

NAVAL POSTGRADUATE SCHOOL Monterey, California

THE SIS

LOCAL PATH PLANNING USING OPTIMAL CONTROL TECHNIQUES

by

Winston Smith

June 1988

Thesis Advisor:

David L. Smith

Approved for public release; distribution unlimited

Prepared for: Naval Postgraduate School Monterey, California 93943-5000

T242365

NAVAL POSTGRADUATE SCHOOL Monterey, CA 93943

Rear Admiral R. C. Austin Superintendent Kneale T. Marshall Acting Provost

This thesis was prepared in conjection with research sponsored by the Arctic Submarine Laboratory, Naval Ocean Systems Center, San Diego, California, and funded by the Naval Postgraduate School. Reproduction of all or part of this report is authorized.

Released by:

ECURITY CLASSIFICATION OF THIS PAGE

REP	ORT	DOCU	MENTATION	PAGE

REPORT DUCUMENTATION PAGE					
a REPORT SECURITY CLASSIFICATION	16 RESTRICTIVE	MARKINGS			
a. SECURITY CLASSIFICATION AUTHORITY	3 DISTRIBUTION / AVAILABILITY OF REPORT Approved for public release: distribution unlimited				
PERFORMING ORGANIZATION REPORT NUMBER(S)	5 MONITORING	ORGANIZATION R	EPORT NUMBER(S	5)	
NPS69-88-007					
a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL	7a NAME OF MO	DNITORING ORGA	NIZATION		
Naval Postgraouate School (" appreable)	Wavar Pos	lgraduate	SCHOOL		
c. ADDRESS (City, State, and ZIP Code)	70 ADDRESS (Cit	y, State, and ZIP	Code)		
Monterey, California 93943-5000	Monterey,	Californi	ia 93943-	5000	
a. NAME OF FUNDING, SPONSORING 85 OFFICE SYMBOL	9 PROCUREMENT	INSTRUMENT ID	ENTIFICATION NU	MBER	
Naval Postgraduate School (If applicable)	O&MN Dir	ect Funding			
c. ADDRESS (City, State, and ZIP Code)	10 SOURCE OF F	UNDING NUMBER	S		
	PROGRAM	PROJECT	TASK.	WORK UNIT	
Monterey, Lalitornia 93943-5000				ACCESSION NO	
TITLE (Include Security Classification) ocal Path Planning using Optimal Control Techniques UNCLASSIFIED					
2 PERSONAL AUTHOR(S)					
3a TYPE OF REPORT 13b TIME COVERED	14 DATE OF REPO	RT (Year Month	Dav) 15 PAGE	COUNT	
Masters thesis FROM TO	June 1988	(10	19	
6. SUPPLEMENTARY NOTATION "The Views expressed	in this th	nesis are	those of t	he author	
or the U. S. Government."	r position	une De	partment	UT DETENSE	
7 COSAT CODES 18 SUBJECT TERMS (Continue on reverse	e if necessary and	l iaentify by bloc	k number)	
FIELD GROUP SUB-GROUP Path planni	ng, obstaci	le avoidar	nce, auton	om au s	
Venicie man	euvering				
ABSTRACT (Continue on reverse if necessary and identify by block n	umber)				
The ability of an autonomous vehicle c	ontrol sys	tem to pla	an a safe,	collision-	
important functions. In this thesis	ion to ano	ther is or	ne of the	most	
local path can be planned using ontima	l control f	theory and	ne oustac	tion	
techniques. The problem is posed as a	two point	boundarv	value pro	blem	
with various problem constraints which	control th	ne vehcile	e behavior	in	
transversing from one point to another	. The obje	ective fur	nction bei	ng	
innimized is a control performance index which includes vehicle energy saving					
introduced and successfully suc					
bath planning is also successfully demonstrated on a 12 state linear and l					
an underwater vehicle. This technique is shown to be a feasible method for					
local path planning applications.					
DISTRIBUTION / AVAILABILITY OF ABSTRACT	21 ABSTRACT SEC	CURITY CLASSIFIC	ATION		
UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS	UNCLASSIF	IED			
David 1Smith	David Lessmith 408-646-3383 69 Sm				
D FORM 1473, B4 MAR 83 APR edition may be used un	til exhausted	SECURITY	CLASSIFICATION (OF THIS PAGE	
All other editions are of	osolete		in Course mark from		

QU.S Government Printing Office 1986-606-243

Approved for public release; distribution unlimited

Local Path Planning Using Optimal Control Techniques

by

Winston Smith Lieutenant, United States Navy B.S., University of Mississippi, 1980

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL June 1988

ABSTRACT

The ability of an autonomous vehicle control system to plan a safe, collision-free local path from one vehicle position to another is one of the most important functions. In this thesis, it is shown how a safe obstacle-free local path can be planned using optimal control theory and optimization techniques. The problem is posed as a two point boundary value problem with various problem constraints which control the vehicle behavior in transversing from one point to another. The objective function being minimized is a control performance index which includes vehicle energy saving parameters. Numerous fixed and moving obstacles in the dive plane are introduced and successfully avoided using this technique. Three dimensional path planning is also successfully demonstrated on a 12 state linear model of an underwater vehicle. This technique is shown to be a feasible method for local path planning applications.

iii

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made, within the time available, to ensure that the programs are free of computational and logic errors, they can not be considered validated. Any application of these programs without additional verification is at the risk of the user.

TABLE OF CONTENTS

I.	INT	RODUCTION	1
	Α.	GENERAL	1
	в.	PREVIOUS WORK	2
	c.	AIM OF THE PRESENT STUDY	6
II.	MET	HOD OF APPROACH	7
III.	OBS	TACLE AVOIDANCE	8
IV.	OPT	IMIZATION OPTIONS	12
	Α.	CLUSTERED FIXED OBSTACLE TEST	12
	в.	IMPOSSIBLE FIELD TEST	19
	с.	SELECTION RESULT	21
v.	EVA	LUATION OF MANEUVERING TIME (FINTIM)	23
VI.	PRO	GRAMMING FOR THREE DIMENSIONS	26
	Α.	SIDE CONSTRAINTS	26
	В.	EQUALITY CONSTRAINTS	27
	с.	CONSTRAINT SCALING	27
	D.	LINEAR/NONLINEAR DYNAMICS	28
	E.	THREE-DIMENSIONAL COMPUTATIONAL COSTS	33
VII.	VAL	IDATION RUNS	34

VIII.	CONC	CLUSIONS A	ND REC	COMMENDAT	LONS	 	47
	Α.	CONCLUSIO	NS			 	47
	в.	RECOMMEND	ATIONS	;		 	48
APPENDI	EX (I	PROGRAMS)				 	49
REFEREN	ICES					 	93
INITIAI	L DIS	TRIBUTION	LIST			 	96

LIST OF TABLES

Table 1.	ADS Level Options	14
Table 2.	17 Obstacle Test Results	17
Table 3.	FINTIM Computational Cost	24
Table 4.	Constraint Scaling Factors	27
Table 5.	Linear vs. Nonlinear Computational Costs	33
Table 6.	Program 311 Computational Cost-2D	46

LIST OF FIGURES

Figure	1.1	Global Planning System	3
Figure	1.2	Discrete vs. Continuous Controls	5
Figure	3.1	Fixed Obstacle Computational Results	11
Figure	4.1	Allowable ADS Algorithm Combinations	13
Figure	4.2	Impossible Test Algorithm Comparison	20
Figure	4.3	Solution of Impossible Test with Increased FINTIM	22
Figure	5.1	FINTIM Effects	25
Figure	6.1	Nonlinear Model Maneuver with Linear Control Inputs	29
Figure	6.2	Bow and Stern Plane Control Inputs	30
Figure	6.3	Rudder Control Input	31
Figure	6.4	Linear Model Maneuver	32
Figure '	7.1	One Obstacle Solution	35
Figure	7.2	Two Obstacles Solution	36
Figure	7.3	Three Obstacles Solution	37
Figure	7.4	Four Obstacles Solution	38
Figure '	7.5	Five Obstacles Solution	39
Figure '	7.6	Six Obstacles Solution	40
Figure '	7.7	Nine Obstacles Solution	41
Figure '	7.8	Seventeen Obstacles Solution	42
Figure '	7.9	One Moving Obstacle Solution	43
Figure '	7.10	Two Moving Obstacle Solution (Obstacle 1)-	44
Figure '	7.11	Two Moving Obstacle Solution (Obstacle 2)-	45

ACKNOWLEDGMENT

The author would like to extend his deepest appreciation and thanks to Associate Professor David L. Smith for his continuing encouragement and enthusiasm expressed during the conduct of this research.

A special and well deserved note of appreciation is extended to my entire family for their continuous support throughout the many months of thesis research.

I. INTRODUCTION

A. GENERAL

The presently forecast missions of an Autonomous Underwater Vehicle (AUV) vary in scope from mine detection and avoidance to surveying the bottom of oceans. Further, it is expected that many of these missions will be conducted within the context of military objectives. Admiral William H. Rowden, Commander Naval Sea Systems Command stated that, "With the NAVSEA (Naval Sea System Command) Integrated Robotics Program about to enter its fifth year of existence, it seems appropriate to look back and ahead to establish a baseline for the promulgation of policy guidelines to facilitate the continuing evolution of this important program." [Ref. 1] He goes on to say that the time has come to incorporate the value of robotics and automation into the Navy's expanding mission. Recent articles of Military Robotics [Refs. 2-6], have pointed out the increased availability of robotic vehicles. These include Remotely Piloted Aircraft, Unmanned Submarines, Teleoperated Combat Vehicles, Cruise Missiles and Teleoperated and Autonomous Weapons.

