
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

EXPERT SYSTEMS DEVELOPMENT
UTILIZING

HEURISTIC METHODS

by

John N. Lewis

June 1996

Thesis Advisor: Hemant Bhargava

Approved for public release; distribution is unlimited.

DUDLEY KNGX LIBRARY

N^/at POSTGRADUATE SCHOOL

MONTEREY CA 93943-5101

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0 1 i

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any

other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information

Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington. VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

Project (0704-0188) Washington DC 20503.

1 . AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 1996

3. REPORT TYPE AND DATES COVERED
Master's Thesis

TITLE AND SUBTITLE: Expert Systems Development Utilizing

Heuristic Methods

6. AUTHOR(S) LT John N. Lewis, USNR

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis analyzes the diagnostic domain and isolates the heuristics employed by experts

to arrive at diagnostic solutions. These heuristic methods are then generalized in order to arrive

at a series of heuristic rules that can be applied to a wide range of diagnostic processes

independent of there respective domain. To test the validity of the generalized heuristics, a

prototype expert system was created targeting the heuristics employed by avionics repair

technicians in repair of the APS- 1 15 radar system on the P-3C Orion.

14. SUBJECT TERMS Expert System, Prototype, Knowledge Acquisition, Heuristic

Development, Heuristic, P-3C Orion, Avionics Maintenance, Diagnostics,

Troubleshooting

15. NUMBER OF
PAGES 82

16. PRICE CODE

17. SECURITY CLASSIFI-

CATION OF REPORT

Unclassified

SECURITY CLASSIFI-

CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICA-

TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

EXPERT SYSTEMS DEVELOPMENT
UTILIZING

HEURISTIC METHODS

John N. Lewis

Lieutenant, United States Navy Reserve

B.A., California State University, Sacramento, 1984

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY
MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
June 1996

DUBLEY KNOX LIBRARY
NAM&L POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

ABSTRACT

This thesis analyzes the diagnostic domain and isolates the heuristics employed

by experts to arrive at diagnostic solutions. These heuristic methods are then

generalized in order to arrive at a series of heuristic rules that can be applied to a wide

range of diagnostic processes independent of there respective domain. To test the

validity of the generalized heuristics, a prototype expert system was created targeting

the heuristics employed by avionics repair technicians in repair of the APS- 1 15 radar

system on the P-3C Orion.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. OBJECTIVES 1

C. THE RESEARCH QUESTIONS 1

D. SCOPE 2

E. METHODOLOGY 2

F. THESIS ORGANIZATION 3

n. BACKGROUND 5

A. THE AVIATION MAINTENANCE SYSTEM 5

1

.

Levels of maintenance 5

a. Organizational Level Maintenance 5

b. Intermediate Level Maintenance 6

c. Depot Level Maintenance 7

d. Other Technical Support 7

2. Maintenance Scenario 8

3. The A-799 Rate 9

B. EXPERT SYSTEM 9

C. DOMAIN SELECTION 11

D. THE APS 115 RADAR SYSTEM 12

m. EXPERT SYSTEM SOLUTIONS 13

A. DIAGNOSTICS 13

B. EXPERT SYSTEMS IMPLEMENTATIONS 13

1. GTE COMPASS System 14

2. MK-92 Maintenance Advisor System 15

3. The Interactive Fault Diagnosis System 16

4. Automotive Engine Troubleshooter 17

5. MYCIN 17

C. SEPARATING DIAGNOSTICS FROM THE DOMAIN 18

IV. HEURISTIC DEVELOPMENT FOR DIAGNOSTIC SYSTEMS 21

A. HEURISTIC DEFINITION 21

1

.

Heuristic Example 21

2. Benefits Of Generalization 22

3. Heuristic Representation 23

- > B. HEURISTIC GENERATION 23

1

.

Abduction 24

a. Pseudo-code Representation 25

2. Commonality 25

a. Pseudo-code Representation 26

vn

3. Cross Commonality 27

a. Pseudo-code Representation 27

4. Complexity 28

a. Pseudo-code Representation 28

C. PROTOTYPE KNOWLEDGE ACQUISITION 29

1

.

Initial Steps 30

2. The Expert 31

D. IMPLEMENTATION 31

E. PROTOTYPE DESIGN 32

V. TEST AND VALIDATION 33

A. PROTOTYPE TESTING 33

1

.

Initial Prototype Improvements 33

2. Subsequent Improvements 34

3. Knowledge Acquisition Issues 35

B. HEURISTIC TESTING 35

1

.

Abduction 36

2. Commonality 36

3. Cross-Commonality 37

4. Complexity 37

C. FINAL TEST 38

VI. LESSONS LEARNED 39

A. KNOWLEDGE ACQUISITION 39

B. KNOWLEDGE REPRESENTATION 40

C. IMPLEMENTATION 40

D. CLIPS INTERFACE 41

E. CONCLUSION 41

APPENDIX A. PROTOTYPE SYSTEM CODE 43

APPENDIX B. APS 115 RADAR SYTEM 65

LIST OF REFERENCES 71

INITIAL DISTRIBUTION LIST 73

Vlll

I. INTRODUCTION

A. BACKGROUND

The era of shrinking budgets has had enormous impact on the Department of

Defense, a significant facet of which has been personnel losses in experienced senior

military maintenance technicians as well as their civilian counterparts. Highly trained

technicians have exited the service in droves. This has created a twofold problem within

DOD; an eroding experience base coupled with the requirement to "do more with less."

This problem is further exacerbated when older platforms are factored in, systems which

require highly experienced technical support. With few acquisitions of modern weapons

platforms planned, the gap in maintenance experience will increase. By applying expert

systems to capture some of the technical expertise before it evaporates, the gap between

the departing experience base and the remaining technicians can be narrowed.

B. OBJECTIVES

This thesis describes the design and prototyping of an avionics' maintenance

expert system for the P-3C Orion aircraft. It addresses the initial development aspects of

the life cycle of an expert system, emphasizing the use of heuristics to capture generalized

diagnostic procedures in order to insure modularity and future growth. Knowledge

acquisition, representation, and prototype implementation issues will also be addressed.

C. THE RESEARCH QUESTIONS

1. How can expert systems best be applied to avionics diagnostic processes?

2. How can heuristics be used to model diagnostic processes?

1

3. Can generalized heuristics be extended to encompass other diagnostic

domains?

D. SCOPE

This thesis will develop diagnostic heuristic modules using an Expert System

shell. The modules will then be applied to actual diagnostic processes via a prototype

diagnostic advisor expert system. The prototype expert system will be used to evaluate

failure indications in the P-3C APS 1 15 Radar, and will then make recommendations for

further action in order to assist in accurate repair.

Emphasizing the design of heuristic modules to capture diagnostic processes will

result in a modular approach useful for designing add-ons, thus aiding replication and

expansion of the prototype to incorporate additional avionics systems.

E. METHODOLOGY

Development of the heuristic models will rely on observation of diagnostic

processes, interviews with technicians, and the authors experience in the domain. Once

identified, diagnostic processes will be written using predicate logic and then converted

into expert system modules using the expert system shell developed by NASA.

Development of the Avionics Diagnostic Advisor Expert System prototype will

follow the approach used by Chorafas (1990, pp. 21) which consists of four phases:

problem definition, knowledge acquisition, programing, and test and maintenance.

The goal of the acquisition phase should be to develop a prototype and will build

off of the experience gained in developing the heuristic models. Iteration of phases two

through four will further refine the prototype until a finalized version of the system is

achieved. The scope of this thesis precludes completing a finished product, but will

complete one iteration of prototype refinement.

F. THESIS ORGANIZATION

The thesis is organized as follows: Chapter II provides the reader with a general

background and description of the Aviation Maintenance System, domain selection, and

how the P-3C APS 1 15 Radar was selected for prototype development.

Chapter HI describes how other expert systems solutions have been applied to the

diagnostic problem. Several troubleshooting domains and their expert systems will be

examined, focusing on similarities between the various systems. In addition, it introduces

the concept of treating troubleshooting processes as generalized functions that can be

applied to a wide variety of domains.

Chapter IV addresses the design of the heuristic models that will be used to

capture diagnostic processes. This chapter will also encompass knowledge acquisition,

implementation, and prototype design. In the prototype phase the diagnostic heuristics

will be incorporated into the prototype.

Chapter V examines how the heuristic models will be tested in a troubleshooting

environment. This is where the prototype will be applied to the P-3C APS 1 15 Radar

failure indications. Knowledge gained will then be applied to refining the prototype and

further testing.

Chapter VI discusses lessons learned during heuristic development and prototype

design. Emphasis is place on insights gained about the developmental process in order to

foster follow on research.

Appendix A contains the CLIPS code for the heuristic modules and the prototype,

while Appendix B is an overview of APS-1 15 radar system failure indications.

II. BACKGROUND

This chapter provides the reader with a general background and description of the

Naval Aviation Maintenance Program, some typical avionics maintenance practices, an

expert system description, and how an expert system can benefit. A brief description of

the APS 1 15 Radar is also provided.

A. THE AVIATION MAINTENANCE SYSTEM

The Naval Aviation Maintenance Program (NAMP) is described in detail in

OPNAVINST 4790.2E. This section is largely excerpted from OPNAVINST 4790.2E

and provides a brief overview of the NAMP, paying particular attention to those details

that bear directly on avionics maintenance.

1. Levels of maintenance

Maintenance for aircraft is divided into three levels. Organizational, Intermediate,

and Depot level. The three levels correspond in general to the degree of repair that can be

carried out, with Organizational being the simpler repairs done at the squadron level up to

Depot, which performs the most complicate types of aircraft repairs.

a. Organizational Level Maintenance

Organizational level is maintenance is performed by members of the

squadron that the aircraft is assigned to. Two types of maintenance are carried out;

scheduled and unscheduled. Scheduled maintenance consists of inspections, phase

maintenance, and life cycle support for equipment. Unscheduled maintenance takes place

when some equipment fails, for example a UHF radio fails to transmit and requires

corrective action.

