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Global potential for harvesting drinking 
water from air using solar energy

Jackson Lord1 ✉, Ashley Thomas1, Neil Treat1, Matthew Forkin1, Robert Bain2, Pierre Dulac3, 
Cyrus H. Behroozi1, Tilek Mamutov1, Jillia Fongheiser1, Nicole Kobilansky1, Shane Washburn1, 
Claudia Truesdell1, Clare Lee1 & Philipp H. Schmaelzle1 ✉

Access to safely managed drinking water (SMDW) remains a global challenge, and 
affects 2.2 billion people1,2. Solar-driven atmospheric water harvesting (AWH) devices 
with continuous cycling may accelerate progress by enabling decentralized 
extraction of water from air3–6, but low specific yields (SY) and low daytime relative 
humidity (RH) have raised questions about their performance (in litres of water 
output per day)7–11. However, to our knowledge, no analysis has mapped the global 
potential of AWH12 despite favourable conditions in tropical regions, where two-thirds 
of people without SMDW live2. Here we show that AWH could provide SMDW for a 
billion people. Our assessment—using Google Earth Engine13—introduces a 
hypothetical 1-metre-square device with a SY profile of 0.2 to 2.5 litres per kilowatt- 
hour (0.1 to 1.25 litres per kilowatt-hour for a 2-metre-square device) at 30% to 90% 
RH, respectively. Such a device could meet a target average daily drinking water 
requirement of 5 litres per day per person14. We plot the impact potential of existing 
devices and new sorbent classes, which suggests that these targets could be met with 
continued technological development, and well within thermodynamic limits. 
Indeed, these performance targets have been achieved experimentally in 
demonstrations of sorbent materials15–17. Our tools can inform design trade-offs for 
atmospheric water harvesting devices that maximize global impact, alongside 
ongoing efforts to meet Sustainable Development Goals (SDGs) with existing 
technologies.

Ensuring reliable access to safe drinking water for all remains a global 
challenge, and is formally recognized as an international development 
priority by 2030 in the United Nations framework for global develop-
ment priorities, the Sustainable Development Goals 6.118. Progress 
towards this target is measured by the WHO/UNICEF Joint Monitoring 
Programme ( JMP) as the percentage of population using safely man-
aged drinking water (SMDW), where ‘safely managed’ is defined as “an 
improved source located on the premises, available when needed and 
free of fecal and priority chemical contamination”1,2. Traditional routes 
to bring SMDW on premises to currently unserved populations are 
estimated to cost US$114 billion per year (from 2015), more than three 
times the historical financing trend19. Moreover, there is increasing 
global interest in solutions that provide safe drinking water without the 
environmental consequences of increasing reliance on bottled water 
and that do not require household-level intervention, which has limited 
adherence20,21. Atmospheric water harvesting (AWH) shows promise 
to accelerate decentralized access to underserved communities if a 
cost-effective, off-grid device can be designed and scaled6.

Several classes of off-grid AWH designs exist or are being 
explored8,12,22,23, as summarized in Table 1. AWH devices are catego-
rized by energy source—active devices use external energy sources 
whereas passive devices rely solely on atmospheric conditions that 

allow for pre-condensed dew or fog to be harvested. Passive devices 
are thus limited to geographic niches where dew or fog can be system-
atically harvested7,12,24. Active, sorbent-based AWH devices extract 
water using primarily solar thermal energy in one of two operational 
modes: diurnal-mode devices extract at night (when RH is higher) and 
condense during the day (when solar energy is available) in a single daily 
cycle, requiring a large sorbent bed. By contrast, continuous-mode 
devices are not limited to a single daily cycle, and need only hold a small 
amount of water vapour in-process3,4, drastically reducing sorbent 
mass and device size. This, however, requires extraction at lower RH 
when solar energy is available, raising questions about performance7–11. 
Cooler–condenser devices use work (typically electric energy) to 
actively cool air below its dew point and collect condensation and—if 
solar-driven—call for photovoltaic (PV) panels. Unlike solar–thermal 
devices, solar-driven cooler–condenser devices suffer from a steep 
loss in electric energy conversion. In the context of specific yield, we 
use kWh to denote primary solar energy prior to thermal and other 
losses, and kWhPV to denote electrical energy supplied to the device 
from PV panels after conversion. Unless stated otherwise, ranges of 
SY refer to RH between 30% and 90% at 20 °C.

Here we present an assessment of solar-driven, continuous-mode 
AWH (SC-AWH) using global data. AWH has much lower SY than 
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infrastructural water sources such as desalination25 (approximately 
200 l kWh−1). However, SC-AWH devices sized to produce sufficient 
daily drinking water output for an individual or family could address 
both the water quality and the water access dimensions of SMDW solu-
tions at the household level.

Geography of the global challenge
To estimate the impact potential of SC-AWH, we first mapped the 
distribution of the approximately 2.2 billion people without SMDW2. 
Recent studies have used geostatistical techniques to estimate subna-
tional inequalities of safe water and sanitation from a variety of data 
sources reporting metrics of facility type26,27. Here we use a determin-
istic method based exclusively on JMP data on drinking water service 
levels. In this study, we assume that SC-AWH is for drinking water only 
and does not replace water for other domestic uses such as hygiene, 
cooking and sanitation14,28.

The overall percentage of the population in regions reported by the 
JMP at the lowest respective available regional hierarchy is shown in 
Fig. 1a. This seamless fabric of national and subnational survey regions 
gives a spatially continuous picture of the global distribution of peo-
ple living without SMDW. Sub-Saharan Africa contains the highest 
total number of people without SMDW, in alignment with previous 
reports2,29, followed by regions in South Asia and Latin America.