An extremely important part of the total AUV vehicle control logic is its need to plan and execute a safe passage in the undersea environment. Local path planning

is the function provided by an intelligent system, which determines safe, collision-free trajectory of travel between two points, a start point and a target point, for a specific time lapse. One possible total system block diagram that shows how the local path planner could be interfaced, is shown in Figure 1.1. Here, the Global Planning System would provide the Local Path Planner with a series of data sets. Included in the data sets would be destination position, destination time, start position, start time, obstacles and boundaries. In return, the path planner would provide an optimal path based upon the limitations of the vehicle dynamics, power plant efficiency, obstacle field, and required maneuver time.

Numerous techniques have been used to achieve collision free local paths for various vehicle types and manipulators. These include graphical search methods [Refs 7-11], potential field methods [Refs. 12-16] and optimal control theory [Refs. 17, 18]. This thesis is concerned with developing a method of autonomous planning using optimal control theory.

B. PREVIOUS WORK

A basic investigation of local path planning was previously conducted using optimal control theory [Ref. 19]. In that study, major emphasis was placed on the solution of a SISO (Single Input Single Output) problem, a

HEALTH SENSORS LOCAL ł 1 TRACKING CONTROLLER GLOBAL PLANNING VEHICLE HUMAN NAVIGATION 1 111 ENVIRONMENT SENSORS

MIMO (Multiple Input Multiple Output) problem and its generalization to a submersible. That work included objective function determination, integration method studies, linear versus nonlinear solution results, computational expense and an obstacle avoidance solution with one fixed obstacle. The objective function used for optimization was a quadratic performance index of the form:

$$J = \int_{0}^{\text{FINTIM}} (X^{T}QX + U^{T}RU) dt$$

where,

The nonlinear hydrodynamic equations of motion for the Autonomous Underwater Vehicle being studied were of the following form:

MX + f(X, X) = g(U)

The "best" solution was obtained by minimizing the objective function (J) in order to find the best U(t) and $\tilde{X}(t)$ values.

The Automatic Design Synthesis (ADS) Fortran Program [Ref. 20] was utilized for problem optimization and the Dynamic Simulation Language (DSL) Program [Ref. 21] was utilized for objective function calculations and integrations of the vehicle dynamic equations. These

software programs were made to be interactive and now perform as one software package [Ref. 22]. The combined package is called ADSL and has been incorporated on the IBM 3033 Mainframe Computer System at the Naval Postgraduate School. The basic optimization approach was as follows:

1. Discretize the control vector into a time-wise uniform distribution of control signals (Figure 1.2)

Figure 1.2 Discrete vs. Continuous Controls

2. Determine the best control sequence via an optimization routine based upon the objective function and problem constraints.

In the two-dimensional problem (dive plane only), the vehicle was ordered to achieve an ordered depth of 17.425

feet using minimum bow and stern plane deflections. Additionally, the vehicle was required to have a minimum pitch angle at its final end condition. The control vector (U) was the bow and stern plane angles, while the X vector was the x and z positions of the vehicle and velocities in the x and z directions.

C. AIM OF THE PRESENT STUDY

This thesis is concerned with furthering the understanding of local path planning using optimal control theory. The purpose of this work is to:

- 1. Further develop the planning level control logic to consider three-dimensional maneuvers, and
- 2. Evaluate the performance of this logic.

II. METHOD OF APPROACH

The basic approach was as follows:

1. Improve the treatment of obstacles, both fixed and moving in the two-dimensional problem.

 Determine the best set of optimization program options based on computational cost, robustness, flexibility and solution accuracy in the two-dimensional problem.

3. Select guidance for maneuvering time (FINTIM) and determine how it effects problem solution in the two-

4. Evaluate two dimensional versus three dimensional computational costs and accuracy.

The basic assumption in this study was that the work previously done [Ref. 19] remained valid. Specifically, that the integration method selected, the step size, objective function, number of design variables and optimization program options remained relevant.

III. OBSTACLE AVOIDANCE

The approach previously presented [Ref. 19] was to compute the distance to the obstacle at ten equally divided time intervals from start time to the time of closest obstacle approach. These updated distances were then incorporated into the optimization algorithm for constraint value determination. ADSL placed constraint equations into the algorithm in the form:

 $G_{j}(k) = 0$ j = 1, m

which in the actual program is:

Gk(k) = (avoidance zone) - (updated vehicle distance)The time interval for distance calculations was determined based on the FINTIM and clock time as follows:

If (time.ge.0.0.and.le.xobs/u) then time1 = xobs/u qn = time/(time1/10. - delt/10000.) d = int(qn + 1) dist(d) = sqrt((xpos-xobs) x (zpos-zobs)) g(d) = 1. - dist(d)

where:

```
time = DSL clock time
xobs = x position of the obstacle
delt = integration time step interval
xpos = x position of the vehicle
```

u = vehicle velocity in the x direction

- dist(d) = computed distance from the vehicle to the
 obstacle
- zpos = z position of the vehicle
- zobs = z position of the obstacle
- q(d) = constraint value placed in optimization routine

The problem with this approach is that the further an obstacle is from the start position, the longer the time intervals become for obstacle distance calculations. This is satisfactory for a single fixed obstacle but for multiple obstacles, this method results in inadequate distance computations. This is because the closer obstacles do not have sufficient constraint inputs compared to the distant obstacles. As a result, the distant obstacles tend to dominate the solution. Using multiple "if" statements in this logic is also computationally expensive and failed when used with three or more obstacles.

Another inherent problem was that distances were not computed after the time of closest approach. This sometimes resulted in maneuvers with distances to the obstacle that violated the avoidance zone regions after the first time of closest approach.

A better method is to continuously compute distances to the obstacle, independently of FINTIM, but dependent on FINTIM step intervals. This approach worked very well and

was adopted for all further analysis. An additional advantage to this approach is that only one constraint assignment was needed for each obstacle vice ten.

The computational time for obstacle avoidance varies as the number of obstacles increases. The motivation for this study was to determine if this approach was computationally too expensive to remain as a viable approach. Figure 3.1 shows the computational cost for one to seventeen fixed obstacles. The computational time is based on the virtual machine time for the IBM 3033 system at the Naval Postgraduate School. In all cases, the final depth was the desired depth of 17.425 feet.

Various optimization techniques have various computational costs; however, the times in Figure 3.1 are based upon the final optimization option selected for this thesis. The selection criteria with results will be presented in the following chapter.

IV. OPTIMIZATION OPTIONS

The ADS (Advanced Design Synthesis) Program allows for the selection of numerous optimization techniques for problem solution. There are three levels by which to select a particular technique. The three levels are the strategy level, optimizer level and the one-dimensional search level. Table 1 lists the various levels and the various methods contained in each. Figure 4.1 identifies the large number of possible algorithm combinations allowed. Vanderplaats provides a detailed discussion of the various methods and algorithms in Reference 23.

A. CLUSTERED FIXED OBSTACLE TEST

In order to be effective as a path planning algorithm, it is necessary for the program option to be robust and flexible enough to solve problems involving numerous fixed obstacles as well as moving obstacles. Therefore, an initial test was conducted where the number of obstacles in the vehicle's path were varied from one to seventeen. Program option 057 was selected first based upon the recommendation of the previous study, which involved one fixed obstacle in the vehicle's path. Option 057 appeared acceptable until a four obstacle field was encountered. At this point, the option failed to reach an adequate

IOPT OPTIMIZER

1	Fletcher-Reeves
2	Davidon-Fletcher-Powell (DFP)
3	Broydon-Fletcher-Goldfarb-Shanno (BFGS)
4	Method of Feasible Directions
5	Modified Method of Feasible Directions

STRATEGY	ISTRAT	IOPT	1	2	3	4	5
None	0		Х	Х	Х	Х	Х
SUMT, Exterior	1		Х	Х	Х	0	0
SUMT, Linear Extended Interior	2		Х	Х	Х	0	0
SUMT, Quadratic Extenden Interi	or 3		Х	Х	Х	0	0
SUMT, Cubic Extended Interior	4		Х	Х	Х	0	0
Augmented Lagrange Multiplier M	eth. 5		Х	Х	Х	0	0
Sequential Linear Programming	6		0	0	0	Х	Х
Method of Centers	7		0	0	0	Х	Х
Sequential Quadratic Programmin	g 8		0	0	0	Х	Х
Sequential Convex Programming	9		0	0	0	Х	Х
ONE-DIMENSIONAL SEARCH	ION	ED					

Golden Section Method 0 1 X X X O Golden Section + Polynomial хххо 2 0 X X X 0 Polynomial Interpolation (bounded) 3 0 Polynomial Extrapolation 4 X X X O 0 Golden Section Method 0 0 X X 5 0 Golden Section + Polynomial 6 0 0 X X 0 Polynomial Interpolation (bounded) 7 0 0 0 X Х Polynomial Extrapolation 8 0 0 0 Х Х

NOTE: An X denotes an allowed combination of algorithms.