In the event of an equipment failure, a Maintenance Action Form (MAF) is

generated. A MAF describes the nature of the malfunction and contains relevant

equipment data to aid in repair. A technician will use the MAF as a starting point for

corrective action. This is typically where the troubleshooting process begins, and any

subsequent repair work on that equipment is annotated on the MAF. The majority of

troubleshooting at the"0" level is relegated to isolating a fault to a particular component

and then replacing the component, essentially parts-swapping good for bad. Components

that cannot be repaired in the squadrons shop are sent up to the next level of maintenance,

Aircraft Intermediate Maintenance Department (AMD).

b. Intermediate Level Maintenance

Intermediate level maintenance (I-level) is where more detailed

maintenance occurs, particularly in regards to electronic repairs. OPNAVINST 4790.2E

states that all repair on microcircuits will take place at the I-level if the facility is suitably

certified. A squadron may have technicians capable of this type of repair, but they are

usually assigned to the AEVID on a semi-permanent basis. The technicians at I-level have

a higher degree of training than those at O-level, as well as access to more sophisticated

test equipment. The aviation maintenance philosophy dictates that when more difficult

repairs are needed, they will go up the chain from organizational to intermediate and

depot level if necessary. This implies that not every squadron can be supplied with a

comprehensive test suite or have every technician extensively trained in all phases of

repair. Economics is an additional factor as supplying all levels of maintenance

comprehensive test suites and personnel would be prohibitively expensive. If there are

funds for only a few specialists it makes sense to have them centrally located where they

can serve more customers, however this helps to insure troubleshooting at the O-level

will likely remain on a part-swapping basis.

c. Depot Level Maintenance

The final level of aviation maintenance is Depot level. This is where the

most difficult and technically challenging aircraft repairs are made. The personnel

working at Depot level are typically highly experienced technicians, many of whom are

retired from the military and continue to work on the aircraft that they maintained during

their service careers. This is a significant experience base, one that is rapidly eroding due

to budget cuts.

For naval aircraft there are five depot level maintenance facilities which

serve the fleet which may not be co-located with the type of aircraft they serve. Aircraft

are sent to the depot from their respective locations worldwide. This results in an inverted

pyramid in which the most experienced technicians are not located near their customers.

The concentration of experience at the depot level, those that would likely be called

"experts", are the farthest away from the customers that need their services.

d. Other Technical Support

Additionally, there are organizations that can lend technical expertise to

any of the three levels. Naval Aviation Engineering Support Units (NAESU) are funded

by NAVAER. and can be utilized down to O-level when specialized assistance is required.

Manufacturers also support technical representatives (tech-reps), usually as part of a

maintenance contract which can also be used at the O-level. Both NAESU and

manufacturers tech-reps are typically highly experienced technicians and engineers, and

may be either former miliary or civilian with commensurate experience levels. Use of

these assets is also a function of budget restrictions, however.

2. Maintenance Scenario

An unscheduled maintenance action is initiated by filling out a MAF. For

example, if an APS 1 15 radar fails in-flight and cant be fixed by the in-flight technician

(IFT), the IFT will fill out a MAF listing the type of failure and description of the

problem. After completion of the flight, that MAF and any others generated during the

flight will be sent to maintenance control. The APS 1 15 MAF will be assigned to the

avionics shop for and repair. An avionics technician will then troubleshoot the system

using the previously mentioned manuals. (OPNAVINST 4790.2E)

Troubleshooting begins at the most simple level by checking a series of fault

indicators and go/no go lights which are listed in a particular series in the troubleshooting

diagram. The technician will initially attempt to duplicate the initial fault indications as

written up in the MAF. The APS 1 15 radar has a built in test module which utilizes a

series of rotary switches to select different components to test and a dial indicator to tell if

that particular component is good or bad. If the indications on the test module are all

positive, the technician will next use an ohm-meter to check the outputs at various test

points in the system. Based on these indications, the fault may be tracked down to a

particular component, for example a printed circuit card. If so, this card is removed and

8

replaced with a card that is known to be good.

The card will then be given to the squadron supply office to be forwarded to an

Aviation Maintenance Screening Unit (AMSU). At the AMSU the card will be screened

to determine where it will be sent for repair. The fault indications will be matched against

the capabilities of the repair depots and the card will be forwarded to that facility which

has the ability to effect the repair. This means the card may be sent across the country or

across the street, depending on the location of the depot. Once at the

depot, the card will be repaired if possible and returned to the supply system for reuse. If

the fault indications cannot be replicated, and the card is otherwise determined to be

working, it will also be returned to supply system. This opens up the possibility that a

component may be returned to the system that still is not repaired correctly.

3. The A-799 Rate

An A-799 is a code added to a MAF for two possible reasons. Either a

maintenance action cannot duplicate the failure or the cause of the failure cannot be

determined. In both cases if the suspect component now functions correctly it is placed

back in service and can be re- used for repair purposes again. The rate of A-799's are

closely tracked, and a high rate may indicate a problem with the particular parts, with the

aircraft, or with the maintenance actions involved.

B. EXPERT SYSTEM

Definition:

An expert system permits the knowledge and experience of one or more experts

to be captured and stored in a computer. This knowledge can then be used by

anyone requiring it. The purpose of an expert system is not to replace the experts,

but simply make their knowledge and experience more widely available. The

expert system permits others to increase their productivity, improve the quality of

their decisions, or simply to solve problems when an expert is not available.

(Frenzel, 1987, pp.9- 10)

This definition is particularly applicable to the realm of Naval Aviation

maintenance. It can be derived from this definition that expert systems can also be used to

capture knowledge when that knowledge base is shrinking, as is the case in aviation

maintenance.

1. Expert Systems Benefits

Diagnostic expert systems can make maintenance actions, particularly those at the

lowest levels, more effective. (Sprague and McNurlin, 1995, pp. 462-464) Over an

eighteen month period from November 1993 until March 1995 there were over ten

thousand avionics related A-799s recorded in the NALDA database. This represents a

significant amount of wasted time and effort. Every MAF created must be cleared before

the equipment can be returned to service. This may mean as little as one hour of work or

as much as several weeks.

Additional benefits result from use of Expert Systems. Technicians gain insight

into difficult diagnostic procedures that increases their knowledge base, effectively

raising their training level without the expense of sending them to school. Use of Expert

Systems will also free up the time that Intermediate and Depot level technicians are

devoting to routine repairs, allowing them to concentrate their time on the more difficult

problems. This will result in more effective utilization of existing weapons systems.

10

C. DOMAIN SELECTION

"The selection of the appropriate domain for the project may have more to do

with the success of the effort than any other decision." (Prerau, 1990, pp. 78-79)

The selection of P-3C avionics as the domain was based on two factors; suitability

and experience. Most avionics equipment has Built-in-Test (BIT) capability, that is, a

display or readout from the equipment that will report any discrepancies or failures and

give the technician a starting point to effect repairs. While the output of all BIT

equipment is not standardized, it does provide an workable starting point for integration

into an expert system. Personal

experience in the P-3C Orion community was the other deciding factor. The author has

twelve months of prior experience as a P-3C squadron maintenance officer. Additionally,

a P-3C facility is located within driving distance of NPS, making access to experts and

technical references convenient. Use of the APS 1 15

Radar as the basis of the prototype Avionics Diagnostic Advisor was determined by

searching the Naval Aviation Logistics Data Analysis database. Using frequency of A-

799s as selection criteria, the search yielded the pilots horizontal situation indicator

horizontal situation indicator (HSI)) as having the highest reported occurrence of A-799,

the autopilot system second, and the radar system having the third highest with 155 A-

799s in that period. Review of the associated tech manuals revealed that the

troubleshooting procedures for the HSI and the autopilot would be more difficult to

translate into an expert system relative to the APS 1 15 radar, therefore the radar system

was chosen as the target system for a prototype.

11

D. THE APS 115 RADAR SYSTEM

The APS 1 15 radar system is the primary airborne surveillance device for the P-

3C aircraft. The search radar system comprises two separate antennas mounted in the

nose and tail of the aircraft, two radar receiver-transmitters, radar control panels, and a

video data display. The system is used for detecting surface vessels, submarines operating

with a snorkel, aircraft, and for weather avoidance. (NAVAIR 01-75PAC-1.1, pp. 12-

267) A more complete system description along with APS 1 15 radar system failure

modes is provided in Appendix B.

12

III. EXPERT SYSTEM SOLUTIONS

This chapter examines existing expert systems that address diagnostics in varied

domains, including medicine, electronics, and automotive mechanics. Many expert

systems are targeted at a narrow domain, however many of the diagnostic processes that

each system attempts to capture have strong similarities that can be exploited for

developing new applications.

A. DIAGNOSTICS

Diagnostics is defined in the Random House dictionary as the process of

identifying the cause or nature of a problem from the symptoms. This process is used in a

wide range of domains and is typically performed by human experts. Automating the

diagnostic or troubleshooting process was the goal of many early expert systems.

Capturing the mental procedures used by doctors or technicians in performing diagnoses

resulted in systems that could supplement their work. It is important to point out that

while an expert system can perform diagnostics accurately and consistently, they are by

no means meant to replace the expert. (Prerau, 1990, pp. 5)

B. EXPERT SYSTEMS IMPLEMENTATIONS

Expert systems are not strictly limited to troubleshooting or diagnostics domains.

Expert systems applications range from areas as diverse as the stock market, income tax,

and personnel management to name a few. The focus of this thesis, however is on

diagnostics, specifically in the realm of avionics.

13

Several different existing diagnostic expert systems were examined. The purpose

was two-fold; first to gain insight into the methods and processes used to capture and

represent expert knowledge, and second, to determine which systems could be integrated

into the design of a prototype avionics expert system. The next section describes key

points of some of these systems.

