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ABSTRACT 

Angles measurements from optical systems are the primary source of data 

for maintaining the orbits of high altitude satellites. Radar measurements are 

used primarily for low Earth orbit (LEO) satellites. Recently it has been shown 

that the accuracy of the orbit updates using only optical system angles-only data 

is just as good, if not better, than the performance from radar systems for LEO 

satellites.  The purpose of this thesis is to investigate the use of optical angles 

data with and without laser ranging data in determining the trajectories of 

missiles.  Analytical Graphics, Inc. Satellite Tool Kit is used to model the 

trajectory of a ballistic missile.  Several scenarios are developed for determining 

the orbit when acquired by sensors providing various combinations of range, 

range rate and angles data.  It is found that the combination of range, azimuth 

and elevation sensor data yields an orbit determination that has enough merit to 

be called accurate.  The error of the orbit determined by the angles-only data is 

two orders of magnitude larger than the error of the range and angles 

measurement. 

Additionally completed was an analysis of what would happen if the 

sensors could only track to the maximum altitude of the orbit.  As was assumed, 

the known position of the object drifts ranged from minimal to significant 

predicated on the final known position.  This is indicated by the error ellipsoid.  It 

was again found that the combination of range, azimuth and elevation sensor 

data until the maximum altitude yields an orbit determination that has enough 

merit to be called accurate. 

Also considered was the addition of a second sensor that had the capacity 

to always track range, azimuth and elevation to increase the time that is afforded 

to track the object, increasing the overall accuracy of the orbit determination.  It is 

found that the addition of a second sensor increases the fidelity of the angles-

only measurement such that the combination of azimuth and elevation sensor 

data yields an orbit determination that has enough merit to be called accurate. 
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I. INTRODUCTION  

This thesis investigated and compared the accuracy the estimation of a 

ballistic missile trajectory using four types of measurements: range-only; range, 

azimuth and elevation; azimuth and elevation; as well as range and range rate.  

Sensor measurements are commensurate with current values of telescopes and 

laser ranging devices.  Further investigated was the use of two sites vs. a single 

site as well as the usefulness of observations from 30° above ascending visual 

horizon to 30° above descending visual horizon observations (30° - 30°) as well 

as 30° above ascending visual horizon to maximum elevation above ascending 

visual horizon observations (30° – 90°) for both types of sites.  Waiting to 

determine the orbit until the 30° downward trajectory is less than ideal because at 

the time of the last observation, the object has almost impacted its intended 

target.   

 

A. MISSILE TRACKING BACKGROUND  
The United States currently employs many systems to affect ballistic 

missile defense.  These systems predominantly include radars that are either S-

Band or X-Band.  These assets are either mobile or fixed.  Fixed sights include 

those update early warning radars which are forward deployed as well as located 

near or within the United States.  These radars can track in bound objects on 

ballistic trajectories primarily from the cued acquisition mode.  That is to say they 

require a reasonable estimate of a missile position prior to being able to 

effectively track and lock the object.  The sources rely upon intelligence and 

analysis of potential threat launch areas to “look” in the general direction in the 

sky.  A portion of mobile platforms also exist that use SPY-1 radars which are 

located on all U.S. Navy combatant class ships and the Observation Island class 

of ships which use a somewhat different x-band radar system.  These systems 

can work in local autonomous mode and do not necessarily require the use of 

another asset to accurately determine the initial location of the missile.  As long 

as the radar is in acquisition dwell, it does not have high fidelity and can 
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generally only execute sector searches.  In this mode, the launch event can be 

identified, but in order to determine an accurate classification of the missile, the 

system needs to be switched to a longer dwell time.   

A fundamental knowledge of these systems will better prepare the reader 

for the topic at hand.  The AN/SPY-l radar system is the primary air and surface 

radar for the Aegis Combat System installed in the Ticonderoga (CG-47) class 

(shown in Figure 1) and Arleigh Burke (DDG-51)-class warships.  It is a multi-

function phased-array radar capable of search, automatic detection, transition to 

track, tracking of air and surface targets, and missile engagement support.  

 

Figure 1: USS Lake Erie (CG-70) a Ticonderoga class guided missile 
cruiser 

 
A conventional, mechanically-rotating radar, "sees" a target when the 

radar beam strikes that target once during each 360° rotation of the antenna.  A 

separate tracking radar would be required to engage each target.  In contrast, the 
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computer-controlled SPY-1 Phased Array Radar of the AEGIS system (aptly 

named after the mythological shield of Zeus) brings these functions together 

within one system.  The four fixed arrays of SPY send out beams of 

electromagnetic energy in all directions simultaneously.  This continuously 

provides a search and tracking capability for hundreds of targets simultaneously.  

AEGIS as a part of the Theater Ballistic Missile Defense (BMD) in combination 

with the SM-3 intercept missile has been successfully used to track and intercept 

targets on ballistic trajectories. 

The SPY-1 radar works exceptionally well and has been very effective for 

tracking space-based objects or objects on ballistic re-entry.  A minor problem 

with the radar is that the system is designed for blue water and littoral operations. 

Consequently, the SPY-1 configuration must be modified to look above the 

terrain to avoid causing excessive false targets from land clutter.  These 

configuration changes may increase ship susceptibility to low and fast targets.  

This makes it a less than ideal system to use near land for tracking objects that 

come over the landside horizon.  Additionally, the DDG-51 Class are not 

equipped with a secondary air search radar which could leave some ships open 

to potential threats.  

Additional limitations are with respect to handoffs and engagement tactics.  

In order to engage a target, the radar must hold a SPY-1 track. It cannot engage 

on a remote or otherwise handed off track unless equipped with special features 

such as the “Cooperative Engagement Capability.” 

The missiles that are tracked generally contain single, but some times 

multiple, boosters or stages.  The sample missile pictured in Figure 2 would have 

one or more separable phases to boost the warhead into space.  After 

separation, these engines would fall away leaving only the warhead on a ballistic 

reentry.  This indicates that with no other forces acting upon it other than the 

atmosphere, the missile would fall to earth in a predicable manner.  This is when 

the intercept can be most accurately planned.  For a short time, the warhead will 

fall as a single object, but after a period of time, some warheads separate into 
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multiple warheads scattering their potential impact over a significant area.  Each 

of these multiple warheads fall and separate differently.  Some weapons contain 

dummy warheads mixed in with the live warheads to potentially confuse targeting 

systems.  This thesis considers only a single warhead.   

   

Figure 2: Sample missile 
 

B. PURPOSE OF THIS THESIS 
Angles measurements from optical systems are the primary source of data 

for maintaining the orbits of high altitude satellites. When determining the orbit 

from a single pass the performance of angles-only data is not as good as radar 

systems due to the lack of range data; however, if combined with laser ranging 

observations become particularly useful.  Based on the concept that a ballistic 

trajectory is nothing more than a highly elliptical orbit whose perigee happens to 

intersect the earth, the same primary source for orbit determination for high 

altitude satellites can be applied to the highly elliptical Low Earth Orbiting (LEO) 

case.  Recently it has been shown that the accuracy of the orbit updates using 

optical system angles-only data is just as good, if not better, than the 
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performance from radar systems for LEO satellites.1  Other recent work has 

shown that the relative motion of satellites can be determined using differential 

angles data, that is given the motion of one satellite (the primary) the motion of a 

neighboring satellite relative to the primary can be determined using the 

differential angle data.2  The purpose of this thesis is to investigate the use of 

angles data in determining the trajectory of a single missile.   