The regional proportions from Fig. 1a were applied as a linear weight 
to each pixel of the WorldPop (2017) 1 km-resolution residential popula-
tion counts image (https://www.worldpop.org). This gives an estimate 
of the distribution of people without SMDW to a spatial resolution that 
more closely matches the scales at which climate variables relevant 
for AWH vary owing to physical geography, such as topography and 
land cover. The resulting weighted population distribution is shown 
in Fig. 1b.

Geospatial toolset for AWH assessment
We present a geospatial tool (AWH-Geo) for assessing the global poten-
tial for notional SC-AWH devices given available climatic resources. 
AWH-Geo was built in Google Earth Engine13 and is extensible across 
climate data. For this study, AWH-Geo uses the ERA5-Land climate 
reanalysis over the 10-year period 2010–2019 (inclusive). ERA5-Land 
was chosen for its fine resolution (9 km at hourly intervals), global 
coverage and ability to represent historical synoptic conditions. This 
period is sufficient to account for interannual variability, although 
decadal trends are explored in brief in Extended Data Fig. 9. For shorter 
computation times running their own analysis, the user can adjust the 
analysis period within the tool.

AWH-Geo takes as input the instantaneous rate of water output as 
a function of the three dominant environmental variables: (1) global 
horizontal irradiance from sunlight (GHI (in W m−2)), (2) RH (%) and (3) 
air temperature (T (°C)). Secondary climate variables could be incorpo-
rated later (for example, downwelling infrared and surface wind speed). 
We propose an output table with water yield values as a function of 
binned climate inputs GHI, RH and T, as a way to connect AWH device 
models or experimental characterizations with geospatial analyses. 
Water output can be entered in areal harvesting rates (in l h−1 m−2) for 
abstractions, or as the expected yield of a real device with known col-
lection areas (in l h−1). Across all data points of a multi-year climate 
image time series, AWH-Geo uses the given output table to look up 
yield values and aggregates water outputs for display as global maps 
or derived plots. Whereas previous assessments have been limited 
to relatively small numbers of locations with on-site meteorological 
data7,30 or limited the analysis to a region31, the approach presented 
here is global and spatially continuous. Figure 2 shows a conceptual 
workflow of AWH-Geo and adjacent processes to produce results in 
this study.

We first used AWH-Geo to map theoretical upper bounds of 
solar-driven AWH by constructing output tables from the literature 
as specific water yields SY (in l kWh−1). SY is an evaluative metric for 
AWH sensitive to RH32, and is the inverse of specific energy consump-
tion (SEC), which is commonly used for other water and desalination 
systems. Resulting maps are overlaid with a dot-density representation 
of the distribution of people without SMDW for visual comparison in  
Fig. 3.

Recently, Kim et al. have described the fundamental thermody-
namic limits for AWH33. This model gives the minimum thermal energy 
required (at a given hot-side temperature level) per unit water out-
put of a black box AWH, corresponding to SY values between 5 and 
50 l kWh−1. Kim’s thermodynamic limits are mapped in Fig. 3a. Map-
ping thermodynamic limits is useful to set maximum expectations 
for SC-AWH output globally and to assess the improvement potential 
that may exist between existing device performance and fundamental 
physical limits. Similar analytic approaches have been used to assess 
condenser-based devices, diurnal devices and dew collectors applied to 
a specific location or region7,12,30,31. The geographic patterns of output 
closely follow time-averaged humidity values generally, modified by 
the availability of sunlight. Notably, the results show significant water 
production potential throughout much of the world, particularly in the  
tropics.

Next, we mapped the maximum output of two basic design types. 
Peeters describes the maximum yield for active cooler–condensers32, 
giving SYs of 1–30 l kWhPV

−1  (0.2–6 l kWh−1), plotted using AWH-Geo in 
Fig. 3b. For sorbent designs, metal organic frameworks (MOFs) and 
thermo-responsive polymer (TRP) gels17 show the highest yields at low 
and high RH, respectively. Zhao et al. demonstrated exceptional per-
formance of a TRP15 at high RH (0.2–9.3 l kWh−1 (converted to SY by 
Peeters32)), generally outperforming MOFs (whose reported maxi-
mum32 SYs are around 1 l kWh−1). Global projections for Zhao’s TRP are 
mapped in Fig. 3c.

Table 1 | Suitability of household-scale applications by AWH 
category

Passive AWH devices Active AWH devices

Diurnal AWH (single cycle per day)

Device types: Dew harvesters 
(near-condensed 
droplets)

Sorption-based

Energy Requirements: None 0 to 1 l kWh−1 (ref. 32)

Size requirements: Low mass, but requires 
large catchment 
surface area

Mass-driven: water 
outputs scale proportional 
to sorbent mass37

Global assessment: Niche potential7 Wide climate applicability 
but mass intensity limits 
economic reach7,31

Continuous AWH (or multiple cycles per day)

Device types: Fog harvesters 
(pre-condensed 
droplets)

Sorption-based, cooler–
condensers*

Energy requirements: None Sorption-based: 0 to 
1 l kWh−1 (ref. 32); cooler–
condenser: 2 to 4 l kWh−1 
(ref. 32)*

Sizing requirements: Low mass, but requires 
large catchment 
surface area

Climate-driven and 
modular: scaled by 
available resource and 
solar harvesting area4*

Global assessment: Niche potential7 Global potential not 
previously studied12†

Select categorization of AWH devices with low or no energy requirements. *Promising catego-
ries for low-cost, off-grid devices at household scale. †There is a gap in the literature on global 
assessment, which is addressed in this study.

https://www.worldpop.org
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In addition to annual means, AWH-Geo is capable of deriving met-
rics useful for analysing seasonal variability of output. Optionally, 
AWH-Geo exports 90% availability (P90) values across a set of time 
windows (Methods).