1. GTE COMPASS System

In the mid 1980's, GTE initiated an expert systems project which came to be

called COMPASS, (Central Office Maintenance Printout Analysis and Suggestion

System). The impetus for the system was GTE's upgrading of their network switches

for long distance telephone traffic. The upgrade required the installation of electronic

switches to replace the analog switches then in use in their long distance switching

networks. The upgrade was scheduled over a period of several years, which would require

the use of both types of switches concurrently. (Prerau, 1990)

As the new switches were installed, the maintenance force was trained to repair

the new equipment, resulting in a shrinking pool of technicians that were skilled in repair

of the old type of switches. Under the direction of David Prerau, GTE Laboratories

initiated an expert systems project designed to capture the knowledge of those technicians

who were most experienced with the old switches.

The system was designed and run on purpose built artificial intelligence symbolic

processors utilizing LISP. Initial success with an analog switch maintenance expert

system led to development and expansion of the COMPASS project to include expert

systems for other electronics applications within GTE.

14

A significant parallel between GTE and DOD can be drawn. DOD is facing a

similar diminishing of experienced technical experts while legacy systems continue to

operate, providing the same impetus for use of expert systems within DOD.

2. MK-92 Maintenance Advisor System

This project was undertaken at Naval Postgraduate School and its development

has provided the source for several theses. The Mk-92 Maintenance Advisor is an expert

system designed to perform electronic troubleshooting on the fire control system of the

FFG-7 class of frigate.

Motivation for this system development came from a high number of failures of

the fire control system that were beyond the ability of the shipboard personnel to repair.

This necessitated the use of civilian technicians to make repairs, frequently having to

travel to where the particular ship happened to be in the world. The problems posed by a

broken fire control system to a deployed unit are obvious, in addition to the lost resources

allocated to funding travel for technicians. (Lewis, 1993)

The Mk-92 maintenance advisor was designed to be run on a personal computer

of at least Intel 386 class, making use of an expert system software package called

ADEPT. Expert knowledge for inclusion into the system was gained from the same

civilian technicians who were most experienced in the repair of the fire control system. A

working prototype was developed and has been successfully tested in the field.

. , Significant in the development of the expert system was the selection of ADEPT

as the implementation software. ADEPT is one of the most popular expert system

software packages, but its use imposes some limitations. ADEPT requires the use of

15

formal decision trees as documentation. All of the decision nodes must be logically

connected in series. This limits the ability of ADEPT to make use of heuristics, in that

frequently a heuristic repair technique will not fit into the flow of a decision tree.

(Frenzel, 1990, pp. 61)

3. The Interactive Fault Diagnosis System

This is an expert system designed to perform troubleshooting on the Pratt and

Whitney TF-30 engine. Undertaken by the Aeronautical Research Laboratory of the

Australian Defense Science and Technology Organization, this system attempted to

incorporate the heuristic processes used by some experienced civilian technicians that

were better at repairs than their military counterparts. (Forsyth, et al, 1990)

The system was designed to run on a personal computer using the Neuron Data

shell Nexpert Object software. The development methodology employed is similar to that

used to develop the prototype avionics maintenance for this thesis. The system initially

used the diagnostic decision trees from the TF-30 technical manuals entered into the

expert system shell. Heuristic methods employed by the technicians were then evaluated

for inclusion into the expert system.

A shortcoming in the system was the method used to include the heuristics into

the prototype. One of the design criteria for the prototype stipulated that all steps in the

repair must be included in a decision tree. This had the effect of merely improving the

existirig decision trees from the technical manuals. If a heuristic employed could not be

included in the decision tree, it was discarded from the final iteration of the expert

system, even if it was proven to work. This resulted in an expert system that was well

16

documented in terms of the decision tree, but was not as accurate as it was when all of the

heuristics were used.

4. Automotive Engine Troubleshooter

This system was designed for troubleshooting diesel engines for the public transit

system in New Delhi, India. This system used a similar development method to the TF-30

system, employing troubleshooting trees from technical manuals combined with expert

knowledge to create the expert system. (Ghandi, et al, 1994)

The paper describing this system makes an important distinction between surface

and deep knowledge when included in an expert system. Surface knowledge is that

possessed by the expert and may encompass a wide variety of skills and experiences.

Deep knowledge is that which is accurate and exhaustive and is rigorously documented.

The authors point out that deep knowledge lends itself well to decision trees, however it

is generally time consuming and wastes manpower and test equipment when employed.

Surface knowledge can be characterized as heuristic methods, which the authors point out

may be quicker at achieving a solution than deep knowledge. The difficult part of

developing an expert system is how to combine the two types of knowledge.

5. MYCIN

This is one of the earliest implementations of expert systems technology. MYCIN

is a medical diagnostic system that was designed to aid a doctor in diagnosing different

types of bacterial infections and to recommend the type of drug and dosage needed to

overcome the infection. (Frenzel, 1987, pp. 69)

MYCIN is significant in that it performs diagnosis in a manner similar to a

17

troubleshooting diagram. The system requires a physician to interact with, and the final

decision as to diagnosis is left up to the doctor. One of the benefits of MYCIN is that it is

intended to aid inexperienced in diagnosing diseases with which they may have had little

practical exposure, which is also an intended byproduct of the Avionics Diagnostic

Advisor. (Olson and Courtney, 1992, pp. 246)

C. SEPARATING DIAGNOSTICS FROM THE DOMAIN

For this thesis, the words diagnostics and troubleshooting are used synonymously.

As was shown in the previous section, diagnostic expert systems have been applied to a

wide range of domains. The key element in this thesis is separating and quantifying the

thought process involved in reaching a diagnostic or troubleshooting conclusion from the

domain in which it is made. If possible, these quantified processes can then be applied to

troubleshooting scenarios outside the domain in which they originated.

Rasmussen and Jensen published and article for Ergonomics in 1974 in which

they detailed their work in analyzing the mental processes used by electronics repair

technicians. Their purpose was to examine the routines employed by several technicians

and determine if the successful technicians had routines that were similar. They identified

three distinct processes that could be generalized to any troubleshooting domain.

While not specifically referring to the technicians' methods as a "heuristic", the

authors compared the problem solving process to reading a "topographic map" of a

diagnostic problem. The "map" supplements the troubleshooting diagram in that it is

more detailed and may encompass factors such as the users experience level and past

exposure to similar problems. Clearly such elements are impractical to include in a

18

traditional troubleshooting diagram.

The generalized procedures that were derived from this work consisted of the way

that the technicians would "read" their "map" to solve the problem at hand. Significant in

this work was the authors conclusion that .many diagnostic processes outside the realm of

electronics utilize a similar approach, ie, the problem solver has their own "map" specific

to the domain. What is unique is the similarity in method of reading the map in order to

derive a solution. This lends credibility to the research question in chapter I concerning

generalizing heuristics.

19

20

IV. HEURISTIC DEVELOPMENT FOR DIAGNOSTIC SYSTEMS

This chapter describes the process used to generate the heuristics that constitute

the basis of the prototype expert system. The use of predicate logic as a tool for

representing heuristics will also be examined. The purpose is to create generalized

diagnostic rules that can be used in a working prototype as well as other diagnostic

domains.

A. HEURISTIC DEFINITION

A heuristic is defined as a procedure to develop an alternative without necessarily

optimizing; in expert systems, applying decision rules which are not necessarily the best,

but seem to perform well. (Olson and Courtney, 1992, pp. 407) Simply stated, a heuristic

is a rule that works, even if it does not initially make sense. People create and use their

own heuristics constantly, usually without realizing it. To differentiate between a rule and

a heuristic, the following example is provided.

1. HEURISTIC EXAMPLE

Traffic laws are rules in the strictest sense. Rules like speed limits offer no room

for interpretation. The rule for the speed limit on highway 101 is 55 miles per hour will

not be exceeded. Driving in excess of 55 mph will result in a ticket for speeding.

However anyone who has driven on that freeway (or any others in California) knows that

traffic ^frequently moves in excess of 55 mph. The reason is that most drivers have

developed their own heuristic for driving on the freeway.

The freeway driving heuristic results from the drivers knowledge base,

21

observation of driving conditions, and past driving experiences. The drivers knowledge

base says there a limited number of Highway Patrol officers. Observation of conditions

show that almost nobody is obeying the speed limit plus they haven't seen a highway

patrol officer on the freeway on this day. Past experience on this freeway says that usually

drivers that get pulled over are way in excess of the speed limit, enough to make them

stand out from the rest of the traffic which is also speeding. The resulting heuristic is "If I

drive at 63 mph, I can blend into traffic and probably not get caught".

Use of this simple heuristic also demonstrates on of the faults of relying on them;

they don't always work.

"Heuristics can wipe out huge, unusable portions of the search tree leaving only

those branches most likely to lead to a satisfactory goal. On the other hand, they

are not always guaranteed to work". [Frenzel, 1987, pp. 61]

If applied frequently and over time, the freeway heuristic will result in a ticket.

Troubleshooting and diagnostics are common uses of heuristics. An experienced

technician will often resolve a problem indication by making use of a heuristic that stems

from the same type of framework that the freeway driving example does. The technician

has a knowledge base specific to the domain he works in, can make observations of the

status of the equipment, and has past experience in dealing with similar failure

indications. The resulting heuristic may not make logical sense in terms of established

procedures, like those found technical manuals, but that is irrelevant because it solves the

problefn.

2. BENEFITS OF GENERALIZATION

Expert systems frequently make use of heuristics. And, as was shown in Chapter

22

ED, several systems have been designed specifically for diagnostics that use heuristics

where rules or tree diagrams cannot accurately depict. The shortcoming of these system is

that the heuristics developed are specific to the domain. This makes use of those

heuristics as the basis for expert systems outside of that domain impractical.

Many aspects of diagnostics and troubleshooting are similar, irrespective of the

domain. A mechanic, electronics technician, or a heart surgeon may use the same mental

processes to solve a diagnostic problem. This thesis hypothesizes that there may be

perhaps a dozen general troubleshooting or diagnostic heuristics that would may

encompass the majority of diagnostic processes. If these processes can be captured, the

result will be generalized diagnostic heuristics that can be incorporated into a wide range

of expert systems.