Figure 4.1 Allowable ADS Algorithm Combinations

STRATEGY (ISRRAT)

- 0 None
- 1 SUMT, Exterior Penalty Function
- 2 SUMT, Linear Extended Interior
- 3 SUMT, Quadratic Extended Interior
- 4 Cubic Extended Interior
- 5 Augmented Lagrange Multiplier Method
- 6 Sequential Linear Programming
- 7 Method of Centers
- 8 Sequential Quadratic Programming
- 9 Sequential Convex Programming

OPTIMIZER (IOPT)

- 1 Fletcher-Reeves
- 2 Davidon-Fletcher-Powell (DFP)
- 3 Broydon-Fletcher-Golfarb-Shanno (BFGS)
- 4 Method of Feasible Directions
- 5 Modified Method of Feasible Directions
- ONE-DIMENSIONAL SEARCH (IONED)
- 1 Golden Section Method
- 2 Golden Section and Polynomial
- 3 Polynomial Interpolation, bounded
- 4 Polynomial Extrapolation

- 5 Golden Section Method
- 6 Golden Section and Polynomial
- 7 Polynomial Interpolation, bounded
- 8 Polynomial Extrapolation

solution. Option 133 was then selected based upon Olson's work [Ref. 22]. Option 133 is more robust than option 057 and it appeared to be very well suited for this problem until the ten obstacle field was encountered. This method achieved the correct ordered depth; however, it violated many of the obstacle avoidance zones. It was apparent, at this point, that all program options would have to be tested in order to determine the most appropriate algorithm.

A test was conducted to determine if any of the one hundred and twelve program options could solve a seventeen obstacle problem. The complete test problem required the program option to solve a seventeen obstacle field problem with FINTIM set at seven seconds and an ordered depth of 17.425 feet. Each obstacle had a one foot radius avoidance zone. The results of that study are presented in Table 2.

PROGRAM	OPTION	COMPUTATIONAL COST	DEPTH
		(sec)	(feet)
	311	87.92	17.425
	312	92.56	17.425
	313	58.78	17.425
	314	73.51	17.425
	321	146.23	17.425
	322	142.32	17.425
	323	115.11	17.425
	324	165.12	17.425
	331	167.25	17.425
	332	136.84	17.425
	333	151.90	17.425
	334	120.78	17.425
	411	76.19	17.425
	412	96.00	17.421
	413	42.99	17.425
	414	64.92	17.424
	421	116.61	17.425
	422	140.87	17.425
	423	82.18	17.425
	424	94.39	17.425
	431	115.67	17.425
	432	143.50	17.425
	433	81.64	17.425
	434	97.29	17.425
	512	70.17	17.425
	534	48.87	17.449

Of the one hundred and twelve program options, only twenty six achieved a correct solution. The computational time varied significantly among the various successful program options. In some cases, the exact depth was not achieved; however, all results were considered excellent.

After determining which algorithms could solve the seventeen obstacle problem, it was then necessary to verify

that cases involving various obstacle combinations from one to sixteen were solvable by these methods. It may seem intuitively obvious that if an algorithm can achieve a solution involving seventeen obstacles that it can solve all other cases from one obstacle to sixteen obstacles. Contrary to intuition, this is not the case. For example, program option 313, which had a relatively small computational cost, successfully solved the seventeen obstacle problem but failed to achieve the correct depth when an eleven obstacle field was encountered.

In conducting the varying fixed obstacle investigation, obstacles were purposefully placed in various positions in the field in order to ensure that obstacle position had no negative effect upon the problem solution. This was significant because program option 057 (method chosen in the previous study), failed when it encountered an obstacle field with three fixed obstacles. Two obstacles were placed in the vehicle's path and one was placed far from the vehicle's path. The obstacle far away from the vehicle's path was determined to be the cause of failure because the algorithm successfully solved a problem with three obstacles when all three were placed near the vehicle's path. Using the cases of one to seventeen obstacles, the cases were further reduced from 26 to 22. Program options 313, 413, 534, and 314 were eliminated.

B. IMPOSSIBLE FIELD TEST

After an investigation of the varying obstacle test, the reduced list of programs were subjected to an impossible problem. Four obstacles were placed in the vehicle's path with nine, five, three, and six feet radii. They were placed in such a way that the algorithm could not achieve the correct solution in the allotted time. It is important to point out that a correct solution would have been obtainable if the simulation time was increased. The motivation for this study was to determine the failure modes of various algorithms. It was evident from this study that some algorithms, namely those which employed a strategy of Sequential Unconstrained Minimization using the Cubic Extended Interior Penalty Function Method, were more sensitive to achieving the desired depth constraints, when they were imposed as equality constraints. The algorithms which employed the strategy of Sequential Unconstrained Minimization using the Quadratic Extended Interior Penalty Function Method, were more sensitive in avoiding obstacle avoidance zones when they were imposed as inequality constraints. Figure 4.2 illustrates the performance of three different algorithms in solving this problem. Of the algorithms with relatively small computational costs, program option 311 did the best job of avoiding the avoidance zones.

With the impossible field test, computational cost uniformly increased compared to the four obstacle problem with smaller avoidance zones. Program option 311 had a computational cost of 74.30 Virtual Machine second in the impossible problem; however, with four obstacles it took 21 seconds (Figure 3.1). Figure 4.3 is the solution result obtained if FINTIM is increased to 15.0. Although FINTIM was more than doubled, the computational cost did not significantly increase. With FINTIM set to 15.0, the virtual machine time was 76.51 seconds.

C. SELECTION RESULT

Program option 311 with a strategy of Sequential Unconstrained Minimization using the Quadratic Extended Interior Penalty Function Method; an Optimizer using the Fletcher-Reeves algorithm and a one-dimensional search method using the Golden Section Method was chosen as the best algorithm. It was selected because it had the least computational cost of any algorithm which could solve the seventeen obstacle test problem and was very sensitive to the obstacle avoidance zones. In other words, it proved to be very good at finding a safe, collision-free path between the start condition and the end condition.

V. EVALUATION OF MANEUVERING TIME (FINTIM)

Qualitatively, there are two possible FINTIM effects. Those which are associated with a small FINTIM and those which are associated with an excessively large FINTIM. The net effect of too small a FINTIM is an over constraining of the problem, which leads to a violation of problem constraints and excessive computational time.

Two things happen when the FINTIM is too large. The solution adheres more to problem constraints and the computational cost decreases. The mission objectives of the vehicle (i.e., loitering at start position), are significant considerations, which FINTIM selection must take into account. Therefore, FINTIM is a critical parameter which effects problem solution and also, when chosen correctly, significantly reduces computer computational costs. The selection of FINTIM poses an important problem which requires solving in view of highlevel vehicle objectives.

One guideline for selecting FINTIM is to select it based on the time required to achieve a solution while transversing an obstacle-free field, then arbitrarily increase FINTIM to allow for obstacle avoidance. The following results using program options 533 points out the importance of choosing a correct FINTIM. As can be seen in

Figure 5.1, FINTIM can adversely affect the problem solution if the time allotted is not large enough to achieve the desired result. When FINTIM is chosen to be 6.0 non-dimensional time units (NTU), the avoidance zone constraint for zone 3 is violated and the desired depth of 17.425 feet is exceeded. When FINTIM is increased to 7.0 NTU, avoidance zone constraints are violated for zone 1 and zone 3 and the desired depth is not achieved. However, the severity of the violations are not as blatant. When FINTIM is increased to 8.0 NTU, the desired problem solution is obtained. Table 3 presents the computational costs associated with each FINTIM selection. Note that the optimization problem is easier with more maneuvering time, therefore the computational cost is less.

TABLE 3. FINTIM COMPUTATIONAL COST

FINTIM	TIME (sec)
6.0	95.06
7.0	76.75
8.0	32.43

Figure 5.1 FINTIM Effects

VI. PROGRAMMING FOR THREE DIMENSIONS

In programming for three dimensions, we not only optimize the problem to obtain bow plane and stern plane commands, but we also optimize to obtain the rudder commands. In order to achieve the desired result, it was necessary to increase the number of design variables for the rudder in the linear model. The problems discussed previously, have all been solved using ten discretizations (design variables) for the stern plane and bow plane inputs. In the three-dimensional work, the number of design variables were arbitrarily increased to twenty (less discretizations would not achieve a satisfactory result).

A. SIDE CONSTRAINTS

Additional constraints were added to the problem in order to ensure reasonable vehicle control surface reactions. The maximum rudder angles were set at plus or minus thirty degrees. In order to ensure this, the side constraint approach was invoked. These values were assigned to the Design Variable Lower Bound (VLB) and the Design Variable Upper Bound (VUB) ADS parameters.

B. EQUALITY CONSTRAINTS

Six additional equality constraints were needed to achieve the desired y position and the desired vehicle condition (yaw and roll) at the desired end condition.

C. CONSTRAINT SCALING

Sanders [Ref. 19] points out that constraint weighting is important in achieving the desired results. This is even more crucial in a three-dimensional problem solution because of the increased number of constraints on yaw, roll, rudder control and y positioning. It appears that problem sensitivity to constraint weighting is also increased. In order to achieve the desired solution result, it was necessary to adjust constraint scaling factors until all constraint conditions were satisfactorily obtained. Table 4 shows the constraint scaling factors used in the full three-dimensional linear model.