Assessing the global potential
Our coincidence analysis calculates the mean hours per day during 
which GHI and RH are simultaneously above parametric thresholds. 
Fig. 4a maps annual means for such daily coincidence hours for the 
given threshold pairs, interpreted as the operational hours per day 
(ophd) for a hypothetical device. Important transition areas between 
tropical and desert regions show the expected trade-off between 
sunlight and humidity, which generally vary inversely. Very low RH 
thresholds of 10% increase ophd potential by only 1–2 h from the ophd 

at 30% RH in arid regions in the Sahel across GHI thresholds, but ophd 
then falls sharply at higher RH thresholds. This indicates a diminishing 
return to devices operating below 30%. Coastal areas show promise for 
consistent 2–4 ophd worldwide above 50% RH.

Next, we summed the population without access to SMDW segmented 
by threshold pair using the weighted population image, grouped cumu-
latively by ophd at whole intervals and shown in Fig. 4b. Inflections of 
diminishing user potential occur between values of RH between 30 
and 50%, GHI between 400 and 600 W m−2 and ophd between 3 and 5 h. 
These reflect key spatio-demographic patterns along similar climatic 
transitions in the tropics, where the bulk of those living without SMDW 
live—particularly in the tropical savanna of sub-Saharan Africa and the 
Ganges River Valley in India. A device that could operate above these 
values has the theoretical potential to serve more than half the world’s 
remaining population lacking access to SMDW.

0–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80 81–90 91–100

1 (low) 2 3+ (very high)

log [density of population without SMDW (people per km2)]

b

Percentage of population in region without SMDW (%):

Rural Mali:
10 people
per km2

Peri-urban
Kenya:
500 people

Dhaka:
75,000 people

a

per km2

per km2

Fig. 1 | Geographic distribution of world population without SMDW.  
a, Percentage share of total population in survey region living without SMDW 
as reported by the WHO/UNICEF JMP. b, Log population density of people 

without SMDW from WorldPop at 1 km resolution adjusted by JMP proportions 
at 1 km resolution. Produced in ArcGIS 10.
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Next we ran the SY profiles of a collection of SY curves through 
AWH-Geo, including commercial cooler–condenser devices evaluated 
by Bagheri34 and a data sheet for the SOURCE panel, a sorbent-based 
device from company SOURCE, formerly known as Zero Mass Water35 
(ZMW).

Figure 4c shows resulting outputs normalized by area (in l d−1 m−2)—a 
performance metric advocated by LaPotin et al. 11—as a function of the 
population without SMDW reached. Steep gradients of the human 
impact of the output mirror those in the coincidence analysis. Linear 
SY profiles prioritize performance at low RH, but cap output even in 
resource-rich climates. The target curves are based on hypothetical SY 
values similar to those characteristic of sorbent or device profiles that 
reach 1 billion users at an average of 5 l d−1 m−2. Comparing the two target 
curves demonstrates the expected trade-off between serving more 
users at low output (linear) and fewer users at high output (logistic).

To further explore trade-offs of the SY curve across different values 
of RH, we plotted SY values from materials and devices in relation to 
target curves for reaching 0.5–2.0 billion people without SMDW at 
5 l d−1, the approximate daily drinking water requirements of an indi-
vidual14 (Fig. 4d). We based the target curves on a 1 m2 device unless 
otherwise noted, although water output and SY targets scale linearly 
with device area in sunlight. To demonstrate this, we plotted a version 
of the 1.0-billion target based on 2 m2—this doubling of the device area 
halves the SY requirements for the target impacts. The existing devices 

both follow approximately linear yields across RH below the 0.5-billion 
impact target curves. MOFs and other sorbents show varied results3,36, 
although they remain roughly linear. Zhao’s exceptional yields at high 
RH make up for low performance at low RH (logistic profile), and show 
the most promise for reaching the largest user base (2.0 billion). Figure 
4d compares material and device performance side-by-side to show 
the gap between present capabilities and theoretical limits, although 
real devices will be subject to losses that will prevent them from fully 
reaching idealized material performance or theoretical limits.

Closing the gap
This study presents initial conclusions—developing detailed SC-AWH 
design criteria will require further work. A device with a 1 m2 solar col-
lection area and a SY profile of 0.2–2.5 l kWh−1 (0.1–1.25 l kWh−1 for 2 m2) 
can serve the SMDW needs of about 1 billion people, assuming continu-
ous harvesting of 2–3 h per day of coincident sunlight of more than 
600 W m−2 and RH above 30%. The shape of the SY curve is critical for 
SC-AWH to take advantage of coincident humidity and solar energy 
during key periods of the day, typically during morning and evening 
hours. A trade-off exists between increasing yields at lower RH (around 
30%) for those in climate transition zones (northern sub-Saharan Africa 
and western India), versus focusing on exponentially higher yields in 
humid regions such as Bangladesh and equatorial regions.
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Researchers and device inventors can cross-reference Fig. 4 when 
making trade-off decisions between sets of technical specifications 
and servable regions and people. Recent experiments4,5,37 show rapid 
improvements in multi-cycled sorption material yield, ranging from 
0.1 to more than 8.0 l d−1 kg−1 sorbent in outdoor conditions (RH 
10–60%, GHI < 1,000 W m−2), and show inflections in performance 
along similar ranges as population distributions11,31 (RH 30–50%, GHI 
400–600 W m−2). Advancements in device efficiencies from inno-
vative design architectures38 and novel high-performance physical 
sorbents15,17,39–41 show promise for increasing SC-AWH output. Indi-
vidual specific yields from materials experiments or prototypes can be 
plotted in Fig. 4d for benchmarking against target impacts. Validated 
device performance in outdoor field conditions and published out-
put tables and are needed for global researchers to advance progress  
of AWH.