3. HEURISTIC REPRESENTATION

Representing heuristics can be done using any one of several forms, plain

English, pseudo-code, computer code, or predicate logic are just a few of the

representation schemes. The above example obviously uses plain English, which has the

advantage of being easy to understand. Unfortunately, if the goal is to translate the

heuristic into computer code it is more difficult using English constructs. For this reason,

pseudo-code will be used to represent the heuristics for this project.

B. HEURISTIC GENERATION

• > The heuristics generated for this thesis were the result of interview, experience,

and observation of typical diagnostic processes used by technicians. Additionally, use is

made of the work of Rasmussen and Jensen in describing the mental procedures used by

23

electronics technicians in troubleshooting. The processes examined are by no means

limited to the electronics domain, as automotive technicians and medical personnel were

also included in the generation process.

No quantified method of developing heuristics was found in the literature, but

after a series of trial and error, a workable system for capturing heuristics was developed

for the purposes of this thesis. Making use of observation and interview, the heuristic was

first written out in plain English. An example of a troubleshooting scenario was then

postulated to test the validity of the English representation. The heuristic was then

transformed into pseudo-code, and from this point rewritten in CLIPS in modular format

for inclusion in the prototype Expert System.

The research provided the basis for the modeling of four diagnostic processes. It

must be noted that these four are not an exhaustive list. It is hypothesized that a thorough

list of generalized diagnostic heuristics would be longer, ie, there is considerable room

for expansion. The heuristic are identified as follows: Abduction, Commonality, Cross-

commonality, and Complexity.

1. Abduction

The Abduction heuristic is the simplest and probably the most frequently used

diagnostic tool. This heuristic makes use of the technicians knowledge, experience, and

observation of the systems' condition to hypothesize a corrective action. Past experience

with -a-particular piece of equipment may allow the technician to jump to a corrective

action that is not specifically within the "flow" of an established procedure or

troubleshooting tree diagram.

24

Abduction compensates for those repair actions that do not at first make sense,

except for the fact that they work. This condition is frequently encountered in

troubleshooting, and may in fact be impossible or impractical to be included in a logic

diagram or troubleshooting tree. That is precisely the advantage of heuristics however; its

immaterial if the solution can be rigorously documented or diagramed, so long as it

works.

a. Pseudo-code Representation

Statements:

1. component_of(Y, X);

2. req_to_operate[ok(Y), X];

Y is a component of X

X requires a working component Y to

operate

Heuristic: If system X has failed, and Y is a component of X, and X requires Y to

operate, then check component Y.

2. Commonality

Consider a system made up of components, which requires all of those
M 3

components to function correctly in order for the system to operate correctly. The

components have a common intersection, for example a series of pumps with a common

25

power source or common cooling system. If the system as a whole has failed, then the

first step to take would be to check the intersection of all the components, ie, the

common point of failure. If unsuccessful, check the next largest intersection, iterating the

process of checking points of intersection in descending order until the problem is

successfully corrected. This process may be iterated until individual components are

checked. Commonality allows for the elimination of superfluous steps, as the most likely

point of failure is the point where the largest intersection occurs.

a. Pseudo-code Representation

Statements:

components_of[(B,C,D), A]; B, C, and D are components of A

req_to_operate[ok(B,C,D), A]; A requires B, C, and D to operate

common([B,C,D]); B, C, and D have a common intersection

Heuristic: If system A has subcomponents B, C, and D, and these subcomponents

have a common intersection, in the event of failed A, first check the intersection of B, C,

andD.

26

3. Cross Commonality

Cross commonality is the condition where two or more systems with separate

functions must operate in concert. A shipboard example of this would be a steam turbine,

a reduction gear assembly, and a propeller drive shaft. These systems can operate

independently of one another but must work together to produce a useful output; making

a ship move through the water.

Each of these may have components in common, for example a lube oil system,

an electrical power source for pumps and valves, and a heat exchanger may serve all

three. If there is a failure indication of either the turbine, reduction gear, or propeller shaft

while the other two continue to operate normally, the initial domain to check would be

those components which are exclusively used by the failed system and excluded because

the other two systems continue to function.

a. Pseudo-code Representation

Statements:

components_of[(D,E,F), A];

components_of[(F,G,H,I), B];

components_of[(D,F,H,J), C];

req_to_operate[(D,E,F),A];

req_to_operate[(F,G,H,I),B];

req_to_operate[(D, F,H,J),C];

D, E, and F are components of A

F, G, H, and I are components of B

D, F, H, and J are components of C

A requires D, E , and F to operate

B requires F, G, H, and I to operate

C requires D, F , H and J to operate

27

Heuristic: If systems A, B, and C require their respective subsystems to operate

and system B has failed while A and C continue to operate, check those components of B

which are not shared by A and C.

4. Complexity

This heuristic captures the condition where a system is made up of components

which have the characteristic of "relative complexity". What is meant by relative

complexity is that one component will have a number of subcomponets, the next will

have less, and so on in descending order. In the event of a system failure, the component

with the highest likelihood of causing it is the one with the most subcomponents,

therefore check first the one with the greatest degree of relative complexity.

- * a. Pseudo-code Representation

Statements:

components_of[(B,C,D),A]; B, C, and D are components of A

28

req_to_operate[(B,C,D),A]; A requires B, C, and D to operate

relative_complexity(B>C>D); B is more complex than C which is more

complex than D

Heuristic: System A has subcomponents B, C, and D, and these subcomponents

are in descending order of relative complexity. A requires B, C and D to operate, so if

system A has failed, first check the subcomponent with highest degree of complexity, B.

C. PROTOTYPE KNOWLEDGE ACQUISITION

Knowledge acquisition used a hybrid approach, which took advantage of the

method proposed by Chorafas. The major difference in acquisition methodology

occurred in timing, and this was due to the heuristic design phase. The heuristic design

phase involved some exposure to the avionics technicians and the troubleshooting

processes during model development, therefore some of the domain knowledge

acquisition occurred here. This isn't in strict accordance to Chorafas' development

methodology, as some of the domain knowledge is exposed earlier than required,

however this had little impact on prototype development. Domain selection criteria and

target system selection for prototype development are as discussed in Chapter II.

29

1. Initial Steps

The first step in creating the prototype Avionics Diagnostic Advisor (ADA) was

to examine the Crew Station Manuals (CSM) NAVAIR 01 PAC 12-5. These are the

technical manuals for the P-3C onboard equipment, and are maintained onboard the

aircraft. Included in the CSM are basic troubleshooting and repair procedures. These

procedures are simplified based on the assumption that they will be carried out by the

operators of that particular equipment either in-flight or during preflight. Troubleshooting

procedures are generally in the form of tree diagrams, and these diagrams formed the

starting point for expert system knowledge.

Where applicable, the individual troubleshooting steps were "classified" as

making use of one of the heuristic models. Most of the tree-diagram type of procedures fit

closely with abduction. When the experts knowledge was added, there were similarities

with the other heuristic models, however there are some that are difficult to classify using

just those four models. This lends credence to the hypothesis that several additional

models can be created for a more thorough set of heuristic tools.

Additional troubleshooting information was gathered from the technical manuals

used in the avionics work center. These manuals are similar to the CSM's, but contain

more detailed information as they are used in a "shop" environment vice onboard the

aircraft. For the radar system, the NAVAIR 01 PAC 2-8.1 was used. Once sufficient

information was obtained, the first iteration of the prototype was begun. The first iteration

did no more than automate the existing repair literature. This may at first seem redundant,

however making use of existing documented procedures for the purposes of prototyping

30

is advocated by both Chorafas and Prerau. This allows for more rapid development of the

prototype in order to establish a baseline. The next step is to identify an expert or experts

and incorporate their knowledge into the prototype.

2. The Expert

Identification of an expert in this environment was relatively easy. Patrol

Squadron (VP) 91 is a reserve P-3C squadron which has a core of full-time personnel for

administrative purposes. Due to the nature of a reserve squadron the experience level of

many of the avionics technicians is quite high. Some of the in-flight technicians that aided

in development of the prototype have as much as sixteen continuous years of P-3C

experience. Additionally, VP-91 has a NAESU representative working in the same hangar

who has twenty four years experience with P-3C avionics. The problem now became who

out of this group to use? In order to simplify the variety of inputs available from such a

large group, it was decided to use the two most experienced personnel; the Avionics Shop

supervisor, and the NAESU representative.

D. IMPLEMENTATION

Once the steps in the troubleshooting procedure were converted to English, those

that conformed to the models were re-written using pseudo-code similar to the models.

The procedures that were unique were re-written in a simple If/Then format, similar to

pseudo-code representations. This aided in converting unique procedures to CLIPS and

provides a source or additional models. After only a few repetitions of this process it

became easier and quicker to write the individual steps in the troubleshooting procedure

directly into the CLIPS prototype. The result was a series of diagnostic procedures that

31

were in modular format. The modules were then combined into a working structure for

the prototype system which roughly followed the guideline of the original troubleshooting

diagram from the CSM.

E. PROTOTYPE DESIGN

Several diagnostic expert systems have already been fully implemented in CLIPS.

To aid in creating a working prototype expediently, parts of existing CLIPS expert

systems were rewritten and incorporated into the prototype. Singular use was made of an

automotive troubleshooting example program which is supplied with the CLIPS software

package.

Modules of troubleshooting procedures from the CSM and other technical

manuals were added to the existing program, resulting in the first iteration of the

prototype. This version was demonstrated to organizational level technicians to insure

that all of the previously documented procedures were fully captured .Once this was

completed, the knowledge of the expert was added incrementally and tested by having

both the O level technicians and the NAESU representative run the program as changes

were incorporated. Results of the test were positive and will be covered in detail in

Chapter V.

32

V. TEST AND VALIDATION

The majority of implementation issues were addressed in the previous chapter,

this chapter will focus on the test and validation process. The test and validation phase

proceeded on two fronts: first to determine if the prototype system actually worked, and

second, to determine if the heuristics were valid.

