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SiO2@GdPO4:Tb@SiO2 nanoparticles with core-shell-shell
structure were successfully synthesized by a cheap silane
coupling agent grafting method at room temperature. This
method not only homogeneously coated rare-earth phosphate
nanoparticles on the surface of silica spheres but also saved the
use of rare-earth resources. The obtained nanoparticles
consisted of SiO2 core with a diameter of approximately
210 nm, GdPO4:Tb intermediate shell with thickness of
approximately 7 nm, and SiO2 outer shell with thickness of
approximately 20 nm. This unique core-shell-shell structured
nanoparticles exhibited strong luminescence properties
compared with GdPO4:Tb nanoparticles. The core-shell-shell
structured nanoparticles can effectively quench the intrinsic
fluorescence of bovine serum albumin through a static
quenching mode. The as-synthesized nanoparticles show great
potential in biological cell imaging and cancer treatment.
1. Introduction
Because of the unique 4f shell of the ions, lanthanide compounds
often show good electronic, optical and magnetic characteristics.
The lanthanide compounds have attracted considerable interest
with major applications in optics, plasma display, drug delivery,
magnets and biological labelling [1–4]. A particularly intriguing use
of lanthanide phosphate (LnPO4) is in optoelectronic devices and
biological fluorescence labelling, which may be based on its
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excellent luminescence, low toxicity, long decay time, and chemical stability [5–7]. Among the rare-earth

phosphates, gadolinium phosphate (GdPO4) is an important host matrix for luminescent lanthanide ion-
doped nanophosphors [8]. GdPO4 matrix nanoparticles have been proved to be a potential multi-functional
nano-platform for magnetic resonance imaging (MR) and effective optical imaging materials [9]. In recent
years, gadolinium phosphate nanoparticles have been synthesized by various methods. For example,
Rodriguez-Liviano et al. have prepared GdPO4:Eu

3+ nanoparticles via microwave-assisted heating method,
which showed potential applications in biolabels [10]. GdPO4:Eu

3+ nanoparticles also have been
synthesized by co-precipitation, and the nanoparticles can emit intense orange-red fluorescence [11].
GdPO4:Eu

3+/Tb3+ was synthesized via typical hydrothermal method; the nanoparticles can obtain a bright
colour-tunable photoluminescence from red, orange, yellow to green region when the GdPO4 nanoparticles
are co-doped with Eu3+ and Tb3+ ions [12]. However, most conventional synthesis methods required high
temperature, pressure and expensive precursors.

In particular, the lanthanide compounds nano phosphors have poor aqueous solubility and dispersion,
and then their biocompatible and biological applications might be limited [13]. In order to enhance the
solubility and dispersion in aqueous solution of some namomaterials, the surface of the nanomaterials
were modified by polyethylene glycol derivative, poly (acrylic acid) and silica. For example, PEG-NaYF4:
Yb/Tm was synthesized by a layer-by-layer strategy, which has great potential in bio-imaging and
photodynamic therapy [14]. Hexagonal phase NaYF4:Yb,Er@PAA can be synthesized by the modification
method, which has great potential in bio-probes [15]. Xu et al. prepared self-assembled Ni/Co phosphide
composite N-doped carbon spheres via a hydrothermal process, which had abundant exposed active sites
for the hydrogen evolution reaction [16]. The obtained Artemia cyst shell (ACS)–TiO2–MoS2 ternary
porous structure has a good reduction effect on 4-NP and 2-NA, which is obviously higher than the
reduction effect of ACS–TiO2 and MoS2 under the same conditions [17]. Therefore, the synthesis of SiO2-
lanthanide phosphate/oxide nanomaterials with core-shell structure has attracted considerable attention
due to the decrease in use of rare earth and its non-toxicity. Core-shell structured SiO2@Y2O3:Eu

3+

nanopowder was found to be appropriate as a fluorescent marker for latent fingerprint recognition,
security ink and solid-state lighting applications [18]. Xu et al. have synthesized a luminescent and
mesoporous core-shell structured Gd2O3:Eu