CONSTRAINT	SCALING FACTOR	
depth	0.5	
y position	2.5	
pitch	1.0	
yaw	1.0	
roll	1.0	
minimum depth	1.0	

TABLE 4. CONSTRAINT SCALING FACTORS

D. LINEAR/NONLINEAR DYNAMICS

Figure 6.1 illustrates the nonlinear model behavior when using control inputs for bow plane, stern plane, and rudder from the optimized linear model. It is evident that these commands are invalid for the full scale nonlinear model since the final objective state is not closely met. Therefore, the essential dynamics of the linear model are not valid in three dimensions as might be suggested from the results of the previous study. However, even though the control surface inputs are invalid, the vehicle state trajectory is valid because the path chosen achieved the desired result. For a desired position of y=40.0 feet and depth =-20.0 feet, the obtained result was y=40.269 feet with a depth of -20.699 feet. These values can be fine tuned by varying the scaling factors. Figures 6.2 and 6.3 illustrate the control inputs to the linear model and Figure 6.4 illustrates the linear model response to those inputs.

E. THREE-DIMENSIONAL COMPUTATIONAL COSTS

Table 5 compares the virtual machine time of the full scale linear model with no obstacles as compared to the full scale nonlinear model with no obstacles.

TABLE 5. LINEAR VS. NONLINEAR COMPUTATIONAL COSTS

	LINEAR (sec)	NONLINEAR (sec)
DIVE PLANE ONLY	14.23	108.81
FULL 3D	130.34	370.61

VII. VALIDATION RUNS

As previously mentioned, in order to validate the selected optimization configuration, fixed obstacles were placed at various positions in the AUVs field of view with 1.0 foot radius avoidance zones around the obstacles. Figure 7.1 to 7.8 illustrate the paths chosen by the 311 algorithm to avoid the obstacles and their avoidance zones for various obstacle positions.

The moving obstacles were simulated using rectilinear average velocity equations of the form:

s = Vt

where:

s = position of obstacle (X and/or Y)

V = constant velocity

t = time of travel

Figures 7.9 to 7.11 present the distance between the AUV and the moving obstacle(s) as a function of time. As seen, the algorithm chooses a path in both cases which avoids impact. Table 6 presents the computational cost comparison of various obstacle case(s). Some threedimensional linear and non-linear state trajectory results were presented earlier.

Figure 7.5 Five Obstacles Solution

NUMBER OF	OBSTACLES	TIME (sec)
0		14.23
1	(moving)	23.88
2	(moving)	24.68
17	(fixed)	87.52

TABLE 6. PROGRAM 311 COMPUTATIONAL COST-2D

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The following conclusions can be drawn from this feasibility study:

1. Optimal control theory is a feasible method for determining obstacle avoidance paths in the presence of fixed and moving obstacles.

2. The introduction of obstacle constraints into the algorithm increases the computer computational costs.

3. The full linear model control inputs are not compatible with the full nonlinear model. When linear commands were placed in the nonlinear model, the vehicle's end condition was inconsistent with the desired end condition.

4. The best general algorithm for the two dimensional case was determined based on the ability of the algorithm to solve a variety of obstacle problems with a shortened FINTIM.

5. Scaling factors can be critical in achieving a desired problem solution.

6. In order to achieve a solution in three dimensions, it is necessary to increase the number of design variables for certain vehicle control inputs.

7. FINTIM is a critical variable whose value can change the solution to a specific problem.

B. RECOMMENDATIONS

- 1. Find a procedure to estimate the optimal scaling factors for end constraints.
- 2. Study the discretization factors in the threedimensional case(s).
- 3. Study the selection of FINTIM in the two-dimensional case and in the three-dimensional case. Vehicle mission objectives should be considered in establishing guidelines.
- 4. Develop the optimization of the three-dimensional nonlinear model.
- 5. Develop the algorithm to include optimization of the propeller rpm control input.
- Develop the program for efficient programming in a microprocessor.
- 7. Determine if the general algorithm recommended in this thesis is also applicable for three-dimensional obstacle avoidance cases.

APPENDIX

PROGRAMS

This appendix contains the four primary programs that were used for this feasibility study. They were:

- 1. OBST DSL This is the state linear 2D model used for the 2D analysis.
- 2. TLO DSL This is the ADSL program used to optimize the full scale linear model of bow plane, stern plane and rudder control vectors.
- 3. TNLO DSL This is the ADSL program used to optimize the full scale nonlinear model for timing comparison studies.
- 4. TLNLO DSL This is the ADSL program used to optimize the full scale linear model for bow plane, stern plane and rudder control inputs and with simulation of the full scale nonlinear model.

FILE: OBS DSL A1 TITLE LINEAR AUV DYNAMIC PATH PLANNER FOR VERTICAL PLANE MOTION * SEPARATED BOW AND STERN PLANE CONTROL NON-DIMENSIONAL * 2D STATIONARY OBSTACLES ¥ × FIXED ISTRAT, IOPT, IONED, IPRINT, INFO, IGRAD, NDV, NCON FIXED IDG, NGT, IC, NRA, NCOLA, NRWK, IWK, NRIWK, O DIMENSION AW(42,42) Ð ARRAY WK(5000), IWK(500) ARRAY DX(21), VLB(21), VUB(21), GW(05), DF(21), IDG(05), IC(05) PARAM NRA=42, NCOLA=42, NRWK=5000, NRIWK=500 PARAM IGRAD=0, INF0=0, NDV=20, NCON=05, NGT=05 TABLE DX(1-2)=2*.0, DX(3-21)=19*0., IDG(1-4)=4*-1 TABLE VLB(1-9)=9*-.17452, VLB(11-19)=9*-.2443,VLB(10)=0.,VLB(20-21)=0. TABLE VUB(1-9)=9*.17452, VUB(11-19)=9*.2443,VUB(10)=0.,VUB(20-21)=0. TABLE IDG(5)=01*1 PARAM ISTRAT=3,IOPT=1, IONED=1, IPRINT=0000 INCON U=0.0 METHOD RECT CONTROL FINTIM=7.0, DELT=.1 PRINT XPOS, ZPOS *RINT DS, DB, DEPTH, PITCH, XPOS, ZPOS, DT ¥ × EQUILIBRIUM CONDITION IS CONSTANT SPEED (NON-DIMENSIONALIZED) BY ¥ ¥ UD = 6 FT/SEC UO=1.0,A=10,B=11,C=12,D=13,E=14,F=15,G=16,H=17 CONST *ONST XOBS1=36.0,ZOBS1=-12.0,XOBS2=72.5,ZOBS2=-5.82 *ONST XOBS3=90.0,ZOBS3=-16.,XOBS4=115.,ZOBS4=-17. CONST XOBS1=34.85,ZOBS1=-2.8297 CONST XOBS2=83.64,ZOBS2=-12.960 CONST XOBS3=122.5,ZOBS3=-2.90 XOBS4=105.0, ZOBS4=-8.74 CONST XOBS5=59.245, ZOBS5=-7.2363 CONST XOBS6=35.0, ZOBS6=-14.58 CONST XOBS7=17.5, ZOBS7=-8.74 CONST XOBS8=52.5,ZOBS8=-11.66 XOBS9=69.7,ZOBS9=-10.155 CONST CONST XOBS10=70.0, ZOBS10=-2.9 XOBS11=52.275, ZOBS11=-6.1408 CONST CONST XOBS12=52.275,ZOBS12=-5.21 XOBS13=52.275,ZOBS13=-6.8836 CONST CONST XOBS14=50.0, ZOBS14=-5.21 CONST CONST XOBS15=54.55, ZOBS15=-5.21 XOBS16=57.5, ZOBS16=-8.74 CONST CONST XOBS17=35.0, ZOBS17=-8.74 ¥ ¥