A. PROTOTYPE TESTING

The initial prototype consisted of the APS-1 15 crew station manual (NAVAIR

01-75PAC-12-5, 1995, section 4, pp. 13-16) troubleshooting tree written in CLIPS. The

development employed was to demonstrate this version to the users, use their

commentary and suggestions to update the prototype, and demonstrate again. As these

changes were incorporated, the prototype expert system began to more closely resemble

the methods used by the experts. Many positive suggestions were gathered, unfortunately

time constraints allowed for only two iterations of the improvement process.

1. Initial Prototype Improvements

One of the first improvements suggested by the users was to rearrange the order of

appearance of some of the troubleshooting steps in the CSM to correspond more closely

with the order that an experienced technician uses them. The CSM presents decision

nodes for repair after a test node. Typically a go/no-go light indication begins a specific

test series. If the component fails the go/no-go indication a more detailed series of test s

are undertaken on that component to isolate the fault.

The decision nodes are presented in ascending order of relative complexity,

33

starting with the simplest items to repair. Most of the test series start with tests of the

mechanical or electrical portions of the component that is being tested. Typical of this

process is test module 12, the test for 360 degree scan of the antenna. Test module 12 is

initiated by checking the video display for a 360 degree scan pattern, which tells the

operator that both antennas are sweeping correctly. If their is a failure indication at this

point, the test series proceeds by checking the mechanical tilt and stabilization

components, followed by the electrical servo motors, and finally with the electronic

portion of the radar position programmer.

Experience with this failure indication and series of tests leads the avionics

technician to cut off the electro-mechanical portion of the decision tree and initially check

the test points (TP) 1 Al 1 Al TP 1 or TP 7. While they acknowledge that the electro-

mechanical failures of the radar component are easier to fix, ie, take less technical

expertise, they are encountered so infrequently that they are skipped.

2. Subsequent Improvements

Once the order of appearance of decision nodes had been rearranged, the

prototype system was again tested by the end users. At this juncture more of the experts

knowledge was incorporate into the system.

Using the knowledge of the NAESU representative and the avionics shops senior

technician, some of the decision nodes were modified to include more comprehensive

testing. An example of this is decision node 14.42, where the R/T crystal are tested to

determine if the crystals are causing an R/T failure indication. The procedure from the

CSM uses a simple go/no-go light indication to check each of the three R/T crystals. This

34

test may reveal if a crystal is failed, but will not reveal if one is marginal or near failure.

A marginal crystal can cause an R/T failure, yet still test satisfactorily if the CSM

procedure is followed. This step was changed in order to incorporate testing each

individual crystal with an oscilloscope.

Time allowed for only the inclusion of a few of the improved test procedures into

the prototype, there are several remaining that would improve the accuracy of the system

that could not be included. Once again the improved test procedures were incorporated

into the prototype and demonstrated to the end users with satisfactory results.

3. Knowledge Acquisition Issues

Some of the classic knowledge acquisition issues detailed in the references

(Prerau, 1990) were also encountered in prototype development. Issues such as resistance

to new methods, fear of replacement of the expert by a computer, and reluctance to reveal

knowledge of procedures that were not in strict compliance with regulations were typical.

In general, after working in the avionics shop and familiarizing the personnel with the

system, the problems became less of an issue. Knowledge acquisition issues will be

covered in more detail in the conclusion.

B. HEURISTIC TESTING

- J Once the prototype was working it remained to test the system to determine if the

heuristics designed in Chapter IV were applicable. In general, all of the four heuristics

were used in parts of the troubleshooting procedures, although frequently it was

35

impossible to draw a strong distinction as to where one heuristic ended and another

began. Many steps within the troubleshooting procedure used more than on of the

heuristics simultaneously. Additionally, some parts of the troubleshooting process could

not be categorized by any of the heuristics, which adds credence to the theory that there

are more heuristics to be developed.

1. Abduction

This was the simplest heuristic and the most frequently applied. Given an

indication, perform an action. The action could be the termination of a repair procedure,

for example decision node 12.1, which state if presented with an indication of +5VDC on

the fault isolation switch, replace printed circuit card 1 A6. Or the action could be to

continue with another test and continue the troubleshooting process. Almost all of the

decision nodes make use of abduction.

2. Commonality

The most obvious use of the commonality heuristic occurs in decision node 14

series. Staring with a R/T failure indication, subcomponents of the R/T portion of the

radar are examined for failure individually. The final series of tests involves checking the

electronic components of the R/T, culminating in checking the crystals. At this point all

of the exclusive electronic components have been eliminated, al that remains is the point

of common intersection, where the video signal is processed by the crystals. In fact,

checking the crystals is one of the first procedures that was given a higher precedence in

the order in which subcomponents of the radar system are evaluated.

36

3. Cross-Commonality

The APS-1 15 radar system actually consists of two separate radar systems,

including individual antennas and R/T's, up to the point where the signal is combined

from the forward and aft antennas and presented at the operators screen as processed

video. An example of the application of this heuristic is the swapping of the forward and

aft R/T sets.

Decision node 14.26 culminates with the swapping of the forward and aft R/T sets

to determine if one has failed. The operator will see a failure indication at his console, but

not know if components within the forward or aft system are at fault. If the R/T sets are

substituted, the technician can determine if the fault lies somewhere outside of either R/T.

This allows for the exclusion of the R/T set as a primary cause of failure, meaning that

the problem is located in a component that nether forward or aft system are sharing.

4. Complexity

The use of this heuristic is evident when the order of the decision nodes is

shuffled. The CSM presents the troubleshooting steps in ascending order of complexity

based on the fact that mechanical or electrical repairs are the easiest to perform. One of

the first changes made to the prototype was placing the electronic portion of a test series

at the beginning of the series vice the end. The more experienced technicians knew that

the most likely failure would take place in the most complicated portion of system or

subsystem, the electronic portion.

37

C. FINAL TEST

After two iterations of the update process, the prototype was again demonstrated

to the end users. More suggestion for improvement were made, unfortunately they could

not be incorporated due to time constraints.

The final version of the prototype was well received once the user was trained in

its operation. The CLIPS interface was not particularly user friendly, appearing similar to

a DOS application, however the information contained in the prototype was judged to be

accurate and useful by the users. The final version of the prototype had some anomalies

that required the designer to be present while the program was being run, further progress

is still undergoing to clear up these anomalies.

38

VI. LESSONS LEARNED

This chapter presents some insights gained through the experience of developing

the Avionics Diagnostic Advisor system as well as recommendations for further

development.

A. KNOWLEDGE ACQUISITION

As discussed in Chapter V, knowledge acquisition issues closely followed those

revealed in the expert systems literature. Specifically, at the beginning of the knowledge

acquisition session, there was a great deal of skepticism and reluctance on the part of the

experts.

The more experienced avionics technicians were initially skeptical of an expert

system for the APS-1 15 radar. The consensus opinion was that after prolonged exposure

to the APS- 1 1 5 system any technician would reach a sufficient level of competence

required of any repairs. Additionally, the APS-1 15 had been operating for a long period in

the fleet, any particular anomalies that affected it were already well known.

After it was explained that it was the time which elapses as a new avionics

technician gains experience that was being attacked, the use of an expert system gained

more acceptance. In the course of demonstrating the prototype, one of the junior

technicians was exposed to a previously unknown procedure for repair. This sparked a

discussion with the shop supervisor in which the junior technician gained insight into

troubleshooting the APS-1 15. A clear point was made as to the advantages of expert

39

systems, particularly in regards to training.

Naval Aviation maintenance follows strict guidelines as to what type of repairs

can be undertaken at a particular level. There was some reluctance on the part of the two

experts to impart some of the procedures they employed due to this. Exposure to repair

functions carried out at the intermediate level was the basis of some of these procedures.

There was a tacit feeling on the part of the experts that repercussions might entail if these

repair actions were documented in an expert system.

B. KNOWLEDGE REPRESENTATION

Initially, predicate logic was attempted for knowledge representation, however

this proved to be more difficult than initially thought, particularly with regards to the

heuristics from Chapter IV. Abduction and Complexity were relatively easy, but

commonality and cross-commonality were hard to work out. Therefore a decision was

made to utilize pseudo-code to quantify the heuristics.

Representation in pseudo-code aided the design phase when the prototype was

written. The heuristics when written in pseudo-code are similar to the way knowledge is

represented in CLIPS. CLIPS uses a right-hand-side for indications, left-hand-side for

action format to represent rules. This corresponded closely to the way the heuristics were

actually employed.

C. IMPLEMENTATION

• j Implementing the knowledge in CLIPS was time consuming, although after

experience in using CLIPS was gained it was fairly straightforward. There were

uncovered a number of sample programs, from the examples in the software package and

40

from the CLIPS bulletin board which dealt with troubleshooting and diagnostics. Design

was merely a matter of choosing an existing program and modifying it until the output

matched the troubleshooting tree from the CSM. From that point it was simple to add

expert knowledge by editing the existing code. The final version of the prototype made

extensive use of the Automotive Troubleshooting Sample program to create the ADA

prototype.

D. CLIPS INTERFACE

The CLIPS version used for this project was 6.0 for Windows. This version, while

Windows compatible, does not use many Windows features. Basically the 6.0 version is

the same as the DOS version, it presents the same interfaces screens, only they are in a

DOS window vice a DOS screen. The editing interface for the designer is also similar to

the DOS version, with the addition of limited mouse compatibility for editing.

The user interface for the final version is also in a DOS window. The only

advantage over the DOS version is that a few of the commands, such as run or reset can

be accessed via drop-down windows rather than typed directly on the screen. Users had a

hard time making the system run correctly, so much so that the author had to guide them

through a few sessions before the end user could run it on their own. Adding a better

interface to the CLIPS code is an obvious avenue to pursue.