The long-term averaged output of an AWH device is an important but 
limited metric. Seasonal, weekly and diurnal variability in output will 
influence user adoption and market viability. Some seasonal profiles 
are explored in Extended Data Figs. 4–8. Short periods of shortfall may 
be supplemented by storage from previous surpluses. Rainfall collec-
tion or alternative sources would be required for seasonal shortfall 

periods, such as those in monsoon climates. Use of multiple water 
sources and seasonal switching are well established in the literature, 
although there may be trade-offs with respect to water quality and 
contamination42,43, reinforcing the need for in-depth knowledge of 
existing water access practices when deploying AWHs, with a focus 
on household water treatment and safe storage.

The hydro-ecological impacts of AWH for drinking water are prob-
ably negligible given the scale of the global atmospheric water budget. 
Serving all 2.2 billion people without SMDW at 10 l d−1 sums to approxi-
mately 8 km3 yr−1, a mere 0.20% of the net water extraction of global 
cropland (4,000 km3 yr−1) and 0.01% of total evapo-transpiration over 
land44 (65,500 km3 yr−1).

SC-AWH devices have the potential to be low-cost. Most design 
architectures have few moving parts (for example, a slowly rotating 
sorbent wheel8), and can be constructed from widely available com-
ponents. Advanced sorbent materials (for example, MOFs or TRP) will 
need to be mass manufactured to reach cost targets. New high-volume 
manufacturing methods for MOFs45,46 have the potential to drasti-
cally reduce costs.

Technology development is only one part of the complex problem  
of safe water access; user-centric formative research with a wide variety of 
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end users is critical for ensuring that devices are adopted widely. Similar 
to bottled water21 SC_AWH devices could paradoxically undermine efforts 
to develop permanent piped infrastructure. Product affordability and 
adoption require parallel financial and socio-cultural efforts such as 
scaling availability of loans, promoting awareness of waterborne disease 
risk and increasing women’s influence over community decisions47–49.

Our analysis demonstrates that daytime climate conditions may 
in fact be sufficient for continuous-mode AWH operation in world 
regions with the highest human need. This assessment suggests that 
focusing device design criteria on maximum impact and reducing 

costs of off-grid production of drinking water at the household scale 
is a worthwhile effort.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-021-03900-w.
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target population. ZMW Source profile approximated from the manufacturer’s 
technical specifications sheet35. Note that the full ZMW panel is approximately 
3 m2. Experimental values for MOFs and sorbents are taken from 
experiments3,36 (0.19 l kWh−1 and 0.84 l kWh−1), and TRP is taken from ref. 15, all 
converted as in ref. 32. Values for the Bagheri device34 assume work instead of 
heat input; therefore photovoltaic efficiencies were applied when converting 
from GHI. Maps are produced in ArcGIS 10.
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Methods

Water access data processing
Data on drinking water coverage by region was acquired from the WHO/
UNICEF JMP. The JMP acts as official custodian of global data on water 
supply, sanitation and hygiene2 and assimilates data from administra-
tive data, national census and surveys for individual countries, and 
maintains a database that can be accessed online through their website. 
We accessed data tables for national and subnational drinking water 
service levels from https://washdata.org.

JMP datasets are not geographically linked to official boundary files. 
We joined the tables to GIS boundaries obtained from the following 
open-source collections: GADM (https://gadm.org), the Spatial Data 
Repository of the Demographic and Health Surveys Program of USAID 
(DHS) and the Global Data Lab of Radboud University (GDL)2,50–53. Subna-
tional regions reported by the JMP are unstructured, representing vari-
ous regional administrative levels (province, state, district and others).

The JMP national and subnational data were joined to GIS bounda-
ries using a custom geoprocessing tool built in Python and ArcGIS 10. 
The tool joins the available JMP subnational-level survey data to the 
closest name match of regional boundary names from a merged stack 
of GADM (admin1, admin2 and admin3), DHS and GDL boundaries 
worldwide. The JMP national-level survey data is then joined to GADM 
national (admin0) boundaries for countries which have no subnational 
data available. Finally, the two boundary-joined datasets (national 
and subnational) are merged, processed and exported as a seamless 
global fabric of water-stressed-population data at the highest respec-
tive spatial resolutions available (Fig. 1a).

JMP does not report the breakdown between the SMDW and basic ser-
vice level within subnational regions, and instead reports a combined 
category called ‘at least basic’ (ALB). To estimate the SMDW values in 
subnational regions, a simple cross-multiplication was performed 
using the splits at the national level:

SMDW =
SMDW

ALB
×ALB ,subnational

national

national
subnational

where ALBnational, ALBsubnational and SMDWnational are known values.
Validation of the cross-estimation of share of SMDW from ALB for 

subnational regions was conducted on a reference dataset of nationally 
representative household surveys that collected data on all criteria for 
SMDW54, shown in Extended Data Fig. 2. We report regression results 
of R2 = 0.87 and a standard error of 3.67, indicating a bias which over-
reports SMDW share and a probable underestimate of people living 
without SMDW in our study. This discrepancy comes from JMP calcu-
lations of SMDW that rely on the minimum value of multiple drinking 
water service criteria (free from contamination, available when needed 
and accessible on premise) rather than considering whether individual 
households meet all criteria for SMDW55.

