

Puppet for Dumps maintainers
V 0.2

I noticed that only a few people have Puppet skills
marked in the skill matrix so it seemed like a good
idea to do a talk.

50 (+10) minutes of Puppet
● Why should you care?
● What is Puppet?
● Cabilities
● Approach to code
● Language
● Syntax and style
● Default variable values (Hiera)
● Facter
● Classes

● More classes
● Roles, profiles, modules
● Testing with PCC (puppet compiler)
● Testing in deployment-prep
● Merging changes
● Effects of a change
● Disabling puppet
● The private repo
● Q&A

Here’s what we’re going to fly through.

Why learn puppet?
● Everything about the dumps is in puppet:
● Cron jobs for xml/sql dumps
● Cron jobs for all other dumps
● Exception watcher
● Runtime stats gatherer
● Dump FAQ emailer
● Etc!

Besides puppet having All The Things for dumps, it’s
also dead useful for any services and other stuff, so
once you learn it you’ll never go back.

What is Puppet anyways?
● A configuration and

orchestration tool
● Mange multiple servers from

one host
● PKI for all servers
● All changes to files on a

server are detailed with old
copies of files preserved



✗

It lets you set up things after an initial install, and,
with care, make changes to installed configs,
packages, and services.

There’s a puppet CA cert and each client gets a cert
to keep infiltrators offa yer stuff.

It’s a little inconvenient to find sometimes but old
versions of files and such are stashed in a so-
called “file bucket” before being updated during a
puppet run, and this has saved me more than once.

What Puppet can do
● Create configuration files
● Install packages
● Set up cron jobs and systemd units
● Start and stop services
● Set up firewall rules
● Create users and add their ssh keys
● Make, export or mount NFS shares
● And much much more

Coordinating many systems harmoniously

It’s got a buttload of features, it’s cross platform so all
you have to think about are resources, classes, and
maybe some library functions if you want that.

Puppet uses a declarative approach
● You declare the state you want your

system(s) to be in
● Puppet determines how to get there
● Order of execution of statements in

your code is not a given!
● “before”, “after”, “require”
● Example: make sure a package

required by some service is installed
before the service is started

It’s not quite this bad. Status: it’s complicated.

This is a BFD. When we write code we like to think
“Now statement A runs, then statement B, then
statement C”. Nope. Puppet does not do that. You
have to be explicit about requring things to be done
in a certain order. We used to have to do multiple
runs in order to get puppet to complete the catalog
without errors after initial installs, because we
hadn’t figured out how to get that right. For small
stuff though, and now that the base infra just works,
you get used to it.

Puppet language
● Ruby-like for manifests
● Snippets of Ruby in

templates
● Full Ruby in library

functions
● You don’t have to learn

Ruby (I didn’t!)

Ruby isn’t all that difficult, but it does make my eyes
itch; ymmv, and may folks like it a lot. The puppet
manifests (code files) are pretty clean though, and
easy to understand.

Syntax, linting
● puppet parser validate
● puppet-lint
● quotes and variables in strings
● arrow spacing
● 4-space indentation
● classes, profiles, roles… later.

Puppet-lint is your best friend, unless you like
cleaning up after jenkins a whole lot.

Arrows
● http://puppet-lint.com/checks/arrow_alignment/

NOPE YEP

 file { $tempdir:
 ensure => 'directory',
 mode => '0755',
 owner => $user,
 group => $group,
 }

 file { $tempdir:
 ensure => 'directory',
 mode => '0755',
 owner => $user,
 group => $group,
 }

There’s a lot of this kind of thing and it’s irritating,
because we wind up making multiple line changes
just to add one thing. But, in the long run, it’s better
for cognitive load.

http://puppet-lint.com/checks/arrow_alignment/

Single quotes with vars
● http://puppet-lint.com/checks/single_quote_string_with_variables/

NOPE

YEP

$cirrussearchdir = ‘${basedir}/cirrussearch’

$cirrussearchdir = “${basedir}/cirrussearch”

Quoting rules remind me of Bash to some degree.

http://puppet-lint.com/checks/single_quote_string_with_variables/

Quoting lone vars
● http://puppet-lint.com/checks/only_variable_string/

NOPE YEP

 file { $tempdir:
 ensure => 'directory',
 mode => '0755',
 owner => $user,
 group => $group,
 }

 file { $tempdir:
 ensure => 'directory',
 mode => '0755',
 owner => “${user}”,
 group => “${group}”,
 }