3+@SiO2 nanocomposite and make it as a drug carrier [19]. In
our previous studies, we have synthesized SiO2@EuPO4 by co-precipitation using triethyl phosphate [20].
It was found that the core-shell nanostructure can significantly improve the emission strength of the
material. However, because the hydrolysis rate of tributyl phosphate was not easy to control, the coating
uniformity was poor. By bridging ligand organosilane HOOCC6H4N(CONH(CH2)3Si(OCH2CH3)3)2
(MABA-Si) connected with SiO2 submicrospheres and rare earth ion, it makes CePO4:Tb nanoparticles
coated uniformly on the surface of SiO2 submicrospheres. We also synthesized core-shell-shell structured
SiO2@CePO4:Tb@SiO2 [21]. In addition, silica shell can greatly improve the stability of SiO2@GdPO4:
Tb@SiO2 nanoparticles through protecting the core materials from dissolution or hydrolysis. However, the
−Si(OCH2CH3)3 group of MABA-Si ligand was easy to hydrolyse in the air, so it is difficult to connect
with SiO2 submicrospheres. When SiO2 was used as core and shell of the core-shell-shell particles, it might
not only decrease the consumption of rare earth but also give more functions to nanomaterials [21–23].

In this paper, we report a room-temperature silane coupling agent grafting method to simultaneously
graft 3-(aminopropyl) triethoxysilane (APTES) on the surface of the silicon spheres and bond with carboxyl
of maleic anhydride (MAH). By means of this way, the reaction of silane coupling agent APTES connected
with SiO2 spheres and rare-earth phosphate is easy to carry out. Furthermore, nano rare-earth phosphate
can be homogeneously coated on the surface of silica spheres. The obtained SiO2@GdPO4:Tb@SiO2

nanoparticles show a core-shell-shell structure with uniform size and coating layer. The SiO2 can be
functioned as fixed centre core and protected layer shell, respectively. These unique structures endow
SiO2@GdPO4:Tb@SiO2 nanoparticles good luminescence properties. Moreover, the interaction between
the core-shell-shell structured nanoparticles and BSA in the simulated physiological conditions was
studied. The core-shell-shell structured SiO2@GdPO4:Tb@SiO2 nanoparticles makes nanoparticles highly
biocompatible and non-toxic, which would expand their potential applications in the field of biomedicine.
2. Material and methods
2.1. Material and reagents
All chemicals were analytical, unpurified and used as received. Ammonia, Tb4O7 (99.99%),
Gd(NO3)3·6H2O, (NH4)2HPO4 and cetyltrimethyl ammonium bromide (CTAB) were all purchased by
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Shanghai McLean Biochemical Technology Corporation Limited. 3-(aminopropyl) triethoxysilane

(APTES), MAH and tetraethoxysilane (TEOS) were achieved from Aladdin (Shanghai, China). Bovine
serum albumin (BSA, biochemical reagent, average molecular weight of 66 000 g mol−1) was supplied
by Beijing bailingwei Technology Corporation Limited (Beijing, China). The terbium nitrate powder
prepared from Tb4O7 was dissolved in 10% nitric acid, then evaporated and dried in vacuum.

2.2. Synthesis of SiO2@GdPO4:Tb@SiO2 nanoparticles
The core-shell structured SiO2@GdPO4:Tb was prepared by the following steps. The SiO2 spheres were
synthesized by the Stöber method [24], in which 0.2 g were dispersed in anhydrous ethanol via
ultrasonication. Then 0.5 ml APTES was put into above ethanol suspension under stirring for 12 h.
After centrifugation, the above as-prepared product (labelled as SiO2@NH2) was dispersed in ethanol,
and dropped in 1.5 mmol MAH ethanol solution stirring for 6.0 h. The obtained solution (labelled as
SiO2@MAH-Si) was centrifuged. Then, it was dispersed in 10 ml anhydrous ethanol followed by
adding of 0.098 mol l−1 Ln(NO3)3 (Gd3+ 95%, Tb3+ 5%) ethanol solution, which was further stirred for
4 h. Finally, 0.0216 g (NH4)2HPO4 was added, and continuously reacted for 2 h. The SiO2@GdPO4:Tb
was obtained by further centrifugation and washing with ethanol three times.