E. CONCLUSION

- " Expert systems application to diagnostics is not new, as shown in Chapter III there

are many existing systems and many more likely to be developed. Capturing and

representing heuristics in an expert system has also been applied in many instances.

41

Research for this project revealed that while work in generalizing heuristic methods

across different domains has been explored (Rasmussen and Jensen, 1974) none have as

of yet been applied to an expert system.

Follow on research to this project should focus on finding more generalized

heuristics to add to those already developed. This will make further development of the

prototype easier and provide an avenue to expand into the rest of the avionics realm.

42

APPENDIX A. PROTOTYPE SYSTEM CODE

AVIONICS DIAGNOSTIC ADVISOR EXPERT SYSTEM V 1.0

APS 115 MODULE

This expert system diagnoses some simple

problems with the APS 1 15 RADAR set in the

P-3C Um. Taken from APS 1 15 CSM

CLIPS Version 6.0 Example

To execute, merely load, reset and run.

;* DEFFUNCTIONS *

;* This defines the yes or no and the three-way response*

(deffunction ask-question (?question $?allowed-values)

(printout t ?question)

(bind ?answer (read))

(if (lexemep ?answer)

then (bind ?answer (lowcase ?answer)))

(while (not (member ?answer ?allowed-values)) do

(printout t ?question)

(bind ?answer (read))

(if (lexemep ?answer)

then (bind ?answer (lowcase ?answer))))

?answer)

(deffunction yes-or-no-p (?question)

(bind ?response (ask-question ?question yes no y n))

(if (or (eq ?response yes) (eq ?response y))

then TRUE

43

else FALSE))

999

;;;* APS 1 15 RADAR STATE RULES *

;;;* Radar either SAT or UNSAT *

(defrule normal-radar-state-conclusions
""

(declare (salience 10))

(working-state radar normal)

=>

(assert (repair "No repair needed."))

(assert (ali/checks-state radar normal))

(assert (lamp/comp/fan-state all sat))

(assert (initialize-state radar initialized)))

(defrule unsatisfactory-radar-state-conclusions
""

(declare (salience 10))

(working-state radar unsatisfactory)

=>

(assert (lamp/comp/fan-state all sat))

(assert (initialize-state radar initialized)))

;;;* QUERY RULES *

999

;;; Decision Node 1-10

(defrule determine-radar-state
""

(not (working-state radar ?))

(not (repair ?))

=>

(if (yes-or-no-p "Does radar initialize (yes/no)? ")

then

(if (yes-or-no-p "Are all steps completed satisfactorily (yes/no)? ")

then (assert (working-state radar normal))

- * else (assert (working-state radar unsatisfactory)))

else

(assert (working-state radar does-not-initialize))))

;;; Decision Node 2 and 3

44

(defrule determine-lamp/comp/fan-state
""

(working-state radar does-not-start)

(not (initialize-state radar ?))

(not (repair ?))

=>

(if (yes-or-no-p "Do the lamps,compressor, and fans operate (yes/no)? ")

then

(assert (lamp/comp/fan-state radar check sat))

(assert (all/checks-state radar unsat-all/checks))

else

(assert (lamp/comp/fan-state radar does-not-check-sat))

(assert (all/checks-state radar does-not-check))))

;;; Decision node 12

(defrule determine-360-display
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Is the 360 scan present (yes/no)? ")

then

(assert (360-display-state radar sat))

(assert (all/checks-state does-not-check));;; go to DN 13

else

(assert (repair "Verify ch 4 of SDD operates properly."))))

95?

35»

>>>

Decision node 13, branches to DN 12 subgroups

(defrule determine-app-fail-lamp
""

(working-state radar unsatisfactory)

(not (app-fail-lamp-state ?))

(not (repair ?))

=>

(if (yes-or-no-p "Does APP fail lamp on radar control go off (yes/no)? ")

then

(assert (app-fail-lamp-state sat))

(assert (all/checks-state bad))

else

(assert (app-fail-lamp-state unsat))))

45

DN13.1

(defrule determine-hv-off-state
""

(working-state radar unsatisfactory)

(not (hv-off-state radar ?))

(not (repair ?))

=>

(if (yes-or-no-p "Turn HV off on RSC, check +5V dc posit on APP fault isolate switch

(yes/no)? ")

then

(assert (hv-off-state sat))

(assert (all/checks-state does-not-check))

else

(assert (repair "replace Module 1 A6 and/or 1 A7.")))) ;;; First terminal

(defrule detemine-15vdc-app-state
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Is +/-15V dc indicated on APP fault iso sw(yes/no)? ")

then

(assert (1 5vdc-app-state sat))

(assert (all/checks-state does-not-check))

else

(assert (repair "Replace module 1A3 and/or 1 AX."))))

(defrule detemine-synchro-posit-state
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Check SYNCHRONIZER posit on APP fault iso sw(yes/no)? ")

then

(assert (synchro-posit-state sat))

(assert (all/checks-state does-not-check))

else

(assert (repair "Replace sync module 1A8 and/or bite module 1Al 1."))))

(defrule detemine-fwd-az-servo-amp-state
""

(working-state radar unsatisfactory)

(not (repair ?))

46

=>

(if (yes-or-no-p "Check FWD AZ SERVO AMP posit on APP fault isolation

switch(yes/no)? ")

then

(assert (fwd-az-servo-amp-state sat))

(assert (all/checks-state does-not-check))

else

(assert (repair "Replace module 1A4 and/or bite module 1A1 1."))))

(defrule detemine-aft-az-servo-amp-state
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Check AFT AZ SERVO AMP posit on APP fault isolation

switch(yes/no)? ")

then

(assert (aft-az-servo-amp-state sat))

(assert (all/checks-state does-not-check))

else

(assert (repair "Replace module 1A5 and/or bite module 1 All."))))

(defrule detemine-fwd-az-gear-assy-state
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Check FWD AZ GEAR ASSY posit on APP fault isolation

switch(yes/no)? ")

then

(assert (fwd-az-gear-assy-state sat))

(assert (all/checks-state does-not-check))

else

(assert (repair "Replace module 3A1 and/or bite module 1 Al 1."))))

(defrule detemine-aft-az-gear-assy-state
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Check AFT AZ GEAR ASSY posit on APP fault isolation

switch(yes/no)? ")

then

(assert (aft-az-gear-assy-state sat))

(assert (all/checks-state does-not-check))

47

else

(assert (repair "Replace module 8al and/or bite module 1A1 1."))))

;;; Decision Node 12.20

(defrule detemine-az-scan-prgrmrl -state
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Check AFT AZ SCAN PROGRAMMER #1 posit on APP fault

isolation switch(yes/no)? ")

then

(assert (az-scan-prgrmr-state sat))

(assert (all/checks-state does-not-check))

else

(assert (repair "Replace AZ Scan programmer 1 A9."))))

(defrule detemine-az-scan-prgrmr2-state
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Check AFT AZ SCAN PROGRAMMER #2 posit on APP fault

isolation switch(yes/no)? ")

then

(assert (az-scan-prgrmr2-state sat))

(assert (all/checks-state does-not-check))

else

(assert (repair "Replace AZ Scan programmer 1A9."))))

;;; Decision Node 12.24

(defrule detemine-fwd-tilt-servo-state
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Check FWD TILT SERVO AMP posit on APP fault isolation

switch(yes/no)? ")

then

(assert (fwd-tilt-servo-state sat))

(assert (all/checks-state does-not-check))

48

else

(assert (repair "Replace FWD TILT SERVO AMP 1 Al."))))

(defrule detemine-aft-tilt-servo-state
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Check AFT TILT SERVO AMP posit on APP fault isolation

switch(yes/no)? ")

then

(assert (aft-tilt-servo-state sat))

(assert (all/checks-state does-not-check))

else

(assert (repair "Replace FWD TILT SERVO AMP 1A2."))))

(defrule detemine-tilt-function-gen-state
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Check TILT FUNTION GEN posit on APP fault isolation

switch(yes/no)? ")

then

(assert (tilt-function-gen-state sat))

(assert (all/checks-state does-not-check))

else

(assert (repair "Replace Tilt function generator 1A13."))))

;;; Decision Node 12.30

(defrule detemine-fwd-tilt-gear-assy-state
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Check FWD TILT GEAR ASSY posit on APP fault isolation

switch(yes/no)? ")

then

(assert (fwd-tilt-gear-assy-state sat))

(assert (all/checks-state does-not-check))

'
3

else

(assert (repair "Check 1A1 1A1TP1, if yes, replace Bite Module lal 1, if no

repace FWD TILT GEAR ASSY 3A2."))))

49

(defrule detemine-aft-tilt-gear-assy-state
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Check AFT TILT GEAR ASSY posit on APP fault isolation

switch(yes/no)? ")

then

(assert (aft-tilt-gear-assy-state sat))

(assert (all/checks-state does-not-check))

else

(assert (repair "Replace BITE Module 1A1 1."))))

(defrule detemine-lal laltpl 1 -state
""

(working-state radar unsatisfactory)

(not (repair ?))

=>

(if (yes-or-no-p "Check 1A1 1 A1TP1 (yes/no)? ")

then

(assert (lal laltpl -state sat))

(assert (all/checks-state does-not-check))

(assert (repair "Replace BITE Module 1A1 1."))

else

(assert (repair "Replace AFT TILT GEAR ASSY 8A2."))))

Decision Node 14

(defrule determine-rt-fail-lamp-state
""

(or (and (working-state radar unsatisfactory)

(all/checks-state bad))

(symptom radar low-output))

(not (repair ?))

=>

(if (yes-or-no-p "Do the RT FAIL lamps on radar control go off (yes/no)? ")

then

(assert (rt-fail-lamp-state sat))

"
' (assert (all/checks-state neg)) ;;; jump to DN 16

else

(assert (rt-fail-lamp-state unsat))

(assert (all/checks-state broke))))

50

Starts Decision Node 16

(defrule determine-dummy-state
""

(working-state radar unsatisfactory)

(all/checks-state neg)

(not (repair ?))