This thesis uses Analytical Graphics’ Satellite Tool Kit (STK) and Orbital 

Determination Tool Kit (ODTK) to generate sample trajectories and simulate 

observations range, range rate, azimuth and elevation and then from these 

observations estimate the missile trajectory.  ODTK will be further described in 

the next section.  Both tools are invaluable resources because they allow the 

users to perform multiple scenarios given different starting and stopping points 

without actually expending the required cost on launching missiles.   

High Performance CO2 Laser Radar (Hi-CLASS) is a CO2 laser at the 

Maui Space Surveillance Site (MSSS) which can work in conjunction with the 

Advanced Electro-Optical System (AEOS) passive sensor.  Hi-CLASS uses the 

laser to image satellites. The Hi-CLASS has object metric measurement 

accuracies of range resolution two meters, velocity resolution one meter per 

second and angular resolution eight microradians.  These resolutions were used 

to display worst-case ability of this site to track a missile.  

While the MSSS sensors have merit for determining orbits given the 

assumed trajectories, it is not meant as a substitute for the already in place BMD 

system.  The Maui system is superb for analyzing trajectories that pass near 

overhead of the observatory.  The further the trajectory away from the site, the 

less effective the visual and laser ranging becomes.  Given the fact that there are 

no “threat” trajectories that pass over the MSSS sight, these sensors and this 

                                            
1 M.L. Thrall, Orbit Determination of Highly Eccentric Orbits Using a Raven Telescope, 

Master’s Thesis, Naval Post Graduate School, Monterey, California, September 2005   
2 K.C. Hill, C. Sabol, C. McLaughlin, K.K. Luu, and M. Murai, “Relative Orbit Determination 

of Geosynchronous Satellites Using the COWPOKE Equations,” Paper No. AAS 04-195, 
AAS/AIAA Space Flight Mechanics Conference, Maui, HI, Feb. 2004. 
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concept are not intended to substitute for the existing BMD systems.  This thesis 

demonstrates the value of angle data in aiding missile trajectory estimation.  

Also considered was the use of an additional sensor in the form of an 

AEGIS ship near the coast of the launch point to track longer and hand off a 

missile given moderate sensors.  The AEGIS system has assumed object metric 

measurement accuracies of range resolution five meters and angular resolution 

540 microradians.  These resolutions were used to display worst-case ability of 

this site to track the missile. 

Chapter II outlines orbit determination background, types and methods.  

Chapter III describes the inputs to ODTK as well as STK such that the results 

can be reproduced.  Chapter IV discusses the results using a single and multiple 

sites.  Chapter V describes the conclusions and Chapter VI suggests possible 

future work.    
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II. ORBIT DETERMINATION 

A. ORBIT DETERMINATION BACKGROUND 
Orbit prediction is the calculation of the orbit of an object given the state, 

the position and velocity or orbital elements, at some time (epoch).  Orbit 

determination is determining the state at the epoch from a set of observations. 

Since the observations are spread over time, the orbit must be predicted from 

one observation time to the next. Thus, orbit determination requires an orbit 

prediction model.  Orbit determination began around 1610 with Kepler.  Others, 

such as Legendre and Gauss, have continued the work, giving the science a firm 

analytical and computation basis.  Many improvements in theories have been 

cultivated over the years, but the fundamentals remain the same. 

Gauss’s theory is not used today because ultimately, the data that was 

gathered at the time lacked credible observations and present day theories 

expand upon the original theory making it less useful.  Without improvements in 

observational instruments, many of the techniques used in the 19th century for 

planets and comets would be useless for satellites.  For instance, if Gauss had 

been attempting to estimate the orbit of a much closer object such as a LEO 

satellite, he would probably have been frustrated because his results would not 

have been consistent enough to publish.  The observations techniques of the era 

would not have been accurate enough to support his calculations.3   

An important discovery in estimation techniques came about in the early 

1900 when Sir Ronald A. Fisher (1890-1963) introduced the concept of the 

“maximum likelihood method.” This work extended Gauss’s least squares 

method to cover non-Gaussian error statistics.  This independent approach 

seemed to begin the next advancement in estimation techniques.   

Another major event occurred in 1958 when Peter Swerling (1929-2000) 

published a RAND corporation report discussing a recursive algorithm for 

                                            
 3 David A. Vallado, Fundamentals of Astrodynamics and Applications, 2nd Edition, p. 675, 
Microcosm Press, 2004  
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statistical orbit determination.  Others seemed to simultaneously discover similar 

methods.  This small industry seems to be beset with simultaneous discoveries 

such as Gauss and Legendre in the early 1800s.  Contention surrounds the 

publication of Rudolf E. Kalman’s (1930) landmark work titled, “A New Approach 

to Linear Filtering and Prediction Problems.”   Many researchers have attempted 

to improve the initial concepts of Kalman, and have made minor advances, but 

the method remains in Kalman’s name.  In all fairness, these “newer” recursive 

formulations are a variation of the original contributions of Gauss and Legendre.4 

The United States’ first modern event in determining orbits came when 

Sputnik I flew overhead.  This seemed to mark the beginning of the modern 

discipline of orbit determination. The methods were steeped in traditional 

astronomy, but differed in three essential ways.  First, typically satellites were 

tracked via radiometric techniques, rather than via telescopes.  The second focus 

was on Earth-centered orbits, rather than orbits around the sun or distant 

planets.  Third, there was reliance upon intensive numerical calculations, rather 

than estimates and heuristics.  

The science progressed quickly in its formative years, thanks to the rapid 

advances in computing technology that accompanied the early space race.  Such 

developments made it possible to solve the mathematics that govern the orbital 

motion equations in a reasonable time. Much of the early work focused on 

generating better timetables of satellite speed and trajectory.  Large computers 

would calculate the complex equations of motion to generate these tables, and 

the results would be compared with actual radio measurements from tracking 

stations.5 

 
B. INITIAL ORBIT DETERMINATION 

 There are two types of orbit determination.  First is an Initial Orbit 

Determination (IOD).  While an IOD for distant objects can be made with a simple 

                                            
4 David A. Vallado, Fundamentals of Astrodynamics and Applications, 2nd Edition, pp 676, 

Microcosm Press, 2004 
5 http://www.aero.org/publications/crosslink/summer2002/04.html, Mar 06 Accessed Nov 06 
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linear problem resulting in explicit solutions, IOD for near earth objects is 

considerably more difficult.  ODTK includes a Herrick-Gibbs algorithm to 

calculate an initial orbit from range and angle measurements and a Gooding 

algorithm to calculate an initial orbit from angles-only measurements.  Albeit 

ODTK uses a navigation solution algorithm to calculate an initial orbit from GPS 

pseudo ranges, this was found to be insufficient for obtaining range-only or range 

and range rate IODs that converge in the allotted time span for a missile 

trajectory because of the required closeness in observations for the IOD.  Since 

no adequate IOD was available that would accommodate the given missile 

trajectory time frame, the range-only and range and range rate scenarios 

incorporated a manually modified range, azimuth and elevation Herrick-Gibbs 

IOD that was biased to be less accurate than the normal range, azimuth and 

elevation IOD.  Since the IOD used is accurate, it is understood the range-only 

and range and range rate simulations may be optimistic. 