More of that.

http://puppet-lint.com/checks/only_variable_string/

Hiera
● Set values for vars for

one or a group of
servers

● Puppet/hieradata
● Yaml syntax
● Scope explicit in

name
Restrictions on use, info about lookup scope:
https://wikitech.wikimedia.org/wiki/Puppet_coding#Hiera

This is where you change values of variables around
on a per host or cluster or dc basis. The only place
you can trip up is getting the scope (namespace)
right. I screw this up all the time; other people get it
right every time. YMMV. See the link for how that
works.

https://wikitech.wikimedia.org/wiki/Puppet_coding#Hiera

Facter
● For “facts” retrievable via

OS
● OS distro/version
● Cores, memory
● Mounted filesystems
● Networking info
● Custom facts!

Facter is one of the most awesome things about
puppet. And its extensibility. Want to run more
processes on a host because there’s more cores?
Here ya go. Need a new fact that puppet doesn’t
provide by default? Write your own!

Classes and inheritance
● Short version:

don’t.
● Long version:

still don’t.

Even Puppet says don’t:
https://puppet.com/docs/puppet/5.5/lang_classes.html#inheritance

So the base unit of a puppet manifest is the class.
And so you might think right away “oh cool,
inheritance!” In fact, oh so not cool. Trust me on
this. Use classes only as a unit to have a bunch of
related statements and resources together,
NOTHING ELSE.

https://puppet.com/docs/puppet/5.5/lang_classes.html#inheritance

Classes as building blocks

https://github.com/wikimedia/puppet/blob/production/modules/dumps/manifests/generati
on/server/dirs.pp

We can look at excerpts from an actual class, so you
get the idea of the sort of thing that goes on in here.

https://github.com/wikimedia/puppet/blob/production/modules/dumps/manifests/generation/server/dirs.pp
https://github.com/wikimedia/puppet/blob/production/modules/dumps/manifests/generation/server/dirs.pp

Classes are built from other classes
● ...but not from profiles or

roles
● ...and only from classes in

the same module
● Profiles are built from

classes in multiple modules
● Roles are built from multiple

profiles

We have a three tier system in production: classes,
profiles, roles. Classes are th only thing native to
puppet; profiles and roles are just names we use
for larger units of things, and names of directories
where we put them.

Building with classes
● Include: no params,

as often as you want
● Require: no params,

as often as you want
● Declare: params, only

once
Yes, this is built entirely from Legos.

There’s a few different ways to add your class into
another one. You can “include classname-here”
and do that as many times as you like in the
mnifests that will make the catalog for your target
hosts. BUT no parameters can be passed. The
same is true for “require”. Why is this? Because if
puppet permitted params, you could include with
one set of values in one place and another set in
another place and puppet, being declarative and
trying to reach your desired state, wouldn’t know
what to do. What state is that actually? Heh. If you
need to pass in specific params, you can only do
that ONCE in a catalog and you declare the class
with the values for the args, as we’ve seen earlier.

Resources
● Files, cron jobs,

services, packages
● Declare any given

resource only once
● require_package()

to save headaches

https://github.com/wikimedia/puppet/blob/production/modules/wmflib/lib/puppet/parser/fu
nctions/require_package.rb

Resources also go into classes. These can be all
kinds of things, some are built in to puppet like the
ones named here, but you can also define your
own.

https://github.com/wikimedia/puppet/blob/production/modules/wmflib/lib/puppet/parser/functions/require_package.rb
https://github.com/wikimedia/puppet/blob/production/modules/wmflib/lib/puppet/parser/functions/require_package.rb

Cron jobs as resources

https://github.com/wikimedia/puppet/blob/production/modules/snapshot/manifests/cron/
pagetitles.pp

Here’s an example of a cron job resource I use.

https://github.com/wikimedia/puppet/blob/production/modules/snapshot/manifests/cron/pagetitles.pp
https://github.com/wikimedia/puppet/blob/production/modules/snapshot/manifests/cron/pagetitles.pp

Roles, profiles, classes
● Classes build other

classes and profiles
● Profiles build other

profiles and roles
● Roles don’t build

anything
● ONE ROLE PER HOST

So more about our classes/profiles/roles: you want
one role per host. Them’s the rules, I didn’t make
‘em. For me in practice this means 4 roles for
seven hosts (plus one more for the instance in
deployment-prep) but most of these roles are just a
few lines of “include” and some profile name. Not a
big deal.

