gay and untroubled life, was foud of theatrical performunces, satires, and other intellectual diversions. His patronage of the fine arts, his genuine affection for Taphael, and the numerous works he caused to be executed by him and other artists, Lave served to confer an exaggerated glery on his mame. He failed to comprehend the significance of the great religious movement already stirring in Germany, and harl not the rematest iden of the grave importance of the lieformation, which indeed he unconscionsly promoted by his reckless and shameless sale of indulgences. The whole policy of Pope Leo X. consisted in oscillating between Franee and Spain, in al ways playing fast and loose, and deceiving both powers in turn. Yet the evil results of this contemptible policy never seemed to disturb his mind. He finally joined the side of the emperor Chnrles T., and in 1521, at the time of the defeat of the French by the Spanish troops on the river Addn, he ceased to breathe at his fnvourite villa of Maglinnn. Ginliano dei Medici had died during Leo's reign, in 1516, without having ever dene anything worthy of record. He was the husband of Philiberta of Savoy, was duke of Nemours, and left a matural son, Ippolito dei Mediei (1511-1535), who nfterwards became a cardinal. Lorenzo, being of more ambitious temper, wns by no means eontent to remain at the bead of the Florence Ciovernment hampered by many restrictions impased by repulliean institutions, nind subject to the incessant cuntrol of the pope. In his eajerness to aggrundize his kinsmen, the latter had further decided to give Lorenzo the duchy of Urbino, and formally invested him in its rights, nfter expelling on false pretences its legitimate lord, Francesco Maria della Rovere. This prince, however, soun returned to Urbinn, where he was juyously welcomed by his subjects, and Lorenzo regained possession only by a war of several months, in which he wns wounded. In 1519 he nlso died, worn out by disease and excess. liy his marriage with Madeleine de la Tour d'Auvergne, he had one daughter, Caterina dei Medici (1519-89), married in 1533 to Itenry, duke of

Orleans, ulterwards king of lrance. She played a long and sinister part in the history of that country. Lerenze also left a natural son named Alessandro, inheriting the frizzled hair and projecting lips of the uegro or mulato slave who had given lim Lirth. His miserable death will be presently related. Thus the only thrce surviving representatives of the chief branel of the Medici, Cardinal Ginlio, Ippolito, and Alessandro were all of illegitimate birth, and left no legitimate heirs.
Cardinal Giulio, who lad laboured successfully for th $\$$ reinstatement of lis fanily in Florence in 1512, had been lung nttached to the persion of Leo $X$. us lis trusted factotum and companiun. He liad been generally regarded as the mentor of the pope, who bod no liking for hard work. luat in fact, his frivolity notwithstanding, Leo $\mathcal{X}$. always followed his own inclinations. He had much aptitude for command, and pursued his sluttling poliey without any mental anxiety. Giulio, on the contrary, bhrank from all respousibility, muddled his brains in weighing the reasons for and against every possible decision, and was therefore a better tool of government in others' hands than he was fit to govern on his own aceount. When Giuliano and Lorenzo died, the yope appointed the cardinal to the governmeut of Florence. In that post, restricted witlin the limits imposed by republican institutions, and acting under the continual direction of Rome, he performed his duties fairly well. He caressed the citizens with hopes of estended liberties, which, although never destined to be fulfilled, long served to keep men's minds in a pleasant flutter of expectation ; and when the more impatieat spirits attempted to raise a rebellion he speedily quenched it in blood. When, after the death of Leo X. and the very brief pontificate of Adrian VI., he was elected pope (1523) under the name of Clement Y'II., he entrusted the government of Florence to Cardinal Silvio Passerioi conjoiatly with Alessandro and Ippolito, who were still too young to do much on their own account.
The pontificate of Leo $X$. had been a time of felicity to himself if of disaster to Italy and the chureh. The reign of Clement, on the contrary, was fatul to himself ns well, a result chiefly due to his hesitating temper and continual uncertainty of mind. His policy, like that of Leo X . consisted in perpetual oscillation between France and Spain. By his endeavours to trick all the world, he frequently ended in being tricked limself. In 1525 he was the ally of the Freach, who then suffered a terrible defeat at Pavia, where their king lirancis I. was taken prisoner. The armics of Charles V. triumplantly advanced, without Clement being able to oppose aoy effectual resistance. Both Rome and Florence were tbreatened with a fearful catastrophe.
Thus fin we hase had no occasion to speak of the younger branch of the MItdici, descended from Lorenzo, brother to Cosino the Elder. Always io obscurity, and al ways held in check by the elder line, it now seemed to acquire new life, and first entered the arena of history when the other was on the point of extinction. In fnct the most raliant captain of the papal forces mas Giornnni dei Medici, nfterwards known by the nome of Giovamni delle Bande Nere. IIis father was Giovanni, son of Pier Francesco, who was the sou of Lorenzo, the brother of Cosimo dei Medici. IIistory bas littlo to tell of the elder Giovanni ; but his wife Caterima Sforza, of whom he was the third linsband, was a woman of more than masculine vigonr. Giovanni dei Medici married ber in 1497, but died in 1498, leaving her with one son who was christened Lodurico, but afterwards touk his father's name of Giovanni ( $1498-1526$ ). Trained to arms from his earliest yenrs, this youth inkerited all the energy of his mother, whose Sforza blond seemed to infuse new life into the

Younger wanch of the Mcdici. Notrithstanding his
extreme youth, he had alreally achieved the title of the best captain in Italy. He always fought with immense dash and daring, and was devotedly loved aud obered by his suldicry. He was the only leader who opposed a determined resistance to the imperial forces. He was seriously wounded at l'avia when fighting on the F'rench side. On his recorery be joined the army of the Leagne, and was much euraged by finding that the duke of Urbino, commamer of the Yenetian and papal forces, would nerer decide on attalking. When the imperial troops were strugeding through the marshes of Mantua, surround on on erery side, and without stores or ammunition, Giovanni could not resign limself to inactivity like his colleagues in command. He was igoorant that the imperialists lad just received supplies and artillery from the duke of Ferrara, and therefore duringly attacked them with a small body of men withont taking any precantions for defence. One of the first shuts fired by the enemy injured him so fatally that he died a few days after. He was married to Maria Salviati, by whom be had one son, Cosimo (1519-157t), born, as we shall see, to lofty fortunes, for lie became the first grand-duke of 'Tuscany, and judeed the founder of the grand-duchy and the ner dynasty.

Meanwhile the imperial army pursued its march apon Rome, captured the Eternal City after a few lours' combat, and cruelly sacked it during many days (1527). Thanks to his perpetual shuffling and excessive avarice, the pope found hiniself utterly forsaken, and, being unable to defend the city, was obliged to seek refuge in the castle of St Angelo, whence ho only effected his escape after some montlus. He thensigned a treaty of alliance with the enperor (1529), who sent an army to besiege Florence and restore the Madici, whom the people had expelled in 1527 on the te-establishment of the republic. After an heroic defence, \$he city was forced to surrender ( 1530 ) ; and, although it was expressly stipulated that the ancient liberties of Florence should be respected, every one foresaw that the conditions would be violated. In fact, pope and emperor immediately began to dispute as to which should be the new lord of the city. Clement VII. Lad inherited the traditional family dislike for the younger branch of his kin, aud so the choice lay between the tro bastards Ippolito and Alossandro. The former being a cardinal, the latter was Citta di Penna, came to Florence in 1531, and by imperial patent was nominated head of the republic. According to the terms of this patent, the furmer liberty enjoyed under the Medicean rule was to remain iutact. But no previous ruler of the city bad enjoyed hereditary power confirmed by imperial patent, and such porrer was incompatible with the existence of a republic. Moreover, Clement VII. shomed dissatisfaction with the uncertainty of the power conferred upon his kinswan, and finally succeeded in ottaining additional privileges. On the 4 th of April 1532 a parliament was convoked for the last time in Florence, and, as usual, approved every measure proposed for acceptance. Accordiagly a new council was formed of tro lundred citizens elected for life, fortyeight of which number were to constitute a senate. Alessandro, as duke of the republic, filled the post of gonfalonier, and carried on the government with the assistauce of three senators, changed every three mouths, who took the place of the suppressed sigunry.

The duke's chief advisers, nud the contrivers of all these arrangements, were Taccio Valori, Francesco Vettori, and above all Francesco Guicciardini,-men, especially the tro latter, of lofty political gifts and extensive influence. The mind and character of Duke Alessandro were as yet comparatively unknown. At first he scemed very auxions
to min the favour of the people, and disposed to rule with ${ }^{+}$ justice and prulence. But soou encountering difficultios that he was unable to orercome, he began to neglect the business of the state, treated his ner office as affording the means for increased indulgence in pleasure and rice, and acted as if the sole function of government consisted in lulling the people by festivities aud corrupting it by the dissulute life of which he set the example. The question of the noment was the transformation of the old republican régine into a priucedom; as au unavoidable result of this change it followed that Elorence was no longer to be the ruling city to whose inhabitants alone belonged the monopuly of prolitical office. When the leading Florentioe families renlized, not only that the republic was destroyed, but that they were reduced to equality with those whom they had hitherto regarded as their inferiors and subjects, their rage was indescribable, and hardly a day passed withont the departure of influential citizens who were resolved to achiese the overthrow of their new ruler. They found a leader in Cardinal Iprolito dei Medici, who was then in Rome, enbittered ly the preference giveu to Alessandro, and anxious to beconie Lis successor with the least possible delay. Under the pressure of terror the duke at once became a tyrant. He garrisoned the different cities, and began the erection in Florence of the Fortezza da Basso, built chiefly at the expense of Filippo Strozzi, who. aftermards met his death within its walls.
In 1534 Clement VII: died, and the election fell on Paul III., from whom Cardinal Ippolito hoped to obtain assistance for his designs. Accordingly the principal Florentino exiles were despatched on a mission to the emperor Clarles V . with complaints of Alessandro's tyranny and his shameless violation of the terms upon which the city had surrendereci. Cardinal Ippolito also represented his own willingness to carry ou the government of Florence in a more equitable manner, and promised the emperor a large sum of money. lieply being delayed by the emperor'a absence, he became so impatient that he set out, accompanied by several exiles, to meet Clarles in Tunis, but on the 10 th of August 1535 died suddenly by the way, at Itri, poisoued by order of Alessandro. Such at least was the general belief, and it was confirmed by the same fate befalling other evemies of the duke about the same time. On the emperor's return from Africa, the exiles presented thenselres to him in Naples, and the rencrable patriot Jacopo Nardi pleaded their cause. Duke Alessandro, being cited to appear, came to Naples accompanied by Francesco Guicciardini, who by speaking in his defence rendered bimself odious to all friends of liberty, and irretrievably tarnished his illustrious name. The cardinal being dead, it was hard to find a successor to Alessandro. On this account, and perhans to some extent through the enperor's personal liking for the duke; the latter rose higher than before in the imperial favour, married Margaret of Austria, the natural daughter of Charlcs, and returned to Florence with increased power. And now Alessandro indulged unchecked in the lorest excesses of tyranny, and although so recently a bridegroom gave way to increased libertinism. His thole time was passed in vicious hannts and in scandalous adventures. In order to conceal the obscurity of his birth, he left his mother to etarve, and it was eren asserted that he finally got rid of her by poison.
His constant associate in this disgraceful rontine mas his distant kinsman Lorenzo, generally known as Lorenzino dei Medici. Of the younger branch of the Medici, the latter was second consin of the Cosimo already mentioned as the son of Gioranni delle Bande Nere. He had muclu culture and literary talent, but led an irregular life, simetimes neting like a mudnan and sometimes like a
villain. He was a writer of considerable elegance, the autbor of several plays, one of which, the Aridosio, was keld to be among the best of the age, and lie was a worshipper of antiquity. Notwithstanding these tastes, when in Rome he knocked off the heads of some of the finest statues of the age of Adrinn, an act by which Clement VII. was so incensed that he threatened to have him hanged. Thereupon Lerenzino fled to Florence, where he became the friend of Duke Alessandro and his partner in the most licentious excesses. They went together to houses of ill-fame, and violated private dwelings and convents. They often showed themselves in public mounted on the same horse. All Florence eyed them with disgust, but no one foresaw the tragedy that was soon to take place.

Ou the evening of January 5th, 1537, after a day pissed in the usual excesses, Lorenzino led the duke tn his own lodging, and left him there, promisiug shortly to return with the wife of Leonardo Ginori. Alessandro, worn out by the exertions of the day, fell asleep on the couch while awaiting Lorenziso'n return. Before long the latter came accompanied by a desperado kunwn as the Scoronconcolo, who aided him in falling on the sleeper. Roused by their first thrusts, the duke fought for his life, and was only despatched after a vinlent struggle. The murderers then lifted the body into bed, hid it beneath the clothes, and, Lorenzino baving attnclied a paper to it bearing the words, vincit amor pative, laudumque immensa cupido, they both fled to Venice. In that city Lorenzino was assassinated some ten years later, in 1548, at the age of thirty-tro, by order of Alessandro's successor. Thus he was only about twenty-two at the time he committed the nurdcr. He wrote an Apologia, in which he defended himself with great skill and eloquence, saying that be had been urged to the deed solely by love of liberty. For this reason alone he had followed the example of Prutus and played the part of friend and courtier. The tone of this Apologia is so straightforward, sometimes even so eluquent and loftr, that we should be tempted to give it credence were it possible to believe the assertions of one who not only by his crime but by the infamy of his previous and subsequent eareer completely gave the lie to his vaunted nobility of rurpose. By A lessandro's death the elder branch of the Medici became extinct, and thus the nppearance of the younger line was heralded by a bloody crime.

When the duke's absence from has own palace was discovered on the morning of January 6th, he was at first supposed to have spent the night with one of his mistresses ; but soon, some alarm being felt, search was made, and Cardinal Cybo was the first to discover the nurder. Enjoining the strictest secrecy, he kept the corpse concealed for three days, and then had it interrcd in the sacristy of San Lorenzo. Meanwhule he had hastily summoned Alessandro Vitelli and the other captains, so that, by the time Alessandro's death was made public, the city was already filled with troops. The cardinal then convoked the council of forty-eight to decide upon a successor Alessandro's only issue was a natural son named Giulin, aged five. The cardinal favoured his election, in the hope of keeping the real sovercignty in his own hands. But he speedily saw the impossibility of carrying ont a design that was ridiculed by all. On the other hand, Guicciardini, Yettori, and others of the leading citizens favoured the choice of Cosimo, the son of Giovanni delle Bande Nere. II was alrcady in Florence, was aged seventeen, was keen-witted and aspiring, strong and handsome in person, heir to the enormous wealth of the Medici, and, by the terms of the imperial patent, was Alessandro's lawful successor. Charles V. approved the nomination of Cosimo, who without delay seized the reins of goverument with a firm grasp. Like Alessandro, he was named head of the
republic; and Guicciardini and others who had worked hardest in his cause hoped to direct him and keep him under their control. But Cosimo soon undeceived them by proving that, his youth notwithstanding, he had a will of his own, and was resolved to rule unshackled by republican forms and unhampered by advisers disposed in act as mentors. The Florentiues bad now an absolute prince who was likerrise a statesman of eminent ability.

On learning the death of Alessandro and the election of Cosimo, the exiles apyreciated the necessity for prompt action, as all delay would be fatal to the overthrow of the Medicean rule. They had received money and promises from France; they were strengthened by the adhesion of Filippo Strezzi and Baccio Valori, who had both become bostile to the Medici through the infamous conduct and mad tyranny of Alessandro ; and Strozzi brought them the help of his enormous fortune and the prowess of that rery distinguished captain, his sun Piero. The exiles accordingly met, and assembled their forces at Mirandola. They had about four thousand infantry and three hundred horse; among them were members of all the principal Florentine families; and their leaders were Bernardo Salviati and Piero Strozzi. They marched rapidly, and entered Tuscany tomards the end of July 1537. Cosimo on this occasion displayed signal capacity and presence of mind. Fully informed of the exiles' movements by means of his spies, he no sooner learned their approach than he ordered Alessandro Vitelli to collect the best German, Spanish, and Italian infantry at his disposal, and advance against the enemy without delay. On the evening of July 31 Vitelli marched towards Prato with seven hundred picked infantry and a band of one hundred horse, and on the way fell in with other Spanish foot soldiers who joined the expedition. At early dawn the following morning he made a suddeu attack on the exiles' advanced guard close to Montemurln, an old fortress converted into a villa belonging to the Nerli. Haring utterly routed them, he proceeded to storm Montemullo, where Filippo Strozzi and a few of his young comrades had taken refugeand barricaded the gates. Knorring that they must either conquer or die, they made a desperate resistance for some hours; and then, orerwhelmed by superior numbers, were obliged to yield themselves prisoners. The main body of the army was still at some distance, having been detained in the mountains by heary rains and dificult passes, and, on learning the defeat at Montemurlo, its leader refused to adrance, and turned back by the way he had come. Alessandro Yitelli then reentered Florence with his victorious nrmy and his fettered captives. Cosimo had achieved his first triumph.
All the prisoners, who were members of great families, were brought before Cosimo, and were received by him with courteons coldness. Soon, however, a scaffold was erected in the Piazza, and on four mornings in succession four of the prisoners were belieaded. Then the duke saw fit to stay the executions. Daccio Valori, however, and his son and nephew wcre beheadcd on the 20th of August in the courtyard of the Bargello. Filippo Strozzi still survived, eonfined in the Fortezza da Basso, that had been built at his expense. His fanily was illustrious, he lad numeroua adlerents, and he enjored the protection of the French king. Nevertheless Cosime only arnited some plausible pretext to rid himself of this dreaded enemy. He brought him to trial and lad hum put to the question. But this cruelty led to nothing, for Strozzi denied every accusation and bore the torture with much fortitude. On December 18 th he was found dead in his prisen, with a bloed-stained sword by his side, and a slip of paper bearing these words: ernniare aliquis nostris ex ossibus ultor. It was belicred that, having renounced all hepe of his life being spared, Strozai had proferred suicicle to death at the hands of the
executioner. Some, however, thought that Cosimo had caused him to be murdered, and adopted thls mode of concealing the crime. The young priace's cold-blooded massacre of his captives cast an enduring shadow upon his reign and dyoasty. But it was henceforward plain to all that he was a man of stern resolve, who went straight to his end without scruples or half measures. Before long he was regarded by many as the incarnation of Machiavelli's Prince, "inasmuch as he joined daring to talent and prodence, was capable of great cruelty, and yet could practise mercy in due season." Guicciardini, who still pretended to act as mentor, and who on account of his many services had a certaiu iufluence over him, was obliged to withdraw from public life and busy himself with writing his Ilistory at his villa of Arcetri. He died in this retreat in 1540, and it was immediately runoured that the duke had caused him to be poisoned. This shows the estimation iu which Cosimo was now held. It was true that he punished with death all who dared to resist his will. By 1540 sentence of death had been pronounced against four hundred and thirty contumacious fugitires, and during his reign one hundred and forty men and six women actually ascended the scaffold, without counting those who perished in foreign lands by the daggers of his assassins. He reduced the old republican institutions to empty forms, by making the magistrates mere creatures of his will. He issued the sternest edicts agaiust the rcbels, particularly by the law known as the "Polverina," from the name of its proposer Jacopo Polverini. This law decreed not only the confiscation of the property of exiles, but likewise that of their heirs, eren if personally acquired by the latter. Cosimo ruled like the independent sorereign of a great state, and always showed the capacity, firmness, and comrage demanded by that station. Only, his state being small and weak, he was forced to rely chiefly upon his personal talent and wealth. It was mecessary for him to make heary loans to the different European sovereigns, especianty to "Charles V., the most rapacions of them all, and to give enormous bribes to their ambassadors. Besides, he had to carry on wars for the extension of his dominions, and neither his inherited wealth nor the large sums gained by confiscating the estates of rebellious subjects sufficed for all this outlay. He was accordingly compelled to burden the people with tares, and thus begin at once to dimidish its strength.

Cosimo bore a special grudge against the neighbouring republics of Siena and Lucca. Although the latter was small and weak, and the former garrisoued by Spaniards, jet the spectacle of free institutions at the frontiers of his own state served as a contimual incitement to subjects disaffected to the new régime. In fact Francesco Burlamacchi, a zealous Lucchese patriot, had conceired the design of re-establishing republican gorernment in all the cities of Tuscany. Cosino, with the emperor's help, succeeded in baviog him put to death. Lucca, however, was an insignificant state making no pretence of rivalry, whereas Siena was an old and formidable foe to Florence, and had always given protection to the Floreutine exiles. It was now very reluctantly submitting to the presence of a Spanish garison, and, being stimulated by promises of prompt and efficacious assistance from France, rose in rebellion and expelled the Spaniards in 155 . Cosimo instantly seized the opportunity, wrote to the emperor in terms that appealed to his pride, asked leave to attack Siena, and loegged for troops to ensure the success of his enterprise. As no immediate answer arrivcd, lie feigned to begin negotiatious with Henry II. of France, and, by thus arousing the imperial jealousy, obtained a contingent of German and Spanish infantry. Then came a long and bloony war. Siena was bcsigged for fifteen months, and its iuhabitants,
aided by the valour of Piero Strozzi, who fough under tha French flag, rade a most heroic resistance, even women and children helping on the walls. But fortune was against them. Piero Struzzi sustained several defeats, and finally the Sienese, haring exhausted their ammunition and being decimated by famine und the sword, were obliged to capitulate on honourable terms that were shamelessly violated. By the varied disasters of the siege and the number of fugitives the population was reduced from forty to eight thousand inhabitants. The republicans, still eager to resist, withdrew to Montalcino. Cosimo norr ruled the city and territory of Siena in the name of Charles V., who always refused him its absolute possession. After the emperor's abdication, and the succession of Philip II. to the Spanish throne, Cosimo at last obtained Siena and Pontoferra by giving up his claim to a sum of 200,000 ducats that he was to have receired from Cliarles V. In 1559 he also captured Montalcino, and thus formed the grandduchy of Tuscany, but he continued to govern the new state -i.e., Siena and its territories-separately from the old. His rule was intelligent, skilful, and despotic; but his enormons expenses drove him to raise large sums of money by special contrivances unsuited to the conntry and the people. Hence, notwithstanding the genius of its founder, the grand-duchy held from the first the elements of itsfuture decay. Cosimo preferred to confer office upon men of humble origin in order to have pliable tools, but he also liked to be surrounded by a courtier aristocracy on the Spanish aud French pattern. As no Tuscan aristocracy any longer existed, he created new nobles, and tempted foreign ones to come by the concession of various fendal privileges; and, in order to turn this artificial aristocracy to someaccount, he founded the kuightly order of St Stephen, charged with the defence of the coast against pirates, which in course of time won much honour by its prowess. He also established a small standing army for the protection of his frontiers; but, as we have seen, he generally employed German and Spanish troops for his wars, and always had a foreign bodyguard. At the commencement of his reign he opposed the popes in order to maintain the independence of his orw state; but later, to ubtain help, he truckled to them in many ways, even to the extent of giving up to the Inquisition his own confidant, Piero Carnesecchi, who, bcing accused of heresy, was beheaded and burnt in 1567 . In reward for these acts of submission, the popes showed him friendship, and Pius V. granted him the title of grand- Titleo. duke, conferring the patent and crown upon hin in Rome, gransalthough the emperor had always withheld his consent. dnkes Finally, howerer, the latter confirmed the title to Cosimo's successor. The measure most injurious to Tuscany wa.s the fiscal system of taxes, of which the sole aim was to extort the greatest possible amount of money. The consequent damage to industry, commerce, and agriculture was immense, and, added to the devastations caused by the Sienese war, led to their utter ruin. Otherwise Cosimo did not neglect useful measures for the interior prosperity of his state. He was no Mrecenas, but nerertheless restored the Pisan university, enlarged that of Siena, bad the public records classified, and also executed public works like the Santa Triniti bridge. During the great inuuda. tions of 1557 be turned his whole energy to the relief of the sufferers.

In 1539 he had espoused Eleonora of Toledo, daughter of the riceroy of Naples, by whom he had several children. Two died in 1562 , and their mother soon follored them to the grave. It was said that one of these boys, Don Garcia, had murdered the other, and then been killed by the enraged father. Indeed Cosimo was further accused of having put his own wife to death; but neither rumour had any foundation. He now showed signs of illness and failare
of strength. He was not old, but worn by the cares of state and self-indulgence. Accordingly in 1564 he resigned the goverament to his eldest son, who was to act as his lieutenant, since he wished to remain the virtual head of the state and have power to resume the sceptre on any emergency. In 1570 , by the advice of Pius V., he married Camilla Martelli, a young lady of whom he had been long enamoured. In $15 \tilde{7} 4$ he died, at the age of fifty-four years and ten months, after a reign of thirty-seven years, leaving three sons and one daughter besides natural children. These suns were Francesce, his successor, who wis already at the bead of the goveroment, Cardinsl Ferdinand, and Piero.
Francesco I., bora in 1541, began to govern as his father's lieutenate in 1564, and was married in 1565 to the archduchess Gievana of Austria. On beginaing to reign on his own account in 1574, he speedily manifested his real character. His training in the hands of a Spanish mether had made-him snspicious, false, and despotic. Holding everyone aloof, he carried on the government with the assistance of a few devoted ministers. He compelled bis stepmother to retire to a couvent, and kept his brothers at a distauce from Florence. He loved the privileges of power withuut its burdens. Cosimo had known how to maiutain his independence, but Francesco cast himself like a vassal at Austria's feet. He reaped his reward by obtaining from Maximilian II. the title of grand-duke, for which Cosimo had never been able to win the imperial sanction, but he forfeited all independence. Tewards Philip II. he showed even greater submissiveness, supplying hin with large sums of money wruug from his over-taxed people. He held entirely aloof from France, in order not to awake the suspicions of his protectors. In short, under his rule the bistory of Tuscany was reduced to a mere record of lucal and municipal events. To increase his funds, he traded on his own account, thus creatiug a monopoly that was ruinous to the country at large, and led to an enornons number of failures. He raised the tax upon corn to so bigh a rate that few continued to find any profit in growing it, and thus the Maremme, already partly devastated during the war with Siena, were converted into a desent. Even industry declined under this system of goverument; und, although Francesco founded poreelain manufacteries and pietra dura works, they did not rise to any prosperity until after his death. His luve of science and letters was the only Medicean virtue that he possessed. He had an abolute passiun fur clemistry, and paised much of his time in his lahoratory: Sumetimes indeed le gave sullience to his secretaries of state standing before a furmace, bellows in hand. He took some useful measures to promote the rise of a new city at Leghorn, which at that time had only a natural and ill-sheltered harbour. The inprovement of Leeghorn had been first projected by Cusimo I., and was carried on by all the succeeding Medici. Francesco was a slave to his passions, and was led by them to scandalous excesses and deerls of blundsicell. Hix example and neglect of the affairs of the state noon caused a vast increase of crime even among the people, and, during the first eighteen nonths of his reign, there occurred no less than one hundred and sixty-eight murders.

In default of public events, the bistorian of this period enlarye upon private incidents, generally of a scandaluus or sanguinary kind. In 15.5.) Orazio Pucci, wishing to avenge his father, whom Cosimo had hanged, determined to get up a conspiracy, but, soon recognizing how firmly the . lediceen rule had taken root in the country, desisted from the attempt. But the grand-duke, on hearing of the already abandened plot, immodiately caused l'ueci to be hanged from the same window of the Calazzo Yechin, and even from the same iron stauchion, froru which bis father before hins bad hung. His companions, who
had fled to France and England, were pursued and murdered by the ducal ennissarics. Their possessions were confiscated, and the "Pelverina" law applied so that the conspirators' beirs were reduced to penury, and the grand-duke grained mere than 300,000 ducats.

Next year Isabella dei Medici, Francesco's sister, wa3 strangled in lee nuptial bed by her busband, Paolo Giordano Orsini, whem she had betrayed. Piero dei Medic:, Francesco's brother, murdered his wife Eleonora of Toledo from the same mutive. Still louder scandal was caused by the duke's own conduct. He was already a married man, when, passing one day through the Piazza of St Mark in Flurence, he saw an exceedingly beautiful woman at the window of a mean dwelling, and at ence conceived a passion for her. She was the famous Bianca Cappello, a Venetian of noble birth, who had eleped with a joung Flerentine named Pietro Buonaveuturi, to whom she was married at the time that she attracted the duke's gaze. He made her acquaintance, and, in order to see her frequently, nominated her husiand to a post at court. Upor this, Buonaventuri behaved with so much insolence, even to the nobility, that oue evening he was found murdered in the strcet. Thus the grand-duke, who was thought to have sanctioned the crime, was able to indulge his passion unchecked. On the death of the grand-duchess in 1578 he was privately united to Bianca, and afterwards married her publicly. Put sle had no children, and this served to poison her happiness, siciee the mext in succession was her bitter eneny, the cardinal Ferdinand. The latter came to Florence in 1587, and was ostentatiously welcemed by Bianca, who was most auxious to conciliate him. On October 18th of the same year, the grand-duke died at his villa of Poggio a Caiano, of a fever caught on a shooting excursion in the Jarenme, and the next day Bianca also expired, having ruined her health by drugs taken to cure her sterility. But rumour asserted that sle had prepared a poisoned tart for the cardinal, and that, when he suspiciously insisted on the grand-duke tasting it first, Bianca desperately swallowed a slice and followed ber lusband to the tomb.

Such was the life of Francesco dei Medici, and all that can be said in his praise is that he gave liberal encouragement to a fer artists, including Gieranni Eologna, who executed for him the group of the Rape of the Sabines. He was the founder of the Ufizi gallery, of the Medici theatre, and the villa of Pratolino ; and durins his reigu the Delli Crusean academy was instituted.

Ferdinand I. was thirty-eight ycars of age when, in I587, he succeeded his brether on the throne. A cardinal from the age of fourteen, he had never taken holy orders. He showed much tact and experience in the management of ecclesiastical affairs. He was the founder of the Tilla Medici st Rome, and the purchaser of many priceless works of art, such as the ITiobe group and many other statues afterwards transported by him to Florence. After his accession he retained the cardinal's purple until the time of his marriage. He was in all respects his brother's opposite. Affable in his manners and generous with his purse, he chose a crest typical of the proposed mildness of his rule, -a swarm of becs with the motio Majestate tantum. He instantly pardoned all who had opposed him, and left his kinsmen it liberty to chose their own place of residence. Occasioually, for political reasons, be committed acts unworthy of his character; but he re-estrablished the administration of justice, and sedulously attended to the business of the state and the welfare of his subjects. Accordingly Tuscany revived under his rule and regained the independence and political dignity that bis brother had sacrificed to lure of case and personal indulgence. He favoured commerce, and effectually ensured the prosperity of Legiom, ly an edict cujoining toleration towards Jews and
heretics, which led to the settlement of many foreigners in that city. He also improved the barbour and facilitated communication with Pisa by means of the Nariglio, a canal into which a portion of the water of the Aruo was turned. He nevertheless retained the reprehensible custom of trading on his own account, keeping banks in many cities of Europe. He successfully accomplished the draining of the Val di Chinna, cultivated the plains of Pisa, Fucecchio, and Yal di Nicvole, and executed other works of public utility at Siena nad Pisa. But his best euergies were devoted to tho foreigu policy by which be sought to emancipate himself from subjection to Spain. On the assassination (1559) of Henry III. of France, Ferdinand supported the chaims of the king of Navarre, undeterred by the opposition of Spain and the Catholic League, who were dismayed by the prospect of a. Huguenot aucceeding to the throne of France. He lent money to Henry IV., and strongly urged his convarsiun to Catholicism ; he helped to persuade the pope to accept Henry's abjuration, and pursued this policy with narvellous persistence until his efforts were crowned with success. Subsequently, however, Henry IV. showed faint gratitude for the benefits couferred upon him, and paid no attention to the expostulations of the grand duke, who then began to slacken his relations with France, and showed that he could guard his independence by other alliances. He gave liberal assistance to Philip III. for the campaign of the latter in Algiers, and to the emperor for the war with the Turks. Hence he was compelled to burden his subjects with enormous taxes, forgettiag that while guaranteeing the iadependedce of Tuscany by his loans to foreign powers he was increasingly sapping the strength of future generations. He at last succeeded in obtaining the formal investiture of Siena, which Spain had always considered a fief of her own.
During this graud-duke's reign the Tuscan navy was notably increased, and did itself much honour on the Mediterranean. Tho war-galleys of the kuights of St Stephen were despatched to the coast of Barbary to attack Bona, the headquarters of the corsairs, and they captured the town with much dash and bravery. And in the following year (1608) the same galleys achieved their most brilliant victory in the archipelago over the stronger fieet of the Turks, by taking nine of their vessels, seven hundred prisoners, and a store of jewels of the value of $2,000,000$ ducats.

Ferdinand I. died in 1609, leaving four sons, of whons the eldest, Cosimo II., succeeded to the throue at the age of niucteen. He was at first assisted in the government by bis mother and a council of regency. He had a good disposition, and the fortune to reign during a period when Europe was at peace and Tuscany blessed with abundant harvests. Of his rule there is little to relate. His chief care was given to the galleys of St Stephen, and he sent then to assist the Druses against the Porte. On one occasion he was involved in a quarrel with France. Cuncino Concini, the Marshal d'Ancre, being assassinated in 1617, Louis XIII. claimed the right of transferring the property of the murdered man to De Luynes. Cosimo opposed the decision, and, refusing to recognize the confiscation decreed by the French tribunals, demanded that Concini's son should be allowed to inherit. Hence followed much itl-feeling and mutual reprisals between the two countries, finally brought to an end by the intervention of the duke of Lorraine.

Like his predecessors, Cosimo II. studied to promote the prosperity of Leghorn, and he deserves honour for abandoning all commerce on his uwn account. But it was no praiseworthy act to pass a law depriving women of almost all rights of inheritance. By this means many daughtera of the nobility were driven into convents against their will. He gave scanty attention to the general affairs of the state.

He was fond of luxury, spent freely on public fertivities, and detested tronble. Tuacany was apparently tranquil and prosperous; but the decay of which the seeds arere eown under Cosimo I. and Ferdinand I. was rapidly spreadiog, and became befura long pateat to all and beyond all hope of remedy. The best deed done by Cusimo II. was the protection accorded by him to Galileo Golilei, who had removed to Padua, and there made some of his grandest discoveries. The grand-duke recalled him to Florence in 1610, and nominated him court mathematician and philosopher. Cosimo died in February 1621, after twelve years of a quiet reiga marked by uo great event. Feeling his end draw near, when he was only aged thirty aud all his sons were still in their chiidliood, he hastened to arrange his family affairs. His mother, C'ristina of Lorraine, and his wife, Maddalena of Austria, were nominated regents and guardians to his eldest son Ferdinand 1L., a boy of ten, and a council of four appointed, whose functions were regulated by law. Accordingly, after Cosimo's death, the young Ferdinand waa sent to Rome and Vienna to complete his education, and the guverument of Tuscany renained in the hands of two jealous and quarrelsome women. Thus the administration of justice and finance speedily went to ruid. Out of submissiveness to the pope, the regents did not dare to maintain their legitimate right to inlerit the duchy of Urbino, and in 1623 sanc-tioned the transfer of that right to the holy see. They conferred exaggerated privileges on the new Tuscan nobility, which became increasingly insolent and worthless. They resumed the practice of tradiag on their own account, and, withont reaping much benefit thereby, did the utmost damage to private enterprise.

In 1627 Ferdinand II., then aged seventeen, returned to Ferdinane Italy und assumed the reins of government; but, being of a II. very gentle disposition, he decided on slaring his power with the regents and his brothers, and arranged matters in such wise that each was almust independent of the other. He gained the love of his subjects by his great goodness; and, when Florence and 'Tuscany were cruelly ravaged by the plague in 1630, he showed admirable courage, and carried out many useful measures. But he was totally incapable of energy as a statesman. When the pope made bitter complaints because the board of health had dared to subject certain monks and priests to the necessary quarantine, the grand-duke insisted on his officers asking pardon on their koees for having done their duty. On the death in 1631 of the last duke of Urbino, the popa was allowed to seize the duchy without the slightest opposition on the part of Tuscany. As a natural cunsequence the pretensions of the Roman curia became increasingly exorbitant ; ecclesiastics usurped the functions of the state; and the ancient laws of the republic, together with the regulations decreed by Cosimo I. as a check npon similar abuses, were allowed to become obsolete. On the extinction of the line of the Gonzagas at Mantua in 1627, war broke out betreen France on the one side and Spaiu, Germany, and Savoy on the other. The grandduke, uncertain of his policy, trimmed his sails nccurding to events. Fortunately peace was re-established in 1631. Mantua and Monferrato fell to the duke of Nevers, as France had always desired. But Europe was again in arms for the Thirty Years' War, and Italy was not at peace. Urban VIII. wished to aggrandize his nephews, the Barberini, by wresting Castro and Ronciglione from Odoardo Farnees, duke of Parma and brother-in-law to Ferdinand. Farnese determined to maintain his rights, and marched his arny through Tuscany into the territories of the pope, who was greatly alarmed by the attack. Naturally the grand-duke was drawn into the war to defend his own stato and hia kinsman. His military operations, however, were of the feeblest and often the most laughable character. At
last, by means of the Frencl intervention, peace was made in 1644 . But, although the pope was forced to yield, be rasigned none of his ecclesiastical pretensions in Tuscany. It was during Ferdinand's reign that the septuagenarian Galileo was obliged to appear before the Inquisition in Rome, which trested him with mfamons cruelty. On the death of this great and unfortunate man, the grand-duke wished to erect a monument to him, but was withbeld by fear of the opposition of the clergy. The dynasty as well as the country now seemed on the brink of decay. Two of the grand duke's brothers bad already died childiess, and Ippolito, the sole survivor, was a cardinal. Accordingly the only remaining heir was Cosimo IIf., married to a wife who beld him in detestation, and did her best to have her marriage aunulled or at least obtain a separation.

I'ka nearly all his predecessors, Ferdinand II. gave liberat patronage to science and letters, greatly aided therein by his brother Leopold, who lad been trained by Galileo Galilei, and who joined with men of learning in founding the celebrated acadeny Del Cimento, of which he was named president. This seademy took for its motto the words Provando e riprovando, and followed the experienental method of Galileo. Formed in 1657, it was dissolved in 1667 in consequence of the jealousies and dissensions of its members, but during its brief existence won renown by the number and importance of its works.

Cosimo III. succeeded his father in 1670 . He was weak, vain, bigoted, and hypocritical. In 1661 he had espoused Louise d'Orléans, niece of Louis XIV., who, being enamoured of Duke Charles of Lorraine, was very roluctant to come to Italy, sad speedily detested botlr her husband and his country, of which she refused to learn the language. She had two sons and one daughter, but after the birth of her third child, Giovau Gastone, her hatred for her husband increased almost to madness. She first withdrew to Poggio a Caisno, and then, being unabla to get her marriage snoulled, returued to France, , where, although suppased to live in conventual seclusion, she passed the greater part of her time as a welcome visitor at court.' Even her testamentary dispositions attested tha violence of her dislike to her husband.

Cosinu's hypocritical zeal for religion compelled his subjects to multiply services and processions, that greatly infringed upon their working hours. He wasted enormons sums in pensioning converts-even those from other countries-and in giving rich endowments to sanctuaries. Meanwhilo funds often failed for the payment of Government clerks and soldiers. His court was composed of bigots and parasites; he ransseked the world for dainties for his table, sdorned his palace with costly foreign hangings, lad foreign servants, and filled his gardens with exotic planis. He purchased from the emperor the title of "Highness " in order to ba the equal of thà duke of Savoy. He remaiued neutral during tho Franco-Spanish war, and submitted to every bumiliation and requisition exacted by the emperor. He had vague notions of promoting agrisulture, but accomplished no results. At one time he caused eight hundred families to be brought over from the Morea for tha cultivation of the Maremne, where all of them died of fever. But when, after tha revocation of the edict of Nantes, French Huguenots offered to apply their labour and eapital to the same purpose, the grand-duke's religious scruples refused them refuge. So ruin fell upon Tuscany. Crime and misery increased, and the poor, who only asked for work, were given alms and sent oftener to churelh. This period witnessed the rise of maoy charitable institutions of e religious character under the patronage of the grand duke, ns for instance the congregation of San Giovanni Battista. But these could not remedy the general decay.

Cosimo's dominant nuxiety regarded the succession to
the throne. His eldest son Ferdinand died childless in 1713. The pleasure-loving Giovan Gastone was married to Anna Maria of Saxe-Laueuburg, widow of a Cermans prince, a wealthy cuarso woman wholly imuersed in domestic occupations, and who seemed little likely to giva birth to any children. After living with her for some time in a Bohemian village, Giovan Gastono yielded to bis dislike to his wife and her country, withdrew to France, and rained his health by hisexeesses. After a briof return to Bohemia he finally separated from his wife, by whom ha had no family. Thus the dynasty was doomed to extinetion. Cosimo had a passing idea of reconstituting the Florentine republic, but,this design being discountenanced by the European powers, he determined to transfer the succession, after the death of Giovan Gastone, to his sister Anna Maria Louisa, who in fact survived him. For this purpose he proposed to annul the patent of Charles V., but the powers objected to this arrangement also, and by the treaty of 1718 the quadruple alliance of Germany, France, England, and Holland decided that Parma and -Tuscany should descend to the Spanish 'Infinte. Dou Carlos. The grand-duke mada energetic but fruitlcss protests.)

Cosimo III. had passed his eightieth year at the time of bis deceare in October 1723, and was succeeded by his $80 n$ Giovan Gastone, then aged fifty-three. Tha new sovereign wes in bad health, worn out hy dissipation, suld had neither anibition oor aptitude for rule. .His throna was slready_at the disposal of foreign powers, and his only thought"on"ascending it was to regain strength enough to pass the remainder of his days in enjoyment. He dismissed the apies, parasites, and bigots that had formed his father's court, cbolished the pensions given to cooverts, suppressed several taxes, and prohibited the organized espionaga estab. lished in the family circle. He wished to live and let live, and liked the people to be amused. Eversthing in fact bore ' $a$ ' freer and gayer aspect under his reign, and the Tuscans seemed to feel rene wed attachment for the dynasty as the moment of its extinction drew near. But the grandduke was tou feeble and incapable to accomplish any real improvement. Surrounded by gay and dissipated young mea, ha entrusted all the cares of goverament to a certain Giuliano Dami, who drove a profitable trade by the sale of offices and privileges. In this way all things were in the hauds of corrupt individuals; while the grand-duke, compelled to pass the greater part of his time in bed, vsinly sought diversion in the company of buffoons, and was only tormented by pereeiving that all the world disposed of his throne without even asking his advice. And when, after prolonged opposition, he lad resigned himself to accept Don Carlos as his successor, the latter led a Spanish army to the conquest of. Naples, an event afterwards leading to the pesee of 1735 , by which the Tuscan succession was transferred to Francesco II., duke of Lorraine, and husband of Maria Theresa. - Giovan Gastone was finally obliged to subnit even to this. Spain withdrew her garrisons from Tuscany, and Austrian soldiers took their place and swore fealty to the grand-duke on the 5 th of lebruary 1737. He expired on the 9th July of the same year. Such wes the end of the younger branch of the Mediei, which had found Tuscany a prosperous country, where art, letters, commerce, industry, and agriculture flouristred, and left her poor and decayed in all ways, drained by taxation, and oppressed by laws contrary to every principle of sound economy, downtrodden by the clergy, and burdened by a weak and vicious nristocracy.

Capponi, Storia della Repubblica di Firenze, Florence, 1875: Fostoe, Life of Lorenzo dei Medici, and Life of Leo I.; Alfred von Reaumont, Lorenso dei Medici, il Magnifico, Leipsic, 18 it ; Galluzzi, Storia del Granducato di Tareana solto il goterno di Cisse M/edici, 5 vols., Elorenec, 1787 ; A. von Reaumont, Gesehichte Toscanas seit d. Ende 1. forent. Freistautes, 2 vols., Gotha, 1876 (P. I.)


## MEDICINE

## PART I.-SYNOPTICAL VIEIV OF MEDICINE.

MEDICINE, the subject-matter of one of the learned professions, includes, as it now stands, a wide range of ecientific knowledge and practical skill. The history of its growth from small beginnings in Greece is traced in the second section of the present article; it remains here to give a synoptical view of medicine, including its scientific or philosophical position, its subdivisions or ramifications as an art and discipline, and its relations to the body politic.

Scientific Position of Medicine.-The science of medicine is the theory of diseases and of remedies. While the notiou of disease is necessarily or inevitably correlated with the notion of health, there is no necessary and invariable relation, but, on the other hand, a merely conventional nssociation, between a disease and a remedy. Thit part of the science of medicine which corresponds to the theory of remedies is not therefore in a position scientifically inferior to the theory of diseases; for each article of the materia medica-apart from a few inert substances-has a certain effect on the organisn in bealth and in disease, which is ascertainable with scientific precision. Those properties and actions of drugs are the subject of pharmacology and toxicology; the circumstances under which the several articles of the materia medica become remedial are the
subject of therapeutics, and therapeutics is dependent for its scicntific position upon the completeness of the theory of diseases, or pathology.
Disease is the correlative of health, and the word is not capable of a more penetrating definition. From the time of Galen, however, it has been usual to speak of the life of the body either as proceeding in accordance with nature (kazà фóvov, secundum neturam) or as overstepping the bounds of nature ( $\pi$ apà фívov, prater naturam). Taking disease to be a deflexion from the line of health, the first tequisite of medicine is an extensive and intimate acquaintance with the norm of the body. The normal condition of the body is capable of being determined without ambignity ; it is the absence from its structures and functions of every disease hitherto known. The structure and functions of the body form the subject of anatomy and physiology. '
Physiology is, strictly speaking, the science of that which is кarà фúviv, or secundum naturam, and it is usual to say that the theory of diseases is based upon physiology. But, although all that ras implied in the Hippocratic term фiors (ratura) may be claimed as the subject-matter of physiology, yet, in the ordinary connotation of the term, physiology divides the empire with anatomy. To physiology the functions of the body are usually assigned, and to.
anatomy its form and structure. But, as a matter of fact, the structures and functions of the organism are not teparable; structure is correlated to function, whether active, dormant, or extinguished, and in like manner function is the trin notion of structure. In the ultimate analysis neither term means aaything without the other, and both together mean life It. is owing mostly to its name that physiology is supposed to have a preponderant interest for the theory of clisease; the word anatomy is not well adapted to carry its own half of the structure-and-function dualism. Both in the historical development and in the logical connotation, enatomy is as much associated with the living and moving body as physiology itself; but its ctymology has always been against it, and it has become more and more difficult to retain for anatomy auything beyond the technicalities of the dissecting-room. The subject of general anatomy has for the most part disappenred from modern text-books, its place being taken by histology, which deals with the minute structure of the simple tissues, and, in a wider acceptation, with the finer anatomy of all the organs and parts of the body. Histology, like anatony; has bad a somewhat teclanical or descriptive rôle assigned to it; and it is now mainly under physiology that the processes, activities, or living mechanisins of the body fall to be considered. The development of the body as a whole, and of its several tissues and organs, forms the subject of embryology; many of the physinlogieal types of diseased processes, especially the cellilar, are discoverable in the embryological period. For the period of development, no arbitrary separation has been attempted hitherto between structure and function, and embryology is, in theory at lenst, as much physioiogical as anatomical. The development of function is a legitimate and even desirable sujject of scientific study, and a more distinctive place is probably awaiting it in the Puture: but so-indissoluble does the union of structure and function present itself in the period of genesis and growth that the function has lardly as yet come to be abstacted from the stracture. or the structure from the function.

The theory of disease rests, therefore, upon physiology, with its mnre or less technical adjuncts. Pathology is all that physiology is, with the engrossing and difficult element of perturbation; deflexinn, or shortcoming added. By virtue of this element of deriation from the line of health, pathology is a discipline apart, with an abunchant litcrature of its orrn, and with scparate academical institutes ancl chairs. But pathology is also a discipline apart by virtue of concepts proper to itself. A great part of the theory of discase cleals with changes or defects of structure and perturbations or failings of function, whieh may be intricate or diffecult to analyse, but aro still well within sight of the lino of health. Such are the common discases of the organs and systems-tho inflammations, catarths, derenerations, hypertrophics, and functional derangements without lesion of the respiratory, circulatory, nervons, genitn-urinary, locomotor, and cutaneous systems. Conslitutional ol general diseases belong also to the provinco of perturbations from the physiologrical course,- such discases as chlorosiz, lenkrmia, diabetes, gont, rheumatism, scurry, rickets, Addison's disease, exophthalmic goitre, and the febrilo state. Again, congenital deficiencies or malformations, non-cencerons tumours, and the repairing of injuries cxemplify no other laws than those of clevelopment and growth.

But with those examptes the eatalogue of physiological discases is exhausted. We are left with a vast residuo of discases, which havo always bulked largely in the popular mind, and have carried the most terrible associations with them. Such are the pestilences or diseases of peoples:-
the plague, sweating sickness, cholera, sellow fever, typhus fever, relapsing fever, typhoid fever, diphtheria, small-pox, measles, scarlet fever, intluenza, dengue. Such also are the cancers, consumptions, leprosies, and other loathsome infections. This enormous residue is more than the half of disease, and the definition of disease or the scheme of pathology is brought to a test in finding room within its scientific eategories for such maladies as those. The popular imagination in all countries has personified them; medicine in its metaphysical period has regarded them as entities or things in themselves; and it remains to be seen in what ray or to what extent medicine in its scientific period will bring them within the category of perturbations of the physiological life.

In considering, for a monent, where to place canrer in the pathological scheme, we shall arrive at a point of view from which the relation of the acnte and chronic infcetions (or contagions) to diseases of the physinlogical order may be contemplated at least provisionally. Taking cancers, in a generic sense, to mean tumours that hare acquired or are possessed of malignancy, we finct that such tumours have many points in common with simple tumours,- that they have grown out of the tissues of particular organs or parts under particular (functional) cireumstances, and that they may, in general terms, be traced back to that point at which they left the line of health (see Pathology). The tracing back of tumours along the physiolugical track is of ten difficult and laborious; but there is no tumour of the body whose origins are not at length discoverable within the limits of physiological action. That which makes any tumour a cancer is something over and beyond; it is a remarkable acquired property of reproducing its structure in manifold copies, or of infecting the organism of which it is itself a part. The tumour thus becomes a semi-independent power withia the body; it may be said, in a political figure, to have acquired autonomy, or to have become imperium in imperio. A due consideration of such a phenomenon as the infectiveness or cancerousness of some tumours will satisfy one that there are concepts in pathology which carry the inrestigator entirely beyond physiolngical bounds or out of sight of the line of health, which bring him face to face with the notion of a disease as a thing in itself, and which thus constitute a peculiar subject-matter. There is nothing that we know among biological phenomena altugether analogous to the semiindepeadence which on integral part of the body, or condition of the body, manifests towards the orgnnism as a whole, and that, too, strictly in respect of its acquired devious or rebellious habit. The familiar definition of disease, morbus est rita prater naturam, which embodies the notion of divergence from the line of lealth, makes an provision for an acquired autonomy of a morbid state; and that definition has to be suppleniented by another, which will recognize the possibility of a clisease becoming a thing in itself. The old definition of Tan Melmont, morlus est ens reale subsistens in corpore, appears to satisfy the requirement; but that definition, although it grew out of the phononena of disease as observed in fevers, was made too general, and has now associations that are too exclusively ontological and metanhysical. The supplementary definition should be as far as possible in the terms of the principal definition; and we shall provide best in the pathological scheme for such a disease as cancer if, in addition to the formula morbus est vita mater naturam, wo construct a secondary formula, mortus est vivem in vizo.

The notion of autonomy acquired by a morbid state implies, naturally, a pre-autonomous stage of the disease, which had been a mere perturbation of the norm of the body: capable of being measured hy the physiological standari. Tho autononsous stage and the pre-autonomous
stage, which may be demonstrated, in individual cases, for cancers, are a philosophical accessity for all other infective diseases that are marked by morphological features, or by structural characters rooted in and growing out of the proper textures of the body. Thus the peculiar skia eraption of small-por, which is communicable from person to person, along with a distinctive course of fever, must hare had pre-autonumous aatecedents (not altogether historically vague) in certain casnal cunditions of the skiu and associated constitutional distorbance, which had recurred and become inveterate, anc laci so attained to a degree of individuality or a poitt of astonomy at which they began to be propagated as an organic unit. Again, n second group of infections, exemplified by glanders, bovine tubercle, and syphilis, are rooted in deeper textural processes, which must have been at oue time (and may still be) set up by the casual operation of ordinary eauses, and nt length became the oceasion of infective mimiery. It is not so easy to pieture (and it is not diffieult, with a modern dominant school, to ignore) the casual morbid eonditions or ordinary plysiologieal perturbations ont of which powerful infections like cholera, typhoid fever, or yellow fever may have arisen; but if the rise and consolidation of their autnnomy be a sultle or even untraceable history, yet there are diseases, such as dysentery and erysipelas, which are apt to oceur both as casual or spontaneous conditions and ns specific infections side by side. Ophthalmia is an example of a purulent catarrh which is constantly arising de noro in Egypt from local causes in a non-infective manner, and yet has become, on at least one memorable cccasion, a powerful and widespread infection for British troops returning from that country and for the home garrisons for many years subsequently. Infective pneumonia in cattle, and more rarely in man, is an analogous case. In such an episode we abserve the actual rise of the disease-autonomy. Again, all the infeetive diseases have degrees of intensity, at one extreme of which there must ocenr the ranishing point of their infeetive property; and those gradations of infectiveness are nowhere more noticeable than its the relation of cholera to choleraic diarrhœa. Further, the remarkable group of climatic fevers are not communicable fiom person to person (see Malahia); in that respeet, and for the renson that the liability of the patient is anything but exhausted by one attack, they are examples of fevers without autonomy. There is not one of the infections that may not be profitably studied from the point of view of its autonomy, and of its more or less obseure pre-autonomons stage. That is a point of view from which even the pestilences and other speeifie diseases may be regarded as coming within the physiological categories. The large residue of diseases, which are more than perturbations of the physiologieal life, may still be joined by natural descent to the class of simple perturbations, if we can show for them how their antonomy was accuired, or what was their origin as diseaseءpecies.
There is an established place in the history of medicine, and there ought therefore to be room in the definition of disease, for epidemic outbreaks of purely psychical diseased states, such as the daneing madness (Tanzuuth), and the boys' ernsades; the epidemic diffusion of suel morbid states is best approanhed from the point of view of an aoquired antonomy (fixed idea) and on infective mimiery.

The physiological definition of disease, morbus est vita prater naturam, affords no pl se for parasitic diseases. However, the supplementary formula that has been proposed to meet the case of diseases existing antonomously in the bods, morbus est rivum ior rico will meet the case of parasitic diseases also. Aceorang to many pathologists of the present generation, the whole class of pesti-
rences, fevers, and specific :nfections generally are caused by certain species of minute parasites invading the body; according to une form of that hypothesis the distinctive characters or specific marks (morphological and other) of those discases are neither more nor less than the approprinte effects wrought upon the textures and fluids of the body by the respective species of parasites. In this way the great group of infective diseases, which are apt to be the stumbliug-block of a seientific definition and logieal scheme of disease, are easily disposed of by placing then beside the otherwise insignificant group of parasitic diseases. Whether all or any of those diseases are due in a sense to the invasion of parasites, or wholly eansed by parasites, are questions that naturally fall to be settled by a careful sifting of a mass of evidence which has already proved to be peeuliarly rich in opportunities for mistake. It nay be expected that the facts of infeetive parasitism and the faets of acquired disease-antonomy will in the end find their plaec in a common theory of specific diseases, whiel might be expressed in terma of the physiolugieal formula morbus est vita prater nataram with the rider morbas est vivum in vivo
The theory of remedies, whieh forms the second division of the seience of medicine, is chiefly based upon pharmacology or toxicology. If pharmacology be considered as not co-extensive with toxicology, it will be taken to be in great part pharmacographia, or the systematic deseription of artieles of the materia mediea-their source, preparation, physical properties, and the like. Toxicology is in ita general sense the investigation of the plysiological action of drugs, a seience whieh is largely dependent upon experiments on the lower animals; in a more technical sense toxieology relates to the effeets of poisons and the art of detecting then (see Porsors). The physiologieal action of drugs is the key to their therapentical action. Therapeuties has been defined as "the discovery of the means by which a system of forees competent to eliminate any given perturbation may be introduced into the ceonomy." The adaptation of remeclies to diseases is, however, greatly wanting in precision, and continues to be in large part empirical and traditional. It may be objected to the above definition that all diseases are not reducible to the category of "perturbations," and that there is a certain seientific justification for the doctrine of speeifies. Besides the articles of the materia mediea proper, agencies such as electricity, baths, sea-voyages, and changes.of climate generally, enter into the consideration of therapenties, and two of those form the subject of special departments, viz, eleetro-therapeuties and hydropathy. Regimen and diet are also important factors in the treatment of disease: according to a contention of Hippoerates, it was in the dietetie weeds of mankind that the medical art had its origin.
Subdivisions of Medicine as an Avt ana Discipline.-The medical art (ars medendi) breaks away at once from the unity of the theory of disease. While there is but one body of pathologieal doctrine for either sex, for every period of life, and for every region and part of the organism, the practical art divides itself into departments and subdepartments. The most fundamental division is into internal and ezternal medieine, or into medicine proper and surgery. The treatment of wounds, injuries, and deformities, with operative interference in general, is the special department of surgical praetice (the corresponding parts of pathology, including inflammation, repair, and remorable tumours, are somatimes grouped together as surgieal pathology); and where the work of the profession is highly subdivided, surgery becomes the exclusive prosince of the surgeon, while internal medicine remains to the physieian. A third great departuent of practice is
furmed by obstetric medicine or midwifery, and with ubstetrics there is usually associated gynæcology, or the diseases peculiar to women. Diseases of children are the subject of a voluminous separate literature. Dermatology (diseases of the skin) is an important prevince of practice which, like the diseases of wumen and children, pertains as much to medicine as $t$ osurgery. The greatest of the 90 called special departments of practice is ophthalmology (discases and injuries of the eye). Laryngology is a department that owes its existence mainly to the anvention of the laryngoscope, its special province being the treatment of the inflammations (ordinary sad specific), tumours, and the like, to which the larynx is liable in common with other parts. Diseases of the ear (otology) form even a more restricted department of practice, owing to the comparative inaccessibility of the chief part of the organ of hearing. The congenital condition of deaf-mutism may or may not be taken as falling within the province of the last-mentioned subdivision. Dentistry or odontology is extremely limited in the range of its subject-matter; but it affords great opportunities for rcfinements of technical skill, and it is given up to a distinct brauch of the profession.

The care of the wcak-minded and the insane (psychological nedicine) is au integral part of medical practice, inasmuch as it is concerned with diseases of the nervous system and with numerous correlated states of other orgaus; but it occupics a unique place by resson of the engrossing interest of the subjective phenomena. Habitual drunkenness is also a subject of special treatment.

A state of war, actual or contingent, gives occasion to special developments of medical and surgical practice (military hygiene and military surgery). Wounds csused by projectiles, sabres, de., are the special subject of naval and military surgery; while under the head of military hygiene we may include the general subject of ambulances, the savitary arrangements of camps, and the various forme of epidemic camp sickness.

The administration of the civil and criminal law invelves frequent relations with medicine, and the professional subjects most likely to arise in that connexion, together with a summsry of causes célèbres, are formed into the department of medical jurisprndence. It is the practice in Great Britain to call independent medical evidence on both sides of a cause, whether the proceedings be civil or criminal.

The system of life assurance is based upon the co-operatiou of the medical profession. Heredity, constitution, and diathesis are here the chief subjects of general consideration, while prognosis is the skilled fsculty specially called into play.

Relations of Mredicine to the Body Politic.-The statutes of the United Kingdom which have direct relation to medicine are (1) those relating to the public health; (2) those relating to lunacy (and habitual drunkenness); (3) those replating to the status of the medical profession, to dentists, and to pharmaccutical chemists ; (4) those relating to restrictions on the "practice" of auatomy and physiology. There are, besides, several statutes in which medicine is concerned indirectly, -such as the Poor Laws, the Prisons Acts, the Shipping Acts, the Registration of Births sud Deaths Act, the Sale of Food aurl Drugs Act, the Sale of Poisons Act, the Factory and Workshops Act, the Artisans' Dwellings (Metropolitan) Act, tho Rivers Pollution Prevention Act, the Contagious Diseases (Animals) Act (1878), and the Public Health (Water) Act.

1. Most of the atatutes relating to the public health in England sod Wales were conaolidated by an Act of 1875, the Acts relating to the metropolis being excepted; there are separate statutes of about the same period for Ireland and Scotland. The system of administration is by local
sanitary autherities, in currespondence with the local goverrmeat boards in London and Dublin and the board of supervision in Edinburgh. The board in London haa a medical department, consisting of a chief medical officer, rusistant medical officer, and inspectors, while the Dublin and Edinburgh boards are professionally advised ou s some. what different system. The sanitary authorities throughout the United Kingdom are divided into rural, urban, port, and metropolitan (sauitary and nuisauce); they are formed out of pre-existing bodies, either the corporations of cities and towns, the improvement commissioners, or the local authoricies. A medical officer of health is attacherd to most of the several sanitary authorities, or to the combined sanitary authorities of a large district; lis duties include making reports on the death-rate sad the causes of mortality, the denunciation of nuisances and unwholesomo dwellings, workshops, \&c., inquiries into the local causes or favouring circumstances of epidemic outbreaks of disease, measures to prevent the spread of contagion (by disinfection, isolatiou, and otherwise), and other more occasional duties arising under a variety of statutes. Each eanitary authority is required by law to appoint an inspector of nuisances, who practically carries out the iustructions of the medical officer when there is one.

The Vacciustion Acts (consolidated 1871) are an important part of the public health law of the kingdom; they are administered by the local government board, for the most part through the agency of the medical profession at large, but in same populous parishes also by mesns of public vacciustion stations. Prosecutions under the Acts are instituted by the parechial autherities. The practice formerly (and not unsuccessfully) reserted to of inocalating with the small-pox has been made a criminal offence; but there is still much uncertainty as to the theory of vaccinstion, and, in particular, as to the relation of vaccinia to variola.

Other statutes which were not consolidated in the Public Health Act of 1875 are the Burials Act, the Contsgions Diseases Act, and the Qusrantine Act. Tha first of these is administered by a department of the home office, with a medical inspector. The second (1866 and 1869) relates, under a too general title, to the regulation of prostitution in certaiu garrison towns, the surgeons uuder the act being appointed by the beard of admiralty or the secretary of state for war, and the administration otherwise carried out by the police.

The quarantine laws stand in the somewhat anemalous position of statutes which it is not thought deairable to repeal, while yet they are stripped bare of all their executiva machinery. The Quarantine Act can be set in motion, as occasion arises, by an order of council ; not only, however, is there no official medical advice at the dispoenl of the privy council, upon which action under theact might be taken, but there is not even the framework remaining (except the ghost of a quarantine atation on the Motherbank between Portsmouth and the Isle of Wight) of the once considerable quarantine establishment, by which the provisions of the Act might be enforced. On tha other haud, port sanitary authorities enjoy certain limited powers under the Public Health Acts of isolating vessels arriving with contagious sickness on board. A quarantine at British ports has not been put in force for many years, opinions being divided as to the abstract efficacy and suitableness of quarantine measures to prevent the importation and diffusion of plague, cholera, or yellow fever (see Quarantine).