Herrick-Gibbs is an algorithm named after the authors that obtains an 

estimate of the velocity at the time of the middle observation given three 

sequential position vectors and their observed times.  Herrick-Gibbs is a variation 

of the Gibbs method and employs a Taylor series expansion to obtain an 

expression for the middle velocity vector.  The closer the position vectors are in 

time, the greater the impact of observational errors on the final result.6  Similarly, 

Gooding angles-only theory estimates the position and velocity of a spacecraft 

from three pairs of angles measurements and its tracking platform position.  The 

tracking station selected is currently fixed, but this theory has practical 

application if applied to a moving tracking station, such as a satellite, as long as 

the exact position is well known.  

 

C. STATISTICAL ORBIT DETERMINATION 
The second type of orbit determination is an orbit update.  This assumes 

an ephemeris already exists, such as from an IOD or previous orbit 
                                            

6 David A. Vallado, Fundamentals of Astrodynamics and Applications, 2nd Edition, pp 441-
442, Microcosm Press, 2004 
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determination, and as the name implies, the ephemeris is updated using new 

observations.  In terms of obtaining a better orbit for a satellite, the traditional 

orbit update is not useful for the purposes of this thesis because, as seems 

evident, there will be no “next time” the missile passes overhead to formulate a 

better solution.  However, the orbit can be updated in near real time using the 

IOD and this is what ODTK does. 

 
1. Least Squares 
The batch Least Squares (LS) method processes successive batches of 

data.  LS methods input tracking measurements with tracking platform locations 

and an a priori orbit estimate and output a refined orbit estimate and the 

covariance.  An a priori orbit estimate is required. An a priori covariance can be 

used, but is not required.  Associated output error magnitudes are small when 

compared to IOD outputs.  LS methods consist of a sequence of linear LS 

corrections, where sequence convergence is defined as a function of tracking 

measurement residual Root Mean Square (RMS).  Each linear LS correction is 

characterized by a minimization of the sum of squares of the tracking 

measurement residuals.  LS methods produce refined orbit estimates in a batch 

mode, together with error covariance matrices that are optimistic; i.e., orbit 

element error variances are typically too small, often by at least an order of 

magnitude.  This is due to the fact that the LS method assumes a perfect 

dynamic model.  Operationally, LS may be the only method used, or it may be 

used to initialize Sequential Processing (SP).  LS algorithms require elaborate 

software mechanisms for measurement editing.  ODTK uses the accurate QR 

factorization and triangularization method with orthogonal Householder 

transformations to solve the LS equation.7 

The LS method also provides a statistical confidence in the uncertainty of 

the answers, the covariance.  The covariance matrix contains the estimates for 

the closeness of the fit with the chosen dynamics.  Given the state 

                                            
7 OD Tool Kit: A Technical Summary, 4th edition, v.3, p. 9, 2004 
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( )= K1 2, , , T
nx x xx  the covariance is of the form in Equation (1) where σ

jx is the 

standard deviation of jx  and µ jk is the correlation coefficient of jx  and kx .  

                           

σ µ σ σ µ σ σ

µ σ σ σ µ σ σ

µ σ σ µ σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K

K

M M O M

K

1 1 2 1

1 2 2 2

1 2

2
12 1

2
12 1

2
1 1

n

n

n n n

x x x n x x

x x x n x x

n x x n x x x

Pxx                               (1) 

 
2. Kalman Filter  
The Kalman Filter is one of the most useful estimation tools available 

today.  Loosely speaking, Kalman filtering provides a recursive method of 

estimating the state of a dynamical system in the presence of dynamic and 

measurement noise.  A key feature is that it simultaneously maintains estimates 

of both the state vector ( x̂ ) and the estimate error covariance matrix (P).  This is 

equivalent to implying the output of a Kalman filter has a Gaussian probability 

density function with a mean x̂  and a covariance P.8  The Kalman filter is a tool 

for linear systems.  The orbit equations are highly nonlinear.  The Extended 

Kalman filter (EKF) is the application of the Kalman filter to nonlinear systems in 

which the system equations are linearized about the reference trajectory. The 

EKF is a powerful tool when the system is modeled correctly and the deviations 

from the reference trajectory are small enough to be represented by a linear 

system. This is analogous to the use of least squares and the linearization about 

the reference trajectory. 

While the exact algorithm is proprietary, ODTK employs a Kalman filter.  

The current terminology is optimal sequential filter.  ODTK’s filter is a forward-

time recursive algorithm consisting of a repeating pattern of filter time updates of 

the state estimate, which propagates the state estimate forward, and filter 

measurement update of the state estimate which incorporates the next 

measurement.  The filter uses the observations along with their location and a 
                                            
      8 Lynch Choset, Kantor Hutchinson, Kavraki Brugrard and Thrun, Principles of Robot 
Motion, p. 269, MIT Press 2005 
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priori state estimate as the input, and provides optimal state estimates and 

realistic state error covariance matrices as the output, updated after every 

observation and at 1-second intervals9.   

AGI’s ODTK was used for processing and simulating observations and 

determining the orbit.  The program was responsible for all the data processing.  

Testing of the software was completed to ensure comparable results from 

separate approaches before serious attention could be used on the results.  The 

ODTK output was compared against the industry-standard Goddard Trajectory 

Determination System (GTDS) 10program’s output as well as output from Dr. K.T. 

Alfriend’s numerical model assuming an elliptic orbit about a non-rotating Earth.  

All outputs have similar outcomes thereby providing triple verification of the 

results. 

 

D. ERROR ESTIMATES 
For the purposes of this thesis, the covariance provides information on the 

accuracy of the orbit determination.  It can be used for comparison or just for a 

single fit.  For the covariance to provide a valid assessment of the orbit 

determination accuracy, the dynamics and sensor errors have to be accurately 

modeled.  If one is comparing covariances, one can reasonably argue in some 

cases if both are in error in the same manner, the comparison is valid.  For 

example, if the actual measurement errors for both fit spans are five arc-seconds, 

but are modeled as 10 arc-seconds, then the comparison should be valid.   

The initial covariance is input as “orbit uncertainty,” listed in the satellites 

settings.  It is input in the Radial, In-track & Cross track (RIC) reference frame.  

The initial covariance requirements for all sets of data should be representative 

of the actual uncertainty based on the types of measurements and the IOD.  For 

instance, the Herrick-Gibbs would give a good position estimate, but the velocity 

                                            
9 ST/ODTK Manual, Analytical Graphics Inc., February 2006 
10 Computer Sciences Corporation and NASA/GSFC Systems Development and Analysis 

Branch (Editors), Research and Development Goddard Trajectory Determination System (R&D 
GTDS) User’s Guide, July 1978. 
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is not well known.  The Gooding angles-only should give a good in-track and 

cross-track position estimate, but the radial will be poor.  “Range-only” yields a 

good range estimate which is a combination of radial and in-track, but the cross-

track will be poor as well as the velocity.  “Range rate” will be much like range but 

in addition, there will be a reasonable velocity estimate along the line of sight, 

which is a combination of radial and in-track.  Since significant analysis would be 

required to determine the initial covariance for the IOD methods, an initial 

covariance was not accomplished.   