CONST	U 0 =															
ĈONST -	MA=	<i>,</i> T	HETAO	= ,	Z0=	, ИО	=	, I	Y =							
CONST CONST ¥	ZW= ZDB=	, ZQ ,)= ZDS=	, Z	Q DOT	= Z0=		, Z	WDOT	=						
CONST CONST *	MW= MDB=	, N	IQ= MDS=		, MQ , M	DOT= THETA	=	,	MMD	0 T =						
INITIA	L DSAVE1= S	SORT	CXPOS	-XOB	sı)×	CXPDS	-x0	BS1)+(7	POS	-705	351)	¥(7	POS	-705	35100
	DSAVE2=SQ DSAVE3=SQ DSAVE4=SQ DSAVE5=SQ	RT(C RT(C RT(C RT(C	XPOS- XPOS- XPOS- XPOS-	XOBS XOBS XOBS XOBS	2)×(3)×(4)×(5)×(XPOS- XPOS- XPOS- XPOS-	XOB XOB XOB XOB	S2) S3) S4) S5)	+(ZP +(ZP +(ZP +(ZP +(ZP	0S- 0S- 0S- 0S-	ZOBS ZOBS ZOBS ZOBS	2)× 3)× 4)× 5)×	(ZP (ZP (ZP (ZP	0S- 0S- 0S- 0S-	ZOBS ZOBS ZOBS	52)) 53)) 54)) 55))
SAVE	DSAVED - SQ DSAVE - SQ DSAVE - SQ DSAVE - SQ DSAVE - SQ DSAVE - SQ DSAVE - SQ CZPOS - ZOF DSAVE - SQ CZPOS - ZOF D	QRT(() QRT() QRT() QRT() QRT() QRT() QRT() QRT() QRT() QRT()	XPOS- XPOS-	C D BS S XXXXS XXXS XXXS XXXS XXXS XXXS XXX	6))*((((* 6))*(*)0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*0*	XPOS XPOS XPOS XPOS (XPOS (XPOS)) (XPO	x0B x0B x0B x0B -x0 -x0 -x0 -x0 -x0 -x0 -x0 -x0 -x0 -x0	SS() SS() SS() SS() SS() SS() SS() SS()	+(ZP +(ZP +(ZP 0)+. 0)+. 0)+. 0)+. 0)+. 0)+. 0)+. 0)+.	GRAA S- OS- OS- OS- 	D,NI ,NCI WANI	DV, F S7) S8) S9) S9) S9) S9) S9) S9) S9) S9) S9) S9	CON WK,	OS- OS- OS- OS-	, ,	
DERIVA	IF(INFO.) IF(INFO.) TIVE	EQ.0 EQ.0) DELP) DELP	RT = LT =	0.2											
¥																

```
THETDD=(1/A4)*(C1*DS+C2*DB-A1*W-A2*WD0T-A3*THETAD)
       WDOT= (1/D1)*(C5*DS + C6*DB - D2*W - D3*THETAD - B5*THETA)
       THETAD= INTGRL(THETAO, THETDD)
       THETA = INTGRL(THETAO, THETAD)
       W = INTGRL(WO,WDOT)
Z = INTGRL(ZO,W-UO*THETA)
       DEPTH=-Z
       PITCH=THETA/.01745
       BONANG=(DB/.01745)
       STNANG=(DS/.01745)
       INTGRD = ((W*W+(Z-ORDDEP)*(Z-ORDDEP)+...
THETAD*THETAD+THETA*THETA)) + (DS*DS+DB*DB)
       OBJ1 = INTGRL(0.,(0.5)*INTGRD)
       OBJ = OBJ1
¥
DYNAMIC
       RN=TIME/(FINTIM/10.-DELT/10000.)
       O=INT(RN)+1
       IF(0.EQ.11) 0=10
¥
* ADDITIONALLY THE PLANES SHOULD BE AT EQUILIBRIUM SO THE
* VEHICLE WILL PROCEED AT THIS NEW DEPTH WITHIN SOME TOLERANCE
¥
       DS=DX(O)
       DB = D \times (10 + 0)
       IF(0.GE.10) DS=0.
IF(0.GE.10) DB=0.
¥
            CONSTRAINTS FOR A DIVE
¥
¥
¥
    ORDERED DEPTH = ORDDEP
        GH(1) = (Z - ORDDEP)/2.
       GW(2) = (ORDDEP - Z)/2
    AUV'S FINAL STATE MUST BE LEVEL FLIGHT AS FOLLOWS
¥
       GW(3) = THETA \times 10.
        GH(4) = -THETA \times 10.
        GW(5)=-Z×100.
¥
     X-Z POSITIONING FOR OBSTACLE AVOIDANCE
¥
¥
       XPOS=17.425*TIME
ZPOS=-Z*17.425
        DT=TIME*20./FINTIM
```

¥ ¥

AV	OII	NIN	G	TH	IE I	0	ΒS	TI	AC	LI	Ξ																											
	DIC	ST1	= S	QR	T (((XP	0:	s	X	ЭB	S1))	€(XF	^{>} 0	s-	- X	01	BS	1)+	(ZΡ	03	5-	ZC	B	S 1))	€(ZF	0	s-	ZO	BS	1)))
	DIS	ST2	=3	OR	T	(ХΡ	0:	s-	X	ЭB	S 2) 3	€(XF	⁰ م	s٠	- X	01	BS	2)+	0	ZΡ	03	5-	ZC	B	S2))	€(ZF	0	S	ZO	BS	2)))
	DIS	ST3	= 5	0R	ΤC	Ċ	XP	0:	<u>s</u> –	X) B	\$3	5	εÌ	XI	٥Õ	s-	- X	Õ	BS	3) +	ć	7 P	0.5	5-	70	B	53	53	εċ	ZF	20	ŝ-	ZO	BS	3)))
	nī	T4	= 9	0R	Τr	7	ΧP	0	š-	Ŷ	าต	54	í.	εĊ	XI	ว กั	š.	-Ŷ	ñi	RS	4	5+	è	7 P	201	š -	70	ÎR	54	Ú,	έČ	7 F	>ñ	Š-	Zo	BS	4) ĵ
	ni	5 7 5	= 5	0.5	τì	2	ŶÞ	0	б. 	Ŷ	าต	55	.í:	$\hat{\epsilon}$	Ŷ	> ດ	š.	-Ŷ	01	RS	5	ί÷	ì	7P		ξ_	70	IR.	55	54	ÈÈ	7	2 n	5-	20	IRS	5	ń
		512	= 0		÷÷à	2	$\hat{\mathbf{v}}_{P}$		š -	. Ç i	ת כ קר	52	1	27	Ŷ	ວດ	ξ.	-0	01		2	Śż	à	70			70	שו	52	````	$\frac{1}{2}$	76	20	5-	70	IRS	6	5
	DI.	> T O				2			<u> </u>	0	ם ט מר	50	1		\odot		2	-0			2	ΥŢ	2	2 F 7 D			20	מו	30 57	17	27	70	20	S-	20	כמו	7	5
	DIC	> / > T o	20			5		0.	2-	· 🖯	פר	51	17	ς (싌		<u> </u>	-0		00	6	ΥŢ		20		2-		D	ວ / ເ		ς (21	0	5-	20	100	6	
	DIS				1		XP	0:	2-	· ČI	JR	20	1	ει 	XI	20	5.	- X	U	R 2	ð.)+	ւ.	21	0	2-	20	1 B	20		ε(10	2-	ZU	1B2	0,0	
	DIS	519	122	W R		<u> </u>	X٢	0:	2-	X	ĴΒ	29	1	ε (.	XI	-0	2	- X	0	RZ	9)+	Ϋ́	Ľ٢	02	27	20	1 R	59)))	e (Zt	10	2-	20	IR2	9,))
	D13	511	0=	SQ	IRI	((X	P	US	-)	ΧŪ	BS	10))	χı	(X	P	วร	-)	ΧŪ	B:	51	0)+	- (2	<u>2</u> P	05	5-	20	BS	51	0) X	• •				
	(ZF	205	-2	. U E	121	0))										_						_				_			_								
	DIS	ST 1	1=	SC	R	[((X	(P)	0 S	(-)	X0	BS	1:	()	×	(X	Ρſ	DS	-)	ΧO	B:	51	1)+	- (2	ZΡ	03	;-	ΖO	BS	51	1)) X	• •				
	(ZF	POS	-Z	10 B	S]	1))																															
	DIS	ST1	2=	SQ	RI	1	(X	(PI	0 S	;-)	ХO	BS	1:	2)	ΧI	(X	P	DS	-)	ХO	B	51	2)+	·(2	ZΡ	03	;-	ΖO	BS	51	2)) X					
	(ZF	20°	-Z	. O E	S1	12))																															
	DIS	ST1	3=	SG	R	1	(X	P	0S	-)	хo	BS	1:	3)	×	(X	P	วร	-)	ΧO	B:	51	3)+	- (2	ZΡ	03	5-	ΖO	BS	51	3) X					
	(7)	0.5	-7	OB	51	3	5)						-								-	-		· ·							-	÷.		• •				
	DT 9	TI	4=	Sõ	RI	Ĩ	ŕχ	P	ns	-	хn	RS	1.	45	¥	٢x	Pí	าร	-)	хn	R	51	4)+	. (7	7 P	n٩	:	7 N	B	51	4	١¥					
	171	วักริ	-7	'nP	SI	à	15		00	· ·		50	-	17									-	<i>.</i>		- '	0.	, 						• •	•			
	nTa	:Т1	5=	S n	ig i	r r	íÝ	P	ns	_`	۷N	RS	1	5 1	¥	r y	P	าร	_`	Υn	R	: 1	5	۱4	. 67	7 P	0 9	- :	70	R	51	5	١¥					
	171	203	-7				53		05	· ·	~ 0	00	.	, ,	~ '	\sim		55		~ 0	υ.	2 7	2	<i>.</i>	1	- 1	0.	,	20	л р .,	1		1	• •	•			
		1 1	2-	. C C	רסו		20	0	nc	_ •	~ ^	ÞC	1	<u></u>	×	~ ~	D	٦c	_ •	~ ^	D	- 1	1	1	1	7 0	0.0	•	70	סמו	- 1	1	1 ×					
		200	0-	- 3 4 - 0 1			53		03	·	×υ	ЪЗ	10	2)	*		Γl	12	- '	×υ	D.	21	0	1	- (2	<u> </u>	03	>-	ΖU		2 T	0,	1	• •	•			
		203			121	10	"		~ ~					• 、			~	~ ~				~ 1	_	ς.	,.	~ ~	~				• •	_						
	DI		/=	SG	IK I	(ίx	. 11	05)-)	χU	R 7	1	()	×	(X	PI	JS	-,	хu	B:	51	. /)+	• (2	2P	03	>-	20	IR:	51	1.)×	• •	•			
	$\overline{(2)}$	202	-2	OB	IS1	[/))									_	_																					
	IF	DI	ST	1.	LI	•	DS	A	VE	1)	DS	A	/E	1:	= D	1:	ST	1																			
	IF	DI	ST	2.	11	Γ.	DS	A	VE	2)	DS	A١	/ E	2:	= D	13	5 T	2																			
	IF	DI	ST	3.	LI	Γ.	DS	A)	VE	3)	DS	A١	/ E	3:	= D	13	SТ	3																			
	IF	DI	ST	Έ.	11	Γ.	DS	A	VΕ	4)	DS	A	νE	4	= D	IS	SТ	4																			
	IF	DI	ST	5.	L1	Γ.	DS	A	VE	5)	DS	A	/E	5	= D	IS	5 T	5																			
	IF	DI	ST	6.	LI	٢.	DS	A	VΕ	6)	DS	A١	/E	6	= D	IS	SΤ	6																			
	IF	DI	ST	7.	11		DS	A	V F	7)	DS	A		7:	= D	T :	ST	7																			
	TE	DT	ST	8	11		กร		VE	8	Ś	กร	۵١		8	= ñ	τ.	ΞŤ	8																			
	TE	'nī	ST	ġ.	ĩ	г •	กัจ		ŇĒ	a	í	กร	2		a:	= ก	Ŧ	ŝŤ	ă																			
	ŤE	ז ח'	ST	· í í	ы (1 — 1	÷÷	<i>и</i> 5 г		v ∟ ∧ \/		ر م	л Г	ic.			~ _	<u>п</u>	J I T C	- T	1 0																		
		דת י	SI CT	11	' • L	· +	• L	101	н v л v		4 J 6 1	L	101	-1 V A 1/		ч — D —	ע. ת	τc	÷	11																		
			51	.1.2	. • •	- +	• L	121	H V A U				121	-1 V		D -	2	10	4:	11																		
	10	. DI	51	14	- L	- 1	· 1	121	AV	E	2)	L	121	A V	E	<u> </u>	<u>n</u> .	12	÷	14																		
	11	DI	21	13	• • L	- L	• Ľ	121	AV	E	יַט	Ľ	121	A V	E	<u></u> =	υ.	12	1	13																		
	TE		SI	14	. [. [• E	151	AV	E	E)	E	IS/	A V	E	=	D.	IS	1	14																		
	IF	DI	ST	15). L	. T	. E	ISI	AV	'EI	F)	E	IS/	٩V	E	F =	D.	IS	T.	15	1																	
	IF	DI	ST	16	. l	.Т	. E	ISI	AV	'E	G)	Ľ	IS I	A V	'EI	G =	D.	ΙS	T.	16																		
	IF	DI	ST	17	.1	.Τ	. E	ISI	ΑV	'El	H)	E	IS/	٩V	E	H =	D	ΙS	T	17																		
	GH	(6)	= (9.	-I)S	ΑV	'E:	1)																													
	GWI	(7)	= (5.	- 1	DS	AV	E	2)																													
	GH	81	= (3	- 1	15	ΔV	F	3 Ì																													
	GUI	91	= (6	-1	ĩs	Δ \		61																													
	GLU	10	1) -	1			51			1																												
	CLL	111	1	. 7 1	•	- D	CA			~																												
	GW				• • •	- n	SA	V	50	2																												
	GM	12)=	-(1	• •	- D	SA	V	E7)																												