Numerous instances having occurred of the extensire diffusion of scarlet fever, ty.phoid ferer, and diphtheria hy means of milk, the priry council has jseued an order, under the Contagious Diseases (Animals) Act of 1878, called the Dairies, Milkshops, and Cowsheds Order, with the object of enforcing extreme cleanliness in the premises and appur.
tenances of the milk trade, and particnlaty of guarding against the well-known liability of milk to tale up eftluria exssting or arising near it. The order of council haring remained inoperative, it is proposed to deal with the matter by a new Act of Jarliameut, to be administered by the local government board. While cows' milk has thus been recognized by the sanitary law as a carrier of certain of the human contagia, the milk of diseased cows, and more especially of tuberculons cows, continues to be sold with impunity; the alleged communication of tubercular disease from the cow to man being difficult to prove to the satisfaction of the legislature. The want of constant supervision of the slaughter-houses is thought by many to be a scrious defect in the sanitnry law of the country; nud there is no donbt that much flesi of diseased animals (especially the tuberculous) is sold merely as inferior meat.
Public Herth Lavo of the Unized Sketes.-Qucstions of priblic health in the United Statea come under the common law and tho statute lans. In the larger part of the Union they are subject to tho common law only ; in a certain number of the States there is statuto law; and there has been since 1879 a national boand of health and a gquarantine taw established by Act of Congress. Generally speaking, the public health procellnre of the United States suffers from the wisnt of organization. Decisionsat common law relate chiefly to nuisances, and to the recorery of damages for loss cansed by the same. Tho first attempt at statute law was an Act of 1866 creating a metropolitan sanitary district and board of health for the city of New York; in 1869 a board of health was created by the State legislature for Mssssachusetts; the District of Columbia oltained ita board of health in 1870 ; and other States have followell at intervals, so that there are now at least nineteen State boards of health, New York State and Pennsylvania having leeslth boards only for their respective capitals and other individual towns. Besides the munieipal boards in those States, there are very felv others for towns in the Union, and still ferrer for counties. The porrers and activity of the boards of health are very various; the Massiehnsetts' board has powers amounting to that of a court, while the function of several of the State boards is hardly more then advisory. The sanitary statutes made by the State legislatures bre in some cases very numerons. Where ver questions of quarantine for yellow fever have arisen, as in Lonisiana (New Orleans), Georgir, and Alabama, the State board of health has acquired vigour and has enlisted nopular snp port, in the capitals at least; but in most of the States lcissez fairc is the ordinary feeling towards tho boarl and its operations. The medical profession in ench State ia the most powerful foree, and the State medical society is not unfrequently in a seni-official connexion with the sanitary hoard; on the other hand, it is alleged that the unfortunate sectarian difierences in medicine (represented chiefly by homreopathy) have on several ocessions prevented the formation of a State board of health, or linve tended to paralyse the action of a board already existing. it is a eharge also against boards of health, or at least against those in the great political centres, that their efficiency is apt to be impaired by the introduction of irrelevsnt political considerations in such matters as the making of appointnenta. The first atep towards a national publie health law was gaiued by the Act (approveil 3d Mareh 1879) "to prevent the introduction of infections or contagious diseases into the United States, and to cstablisil a national board of health." The board consists of seven members appointed ly the president and of four officials detached from the public depgrtments of State. Its duties are "to obtain information upon nll matters affecting the public health, to adrise the several departments of the goverument, the execultives of the several States, and the comnissionera of the District of Columblia, on all questions submittel to them, or whenerer, in the opinion of the borril, such advice may tend to the preservation snd improvenent of the public heslth." Quarantine mas to be a special object of the hoard's attention, especially the establishment, if possible, of a federal quarantine eystem which wonld preserve the legitimste commercial interests of the several States and their seaports. A quarantine law passed in 1879 provides that all vessels coming from any foreign port whero contagious or infectious diseasea exist shall obtain a liill of hentlth from the conanlar offieer of the United States st the port of sailing. One of the prine insl functions of the national board of health hitherto has been to institutescientific inquiries into the nature and cansation of disessea of national importance, such as malarial fever. Among the acknowledged desiderata in the nationsl sanitsry law of the United States sre a uniform carrying out of the practice of vaccina-tion-thare is no vaceination law in certain States, and in others it jo imperfectly applied-and a uniform system of-registration of births and deaths. See Bowditch, Public Hygiene in America, Logether with a Digest of American Sunitayy Law (by Pickering), Boston, 1877 ; Billings, 1 ntroduction to Hyyime and Public Henlth, antited by Buck (Enor. cd., London), antl in the Transactions of the

Internat, Medienl Conariss, Lomdon, 18S0, vol. iv., sect. "Publis Ilcalth."

J'nblic Hicallh Lau of other Conizides. - In France there is a council of licalth for encle district, composed of medical luractitioners, phemacists, enginerrs, and other" experts, ita frnction bcing purely adrisory with resjeet to unisances, unwholesomo dwollings, schools, fool, dhngs, epitemics, and tho like. The executive prower rests with the prefuet (to he canied ont by the police), amb is often not put in motion even when advice ia temeleret. In Paris there are two lieads of executive, the prefect of the scime amd the prefect of police. The minister of agriculture and commere is responsible to the chambers. In Prussia there is a certain amount of bureancratie care ot the public health under tho nimistry for ecclesiastical, ednentional, and medical aflairs. Tho minister is advisell hy a sciontilie commission (Wisscuschafilicho Depulation für das Medicinaluecscu.) ; and there is a subordinata boarl for each phovinec, and a medical ollicer fur each district or town (Krrisphysizus, or Shadtphysizus). Numerous offences agninst the public health are defined in the cole, and jenalties fixed (see Enleniserg's work, taken from ollicial sourees, Dres Medicinal. recs:n in Preusscu, 13erlin, 1874).
2. The lunacy laws have been fully treated of in a special section of the article Issanity ( $q . v$. ). By an Act of 1872 labitual drunkards have been placed in a position somewhat analogous to that of lunatics, nnd there are now existiug certain licensed asylums for their detention.
3. The Acts relating to the status of the medical profes. sion are known as the Medieal Acts. The principal measure, passed in 1858 , created a body of twenty-four, called the general council of medical education and registratien ; by a subsequent Act the comncil received $n$ charter of incur. puration, so that it might draw up, and become the publisher and proprietor of, a list and description of ufficinal drugs, which should be called the Fritish Pharnacopain, and should stupersede previous pharmacopeias. The principal duty of the medical council is to keep, a register of qualified medical practitioners. The preamble of the Act by which the medical register was created nsserts the desirability of those in want of medical aid being able tu distinguish qualified from unqualified practitioners; and those wbose names ne on the register are alone presumably qualified. To ho a registered nedical practitioner confers a certain positive legal status (right to sue for fees, hold appointments, give certificates, ic.) ; but there is nulling in the English law to prevent nuy person whomsoever from practising mediciue and taking fecs, provided lie dons not nssume misleading titles. Those who are entitled (on paynent of fire pounds) to have their names juserted in the medical register are graduates in medicine or surgery of the universities of the United Kingdom, licentiates, members, or fellows of the Royal Culleges of Physicians or Surgeons in London, Dublin, and Edinburgh, licentiates or fellows of the Faculty of Plysicians and Surgeons of Glasgow, and licentiates of the Apothecaries' Halls of Jondon and Dublin. The council consists of the representatives of those bodies, of six crawn nominees, and the president. The merlical council pinssesscs certain judicial and executive powers over the mancs on its register; if, after due inquiry, a registered practitioner be judged by the medical cunncil to have been guilty of infamons conduct in any professional resprect, the medical council may, if they see fit, direct their registrar to erase the practitioner's name from the register. The nedical council keejs also a register (unpublished) of medical students; whoerer has passed $n$ recognized examination in arts, and has furwarded a certificate signed by a teacher of medicine that he las bouct fite begun the sludy of medicine, is entitled to bave his name entered in the register of students of medicine, with the clate of his conmencement. The object of the students' register is merely to provide a conmon and convenient record of the date of commencement of medical study, andl, ly implication, of the fact that the examination in arts has been plassed.

The nedical council owes its title of a "conncil of educur
tion ${ }^{n}$ to certain powers possessed by it of visiting the examinations of the universities and corporations, and certain ill-defined powers of visiting the medical schools. I'lis council may, if they see fit, repurt to the privy comncil any deficiencies that they may have discovered in the teaching or examining, and the privy council may proceed. to further steps. But, beyond publishing the reports of tieir visitations, the medical council do not appear to have had occasion to put the machinery in forco. The state bas not otherwise interfered to prescribe the subjectmatter or the mininoum standard of medical educatiou, although there has beeu at least one unsuccessful attempt by the Governmeat of the day to establish a uniform miuimum. By an Act of 1876 parliament has interposed to affirm the principle that women are entitled to become registered practitioners of medicino.
Under the Dentists' Act of 1878 the profession of deatistry acquired a legal status corresponding to that of the medical profession, the general medical council having charge of its register also.
Pharmaceutical chemists are now licensed under an Act passed in 1876 ; since that date licencea are granted only to those who pass either the minor or the major examination of the Pharmaceutical Suciety of Great Britain, a Pharmacy Act for Ireland (1876) having corresponding provisions.

The Medicat Profession in other Countries.-In the United States there are usually no restrictions upon the practice of medicine, sud in only a fow of the States has the medical profession any logal stending. The ordinary medical title is that of doetor of Inedicine, and that degree is conferred by a large number of institutions after a curriculum of study that varies much in length, and. after examinations that are equally various as tests of proficiency. In France the medical profession is divided inte twe grades: those in the higher grade are sll doctors of medicine of the faculties of Paris, Lille, Nancy, Bordeaux, Lyons, or Montpellier; those iu the
hower grade are officiers cle sante. In Germauy the ribint to practise is conferted by a state licence grauted on passing the staats-examen: the examination, whieli is alnost entirely oral and praetical, may be passed in stages at any one of rhe universities in the elupire, the professors of anatoniy, fhysiology, and pathological anatermy being practically ex: officio examiners, while the other exaniners are ver's freqneutly also professors in the needical laculty. The stauts-examen is usually passed before the candidate seeks the degree of doctor of medicine; that degree is almost always taken by those who pass the examination for the state liceuce, and it is usually conferred after a more or less formal examination of the candidate before the medical faculty, and en the approval of his thesis. In Austria, the right to practise is carried by the degree of doctor of medicine; there is no separate state licence, and no examination except that of the medical faculty of the universities (see Billroth's Lehren and Lemen der medicinischen Wisscnschuften, Berlin, 1876). In most Continental countries there are penalties directed in effect against practising medicine without the state licence, or the university degree equivalent thereto, and in France the law nors extends to resident foreign practitioners who have qualified only in their own country. The regulations for the practice of pharmacy in Germany and other Continental countries have long been of a very atringent kind. The training and liceasing of midurires is also under state control.
4. Lastly, the state has interposed to restrict the "practice" of anatomy and physiology. By the Anatomy Act of 1832 (amended in 1871 ) licences are required for schools of anatomy, as well as licences for teachers, "to practise anatomy." Licensed teachers of anatomy are emporvered to receive subjects for dissection under certain conditions. The Act is administered by the home office, with a staff of four inspectors of anatomy, one for tha metropolis, one for provincial medical schools in England, and one each for Treland and Scotland. The Act restricting the practice of physiology is the Vivisection Act of 1876 ; it is intended for the protection of vertebrate animals liable to be employed alive in pleysiological experiments, and it resorts to a controlling machinery of licence and inspection similar to that of the Auatomy Act, and under the same Government department.
(c. c.)

## PART II.-HISTORY.

The history of medicine falls naturally under two heads, or might bo conceivably written from two different points of viefr. It might be a history of the medical profession or a history of medical doctrine,-in other words, the Listory of medicine in its relation to society or in its relation to scieace. We shall here deal chiefly with the history of medical knowledge. remembering also that the histories of anatomy, of physiology, and of surgery are dealt with in the articles referring to those subjects. But a still more trenchant limitation is necessary to preserve the unity of the subject. Attention can be given to so much only of the bistory as is directly antecedent to and leada up to the medical science of modera Europe. For this purpose, the history of medicine must start with the earlicr period of Greek civilization.

Melticine as Portrayed in the Homeric Poems.-In the state of society pictured by Hencer it is clear that medicias has already had a history. We find a distinct and orgauized profession; we find a system of treatinent, espacially in regard to injuries, which it must have been the work of long experience to frame; we meet with a nemenclature' of parts of the body substantially the same (according to Daremberg) as that employed long afterwards in the writings of Hippocrates; in short, we find a science and an organization which, however imperfect as compared with those of later times, are yet very far from being in their begianing. The Homeric heroes themselves are represcuted as having considerablo skill in surgery, and as able to nftend to ordinary wounds and injuries, but there is also a professional class, represented by Machaon nnd Podalirius, the two sons of Asclepius, who are treated with great reapect. It would appear, too, from the $A$ Ethiopis of Archinus
(quoted by Welcker and Haeser) that the duties of these two were not precisely the same. Machaon's task was more especially to heal injuries, while Podalirius had reacired from his father the gift of "recognizing what was not visible to the eye, and tending what could not be healed." In other words, a rough indication is seen of the separation of medicine and surgery. Asclepius appears in Homer as a Thessalian king, not as a god, though in later times divine honours were pidd to hima. There is no sign in the Ilomeric poema of the subordination of medicine to religion which is seen in aucient Egypt and India, nor are priests charged, as they were in those countries, with medical functions,-all circumstances which throw grave doubts on the commonly received opinion that medicine derived its origin in all countries from religious observances.

Although the actual organization of medicine among the Homeric Greeks was thus quite distinct from religion, the worship of Asclepins (or Tisculapius) as the god of liealing demands some notice. This cult spread very widely among the Greeks; it had great civil importance, and lasted even into Christian times; but there is no reason to attribute to it nny special connexion with the development of the science or profession of medicine. Sick persons repaired, or were conveyed, to the temples of Asclepius in order to be healed, just as in modern times relief is sought by $n$ derotional pilgrimage or from the waters of some sacred apring, and then as now the healing intluence was sometimes sought by deputy. The sick person, or his representative, after ablution, prayer, and sacrifice, was made to sleep on the hide of the eacrificed animal, or at the feet of the statue of the god, while sacred rites were performed. Iu his sleep (incubatio, é $\gamma$ кoi-

सך $\quad$ ots) tue appropriate remedy was indicated by a dream. Moral or dietetic remedies were more often prescribed than drugs. The record of the cure was inscribed on the columns or walls of the temple; and it has been thought that in this way was introduced the cnstom of "recording cases," and that the physicians of the Hippocratic school thus learnt to accumulate clinical experience. But the priests of Asclepius were not physicians. Although the latter were often called Asclepiads, this was in the first ilace to indicate their real or supposed descent from Asclebins, and in the second place ns a complimentary title. No medical writing of antiquity speaks of the worship of Asclepius in such a way as to imply any connexion with the ordinary art of healing. The two systems appear to have existed side by side, but to have been distinct, and if they were ever united it must have been before the times of which we have any record. The theory of a development of Greek medicine from the rites of Asclepius, though defended by eminent names, must accordingly be rejected.

Development of Medicine in Grecce.-It is only from nonmedical writers that anything is known of the development of medicine in Oreece before the "age of Hippocrates. The elaborate collections made by Daremberg of medical notices in the poets and historians illustrate the relations of the profession to society, but do little to prepare us for the Hippocratic period. Nor is much importance to be attached to the influence of the philosophical sects on medicine except as regards the school of Pythagoras. That philosopher and several of his anccessors were physicians, but we do not know in what relstion they stood to later medical schools. We must therefore hasten onrard to the age of Pericles, in which Hippocrates, already called "the Great," was in medicine as complete a representative of the highest effiots of the Greek iatellect as were his coutemporaries the great philosophers, orators, and tragedians. The medical art as we now practise it, the character of the physician as we now understand it, both date for us from Hippocrates. The justification of this statement is found in the literary collection of writings known by his name. - Of these certainly many are falsely escribed to the historical Hippocrates of Cos; others are almost as certainly rightly so ascribed; others again are clearly works of his school, whether from his hand or not. But which are to be regarded as the "gennine worka" is still uncertain, and authorities are conflicting. There are clearly two schools represented in the collection,-that of Cnidus in a small proportion, and that of Cos in far the larger number of the works. The latter was that to which Hippocrates belonged, and where he gave instruction; and accordingly it may be taken that works of this school, when not obviously of a different date, are Hippocratic in doctrine if not in actual authorship.

Hippocratic Medicine. -The first grand characteristic of Hippocratic medicine is the high conception of the duties and statns of the physician, shown in the celebrated "Oath of Hippocrates" and elscwhere,-equally free from the mysticism of a priesthood and the vulgar pretensions of a mercenary craft. So matured a professional sentiment may perhaps have been more the growth of time and organization than the work of an individual genius, but certainly corresponds with the character universally attributed to Hippocrates himself. The second great quality is the singular artistic skill and balance with which the Hippocratic physician used such materials and tools as he possessed. Here we recngnize the true Greek $\sigma \omega \phi$ pooviv. But this artistic completeness was closely connected with the third cardinal virtue of Hippocratic medicine,-the clenr recognition of disease as being equally with life a process governed by what we should now call natural laws, which could be known by observation. and wbich indicated the
spontaneous and normal direction of recovery, by followin: which alone could the physician succeed. In the fourth place, these vierss of the "natural listory of disease" (in modern language) led to habits of minute observation and accurate interpretation of symptoms, in which the Hippocratic school was unrivalled in antiquity, aud has been the model for all succeeding ages, so thint even in these drys, with our cnormous advances in knowledge, the true method of clinical medicine may be said to he the method of Hippocrates.

The actual science of the Huppocratic school was of course very limited. In anatomy nut plysiology little adrance had been made, and so of pathology in the sense of an explanation of morbid processes or knowledge of diseased structures there could be rery little. The most valuaile intellectual possession was a large mass of recorded observations in individual cases and epidecrics of disease. Thether these observations were systematic or individunl, and how they were recorded, are points of which we nre quite ignorant, as the theory that the votive tablets in the templle? supplied such materials must be abandoned.

Though the Ilippocratic medicine was so largery munderi on observation, it would be an error to suppose that drigma or theory had no place. The dominating theory of disease was the hatmoral, which has never since ceaser to influence medical thought and practice. According to this celebrated theory, the body contains four humours,-blood, phlegri, yellow bile, and black bile, a right proportion and mixture of which constitnte health; inproper proportions or irregular distribution, disease. It is doubtful whether the treatise in which this theory is fully exponnded ( $\pi$ epi фiveos à $\nu \theta(\dot{\omega} \pi o v)$ is as old as Hippocrates dimself; but it was regarded as a Hippocratic doctrine, and, when takcu up and expanded by Galen, its terms not only became the common property of the profossion, but passed into general literaturo and common language. Another Hippocratic doctrine, the influence of which is not even yet exhausted, is that of the healing power of nature. Not that Hippocrates taught, as he was afterwards reproached with teaching, that nature is sufficient for the cure of diseases; for he held strongly the efficacy of art. But he recognized, at least in acute diseases, a natural process which the humours went through,-being first of all crude, then passing througls roction or digestion, and finally being expelled by resolution or crisis through one of the natural channels of the bods. The duty of the lihysician was to foresee these changes, "to assist or not to hinder them," so that "the sick man might conquer the disease with the belp of the phssician." The times at which crises were to be expected were naturally looked for with ansiety; and it was a cardinal point in the Hippocratic system to foretell them with precision. Hippocrates, influenced as is thought by the Pythagorenis doctrines of number, taught that they were to be expected on daya fixed by certain numerical rules, in some cases on odd, in others on even numbers,--the celebrated doctrine of "critical days." This false precision can liave. had no practical value, but may have enforced labits of minute observation. It folloma from what has heen said that prognosis, or the art of foretelling the conrse and event of the disease, was a strong point with the Hip. pocratic physicians. In this they have perhapls never becn excelled. Diagnosis, or recognition of the disease, nust have been necessarily imperfect, when 110 scientific nosology, or system of disesse, existed, and the knowledge of anatomy was quite inadequate to allow of a precise determination of the seat of disease; lut aymptoms n'ere no doubt observed and interpreted skilfully. The pulse is not spoken of in any of the works now attributed to Hippocrates himself, though it is mentioned is other works of the collection.

In the treatment of disease, the Hippocratic school attached great importance to diet, the variations necessary in different discases bsing minutely defined. Medicines wore regarded as of secondary importance, but not neglected, two hundred and sisty-five drugs being mentioned nt different places in the Hippocratic works. Blood-lotting was known, but not greatly practised. The highest importance was attached to applying all remedies at the right moment, and the general principle enforced of making all influences-internal and external-co-operate for the relief of the patient. The principles of treatment just mentioned apply more especially to the cure of acute diseases ; but they are the most salient characteristics of the Hippocratic school. In chronic cases diet, exercise, and uatural methods were chiefly relied upon.

The school of Cnidus, as distinguished from that of Cos , of which Hippocrates is the represeutative, appears to have differed in attaching more importance to the differences of apecial diseases, and to have made more nse of drugs. A treatise on the diseases of women, contained in the Hippocratic collection, and of remarkable practical value, is attributed to this school.

The above ekstch of Hippocratio medicioe will make it less necessary to dwell upon the details relating to subsequent medical schools or sects in ancient times. The general conception of the physician's aim and task remained the same, though, as knowledge increased, there was much divargence both in theory and practice, even opposing schools were found to be developing some part of the Hippocratic aystem. Direct opponents or repudiators of the authority of Hippocrates were rare, all generally appealing to his authority. But, insensibly, the least valuable part of the Hippocratic work, the theory, was made permanent; the most valuable, the practical, neglected.

Post-Hippocratic Medicine--After Hippocrates the pro gress of medicine in Greece does not call for any special remark in such a sketch as this, but mention must be mede of one great name. Though none of Aristotle's writings are strictly medical, he has by his researches in 2atomy and phyaiology contributed greatly to the progress of medicine. It should also bo remembered that he was of an Asclepiad family, and received that partly medical education which was traditional in such families, and also himself is said to have practised medicine as an amateur. Moreover, his works on natural history doubtless furthered the progress among the Greeks of aciences tributary to medicine, though the ouly specimens of such works which have come down to us from the Peripatetic school are those of Theophrastus, who may be considered the fonnder of the scientific study of botany. Among his encyclopædio writings, were some on medical subjects, of which fragments only hiave been preserved. The Peripatetic echnol may have been more favourable to the development of medicine, as of other departments of natural knowledge, than any other; but there is no evidence that any of the philosophical schools had important influence on the progress of medicine. The fruit of Aristotle's teaching and example was seen later on in the schools of Alexandrin
The century after the death of Hippocrates is a time almost blank in medical annals. It is probable that the science, like others, shared in the general intellectual decline of Grecce after the Jfacedonian supremacy; but the works of physicians of the period aro almost entirely lost, and were so even in tho time of Galen. Galen classes them all as of the dogmatic school; bat, whatever may have been thelr characteristics, they are of no importence in the history of the science.

Alexandrian School of Medicine.-The dispersion of Greek acience and intellectual activity throagh the werld by the conquests of Alexander and his successors led to
the formation of more than one learned centre, in which medicine among other sciences was represented. Pergamum was early distinguished for its medical school; but in this as in other respects its reputation was ultimately effaced by the more brilliant fame of Alexandria. It is here that the real continuation and development of Hippocratic medicine can be traced.
In one department the Alexandrian schoot rapidly surpassed its Greek original, namely, in the study of anatomy. The dissection of the human body, of which aome doubtful traces or hints only are found in Greek times, was assiduously carried out, being favoured or even suggested perhaps by the Egyptian custom of disembowelling and embalming the bodies of the dead. There is no doubt that the organs were also examined by opening the bodies of living persons,-crim:nals condemned to death being given over to the anatomists for this purpose.
Two eminent names stand in the first rauk ns Leaders. of the two earliest schools of medicine which arose in Alexandria, Herophilus and Erasistratus.

Herophilus was a Greek of Chalcedon, a pupil of the schools both of Cos and of Cnidus.. He was especially noted for his profound researches in anatony (see vol. i. p. 802), and in the knowledge and practice of medicine he appears to have been equally renowned. He professed himself a close adherent of Hippocrates, and adopted bis theory of the humours. He also made extensive use of drugs, and of bleeding. The reputation of Herophilus is attested by the fact that four considerable physicians wrote works about him and his writings, and he is further spoken of with the highest respect by Galeu and Celsus. By the general voice of the medical world of antiquity he was placed only second to Hippocrates.

Erasistratus was the contemporary and rival of Herophilus Little is known of his life, except that he spent some time at the court of Seleucus Nicator at Antioch before coming to Alexaidrin, and that he cultivated anatomy late iu life, after he had taken up his abocie in the latter city. His numerous works are also almost entirely lost, fragments only being preserved by Galen and others. Erasistrates, instead of following Hippocrates as Herophilus did, depreciated him, and seems to have been rather aggressive and independent in his views. He appears to have leaned to mechanical explanations of the symptoms of disease, as was especially the case with inflammation, of which he gave the first rational, though necessarily inadequate, theory.
The two schools composed of the followers of Herophilus and Erasistratus respectivoly. long divided between them the - medical world of Alexandria. The names of many prominent members of both sects have been preserved, but it would be useless to repeat then. The Herophilists still reverenced the memory of Hippocrates, and wrote numerous commentaries on bis works. They produced many eminent anatomists, but in the end seem to haro become lost in theoretical subtleties, and to bave maintained to high a standard of literary cultivation. The school of Erasistratus was less distinguisled in anatomy than that of Herophilus, but paid more attention to the special symptoms of diseasas, and employed a great variety of drugs. It was longer-lived than that of Herophilus, for it still numbered many adhcreuts in the $2 d$ century after Christ, a century after the latter had become extinct.

The Erasistrateans paved the way $\boldsymbol{c}$ what was in some respects the most important school which Alexandria produced, that known as the empiric, which, though it recognized no master by name, may be considered to hare been founded by Philinus of Cos ( 280 b.c.), a pupil of Herophilus; but Serapion, a great name in antiquity, anā Glaucias of Tarentum, who traced the empirical dozeting
back to the writings of Hippocrates, are also named among its founders. The most striking peculiarity of the emprrics was that they rejected anatomy, regarding it as useless to iaquire into the causes of things, and thus, as they contended, being the more minute in their observation of the actual phenomena of disease. They professed that their whole practice was based upon experience, to which word they gave a spectal meaning. Three sources, and three only, could cxperience draw from:-observation, history (i.e., recorded observation), and judgnent by analogy. These three bases of knowledge were known as the "tripod" of the empirics. It should not, however, be forgotten that the empirics read and industriously commented on the works of Hippocrates. They were extremely successful in practical matters, especially in surgery and in the use of druga, and a large part of the rontine knowledge of diseases and remedies which became traditional in the times of the lioman empire is believed to have been derived from them. In the $2 d$ century the school became closely connceterl with the philosophical sect of the Sceptics, whose leader, Sextus, was an empirical physician. It lived and flourished far beyond this time, when transplanted to Rome, not less than in its native Alexandria, and appears. to be recognizable even up to the beginniug of the Niddle Ages.

If we look at the work of the Alexandrian schools in medicine as a whole, we must admit that the progress made was great and permanent. The greatest service rendered to medicine was undloubtedly the systematic study of anatomy. It is clear that the knowledge of function (physiology) did not by any means keep pace with the knowledge of structure, and this was probably the reasou why the important sect of the empirics were able eutirely to dispense with anatomical knowledge. The doctrines of IIippocrates, though lightly thought of by the Erasistrateans, etill were no doubt very widely accepted, but the practice of the Hippocratic school had been greatly improved in almost every department,-surgery and obstetrics being probably those in which the Alexandrian practitioners could compare most favourably with those of modern times. We have now to trace the fortunes of this body of medical doctrine and practice whinn transplanted to Rome, and ultimately to the whole Roman world.

Roman Medicine- The Romans cannot be said to have at any time originated or possessed an independent school of medicine. They had from early times a very complicated system of superstitious medicine, or religion, related to disesse and the cure of disease, borrowed, as is thought, from the Etruscans ; and, though the saying of Pliny that the Roman people got on for six hundred years without doctors was donbtless an exaggeration, and not, literally epeaking, exact, it must be accepted for the broad truth which it contains. When a medical profession appears, it is, so far as we are able to trace it, as an inportation from Greece.

The first Greek $l^{\text {hhysician whe whe is preserved as }}$ haviug migrated to liome was Archagathus, who came over from the Peloponnesus in 218 в с. ; but there were probably others before him. When Greece was made a Roman province, the number of such physicians who sought their fortunes in Rome must have been very large. The bitter words of M. Porcius Cato, who disliked them as he did other representatives of Greek culture, are evidence of this. The most eminent of these earlier Greek physicians at Rome was Asclepiedes, the friend of Cicero (born 124 b.c. at Prusa in Bithynia). He came to Rome as a young man, and soon became distinguished both for his medical skill and his oratorical power. He introduced a system which, so far as we know, was bis own, though founded upon the Epicurean philosophical creed; ou the
practical side it conformed pretty cloaely to the Stoic rule of lise, thus adaptiog itself to the leanings of the better stamp of Romans in the later tumes of the republic. According to Asclepiades all diseases depended upon alterations in the size, number, arrangement, or movement of the "atoms," of which, according to the doctrine of Epicurus, the body consisted. These atoms were united into passages ( $\pi$ ópoot through which the juices of the body were convcyed. This doctrine, of which the developments need not further be followed, wes important chiefly in su far that it was perfectly distinct from, and opposed to, the humoral pathology of Hippocrates. In the treatment of disease Asclepiades attached most importance to diet, exercise, passive movements or frictions, and the external use of cold water,-in short, to a modified athletic training. He rejected the vis medicatrix nature, pointing out that nature in many cases not only did not help but marred the cure. His knowledge of disease and surgical skill were, as appears from the accounts given by Celsus and Ceelius Aurelianus, very considerable. Asclepiades lad many pupils, who adhered more or less closely to his doctriaes, but it was especially one of them, Themison, who gave permanence to the teachings of his master by framing out of them, with some modifications, a new system of medical doctrine, and founding on this basis a schonl which lasted for some centuries io successful rivalry with ths Hippocratic tradition, which, as we have seen, was up to that tima the prevailing influence in medicine.

This system was known as methodism, its adberents as the methodici or methodists. Its main principles were that it was useless to consider the ceuses of a disease, or even the organ affected by the disease, and that it was sufficient to know what was common to all diseases, viz, their common qualities (communitates, кotvór刀теs). Of these there were three possible forms-(1) relaxation, (2) contraction of the minute passages or mópot, and (3) a mixed state, partly lax, partly constricted. The signs of these morbid states were to be fovad in the general constitution of the body, especially in the excretious. Besides this it was important only to consider whether the disease was acute or chronic, whether it was increasing, decliniug, or stationary. Treatment of disease was directed not to sny special organ, nor to producing the crises and critical dis. charges of the Hippocratic school, but to correcting the morbid common condition or "community," relaxing the body if it was constricted, causing contraction if it was too lax, and in the "mixed state" acting according to the predominant condition. This simple rule of treatment was the system or "method" from which the school took" its name.
The methedists agreed with the empirics in one point, in their contempt for anatomy; bat, strictly speaking, they were dogmatists, though with a dogme different from that of the Hippocratic school. Besides Themison, its systematic fonuder, the school buasted many physicians emiuent in their day, among whom Thessalus of Tralles, a half-educated and boastful preteuder, was one of the most popular. He reverscd the Hippocratic maxim "art is long," promising his scholars to teach them the whole of medicine in six months, and had inscribed upon his tomb iatpovínns, as being superior to all living and bygone physicians.
In the 2 d century a much greater name appears among the methodists, that of Soranus of Ephesus, a physician mentioned with praise even by Tertullian and Augustine, who practised at Rome in the reigns of Trajan and Hadrian. Soranus is known by a work, still extant in the Greek original, on the diseascs of women, and also by the Latin work of Colius Aurelianus, three centuries later, on acute and chronic disesses, which is based upon, if not, as some think, an actual translation of, the chief
work of Soranus, and which is the principat aource of our knowledge of the methodic achool. The reork on diseases of women is the only complete work on that suhject which has come duwn to us from antiquity, and shows remarkable fulness of practical knowledge in relation to its subject. It is notable that an important instrument of research, the speculua, which has been reinvented in modern times, was used by Soranus; and specimens of still earlier date, showing great meclanical perfection, have been fond among the ruins of Pompeii. The work on acute and clironic diseases is also full of practical knowledge, but penetrated with the theories of the methodists.

The methodic school lasted certainly for some centuries, and influenced the revival of medical science in the Middle Ages, though overshadowed by the greater reputation of Ginlen. It was the first definite product of Greek medicine on Roman soil, but was destined to be followed by others, which kept up a more or less successful rivalry with it, and with the Hippocratic tradition.

The ao-called pneumatic school was founded by Atheneus, in the lst century ofter Chist. According to its doctrines the normal as well as diseased actions of the body were to be referred to the operation of the pneuma or universal soul.' This doctrine, crudely transferred from philosophical speculation, was intended to reconcile the humoral (or Hippocratic) and solidist (or methodic) schools; but the methodists seem to bave claimed Athenreus as one of themselves.
The conflicts of the opposing schzols, and the obvious deficiencies of each, led many physicians to try and combine the valuable parts of each system, and to call themselves eclectics. Among these were found many of the most eminent physicians of Greeco-Roman times. It may be sufficient to name Rufus of Ephesus, and Archigenes, who is mentioned by Juvenal.

Although no system or important doctrine of medicine was originated by the Roman intellect, and though the practice of the profession ras probably almost entirely in the hands of the Greeks, the most complete picture which we have of medical thought and activity in Romna times is due to a Latin pen, and to one who was, in all probability, not a physician. A. Cobnelins Celsns, a Roman patrician, who lived probably in the first century, appears to have studied medicine as a branch of general knowledge. Whether he was a practising plysician or not has been a matter of controversy. The conclusion supported by most evidence seems to be that he proctised on his friends and dependants, but not as a remunerative profession. His well-known work, De Medicina, whs one of a series of treatises intended to embrace all knowledge proper for a man of the world. It was not meant for the physicians, and was certainly little read by them, as Celsus is quoted by no medical writer, and when referred to by Pliny is spoken of as an author, not a physician. There is no doubt that his work is cbiefly a compilation; and Daremberg, with other scholars, has traced a large number of passayes of the Jatin text to the Cireek originals from which they were translated. In the description of surgical operations the vagueness of the langnage seems sometimes to show that the anthor had not performed such himself; but in other parts, and especially in his historical introduction, he speaka with anoro confidenco; and everywhere he compares and criticizes with learaing and judgment. The whole body of medical literature belonging to the Mippocratic and Alesandrian times is ably summarized, and a kaomledse of the state of medical acienceup to and during the times of the author is thus conveyed to us which can be obtained from no other sonurce. The work of Celsus is thus for ne nnly recond in inportance to the Hiplncratic writings and the works of

Galen; but it is valuakle rather as a part of the history al medicine than as the aubject of that listory. It forms no link in the general chain of medical tradition, for the simple reason that the influence of Celsus (putting aside a few scanty allusions in medixval times) commenced in the 15 th century, when his works were first discovered in manuscript or committed to the press. Since then, however, he has been almost up to our own times the most popalar and widely-read of all medical classics, partly for the qualities already indicated, partly because he was one of tho few of those classics accessible to readers of Latin, and partly also because of the purity and rlassical perfection of bis language.

Of Pliny, another encyclopædic writer, a few words must be said, though he was not a physician. In his Natural History we find as complete a summary of the popular medicine of his time as Celsus gires of the scientific medicine. Pliny disliked doctors, and lost no opportanity of depreciating regular medicine; nerertheless he bas left many cuotations from, and many details aboat, medical authors which are of the highest value. He is aseful to us for what he wrote about the history of medicine, not for what he contributed. Like Celsus, he had little influence on succeeding medical literature or practice.

We now come to the writer the, abore all others, gathered up into himself the divergent and scattered threads of ancient medicine, and out of whom again the greater part of modern European medicine has flowed. Galen (see vol. i. 803 and x. 23) was a man furnished with all the anatomical, medical, and philosophical knowledge of his time; he had stadied all kinds of natural curiosities, and bad stood in near relation to important political events; he possessedenormons industry, great practical sagacity, and unbounded literary fluency. He had, in fact, every quality necessary for an encyclopædic writer, or even for a literary and professional antocrat. He found the medical profession of bis time split up into a number or sects, medical science confonnded under a multitude of dogmatic systems, the social status and moral integrity of physicians degraded. He appears to bave made it his object to reform these evils, to reconcile scientific acquirements and practical skill, to bring back the unity of medicine as it had been understood by Hippocrates, and at the same time to raise the dignity of medical practitioners.

Galen was as devoted to anatomical and, 80 far as then understood, physiological research as to practical medicine. He worked enthusiastically at dissection, though, the liberty of the Alexandrian schools no longer existing, be could dissect only animals, not the buman body. In his anatonical studies Galen had a twofold object,-a philosophical, to show the misdom of the Creater in making everything fit to serve its purpose, and a practical, to aid the diagnosis, or recognition, of disease. The first led him into a teleolugical system 80 minute and overstrained as to defeat its own end ; the second was successfully attained by giving greater precision and certainty to medical and surgieal practice in difficult cases. Tlis general plysiology was essentially founded upon the IIippocratic theory of the four clements, with which he combined the notion of spirit (pneuma) penetrating all parts, and ningled with tha humours in different proportious. It was on this field that he most vehemently attacked tho prevailnes atomistic and materialistic viows of the methodic scbool, and his conception of the pneuma became in some respects half metaphysical. His own researches in special branches of physiology were important but do not strictly belong to our present subject.

The application of physiology to the exphnation of diseases, and thus to practice, was chieffy by the theory of the temperaments or mixtures whith Cialen foundel upori
the Hippocratic doctrine of humours, but developed with marrellous and fatal ingenuity. The normal condition or temperament of the body depended upon a proper mixture or propertion of the four elements-hot, cold, wet, and dry. From faulty proportions of the sane aross the intemperies ("distempers"), which, though not diseases, were the occasions of disease. Equal importance attached to faulty mixtures or dyscrasix of the blood. By a combination of these morbid predispositions with the action of deleterious influences from without all diseases were produced. Galen showed extrene ingenaity in explaining all symptoms and all diseases on his system. No phenomenon was without a name, no problem without a solution. And, though it was precisely in his fine-spun subtlety that he departed farthest from scientific method and practical utility, it was this very quality which seems in the end to have secured his popularity and established his pre-enminence in the medical world.

Galen's use of drugs was influenced largely by the same theuries. In drugs were to be recognized the same elementary qualities-hot, cold, moist, dry, drc.-as in the human body; and, on the principle of curing by contraries, the uss of one or other was indicated. The writiags of Galen contain less of simple objective observation than those of several other ancient physicians, all being swept into the current of dogmatic exposition. But there is enough to show the thoroughness and extent of his practical knowledge. Unfortunately it was neither this nor his zeal for research that chiefly won him followers, but the completeness of his theoretical explanations, which fell in with the mental habits of succeeding centuries, and were auch as have flattered the intellectual indoleace of all ages. But the reputation of Galen grew slowly; he does not appear to have enjoyed any pre-eminence over other physicians of his time, to most of whom he was strongly opposed in opinion. Ia the next generation he begaa to bs esteemed only as a philosopher; gradually his system was implicitly accepted, and it enjoyed a great though not exclusive predominance till the fall of Roman civilization. When the Arabs possessed themselves of the acattered remains of Greek culture, the works of Galen were more highly esteemed than any others except those of Aristotle. Through the Arabs the Galenical system found its way back again to Western Europe. Even when Arabian medicine gave way before the direct teaching of the Greek authors rescued from neglect, the anthority of Galen was increased instead of being diminished ; and he assumed a position of antocracy in medical scieace which was only slowly undermined by the growth of modern science in the 17 th and 18th centuries.

But the history of medicine in Roman times is by no means the sams thing as the history of the fate of the works of Galen. For some centuries the methodic school was popular at Rome, and produced one physician, Cœlius Aurelianus, who must be pronounced, next to Celsus, the most considerable of the Latin medical writers. His date was in all probability the end of ths 4 th or beginning of the 5 th century. Ths works bearing his nams are, as has been said, entirely based upon the Greek of Soranus, but are important bath becanse their Greek originals are lost, and because they are evideace of the state of medical practice in his own time. The popularity of Cœlius is evidenced by the fact that in the 6 th century an abridgment of his larcer work was recommended by Cassiodorus to the Benedictine monks for the study of medicine.

Before quitting this period the name of Aretæus of Cappadocis must be mentioned. So little is knowr, about him that even his date cannot bo fixed more closely than as being between the second half of the lat century and the beginning of the 3 d . His works have been nuch
admired for the purity of the Greek atyle, and his accurate descriptions of disease; but, as the quotes no medical author, and is quoted by nons before Alexander of Aphrodisias at the beginning of the 3d century, it is clear that he belonged to no school and founded none, and thus his position in the chain of medical tradition is quite uncertaiu. Alexander of Aphrodisias, who lived and wrote at Athens in the time of Septimius Severus, is best known by his commentaries on Aristotle, but also wrote a treatise on fevers, still extant.

Ancient Medicine after Galen.-The Byzantine school of medicine, which closely corresponds to the Byzantiue literary and bistorical schools, followed closely in Galen's foutsteps, and its writers were chiefly compilers and encyclopredists. The earliest is Oribusius (326-403), whose date and position are fixed by his being the friend and court physician of Julian the Apostate. He was a Greek of Perganium, educated in Alexandria, and long resident
 which only about one-third has been preserved, was a medical encyolopredia founded on extracts from Hippo crates, Galen, Dioscorides, and certain Cireek writers who are otherwise rery imperfectly known. The work is thus one of great historical value but of no originality. The next name which requires to be mentioned is that of Artius ( 550 a.d.), a compiler who closely followed Oribasius, but with inferior powers, and whose work also has an historical but no original value. A higher rank among medical writers is assigned to Alexander of Tralles (525-605), whose doctrine was that of an eclectic. His practical and therapeutical rules are evidently the fruit of his own experience, though it would be difficult to attribute to him any decided adrance in medical knowledge. But the most prominent figure in Byzantine medicine is that of Paul of Egina (laulus Ægineta), who lived probably in ths early part of the 7 th century. His skill, especially in surgery, must have been considerable, and his 'Iatpucú gives a very complete picturs of the achievements of the Greeks in this department. Another work, on obstetrics, now lost, was equally famous, and procured for him, among the Arabs, the uame of "the Obstetrician." His reputation lasted through the Middle Ages, and was not less in the Arabian schools than in the West. In this respect Paulus is a most important influence in the development of medicine. His great work on surgery was early translated into Arabic, and becams the foundation of the surgery of Abulcasis, which in turn (to anticipate) was one of the chief sources of surgical knowledge to Europe in the Middle Ages. The succeeding periou of Byzantine history was so little farourable to scieace that no name wortliy of note occurs again (though many medical works of this period are still extant) till the 13 th century, when we meet with a group of writers ;-Demetrius Pepagomenus, Nicolaus Myrepsus, and Johannes, called Actuarius, who flourished under the protection of the Palæologi. The work of the last has sume independent merit; but all are interesting as showing a fusion of Greek and Arabian medicine, the latter having begun to exercise even in the 11 th century a reflex influence on the schools of Byzantium. Something was borrowed even from the school of Salerno, and thus the close of Byzantiae medicine is bronght into connexion with the dawn of science in modern Europe.

In the West the period after Galen affords little evidence of anything but a gradual though unvarying decline in Romen medicine. Cœlius Aurelianus, already referred to as the follower of Soranus, must be mentioned as showing the persistence of the methodic school. An abridgment of one of his writings, with the title of Aurelius, became the most popular of all Latin medical works. As a writer be
was morthy of a better period of medical literature. Little else was produced in these times but compilations, of the most meagre kind, chiefly of the nature of herbals, or domestic receipt-books; among the authors of which it may be sufficient to name Serenus Sammonicus (3d contury), Gargilius Martialis (3d century), and Marcellus Empiricus (5th century). Certain coupilations still extant bear the falsely-assumed names of eminent writers, such as Hliny and Hippocrates. A writer with the (ןerhaps assumed) name of Apuleius Platonicus prodaced a herbal which held its ground till the 15 th ceatury at least, and was in the 9 th translated into Anglo-Saxon. These poor compilations, tngether with Latin translations of certain works of Galen and Hippocrates, formed a medical litemature, meagre and unprogressive indeed, but of which a great part survived throigh the Middle Ages till the discovery of printigg and revival of learning. It is important to remember that this obscure stream of tradition flowed on, only partially affected by the influs of Arabian, or even the early revival of purer classical learning.

Arabian Medicine. -The rise of the Mohammedan empire, which infuenced Europe so dceply both politically and intellectually, mado its mark also in the history of medicine. As in the paraliel case of the Reman ennquest of Greece, the superior culture of the conquered race asserted its supremacy over their Arab conquerors. After the Mohanmedan conquests became consolidated, and learning began to Bourish, schools of medicine, oftea connected with hospitals and schools of pharmacy; arose in all the chief seats of Moslem power. At Damascus Greek mediciue was sealously cultirated with the aid of Jewish and Christian teachers. In Baghdad, under the rulo of Hárún el Rashid and his successers, a still more flourishing school arose, where numerous translatious of Greek medical works were made. The names of Mesua, or Yahyáibn Másawaih toh. 243 A. H., $857-8$ A.D.), celebrated for his knowledge of drugs, and Honsin ibn Ishak el 'Ibadi (nd. 873) or Joannitius, the traaslator and commentator of Hippocrates and Galen, belong to this period. Certain writings of Joansitius, translated into Latin, were popular in the Middle Ages in Europe, aad were printed in the 16th century: At the same time the Arabs became acquainted with Indian medicine, and Indian physicians lived at the court of Baghdad. The Islamite rulers in Spain were not lngg belind those of the East in encouraging learning and medical science, and developed culture to a still higher degree of perfection. In that country much was due to the Jerr, who had already established schools io places which were afterwards the seats of Moslem dominion. From the 10 th to the 13 th century was the brilliant period of Arabian medicine in Spain. ${ }^{1}$

The classical period of Arabian medicine begins with Rhazes (Abí Bakr Mohammed ibn Zakariya el-Rázi, 313 A.1., 925-26 A.v.), a native of Ray in the province of Dailam (Persia), who practised with distinction at laghdad; he followed the doctrines of Cialen, but learnt much from IIippocrates. He was the first of the Arabs to treat medicine in a comprehensire and encyclopredic manner, surpassing probably in voluminousuess Galen himself, though bat a small proportion of his works are extant. Rhazes is deservedly remembered as having first described small-pox and measles in an accurate manner. Haly, i.p., 'Ali ibn cl-'Abbás (ob. 994), a Persian, wrote a medical text-book, known as the "Royal Book," which was He staudard authority among the Arabs up to the time of Aricenna, and was more than once translated into Latin and printed. Other writers of this century need not be mentioned here; but the next, the 11 th century, is giseu as

[^261]the probable though uncertain date of a writer who had a great influence on European medicioe, Mesua the younger of Damascus, whose personality is obscure, and of whose very existence some historians have doubted, thinking that the name was assumed by some mediæval Latiu writer. The work De Simplicibus, which bears his name, was for centuries a standard authority on what would now bo called materia nedica, was printed intwenty-six editions in the 15 th century and later, and was used in the formation of the first London phamacopoeia, issued by the College of Physicians in the reign of James I. Fither to the 10 th or the 11 th century must be referred the name of another Arabian physician who has also attained the position of a classic, Abu'l Kásim, or Abulcasis, of ElZahra, near Cordura in Spain. His great wurk, Alluṣif, a medical encyclopedia, is chiefly valued for its surgical portion (already mentioned), which was translated into Latin in the 12 th century, and was for some renturies a standard if not the standard authority on surgery in Europe. Among his own countrymen the fame and pesition of Abulcasis were soon eclipsed by the greater name of Avicenna (Ibn Siná).

Avicenna (see vol. iii. p. 152 sf.) has always been regarded as the chief representative of Arabian medicine. He wrote on philosophy also, and in both subjects acquired the highest reputation through the whole of Eastern Islam. In Mohanmedan Spain he was less regarded, but in Europe his works even eclipsed and superseded those of Hippocrates and Galen. His style and expository power are highly praised, but the subject-matter shows little originality. The work by which be is chiefly known, the celebrated "canon," is an encyclopædia of medical and surgical knowledge, founded upon Galen, Aristotle, the later Greek physicians, and the earlier Arabian writers, singularly complete and systematic, but is thought not to show the practical experience of its nuthor. As in the case of Galen, the formal and encyclopædic character of Avicemn's works was the chief cause of his popularity and ascendency, though in modern times these very qualities in a scientific or medical nriter would rather cause him to become more speedily antiquated.

In the long list of Arabinn medical writers none can here be mentioned except the great names of the HispanoMoorish school, a school both philosophically and medically antagonistic to that of Aricenna. Of these the earliest is Avenzoar, or Abmonern, that is, Abú Merwan 'Abd el-Malik Ihn Zolir (1113-62), a member of a family which gave sereral distinguished members to the medical profession. His chicf work, Al-Teysir (facilitatio), jo thought to show more practical experience than the writings of Avicenna, and to be less based upen dialecticai subtleties. It was translated into Latin, and more than once printed, as were sume of his lesser works, which thus formed a part of the contribution amade by the Arabians to European medicine. His friend and pupil Averroes of Cordeva (q.u.), so well knowu for his philcsophical mritings, was also an author in medical subjects, and as such widely read in Latin. The famous Rabbi Mamonides (q.v.) closes for us the roll of medical writers of the Arabian school. His works exist chiefly in the originad Arabic or in Hebrew translations; only some smaller treatises hase been translated into Latin, so that no definite opinion can be formed as to their medical ralue. But, so far as is known, the independent and rationalistic apirit Which the two last-named writers showed in philosophy did not lead them to take any original point of view in mediciac.

The works of the Arabian medical writers who have now been mentioned form a very small fraction of the csisting literature. Three handred medical writers ia

Arabic are enumerated by Wïstenfeld, and other historians have enlarged the list (Haeser), but only three have been printed in the orlginal; a certain number more are kuorn through old Latin translatjons, and the great majority still exist in manuscript. It is thus evident thet tha circumstance of having been translated (which may lave been in some cases almost an accident) is what has cliefly determined the influence of particular writers on Westeru medicine. But it is improbable that further research will alter the geaeral estimate of the valne of Arabian medicine. There can be no doubt that it was in the main Greek medicine, modified to suit other climates, habits, and national tastes, and with some important additions from Oriental sources. The greater part is takeu from Hippocrates, Galen, Dioscorides, and later Greek writers. The Latin medical. writers were necessarily anknewn to the Arabs ;- and this was partly the canse that eren in Europe Galenic medicine assumed such a preponderance, the methodic achool and Celsus being forgotten or neglected. In anatomy and physiology the Arabians distinctly went back; in surgery they showed no advance upon the Greaks; in practical medicine nothing new can be traced, except the description of certaiu diseases (e.g., small-pox and measles) unknown or imperfectly known to the Greeks; the only real advance was in pharmacy and the therapeutical use of drugs. By their relations with the further East, the Arabs became acquainted with valnable new remedies which have held their ground till modern times; and their skill in chemistry enabled them to prepare new chemical remedies, and form many combinations of those already in use. They produced the first pharmacopceia, and established the first apothecaries' shops. Many of the names and many ferms of medicines now used, and in fact the general outline of modern pharmacy, except so far as modified by modern chemistry, started with the Arabs. Thus does Arabian medicine appear. as judged from a modern standooint; but to medireval Europe, when little but a tramilen remained of the great ancient schools, it was invested rith a far higher degree of originality aud impertance.

It is now necessary to consider what was the state of medicine in Europe after the fall of the Western empire and befere the influence of Arabian science and literature began to be felt. This we may call the pre-Arabian or Salernitan period.
Medicine in the Early Middle Ages: School of Simemo. -In medical as in civil history there is no real break.. A continnous thread of learning and practice must have connected the last period of Roman medicine already mentioned with the darn of science in the Middle Ages. But the intellectual thread is naturally traced mith greater difficulty than that which is the theme of civil history; and in period; such as that from the 5 th to the 10th century in Europe it is almost lost. The chief homes of medical as of other learuing in theso disturbed times were the monasteries. Though the science was certainly not advanced by their labours, it was sared from total oblivion, and many ancient medical works were preserved either in Latin or vernacular versiens The "Anglo-Saxon J,gechrloms" of the 11th century, published in the Master of the Rolls series of medixval chronicles and memorials, admirably illustrate the mixture of magic and superstition with the relics of ancient science which constitnted monastic medicine. Similar morks, in Latia or other languages, exist in manuscrint in all the great European libraries It was among the Benedictines that the monastic study of medicine first received a new direction, end aimed at a higher standard. The study of Hiprocrates, Galen, and other classics was recommended by Cassiodorus (Oth century), and in the original mother-abley of Moute Cassino medicino was
stadied; but lheis was not there what could be called a medical scheel; nor had this foundation any connexion (as has been snpposed) with the famous school of Salerno.
The origin of this, the most important sonree of medical knowledge in Europe in the early Middle Ages, is involved in obscurity. It is known that Salerno, a lioman colony, in a situation noted in ancient times for its salubrity, was in the 6th century at least the seat of a bishopric, and at the end of the 7 th century of a Benedictine monastery, and that some of the prelates and higher clergy were distinguished for learning, and even for medical acquirements. 13ut it has by recent researches been clearly established that the celebrated Schola Salernitana was a purely secular institution. All that can with certainty be said is that a school or collection of schools gradually grew up in which especially meaicine, bnt also, in a subordinate degree, lar and philosophy were tanght. In the Sth centary Salernitan pligsicians were already spoken of, and the city was known as Civitus Hipporartica. A little later we find great and royal personages resorting to Salerno fer the restoration of their health, among whom was William of Normandy, afterwards the Conqueror. The number of stndents of medicine must at one timo bave been consirlerable, and in a corresponding degree the number of teachers. Amous the latter nany were married, and their rives and daughters appear also in the lists of professers. The n:ost neferl female professor was the celebrated Trotula in the 11th century. The Jerish element appears to bave heen important among the stadents, and possibly among the professers. The-reputation of the school was greai till the 12th or 13th century, when the introduction of the Arab medicine was gradually fatal to it. The foundation of the university of Naples, and the rise of Montpellier, also coatributed to its decline.
The teachings of the Salernitan doctors are pretty well knewn through existing works, some of which have only recently been discorered and published. The best-known is the anonymous rhyming Latin poem on health, Regimere Sanitatis Salerni, professedly written for the nse of the "king of England," sappesed to mican Robert, son of William the Conqueror; it had an immense repatation in the Niddle Ages, and was afterwards many times printed, and translated into most Enropean languages. This was a pepular work intended for the laity; but there are others strictly professional. Among the writers it may be sufficient to mention here Gariopentus; Carho, who wrote the Aratome Porci, a well-known medixral book; Joannes Platearius, first of a family of physicians bearing the same name, whose Practica, or medical compendium, was afterwards several times printed; and Trotula, believed to bo the wifc of the last-named. All of these fall into the first period ivefore the advent of Arabian medicine. In the transitional period, when the Arabian schonl began to influence European medicine, but before the Salernitans were superseded, comes Nicolaus Præpositus, who virote the Antidotarium, a cullection of formnlæ for compound medicines, which became the standard werk ou the subject, anct the foundation of many later compilations. An equalls: popular triter was Gilles de Corbeil (Ægidius Cerboliensis), at one time a teacher at Salerno, afterwards court physician to Philip Augnstus of France, who compesed sereral peoms in Latin hexameters on medical subjects. Two of them, on the urine and the pulse respectively, attained tue position of medical classics.
None of these Salernitan works rise unuch above the rank of compilations, being founder on Hippocraies, Gulea, and later Greek writers, with an nomistakable mixtuie of the doctrines of the methodists. But they often show much practical experience, and exhibit the maturalistic method of the Hipposratic schoul. The general plan of
treatment is dietetic rather than pharmacentical, though the att of preparing drugs had reached a high degrec of coupllexity at Salerno. Anatoruy was as little regarded as it was in the later ancient schools, the enpiric and methodic, but demonstrations of the parts of the body "ere given on swinc. Although it cannot be said that the science of medicine was advanced at Salcrno, still its decline was arrested at a time when every other brancl of learning was rapidly falling into decay; and there can be no doubt that the observation of patients in hospitals, and probably clinical instruction, were made use of in learaing and teaching. The school of Saletno thus forms a bridge bctween the incient and the morleru medicine, more direct though less conspicuous than that circuituos ronte, throuch Byzantium, Baghdad, and Cordova, by which Hippoctates and Galen, in Arabian dress, again entered the European world. . Thongh the glory of Salerno had departed, the school actually existed till it was finally dissolved by an edict of the enparor Napuleon I. in the year 1811.

Introluction of Arabian Medicine: The Scholastic Period. - About the middle of the 11 th century the Irubian medical writers began to be known by Latin translations in the Western world. Constantinus Africanus, a monk, was the author of the eapliest of such versions (1050 A.D.) ; his labours were directed chiefly to the less important and less bulky Arabian authors, of whom Haly was the most noted; the real classics were not introduzed till later. For somo time the Salernitan medicine held its ground, and it was not till the conquest of Toledo by Alphonso of Castile that any large number of Western scholars came in contact with the learning of the Spanish Moors, and systematic efforts were made to translate their philosophical and medical werks. Jewish scholars, often under the patronage of Christian bishops, were especially active in the work. In Sicily also the Oriental tendencies of Frederick Barbarossa and Frederick II. werked in the samo direction. Gerard of Cremona, a physician of Toledo (111-1-87), made translations, it is said by command of Barbarossa, from Avicenua and others. It is needless to point out the influence of the crusades in making Edstern ideas known in the Western world. The influence of Arabian medicine soen began to be felt even in the Hipnocratic city of Salerno, and in the 13th century is said to have held an even balance with the older medicinc. After this time the foreign influener predominated; and by the time that the Aristotelian diale:tic, in the introduction of which the Arabs had so large a share, prevailed in the schools of Europe, the Arabian version of Greek medicine reigned supreme in the medical world, That this movement coincided with the establishment of sorae of the older Europcan universities is well known. Thie Listory of medicine in the pariod now opening is closely combined with the history of scholastic philusophy. Both were infected with the sume dialectical subtlety, whicls was, from the nature of the subject, especially injurious to medicine.

At the same time, through the rise of the universities, medical learoing was nuch more widely diffused, and the first definite forward movenent was seen in the school of Montpellier, where a medical facnlty existed carly in the 12 th century, afterwards united with faculties of law and philosoply. The medical school owed its foundation lurgely to Jewish teachers, themselves cclucated in the Moorish schools of Spain, and imbued with the intellectual independence of the Averroists. Its rising prosperity coincided with the decline of the school of Salerno. Montpellier became distinguished for tho practical and empirical spirit of its medicine, as contrasted with the dogmatic and scholastic teaching of Paris and other universitics. In Italy, Bologur and Padua were carliest distinguished for
medical studies,-the former preserving mere of the Galenical tradition, the latter being more progressive and Averroist. The northern universities contributed little,the reputation even of Paris being of later growth.

The suprenacy of Arabian medicine lasted till the revival of learining, when the study of the nedical classics in their original language worked another revolution. .The medical writers of this period, who chiefly drew from Arabian sources, have been called Arabists (though it is difficult to give any clear meaning to this term), and were afterwards known as the neoterics.

The medical literature of this petiod is extremely voluminous, but essentially second-hand, consisting mainly of commentaries on Hippocrates, Galen, Avicenna, and others, or of compilations and compendia still less original than commentaries. Among these may be mentioned the Conciliator of Peter of Abano (1250-1315), the Aygregator: of Jacob de Dondi (1298-1359), both of the school of Padua, and the Pandectar Medicina of the Salernitan Mathneus Sylvaticus (ol. 1342), a sort of medical glossary and dictionary. But for us the most intercsting fact is the first appearance of Englishmen as authors of medical works laving a European reputation, distinguished, according to the testimony of Haeser, by a practical tendency characteristic of the British race, and fostered in the school of Montpellier.

The first of these works is the Compendiun Medicina, also called Leurea or Rosa Anglicana, of Gilbert (Gilbertus Anglicus, about 1290), said to contain good observations on leprosy. A more important work, the Practica sew, Litium Ifedicinx, of Bernard Gordon, a Scottish professur at Montpellier ( $r$ ritten in the year 1307), was more widely spread, being translated into French and Hebrew, and printed in several editions. Of these two physicians the first probably, the latter certainly, was educated and practised abroad, but John Gaddesden, the author of Rose Anglica seu Prectica Meclicine (between 1305 and 1317), was a graduate in medicine of Merton College, Oxford, and court physician. His compendium is entirely wanting in originality, and perhaps unusually destitute of common sense, but it became so popular as to be reprinted up to the end of the 16 th century. Works of this kind becanie still mare abundant in the 14 th and in the first half of the 15 th century, till the wider distribution of the medical classics in the origiual put them out of fashion,

In surgery this period was far mece productivo than in medicinc, especinlly in Italy and France, but the jimits of our subject ouly, pernit us to nicntion Guliclmus de Saliceto of Piacenza (allout 1275), Lanfranchi of Milan (died abont 1306), the French surgeon, Guy de Chauliac labout 1350), and the Englishman, John Ardera (about 1350). In anatony also the heginning of a mew eproch was made by Mlondine de Lucci, or Mundinus (12751326), and his followers. Some adrance wus made in chemistry by the celebrated Aroold de Villanuva (12351312), whose medical writings (if the Breviurium Practica be rightly ascribed to him) rise above the rank of compilations. Jimaly, in the 13 th and eeflecially the 14 th centary, we find, under the name of consilic, the first medias sul reports of medical cases which are prescrved ia such a form as to bo jatelligible. Collections of consi'ia were publishel, anong others, by Gentiliz Fulgineus before 134\&, by Bartolomeo Moutagnama (died in 14i0), and by Taverius do Baseriis of lmola (about 1450). The last-named, wo can say from experience, contains nuch that is interesting and readable.