The fraction of population without SMDW was multiplied by residen-
tial population values in the WorldPop top-down unconstrained global 
mosaic population count of 2017 at 1 km spatial resolution56 (https://
www.worldpop.org). WorldPop was accessed online as a TIF image and 
imported to Google Earth Engine. The year 2017 was chosen to more 
closely match water access data from JMP. The percentages reported 
by JMP are probably not uniform within most regions57, introducing an 
unknown error to Fig. 1b, but represent the best estimate available to 
us given the limitations of these regionally reported data.

Climate input and conversion approximations
GHI and reference plane. We used GHI (in W m−2) as solar energy input 
data. GHI has good availability in climate datasets and introduces the 
fewest number of assumptions. Since GHI describes the irradiance in 
a locally horizontal reference plane, this approximation is only exact 

for devices having a horizontally oriented solar harvesting area. Annu-
ally averaged comparisons between horizontal and optimal fixed-tilt 
panels show negligible differences in direct plus diffuse radiation in 
tropical latitudes, and ratios below 25% in locations within 50° north 
and south latitudes58. Those seeking precise absolute predictions for 
tilted devices or higher latitudes are encouraged to adapt the provided 
code to their specific assumptions.

Conversion from SY to AWH output. As discussed in the main text, 
solar-driven AWH devices typically have one of two predominant en-
ergy inputs: thermal (converted directly from incident sunlight on the 
device) or electrical (from PV). Here, the energy units used to calculate 
yield in l kWh−1 are incident solar energy directly from GHI. The various 
assumptions are made in relation to the reported values based on their 
source. The thermal limits33, target curves, and experimental results 
reported by TRP15 and MOFs were assumed to have direct (100%) conver-
sion from sunlight to heat. For the ZMW device, the table provided by 
the manufacturer accounts for system losses, so the table values were 
directly converted in our model35. For ref. 34 and the cooler–condenser 
limits from ref. 32, which both assume work input instead of heat, we ap-
plied a typical PV conversion efficiency of 20% to convert from sunlight 
kWh (GHI) to kWhPV (electrical work) input to the device59.

Sufficiently short sorbent cycling times. AWH-Geo assumes continu-
ous or quasi-continuous AWH. AWH-Geo considers each 1-h timestep 
independently and is thus stateless. Aside from edge cases, this is a 
safe assumption for mass efficient SC-AWH devices, which typically 
have time constants shorter than 1 h, both for sorbent cycling and for 
most of the thermal time constants. For devices with longer time con-
stants, batch devices or processes with slow (de)sorption kinetics, this 
assumption may introduce increased error, and may require further 
adaptation of the provided code.

Climate time-series calculation
AWH-Geo is a resource-assessment tool for AWH. It consists of a geo-
spatial processing pipeline for mapping water production (in litres 
per unit time) around the world of any solar-driven continuous AWH 
device that can be characterized by an output table of the form out-
put = f(RH, T, GHI).

Output tables show AWH output values in l h−1 or l h−1 m−2 across per-
mutations of the 3 main climate variables in the following ranges: RH 
between 0 and 100 % in intervals of 10%, GHI between 0 and 1,300 W m−2 
in intervals of 100 W m−2, and T between 0 and 45 °C in intervals of 
2.5 °C (2,145 total output values). The tables are converted into a 3D 
array image in Google Earth Engine and processed across the climate 
time-series image collection for the period of interest. Finally, these 
AWH output values are composited (reduced) to a single time-averaged 
statistic of interest as an image.

Climate time-series data was acquired from the ERA5-Land climate 
reanalysis from the European Centre for Medium-Range Weather Fore-
casts (ECMWF)60, accessed from the Google Earth Engine data catalogue. 
ERA5-Land surface variables were used in 1-h intervals and 0.1°× 0.1° 
(nominal 9 km). The 10-year analysis period (2010–2019, inclusive) was 
used for this work, and represents a period long enough to provide a 
reasonable correction for medium-term interannual climatic variability.

Climate variables GHI and T were matched to ERA5-Land param-
eters ‘Surface solar radiation downwards’ (converted from cumulative 
to mean hourly) and ‘2 metre temperature’ (converted from K to °C),  
respectively. RH was calculated from the ambient and dew point tem-
perature parameters in a relationship derived from the August–Roche–
Magnus approximation61 rearranged as:

( )
( )

RH = 100% ×
e

e

aT
b T

aT
b T

d
+ d

+

https://washdata.org
https://gadm.org
https://www.worldpop.org
https://www.worldpop.org


where a is 17.625 (constant), b is 243.04 (constant), T is the ERA5-Land 
parameter ‘2 metre temperature’ converted from K to °C, and Td is the 
ERA5-Land parameter ‘2 metre dewpoint temperature’ converted from 
K to °C.

Spot validation of the climate parameters and the mapped output was 
performed manually in Google Earth Engine across several timesteps 
in 2016 in Ames, Iowa (using the Iowa Environmental Mesonet AMES-
8-WSW station62) and showed insignificant error (< 5%).

Mapping upper bounds
Figure 3a maps thermodynamic upper bound outputs for SC-AWH 
based on an equation from Kim et al. 33, reproduced below.
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where Qhot,in,min
̇  is the minimum input heat flux (in Wheat) required to 

drive the process, Thot is the temperature (in K) at which the input heat 
is delivered, Tambient is the ambient temperature (in K) at which heat is 
rejected and water and air exit the process, ṁwater,out is the production 
rate of liquid water by mass, ωdenotes humidity ratios in kg of water 
per kg of dry air, e denotes specific exergies, which can be looked up 
for given temperatures and humidities, subscript air,in denotes ambi-
ent air drawn in at Tambient from which to extract moisture, subscript 
air,out denotes air exiting the process at Tambient after extracting some 
moisture from it, subscript water,out denotes liquid water exiting the 
process at Tambient as the desired product.