=>

(if (yes-or-no-p "***Depress LOAD switch two times***

Do the DUMMY and ANTENNA indicators come on alternately

on both FWD and AFT radar control (yes/no)? ")

then

(assert (dummy-state sat))

(assert (all/checks-state neg)) ;;; goes to DN17
else

(assert (repair "Replace waveguide switch on applicable antenna

and/or replace applicable radar control."))))

DN17

(defrule determine-stdby-indic-state
""

(working-state radar unsatisfactory)

(all/checks-state neg)

(not (repair ?))

=>

(if (yes-or-no-p "If radar power has been applied for 3 min

STBY indicator comes on fwd and aft radar control (yes/no)? ")

then

(assert (stdby-indic-state sat))

(assert (all/checks-state neg)) ;;; goes to DN 19

else

(assert (repair "Replace applicable radar control and/or

replace primary modeTogic module 1A10."))))

DN19

(defrule determine-hv-on-state
""

(working-state radar unsatisfactory)

(all/checks-state neg)

51

(not (repair ?))

=>

(if (yes-or-no-p "***Depress HV switch***

Does HV ON indicator come on fwd and aft radar control(yes/no)? ")

then

(assert (hv-on-state sat))

(assert (all/checks-state neg)) ;;; goes 20

else

(assert (repair "Replace primary mode logic module ofAPP 1A12

and replace applicable radar control."))))

DN20

(defrule determine-app-fail-2-state
""

(working-state radar unsatisfactory)

(all/checks-state neg)

(not (repair ?))

=>

(if (yes-or-no-p "Does APP FAIL on fwd and aft radar control go off(yes/no)? ")

then

(assert (app-fail-2-state sat))

(assert (all/checks-state neg)) ;;; goes 21

else

(assert (app-fail-lamp-state unsat)))) ;;; should loop to 12.1

DN21

(defrule determine-rt-fail-2-state
""

(working-state radar unsatisfactory)

(all/checks-state neg)

(not (repair ?))

=>

(if (yes-or-no-p "Does RT fail lamp on fwd and aft radar control go off(yes/no)? ")

then

(assert (rt-fail-2-state sat))

(assert (all/checks-state neg)) ;;; goes 22

else

(assert (rt-fail-lamp-state unsat))

(assert (all/checks-state broke)))) ;;; loop to 14.2

52

DN23

(defrule determine-agile-short-state
""

(working-state radar unsatisfactory)

(all/checks-state neg)

(not (repair ?))

=>

(if (yes-or-no-p "***Depress FREQ and PULSE switches fwd and aft radar control***

Do AGILE & SHORT indicators come on(yes/no)? ")

then

(assert (agile-short-state sat))

(assert (all/checks-state neg)) ;;; goes 24

else

(assert (repair "Replace applicable radar control and primary

logic module 1A10."))))

DN24

(defrule determine-rt-fail-3-state
""

(working-state radar unsatisfactory)

(all/checks-state neg)

(not (repair ?))

=>

(if (yes-or-no-p "Does RT fail lamp on fwd and aft radar control go off(yes/no)? ")

then

(assert (rt-fail-3-state sat))

(assert (all/checks-state neg)) ;;; goes 26

else

(assert (rt-fail-lamp-state unsat))

(assert (all/checks-state broke)))) ;;; loop to 14.2

;;; DN 26

(defrule determine-240-sector-state
""

(working-state radar unsatisfactory)

(all/checks-state neg)

(not (repair ?))

=>

(if (yes-or-no-p "***Depress HV switch on fwd and aft radar control***

53

Place PWR/OFF switch in OFF position

240 degree sector sweep should be on display

and APP fail lamp on fwd and aft radar control goes off(yes/no)? ")

then

(assert (repair "***Depress HV switch on aft radar control***

Place PWR/OFF switch in OFF position

»ALL CHECKS COMPLETE«")) ;;; End of TS guide

else

(assert (repair "Replace slave mode logic module 1A12."))))

;;; DN 14.2

(defrule determine-wg-press-state
""

(working-state radar unsatisfactory)

(all/checks-state broke)

(not (repair ?))

=>

(if (yes-or-no-p "**NOTE following switch posits refer to R/T fault isolation switch***

Check W/G PRESS switch position (yes/no)? ")

then

(assert (wg-press-state sat))

(assert (all/checks-state busted))

else

(assert (repair "Replace compressor 2A7/7A10 and/or bite mod 2A10/7A10"))))

(defrule determine-20vdc-posit-state
""

(working-state radar unsatisfactory)

(all/checks-state busted)

(not (repair ?))

=>

(if (yes-or-no-p "Check both posits of +/-20V DC (yes/no)? ")

then

(assert (20vdc-posit-state sat))

(assert (all/checks-state busted))

else

(assert (repair "Replace +/-20V DC module 2A1 1/7A1 1 and/or bite module

2A10/7A10"))))

(defrule determine-thy-trig-state
""

(working-state radar unsatisfactory)

(all/checks-state busted)

54

(not (repair ?))

=>

(if (yes-or-no-p "Check THY TRIG switch position (yes/no)? ")

then

(assert (thy-trig-state sat))

(assert (all/checks-state icky))

else

(assert (thy-trig-state unsat))

(assert (all/checks-state busted))))

(defrule determine-radar-trgr-sync-state
""

(working-state radar unsatisfactory)

(all/checks-state busted)

(not (repair ?))

=>

(if (yes-or-no-p "Replace XMTR ASSY, check radar trigger sync (yes/no)? ")

then

(assert (radar-trgr-sync-state sat))

(assert (all/checks-state busted))

else

(assert (repair "Check cable to unit 2/7 J4"))))

(defrule determine-tp3-state
""

(working-state radar unsatisfactory)

(all/checks-state busted)

(not (repair ?))

=>

(if (yes-or-no-p "Check 2A8/7A8 at test point 3 (yes/no)? ")

then

(assert (repair "Replace XMTR ASSY 2A1/7A1"))

else

(assert (repair "Replace Isolation Amplifier module 2A8/7A8"))))

(defrule determine-fil-trig-state
""

(working-state radar unsatisfactory)

(all/checks-state icky)

(not (repair ?))

=>

(if (yes-or-no-p "Check FIL TRIG switch position (yes/no)? ")

then

55

(assert (fil-trig-state sat))

(assert (all/checks-state afu))

else

(assert (all/checks-state busted)))) ;;; need this to loop to 14.9

(defrule determine-thy/mod-state
""

(working-state radar unsatisfactory)

(all/checks-state afu)

(not (repair ?))

=>

(if (yes-or-no-p "Check THY/MOD switch position (yes/no)? ")

then

(assert (thy/mod-state sat))

(assert (all/checks-state wfu))

else

(assert (repair "Replace bite module 2A10/7A10 and/or XMTR ASSY 2A1/7A1."))))

;;; Decision Node 14.18 branches again

(defrule determine-mag/mod-state
""

(working-state radar unsatisfactory)

(all/checks-state wfu)

(not (repair ?))

=>

(if (yes-or-no-p "Check MAG/MOD switch position (yes/no)? ")

then

(assert (mag/mod-state sat))

(assert (all/checks-state tfu))

else

(assert (mag/mod-state unsat))

(assert (all/checks-state silly))));;; branch down to silly

(defrule determine-afc-man-state
""

(working-state radar unsatisfactory)

(all/checks-state silly)

(not (repair ?))

=>

(if (yes-or-no-p "***Turn video test switch video test on radar control fwd & aft***

Place display unit to 'A' scan

Are minimum 12 video pulses(LP) or 6 pulses(SP) visible

in both AFC & MAN switch posits (yes/no)? ")

56

then

(assert (afc-man-state sat))

(assert (all/checks-state stupid))

else

(assert (repair "***Check 2A8/7A8, test point 7 for 5.75V dc +/- .75***

If yes, replace XMTR ASSY 2A1/7A1.

If no, replace Isolation AMPL module 2A8/7A8."))))

;;; DN 14.24

(defrule determine-j 1 -state
""

(working-state radar unsatisfactory)

(all/checks-state stupid)

(not (repair ?))

=>

(if (yes-or-no-p "Does 2A6/7A6 at Jl indicate -.6 minimum (yes/no)? ")

then

(assert (jl -state sat))

(assert (all/checks-state stupid))

else

(assert (repair "Replace 2A6/7A6 CR 1."))))

::: DN 14.26

(defrule determine-2/7al0-tpl -state
""

(working-state radar unsatisfactory)

(all/checks-state stupid)

(not (repair ?))

=>

(if (yes-or-no-p "Does 2A10/7A10 at test point 1

indicate 2.5/0.5 micro sec pulse, 1 +/- .4 volts (yes/no)? ")

then

(assert (repair "Replace Bite Module 2A10/7A10."))

else

(assert (repair "Replace Receiver Transmitter."))))

;;; DN 14.30 branches again

(defrule determine-freq-agile-state
""

(working-state radar unsatisfactory)

(all/checks-state tfu)

57

(not (repair ?))

=>

(if (yes-or-no-p "***Press FREQ switch on radar control panel***

to place transmitter in Agile Mode
Check AGILE switch position (yes/no)? ")

then

(assert (freq-agile-state sat))

(assert (all/checks-state tfu)) ;;; go to 14.36

else

(assert (freq-agile-state unsat))

(assert (all/checks-state goofy)))) ;;; go to 14.31

;;; 14.31

(defrule determine-agile2-state
""

(working-state radar unsatisfactory)

(all/checks-state goofy)

(not (repair ?))

=>

(if (yes-or-no-p "Does AGILE indicator on radar control come on (yes/no)? ")

then

(assert (agile2-state sat))

(assert (all/checks-state goofy)) ;;; go to 14.33

else

(assert (repair "Replace Primary Logic Module 1A12"))))

::: DN 14.33

(defrule determine-2/7al0a2-state
""

(working-state radar unsatisfactory)

(all/checks-state goofy)

(not (repair ?))