Period of the Revival of Learming. - The impulse which all departments of intellectual actirity receired from the revival of Greek literature in Europe was felt by medicine among the rest. Not that the spirit of the science, or of its corresponding practice, wis ot no e culnged. The
basis of medicine through the Middle Ages Lad been literary and dogmatic，and it was literary and dogmatic still；but the medical literature now brought to light， including as it did the more impertant works of Hip－ pucrates and Galen，many of them hitherte nuknown， and in addition the forgotten element of Latin medicine， especially the work of Celsus，was in itself far superior to the second－band compilations and iucurrect versions which had fermerly been accepted as standards．The classical works，though still regarded with unreasoning reverence， wers found to have a germinative and vivifying power that carricd the mind out of the region of dogma，aud preparcd the way for the scientific movement which las been growing in strength up to our own day．

Two of the roost inpertant results of the revival of learuing were indeed such as are excluded from the scope of this brief sketch，namely，the reawakening of auatomy， which to a large extent grew out of the study of the works of Galen，and the investigation of medicinal plants， to which a fresh impulse was given by the revival of Dioscorides and other ancient naturalists．The former brought with it necessarily a more accurate conception of physielagy，and thus led up to the great discovery of Harvey，which was the turaing－point in modera medicine． The latter gave rise，on the one hand，to the modern science of betany，on the other to a more rational knewledge of drugs and their uses．At the same time，the discovery of Anserica，and increased intercourse with the East，by intro－ ducing a variety of new plants，greatly accelerated the progress both of botany and pharmacology．

But it was not in these directions that inprovement was first looked for．It was at first very uaturally imagined that the simple revival of classical and especially of Greek literature would at once produce the sane brilliant results in medicine as in literature and philosoply．The move－ ment of reform started，of necessity，with scholars rather than practising $1^{\text {hhysicians，}}$－more precisely with a group of learued men，whom we may be permitted，for the sake of a name，to cell the medical humanists，equally euthusi－ astic in the cause of letters and of medicine．From both fields they hoped to expel the erils which were summed up in the word barbarism．Nearly all mediæval medical literature was condemned under this name；and for it the humanists proposed to substitute the originals of Hippocrates and Galen，thus leading back medicine to．its fountain－head．Since a knowledge of Greek was still confined to a snall body of scholars，and a still smaller proportion of physicians，the first task was to trauslate the Greek classics into Latin．To this work several learned physicians，chiefly Italians，applied themselves with great ardour．Among the earliest were Nicolaus Leonicenus of Viceaza（ $1428-1524$ ），Giovanni de Monte or Montanus （1498－1552），and many others in Italy：In northern Europe should be mentioned Gulielmus Copus（1471－ 1532）and Günther of Andernach（ $1487-1584$ ）better known as Guinterius Andernacensis，both for a time pro－ fessors at Paris；and，among the greatest，Thomas Linaere （about 1460－1524；see Linacre）．A little later Janus Cornarius or Hagenbut（1500－5S）and Leouard Fuchs （1501－66）in Germany，and John Kaye or Caius（1510－ －2）in England，carried on the work．Symphorien Cham－ pier（Cbamperius or Campegius）of Lyons（14ここ－1539）， a contemporary of Rabelais，and the patron of Ser－ vetus，wrote with fantastic enthusiasm on the superiority of the Greek to the Arabian physicians，and possibly did something to enlist in the same cause the two far greater men just mentioned．Rabeleis not only lectured on Galen and Hippocrates，but edited some works of the latter；and Servetus，in a little tract Syruporum universa ratio， defsnded the practice of Galen as comlured with that of
the Arabians．The great Aldine press made an important contribution to the serk，by editiones principes of Hippo－ crates and Galen in the original．Thus was the canplyaign opened against the mediaval and Arabian writers，till finally Greek medicine assumed a preduminant position，and Galen took the place of Avicemm．The result was recorded in a formal manner by the Florentine Acadeny，sometime shortly before 1535：＂quæ，excusso Arabicæ et barba：æ servitutis medicie jugo，ex professo se Galenicam appet lavit et profigato barbarorum exercitu unum totum et solum Galenuu，ut optinum artis medice authorem，in omnibus se sequuturam pellicita est．＂Janus Comarius， from whom this is quoted，laments，however，that the Arabians still reigued in mest of the schools of medicine， and that the Italian and Fretich authors of works called Practica were still in bigh repute．The triumph of Galenism was therefore net complete by the middle of the 16th century．It was probably most so，and earliest，in the schools of Italy and in those of England，where the Loudun College of l＇hysicians might be regarded as an off－ shoot of the Italian scheols．Paris was the strongbeld of conservatism，and Germany was stirred by the teachings of one who must be considered apart from all schools－Yara－ celsus．The nature of the struggle between the rival systews may be well illastrated by a formidable contre－ rersy about the rules fur bleeding in acute diseases．This operation，according to the Arabian practice，was always performed on a rein at a distance frons the organ affected． The Hippocratic and also Galenic rule，to let blood from，or near to，the diseased organ，was revived by Brisset（1470－ 1522），a professer in the university of Paris．His attempt at reform，which was taken to be，as in effect it was，a revolt against the authority of the Arsbian masters，led to his expulsioa from Paris，and the formal prohibition by the parliament of his method．Upon this apparently trifing question arese a controversy which lasted many years， occulued several universities，and led to the interposition of personages no less important than the pape and the emperor，but which is thought to have largely contributed to the fiual downfall of the Arabian medicine．

Paracelsus and Chemical Medicine．－Contenperary withs the schoul of medical humanists，but little influenced by them，lived in Gernany a man of strange genius，of whese character and importance the mest opposite opinions have been expressed．The first noticeable quality in Para－ celsus（c．1490－1541）is his revolutionary independence of thought，whiclı was surported by his immense personal arrogance．Hinself well trained in the learning and medical science of the day，he despised and trampled upen all traditioual and authoritative teachings．He began his lectures at Basel by burning the books of Aviceuna and others；he afterwards buasted of having read no books for teu years；he protested that his shoe buckles were more learaed than Galen and Avicenna．On the other hand，he spoke with respect of Hippocrates，and wrote a commentary on his Aplorisms．In this we see a spirit very different from the entlusiasn of the bumanists for a purer and nubler philosophy than the scholastic and Arabian versions of Greek thought．There is no record of Paracelsus＇s knowledge of Greek，and as．at least in his student days， the most important works of Greek medicine were very imperfectly known，it is probable he had little first－band acquaintance with Galen or Hippecrates，while his breach with the humanists is the more conspicuous from his lec－ turing aod writing chiefly in his native German．

Haring thus nade a clean sweep of nearly the whole of the degmatic medicine，what did Paracelsus put in its place ？ Certainly not pure empiricism，or habits of objective observation．He had a dogma of his own，一one founded， accordiug to his German expositors，on the views of the

Neo－Platonists，of which a fer disjointed apecimens must here suffice．The human body was a＂microcosm＂which corresponded to the＂macrocosm，＂and contained in itself all parts of visible nature，－sun，moon，stars，and the poles of heaven．To know the nature of man and how to deal with it，the physician should study；not anatomy，which Paracelsas utterly rejected，but all parts of exteraal nature． Life was a perpetual germinativo process controlled by the indwelling spirit or Archeus；and diseases，according to the inystical conception of Paracelsus，were not natural， but spirital．Natare was safficient for the cure of most diseases；art had only to interfera when the internal physician，the man himself，was tired or incapable．Then some remedy had to be iatrodaced which should be antago－ nistic，not to the disease io a physical sense，but to the spiritaal seed of the diseass．These remedies were arcana， －a word corresponding partly to what we now call specific remedics，bat implying a mysterious condexion between the remedy and the＂essence＂of the disease．Arcana were often shown to be such by their physical properties，not only by such as heat，cold，de．，bnt by fortaitous resemblances to certain parts of the body；thus arose the famous doctrine of＂signatures，＂or signs indicating the virtues and uses of nateral objects，which was afterwards developed into great complexity．Great importance was also attached to chemically prepared remedies as containing the essence or apiritual quality of the material from which they wera derived．The actual therapeutical resources of Paracelsus incladed a large number of metallic preparations，in the introduction of zome of which he did good service，and， among vegetable preparations，the tincture of opium，still known by the name，he gave it，landanum．In this doubtless he derived much advantage from his knowledge of chemistry，though the science was as yet not disen－ tangled from the secret traditions of alcheiny，and was often mixed up with imposture．

Gerinan historians of medicine attach great importance to the revolt of Paracelsus against the prevailing 8ystems， and trace in his rritings anticipations of many acientific truths of later times．That his personality was influential， and his intrepid originality of great value as an exampla in his own country，is undeniable．As a national reformer he has been not inaptly compared to Luther．But his iriportance in the universal history of medicine we cannot sstimate so highly．The chief immediata result we can ．race is the introduction of certain mineral remedies， especially antimony，the use of which became a kind of bndge of the disciples of Paracelsus．The use of these remedies was not，however，necessarily connected with a belief ia lis system，which seems to have spread little beyond Lis owa country．Of the followers of Paracelsus soma became mere mystical quacks and impostors．Others， of more learning and better repute，were distinguished from the regular physicians chiefly by their use of chemical remedies．In France the introduction of antiniony gare rise to a bitter controversy which lasted into the 17 th centary，and led to the expulaion of aome men of mark from the Paris faculty．In England＂chemical medicine＂ is first heard of ia the reign of Elizabeth，and was in lika manner contemned and assuiled by the College of Physicians and the Society of Apothecaries．But it should be remenbered that all tho chemical physicians did not call Paracelsus master．The most notorious of that school in England，a certain Anthony，never quotes Paracelsus，but relies upen Arnold do Villanora and Raymund Lulls． From this time，howerer，it is always possible to trace a achool of chemical practitioners，who，thoagh condemned hy the orthodox Galenists，held their ground，till in the 17 th century a successor of Paracelsus arose in the＂cele－ drated Van Helmont．

Consequences of the Revizal of Ancient Jredicine．－The revival of Galenic and Hippocratic medicine，though ilti－ mately it conferred the greatest benefits on medical science， did not immediately produce any important or salutary reform in practical medicine．The standard of excellence in the ancient writers was indeed far above tha level of the 16thr century；but the fatal habit of taking at second band what should have been acquired by direct observation retarded progress more than tha possession of better models assisted it， 60 that the fundamental faults of mediæval science remained uncorrected．

Nevertheless some progress has to be recorded，even if not due directly to the study of anciest medicine．In the first place the 15 th and 16 th ceuturies were notable for the outbreak of certain epidenic diseases，＇which were unknown to the old physicians．Of these the chief was the ＂sweating sickness＂or＂English sweat，＂especially pre－ valeut in，though not confined to，the country whence it is named．Among many descriptions of this disease，that by John Kaye or Caius，already referred to，was one of the best，and of great importance as showing that the works of Galen did not comprise all that could be known in medicine．The spread of ayphilis，a disease equally unknown to the ancients，aud the failure of Galen＇s remedies to cure it，had a similar effect．
In another direction the foundations of modern medicine were being laid daring the 16 th century，namely，by the iintroduction of clinical instruction in hospitals．In this Italy，and especially the reiowned school of Padua，took the first step，where De Monte（Montanua），alresdy mentioned as a humanist，gave clisical lectures on the patients in the hospital of St Francis，which may still be read with interest．Pupils flocked to him from all Earopean countries；Germans are especially mentioned；a Polish student reported and pablished some of his lectures；and the Englishman Kaye was a zcalous disciple，who does not，however，seem to have done anything towards trans－ planting this method of instruction to his own country． Inspections of the dead，to ascertain the nature of the disease，were made，though not without difficulty，and thus the modern period of the science of morbid anatomy was ushered in．
Medicine in the 17 th century．－The medicine of the early part of the 17 th presents no features to distinguish it from that of the preceding century．The practice and theory of medicine were mainly founded upon Hippocrates and Galen，with aver－increasing additions from the chemical echool．But the development of mathematical and physical science soon introduced a fundamental change in the habite of thought with respect to medical doctrine．

These discoreries not only weakened or destroyed the ${ }^{\circ}$ respect for authority in matters of science，but brought about a marked tendency to mechanical explanations of life and disease．When Harrey by his discorery of the circulation farnished an explanation of many vital pro－ cesses which was reconcileable with the ordinary laws of mechanics，the efforts of medical theorists were naturally directed to bringing all the departmenta of medicine under similar lars．It is often assumed that the writings and influence of Bacon did much towards introducing a more scientific method into medicine nad physiology．$\because$ But， without discussiug the general philosophical position or historical importance of Bacon，it may safely be raid that his direct influence can be little traced in medical raitings of the first half of the 17 th century．Harvey，as is well known，spoke slightingly of the great chancellor，and it is not till the rapid derelopment of physical science in England and Holland in the latter part of the century， that we find Baconian priaciples explicitly recognized．
The dominant factors in the 17 th century medicine were
the discovery of the circulation 'by Harrey (published in 1628), the mechanical philosophy of Descartes and the contemparary progress of plysics, the teaching of Van Helmont and the introduction of chemical explamations of morbid processes, and finally, combined of all these, and inspiring them, the rise of the spirit of inquiry and iunoration; which may be called the scientific movement. Before speaking in detail of these, we may note that by other inffuences, quite independent of theories, important additions were made to practical mediciue. The method of clinical instruction in hospitals, commenced by the Italians, was introduced into Holland, where it was greatly developed, especially at Leyden, in the hands of the celebrated Sylvius. It is noteworthy that concurrently with the rise of clinical study the works of Hippocrates were more and more valued, while Ctalen began to sink into the background.

At the same time the discovery of new diseases, unknown to the ancients, and the keener attention which the great epidemics of phague caused to be paid to those already known, led to more minute study of the natural history of disease. The most important disease hitherto undescribed was rickets, first made known by Aruold de Boot, a Frisian who practised in Ireland, in 1649 , and afterwards more fully in the celebrated work of Clisson in 1651. The plague was carefully studied by Diemerbroek (De Peste, 1646) and others. Hodges, of London, in 1665 seems to hare been the first who had the conrage to make a post-mortem inspection of a plague patient. Bennet wrote an important fork on consumption in 1654. During the same period many new remedies were introduced, the most important being cinchona bark, brought to Spain in the year 1640 . The progress of pharmacy was shown by the publication of Dispensatories or Pharmacopaix, such as that of the Rosal College of Physicians of London in 1618. This, like the earlier German works of the same kind (on which it was partly founded), contains both the traditional (Galenical) and the modern or chemical remedies.

Fan Helmont. - The mediciue of the 17 th century was especially distinguished by the rise of systems; and we must first speak of an cccentric genius who endearoured to construct a system for himself, as original and opposed to tradition as that of Paracelsus. Yan Helmont (157S1644) was a mau of noble family in Brussels, who, after mastering all other branches of learning as then understood, devoted himself with enthusiasm to medicine and chemistry. By education and position a little out of the regular lines of the profession, he took up in medicine an independent attitude. Well acquainted with the doctrines of Galen, he rejected them as thoroughly as Paracelsus did, and borrowed from the latter some definite ideas as well as his revolntiouary spirit. The archeus of Paracelsus appears ngain, but with still further complications, -the whole body being controlled by the archeus influus, and the organ of the soul and its various parts by the archei insiti, which are subject to the central archens. Many of the symptoms of diseases were caused by the passions and perturbations of the archeus, and medicines acted by modifying the idens of the same archeus. These and other notions cannot be here stated at sufficieit lengis to be intelligible. It is enongh to say that on this fantastic basis Helniont constructed a medical system which had some practical merits, that his therapeutical methods were nild and in many respects happy, and that he did service by applying newer chemical methods to the preparatiou of drugs. He thus had some share, thougl a slare not generally recognized, in the foundation of the iatroochemical school, now to be spoken of. But his avored followers formed a small and discredited sect, which, in England at least, can bo clearly traced in the latter part of the century.

Discovery of the Circulation of the Bloul. - The influence of Harvey's discovery began to be felt before the middle of the century. Its merits were recognized by Descartes, among the first, nine years after its publication. For the history of the discovery, and its consequences in anatomy and physiology, we must refer to the article Harvey. In respect of practical medicine, much less effect was at first noticeable. But this example, combined with the Cartesian principles, set many active and ingenious epirits to work to reconstruct the whole of medicine on a physiological or cren a mechanical basis, -to endearour to form what we shonld now call physiological or scientific medicine. The result of this was not to eliminate dogma from medicine, though it weakened the authority of the old dogma. The movement led rather to the formation of schools or systems of thought, which under various names lasted on into the 18th century, while the belief in the utility or necessity of schools and systems lasted much longer. The most important of these were the so-called iatro-physical or mechanical and the iatro-chemical echools.

Iatro-Physical School.-The iatro-physical school of medicine grear out of physiological theories. Its founder is held to have been Borelli of Naples (1608-79), whese treatise De motu animalium, published in 1680 , is regarded as marking an epoch in physiology. The tendency of the school was to explain the actions and functions of the body on ${ }^{\text {lidysical and especially }}$ on mechanical principles. Tha mosements of bones and muscles were referred to the theory of levers; the process of digestion mas regarded as essentially a process of trituration; nutrition and secretion were shown to be dependent upan the tension of the ressels, and so forth. The developments of this school belong rather to the history of physiology, where they appear, scen in the light of modern science, as excellent though premature endeavours in a scientific direction. But the influence of these thecries on practical medicine was not great. The more judicious of the mechanical or physical school refrained, as a judicions modern physiologist does, from ton immediate an application of their principles to daily practice. Mechanical theories were introduced into pathology, in explanation of the processes of ferer and the like, but had little or no influence on therapentics. The most important men in this school after Borelli were Steno (1638-86), Baglivi (1673-1707), and Bellini (1643-1704). An English physician, Cole (1660-1700), is also usually ranked with them. One of the most elaborate develop. ments of the system was that of Pitcairn, a Scotish physician who became professor at Leyden (1652-1713), to be spoken of hereafter.

Iatro-C'remical School. - The so-called intro-chemical school stood in a nuch closer relation to practical medicine than the iatro-physical. The principle which mainly distinguished it was not merely the use of chemical medicines in addition to the traditional, or, as they were called in dis. tinction; "Calenical" remedics, but a theory of pathology or causation of disease entirely different from the prevailing "humoral" pathology. Its chief aim ras to reconcile the new views in physiology and chemistry with practical medicine. In sone theoretical views, and in the use of certain remedies, the school owed something to Tan Helmont and Paracelsus, but took in the nain an independent position. The founder of the iatro-chemical school was Francis de le Boë, called Sylrius (1614-72), belonging to a French family settled in Holland. Sylvius was for fourteen ycars professor of medicine at Leyden, where he attracted students from all quarters of Europe. He made a resolute attempt to reconstruct medicine on the two bases of the doctrine of the circulation of the blood and the new views of chemistry. Fermentation, which was ${ }_{\text {supposed to }}$ to take place in the stomach, plaged an iuportaat
part in the vital processes. Chemical disturbances of these processes, called acridities, \&c., were the cause of fevers and other dizases. Sometimes acid sometimes alkaline properties predominated in the juices and aecretions of the body, and produced correspending disturbances. In nervons diseases disturbances of the vital "spirits" were mest important. Still in some parts of his syetem Sylvius shows nn anxiety to base bis pathology on anatomical changes. The remedies lie employed were partly Galenical, partly chemical He was very moderato in the use of bleeding.

The doctrines of. Sylviua became widely spread in Holland and Germany; less 80 in France and Italy. In England they were not generally accepted, till adopted with some modifications by Thomas Willis the great anatonist (1622-75), who is the chief Euglish repre8entative of the chemical school. Willis was ns thorough-going a chemist as Sylvius. Ho regarded all bodies, organic and inorganic, as composed of the thrce elements-spirit, sulphnr, and salt, the first being only found abundantly in enimal bodies. The "intestine movenent of particles" in every body, or fermentation, was the explanation of many of the processes of life and disease. The sensible praperties and physical alterations of animal fluids and solids depended upon different proportions, movements, and consbinations of these particles. The elaborate mork Pharmaceutice Rationalis, based on these materials, had much influence in its time, though it was soon forgotten. But snme parts of Willis's works, auch as his deseriptions of neryous diseases, and his account (the earliest) of diabetes, are classical contributions to acientific medicine. In the npplication of chemistry to the examinstion of secretions Willis made some inportant steps. The chemical school met with violent opposition, partly from the adherents of the ancient medicine, partly from the iatro-mechanical school. Towards the end of the 17 th century appeared an English medical reformer who sided with none of these schools, but may be aaid in some respects to have surpassed and dispensed with them.

Sydenham and Locke.-Thomas Sydenham (1624-89) was educated at Oxford and at Montpellier. He was well acquainted with the works of the ancient physicians, and probably fairly 80 with chemistry. Of his knowledge of nnatomy nothing definite can be ssid, as he seldom refers to it, His main avowed principle was to do without hypothesis, and study the actual diseases in an unbiassed manner. As his model in medical methods, Sydenham repeatedly and pointedly refers to Hippocrates, and he has not unfuirly been called the English Hippocrates. He resembled his Greek master in the high value be bet on the study of the "natural history of discase"; in the importance he attached to " cpidemic constitution," that is, to the influence of weather and other natural causes in modifying disease ; and further in his conception of the healing poser of nature in dizeuse, a doctrine which he even espanded beyond the teaching of Hippocrates. According to Sydenham, a disease is nothing more than an effort of nature to restore the health of the patient by the elimination of the morbific matter. The extent to which his practice was influenced by this and other a priori conceptions prevents us from classing Sydenham as a pure empiric, but he bad the rare nerit of never pernitting hinsolf to be enslavod cven by his orn theories. Still less was his mind warped by either of the two great systems, tho classical and tho chemical, which then divided tho medical world. Sydenham's influence on Eurnpean medicine was very great. Ifis principles were welcorued as a return to nature by those who were weary of theoretical disputes. He introduced a milder and better way of treating fevers, expecially small-pox, and gove strong support to tho uso of specfic medicince, esperally Peruvian bark. Ho was
an advocsto of bleeding, and often carried it to excess, Another important point in Sydenham'a doctrine is hia clear recognition of many diseases as being what would be now called specific, and not due merely to an alteration in the primary qualities or humours of the older schools. From this springs his bigh appreciation of specific uedicines.

One name should always be mentioned along with Sydenham-that of bis friend Jobn Locke. The great sensational philosopher was a thoronghly trained physician, and practised privately. He shared and defcaded many of Sydenham's principles, and in the few medical observations he bas left shows himself to be even more thorough-going than the "Euglish Hippocrates." It is decply to be regretted in the iuterests of medicine that he did not write more. It is, however, ressunable to supposa that his commanding intellect often makes itself felt in the words of Sydeubam. One sentence of Locke's in a letter to W. Molyneux sums up the practical side of Sydenham'a teaching.
"You cannot imagiuc how far a little observation carefully mado by a mian not tied up to the four humours [Galen], or sal, sulphur. and mercury [Paracalsus], or to acid and alcali [Sylvius and Willia] Which haa of late prevailed, will carry a man in the curing of diseases though very stubborn and dangerous; and that with very littie and common things, and almost yo medicina àt all."

We thas see that, while the great anatomists, pbysicists, and chemists, men of the type of Willis, Borelli, and Boyle, were laying foundations which wers later on built ap into the fabric of acientific medicine, little good was done by the premature application of their half-understood principles to practice. The reform of practical medicine was effected by men who aimed at, and partly succeeded in, rejecting all hypothesis and returning to tho unbiassed study of natural processes, as abown in health and disease.
Sydenham showed that these processes might bo profitably studied and dealt with without explaining them; and, by turning men's minds away from explanations and fixing them on facts, be enriched medicine with a method more fruitful than any discoveries in detail. From this time forth the reign of canonical authority in medicino was at an end, thongh the dogmatic spirit long survived.
The 18 th century. -The medicine of the 18 th century 18 notable, like that of the latter part of the 17 th, for the striving after complete theoretical systems. The infuence of the iatro-physical school was by no means exhausted; and in England, especially through the indirect influence of Newton's great astronomical generalizations, it took on a mathematical aspect, and is sometimes known as iseromathematical. This phase is most clearly developed in Pitcairn (1652-1713), who, though a determined opponent of metaphysicel explanations, and of the chemical doctrines, gave to his own rude mechanical esplamationa of life and disease almost the dogmatic completeness of a theological system. His countryman and papil, George Cheyne, who lived some years at Bath, pullished a new theory of fevers on the mechanical system, which had a great reputation. Their English contemporaries and successors, Freind, Cole and Mead, leaned also to mechanical explanations, but with n distrust of systematic theoretical completeness, which mas perhaps partly a national characteristic, partly the result of the teaching of Sydenhan and Locke. Freind (16751728) in his Limmenologia gave a mechavical explanation of the phenomena of menstruation. He is also one of tho most distinguished writers on the history of medicinc. Cole (sec above) published mechanical hypotheses concerning the eansation of fevers which closely agres with thoso of the Italian iatro-mechanical school. More distinguisher in his own day than any of these was Richard Mear (1673-1754), one of the most accomplished and socially succesfful physicinns of morlern times. Mead was the pryil of the equally popular and successful John Radeliffe
(1650-1714), who had acquired from Sydentam a contempt for book learning, and belonged to no school in snedicine but the school of common sease. Radeliffe left, however, no work requiring mention in a history of medicine. Mead, a man of great learniag and iutellectual activity, was au ardent advecate of the mathematical dactrines. "It is very evident," he says, "that all other means of improriug medicine have been found iueffectual, by the stand it was at for tro thousand years, and that, siace mathematicians have set themselves to the study of it , men already begin to talk ao intelligibly and cumprebensibly, even about abstruse matters, that it is to be hoped that mathematical learning will be the distinguishing mark of a physician and a quack." His Mechanical Account of Poisons, in the first edition (1702), gave an explanation of the effects of poisons, as acting only on the blood. Afterwards he moditied his hypothesis, and referred the disturbances produced to the "nervous liquer," which he suppused to be a quantity of the "universal elastic matter" diffused through the uaiverse, by which Newton explained the phenomena of light, i.e., what was afterwards called the luminiferous ether. Mead's treatise on The Pouer of the Sun and Moon over. Human Bodies (1704), equally inspired by Newton's discoveries, was a premature attempt to assign the influeuce of atmospheric pressure and other cosmical causes in producing disease. His works contain, however, many original experiments, and excellent practical observations. James Keill (1673-1719) applied N'ewtonian and mechanical principles to the explanation of budily functions with still greater accuracy and completeness; but his researches have more importance for physiology than for practical medicine.
Boerhaave.-None of these men founded a school,-a result due in part to their intellectual character, in part to the absence in Eagland of medical schools equivalent in position and importance to the universities of the Contineut. An impertant academical position was, on the other hand, one of the reasons why a physician not very different in his way of thinkiug from the English physicians of the age of Queen Anne was able to take a far more predominant position in the medical world. Hermann Boerlaave (I668-1738) was emphatically a great teacher. He was for many years professor or medicine at Leyden, where he lectured five hours a day, and excelled in influence and reputation, not only his greatest forerunners, Montanus of Padua and Sylvins of Leyden, but probably every subsequent teacher. The hospital of Leyden, though with only twelve beds available for teaching, became the centre of medical influence in Europe. Many of the leading English physicians of the 18 th century studied there; Van Swieten, a pupil of Boerhaave, transplauted the latter's method of teaching to Vienaa, and founded the noted Vienna school of medicine. As the organizer, and almost the constructor, of the modern method of clinical instruction, the services of Buerhaave to the progress of medicine were immense, and can hardly be operrated. In his teaching, as in his practice, he avowedly followed the method of Hippocrates and Sydenham, both of whom he enthusiastically admired. In his medical doctrines be must be pronounced an eclectic, though taking his stand mainly on the iatroarectanical school. The best known parts of Beerhaave's system are his doctrines of inflammation, obstruction, and "plethora." By the last-named especially he was long remembered. His object was to make all the anatomical and physiological acquisitions of his age, even microscopical anatomy, which he diligently studied, a vailable for use in the practice of medicine. He thus differed from Sydenham; who took almost as little account of modern acience as of ancient dogma. Boerhaave may be in some respects compared to Galen, but again differed from him in
that he always abstained from attempting to reduce his knowledge to a uniform and coherent system. Boerhaave attached great innportance to the study of the medical classics, but rather treated them historically than quoted them as canonical authorities. It almost followa from the nature of the case that the great task of Boerhaave's life, a synthesis of ancient and modern medicine, and the work in which this is chietly contained, his celebrated Institutions, could not have any great permanent value. Nearly the same thing is true cyen of the Aphorisms, in which, follow. ing the example of Hippocrates, he endeavoured to sum up the results of his long experience.

Hofnearn and Stahl.-We have now to speak of two writers in whom the ssstematic tendency of the 18th century showed itself most completely.

Friedrich Hoffmann (1660-1742), like Boerhaave, owed his influence, and perhaps partly his intellectual characteristics, to bis academical position. He was in 1693 appointed the first profossor of medicine in the university of Halle, then just founded by the elector Frederick III. Here he became, as did his coutemporary and rival Stahl, a popular and influential teacher, forough their university had not the European importance of Leyden. Hoffmann'a "system" was apparently intended to recoucile the oppesing "spiritual" and "materialistic" views of nature, and is thought to have been much influenced by the philosophy of Leibnitz. His medical theories rest upon a complete thecry of the universe. Life depended upon a universally diffused ether, which animals breathe in from the atmosphere, and which is contained in all parts of the body. It accumulates in the brain, and there generates the "nervous fuid" or pneuma,-a theory closely resembling that of Mead on the "nervous liquor," unless indeed Mead borrowed it from Hoffmano. Ou this system are explained all the phenomena of life and disease. Health depends on the maintenance of a proper "tone" in the body, 一some diseases being produced by excess of tone, or "spasm"; others by "atony," or waat of tone. But it is impossible here to follow its further developments. Independently of his system, which has long ceased to exert any influence, Hoffmaun made some contributious to practical medicine ; and bis great knowledge of chemistry euabled him to investigate the subject of mineral waters. He was equally skilful in pharmacy, but lowered his position by the practice which would be unpardonable in a medern physician, of trafficking in secret remedies. Some of these are even to this day sold for the benefit of the orphauage at Halle.

George Erncst Stahl (1660-1734) was for more than twenty years professor of medicine at Halle, and thua a colleague of Huffmann, whom he resembled in constructing a complete thenretical system, though their systems had little or nothing in common. Stahl's chief aim was to oppose materialism. For mechanical conceptions he substituted the theory of "animisn,", -attributing to the soul the functions of ordinary animal life in man, while the life of other creatures was left to mechanical laws. The symptoms of disease were explained as efforts of the soul to rid itself from morbid influences, the soul acting reasonably with respect to the end of self-preservation. The anima thus corresponds partly to the "nature" of Sydenham," while in other respects it resembles the archeus of Van Helmont. Animisnı in its completeness met with little acceptance during the lifetime of its author, but infiuenced some of the iatro-physical school. Stahl was the auther of the theory of "phlogiston" in chemistry, which in its day bad great importance.

Haller and Morgagni.-From the subtleties of rival systems it is a satisfaction to turn to two movements in the medicine of the I8th century which, though they did not. extinguish the spirit of system-making, opened up paths of
inveatigation by which the systems were ultimately superseded. These are physiology in the modern sense, as dating from Haller, ad pathological anatomy, as asting from Morgagni.

Albrecht von Haller (1708-75) was a man of eveu more encyclopædic attaiaments than Boerhave. He advanced chemistry, botany, anatomy, as well as physiology, and was incessantly occupied in endeavouring to apply his scieatific atudies to practical medicine, thus continuing the work of Lis great teacher Boerhaave. Besides all this he was probably more profoundly acquaiuted with the literature and bibliography of medicine than any one before or since. Haller occupied in the new university of Göttingen (founded. 1737) \& position corresponding to that of Boerhave at Leyden, and in like manner iafluenced a very large circle of pupils. The appreciation of his work in physiology belongs to the history of that science; we are only concerned here with its influeace on medicine. Haller's definition of irritability as a property of muscular tissue, and its distinction from seasibility as a property of nerves, struck at the root of the prevailing hypothesis respecting animal activity. It was no louger necesaary to suppose that a half conscious "auima." wes directiag every movement. Moroover, Haller's views did not rest on a priori speculation, but.on numerous experiments. He was among the first to investigate the action of medicines on healthy persons. Unfortunately the lessen which his contemporaries learnt was not the importance of experiment, but only the need of contriving other "systems" less open to objection; and thus the influence of Haller led directly to the theoretical aubtleties of Cullen and John Brown, and only indirectly and later on to the geaeral anatomy of Bichat. The great name of Haller does not therefors occupy a very prominent place in the hiatory of practical medicine.

The work of Giovanni Battiste Morgagni (1682-1771) had and atill preservea a permaneat importance beyoud that of all the contemporary theorists. In a series of letters De sedibus et causis morborum per anatomen indagatis, published when he was in bis eightieth year, he describes the appearances met with at the post-mortem examination as well as the symptoms.during lifo iu a number of cases of various diseases. It was not the first work of the kind. Bonet hed published his Sepulcretum in 1679; and observations of post-mortem appearances had been mado by Montanus, Tulp, Vieussens, Valsalva, Lancisi, Haller, and others. But never before was so large a collectiou of cases brought together, described with such accuracy, or illustrated with equal anatomical and medical knowledge. Morgagni's work at once made an efoch in the science. Morbid anatony now became a recogaized branch of medical rescarch, and the movement was started which has lasted till our own day.

The contribution of Morgagai to medical science must he regarded as in sonie respects the counterpart of Sydenham's. The latter had, in neglecting anatomy, neglected the most solid basis for studying the natural history of disense; though pcrhaps it was less from choice than because his practice, as be was not attached to a hospital, gave him no opportunities. But it is on the combination of the two methods, that of Sydenhan and of Morgagni, that modern medicine rests; and it is through these that it has been able to make steady progress in its own field, independently of the advence of physiology or other eciences.

The method of Morgagni found many imitators, both in his owu country and in others. In England the first important name in this field is at the same time that of the first writer of a systematic work in any languege on morbid anatomy, Matthew Baillio (1761-1823), who published his treatise in 1793.

Cullen and Broun.-It remains to speak of two system.
atic writers on medicine in the 18 th century, whose great reputation prevents them from being passed orer, thougb their real contribution to the progress of medicine wes not great-Cullen and Brown.

William Cullen (1712-90) was a most eminent and popular professor of medicine at Edinburgh. The same academical influences as surrounded the Dutch and German founders of systerns were doubtless partly concerned in leading him to form the plan of a comprehensire system of medicine. Cullen's system was largely based on the new physiological doctrine of itritability, but is especially noticeable for the importance attached to merrous action. Thus even gout was regarded as a "ueurosis." These pathological principles of Cullen are contained in his First Lines of the Practice of $I^{2} / h y s i c$, an extremely popular book, often reprinted and translated. More importance is to be attached to his Nosology or Classification of Diseases. The attempt to classify diseases on a natural-history plan was not new, having been commenced by Seuvages and others, and is perbaps not a task of the highest importance. Cullen drew out a classification of great and needless complexity, the chief part of which is now forgotten, but several of his main divisions aro still preserved.

It is difficult to form a clear eatimate of the importance of the last systematizer of mediciae, Joha Brown (173588), for, though in England he has been but little regarded, the wide though sbort-lived popularity of his system on the Continent shows that it must have contsined some elements of brilliancy, if not originality. His theory of medicine professed to explain the processes of life and disease, and the methods of cure, upon one simple principle, -that of the property of "excitability," in virtue of which the "exciting powers," defined as being (1) external forces and (2) the functions of the system itself, call forth the vital phenomens "sense, motion, mental function, and passion." All exciting powers are stimulant, the apparent debilitating or sedative effect of some being due to a deficiency in the degree of stimulus; so that the final conclusion is that "the whole phenomena of life, health as well as disease, consist in stimulus and nothing else." Brown recognized some disenses as sthenic, others as asthenic, the latter requiring stimulating treatment, the former the reverse ; but his practical conclusion was that 97 per cent. of all diseases required a "stimulating" treatment. In this he claimed to have made the most salutary reform because all physicians from Hippocrates had treated discases by depletion and debilitating measures with the object of curing by elimination. It would he unprofitable to attempt a complete analysis of the Brunonian system; and it is difficult now to understand why it attracted so much attention in its day. To us at the present time it seems merely a dialectical construction, baving ita beginning and end iu defiuitions, the words power, stimulus, dc., being used in such \& way as not to correspond to any precise physical conceptions, still less to definite material nhjects or forces. Onc recommendation of the system was that it favoured a.milder system of treatment than was at that time in vogue; Brown may be said to have bcen the first advocate of the moderu stimnlant or feeding treatment of fevers. He adrocated the use of "animal soups" or beef tea. Further he had the discernment to sce that certain symptoms, such as convulsions and delirim, which were then commonly held always to indicate inflammation; were often really signs of weakness.
The fortuncs of Brown's system (called, from haring been originally vritten in Latin, the Brunenian) form one of the strangest chapters in the history of medicine. In Scotland. Brown so far won the sympathy of the students that riutous conflicts took place betreen his partisans and opponents. In England his system took little root. In Italy, on the other hand, it received enthusiastic support, and, naturslly,
a corresponding degree of opposition. The most important adherent to Brown's systenı was Rasori (1763-1837), who taught it as 1 rofessor at Pavia, but afterwards substitnted his own system of contra-stimulus. The theoretical differences between this and the "stinulus" theory niced not be expounded. The practical difference in the corresponding treatment was very great, as Rasori advocated a copious use of bleeding and of depressing remedies, such as antimony. Joselh Frank, a German, professor at Paria, afterwards of Vienna, the author of au encyclopedic work on medicine now forgotten, embraced the Brunonian systen, though he afterwards introduced some modifications, and transplanted it to Vieuna. Many names are guoted as purtisans or opponents of the Brumonian system in" Italy, but scarcely one of them has any other claim to be remembered. In Germany the new systen called forth, a little later, no less enthusiasm and coptroversial heat. Girtanuer first began to spread the new ideas (thongh giving then out as his own), but Weikard was the first avowed advocate of the system. Röschlaub (1768-1835) modified Brown's system into the theory of excitement (Erregungstheoric), which for a time was extremely popular in Gernisny. The enthusiasm of the younger Brunonians in Germany was as great as in Ediuburgh or in Italy, and led to serions riots in the university of Göttingen. In America the system was enthusiastically adopted by a noted plysician, Benjamin Rush, of Philadelphia, who was followed by a considerable school. France was not more inflnenced by the new achool than England. In both countries the tendency towards positive science and progress by objective investigation was too marked for any theoretical system to have more than a passing influence. In France, however, the infinence of Brown's theories is very clearly seen in the writings of Broussais, who, though not rightly classed with the system-makers, since his conclusions were partly based upon anatomical investigation, resembled them in his attempt to unite theory and practice in one comprehensive synthesis. The explanation of the meteoric splendour of the Brunonian system in other countries seems to be as follows. In Italy the period of intellectual decadence had eet in, and no serious scientific ardour remained to withstand the novelties of alstract theory. In Germany the case was somerbat different. Intellectual activity was not wanting, but the great achievements of the 18 th century in philosophy and the moral sciences had fostered a love of abstract specnlation; and some sort of cosmical or general eystem was thought indispensable in every department of special science. Hence another generation had to pass away before Germany found herself on the level, in Ecientific investigation, of France and England.

Before the theoretic tendency of the 18th century was quite exhausted, it displayed itself in a system which, though in some respects isolnted in the history of medicine, stands nearest to that of Brown,-that, naniely, of Hahnemann (see Homeopatny). Halmemann (1753-1844) was in conception as revolutionary a reformer of medicine as Paracelsus. He professed to base medicine entirely on a knowledge of symuptoms, regarding all juvestigntion of the causes of symptoms as useless. While thus rejecting all the lessons of morbid anatomy and pathology, he put forward views respecting the causes of disease which hardly bear to be seriously stated. All chronic maladies result either from three diseases-psora (the itch), sypliilis, or sycosis (a skin disease), or else are maladies prodnced by medicines. Seven-eighths of all chronic diseases are produced by itch driven inwards. ${ }^{2}$ (It is fair to say that
${ }^{1}$ The itch is really an affection produced by the presence in the skin of a species of mite (.fcarvs scabici), and when this is destrejed or remored the diseare is at an cnl.
these views were published in oro of his later works.) in treatment of disease Hahnerann rejected entirely the notion of a vis medicatrix nutura, and was guided by his well-known principle "sinilia sinilibus curantur," which he explained as depending on the law that in order to get rid of a disease some remedy must be giren which shonld substitute for the disease an action dynamically similar, but weaker. The original malady being thus got rid of, the vital force would easily be able to cope with and extinguish the slighter disturbance caused by the remedy. Something very similar was held by Brown, who taught that "indirect debility" was to be cured by a lesser degree of the same stimnlus as bad cansed the original dinturbance. Generally, however, Halmemann's views contradict thost of Brown, thongh moving somewhat in the same plane. In orler to aelect remedies which should fulfil the indication of producing syunptoms like those of the disease, Hahnemann made many observations of the acticn of drugs on healthy persons. He did not originate th is line of research, for it bad been pursued if not originated by Hnller, and cultivated systenuatically by Tomnasini, an Italian "contra-stimulist;" but he carried it out with much elaboration. His results, nevertheless, were vitiated by being obtained in the interest of a theory, and by singular want of discrimination. Hahnemann's doctrines muet with much opposition on the part of the medical profession, and he was hence led to state his case to the "lay" public as a sort of court of appeal; and thus natters of science were made the theme of much popular controversy. This expedient, in which Halnemann had been in a small degree anticipated by Brown, contributed largely to the success of his aystem. The appeal flattered a prevaient belief in the right of private judgement, even in technical and learned subjects. Hahnemann was thus able to take $u_{p}$ the position (and not without justification) of a victim of professional prejudice. The anomalous position into which professional scorn and extra-professional populaity brought him produced a distinct deterioration in the character of his work. In his second neriod he developed che extroordinary theory of "potentiality" or dynamiza-tion,-manely, that medicines gained in strength by being diluted, if the dilution was accompranied by shaking or pounding, which was supposed to "potentinlize" or in. crease the potency of the medicine. On this extraordimary principle Hahnemann ordered his original tinctures to be reduced in sirength to one-fiftieth ; these first dilutions again to one-fiftieth; and so on, even till the thirtieth dilution, which he himself used by preference, and to which be ascribed the highest "potentiality." It is hardly necessary to point ont that even the lower dilutions involve quantities which no analysis can reigh, measure, or even recognize. The still greater eccentricities of Hahnemann's later works need not be recomnted. From a theoretical point of view Hahnemann'a is one of the abstract systems, pretending to miversality, which modern medicine neither necepts nor finds it worth while to controvert. In the trentment of discase his practical innorations came at a fortunate time, when the excesses of the depletory system had only partially been superseded by the equally injurious opposite extreme of Brown's stimulant treatnent. Hahnemann's use of mild and often quite inert remedies contrasted favourably with both of these. Further he did good by insisting upon simplicity in prescribing, when it was the custom to give a number of drugs, often heterogeneous and inconsistent, in the same prescription. But these indirect benefits were quite independent of the truth or falsity of his theoretical system.

Positive Progress in the 18/k Century.-In looking back on the repeated attempts in the 18 th century in construct ia nnirersal syatem of medicine is impossible not to
regret the waste of brilliant gifts and profonnd acquirements which they involved. It was fortunete, however, that the accumulation of positive knowledge in medicine did not cease. While Germany and Scotland, as the chief homes of abstract speculation, gave birth to most of the theories, progress in objective sctence was most marked in other countries, -in Itsly first, and afterwards in Eugland and France. We must retrace our steps a little to enamerato several distinguished names which, from the nature of the case, hardly admit of classification.
In Italy the tradition of the great anatomists and plysiologists of the lith century produced a series of accurate observers and practitioners. Among the first of these were Antonio Maris Valsalva (1666-1723), still better known as an anatonist; Giovanni Maria Lancisi ( $1654-1720$ ), also an anatomist, the author of a classical work on the diseases of the heart and aneurisms; snd Ippolito Francisco Alhertini (1662-1738), whose researches on the same ciass of diseases were no less important.
In France Jean Baptiste Sénac (1693-1770) wrote nlso an important work on the affections of the heart. Sauvages, otherwise F. B. de Lacroix (1706-6ĩ), gave under the title Nosologin Methodica n nstural-history classification of diseases; Jean Astruc (1684-1766) contributed to the knowledge of general diseases. But the state of medicine in that country till tlie end of the 18th century was unsatisfactory as compared with some other parts of Europe.
In England the brilliancy of the early part of the century in practical medicine was hardly maiutsined to the end, and presented indeed a certain contrast with the remarkable and unfagging progress of surgery in the samo period. The roll of the College of Physiciane does not furnish many distinguished names. Among these should be meationed John Fothergill (1712-80), who investigated the "putrid sore throat" now called diphtheris, and the form of neuralgia popularly known as tic douloureus. A physician of Plymouth, John Huxham (1694-1768), made researches on epidemic fevers, in the spirit of Sydeaham and Hippocrates, which are of the highest importance. Willinm Heberden (1710-1801), a Loudon physician, called by Samuel Johnson ultimus Romanorum, "the last of our learned physicians," left a rich legacy of practical observations in the Commentaries published after Lis death. More important in their results than any of these works were tho discoveries of Edward Jenner (q.v.), respecting the prevention of small-pox by vaccination, in which ho superseded the partially useful but dangerous practice of iunculation, which had been introduced into England in 1721. The history of this dis. cosery need not be told here, but it may bo pointed out unat, apart from its practical importance, it has had great influence on the scientific study of infections discases. The name of John Pringle (1707-82) shonld also be mentioned ns one of the first to study epidemies of fevers occurring in prisons and camps. lis work entitled Observations on the Diseases of an Army was translated into many European languages, and became the standard authority on the subject.
In Germany the only impnrtant school of practical medicine mas that of Yionna, ns revised by Yan Swieten (1700-72), a pupil of Bocrlaave, under the patronage of Maria Theresa. Van Swieten's commentarics on the aphorisms of Boerhanve are thought enore valuable than lie original text. Other eminent names of the samo school are Anton de Haen (1704-76), Anton Störck (1731-1803), Maximilian Stoll (1742-88), and John Peter Frank (1745-1821), father of Joseph Frnuk before. mentioned as an adherent of the Brownian system, and like his son carried away for a time by tho new doctriues.

This, the old "Yieuna School," was not distiaguished for any notable discoveries, but for success in clinical teaching, and for its sound method of studying the actual facts of disease duriag life and after death, which largely contributed to the establishment of the "positive medicine" of the 19th century.

One novelty, however, of the first importance is due to a Vienna physician of the period, Leopold Aveubrugger (1722-1809), the inventor of the method of recognizing diseases of the chest by percussion. Avenbrugger's method was that of direct percussion with the tips of the fingers, not that which is now used, of mediate percussion with the intervention of a finger or plessimeter; but the results of his method were the same, and its value nearly as grest. Avenbrugger's great work, the Inventuon Novum, was published in 1761. The new practice was received at first with contempt and cren ridicule, and afterwards by Stoll aod Peter Frank with only grudging approval. It did not receive due recognition till 1808, when Corvisart translated the Inventum Nomem into French, and Avenbragger's method rapidly attained a European reputation. Surpassed, but not eclipsed, by the still more important art of auscultation introduced by Laennec, it is hardly too much to say that this simple and purely mechanical invention has had more influence on the development of modern medicine than all the "systems" evolred by the most brilliant intellects of the 18 th century.

Early Part of the 19 th Century.-It is not possible to carry the history of medicine, in a sketch such ns this, beyond the early years of the 19th century, both because the mass of details becomes so large as to require more minute treatment, and because it is difficult as we approach our own times to preserve the necessary historical perspective. It was, however, in this period that what we regard as the modern school of medicine mas formed, and took the shape which it has preserved to our own days. The characteristic of the modern school is the adoption in medicine of the uncthods of research of physical science, and the gromually declining importance attached to theory and abstract reasoning, -hypotheses, though not ueglected, being used as means of research rather than as ultimate conclusions. Its method may therefore be called the rositive method, or that of rational empiricism. The gromth of the ner school was frst scen in two European countrics, in France and England, and must be separately followed in the two. Germany entered the field later.

Fise of the Positive Schoal in France.-The reform of medicine in France must be dated from the great intellectual amakening caused by the Revolution, but mnre definitely starto with the rescarches in anatomy and plysiology of Mario Francois Xavicr Bichat (1771-1802). The importance in science of Bichat's classical works, espectially of the Anctomie généràle, cannot be estimated hers; we can ouly point out their value ns supplying a yerr basis for pathology or the science of discase. Anrong the must ardent of his follorers was François Joseph Victor Broussais (17T2-1838), whose theoretical viers, partly founded on those of Brown and parthy on the socalled vitalist schonl of Borden and Barthez, differed from these essentinlly in being aromedly based on amatonical observations. Broussais's chief ainz was to find nn anatnomical hasis for all diseases, but he is especinlly known for his nttempt to explaia all ferers as a consequence of irritation or iuflammation of the intestiral canal (gastroentérite). A number of other maladice, especially gener discases and those commouly regarded as aervous, were attributed to the same cause. It would be impossible nows to trace the steps which led to this wild and long since exploded theory. It led, amnng other consequences, to an ennrmous misuse of hleding. Leeches wire his favourite
instruments, and so much so that he is said to have used 100,000 iu his own hospital wards during one year. He wha equalled if not surpassed in this excess by his follower Bouillaud, known for his important work on heart diseases. Broussais's system, to which he gare the name of " Médecine Physiologique" did much indirect good, in fixing attention upon morbid changes in the organs, and thus led to the rise of the strongly opposed anatomical and pathological school of Corrisart, Laeunec, and Bayle.

Jean Nicolas Corvisart (1755-1821) has already heen mentioned as the translator and introducer into France of Avenbrugger's work on percussiou. He introduced some improvements in the method, but the only real adrance was the introduction of mediate percussion by Piorry in 1828. The discovery had, however, yet to he completed by that of auscultation, or listening to sounds produced in the chest by breathing, the movements of the heart, \&c. The combination of these methods constitutes what is now kanwn as physical diagnosis. Reaé Théuphile Hyacinthe Laemnec (1781-1826) was the iaventor of this most important perhaps of all methods of medical research. Except for some trifing notices of sounds heard in certain disenses, this method was entirely new. It was definitely expounded in an almost complete form in his work De l'auscultation médiate, published in 1819. Laennec attached undue importrace to the use of the stethoscope, and laid too much weight on specific signs of specific diseases; otherwise his method in its main fentures has remained unclanged. The result of his discovery was an entire revolation in the knowledge of diseases of the chest ; but it would be a mistake to forget that an essential factor in this revolution was the simultancous study of the condition of the diseased organs as seen after death. Without the latter, it is difficult to see how the information conveyed by sounds could ever have been verified. This increase of knowledge is therefore due, not to anscultation alone, but to auscultation combined with morbid anatomy. In the case of Laennec himself this qualification takes nothing from his fame, for he studied so minutely the relations of post-mortem appearances to symptoms during life that, had he not disenvered auscultation, his researches in morbid anatomy would have made hinn famous. The pathologico-anatomical method was also followed with great zeal and success by Gaspard Laurent Bayle (17741816), whose researches on tubercle, and the changes of the lungs and other organs in consumption, are the foundation of most that has been done since his time. It was of course antecedent to the discovery of auscultation. Starting from these men arose a school of physicians who endeavoured to give to the study of symptoms the same precision as belonged to anatomical observations, and by the combination of both methods made a new era in clinical medicine. Among these were Chomel (17881858), Louis (1787-1872), Cruveilhier (1791-1874), and Audral (179i-1876). Louis, by his researclies on pulmonary consumption and typhoid fever, had the chief merit of refuting the doctrines of Broussais. In another respect also he aided in establishing an exact science of medicine by the introduction of the numerical or statistical method. By this method only can the fallacies which are attcodant on drawing conclusions from isolated cases be aroided; and thus the chief objection which bas been made to regarding medicine as an inductive science has been removed. Louis's method was improved and systematized by Cavarret ; and its utility is now universally recogaized. Space does not permit us to trace further the history of this brilliant period of French medicine, during which the superiority of the school of Paris could hardly be contested. We can only mention the names of Bretonneau (17711862), Rostan (1790-1866), D'Alibert (1766-1837), Rayer
(1593-1867), and Trousseau (1801-1866), the eloquent and popular teacher.
Einglish Medicine from 1800 to 1840. The progress of medicine in England during this period displays the same characteristics as at other times, viz., a gradual and uninterrupted development, without startling changes such as are caused by the sudden rise or fall of a new school. Hardly any theorerical system is of English birth ; Erasnuus Darwin (1731-1802), the grandfather of the great Charles Darmin, aloue makes an exception. In his Zoonomia (1794) he expounded a theory of life and disease wlich had sonte resemblance to that of Browa, though arrived at (he says) by a different chain of reasoning.
Darwin's work shows, however, the tendency to comnect medicine with physical science, which was an immediate cousequence of the scientific discoveries of the end of the 18th century, when Priestley and Caveridish in England exercised the same influence as Lavoisier in France. The English school of medicine was also profoundly stirred by the teachings of the two brothers William and John Hunter, especially the latter,-who must therefore be briefly mentioned, though their own researches were chiefly concerned with subjects lying a little outside the limits of this sketch. William Hunter (1718-1783) was known in London as a brilliant teacher of anatomy and successful obstetric physician; his younger brother and pupil, John Hunter (1728-1793), was also a teacher of anatomy, and practised as a surgeon. His immense contributions to anatomy and pathology cannot be estimated here, but his services in stimulating research and trainiag investigators belong to the history of general mediciue. They are sufficiently evidenced by the fact that Jenner and Baillie were his pupils.

The same scientific bent is seen in the greater attention paid to morbid anatomy (which dates from Baillie), and the more scientific method of studying diseases, $A n$ instance of the latter is the work of Robert Willan (1757-1812) on diseases of the skin,-a department of medicine in which abstract and hypothetical riews had been especially injurious. Willan, by following the naturalhistory method of Sydenham, at once put the study on a sound basis; and his mork has been the starting point of the most important modern researches. About the same time William Charles Wells (1757-1817), a scientific investigator of remarkable power, and the author of a celebrated essay on dew, published observations on alterations in the urine, which, though little noticed at the time, were of great value as assisting in the important discorcry mado some years afterwards by Bright.

These observers, and others who cannot be mentioned here, belong to the period when English medicine waa still little iafluenced by the French school. Shortly after 1815, however, when the Continent was again open to English travellers, many Euglisin doctors studied in Paris, and the discoveries of their great French contemporaries began to be known. The method of auscultation was soon introduced iuto this country by pupils of Laennec. John Furbes in 1824, and William Stokes of Dublin in 1825, published treatises on the use of the stethoscope. Forbes also translated the works of Laennec and Aveubrugger, and an entire revolution was soon effected in the knowledge of disenses of the chest. James Hope and Peter Mere Latham further developed this subject, and the former was also known for his researches in morbid anatomy. The combination of clinical and anatomical research led, as in the hands of the great French physicians, to important discoveries by English investigators. The discovery by Richard Bright (1789-1858) of the disease of the kidueys knowa by his name, has proved to be one of the most momentous of this century. It was published in Reports of

Medical Cases, 1827-31. Thomas Addison takes, somewhat later, a scarcely infcrior place. The remarkable physiological discoveries of Bell and Marshall Hall for the first time rendered possible the discrimination.of diseases of the spiasel cord. Several of these physicians were also ominent for their clinical. teaching, -an art in which Eaglislumen had up till theu been greatly deficient.

Although mauy names of scarcely less note might be meutioned amoing the Loudon physicians of the early part of the century, we must pass them over to consider the progress of medicine in Scotland and Ireland. In Ediuburgh the admirable teaching of Cullea had raised the medical faculty to a height of prosperity of which his successor, James Gregory (1758-1821), was not unworthy. His nephew, William Pulteney Alison (1790-1859), was pyen more widely known. These great teachers maiatained in the northern university a continuous tradition of suc. cessful teaching, which the difference in academical aud other circumstances readered hardly possible in Loudon. Nor was the nerthera school wanting in sperial investigators, such as John Abercrombic, known for his work on diseases of the brain and spinal cord published in 1828, aud many others. Turaiag to Ireland, it should be said that the Dublin school in this period produced two pliysicians of the highest distinction. Robert James Graves (c. 1800-1853) was a most eaineat cliaical teacher and observer, whose lectures are regarded as the model of clinical teaching, and indeed served as such to the noest popular teacher of the Paris school in the middle of this century, Trousseau. William Stokes (1804-1878) was especially known for his works on discases of the chest and of the beart, and for his clinical teaching.

German Medicine from 1800 to 1840. -Of the other countries of Europe, it is now only necessary to mention Germany. Here the chief bome of positive medicine was still for a long time Vienna, where the "now Vienna school" continued aud surpassed the glory of the old. Joseph Skoda (born 1805) extended, and in some respects corrected, the art of auscultation as left by Laenuec. Karl Rokitansky (1804-1878), by his colossal labours, placed the scieace of morbid anatomy on a permauent basis, and enriched it by numerous discoreries of detail. Most of the ardent cultivaters of this science in Germany in the next generation were his pupils. In the other Gernan schools, though some great names might be found, as Romberg (1795-1873), the founder of the moderis ere fa the study of nervous diseases, the general spirit was scholastic and the result barren, till the teaching of oae man, whem the modern German pbysicians generally regard as the regenerator of scientific medicine in thacir country, made itself felt. Johann Lucas Schönleiu (1793-1864) was first professor at Würzburg, afterwards at Zurich, and for
tweaty years at Berlin (from 1839-1859). Schöaleing positive contributions to medical science were not largo but he made in 1839 one discovery, apparently small, buit in reality most suggestive, namely, that the contagious discase of the head called farus is produced by the groryth in the hair of a parasitic fungus. In this may be found the germ of the startling modern discoveries if: parasitic diseases. His systematic doctrines founded the so-called "natural history school;" but his real merit was that of the founder or introducer of a method. In the words of Haeser, "Schönlein has the incontestable merit of having been the first to establish in Germany the exact method of the French and the English, and to impregnate this method with the vivifying spiritiof German research." The name of Scliöulein thus briugs us to the threshold of the moderu German school of medicine,the most scientific and exact in Europe, and in its spirit strikingly in contrast with the theoretical subtlety of German systematists in the last century.
Litcrature.-The earliest work of authority on the history of medicino is that of Daniel le Clerc (Histoire dc la Alfdecine, Geneva, .1696; Amsterdan, 1704, 1723, \&c. ), which ends with Galen. Freind'a Histoo:y of Physich (London, 1725-26, 2 rols.) carries on the subject from Galen to the begiming of the 16 th century:" The first complete history is that of Kurt Sprengel ( $V^{\prime}$ ersuch einer pragmatischen Greschichte der Araneikunde, Halle, 1792; 3d edition, Halle, 1821-28, 5 vols.; also in Frencl, Paris, 18152 Reside these may be mentioned Hecker, Geschichtc dicr Heilkknde, Berlin, 1822, and Gcseh. der neuercn Heilkiundc, Berlin, 1839;. Ch. Daremberg, Histoirc des sciences medicales, Paris, 1870,2 vols.; Edward Meryon, History of Mcdicinc, London, 1861 (left unfinisled, vol. i. only having appeared). The most recent and complete text-book is Hacser's Lehrbuch der Geschichte der Mrdiein und der Epidemischen Krrankheiten \3d edition, Jena, 1875-79, 3 vols., in course of completion), to which the preceding sketch is very largely indebted.
n special departments of the subject the authorities are the following :- For classical medicine : Celsns, De Medicina ; Littré, (Euvres d' Hippocrate, Paris, 1839-61, 10 rols. (especially vol. i.); Francis Adams, Genuinc W orks of Ilippocrates translated, with a Preliminary Discourse, London (Syd. Soc.), 1849, and Paulus EEgincta, translated, with a Conmentary, London (Syd. Soc.), 1844 ; Daremberg, La ARedecine dans Honiere, Paris, 1865 , and La Medecine entre Homere et Hippocrate, Paris, 1869 ; and W.'A. Greenhill'a artioles "Galen," "Hippocrates," \&c., in Smith's Classical Dietionary, 1844. For Arabian medicine: Wöstenfeld, Geschichte der Arabischen Acrze und Naturforscher, Göttingen, 1810 ; and Lacien Leclerc, Histoire de la Medecine Arabe, Paris, 1876, 2 vols. For Salernitan medicine: Collcetio Salcrnittana, edited by De Renzi, Daremberg, \&c., Naples, 1852, 5 vols.; Regineer Sanitatis, with introduction by Sir A. Croke, Oxford, 1830; and Daremberg, L'Ecole de Salernc, Paris, 1861. For medicine in England: John Aikin, Biographical Mfemoirs of Medicine in Great Britain, to the time of Harrey, Londoll, 1780; Lives of Britisl Physicians, London, 1830 (chiefly hy Dr Macmichael, partly by Dr Bisset Hawkins and Dr H. H. Southey); and łlunk, Roll of the Royal College of Physicians of London, 2d ed. 1878, 3 vols. For the modern scheols:' Hirscleel, Geschichte des Broun'. schern Systens und der Erregungs Theorie, Leipsic, 1846; Bouchnt, Histoire de la Medecine et des Doctrines Mledicales, 2 rols, Paris, 1873 (comparison of ancient and modern schools); Buckle, History of Civilization in England, 1858-61.
(J. E. P. ${ }_{2}$ )

MEDINA, or rather El-Medina (the city), or Medinat Rasúl Ailfir (the city of the apostle of God), a town of the Mijiaz in Arabia, in $25^{\circ}$ N. lat., 40 E. long., ${ }^{1}$ the refuge of Mohammed on his flight from Mecca, and a renowaed place of Moslem pilgrimage, consecrated by the possession of his tomb. The name El-Medina goes back to the Koran (sic. xxxiii. 60); the old name was Yathrib, the Lathrippe of Ptolemy and Iatbripps of Stephanus Byzantius.

[^262]Medina stands in a sort of basin-at the northern extremity of an elevated plain, on the western skirt of the mountain range which divides the Red Sea coast-lands from the central plateau of Arabie. At an hour's distance to the north it is dominated by Mount Ohod, an ontlying spur of the great mountains, which is now visited by the pious ss the scene of the well-known battle (see Moramsed), and the site of the tomb and mosque of the Prophet's uncle Hamza. To the east the plain is bounded by a long line of hills eight or ten hours distant, over which the Nejd rond runs. A number of torrent courses (of which W. Kanat to the north, at the foot of Mount Ohod, and W. 'Akik, some miles to the south, are the most important) descend from the moastaias, formiag considerable streams and pools after rain, and converge in tha
neighbourhood of the town to unite farther west at a place called Zaghába, whence they descend to the sea through the "mountains of the Tibáma"-the rough country betwcen Medina aud its port of Jumbú-under the name of W. Idlam. Sonthwards from Medina the plaie extends uabroken, but with a slight rise, as far as the eye can reach. The convergence of torrent courses in the neighbenrhood of Medina makes this one of the best-watered spots in northern Arabia The city lies close to one of the great volcanic centres of the peninsula, which was in violent cruption as late as 1266 A. D., whem the lava stream appreached within an hour's distance of the walls, and dammed np W. Kanat. The result of this and older prehistoric eruptions has beeo to confine the underground water, so important in Arabian tillage, which can be reached at any poiut of the oasis by sinking deep wells. Many of the weils are brackish, and the natural fertility of the volcauic soil is in many places impaired by the salt with which it is impregnated; but the date painn grows well everywhere, and the groves, interspersed with gardens and corn-fields, which surround the city on all sides except the west, have been famous from the time of the Prophet. Thus situated, Medina was originally a city of agriculturists, not like Mecca a city of merchants; ner, apart from the indispensable trade in provisions, has it ever acquired commercial importance like that which Mecca owes to the pilgrimage. ${ }^{1}$ Landowners and cultivators are still a chief element in the pepulation of the city and saburbs. The latter, whe are called Nawskhila, and more or less openly profess the Shia opinions, form a sort of separate caste, marrying only amony themselves. The tornsmen proper, on the other hand, are a very motiey race. ${ }^{2}$ The mechanical arts, which the true Arat despises, are chiefly practised by foreigners. New settlers remain behind with each pilgrimage ; and the many offices of profit connected with the mosque, the stipends paid by the sultan to every inhabitant, and the gains to be derived by pilgrim-cicerones (Muzawwirs) or by those who make it a business to say prayers at the Prophet's mosque for persons who send a fee from a distance, as well as the alms which the citizens are nccustomed to collect when they go abroad, especially in Turkey, keep up an idle population greatly in excess of that which the district would naturally support in the present defective state of agriculture. The population of the city and suburbs may be from 16,000 to 20,000 souls.

The city proper is surrounded by a solid stene wall, ${ }^{3}$ with towers and four massive gaterrays of good architecture, forming an irregular oval running to a kind of angle at the north-west, where stands the castle, held by a Turkish garrison. The houses are good stone buildings similar in style to thase of Mecca; the streets are narrow but clean, and in part paved. ${ }^{4}$ There is a copious supply of water condncted from a tepid source at the village of Kubá, 2 miles south, and distributed in underground cisterns in each quarter. ${ }^{5}$ The glory of Medina, and the only im-

[^263]portant building, is the mosque of the Prophet, in the eastern part of the city, a spacious enclosed court betireen 400 and 500 feet in length from north to south, and twothirds as much in breadth. The minarets and the lofty dome above the sacred graves are imposing features, but the circuit is hemmed in by honses or warrow lanes, and is not remarlable except for the principal gate (Bab el-Salám) at the seuthern end of the west frout, facing the sacred graves, which is richly inlaid with marbles and fine tiles, and adorned with golden inscriptions. This gate leads into a deep portico, with ten rows of pillars, running along the sonthern wall. Near the further end of the portico, but not adjoiniug the walls, is a sort of doorless heuse or chamber hung with rich curtains, which is supposed to centain the graves of Mohammed, Abubekr, and 'Omar. To the north of this is a smaller chamber of the same kind, draped in black, which is said to represent the house or tonib of Fatima. Both are enclosed within an iron railing, so closely interwoven with brass wire-work that a glimpse of the so-called tombs can ouly be got through certain apertures where intercessory prayer is addressed to the prophet, and pious salutations are paid to the other saiats. ${ }^{6}$ The portico in front of the railing is not ineffective, at least by night light. It is paved with marble, and in the eastern part with neosaic, laid with rich carpets; the southern wall is clothed with marble pierced with windows of good stained glass, and the great railing has a striking aspect; but an air of tamdriness is imparted by the valgar painting of the columns, especially in the space betweeu the tomb and the pulpit, which has received, in accordance with a tradition of the Prophet, the name of the Garden (rauda), and is decorated with barbaric attempts to carry out this idea in colour. ${ }^{7}$ The throng of visitors passing along the south wall from the Bábel-Salam to salute the tombs is separated from the Garden by a wooden partition about 8 feet high, painted in arabesques. The other three sides of the interior court hive perticos of less depth and mean aspect, with three or feur rows of pillars. Within the conrt are the well of the Prophet and some palm trees said to have been planted by Fátima.

The original mosque was a low building of brick roofed with palm branches, and much smaller than the present structure. The woeden pulpit from which Mohammed preached appears to have stood on the same place with the present pulput in the middle of the south portico. The dwelling of the Prophet and the huts of his women adjoined the mosque. Mohammed died in the hut of 'Aisha: and was buried where he died; Abubekr anc' 'Omar were afterwards buried beside him. Now in i 11 A.D. the mosque, which had preriously been enlarged by 'Omar and 'Othnán, was entirely reconstructed on a grander scale and in Byzantine style by Greek and Coptic artificers at the command of the caliph Walid and under the direction of 'Omar ibn 'Abd el'. Aziz. The enlarged plan included the huts abore named, which were pulled down. Thus the place of the Prophet's burial was brougat withir the mosque; but the recorded discontent of the city at this step shows that the feeling which regards the tomb as the great glory of the mosque, and the pigrimage to it as the most meritorious that can be nudertaken except that to Mecen, was still quite nnknown. It is net even certain
entered Medira, and the site of the first mosque in which he prayed. It lies amidst orchards in the richest part of the oasis
${ }^{6}$ The space between the railing and the tomb is seldom entered except by the servants of the mosque. It contains the treasures of the mosque in jewels and plate, which were once very considerable bs: have been repeatedly plundered, last of all by the Wahhábis iu the beginning of the present century.
${ }_{7}$ The word rauda also means a mausoleum, and is applied by Ibn Jubair to the tomb itself. Thus the traclition that the space between the pulpit and torab was called by the Prophet one of the gardens of Paradise probably arose from a mistake.
what was done at this time to mark off the graves. Ibn Abd Rabbih, in the beginning of the 10 th century ('Ild $d$, Cairo ed., iii. 366), describes the enclosure as a hexagonal wall, rising within three cobits of the ceiling of the purtico, clethed in marble for more than a man's height, and abore that height daubed with the unguent called khaluk. This may be supplemented from Istakhri, who calls it a lofty house without a door. That there are no gravestones or visible tombs within is certain from what is recorled of occasions when the place was opened up for repairs. Ibn Jubair (p. 193 sq.) and Samhúdí speak of a sinall casket adorned with silver, fixed in the eastern wall, which was supposed to be opposite the head of the Proplet, while a silver nail in the south wall indicated the point to which the corpse faced, and frem which the salntation of worshippers was to be addressed (Burton misquotes). The European fable of the coffin suspended by magnets is totally unknown to Meslem tradition. The smaller chamber of Fitima is pretty medern. In the time of Ibn Jubair and of Ibn Batututa (unless the latter, as is se often the case, is merely copying lis predecessor) there was only a small marble treugh north of the rauda (or grave) which "is said to be the house of Fitima or her grare, but God only knows." It is more probable that Fátima was buried in the Baki, where her tumb was alse shown ia the 12 th century (Ibn Jubair, p. 198 sq.).

