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A photoelectric conversion efficiency (PCE) of 4.9% was
obtained under 100 mW cm−2 illumination by quantum-
dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe
sensitizer. CdS quantum dots (QDs) were deposited on a TiO2
mesoporous oxide film by successive ionic layer absorption
and reaction. Mn2+ doping into CdSe QDs is an innovative
and simple method—chemical bath co-deposition, that is,
mixing the Mn ion source with CdSe precursor solution
for Mn : CdSe QD deposition. Compared with the CdS/CdSe
sensitizer without Mn2+ incorporation, the PCE was increased
from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical,
physical and photovoltaic properties of the QDSSCs were
investigated by energy dispersive spectrometry, absorption
spectroscopy, photocurrent density–voltage characteristics and
electrochemical impedance spectroscopy. Mn-doped CdSe QDs
in QDSSCs can obtain superior light absorption, faster electron
transport and slower charge recombination than CdSe QDs.
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1. Introduction
With the rapid development of the global economy, the demand for energy has continued to increase
since the beginning of the twenty-first century. In the last 30 years, solar cells have achieved considerable
development and may be regarded as one of the main sources of future power [1]. Dye-sensitized
solar cells (DSSCs) have been developed in past decades due to their high absorption, high stability
and potential to achieve efficient conversion of sunlight into electricity. The photoelectric conversion
efficiency (PCE) of DSSCs based on a planar substrate of a rigid conducting glass has reached greater than
11% [2,3]. Replacing the organic dyes by semiconductor quantum dots (QDs) in sensitizers, quantum-
dot-sensitized solar cells (QDSSCs) exhibit the unique advantages of quantum size effect, multi-exciton
effect, large absorption coefficient and easy matching of energy levels between the electron donor and
acceptor materials [4,5]. QDs, which include CdS, CdSe, CdTe [6], PbS [7], Ag2S [8], Ag2Se [9], CuInS2
[10–12] and CuInSe2 [13], are numerous. Lee & Lo used CdS/CdSe co-sensitized TiO2 to obtain QDSSC
and achieved PCE of up to 4% [14]. Since then, CdS/CdSe has been widely studied as a classical
co-sensitization system. The CdS QDs adsorbed on TiO2 films show a good effect on the deposition
of CdSe QDs, finally, forming a classical TiO2/CdS/CdSe cascade structure. Santra & Kamat doped
Mn2+ into CdS QDs, thus obtaining a considerable increase in PCE of Mn : CdS/CdSe-sensitized solar
cells [15]. Although QDSSC PCE still currently lags behind the maximum efficiency of 15% obtained
by DSSCs, the gap has been rapidly reduced, thereby resulting in QDSSC PCE of approximately
9% [16–21].

Adopting the DSSC principle, QDSSCs are generally comprised of a QD sensitizer, mesoporous oxide
including titanium dioxide (TiO2) or zinc oxide (ZnO), polysulfide electrolyte as a redox couple, and
Cu2S as a counter electrode. Despite many efforts devoted to QDSSCs, the cell efficiency still remains
less than 10% [21,22]. An important reason for this moderate efficiency is the inferior optoelectronic
properties of QD sensitizers. Moreover, TiO2 nanocrystals are stacked in the film, and the photoelectrons
are subjected to a large number of grain boundary potentials during transmission, which slows down
the transmission rate of the photoelectrons in the film. Meanwhile, photoelectrons are easily captured
during transmission due to the existence of abundant surface defects on the nanoparticle surface, which
increases the probability of photoelectron recombination. Therefore, introducing transition metal ion
dopants, such as Mn2+, is a promising strategy to modify the intrinsic QD properties and reduce
the possibility of photoelectron recombination [23]. CdSe QDs are more attractive due to their high
light-harvesting capability in the visible region than CdS and PbS QDs [21,24,25]. The introduction
of metal ions into CdSe QDs is useful for achieving superior photovoltaic (PV) performance in
QDSSCs. Doping transition metal ions into CdS/CdSe QDs would lead to new materials showing
extraordinary electronic and photo-physical properties of QDs. Mn has been doped in QDs to improve
the performance of as-prepared materials, such as phosphorescent nanosensor and signal-generation
tags for photoelectrochemical immunoassay [26,27]. Mn-doped QDs were also used in QDSSCs, and
researchers commonly used successive ionic layer absorption and reaction (SILAR) method to synthesize
Mn ions to the CdSe QD surface [23,28]. Wang et al. reported Mn : CdSeTe QDs which were prepared by
dissolving Mn with oleic acid and paraffin mixed with high-temperature nitrogen as the reaction system
[29]. In this study, Mn : CdSe QDs were prepared by chemical bath co-deposition method, that is, mixing
the Mn ion source with CdSe precursor solution for QD deposition. Doped Mn2+ alters the inherent QD
properties, thereby changing the charge separation and combination and increasing the light-harvesting
capability. In addition, the chemical bath co-deposition method is easy to operate and accurately controls
Mn attachment to the CdSe QDs. The results show that Mn2+-doped CdSe QDs exhibit a positive effect
on light harvesting and the capability of charge transfer and collection, thus further enhancing the PV
performance of QDSSCs. Consequently, the CdS/Mn : CdSe QDSSCs exhibited high PCE of 4.9% under
simulated illumination of 100 mW cm−2.