Parameters not present in this formula, but that are in Kim’s underly-
ing derivation: this upper limit is obtained for a small recovery ratio 
(RR ~ 0) chosen for numerical stability and for reversible process condi-
tions (entropy generation, Sgen = 0).

Kim’s model assumes an AWH in which the fundamental energies 
required are driven by input heat supplied at a temperature Thot. The 
limit it represents applies independent of the process, number of 
stages, sorbent choice, and so on, as long as heat drives the process.

We adapt Kim’s model to solar energy input, assuming an idealized 
conversion efficiency from solar irradiance to usable heat of 100%. 
This idealization retains a robust upper bound without bringing in 
additional parameters. Literature values for theoretical sun-to-heat 
efficiency limits range from >99.99 to 95.80% for thermal absorbers, 
depending on the level of angular selectivity63.

Rearranged, Kim’s model yields

V
A

E
T

T

ω ω
e e e

ρ

≤ × 1 −

×
1

−
( − ) + ×

1

water,out
GHI

ambient

hot

air,in air,out
air,out air,in water,out

−1

water





















̇

where, in addition, ̇Vwater,out is the production rate of liquid water by 
volume, A is the area harvesting sunlight (see approximation section 
below), EGHI is GHI in Wsun m−2, and ρwater is the density of water.

This is now a function of the three key climate variables: GHI (in the 
first term), ambient temperature (in the second and hidden in the third 
term) and RH (entering the third term). This was converted to an output 
table and processed through the AWH-Geo pipeline and presented in 
Fig. 3a. While this can be run for any choice of parameter Thot, we present 
figures here for Thot = 100 °C, a temperature still achievable in low-cost 
(non-vacuum) practical devices without tracking or sunlight concen-
tration. Higher driving temperatures increase the upper bound for 
water output. For the limits analysis, values of RH above 90% are 
clamped to prevent unrealistically high theoretical outputs as Kim’s 

equation goes to infinity at 100% RH. A further assumption is made 
that new ambient air is efficiently refreshed.

Figure 3b maps the maximum yield for active cooler–condensers 
without recuperation of sensible heat—all given work input and an 
optimum coefficient of performance of the cooling unit at a condenser 
temperature that maximizes specific yield as modelled by Peeters32, 
which we digitized from their fig. 11. Peeters chose to set yield to zero 
whenever frost formation would be expected on the condenser. Since 
Peeters assumes work input, we convert from solar energy (GHI) to 
kWhPV as discussed above.

Figure 3c maps Zhao’s experimental results from a TRP using a 
logistic regression curve fit to their reported SYs of 0.21, 3.71 and  
9.28 l kWh−1 at 30, 60 and 90% RH, respectively15. The terms of the curve 
fit are reported in the next section.

Custom yellow to blue map colours are based on www.ColorBrewer.
org, by C. A. Brewer, Penn State64.

Specific yield and target curves
Two simple characteristic equations, linear and logistic, were used 
to fit a limited set of SY and RH pairs from laboratory experiments 
or reported values and plotted through AWH-Geo using calculated 
output tables. Hypothetical curves of similar form whose terms were 
adjusted iteratively in AWH-Geo to goal-seek a target output (5 l d−1) 
and user base, and are reported here (for 1-m2 devices). In the following 
equations, RH in % is taken as a fraction (for example 55% is equivalent  
to 0.55).

The linear target curve is a simple linear function which crosses the 
y-axis at zero:

aSY(RH) = × RH

where a is set to 1.60, 1.86 and 2.60 L/kWh to reach targets of 0.5, 1.0, 
and 2.0 billion people without SMDW, respectively, and RH is input 
RH (fractional).

The logistic target curve is a logistic function:

L
SY(RH) =

1 + e k− (RH−RH )0

where L is set to 1.80, 2.40 and 4.80 L kWh−1 to reach targets of 0.5, 1.0 
and 2.0 billion people without SMDW, respectively, k is the growth 
rate set to 10.0, and RH and RH0 are input RH (fractional), and 0.60, 
respectively.

The SY values reported by Zhao for TRPs (which they term ‘SMAG’) 
were fit to a logistic function of the same form with the following param-
eters: L set to 9.81 L kWh−1, k set to 11.25 and RH0 set to 0.645.

The resulting fitted SY profile is expanded into an output table. As 
with all reports providing SY values instead of full output tables, this 
forces an assumption of linearity in heat rate (approximately equal to 
GHI), which may introduce error at lower GHI levels. Zhao reports SY 
of the TRP material is consistent across temperature below 40 °C—the 
material’s lower critical solution temperature—above which its perfor-
mance drops precipitously. Accordingly, we set the SY to 0 l kWh−1 for 
temperatures ≥40 °C in the output table.

Bagheri reported performance of three existing AWH devices across 
several climate conditions using an ‘energy consumption rate’ in kWh/L, 
which can be considered to be the SEC, and the simple reciprocal of SY. 
Instead of fitting a logistic curve to the reciprocals, we fit an exponential 
function to the average SEC of the three devices in conditions above 
20 °C of the equation:

SEC(RH) = 9 . 03e−2.99RH

where SEC is specific energy consumption in kWhPV l−1 and RH is  
fractional.

http://www.ColorBrewer.org
http://www.ColorBrewer.org
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This was applied to RH and taken as reciprocal in an output table 

and run through AWH-Geo. Since Bagheri reports the equivalent of 
kWhPV, we scale to adapt to GHI input with a photovoltaic conversion 
efficiency as discussed above.