The nosque was again extended by El-Mahdí ( 781 A.D.), and was burned down in 1256. Of jts appearance before the fire we have two authentic accounts by Ibn 'Abd Rabbih early in the 10th century, and by Ibn Jubair, whe visited it in 1184. The old mosque had a much finer and more regular appearance than the present one; the interior walls were richly adorned with marble and mosaic arabesques of trees and the like, and the outer walls with stone marquetry; the pillars of the south portico (serenteen in each row) Were in white plaster with gilt capitals, the other pillars were of marble. Ibn 'Abd labbih speaks of eighteen gates, of which in Ibn Jubair's time, as at present, all but four were walled up. There were then three minarets. After the fire which took place just at the time of the fall of the caliphate, the mosque long lay in a miserable condition. Its repair was chiefly due to the Egyptian sultans, especially to Kait Bey, whose resteration after a secend fire in 1481 amounted almost to a complete reconstruction. Of the old building nothing seems to have remained but some of the columns and part of the walls; and, as the minarets hare also been rebuilt and two new ones added, the architectural character is now essentially Egyptian. The great dome above the tomb, the railing round it, and the pulpit, all date from Ḳáit Bey's restoration.

The suburbs, which occupy as much space as the city proper, and are partly walled in, lie south-west of the town, from which they are separated by an open space, the halting-place of caravans. Through the suburbs runs the watercourse called W. Buthan, a tributary of W. Kanát, which the Yanbui road crosses by a stone bridge. The suburbs are the quarter of the peasants. Thirty or forly families with their cattle occupy a single courtyard (húsh), and form a kind of community ofien at fend with its neighbours. The several dlans of Medina must hare lived in much the same way at the time of the Prophet. The famous cemetery called Bakí el-Gharkad, the restingplace of a nultitude of the "companions" of the Prophet, lies immediately to the west of the city. It ence contained many monuments, the chief of which are described by lbn Jubair. Burcklaardt in 1815 found it a mere waste, but seme of the taosques have since becu rebuilt.

History. - The story of the Amalekites in Yatlarib and of tlecir conquest by the Hebrera in the timo of Mosea is purely fabuluns,
see Nöldeke, Ueler dic Amalchiter, 1864, r. 36. The oasis, when it first comes into the light of history, was held by Jews, among whom emigrants from Yemen afterwards settled. From the time of the flight of Mohamund ( 622 A.D.) till the Onlayyads removed the seat of empire from Jedina to Damasuus, the town surings into listoric prominence as the capital of the nev power that so rapilly changed the fate of the East. Its fall ras not less rapid and complete, and since the battle of Marra and the sack of the city in 683 it has never regained political importance. The history of Medina in this periorl will be told in the articles Mohamsed and Monamaledan Emplee Mohammed invested the comintry yound Medina with an inviolable character like that of the Haram round Necea; but this provision has never been observed with strictness. After the fall of the caliphs, who maintained a governor in Medina, the native emirs enjoyed a fluctuating measure of independence, interrupted by the aggressions of the sherifs of Mecca, or controlled by an intermittent Egyptian protectorate. The Turks after the conquest of Egypt held Medina for a time with a firmer hand; but their mule grew weak, and was almost nominal long before the Walhabis took the city in 1804. A Turko-Egyptian force retook it in 1812, and the 'rurks still maintain a pasha with a military estahlishnent, while the cadi and chief agha of the mosque (a eunuch) are sent from Constantinople. But the internal government is largely in Arab hands, and is said to be much better than that of Jecca.

Surees.-Medina has been clescribed from personal observation by Bnickhardt, who visited it in 1815, and Lutinn, who made the gilgrimage in 1853. Sadlier on his jouruey from Kapif to Yanbu' (11519) was not nillowed to enter the holy city. Burcklardt was prevented by ill health from examining ine city and country with his usual thorougheness. Litlee is added to onl Information by the refrut of "Ital el-Razzalk, who performed the nilgrimage in 1878 , on a medical commission from

 century. The tonogranhy of the country about Medina is interesting both historicaly and geographically; Bekrf, Yakuif, and other Arabic geographers supply
 much material on this tople, but completer Europewn accounts are wanting to per. perilous, field for an explorer than Mecca.
(W, P., S.)

MEDINA SLDONTA, a tomn of Spain, in the province of Cadiz, and about 21 miles by read westward from that city, stands at a height of 600 feet above the sea-level, on an isolated hill surrounded by a cultivated plain. Apart from its picturesque airy situation it has nothing to interest the traveller; the streets are narrow, steep, and dirty, and its buildings and ruins are unimportant. The occupations of the inhabitants are coanected chiefly with the agriculture and cattle-breeding carried on in the surrounding district : bricks and pottery are also made to some extent. The population in 1877 was 12,234.

Medina Sillonia has been iclentified by some with the Asino of Pliny, but it is uncertain whether Jerez is not more probably tho locality referred to by that name. Under the Visigoths the place. was erected into a hishopric (Assidonia), and attained some importance; in the beginniog of the 8 th century it was taken by Tarik. In the time of Edrisi the province of Sladuna or Shitloua iucluded, among other tomns, Seville and Carmona; later Arab geographers place Shadúna in tbe province of Seville. The town gives its title to the ducal loouse of Guzman el Bueno, the hero of Tarifa (1292).

MEDITERRANEAN SEA. The sonthera shores of Europe are separated from the northern shores of Africa by the Mediterracean Sea. It extends in a generally east and west direction frem lengitude $5^{\circ} 21^{\prime} \mathrm{W}$. to $36^{\circ} 10^{\prime} \mathrm{E}$. Its length from Gibraltar to its eastern extremity in Syria is about 2100 miles. Its loreadth is very various, being 400 miles from the mouth of the Rhone to the Algerinn ceast, 500 miles from the Gulf of Sidra to the entrance to the Adriatic, and 250 miles from the month of the Nile to the south coast of Asia Minor. From the very indeated nature of its coasts, the general mass of the water is much cut up into separate seas, which lave long borne distinctive names, as the Adriatic, the Egean. the Sca of Marmora, the Elack Sea, de. The area of the whole system, including the Sea of Azoff, is given by Admiral Smythe as $1,149,257$ square miles. If we deduct that of the, Black Sea and Sea of Azoff, 172,506 square miles, we have for the area of the Mediterranean [roper 976781 , or, renglly speaking, at million of square miles.

The Mediterrancan is sharply divided into two great principal basins, the western and the eastern or Levant
basin. The western possesses a comparatively smooth and unindented coast-line. It is bounded on the south by the coast of Africa and the north coast of Sicily, and it is further cuclosed by the coasts of Spain, France, and Italy, which form a roughly arc-shaped coast-line. There are comparatively few small islands in this basin, though some of the more important large oncs occur in it. The eastern basin is by far the larger of the two, and extends from Cape Bon to the Syrian coast, including as important branches the Adriatic and the Egean. The latter is connected directly, through the Hellespont, the Sea of Marmora, and the Posphorus, with the Black Sea. The entrance to the westeru basin and to the sea generally from the ocean is through the Straits of Gibraltar in $36^{\circ} \mathrm{N}$. lat. If this parallel be drawn out through the sea it will be found that the western basin lies almost wholly to the northward, and the main body of the eastern one to the southward of it, the mean latitude of the western basin being about $39^{\circ} 30^{\prime}$, and that of the eastern basin $35^{\circ}$. They communicate with earh other by the channels separating Sicily fron Italy and from Africa. The former is known as the Strait of Messina, and is of insignificant size, the latter is a wide channel apparently without any distinctive mame, and generally shallow. The greatest depth on the shallowest ridge reaching from the African to the Sicilian coast is under 200 fathoms, and agrees very closely with the corresponding depth at the entrance to the Straits of Gibraltar.

Depth.-So far as is at present known, the maximum depth is pretty nearly alike in the two basius, being 2040 fathoms in the western and 2150 fathoms in the eastern. Many lines of soundings have been run in the Mediterranean for telegraph purposes, and they afford a very good idea of the general configuration of the bottom. Between Marseilles and Algiers the depth ranges generally from 1200 to 1600 fathoms; between Naples and Sardinia from I500 to 2000; between Alexandria and Rhodes from 1200 to 1600; and between Alexandria and Cyprus from 900 to 1100 . The basin of the Mediterranean really begins about 50 miles to the westward of Gibraltar. It is here that the shallowest ridge stretches across from Africa to Spain ; the maximum depth on it is probably not more than 180 , and certainly less than 200 fathonis. From this ridge the bottom slopes quickly westward into the depths of the Atlantic, and gently eastward into the Mediterranean. The depth nowhere reaches 1000 fathoms until beyond Alboran Island, 120 miles east of Gibraltar. This is a small low island separated from the mainland on all sides by water of more than 400 fathoms; it must therefore be considered an oceanic as distinguished from a continental island. ${ }^{1}$ Further to the north, and off the coast of Valencia, we bave the Balearic Islands.-namely, Majorea, Minorca, Iviza, and Fornientera. These also must be considered oceanic islands, and indeed two groups of oceanic islands. [viza and Formentera are isolated both from the Spanish coast and from the other two islands by water of over 300 fathoms depth; Majorca and Minurca are connected by a bank with no more than 50 fathoms of water on it. Thirty miles east of Minorca there are more than 1400 fathoms; beyond that there are no soundings between the Baleares and the large and important group of Corsica and Sardinia. These islands are continental, being connected with the Italian mainland by tho bank on which Elba occurs, and which is covered by littie over 50 fathoms of water. The Straits of Bonifacio, which separate Corsica from Sardinia, are also quite shallow, so that Corsica and Sardinia may be looked on as a secondary peuinsula attached to the Tuscan

[^264]shore of Italy by a shallow bank not more than 15 or 20 miles broad, the deep water coming close up all round it. Almost the same may be said of Sicily, including the Malta group, but excluding the Lipari group, which is purely vulcanic. From Cape Passaro, in the sonth-east end of Sicily, a line can be drawn connecting it with the town of Tripoli, and mithout passing over water of more than 300 fathoms. As has already been said, the west end of Sicily is connected with the coast of Tuuis by a ridge in no part covered by more than 200 fathoms of water. Between these two ridges lies a small but comparatively deep basin of 600 to 700 fathoms. At the western extremity of it lies the mountainous island of Pentellaria. The bank on which Malta is situated stretches for nearly 100 miles in a southerly direction from Cape Passaro in Sicily. Opposite, on the African shore, is a similar bank of much larger dimensions, on which are the snall islands Lampion and Lampedusa belonging to Italy. In the deep channel between them and Malta is the small but lofty island Limosa. It is entirely volcanic, with an extinct crater on its north-eastern side, and three smaller ones to the southward. It resembles the Lipari group off the north coast of Sicily, which rise alíruptly out of deep water, being connected by no bank either with the African or the Sicilian coasts. Some of the Lipari group are still active, Stronboli and Vnlcune being of the number. Off the south coast of Sicily, and between it and the island of Pantellaria, occurs the famous Graham's shoal, the remains of what was for a few weeks an island. ${ }^{2}$

The deepest water of the Mediterranean is found in its widest part between Malta and Crete, and the deep water comes close up to the Italian and Greek coasts, while on the African shore the water shoals more gradually. In the Strait of Messina, close to Reggio, there are depths of over 500 fathoms, and similar depths are found inside gulfs such as those of Taranto (nearly 1000 fathoms), of Corinth, Kalanata, and others. Also all through the Egean in its many bights and channels very deep water is met with; in the Sea of Marmora we have 500 fathoms, and in the Black Sea over 1000 fathoms. All along the south coast of Asia Minor the water is very deep, and the Iarge islands of Cyprus and Crete are both separated by very deep water from the mainland. If we take the eastern basia, and run along its western and southern coasts from the mouth of the Po along the shore of Italy, Sicily, and Africa to the mouth of the Nile, and even further along the Syrian shore, we do not find a single off-lying island of any importance except the Malta group, while all along the eastern and northern coasts from Crieste to Asia Minor the coast is deeply indeuted, and the water broken up by many large and importaut islands. These islands are grouped along the west coast of Turkey and Greece, and irregularly throughout the 不gean. The east coast of the Adriatic is studded with islands and inlets, and rcsembles in this respect the Ægean; the west coast, on the other hand, is low, and the water off it shallow, and there are iew harbours. The Adriatic stretches in a north-westerly direction for ahout 460 miles from its entrance between

[^265]
## HEDITERRANEAN

Cape sta Maria di Leuca and the island of Corfu to the Veaetian shore io the Gulf of Trieste. Its average width is about 100 miles. A ridge with little over 400 fathoms appears to ran across its entrance. Iaside this the water reaches a depth of 765 fathoms, but shoals again rapidly towards Pelagosa Island, from which to the northward, including quite two-thirds of the sea, the depth is under 100 fathoms; indeed no part of the sea within 150 miles of its northern extremity is over 50 fathoms deej. There is authentic bistorical evidence of the encroachment of the Italiau shores on the Adriatic, causing thereby a diminution of its area. As a consequence many towns which were once thriving scaports are now many miles inland; thus Adria, which was a station of the Roman fleet, is now 15 miles inlaud, and there are many similar examples. The large rivers Po and Adige, which bring the drainage of the southern olopes of the Alps to the sea, deliver large quatities of sediment is the course of the year. The distribution of this mud is affected, not only by its own weight teading to make it sink to the bottom, but also by the set of the currente, which, ruaning up the eastern coast, turn to the westward and southward at the upper end of the sea, and so tend to distribute the river mud along the bottom in the neighbourbood of the Italian coasts. The fact that towns which were formerly seaports are now ialand does not therefore necessitate the assumption of a general rise of the land, it is merely a reclamation by uataral agencies of land from the sea at the expense of the iuland meuntaineus country. Precisely similar phenomena are observed in the neighbourhood of the mouths of the Rhone and of the Nile.

Specific Gravity, Currents, $\mathbb{E} C$ - On the specific gravity Dr Carpenter reports many and interestiug observations. In round numbers, that of the surface-water of the Atlantic off the Straits of Gibraltar is 1.0260 to $1 \cdot 0270$, that of the western basin of the Mediterranean $1 \cdot 0280$ to 1.0290 , and that of the eastern basin 1.0290 to $1 \cdot 0300$, while that of the Black Sea is 1.0120 trol.0140. It will thes be seen that the water of the Mediterranean proper is very much salter than either the Atlavtic on the west or the Black Sea on the east, and this great density of the water affords a useful means of recognizing it when investigating the interchange of waters which takes place at the two extremities of the sea. L3oth the temperature and the specific gravity of the water are evidences of the local climate. The great concentration of the water shows how dry the atmosphere at the surface must be, nud huw insigaificant the contributions of fresh water. With regard to the balance existing between the two factors, evaporation and precipitation, it would be impossible to give figures with any claim to accuracy, but a rough estimate may bo formed by taking such data as Fischer has given. He puts the rainfall over the whole Mediterranean drainage area at 759.4 millimetres, or aluost exactly 30 inches. If we remember that the average rainfall of the eastern slopes of Great Britain is less than 30 inches, and that therefore this may be taken © the maximum yearly supply to the North Sea, we may be sure that the Mediterrane:n does not reccive more than 30 inches of fresh water in the year. With regard to the rate of evaporation over the area of the Mediterrancan there is but very mengre information, but wherever it has been observed it has becn found to exceed the rainfall, even as much as three times. Thus at Madrid it is 65 inches, or more than four times the rainfall, nt Rome 105 inches, and at Cairo 92 inches. It may therefore without exaggeration be assumed that the evapmration is at least twice as great as the precipitation. Putting the latter at 30 inches, we should have 60 inches for the yearly evaporation, and a balance of 30 inches evaporation over precipitation. Were there no provision for making good this deficiency, the
level of the Mediterranean would siak until its surface was so far coatracted as to lose no more by evaporation than would be supplied by rain. This condition would probably not be fulfilled before all the E'gean aud Adriatic and the whole of the western basin west of the island of Sardinia were laid dry; and what is now the Mediterranean would he reduced to two "Dead Seas," one between Sardinia and Naples and the other between Africa and the mouth of the Adriatic. That the level aud the salinity of the Mediterranean remain constant is due to the supply of water which enters at the Stratss of Gibraltar. The currents in this passage have frequently engaged attention both from their scientific and their nantical interest. The most detailed iavestigation was that carried out by Captain Nares and Dr Carpeater in H.M.S. "Shearwater" in the year $1871 .{ }^{1}$ From these investigations it appears that there are usually two curreats in the Straits at the same time, one superposed on the other. Both are affected by tidal intluence, but, after allowing forit, there is still a balance of inflow in the upper and of ontflow in the under current. The waters of the two currents are sharply distinguished from each uther by their salinity. Further, the upper current appears to affect by preference the middle of the clannel and the African coast, while the under current appears to crop oat at the surface on the Spanish coast. This distribution, hawever, is much modified by the state of the tide, and it must be remembered that in such places the surface separating the upper and under curreats is rarely, if ever, a horizontal plane. That there is a balance of outflow over inflow at the bottom was well shown by the result of soundings as much as 200 miles north-west of the entrance of the Straits, where, in a depth of 1560 fathoms, water of decided Mediterranean origin was got from the bottom. There can be no doubt that this outfow of warm and dense Mediterranean water is largely instrumeatal in causing the comparatively very ligh bottom temperatare in the eastera basin of the North Atlantic.

We lave assumed that the balance of water remared by eraparation is 30 inches, or 2.5 feet. If we talie tho area of the Mediterranean to be $1,000,000$ square miles, we have the volume of water removed-

$$
v=2.5 \times 36 \times 10^{12}=90 \times 10^{12} \text { cubic feet. }
$$

This quantity of water las to be suppliod from the Atlantic without raising the total quantity of salt in the sea. We have seen that the only provision for the removal of the surplus salt is the outward under current in the Straits. Hence the inward upper current must be sufficient to replace the water lost both by evaporation and by the outlow of the under current. We may take the Atlantic water to contain $3 \cdot 6$ per cent. and the Mediterranean to contain 3.9 per cent. of salt. In order that the under current may remove exactly as much salt as is brought in by the upper one, their volumes must be in the inverse ratio of their saliue contents, or the volumo of the upper current must be to that of the under one in the ratio $39: 36$ or 1000:923; so that only $7 \cdot 7$ per cent. of the inflow goes to replace the water removed by cuaporation, while the remaining $92 \cdot 3$ per cent. replaces the water of the under current. We liave then for the total volume of the inward carrent per annum

$$
\mathrm{V}=\frac{100}{7.7} v=1170 \times 10^{12} \text { enbic feet. }
$$

The width of the Straits from Tarifa to Point Cires is 8 miles, or 48,000 feet, and the average depth of the stream mny fairly be taken as 100 fathoms; hence the sectional area is in round numbers $29,000,000$ square feet.
\Proc. Roy. Soc. (1872), xx. 97, 414.

Dividing the volume by the area we nave for the mean annual tlow

$$
R=\frac{1170 \times 10^{13}}{29 \times 10^{8}}=40 \times 10^{5} \text { feet. }
$$

Reducing this to miles por oay, we find that if the above duta are correct the inflowing current at the Straits of Gibraltar ought to be equivalent to a current 8 miles wide, 100 fathoms deep, and runniug with the uniform velocity of 18.3 miles in twenty-four hours. As the currents are reversed with the tides this is the balance of inflow over outflow in the upper current. It is worthy of remark that the flood tide runs to the westward at the surface and the chb to the eastward. The following table of tides at places inside and outside the Straits will show that the mere differences of level due to the different tidal ranges at adjacent localities are sufficient to cause strong local currents.

| Places. | Hich Water. Fill and Change. | Springs $\begin{gathered}\text { Rise. }\end{gathered}$ | Nicaps | Neaps Rangc. |
| :---: | :---: | :---: | :---: | :---: |
| Chipiona................ | H. 1 1 | Ft. <br> 12 <br> 12 <br> in. | Ft. in.  <br> 8 0 <br> 8  | $\begin{array}{cc}\text { Ft. } & \text { In. } \\ 8 & 6\end{array}$ |
| Rota...................... | 124 | 126 | 8-0 | 36 |
| Cadiz......... ........... | 123 | 129 | - 82 | ... |
| Conil. | 118 | 120 | 75 | 33 |
| Cape Plata.............. | 145 | 80 | 53 | 26 |
| Tarifa .................... | 146 | 60 | 36 | 13 |
| Algesirns ................ | 149 | 30 | 26 | 13 |
| Gibraltar................ | 147 | 41 | 27 | 13 |
| Ceuta..................... | 26 | 37 | 25 | 13 |
| Tetuan................... | 223 | 26 | 16 | 06 |
| Tangier | 142 | 83 | 51 | 20 |
| kabat ...... .............. | 146 | 110 | 71 | 33 |
| Mogador................. | 118 | 124 | 80 | 36 |

A similar pheuomenon is witnessed at the other end of the sea. Here the fresher waters of the Black Sea rush in throught the narrow channel of the Dardanelles, causing a surface inflow of comparatively fresh water, while there is an outflow below of denser Mediterranean water. The dimensions of the Straits are too small to make the phenomenon of any importance for the supply of the Mediterranean. The conditions both in the Dardanelles and in the Bosphorus were examined very carefully in the year 1872 by Captain Wharton, R.N., of H.M.S. "Shearwater," and lis results are published in an interesting report to the admiralty, of that date. It is renarkable that the comparatively fresh water of the Black Sea persists without sensible mixture through the Sea of Marmora and into the Dardanelles, while there is constantly a current of Mediterranean water running undernenth, and the depth in the two channels is unly from 30 to 50 fathoms. There can be little doubt that the saitness of the Black Sea is due wholly to the return current of Mediterranean water entering through the Bosphorus. Were the exit of the Black Sea a channel with sntficient fall to bring the surface of the Sea of Marmora below the level of the highest part of its buttom, so that no return current conld take place, the waters of the Black Sca would be fresh.

In the body of the sea the rise and fall are much less than at any of the places in the ahove table. At Algiers a self-recording tide gauge was set up by Aimé, and from its records he deduced a rise and fall of $\$ 8$ millim. (say $3 \frac{1}{2} \mathrm{jn}$.) at springs and half that amount at neaps, a fluctuation which woułd escape ordinary observation, as it would be masked by the effects of atmospberic disturbances. At Venice and in the upper reaches of the Adriatic, the true lunisolar tide seems to be more accentuated than in other parts; but here also its effects are subordinate to those of the wind. Iu summer the Mediterrancan is within the northern limit of the north-east trade wind: consequently, throughout a great part of the vear, the winds are tolerably coostant
in direction; and, blowing as they do over large areas of water, they are instrumental in moving large masses of it from one point to another, and so producing streams and currents.
The effect of wind on a surface of water is twofold: it produces the rhythmic motion of wares and the motion of translation of currents. Besides the motion produced by the direct action of the wind on the surface-water, there are currents due in the first instance to the accumulation of water produced by a wind which has been blowing constantly in one direction. The phenomenon of an abuormally high tidal rise with a gale of wind blaw:ng on shore is one with which inhabitants of the british Islands are familiar. It is also a matter of frequent observation that, for instance, a south-west gale which exaggerates the height of high water on the western coasts of Britain reduces it on the east coasts. It blows the water on the west coast and off the east coast, so that the difference in the high-water levels on the two coasts is very prononnced. Supposing free communication were quickly made between the two coasts, a current would be the result, and its riolence would be much greater than would be due to the local action of the wind on its surface. In the Mfediterravean the winds blow during a great portion of the year very constautly from one direction or another, and generally from north and cast. The extent of the sea is so great that the slope produced by the transference of the surface water constantly in one direction might have a slue or are capable of being measured in feet and inches when the radius is as much es 200 miles long. Thus at Port Mahon, in the island of Minorca, according to the Admiralty Sailing Directions, the water rises and falls according to the direction of the wind. With wind from south-east or south-west the srater rises, but from northmest or nortl-east it falls. When northerly or nortliwesterly winds prevail, and this is the case for troothirds of the year, a strong current sets to the south-west off Ayra Islaud, which is reversed in seasons when south-westerly winds prevail. This current is due to the water escaping round the end of Minorca having beeu driven southrard so as to raise a head on the north coasts of the island. Similarly in the Faro or Strait of Messina the currents, of which the famous Scylla and Cbaryhdis are swirls or eddies, are the evidence of a tendency towards equaliziog the levels of the eastern extremity of the western basin and of the western extremity of the eastern basin. In addition to this peculiarity of position with reference to the two basins, it has been found that there is a very strong purely tidal influence at work which alone produces an alteration in the direction of the currents, and thas adds to the confusion of the waters. At Capo di Faro the rise is scarcely perceptible, at Messina it may attain a maximum of 10 to 13 inches. In the Straits of Bonifacio, between Corsica and Sardinia, the currents follow entirely the direction of the prevailing winds, and are at times very rapid. In the channel between Sicily and the African coast the currents also follow the wiuds. In long periods of calm weather a steady easterly set is obserred, no doubt a prolongation or reproduction of the Gibraltar current.

Temperature. - Nothing whatever was known of the temperature of the deep rater of the Mediterranean mitil Saussure extended to it his classical investigation into that of the Swiss Jakes. In October 1780 he sank his thermometer to a depth of 160 fatbora off Genoa and of 320 fathoms off Nice, and at both depths bo found the temperature of the water to be $55^{\circ} \cdot 8 \mathrm{~F}$. These observations have a special ralue, for, owing to Saussure's method of experimenting, his results rere not affected by the pressnre obtaining at great depths in the sea. Fifty sears elapsed before any similar experiments were marle, when D'Urville, in the "Astrolabe," made a few observations at the begioning and the end of his famous expedition. There is some uncertainty abont his observations in 1820 and 1829, and also about the later ones of Bérard in 1831, as
we are not informed whether tho self-registering instruments used were protected from pressure or not. M1r Prestwich. ${ }^{1}$ however, who lus collected sud eritieally diseussed all the older decp-sea temperature ubservations, concludes, from a comprison of their resulta with those obtained by Aime with proterted instruments, that they were *o protected, and admits thear results into his tables withont correction. In the deep water to the northward of the Balearic Ishunds D Urville found in April $18: 254^{\circ} \cdot 5 \mathrm{~F}$. in $2 \% 0$ lathoms, and in March $182954^{\circ}-7$ at the sume denth, and the same temperature ( $54^{\circ} \cdot \overline{7}$ ) in 530 fnthoms. Berard, experanenting iu the sea between the Bolearic Islands and Ilgeria, lound the tempurature of the deep watur nearly a degree higher, namely $55^{\circ}+\mathrm{F}$., in defthe of $5 \mathrm{co}^{\circ}$ to 1000 hithonis. Aimézrelates his own careful experiments on the temperature of both surface amh deefer water in the neighbourhool of Algiers, nnd discusses thent in comsexion with those of other ubservers ; with very great ability. He comeluies from lis own uservations and those of Binard that the nnitom temperature at weat depths is $5 t^{\circ} \cdot 86 \mathrm{~F}$. From a consideration of the general climate of the Slediterranean, he comes to the conclusion that the remuperature in the decper lnyers of the sen ought to be lower than the annual meau of the surfuce, and that it unght to be not very different from the wean suface temperature in the wiater months. From ohscruations at Toulon and Algiers, he finds that at neither place does the surface temperature fall below $50^{\circ} \mathbf{F}$., and that the menn stuface temperatures iu the months December, Jaunary, February, Dlarch, and April is at Toulon $53^{\circ} 00$ F. and at silgiers $56^{n} \cdot 84 \mathrm{~F}$. The inean of these two temperatures is $54^{\circ} \cdot 9 \mathrm{~F}$., which is almost exactly wifat he funds to be the ineau annual temperature of the deepest nater of the western basiv. During the forty years mhich have elapsed since Aimé made lis experiments and speculations, further observations have only tended to confirm his theory. It is true that the temperatures observed in the many soundings mhich have been made of late yeurs have mot shown absolute identity of tempenature, and it is probable that the greater tho refinement io the jnstruments used the more deciled will the loenl differences appear. Especially it will be apparent that the bottom temperature vanies with the climate of the preceding winter, aad the distribution of temperature varies much with the prevalence of the wiods. At the few stations where the temperature of the sea-water and that of the air are regularly examined, it appears that the water is generally for the greater part of the year warmer than the air, and in wioter considerably se. The existing observations, however, ne too few to justify any very definite statement on the sulject. At Yalermo the sea is wrmer than the air thronghout the whole year with the excoption of the months May and June. la Algiers Ainue fonnd but little difference; in antumu and winter the frater wis slightly warmer, in spring and sunmmer alightly colder, than tho air. In the castern basin we havo first Admiral Spratt's observatinns in July 1815 in Fgina Gulf. In all his experimeots mato previous to the year 1560 be determined the temperature of tho bottom water by taking that of the mud bronght up in the dredge. Tins is a very excellent incthod; in fact it is probably the best of all methods if a sufficiont quautity of mud be obtained. Fron 1860 he nsed self-registeriog muprotected thermometers, which give results necessarily too high, and it is impossible to apply any reliable cormetion to them without experimentally determining it on ench thermotoeter which was used. By the first method Aduiral Spratt found $55^{\circ} \cdot 5 \mathrm{~F}$. at deptlas between 100 and 200 fathoms.

From thesc observations it seemed reasonable to conclude, as Aime had done, that all over the Mediterranean a practically uniform temperature is found at all depths greater than 100 or 200 fathoms, und that this temperature is $54^{\circ}$ to $56^{\circ} \mathrm{F}$. In order thoranghly to investigate this matter, as well as the biological contitions of the deep water of the Mediterrancan, M.M.S. "Poreujine," Crptain Caiver, with Messrs Carpenter and Gwry Jeffreys, visited the western besin of the Meliterrancan in the autmun of 1870. A large number of temperature observations were made in tho western hasin near its southero coasts, and one sounding with temperature abservation in the eastern basin a short distance from the Sicilian coast, the result of which was to conlirm the conclusion arrived nt iron carlier absermations, that, however ligh the tenperature of tho surface may be (aud it may reach $90^{\circ} \mathrm{F}^{\circ}$. , the water becomes rapidly eooler as we go below the surfaco until we reach a depth of abont 100 fathoms, where a temperature of $54^{\circ} 1056^{\circ} \mathrm{F}$, is fonnt, and jersists without sensible variation to the greatest depths. The uverage of alt tho hottom temperntures in the western basin was $54^{\circ} .88^{\circ} \mathrm{F}$. Thwe somblings were made in tho intermediate basin to the eastwurd of Pantellaria in depths of 206,390 , and 445 fathoms , sund in eneh case the bottom tempernture was found to bo $56^{\circ} \cdot 5 \mathrm{~F}$., or about a degree ond a loaff wamer than in the deeper western basin. This is preciscly what might have been expected from what we know of inlamd seas divided into several basins. In summer the shallowor basin has usunlly a ligher tempentore at the bottom
${ }^{1}$ Phil, Trons., 1875, part ii. 1. 601.
${ }^{2}$ Ann. Chcm. et $P_{1} / \mathrm{s}_{\mathrm{c}}, 1815$, xv. p. 6.
than is found at the same depth in the deeper one. Only onc observation was niade iu the eastern basin, namely off Cape Passaio, in 1743 fathons, with a bottom temperature of $56^{\circ} \cdot 0 \mathrm{~F}$. That the temperature in this basin should be lower than in the Pantellaria lasin is due to its greater elepth, and that it should be higher than is found in the western bisin is due to its lower latitude. These researches were further prosecuted in the autumn of 1871 in the "Shearwater:" Captain Nares, accompanied by Dr Carpenter. At two stations in the eastern basin "serial temperatures" were taken. At the first, $35^{\circ} 5 f^{\prime} \mathrm{X}$. Iat., $16^{\circ} 23^{\prime} \mathrm{L}$. long., deptl 1650 fathoms, the botson temperature was $56^{\circ}$, or the sime as liad been olserved the year before in 1743 f:othoms; at the second, $32^{\circ} 17 \frac{1}{2}^{\prime} \mathrm{N}$. $12 \mathrm{t} ., 26^{\circ} 44^{\prime \prime}$ E. loug, depth 1970 ficthoms, the botinn tempurature was $56^{\circ} \%$, and the temperature at ail intermediate depths was madi hinfler than at the first station. The mean temperature of the water fiom the surface to a dejpth of 200 fathome was, at the tirst station, $63^{\circ} \cdot 75$ F , and + the second $66^{\circ} 78 \mathrm{~F}$., or three derrees higher. At the first station all the temperatures down to 100 fathoms are higher than were observed in 1870 in the western Lssin, but it must be remembered that temperatme observations made in ditierent years eannot with justice be closely comprared, as the climates of the two years are sure to dilfer consillerably, nud in the present case the difference in climate batween the summers of 1870 and 1871 appears tn Jave been very considerable.

In the autumn of 1881 a very interesting serles of observations wero made by Captain Magnaghi, hydrogimplier of the Italian navy, and Pofessol Giglioli, on bosrd the Itslian surveyiug ship "TVaslington," in that part of the westein basin which is enclosed between the islands Corsica and Sardinia on the one side and the Italian coasts on the other. It is lere that the deepest water of the western basin was lound; and, apart from the great interest attaching to the plyssical results obtained, the collections mado with the dredge in the comparatively lifeless waters were of the very lighest importauce, showing, as they did, a practical identity in the abyssal fauna with that of the open ocuan. This is the more remarkable as we have hitherto been accustomed to consider the gimilarity in the fauna of portions of the ocean remotely distant from each other as being due to the likeness of their temperatures. In the Mediterrancan, however, the bottom temperature is quite $20^{\circ}$ F. higher than is found in great dejths anywhere in the open ocean.

For determining the temperature of the deep water Captain Magnaghi used the half-tmrn reversing thermometer of Negretti and Zambra, whiclu in itself is a very beautiful instrument. The mechanical arrangement, however, for reversing, even as improred by Magnaghi, was not 60 satisfactory, and from certain irregularitics in the temperature olsenvations reported the writer is inclined to think that some of the remarkable rosults obtained, for instance on the 11th Angust, are due to this iostrumental imperfection. On that day the water at 70 metres was found to have a temperature of $25^{\circ} \cdot 1 \mathrm{C}$., while that at 50 metres was $20^{\circ} \cdot 1 \mathrm{C}$., and that at 90 metres was $16^{\circ} \cdot 7 \mathrm{C}$. The results obtained in the deep water are no doubt quite reliable, for the temperature is so uaiform that a ferv fathoms more or less in the depth at which it turned rould make no difference in the temperature registered. In the more northern parts of this portion of the western basid, off the coast of Corsica, we find a practically uniform temperature from 250 metres down to the bottom in 2500 metres, the meau bottom temperature beige $55^{\circ} \cdot 90 \mathrm{~F}$. Further to the south the temperature of the alyyssal water appears to be distinetly ligher. Thus between the south end of Sardinia and the Bay of Naples, in the deenest water, the practical unifornity of teroperature is uot reached until a depth of 1000 metres lias been 1 nassed, and it is there $56^{\circ} \cdot 7 \mathrm{~F}$. It is unfortunate that we do not know what the bottom tempersture in other parts of the Meuliterrancan was. in this summer of i8S1 it was quite one degree higher than that observed by Dr Carjenter in 1870.

The great valne of such a volume of water as an equalizer of teurperature on its shores must bo apparent, though in this respect it is inferior to the Atlantic Ocean in its immediato neighbourhood. Places on the west const of Spain and Portugnl havo a nuch highes winter temperature and lower summer temperature than places in the same latitude in Italy. The reason of this is simplo: ots the Atlantic coast the principal winds in winter are from the sonth-west, and have a warming effect, while in summer the source of the northeast trade wind is pushed bock into the Bay of Biscay, eansing in this suason constant northerly winds along the coust of Portngal. The winds of the Dfediterranean liave no seas of remoto latitudes to draw on either for heating or enoling purposes. thnurgh the sandy deserts of Africa which bound its sonthern coasts Jiave st certain seasous in very decided influence on the climate. The tempering action of the sea does not extemi very far inland, as is evident from tho climate of inland towns in ltaly. As the Moditertanean shorea havo so much importance os health-resorts, the data juesented in the following table are of interest. They are taken chedy from Theobad Fischer's Studien uber das K'lima der Mittelmeeriamers.

Table of mean January temperature (J.), of mean lemperature of three winter months, December, January, and February (W.), also Rainfatl (11.) in the same three months, for places on the Mediterranean, with those for some others for comparison.

| Place. | $J$. | W. | R . | Place. | J. | W | R. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - F. | - F. | In. |  | - F. | * F. | 1 n. |
| Bubae | $16 \cdot 4$ | 48.1 | 14.2 | A jacclo | $50 \cdot 45$ | 52.2 | $8 \cdot 0$ |
| Operto. | $49 \cdot 5$ | $80 \cdot 54$ | 231 | Trleste. | 39.95 | 41.3 | $7 \cdot 8$ |
| 1.lsbon.. | 50.54 | 50.9 | 11.3 | Cerfu | $50 \cdot 45$ | 61.28 | 22.5 |
| Tarifa.. | 32.88 | $53 \cdot 6$ | 9.6 | Athena | 47.57 | $43 \cdot 2$ | 67 |
| Gibraltar | 54.0 | 54.5 | 12.4 | Constantinople | 40.28 | 41.6 | 101 |
| Malaga | $54^{\circ} 0$ | 57.38 |  | Jelusalent. .......... | 45.74 | 49.1 | 12.7 |
| Valencia | $50 \cdot 72$ | 52.52 | $4 \cdot 3$ | Port Sald | 57.38 | 57 ${ }^{2}$ |  |
| Maher.. | 51.62 | 52.52 |  | Cairo | 56.84 | 58.1 |  |
| Barcelena ....... | 48.02 | 49.64 | 51 | Alexandifa | 60.0 | $60 \cdot 1$ | 56 |
| Mentpellier...... | 42.08 | 4316 | $9 \cdot 3$ | Suez... | $56 \cdot 3$ | 56.58 |  |
| Marsell]es........ | $43 \cdot 52$ | 46.04 | 50 | Tunis | 58.06 | 5.5 .76 |  |
| Nice. | $43^{3.94}$ | 48.92 | 8.5 | Algiers | $59 \cdot 18$ | 69.65 | 14.4 |
| slentone......... | 48.2 | 48.2 |  | Oran .a.................. | 51.8 | \$2.76 | 90 |
| San Reme | $47 \cdot 48$ | 48.38 | 8.0 |  |  |  |  |
| Genos | $46 \cdot 4$ | 4760 | 13.0 | S. Cruz (Tenexffe). | 63-84 | 64.65 |  |
| Turin ............. | 32.0 | 85.06 | $4 \cdot 6$ | Funchal (Madeltra). | $60 \cdot 40$ | 61.60 |  |
| Sllan. | $32 \cdot 9$ | $35 \cdot 42$ | $8 \cdot 0$ |  |  |  |  |
| Venice. | 96.86 | 37.4 |  | Valentla (Ireland). | 45.00 | 44.60 | $18 \cdot 3$ |
| Florence ......... | 41.84 | $43 \cdot 16$ | 120 | Sellly ................... | 44.90 | 45-76 | 12-1 |
| Rome ............. | $45 \cdot 7$ | 46.6 | 9.9 | Jergey................... | 41-70 | 42.97 | $10^{-1}$ |
| Naples............ | 48.2 | $49 \cdot 3$ | 105 | Ventner................ | 41.80 | $42 \cdot 60$ |  |
| Catania .......... | 51.62 | $52 \cdot 7$ | 7.5 | Pembroke ......... ... | $41 \cdot 10$ | $41 \cdot 97$ | 12.2 |
| Pulermo. | $51 \cdot 62$ | $52 \cdot 7$ | 8.8 | Monach (Hebllics). | 42.90 | $43 \cdot 27$ | 154 |
| Malta | 54.5 | 56.0 | 17.5 | St Kllda. ............ | $44 \% 0$ | 44.50 |  |

Nature of the Bottom.-In the western basin the bottom conssists shiefly of clay of a grey to brownisls colour. Without doubt, when frcshly collected, the surface layer is reddash-brown and the lower odes dark grey. There is alrays some carbonate of lime, chiefly due to Foraminifcra. The mud very much resembles that obtained from similar depths in thnse parts of the open ocean whose bottoni waters are shut off from free communication by ridges which may not approach within 2000 or 1500 fathoms of the surface, and with the exception of the Foraminifera it much resembles the mud from enclosed and comparatively shallow basins off the west coast of Scotland. In the following table the analyses are given of a few samples on the line of the submarine cable connecting Marseilles with Algiers.

| Lucallty, |  |  | Composition per Cent. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Lattude } \\ \mathrm{N} . \end{gathered}$ | LoncitudeE. | $\begin{gathered} \text { Depth } \\ \text { In } \\ \text { Fathoms } \end{gathered}$ | Insaluble in 11 Cl . |  | Seluble in IICl. |  |  |  |
|  |  |  | Residue. | $\mathrm{SiO}_{2}$ in Residue. | $\mathrm{CaCO}_{3}$ | $\mathrm{Fc}_{2} \mathrm{O}_{3}$ | FeO | $\mathrm{Al}_{2} \mathrm{O}_{3}$ |
| $37^{\circ} 39^{\prime}$ | 3' 23' | 1,313 | 66.13 | 63.98 | 19.79 | 3.09 | $0 \cdot 39$ | $3 \cdot 46$ |
| 98* 11', | $4^{\circ} 6^{\prime}$ | 1,469 | $39 \cdot 10$ | 79.98 | $38 \cdot 25$ | $2 \cdot 44$ | $0 \cdot 25$ | 10.93 |
| $39^{\circ} 26^{\prime}$ | $4^{\circ} 36^{\prime}$ | . 782 | $28 \cdot 13$ | $78 \cdot 98$ | $47 \cdot 51$ | $2 \cdot 21$ | $0 \cdot 20$ | $2 \cdot 54$ |
| $42^{\circ} 47^{\prime}$, | $5{ }^{\circ} 11$, | 780 | $48 \cdot 63$ | $70 \cdot 18$ | 31.52 | 2.09 | 0.33 | 4.26 |
| $43^{\circ} 1$ | 5* 15 . | 29.5 | 48.04 | $78 \cdot 60$ | 30.50 | $2 \cdot 40$ | $0 \cdot 36$ | 4.58 |

To the student of the physical conditions of the sea the Mediterranean possesses a very bigh interest ; its size is such as to entitle it to rank among oceans, while it is so completely cut off from the remaining world of water that it presents us with a type which is purely local, and one might almost say proviocial.
(J. Y. B.)

MEDLAR, Mespilus ${ }^{\circ}$ Germanica, L., of the tribe Pomeix of the order Rosaceer, regarded by Bentlam and Hooker as a subgenus of Pyrus (Gen. Pl., i. 626 ; see also DC., Prod, ii. 633 ; Trans. Lin. Soc., xiii. 99), is a native of European woods, \&c., from Holland southwards, and of western Asia (Loudon, Arb., ii. 877). It occurs in bedges, \&cc., in middle and south England, as a small much-branched spinous tree, but is not indigenous to Great Britain (Hooker's Stud. Fl. of Br. Isles, 132 ; Baxter's Brit. Gen. of Pl., 493, and Mag. Nat. Hist., vol. ix. 86). The medlar was well known to the ancients. Pickering (Chron. Hist. of Pl., 201) identifies it with a tree mentioned in a Siao-ya ode (She-King, ii. 1, 2), 827 b.C. It is the $\mu \epsilon \sigma \pi i \lambda \eta$ of Theophrastus and Mespilus of Pliny. London (l.c.) gives three varieties, diffusa, stricta, and sylvestris,the last being spiny, but losing its spines under cultivation, -as well as four varieties of fruit. He nlso mentions seperal iostances of large specimens throughout England. The well-known fruit is globular, but depressed above, with leafy persistent sepals, and contains stones of a bemispherical shape. It is not fit to eat until it begins to decay. (For culture of the medlar see Horticulture.) The Japanese medlar is Eriobotrya japonica, L, a genus of the aame tribe of hosuces.

MEDOC is the name given to the district in France adjoining the left bank of the Gironde from Ambès, the point where the Garonne and Dordogne unite, to Lesparie, where the marshes and poiders which border ont the mouth of the river begin ; its lengtl varies from 35 to 40 miles, its breadth from 12 to 5, and the area is about 356 square miles. It is formed by a number of low hills, which separate the Landes from the Gironde, aud is traversed only by amall streams; the Gironde itself is muddy, and often enveloped in fog, and the region as a whole is very far from being picturesque; but a fifth part of its soil is occupied by vineyards, the products of which form the finest growths of Bordeaux. Of these the most esteemed are Châtenu-Margaux, Cbâteau-Laffitte, and Clâteau-Latour. Prior to the ravages of the Phylloxera, the annual product of the Médoc district was 40,000 tuns, of which 9000 were of fine quality.
MEDUSA. See Gorgos, vol. x. p. 785 See also Hydrozoa, vol. xii. p. 547 sq.

MEDYN, a district town of Russia, situated in the government of Kaluga, 39 miles north-west of the capital of the province, on the highway from Moscow to Warsaw. It was formerly known under the name of Mezetsk, and in the 14 th century formed part of the Smolensk priacipality. The soil of the surrounding country being rather infertile, the population is engaged to some extent in manufactures of Jinen, cotton, and paper, and the merchants of Medyu carry on a brisk trade in this produce, as well as in rye, oats, and hemp seed. The population is 8000 .

MEER, Jan yan der (1632-1675), of Delft,-not to be confounded with the elder or younger Van der Meer of Haarlem or with Yan der Meer of Utrecht,--is one of the excellent paiaters of Holland about whom the Dutch bingraphers give us little iuformation. ${ }^{1}$ Van der Meer, or Vermeer, by which name he is also known, was born in Delft in 1632. There is a tradition, handed down by the Dutch writers, that he was a pupil of Carel Fabritius, but, in the strict sense of the word, this is almost impossible ${ }_{\text {. }}$ for Fabritius was but eight years older than Van der Mcer, and entered the guild of St Luke only one year before our painter. From his early death the works by Fabritius are few, but his contemporaries speak of him as a man of remarkable power, and the paintings nor ascertained to be from his hand, and till recently ascribed to Rembrandt, prove hin to have been deeply imbued with the spirit and manner of that master. Whetler Van der Meer had ever any closer relation to Rembrandt than through companionship with Fabritius remains as yet uncertain. In 1653 he married Catherine Bolenes, and in the same year le entered the guild of St Luke of Delft, becoming ons of the heads of the guild in 1662, and again in 1670. He died at Delft in 1675 , lezving a widow and eight children. His circumstances cannot bave been flourishing, for at his death lie left twenty-six pictures undisposed of, and his widow had to apply to the court of insolvency to be placed under a curator, who, it is interesting to know, was Leeurenhoek, the naturalist.

It is his works, however, that claim our attention. Far more than two centuries he has been almost conipletely forgottev, and his pictures have been sold under the names

[^266]and forged signatures of the moro popular De Hooch, Metzu, T'erborch, and even of Rembrandt. The honour of first recalling the attention of the art-world to this most original painter belongs undoubtedly to Thoré, an exiled Frenchman, who described his then known works in his Musées de la Mollande (1858-60), published under the assumed name of W. Bürger. The result of his rescarches, colutinued in his Galerie Suermonut and Gaterie d'Aren. bei $g$, was afterwards given by him in a charming, though incomplele, monograpi (Gazette des Beaux-Arts, 1866 , pp. 297, 458, 542). The Insk has since been prosecuted with success by Harard (Les Artistes Mollandais), and by Obreen (Vederlandsche Kinnstgeschiedenis, DI. iv.), and wa are now in a position to refer to Van der Meer's works. His pictures are ravely dated, but, luckily for us, one of the most important bears the date 1656, and thus gives us a key to his styles. The picture referred to is the ouly one that has figures of life size. It is the Woman and Soldier, with other two figures, of the Dresden gallery, and is painted with remarkabla power and boldness, great command over the resources of colour, and with wonderful expression of life. For strengll and colour it mora than holds its own beside the neighbouring Rembrandts. To this early period of his career belong, from internal evidence, the Reading Girl of tha same gallery, the luminous and masterly view of Delft in tha museum of the Hague, La Laitiere and the small street view, both in the collection of M. Six van Hillegom at Amsterdam, Le Soldat et la Filletle qui Rit of ML. Double, the Country House in the gallery at Berlin, and others. In all these wa find the same brilliant style and vigorous work, a solid impasto and a crisp sparkling touch. His lirst manner seems to have been influenced by the pleiad of painters circling round Rambrandt, a school which we know lost favour in Holland in tha last quarter of the century. Duriog the last teu or twelve years of his life Vau der Meer adopted a second manaer. We now find his painting smoolh and thin, end his colours paler sud softer. Instead of masculine vigour wa hava refined delicacy and subtlety, but in both styles beauly of tone and perfect harmony are conspicuous. Through all his work may be traced his love of lemon-ycllow and of blua of all shades. Of his second style typical examples are to be seen in La Coquette of the Brunswick gallery, in the Woman Reading in the Vis der Hoop collection at the IIague, in the Lady at a Casement belonging to Lord Powerscourt (exhibited at Burliagton Housa, 1878), and in the Music Master and Pupil belonging to the Queen (exhibited at Burlington House, 18:6).
Van der Meer'a works are extremely raro. There is but one in tha Louvre, the Lace Maker; Dresden has the two nbove-mentioned, while Berlin has three, all ocquired in the Snermondt collection, and tho Czernin gallery of Vienna is fortumeto in possessiug a fine picture, believel to represent the artist in his studio. In the Arenberg gallery at Brussels thare is a remarkable head of a girl, half the aize of life, which sceme to be intermediate between his two atyles. Several of inis paintings aro to bo found in private foreign collections. In all his work thora is $n$ singular completeness and charm. In readering momeritary oxpression hic is a master, and his pictures nttract by the parfect delinention of character as well as by the technical skill of the painter. His tone is usually silvery with pearly shadows, and the lighting of his interiors is equal and natural. lo all enses his fignres geem to move in light and air, and in this respect he resembles greatly his follow-worker De Hooch, who entered the guild at Lit Luke only two yenrs later than Van der Meer. It is curims to reari chat, at one of the auctions in Amsterflam ebout tha midule of hast contury, a De Hooch is praisod as being "noarly equal to the famons Van der Meer of Delft." So nearly are ther allied that the hest judges are divided in opinion whether tha Dutch Family ("La Pronemado") of the arademy of Vienna shomil be nttributad to our painter or to Da lloorh. Doubthess many of Von der Meer'a works havo jet to he restored to their proper author; but, os ho is now in vogus, much care will
have to be used ia judging. thas is specially true in regard to tho laudseapes and "atill life " subjects which are attributed to hin?. The task is made more difficult by the diversity of stylo of this "Protean painter," as he is called by Dr Waagen, or, as Bürger names him, "the Sphinx of Delft."

MEERANE, a rapidly increasing industrial town in south-eastern Saxony, lies in the district of Zwickau, about 37 miles to the south of Leipsic. It contains an old church, a "Raalschule," and a techinical school for weavers. The leading industry is the weaving of woollen and halfwoollen cloth, employing 3000 power-looms and 15,000 hand-looms, and producing goods of the annual value of upwards of $£ 200,000$. A large proportion of the cluth is exporled to America and Japan. Meerane also possesses several important dye-works, besides smaller industrial establishments of various kinds. The population in 1880 was 22,293 .
MEERSCHAUM. This German name is applied to a certain mineral, in consequence of its lightness, softness, aud white colour, which suggest a resemblance to "sea foam." In like manner it is called in French écame de mer. By the German mineralogist Glocker it was termed sepiolite, in allusion to its resemblance to the so-called bone of the sepia or cultle-fish. Possibly the fact that pieces of meerschaum, washed out of their matrix, ara occasionally found floating on the Black Sea. may have led to the association of the mineral with marine products. Meerschaum is an opaque earthy mineral, of white, greyish, or yellowish colour, compact in texture, and breaking with a conchoidal or fine earthy fracture; it adheres to the tongue, and is so sofl as to be scratched by the nail, its degree of hardness being about 2 or $2 \%$. Its specific gravity varies from 0.988 to 1.279 ; hence it floats in sea-mater until saturated. Meerschaum is a hydrated silicate of magnesium, represented by the formula $\mathrm{Mg}_{2} \mathrm{Si}_{3} \mathrm{O}_{8}+n \mathrm{H}_{2} \mathrm{O}$. The value of $n$, according to some analyses, is 2. Most of our meerschaum comes from Asia Minor, especially from the plains of Eski-shehr, where it occurs in noduhar masses, of variable siza and irregular shape, distributed through tha alluvial deposits of the plain, which are systematically worked for its extraction by means of pits and galleries. Tha mineral is associated with magnesite, or carbonatc of magnesium, and has probabily been derived from the neighbouring mountains, where a similar carbonate is found in connexion with serpentine. Meorschnum is found also, though less abundantly, in Greece and in sotne of the Grecian islands ; at Hrubschitz in Moravia, where it occurs in a serpenlinous matrix; and in Morocco, whera it is used, when soft and fresh, as a substitute for soap; while a coarsa varicty is found at Vallecas near Msdrid, and is employed as a building stone. Meerschaum also occurs in South Carolina.
By far the greatest quantity of meerschaum is usod in the manufacture of tabaceo-pipes, a purpose for which it is well litted by its porosity. The nodular masses are first roughly scraped in order to remove the red carthy matrix ; they are then dried, scraped again, and finally polished with wax. In this state the rudelyoshaped nodular pieces are sent from the Enst princinally to Vienna and to vorious parts of Germany. The pipe-boils, after haviug been turned and carved, are rubbed with glass-paper and Dutch rushes; thay are next boiled in wax, spermaceti, or stearine, and afterwards oubjected to careful polishing with bone-ash, chalk, \&c.

An imitation of meersehaum for common pipes is made of hardened plaster of Paris, treated with paraffin, nul coloured by canboge and dragon's blood. A peculiar preparation, into which potato largely enters, is snid to have been auccessfully employed in France as a substitute for incerschaum.

MEERUT, or Mir.itn, a district in the division ${ }^{1}$ of
${ }^{1}$ The division lies between $27^{\circ} 38^{\prime}$ and $30^{\circ} 57^{\prime} \mathrm{N}$. lat., and between $77^{\circ} 7^{\prime}$ and $78^{\circ} 12^{\prime} \mathrm{E}$. longe, and comprises the six districts of Dehra Dun, Sahîranpur, Muzalfarnngar, Mcerut, Bulandshahr, nid Aligarh. The area in 1878 was 11,138 square milles, and the population in 187 ? 4,977,173.

Meernt and the lieutenant-governorship of the NorthWestern Provinces, India, lying between $28^{\circ} 28^{\prime}$ and $29^{\circ}$ $18^{\prime} \mathrm{N} .1$ lat., and $77^{\circ} 10^{\prime}$ and $7 \mathrm{~S}^{\circ} 14^{\prime} \mathrm{E}$. long., is bounded ou the N. by Muzaffarnagar district, on the E. by the Ganges, on the S. by Bulandshahr district, and on the IW. by the Jumma. The area in 1881 was given as 2361 square miles. Meerut forms a portion of the long and narrow plain lying between the Ganges and the Jumna, with a very gentlo slope from north to south. Though well wooded in places and abundantly supplied with mango groves, it has but few patches of jungle or waste land to breals the general expanse of cultivated soil. Sandy ridges run along the low watersheds which separate the minor charmels, but with this exception the whole district is oue continuous expanse of careful and prosperons tillage. Its fertility is largely due to the system of irrigation canals, which intersect it in every direction. The èastern Jumna canal runs through the whole length of the district, and supplies the rich tract betweeu the Jumna and the Hindan with a network of distributary streams. The main branch of the Ganges canal passes across the centre of the plateau in a sweeping curre, and waters the mid'and tract. The Anúpshahr branch supplies irrigation to the Ganges slope. Besides these natural and artificial channels, the conntry is everywhere cut up by small water-courses, The Burh Ganga, or ancient bed of the Gaages, lies at some distance from the modern stream; and on its bank stood the abandoned city of Hastinapur, the legendary capital of the Panderas at the period of the Makicbhatrata, said to have been deserted many centuries before the Christian era, owing to the encroachments of the river.

The census of 1872 returned the population of the district at 1,276,104, the Hindus numbering 991,226. Among the higher castes Bráhmans muster strong ( 109,804 ). The Rajputs (both Hindus and Mohammedans) numher 55,083, and enjoy great social distinction as landholders; tha Baniás, or traders ( 66,942 ), also now hold considerable landed property. The great caltivating castes ara the Chamiry $(197,273)$ and Jats $(145,514)$. The Gujars $(60,350)$ are a pastoral tribe, with an ancient character for plunder and cattle-lifting, which is now passing away. Tha Mohammedans $(281,857)$ are for the most part the descendants of converted Hindus. The Christian population cousists of 2149 Europeans, 142 Eurasians, and 730 natives. Fifteen towns in the district contain a population exceeding 5000 ; namely, Meerit, S1,386; Hápur, 14,544; Sardhána, 12,466; Garhnukhtesar, 7962; Bägpat, 7367; Ghaziábid, 7365 ; Shahdara, 7257 ; Baro, 2056 ; Mrawana, 6864 ; Pilkhuá, 6239; Khekara, 6045 ; Tikri, 5698; Kirthal, 5651 ; Dasna, 5605 ; Chapranli, 5594.
Meerut is one of the miost floorishing and best tilled districta of the Doih. Out of a total area of $1,505,824$ acres, as many as 1,048,221 wera under cultivation in 1881, 281,095 acres being irrigated by Govarnment works, and 303,526 by private individuals. The grazing lands comprelacnded 242,091 acres, and the waste 185,400 . The condition both of agricultural labourers and of artisans and workmen in the towns has considerably improved of late jears. About one-half the soil is cultivated by the proprietors themselves, the remainder being about equally dirided between tenants with occupancy rights and tenants-at-will. Renta are paid in money, and range from 18 s . 101. per acre for the best canal. watered lands dowu to 2s. 5 bd. per acre for "dry" nnin'igated soils. The chief exports of the district are grain, cottor, and indigo; and the principal inports are Manchester goods, English hardware, tobacco, drugs, and spices. The chief commercial centres are Meerut, Ghaziabid, and Bigpat. Besides the great waterways of the Jumna and Ganges, and the navirable canals, communication is afforted by the East Indian and the Punjab and Delhi Railways: also by 1505 miles of made roads. In 1576 the district was in the administrative charge of four covenanted civilians, and contained serenteen magisterial and fifteen civil courts. The gross reveuue in 1881 was $£ 248,754$, of which $\pm 203,977$ was derived from the land-tax ; the cost of officials and police was $£ 27,520$. In 1831 there were 214 schools, attended by 6677 pupils. The cornparatively ligh latitude and elevated position of Meerat make it one of the licalthest districts in the plaina of India. The average temperature varies from $50^{\circ}$ Fahr. in January to $87^{\circ} \mathrm{in}$ June. The rainfall is small, less than 30 inches annually. The only endemic disease in the district is malarial fever ; but small-pox and cholera occasionally visit it as epidemics.
The authentic hislory of the district conmences with the

Moslom invasions. Until the 11th century it is probable that Dfeerut was mainly in the hands of predatory native tribes, such as the Jaits and Dors. The first undoubted Nohammedan invasion was that of Kutab-ud-din in 1191, when Meerut town was taken, and all the Hindu temples turned into mospues. In 1398 Timúr swooped down upon the district, captured the fort of Loni after a desperate resistancen and put all his Hinda prisoners to death. He then proceeded to Delhi, and after his memorahle sack of that city, returned to Meerut, captured the torn, razed all the fortifications and houses of the Hindus, and put the male inhalitants to the sword. The firm establishment of the great Mughal dynasty in the 16 th century, nnder Bábar and his successors, gave Siecrut a period of internal tranquillity and royal favour. After the death of Amrangzeb, however, it was exposed to alternate Silh and Mahatta invasions. From 1707 till 1875 tha comatry was the scene of one perpetual strife, and was only rescned from anarchy by the exertions of the military adventurer Walter Reinhardt, aiterwards the husband of the celebrated Begam Sumru, who established bimsclf at Sardhána in the north, and zuled a large estatc. The southern tract, however, remaincd in its unarchic condition under Mahratta exactions nntil the fall of Dclhi in 1803, when the whole of the country between the Jumna and the Ganges was ceded by Sindhia to the British. It was formed into a aeparate district in 1818. In the Kritish period it has hecome memorable as being the place where the first outbreak of the great mutiny of 1557 took place

Meerut, a city; and cantonment in the above district, is situated about half way between the Ganges and the Jumna, in $29^{\circ} 0^{\prime} 41^{\prime \prime} \mathrm{N}$. lat. and $57^{\circ} 45^{\prime} 3^{\prime}$ E. loug. The city proper lies south of the cantonments, and although a very ancient town, dating as far back as the days of the Buddhist emperor Asoka (circ. 250 B.c.), Meerut owes its modern importance to its selection by the British Goveroment as the site of a great military station. In 1805 it is mentioned as "a rnined depopulated town." The cantonment was established in 1806, and the population rose rapidly to 29,014 in 1847 , and 82,035 in 1853 . In 1872 the census returned the population (exclusive of the military) at 81,386 , viz., Hindus, 47,606; Mohammedans, 33,532; Christians, 248. The slight decline of population between 1853 and $180^{2}$ may probably be attributcd to the mutiny of 1857. Most of the streets have a poor appearance, owing to the hasty manner in which they were erected. The cantonment, a little to the north of the city, forms the headquarters of a military dirision. The principal building is the Meerut church with its handsome tall spire. There are also a Roman Catholic church, mission chapel, asylum for the relief of Europeans and Christians, and a club. The Mall is one of the finest drives in India.