Role for xml/sql dumps workers

https://github.com/wikimedia/puppet/blob/production/modules/role/manifests/dumps/gene
ration/worker/dumper.pp

Here’s one of those so you can see.

The first two are standard profiles, that wind up on
virtually all hosts. They do things like set up the
firewall, set up basic users and ssh keys, set up ntp
and promethus, make it a target for cumin for
remote commands via ssh, and so on. Only the last
three are specific to the dumps.

https://github.com/wikimedia/puppet/blob/production/modules/role/manifests/dumps/generation/worker/dumper.pp
https://github.com/wikimedia/puppet/blob/production/modules/role/manifests/dumps/generation/worker/dumper.pp

Profile common to dumps workers

https://github.com/wikimedia/puppet/blob/production/modules/profile/manifests/dumps/gen
eration/worker/common.pp

Here’s a profile common to all the dump workers.

https://github.com/wikimedia/puppet/blob/production/modules/profile/manifests/dumps/generation/worker/common.pp
https://github.com/wikimedia/puppet/blob/production/modules/profile/manifests/dumps/generation/worker/common.pp

Puppet Compiler
● Build puppet catalog for

gerrit change
● Target specific hosts
● Shows the diff, errors
● Not foolproof but pretty

awesome
● Use Wikitech creds to log in

https://integration.wikimedia.org/ci/job/operations-puppet-catalog-compiler/build?delay=
0sec

This is seriously the awesomest of the awesome right
here. If you do much puppet you will use it a lot and
love it a lot.

One thing is that the diffs aren’t perfect, sometimes if
will say “a new resource was added” and the name
of the resource (such as a file) but if you want the
contents of the file you have to go look at the gerrit
change. Still.. awesome!

https://integration.wikimedia.org/ci/job/operations-puppet-catalog-compiler/build?delay=0sec
https://integration.wikimedia.org/ci/job/operations-puppet-catalog-compiler/build?delay=0sec

Puppet in deployment-prep
● Automatic sync every ten minutes
● Sometimes breaks, check that your change arrived
● Host: deployment-puppetmaster04.deployment-

prep.eqiad.wmflabs
● Repo: /var/lib/git/operations/puppet and git log
● Sync errors in: /var/log/git-sync-upstream.log

By this time you really should have had other people
+1 and if you haven’t got +2 in the puppet repo,
someone else will have done that too. Nonetheless,
testing in deployment-prep is a good thing when
you can do it.

Hiera in deployment-prep
● Use Horizon interface
● Check your instance,

your prefix-puppet and
your project-puppet

● Wikitech creds to log in

https://horizon.wikimedia.org/project/instances/898fe007-ec78-465e-b298-d9c57a
ee7aad/?prev_marker=a82c5f27-a92b-42a6-9f3a-530f9feae621

So there’s an intereface specifically for managing
your instances in WMCS, called “horizon”. Hiera
settings that aren’t in the production puppet repo
will get set here. You can set them at the instance
level, or define a “prefix” such that all hosts with
that prefix get the setting (example: deployment-
snapshot” would cover snapshot0nnn hosts,
instead of just one instance). You can also add
settings to the deployment-prep project as a whole
but in this case be very careful about the
namespace. You don’t want that setting to land on
an appserver and have some weird impact.

https://horizon.wikimedia.org/project/instances/898fe007-ec78-465e-b298-d9c57aee7aad/?prev_marker=a82c5f27-a92b-42a6-9f3a-530f9feae621
https://horizon.wikimedia.org/project/instances/898fe007-ec78-465e-b298-d9c57aee7aad/?prev_marker=a82c5f27-a92b-42a6-9f3a-530f9feae621

Puppet-merge in production
● Last chance after +2 and

submit to abort
● Check the diff to be sure

it’s what you added
● “Multiple merge?” =

someone else trying at the
same time, GET
APPROVAL

Really this will have been done before going to
deployment prep. But anyways.

After +2 and submission you still need to get on the
puppetmaster in production, whichever is active,
and puppet-merge. That’s literally the command.
Sudo -i gets you root to do this.

You’ll get a diff of your changes; make sure it really is
your diff (this is a last security protection).

If you have bad timing, someone else will have just
submitted too (or will have forgotten to puppet-
merge their change). Ask in -operations or one of
the sre channels and find out who, verify BEFORE
you just merge their stuff too.

Testing in production (heh)
● Do a live run on a target
● (root) puppet agent --test
● Output:

/var/log/puppet.log
● Trival changes aren’t
● No-ops aren’t either

Yes, Virginia, we test in production. Heavy sigh.