White noise is added to each sensor from the facility commensurate with 

the fidelity of the sensor selected.  The fidelity is defined as the standard 

deviation of the sensor.  This ensures the accuracy of the scenarios.  As seems 

evident, the more accurate the sensors, the less the error.  
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III.  ODTK & STK INPUTS 

STK is used to generate the original trajectory from lift off point to 

destination assuming a best-fit ballistic trajectory as shown in Figure 3.  For the 

purposes of this study, the trajectory path was limited to those which flew from 

Vandenberg Air Force Base to Kwajalein Atoll.  The trajectories are optimal 

predicated upon drawing a straight line through two points, the take off and the 

touchdown on a sphere, and using a plane propagated outward from the line to 

generate.  The ballistic trajectory has as input the start location and time, 

maximum altitude as well as stopping location. For optimal trajectory, altitude 

input is zero and STK generates an optimal trajectory.  The trajectory data is 

exported to ODTK and an initial state of the missile at the launch time is 

generated using the initial state tool.  The exact scenario settings for ODTK are 

found in Appendix A. 

 

 

Figure 3: STK visual of ballistic arc 
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Using the initial state, a truth trajectory is generated using the simulator 

options.  The MSSS at Haleakala is manually entered into the scenario using the 

exact latitude, longitude and altitude.  Simulated observations of range, azimuth, 

elevation and range rate for the exact flight path trajectory as seen from the 

facility are generated.  Then white noise with a standard deviation of the input 

measurement noise is added to the truth observations. These noisy observations 

are the observations used for the trajectory estimation. The ODTK sequential 

estimator needs an initial state estimate and initial covariance. These will 

obviously be different according to the set of observations being used. As 

discussed in the Initial Orbit Determination chapter, there are options in ODTK for 

angles-only and range and angles measurements.  Both of these methods 

require three observations.  Choosing observations evenly spaced and spanning 

the entire trajectory would allow the most accurate orbit determination, but would 

preclude obtaining the orbit until shortly after the last observation occurs.  In the 

case of orbit determination for a missile, waiting has reduced efficacy because at 

the time of the last observation, the object has almost impacted its intended 

target.  A compromise was identified to select a range of initial observations with 

a narrow spread to obtain an orbit in the timeliest manner while allowing a 

sufficient spread between the observations to determine the orbit with minimal 

error. For this thesis the first, third and fifth observations (approximately a 40 

second spread) are selected and an initial orbit is determined.   Exact inputs to 

the Initial IOD are detailed in Table 1. 

Table 1: Selected Measurements for IOD from Maui site. 
Seconds 

since start Date Time Range (m) Elevation (°) 

0000 01 Jul 2005 12:08.20.00 2057.878 31.176 

0020 01 Jul 2005 12:08:40.00 2013.291 33.592 

0040 01 Jul 2005 12:09:00.00 1971.066 36.037 

 
The user can select options for IOD when using ODTK.  Herrick-Gibbs 

algorithm can be used to calculate an initial orbit from range and angle 

measurements; a Gooding algorithm can be used to calculate an initial orbit from 
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angles-only measurements, and a navigation solution algorithm to calculate an 

initial orbit from Global Positioning System (GPS) pseudo ranges.  Once the 

initial orbit is determined, an initial state vector is formed for the missile starting at 

the time determined by the IOD method.  The Herrick-Gibbs was used to 

generate an IOD for this all scenarios with modifications as stated in the Initial 

Orbit Determination section.  Since the Herrick-Gibbs algorithm was selected, the 

IOD object starts the epoch using the middle time from the three selected initial 

measurements.   

The filter is run with the error missile state that contains the built in sensor 

errors which yields an uncertainty “cone” as seen in Figure 4.  This cone 

represents the outside boundaries of the possible actual trajectories given the 

errors and biases encountered.  The resulting expanded predicted “known” 

position of the missile forms a cone of uncertainty.  Ephemeris data was exported 

from ODTK and loaded into STK to generate a visual representation of the error 

ellipsoid (Figure 5) for each determined position.  Great caution is required to 

ensure the filter, simulator, missile, initial orbit determination and facility blocks 

have the same sensors selected. 

Once the filter run is completed and the filter and simulator runs are 

differenced, the static product builder is used to select the desired output.  Again, 

great care must be taken during this phase to ensure the correct input files are 

used to gather the specified output.  The graphical representations are saved as 

bitmaps and the tabular results are exported into Excel files where the data can 

be easily manipulated.  The outputs are formatted easily and modified by editing 

the output file type to gain the desired file type.   

Scenarios using simulating observations of range, azimuth and elevation, 

angle-only, range-only, and range and range rate from the Maui site from the 

ground station to the target were first generated for the 30°-30° and the 30°-90° 

elevation passes.  Each scenario was compared to the truth trajectory (the 

simulator ephemeras data) and the differences noted.  The differenced 

trajectories highlight the maximum difference given the stated sensor errors.  
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Following this complete scenario run, the same type scenario was run with 

an additional sensor.  The second sensor was assumed to be a ship with AEGIS 

which is approximately 150 miles off the coast of California.  Its purpose is early 

acquisition of a missile launch and to allow tracking and hand-off to the sensor on 

Maui.  This will increase the amount of time that the missile is being tracked and 

should yield a better orbit determination and subsequent superior update.  The 

other thought is that the increased time of sensor observation should improve the 

angles-only orbit determination and update.   

The Aegis ship can relay raw data such as range and angles to the Maui 

site.  The IOD for the Aegis ship is accomplished with Herrick-Gibbs in a similar 

fashion as described above for the Maui site.  The same compromise was 

identified to select a range of initial observations with a narrow spread to obtain 

an orbit in the timeliest manner while allowing a sufficient spread between the 

observations to determine the orbit with minimal error.  The Aegis ship continues 

generate a trajectory and track the missile from 30° above its horizon to the point 

where the missile is 30° above Maui’s horizon.  At this point, the state and 

covariance from Aegis are handed off to the Maui site.  This initial orbit is 

predicated upon a predetermined white noise which coincides with common 

resolution of the sensors.  Exact inputs to the IOD are detailed in Table 2.. 

 
Table 2: Selected measurements for IOD from AEGIS ship site. 

Seconds 
since start Date Time Range (m) Elevation (°) 

0000 01 Jul 2005 12:01:50.00 637.5576 30.855 

0020 01 Jul 2005 12:02:10.00 648.377 40.740 

0040 01 Jul 2005 12:02:30.00 629.866 51.038 
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Figure 4: Cone of uncertainty 
 

 
Figure 5: Error ellipsoid generated by STK 
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IV.  RESULTS 

A. SINGLE SITE 
The process described in the previous section was followed for creating 

simulated observations, calculating IODs and predicting the object’s orbit from 

30° above the horizon on ascent to 30° above the horizon on descent as well as 

30° to 90°.  The 30-30 solution is used to determine the trajectory of a fully 

tracked object and the 30-90 solution is to establish what would happen if an 

object was tracked until it was approximately overhead. 

As discussed in the Orbit Determination section, the initial covariances 

should be representative of the initial position uncertainty.  It is important that the 

initial covariance not be too small because this means that the initial position is 

well known and it may be difficult for the filter to converge on the correct solution 

and observations rejected.   If it is too large then convergence takes too long or 

convergence may also be difficult. With a large number of observations the 

estimated state is somewhat independent of the initial covariance as long as it is 

not too small. Thus, there is a wide range of acceptable values for the initial 

covariance; it does not have to be precise, only representative. As discussed 

earlier the IOD methods do not provide a covariance and the amount of analysis 

to obtain the actual initial covariance would be significant.   For the series of 

separate runs, the covariances in Table 3 were used.  These values were a 

result of knowledge of the problem and some trial and error analysis.  