IF(INFO.EQ.0) THEN PRINT*, DSAVE1, DSAVE2 PRINT*, DSAVE3, DSAVE4 PRINT*, DSAVE5, DSAVE6 PRINT*, DSAVE7, DSAVE8 PRINT*, DSAVE9, DSAVEA PRINT*, DSAVE9, DSAVEC PRINT*, DSAVED, DSAVEE PRINT*, DSAVEF, DSAVEG PRINT*, DSAVEH ELSE ENDIF IF(INFO.EQ.0) CALL ENDJOE CALL RERUN	TERMII	GW(GW(GW(GW(GW(GW(GW(GW(GW(AL	13 14 15 16 17 18 19 20 21 22	i = (i) i = (i)	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	- [-] -] -] -] -] -] -] -]	DSA DSA DSA DSA DSA DSA DSA	E89EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE					
¥	×	IFI PRII PRRII PRRII PRRII PRRII PRRII PRRII PRRII CAL		F0 F0 F0 F0 F0 F0 F0 F0	EQ DSA DSA DSA DSA DSA DSA DSA DSA DSA DSA	. (VE VE VE VE VE VE VE)), ===================================	HESAASASASASASAAL	N VE VE VE VE	24 68 ACEG	ND.	10	в

ŧ

.

```
TITLE RUN:16-5 LINEAR AUV MODEL / STERN PLANE AND BOW PLANE SEPARATED
* (1) UPDATED:04/16/88
      100.00 FT DEPTH CHANGE IN 20 SEC
RIGHT OBJ EQUATION
¥
  (2)
×
  (3)
  (4) ADS CONSTRAINTS ON DEPTH AND PITCH
¥
  (5) OBSTACLE FURTHER DOWN THE TRAJECTORY AND ABOVE IT
¥
* (6) CORRECT OBSTACLE AVOIDANCE ROUTINE ADDED
FIXED ISTRAT, IOPT, IONED, IPRINT, INFO, IGRAD, NDV, NCON
FIXED IDG, NGT, IC, NRA, NCOLA, NRWK, IWK, NRIWK, O, H,D,C,P
      DIMENSION AW(42,42)
D
ARRAY
      WK(4000), IWK(1000)
ARRAY DX(40), VLB(40), VUB(40), GW(11), DF(41), IDG(11), IC(11)
PARAM NRA=42, NCOLA=42, NRWK=4000, NRIWK=1000
PARAM IGRAD=0, INF0=0, NDV=40, NCON=11, NGT=11
TABLE DX(1-2)=2*.0,DX(3-21)=19*0., IDG(1-10)=10*-1
TABLE DX(22-40)=19*0.
      IDG(7-0)=1×1
TABLE
      VLB(1-9)=9*-.17452, VLB(11-19)=09*-.2443,VLB(10)=0.,VLB(20)=0.
VUB(1-9)=9*.17452, VUB(11-19)=9*.2443,VUB(10)=0.,VUB(20)=0.
TABLE
TABLE
      VLB(21-39)=19*-.523627,VUB(21-39)=19*.523627,VUB(40-41)=0.
TABLE
TABLE VLB(40-41)=0
PARAM ISTRAT=3, IOPT=1, IONED=1, IPRINT=0000
       H=0, OBS1=0., YZONE=0.
INCON
METHOD RECT
CONTROL FINTIM=21.
                      DELT=.10
*RINT XPOSM, YPOSM, DEPTH, THETAM, PHIM, PSIM, DSM, DBM, DRM
PRINT XPOSM, YPOSM, DEPTH
*RINT DSM, DBM, DRM, PITCHM, XPOSM, YPOSM, DEPTH, NDT
*RINT THETAD,W,DEPTH,PITCH,XPOS,DEPTH,NDX,NDZ,NDT
      THETA, W, Z, DEPTH, PITCH, DS, DB, BOWANG, STNANG
XAVE
*RAPH(DE=TEK618) TIME,DS
*RAPH(DE=TEK618) TIME, DEPTH
*RAPH(DE=TEK618) TIME,WDOT
*RAPH(DE=TEK618) TIME,W
*RAPH(DE=TEK618) TIME, THETDD
*RAPH(DE=TEK618) TIME,THETAD
*RAPH(DE=TEK618) TIME, THETA
*RAPH(DE=TEK618) TIME,PITCH
*RAPH(DE=TEK618) TIME,BOWANG
*RAPH(DE=TEK618) TIME, STNANG
¥
                            LINEAR MODEL ONLY
D
        COMMON/BLOCK1/ MMINV(6,6), MM(6,6),
                                                AA(12,12), BB(6,6)
       COMMON/BLOCK2/ B(6,6),A(12,12), UMOD(6),GKK(6,21)
COMMON/BLOCK3/ F(12), FP(6), UCF(4)
D
D
D
        COMMON/BLOCK4/ G4(4), GK4(4), BR(4), HH(4)
        COMMON/BLOCK5/ XDOT(12), XDOTX(12), XDOTU(6)
D
FIXED
        N, IA, IDGT, IER, LAST, J, K, M, JJ, KK, I
INTEGER
ARRAY
       WKAREA(54), X(12)
CONST
×
¥
       LONGITUDINAL HYDRODYNAMIC COEFFICIENTS
CONST XPP = 7.03E-3
                                                             ,XPR = 7.64E-4,...
                       ,XQQ = -1.47E-2
                                           , XRR = 4.01E-3
                                           ,XVP = -3.24E-3 ,XVR = 1.89E-2,...
,XRDR= -8.18E-4 ,XVV = 5.29E-2,...
       XUDOT=-7.58E-3 ,XWQ = -1.92E-1
       XQDS= 2.61E-2
                       ,XQDB= -2.6E-3
       XWW = 1.71E-1
                       ,XVDR= 1.73E-3
                                           ,XWDS= 4.6E-2
                                                             ,XHDB= 9.66E-3,...
                                           ,XDRDR=-1.01E-2 ,XQDSN=1.96E-3,...
       XDSDS=-1.16E-2 ,XDBDB=-8.07E-3
       XWDSN=3.46E-3 ,XDSDSN=-1.62E-3
```