=>

(if (yes-or-no-p "Check 2/7A10A2 TP5 for 1/2 wave 71 Hz, 50V minimum (yes/no)? ")

then

(assert (repair "Replace AGILE module 2A12/7A12."))

else'
J

(assert (repair "Replace Transmitter Assembly

including Magnetron2Al/2A7"))))

;;; DN 14.37

58

(defrule determine-freq2-state
""

(working-state radar unsatisfactory)

(all/checks-state tfu)

(not (repair ?))

=>

(if (yes-or-no-p "***Press FREQ sw on radar control, places xmitter in fixed mode***

Check STC switch position (yes/no)? ")

then

(assert (freq2-state sat))

(assert (all/checks-state tfu)) ;;; go to 14.40

else

(assert (repair "Replace STC module 2A9/7A9.")))) ;;;

::: DN 14.40

(defrule determine-lo-rcvr-state
""

(working-state radar unsatisfactory)

(all/checks-state tfu)

(not (repair ?))

=>

(if (yes-or-no-p "***Verify applicable radar control AFC/MAN switch***

is in AFC posit

Check LO RCVR XTAL 1 and 2 switch position (yes/no)? ")

then

(assert (lo-rcvr-state sat))

(assert (all/checks-state waybad)) ;;; go to 14.46

else

(assert (lo-rcvr-state unsat))

(assert (all/checks-state negat)))) ;;; go to 14.41

::: DN 14.41

(defrule determine-fault-iso-state
""

(working-state radar unsatisfactory)

(all/checks-state negat)

(not (repair ?))

=>

(if (yes-or-no-p "Is fault isolation meter pointer sweeping (yes/no)? ")

59

then

(assert (fault-iso-state sat))

(assert (all/checks-state waybad)) ;;; go to 14.46

else

(assert (fault-iso-state unsat))

(assert (all/checks-state negat)))) ;;; go to 14.43

DN 14.43

(defrule determine-lo-rcvr2-iso-state
""

(working-state radar unsatisfactory)

(all/checks-state negat)

(not (repair ?))

=>

(if (yes-or-no-p "***Substitute RCVR XTALS with AFC XTALS***
Check LO RCVR XTAL switch positions 1 and 2 (yes/no)? ")

then

(assert (repair "***Perform receiver tuning procedure prior to reinstalling crystals***

Replace appropriate RCVR XTAL.
Note-Reinstall AFCS XTALS"))

else

(assert (repair "***Perform receiver tuning procedure prior to reinstalling crystals***

Replace appropriate RCVR XTAL.
Note-Reinstall AFCS XTALS"))))

::: DN 14.46

(defrule determine-lo-rcvr-3-state
""

(working-state radar unsatisfactory)

(all/checks-state waybad)

(not (repair ?))

=>

(if (yes-or-no-p "Check LO RCVR switch positions (yes/no)? ")

then

(assert (lo-rcvr-3-state sat))

(assert (all/checks-state still bad)) ;;; go to 14.57

else

(assert (lo-rcvr-3-state unsat))

(assert (all/checks-state fubar)))) ;;; go to 14.47

60

DN 14.47

(defrule determine-fault-iso2-state
""

(working-state radar unsatisfactory)

(all/checks-state fubar)

(not (repair ?))

=>

(if (yes-or-no-p "Is fault isolation meter pointer sweeping (yes/no)? ")

then

(assert (fault-iso2-state sat))

(assert (all/checks-state tfu)) ;;; go to 14.57

else

(assert (fault-iso2-state unsat))

(assert (all/checks-state snafu)))) ;;; go to 14.50

DN 14.50

(defrule determine-video-pulse-state
""

(working-state radar unsatisfactory)

(all/checks-state snafu)

(not (repair ?))

=>

(if (yes-or-no-p "***Place display in A scan mode***

Place VIDEO TEST/OFF switch to VIDEO TEST on fwd & aft radar control

A minimum of 12 long video or 6 short video pulses are visible (yes/no)? ")

then

(assert (video-pulse-state sat))

(assert (all/checks-state snafu)) ;;; go to 14.53

else

(assert (repair "Replace RCVR/TRANS and/or Bite module 2A10/7A10."))))

DN 14.53

(defrule determine-2a5/7a5-state
""

(working-state radar unsatisfactory)

(all/checks-state snafu)

(not (repair ?))

61

=>

(if (yes-or-no-p "Check 2A5/7A5 at test point 1 for 7.5 +/-2.5V pulse (yes/no)? ")

then

(assert (repair "Replace STO XTAL 2A5/7A5 CR 1 & 2 and/or

replace SELF TEST OSC module 2A5/7A5."))

else

(assert (repair "Replace SYNC module 1 A8."))))

:;: DN 14.57

(defrule determine-afc-xtal-state
""

(working-state radar unsatisfactory)

(all/checks-state still bad)

(not (repair ?))

=>

(if (yes-or-no-p "Check AFC XTAL 1 and 2 switch positions (yes/no)? ")

then

(assert (afc-xtal-state sat))

(assert (all/checks-state tfu)) ;;; go to 14.59

else

(assert (repair "Replace applicable AFC XTAL 2A3/7A3 and CR2."))))

DN 14.59

(defrule determine-last-state
""

(working-state radar unsatisfactory)

(all/checks-state tfu)

(not (repair ?))

=>

(if (yes-or-no-p "Check AFC switch positions (yes/no)? ")

then

(assert (repair "Replace bite module 2A10/7A10."))

else

(assert (repair "***Place AFC MAN/AUTO switch to MANUAL***
Perform Manual Tune

If yes, replace RCVR/TRANSMITTER
If no, replace SSLO module 2A4/7A4."))))

(defrule no-repairs
""

62

(declare (salience -10))

(not (repair ?))

=>

(assert (repair "Check power supply, attempt to re-initialize.")))

;;;* STARTUP AND REPAIR RULES *

(defrule system-banner
""

(declare (salience 10))

=>

(printout tcrlfcrlf)

(printout t "The Avionics Diagnostic Advisor Expert System vl.O")

(printout t crlf crlf))

(defrule print-repair
""

(declare (salience 10))

(repair ?item)

=>

(printout t crlf crlf)

(printout t "Suggested Repair:")

(printout t crlf crlf)

(format t " %s%n%n%n" ?item))

63

64

APPENDIX B. APS 115 RADAR SYTEM

The APS 1 1 5 radar system is the principal airborne surveillance device for observing and

detecting surface vessels, submarines operating with a snorkel, aircraft, and other objects of

military significance. The search radar system comprises: (1) two separate, selective, long and

short pulse type radar receiver-transmitters, (2) two antennas: one in the aircraft nose radome

and one in the tail radome providing 360 degree azimuth coverage, and (3) radar and antenna

control panels. Radar search scan and data pick-up is performed by each radar set independently.

Video data from both radars is combined in the antenna position programmer (APP),

routed through the RIU to the SDD dislay. Search radar data can be viewed only at the non-

acoustic operator station on the SDD. The display presentation is true-north stabilized, with a

computer-generated symbol depicting aircraft true course. Radar operating controls are located

at the non-acoustic operator station. (NAVA1R 01-75PAC-1.1)

Fault indications are displayed at the operators station, at the antenna position

programmer panel, and at the receiver-transmitter control panel (forward and aft). Detailed fault

isolation trees are provided in the crew station manual (NAVAIR 01-75PAC-12-5). A copy of

the troubleshooting diagram is provided on the following pages.

65

66

67

68

69

70

LIST OF REFERENCES

Chorafas, D.N., Knowledge Engineering, Van Nostrand Reinhold, New York, New York,

1990.

Forsysth, G. F., Larkin, M. D., and Wallace, G. A., "Verification of Heuristic Diagnostic

Knowledge by Comparison with a Causal/Qualitative Model," ACM, 1990.

Frenzel, L. E., Crash Course in Artificial Intelligence and Expert Systems, Howard W.

Sams & Co., Indianapolis, Indiana, 1987.

Ghandi, O. P.. Wadhwa, S., Chugh, V., and Vaze, S. C, "Development and

Implementation of an Expert System for Automotive Troubleshooting," Engineering

Systems and Analysis, Volume 8: Part B, ASME 1994.

Lewis, C. D., Development ofa Maintenance Advisor Expert System for the Mk 92 Mod 2

Eire Control System, Masters Thesis, Naval Postgraduate School, Monterey, California,

September 1993.

NAVAIR 01-75PAC-1.1, P-3C NATOPS Manual, U. S. Navy, August 1994.

NAVAIR 01-PAC-12-5, P-3C Crewstation Manual, U. S. Navy, February 1995.

Olson, D. L., and Courtney, J. F., Decision Support Models and Expert Systems,

MacMilan Publishing Company, New York, New York, 1992.

OPNAV 4790.2E, Naval Aviation Maintenance Program, U. S. Navy, July 1992.

Prerau, D. S., Developing and Managing Expert Systems: proven Techniques for

Business and Industry, Addison-Wesley Publishing Company Inc., Menlo Park,

California, 1990.

Rasmussen, J., and Jensen, A., "Mental Procedures in Real-Life Tasks: A Case Study of

Electronic Trouble Shooting," Ergonomics, v. 17, no. 3, 1974.

71

72

INITIAL DISTRIBUTION LIST

No. copies

1

.

Defense Technical Information Center 2

8725 John J. Kingman Rd., STE 0944

Ft. Belvoir, VA 22060-6218

2. Library, Code 13 2

Naval Postgraduate School

Monterey, California 93943-5101

3. Professor Hemant Bhargava, Code SM/Bh 2

Naval Postgraduate School

Monterey, California 93943-5101

4. Donald R. Eaton, (RADM, USN, ret.), Code SM/Et 2

Naval Postgraduate School

Monterey, California 93943-5101

5. Lt. John N. Lewis 1

COMPATWING TEN
356 N. Charles Porter Ave.

NAS Whidbey Island, Oak Harbor, Washington 98278

73

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

DUDLEY KNOX LIBRARY

3 2768 00323497 2