For performance of the ZMW device (the company’s ~3 m2 SOURCE 
Hydropanel), we used values from the panel production contour plot in 
the technical specification sheet available from the manufacturer’s web-
site35. The decision for inclusion was made owing to the importance as 
an early example of a SC-AWH product with commercial intent. Values in 
l per panel per day were taken at each 10% RH step at 5 kWh m−2, assumed 
to represent kWh m−2 d−1, and divided by 15 kWh (~3 m2 × 5 kWh m−2) to 
convert to SY in l kWh−1. From the resulting SY curve, an output table 
was generated and processed with AWH-Geo.

Coincidence analysis and population sums
The coincidence analysis was run through AWH-Geo across 70 threshold 
pairs given the full permutation set of RH from 10 to 100% and GHI from 
400 to 700 W m−2 threshold intervals, using binary image time series. 
The resulting mean multiplied by 24 represents average hours per day 
thresholds are met simultaneously, giving ophd. Below is a functional 
representation of this time-series calculation:

⟨(RH > RH )&& (GHI > GHI )⟩t t,px threshold simultaneous ,px threshold time average

where RHt ,px  is the RH in the map pixel px at time t, RHthreshold is the 
threshold of RH above which the device is assumed to operate, GHIt ,px 
is the GHI in the map pixel px at time t, and GHIthreshold is the threshold 
of GHI above which the device is assumed to operate.

The population calculation was then conducted on these images in 
Google Earth Engine.

Zonal statistics were performed on the mean ophd images as integers 
(0–24) using a grouped image reduction (at 1,000-m scale) summing 
the population integer counts on the population without SMDW dis-
tribution image created previously (derived from WorldPop). This 
reduction was performed at 1,000 m. Validation was performed in 
Google Earth Engine on single countries within single ophd zones 
and showed insignificant error (<2%). The population results were 
collected as a table (feature collection) and population was summed 
cumulatively within stacked ophd zones. These were exported to R 
for plotting in Fig. 4b.

To assess the sensitivity of results to the choice of climate and pop-
ulation dataset, we performed a coincidence analysis (Fig. 4b) with 
alternative datasets and provide those results in Extended Data Fig. 1.

As an alternative climate dataset to ERA-5 (1 h, 9 km), we used NASA’s 
Global Land Data Assimilation System (GLDAS) 2.1 at 0.25° × 0.25° 
spatial resolution (nominally 30 km) and 3 h temporal resolution65 
during the period concurrent with the main results, 2010–2019. As an 
alternative population dataset to WorldPop 2017, we used Oak Ridge 
National Laboratory’s LandScan 2017 ambient population counts at 
1 km spatial resolution66. Two results comparisons were calculated: (1) 
GLDAS calculated with WorldPop 2017 for direct comparison of climate 
data input, and (2) GLDAS calculated with LandScan for comparison 
of climate and population dataset substitution.

The intercomparisons suggest there is negligible sensitivity to the 
population dataset used, but substantial and systematic sensitivity 
to the climate dataset used, while all intercomparisons agree in main 
features and qualitative conclusions. The spatially and temporally 
(3×) coarser GLDAS dataset consistently results in lower predictions 
of water output and impact than the finer ERA-5 climate reanalysis. We 
speculate that the 3-h timesteps of GLDAS are insufficient to capture 
the performance-critical humidity and GHI dynamics throughout the 
day (probably morning and evening hours), and, similarly, the 30-km 
pixels are insufficient to resolve fine-scale climate patterns driven by 
topographic and other microscale physiographic effects. This illus-
trates the importance of using high-resolution climate datasets.

Variability statistics of AWH output
To go beyond annual averages and study availability, we introduce 
a set of metrics we named moving average density 90th percentile 
(MADP90).

The MADP90-t represents a device’s average output rate (l d−1 m−2) 
that will be exceeded for 90% of periods lasting t days at the given loca-
tion. MADP90 is calculated from the derived P90 value across a prob-
ability density function (PDF) of daily mean output during each t-day 
window in the time series (2010−2019). The result is a scalar that can 
be mapped spatially. Moving-window periods of 1, 7, 30, 60, 90 and 
180 days were examined in this study. MADP90-results are available 
as additional results and map layers in AWH-Geo.

Extended Data Fig. 3 provides an example set of PDFs for a location 
in southwest Tanzania. Each of the P90 values correspond to a version 
of the MADP90 metric corresponding to a moving window period. The 
P90 value naturally increases with t in most geographic locations as the 
PDF tightens its dispersion about the natural (P50) mean.

Data availability
The software and datasets generated during and/or analysed during the 
current study are available in the following repositories. GitHub: https://
github.com/AWH-GlobalPotential-X/AWH-Geo; Figshare: https://doi.
org/10.6084/m9.figshare.c.5642992.v1; JMP Geoprocessor package 
(Python and ArcGIS geoprocessing model); JMP Geofabric dataset 
(shapefile); population without SMDW image data layer (geoTiff); 
upper limit AWH output data layers (geoTiff); coincidence analy-
sis results data tables (Sheets); and output tables used in this study 
(Sheets). Source data are provided with this paper.