MEGALOPOLIS, a city of southern Arcadia, situated in a plain aboint 20 miles south-west of Tegea, on both banks of the Helissoo, about $2 \frac{1}{2}$ miles above its junction with the Alphens. Like Messene, it ored its origin to Epaminondas, and was founded in 370 B.C., the year after the battle of Leuctra, as a bulwark for the southern Arcadian= against Sparta, aud as the seat of the Arcadian fedcral diet, which consisted of ten thousand men. The builders of the city were protected by a Theban force, and directed by ten native œecists, who likewise attended to the peopling of the new city, which apparently drew inhabitants frum all parts of Arcadia, but more especially from the neighbouring districts of Mænalia and Parrhasia, Forty townships are meationed by Pausanias (viii. 27, 3-5) as haviog been incorporated in it. It was fifty stadia in circuuference, and was surrounded with strong walls. Its territory was the largest in Arcadia, extending northward 24 miles. The city was bnilt on a wagaificent scale, aml adorned with many handsome buildings, hoth public and private. Its temples contaized many ancient statues brought from the towns iucorporated iu it. On the north side of the Helisson, which divided it into two nearly equal parts, was the agora with four porticos, the gymnasium, a sacred grove, temples to the Lycæan Zeus, Pan Oinoeis, Rhea, Tyche, the great goddesses (Demeter and Core), Zeus Philios (with a statue by Polycletus), Apbro-
dite, Core, Athena Polias, and Hera Teleia. Among the numerous statues which stood in the open air the finest was that of 4 pollo Epicurius, 12 feet high, brought from the beautiful temple of Dassie, which was built by Ictinus, and is still in great part standing. On the south side of the river were the theatre, the largest in Greece, the Thersilion or hall for the assembly of the Arcalian diet, a house built for Alexauder the Great, with a statue of Zeus Amnion, the stadum, temples to the Muses, Apolio, and Hermes, to Aphrodite, to Ares, to Diooysus, to Hercules and Hermes, to Artenis Agrotera, to Asclepius and Hyziea, to the son of Asclepius, and to Apollo. Of all these buildings, with the exception of the theatre, bardly a trace remains above ground. The rains of Hegalopolis aro near Sinanou.
The formintions of Megalopolis werc havedr laid when Agesilans undertook an experition in the hope of breaking up the nnion of which it was the risible sign and capital. He accomplished nothing, and had liardiy reached homo when the Thebans and their allies under Epaminondas and Pelopilas entered the Pelpponnesus and inarched flrongh Laconia nlmost nnopposed. After the departure of Epaminondas, Lycomedies of Manitinea succeeded in drawring the Areadion foleration array from itsalliance with Theles, m consequence of whieh it had to nake common cause with Athens. An attempt on the part of the federation to use the trensures of the temple of Zeus at Olympia led to internal dissensions, so that m the lartle of Mantinea (362) one haff of the Areadians fought on the sile of the Spartans, the other on that of the Thebans. After this Lattle many of the inhabitants of Megalopolis sought tu return to theirir former liomes, and it was only ly the assistance of three thousand Thebans under Pannmenes that the authoritics were able to prevent them from doing so. In the year 359, when Thebes had her bands full with the socalled Sncred War, the Spartans made an nttempt to reduce Megalppolis; but the Thebans promptiy sent assistance, and the city was ressuel. Not surre of this rssistence, the Alegalrpolitans hat arpealed to Athens, an appreal which gave
 Spartans were norr obliged to conclude peace with Megalopolis and acknowledge her autonomy: Nevertheiess their feeling of hostilits did not eease, sul Meralonolis consequently entereil into friendly relations with Philip of Macelon. Twenty years later, when the Spartans and their allies rebelled ngainst the porrer of Macedon, Meralopolis. remained firm in its allegiance, and was subjected to a sipge of consilierable duration. Alter the tenth of Alexander, Megalopolis was gorerned by native tyrants. In the war hetween Cassander and Pulysperehon it took part with the former, and was, in consequence, besined by the latte?: On this ceeasion it mas able to send into the field an army of fifteen thonssond. In 231 L.c. Lydiates, the last termin of Mlegalopclis, voluntarily resigned his power, and the city joined the charun leagne. In consenuenct of this it was once more erposed to the bitter hatrel of Sparta. In 222 Cleomenes teok and plunderel it, nuld killeal or dispersed its inhabitanto, hat in thie year fuilowing it was restored and its 1nhahitants reinstated by Philopeenen, a native of the city. At this time the cirenit of its walls always too great, seems to lave becn contrsetel. At nill events it never agrin, attaned proiticical importance, onil gradually sink into insignificunce. The only great men whom it prolucell were Plhileprenien and Polybins the historian. Iycortas, the father of hie latter, may be necounted a third. In the time of lausanias the city was mostly in suius.

## megalositelics. See Repriles.

MIEGAPODE, the name given generally to a small but remarkable Family of birds, highly characteristic of sonie parts of the Australian Region, to which it is alnost peculior. The Mermpolizile vith the C'racide form that division of the Order Gallina named by Prufessor Ifuxley Peristeropodes (Pror. Zrool. Soricty, 1868, p. 296), and morphologically seem to be the lowest of the Order, with which apparent fact may perhaps be correlated their singular habit of leaving their eges to be hatehed without incnbatioo, burying them in the ground (as many Reptiles do) or heaping over them a mound of earth, leaves, and rotten wood. This babit attracted attention more than three hundred years ago, ${ }^{1}$ but the accounts giren of it by various

[^267]travellers wero generally discredited by naturalists, ${ }^{2}$ and as examples of the birds, probably from their unattractive pluonage, appear not to have been brought to Earope, no one of them was seen by any ornithologist or scientifically described until near the end of the first quarter of the present ceutury. The first member of the Family to receive anthoritative recognition was one of the largest, inhabiting the continent of Australis, where it is known as the Brnsh-Turkey, and was originally described by Latham in 1821 under the mame of the New-Holland Valture, a misleading designation which he subsequently tried to correct on pereeiving its Galline character. It is the Talegallus lathami of modern ornithologists, and is nearly the size of a hen Turkey. Six smaller species of the same geuns have sioce been described, all from Nem Guinea or the neighbouring islands, bot two of them, $T$. pyrriopygius and T. bruyni, have been separated to form a group Lipynodius. The Australian bird is of a sootybrown colour, relieved beneath by the lighter edging of some of the feathers, but the head and neck are nearly bare, beset with fine bristles, the skin being of a deep pinkish-red, passing above the oreast into a large wattle of bright yellow. The tail is commonly carried upright and partly folded, something like that of a domestic Fowl.

The next furm of which we may speak is another inhabitant of Australia, commonly known in England as the Mallee-bird, but to the colonists as the "Native Pheasant"-the Lipoa ocellata, described by Gould in the zoological Proceedings for 1840 (p. 126), which has much shorter tarsi and tocs, the head entirely clothed, and the tail expanded. Its plumare presents a pleasing combination of greys and browns of various tints, interspersed with black, white, and buff, the wing-coverts and feathers
which laid its egcss, as big as a Duck's, in the sand, and left them to be hatched by the heat of the sun (Premier loyage autour du Monde, ed. Amoretti, Paris, A.R. ix. p. 88). More than a hundred years later the Jesnit Nieremberg, in his Hisloria Nature, pnblished at Aniverp in 1635, described (p. 207) a bird callel "Dait," and by the natives namied "Tapun," not larger than a Dove, which, Milh its triil (!) and feet, excarateil a nest in sandy places and laid therein eggs bisyer than those of a Goose. The prublication at Rome in 16.1 of Hernandez'9 Hist. Arium Nora IIispanies shews that his papers must have been accessible to Nieremberg, who took from them the passage just mentioned. but, as not unusual with him, misprintel the names which stand in Hernandez's mork (1). 56 , cap. 220 ) "Daic" and "Tapum" "respectively, and omitted his predecessor's importart addition "Vinit in Philippicis." Not long after, the Dominican Navarrete, a inissionary to Clinn, made a considerable stay in the Plilitippiaes, and returning to Europe in 1673 wroto Ba arcount of tho Chinese empire, of which Churchillt (Collcction of Toyages and $T$ varels, rol. i.) gave an Eaglisht translation in 1701. It is therein stated (p. 45) that iu many of the islands of the Malay Archipelago "there is a very singular lirl call'd Tabon," nad that "What I and many raore ndmire is, that it beirg no higger iu Boly than an onlinary Cliicken, the' long legg'd, yet it lays an Erg larger than a Gooses, so that the Egrg is higger than the bird itsclfe. . In orler to lay its $\mathrm{E}_{\mathrm{gg}} \mathrm{g}$, it digs in the Sand ahore a yarl io depth; sfiter laying, it fills up the bole and makes it even wilh the rest; there the Legs hatch with the heat of the Surs and Sawil." He sudds further iaformation which need not be quotel here. Cemelli Careri, who travelleal from 1603 to 1 ü9?, and in the latter year pablibhod an account of lis rojage sound the world, gives sinilar evidenco respecting this remarissile bird, which he calls "Tavin"," in the Plitippine Elalands (Yoy. dut our dut Afonde, ed. Faris, 172T, v. pp. 157, 155). The Megapodo of Luzon is fairly describeal liy Caucl or Cancli, in his olservations on tho Eirds inf the Philipliues communicatel by Petiver to the Rosal Encicty in 1003 (Phit. Transe, xxiii. p. 1398). In 1726 Valentyn publisthed his elabonize work on the East Indies, wherein (iles- iii. ik. r. P. 320) he very corrcetly describes the ale capoile of Amiloinas uuller the nime of "Malloloe," nod also a lerger kind fonnd in Culebes, so ns to slew he hat in the course of his lone rasilence ia the Dutch Retticments become preroonnlly acquainted with beth.
${ }^{2}$ Thus Willurghy (Omitholrgia, 1. 297), or Ray for him, who bad, however, only Nicremluerg's evilence to citc, and thoy can scarcely ho Winmel for their hesitation, consildering the numbler of other marvela nurratell by the same woithy fatlier. Bunfon aloo (Oiseaux, ix. P. 436) wng just ng sceptich! in fegent to the relativa of Careri.
of the back bearing each near the tip an oval or subcircular patch, whence the trivial scientific arme of the bird is given, while a stripe of black feathers with a median liue of white estends down the front of the throat, from the chin to the breast. • There is but one specics of this genus known, as is also the case with the next to be mentioned, which is a singular bird loag known to inhabit Celebes, but not fully described until $1846,{ }^{1}$ when it receired from Salumon Miiller (Arch. f. Naturgeschichte, xii. pt. 1, p. 116) the name of Macrocephalon maleo, but, being shortly afterwards figured by Gray and Mitchell (Gen. Birds, iii. pl. 123) uader the geaeric term of Megacephalon, has siace commoaly borne the latter appellation. . This is a rery remarkable form, bearing a lielmet-like protuberance on the back of its head, all of which as well as the neck is bare and of a bright red colour; the plumage of the body is glossy black above, and beneath roseate-white.

Of the Megapodes proper, constituting the genus Megapodius, many species have been described, but authorities are greatly at varlance as to the falidity of several, and here it would be impossible to name all that have been supposed to cxist. Some are only knowu from very young examples-nuere chickens; and some have even been described from their eggs alone. In 1870 Mr G. R. Gray eaumerated twenty species, of which sixteen were repre. sented in the British Muscum, and several have been described since; but teu years later Professor Schlegel recognized only seventeen species, of which examples of twelve were contained in the Leyden Muscum (Jrus. des Pays-Bas, viii., Monogr. 41, pp. 56-86), while M. Oustalet, in his elaborate monograph of the Family (Ann. Sc. Nat., Zoologie, ser. 6, vols. x. and xi.), admits nineteen species. The birds of this genus range from the Samoa Islands in the east, through the Tonga group, to the New Hebrides, the northern part of Anstralia, New Guinea and its neiglibouring islands, Celebes, the Pelew Islands, and the Ladrones, and have also outliers in detached portions of the Indiau Region," as the Philippines (where indeed they were ${ }^{\text {hrst }}$ discovered by Earnpeaus), Labuan, and even the Nicobars-though none are kaown from the iaterrening islands of Boraeo, Java, or Sumatra. Witbin what may be deemed their proper area they are found, says Mr Wallace (Geogr. Distr. Animals, ii, P. 341) "on the smallest islands and sand-banks, and can evidently pass'over"a few miles of sea with ease." Indeed proof of their roamiag disposition is afforded by the fact that the bird described by Lession (Voy. Coquille: Zoologie, p. 703) as Alecthelia urvillii, but now considered to be the joung of Meqapodius freycineti, flew on board his ship when more than 2 miles from the nearest land (Guebé), in an exhausted state, it is true, but that may be attributed to its extreme youth. "The species of Megapolius are about the size of amall Fowls, the head generally crested, the tail very short, the feet enormously large, and, with the exception of $M$. vallacii (Proc." Zool. Society, 1860, Aves, pl. 171), from the Moluccas, all have a sombre plumage.

The extraordinary habit possessed by the Megapodes geaerally of relieving themselres of the duts of incubation, as before mentioned,-a habit which originally attracted the attention of travellers, whose stories were on that very account discredited, -as well as the highly developed condition of the young at birth, has beeu so fully described by Gould (IFandb. F. Australia, ii. pp. 152175), G. R. Gray (Proc. Zool. Society, 1861, p. 292-296), and Mr Wallace (Malay Archipelaqo, i. pp. 415-419; ii. pp. 147-149), and so often repeated by other writers, as to

[^268]be rery commonly kuown, aad here there seens no necossity to enter into further details concerniug it.
(A. N.)

MEGARA was the name of two Greck towns, one in Sicily, which has been already described under Mrbla, the other on the road from Altica to Corinth. The country which belonged to the city was called Mryapis or $i \boldsymbol{y}$ Mcyapıк $\dot{\eta}$; it occupied the broader part of the isthmus between Attica, Bootia, Corinth, and the two gulis, and its whole area is estimated by Clintou at 143 square miles. The range of Mount Geraneia cxtends across the country from east to west, forming a barrier between continental Grecce and the Peloponnesus. The shortest road across this range passes along the eastern side of the mountains, ${ }^{1}$ and the most difficult part is the celebrated Scironian rocks, the mythic home of the robber Sciron. The only plaia in the rugged little country was the White llain, in which was situated the only important town, Megara. * The town was one of the most important commercial and colonizing centres of Greece in early tinses, and there is no doubt that its trade, like that of Corinth, owed its origin to the Phænicians, who fuund its situation on the isthmus convenient. It became a Dorian city when that tribe conquered the Peloponnesus. Like many other cities of Greece, Megara was formed out of five villages, which were united on one political foundation; and this eveut must have taken place notlater than the middle of the Sth century. From this time for two centuries Megara was among the most porerful cities of Greece. Though it had a harbour called Pegæ on the Coriuthian Gulf, and fouruded a Sicilian colony, Megara Hyblæa, in 728 b.c., yet it did not long compete with Corinth and Corcyra for the western trade. Nisæa on the Saronic Gulf was a better harbour, and gave the Megarians a stronger footing on the eastern seas. In order to keep their loold on the Black Sea traffic, they founded numernus trading stations alongside of their cbief rivals, the people of Niletus: Chalcedon and Byzantium on the Bosphorus, and Astacus and Heraclea in Bithynia were colonies of Megara. Wealth and culture iucreased in the city; the country festivals were celebrated in a more elaborate and orderly manner, and Susarion of Tripodiscus, first gave literary form to Grecian compdys which was soon transferred to Attica.

The situation of Megaris on the isthmus gave it great political power, inasmuch as it commanded all the roads from the Pelopoanesus into contiacutal Greece; aud so long as the people continued united under an orderly government they maintained their ligh position. . But the development of education prompted the lower classes to demand from the nobles an equal share in the gasern-: ment, and Megara did not, like Athens and Sparta, produce a constitution which could reconcile the contending parties. A tyrant Theagenes raised himself to supreme power the leader of the popular party; be made an aquednct for the city, and appears to have maintained its power and splendour. Rut he was espelled by the nobles abciut 600 b.c., and for many years Megara was the scene of continual struggles. The poor, who were indebted to the rich, refused to pay what they counted exorbitant interest, and plundered the houses of the nobles. A vivid picture of the state of the city in the Gth century B.c. Is preserved in the writings of the poct Theomnis, who belonged to the aristocratic party. Meanwhile Athens was rising to power, and maintained a long war with Megara for the island of Salamis. The Megarians gradually lost strength, and finally Solnn wrested the island from them for ever. They sent three thousand troops to fight at Platæa. In the wars between Athens and Sparta they were impelled by jealousy of their neighbours of Corinth to join the Atheniar alliance, 455-45; but, they soon found that they were only the suhjects of Athens, and finally
onrolled thenselves amoag the allies of Sparta. They suffered terribly during the Peloponnesian War: Athenian ships bloeknded their harbours and Atheoian armies ravaged their land oace or twice every year. The long famine in the city is referred to by Aristrphanes in the Acharnians. The eity maintained a flourishing existeuce tbroughout the Greek and Roman periods, but played a very subordinate part in histery. In the uosettled time when the Romao empire had decayed, it was often phundered by pirates.

As regards literature, Megara's chief distinction, besides the poems of Theognis and the comedy of Susarion, was the seheol of philosophy Lounded there by Euclid, a disciple of Socrates. The coinage of the city is a very confused and difficult subject ; no very early coins can be with certaiaty attributed to it. The usnal types are Apolline. The tnpography is described by Pausanias, bk. i. Megara is about four hours' carriage-drive from Athens.

MEGATHERIUM is the name given by Cuvier to a large extinct animal belonging to the order Edentata (see Mambalda, p. 384). A nearly complete akeleton, found on the banks of the river Luxan, near Buenos Ayres, and nent io 1789 to the Liogal Museum at Mrdrid, long


Skeleton of the Megatherium, from the specimen in the Mruseum of the Royal College of Surgeons of England. $x{ }_{2}^{2}$.
remained the principal if not the only source of information with regard to the species to which it belonged, and furnished the materials for many deseriptions, netably that of Cuvier, who deternined its affinities with the Sloths. ${ }^{1}$ In 1832 an important collection of bones of the Megatherium were discovered near the Rio Salado, and were secured for the museum of the College of Surgeons of England, and these, with nnother collection found at Luxan in 1837, and now in the British Museum, aupplied the materials for the complete description of the skeleton published by Professor Owen in 1851. Other akeletons have subsequeatly been received by several of the Continental museums, as Milan and Paris, and, consequently, our knowledge of the organization of the Megatherium, so far as it can be deducerl from the benes aud teeth, is ns complete ns that of anyy othar animal, recent or extinct.

The remsins hitherte spoken of are all referred to one apecies, Megatherium a mericanum of Binmeribnch, Mf. cuvieri

[^269]of Desmarest, and are all from the newest or post-Tertiary geologieal formations of the Argentine liepublic and Paraguay, or the lands forming the basin of the Rio de la Plata. Dr Leidy has deseribed, from siailar formations in Geargia and South Carolina, bones of a clusely allied species, about nne-fourth sualler, which lie has mamed M. mirabile. A third species, 3f. laurillardi of Lund, is founded upon remains found in Brazil.

The following description will apply especially to the best-knorn South American form, Megatherium americanum. In size it exceeded any existing land animal except the elephant, to which it was inferior only in consequence of the comparative shortness of its limbs, for in length and bulk of body it was its equal, if wot superior. The full length of a mounted skeleton from the fore part of the head to the eed of the tail is 18 feet, of which the tail occupies 5 feet. The head, which is small for tha size of the onimal, presents a general reseniblance to that of the Sloth; the anterior part of the mouth is, however, more elongated, and the malar bone, though branched posteriorly in the same way us that of the Sloth, meets the zygomatic process of the squamosal, completing the arch. The lower jaw las the middle part of its heriznntal ramus curiously deepened, so ns to admit of implantation of the very long. roeted teeth. In number the teeth exactly resemble those of the Sloths, being five above and four below on each side, and they are limited to the lateral parts of the mouth, front teeth being entirely wanting. They resemble those of the Sloths also in their persisteut grouth, and in their compesition of three tissues - vaso-dentine, true dentine, and cement; but fhey are of prismatic or 'quadrate form, and the constituent materials of different densities are so arranged that, as they wear, tro trans. verse ridges of hard dentine remain at a grenter elevation than the rest of the teoth, producing a rery efficient triturating apparatus (see fige 35 and 30 , asticle Mammalia, p. 385). The vertebral column consists of seven cervical, aixteen dersal, three lunbar, five sacral, and eighteen caudal vertebre. The spinous processes are nuch better developed than in the Sloths, and are all directed backwards, there being no reversing of the inclimation hear the poaterior end of the dorsal series, as in mest active-bodied mammals. In the lumbar region, the aceessory zygapophyses, rudimentary in Sloths, nre fully developed, as in the Anteaters.
The tail is large, and its basal vertebra have strong lateral and spinous processes and elerron bones, indicating great muscular development. The seapula resembles that of the Sloths in the union of the acromion with the coracoid, and in the bridging over of the supra-senpular notch. The clavicle is complete and very large much resembling that of man on a large eeale. The fore limbs are longer than tho lind linms. The radius and ulna are both welldeveloped, and have a considerable amount of freedom of movement. The haud is singularly moditied. The first digit is represented only by a rudimentary metacarpal, bat the next three aro large, and terminate in phalanges
adapted for the support of immense claws, the middle one being especially large. The onter or fifth digit has no claw, and it may be considered as certain that the weight of the foot was, in standing and walking, chiefly thrown upon this, and that it was protected by a callous pad below as in the existing great Anteater, while the other toes were curved inwards towards the palm, only coming in contact with the ground by their outer surfaces. The mechanical arrangements by which the weight of the body was thrown entirely upon the outer side of the foot are very curicus, and are fully described in Professor Owen's memoir. The pelvis is remarkally wide, even more so than that of the Flephant, but it is formed on the same principle as in the Sloths. The femur is extremely broad and flattened ; the tibia and fibula are short and strong, and united together at eacle end. The hind foot, contrary to the usual rule in the Etentata, is ereu more singularly modified than the hand. The ankle-joint is formed upon a peculiar plan, quite unlike that of the Sloths, or of auy other manmal, except the Megatherium's nearest allies. The calcaneun projects nearly as far backwards as the fore part of the foot does forwards. There is no trace of great toe or hallux, or of its corresponding cuneiform bone. The second toe is rudimentary. The third has an enormous ungual phalanx, which, like those of the hand, is remarkable for the immense development of the bony sheath whici is reflected from its proximal end around the base of the claw. The two outer toes lave large and rery peculianly-shaped metatarsals, but only small phatanges, and no claws. The creature probably ralked upon the outer edge of the sole, so that the great falcate claw of the third toe clid not come into contact with the ground, and so was kept in a state of sharpoess rendy for use. The foot was therefore formed upon quite a different principle from that of the Anteaters or Sloths, thongh somewhat like the latter in having two of the toes aborted.
Taking all the various points of its structare together, they clearly indicate affinities both with the existing Sloths and with the Anteaters, the skull and teeth more resembling those of the former, and the vertebral column and limbs the latter It is also not difficult to infer the food and habits of this enormous creature. That it was a leaf-eater there can be little doubt, but the greater size and more complex structure of its tecth might have enabled it to crush the smaller branches as well as the leaves and succulent shoots which form the food of the existing Sloths. It is, however, rery improbable that it clinbed into the branches of the trees like its diminutive congeners, but it is far more likely that it outained its subsistence by tearing them down with the great hook-like claws of its powerful prehensile fore limbs, being easily enabled to reach them by raising itself up upon the massive tripod formed by the two hind fcet, firmly fixed to the ground by the one huge falcate claw, and the stout, muscular tail. The whole conformation of the linder part.of the animal is strongly suggestive of such an action. There can also be little doubt but that all its movenents were as slow and deliberate as those of its modern representatives.

An idea at one time prevailed that the Megatherium was cosered externally with n coat of bony armour like that of the Armadillos, but this originated in dermal plates belonging to the Glyptodon, a totaily distinct animal, laving been accidentally associated with bones of the Megatherium. Similar phates, on a sazaller scale, have indeed been found in commesion with the skeleton of both Mylodon and Scelidotherium, animals of the same family, but never yot with the Megatherium, which we may therefore imagioe with a covering of coarse hair like that of its nearest living allies, the Sloths and Anteaters,

Bibliography.-J. Garriga and J. B. Bry, Descripcion det esqueLeto de un cuadrupredo may corpulento y aro, que se conserva en el Fical Galrinete de Historia Nahural tle Madrid, con 5 laminas, fol., 1796; G. Cuvier, in Annales du Musèmn, vol. r. p. 376,1804 ; Pander and D'Alton, Drs Ripsenfaulthiri abgeditace und beschrielen, 1821; J Owen, "On the Ategatherium," in Philosophical Transactions for 1851, 1855, 1856, and 185e, republished as a separate work 111861 ; J. Leidy, "Memair on the Extinct Sloth Tribe of North Aınerica," Smithsonian Contributims to Knowledge, rol. vii., 1855 ; H. Burmeistcr, Description physique de la Remiblique Argentine, t. iii. pt. 1, "Manmiféres vivants et éteints," 1879 , p ). $2 s 5$.
(W. I. F.)

MEGHNA, a river of India, forming, in the lower part of its course, the great estuary of the Bengal delta, which conveys to the sea the main body of the waters of the Ganges aud the Brahnaputra, which unite at Goalánda in Faridpur district. The united waters thence roll southa mighty river of great depth and turbidness, sometimes split up into lanff a dozen channels by sand-banks of its own formation, sometimes spreading out into a widespread sheet of water which the eye camot see across. The river eaters the sea by four principal mouths, enclosing the three large islands of Dakshin Sháhbazpur, Hatia, and Sandwip It is nayigable by native boats of the largest burden, and also by yiver steamers, all the year through; but the navigation is difficult, and sometinies dangerous, on account of shifting sand-banks and "snasss," and boisterous weather when the monsoon is blowing. The most farourable season for narigation is betreen November and February. Allavion and diluvion are constantly taking place, especially along the seaboard, and in Noakkalí district the land is said to have adranced seawards 4 miles in twentr-three years; while the islands fringing the mouth are annually being cut away and redeposited in fresh shapes.

The tidal phenomena of the Meghna surpass those of nny other Indian river. The regular rise of the tide is from 10 to 18 feet, and at springs the sea rushes $u p$ in a single wave, known as the "bore,"-on the Megliná a justly dreaded danger to boatmen. It is greatest at the time of the biennial equinoxes, when narigation is sometimes impeded for days together. The tidal wave is suddenly beheld advancing like a wall topped with foam of the height of nearly 20 feet, and at the rate of 15 miles an hour; ia a fers minutes all is over, and the river has changed from cbb to flood tide. A still greater danger is the "storm wave," which occasionally sweeps up the Meghná in the shape of cycloncs. The latest and'most destructive of these disasters were those of May 1867 and October 1876, when the whole islands and sea-face of the mainland were entirely submerged. In the latter calanity it lias been officially estimated that about 19 per cent. of the populatiou in the mainland portion of Noaklakl, and in the islands of Sandwip and Hatia, were drowned, and that a like proportion subsequently died of cholera and other diseases caused by the results of the storm.

MEHADLA, a narket-town in the county of Szörény, Hungary, is situated on the Bella-Reka, or Bercka, 13 , miles north of Orsova, in $44^{\circ} 55^{\prime} \mathrm{N}$. lat., $22^{\circ} 22^{\prime}$ E. long. The town is small but thriving, and contains Greef Orthodox and Roman Catholic churches, the ruins of a castle, and some interesting Roman antiquities. Meládia is, however, chielly of importance as the station for the Hersules Baths, distant about 3 miles east from the town, and situated in a uarrow pass in the romantic ralley of the Cserna. Of the trenty-two hot springs of Mehádia, nine are now in use, the most powerful one being the Hercules, which yields about 5000 cubic feet of water per hour. The springs are all strongly impregated mith salts of sulphur, iodine, bromine, and chlorine, aud their average temperature is $70^{\circ}$ to $145^{\circ}$ Fabr. They are much used for chromic rheumatism, gout, and cutaueous eruptions, and, during the season, which usually lests from the middle of

May to the end of September, are resorted to by over a thousand wisitors. The town of Mohádia has about 2200 inhabitants, principally Roumanians and Germans.
Already in the times of the Romans famons for their henling eficacy, the Thermx Hercuiis (Fontes. Herculis, Aquex Herculis) were the essort of emperors, generals, and senators, whose sojourn there is attested by varions inscriptions and relics. The town is the site of the ancient Romau colony of Ald Acclicin, near which the Roman road from the Danuba to Dacia lassed in its courso throughat tho valley of tho Cserua. Suhsequent to the destruction of the Romant empire the baths fell into disuse until 1735; great improvements have been effected in lheor during the present century, and recently a spacions kursaal has been hiilt at the expense of the Hnagarian Government. The fortress of Mehália was often storned during the wars with tho Turks, and uotably in 1716, 1738, and 1889.

Mehemet all or Mogazame 'Ali. See. Eaypt, vol. vu. p. 760 sq.

3feitul, Etienne Henri (1763-1817), one of the most renarkable composers of France, was born at Givet, in Ardennes, on the 24th of June 1763. His father being too poor to give him a regular musical education, his first ideas of art were derived from a paor blind organist of Givet ; yet such was his aptitude that, when ten years old, he was appointed organist of tho convent of the Récollets. In 1775 an able German musician and organist, Wilhelm Hanser, was engaged for the monastery of Lavaldien, a few niles from Givet, and Méhul became his oceasional pupiil. In his sixteenth year he was taken to Paris by a militsry officer, and placed himself under Edelmann, a good musician and harpsiehord player. His first attempts at instrumental composition in 1781 did not succeed, and ho thercfore turned his attention to sacred and dramatic music. The great composer Gluck received him kindly, and gave him adviee in his studies. After various delays and disappointments during lis efforts for six years to obtain, at the Grand Opera, a representation of his Cora et Alonzo, he offered to the Opéra Comique his Euphrosine et Coradin, which, being accepted and performed in 1790, at once fixed his reputation. The critics acknowledged in it graat energy of dramatic expression, and much brilliant instrumentation, but objected to a genera! want of graceful melody,-a strange complaint, since his style is' far more refinod than thèt ce sither Hérold or Auber. His opera of Stratonice had great success. After Beveral other operas which did not succesd, his Adrimn appeared, and added much to his fame, which was still further incereased by his three best works, Le jeune Henri, Uthal, and Joseph, the finest of the serics. Ho lad been appointed one of the four inspectors of the Paris Conservatory; but that nffice made him feel continnally the insufficiency of his early studies, a want which lie endeapoured to remedy by incossant application Timoléon, Ariodant, and Bion followied Stratonice, with various success. Uthal can searecly be expected to live, since, by desite of Napoleon Bonaparte, it was written for an orchestra without violins. Épicure wes composed by Méhul and Clerubini joiutly; but tho superiority of the latter was evident.' Mélul's nest npera, L'Irato, failed. After writing forty-two operas, besides a number of songs for the festivals of the republic, cuntatas, and orchestral pieces of various kinds, his health gave way, from an affection of the chest, which terminated his life on the 18 th of October 1817.

Melboit, Heinrici (1555-1625), weasborn at Lemgo on December 4, 1555, and died on September 20, 1625, at Helmstadt, where ho had leld the chair of history and postry from 1583. He was a writer of Latin verses (Parodiarum Horatianarun Libri III. et Sylvarum Libri II., 1588), and bis talents in this direction were recognized by tho emperor Rudolph II., who eonobled him and made him peet laureate in 1590 ; but his clain to be remenhered rests entirely on his servicas iu slucidating the mediasval
history of Germany. Fis Opuscula Historica ved res Germanicas spectantia were edited and published in 1660 by his grandson, Heinrich Meibom (1638-1700), who also was professor of history and poetry at Helmstädt, and incorporated the grandfather's work with his own lierum Germanicarum Scriptores (1688).

MELNINGEN, the capital of the little duchy of SazeMeiningen, iu central Gernany, and the seat of the provincial courts for Saxc-Meiningen, Saxe-Coburg, and the Prussian districts of Schmalkalden and Schleusingen, is situated on the right bank of the Werra, about 40 miles to the south of Eisenacl. It consists of an old town and several handsomie suburbs, but much of the former has been rebuilt in a modern style simee a destructive fire in 1874. The clief buildings are the Elisabethenburg, or old ducal palace, dating chiefly from 1682, and containing reveral collections; the new palace; the new town-house; the post-ofice; the barracks; and the old towa church, with its two towers, erected in 1003. The theatro has lately attained a European reputation for its admirably drilled actors and unexcelled scenic effects. The English Garden, a beautiful public park, contains the ducal mortuary chapel and soveral monuments. The industries, consisting of brewing and the weaving of woollen and cotton cloth, ore insignificant. The population in 1880 was $11,227$.

Meiningen, which was subject to the bishops of Wïrzburg for up. wards of 500 years ( $1000-1542$ ), came into the possession of the dukes of Saxony in 1583. At, the partition of 1680 it fell to the share of Saxe-Altenhurg, and in 1680 it became the capital of Saxc-Meiniugen.

IIEISSEN, an ancient and important industrial tomu of Saxony is situated on the left bank of the Elbe, betiveen the streams Meisse and Triebisch, in the district and about 9 miles to the north-west of the town of Dresden. Its irregular hilly site and numerous fine old buildings give it a quaint and picturesque appearance, and most of the streets are narrow and uneven. The cathedral, one ol the finest Early Gothic edifices in Germany, is conspicuously situated on the Schlossberg, 160 feet above the town. It is said to have been, originally founded by the emperor Otho I., but the present building was begun in the 13th century, and completed soon after 1400. The lofty tower dates from the 15 th century. Within the cathedral are the tombs of several Sazon princes of the 15 th and 16 th centuries, ineluding those of Albert and Ernest, the founders of tho present reigning lines. Adjcining the cathedral stands the castle, dating originally from 1473-81, but restored and named Albrechtsburg in 1676. Another thnrough restoration was undertaken in 1863, when a series of historical frescos by celebrated modern artists was begun upon its walls. An old stone bridge of the 13 th century connects the Schlossherg with tho Afraberg, which owes its name to the old convent of St Afra. The convent was suppressed by Duke Maurice in 1543, and converted into the "Furstenschule," one of the most renowned schools in Germany, countiug Lessing and Cellert arnong its former pupils. The other chief buildings are the town-house, built in 1479. and restored in 1875 ; the fine old town church, also called the Frauenkirche or Marienkirehe ; and the churches of St Francis, St Nicholas (eneval with the town), and St Afrit. Since 1710, inmediatoly after Rattcher's great discovery, Meissen has been the scat of the manafacture of the so. called Dresden chioa. Till 1863 the porcelain factory was in the Albrechtsburg, but in that year it was transferred to a large new building in the Triehischthal, close to tho town, where about six hundred and seventy hands are now employea. Meissen also containa iron foundries, manufactorics of earthenware stoves and pottery, a jute-mill, sugar refineries, breweries,
tannerics. dec. A considerable trade is carricd on in the wine produced in the surrounding vineyards. The population in 1880 was 14,166 .

Meissen. one of the oldest and nost meresting tow in Saxony, was founded by the eunperor llemry I. in $9: 2$ as an outpost against the Wends, and hecane the eapital of a nargraviate, which was afterwards merged in the duchy of Saxony. Its margraves were among the most powerful medieval princes in Germany, and were the direct ancestors of the present royal house of Saxony: From 96:5 till $15 \$ 1$ Meissen was also the seat of an important line of Lishops, trio ranked as princes of the empire. The town sulfered greatly from the Hussites in the 15th century, and it was captured by the imperial troops in the war of the Smalkaldian League, and again in the Thirty Years' War. In 1637 it was severely landled by the swe'des, und in 1745 it feli into the hands of the Prussians.
Jee Die Stadt Je:ssen und ihre C'mgegend, 1s55; and II. Herbst's Prakischer Hegreiser durch dia Stadt Jeissen. $18 i ð$.

MEliong, Mernong, or Makong, less frequently NAm-KoNg, the Da-Kio of the Tibetans, the LantsangKiang or Lankiang of the Chinese, and the Son-Kiong of the Anamese, sometimes also called the Cambodia or Camboja, is one of the largest and most remarkable rivers of southern Asia. As it rises in Tibet, probably about $34^{\circ}$ N. lat. and $94^{\circ}$ E. long., and reaches the China Sea about $10^{\circ} \mathrm{N}$. lat., aiter a somewhat devious course through J゙unnan, Burmah, Siam, Cambodia, and Coclun-Clina, its total course may be safely stated at 2000 miles. In spite, however, of this great length, the Mekong must be regarded as little more than a mountain torrent on an unusually large scale. It certainly forms a very extensive delta (see Cochin-Chins, vol. vi. pp. 93, 94), and is navigable for steamboats as far up as Cratieh (about 280 miles from the river mouth), but navigation soon becomes difficult, not through want of water, but from the great irregularity of the bed. At Stung.Sreng the river measures about 2 leagues from bank to bank, and its current is strong even to violence; it "twists into the sharpest eddies, and drives against the hanks with fury." A little higher up are the great cataracts of liong. Jieyond these' the channel again becomes narigable as far as Bassac, when it is still about 6500 fcet in width; but Lafore long the banks close in and the river, narrowed to about 900 feet, pours alongं a current of extraordinary depth. Above Khemarat the rapids again begin. At Paklay, Mouhot describes the Mekong as larger than the Menam at Banglok, forcing its way between the lofty mountains with a noise like the roaring of the sea. About 130 miles farther up, at Luang-Prabang, it has again an unobstructed channel about 3000 feet wide; above Sien-kong the river winds threugh a magnificent plain; but soon afterwards, in spite of its volunse of water, it becomes less navigable than before. The great Freuch expedition of 1866-67 touched its course only at one place higher up, Sien-hong; but other travellers have crossed it at various points in Yunnan. Mr Grosvenor found it, near Iung-fengcling, at a height of 4700 feet abore the sea, a stream of from 60 to 50 yards wide, flowing smoothly and steadily in the floor of a deep sorge (see Coleborne Haker, "Truv. and Res. in Western China," Roy. Geog. Soc. Suppl. Papers, 1882). It is there crossed by all iron suspension bridge, of Chinese work manshin, consisting of twelve chains with links about 1 foot long (see Gill, River of Golden Sand, vol. ii. p. 330). Higher up, near Tse-ku mission-station, lies the terrific defile to which Cooper (Trav. of a Pioneer of Commerce; 1871) gave the name of Ilogg's Gorge. The head waters of the Mekong have never heen traced to their source; but Inc and Gabet saw the confluence of the tro main branches at Tsiamdo ( $32^{\circ} \mathrm{N}$. lat.), and the abbé Desgodins has followed the strean from that point down to Ye-tche in
$3^{\circ} 20^{\prime}$ N. lat. (see Ia Mission du I'hibet, Paris, 1872, and the abbe's papers in Bull. Soc. Géog., 1871, 1S75, 1876, and 18\%\%). At Yerkalo he observed a curious phenomenon: a
number of wells from 12 to 24 feet deep were sunk down among the granite pebbles which form the bed of the river, just above mean-water mark; and they all yielded water with a greater or less degree of saltness and warmth. They are covered when the river is in full flood. The river basu in all the upper section is extremely narrow, being separated by long lines of high mountains from the valley of the Salwin on the west and from that of the Chin-shakiang or Pirer of Golden Sands on the east. "Not till the comparatively low country of Siam is reached are there any affluents of cousidcrable size. The most important are the Se-mun and the Udong on the right, and the Attopeu or Se-liong on the left. The Se-mun or Ubon river was explored as far as Korat by the Lagree expedition, and its tributary the Se-dóm has been fullowed by Dr Itarmand (Bull. Suc. Géog., 1877). Buth streams have a rapid and interrupted course. Like the Nile, the Mekong is subject to a great nmual inundation, described as early as the 16 th century by Camoens, who calls the river $M$ ecom. At some places the difference between flood-mark and ordinary level is from 35 to 40 feet (see Cochin-China). The first Europeans to make true acquaintance with the riper course were the Dutchman Wusthoff and his fellow amhassadors, who in 1641 ascended as far as W゙inkyan, i.e., Vienchang; their narrative is given by Valentijn, and might have been enough to suggest that the Mekong could not form a trade route to the interior. For the French exploration which finally settled the question, see Garnier's Expédition, \&c., 1873 , and the notice of Garnier in vol. x. p. 82.

MELA, Fomponius, a Roman writer on geography. His little work, though a mere compendium, is the only systematic treatise on the subject preserved to us in the Latin language, with the excention of that which forms part of the encyclopædic work of the elder Pliny, and from this circumstance it derives a value to which it would be little entitled from its intrinsic merits. Nothing is known of the author except his name, and that be was born, ns he himself informs us, at a small town called Tingentera in the south of Spain. But the date of his work may be fised with little doult from an allusion in the preface to a proposed expedition of the reigning emperor to Britain, which can hardly be referred to any other event than the visit to that island of the emperor Claudius in 43 A.D. This conclusion is accepted by all the recent editors; the view of some earlier scholars, who understuod this passage as referring to the expedition of Julius Cæsar, is clearly disproved by the mention of several facts which were not anterior to the reign of Augnstus. The little treatise is not ouly a mere abridgment, occupying. less than one hundrea pages of ordinary print, but is so deficient in method and systematic cbaracter that we should have supposed it to be little more than a mere schoolbonk, were it not that we find the pame of the author figuring in a prominent manner among the authorities cited by Pliny for the geographical books of his vast compilation.

His general views of the geography of the earth do not differ materially from those which .Were current among Greek writers from the time of Eratosthenes to that of Strabo, and are well known to us from the great work of the latter author, which was, however, in all probability unknown to Mela, as it certainly was to Pliny. But in one of his views he stands alone among ancient writers on geogrnphy, that after describing the division of the earth into fire zones, of which tro only were inhabitable, he states as an undoubted fact the existence of autichthones, who inhabited the southera temperate zone, but were inaccessible and consequently unknown to the inhabitants of the corresponding zone in the north, on account of the excessire heat of the_iutcrvening torrid zone. - His views
of the division and boundaries of tee three continents of Europe, Asia, and Africa coincide with those of Erato. athenes; and, in common with all ancient gengraphers from the time of Alexander to that of Polemy, he regarded the Caspian Sea as an inlet from the Northern Ocean, correspouding to the Persian Gulf on the south. His ideas concerning India are extremely confused and imperfect,altogether inferior to those possessed by Greek writers long hefore; he follows Eratosthenes in supposing that country to occupy the south eastern angle of Asia, whence the coast treaded northwards to Scythia, and then swept round to the westward to the opening of the Caspian Sea. As usual he places the Rhiprean Monntaios and the Hyperboreans near the Scythian Ocean, which he of course connects with that supposed to exist to the north of Europe.

With regard to the west of Europe, on the other hand, his knowledge was somewhat in advanco of the Greek geographers, os might be expected from the extension of the Roman domioion and civilization in that quarter, and from a writer who was himself a native of Spain. Accordingly we find lim possessing a more accurate idea than either Eratosthenes or Strabo of the westerd coast-line of Spain and Gaul, and its deep indentation by a gnlf (the Bay of Biscay) between the projectiug headlands of the two countries. Of Britain, on the coatrary, he has little to tell us, beyond what we find in Cxsar or Strabo, though he appears to have had a clearer idea of the position of the British Islands than the Greek geographer. He is also the first aacient writer who mentions the name of the Orcades or Orkneys, which be correctly describes as a large group of islands to the north of Britain. Of the north of Europe his knowledge was still utterly imperfect; but he had a vague notion of the existeace to the north of Germany of :a large bay, which he calls Codanus Sinus, containing biany islands, large and small, among which was one much larger than the rest, which ho calls Codanovia, ovidently the same name that reappears in Pliny under the form Scandinavia, which has been attached by modern writers to the great northern peninsula of Europe.

The method followed by Mela in describing the three continents is peculiar and inconvenient. Instead of treating each continent separately, aud describing the countries included in it, he begins at the Strait of the Colnmns (the Straits of Gibraltar), which was close to his own birthplate, and describes the countries adjoining the south coast of the Mediterranean from Mauretania to Egypt, and afterwards those around the cast coast of the sane sea with its tributary the Enxine, and then back along the north of the Mcditerranean from Scythia to Ganl and Spain. He then begins again with the countries bordering the western and northern ocean from Spain and Gaul round to India, and frons thence by Persia and Arabia to the Ethiopians, and thence again round Africa to the atraits from which he began. Ia common with most ancient geographers, be considered Africa as surrounded by the sea, but had a very inndequate idea of its extent towards the south.
'The first edition of Pomponius Mola was published in 1471, and it was very often reprinted in the 15 th and 16 th centurios. The edition of Voss in 1658, with a valuable commentary, becamo tho foundation of all the subsequent editions, of which those hy Gronovius (in 1685 and 1742) are among the best-known and most useful. The edition by Taschucke, in 6 vols. 8 vo (1806), contains on overwhelming mass of notes and commentaries, but by far the best toxt is that of tho recent edition hy G. Parthoy (Berlin, 1867), who has in man. iastances restored tho original readings, which had been displaced by the conjoctures of Voss and athers. (E. H. B.)

MELiNCHTHON, Pulip (1497-1560), was bord at Bretten, a town of the lower Palatinate, on Pebrasry 16, 1497. His father, Gcorge Schwartzerd, was a kiosman of the famous Reuchlin, and by profession an armourer or commissary of artillery under the Palatinste princes. His mother. Barbara Reuter, was a thrifty housewifo und
affectionate parent, whose pious character is evidenced by a well-known German rhyme, of which olia is the reputed author, beginning Almosen geben arnet nicht. His mother's father, Joho Reuter, who was for many years mayor of Bretten, charged himself with the edncation of Philip. Taught first by John Huagarns, then by George Simler at the academy of Pfortzheim, where he lived in the bouse of Reuchlin's sister, young Schwartzerd exhibited remarkable precocity, and speedily won the regard of Reuchlin, who dubbed him Melanchthon (the Greek form of Schwartzerd), according to the fashion of that age. He lived two years at Heidelberg, and the next three at Reuchlia's university of Tübingen, where he studied law, medicine, and theology, taking his doctor's degree in 1514 . He began soon after to give public lectures on rhetoric, and to comment on Virgil and Terence, and ere long it became known among European scholars that a new brilliant star of learning had risen on the horizon, Erasmus prophesying that he would himself be speedily eclipsed. In I5I8, on Renchliu's recommendatiou, Melanchthon was appointed by the elector of Saxony professor of Greek in the university of Wittenberg. This appoiutment marked an epoch in German university education; Witteaberg became the school of the nation; the scholastic methods of instruction were summarily set aside, and in a Discourse on Reforming the Studies of Youth Melanchthon gave proof, not only that he had thoroughly caught the Renaissance spirit, but that he was fitted to become one of its foremost leaders. He began to lecture on Homer and the Epistle to Titus, and in connexion with the former he announced that, like Solomon, he sought Tyrian brass and gems for the adorament of God's'temple. Luther himself received a fresh impulse towards the study of Greek, and his translation of the Scriptures, begun as early as 1517 , now made rapid progress, Melaachthon helping to collate the Greek versions and revising Luther's translation. Melanchthon on his part felt the spell of Luther'a large personality and spiritual depth, and he seems to have been prepared on his first arrival at Wittenberg to accept the new theology, which indeed as yet existed mainly in subjective form, and as a living spiritual force, in the person of Luther. To reduce it to an objective system, to exhibit it dialectically, the calmer mind of Melanchthon, with its architectural faculty and delicate moral tact, was requisite. Theologically it is impossible to separate Melanchthon frum Lnther; "the miner's son drew forth the metal, the armonrer's son fashioned it." Luther, in whom courage and energy were too much akin to violence and zealous decision to narrow intolerance, and Melanchthon, whose calm deliberation ras apt to degenerate into vacillation and whose conciliatory temperament was too much allied to timidity, were each the fit complement of the other.

Melanchthon was first dramn into the arena of the Reformation controversy through the Leipsic discussion, of which ho was an eager spectator. He had been sharply reproved by Dr Eck for giving aid to Carlstadt ("Tacotu, Philippe, ac tua studia cura nee me pertarba"), and he was shortly afterwards himself attacked by the blustering Ingolstadt doctor. Melanchthon replied in a brief treatise -a model of Christian moderation-setting forth Luther's first principle of the supremo authority of Scripture ir opposition to tho patristic writiugs on which Eck so boastfully relied. 11 is marriage in 1520 to Catherino Krapp of Wittenberg increased his own happiness, and gave a domestic centro to the Reformation. In 1521 , during Luther'a confinement in the Wartbarg, Melanchthonoccupied the important position of leader of the Reformation cause at the university. IIe defended the action of the Augustinian monks when they substituted for the celebration of the mass the sacranent of the supper partaken of by
the people under both kinds; but, on the advent of the Anabaptist enthusiasts of Zwickau, he had a still more difficuls part to play: Melauchthon was irresolute. In their attaeks upon infant baptisin they seemed to him to hare hit upon a "weak point"; and in regard to their claim to personal inspiration his position was summed up in his own words, "Luther alone cau decide; on the one band let us beware of quenching the Spirit of God, and ou the other of being led astray by the spiritit of Satan." In the same year he pablished his Loci Communes Ricrum Theoloyicarum.

After the first diet of Spires (1526), where a precarious peace was patched up for the Reformed faith, Melanchthon was deputed as oue of tweuty-eight commissioners to visit the Reformed states and regulate the constitution of churches, he having just published a famous treatiso called the Libellus Yisithlorins, a direetory for the use of the commissioners. At the Nlarburg conference ( 1529 ) bet ween the Germau and Swiss Reformers, Luther was pitted against (Ecolampadius and Melanchthon against Zwingli in the discussion regarding the real presence in the sacrament. How far the candid conciliatory spirit of Melanchthon was biassed by Lutber's intolerance is evident from the exaggerated and inaceurate accounts of the conference written by the former to the elector of Saxony. At the diet of Augsburg (1530) Melanchtion was the leading representative of the Reformation. With anxiety and tears he drew up for that diet the seventeen articles of the erangelieal faith, which are knowu as the "Augsburg Confession." He held cenferences with Romish divines appointed to adjust differences, and afterwards wrote an Apology for the Augsburg Confession. After the Augsburg cenfereuce further attempts were made to settle the Reformation cuntroversy by a compromise, and Melanchthon, from his conciliatory spirit and facility of aceess, appeared to the Romanists the fittest of the Reformers to deal with. His historical instinet led him ever to revert to the original unity of the clurch, and to regard subsequent Romish errors as excrescences rather than proofs of an essentially anti-Christian system. He was weary of the rabies theologorum, and fondly dreamed that the evangelical leaven, if simply tolerated, would at length purify the clurch's life and doctrine. In 1537, when the Protestant divines signed the Lutheran Articles of Smalkald, Nelanchthon appended to his signature the reservation that he would admit of a pope- provided he allowed the gospel and did not claim to rule by divine right.

The year after Lutber's death, when the battle of Mühlberg ( 1547 ) bad given a seemingly crushing blow to the Protestant cause, an attempt was made to weld together the iron and clay,of the evangelical and the papal doctrines, which resulted in the compilation by Pflug, Sioionius, and Agricola of the Augsburg "Interim." This was proposed to the two parties in Germany as a previsional ground of agreement till the decision of the council of Trent. Mielanchthen, on being referred to, declared equivocally that, though the Interim was inadmissible, yet se far as matters of indifference (adiaphora) were concerned it might be received. Hence arese that " adiaphoristic " controversy in connexion with which be has been misrepresented as bolding among matters of indifference such eardinal doctrines as justification by faith, the number of the sacraments, as well as the dominion of the pope, feast-days, and so on. The fact is that, in these tentative negotiations, Melanehthen souglt, not really to minimize differences, but to veil them under an intentional obscurity of expression. Thus be allowed the neeessity of good works to salvation, but not in the Tomish sense, proposed to allow the seven sacraments, but only as rites which had no inherent effieacy to salvation, and so on. He ufterwards retracted
his compliance with the adiaphora, and nover really swerved from the views set forth in the Lnci Communes: but he regarded the surrender of more perfect for less perfect forms of trutb or of expression as a painftil sacrifice rendered to the weakness of erring Lrethren. Luther, thought he lad uttered certain expressions of dissatisfaction with Melanchthon, aud had more keenly defended in his last years what was distinctively his own, yet maintained hearty and unbroken friendsbip with him; but after Luther's death certain smaller men arose in name of Luther Who formed a party cmphasizing the extremest points of the doctrine of the latter. Hence the later years of Melanclthou were much ocenpied with acrid controversies within the evangelical church; an account of these, however, would be ont of place here. His last years were spent in fruitless eoufereuces with his Tomanist adversaries, and amid varions controversics anong the Fefomed, but the flame of his piety burnt brightly till the close. He died in his sixty-third year, on the 19th April 1560, and hio body was laid beside that of Martin Lutlıer.

Melanclithon's ever rendy pen, clear thought, and elegant style made hin the scribe of the Refonmation, most public documents on that side being drawn up by him. He never attained entire independence of Luther, thongh he gradually modified some of his positions from those of the pure Lutherism with which he set out. His development is chiefly notcworthy in regard to these two lead. ing points-the relation of the crangelium or dóctrine of free grace (1) to fice will and moral ability, and (2) to the law and porericntia or the good works counected with repentance. At first Luther's cardinal doctrine of grace appeared to Melanchthon iuconsistent with any view of free will ; and, following Luther, he renounced Aristotle and plilosoply in general, since "philosopliers attribute everything to humau power, while the sacred writings represent all moral nower as lost by the fall.". In the first edition of the Loci (1521) be held, to the length of fatalism, the Augustinian doctrine of irresistible grace, working according to God's immutable decrees, and denied freedom of will in matters civil and religious alike. In the Augsburg Confession (1530), which vas largely due to him, freedom is claimed for the will in non-religious luatters, and in the Loci of 1533 he calls the denial of freedom Stoicism, and holds theit in justification there is a certain causality, though not worthiness, in the rccipient subordinate to the Divine causality. In 1535, combating Laurentius Valla, he did not deny the spiritual incapacity of the will per sc, but held that this is strcagthened by the word of God, to which it can clcave. The will co-operates with the word and the Holy Spirit. Finally, in.1543, he says that the cause of the differnce of final destiny anong men lies in tie different method of treating grace which is possible to believers as to others. Man may pray for lelp and reject grace. This he calls free will, as the power of laying hold of grace. Nfelanchthon's doctrine of the three concurrent causes in conversion, riz., the Holy Spirit, the word, and the human will, suggested the seniPelagian position called Synergism, which was held by some of his immediato followers.

In regard to the relation of erace to repentance and good works, Luther was disposed to make faith itself the principle of sanctic. cation. Alelanchthon, howcrer, for whom ethics possessed a special interest, laid more stress on the law. He began to do this in 1527 in the Libcllus Visitatorius, which urged pastors to instructetheir people in the necessity of repentance, and to bring the threatenings of the law to bear upon men in erder to faith. This brought down upon him the opposition of the Antinomian John Agricola. In the Loci of 1535 Milanchthon sought to jut the fact of the co- existeuce of justification and good works in the believer on a secure basis by declaring the latter necessary to eternal life, though the belicyer's destiny thereto is already fully guaranteed in his justification. In the Loci of 1513 he did not retain the doctrine of the necessity of good works in order to salration, and to this he added, in the Leipsic Interim, "that this in no way countenances the crror that etertal life is merited by the worthiness of our own works." Melanchtlon was led gradually to lay more and more stress upon the lav and moral ideas; but the basis of the relation of faith and good works was ncver clearly brought out by him, and he at length fell back on his original position that wo have justification and inheritance of bliss in and by Christ alone, and that good works are necessary by reason of immutable Divine command.
Melanchthon's Jife has been written by Camerarius. See also Mathes, Ph. Belanchthon, sein Lebem und Wirken, 1841; Galie, Charakteristik Melanchthons a/s Theologen, Halle, 1845 ; Rothe's Gedächenissrede auf Sfelunchthon, 1860 ; Nitz.sch. Melonehtion, 1960 ; Schmidt, Belanchthons 1,ben, 1864. There is a blogrnphy In English by F. A. Cox, 2d ed., London, 1817. The works of गlelanchthon. Including his correspondence, sre contained in the voluminous Corgus feforme forum, edited by Bictschneiver aod Bindseil.
(J. WI.)

MELANLSIA. This tarm compribes that long belt of island groops which, beginning in the Indian archipelago at the east limits of the region there occupied by the Malay race, aud, as it were, a prolongation of that great island region, runs south-enst for a distnnce of somo 3500 English miles, i.e., from New Guinea at the equator, in $130^{3}$ E. long., to New Caledonia just within the Tropic, $167^{\circ}$ E. long., and eastwards to Fiji, in $180^{\circ}$. This chain of groups has a sertain geographical as well as ethnical unity. Its curve follows roughly the outline of the Aastralian const, and large islands occur, with a number of small ones, along the whole length, with mountains of considerable height, coinciding pretty rlosely with a lino of volcanic action. Melanesia is usunlly held to begin with New Guinea, this great island being then viemed as the headquarters of that dark Papuan race which, widely und variously modified in all the other groups, occupics the whole region, as the name Melanesia implies; but the race really extends farther west, for the large islands Flores and Timor, with several smaller ones, are also essentinlly Papuan.
Nest Guinea, 1490 miles long, and containing about 303,000 square miles, the largest island in the world after Australia, is clothed with almost impenetrable forests, through which mountain ranges rise to a height of 13,000 feet. Parallel to its longer axis, 150 miles to the north, are the Admiralty Islands, all small, with one exception, in which the hills rise to 1600 feet, and which is probably of volcanic origin, as the natives use spearbeads and implements of obsidinn. A Polynesian clement seems to be present, and customs peculiar to both races have been observed. Mr H. N. Moseley, of the "Challenger," found them shrewd but honest traders, with much artistic skill in their carvings and designs. They hare numerals up to 10 , with an idiom for 8 and 9 , viz, $10-2$ and $10-1$, whick is found also at Yap in the Carolines, and in the Marshall 1slands.

Next follow, cast, the tro large islands of New Britain, about 340 by 23 English miles, with nctive volcanoes up to 4000 feet, and New Ireland, about 240 by 22 miles. Next comes the Solomon group, 600 English miles in length, with seven lnrge islonds from 135 to 90 miles long, ail running north-west and south-east, with volcanic penks up to 8000 feet. The forms more characteristic of the New Guinca fanna do not extend beyond this group. Its forest vegetation is especially Juxuriant. Then comes Sunta Cruz, a small groupp partly rolcianic, but with numerous coral reef islands. Then the Banka and Ner Hebrides group, over 500 English miles in lengtl, all volcanic except the Torres reef islands in the north. Several spots in this group are occupied by people of purely Polynesian race, immigrants apparently from the eastward. Two hundred miles southwest from the New Hebrides lies the island of New Caledonia, about 240 by 25 English miles. It is in parts very mountainous, rising to 5380 feet, the rocks being sedjmentary and plutonic, but there are no volennoes. It lies half way between Australia and $\mathrm{F}_{\mathrm{iji}}, 700$ miles from each. Being outside the cquatorial belt, it is much drier and more barren than the other groups, and its fnuna and flora have many Australian nnd Polgnesian affinities. The small Loyalty chain lies 70 miles east of New Caleannin, and parallel to it. Fiji is detached from the other Melanesinn groups, and differs from them in cnrious particnlars. It consists of two largo and about 300 small islands, the total area being abont 7400 square miles.

Of the two great Pacific races-the brown Polynesian, and the dark Melanesian-the former, considering the vast region it occupies, is singularly homogencous both in nppearance and language, whereas in Melanesia cren neighbouring tribes differ widely from each other in both respecta. Still, all the Melanesians have certain common
characteristics whicin distiaguish there sharply from the other race. They stand at a lower level of civilization, as is well seen at certain spots in Melanesia where isolated Polynesien estllements exist, due probably to nvoluntary migration, and where the two races, though they haresome neculiar customs in common, live in bitter mutual hostility. The Melenesians are mostly "negroid" in appearance, nearly black, mith crisp curly hair claborately dressed; the women hold a mach lower position than among the Polynesians; their institutions, social, political, and religious, are simpler, their manners ruder and often indecent; they have fer or no traditions; cannibeliam, in different degrees, is almost universal; but their artistic skill and taste, as with some of the lower African negroes, are remarkable, and they are namemable to discipline and fair treatment.' Their languages, amid considerable difierences, which, as between the Melanesian proper and the Papuan, are rery wide, hare features which mark them off clearly from the Polynesian, notwithstanding certain fundamental relatious with the latter.
The various Melanesian groups srill be found described in detail under separate lieadings.
MELBOURNE, the capital of the colony of Victoria, and the most populous city in Australia, is situated at the head of the large bay of Port Pbillip, on its northern bend koown as Hobson's Bay, about 500 miles S.TT. of Sydney by land and 770 by sea, the position of the observatory being $37^{\circ} 49^{\prime} 53^{\prime \prime}$ S. lat. and $144^{\circ} 58^{\prime} 42^{\prime \prime}$ E. long. Along the sbores of the bay the subarbs


Pot Ihillip and Eavirons of Mellourne.
cxtend for a distance of over 10 miles, but the part distinctively known ns the "city" occupics a site about 3 miles inland on the north bank of the Yerra river.

The nppearauce of Melhourne from the sea is by no means picturesque. The slipping suburbs of Sandridge and Williamstown occupy the alluvinl land at the mouth
of the Yarra, and, as the district is lor and flat, and covered with factories, the prospect is not ; rriting. But the city itself has a very different aspect: its situation is relieved by numerous geutle hills, which show off to great advantage its fine public buildings; its streets are wide and well kept ; and the universal alpearance of prosperity, activity, and comfort under its usually clear blue sky impresses the visitor favourably.

That part specially known as the "city". had a popula. tion in 1851 of 63,800 . It occupies the two bills of East Melbourne and West Melbourne; the ralley that separates them, once occupied by a densely wooded little stream, is now partly filled in, and forms the busy thoroughfare of Elizabeth Street; parallel to this runs Swanston Street,
and at right angles to these, and parallel to the river, are bourke Street, Cullins Street, and Flinders Street, -the first being the busiest in Melhourne, the second containing the most fasbionable shops, aud the thirt, which faces the river, being given over to maritime pursuits. These streets are the eigbth of a mile apart; between them are narrower streets occupicd by warehouses and business premises.

Round the "city" lics a circle of populous suburbs. Jorth-east is Fitaroy with 23,000 inhabitants; farther east, Collingwood, 24,000 ; east of Melbourne, Richmond, 23,400; south-east, Prahran, 21,000; south, Emerald Hill, 25,300; south-west, Sandridge, 8700 ; nowh-west, Hotham, 17,800. These all lie within three miles of the general


Plan of Mellourne.

1. 1Fouses of Parliament.
2. Treasury.
3. Government Offices.
4. St Patrick's Cathedral.
5. St Patrick's Cathedral.
6. St Patrick Cat i. Scotch College.
nost-office in Elizabetl Street; but outside of them, and withiu a radius of 5 miles, there is a circle of less populous suburbs: to the north, Brunswick, 6200; east, Kew, 4200, and Hawthorn, 6000; south-east, St Kilda, 11,600, and Brighton, 4700 ; south-west, Williamstown, 9000 , and Footscray, 6000 ; north-west, Essenden and Flemington, 5000. Numerous smaller suburbs fill up the spaces between these, -the principal being Northcote, Preston, Camberwell, Toorak, Caulfield, Elsternwick, and Coburg, with a united population of 19,000 .

Fifteen of these suburbs rank as independent nunicipalities, and many of them have streets which for importance rival the main streets of the city.

The following table shows the growth of the population since 1851 :-
13. Town-Hall. 14. Hospital.
15. Public Lidrary, \&a 16. Jau.
17. University.
18. Mint.
19. Law Courts.
20. Custom Honse.
21. Anslican Cathedral. 22. Governoi's House.
23. Observatory.
23. Observatory.

|  | 1851. |  |  | Totai. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nale. | Female. | Totsl. | 1871. | 1861. | 1851. |
| Melbourne $\qquad$ <br> Suburbs $\qquad$ | $\begin{array}{r} 34,526 \\ 213,785 \end{array}$ | $\begin{array}{r} 31,333 \\ 103,263 \end{array}$ | $\begin{array}{r} 65,859 \\ 217,049 \end{array}$ | $\begin{array}{r} 54, .993 \\ 151,787 \end{array}$ |  |  |
| Total....................... | 145,311 | 134,596 | 282,907 | 206,780 | 191,254 | 25,000 |

The land on which the city now stands was sold in allotments of balf an acre, the prices realized being in June 1837 about £34 eacls, in November 1837 about $£ 42$, and in September 1838 about £120 each. These allotments are now (1882) sold at prices ranging from $£ 20,000$ to $£ 40,000$. But, though land has thus increased in value, Melbourne is by no neans a crowded city; | the streets are all 99 feet wide, and the parks, squares,
ahi gardens are so numerous that with only one-thirteenth of the population of London it occupies very nearly half as great an area.

The public buildings are generally situated on positions from which they are seen to adrantage. The Parliament Houses form a great pile of brickwork with four fronts in freestone, of which the main front is not yet completed; the interior decorations are liighly elaborate. The Treasury is a well-proportioned building in frecestone; behind it stands a vast building known as the Governmpnt offices. On the hill of West Melbourne there is a large structure, newly erected, for the law courts; it has four very handsome froats, each about 300 feat in length, and the whole is surmonuted by a lofty cupola, in the manner of the Capitol at Washington. The public library in Swanston Street formis one of four fronts of a building which was projected on a grand scale, but has never been completer. Much of the interior has been erected, but of tha fronts only the main one is yet in existence, its cost having been $£ 111,000$. The lower story is devoted to sculpture ; on one side there are casts of all the ajost famous statues; on the other there is a small collection of original works by modern sculptors, together with a gallery containing 8000 engravings and photographs; to the rear is the picture gallery, a very handsome hall, with oil paintings, chosen from the works of living artists. Another of the interior partions of the building is occupied by the technological museum, in which are arranged about 30,000 specimens illustrative of the industrial arts. The upper story of the front is devoted to the library, which occupies a chamber 240 feet long; 22 recesses contain each its own special branch of literature, the total number of volumes being 112,000 . The book shelves rise to a height of 20 feet, but they are divided by a narrow gallery which runs all round the room, and gives access to the upper tiers. The library is open to the public ; and every visitor ranges at will, being bound by tha two conditions only that he is to replace each book where he found it, and that be is to preserve strict silence. During 1881 there wero 261,886 visits made to the room.