 

Table 3: Initial Covariances for all Sigma 

 rσ  iσ  cσ  vrσ  viσ  vcσ  

Range-Only 500 m 5 km 5 km 50 m/s 50 m/s 50 m/s 

Range & Range Rate 500 m 5 km 5km 10 m/s 50 m/s 50 m/s 

Azimuth & Elevation 50 km 1000 m 1000 m 50 m/s 50 m/s 50 m/s 

Range Azimuth & Elevation 1000 m 1000 m 1000 m 50 m/s 50 m/s 50 m/s 
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1. Sensor Modeling 
White noise is added to each measurement from the facility 

commensurate with the error indicated by the sensor.  This ensures the 

scenarios are true to life reflections of the capabilities of the system.  As seems 

evident, the more accurate the sensors, the better certainty the position of the 

object can be estimated.  The stated sensor errors are; range resolution of two 

meters, velocity resolution of one meter/second, and an angular resolution of 

eight microradians.  Full assumptions for measurement statistics are detailed in 

Table 4.  Further assumed was the fact that the visual and laser sensors cannot 

“see” the object until it is 30° above the observation point’s horizon.  This 

limitation also extends to the ballistic and descending portion of the shortened 

trajectory.  

Table 4: Measurement Statistics 

 White noise 
sigma 

Estimate 
Bias 

Tropo 
Sigma 

Light time 
delay 

Count 
interval 

Range 2 m False 0 True --- 

Range Rate / Doppler 1 m/s False --- True 1 sec 

Azimuth .000555556° False ---- ---- --- 

Elevation .000555556° False .05 ---- ---- 

 
Light time delay setting is applicable to range and range rate only and 

allows ODTK to take into account the finite speed of light given the difference in 

time of the position of the object from the time light leaves the missile until the 

time the light arrives at the point of observation.  The tropo sigma setting applies 

to range and elevation only and accounts for uncertainty in the tropospheric 

corrections.  The count interval setting is applicable to the range rate only and 

specifies the length of the interval over which the Doppler count is generated.  All 

measurements have some bias. With enough measurements the bias can be 

estimated.  This analysis assumed a zero bias so the estimate bias setting was 

false. 

To obtain the truth trajectory of the missile, the simulation is executed and 

a “simrun” file is generated using the truth initial state vector as input.  Prior to the 
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filter run, the IOD is pushed onto the missile.  This forces the filter to start its run 

from the position resulting from the IOD using the white noise indicated above, 

not the true position.  The filter generates a “filrun” file.  The filrun and simrun 

files contain ephemeris data for the trajectories and can be differenced.  The 

resultant file is a “difrun” file and this diffrun contains the ephemeris data 

differences.   The difrun file is used as input into the static product builder (a 

report generating feature of the ODTK software) and the Radial, In-track and 

Cross-track (RIC) positions were generated for each moment in time.  For the 

purposes of time, the fidelity was stopped at every 10 seconds albeit the software 

has the ability to march times less than one second.   

The standard deviations of the position uncertainty for RIC given each 

scenario are displayed in Figure 6 – Figure 11.  The radial, in-track and cross-

track uncertainties of the four measurement scenarios allow us to draw 

conclusions from a statistically significant number of runs instead of just from one 

simulation.  Figure 12 - Figure 15 show the single case results that demonstrate  

the theory and these results coupled with Figure 6 – Figure 11 prove the 

foundation for the comparison of the four scenarios. 
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Figure 6: Radial Position Uncertainty, Full Arc Observations 
 

 Radial Position Uncertainty, Half Arc Obs
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Figure 7: Radial Position Uncertainty, Half Arc Observations 
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 In-Track Position Uncertainty, Full Arc Obs
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Figure 8: In-Track Position Uncertainty, Full Arc Observations 
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Figure 9: In-Track Position Uncertainty, Half Arc Observations 
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Cross-Track Position Uncertainty, Full Arc Obs
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Figure 10: Cross-Track Position Uncertainty, Full Arc Observations 
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Figure 11: Cross-Track Position Uncertainty, Half Arc Observations 
 

Details reports for the differenced radial position for each run are graphed 

in Figure 12 – Figure 15.   
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Figure 12: Differenced Radial Position for Range & Range Rate 
Observations  
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Figure 13: Differenced Radial Position for Range-Only Observations 
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Figure 14: Differenced Radial Position for Range Azimuth & Elevation 
Observations 
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Figure 15: Differenced Radial Position for Azimuth & Elevation 
Observations 
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 Epoch is the third time the sensor is able to “see” the object and start to 

simulate observations, which is in the center of the IOD observation span, the 3rd 

observation.  Because the runs for both 30°-30° and 30°-90° are predicated upon 

the same data initially, their tracks overlay one another until the maximum 

elevation, which is where tracking in the 30°-90° scenario ends.  This is 14.1667 

minutes from initial launch and approximately six minutes after initial acquisition 

by the sensors.  At 5.5 minutes after epoch the two tracks begin to diverge 

because tracking in the 30°-90° scenario has stopped but tracking continues in 

the 30°-30° scenario.  In general since tracking continues the estimated trajectory 

from the 30°-30° scenario will be more accurate. 

 Review of Figure 6 – Figure 11 indicate the range, azimuth and elevation 

cases are the most effective and could lead to a solution for an interceptor.  Of 

the remaining cases, azimuth and elevation are the next best, but lack precision 

for an interceptor firing solution unless something is added to increase the 

precision.  

Noteworthy in Figure 12 – Figure 15 is the fact that all radial positions 

seem to stabilize (stop oscillating from high to low) when the missile is closest to 

directly overhead.  This is typical behavior of a sequential estimator since the 

estimator is beginning to converge after a sufficient number of observations.   

Additionally, the range, azimuth and elevation solution has the highest accuracy 

for determining position.  The angles-only solution (azimuth and elevation) is next 

closest in merit to the range, azimuth, and elevation but still remains ~50 times 

larger at the worst point and in general is two orders of magnitude worse than the 

error of the range, azimuth and elevation solution. 

Scrutiny of Figure 6 – Figure 11 shows that the range and range rate 

solution is only slightly better than the range only solution.  This means that the 

range rate measurement is only slightly aiding the trajectory estimation. Note that 

the initial covariance of the range and range rate solution is smaller than that for 

the range only solution.  This further indicates the range rate measurement yields 
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little efficacy in the estimation.  This raises the question of what range rate 

accuracy is needed to significantly improve the trajectory estimation accuracy. 

Range & Range Rate - Radial Position Uncertainty, 
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Figure 16: Radial Position Uncertainty with Range Rate Reduction  
 

Figure 16 is a radial position uncertainty chart for range and range rate 

that shows a reduction of range rate sensor accuracy while range sensor 

accuracy remained at two meters/second.  It can be seen from Figure 16 that in 

order for the range rate measurements to provide substantive help in estimating 

the missile trajectory, range rate error needed to be less than 0.005 % (times a 

constant) of the range error.  Since this is not possible given the available range 

rate sensors, range rate comparisons were dropped from the dual site 

comparison.  