¥ ¥ LATERAL HYDRODYNAMIC COFFFICIENTS \mathbf{i} YPDOT=1.27E-4 ,YRDOT=1.24E-3 YVDOT=-5.55E-2 ,YP = 3.055E-3 YWP = 2.35E-1 ,YWR = -1.88E-2 YDR = 2.73E-2 ,CDY = 3.5E-1 ,YPQ = 4.125E-3 ,YQR =-6.51E-3,... ,YR = 2.97E-2 ,YVQ = 2.36E-2,... ,YV = -9.31E-2 ,YVH = 6.84E-2,... CONST YPDOT=1.27E-4 ¥ NORMAL HYDRODYNAMIC COEFFICIENTS × ¥ ,ZPR = 6.67E-3 ,ZRR =-7.35E-3,... ,ZVP = -4.81E-2 ,ZVR = 4.55E-2,... ,ZDS = -7.255E-2,ZDB =-2.58E-2,... CONST ZQDOT=-6.81E-3 ,ZPP = 1.27E-4 ZWDOT=-2.43E-1 ,ZQ = -1.35E-1 ZW = -3.02E-1 ,ZVV = -6.84E-2 ZQN = -2.88E-3 ,ZWN = -5.07E-3 ,ZDSN= -1.015E-2,CDZ = 1.0 × ¥ ROLL HYDRODYNAMIC COEFFITIENTS ¥ CONST KPDOT=-1.01E-3 , KRDOT=-3.37E-5 ,KPQ = -6.93E-5 ,KQR = 1.68E-2,... ,KR = -8.41E-4 ,KVQ=-5.115E-3,... ,KV = 3.055E-3 ,KVW =-1.87E-1,... KVDOT=1.27E-4 , KP = -1.1E-2 KWP = -1.27E-4 , KWR = 1.39E-2 KPN = -5.73E-4, KDB = 6.94E-3 ¥ ¥ PITCH HYDRODYNAMIC COEFFICIENTS ¥ CONST MQDOT= -1.68E-2, MPP = 5.26E-5 ,MPR = 5.04E-3 ,MRR =-2.86E-2,... 3, MQ = -6.86E-2 , MVP = 1.18E-3 , MVR = 1.73E-2,... , MVV = -2.51E-2 , MDS = -4.12E-2 , MDB = 6.94E-3,... MWDOT= -6.81E-3, MQ = -6.86E-2 MH = 9.86E-2MQN = -1.64E-3 , MWN = -2.88E-3 , MDSN = -5.76E-3 ¥ ¥ YAW HYDRODYNAMIC COEFFICIENTS ¥ CONST NPDOT=-3.37E-5 , NRDOT=-3.4E-3 ,NPQ = -2.11E-2 ,NQR = 2.75E-3,... NVDOT=1.24E-3 , NP = -8.405E-4 ,NR = -1.64E-2 ,NVQ =-9.99E-3,... NWP = -1.75E-2 , NWR = 7.35E-3 ,NV = -7.42E-3 ,NVW =-2.67E-2,... NDR = -1.29E-2¥ ¥ MASS CHARACTERISTICS OF THE FLOODED MARK IX VEHICLE ¥ CONST WEIGHT = 15900 , BOY = 15900 ,VOL = 248.44,XG =-0.1 ,XB =-0.1 YG = 0.0, ZG = 0.061,ZB =0.023 , IY = 9450 ,IZ = 10700 IX = 1760,IXZ = -6.65. . . . , IXY = -7.0, YB = 0.0NU = 1.5E-5 IYZ = -7.0, . . . ,G = 32.2 , RHO = 1.94 L = 17.425. . . . A0 = 1.57 , KPROP = 0.0, NPROP = 0.0,X1TEST=0.01 DEGRUD= 10.0 ,DEGSTN= 0.0 ¥ CONST XOBS1=36.0 ZOBS1= -12.0 CONST
```
INPUT INITIAL CONDITIONS HERE IF REQUIRED
¥
¥
INITIAL
Ж
       DSAVE1=SQRT((XPOSM-XOBS1)*(XPOSM-XOBS1)+...
¥
¥
              (ZPOSM-ZOBS1)*(ZPOSM-ZOBS1))
       INITIALIZE ALL MATRICES AND ARRAYS TO ZERO
¥
NOSORT
       ORDDEP=20.
       YORD= 40.
       D = 0
       H=H+1
       IF (H.EQ.1) THEN
       N = 6
DO 2
              J = 1, N
          JJ= J+N
DO 1 K = 1,N
          KK = K + N
          KKK= KK + N
          MMINV(J,K) = 0.0
          X(J) = 0.0
          X(JJ) = 0.0
          XDOT(J) = 0.0
          XDOT(JJ) = 0.0
          \begin{array}{l} \textbf{XDOTX(J)} = 0.0 \\ \textbf{XDOTX(JJ)} = 0.0 \end{array}
          XDOTU(J) = 0.0
          UMOD(J) = 0.0
          MM(J,K) = 0.0
          BB(J,K) = 0.0
          B(J,K) = 0.0
          AA(J,K) = 0.0
          AA(JJ,KK) = 0.0
          AA(J,KK) = 0.0
          AA(JJ,K) = 0.0
          A(J,KK) = 0.0
          A(JJ,K) = 0.0
          A(J,K) = 0.0
          A(JJ,KK) = 0.0
          GKK(J,K) = 0.0
          GKK(J,KK)=0.0
          GKK(J,KKK)=0.0
1
2
          CONTINUE
       CONTINUE
×
¥
       INPUT THE LINEARIZATION POINT PARAMETERS
¥
       UO =6.0
       V0 = 0.0
      W0 = 0.0
       P0 = 0.0
       Q0 = 0.0
      R0 = 0.0
       PHIO = 0.0
       THETAO = 0.0
       PSIO = 0.0
       SUM = 0.0
       JFLAG = 0
      IFLAG = 0KFLAG = 0
```

×

```
¥
       INPUT THE MODEL STATES INITIAL CONDITIONS
¥
      UM = 6.0
       VM = 0.0
      WM = 0.0
      PM = 0.0
       QM = 0.0
       RM = 0.0
       XPOSM = 0.0
       YPOSM = 0.0
       ZPOSM = 0.0
       PHIM = 0.0
       THETAM = 0.0
       PSIM = 0.0
¥
¥
       INPUT THE VEHICLE INITIAL CONDITIONS
¥
¥
¥
×
       INITIALIZE THE CONTROLS
¥
       DBOY = 0.0
       DR=0.0
       DS= 0.00000
       DSM=0.
¥
×
       DBM=0.
       DB=0.000000
       DRM=0.0
       DRPM=0.
       RPM = 500.00
       LATYAW = 0.0
       NORPIT = 0.0
×
¥
       MASS = WEIGHT/G
¥
       DIVAMP = DEGSTN*0.0174532925
       RUDAMP = DEGRUD*0.0174532925
¥
       THE LINEAR PROPULSION MODEL
¥
¥
¥
¥
       ETA = 0.012*RPM/U0
       ETA = 1.0
       RE = UO*L/NU
      CD0 = .00385 + (1.296E-17)*(RE - 1.2E7)**2
CT = 0.008*L**2*ETA*ABS(ETA)/(A0)
      CT1 = 0.008*L**2/(A0)
EPS = -1.0+(SQRT(CT+1.0)-1.0)/(SQRT(CT1+1.0)-1.0)
      XPROP = CDO*(ETA*ABS(ETA) - 1.0)
      N=6
¥
       DO 15 J = 1,N
¥
          DO 10 K =1,N
¥
¥
          MMINV(J,K)=0.0
¥
          MM(J,K) = 0.0
          CONTINUE
ΧO
      CONTINUE
¥5
¥
       CALCULATE THE MASS MATRIX
¥
¥
       MM(1,1) = MASS -((RH0/2)*(L**3)*XUDOT)
       MM(1,5) = MASS \times ZG
       MM(1,6) = -MASS \times YG
```

```
MM(2,2) = MASS -((RH0/2)*(L**3)*YVDOT)
      MM(2,4) = -MASS*ZG -((RH0/2)*(L**4)*YPDOT)
MM(2,6) = MASS*XG - ((RH0/2)*(L**4)*YRDOT)
      MM(3,3) = MASS - ((RH0/2)*(L**3)*ZWD0T)
      MM(3,4) = MASS \times YG
      MM(3,5) = -MASS*XG -((RH0/2)*(L**4)*Z0D0T)
      MM(4,2) = -MASS*ZG - ((RH0/2)*(L**4)*KVDOT)
      MM(4,3) = MASS \times YG
      MM(4,4) = IX - ((RH0/2)*(L**5)*KPDOT)
      MM(4,5) = -IXY
      MM(4,6) = -IXZ - ((RH0/2)*(L**5)*KRD0T)
      MM(5,1) = MASS \times ZG
      MM(5,3) = -MASS*XG -((RH0/2)*(L**4)*MWDOT)
      MM(5,4) = -IXY
      MM(5,5) = IY -((RH0/2)*(L**5)*MQDOT)
      MM(5,6) = -IYZ
      MM(6,1) = -MASS \times YG
      MM(6,2) = MASS*XG -((RH0/2)*(L**4)*NVDOT)
      MM(6,4) = -IXZ - ((RH0/2)*(L**5)*NPD0T)
      MM(6,5) = -IYZ
      MM(6,6) = IZ - ((RH0/2) \times (L \times 5) \times NRDOT)
      LAST = N \times N + 3 \times N
      DO 20 M = 1,LAST
      WKAREA(M) = 0.0
20
      CONTINUE
      IER = 0
      IA = 6
      IDGT = 4
×
      CALL LINV2F(MM, N, IA, MMINV, IDGT, WKAREA, IER)
     CALCULATE THE A MATRIX FOR THE LINEAR MODEL
¥
      A(1,1) = RH0/2*L**3*(XQDS*DS*Q0+XQDB/2*DB*Q0+XRDR*R0*DR)+...
                 RH0/2*L**2*(XVDR*V0*DR+XWDS*DS*W0+XWDB/2*DB*W0 + ...
                 2*UO*(XDSDS*DS**2 + XDBDB/2*DB**2 + XDRDR*DR**2))+ ..
                 RH0/2*L**3*XQDSN*Q0*DS*EPS+RH0/2*L**2*(XWDSN*W0*DS+...
```