2. Experimental set-up
2.1. Materials
CdS QDs were prepared using sodium sulfide nonahydrate (Na2S·9H2O ≥ 98%) and cadmium nitrate
tetrahydrate (Cd(NO3)2·4H2O ≥ 98.0%).

Mn2+-doped CdSe QDs were prepared using manganese(II) acetate tetrahydrate (Mn(CH3COO)2·
4H2O ≥ 99.0%), selenium (Se ≥ 99.5%), sodium sulfite (Na2SO3 ≥ 98.0%), cadmium sulfate hydrate



3

rsos.royalsocietypublishing.org
R.Soc.opensci.5:171712

................................................
(CdSO4·8/3H2O ≥ 99.0%), nitrilotriacetic acid (C6H9NO6 ≥ 99.0%) and potassium hydroxide
(KOH ≥ 85.0%). All chemicals were commercially available and of analytical grade.

2.2. Preparation of CdS/CdSe and CdS/Mn : CdSe photoanode
TiO2 films with a particle diameter of 20 nm were prepared by screen printing to an effective area of
0.16 cm2 on a pre-cleaned fluorine-doped tin oxide (FTO) glass, followed by annealing at 450°C for 30 min
in a muffle furnace. For CdS QDs, a TiO2 film was dipped into an ethanol solution containing 0.1 M
Cd(NO3)2 for 1 min, rinsed with ethanol, and then dipped for another 1 min into a 0.1 M Na2S methanol
solution and rinsed again with methanol. The two-step dipping procedure is regarded as one SILAR
cycle, and the incorporated amount of CdS can be increased by repeating the assembly cycles. A total of
12 cycles were performed, followed by drying in air [30].

Subsequently, by using nitriloacetate as a complex and selenosulfate as Se source, CdSe was deposited
by chemical bath deposition. First, for the Se source, Na2SeSO3 aqueous solution was freshly prepared by
refluxing 0.2 M Se powder in an aqueous solution of 0.5 M Na2SO3 at 70°C for approximately 5 h. Then,
80 mM CdSO4, 160 mM Na3NTA and 80 mM Na2SeSO3 were mixed. TiO2 electrodes adsorbed with CdS
QDs were placed in a glass container filled with the final solution at room temperature in the dark for 4 h
to promote CdSe QD adsorption.

A molar percentage of 10% Mn(CH3COO)2 was mixed with CdSO4 before CdSe deposition to
incorporate Mn2+. The TiO2/CdS electrode was immersed in the mixed solution and placed in the dark
at room temperature for 4 h. After removal, the anode was washed with deionized water and dried in air.

2.3. Quantum-dot-sensitized solar cell assembly and characterization
The sensitized TiO2 films were used as photoanodes with compact Cu2S film as the counter electrode.
The electrolyte, which comprised 1 M Na2S, 0.1 M S and 0.2 M KCl in a water/methanol (1 : 1 by volume)
solution, was injected between the photoanode and counter electrode through siphonic effect.

The PV performances, which include short-circuit current density (Jsc), open-circuit voltage (Voc),
fill factor (FF) and power conversion efficiency (η), of the cells were examined by measuring the current
density–voltage (J–V) characteristics of the cells using a Keithley 2450 source meter under a light intensity
of 100 mW cm−2 offered by a xenon lamp (300 W; Nbet, HSX-F300). The optical absorption spectra
were measured by a spectrophotometer (Shimadzu, UV-2450). The QD microstructure was analysed
with a field emission scanning electronic microscope (SEM; JEOL, JSM7100F) and a transmission
electron microscope (TEM; JEM 2100F STEM/EDS). Electrochemical impedance spectroscopy (EIS)
measurements were obtained using an electrochemical workstation (CorrTest, CS 350H). Elemental
analysis was conducted with an energy dispersive spectrometer (EDS; Oxford X-MAX).