For the synthesis of the SiO2@GdPO4:Tb@SiO2 nanoparticles, the above as-prepared SiO2@GdPO4:Tb
was dispersed in 20 ml 50% ethanol solution via ultrasonication. Then, 0.15 g of cetyltrimethyl
ammonium bromide and 0.3 ml of tetraethoxysilane (TEOS) was added to above suspension under
stirring for 6 h. After centrifugation, the obtained white solid were further washed with ethanol three
times. The white solid was dried at 80°C for 6 h, which was then treated at 600°C for 2 h under
nitrogen atmosphere.

2.3. Interaction between BSA and SiO2@GdPO4:Tb@SiO2 nanoparticles
The whole BSA binding experiment was performed in Tris–HCl buffer solution with pH = 7.4. The
solutions of BSA and the core-shell-shell structured SiO2@GdPO4:Tb@SiO2 nanoparticles were
prepared by dissolving them in the Tris–HCl buffer solution to obtain the desired concentrations. In
the fluorescence quenching experiment of BSA, the quenching of BSA was achieved by keeping BSA
as a fixed concentration and adding core-shell nanoparticles with different concentrations (a = 0.000,
b = 1.85 × 10−5, c = 3.70 × 10−5, d = 5.55 × 10−5, e = 7.42 × 10−5, f = 9.25 × 10−5, g = 1.11 × 10−4, h = 1.29 × 10−4,
i = 1.48 × 10−4 and j = 1.66 × 10−4 mol l−1). Fluorescence measurements were made at 293 K, 303 K and
313 K. The fluorescence spectra of BSA were tested at an excitation wavelength at 280 nm and an
emission wavelength at 335 nm after addition of the core-shell-shell nanoparticles.

2.4. Characterization
The morphology of the products was characterized by transmission electron microscopy (TEM; FEI
Tecnai F20, USA) and scanning electronic microscopy (SEM; Hitachi S-4800, Japan). The crystal
structure is investigated by X-ray powder diffraction (XRD; RIGAKU, Japan) using Cu Kα radiation.
Infrared spectrum of the solid powders was determined in the range of 400–4000 cm−1 (FT-IR; Bruker,
Germany). The luminescence spectra of powders was examined on a fluorescence photometer (FL;
Edinburgh S980, UK).
3. Results and discussion
XRD analysis investigated the phase purity and crystal structure of the as-prepared products. Figure 1
shows the XRD patterns of SiO2 and SiO2@GdPO4:Tb@SiO2 nanoparticles. It can be seen that two
diffraction peaks at 2θ = 8° and 22° from amorphous SiO2 were detected on both samples. Several new
weak diffraction peaks appeared in SiO2@GdPO4:Tb@SiO2, which were matched with monoclinic
phase of GdPO4 (JCPDS No. 32–386). The microstructure and size of the as-obtained samples were
examined from TEM images as shown in figure 2. TEM image of SiO2 (figure 2a) and the particle size
distribution indicated that SiO2 spheres have a regular morphology and excellent monodispersity with
diameters about 210 nm. When SiO2 were coated with GdPO4:Tb, the surface of the obtained
SiO2@GdPO4:Tb spheres becomes rough and the diameter of SiO2@GdPO4:Tb is about 225 nm. To
make the nanoparticles more functional, the surface of the SiO2@GdPO4:Tb spheres were modified by
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Figure 1. XRD patterns of (a) SiO2, (b) SiO2@GdPO4:Tb@SiO2.
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Figure 2. TEM images of the products (a) SiO2, (b) SiO2@GdPO4:Tb, (c–f ) SiO2@GdPO4:Tb@SiO2, and corresponding size distribution images.
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SiO2 as shown in figure 2c–f at different magnification. It can be shown that the product SiO2@GdPO4:
Tb@SiO2 have obvious core-shell-shell structures and smooth surfaces. The corresponding particle size
distribution indicated that the core-shell-shell structures have diameters of about 265 nm. The
thickness of the intermediate shell GdPO4:Tb was approximately 7 nm, and the diameter of the SiO2