Close examination of Figure 13 indicates the accuracy of position 

differenced range-only comparison half arc observation is better than the 

accuracy of the full arc solution. .  This seems to be a statistical anomaly and will 

not be the norm.  Comparison of the uncertainty plots, Figure 6 & Figure 7, show 

that, as expected, the full arc solution is better than the half arc solution. 
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 Also tracked were the RIC differences and the 0.95p error bounds were 

plotted along the boundary.  As seen in Figure 17 – Figure 19 below, positions 

remain within the 0.95p error bounds during all times.  Assuming the data are 

from an approximately normally distributed population, the two sigma (2σ ) 

confidence interval indicates 95.45% of the trajectories will pass within these 

bounds.  The results of the range, azimuth and elevation solution are the only 

ones displayed for brevity, while other results were gathered and are similar; the 

other results are not displayed in this thesis.  Figure 17 – Figure 19 reference the 

“missle” (not a misspelling, but a file name for the scenario) and reference 0.95 P 

positive and negative error bounds with a solid black line.   Because the 

simulator was differenced with the filter, the reference position will always be 

zero and these solid black lines will be non-distinguishable with respect to the x 

axis. 

 

 

Figure 17: In Track Position Differences and 0.95p Error Bounds - Range 
Azimuth & Elevation 
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Figure 18: Radial Position Differences and 0.95p Error Bounds - Range 
Azimuth & Elevation 

 

 

Figure 19: Cross Track Position Differences and 0.95p Error Bounds – 
Range, Azimuth & Elevation 

 



33

The residuals are the difference between the measurement and the 

calculated measurement based on the estimated trajectory. Both methods of 

orbit determination, batch least squares and the Kalman filter, are designed to 

minimize the sum of the normalized residuals (or residual ratios), where the 

normalized residual is the residual divided by the measurement standard 

deviation. If the orbit determination was perfect and the sensor measurement 

statistics correctly modeled then the normalized residuals should have a mean of 

zero and a standard deviation of one.  Thus, analysis of the normalized residuals 

is an indication of the quality of the fit and the accuracy of the sensor modeling. 

For example, if the standard deviation of the normalized range measurement was 

two and the bias was zero this would indicate that the modeled, or input, 

elevation angle standard deviation was likely half the actual value.  Additionally if 

its mean was not zero this would indicate there is a bias.  Note that since the 

residuals are a finite sized sample the mean will likely never be zero or the 

standard deviation exactly one. ODTK provides numerical outputs and plots of 

the residual ratios.  These are from the filrun files and are represented in Figure 

20 – Figure 23.   

 

 

Figure 20:  Residual ratios, Azimuth & Elevation Observations 
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Figure 21:  Residual Ratios, Range, Azimuth & Elevation Observations 
 

 

 

Figure 22:  Residual Ratios, Range & Range Rate Observations 
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Figure 23:  Residual Ratios, Range-Only Observations 
 

Demonstrative of the uniformity of the data, the normalized mean and 

standard deviation for the range, azimuth elevation scenario are displayed in 

Table 5.   Taking into account there were only 70 observations and the estimated 

trajectories are not exactly the truth trajectories, the values in Table 5 are 

indicative of correctly modeled sensor noise.  

 

Table 5: Mean and Standard Deviation of Full Range Azimuth and 
Elevation Observations Scenario 

 Normalized 
Mean 

Standard 
Deviation 

Range .0305 meters 1.138478812

Azimuth 0.006 ° 0.87713935 

Elevation 0.169 ° 1.188861353

 

In Figure 23, one residual slightly exceeds the 3σ  boundaries (99.73% 

probability assuming the data are from an approximately normally distributed 

population) while all the other residuals are well behaved and remain with in the 

3σ  boundaries.  This is a minimal and singular occurrence that strays outside 

the 3-sigma line showing the statistical probability of being in the 0.27 percentile. 
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B. MULTIPLE SITES 
To achieve a better known initial position, a second site could be used to 

acquire the missile earlier in the trajectory.  For instance, a SPY-1 capable ship 

can be assigned off the coast to observe and record the launch of a missile as 

shown in Figure 24.  This sensor could track sooner because of geographic 

position and hand-off a more exact position of the missile.  With a superb initial 

orbit, this section intends to prove the angles-only and range-only estimate could 

be as useful as the range and angles estimates for determining the orbit. 

 

Figure 24: STK Visual of Ballistic Trajectory with a Ship Sensor  
 

The same types of simulations were generated as were run for the single 

sensor case save the range and range rate case.  The range and range rate 

case was not run in the dual site case because the range and range rate showed 

little efficacy unless the range rate accuracy was reduced to numbers smaller 

than possible given the available range rate sensor, and the efficacy was not 

demonstrated in the single site run.  
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The stated sensor errors for the ship site are; range resolution of five 

meters and an angular resolution of 540 microradians.  These values are 

representative of space track radars, e.g., Eglin, not necessarily the Aegis.  The 

Aegis frequency is much higher than the space track radar frequencies and 

consequently Aegis should be more accurate.  As a result performance with the 

Aegis should be better than the results presented here.  The actual values are 

classified and not available.  The assumed measurement statistics are detailed in 

Table 6.  Further assumed was the fact that the Aegis sensors cannot “see” the 

object until it is 30° above the observation point’s horizon.  The scenario was 

established such that Aegis stops tracking when the missile goes below 30° or 

when AMOS starts to see the missile, whichever comes first.  While the second 

site was varied with respect to which sensors were used to track, the first site 

always used range, azimuth and elevation tracking sensors.  Figure 28 – Figure 

30 are identical in the first seven minutes of missile flight (approximately) 

because the same sensors are used in each scenario initially   

 

Table 6: Measurement Statistics 

 White noise 
sigma 

Estimate 
Bias 

Tropo 
Sigma 

Light time 
delay 

Range 5 m False 0 True 

Azimuth .015 ° False ---- ---- 

Elevation .015° False .05 ---- 

 

The position uncertainty for RIC given each scenario are displayed in 

Figure 25 – Figure 27. The radial, in-track and cross-track standard deviations of 

the four measurement scenarios allow us to draw conclusions from a statistically 

significant number of runs instead of just from one simulation.  Details reports for 

the differenced radial position for each run are graphed in Figure 28 – Figure 30.  

These graphs show the single case results in the affirmative and these results 

coupled with the uncertainty data identify a strong case for all times and 

scenarios. 
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Figure 25: Dual Site, Radial Position Covariance, Half Arc Observations 
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Figure 26: Dual Site, In-Track Position Covariance, Half Arc Observations 
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Cross-Track Position Covariance, Half Arc Obs
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Figure 27: Dual Site, Cross-Track Position Covariance, Half Arc 
Observations 

 

The first six minutes of the position covariance data in Figure 25 – Figure 

27 indicate a single line for range, azimuth and elevation without the appearance 

of the other sensor combinations.  While this line appears single, the data in 

range-only, azimuth and elevation as well as range, azimuth and elevation are 

identical during the time that the Aegis ship is tracking the missile.    

As can be seen in Figure 28 – Figure 30, the same radial difference 

positions were graphically compared.  As seems evident, the second site allowed 

for longer tracking of the object.  The additional tracking time facilitated a better 

known initial position and when the ship’s sensor handed off to the AMOS sight, 

the position was pin-pointed immediately.  The difference in these graphs from 

those presented before in a similar fashion is these graphs contain both the 

differenced radial position from the single sensor and the dual sites.  The single 

site does not begin to detect until approximately seven minutes after the ship 

detects the missile because of geographic position and is pictured in the same 

color as was done previously.      
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Figure 28: Differenced Radial Position for Azimuth & Elevation 
Observations at Maui 
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Figure 29: Differenced Radial Position for Range, Azimuth & Elevation 
Observations at Maui 
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Figure 30: Differenced Radial Position for Range-Only Observations at 
Maui 

 

Figure 28 shows the observations with the two sites yielded better 

performance, which was at times a full order of magnitude better than the 

performance with a single site when using angles-only at the second site.  The 

addition of a geographically earlier second site allows the primary site to use 

azimuth and elevation, which was previously not considered a viable method for 

tracking an in bound missile.  