The Melbourne University is a picturesque, but by no means imposiag mass of buildings, buried anong the trees of extensive and well-kept grounds about a mile from the heart of the city. In front of it stands the "Wilson Hall," erected at a cost of $£ 40,000$. Behind is the National Muscum, containing collections of specimens of natural history. The museum, like all public places in Melbourne, is freely open to the people. About 98,000 visitors entered it in 1881. The university has a staff of 10 professors and 22 lecturers, with about 400 students. There are four courses open to students: arts, law, medicine, and givil engineering. Affiliated to the Melbourne University are the two denominational colleges, Trinity and Ormond, in which about 80 students reside, and where provision is made for inctruction in theolagy.

The Exhibition building consists of a nave 500 feet long and 160 feet broad, surmounted by a dome, with two annexcs each 460 fcet long. These are built in brick with cement facings. The mint is a very handsome quadrangle, erected in 1872. In the year 1881 there were threa millions of sovereigns coined in it, making a total of sixteen millions since its crection. The governor's residence is a large buildines on a hill overlooking the Yara. The general pust-oltice forms only half of a magniticent pile of buildings which will, when comnleted, include the central telegraph office.

The town-hall, at the corner of Swanston Street and Oolling Strect, contains, besides the usual ajartments for municipal offices, a hall seated for nearly 3000 persons,
and fitted with a colnssal organ, on which the city organist performs two afternoons a week, the public being admitted at a nominal charge. Hotham, Richmond, Emerald Hill, Prahran, and Fitzroy have their own town-halls, all costly and somewhat pretentions buildings.

The markets, erected at a cost of $£ 80,000$, stand in Bourke Street. They are handsome in external appearance, and ingeniously contrived for convenience within. The observatory is a bumble-looking building on the St Kilda Roud; it contains an equatorial telescope, which bad for some jears the distinction of being the largest in the world.

There are two railway stations, one being the terminus of all the country lines, and the other devoted to sulburban traffic. The suburbs of Williamstown, Sandridge, Footscray, St Kilda, Eneerald Hill, Brighton, Elsternwick, Hawthorn, Richmond, and Essendon are connected by rail with the city.

The Melbourne Hospital is in the form of an extensive series of brick baildings, situated close to the public library. 'There are beds for about 300 patients. The Alfred llospital, on the St Kilda Road, was built in commemoration of the visit of Prince Alfred; it has beds for nearly 100 patients. The lying-in hospital can accommodate 62 persons. The blind asylum has over 100 inmates; and there are a deaf and dumb asylum, an immigrants' home, and other charitable institutions.

Melbourne contains many churclies, but few of them will compare with the public buildings in appearance. Tbe Roman Catholic catbedral of St Patrick, when completed, will, however, be a conspicuous ornament to the city. The Anglican catbedral, now (1882) in the course of erection, is to cost about $£ 100,000$. The most striking ecclesiastical building is the Scotch church in Collins Street, which divides with Ormond College and tha Wilson Hall the honour of being the finest specimen of architecture in the city.

There are in Melbourne, among its numerous state schouls, about thirty whose size and proportions entitle them to rank with the architectural ornaments of the city. They have each accommodation for from 600 to 2000 scholars. Abundant provision has been made for secondary instruction by the denominations and by private enterprise. The Scotch College and the Presbyterian Ladies' College, the Wes!ey College and the TYesleyan Ladies' College, the Church of England Grammar School, St Patrick's College and St Francis Xavier's College, are all connected with the churches; and there are besides between twenty and thirty good private grammar schools.

Melbourne contains the offices of numerous banks, savings banks, and building societies.

The parks and public gardens of Melbourne are extensive and handsome. Within the city proper there aro four gardens, which have been decorated with a lavish expenditure. The Fitaroy Gardens are one dense network of avenues of oak, clm, and plune, with a "fern-tree gully" in the middle. Casts of famous statues abound; and ponds, fountains, rustic houses, and small buildiugs after the design of Greek temples give a variety to the scene. The Trcasury, Flagstaff, and Carlton Gardens are of the same class, but less costly in their decorations. Around the central city there lie five great parks. The loyal Park, of about 600 acres, is lightly timbered with the original grom trees; some portions of open land are used for recreation. About 30 acres in the centre are beautifully laid out to accommodate a very superior zoological collection. The Yarra l'ark; of about 300 acres, contains the leading cricket grounds; of these the "Melbourne" is the chief, distinguished by its very large stand and the excellence of its pitch. The Butanic Gardens occupy
about 200 acres of land, sloping clown to the bavks of the river, and laid out with great taste aad skill. Albert l'ark, about 500 acres in extent, is not so elaborately laid ont, but contains a small lake, which is much used for boatiog purposes, as the bay is stormy and exposed. Studley Park, a favourite place for picnics, is a romantic comer on a bend of the upper larra, of about 200 acres evteat, left entirely in a state of nature.

Besides these parks eaclu suburb has its onu "gardens" of moderate extent. At Fleningtun a large reserve is deroted to racing purposes, where in Norember the race for the Nelbourne Cup is held, the great racing caruival of Australia, attended by about 100,000 persons.

The shipping of Melbourne is rery considerable. Iu 1880 abont 1500 vessels entered and cleared again, their tonnage being 960,000 . Nearly all the intercolouial and a small proportion of the foreign ressels ascend the Yarra and unload in the heart of the city. The river was riginally uavigable for vessels of only 9 feet draught; but of late ycars the channel has been deepened so much that vessels drawiag 16 feet can ascend with safety. Great works are nuw in operation by which the course is to be straiglitened and further deepened; and the quays which line the river banks will be made accessible to the large vessels which now have to lie in the bay off the Sandridge and Williamstown piers.

Shipbuilding is a comparatively unimportant industry, but a great deal of repairing is done; the graving dock at Williamstown is able to hold the largest vessels which enter the port.

The total values of the imports of Melbourne for 1879 and 1880 were respectirely $£ 15,035,000$ and $£ 14,557,000$, and of the exports $£ 12 \$ 54,000$ aurl $£ 15,954,000$.

Iu 1881 Nelooume coutamed 2469 factories, employing 38,1:1 liands, and converting $£ 8,012,745$ worth of raw material iuto $£ 13,384,836$ worth of finished articles. The leading products are leather, flonr, clothing, furmiture, boots, carriages, preserved meats, alcs, soap, candles, cigars, ironwork, jewellery, jams, confectionery, biscuits, and voollens.

The city is abundantly supplied with newspapers, including three morning and three erening dailies. Two reviews are published.

The climate of Jelbourne is exceptionally fine, the only dramback being the occasional hot winds mhich blow from the north for tro or three days at a time, and raise the temperature to an uncomfortable extent. But the proportion of days when the sky is clear and the air dry and mild is large. The mean annual tempersture is $57^{\circ}$, which r-ould make the climate of IIelbourne aualogous to that of Madrid, Marseilles, or Verona, but without the extremes experieaced in those places. Snom falls every year in Italy, while it is unknown in Melbourne; and the highest temperature reached there in summer is belor that of the cities mentioned.

As a field for emigration from European countries, Melbourne offers many advantages to the industrious mechanic or Inhourer.

The cost of living is about the same as in London. Rents are higher, and furniture and utensils dearer ; but isutcher mast, bread, and clothes are cheaper.
There is no city where more has been done for the working-cla ses or where they hare made so good a ase of their advantages, Many of their efforts at gorernment (for they have all the power in their hands) have been illndvised, but individually they have exhibited a prudence of which the community reaps the fraits. It is one of the peculiar features of Melbourne that about three out of every four mechanics who have reached middle life own tion aut cotiages they occupy.

History.-The city of Melbourne is without excup on the mast striking instance of the aptitude of the Anglo-sionon race for colonization. It was not till the opening ycars of the prespat century that the fitst Europcan sailed through 2he narrow entrance to Port Phillip, and it was nu'y in i 835 that the wh'to man made his hatitation there. In that year John Fawkner : ailed up the Yarra in his little vessel the "kinterprise," laden with materials for a settlement; he was stopped by a slight waterfall in a ralley where dense groves of rattle trees all in bloom loaded the air with perfume, and where flocks of re3ite cockatoos whirled aloft when the first stroke of the axc resounded in the forest. This spot is now the centre of a great city 10 miles in length, 6 in breadih, corering an atea of 45,000 acres, and peopled by $2 \$ 3,000$ persons So ranid aud solid a growth, at a distance from the mother country. of the whole extent of the earth, is an cxample of colonizing enterprise altogetber without parallel.

The settlement was at first called by the native name "Dootigala," but a desire for. distinguished patronage caused the portion on the sea-shore, which was then esteemed the more important, to be called "Trillianstorn," after Kiug William IV., while the little collection of hots some 3 or 4 miles inland was named "Melbourne," in hanour of the prime minister Lord Melbonrne.
For two jears a constant stream of squatters with their sheep flowed in from Tasmania; then numerous "overlanders" drove their flocks from the Sydney side across the Murray and settled near Port Phillip. Captain Lonsdale was sent by the Sydney Government to act as "police magistrate, but in 1938 Mr Latrobe was placed in charge with the title of superintendent. As the squatters prospered Melbonrne increased in size, so that in 1841 it contained 11,000 inlabitants. A period of depression occurred in 1843 , followed by several years of the greatest prosperity, till, in 1851, gold was discovered in Ners South Wales. The district of Port Phillip became infected br the excitement; many parties scoured that part of the country in search of the precions metal, and six weeks after the first discovery of it there the great riches of Ballarat were made known. Within a year from that time a hundred thousand men had landed in the colony in order to proceed to the diggings; for sereral years after the same number landed every twelve months; and MeTbourne increased in population from 30,000 to 100,000 in the course of two or three years.

Daring the year of the gold discoreries, the Port Phillip district mas separated from New Sourth Wales, and formed into a separate colony rith the name Tictoria. In 1855 the British Goverumert granted to it a complete autonomy ; Melbourne became the capital of the new colony.
(A. SU.)

Melbourne, Tillian Lanb, second Viscount (1779-1843), second son of the first Viscount Melbourne, was born 15 th March 1759. After completing his course at Trinity College, Cambridge, he stadied law at the university of Glasgow, entered Linceln's Inn in 1197, and was called to the bar in 1804. In 1805 he married Lady Caroline Ponsonby, daughter of the earl of Bessborough, who after her separation from him acquired some fame as a novelist, and was also a friend of Lord Byron. On entering parliament the same year Lamb joined the opposition under Fox, of whom he was an ardent admirer; but his Liberail tendencies were never of a rery decided character, and be not unfrequently gave bis support to Lord Liverpool during that statesman's long teaure of office: During the short ministry of Canning in 1827 he was chief secretary for Ireland, but he afterwards for a time adhered to the small remmant of the party who supported the dake of Welliugton. The influence of Melburne as a politician dates from his eleration to the peerage in 1828. Disagreeing with the duke of Wellington on the question of parliamentary reform, he in 1830 entered the ministry of Grey as home secretary. For the discharge of the difficult and multifarious duties of this office at such a critical time be was decidedly deficient both in insight and in energy, but bis political success was totally independent of his official capacity; and, when the ministry of Grey was wrecked on the Irish question, Melbourne ras chosen to succeed him. Almost immediately he had to give place to a Conservative ministry under Peel, but, the rerdict of the country being in his favour, he rosnmed office in 1835. The period of his ministry was wholly uneventful, and for a considerable time before he resigned in $18 \mathrm{l}_{1} \mathrm{go} \mathrm{had} \mathrm{lost} \mathrm{the} \mathrm{confidence} \mathrm{of} \mathrm{the}$
country. From the tinic of his retirement from office he look little interest in politics. Ho died at Melbourne 1 Iouse, Derbyshire, $24 t \mathrm{~L}$ November 1848.
Lord Melbonrue wos without even the elementary qualification of ditigent attcution to details, which in the absence of higher endowments sometimes confers on a statesman the greater part of his success. Nor can it be said that in public lic ever displayed any of those specions and brilliant talents which are often found an acceptable substitute for nioro solit aequirements. Though he possessed a fine and flexiblo voice, his manner as a speaker was inetfective, and his speches wero generally ill-arranged and destitute of oratorical poiut, notwithstanding his occasional indulgence in inclegant fights of shetoric. Indeed his political advancement was wtolly due to his personal popularity. Wo had a thorongh knowsledse of the private and indirect motives which infuence politicians, and his genial altractive manner, casy temper, and vivacious, if oceasionally coarse, wit helped to confer on him a social distinction which for a time bed many to take for granted his eminence as a statesman. The most notable and estimable feature of his political conduct is his relation to Quecn Vietoriz, whoin he initiated into the dutics of oovercign with the most deficate tact and the nost friendly and conscientious carc.
ailechiades, or Miltiades fother forms of the name being Meltiades, Melciades, Milciades, and Miltides), was pope from July 2, 310, to January 10 or 11, 31 t. He appears to have been an African by birth, but of his personal history nothing is known. The toleration cdicts of Galerius and of Constantinc and Licinius were published during lis pontificate, which was also marked by tho holding of the Lateran synod in Ronia (313), at which Cæecilianus was acqu'tted of the charges brought against bim, and Donatus condemned. Melchiades was preceded and followed by Eusebius and Sylvester I. respectively.

MELCIIINES. Tha nane of Melchites (Syriac, Malkityé ; Arabic, Malakiya, or in the vulgar pronunciation Milhiyc) means etymologically the royal party, and so is currently applied in the East to Syrian and Egyptian Christians of the Orthodox Greek Church, adherents of tho creed supported by the authority of tha king, that is, of the Byzantina emperor. The Melchites therefore are those who accept the decrees of Ephesus and Chalcedon as distinguishod from the Nestorians and Jacobites, and the name reflects in an interesting manner tho way in which the doctrinal controversies that agitated the Eastern empire associated themselves with national feelings of antagonism to the imperial rule.
 king of Salem and priest of "supreme EIL" (L'l"elyôn), brought forth bread and wine to Alram, on his return from the expedition against Chedorlaomer, and blessed him in the name of the supreme God, possessor (or malier) of heaven and earth. And Abram gave him tithes of all his booty (Gen. xiv, 18-20). The Bible history tollis us nothing more about Melehizedek (comp. 1Fobrews vii. 3); but the majestic figure of the liing priest, prior to the pricsthood of the law, to whom even the father of all Istrael 1 aid tithes, suggested a figurative or typical application, first in Psalna ex. to the vicegerent of Jehovalh, sented on the throne of Zion, the king of Israel who is also priest after the order of Melchizedek, and then, after the gospel had cunfirmed the Messianic interpretation of tho I'salm (Math. xxii. 42 sq.), to the kingly pricsthood of Jesus, as that idea is worked out at length in the Epistle to the IIcbrews.
The theological interest which attaches to the idea of the proAaronje king.pricst in these typical apptications is practiendly independent of tho historirat questions surgested by tho marrative of Gen. xiv. It is generally recognized that this chapter holds quite an isolated place in the l'entateuchint history ; it is the only passage which presents Abraham in tho charneter of a warrior, nnt conncets him with historical names and politicnd movements, nnt there are vo ofear marks by which it can Le assignerl to nny one of the documents of which Genesis is rade up. Thus, while ono school of interpreters finds in the chapter the earlicst fragment of the politicat history of western Asin, some even hohling with Ewald that the narrative is prolably basel mold Camanite rccords, other critics,
as Noldeke, regard the whole as unhistorical and comparatively hate iu origin. On the latter view, which finds its main support in the inirinsic dilliculties of the narrative, it is scarcely possible to avoit the conclusion that the chapter is one of the latest additions $t 0$ the Pentateuch (Welliausen). The historical arguments $2 n^{\circ} \mathrm{o}$ and cons may be seen at length iu recent conmentarics, liut especially in Tuch's essay (Z.D.MI.G., i. 161 sq., reprinted in the sec ond edition of his Gencsis), which was long viersed as decisive in faroul of the narrative, and in Noldcke's Untersuchungen, 1869, p. 156 sq. , with which compare Wellhausen in Jahrb. f. D. Th., 1876, r. 414 s 7. The Assyrian monuments offor no decisivo cvidence, bat are lelif हi confirm the historical possibility of the proper names (Schrader, KI. und AT., p. 46 sq.; Delitzsch, Paradies, p. 224). Heve we can only speak of the episode of Metchizedek, which, though counected with the main narrative by the enithets given to Jchovalh in veres 22, seems to break the natural coincxion of verses 17 and 21, and may perhaps have come originally from in separate source. As the narrative now stands Salem must be sought in the vicinity of "the king's dale," which from 1 Sam. xviii. 18 probably but not necessanity lay near Jelusalem. That Salen is Jerusalem, as in Psalm lxxvi. :2, is the ancient and common view, and is necessarily followed by those who view Melchizedele as a late creation. Those who hold the oprosite view now lean to the identification with the Sadef $\mu$ of John ili. 23,8 miles south of Bethshean, which Jerome (Ep. lxxiii. ad Evangclizm) contirms by n worthicss tradition. In a genuine record of extreme antiquity tho union of king and priest in one person, the worship of El as the supreme deity by a Canannito. 1 aud the widespread practice of the cousecration of a tithe of booty can present no difficulty; but, if the historical character of the namative is denied, the origin of the conception hast be placed as late as the rise of the temporal authority of the high pricsts after the exile. An ancient legend identifies Melchizedck with Shem (Palestinian Targum, Jerome on Isa. .di., Eq.hracm Syrus in loco).
melconbe regis. See Weymouth.
MELENDEZ VALDES, JuAN (1754-1817), minor poet of Spain, was born at Ribera del Fresno, Badnjoz, on Mareh 11, 1751. He was destired by his parents, who were in good circumstances, for an official career ; and accordingly, after having completed his prelininary education at Madrid and Segovia, he went to Salamanca, and duly graduated in laws. At an early ago he had begun to write verses in imitation of the then much admired thongla now jnstly forgotten Eugenio Lobo ; Unt at Salamanca he camo under the intluence of the purce literary taste of the elder Moratin, while to the friendship of the cultivated amt well-read Cadahalso he owed his introduction to the writings of recent English pocts. At the age of twenty-six Mclondez obtained the prize of tho Spanish Academy for the best celogue, one of the unsuccessful competitors being the well-known Iriarte; the pociu (Batilo: egloga en alubanse de la vida del campro, 1750) continues to be highly spoken of by native crities, who echo in various forms the remark of one of the adjudicators, that it was "redolent of the wild thyme." In 1781 Mclendez went to Madrid, where Jovellanos beeame his friend, and obtainod for him in 1783 the appointment of professor of tho humanitics at Salamanca* In 1784, in competition for a prize otlered by the city of Madrid, he proluced his longest poent, a "dramatic eclogue" entitled Las Roclas de C'amacho ("Camacho's Wedding"), which secured the rote of tho judges, but did not add to his reputation, and soon fell into neglect. His genius does not seem to have been at all dramatic ; at any rete he was unfortunate in his choice of a sulyject so little eqpable of dramatic treatment as the well-known episorle in Don Qutixote. In the following year, at the age of thirty-one, he published a little volume of lyries and pastorals which gave him the first place ho still holds among Spanish poots of the 18 th century: Several editions were exhausted in a singlo year. With pretical fame camo professional advanconient, and in 1789 the "liestorer of Parnassus" (Restauradur del Parnaso), as Melendez is sometimes pedantically called by his countrymen, received a judicial appointment at Saragossa, which in 1791 he exchanged for a clancery
${ }^{1}$ On the other hand it is not corren ? in appeal to the Pcemphes of l"antus for the erithet e! yen.
auditorship, at Valladolid. In 1797 the publication of a now and greutly enlarged edition of his works, dedicated to the prince of the peace, was followerl by his removal to Madrid to a ligh post in connexion with the treasury. The new poems included somewhat heavy philosopbical epistles written after the manner of Foung, and an unmistakably dull cpic canto entitled Cuidr de Luzbel ("The Fall of Lucifer"), suggested by Milton, as well as an Ode to Jlinter, which showed liow well the author had made himself acquainted with Thumson. On the fall of his friend Jovellanos in 1798 Melendez was ordered away from Madrid, first to Medina del Campo and afterwards to Zamora, and it was not till 1803 that he was permitted to settle in Salamanca. For the next six yours his literary activity was bust slight, being limited to the production of a short poem on "Creation" and the preparation of an unfinished translation of the Eneid. After the revolution of Aranjuez (1808) Melendez accepted from King Juseph the post of councillor of state and afterwards that of minister of public instruction, a failure of patriotism which involved him is many indignities and even dangers; in 1813 he was of course compelled to quit his country, and, after sojourning successively at Alais, Nîmes, and Toulouse, he died in considerable poverty and neglect at Montpellier, on May 24, 1817. During his exile Le employed himself in the preparation of a complete edition of his works, with numerous additions and corrections; this was afterwards published, aloug with a life of the author by Quintana, at the expense of the Government ( 4 vols. 8vo, Madrid, 1820 ; reprinted at Paris, 1832, and at Barcelona, 183S).

MELFI, a city of Italy, in the province of Potenza, 30 miles N. of Potenza, on the road and railway between that city and Foggia, is buiit on a small hill on the lower slopes of Monte Volture. The castle was originally erected by Robert Guiscard, but as it now stands it is mainly the work of the Doria family, who have possessed it since the time of Charles V.; and the noble cathedral which was founded in 1155 by Robert's son and successor, Roger, has had to be subjected to a modern restoration in consequence of the earthquake of 1851 . In 1871 the city had 10,945 inhabitants; the commune had 9863 in 1861 and 12,657 in 1881.

Melfi is of doubtful origin, bnt appears to have existed at least as early as the 4th century. By the Normans it was made the capita! of Apulia in 1041, and provided with fortifications. The council held by Nicholas I. in 1059, that of Urban II. in 1090, the rebellion against Roger in 1133 and the subsequent puishment, the plunder of the town by Barbarossa in 1167, the attack by Richard, count of Acerra in 1190, and the parliament of 1223, in which Frederick 11. established the constitution of the kingdom of Naples, form the principal points of interest in the annais of Meifi during the more eventful period of its history. In 1348 Joanna 1. of Naples bestored the city on Niccolo Acciajuoli ; hut it was shortly afterwards captured, after a six months' siege, by the king of Hungary, who transferred it to Conrsd the Woif. In 1392 Goffredo Marzano was madc count of Melfi ; but Joanna II, granted the fordship to the Caracciolo family, and they retained it for one hundred and seven years till the time of Charles $V$. An obstinate resistance was offered by the city to Lautrec de Foix in 1528 ; and his entrance within its walls was followed by the massacre, it is said, of 18,000 of its citizens. As a bishopric Melfi is directly dependent on the Holy See.

MELITA (Menitn), the classical name for Malta (2.v.), was also the name borne by the modern Melecla, one of the Dalmatian islands, situated immediately to the south of Sabbioncello and to the north of Ragusa. It is abourt 24 miles in length, averaging about $1 \frac{1}{2}$ in breadth, and has a good harbour. At one time it was supposed by some authors to have been the scene of the shipwreck of St Paul, but this point has now for some time been conclus. sively settled in favour of Malta. See Smith, Voyage and Shipwreck of St Paul, 1848.

IIELITO, bishop of Sardes, a Christian writer of the 2d centory, is mentioned by Easebiue iz. E., iv. 21)
along with Hegesippus, Dionysius of Corinth, Apollinarie of Hierapolis, Irenæus, and others, his cuntemporaries, as a champion of orthodoxy and upholder of apostolic tradition. Of his personal history nothing is known, and of his numerous works (which are enumerated by Eusebius) only a few fragments are now extant. They included an Apologia addressed to Aurelius some time between I69 and 180 A.D., two bonks relating to the paschal controversy, and a work entitled 'Eкiopai' (selections from the Old Testament), which contained the well-known catalogue of "the books of the Old Covenant." The fragments have been edited with valuable notes by Routh (Reliquix Sacrx, vol. i., I8I4). It seems mare than doubtful whether the Apologia of Melito "the Philosopher," discovercd in a Syriac trauslation by Tattam, and subsequently edited by Curcton and Renan, ought to be attributed to this writer and not rather to another of the same name.

MeLLONI, Macedonio (1798-1854), a distinguished physicist, was born at Parma on April 11, 1798. From IS24 to 1531 he was professor at Parma, bust in the latter year he was compelled to escape to France, laving taken part in the revolution. In 1830 lie went to Naples as director of the conservatory of arts and handicrafts. He was likewise director of the Vesuvius observatory, a post which he held until IS 88 . Melloni received the Rumford medal of the Royal Society in 1834. In 1835 he was elected correspondent of the Paris Academy, and in I833 a foreign nember of the Royal Socicty. He died from an attack of cholera on August 1I, I854.

From the Royal Society catalogue of papers we find that Melloni prolucedeighty-six memoirs byhimself, as well as three in connexion with other plysicists. These embrace a wide range of subjects, but the reputation of Melloni as a physicist rests more especially upon his discoveries in radiant heat. Ben of science were, in the early part of this century, very much in the dark with regard to the nature of the invisible heat rays. Leslie and others had indeed advanced the subject by means of the differential thermometer, but such an instrument was at the best a very poor substitute for the buman eye. It was necessary to invent an instrument more nearly capabio of doing for the dark rays what the eye does for those of light before any grcat increase in our knowledge of this subject could be expected to take place. This step was taken (shortly after Seebeck's discovery of thermo-electricity) in the construction of the thermo-multiplier or combination of thermopile and galvanometer which formed the sulject of a joint memoir by Nobili and Melloni in 1831. In this memoir, after describing their instrument, these physicists confirmed the experiments of Leslie and others. They tried screens of glass, sulphate of lime, mica, and ice, also of water, wil, aicohol, and nitric acid enclosed in glass, and found an instantancous effect produced in the index of their instrument except for ice and water, the source of heat being an iron ball below redness. After finding that most substances wben used as screens stopped a nuch larger proporlion of dark heat than they did of light, Melloni set himself to discover some body that might be transparent for dark lieat. In this search he was rewarded with coniplete success. Rock-salt was found to possess this property ; and he immediately proceeded to construct prisms and lenses of rock-salt with which he proved the refraction of dark heat, that is to say, of the heat procceding from bodies below incundescuce.

Melloni was likewise very snccessful in studying the action unon dark heat of screens of various substances. His experiments in this and other directions are described by Baden Powell in his report to the British Association on Radiant Heat (1840). The rays of the lamp were thrown upon screens of various materials in such a manner that the effect transnitted from all tbe screens was of a certsin uniform amount. This coustant radiation was then intercepted by a plate of alum, and it was found that very different quantities of heat were transnitted through the alum in the different cases. Melloni concludes that the calorific rays issuing from the various diaphanons screens are, therefore, of different qualities, and possess what may be termed the diathermancy peculiar to rach of the substances through which they have passed. One of his screens was made of green glass, and he found that a piece of alum trans. mitted only 1 per cent. of the beat which had passed throngh this screen. Green glass and aium form, therefore, an antagonistic combination.
These experiments suggest naturally a new anslogy between dark heat and light which could not fail to strike Melloni, and accordingly we soon find him describing an experiment with the solar rays transmitted through grecu glass and then intercepted ly other
media. They pass copiously through rock-salt, lie tells us, but fechly through alum, and hence Mclloni concludes that there are anongst the solar rays some which resemble those of terrestrial heat, and in general that the differences observed between solar and terrestrial heat in the transmission of rays are to he attributed merely to the mixture in different proportions of these several species of rays. An instrument like the thermo-multiplier could not of course remain a monopoly, and shortly after its completion we find Professor James Forbes making use of it to prove the polarization of heat as well as to extend our knowledge of refraction. The brilliaat rescarches of this experimentalist were, like those of Melloni, crowned with the Rumford medal of the Royal Socicty. On September 2, 1839, Arago communicated to the academy of sciences a letter by Melloni, who had found that rock-salt acquires by being smoked the power pf transmitting most easily heat of low temperature, or dark heat. Forbes had discovered a similar property in mica split by heat, and he now ahowed that rock-salt roughcned and nica scratched possess aimilar properties to blackened rock-salt. Melloai on his part took up the subject of polarization, and decided in favour of the equal polarizability of heat from different sources, a conclusion that did not then appear to Forbes to be in conformity with his experiments. It is very instructive to notice the loyalty which hedd both these experimentalists to the results of their observations.' While Melloni differs from Forbes with regard to polarization, he will not allow the truth of a generalizstion proposed by Amperre, who had endeavoured to explain on the theory of undulations the identity of light and lieat, - the difference of effect being dependent solely on the different wave-lengths, those producing lieat being larger thsn those giving rise to light. Melloni sdmits that many phenomena may be ex. plained by this hypothcsis, but he mentions some experiments in which he thinks that this theory will not hold. The brilliant gcneralizer from withont has of course a different point of view from the laborious experimentalist within. They are all worthy of scientific honour-for it is by the seeming conflict, but in reality the united efforts of workers auch as these that the essential element of stability in the structure of ocientific knorrledge is finally secured.

MELO: (Curmis Melo, L.), a most polymorphic species of the order Cucurbitucex, the varietics of which are grouped by Naudin under ten tribes, while several other plants of less known characters probably belong to it. ${ }^{1}$ The melon is an anmual herb with palmately-lobed leaves, and bears teadrils. It is monœcious, having male nud female flowers on the same plant. The flowers have deeply five-lobed campanalate corollas and three stamens. Naudin observed that in sume varieties (e.g., of Cantaloups) fertile stamens sometimes nceur iu the female flowers. It is a native of south Asia " from the foot of the Himalayas to Cape Comorin," ${ }^{2}$ where it growa spontaneously, but is cultivated ia the temperate and warm regions of the whole world. It is excessively variable both in diversily of foliage and habit, but much more ao in the fruit, which in some varielies is no larger than an olive, while in others it rivals the ponderous fruits of the goard (Cucurbita maximat L.). The fruit may be glabular, ovoid, spindle. slaped, or serpent-like, netted or smooth-skianed, ribbed or furrowed, variously coloured externally, with white, greea, or orange flesh when ripe, scented or scentless, sweet or insipid, bitter or even nauseous, \&c. Like the gourd, the melon undergoes atrange melamorphoses by crossing its varieties, thongh the latter preserve their characters when alone. The offspring, however, of all crossings are fertile. As remarkable cases of sudden changes produced by arlificially crossing races, M. Naudin records that in 1859 the offspring of the wild melans m. sauvage de l'Inde (C. melo agrestis) and m. s. d'Afrique, le petit m. de Figari (C. maculatus ?) bore quite different fruits from their parents, the former being ten to twelve times their size, ovoid, white-skinned, more or less scented, and with reddish flesh; though another individual bore fruits 110 larger than a nut. The offspring of m. de Figari after being crossed bore fruits of the serpent-melon. On the

[^270]other fland, the serpent-melon was made to bear ovoid aad reticulated fruit. ${ }^{3}$

With refereace to the early cultivation of the melon, Naudin thinks it is probable that the culture in Asia is as ancient as that of all other alimentary vegetables. The Egyptians grew it, or at least inferior races of melon, Which were either indigeuous or introduced from Asia. The Romaus and doubtless the Grecks were familiar with it, though some forms may have been described as cucumbers. Columelln seems to refer to the serpentmelon in the phrase ut coluber... ventre cubat jlexo. Pliny describes them as peprones ixix. 23 to xx .6 ) and Columelia as melones (xi, 2. 53); tsee Pickering, Chron. Hist., of Pl., 229. The melon began to be extensively cultivated in France in 1629, according to Olivier de Serres. Gerard (Merball, 7il) figured and described in 1597 several kiads of melous or jompions, bul he has apparently included gourds under the same name. Pickering observes that the melon was carried by Columbus to America, and by the Portaguese to the Malayan Archipelago.

The origin of some of the chief modern races, such as "Cantaloups," "Dadaim," and probably the netled sorts, is due to Persia and the neighbouring Caucasian regions. The first of these was brought to Rome from Armenia in the 16 tl centary, and supplies the chief sorts grown for the French markets; but many others are doubtless arlificial productions of West Europe.

For cullivation of the melon, see art. Hohticultcre, and also Gari. Chron., May 6, 1882, p. 596 ; and for references to French litersture on the same see Naudin, ut supra, p. 82.

MELOS (Att. Gr., M $\hat{\eta} \lambda o s$ ), the modern Milo, one of the Sporades of the Egean Sea, situated at the south-west corner of the archipelago, in $36^{\circ} 45^{\prime} \mathrm{N}$. lat. and $24^{\circ} 26^{\prime}$ E. loag., 75 miles due east from the coast of Laconia. From east to west it measures about 14 miles, from north to south 8 miles, and its area is estimated at 52 square miles. The greater portion is rugged and hilly, and the culmiaating point, Mount Elias in the west, reaches a height of 2538 feet. Like the rest of the claster to which it belongs, the island as a whole is of volcanic origia, with tuff, trachyte, and obsidian among its ordinary rocks. The great natural harbour, which, with a depth diminishing from 70 to 30 fathoms, strikes in from the north-west so as to cut the island into two fairly equal portions, with an isthmus not more than $l_{4}^{l}$ miles broad, is evidently the hollow of the priacipal crater. In one of the caves on the soutly coast the heat is still so great that one cannot remain within more than a few minutes, and on the eastern shore of the harbour there is a remarkable cluster of hot sulphurous spriags. Sulplar is found in abundance on the top of Mount Kalamo and elsewhere. In ancient times the alum of Milo was reckoned next to that of Egypt (Pliay, xxxp. 15 [52]), and millslones, salt (from a marsh at the east end of the harbour), and gypsum are still exported. The Melian earth ( $\gamma \hat{\eta}$ M $\eta \lambda \iota a ́ s$ ), employed as a pigment by ancient artists, was probably native white-lead. Orange, olive, cypress, and arbutus trees grow throughout the island, whieh, however, is too dry to have any profusion of regetation. The vine, the cotton plant, and barley are the main objectz of cultivation. Including the neighbouring islands of Antimilos ( 4 square miles), Cimolos ( 16 square miles), and Folinos ( $5 \frac{1}{2}$ square miles), the total population of Melos was only 5538 in 1879.

Antimilo, $5 \frac{1}{2}$ miles north-west of Milo, is a mere uninhabited mass of trachyte, and is often called Eriomilo or Desert Melos. Cimolus, or Argentiera, less than 1 mile to the north-east, was famous ia antiquity for its

[^271]figs and fuller's earth ( $K$ r $\mu \omega \lambda / a \gamma \bar{\eta}$ ), and contained a considernble city, the remaius of which still cover the cliff of St Andrews. Polinos, Polytios or Poliro, and Kaimeni, or "Burned Island," the ille Bratee or Isola Bruciata of the French and Italians, lies rather more than a mile sontle-east of Cimolos. It was in antiquity the subject of dispute botween the Mclians and Cimolians. It has long been alnost uniulabited.

In ancient tinics the city of Melos, built telrace fashion round a hill in the north-enst of the main island, was a place of considerable size; "the western' wall, of Cyclopean masonry, is traceable all the way down from the summit to the sen," and aunong the ruins are a templie in the Corinthian style and a beantiful little theatre cleared in 1836 by order of the king of Bavaria. Piainted vases (the aucient Meliaus were great makers of this kind of ware), bronzes, gold ornamients, and similar speeimens of art workmauship? lave been recoverell from the debris; nnd in 1520 the "Venns of Milo," now in the Lourre, the noblest extant representation of Aplarodite, was found in the neigh.jomrhood of the theatric. The top of the hiill is now ocenpied by Castro, the principal village in tho island, At some distance to the south-east, at the plaee called Tripiti (i.e., тpurnт "the perlorated"), lies a remarkable eluster of eatacombs containing frescos, \&ec., of evidently Christian origin. Paliea Chora, about 5 miles farther south-east, is now an almost deserted village, but dowa to the beginning of the last century it had abont 5000 inlualitants, and it continned for a time to be considered the capital of the island:
The first ocenpants of Melos were probably Ploenieians, but the island was Hellenized at an early date by Minyans and Dorians from Laconia. Though its inlabitants scnt a contingent to the Greck fleet at Salamis, they held aloof from the Attic league, and songfit to remain nentral during the Peloponnesian War. But in 416 B.c. the Athenians, haring attacked the island and compelled the Melians to surrender at discretion, slew all the men capable of bearing arms, made slaves of the women and children, and in trodnced a body of five hundred Athenian colonists. Lysander restored the island to its old Dorian possessors, but it never recovered its former prosperity. There were many Jevisl settlers in Melos in the beginning of the Christion era, and Christianity was early introduced. During the "Frankish" period the island formed part of the ducly of Naxos, except for the few years (1341-83) when it was a separate lordship under Marco Sanude and his danghter.




MELROSE, a village of Roxburghshire, Scotland, ou the south bank of the Tweed, 37 miles by rail sonth-south-east of Edinburgh. Its population has- steadily advanced from 266 in 1851 to 1550 in 1881. Thongh a burgh of barony since 1609 , it is a purely agricultural village, and would be of little interest but for the ruins of its abbey, now the property of the duke of Buccleuch. It was formerly called Little Fordell, and its present name even dates fron the foundation of the monastery by David II. in 1136.

There had been a Columbite monastery of Melrose at the place now known as Old Melrose, about a mile and a half to the east of the village, but this establishment, probably never of much architectural magnificence, had, according to the Chronicle of the Picts and Scots, been destroyed by Kenneth Mr'Alpin in 839 , and may never have recovered from the disaster. Kiog David's abbey, which he entrusted to a body of Cistercian monks from Rievaulx (Rinall) in Yorkshire, was dedicated on Sunday 2Sth July 1146; it was laid in ruins by Edward II, of England in 1322; Bruce cansed the work of restoration to be vigorously prosecuted, but the edifice was again burned by Richard II. in I3SJ. The abbey church as it now stands consequently belongs in the main to the latter half of the 14 th century and the first half of the 15 th, with a good many portions of a considerably later date.
Architecturally the abbey may be described as a splendid example of the Middle Pointed style, strongly affected on the one band by Flamboyant and Perpendicular tendencies, and on the other by the individuality of some of the builders. Cruciforin in plan, it measured $214 \frac{1}{2}$ feet' fron east to west, the width of the nave being 69 feet, and across the transepts $115 \frac{1}{2}$. The noble edifice was damaged by the English in 1545 ; and since the Reformation it has been altered to snit the necessities of Preshyterian worship (1618-1810), and
plundered by builders to supply ormaments for nouses. The whole building is now iu ruins. The west end and a good part of the north side have disappeared; but the elevation of the sonth side is nearly eutire, both the transepts and the cast end are externally in very fair prescrvation, part of the ecntrnl tower is standing, and the sculptured roof still covers the east end of the clancel. Of the judividual features of the bnilding, the great eastern wiudow has been generally nost admired since Sir Walter Scott celebrated the moonlit asjuct of its "slender slanfts of slanpely stome." It has five lights; the height is 37 feet and the width 16 ; and the apper portion is filled in with delicate tracery of a geometrical design. Very beantiful too is the whole gable of the sontlit transept. In the interior, on the worth side of the uave, there still stand four of the original square piers, 'and one of them slows a Norman "cap." The choir, the west'end of whieh is shat off by a massive rood-screen, has been largely "spoiled by rough 17 the century work"; but enough remains of the decorative detail to provolie the admiration and despair of the modern artist in stone. The lacile and at the same time elaborate rendering of vegetable forms, such as the Scotch "kail," is particularly striking. It was in the abbey-church of Melrose, where Alexander II. had long before been buried near the high altar, that the heart of Bruce fornd its final resting-place; and among the many tombs which afterwards gathored under the same loof were those of his faithful knight Janes Lord Donglas, Sir Wivliam the dark knight of Liddesdale, and the hero of Chery Clase.
The ancient muniinents of the abbacy have been preserved in the arehives of the call of Morton; they were published by the Baunatyne Club ( 2 vols., 1837, Liber Scricte Marie de Melros), under the editorship of Cosmo Innes. Among the many interesting documents is one of the very earliest specimens of the Scoteh tongue. The Chronzica de Mailros, preserved among the Cotton MSS., has been twice printed, -at Oxford ( 168 ) by Fulman, and by the Bannatyne Club (1835), edited by John Stevenson. From abont 1140 tili its close in 1265 the clurnicle may be considered original ; it was put largely under contribution by later cornpilers.
 Jelrose, Kelso, 17S2; J. Eower, Description of the Abbeys 'nf Jetrase and Ols Melrose. Kielso, $2813 ; \mathrm{J}$. A. Wade, Mistory of S' Alary's Abbey, Meirose, Edinburgh, 1861 : Fred. l'inches, The Abley Church of Sefrose (a scrles of arclitecturul (lrawings), London, 1879.
MELTON MOWBRAY, a market-town of England, county of Leicester, is pleasantly situated in a fertile vale, at the confluence of the Wreake and Eye, 15 miles northeast of Leicester and 104 north of London by rail. The Eje is spanned by a bridge of four arches. The town consists principally of two main streets, and is substantially built of brick. The church of St Mary, a bandsome cruciform structure partly in the Early English style, and adorned by a lofty and richly ornamented tower. was heightened and otherwise enlarged in the reign of Elizabeth, and has also undergone modern improvements. There are largely endorred almshoases and several other charities. Melton is the seat of a celebrated buating district, in connexion with which there are stables in the torn capable of accommodating about cight hundred horses. It is also well known for its pork pies, aud has a very largs trade in. Stilton cheese. There are bremeries and tanneries, as well as an important cattle market. Ironworks have lately been erected. The tomn possesses great railway facilities. The population of the urban sanitary district in 1871 was 5033 , and in 1881 it was 5766 .
The old name of Melton was Medeltone, and the place is of considerable antiquity. During the Civil War it was in February 1644 the seene of the defeat, with great slaughter, of the parliamentary forces by the royalists, It is the birtholace of John Henley the oratol.

MELUN, capital of the department of Seine-et-Marne, France, 28 miles south-east of Paris by railway, occupies 2 hill ou the right bank of the Seine and the level ground at its foot. It owes its rauk as "chef-lien" to its ceatral position merely; for there are two other fowns in tho departnent, Meaus and Fontainebleau, which have a larger population. Melun is near one of the most beantiful parts of the forest of Fontainebleau. Among the rich estates in its neighbourhood the most remarkable is the magnificent clateau of Vaux-Praslin, which belonged to Fouquet, superintendant of finances under Louis XIV. The church
of Notre Dame formerly holonged to a nunnery, now occupied by a central house of detention for twelve hundred prisoners. On the apse of the church of St Aspais may be seen a modern medallion in bronze, the work of the sculptor Chapu, represcutiug Joan of Arc as the liberator of Melun. The population in 1881 was 12, 145.
Melun is a very ancient town, and has played an important part in history. As early as the time of Cæsar's Gullie wars it was taken possession of by his lieutenant Labienus, in order to attaek Lutetia with greater case by the right bank of the Seine. It was pillagell by the Normaus, and afterwards became the favourite residence of the first kings of the race of Capet; Robert and Philip I. both died there. During the Hundred Years' War Melun was given up by Jeanne of Navaite to her brother, Charles the Bad, but was retaken by the dauphin Charles and Duguesclio. In 1420 it made sn heroic defence against lleury V. of Eugland and his ally the duke of Bursundy. Ten years later the people of Melnn, with the help of Joan of Are, drove out the English. It was occupied by the League in 1589, and retaken by Ilenry IV. in the following year. Jacques Arayot wss borm there in 1504.
Melville, Henry Dundis, Yiscount (1741-1811), younger son of the Iight Honourable liobert Dundas, lord president of the Scuttish court of session, was born at Edinburgh in 1741, and was ellucated at the high sehool and university there. Beconing member of the faculty of ndvocates in 1763 , he soon acquired a leading position at the bar. After his appointment as Jord advocate in 1775, he gradually relinquished his legal practice to devote his attention more exclusively to public husiness. On entering parliement in 1774, he had joined the party of Lord North, and, notwithstanding his provincial dialect and ungraceful manner, he soon distinguished himseff in the debates by bis clear and argumentative speeches. After holding subordinate offices under the marquis of Lansdowne and Pitt, he in 1791 entered the calinet as lome secretary. From 1794 to 1801 he was secretary at war under Pitt, who ennceived for him a special friendship. In 1802 he was clepated to the peerage as Viscount Melville and Baron Dunira. Under Pitt in 1804 he again entered nffice as first lord of the admiralty, when he introduced numerous improvements in the details of the depmertment. His impe.chment in 1806, for the appropriation of balances of public money remaining in his hands, resulted in his acquittal, but he never again held oflice. He died May 27, 1811.

MELVILLE, Andrew (1545-1622), a distinguished Scottish acholar, theologian, and religious reformer, was the youngest son of Richard Melville, propricter of Baldovy, near Montrose, at which place Andrew was born in 1545. His father fell at the battle of Pinkie, fighting in the ven of the Scottigh army, tro years after the bith of his son; and, his wife having soon after followed him to the grave, the young orphan, then a gentle and deliente chitd, was tenderly cared for by !is eldest brother Richard and his amisble and pious wife, whose memory the great scholar cver afterwards cherished with the warmest gratitude and affertion. At a very carly ago Melville began to show a strong taste for learning, and his brother did every thing in his power to give him the best education the country could then nfford. The rudiments of Latin he obtained at the grammar school of Montrose, after leaving which ho prosecuted the study of Greek for two yenrs muder Pietre de Marsillicrs, a l'renchnman whom John Erskine of Dun had inducerd to settle at Montrose ; and such was the proficiency Mclville mado that on going to the university of Si Andrewe he excited the astonishment of hoth students and professers by using the Greck text of Aristutle, which no one else there understood, the Latin translation being that which was alone employed in the teaching of logic. On completing his course of study, Melville left St Andrews with' the claracter of "the best poct, philosephor, and Grecian of any young master in the land." IIe then,
in 1564 , being nineteen years of age, set out for France to perfect his education at the university of Paris. He there applied himself especially to the study of the Oriental languages, but he had also the adrantage of atteuding the last course of lectares delivered by Turnebus in the Greek chair, as well as those of the celebrated Ramus, whose mode of philosophizing and .tlan of teaching he afterwards introdnced into the universities of Scotland. From Paris he proceeded to Poitiers for the purpose of studying civil law, and though only twenty-one years of age he was npparently at once made a regent in the collcge of St Marceen. After a residence of three years, however, the political troubles of the country compelled him to leave France, and he then went on to Gencra, where he was warmly welcomed by Theodore Bcza, at whose instigation he was appointed to fill the chair of humanity in the acadeny of Geneva, which then happened to be vacant. In addition tn his teaching, however, he nlso applied himselfto the further prosecution of his studies in Oriental literature, and in particular acquired from Cornelius Bertram, one of his brother professors, a knowledge of Syriac. While he resided at Genern the massacre of St Bartholomew in 1572 drove an immense number of Protestant refugees to that city, including several of the most distinguished French men of letters of the time, with whom Melville had now the opportunity of intimate intercourse. Among these were several men deeply learned in civil law and political science, and their society no doubt tended greatly hoth to increase Melville's knowledge of the world and ic enlarge his ideas of civil and ecclesiastical libertyacquisitions which he must have found of essential servico when at a later period as a lender of the General Assembly he had to struggie against the attempts of James VI. to crush the liberties of the church of the Scottish Reformation. In $157+$ Melville returned to Scotland, and alnost insmediately afterwards received the appointment of principal of Glasgow University, which at the time had fallen into nn almost ruinons state, the college having in fact been shat up and the students disnersed. Melville, lowever, with the knowledge of ucadlemic methods of training which he had obtained abroad, irmmediately set himself with inmmense energy to establish a good cducational system, and in a short time his fame spread through the kingdum, nnd students flocked in from all quarters, till the class-rooms lately empity cuuld not contain those who came for admission. After labouring for six years in Clasgow, and having brought the seminary into a state of the minst thorough cficiency, it was thonght desirable that he should undertake the same duties at St Andrews. He accordingly proceeded there in 1580, and was installed ns principal of the ncw theological college. His duties there comprehended the teaching, not only of theology, but of the Hebrew, Chnidee, Syrisc, and Rabbinical languages, and the great ability of his lectures was miversally acknowledged, and excited quite a new interest in the university. The sweeping reforms, however, which his new nodes of teachiog necessarily involved, nnd cyell some of the new doctrines which he began to introduce, such as the noi-infallibility of Aristotle, soon brouglit him into collision with some of the other teachers in the university; and this, along with the troubles which nroso from the nttempts of the court to force a bastard system of Episcopncy upon the Church of Scotlaod, forced liim to fice into England in order to escape tho consequences of an absurd charge of treason which was made ngninst him, and which secmed to threaten n prolonged imprisonmert and not improbably ceren his life. \$ After nn absence of twenty months ho returned to Scothand in November 158a, and in March 1586 resumed his lectures in St Andreme, where he contintied to fulfil the duties of his office fer
twenty more years. During the whole of that time, however, his more prominent work was that of contending with unwearied energy and indonitable courage against the eucroachments of an unscrupulous and tyranuical Government upon the liberties of the Scottish Church. Into the details of these it is of course impossible to enter here. But that in the main he and his condjutors were fighting for the constitutionally guarauteed rights of the church is now admitted by all candid inquirers. (See in particular The Ifistory of England from 1603 to 1616, by Samuel hawson Gardiner, vol. i. clap. iz.). The chief charge agaiast Melville is that his fervour often led hiun to forget the revereace due to an "anviuted monarch." Of this, however, it is not very easy now to judge. Manners at that time were rougher than at present., Any thing more rude, insolent, and brutal than James's own occasional explosions it wculd be difficult to match, and a king so undignified could scarcely expect to be treated with dignity. Besides, what title had one who was acting in a purely arbitrary and illegal manaer to receive other than the plainest dealing, -such as being reminded that though he was king over men he was only "God's silly vassal?" Melville's rudeness (if it is to be called so) was simply the outburst of just indignation from a brave, true, and upright man, zealous only for the purity of religion and regardless of consequences to himself, and it contrasts nobly with the grovelling sycophancy of most of the English bishops towards James. The close of Melville's career in Scotland was at length brought about by James in characteristic fashion. Iu 1606 he and seven other clergymen of the Church of Scotland were summoned to London in order "that his majesty might treat with them of such things as would tend to settle the peace of the church." The contention of the whole of these faithful men was that the only way to accomplish that purpose was a free Assembly. Melville delivered his opinion to that effect with his accustomed freedom and boldness, and, having shortly afterwards written a sarcastic Latin epigram on some of the superstitious practices he had observed in the chapel of Hamptun Cuurt, and some eavesdropper having conveyed the lines to the king, he was committed to the Tower, and detained there for the space of four years. On regaining his liberty, and being refused permission to return to his own country, he was invited to fill a professor's chair in the university of Sedan, and there he spent the last eleven years of his brave, active, noble, and useful life. He died at Scdan in 1622, at the age of seventy-seven.
Melville, George John Whyte (1821-1878), has a right to be regarded as the founder of a school of fashionable novels,- the fashionable spurting novel. Ho was lamented on Lis death as the Tyrtæus of the hunting field, the laureate of fox-hunting; all his most popular and distinctive heroes and heroines, Digby Grand, Titbury Nogo, the Honourable Crasher, Mr Sawyer, Kate Coventry, Mrs Lascelles, are or would be mighty hunters. The eldest son of Major Whyte Melville, of Mount Melville, Fifeshire, he received his school education, like so many of his heroes, at Eton, entered the army in 1839, became captain in the Coldstream Guards in 1846, and retired in 1849. His first appearance in literature was made soon after, with a translation of Horace into fluent and graceful verse, published in 1850. His first novel was Digby Grand, publisbed in 1853. Although this first effort has a good desl more in it of Lytton's early high-flying style than Whyte Melville's later works, the unflagging verve and intimate knowledge with which he describerl sporting scenes and sporting characters at once drew attention to him as a novelist with a new vein. His power of sustaining interest_in huating and the.things connected with
lunting appeared more markedly in his next novel, Tilbury Nago, contributed to the Sporting Maguzine in 18853. He showed in the adventures of Mr Nogo, what became more apparent ius his later works, that he had a surer liand in bumorous narrative than in pathetic descriptiou; there are many pathetic scenes in his novels, but the pathos is sometinies rather forced, intended to point a moral-rather the pathos of the preacher than the puet. The hero uf Gieneral Bounce, his nest nuvel in order of publication (Fraser's MKagazine, 185t), little as one would expect it from the title, ends in a painful manuer, somewhat out of keepiug with the lively middle and beginning. When the Crinean War broke out, Whyte Melville took part in it as a volunteer in the Turkish contingent; but this was the only break in his literary career from the time that be began to write novels till inis death in 1878. By a strange accident, he lost his life in the bunting-field, the hero of many a stiff ride meeting his fate in galloping quietly over an ordinary plougbed field.
Twenty-one novels appeared from his pen after his return from the Crimea:-Fiate Coventry, 1856; The Interpreter, 1858; Holmby House, 1860; Good for Nothing, 1861; Market Harborough, 1861; The Gladiaturs, 1863; Brookes of Bridlemere, 1864 ; The Queen's Naries, 1864; Cerise, 1865 ; Bones and I, 1868; The White Rose, 1868; 1 I or $N, 1869$; Contraband, 1870; Sarchedon, 1871; Satanella, 1872; Uncle John, 1874; Sister Louise, 1875 ; Katerfelto, 1875;-Rosine, 1876; Roy's Wife, 1878 ; Black but Comely, 1878. Several of these novels are historical, the Gladiators being perhaps the most famous of them. As an historical novelist Whyte Melville cannot be put on a level with Harrison Ainsworth for painstaking accuracy and minuteness of detail; he makes his characters live and move with great vividness, but be obviously did not know at first hand the history of tho periods chosen by him. It is on his portraiture of contemporary sporting society that his reputation as a novelist must rest ; and, though now and then a character reappears, such as the supercilious studgroom, the dark and wary steeple-chaser, or the fascinating sparting widow, his variety in the invention of incidents is amazing. Whyte Melville was not merely the annalist of sporting society for his generntion, bat may also be fairly described ns the principal moralist of that society; he exerted a considerable and a wholesome intluence on the manners and morals of the gilded youth of his time. His Songs and Verses.and his metrical Legend of the True Cross, though respectable in point of versification, are hardly worth mentioning on their own merits.
melvill van Carnbee, Pieter, Bakon, an eminent Dutch geographer, was born at the Hague 20th May 1816, and died October 24, 1856. He traced his descent from an old Scotch family, originally it.is said of Hungariau extraction. Destined for the navy, in which his grandfather had won distinction, Melvill imbibed a taste for hydrography and cartography as a student under Pilaar in the.college of Medemblik, and he showed his capacity as a surveyor on his very first voyage to the Dutch Indies (1835). In 1839 he was again in the East, and was now attached to the hydrographical bureau. at Bataria. With the nssistance of the long-neglected documents collected by the old company, he completed in wonderfully short time his first great hydrographical work-a map of Java in five sheets, accompanied by sailing directions (Amsterdam, 1842; 2d revised edition, 1849), -which was received with great applause. Melvill remained in India till 1845 collecting materials for his second great hydrographical work, the chart of the waters between Sumatra and Borneo (two sheets, 1845 and 1846, revised edition of first sheet 1847; compare the descriptive memoir in Tindal and

8wurt's Journat, 1846). On his return to Holland Melvill was attached to the naval department with the special charge of studying the history of the hydrography of the Dutch Iudies. He alsu undertook, in connexion with Von Siebold, the publication of the Moniteur des Indes, a valuable series offscientific papers, mainly from lis own pen, on the foreign pussessions of Holland, which. was continued fur three years. In 1850 Helvill returned to India as lieutenant of the first class and adjutant to Vice-Admiral Van deu Bosch; and after the premature death of this cominander he was again appointed keeper of the charts at Batavia. * Ho was one of the fuunders and for a time the president of the new society for natural scieace (1850). In 1853 he obtained exemption from active naval scrvice that he might devote himself to a general atlas of the Dutch Indies; and under the most unfavourable circumstances he prosecuted the task with incredible energy. But he was not to see its completion. Just after he had lost his young wife and new-born son he wascalled in 1856 to be director of $\delta$ the marine establishment of Onrust; and there he soon fell a victim to clinate, dying after much suffering in the hospital of Welterreden, only forty years of age. In spite of delays caused by the engraving of the maps in Holland, no fewer than twenty-five shects were already fiuished, but it was not till 1862 that the whole plan, embracing sixty sheets, was ally broucht to a close by Lieutenant-Colonel W. F. Versteeg. The premature loss of Melvill was severely felt not only in Holland but in foreign countrics, where, as shown by his connexion with the geographical societies of Paris, London, Berlin, and Bergen, his labours were liighly esteemed. His industry and energy were equalled only by the benevolence and warmth of his heart. In 1843 he received the decoration of the Netherlands Lion, in 1849 that of the Legion of Honour.

MENEL, the most northerly town in Germany, and the principal seat of the Baltic timher trade, is situated ill the district of Könissberg, Prussia, at the mouth of the Dange, and on the bank of a sound connecting the Kurische Haff with the Baltic Sea. On the side next the sea the town is defended by a citadel and other fortifications, and the entrance to the large and fine harbour is , protected by a lighithouse. Largely rebuilt since a destructive fire in 1854, Menel contains several churches, a gymnasiun, a school of unvigation, an exchange, and various judicial and official establishments. It also possesses large iron-fuundrics, shipbuilding yards, breweries, distilleries, and manufactories of chemicals, soap, and amber wares. By far the most important interest of the town, however, is its trade, the chief itcins in which are tionber and the grain and other agricultural products of Lithuania. The timbar is brought by river from the foresta of Russia, und is prepared fur exportation by ahout thirty saw-mills. The annual value of timber exported is about $£ 600,000$. In 1880 the port of Memel was entered by 898 ship 1 with an aggregate burden of 164,374 tcns, and eleared by 932 vessels with a burden of 164,441 tons. The population of Memel in 1880 was 19,660.
Menel was founded in 1252 by Poppo yon Osterna, grand master of tho Teutonic order, and was at first called New Dortmund and afterwards Memmolburg. It soon aecuuired a considerable trade, and joined tho Hanseatic League. During tho 13th, 14th, and 15th centuries it was repeatedly burned down by its hostile neighbours, the Lithuanians and Poles, and in tho 17 th century it remained for some time in the possession of Sweden. In 1757, and agnin in 1813, it was occupied by Russian troops. After the battlo of Jena, Fing Frederick Willian III. retired to Memel; and there, in 1807, a treaty was coucluded hetween England and Prussia. The poet Siizon Dach and the astronomor Argelander were natives of Memel.

Memling, Hans, a painter of the 15 tli century, whose art gave a passing lustre to Bruges in the period of its political nad commercial decliue. Though much
has been written respecting the rise and fall of the school vhich made this city fanous, it still remains a moot question whether that schoul ever truly existed. Like Rome or Naples, Bruges absorbed the talents which were formed and developed in humbler centres. John Van Eyck first gaiued repute at Ghent and the Hague before he acquired a domicile elsewhere, and Memling, we have reason to think, was a skilled artist before he settled at Bruges. Yet if the question should be asked where the manner of Menling was shaped, and where he acquired the skill which he displayed at Bruges, we shall be greatly at a luss to reply. The anale of the city are silent as to the birth and education of a painter whose name was inaccurately spelt by different authors, and whose identity was lost under the various appellations of Hans and Hausie, or Hemling and Memling. But no other city of the Netherlands has vindicated the right which Bruges had no means of proving. Travellers who came to Bruges were only told that Memiling'a masterpieces were preserved in the hospital of St Jolin. In one of these pictures it was anid a portrait of the artist might be discovered; on the sculptured ornaments of a porch enfraniag one of its subjects an iucideut of the master's life inight be traced,- liis danger as he lay seaseless in the street, his rescue as charitable people carried his body to the hospital. The legend grew too. It came to be told how the great artist began life as a soldier who went to the wars under Clarles the Bold, and came back riddled with wounds from the field of Nancy. Wandering homeward in a disabled state in 1477, he fainted in the streets of Bruges, and was cured ly the Hospitallers. Unknown to them, and a stranger to Bruges, he gave tangible proofs of his skill to the brethren of St John, and showed his gratitude by refusiug payment for a picture he had painted. Unhappily the legend refutce itself. The portrait of Memling is a myth ; the carvings of the capitals of the porch represent the ordinary incidents attending the reception of patients at an hospital. Memling did indeed paint for the Hospitallers, but he painted not one but many pictures, and he did 80 in 1479 and 1 480 , being probably known to his patrons nt St John by many masterpieces even before the battle of Nancy.

Memling is ouly connected with military operations in a mediate and distant sense. His name appears on a list of subscribers to the loan which was raised by Maximilian of Austria to push hostilities against France in the year 1480. When he signed this list his position was that of a rosident at Bruges who had probably lived there long enough to acquire a large practice and its advantiges in the form of lands and tenements. In $14 i 7$, when he is said to have fallen, and when Charles the Bold was killed, he was under contract to furnish an altarpiece for the guild chapel of the booksellers of Bruges; and this altarpiece, now preserved, under the name of the Scven Griefs of Mary, in the gallery of Turin, is one of the fine creations of his riper age, and not inferior in-any way, to those of-1479 in the hospital of St John, which for their part are hardly loss interesting as illustrative of the mastcr's power than the Last Judgment in the cathedral of Dantzic Critical opinion has heen unanimous in assigning the altarpiece of Dantzic to Meruling, and by this it affirms that Memling was a resident and a skilled artist at Bruges in 1473; for there is no doubt that the Last Judgment was lainted and sold to a merchant nt Bruges, who shipped it there on board of a yessel bound to the Mediterranesa, which was captured by $n$ Dantzic privateer in that very gear. But, in order that Memling's repute should be so fair as to make his pictures purchasable, as this had been, by an agent of the Medici at Bruges, it is incumbent on us to acknowledge that he had furnished suflicient proofe before that time of the skill which exeited the wonder of such highly cultivated
patrous; and thus we come to admit without much difficulty the possible truth of a report made by a chronicler of the 16th century that Memling hal sittings from Isabella, consost of Philip the Good of Burgundy, in the year 1450 .