Once your change is merged, it’s very good to hop
onto a target host and do a live puppet run right
there. If there’s an error you can catch it right away,
instead of having someone poke you later when
icinga alerts about it. And especially if your change
affects many hosts, this is only polite. Even the
most trivial changes can turn out to not have been
quite that trivial :-)

ALSO ALSO ALSO:
Not all changes you make are cleanly applied.

Example: change the name of a puppetized cron
job and see what happens. Spoiler: old one runs,
NEW ONE ALSO RUNS, your stuff breaks. CHECK
EVERYTHING.

Disabling puppet
● On one host: puppet agent –disable “MY NAME AND

MESSAGE HERE OR ELSE”
● On multiple hosts: via cumin server as root AND YOU

STILL BETTER PROVIDE A MESSAGE
● Reasons to do this: testing on one host, don’t want

puppet overwriting tests, or
● Staged rollout of a change across the cluster

Puppet can be disabled when you are doing a staged
rollout of a change that should not go to all hosts at
once, or when you are doing a local test or
investigation and puppet would otherwise overwrite
your changes.

If you do this, IT IS EXTREMELY IMPORTANT for
you to add your name and a message about WHY
you are disabling puppet. Otherwise when icinga
alerts about puppet not having run, or the nxt time
puppet needs to go around with an important fix
and your host(s) don’t get it, people will be unhappy
and rightly so.

Private puppet repo?
● Yes there is one
● On puppetmaster in production
● NO COPIES ANYWHERE, yes this means you
● WMCS has a “fake” private repo with passwords

visible to the world, for testing
● Dumps doesn’t use these but gtk anyways

Some stuff is secret. That’s not in our public puppet
repo. It is in a private one that lives only on the
production puppetmaster. You probably won’t ever
need this but it’s nice to know this exists. WMCS
does have an equivalent, but all the stuff in there is
public. NEVER PUT SOMETHING SECRET inthe
WMCS repo!

Further reading
● https://wikitech.wikimedia.org/wiki/Puppet

● https://wikitech.wikimedia.org/wiki/Puppet_coding

● https://wikitech.wikimedia.org/wiki/Help:Puppet-compiler

● https://wikitech.wikimedia.org/wiki/Puppet_Hiera

● https://puppet.com/docs/puppet/6.19/facter.html

● https://puppet.com/docs/puppet/6.19/puppet_language.html

I feel like I jsut barely scratched the surface. Oof!
Anyways, here is more reading, don’t get
overwhelmed though. You can get started on small
things easily enough, copy-pasta works wonders
and I am always available for questions or reviews.
And there are some other folks on the team who
have puppet knowlege too.

https://wikitech.wikimedia.org/wiki/Puppet
https://wikitech.wikimedia.org/wiki/Puppet_coding
https://wikitech.wikimedia.org/wiki/Help:Puppet-compiler
https://wikitech.wikimedia.org/wiki/Puppet_Hiera
https://puppet.com/docs/puppet/6.19/facter.html
https://puppet.com/docs/puppet/6.19/puppet_language.html

Thanks!
Questions, comments, gripes?

You don’t know where to find me;
 I’ll be hiding.

“puppet isn’t so much of a language as it is an incantation phrase book powered by souls
devoured thousands of years ago and given form by the heartache of opsen everywhere”

Yeah so I started doing these slides at 11 am and
now it’s 3:40 pm and I’m almost done and there is
no time for a dry run let alone get credits in there…
AAAUUUGGHH.

More seriously you do know where to fin me, all the
usual channels and phab. So… see you there!

Credits

● File:Dof_blocks_f22.jpg
● File:Flow_chart_for_flow_in_AfC_on_english_wikipedia_(2).png
● File:Hajrullah_SYLA,_Composer_and_Conductor.jpeg
● File:Heinold%u2019s_First_and_Last_Chance_2007.jpg
● File:Intermediate_inheritance_P_-_F1_-_F2.png
● File:LEGO_Notre_Dame_de_Paris_1.jpg
● File:Puppet_Logo.svg
● File:Ruby_logo.svg
● File:Tux_Paint_t-shirt_01.svg
● File:USMC-17547_cropped.jpg
● File:Walks-avm.png
● https://bash.toolforge.org/quip/AU_3cMwj1oXzWjit5obk

All images from commons.wikimedia.org or derived from them, or my own screenshots.