Figure 29 represents the range, azimuth and elevation observations.  As 

seen previously, the single site results were very good and it was considered a 

viable method for tracking an in bound missile.  The addition of the second site 

improved the fidelity of the observations by between two and up to five times 

over the single site observations.   

Figure 30, which represents the range-only observations with the two sites 

yielded better performance which was at times three orders of magnitude better 

than those observations with a single site.  The second site allows range-only 

observations to be considered a viable method for tracking an in bound missile. 
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It is also noteworthy that the difference between the full arc observations 

and half arc observations is considerably less on the scenario with a single site.  

The dual site has differences that are between four and six times more between 

half arc and full arc coverage as opposed to between two and four times more (or 

less in the case of range) for the single site.  The tracking accuracy achieved with 

two sites in all three measurement scenarios with tracking ending at maximum 

elevation should be sufficient for handoff for an interceptor. 

 

 

Figure 31:  Radial Position Differences and 0.95p Error Bounds – Azimuth 
& Elevation 

Noteworthy in Figure 32 and Figure 33 is the immediate decrease in the 

0.95 P error bounds with the occurrence of the second site acquiring the target.  

This indicates the position is very well known after acquisition.  In these two 

figures, it is easy to see that the trajectory does not exceed the o.95P bound.   

Figure 31 and Figure 33 show a similar decrease in the 0.95 P boundaries at 

acquisition of the second site, but the boundaries do not decrease to near zero, 

as is the case on Figure 32.  Additionally, Figure 31 and Figure 33 show a similar 

final performance, which indicates the azimuth and elevation performance is 
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similar to the range-only in the radial direction. This is probably because the 

range, azimuth and elevation observations pin point the position so well.  

 

Figure 32:  Radial Position Differences and 0.95p Error Bounds – Range, 
Azimuth & Elevation 

 

Figure 33: Radial Position Differences and 0.95p Error Bounds – Range-
Only 
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As stated previously, the residuals are the difference between the 

measurement and the calculated measurement based on the estimated 

trajectory.  The results of the residual ratios are pictured in Figure 34 – Figure 36.  

A clear line of demarcation can be seen upon site two acquisition with the color 

change of the residuals.   

 

Figure 34:  Residual Ratios Dual Sites, Azimuth & Elevation at Maui 

 

Figure 35:  Residual Ratios Dual Sites, Range, Azimuth & Elevation at 
Maui 
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Figure 36:  Residual Ratios Dual Sites Range-Only 
 

 Visually represented in Figure 37 – Figure 38 are the position 

uncertainties of the missile.  The cases represented contain Radial, In-track and 

Cross-track position uncertainty and are both pictured for the angles-only case 

for like comparison.  The uncertainty of the position decreases significantly with 

the introduction of the site.  Note the time difference in the time for both 

scenarios.  The dual site scenario generates a reasonably small position 

uncertainty with the initial site, but as soon as the second site acquires, the 

position uncertainty drops.  Contrarily, the single site case has a saw tooth type 

of reduction of position uncertainty which takes a few minutes to reduce to usable 

levels.  Other cases of angles-only and range-only have similar but exaggerated 

differences. 
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Figure 37: Position Uncertainty for Single Site 
 

 

 

Figure 38: Position Uncertainty for Dual Site 
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V. CONCLUSIONS 

This thesis investigated and compared the accuracy of a ballistic missile 

trajectory using four types of measurements: range-only; range, azimuth and 

elevation; azimuth and elevation; as well as range and range rate.  Sensor 

measurements are commensurate with current values of telescopes and laser 

ranging systems.  Further investigated was the use of two sites vs. a single site 

as well as the usefulness of 30°-30° observations as well as 30°-90° 

observations for both types of sites.  Waiting to determine the orbit until the 30° 

downward trajectory is less than ideal because at the time of the last observation, 

the object has almost impacted its intended target.   

As expected, the range, azimuth and elevation measurement system 

resulted in the best trajectory determination and prediction.  Using angles-only, 

range-only as well as range / range rate measurements does not provide 

sufficient trajectory prediction accuracy for a single sensor.  It has also been 

determined in order for the range rate measurements to provide substantive help 

in estimating the missile trajectory, range rate error needed to be less than 0.005 

(times a constant) of range measurement error.  This increase in sensor 

accuracy is not possible with present range rate sensors.  

During the 30°-90° scenario for both the single site and the two site 

scenarios, the position error drift ranged from minimal to significant predicated on 

the accuracy of the state at the last observation.  It was found that the 

combination of range, azimuth and elevation sensor data until the ~90° point 

yields an orbit determination that has enough merit to hand-off to an interceptor. 

It was found that the dual sites increase the fidelity of the angles-only and 

range-only measurements such that the combination of azimuth and elevation or 

range only sensor data yields an orbit update that is sufficient to hand-off to an 

interceptor even if using the 30°-90° observations.  The second sensor yielded 

5.5 minutes more tracking time which refined the orbit enough to be consistent 

with the original range, azimuth and elevation measurement system.  
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VI. FUTURE WORK 

As described in the introduction, the re-entry vehicle may break into six or 

more separate warheads at some time after the projectile becomes ballistic.  

These warheads may be targeted at a single location or multiple locations.  Using 

the concept herein, a potential future objective could be to focus on the use of 

differential angles data in determining the motion of multiple Reentry Vehicles 

(RVs) relative to a primary RV that is being accurately tracked.  This could 

hasten the identification of dummy warheads.   

Additional follow on work could include running the smoother on ODTK for 

all the orbit determinations to backward calculate the exact orbit without the 

presence of errors and with the knowledge of the complete trajectory.  Since this 

sensor platform is fixed, the concept in this thesis could be applied to a moving 

sensor platform.  
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APPENDIX:  ODTK SCENARIO SETTINGS 

1. FACILITY (AMOS) 
• Position Geodetic 

o Lat      20.7084 deg 
o Lon      -156.257 deg 
o Alt      3059.5 m 

• Tracking ID        100 
• Estimate     Nothing 
• MinElevation     30 deg 
• MaxElevation     90 deg 
• RangingMethod     Transponder 
• AntennaType     Mechanical 
• Optical Properties 

o PolarExclusion    1 deg 
o ReferenceFrame   MEME J2000 
o AberrationCorrections   None 

• TroposphereModel 
o Enabled    Based on Tracking System 
o Model     SCF 

• TroposphereData  
o SurfaceRefractivity   Constant 
o Value     340 

• IonosphereModel 
o Enabled    Based on Tracking System 
o Model     IRI2001 
o TransmitFreq    2267.5MHz 
o ReceiveFreq    1815.77MHz 
 

2. FACILITY (SHIP) 
• Position Geodetic 

o Lat      34.6 deg 
o Lon      -133 deg 
o Alt      0 m 

• Tracking ID        101 
• Estimate     Nothing 
• MinElevation     30 deg 
• MaxElevation     90 deg 
• RangingMethod     Transponder 
• AntennaType     Mechanical 
• Optical Properties 

o PolarExclusion    1 deg 
o ReferenceFrame    MEME J2000 
o AberrationCorrections   None 