core and outer shell was approximately 210 and approximately 20 nm, respectively. In addition, we
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can clearly see that intermediate shell GdPO4:Tb was uniformly grown on the surface of the SiO2

core. The corresponding FESEM images of the as-synthesized products are shown in electronic
supplementary material, figure S1. It can be seen that SiO2 spherical particles with an average size of
210 nm were non-aggregated and uniformly distributed (electronic supplementary material, figure S1a
and b). The diameter of SiO2@GdPO4:Tb increased to 225 nm after GdPO4:Tb coating, and the surface
became rougher (electronic supplementary material, figure S1c and d). Furthermore, SiO2@GdPO4:
Tb@SiO2 still maintained a good spherical shape, while the particle size was increased to 265 nm
(electronic supplementary material, figure S1e and f). Electronic supplementary material, figure S1e,f
shows SiO2@GdPO4:Tb@SiO2 still maintained a good spherical shape with a size of about 265 nm.
Meanwhile, SiO2@GdPO4:Tb@SiO2 nanoparticles also had a high BET surface area of 62 m2 g−1

(electronic supplementary material, figure S2).
We further characterized the products at various synthesis stages by TEM and IR. Firstly, figure 3a

demonstrates that the surface of SiO2 spheres obtained from the hydrolysis of TEOS was very smooth,
and the diameter of SiO2 sphere was about 210 nm. In the corresponding IR spectra, the vibration of
Si-OH of SiO2 was found at 952 cm−1 (electronic supplementary material, figure S3a), which would
provide active bonds for grafting. Secondly, after APTES was grafted on the surface of SiO2 spheres
through Si-O-Si bond that of −NH2 group appeared at 1640 cm−1 (electronic supplementary material,
figure S3b), figure 3b demonstrates that the diameters of the SiO2@NH2 nanoparticles further
increased approximately 2 nm. Thirdly, the SiO2@MAH-Si nanoparticles were obtained by APTES
bonded with MAH. Figure 3c demonstrates that there was no obvious change in thickness after



Figure 4. Schematic illustration showing the formation mechanism of core-shell-shell structured SiO2@GdPO4:Tb@SiO2.
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APTES bonded with MAH. However, three new stretching vibration peaks including −COOH group at
1728 cm−1 and −CONH- group at 1632 and 1596 cm−1 appeared, which suggested that there was a bond
connection between MAH and APTES (electronic supplementary material, figure S3c). TEM images of
figure 3d–f show that plenty of small particles grown on the surface of SiO2@MAH-Si nanoparticles
after rare-earth ions were coordinated with −COOH of MAH. Simultaneously, the stretching vibration
peak of −COOH group was shifted to 1720 cm−1 (electronic supplementary material, figure S3d). In
the next step, the GdPO4:Tb nanoparticles were formed on the surface of SiO2 spheres by the
substitution reaction of PO4

3−. TEM images of figure 3g–i show that the surface of SiO2@GdPO4:Tb
nanoparticles became rough and the rough layer thickness was approximately 7 nm. Therefore, it is
reasonable to conclude that GdPO4:Tb layer with thickness of approximately 7 nm have been
uniformly coated on the SiO2 core through substitution reaction. Finally, SiO2 outer shell was covered
on the surface of SiO2@GdPO4:Tb nanoparticles in the presence of CTAB,through the hydrolysis process
of TEOS. CTAB formed a molecular layer on the surface of the silicon core in the reaction system, which
would guarantee uniform hydrolysis and growth for TEOS. After calcination, the core-shell-shell
structured SiO2@GdPO4:Tb@SiO2 nanoparticles were obtained (figures 1 and 2). Energy-dispersive
X-ray spectroscopy (EDX) of core-shell-shell structured SiO2@GdPO4:Tb@SiO2 was conducted
(electronic supplementary material, figure S4); it can be clearly seen that the weight percentages of
Si, P, Gd and Tb are 36.73%, 0.74%, 5.79% and 0.29%, respectively. The schematic of core-shell-
shell structured SiO2@GdPO4:Tb@SiO2 formation process is illustrated in figure 4. Furthermore,
functionalized SiO2@GdPO4:Tb@SiO2 nanoparticles can be reused after calcination. In other words, the
adsorbed proteins and biomolecules can be removed from the surface of nanoparticles after heat
treatment of the functionalized SiO2@GdPO4:Tb@SiO2 nanoparticles.