It is characteristic that the very oldest allusions to pictures connected with Memling's name are those which point to relations with the Burguadian court. The insentories of Margarct of Austria, dramn up in 152t, allude to a triptych of the God of Pity by Roger van der Weyden, of which the wings containing angels were by "Master Haus." But this entry is less important as affording testimony in favour of the preservation of Memling's work than as showing his connexion with an older Flemish craftsman. For ages Reger van der Weyden was acknowledged as an artist of the school of Bruges, until records of madispuied guthenticity deinonstrated that he was bred at Tournai and settled at Brnssels. Nothing seems more natural than the conjunction of his name with that of Memling as the author of an altarpiece, since, though Momlirg's youth remains obscure, it is clear from the style of his manhood that he was taught in the paintiog-room of Van der Weyden. Nor is it beyond the limits of probability that it was Van der Weyden who received commissions at a distance from Rrussels, and first took his pupil to Bruges, where he afterwards dwelt. The clearest evidence of the connexion of the two masters is that afforded by, pictures, and particularly an altarpiece, which has alternately been assigued to each of them, and which may possibly be due to the joint labours of both. In this altarpiece, which is a triptych ordcred for a patron of the house of Sforza, we find the style of Van der Weyden in the central pauel of the Crucifixion, and that of Memling in the episodes on the wings. Yet tho whole piece was assigned to the former in the Zambeccari collection at Bologna, whilst it was attributed to the latter at the Middleton sale in London in 1872. At first, we may think, a closer resemblance might be traced between the two artists than that disclosed in later works of Memling, but the delicate organization of the younger painter, perhaps also a milder appreciation of the duties of a Christian artist, may have led Memling to realize a sweet and perfect ideal, without losiag, on that account, the feeling of his master. He. certainly exchanged the asceticism of Van der Weyden for a sentiment of less energetic concentration. He softened his teacher's asperities and bitter hardness of expression.
In the very oldest form in rhich Memling's style is displayed, or rather in that exampie which represents the Baptist in the gallery of IIunich, we are supposed to contemplate an effort of the year 1470 . The finish of this piece is scarcely, surpassed, though the suhject is more inportant, by that of the Last Judgment of Dantzic. Bnt the latter is more interesting than the former hecause it tells how Memling, long after Roger's death and his own settlement at Bruges, preserved the traditious of sacred art which hsd been applied in the first part of the century by Roger van der Weyden to the. Last Judgment of Beanne. All that MFemling did was to purge his mass ter's manner of excessive stringency, and add to his other qualities a velvet softness of pigment, a delicate transparence of colours and yielding grace of slender forms. That auch a beautiful work as the Last Judgment of Dantric should have heen bought for the Italian market is not surprising when we recollect that picture-fanciers in that country were faniliar with the beauties of Miemling's compositions as shown in the preference given to them by such purchasers as Cardinal Grimari and Cardinal Bembo at Venice, and the heads of the house of Medici at Florence. But Memling's reputation was not confined to Italy or Flanders. The Madonna and Saints which so lately passed out of the Duchatel collection into the pallery of the Louvre, the Virgin and Child of Sir John Donne at Chiarwick, and other noble specimens in English and Continental private houses show that his work was as widely kmown and appreciated as it could be in the state of civilization of the 16 th century. It was perhaps not their sole attraction that they gave the most tender and delicate possible impersonations of the "Mother of Clrist" that could suit the taste of that age in any European country. Bnt the portraits of the donors with which they were mostly combined were more 'characteristic, and probably more remarkable as likenesses than any that Memling's conteupporaries could produce. Kor is it
unreasonable to think that his success as a portrait painter, which, is manifested in isolated busts as well as in altarpieces, was of a kind to react with effect on the Venetian school, which undonbtedly was affected hy the partiality of Antonello da, Messina for transAlpino types studied in Flanders in Memling's time. The portraits of Sir John Donne and his wife and children in the Chiswick altarpiece are not less remarkable as models of drawing and finish than as refined presentations of persons of distinction; nor is any difference in $t$ is respect to be found in the splendid groups of father, mother, and children which fill the noble altarpiece of the Louvre. As single portraits, the busts of Burgomaster Moreel ana his wifo in the musenm of Brusscls, and their daughter the Sibyl Zanslectha in the hositial of Mrugee, sro the finest and most interesting of specimens. The Seven Griefs of Mary in the gallery of Turin, to which we may add the Seven Joys of Mary in the Pinakothek of Munich, are illustrations of the liabit.which clung to the art of Flanders, of representing a cycle of subjects on the different plsnes of a single picture, where a wide expanse of ground is corered with incidents from th3 Passion in the form common to the action of sacred plays. The time came, no doubt, when the players took their cue from the painters, as in the Ghent procession, whicls was formed on the model \& $V$ Van Eyck's Adoration of the Lamb, But in Memling's days there were still some original. "players," aud the public was not averse to sceing illustrations of their work. In the first period of the development of Belgian art too, when the Flemings assigned more importance to carved work tlian to painting, and yet refised to accept sculpture withont colour, it mas natural that tho scrlptor should mnltiply incidents on bas-reliefs which were coated with tinting in the semblance of nature. Memling's pictures imitate relieits so far as they ahound in variety of episodes, and ara marked by absence of contrast iu light and.shade or want of toning hy gradations of atmosphere. Tet with all these peculiarities his works are very pleasant to the eye, hecanse they are always gracful and quiet.
The masterpiece of Memling's later years, a shrine containing relies of St Ursuia in the hospital of Brugcs, is fairly supposed to have been ordered and finished in 1480 after the painter had become acquainted with the scenery of the Rhine. This shrine is one of the most interesting monuments of medizral art in Flanders, not only hecanse it is beantifuuly executed, but because it reveals some part of the life of the painter who prodnced it, and illustrates the picturesque legend of Ursula and her comrades. The delicacy of finish in its miniature figures, the variety of its landscapes and zos. tume, the marvellous patience with which its details aro given, aro all matters of enjoyment to the spectator. There is later work of the master in the St Christopher ád Saints of 1484 in the academy, or the Newenhoven Madonna in the hospital of Bruges, or a large Cracifixion with scenes from the Passion, of 1491, in the cathedral of Lüheck. But as we near the close of Mcmling's career wo observe that his practice has hecome larger than lie can compass alone; and, as usual in such cases, the labour of disciples is substituted for his ovn. The registers of thic painters' corporation a+ Brnges give the names of two apprenticcs who served their time, with Memling and paid dues on admission to the guild in 1480 ani 1486. These subordiaates remained jobscure.

It world be oesy to form a long list of pictures by Memling in th: galleries of Berlin, Florence, London, Madrid, Paris, Rome, and Vienna, and pieces equally remarkable in many private collections of Eogland and the Continent. These have all been described, and are widely known. The present notice must he closed with the admission that pictures tell more of Menming's life than records. The date of the master's death is not hetter certified than that of his birth. This much, however, is certain. The trustees of Memling's will appeared before the court of wards at Bruges on the 10th of Decembcr 1495; and we gather from records of that date and place that Memling died a short time before, learing behind several children and a considerable properts.
(J. A. C.)

## memmi. Sec Martini, Simone

MEMIIINGEN, a town of Bavaria, in the district of Schraben aud Neuburg, is situated abont 35 miles to the south-west of Augsbarg, near the river Iller. It is a wellbuilt town, still partly surrounded with walls, and containe a Roman Catholic and three Protestant churches, a townhonse of 1580, and several schools and charitable inslitutions. Its industrial products are yarn, calico, woollen goods, und thread, A considerable trade is carried on in hops, which are extensively coltivated in the neighbourhood, and in wool, leather, and grain. The population in 1880 was 8050.
Memmingen, first mentioned in s document of 1010, belongea originally to the Guclph family. In 1286 it became a free city of the empire, a position which it maintained down to 1802, when it the enpire, a positorian which 1529 Menimingen was one of the "pro*
was
testing" towns represented at the diet of Spires. During the 'Thirty Years' War' it was alternately occupied by Sxedes and Imperialists. In 1800 the French under Moreau gained a victory over the Austriansnear Memmingen. Compare Dobel, Memminngen im Reformationsexitalter, 1877-ī.

MEMNON. - In the Homeric mytholugy (or rather the inythology of the Troica in the much fuller form in which it existed in the times of Pindar and the tragic poets) this hero was called the son of Tithonus (the balf-brother of Priam) and Eos (Anrora). Tradition represented him as an Ethiopian priace who came to assist the Trojans against the Greeks, and performed prodigies of valour, but was at length killed by Achilles, after having himself slain Antilochus, tho son of Nestor, an event alluded to in Lindar, Pyli., vi. 32-39. His story must have been very famous, for moro than one Greek play was composed bearing the title.

The chicf source from which our knowledge about Mensnon as a chief is derived is the second bouk of the PostHomerica, by Quintus Smyraxus, where his exploits and death are described at length. That Memnon was slain by Achilles is more than once affirmed by Pindar (Nem., vi. 52 ; Istlent., iv. 41, rii. 54). He is mentioned also in the Olyssey (xi. 522), with especial praise for personal beauty; but the allusion to him is quite casual, and is one of many proofs that the compilation of that and the sister epie presupposes in the reader or hearer a full knowledge of the whole tale of 'Croy. Modern jhilology associates Mem-non-like Achilles, whom he so closely resembles in many particulars, and like Sarpedon, who seems the representative of Memnon in the Iliad-with solar phenomena. He was the son of the dawn, and, though he might vanish from sight for a time, he could not be destroyed, and thereforo it was said that Zeus, moved by the tears of his mother, granted him immortality. In this respect, as also in wearing bright armour made by Hephrestus, he is the counterpart of Achilles, who symbolizes the mid-day sum in his glory; and that Memnon is said to lave come from the far east, i.e., from the region of sumrise, is in itself significant. Ovid, in a beautiful clegy on the death of Tibullus, $A$ mor., lib. iii. 9,3 , thus associates the fates of Menmon and Achilles:-

Memnona si mater, mater plonavit Achillem,
Ft tangunt maguas tristia fata deas,
Flebilis indignos, Elegein, solve capillos;
Ah nimis ex vero nunc tibi nomen erit.

Like the body of the dead hero Sarpedon (II., xvi. 6S1), so that of Memnon was borne throngh the air, a legend represented on Greek vases of a rather early date. This appears to mean that the sun, the offspriug of the dawn, careers thruingh the sky to the place of his departure in the west. Another account represents Zeus as having sent forth birds from the funeral-pile of Aemnon, which straightway fought with each other, and many fell back as victims to the soul of the hero.

Tho mere fact that a Jemnoninm, or temple in honour of the hero, was erected both at Susa and at Egyptian Thebes, both of which places were centres of sun-worship, is a strong confirnation of tho probability, derived from his mythical pedigree, that he was really a sun-god. Sir G. W. Cox remarks, "of Memmon's liend the story was told that it retained the prophetic power of the living IIelios or of Surya. The story is fuund in tho myth of the Teutonic Wismir, and it might have been related of Kephalos, the head of the sun;" and again (p. 267), "Eos, the mother of Menmon, is so transparently the morning that her child must rise agnin fos surely as the sun reappears to rim his daily course acrose the heaven."

With respect to the meaning of the name, it may possib!j be the same as Agamemon, which bas a jurefix

[^272]maniog brave? It has been thought that Mé $\mu \mathrm{v} \omega \mathrm{v}$ auct $\mu \nu \eta \mu \omega \nu$, "mindful," are but forms of the same word, and that the prophetic power attributed to the head of the Egyptian Memoon, which was said to utter sounds at sunrise, is connected with this idea. It was said that the sound resembled the moaning noise or the sharptrang of a harp-string, and it may even be surmised that the syflables mem-non imitated the resonance. The Egyptian head is said to be a bust of King Arnenophis; ${ }^{3}$ but if the Greeks fancied it uttered the word memnon, they would bave called it by that name. The tendency, horever, to give a Greek shape and inflexion to words which sounded barbarous will sufficiently account for the misnaming of the statue.

Strabo, lib. xvii. p. 816 , declares that he himself heard it in company with Elius Gallus and several of his friends, and Pausanias (i. 42, 2) says "one would compare the sound most nearly to thie broken chord of a harp or a lute." See also Juv., Sat., xv. 5 ; Tac., Ann., ii. 61.

Memnon, as an Ethiopian, was of course represented as a black; bence Virgil (An., i. 493) speaks of "nigri Memnonis arma." The fighre itself was cut out of black basalt, but that is a material not uneommon in Egypt. Speaking quite generally, it seems reasonable to conclude that the Memnon from Ethiopia (Thich the early Greeks $p^{\prime l a c e d}$ in the far east mather than in (he south) typifies the eastern sun summoned to oppose the enemies of darkness from the west.

IEMPHIS, the capital of the old Egyptian empire, founder by Menes, the first historical king; see rol. vii. 1p. 731, 770 . In the time of Strabo (xvii. p. 807) it was the second city of Egypt, laferior only to Alexandria, and with a mixed population like the latter. Mensphis was still an important thongh declining place at the time of the Moslem conquest. Its final fall was due to the rise of the Arabic city of Fostate on the right bank of the Nile almost opposite the northern end of the old capital; and its ruins, so far as they still lay above ground, gradually disappeared, leing used as a quarry for the new city. The remains of "Menf" were still imposing late in the 12th century, when they were described by "Abd el-Latif. In the Old Testament Memphis is mentioned under the names of Moph (Hos. ix. 6) and Noph (Isa. six. 13; Jer. ii. IG; Ezek. xxx. 13, 16).

MEIIPHIS, a city of the United States, and port of entry, capital of Shelby county, Tennessee, is situated on the east bank of the IIssissippi river just below the mouth of Wolf river, in about $35^{\circ} 8^{\prime} \mathrm{N}$. lat. and $90^{\circ} 5^{\prime} \mathrm{W}$. long, 450 miles below $S t$ Louis and 820 miles above New Orleans. The bluff on which the city stands has an average elevation of 47 feet above ligh-water maik, with a further fall of 36 feet to extreme low water. Memphis is methodically and tastefully planned, and is adorned with many elegant private residences aud public buiddings, conspicuons among the Intter being the United States custom house, located mon the esplanade between Front Street and the river, and built of the best quality of marble, the product of Tennessec quarries. A small park in the centre of the city contains a bust of Andrew Jackson. The streets are mostly well-pared, and are supplied with water from the Wolf river by the Holly system. The bayou (iayoso, with several branches, inter. sects the city, and prior to 1880 reccived most of its drainage. Since that date over 40 miles of sewers and moro than that length of subsoil drain-tiles have been constructed on tho Wraring bystem, providing the city with a superior system of dramare.

[^273]Memplis is the largest city of the Siate, and the most important commercial city on the Hississipli between St Louis and New. Orleans. The largest sea-going vessels ascend the river to this point, and navigation is open at all seasons of the year. The city also possesses abundant facilities for transportation by railway in every direction. Memphis ranks as the largest interior cotton-market in the United States. The receipts for the sensou ending September 1, 1881, were 470,267 bales, with a value of S23,090,109. The aggregate receipts from the mercantile and manufacturing interests fur the year ending Scptember 1,1882 , amounted to about $\$ 60,000,000$, of which the trade in groceries and western prodncts contributed nearly $\$ 40,000,000$; dry goods, clothing, hoots and shoes, and general merchandise $\$ 15,000,000$; and various home manufactures about $\$ 5,000,000$. There are oil-mills and refineries, whose amual product of about 30,000 barrcls of cotton-seed oil, togetlier with oil-cake and re-gimed cotton, amonuts to over $\$ 1,000,000$. There are also numerous foundries, machine shops, flouring-mills, and manufactories of carriages, furniture, and tobacco.

The city contains, besides the usual religious, educational and commercial instltutions. a public library of 9000 volumes, threc rlaily and ten reekly newspapers, a clamber of commerce, and a cotton cxclange.

Memphis was laid out as a village in 1820, and incorporated as a city in 1831. Its population at eacl census since has been as follows:-3360 in 1840, 8841 in 1850, 22,623 in $1860,40,226$ in 1870 , and 33,592 in 1880.

Accordiug to a ceusuy taken on Uctober 1, 1889, the population within the city limits was 47,976 (29,130 white and 18,846 coloured).
During the civil war Aemphis was early occupied by the Union forces (June 6, 1862) after a naval engagement in which Contnuodore Davis with a flect of nine gunboats and rams defeated a similar Coufcderata fleet of aight vessels, and captured or destrojed all of them but one. I'he city was held by Federal troops to the close of the war, with the exception of a briet occupatien, in Augnst 1864, by General Forrest, who captured severai hundred prisoners, but immediately withdrew. The decrease of populatiou between 1870 and 1880 was due to the ravages of yellow fover in 1873, 1878, aod 1879. The epidemic of 1873 resulted in over two thousand deaths. In 1878, according to the report of the Howard Relief Association, the number of those attacked with the fevar was 15,000 , and the number of deaths reached the total of 5150, of whom 4250 were whites and 800 coloured. At the return of the fever in 1879 better care and strict quarantine arrangements prevailed, but there were 1595 cases, with 497 cleaths. During the epidemics of 1878 and 1879 fully two-thirds of the popnlation fled from the city, many of whom died of the fever at other places, and a still larger number did not return. For three montlis during each year business was wholly suspended, and all ingress or egress except for the most necessary purposes was forbidden. The prostration of the business of the place left the city almost hopelessly bankrupt, and as a means of relief the legislature of the State in January 1879 repealed the city's charter, and, assuming exclusive control of its taxation and finances, constituted it simply a "taxing district," placing its goveroment in the hands of a "legislative conocil." This anomalous proceeding has been declared constitutional by the supreme ceurt of Tennessee. Under it Jlcmphis is at least regaining its prosperity, and by theronghly qleansing, repaving, and serrering its streets, and supervising the construction of buildings, is likely to become one of the healthiest cities on the Mississippi river.

## For Reference

Not to be taken from this room

[^274]$3 x-2 x=-8 x$

8


[^0]:    Dans ajd Sixby, however, egree in giving "Rain Coose" as the

[^1]:    1 The anonymous author of a Vocabulary of the English and Malay Languages, published at Batavia in 1879, in which the words are professedly spelt according to their pronunciation, gives it "looree." Buffon (IIist. Nat. Oisearix, vi. p. 125) states that it comes from the bird's cry, which is likely enough in the case of cantive examples taught to utter a sound resembling that of the name by which they are commouly called. Nieuhoff (Toyages par mer et par terre a diffeicnts licux des Indes, Amsterdam, 1682-92) seems to have first made the word "Lory" known (cf. Ray, Synops. Avium, n. 151). Crawfurd (Dict. Engl. and X'../.y Languagcs, p. 127) spells it "nori" or "nuri "; and in tlin arst of these forms it is used, says Dr Finsch (Die Papageicn, ii. 1. 732), by Pigafetta. Aldrovandus (Ornithologia, lib. xi. cap. 1) noticed a Parrot called in Java "nor," and Clusius (Erotica, p. 364) has the same word. This will account for the name " noyra" or "noira" applied by the Portuguesc, according to Buffon (ut sumra, pp. 125-127); "but the modern Portugnese seem to call a. Parrot generally "Louro," and in the same language that word is used as an adjective, signifying bright in colour. The French write the word "Loury" (cf. Littré, setb voce). The Lory of colonists in South Africa is a Touracoo (q.v.) ; and King Lory is a name applied by dealers in birds to tho Australian Parrots of the genus Aprosmictus.

[^2]:    3 There seems just a possibility of this, however, proving identical with either $E$. westermani or $E$. cornclia-both of which are very rare in collections.
    ${ }^{3}$ Verhandl. z.-b. Gescllsch. 1Fien, 1874, p. 179 ; and Zool. Garten, 1874, ก. 161.

    + Proc. Zool. Socicty, 1857, p. 226.
    5 The chemical constitution of the colouring matter of the feathers in Eclectus has been treated by Dr Krukenherg of IIcidelberg (V'ergl. physiol. Studien, Reihe ii. Abth. i. p. 161, reprinted in Mittheil. Om. Vercines in Wicn, 1881, 1?. 83).
    - They extend, however, to Fiji, Tahiti, and Fanning Island.

    Unless it be Orcopsittacus arfaki, of Now Gumea, remarkable as the only Parrot known as yet to have fourtcen instead of twelve rectrices.

[^3]:    ${ }^{1}$ In Gen. xii. 10 sq., where Abraham's visit to Egypt is recorded, there is no mention of Lot, and Wellhausen (Jahrb. f. D. Theol., 1876, p. 413) has made it probable that this cpisode is no part of the Jabvistic narrative, to which the bistory of Lot mainly belongs.
    ${ }^{2}$ Such a pillar in the neighbourhood of Usdum is described by Lynch, Narrative, p. 307. Sce also Robinson, Eib. Res., 2d ed., ii. 108.

[^4]:    ${ }^{1}$ S̃eo Voght, Physiologische Eriefe, 1845-47: Moleschott, Der (Lircislanj cles Lehen.s, 1852 : Biichner, Liraft und Stul), 1855.

[^5]:    ${ }^{1}$ He mentions it only once, in the treatise $\pi \hat{\omega} s$ סei iotoplav $\sigma u \gamma-$
     In Piscator (§ 1S), he speaks of himself as さúpos $\tau \hat{\omega} v{ }^{\prime} \mathrm{E}_{\pi \in \cup \varphi \rho \alpha^{-}}$
    
     satirical, aod really mean $\phi$ oû̀os, "second-rate," for it is clear that he disliked his uncle.
    ${ }_{4}^{4}$ Hence Diogenes is made to say in Piscator, $\S 23$, ímép $\tilde{a} \pi a \nu \tau a s$
     philosopher asserts that "any one will be looked up to and get a reputation if only he has impudence and abuse." At the auction Diogenes is valued at evopence ( $\$ 11$ ). That Lucian had practised in law courts, and turned lis cloquence ofterwards against the philosophers, is asserted in Piscat., $\$ 25$.

[^6]:    ${ }^{5}$ In the Alexandrus (§ 25) we are told that the province of Pontus, duc north of Syria, was "full of Christians."
    
     passage which bears on the controverted procession "a Patre Filinque."
    
    ${ }^{8}$ At p. 792 Hernotimus says to Lycious (who must bo assumed to
    
     Icaromenippus ( $\$ 5$ ) he says he always gressed who were the best physical philosophers "by their sour-faced looks, their paleoess of complexion, and the length of their beards." See also ibid., $\$ 29$.
    ${ }^{9}$ He says (speaking as $\sum$ úpos in Bis aceusatus, $\S 34$ ) that ho found dialogue snmewhat out of repute from the too numerous questions (i.e., employed by Plato), and brought it up to a more lumann and natural standard, substitutiog banter and repartee for dialectic quibblea and close logical reasooing.

[^7]:     रop Sonol $\eta$ is required by the laws of Attic Greol.:
    ${ }^{2}$ In describing a banquet Lexiphanes says (§ 7), דотท́pıa סe éreito
    
    
    
     ка. з зе $\nu$ ботрака.
    ${ }^{3}$ Dis accusat. (§ 27), where Rhetoric declares she had enriched him,
    

[^8]:    - In p. 127 be aays that ho saw punisbed in Hades, more sercrely than aoy other sinners, writers of falso narratives, among whom wero Ctesias of Cnidus and Herodotus. Yet in the short essay inscribed Ifcrodotus, F. 831, he wishes it were possible for bim to imitate the many excellencies of that writer.

[^9]:    ${ }^{1}$ It is open to controverxy whesher he was not a martyr at the stake.

[^10]:    ${ }^{1}$ E.g., § 25, "A stone is a body; a living creature is a boly ; you are a living creature; therefore you are a stone." Agnain. "Is every body poisessed of life?" "No." "Is a stone rossessed of life?" "No." "Are you a body?" "Yes." "A living body ?" "Yes." "Then, if a living borly, jou are not a stone."

[^11]:    1 "And so it happens that the whole life of tho old man stands clearly before us, as if it were represeuted on a vetive picture."

[^12]:    ${ }^{1}$ Lucknow division lies between $26^{\circ} 9^{\prime}$ and $27^{\circ} 21^{\prime} 5^{\prime \prime} \mathrm{N}$. lat. aud between $80^{\circ} 5^{\prime}$ and $81^{\circ} 54^{\prime}$ E. long., comprises the three districts of Lucknow, Unao, and Bảra Bánki, and has an area of 4480 square miles, of which 2520 aro returned as under cultivation. The population in 1869 was $2,838,106$, viz., 2,449,763 IIadus, $383,260 \mathrm{Mo} \cdot$ hammedans, 4309 Europcans, and 784 Eurasiass

[^13]:    1 "In fine, as the mightiest members of the world are battling fiercely together in an unliallowed feud, seest thou not that some end of the long warfare may be reached by them ?"
    ${ }^{3}$ Quoted from Pliny by M. Marthe in Le Poëme de Lucricce.

[^14]:    ${ }^{1}$ Cff. Fortnightly Rerienc, September 1878.
    "i While I seem to be ever busily plying this task, to be inquiring into the nature of things, and to be expourding my discoveries by "ritings in my native tongue."
    ${ }^{3}$ The reading is so uucertain that it is doubtful whether it is tno claim of gedius or of art that Cicero refuses to concede. Some interprotations of the passage imply that be conceded both.

[^15]:    "First, by reason of the greatness of my argument, and my par, pose to set free the mind from the close drawn bonds of superstitions next, because on so diark a theme I write such lucid verse, casting orct all the charm of pocsy.

[^16]:    1 "Nor wilt thou approach the temples of the gods with a calm spirit, nor wilt thou he alle, in tranquil peace of heart, to receive those images which are borne from their boly bodies into the ninds of men, carrying tidings of the divine peace" (vi. 75-78).

[^17]:    1. Avia Pieridum peragro loca, jullius anto

    Trita solo.

[^18]:    1 Soma have thought that, like the persons who are mentioned by Origen, Conm. in Rom., chap. x. (vol. iv. p. 686, ed. De la Rue), Eusehiua here confuses the two names Lucas and Lucius.
    ${ }^{2}$ De Firis Illustr., chaf. vii.; Comm. in Matth., pref., vol. vii. p. 3.

[^19]:    
    

[^20]:    ${ }^{1}$ See Richter, Erang. Tirchenordnungen, i. p. 56; and Lechler, Gisch. d. Presb, u. Synod. Verfassung, 1. It.

[^21]:    1 A．dir Guhernatis，Zoulogical Muthology，1872，vol．ii p． 145.

[^22]:    ${ }^{2}$ Pliny (r. 30) makes it the Mreonian name.
    ${ }^{2}$ See W. M. Ramsay in the Journal of Hellenic Studies, ii. 2.

[^23]:    ${ }^{1}$ Petween 1830 and $\$ 372$ cleven editions of this work were published, each so much enriched with new muterial and the results of riper thought as to form a complete history of tho progress of geology during that interval. Only a few days before his death Sir Claarles lioished revisiag the 12 th edition, which appeared in 1876.

[^24]:    ${ }^{1}$ See Ellis, Original Lellers, 3d series, vol. iii. p. 280 : and Row, Uistory of the Kirk of Scotland, p. 7.

[^25]:    ${ }^{1}$ The nest and egg of Menura alberti, now in the British Museum, gre figured in Proc. Zool. Society, 1853, Aves, pl. 53. The egg of 14. victoriss is represented in Journ. fuir Ornithologie, 1856 , pl. ii. fig. 18, under the aame of $M$. superba, but the real egg of that species dues not seem to have been figured at all.

[^26]:    2 The metatarsals are very remarkable in form, as already noticod by Eyton (lue. cit.), and their tendons strongly ossified.

[^27]:    1 For a detailed account of the life, the style, and the works of Lysins, the realer is relerrell to Juldo The allic Uiators from dulimhone to Isecks, vol. i. 113. 142-316.

[^28]:    1 A fecllo attack in tho last on Mr Temysun's poctry provoked a brusque but powerful reply from tho enragal laureate, aimed at his *sthlant's persunelley.

[^29]:    ${ }^{1}$ Thus Willughby, Omilholagia, p. 73 (1676); but an earlier form of the word is found in the "great blew and yellow Parrat called the Machao, or Cockatoon" of Charleton, Onomasticon, p. 66 (1668). Iis derivation is shown by De Laet, who, in his description of certaiu Brazilian lirds (Norus Orlis, ed. 1633, p. 556), has "inter alios [sc. Psittacos] excellunt magnituiline \& pulebritudine, quos barbari Aruras \& Haccass vocant," and ngain (loc. cit.) "Tertium locum meretur Araruna vel Machuco." Weebster, in his dictionary, says that Macaw, "written also Macao," is " the native name in the Antilles," but gives no authority for his statement, which, considering that ono West Indian island only is known to possess a Macaw (and that in that islaud the bird is known as Gu(ucrinayo), is very unlikely. Some of the older writers, Buffon (Oisccux, vi. p. 2i8) for iustance, say that Mokerouanne was the name given by natives of Guiana to one spe ies of Macarv found in that coustry ; bat the Autillean origin of the namo cannot at present he accepted.

    This serves to separate the Macaws from the long-tailed Parrakects of the New World (Comurus), to which they are very nearly allied.
    ${ }^{3}$ There is some reason to think that Janaica may have former'y possessed a Macaw (though no example is hnown to exist), and if so it was most likely a peculiar species. Sloane ( Vinyaye, ii. po 29i), after Jlescribing what he calls the "Great Maccaw" (A. a, arauna, to be spoken of above), which he had seen in captivity in that island, mentious the "Small Maccal"" as being very common in the woods there, zad Mr Gosse (Birds of Jomaico, I. 260) gives, on the authority of Rubinson, a local naturalist of the last cen:ury, the description of a hird which camot le reconcilel? with any sper ies nuw known, though itamust have evidently been allied th: the Culbill A. ticcului.

[^30]:    1 One theory which has had mueln aeceptanee is that the name is made up of the initials of the first words of Exol．xv．11．This is a pure guess，and requires the spelling＇בコン or Nבבּ found in tho lato work of Jos．ben Corion．Equally unproved is tho guess of S．J．Curtias，restiog on the Latin spelliog Machabous，that the wonl is properly from חבコ，Isa．xliii．17，the＂quencher＂or＂queller＂ （The Name Mfachabec，Leipsie，1876）．

    2 Sueh at least is tho current view（seo Grimm，p．xxvirn $s q_{\mathrm{t}}$ ）．J． D．Michaelie in his German franslation of 1 Moe ，argued thot Josephus used tho origioal ；aod a modified form of this viow，viz．，that be nsed an anonymous souree resting on the original，has been put forth by Destinon（Quellen des Ft．Joscphus，Kiel，1882）．
    ${ }^{3}$ This title is usunlly given $\sigma \alpha_{\rho} \beta \eta \theta$ $\sigma \alpha \rho \beta a v e \quad \chi \lambda$ ，and the attenpts at deciphorment，none of which are aatistactory（see Grimm＇s Com， p．$\times \mathrm{xpi}$ ；Dorenbourg，La l＇alostine，p． 450 sq．），proceed from it． Heinicheu，howevor，reads $\sigma a p \beta$ خ̀ $\theta$ баßavari $\lambda$ ，oll overwhelning Ms．

[^31]:    ${ }^{1}$ The term "Spanish muckerel" is applied to a very different fish

[^32]:    ${ }^{1}$ The year of his birth is uncertain; he himself used to assert that the 25th of January 1811 was the correct date, but research in the register of the old Presbyterian church in Cork seems to prove that hes was born on 2 d February 1806.

[^33]:    ${ }^{1}$ There is, however, an account in one of the very earliest English books upon Madagascar (Hamoni, $16!3$ ) of a kind if ficture-writing Which is said to havo been in use among the nativo "priests " minr St Augustine's lay (south-west coast).

[^34]:    ${ }^{1}$ This is, of course, a apecial and restricted ase of the word, Hova in its widest sense being a tribal name, and including all ranks of people in Imérina-rovalty, robles, commoners, and slaves alike.
    ${ }_{2}$ Spe Sibree, The Great African Island, pp. 185-90, 226, 227, \&c.

[^35]:    1 The following tables will give some idea of the imports and exports in Eoglish vessels from Tamatave, the chief eastern port of Madagascar, to Mauritins during the last few years, since the country has been reopened to European trade:-

    | 1862. | Exports. $£ 70,707$ | $\begin{gathered} \text { Imports. } \\ £ 57,714 \end{gathered}$ |
    | :---: | :---: | :---: |
    | 1865 | 66,873 | 40,082 |
    | 1870 | 57,922 | 63,047 |
    | 1872 | 154,659 | 145,258 |
    | 1875 | 113,961 | 113,598 |
    | 1877 | 54,882 | 59,680 |

    The great diminution in the eastern trade during the last four or five years was due to a foarful epidemic of small-pox, which desolated the coast proviaces and is said to have carricd off 40 per cent. of the population. Of these figures, in the exports, cattle form the largest item, amounting from three-fonrths in carly years to one-third more recently of the total value; and next to this comes india-rubber, which, in 1872 , was exported to the valno of $£ 65,000$. These figures, however, by no means represent tho whole trado of the country, as they do not include French, American, and German commerce, nor do they show what is the trade on the western sido of the island. Mr Samuel Procter, the consul for Madagascar in England, says that the west const has developed very much during tho last fire or six years, and his opiaion is "that the entire foreiga trado with Madagascar, import and oxport, does not fall far short, if at all, of a millioa pounds sterling." When it is remerabered that it is less than thirty years sinco nlmost all foreign commerce was exchded, it will be seen that Mndagascar trnie has developel somewhat rapidly fince the roopening of the country.

[^36]:    ${ }^{1}$ The lines of Propertius (iv. 8, 27-8). El ribl ad cffeetum vires det Cæsar et omni Tempore tam faciles insinuentur opes-
    show that his position noder the empire also brought verv substantial additions to his original fortune.
    ${ }^{2}$ This is implied by the long speecn which Dion Cassius puts into his mouth, recommending the establishment and prompting the wolicy of tbe new empire (Dion Cass., lii. 14-40).

[^37]:    ${ }^{2}$ Esopert , EZ. iv. 9, 34 ; ii. 1, 36.

[^38]:    1 While the North Limburg dialects, sass Professor Gallée of Utrecht, are largely corrupted with Dutch forms and words, the Maestricht or South Limburg dialect (to which those of Hasselt, St Fruiden, and Sittand are nearly akin) has remained comparatively free from anch admixture. Its phonology is peculiarly iateresting both in itself and because its bistory can he traced to an early data by autheatic documents. The old Frankish psalms and the Limburg sermons are written in it; and it was also the original dialect of tho 8t Servatius Legead (ed. by Bormaass) now transcribed in the Belgian Limburg dialect, and of Veldeke's Eneid (ed. by Behoghel), now ia Middle High German. About these works coasult Cosyn, Taal en letterbode iii., $\nabla .$, vi. ; and in regard to tho modera dialect Moae's Anz. Jur Kunde der leutschen Vorzeil, I836; Belgisch. Afuseum, iii.; Franquinet in Jager'a Archief, iii. ; and Wiakler's Nederduilsch艮 Friesch dialecticon i. Specimeas will be found in Firmenich's $V$ obleerstimmen and Leopold'e Van de Schelde tot de Weichset.

[^39]:    ${ }^{1}$ The etymology of the word is seen in the terms "art magic," or the "magic art"; French, ove magique; Latin, magica ers.

[^40]:    For these and other details see Grey, Journals of Expeditions; Waitz, Inthropologie der tiaturwëlker, vol. vi.; Brough Smyth, Horigines of Victoria; Fison and Howitt, Kamilaroi and Kumai, \& c .

[^41]:    ${ }^{\mathbf{2}}$ See Ellis, Polynesian Researches; Turner, Nincleen. Years in Palynesia; Polacts Nanners and Customs of A'v Zealanders; Waitz. vols. r., vi.

[^42]:    : See Waitz, vol. iii. ; Martius, Ethnographie Amerikas; Lelters of Columbus; Dobrizhoffer, Abipones; Schovlcraft, Indian Tribes of North America.
    s See Burton, Lake Regions of Central Africa; Wood, Natural Ilistory of Man, vol. i. ; Callaway, Religious System of 1 mazulu, \&c.

    + See Ellis, Mrudagarnm vol. ii. chaps. vi., xv.; Dahle in Antununa. rivo A nuwal, 1876.

[^43]:    ${ }^{1}$ Records of the Past, vols. vi., x. ; Maspero, Hist Anc. des Peuplis de l'Orient, p. 84: F. Chabas, Le Pepyrus Mugique IIarris.

[^44]:    ${ }^{2}$ See Sayce in Records of the Past, vols. i., iii., v., Trans. Soc. Biblicad Archæo??3:', vols. iii., iv. ; Lenormant, Magic chcz les Chaldéens, and Dinnatice: chea les Chaldiens.

[^45]:    ${ }^{1}$ See, for instance, Merklot's translation of the Qanoon-e-Islam. :
    ${ }^{2}$ See Weber, Omina el Portenta, and volumes of Indische Stadien.
    ${ }^{3}$ Haas, in Indische Studien, vol. v. p. 257 ; Pictet, Drigines Indo Europecnnes, part ii, p. 498.

[^46]:    ${ }^{1}$ See Mohl, Frking; Panthier, Livres Sacrés de TOrient.
    ${ }^{2}$ See Eitel, Handbook of Chinese Buddhism ; Edkins, Folklore of China, p. 65 .
    ${ }^{3}$ For an excellent account of the classical and raediæval history of magic see Maury, La Magie et l'Astrologie.

[^47]:    ${ }^{1}$ For details of the association of ideas in magic see Tylnr, Leurly Mist. of Mankind, chap. vi., aud Primitwe Culture, chap iv.

[^48]:    ${ }^{1}$ Gilbert, De Magnete, lib. i. chap. ii., aaya, "Magnesia ad Mx. antrum"; but it is uncertain whether this or Magnesia ad Sipylum ia meant.
     'Hpdкגetav (Ion, 533 D$)$. Ses Munro's Lucretius, vol. i, p. 662. The other name is from Heraclea in Lydia.
    ${ }^{3}$ Bk. vi. line $9068 q$., and \% $\overline{0} 4 \rho$ sq.; comp. Plato, Ior, ut supra, whom there is reason to thicin ho is quoting.

    - See below, p. 225.

[^49]:    ${ }^{6}$ See Möllendorff, Z. D. M. 'G., $\mathbf{x x x v}$. 76.'

    - It msy be mentioned that the statement that Peter Adsiger, is a letter written in 1296, mentiona the magnetic declination, appears to bo a mistake, arising from tho mistranscription of a title. See Wenckebach, quoted by Lamont, Handbuch des Magnctismus, p. 449. The pagsage from Are Frode, quoted by Hansteen, and alluded to in last edition of thia encycloprdia, appears also to be of doubeful antiquity. See Joggendorff, Geschichteder Fiysik, p. 99.

[^50]:    2 For the early observations on the declination the reader is referred to the treatment of the subject of terrestria! magoetism in the article Mfteoroloay. At the present time the declination at Greencich is a littlo over $18^{\circ}$; at Edinburgh it wonld le about $4^{\circ}$ more.

[^51]:    : Or the vertical plane through it. should it happen to be not quite horizootal.

[^52]:    "Besides, 1 find this also in tne maguet, that it not only turns from the north and deflects to the east about $9^{\circ}$ more or less, as I lave reported, but it points downwards. This may bo proved as follows. I make a needle, a finger long, which stands horizontally on a pcinted pivot, so that it nowhere inclines towards the earth, butatands horizontal on both gides. But as soon as 1 atroke one of the ends (with the loadstone), it matters not which end it be, then the needle no longer stande horizontal, but points downwards (falll unter sich) aome $9^{\circ}$ more or less. The reason why this bappens was I not able to indicate to his Royal Majesty."

    From this it will be seen that Fartmann had unqueationably observed the tendency of the magnetized needle to dip. Hia method of observing is of conrse unsuited for
    ${ }^{2}$ Brought to light by Moser. See Dove's Repertorium der Physik, ii., 1838. It does not appear that Hartmann's letter was ever before published. Moser is therefors scarcely juatified in attacking Norman's priority in this matter, still less in attempting to deny him the credit of first obscrviog the dip by a sound method. Had he read tho Newe Attractive he could acarcely heve fallen into such an error ; for in respect of clearness and scientific precision llartmann'y letter, interesting as it is, cannot for a moment be compared with Norman's dithle work.

[^53]:    : He published a work, of whlch the following description is given in the Ronalds' Catalogue :- "The Neve Altractivc, containing a short discourse of the Magnes or Lodestone, and amongst other his vertues, of a new discovered secret and suhtill propertie concernyng tho Declyning of the Needle, touched therewith, under the plains of the IIorizon. Now first found out by Robert Norman, Hydrographer. 4to (hlack letter, scarce), Loodon, 1581."
    s For details as to his life, seo art. Gilbert.

    - Poggendorff. Ocschichte der Physik, p. 280.

[^54]:    ${ }^{2}$ Chap. i.
    2 Sen also Gilbert, De -Magnele, lib. i. cap. v.

    - Gilbert uses ,the phrase ordis virtulis iur a soniewhat similar sensm.

[^55]:    ${ }^{2}$ Mie first verification was by IIndson, who, in 1608, found the lip in $75^{\circ} 22^{\circ} \mathrm{N}$. lat. to be $89^{\circ} 30^{\circ}$. Gilbert found $72^{\circ}$ at Lomilon in $16000^{\circ}$. Tho place of vertical dip in the northern hemisphere was tirst renched hy Sir James Ross in 1831 . It was found about $70^{\circ} \mathrm{E}^{\prime} 17^{\prime \prime} \mathrm{N}$, lat. תud $96^{\circ} 45^{\prime} 48^{\prime \prime} \mathrm{W}$. long.
    : See Gilbert, De ふragncte, lib. i. cap. i.

[^56]:    ${ }^{s}$ Hartmann (see lis letter above cited) was in error on this subject. He describes a somewhat sinuilar experiment, and distinctly states that the needle has a motion of translation. "Schwimmt mit dem Ort welcher ist mitternachelich am "Stein, bis er kam an den Port der Schaissel, da das Wasser in wnr."

    + Cf. Gilbert, he Mragnete, lib, i. eap. v.

[^57]:    ${ }^{1}$ Epinus，Tentanen Theorix Etrctricilutis el Magnctismi，1759； Cavallo，Tientise on Magntism， $1 ; 87$.
    ${ }^{2}$ lioget，Library of t＇seful hinowledge， 1832.

[^58]:    ${ }^{1}$ Cambridge, 1750.
    ${ }^{1}$ Philosophia Naturalis, $\S \$ 953,954,1762$.
    ${ }^{3}$ Pogg. Ann., xlv. p. 375, 1833.

[^59]:    J To prevent needless repetition, we shall adopt henceforth, without further explauation, the definitions, terminology, and results given in the articlo Electaicity, vol. viii. p. 24 sq.

[^60]:    ${ }^{1}$ Mém. de I' Institut, tom. v., 1821.
    = Intensilas Vis, § 2 (1832), and Allgemeine Lehrsulxe, § 36 (1839),

[^61]:    2 The first mathemalical investigations of the equation to the lines of force of an ideal magnet appear to have been made by Playfair at the request of fiolnwin, and by Leslie, aeom. Analusis, 1891 . They had previonsly been very calefully convilered from an experimental point of view by Lambett, Dem. de l'Acad. do Berlin, 1766.

[^62]:    1 Ifnnsteen, Nagnefismus der Erde, I. 208 (1819).
    2 Magnelismuat der Eide, p. 200.
    3 Resullale d. Mag. Fer'ins, 1637 and 1840.

[^63]:    ${ }^{1}$ See Thomson ond Talt. Natural Philosophy, vol. 1. § 522.

[^64]:    1 Sir W. Thomson, Feprint of Fapers on Electricily and Magnetrsm, గ. 592.
    3 Vol, bll. P. 69.
    ${ }^{3}$ This fact is a further proof. If that wero wanted, that the magmelizathon of a Loily caniot be determined fioin lte esternal action.

[^65]:    1 Seo Sir W, Thomson, Reprint, N. 363.
    8 Tisk polnt is somellmes called the comere of tho mamet, and the new oxes of Yi and $\%$ its secondaty oxes. It should the observeth. howerer, that this "erntie" Is not necessarlly the middle pout of the line foining the nass centre of tho proshlive ond negative magnetism. On this subjces see a yuper by Beltrmb, "Sul lotenzlale Jagnetco," Ann, d. Ifatcm. Issis.
    

[^66]:    ${ }^{1}$ Of course pole ns thus defined has nothing to do with pole in nny of the former senses, c.g., the line joining its $N$ and $S$ poles is not parallel to the earth's magnetic axis.
    ${ }_{9}$ Gauss, l.c., \& 12. ©f. Mascart and Joubert, Lçons sur l'Élcc': tricite el suer le Mametlisme, tom. i. § 436, 1882.
    ${ }^{3}$ Sco Gauss, Ali. Theoric des Érdmagnetismus, $\S 12$; Maxwel rol. i. § 113, vol. ii. § tos.

[^67]:    - Phil. Trans., $1712 . \quad{ }^{3}$ Phil. Trans., 1715 and 1721.
    - Comp. Hansteen, Mag. d. Erde, p. 283, 1819.
    ${ }^{5}$ Hist. d. l'Acad. Roy. d. Sc. Berlin, 1760.
    6 An excellent one will be found in Hansteen, Mragnetisnus der Erde, np. 295 sq.

[^68]:    ${ }^{1}$ Mem. d. Acad. Real d. Sc. d. Lisboa.
    ${ }_{2}^{2}$ Seo Ency. Brit., supplement to $3 d$ ed., 1801.
    ${ }^{3}$ Mém. de l'Insl., 1785, 1788.

    - Gren's Journal, 1811 : Gill. Ann., 1820.
    - Magnetismus der Erde, 1810.
    - De Afagnetismo Telluris, 1806-10.

    TJamieson's Nevo Edinburgh Journal, 1931.

[^69]:    ${ }^{8}$ In this connexion seo more especially Lamont, Handb. d. Mag. netismus, pr. 282 sq.
    ${ }^{3}$ Sce Lamont, Jlandb., p. 371 ; Murwell, vol. iii. § 457.

[^70]:    ${ }^{1}$ See arts. Electricity and Gaivanometer.

    - Pogg. Anr., xc., 1853.
    

[^71]:    ${ }^{1}$ Seo his memoir, "Anleitung zur Bestimmung der Schwingungs. dauer einer Magnetnadel," in Res. N. Mag. Ver., 1837.
    ${ }^{2}$ Ifandb. d. ARagnetismus. p. 309.
    -17821, C. G. S 100:7.7. C. G. S.

[^72]:    ${ }^{5}$ See Lamont, Ifanlb. 1l. Magnctismus, Y. 291 sq. Comples Rend.. 1895.
    ${ }^{1}$ rogy. Am., clii., 1874, and clx., 1877.

[^73]:    ${ }^{2}$ Pogg. Ann., kxi, 1844.
    ${ }^{3}$ Over de Verdeeling van het Magnetismus in Mragneten, Amst. 1847.

    - Pogg. Ann., czvi., 1862 B Wied. Ann., ix., 1880.

[^74]:    ${ }^{1}$ Various experimenters havo attempted to deternine the "indifference zone" of magnets under differout circumstances, i.e., the line separating the positive and negative parts of the surface distribution. For information as to this and other matters under the present licad omitted for want of space, seo Wiedemann, Galvanismus, ij. $\S \S 277$, 356, 396, 401 ; aud Lamont, Handbuch, \$§ 6, 27, 63, 64, 65.
    ${ }^{2}$ Abstracted in Wied. Beibl. 1880 and 1882 ; sco also Von Walten. hofen, Wien. Ber., 1870, and Siemens, Berl. Monatsber., 1881.

[^75]:    ${ }^{3}$ Here and in futare the suffix 0 denotes components of magnetizing force, \&c., due to given or pre-existent magnetization; while the enfix 1 denotes those due to induced magnetization. Letters without suftises denote totals; e g., $a=a_{0}+a_{1}, A=A_{0}+A_{1}$, and өо on.

[^76]:    ${ }^{1}$ As a matter of history, Riccke did unwittingly obtain in this way a tolerable approximation to the ratio of the circumference of a circle to the diametcr. See Stoletow, PhiT, Mag., 1874, p. 202.

[^77]:    ${ }^{3}$ See art. Electricitt, vol. viii. p. 68.

    - Kirchliof, Pogg. Ann., Ergbd. v. 1870. In the ama paper ho discusses the effect of a rectilinear carrent in a cylindrical iron wire, and finds that the circular magnetization in a wira of length L gives rise to an apparent increase of the coefficiant of self-indnction eqnal to $2 \pi \kappa \mathrm{~L}$.

[^78]:    ${ }^{1}$ See Thomson, Reprint of Papers on Elestrostatics and Magnetism, กp. 548 sq.

[^79]:    ${ }^{1}$ Jitrehb.uft, 1 . e.
    ${ }^{3}$ มivin. 370,1851
    3 I/8:u, de l'. Icull. de R'ulis, 1780. 1785, \&i.

[^80]:    - Traits de Physique, $181 \%$.
    - Jagnelismus der Erde, 1819.
    s Majm. de l'lnsl., v., 1821 (two memoirs) ; vi., 1823 ; and $x \mathrm{xi}, 1838$.
    iHo dil not use the word "foteutial," although he uses the correr.poniling function.
    ${ }^{8}$ lieprintel in 1 Sity vaice the thte of Papers on Electrostatice uño Maynctism.

[^81]:    ${ }^{1}$ See Phil. Trans., 185S, p. 587.
    ${ }^{2}$ See his Einicilung in dic Elcctrostatiz; dic Lehre vom Magnetisnuts, wrd die Electrodynamik, published after the death of its accomplished anthor, nuder the editorship of Plicker. This is one of the best works on the subject.
    ${ }^{3}$ Monatsber. d. Ber. Aliar., 1881.

    - Barlow, An Essay on Mrajnetic Altercetions, London, 1820.
    ©Sce Poisson's frit nemoir, or Maxwell, El. urd Maq, vol. ii. §433.

[^82]:    G Phil. Trans., 1858, ए. 555.
    7 Poyg. Ann., 186\%
    ${ }^{8}$ Phil. Trans., 1805.
    9 1b, 1831.
    $10 \mathrm{KL}, 1819$ and 1832 , \& 6
    ! Jh., 1836.
    $12 \mathrm{lb} ., 183 \mathrm{~s}$, \& c.
    ${ }^{33}$ See Alimiraily Mannul for the Deviation of the Compass, 4 th cof 1874; also a very inseresting obituary notice of Snith lig Sir W Thomson, Proc. Tioy. Sme. Lond., 1874

[^83]:    ${ }^{1}$ For a description of bis compass see art. CoMpass, rol. vi. p. 228. Detailed descriptions of the compass with instructions for its adjustment are issued in the form of a small pamphlet (Mraclehose, Glasgow, 1879).
    $2 \boldsymbol{k}$ is sometimes called by Continental miters the magnetization function. They have also a habit of speaking of the ratio of whole magnetic moment of a body of any form divided by its volume to the strength of the field in which it is placed as the magnetization function for that particular form. This ls a most inconvenient practice, and has led to considerable confusion

[^84]:    ${ }^{1}$ Pogg. Ann., xlvii., 1839.
    ${ }^{2}$ Sturgeon's Annals of Electricily, vol. iv., 1839 ; Plil. Afag., eer. 4, vol. ii.

    Sitzder. d. Il`ien. Akad., 1865. © Pogg. Ann., exxxvii., 1869.

    - Koosed, Pogg. Ann., 1852 ; also Dub, Ib., 1853.
    ${ }^{5}$ Pogg. Anท., c., 1857 ; Ib., cvi., 1859 ; 1b., cxvii., 1862.
    8 d bridged frow the author's own work, Galvanismus. BL iL § $\$ 309 \mathrm{sq}$.

[^85]:    - Pogg. Ann., 1868.
    ${ }^{20}$ Pogg. Ann., 1868. Thomson, qucted by Joule, Phil. Trane., vol. cxlvi., 1856.

    2. Tait ls, after being heated white hot to deatroy all pre-exieling 1 magnetism.
[^86]:    ${ }^{1}$ See Poggendorff，Pogy．Ann．， 1852.
    ${ }^{2}$ This result had also been arrived at by Abria，Ann．d．Chim．et d．Phys．，1844；and by Joule，Phil．Mag．，1847，Phil．Trans．， 1855.
    ${ }^{3}$ Similar conclusions were arrived at by Ritchie，Phil．Mag．，1833； Jacobi，Pogg．Ann．， 1834 ；Marianini，Ann．Chim．ct d．Phys．， 1846.
    ${ }^{4}$ On the same saljject see Jonle，Phil．Trnns，1850；also Von Waltcabolen．Cozg Ann．， 1864.

[^87]:    ${ }^{5}$ Similar results by Plicker，Pogg．Anni， 1852 and 1855.
    －Electrodynamische Maasbestimmungen，Bd．iii．§ 28.
    7 Pogg．Ann．，cxxi，1864．Similar results were obtainell by Oberbeck，Pogy．Ann．，cxxxv．， 1868.
    ${ }^{2}$ Pogg．Ann．，cxivi．p．443， 1872.
    －${ }^{3}$ hers means the whole magnetizing force，arising parlly from the inducing field snd parily from the induced magnetism．Experi－ menters have needlessly complicated the already complex problem of ferro－magnetic induction by neglecting tho all－important distinction between क and 管。
    ${ }^{10}$ Abh．d．Gütt．Gesellschaft，B1． 6.

[^88]:    ${ }^{2}$ All the mora so that it has heen found by some experimenters that the curre $(x)$ ) ectually has a point of inflexion aud becones couvex to the axis of for very large values of $\begin{gathered}\text { ? }\end{gathered}$.

[^89]:    ${ }^{2}$ Baur, Wied. Ann., 11. p. 395, 1880, has remarked that the intensity of magnetization corresponding to the maximum permeability seenis to be about the same for different eorts of soft iron ; e.g., for two of the ellipsoids of Von Quidtus Icilius it is 550 and $540 ;$ for Stoletow'e ring, 650 ; for Baur's ring, 540. It would geem that it is much higher for steel, Judging by Rowland's tables.
    ${ }^{3}$ The maximum of magaetization for soft iron was cnlculated from the observations of various experimenters by Vod Waltenhofen (Hien. Ber., 1869; or Pogg. Arn., cxexvi.). He finds 1670, or thereby, for the maximum inteasity of maguetization. Stefan, using Rowland's graphical method (IVien. Ber., 1874), had found 1400. Fromma (Vied. Ann., xili., 1881), who had himself actually observed an intensity of es mach as 1531, examined the curve for $\kappa$ and $y$, and found, in agreement with Heubner (Wicd. Beibl., V., 1881), that there is a point of inflexion ahout $\%=1200$; taking this into account, he finds for the maximum value of $\mathcal{C} 1730$, as a mean of results varying between 1720 and 1750. From a result of Weber's (Elec. Maasbest., p. 573) be calculates the value 1737.

    For the maximun permanent magnctization of ateel, Weber (Res. d. Mag. Ver., 1840) gives 314 (conimod steel magnet); Von Waltenhofen (Pogg. Ann., 1871) 369 (glass hard wolfram ateel); Schneebeli (I'ied. Gali, Bd. ii. § 308) 557 to 671 (sewing needles 25 to 66 mm . long and $\cdot 6 \mathrm{~mm}$. thick), and 765 to 832 (knitting uecdles 198 to 210 mm , long and 83 to 1.75 mm . thick). It mast

[^90]:    lie tellacmbered that tho maximun of permoncut magnetization which a body can attain is eyscutially conditione! ly its form ; bince tho shore clongated the form tho less tha demanactizing force arislag from the existino megnctization.
    
    ${ }^{3}$ I'ary. Anh., elis. 1873 . This papur cuntains also some seablis on In the leamatimat unagutivon of solt iron.
    
    

[^91]:    7 logg. बlun., cxxiii., 1864.
    ${ }^{8}$ In a very iuleresting paper (Phil. Mrag., 1869 and 1Si0) dealine with certain fhenomena of induced currents, Lord Rayleigh incident. ally artives at the conclusion that the magnetizing fore of a current depends on its maximm inleusity more than onl its duration, or on tho wholo quantity of elechricity that passes. This observation has an important bearing on certala experiments of Bonty as to the effect of the "extrn current," which it does nol scenz wecessary to meution Lute.

    - This conchuslon is not in agrecment with the results of Fromume.

    10 Tho formula $y=13\left(1-c^{-a r}\right)$ was used by Quetelet for the monent infucel in a olecl bar by rubliag it r time with a maguet.

[^92]:    ${ }^{1}$ Pogg. Ann., Erghel. vii., 1875.
    = So far continming Maxwell's conclusions from his modificalion of Weper's theorg of molccular magnets, El. and Mug., vol. ii. $\$ 445$.
    Webers theory of molceula
    3 Wied Aun., ir., $18 i 8$.

[^93]:    4 A particular case of this process is interesting and practically important; viz., in order to demagnetize a core (i.e., to find $T_{0}$ ) possessing a moment $T$. Apply in succession the forces $-P,+(P-\epsilon)$, $-(P-2 \varepsilon),+(P-3 \epsilon)$, \&c., down to $0, P$ being chosen of sufficient magnitude, rather too great than too small (the smaller $\epsilon$ the better).

[^94]:    ${ }^{1}$ These conclusions are in agreencut with the results of Hervig obtained from experiments ou the !ongitudinal and circular macuetizatimu of iron tubes, Pagg. Aun., clví, 1875.
    a Pogy. thu., caxiv, 1865.

    - Hied. Ann., siv.. 1881.

[^95]:    ${ }^{1}$ Wied. Ann., xiil., 1881 ; cf. Fremme, Ib., xiii., 1881; also Himstedt, 1b., xiv., 1881. A similar phenomenoa was observed by Meyer and Auerbach during their experimeats on tha gramme macbine, Wied. Ann.; г., 1878.
    ${ }^{2}$ See an elaborate paper which we can only mention here, Wied. Ann., v., 1878.
    ${ }^{8}$ Experiments on the sama subject have been made by Righi. Comptes Rendiss, 1880, or Wied. Beibl., iv., 1880 ; and by Bartoli and Alessandro, N. Cimn., 1880, or Wied. Beibl., iv., 1880. Cf. Fromme, W'ied Ann., xiii., 1881.
    ${ }^{-}$Comptes Rendus, passim. - Comptes Rendus, lxxx., $18 i 5$.

[^96]:    a Cf. Lehmann, Nov. Comm. Petrop., 1760; Brugunane, Magnetismus sex de Affinitatibus Magneticis Obsertationes Academice, Leyden, 1778; Coulonb, Mém. de l'Inst., 1812; Biot, Traité de Physique, 1816, \&c.
    ${ }^{3}$ Phil. Trans., $17 S 6$; or Treatise on Maynelism, 1787.
    4 Phil. Trans., 1792.
    ${ }^{6}$ Loc. cit. ${ }^{2}$ Pogg. Ann., 1827.
    ${ }^{8}$ Bull. V́niv. a Š.. 1823.
    ${ }^{9}$ See Vor Frilitsch, Karsten's Eacy., Bd. xvi. ; Wielemann's Cialranisimus, Bu. ii. p. 516.

[^97]:    ${ }^{1}$ This fact explains the astonishing behaviour of a flat disk of thin iron when placed on tho centre of the polc.
    ${ }^{2}$ Sce Wiedemann, Gulvanismus, Bd. ii. \& 552.

    * Laiog, Ann. d. C'hin. et d. thys., $185 \%$.
    ${ }^{4}$ Wiedornanu, l.c. ${ }^{5}$ Wiodemann.
    - Comples Ricnlus, 1877. 7 Zautedeschi, Pogy. Ann., 1818.

    TMit. May., 1817 ; or Exp. Rcs, vol. iii. p. 467.
    "'rgo. Ann., 1S1s, dic. is Ann. d. Clhim. if d. Phys., 1850.

[^98]:    ${ }^{11}$ Sco Exp. Res., 2847 s7.; also art. Mlitennotnoy.
    ${ }^{12}$ Comples Micndus, 1881. ${ }^{13}$ Exp. Sict," 2362, 1845.

[^99]:    ${ }^{8}$ For qualifications see Wied., Gulv, l.c.

    - Plucker, Pogg. Ann., 1847, 1818, 1849, 1852
    ${ }^{20}$ P! ickler and Becr, d:oy\% Aun., 1550. 1851.
    ${ }^{11}$ Érp. Rics., 2707 s\%.. 1 5U.

[^100]:    ${ }^{1}$ Tyndall and K゙nablnuch, Phil. Mag., 1850.
    ${ }^{2}$ Exp. Res., 2493 sq., 1848 . A later bot much mate extensive series of experiment, leit :3 the same result (Exp. Res., fcr. xax., 1855).

[^101]:    ${ }^{3}$ Phil. Trans., 1858.

    + S.xp. Ris., 2552, Octaber 1848.

[^102]:    ${ }^{1}$ Phil. Maj., March 1851 ; or Reprint, chap. $x$.
    ${ }^{2}$ In 1851 ; see Wied., cralv., ii. § 639.
    3 Tyndall and Knoblauch, Phil. Slug., 1850.

    - Phil. Mag., 1851.

[^103]:    "Faraday, Exp. Res., 2825, \&e. There is a further difficulty in ‘se case of diamagnetic bodies. See Thonsou's letter to Tyudall. ? Reprint of Puzters on E'fec. und Sfug., p. 53 G.

[^104]:    ${ }_{12}$ Pogg. Ann., $1877 . \quad{ }^{13}$ El. Maasbest., Thl. iii.
    ${ }^{1}$ Wicd. Ann., 1877.
    ${ }^{18}$ See Maxwell, EL. and Mag. vol. ii. § 672.
    ${ }_{17}$ Tricel. Ann., $1850 . \quad{ }_{18}$ Wied. Beizl., 1879.
    ${ }^{19}$ Silliman's Jour., 1879. The published results aro ritiated by some error of calculation; but the experiments are to be repeated. so Wion. Ber., 1882.

[^105]:    ${ }^{1}$ Jien. Ber., 1882.
    ${ }^{3}$ This was one of the experiments adduced by Weber in the contro"ersy regarding diamagnetic polarity; ace Pogg. Ann., 1848.

[^106]:    ${ }^{3}$ Wied. Ann., 1882.

    - Compare also the effect of the same causes on the temporary and rasidual charge of Leyden jara, art. Electricity, vol. viii. p. 40.
    - 1 lt is possible in this way even to cause a wire to reverse its t rist and a bar to reverse its magnetization by jarring.
    ${ }^{6}$ His attention bad been drawn to the subject in 1841 by a Mr Arstall, who had auspected the existence of some such effect. Joule's papers on the suhject are in Sturgeon, Ann. of EL., 1842, and Phil. Mag., 1847.

[^107]:    ${ }^{1}$ Ia the crse of a bar of hard stecl ho found a considerable increase in length every time the magnetizing current was interrupted. This he attributes to n atato of "tension" in tho larclened stecl.
    ${ }^{2}$ Ann. d. Chime et d. Phys., 1848.
    ${ }^{3}$ Cited by Wiedemann, Galu., ii. § 504. - Pogg. Aun., 1866.
    B Diamagnetism and Magnecrystallic Action, 1870.

    - Phil. Mag., 1873 .
    - Sco Wiedeman's remarks, Galv., ii. § 503.
    ${ }_{10}^{10}$ Nature, vol. xxvi., 1882.
    ${ }^{11}$ Comples Rmidus, 1847 ; Amu. d. Chim. et d. Phys, 1858.
    ${ }^{12}$ Aın. d. Chim. ct d. Phys., 1857, 1858.
    ${ }^{13}$ Pogg. Ann., 1868 , also $1865,1869$.

[^108]:    ${ }^{14}$ P'hil. Trans., 1576 mml 1879, p. 55.
    ${ }^{15}$ Iressure applicd outside Thamson's gun barrel would euable us to obselvo the effect of transverso pressure; and by magnetizing tho larrel circularly the effect of pressure along the lines of force could be determued.

[^109]:    1 Comples Rendus, 1847.

    - Prgg. Anж., 1858. 1859, 1860.
    ${ }^{a}$ comples Rentus, 1852.
    - But. ii. § 402.

[^110]:    ${ }^{5}$ Sce Wiedemann and Villari, l.c.; also Gore, Phil. Trans., 1874 ; 11. aul F. Strenitz, Wien. Der., 1877; Hughes, Proc. Roy. Soc. Lond., 1881.
    6 Comples Rendus, $1816 . \quad 710 ., 1846$, \&c.
    ${ }^{8}$ Ib., 1879.
    © Sill. Jour., $187^{\circ} \mathrm{O}$
    10 11ied. Beibl., 1880 ; sea alsa Hoffmann, Ib.
    ${ }^{11}$ Pogn. Ann., 1838.
    ${ }^{12}$ Sturgcou, Jnn. El., 1842 ; Phil. Mag., 1847.
    ${ }^{13}$ Phil. Mag., 1844. is Wied., Galv., ii. § 515 . 15 Ib.
    ${ }^{16}$ Commtes Rendus, 1845 ; Phil. Trans.. 1847, \&c.

[^111]:    ${ }^{1}$ According to the results of Villari aul Thonsun, if the magnetization were bejond a certain critical value, $P_{e}$ would become on oxis of compression and Pr an axis of extension, in whicte caso the wiro would twist in tho opposite direction.
    ${ }^{2}$ See Thomson, Phil. Trans., 1879, p. 73. Not the least of these arise from gaps in our experimental hnowledge : c.a., regarding tho effect of permancal set cauked by traction aud compression.

[^112]:    ${ }^{3}$ De Magnete, lib. ii. cap. 3.

    - Exp. Res., vol. ii. p. 220, 1836.
    ${ }^{3}$ According to Becquerel about $400^{\circ} \mathrm{C}$., according to Pouillet about $350^{\circ} \mathrm{C}$.
    ${ }^{6}$ Nature, vol. xxii., 1880.
    7 Sill. Jour., 1881 \& Phil. Trars. Roy. Soc. Elin., voi. it.
    0 Wied., Gaiv, in, § E21.

[^113]:    ${ }^{1}$ Wied. Ann., xi., $1880 . \quad=$ Wien. Ber., 1880, 1881, 1882.
    a See the results of Faraday, Exp. Res., aer. xxx. 342t, \&c.
    ${ }_{5}^{4}$ Phil. Mfag., 1869, 1870.
    ${ }_{7}$ Exp. Res., $2359,2397,1845 . \quad$ Exp. Res., vol. iii. p. 486.
    7 Exp. Res., 2570 sq., 1848.

[^114]:    ${ }^{9}$ To give the reader an idea of the magoitude of this effect, wo 0 : mention that Whipple in determining the temperature corrections for magnetometer magnets at Kew , according to the formula

    $$
    \mathrm{K}_{t}=\mathrm{K}_{0}\left\{1-q\left(t-t_{0}\right)-q^{\prime}\left(t-t_{0}\right)^{2}\right\},
    $$

    found for the coefficient $q$ values varying from 000762 to 000049 , with a mean of 000161 ; and for $q$ from $\cdot 00000398$ to $\cdot 00000001$, with a mean of 00000048 (Proc. Roy. Soc. Lond., 1877).
    ${ }^{9}$ Quoted in Lamont, IIandb. d. Mag., § 82. An account of Lamont's own researches will be found in the $63 . \mathrm{me}$ ylace.

[^115]:    ${ }^{1}$ Phil. J/ng., 1875 ; or Nichol's Cyclopxdia, 2d el., 1560.
    ${ }_{3}$ S See the paper of Warburg quoted abure. p. 260.
    ${ }^{3}$ Joule, Phil Mag., 1843.
    4 Archizs de Generec. 1850 ; or Wied.. Gatr . ii. § 510.
    8 Wicd. Berll., $18 i 7$.
    