• TroposphereModel 
o Enabled    Based on Trackin System 
o Model     SCF 

• TroposphereData  
o SurfaceRefractivity   Constant 
o Value     340 

• IonosphereModel 
o Enabled    Based on Tracking System 
o Model     IRI2001 
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o TransmitFreq    2267.5MHz 
o ReceiveFreq    1815.77MHz 

 
3. INITIAL ORBIT DETERMINATION (IOD) 

• Method Herick / Gibbs 
o Selected Facility   SHIP 
o Measurement Pass   1 
o MeasurementSampleSize  300 
o MinimumElevation   30 deg 
o SelectedMeasurments   Double click to edit 

• Output 
o OrbitState    Cartesian 
o CoordinateFrame   J2000 
o EPOCH     1 Jul 2005 12:02:10.000 UTCG 
o XPosition    5009.51 km 
o YPosition    -2660.92 km 
o ZPosition    3772.53 km 
o XVelocity    0.400538 km^sec^-1 
o YVelocity    -5.92701 km^sec^-1 
o ZVelocity    0.840157 km^sec^-1 

 
4. FILTER 

• ProcessControl 
o StartMode    Initial 
o StartTime    1 Jul 2005 12:02:10.000 UTCG  
o StopMode    StopTime 
o StopTime    1 Jul 2005 12:29:06.480 UTCG 
o ProcessNoiseUpdateInterval  10 sec 

• OptionalSolveForParms 
o MeasBiases    false 

• Output 
o DataArchive 

 OutputStateHistory  AllTimes 
 EveryNSteps   1 
 SaveOnlyLastMeasPerStep false 
 OutputMeasHistory  true 
 OutputManeuvers  true 
 OutputSummary  true 
 OutputHistograms  true 
 HistogramSize   3 
 NumberHistorgramBins  22 

o Display 
 EveryNMeasUpdates  1 
 EveryNTimeUpdates  1 
 ShowPassTimes  true 

o SmootherData 
 Generate   false 

o STKEphemeris 
 DuringProcess 

• Generate  true 
• Time Grid  Filter 

 Predict 
• Generate  false 

 Generate   false 
 Covariance    true 
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 Covariance type  Position 3x3 Covariance 
 EVENTS   Output all  

 
5. SIM 

• Meas Types     Double click to edit 
• Start time     1 Jul 2005 12:00:00.000 UTCG 
• Stop time     1 Jul 2005 12:29:06.480 UTCG 
• Time step      10.000000000000000 Sec 
• Custom tracking intervals 

o Enabled    True 
 Schedule 

• Specific tracker   AMOS 
o 12:08.20.000 – 12:14.01.000 (Half) 
o 12.08.20.000 – 12:29:06.480 (Full) 

• Specific tracker  SHIP 
o 12:00:00.000 – 12:08.20.000 

• Error Modeling 
o No Deviations    false 
o Deviate Orbits    false 
o Deviate density    false 
o Deviate B COeff   false 
o Deviate SolarP    false 
o Deviate measurmentbias  false 
o Deviate Manuouvers   false 
o AddProcess Noise   false 
o AddManouverProcess Noise  false 
o AddGPSReceiver ClockPrcessNoise false 
o AddMeasWhiteNoise   true 
o DevaiateStationLocations  false 
o Random Seed    1 
o Error Scaling 

 Orbits    1 
 Density    1 
 BCoeff    1 
 SolarP    1 
 TranspDelay   1 
 MeasurBias   1 
 Manouvers   1 
 StationLocations  1 

o Update Filter times   true 
o Output 

 DataArchieve 
• Every N Step  1 
• Histogram size  3 
• NumberHistgramBins 22 
• Outputperterbations true  

 STK Ephemeris 
• Generate  true 
• Acceleration  false 

 
6. SATELLITE (MISSLE) 

• Description 
• OrbitState     Cartesian 
• EPOCH      1 Jul 2005 12:02:10.000 UTCG 
• XPosition     4900.49 km 
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• YPosition     -1863.06 km 
• ZPosition     3620.28 km 
• XVelocity     1.29992 km^sec^-1 
• YVelocity     -6.33318 km^sec^-1 
• ZVelocity     1.51314 km^sec^-1 
• EstimateOrbit     true 
• OrbitClass     UNDEFINED 
• PhysicalProperties 

o Mass     1000 kg 
• MeasurementProcessing 

o TrackingID    1001 
o MeasurementTypes   Range, Range Rate, Azimuth Elevation 
o ResidualEditing 

 NominalSigma    3 
 Dynamic 

• Enabled   false 
• HighSigma   100 
• NumRejectToStart  10 
• NumAcceptToStop  3 
• InitialHighSigmaDuration 0 min 

o ThinningTime     0 sec 
o MinPassDelta     20 min 

• MeasurementStatistics     None 
• MinGrazingAlt      100 Km 
• OpticalProperties  

o PolarExclusion     1 deg 
o ReferenceFrame    MEME J2000 
o AberrationCorrections    None 

• RangingMethod      Transponder 
• IonosphereModel 

o Enabled     false 
• ForceModel 

o Gravity 
 DegreeandOrder   21 
 Tides 

• SolidTides   false 
• OceanTides   false 

 GeneralRelativityCorrection  false 
 VariationalEquations 

• Degree    2 
 ProcessNoise 

• Use    BasedOnOrbitClass 
• WillUseProcessNoise  false 
• OmissionErrorModeling 

o Enabled  true 
o Scale   1 

• CommissionErrorModeling 
o Enabled  true 
o Scale   1 

• ThirdBodies 
o Sun   true 
o Moon   true 
o Planets    false 
o UseinVariationaEquations false 
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o Drag 
 Use      No  
 WillUseAirDrag     false 

o SolarPressure 
 Use      BasedOnOrbit 
 WillUseSolarPressure    true 
 EstimateSRP     true 
 CPNominal     .075 
 Area      20 m^2 
 CPInitialEstimate    -3.79122e-007 
 CPSigma     0.2 
 CPHalfLife     2880 min 
 ReflectionModel     Sphere with perfect 
 SunPosMethod     ApparentToTrueCB 
 UseInVariationalEquations   false 
 AddProcessNoise    false 

o Plugin  
 Use      false 

o UnmodeledAccelerations 
 ProcessNoise 

• RadialVelocitySigma   0 cm*sec^-1 
• IntrackVelocitySigma   0 cm*sec^-1 
• CrosstrackVelocitySigma  0 cm*sec^-1 
• TimeInterval    2 min 

 InstantManeuvers    InstantManeuvers 
 FiniteManeuvers    FiniteManeuvers 
 OrbitErrorTransitionMethod   VariationalEquations 

• PropagatorControls 
o IntegrationMethod     RK 4 
o StepSize 

 Time  .    10.0000000000000 sec 
 TrueAnomaly     2 deg 
 EccentricityThreshold    0.04 

• EphemerisGeneration 
o CreateSTKFile      true 

 Span      1440 min 
 Time Step      10.0000000000000 sec 

• OrbitUncertainty 
o R_Sigma      See Table 3 
o I_Sigma      See Table 3 
o C_Sigma      See Table 3 
o Rdot_Sigma      See Table 3 
o Idot_Sigma      See Table 3 
o Cdot_Sigma      See Table 3 
o AllCorrelations      0 

• FilterEvents 
o MeasurementRejectThreshold 

 NumForWarning    0 
 NumForAlert     0 

o MeasurementAcceptTimer 
 TimeGapForWarning    0 min 

TimeGapForAlert       0 
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