3. Results and discussion
Figure 1a,b shows the SEM images of the CdS/CdSe and CdS/Mn : CdSe QDs deposited on the TiO2
surface. The structure of the TiO2 film, which is composed of TiO2 nanoparticles of approximately 20–
30 nm, is loose and porous. This porous structure facilitates the permeation of precursor fluid into the film
for depositing QDs. Figure 1a shows the evenly distributed nanoparticles on the film with a diameter in
the range of approximately 25–45 nm. When Mn2+ is doped into the CdSe as shown in figure 1b, the
QDs on the surface of the film are compact and the voids among the particles are small, thus reducing
the recombination of photogenerated electrons, which is beneficial to the improvement of the overall
photoelectric efficiency of the solar cells. With Mn2+ loading into the CdSe, the size of the QD clusters is
increased. Figure 1c shows the TEM image of CdS/Mn : CdSe QDs to present the morphology of QD.

EDS analysis was conducted to investigate the elemental compositions of CdS/Mn : CdSe QD
sensitizers on top of TiO2. The results are shown in figure 2 and table 1. The samples were characterized
by O, Ti, Cd, Se and a small amount of S and Mn, which indicates the existence of TiO2, CdSe and CdS
in the sample. In addition, the presence of Mn indicates that Mn2+ is indeed incorporated into CdSe
QDs. A small amount of other elements (e.g. C, Na and K) may occur during mixing of impurities or
pharmaceutical impurities.

In solar cells, the UV–visible absorption spectrum was used to measure the absorptive capacity of the
absorptive layer material. Figure 3a displays the UV–visible spectral curves of TiO2 films loaded with
CdS/CdSe and CdS/Mn : CdSe QDs. The result shows that the absorbance of the CdS/Mn : CdSe QDs
is higher than that of the CdS/CdSe QDs. The light absorption intensity of CdS/CdSe QDs is higher
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(c)

Figure 1. SEM images of (a) CdS/CdSe and (b) CdS/Mn : CdSe QD sensitization on TiO2 surface. (c) TEM image of CdS/Mn : CdSe QDs.
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Figure 2. Energy spectrum of FTO/TiO2/CdS/Mn : CdSe photoelectrode.

Table 1. Element distribution of FTO/TiO2/CdS/Mn : CdSe photoelectrode in EDS analysis.

C–K O–K Na–K S–K Ti–K K–K Mn–K Se–L Cd–L

weight percentage 3.01 30.22 1.07 1.59 29.93 0.54 1.45 10.85 21.34 100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

atomic percentage 7.74 58.39 1.44 1.53 19.31 0.42 1.05 4.25 5.87 100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

than that of CdS/Mn : CdSe QDs in the wavelength region of less than 500 nm, and this finding is in
agreement with [23]. However, when the wavelength is between 500 nm and 800 nm, the light absorption
intensity of CdS/CdSe QDs is weaker than that of CdS/Mn : CdSe QDs. In general, CdS/Mn : CdSe
QDs show a relatively stable absorption within 400–800 nm, thereby indicating that the absorption
capacity of CdS/Mn : CdSe QDs is stronger than that of CdS/CdSe QDs. This result corresponds to
the increase in current density of the Mn-doped solar cell. The high absorbance of the photoelectrode
might be attributed to the effects of Mn2+ doped into CdS/CdSe QDs and a high loading amount of
QDs. Furthermore, the band gap of semiconductor could be inferred from the absorption edge. It can be
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Figure 3. UV–visible absorption spectra of bare TiO2, TiO2/CdS/CdSe and TiO2/CdS/Mn : CdSe.

14 CdS/CdSe
CdS/Mn : CdSe

cu
rr

en
t d

en
si

ty
 (

m
A

cm
–2

)

0

0 0.60.50.4
voltage (V)

0.30.20.1

2

4

6

8

10

12

Figure 4. J–V curves of QDSSCs based on CdS/CdSe and CdS/Mn : CdSe QDs.

Table 2. Photovoltaic parameters of QDSSCs based on CdS/CdSe and CdS/Mn : CdSe QDs.

QDs Voc (V) Jsc (mA cm−2) FF ηmax (%)

CdS/CdSe 0.56 9.67 0.51 3.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CdS/Mn : CdSe 0.57 12.65 0.58 4.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

estimated from figure 3b that the band gap of CdSe QDs is 1.87 eV, and the band gap of Mn-doped QDs
is 1.73 eV. Thus, the incorporation of Mn2+ ion into CdSe narrows the band gap of QDs.