[^116]:    ${ }^{10}$ Wicd. Ann., xiv., 1881. NPhil. Mag. [5], ix. and x., 1880.
    ${ }^{13} \mathrm{El}$. und Mag., vol. i. § 303. Sec also Stokes, Camb. and Dnb. Math. Jour., vi., 1851 ; and Thomson, Trans. R.S.E., vol. xxi. p, 165. 1854.
    ${ }^{13}$ A 1 m . Jour. of Mrath., 1880 ; Phil. Mag. [5], x.; 1880, and xi.. 1881.
    is See also an article by the writer, Phit. Mag. [5], ii. 1576.
    ${ }^{15}$ Pogg. Aan., 1879.
    ${ }^{26}$ Comptes Rendus, 1882

[^117]:    ${ }^{1}$ For the literature, see Wied., Gn7r., $\S \S 6 \$ 8,689$.
    2See also Gehler's Physikalisches 11 "ürlevtuch, art. "Magnetismus."

[^118]:    ${ }^{1}$ Sce above, p. $256 . \quad 2$ Pogg. Ann., 1844 and 1846.
    ${ }^{3}$ Frick, Pogy. Ann., 1849, was one of the earliest who practised this method.

    - It has been several times proposed to magnetize steel lars by hestink them red hot, allowing them to cool to the proper temperatore nnder the magnetizing force, and then tempering white the force is still aeting. Gilbert, Knight, Robison, Haman, Gaugain, Aimé, and Holz (Wied. Ann., vii., 1879) bave all experimented with thls method, bot it does not appear to possesa any advantage over the ordinary moderu process, and aced not be discussed bere.

[^119]:    ${ }^{5}$ Advised by Elias and Van der Willigen; ace Nature, vol. rive p. $552,1879$.

    - Further detaits as to the advantages and disadrantages of rarious forms of magnets will be found in Wiedemann'a Galvanismus, and Lasoont's Handbuch des Magnetismus. See also a recent paper by W. Holz, Wied: Ann., 1880, on hollow cylindrical magnets, and anothes by Gray on the moments attainable with hard steel bars, Pril. Maj., 1878.

[^120]:    " No Pies to plucke the Thatch from howse,
    sire breed in Irishe grounde :
    Dut worse then Pics, the same to burne,
    a thousabde maic be founde."
    -The Inage of Irelande, London, 1581.

[^121]:    ${ }^{1}$ Thus there are at the present date (1882) three actual pretendants to the dignity of Mahdi, Sheikh Mohammed of Dongola in the Egyptian Sudan, tho Shcikh El-Senusi in Tripoli, and a third in the vilayet of Addio.

[^122]:    ${ }^{2}$ Even lefore sacceelling lis father he struck coins in his owa name at Nisábúr (Nishapury, wher Le was governor of Khorásín,

[^123]:    2 The emperor Bathar gives lim this title (1526). Ile himself was the second Molianumedan king who had eonquered India, the first being Sultan Mahmid Ghizi.
    ${ }^{3}$ The terms in which native historians have described the effects of these missiles-not unlike the account given by De Joinville of the Greek fire which caused such constermation to the army of St Louis something more than two centuries later-gave rise at oue time to the idea that something like modern artillery was meant. The fact that naplitha is distinctly mentioned as having beenobsed b,y Malmution a later occasion, and the knowledge that petroleum is found at several piaces on both sindes of the Indus near the scene of the fight with Anang.pál, furnish the most probable cxplanation

[^124]:    ${ }^{1}$ Targum Yodathan on Genesis i. 14 ( (ן) of Mahazoro, and mediately of Mahazor.
    2 This must not be mistaken for Mrahor Gadol shel Lebanah, which consists of twenty-one years. See Pircke R. Eliezer, cap. vii
    ${ }^{3}$ See Pireże R. Elǐezer, cap. fi.

[^125]:    ${ }^{4}$ See Pireke R. Eliczer, cap. ri. ESee note ${ }^{\mathbf{1}}$ above.

[^126]:    ${ }^{1}$ There are to this day three congregations in Italy (Asti, Fossann, Moncalvo), which use the ancient ritual of northeru France (see MS. Add. 667, in the Cambridge University Library).
    ${ }^{2}$ Scder Tephilloth, \&c., Amsterdan, 1642, 16 mo ; in 4 vols., 1644; in 6 vols., London, 1789-93; Mahzor, \&c., Vienna, 1820, Ero.
    a Mahzor, \&c., Salonika, 1863, 8vo.

    - I!okhnath Hammisich, \&c., 1793; †'コ17, 1823; Malızor. Ratan, \&c., 1861, all at Leghorn, in 8vo.
    © Mahzor, \&c., Pisa, 1794 ; Selihoth. 1845 ; Pcue JIaragcl, 1856. all at Leghorn, and in 8vo.

    6 Siphethe Ronenoth, \&c., 2 vols., Venice, $1648,1711,4 t 0$, Les. horn, 1837 ; Kisshuin Leyrcteob, Leghorn, 1858 ; Rectlings, Venice, 1736, nll tbree in 8vo.
    *, Mrahzor, \&ce., 1842 and 1861, both at Leghom, and in $8 v o$.
    8 Oricr of Praycrs, \&c., Amsterdan, 1757 and 1769, Leeghorn, 1849, all in 8 vo .
    ${ }^{5}$ Or Venaissin, i.e., the four congregations of Carpentras, Avignon, Lisle, nnd Cavaillon. See Sciler Mallamill, \&c., Avignon, 1767, Aix, 1855, 8vo ; Seler leyamin Noraim, \&c., 1739 ; Seder leshalosit Regalim, 1759-1762, both at Amsterdam, and in 8vo; Seder IIckiun. teris, \&ic., Avignon, 1765 ; Seder sheĺ yon Kippur, 1766 , and Seder Zfanshmuroth, 1763 , both at Amsterdanm, and nll three in 4to.

    10 It ought not to be omitted that in the old Provençal ritual ant the Soath Arabian there are several points of contact existing. A tescher or teachers must have come from thu one conntry and eettled in the other. Wo will give but one cxample. The phrase,
     shegen (on Cenesis ii. 1), by an nnonymous author, and pullished by Dr Nathan Adler, and which tho editor modestly says he lias not succeeded in tinding, is in reality to be found in the sevvice of the Uosha noth, both in tho old Provençal Mahzor (Camb. M.S. Adh. 752,
     and in that of Yemen (Camb. MS. Adu. 1200, leaf 620), though in no other so far as we kuow.

    12 Malkor, Pesaro, 1520, Aursbure, 1536, Vonice, 1567 , all in Solio ; 6 vols., Londou, 1807, 1824, 1820, \&c., 8 vo.

    13 Mahzor, 2 vols., Sulebach, 1794, fulio.
    ${ }^{13}$ These differences show thenusclves first in the prajer "El erelih appayim" in the service for Monday and Thurstlay.
    is Ordnung der offentlichen Anilucht, \&e, 1819; Scder Mu'aboduh, sc., both nt Mamburg, and in Svo.

[^127]:    ${ }^{1}$ Hence he is called "Al-Kortubi" (and not al- liondovi, or Hakorlovi) by Arabic writers, and " llassephardi" by himself (rreface to dfibhneh Toreh).

[^128]:    a From the initials of his name, with "R" (for "Rablsent") pre-

[^129]:    ${ }^{1}$ Luzzatto, Ferem IIemed, iii. 67. ${ }^{2}$ T. B., Synhedrin, 24a.
    ${ }^{2}$ So this work is commonly aud especially called from the author's name.

    - $\dot{R}$. Abraham Ben David (Rabad) was the author's contemporary and the only literary man who ever conqquered bim according to his orna confession.
    ${ }^{5}$ See introduction to the Sefuer Hammisimin.

[^130]:    ${ }^{1}$ See Geiger, Jfoses 6. Maimon, Dreslau, 1850, 8 vo.

[^131]:    These purty names furnish o otriking instance of misnomer They were really the Nationalists, whacame to be called Jederal
     der Jefferson, known as Repubicans and then Demoerats.-From
    lon ffolst. l'on Ifolst.

[^132]:    ${ }^{1}$ Roman Catholics, 11,178; Greek Catholics, 1456 ; Greek Eastern Church. 50 ; Calvinists, 15,192; Lutherans, 445 ; Jews, 1452 ; Unitarians, 4.
    ${ }^{2}$ The year of his birth is variously given as $760,766,769$ A. $\%$. : but 766 A .1 I . ( $1364 \mathrm{~A} . \mathrm{D}$.) is the date best authenticated.

[^133]:    ${ }^{1}$ Various extracts have been published in Europe, c.g., the History of. the Copts, in Arabic and Germau, by Wruestenfeld (Colt., 1845). For other extracts, list of MSS., \&e., see Pertsch, Arub. Hand. sckriften $\operatorname{sit}$ Gotho. N゙o. 1675 ; and Cat. Codd. MSS. Or. Mus. Drit., p. 156

[^134]:    ${ }^{1}$ Stade (2. f. A Tliche Iriss., 1882, p. 308 ; comp. 1881, p. 14, thinks that the title in Mal. i. 1 is by the same hand as that in Zech. xii. 1, and that both are copied from Zech. ix. 1, under the misconecption that NéM was to be construed with the following words.
    ${ }^{2}$ The LXX. rendering of i .1 gave rise to strange fancies. Jeronse and Cyril mention that some supposed the prophet to bave been on angel in bodily form; and the I'itx Prophelarum of Pseudo. Epiphanins bave a "word-myth" to the effect that bis prophecies waro regularls confirmed by an angelic apparition. The same book will bave it that Malachis was of the tribe of Zebulon, born in a town Sopha or Soyhera hall his name from his great beauty, and died young.

[^135]:    * In ii. 16 the Targum renders "If thou hatest ber put her away;" and this translation seems to be iutended by the Massoretre
     maknit, used of actous not allegal lout ollensive to right fecling.

[^136]:    ${ }^{1}$ A careful calculation made by T. J. Newbold in 1838 gava a total population of 375,000 , since which date the British possessions have increased about fourfold, from 90,000 to 330,000 . Hence, allowing for a sligbt increasa elsewhere, the present popalation must be at least 650,000 (Political and Statistical Account of. the British Selllements in the Straits of Malacca, London, 1889, vol. i. p. 418).
    ${ }_{2}$ The several projects of canalization are fully discussed by M. LEon Dru in L'Exploration for March 9 and 16, 1882. The most feasible, but not the shortest, follows the line of railway already projected in

[^137]:    1861 by Fraser and Forlong across the neck of the isthmus in $10^{\circ} 30^{\prime}$ between the estuaries of the rivers Pekshan and Champon. This scheme, which might be carried out for about $£ 5,000,000$, would sherten the sea route frem India to China by four days, besides eveining the dangerous navigation of the Straits.

    A detailed account of Mr Daly's aurvey日, which cxtended over the years 1875-82, appeared in the Proccedings of the Royal Geographical Society for July 1882. It is accompanicd by a large map which fills np seversl gapa left in that of D'Souza. Yet the surveyor remarks that "there is a vast extent-mere than half-of the Malayan Peninsula" still unexplored," p. 409.

[^138]:    ${ }^{2}$ Although the Perak river is named frem the Malay word perak, "silver," the presence of this metal bas been doubted. M. Alfred Marche, however, who recently visited the west cuast, found it in Laroot, asseciated with the rich tin ores of that district (Comptes Rendus of the French Geol. Soc. fer April 14, 1882, p. 165).
    3 "The alluvial tin deposits permeate the whole length of the, Malayan Peninsuls on the western side of the dividing raugs" (Daly).

[^139]:    ${ }^{1}$ The hormers attending the reduction of Kedah in 1821 were caused chiefly by the ferocity of lise Samsaus of Ligor in the Siamese scrvice.
    ? This writer applies the term " 31 .."mesian" to all the dark racea of the Occanic area, mud not merely to the natives of the Melanesian Archiplago.
    ${ }^{3}$ See also the Field, April. 23, 18-S ; Jenernal of the Straits Eranch of the Roy. As. Suc. for 15iS-81, pessim; and the paper of Nr Daly, who snys, "The true Orang Sakei is a Negrito, notl reminds one of the Papuans of New Guidea, whom I lave seen in Torres Straits," p. 409.
    the ahorimnes of the neighbouring island of Billiton are also collectively bwown as Suldeh (Annales de l'Extione Oricul. 1879, ว. 1301

[^140]:    5 The term Kling, a corrupt form of Telinga (Telugu), is applied throughont Malaysia to all the natives of India settled in that region.

    6 The origin of this word has given rase to much controversy. Its derivation from the Javasese ma-layz, to ran or flee, mast be rejected as granmatically impossible, for tbis is a true verbal form, whereas the ustional name is strictly auljectival, hence alraps accompanied by a noun. Valentyn points out (Eeschryioinge eva Sumatro, $p$ 13) that the name is specially applied in Sumatra to the great Songei-pigu-Malinu tribe of the Snogei-paisi auriferous district, and if seems on the whole most proballe that it was originally the name of somo local tribe, whicle rose to preerminence.

[^141]:    ${ }^{1}$ Wallsce's Malay Archipelago, 5th ed., p. 691.
    ${ }^{2}$ Müller sajs 4 ft . 6 in. to 5 ft . ; Wallace 5 ft .2 in . to 5 ft .4 in ; Flower $5 \mathrm{ft}$.3 in ; others 5 ft .
    ${ }^{3}$ See Dr A. B. Meyer, Minahassa auf Celebes, Berlin, 1876, p. 7. - See Schouw-Santvoort, in Annales de l'Extrême Orient, 1878-79, p. 143 ; and Montano, Proc. Roy. Geol. Soc., 1881, p. 583.

[^142]:    ${ }_{2}^{1}$ Col. Yule, in Jour. Anthrop. Soc. for Febria, y 1880.
    ${ }^{2}$ Jour. d'Anlhropotogie for March 1882.

[^143]:    1 The solitary island of Minucoy (Minakai), lying 70 miles north of the Maldives (med. lat. $8^{\circ} 16^{\prime} 30^{\prime \prime}$ N.; population 3000 ), pertains to these islands by the race and langnage of its people, but, as it has long belonged to the raja of Canuanore, it is usmally classed with the Laccadives.
    ${ }^{2}$ Mald. alolu. The word alollor is already defined as a generic ex. pression in Zeidler's Universal Lexicon, 1732 ("a name applied to such a place in the sea as exhibits a beap of little islands lying close togethcr, and almost banging on to each other'). Atolu is probably connected with the Singbalese prep. etula, "inside" (Bell).
    ${ }^{3}$ Seo Proc. Rny Soc Edim. 1879-80. No. 207.

[^144]:    ${ }^{1}$ The frequent termination du represents the Shugh. dura, dira, and Sansk. durpa, "islaud." Bell takes maddulu for Sansk, mandala, "region." Qu. maha-atoin, " great atoll"?

[^145]:    ${ }^{1}$ The resemblance to this is much cleser than to the old Singhalese with which it is cempared in Mr Albert Gray's valuable paper already referred to.
    "Usually"; but \& Maldivian skipper who gave Jnmes Prinsel information wrote it from left to right (aee Jowr. As. Soc. Bengel, 794).

[^146]:    ${ }^{1}$ I. F. F. Rousseau, Aratomie comparie du Systme Dentaire chez I'Honme et chez les principaux Aninoux, 2l d. 1839; F. Cuvier, Dis̈ hents des Mantmifercs considéreis comnc caractires zoologiques, 19\%2. 25 ; I. Owen, Odonlography, 1840-45; C. G. Gicbel, Oilontugraphic, 1855 ; C. S. Tomes, Atanual of Dontal Anatomy, ITuman and Comparative, 21 ed., 1852.
    ${ }^{3}$ The lower incisors of some xyecies of Shrews are, however, said to becomo ankylosed to the juw in adult age.

[^147]:    1 This and other questions conceming the homologies, notation, and puccossion of the tetth of mammals aro more fully developed in two memoirs by the present writer :- "Remarks on tho Homologies and Notation of the Teeth of the Mammalia," in the Journal of Anatomy znd Physiologs, rol. 11. p. 262, 1869; and "Notes on the First of Wilk Dentition of the Mlammalis"" is the Trans. Odonlological Society of eot Britain, 1871.

[^148]:    ${ }^{2}$ Hyrax alone among existiug nammals which have four premolars has also four milk molas.

[^149]:    ${ }^{1}$ See for the prucipal modifications of the skeleton of this class, the large and beautifully illustrated Osteographie of De Blainville, 183551; tho section devoted to this subject in Bronn's Kilassen und Ordnungen des Thier-Reichs, by Giebel, 1874-79; and An Introduction to the Osteolngy of the Mammalia, by W. II. Flower, 2d ed. 1876.

[^150]:    ${ }^{1}$ For the sake of uniformity, in all the following descriptions of the vertebral column, the lung axis of the bolly is supposed to be in the horizontal positiou.

[^151]:    " See "Lectures on the Comparative Anatomy of the Organs of Digestion of the Mammalia," Medical Times and Gazellc, Feb.-Dec. 1872.
    ${ }^{2}$ G. Gulliver. Proc. Zoot. Sve., 1S62, p. $9^{1}$

[^152]:    ${ }^{1}$ The modfications of these bones are fully described by A. Doran "Morphology of the Manamalian Ossicula auditus," Trans. Linma Soc. ser. 2, vol. i. pp. 371-497, pl. IvüL_-Lxiv., 1878.

[^153]:    ${ }^{1}$ Pror. .irad. Níu. Se. Phitadelphiu, Decenber 27,'1881; Amn. Mu!. Nitt. Hist, April, 1882.

[^154]:    ${ }^{2}$ For a full exposition of the present state of knowledge on this subject, see the various mentoirs of Professor Turner, and especially F. M. Balfour's Trealise on Comparative Embryology, 1881, vol. ii.
    ${ }^{2}$ Proceedings of the Royal Socicty of London, vol. axviii., 1878 , p. 395.

[^155]:    ${ }^{1}$ On this subject, see A. Murray, Geographical Distribution of Nammals, 1866 ; and especially A. R. Wallace, The Geogrophicon Diseribution of Aninals, 2 vols, 1876 , a山山 isiund Life, 1881.

[^156]:    1 The subjects referred to under this liending are mostly described ami figured in detail in Owen's "Monograph of tho Fossil Mammalia of tho Nesozole Formations," Palqontographical Society's Publications, 1871; and In various papers by Dlarsh, in tho American Journal of Science und Arts, 1878-80.
    ${ }^{3}$ Quart. Jour. G'col. Suc., vol. x.x. 11. 111, 1881

[^157]:    3 a merican Geology, part vi., p. $93,1857$.

    - A full description of this intercsting fossil, with a history of tho discussion regarding its nature, is given in Own's British Fossil Mramaials and Birds.

[^158]:    ${ }^{1}$ The whole discussion is contalned the thellowing memolrs:-(1) H. Fatenner. "Descrintion of Two Specles of the Fossil Mammallan genus Maganhax. from 1"urbects," Uuart. Jour. Gent. Sne., Aucust 1s.57; (2) M. Owen, ast. "1'alæontology." Eincyclopodin Lriternuica, Eth ed.. 1859; (3) H. Falconer, "on the Disputed Afmily of the Mammallan gemus Ilagiaulaf." Gmart: Jour. Fient. Soc., Novembpr 1860 ; (4) K. Owen. "Monn graph of the Fossil Maumalla of the alesozoic J"ormation." ferloonesgraphicnl Society, 1671.

[^159]:    ${ }^{2}$ The name Platypus, bestowed by Shaw in 1799 , was preocenjicd by a genus of Colcoptcra.

[^160]:    ${ }^{2}$ The latter name is often used now, under the impression that Echidna is preoccupied by Forster ( 17 TS) for a genns ef Pisces; but, as that was not characterized in a recognizable manner, the anthor even omitting to name the species for which it was intender, it is now generally considered a synonym for Murana (see Günther's Catalogue of Fishest, and is scarcely sufficient to bar, a mame se unirersally acknowledzerl and so deeply ronted in mammalian literature. Merrem's genas Jichinha ( $f_{1}$ philiu) in of later dute, viz., 1820 .
    ${ }^{3}$ thauls and May. trut. List., $1 \mathrm{~s} \hat{\mathrm{~s}}$, vol. i. (scr. iv.) p. 113.

[^161]:    ${ }^{3}$ W. HI. Flower, "On the Commissures of the Cerehral Hemispheres of the Ifarsupialiu," de., Phil. Trans., 1865, p. 633.

[^162]:    ${ }^{1}$ Fxeept in Eclidcus brcviceps (Furbes, Proc. Zool. Soc., 1881, 188!.

[^163]:    ${ }^{1}$ Cf. W. A. Forbes, "Anatomy of the Koala," Proc. Zoo". Soc., 1881, p. 180.

[^164]:    Tha lowest Eoccus formation of Now Mexim luas recently yielded an auimal (Ftilnilus mediarus) having a mandibutar dentition nllier to that of Thylaco'co, aul which goes somo wny to hritgo ovor the gap, both in structure anll time, between this anil the Stesozoie I'lagiau-
    

[^165]:    I In some fest Armadillos the suture between the premaxila anil maxilla passes lehiud the fint upper tooth, but in all the other known member: of the orter all the tectis are implanted in the maxilla.

[^166]:    1 . A single imperfect sifin, brought from the province of Ceara in Brazil, Indlpleura brumelif(Ann, Sc. Nal, svi. p. 8,15 In $_{2}$ ). The dermal plates arc aald to te much teess developed than in other members of the ramily, and confinced to the sides, nill the median portinn of the back being clothed with a flextile halry siklo. Tho head is srond ands liort. the cars smail and far apart. The tall ha long, and. aluost entircly decuid of scutes. The fect arc uilk nown.

[^167]:    ${ }^{1}$ Nondenslaikd, duriug his renent voyago in the " Vegen," ohtnined some fuformation from natives of Wehring's Jslard which led him to beliove that a fow individuala zav have subvived to a mich later date, even to 1S5.4.

[^168]:    ${ }^{1}$ This is an important distinction from the Sirenia, but a character common to nearly all other manmals. It is doubtful whether there is any foundation for the statement that these epipbyses remain ununited for an exceptionally long period in the Cilacea.

    - A character repeated in some of the seals.

[^169]:    ${ }^{2}$ These havo recently been described in detail by Professor Strutbers in the Journal of Anatomy and Physiology, 1881.
    ${ }_{2}$ The cervical vertebra of Palxocctus, supposed to be from the Cambridge Greensand, and a single caudal vertebra lately found in the Upper Eocene at Roydon in Hampshire, may for the present he omitted from consideration, as too inconclusive in the nature of the evidence they afferd as to the history of the group.

[^170]:    ${ }^{1}$ There is much resomblance in the laryax of the Hippopotamns, bnt none in that of the Seal, to the same organ in the Cetacea.
    ${ }^{3}$ German, Meerschwein, whence the French $3 f$ ursoutno "Porpoise" is said to be derived from "Porc-poisson"

[^171]:    3 These were discovered in the Green!and Whale by Geoffroy St Hilaire, whose observatioss were confirmed and extended to other geaers by Eschricht. They have lately been very fully described in Balanoptera rostrata by Jnlin (Archives de Biologie, i., 1880).
    *For the structure of whalebone, see Finater, "Olservations on the Structure agd Economy of Whales, ${ }^{\text {" }}$ Phil. Truns., 1787 ; Eschricht and Reinherdt, On the Greenlosd dight Whale, Eaglish translation by the Ray Society, 1866, pp. 67-78; and W. Turacr, ia Trans. Rog Sion Rdir. 2870.

[^172]:    An appearanco in one epecimen las heen deseribed by C. G. Carns as Indif callng a vertieal surcession of the tecth. but the erfucnce liptin which this rests is by ner means saiffactory. and oppenis to almit of noother explan.ilion.
    
     jumt white to others lis chat actirs appeur to be truly Celacean.
    3 see Tians. Gcol. Soc. Lond., ser. 31., vo'. Vl. D. G7.

[^173]:    ${ }^{1}$ Anatomical and Zoological Resparches, comprising an Account of the Zoological Results of the tco Expeditions to Western Yunnan, in 1868 and 1855 (1878).

[^174]:    1 Professor Huxley remarks (Proc. Zool. Soc., 1880, p. 6j5) :"The decidaoas molars and the posterior deciduoas opper iacisors of the Rabbit have long been known. But I have recently foond that unborn Rabbits possess, in addition, two anterior upper and twolower tleciduous incisors. Both are simple conical teeth, the sacs of which are merely ensedded in the gum. The upper is not more than onehandredth of an inch lroge the lower rather larger."

[^175]:    1 These tecth are by serne writers classed as canines, as their roots are implanted in the maxille; but, as in Rodents, they are originally developed ia the gam covering the premaxiltie, in which bones their primitive alveoli are sunk As growth poceeds, however, firm support for such massive and weiglity bodies can only be obtained lyy their roots gradaally sloking through the premaxille into the great and specially modified alveolar processes of the maxillx, but this does not vitiate their homology with the incisors of ofler mammals.

[^176]:    ${ }^{1}$ Tha Feræ of Linnæus ineluded all tha then known species of tha modern orders. Carnivora, Insectivora, and Marsupialia.

[^177]:    ${ }^{1}$ Tho tusks of the Walrus, altogether so aberrant in its dentilion, are partial exceptions to this statement, but in old iadividuals tho pulp cavity fills up, and they cease to grow.

[^178]:    
     Joet will Ive found

[^179]:    In Domestic Dogs a hallux is frequently develored, though often in a rudlmentary condition, the phalanges and claw being suspended looscly in the skin, without direct eunnexion with the other bones of the foot ; it is called by dogforiers the "dew cl wo

[^180]:    ${ }^{1}$ Man's Place in Nature, 1863, and Anatomy of Vertor,rated Ani nals, 1871. See also the more recent investigations of Broca into the comparative structure of JIan and the higher A 弓es, published mostly in the Revue dranthropologis.

[^181]:    2 The word Mammoth was intreditced into the languages of western Eurnpe about two celturies ago rom the Rescian, and is thought by Eabins and Nordenskiolld to be oi Tartar cricona, but others, as Witzen, Strahlenburg, and Howorth have endeavoured to prove that it is a surraption of the Arabic word Behemoth: or great beast.

[^182]:    1 The best-known of these is the etching upon a poition of tusk found in the cavo of La Madelaine in the Dordogne, figured in Christy and Lartet's Reliquis Aguitanica, and in many other works bearing on the sabject of the antiquity of mac.

[^183]:    ${ }^{2}$ The present manager, Mr F. Klett, bas undertaken the difficult task of a thorongh survey, the results of which, so far as completed, are presented in the accompanyiog map. The portion heyond River Hall is supplemented from an older surrey by Stephen, the guide.

[^184]:    

[^185]:    1 Though Edwarls called the species ho figured (ut supra) a Titmouse, he properly remarked that there was no genus of European biads to which he could liken it.

    - Excluding, however, the genns Rupicaln-the beantiful orangecoloured lirds well known as the "Cucks of tho Rock "-which has usually been placed among the Cotingida:
    ${ }^{3}$ Tho figures are repeated by Mr Darwin (Descent of Man, \&c., 1i., 66 ).

[^186]:    1 Reisebeschreibung, part iv., Geneva, 1674.

    - Voyage au Levant, Paris, 1689.
    - Reisen im Orient, 11., 447 sr .

    4 Liouff, Études sur la Religion . . . des Soubbas, Parls, 1880.
    3 Mandean MSS. occur in the Brltish Museum, the Bodlelan Library, the Bibliotheque Nationale of France, and aiso in Rome, Weimar, and Berlin.

    - The first printed edition and translation of the Sidrd rabba, hy Matth. Norberg (Codex Nazaraus, liber Adami appellatus, 3 vols., Copenhagen, 1815-16, followed by a lexicon in 1816, and an onomastion in 1817), is so defective as to be quite useless; even the name Book of Adam is unknown to the Mandæans. Petermann's The Baurus s. Liber magnus, vulgo "Liber Adami" appellatus, opus Mandzeorum summi ponderis ( 2 vols., Leipsic, 1867), is an excellent motaliographic reproduction of the Paris MS. A critical edition stil remains a desideratum. Next in importance to the Sidra rabbd Ia the Sidrd d" Yahyá, or "Book of John," otherwisc known as the D'rasche d" Malke, or "Discourses of the Kings," which has not as yet bsen printed:as a whole, although portions have heen published by Lorshach and Tychsen (aee Muscum f. bibl. u. orient. Lit., 1807, and Stäudliu's Beitr. z. Phil. u. Gesch. 'd. Relig. u. Sittentchre, 1788 8q.). The holdstd (Ar., hholdisa, "Quiutessence"), or, accord$\log$ to fla fuller titie Enydné uderashe d'masbüthá unasserthá ("Sougs and Discourses of Baptism and the Ascent." viz., of the soul atter death) haa been admirably lithographed by Euting (Stnttgatt, 1867). It is also known as Sidré d'neshmetha," Book of Sonls," and beside bymna and doctrinal discourses contains prayers to be offered by the priests at aacrifice and at meals, aswafl as other liturgical matter. The Mandran marrlage service ocours both in Paris and in Oxford as an Independent MS. The Divan, hitherto unpublished, contains the ritual for atonement. The Asfar maludishé, or "Book of the Zodiac," is astrological. Of omaller pieces many are magical and used as amuleta.

[^187]:    7 The use of the word "life" in a personal genge ia usual in thcism; compare the of Valentin, and el-hayat el-mual lama, "the dark life," of Mani in the Fihrist.

[^188]:    1 The on in Nadabron apparently represents the Arabic מunation, though its use iu suc! a case is very odu.

[^189]:    This physician is called in a Freach MS. "Jelaan de Bourgoigne dit a la Barbe." M. Michelant once saw the title of a medical oit botanical I reatise bearing the name of Jehan de Bourgoigne. Can he also have writtea these travels under a frigned uame?
    ${ }^{3}$ Page indications like this refer to passages in the 1866 re-iasue of Halliwell's edition, as beiog the most ready of arccss. But all these passages have also been veritied as substantially ocourring in the French MS. from Lord Ashburnham's library mentioned below (of 1371 A.D.), cited $A$, and in that numbered xxxix. of the Grenville collection (B. M.), whlch dates probably from the early part of the 15th century, cited $G$.

[^190]:    1 "'Manirill' seems to signify a 'man-like ape,' the word 'Drill' or 'Dril' having been anciently emplosed in England to denote an Ape or Bzboon. Thus in the fifth edition of Blount's 'Glossographia, or a dictionary interpreting the hard words of whatsoever language now used in our refined English tongue . : very useful for all auch as desire to understand what they read, published in 1631, 1 find 'Dril, a stonecutter's tool wherewith he tores little holas in marble

[^191]:    \&c. Also a large overgrown Ape and Baboon, so called.' 'Drill' is used in the same sense in Charlton's Onamesticon Zoicon, 1668. The singular etymology of the word gircu by Buffon seems hardly a probable one."-Huxley's Man's Place in S"ature, P. 10, 1863.

[^192]:    ${ }^{1}$ Eusebi Chronicomum libri duo, ed. A. Schoene, Berlin, 1866-7E.

[^193]:    ${ }^{1}$ The name has not as yet been explained, nor is it even known whether it be of Persian or Semitic origin.

[^194]:     and an Epistola ad virginem Menock by Angustine. Fabricius has collected the "Greck fragments of Manichæan Epistles" in his Bibliotheca Graca (vii. p. 311 sq.).
    ${ }^{2}$ The Canticum amatorium is cited by Angustinc.
    3 Zittvitz assnmes that this epistle was in its original form of much larger extent, and that the auther of the Acts took out of it the matter for tho speeches which ho makes Mani deliver during his disputation with Bishop Archelans. Tha same scholar traces back the account by Tutho in tha Acts, nad the listorical data given in tha fourth section, to the writings of 'Jurbo, a Mesopotamian, who is assumed to have beon a Manichean rençade aud a Christian. But as to this differcnco of opinion is at least allowible.

[^195]:    ${ }^{1}$ Analogous to this is the veneration in which the Catholic monks and the Neo-Platonic "philosonhers" were held, but the prestige of the Manichran electi was greater than that of the monke and the nhilosophers.

[^196]:    1 This jeport has been published and cdited, with prefaco and notes, by Dr W. B. IIodgson, under thio title of Report of an Eithscational Tour in Germany, France, Holland, and putts of Gireal Britnin and freland, Lomion, 18.16.

[^197]:    ${ }^{2}$ See Bombay Lit. Tr., vol. i. art. 16 , for details as to the gaz angubin. A conmon Persian swatmeat zonsists iz wbeaifour kncadect with mana joto at Hick ganic.

[^198]:    ${ }^{2}{ }^{2}$ Mis life is brilliantly described in rol. iii. of Dozy, Listoire des Musulmans d'Espagne.

[^199]:    - His fellow-workers wero Bono of Ferrasa, Ansuino of Forll, and Niccols Pizzolo, to whom cousiderablo scetions of the fresc-paintings are to bo assigncd. The ects of St Jemes eud St Cliristopher aro the lending subjects of the series. St James Exorcising moy hove been commenced by Pizzolo, sad completed by Mantegna. The Caling of St James to the A postleship appears to be Mantegna's design; partially curried out by Pizzolo; the subjects of St James beptizing, his appearing before the judge, and going to execation; and most of the plepend of St Christopher, ere eatirely by Mantegaa,

[^200]:    ${ }^{1}$ Of those the following znsy be enumeraten-The lFonders of Geolagy, 2 vols.; The Medals of Creation, 2 vols.; Thoughts on a Pebble, or First Lessons in Geology; A Genlogical Exacersion round the Iole of Wight; Pictorial Allas of Fiassil Remains; Thoulghts on A nimalcules, or a Glimpse at the Invisibte World as reveated by the Wicroseope; Petrifuctions and their Tcachinys,

[^201]:    ${ }^{1}$ Mranucodiata was used by Brisson (Omithologie, ii. p. 130) as a generic term equivalent to the Linnæan Paradisea. In 1783 Boddaert, when assigning scientific names to the birds figured by Daubenton, called the subject of one of them ( $P$ l. enlum. 634) Manucodia chalybea, the first word being apparently an accidental curtailment of the name of Brisson's genus to which he referred it. Nevertheless some writers have taken it as evilence of an intention to found a new geaus by that name, and hence the impertation of Mfanucodia into scicntific nomenclature, and the English foriu to correspond.

[^202]:    ${ }^{1}$ Provious cropping :-1839, turnips with farmyard manure ; 1940 , barloy; 1811, pease; 1842 , whent; 1818 , onts; the last four crops ummanured. First experimental wheat crop in 1814 . Wheat every year since; and, with some exceptions, nuarly the saine description of manure on the samo pluts each jear-especially during the last twenty-six years ( 1852 and since). Unless otherwise stated, the mannres are comn in the autnnin befure the seed. Area under cx. periment about 13 acres.
    ${ }^{2}$ Yreviony cropping: -1817 , swedisls turnlps with dung and superphosphato of lime, the roots carted off $; 1818$, barley; 1818 , clover ; 1850, what ; 1851, harlcy manured with ammonia balts. First experimental crop in 1852. Barley every year since.

[^203]:    ${ }^{1}$ On the relation of matter to the Creatur Marcion himself seems not to have speculated, though his followers may have done so.

[^204]:    ${ }^{2}$ Mast authorities say the 23d, but according to the MS. Heures of René, cited in the Nourclle Biographie Génêrale, the day was the 24 th.
    : Southrick, according to Fabyan, who is followed by Hall and later eriters; but William Wyrcestre and the anongmous author of the English Chronicle edited by Davies for the Camden Socisty, who are hoth strictly cooteniporary;, say Tichseld.

[^205]:    1 This is clearly tho date intemled by Willian Wyreestre (p, 496) ; nud it agrees entirely with Monstrelet (iii. 9G). Yet almost all molern historians (excent Liugard) aud even biographers of Margarct of Anjon dato her teparture to llanders after tha lantle of Ilexham, pt which sho cortainly was not preselt, as they would have her,

[^206]:    ${ }^{1}$ Thia doullo name, the one Jewish, the other Roman, may be cons. parcd with tho double namo "Saul, who is also caliod Pant," in Enceceding clapters of the Acts; sometimes the donble name, sometimes one or ther of the simgle names, is used.
    $2^{\circ}$ Most of the argumonts by which Kiculen (Stuc., v. Kirif., 1843,
    

[^207]:    ${ }^{1}$ Dexys le Tyran, 1743: Ariwomene, 1740; Citopatre, 1750 ; Héruclides, 1752 ; Egyplug, 1\%53.

[^208]:    ${ }^{1}$ The ruins of this place are described by Robinson, Bib. Researches, iii. 539; Renan, Phénicie, p. 119.
    ${ }^{2}$ The John of Maron known to Bar-Hebræus (Chron. Zccles., i. 463), and placed in the 10th century, was apparently a Monophysite. That Monophysite as well as Monothelite doctrine was once current among the Maronites appears from various things in their ecclesiastical books, which they now try to explain awzy or reject as interpolations.
    ${ }^{3}$ Sce Nieluhr, Reisebeschr., vol. ii ; Volney, Voyage; Rabinsar Rescarclies, ii. 506.

[^209]:    ${ }^{2}$ A full collection of juridical opinion as to the lenal charamit i marringo is to wo found in Lord Frisel's Misubund und Wije, vol. i. chap. ii.

[^210]:    Some restrictions on marriame pecular to the canon law are noticul at the end of this article.

    A divorce misi does not cnable the parties to marry until it is marle absolute
    ${ }^{3}$ A marriage in which either of the parties is below the age of consent is, however, said to be not absolntely void; if the parties agree to continue together at the age of consent no new marriage is secessary. hwt either of them may disagree and avoid the marnage.

[^211]:    4 A complete list of the acts regulatirg the solemnization of marriage or confirming marriages which through some defect might be void will be found in Phillimore's Écilesiastical Law, vol. i.

[^212]:    ${ }^{1}$ The restrictions are enumerated in the following lines:-
    Error, Conditio, Votum, Cognatio, Crimen,
    Cultus Disparitas, Vis, Ordo, Ligamen, Honestas.
    Etas, Affinis, si Clandestinus et Impos,
    Raptave sit mulier nec parti reddita tuto.

[^213]:    ${ }^{1}$ Said to bo so ealled becauso the wife's rights were limited to the Aforgengabe (donum matutinnle). The comnon lavin Germany permits them to the royal houses nnd the higher mobility, and the law of l'russia to the lower nobility also. Inequality of comdition (Uncbenburtigkeit) is not necessary to a marriago of this kind, which many bo made letween persons of equal rank, e.g., with tho object of nat prejudicing the children of $\Omega$ first marriage by allowing full rights to tho aftspring of a second. A woman of high rauk nay mako a morgauatic alliaace with a man of inferior position.

[^214]:    ${ }^{1}$ The ruins of Motya were excavated by Scllicmand in 1876. Sco $\Delta$ cademy, March 1876, f. 288.

[^215]:    ${ }^{1}$ By all old anthors of authority, as Ray, Pennant, Shaw, an 1 Feming, the word is writteu "Martin," but this form of spl ins is now generally rescrved by way of distinction fur the biril (see Martin). Tho word, as appliet to the anim: 1 here describel, occurs in na Germanic and Romauir languages:-Cerman, mari r ; Dut h, mar:e Swedish, mard; Danish, maur ; English, marteron, mirtern, mar* martin, and martlett; French, marte and murtre; Italian, martio ix and martorella; Spanish and Purtugucse, marla. Its earliest know 3
    

[^216]:    ${ }^{1}$ See Rolleston, "On the Dömestic Cats, Felis domestictes and Musteta foina, of Ancient and Modern Times," Journal of Anatomy and Lhersidlagy, vol. 1i. $\mathrm{p}_{1}$ 47, 1068.

[^217]:    ${ }^{1}$ The Zoologist for June 1882 reeords, the recent capture of 1 Marten in a trap near Bardney in Liucolushire

[^218]:    ${ }^{1}$ Cum iam semianimum laceraret Marius orbern
    Ultimus, et calvo serviret Roma Nieroni,-Jur., iv, 37.

[^219]:    1 "Whose dress is of a dull colour, his morals a pale green."

[^220]:    ${ }^{1}$ The older English form, Marllet (French, Martelet), is, except in heralds' languago, almost obsolcte, and when used is now applied in some places to the SwIFt (q.v.).
    ${ }^{2}$ Since the publication of the account of this species in Yarrell's British Birds (ed. 4, ii. p. 354), Mr Gurney has informed the writer of a specimen obtainel ont of a nigratory flock flying very bigh on the Qua'qua' river, lat. $19^{\circ} 10^{\prime} \mathrm{S}$., by tho expedition of llessrs Jameson aud Ayres, 23d October 1880.

[^221]:    a In 1840 an example is said to have been killed at Kingstown in Ireland, the skin of which is in the Dublin Museum of Science and Art. +Tho Martin of French colonists (in the Old World) is an Acridotheres, oue of the Staalinges (q.v.).

[^222]:    ${ }^{1}$ The ordinary account of this celebrated enrls Siencse painter is that given by Vasari, and since repeated in a varicty of forms. Modern rescarch shows that it is far from correct, the incidents being crroneons, and the paintings attributed to Simonc in various princiral fnstances not his. We follow the authority of Messrs Crowe aud Cavalcascile.

[^223]:    ${ }^{1}$ Two books of epigrams appeared first without date ; an enlarged culition, with two adalitional bouks, putlished in 1497, contains also the so.colled hymse

[^224]:    1 Fol. xiii. 656 sq., where (p. 659) sufficient referenco is made to the coarse vinut of this event taken by the later hostile Judaism (a view sapposed by some to be alluded to even in John viii. 41). Wo learn from Origen that the story about the soldier Panthera (חovotioa) was - Iready upheld by Celsus. The Elionites and other heretical sects, as is well known, maintained the paternity of Josed.

[^225]:     Caristus intravit in hunc numblum, quanto nrghuall funas at farto it geaitatia virginitatis claustra huas solit."

[^226]:    ${ }^{1}$ See Gimeler ( $\pi G$., Bel. \%. Aloth. 1), who points out imtalices in which antiodrinnizing zeal went so far as to call Davill Ocomátwp, and Jamex $\dot{\alpha} E=\lambda$ ¢́Oros.
    = 1.7hbe, Cone., vol. iii. p. 51. Consideralme extracls nre siven by dugustl ( $n$ nikre. iii.) ; see also Milman (Jomt. Christ., i. 18\%), whn characterizes nuch of it as a "wild labyrinth of uutramilatalile walachor."

[^227]:    ${ }^{3}$ The term Ocotúnos does not actrally occur in the canons of Ephesus. It is founl, however, in the ereed of Clalemion.

    4 It is true that fremme (Harr., $\because .19,1$ ) in the passare in which he draws his well-known paralice and controst letwcen the tirst and scomel Eve (comp. Justin, Jial. c. Tirlitho, lout, to the effect thatt, "as the hmman rase fell intn bomlage to deatls by a vimin, so is it rescuel liy a virgm," takes oceation to speak of Mary as the "adrocata" nf Eve; but it seems certain that his worl is a thaulation of the Greck ouvfropos, and implies honsility and reluke rather than aslvocacy.
    ${ }^{5}$ It is probable that the comnemorations and inwoatims of the Virgin which occur in the present texts of the ancient liturgies of "St James "amt "St Wark" are dite to interpolation. In this cmucxion ouglit also to be noted the clapter in Fpiphame (Ifier., 79) against the "Collyriclians," certain women in "llazee, Scythia, aml Amaia, who were in tho hahit of womlipping the Vircin (aci mapotrov) as a gmbless, the offering of a cake ( $\kappa 0 \lambda \lambda u p{ }^{\prime} \delta \alpha$ тwa) lucing one nf the features of their wombip. Iterelukes them for uffring the wanlip which was
     means womshipipeto" The cultus was pobably a rehe of leathention compare Jeren. xlis: 10.

    6 " Numpuid faia ita deilicata, iden nostra lumamatis oldata cs? Nequarnan, Domina. Data e.t tilli nmais poteatas in coulo et in lerra. Nil tihimpossibile" Serm, in Niativ. Nanis, ap Giesclers R゙G., lit, it. Alth, 1.

[^228]:    The joints taught in the catechisn are-that she is truly que Nother of God, and the second Eve, by whose means we have received Ulessing and life; that she is the Mother of Pity, and very specially nur advecate; that her merits are highly exalted, and that her dispositions towards us are extremely graclous; that her images are of the utinost utillt). In the Missal her intercessions (though alluded to in the eanon and elsewhere) are seldum directly appealed to except in the Litany and in some of the later offices sneh as those for Septenber 8, and for the Festival of the Seven Sorrows fllecreed by Benedict XIII. in 1727). Noteworthy are the versicles in the office for Decemiher 8 (The Feast of the Inimaculate Conception), "Tota pulchra es, Maria, et macula originalis non est in te," and "Gloriosa dicta_sunt de te, Maria, quia fecit tili magna qui potens est."

[^229]:    *After deducting sinking funds.

[^230]:    IThe suraanie is derived from an sncestor Mas úd, a Meceab, whose son "Abdalla nccompanied Mohammed on his flight to Molfona, and is often meutioned in the history of the prophet. Details as to the Tomily are given by Reiske, 1 nh. IFos, rol. i., note 208.
    *See De Saey, Chrest., 1st ed., ii. 490.

    - Ir the Nfendarce, iii. 69, he tells us that at Fostát (Old Cairo), in $\$ 36$ a. II., there fell into his hands a chronicle (now lost) by Godmer. bishop of Gironne, which lie nses for his narrative.
    * Of these tho first chspter gives an interesting catalogra.

[^231]:    1 Mr J, Miers has provel that 1. curitibensis, 7. gigrenter, 7. ovalifolir, I. Ifumboldtirnu, and Y. nigrnmenctute, hesines several verieties of these aymecies, are in general ne for fircharing mnti.

[^232]:    8 The word caa signified the plant in the notive Indan langnige. Tho Spaniards gave it a similar name, yerhz 'Mate comes from aty language of the Incas, and originally means a calahash. Tho fanis suay tea was called al first yerva ion mute, and then, the yezavs hiding dmpred, the name mate came to signify the same thing.

[^233]:    ${ }^{1}$ In this connexion should be mentioned the great services of Do Morgan, whose bold speculations on the fundamental principles of mathematical science have perhaps met with less than their due share of appreciation.

[^234]:    Mauretania, or Maurusia, ns it was called by Greek writers, unqucstionably signified the land of the Mauri, a term stilf retaiaed in the modern name of Moors, and nrobably meaning originally nathing but "black mea." The origin and ethnical afinities of tho sace nre unknewn; but it is probable that the inhabitants of all this nerthern tract of Africa along the coast of the Mediterranean were kindred races belonging to tho family which is represented at the present day by the Berbers of the mountrin districts and the Tuaricks of the tract south of the Atlas. They first appear in history nt the time of the Jugurtline War (110-106 B.c.), when Mauretauia west of the Mulucha was under the government of a king callod Becchus, and appears to have constituted a regular and organized state. It retained its independence till the time of Augustus, who in 25 p.c. bestowed the sovereignty of the previously existiog kiag iom upon Juba II., king of Numidia, nt the same time uaiting with it the westera portion of Numidia, from the Mulucla to the Ampsaga, which now receired the namo of Mauretania Casariensis, while the province that bad previously constituted the kingdem, or Mauretasia Proper, came to be known as Mauretania Tingataua. This distinction continued to subsist after the incorporation of the two provinces in the Roman empire under Claudius in 42 A. D., and remaiaed unchnnged till the time of Constantive.

    In the time of Pliny and Ptelemy, Mauretania contained a number of flourighing citios and towns, sevoral of which enjoyed the privileges of Roman colonies, laving been founded no dent in graat part with a view of keeping in check the wild barbarians who still occupied the greater part of the country. The most important of these places were-Tingis, on the site of tho modern Tangier, the capital of the province to which it gavo its name; Lixus and Sala, on the coast of the Atlantic, at the mouths of the rivers of the same name; and three towns in the iaterior of the same province, Zilis, Babba, and Danasa, all of them bearing tha title of Roman colonies. On the coast of the Mediterranean atood Rusaddir (now Melilla), within tho limits of Tingitana; and bejond

[^235]:    Montucla (Ilist. de Nuth., tom. i. p. i13) erroncously attributed these theorems an isoperimetry to Pythngoras, but his statemens :lased on a misinterpretation of a pansige in Dion mis: Laertius. Fee Bretschneider, Die Geometric vor Euclid es. Trp. 89. DU.

[^236]:    ${ }^{1}$ Transactions of the Epidemioluyical Sociely. _London, 1877.

[^237]:    ${ }^{1}$ Saggio di Interprelazione della Geomelria non.Euclidea, Naples, 1868: "Teoria fondamentale degli sparii di curvatura constanle," Annali di Matematica, ser. ii. tom. il. pp. 232-55. Both papers have been translated iuto French by J. Honel (Annales Scienlifiques de l'École Normale, tom. v., 1869). An exceedingly interesting account of the whole subject will be found in Helmholtz, Popular Lectures on Scientific Subjects, tranelated by Atkinson, second series, London, 1881, pp. 27-71.

[^238]:    ${ }^{1}$ A translation of this paper was published by Clifford in Nature (rol viii. Sios. 183,184 , pp. $14-17,36,37$ ), and has been reprinted

[^239]:    ${ }^{2}$ To this destription of the valleys surroundiag the Mecea gronp on three sides, which is mainly drawn from personal observation in 1880 , It may be added that there is a direct and easy camel route from Zeina to "Arafa between the Mecca hills and the mountains of the Hodheil. Taking this fact with the nzatement of Wákidi (Wellhausen's Muh. in Med., p. 341) that every wady in the sacred territory flows ontwsrds into common ground except that at '「an'im (aear the Hudúd on the Medina road, Yakút, i. 879 ; lbn Jubair, p. I10) we see that Mecca lies in an isolated group of hills-a sort of outpost of the great monntain wall.

    2 The inland road in ancient times was not so valuable as the coast road to Sjria, on account of the scarcity of water (Muh. in Med., p. 100).
    ${ }^{3}$ Mecca, aaye one of its citizens, ap. Wákidí (Kremer's ed., p. 196, or $M u h$. in $M(e d .$, p. 100), is a settlement formed for trade with Syria in summer and Abyssiaia in winter, and cannot contiaue to exist if the trade is intcrrupted.
    ${ }^{4}$ Detai's as to the inbabitants aud constitution of Mecca before Islám will be given under Monammed.
    ${ }^{5}$ The details are variously related. See Binúní, p. 328 (E. T., p. 324) ; Asma'i in Yảkút, iii. 705, iv. 416, 421 ; Azraki, p. 129 sq. ;

[^240]:    ${ }^{1}$ This is tho cross-road traversed by Burckhardt (i. 109), and described by him as cut tbrough tbe rocks with much lahour.
    ${ }^{2}$ Istrakhri gives the length of the city proper from nortis to south as 2 milés, and the greatest breadth from the Jiyid quarter east of tbe great mosque across tho valley and up the western elopes as two-thirds of tbe longth.
    ${ }^{3}$ The pious foundationa of Mecca have been rohbed by their guardians from very early times. See already Ihn Haukal, p. 25.

[^241]:    - For details as to tho ancient quarters of Mecca, where the several families or septs lived apart from generation to gēnerstion, see Azraki, p. 445 sq ., and compare Ya'kubi, ed. Juvnboll, p. 100. The modern town is best described by Burckhardt, who gives a plen of the city. The minor sacred places are described at length by Arraki aud Ibu Jubsir. They sre either connected with genuine memories of the Prophet, and his times, or have spurinus legends to conceal the fact that they were originally holy stoncs, wells, or the like, of heathen sanctity.
    ${ }^{\circ}$ Belidiorí, in his chapter on the floods of Mecca (p. 53 sq.), say's that 'Omar built two dams.
    ${ }^{6}$ The aqueduct is the successor of an older one asoociated with the names of Zobeyda, wife of Harin el-Rashid, and other benefactors. But tho old aqueduct was frequently out of repair, and seems to have played but a secondary part in the medixval water supply. Even the new aqueduct gare no adequate supply in Burckhardt's time.
    ${ }^{7}$ In Ibn Juhair's time ( p .132 ) large supplies were brought from the Yemen mountains. The rercnues of Yemen are atill matnly expended on the distribution of grain by the sultan in the Mijaz.
    ${ }^{6}$ The corruption of manners in Mecca is no new thing. See the letter of the caliph Mahdi on the snbject : Wüstcnfeld, Chron. Bek. iv. 168.

[^242]:    ${ }^{1}$ Tho following measurements may be cited :-1bn "Abd Rabhih (10th century), south side 20 cubits, north 21 , east and west 25 each (50 Azraki); lhn Jubair ( 12 th century), sides 54 and 48 spans, height 29 cubits at the bigbest or south wall, with a slight fall to the north side where the mizio or water-spout discharges (Azraki, 27 cubits); Burckhardt, sides 18 paces by 14, height 35 to 40 feet. Other modern measures vary considerably. The height was raised by Ibn Zubyyr from 18 to 27 cubits. Compare Muh. in Med., P. 426.
    ${ }^{2}$ The Kia'ba of Mohammed'a time was itself the successor of an older building said to have been destroged by fire. It was constructed in the still usual rude style of Arabic masoary, with string courses of timber between the stones (like Solomon's temple). The roof rested on six pillars; the door wes raised above the ground and appraached by a stair (probably on account of the flooda which often swept tho valley) ; and worshippers left their shocs under the stair before edtering. During the first siege of Mecca ( 683 A.D.) the buildiog was burned dowa, and lbn Zubeyr reconstructed it oa an calarged scale and in better style of solid asblar vork. After bis death bis most glaring innovations (the introduction of two doors on a level with the ground, and the exteusion of the building lengthwise to include the H ijr ) were corrected by IIajjaj under orders from the caliph, but the building retained its mere solid stmeture. The roof now rested on three pillars, and the height was raised onc-lalf. The $\mathrm{Ka}^{\text {a ba }}$ was againgentirely rebuilt after the flood of 1626 A.D., but since Hajjaj there seem to have been no structural changes.
    ${ }^{3}$ Hobal was set up within the tewple over the pit that contained the sacred treasures. Hia chief function was connected with the sacred lot to which the Meccans were accustomed to betake themselves in all matters of difficult-

[^243]:    ${ }^{1}$ See Ihn llishám, i. 51; Azraki, p. 80 ("Uzzi in Batn Marr); Iakưt, iii. 705 (Otheyda) ; Bar Hebrans on Psalm xii. 9. Stones worshipped ly circliog round them boro tho name dawe or duwar (Krebl, Rel. d. - Iraber, p. 69). The later Arabs not undaturally viewed euch cultus as imitated from that of Mecca (Yákut, iv, 622; comp. Dozy, Israeliten te $M$ Iekka, p. 125, who draws very perverse inforences).
    ${ }^{2}$ Thu old kiscea is removed on the arth day of the month beforo tho pilgrimage, and fragments of it are bought by the pilgrias as chames. Till the loth day of the pilgrimage modth the $\mathrm{Ra}^{\prime}$ ba is bare.

[^244]:    s Before Islím tbe Kaiba was oponed every Monday and Tharsday; in the time of Ibd Jubair it was opened with considerable ceremony every Monday and Friday, and daily in the month Rajab. But, though prayor within the building is favoured by the exantple of the Prophet, it is not compulsory on the Noslem, and even in the time of Ibn Jatúta the opportunities of entrance wero rednced to Friday and tise birthuay of the Prophet.

[^245]:    ${ }^{1}$ See De Vogué, Syric Centrale: Inscr. Sem.; Lady Anne Blunt, Pilarimage to Yejd, vol ii.; and W. R. Smith, in the Atheneum, $2 l$ arch $20,1880$.

[^246]:    ${ }^{1}$ The lister perhmps wos ne part of the onelent 'omra; sce Snouck-Iturgronje, CTac Mrediaansele Fecst, 1884 , p. 115 sq.
    

[^247]:    ${ }^{3}$ Tho ancrife is not Indispensable execpt for those who con afford it and are combining the haff whthe omra

    On tho simillar pelting of the supposed gisves of Abu Lahab and hits wite (Tun
     Tabarf, D .208.

[^248]:    ${ }^{1}$ The words wo have italicized will be seen to huvo very important oearings on certain old crrors which even now crop up, and which have introducel ono of the most inappropriato and appsrently ineradicable of terms (" centrifugal force") into the usual vocabulary of our bubject.
    ${ }^{2}$ It is nlso, in a partial sease, true of a freo body of which two princtpal axes through the centre of mass have equal moments of incrtia. In that case, as we will show later, even when couples act upon the body, provided they bo in planes passing through the third axis, the rate of rotation about that axis remains unaltered, though ist slircction in space clianges. This ls approximstely the case of the carth. Thie attractions of the sun and moon on the protubersut parts about the equatrer produce "precession" and "nutations" but do aot influence the length of the day.

[^249]:    ${ }^{8}$ It is to be observed here tlat Newton's silcnce is as expressive as his speech. When be sayg "change of motion" we understand that It does not matter what the original motion was ; and, when he men. tions only one force, he implice that the effect of any one force is the eamo whetber others are also at work or not. In fact, with Newton there can be no balsacing of forces, though there may be balaucing of tho affects of forces, a very different thing.

[^250]:    ${ }^{1}$ It is, in fact, in tho langrago of quaternions, a "veetor," of "whieh tho speal is tho "tensor" or length, and of which tho "versor" assigns tho direction. And tho laws of composition of. velorities an iu all respects the samo as thoso of vecters.

[^251]:    ${ }^{1}$ The clastic forco called into play by displacement is, by llooko's law, proportional to the displacement, and tends to restore the displaced particle to its equilibrium position. We mention this, in passing, to show the importauce of the present iuvestigation.

[^252]:    ${ }^{1}$ The physical application of this problem to pendulum motion, taking place in a medium in which there is resislance proportional to the velocity, will be afterwaris discussed analytically.

[^253]:    ${ }^{1}$ We here exclude spheres and ellipsuids of rotation. The latter iave only one series of circular sections, the former an infinite number.

[^254]:    ${ }^{1}$ But when atrain ia produced in a piece of matter, a limitation comes in. For, to take the aimplest case, the strain

    $$
    x^{\prime}=-x, y^{\prime}=-y, z=-z
    $$

    inplies that the figureto which it is applied has been "perverted," d.e., changed into its image as secn in a plane uirror.

[^255]:    ${ }^{1}$ We have assumed here, what is properly part of the resuits of the third law of motion, that the tension of a welghtless string, passing over a smooth pulley, is in the dirertion of its length, and of the arme amourt at all pnints

[^256]:    ${ }^{1}$ We sumpesa the bars to be solong, in comparison with the dis. tance between them, that we need take necount only of the action of their poles which ara turned towams one another.

[^257]:    ${ }^{1}$ This is a particular case of a more general principla, that the motion of the centre of gravity of a body is not affected by the mutual actions of its parte, fur the proof of which see p. 718, § 179.

[^258]:    ${ }^{1}$ He alludes to Phineus and the Lemnia facinora (Eum. 50 ; Cho. 620 ), snd there wers plays composed by him on both these subjects.
    ${ }^{2}$ Pausan., iv. 33, 7. He quotes from it tro hexameter verses ix. 28,2 .

[^259]:    ${ }^{1}$ Soph., Trach., 765.
    ${ }^{2}$ Eur., Med., 1321 ; Hesied, Theog., 958.
    ${ }^{3}$ M/ythology and Folklore, p.264; see also 3fythology of the Aryan Sitlions, pp. 240, 384, 388.

    - Pyth., iv. 119.
    - Cox, Aryan Ifythology, pp. 244, 385

    6 Cox, ibid., p. 363.
    ? Aryan Mythology, p. 104 and 354

    - Tac., Germ., 9.
    - Ar., Pac., 1012.

[^260]:    10 J'ausall., ii. 3, 8.
    11 Throg., 1001.
    12 $\Delta$ intuxas rovi, v. 1136 . Hence in 969 the dual iq used, ciged. osñc.

[^261]:    ${ }^{1}$ Seo Dczy, Cal. Corl. Or. Lug. Bat., li. 296.

[^262]:    1 This can only be vicwed as a very rough estimate. The road from Yanbu' on the Red Sea, which mus somewhat north of east, is by Burton's estimate 132 miles. From Medina to Mocca by the Inland or high road he makes $2 \not \$ 8$ miles. The usual road near the coast by Rábigh and Kholeya and thence to W. Fatima cannot be very different in length. Caravans traverse it in aboutoten or eleven days.

[^263]:    ${ }^{1}$ The nilgrimage to Medina, though highly meritorions, is not obligatory, and it is not tied to a single season, so that there is no great concourse at one time, and no fair like that of Mecca.
    ${ }^{9}$ A small sumber of families in Mecca still claim to represent the ancieut Ansar, the "defenders" of Nohamiued. But in fact the old population emigrated en masse after the sack of Medina by Muslim in 683, and passed into Spain in the armies of Músá. In the 13th century one old man of the Khazraj aod one old woman of the Aus tribe were all that remained of the old stock in Medina (Makkari, i. 187; Dozy, Mus. $d^{\prime}$ Espagne, i. 111). The aristocratic fanilly of the Bend Hoseyn, who claim descent from the martyr of Kerbela, and so from the Prophet, have apparently a better established pedigree.
    s According to ron Khallikán (Slane's transl., iii. 927) the walls are of the 12 th century, the work of Jamál el-Dín el-Ispabání.
    ${ }_{4}{ }^{\text {The }}$ Balát or great paved street of Medina, a very ursusual feature in an Eastern town, dates frons the Ist century of Islám. See Wüstenfeld's abstract of Samhúdí, p. 115.

    - Kuba is famous as the place where the prophet lived before he

[^264]:    Continental islands are those separated from the mainland by conparatively sliallow seas, gellerally under 100 fathoms.

[^265]:    = With regard to its appearance and disappearance Admiral Suythe (Mediterranean, p. 111) sajus:-"It seems that, as early as the 28th of June 1831, Captain Swinburne, in passing nearly over the apot, felt several slocks of a sea-quake, proving that the cause was then in operation; but on the 19th of the following July the crater had accumulated to a few feet above the level of the sea, and was in great activity, enitting rast volumes of steam, ashes, and scorix. From that time it gradually increased in all its dimensions till towards the end of August its circumference was about 3210 feet and its height 107 ; then from October various changes took place, and it entirely disappeared in Dccenıber." Since that time it has changed considerably. In 1863 the least water on it was 15 feet. It has two heads close to. getber, and at the distance of about 20 yards all round foere are from 7 to 9 fathoms of water.

[^266]:    ${ }^{1}$ This undeserved neglect seems to have fallen on him at an early period, for Houbraken (Groote Schouburgh, 1718), writing little more than forty years after his death, does not even nention him. The only definite information we bave from a contemporary is given by Bleyswijck (Beschrijuing der Stad Itcift. 1687), who tells us that he was boru in 1632, and that lie worked along with Carl Fabritius, an able disciple of Rembrandt, who lost his life by an explosion of a powder magazine in Delft in 1654. It is to the patient researches of W. Biirger (Tli. Dorè), Havard, Obreen, Soulendam, and others that we owe our knowledge of the main facts of his life, discovered in the arclives of lis native town.

[^267]:    Antonio Pigafetta, one of the survivors of Magellan's glorions but disastrons soyage, records in his journal, under date of April 15.21, annug the peretiaritics of the Phithpine ylarde, thea first discovered by Europenus, the existeuce of a bird there, about the size of a Fowl,

[^268]:    ${ }^{1}$ As we have seen, it was mentioned in 1726 by Valentyn, and a young example was in 1830 described and figured by Quoy and Gaim. ard (Voy. de l'Astrolabe: Oiseaux, p. 239, pl. 25) as the Mega. podius rubripes of Temminck, is wholly different bird.

[^269]:    ${ }^{1}$ An excellent figure of this skelcton, which unfortunately was incorrectly articulated, and wauted the greaser part of the tail, was published by Pander aud D'Alton in 1821, and has been frequently reproduced in subsequent works.

[^270]:    ${ }^{1}$ For generic characters see Benth. et llook., Gen. Pl., i. 826 ; anll for a full sceoum of the species of Chcumis and of the tribes of melon, by M. Naudia, aee Ann. des Sizi. Sas., 4 sér., tom. xi. p. 34.
    ${ }^{2}$ Naulin, l.c., Yp. 39, 76 ; see aiso Gar.. Chron., 1857, p. 153, and 1858 , p. 130

[^271]:    ${ }^{3}$ Sce also Naudin, in Nouv. rech. sur l. hyb. dans les reg., p. 118, 1861.

[^272]:    1. Mgthology and folklore, I. 13\%.
[^273]:    ${ }^{2}$ Sir G. W. Cox, Ahythology of the cliyune, 1. 268, cd. 2
    stauírwp, ar the Thebans themselves sail, acooring to Pau-asias, cited below.

[^274]:    8in