The luminescence property of the core-shell-shell structured SiO2@GdPO4:Tb@SiO2 and GdPO4:Tb
nanoparticles with prepared hydrothermal method was investigated at room temperature. Excitation
spectra showed that the strongest excitation peak of GdPO4:Tb nanoparticles appeared at 273 nm,
while the core-shell-shell structured SiO2@GdPO4:Tb@SiO2 also appeared at 273 nm (figure 5a). When
these products were excited at strongest excitation wavelength, the emission peaks centred at 488, 543,
584 and 620 nm, which corresponded to the 5D4→

7F6,
5D4→

7F5,
5D4→

7F4 and 5D4→
7F3 transitions

for the Tb3+ ion [25], respectively (figure 5b). The emission intensity of SiO2@GdPO4:Tb@SiO2 was
stronger than that of GdPO4:Tb nanoparticles, which is consistent with the measurement results of the
quantum yield. The absolute quantum yields of SiO2@GdPO4:Tb@SiO2 and GdPO4:Tb were 28.28%
and 2.73%, respectively. Meanwhile, the photoluminescence lifetime of the products was also
measured. The photoluminescence lifetimes were calculated through the double exponential mode
ðtÞ ¼ ðA1t

2
1 þ A2t

2
2Þ=ðA1t1 þ A2t2Þ and IðtÞ ¼ I0 þ A1 expð�t1=t1Þ þ A2 expð�t2=t2Þ. Where I(t) is the

photoluminescence intensity, τ1 and τ2 stand for the slow and fast terms of the luminescent lifetime,
respectively. A1 and A2 are the corresponding pre-exponential factors. The average lifetime (τ) of the
SiO2@GdPO4:Tb@SiO2 and GdPO4:Tb calculated from their fluorescence decay curves shown in
electronic supplementary material, figure S5 were 1.38 and 2.18 ms, respectively. The rare-earth
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phosphate was protected from the perturbation of the surrounding environment, which contributed by
SiO2 shell. We have also studied the interaction between the as-prepared SiO2@GdPO4:Tb@SiO2

nanoparticles and the BSA. The fluorescence spectra of BSA with increase of the SiO2@GdPO4:
Tb@SiO2 nanoparticles concentration at different temperature were measured as shown figure 6. It can
be shown that the emission intensity of BSA decreases along with the increase of the nanoparticles
concentration, which indicates that the intrinsic fluorescence of BSA can be quenched by adding
SiO2@GdPO4:Tb@SiO2 nanoparticles into BSA solution. Usually, the main fluorescence quenching
mechanism of BSA is dynamics quenching or static quenching. The types of fluorescence quenching
mechanisms can be distinguished by different dependence on temperature [26,27].

The fluorescence quenching intensities at 335 nm for the BSA plus SiO2@GdPO4:Tb@SiO2

nanoparticles system at 293, 303 and 313 K were fitted by the below Stern–Volmer equation (3.1) [27,28]

F0
F

¼ 1þ Kqt0½Q� ¼ 1þ Ksv½Q�, ð3:1Þ

where F0 and F are the emission intensities of BSA and BSA with nanoparticles, respectively; Kq is the
maximum scatter collision quenching constant; t0 is the lifetime of the BSA, the value is
approximately 10−8 s; Ksv is the Stern–Volmer quenching constant and [Q] is the concentration of
SiO2@GdPO4:Tb@SiO2 nanoparticles [29].