Figure 4 shows the J–V characteristics of the solar cells. Table 2 shows the key parameters (Jsc, Voc,
FF and maximum η) of CdS/CdSe and CdS/Mn : CdSe QDSSCs. For devices based on two different
photoanodes, there is slight difference between the Voc. However, the CdS/Mn : CdSe device shows
a higher Jsc (12.65 mA cm−2) than CdS/CdSe device (9.67 mA cm−2), thereby resulting in a higher cell
efficiency (4.9%) and FF (0.58) than the solar cell based on CdS/CdSe QDs (ηmax of 3.4% and FF of 0.51).
Doping Mn2+ in QDSSCs significantly improves the photoanode. As previously mentioned, when Mn2+
is incorporated into CdSe, the absorption curve is observed to elevate within the visible wavelengths of
500–800 nm, and a cascade energy level is formed which is favourable for charge transport inside the
solar cell [23], which reduces the recombination of electrons and holes and improves the light-harvesting
capability of the photoanode. Thus, the photocurrent and the PCE are improved.
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Table 3. Parameters obtained by fitting the impedance spectra of QDSSCs using the equivalent circuit in figure 5.

cell Rs (Ω) Rct1 (Ω) Rct2 (Ω) CPE1 (μF) CPE2 (μF)

CdS/CdSe 8.677 2.31 140.10 0.603 0.682
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CdS/Mn : CdSe 2.663 1.91 96.51 0.924 0.812
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the QDSSC study, EIS is a useful tool for obtaining the series resistance (Rs), the load resistance
(Rct), the ion diffusion resistance (Zw), the interface double layer chemical capacitance (CPE) and other
parameter information [21,31,32]. Figure 5a shows the Nyquist plots of QDSSCs under illumination of
100 mW cm−2, and there are two semicircles which could be fitted with an equivalent circuit as shown in
the inset of figure 5a [33,34].

The equivalent circuit is composed of series resistance Rs, transfer resistance Rct1 and Rct2 and
chemical capacitance CPE1 and CPE2. Rs is ascribed to the contact resistance of FTO/TiO2. Rct1 is ascribed
to the charge transfer resistance at the interface of the electrolyte/counter electrode and Rct2 is ascribed to
the charge transfer resistance at the interface of TiO2/QD/electrolyte. CPE1 and CPE2 are constant phase
elements of the capacitance corresponding to Rct1 and Rct2, respectively. The data of the equivalent circuit
are listed in table 3. Compared with the classical CdS/CdSe structure, the CdS/Mn : CdSe structure
shows a smaller charge resistance, which indicates that the electrons at the TiO2/QD/electrolyte interface
rapidly transfer. An increased charge transfer resistance leads to a decreased electron transfer rate and
poor efficiency. The low Rct value is favourable for electron transport, which ensures a minimal diffusion
obstruction when the electrons travel over a long distance. This phenomenon may lead to the reduction
of electronic recombination and lifetime growth.

The Bode diagrams are shown in figure 5b. The lifetime τ of the injected electrons in the TiO2
photoanode is related to the position of the mid-frequency peak f max, which is defined as follows:

τ = 1
2π fmax

, (3.1)

where f max means the frequency of superimposed alternating current voltage [35]. The τ value of
CdS/Mn : CdSe device is higher (0.48 ms) than that of CdS/CdSe (0.17 ms), which indicates that Mn2+
doping into CdSe QDs leads to a longer electron lifetime of CdS/CdSe QDSSCs. This finding can be
attributed to the doping of Mn2+, which may change and optimize QDs of the surface or interface
structure, thereby reducing the Rct value and the recombination of electrons during transmission [23].
This result is in agreement with the PV characteristic.

4. Conclusion
By mixing the Mn ion source with CdSe precursor solution, the Mn : CdSe QDs were deposited and
prepared into QDSSCs. Mn2+ introduction into the CdSe QDs by this method improves the light
harvest and charge transfer. In the CdS/Mn : CdSe QDs, the increase of the electron-collecting efficiency
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leads to a PCE improvement of the QDSSCs of up to 4.9%. Based on EIS analysis, the electron
lifetime in CdS/Mn : CdSe devices is higher than that in devices based on CdS/CdSe, which indicates
that the probability of charge recombination at the interface decreases due to the presence of Mn2+.
Incorporation of Mn2+ into CdSe QD by the proposed chemical bath co-deposition method shows
excellent photoelectric properties. This method is also proposed for effective QDSSC preparation.
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