Code availability
The software used during the current study is available as follows. 
GitHub: https://github.com/AWH-GlobalPotential-X/AWH-Geo; 
AWH-Geo application: processor and output viewer with source code; 
population and result data processing scripts. 
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Extended Data Fig. 1 | Comparison of coincidence analysis results to input 
datasets. Main results from coincidence analysis (Fig. 4b, people without 
SMDW served by opH/d of coincident climate threshold) with ERA5-Land and 
WorldPop 2017 datasets compared with results from (a) GLDAS 2.1 climate and 

WorldPop 2017 population, and (b) GLDAS 2.1 climate and LandScan 2017 
population datasets. Operational hours per day (opH/d) shown across global 
horizontal irradiance (GHI) and relative humidity (rH) thresholds.



Extended Data Fig. 2 | Validation of SMDW using household surveys 
reporting SMDW at household-level. (a) Charted and (b) tabulated validation 
of cross-estimation of percentage safely managed (SM) from at least basic 
(ALB) drinking water ladders at sub-national (SN) level from national (N) 
breakdowns using known reference data set at SN level from WHO/UNICEF JMP 
data. Reference values from nationally representative Multiple Indicator 
Cluster Surveys integrating water quality testing (ref. SM) compared with our 
estimates from the JMP Geoprocessor combining JMP sub-national estimates 
for ALB and national estimates for safely managed drinking water services (est. 
SM). Ordinary least squares regression (OLS) resulted in standard error (stdErr) 
as reported. Sample size n = 15. Table (b) shows main results (ERA5-Land) 
population counts after adjustment from regression. Population without 
safely managed drinking water (SMDW) shown across global horizontal 
irradiance (GHI) and relative humidity (rH) thresholds.
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Extended Data Fig. 3 | Visual representation of MADP90 concept from 
location in Tanzania. Histograms of moving-averaged output (L/d/m2) across 
window periods (indicated in days) for a location in Manda, Tanzania. P90 

availability value increases as averaging window period increases. P90 values 
are estimated and for illustrative purposes only.



Extended Data Fig. 4 | Select MADP90 metrics of AWH upper bounds. (a) MADP90-90day, and (b) MADP90-7day values (measure of availability through time) 
globally for AWH thermodynamic upper bounds (Kim 2020), during ten year 2010–2019 (inclusive) analysis period.
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Extended Data Fig. 5 | Bi-weekly timeseries of AWH output and climate  
drivers for equatorial profile in Davao, Philippines. Bi-weekly mean output  
(L/d/m2), and climate inputs global horizontal irradiance (GHI, plotted from  
0–1000 W/m2), relative humidity (rH, plotted from 0–100 %), and temperature  
(plotted from 0–100 °C) of (a) AWH thermodynamic upper bounds (Kim 2020)  

during ten year 2010–2019 (inclusive) analysis period for each bi-weekly interval  
and (b) averaged by bi-weekly period annually during this period, and (c) for the  
1 billion user linear target curve for each bi-weekly interval. Example of a  
steady, low variability output profile characteristic of equatorial tropics.



Extended Data Fig. 6 | Bi-weekly timeseries of AWH output and climate 
drivers for tropical savanna profile in Accra, Ghana. Bi-weekly mean output 
(L/d/m2), and climate inputs global horizontal irradiance (GHI, plotted from 
0–1000 W/m2), relative humidity (rH, plotted from 0–100 %), and temperature 
(plotted from 0–100 °C) of (a) AWH thermodynamic upper bounds (Kim 2020) 

during ten year 2010–2019 (inclusive) analysis period for each bi-weekly 
interval and (b) averaged by bi-weekly period annually during this period, and 
(c) for the 1 billion user linear target curve for each bi-weekly interval. Example 
of a seasonal wet-dry tropical savanna climate with moderate semi-annual 
fluctuations of AWH output driven by rH.
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Extended Data Fig. 7 | Bi-weekly timeseries of AWH output and climate 
drivers for tropical savanna profile in Dhaka, Bangladesh. Bi-weekly mean 
output (L/d/m2), and climate inputs global horizontal irradiance (GHI, plotted 
from 0–1000 W/m2), relative humidity (rH, plotted from 0–100 %), and 
temperature (plotted from 0–100 °C) of (a) AWH thermodynamic upper 

bounds (Kim 2020) during ten year 2010–2019 (inclusive) analysis period for 
each bi-weekly interval and (b) averaged by bi-weekly period annually during 
this period, and (c) for the 1 billion user linear target curve for each bi-weekly 
interval. Example of a seasonal wet-dry tropical savanna climate with 
pronounced semi-annual fluctuations of AWH output driven by rH.



Extended Data Fig. 8 | Bi-weekly timeseries of AWH output and climate 
drivers for mid-latitude profile in Ulaanbaatar, Mongolia. Bi-weekly mean 
output (L/d/m2), and climate inputs global horizontal irradiance (GHI, plotted 
from 0–1000 W/m2), relative humidity (rH, plotted from 0–100 %), and 
temperature (plotted from 0–100 °C) of (a) AWH thermodynamic upper 

bounds (Kim 2020) during ten year 2010–2019 (inclusive) analysis period for 
each bi-weekly interval and (b) averaged by bi-weekly period annually during 
this period, and (c) for the 1 billion user linear target curve for each bi-weekly 
interval. Example of a mid-latitude climate with pronounced semi-annual 
fluctuations of AWH output driven by temperature.
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Extended Data Fig. 9 | Decadal anomaly of AWH output with logistic SY 
profile between 2000–2009 and 2010–2019. (a) Overall mean output (L/d/m2) 
of 1 billion user target logistic curve at 5 L/d/m2 during ten year 2010–2019 
(inclusive) period. (b) Ratio (%) anomaly of output of same specific yield  

(SY, in L/kWh) profile averaged over ten year 2000–2009 (inclusive) period. 
Red colors indicate increasing AWH output with time between the two decades. 
Blue colors indicate decreasing AWH output.
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