For this system, the Ksv could be obtained from the Stern–Volmer equation (3.1). The graph of F0/F
against [Q] at 293, 303 and 313 K were plotted (figure 7) and the corresponding data were summarized in
table 1 for the quenching of BSA by SiO2@GdPO4:Tb@SiO2 nanoparticles. The calculated values of Ksv

were 1.0292 × 104 at 293 K (R2 = 0.975), 1.0148 × 104 at 303 K (R2 = 0.981) and 0.9189 × 104 l mol−1 at
313 K (R2 = 0.979). The value of Ksv was decreased with rising temperature. It can be preliminarily
estimated that the fluorescence quenching mechanism of BSA by SiO2@GdPO4:Tb@SiO2 nanoparticles
was initiated by the formation of a SiO2@GdPO4:Tb@SiO2-protein complex. The fluorescence
quenching mechanism of BSA by SiO2@GdPO4:Tb@SiO2 nanoparticles was static quenching [30]. At
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Table 1. The parameters of Stern–Volmer plots for the fluorescence quenching of BSA by SiO2@GdPO4:Tb@SiO2 at different
temperature.

T(K ) Stern–Volmer linear equation Ksv (l mol
−1) Kq( × 10−8 l mol−1) R2

293 F0/F = 0.7637 + 1.0292[Q] 1.0292 × 104 1.0292 × 104 0.975

303 F0/F = 0.9294 + 1.0148[Q] 1.0148 × 104 1.0148 × 104 0.981

313 F0/F = 0.8842 + 0.9189[Q] 0.9189 × 104 0.9189 × 104 0.979
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the same time, we used the following Mineweaver–Burk curve equation to calculate the binding
constants (Ka) and binding sites (n) for the BSA plus SiO2@GdPO4:Tb@SiO2 nanoparticles:

lg
F0 � F

F

� �
¼ lgKa þ n lg [Q], ð3:2Þ

where F, F0 are the emission intensities of BSA and BSA with nanoparticles, and [Q] is the concentration
of SiO2@GdPO4:Tb@SiO2 nanoparticles. The relation curves of lg[(F0− F )/F )] and lg[Q] at 293, 303 and
313 K for SiO2@GdPO4:Tb@SiO2 nanoparticles are shown in figure 8. The values of Ka and n at different
temperature were measured from the intercept and slope values by the relation curves of lg[(F0− F )/F )]
and lg[Q] (listed in table 2). According to table 2, Ka = 1.682 × 106 (293 K), 2.082 × 105 (303 K) and 9.313 ×
104 l mol−1 (313 K) and n = 1.6002 (293 K), 1.3443 (303 K) and 1.2748 (313 K) for BSA-SiO2@GdPO4:
Tb@SiO2 nanoparticles system, respectively. It could be seen that the binding constants were



Table 2. Binding constants (Ka) and binding sites (n) of SiO2@GdPO4:Tb@SiO2 nanoparticles with BSA at different temperature.

T(K ) equation Ka (l mol
−1) n R2

293 lg[(F0− F )/F )] = 6.2264 + 1.6002lg[Q] 1.682 × 106 1.6002 0.984

303 lg[(F0− F )/F )] = 5.3185 + 1.3443lg[Q] 2.082 × 105 1.3443 0.979

313 lg[(F0− F )/F )] = 4.9691 + 1.2748lg[Q] 9.313 × 104 1.2748 0.982

royalsocietypublishing.org/journal
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decreased with rising the temperature, which indicates that the binding ability of BSA and SiO2@GdPO4:
Tb@SiO2 nanoparticles decreased.
/rsos
R.Soc.Open

Sci.7:192235
4. Conclusion
The core-shell-shell structured SiO2@GdPO4:Tb@SiO2 nanoparticles with uniform coating layer have
been successfully synthesized at room temperature. The possible growth mechanism of SiO2@GdPO4:
Tb@SiO2 nanoparticles was proposed. The SiO2@GdPO4:Tb@SiO2 nanoparticles have strong green
luminescence. Interestingly, the emission intensity and the absolute quantum yield of GdPO4:Tb
nanoparticles were improved by the SiO2 shell. The absolute quantum yield of SiO2@GdPO4:Tb@SiO2

is about 10 times higher than that of GdPO4:Tb nanoparticles. The interaction between the core-shell-
shell structured nanoparticles and BSA was investigated through the fluorescence spectroscopy. The
quenching mechanism of the fluorescence of BSA by SiO2@GdPO4:Tb@SiO2 nanoparticles can be
attributed to the static quenching.
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