× ¥

¥

× ¥

> ¥ ¥

> > 2*XDSDSN*U0*DS**2)*EPS+RH0*L**2*U0*XPR0P+RH0/2*L**3*... XQDB/2*DB*Q0+RH0/2*L**2*XWDB/2*DB*W0+RH0*L**2*U0*... XDBDB/2*DB**2

	A(1,2)	=	MASS*R0+RH0/2*L**3*(XVP*P0+ XVR*R0) + RH0/2*L**2* (2*XVV*V0 + XVDR*U0*DR)
	A(1,3)	=	-MASS*Q0 + RH0/2*L**3*(XWQ*Q0)+RH0/2*L**2*(2*XWW*W0+ XWDS*D5*U0+(XWDB/2*DB+XWDB/2*DB)*U0 +XWDSN*U0*D5*FP5)
	A(1,4)	=	-MASS*YG*Q0-MASS*ZG*R0+ RH0/2*L**4*(2*XPP*P0+XPR*R0) + RH0/2*L**3*(XVP*V0)
	A(1,5)	Ξ	-MASS*W0+2*MASS*XG*Q0 -MASS*YG*P0+RH0/2*L**4*2*XQQ*Q0 +RH0/2*L**3*(XW0*W0+X0DS*DS*U0+X0DB/2*DB*U0)+RH0/2*
	A(1.6)	=	L**3*XQDSN*U0*DS*EPS+RH0/2*L**3*XQDB/2*DB*U0 MASS*V0+2*MASS*XG*R0-MASS*ZG*P0+RH0/2*L**4*(2*XRR*R0
	A(1.11) =	+ XPR*P0) + RHO/2*L**3*(XVR*V0 + XRDR*U0*DR) -(WFIGHT - BOY)*COS(THETAD)
×	A(2,1)	=	-MASS*R0+RH0/2*L**3*(YP*P0+YR*R0)+RH0/2*L**2*(YV*V0+
	A(2,2)	=	2*YDR*U0*DR) RHD/2*L**3*YVQ*00+RHD/2*L**2*(YV*U0+YVH*H0)
	A(2,3) A(2,4)	= =	MASS*P0+ RHD/2*L**3*(YWP*P0+YWR*R0)+RHD/2*L**2*YVW*V0 MASS*W0-MASS*XG*00+2*MASS*YG*P0+RHD/2*L**4*YP0*00+
	A(2,5)	=	RH0/2*L**3*(YP*U0+ YMP*W0) -MASS*XG*P0-MASS*ZG*R0+RH0/2*L**4*(YP0*P0+Y0R*R0) +
	A(2,6)	=	RHD/2*L**3*YVQ*V0 -MASS*U0+2*MASS*YG*R0-MASS*ZG*Q0+RHD/2*L**4*YQR*Q0 +
	A(2,10) =	RHO/2*L**3*(YR*U0 + YWR*W0) (WEIGHT - BOY)*COS(THETA0)*COS(PHI0)
×	A(2,11) =	-(WEIGHT - BOY)*SIN(THETAO)*SIN(PHIO)
	A(3,1)	=	MASS*Q0+RH0/2*L**3*ZQ*Q0+RH0/2*L**2*(ZW*W0+2*U0*ZDS*DS +2*U0*ZDB/2*DB+(ZWN*W0+2*ZDSN*U0*DS)*EPS)+RH0/2*L**3*
	A(3,2)	=	ZQN*Q0*EPS+ RH0/2*L**2*2*U0*ZDB/2*DB -MASS*P0+RH0/2*L**3*(ZVP*P0+ZVR*R0)+RH0/2*L**2*2*ZVV*V0
	A(3,3) A(3,4)	=	RHO/2*L**2*(ZW*U0 + ZWN*U0*EPS) -MASS*V0-MASS*XG*R0+2*MASS*ZG*P0+ RHO/2*L**4*(2*ZPP*
	A(3,5)	=	P0 + ZPR*R0) + RH0/2*L**3*ZVP*V0 MASS*U0 - MASS*YG*R0+2*MASS*ZG*Q0+RH0/2*L**3*ZQ*U0 +
	A(3,6)	= -	RHO/2*L**3*ZQN*U0*EPS -MASS*XG*P0-MASS*YG*Q0+RHO/2*L**4*(ZPR*P0+2*ZRR*R0)+
	A(3,10) =	RHD/2×L××3×ZVR×V0 -(WEIGHT - BOY)×COS(THETA0)×SIN(PHI0)
×	A(3,11) =	-(WEIGHT - BOY)*SIN(THETAO)*COS(PHIO)
	A(4,1)	Ξ	MASS*YG*Q0 + MASS*ZG*R0 + RH0/2*L**4*(KP*P0 + KR*R0)+RH0/2*L**3*(KV*V0+2*U0*(KDB/2*DB-KDB/2*DB))+
	A(4,2)	=	RHD/2*L**3*U0*KPR0P+ RHD/2*L**4*KPN*P0*EPS -MASS*YG*P0 + RHD/2*L**4*KVQ*Q0 + RHD/2*L**2*(KV*U0
	A(4,3)	=	+ KVM×MU) -MASS*ZG*P0 + RH0/2*L**4*(KWP*P0 + KWR*R0) +
	A(4,4)	=	$\frac{\text{RHU}}{2 \times 1} \times \frac{1}{2 \times 1} \times \frac{1}{2 \times 1} = \frac{1}{2 \times 1} \times \frac{1}{2 \times 1} \times \frac{1}{2 \times 1} \times \frac{1}{2 \times 1} = \frac{1}{2 \times 1} \times \frac{1}{2 \times 1} \times \frac{1}{2 \times 1} \times \frac{1}{2 \times 1} \times \frac{1}{2 \times 1} = \frac{1}{2 \times 1} \times \frac{1}{2 \times $
	A(4,5)	=	$-IZ \times RO + IY \times RO + 2 \times IY Z \times QO + IX Z \times O + MASS \times YG \times UO +$
	A(4,6)	=	$-IZ \times Q0 + IY \times Q0 - 2 \times IY Z \times R0 + MASS \times ZG \times U0 +$
	A(4,10) =	-(YG*WEIGHT-YB*BOY)*COS(THETAO)*COS(PHIO)
	A(4,11) =	-(YG*WEIGHT-YB*BOY)*SIN(THETA0)*COS(PHIO) +(ZG*WEIGHT-ZB*BOY)*SIN(THETA0)*SIN(PHIO)
Y			CECARETONI EDADOT/ASTRCHIETRO/ASTRCHITO/

J.

.

A(5,1) = -MAS	<pre>S*XG*Q0 + RH0/2*L**4*MQ*Q0 + RH0/2*L**3*MW*W0 +</pre>
RHO/	2*L**3*U0*(MDS*DS+MDB/2*DB) + RH0/2*L**3*MW*W0*Q0*
EPS	+ RH0/2*L**3*(MWN*W0 + 2*MDSN*U0*DS)*EPS+
RHO/	2*L**3*U0*MDB/2*DB
A(5,2) = MASS	*XG*P0 + MASS*ZG*R0 + RH0/2*L**4*(MVP*P0 +
MVR*	R0) + RH0*L**3*MVV*V0
A(5,3) = -MAS	S*ZG*Q0 + RH0/2*L**3*MW*U0 + RH0/2*L**3*MWN*U0*EPS
A(5,4) = -IX*	R0 + IZ*R0 - IYZ*Q0 - 2*IXZ*P0 + MASS*XG*V0 +
RHO/	2*L**5*(2*MPP*P0 + MPR*R0) + RH0/2*L**4*MVP*V0
A(5,5) = IXY*	R0 - IYZ*P0 - MASS*XG*U0 - MASS*ZG*W0 + RH0/2*L
L**4	*MQ*U0 + RH0/2*L**4*MQN*U0*EPS
A(5,6) = -IX*	P0 + IZ*P0 + IXY*Q0 + 2*IXZ*R0 + MASS*ZG*V0 +
RHO/	2*L*5*(MPR*P0+2*MRR*R0)+RH0/2*L**4*MVR*V0
A(5,10)= (XG*	WEIGHT-XB*B0Y)*COS(THETA0)*SIN(PHI0)
A(5,11)= (XG*	WEIGHT-XB*BOY)*SIN(THETAO)*COS(PHIO)
(ZG*	WEIGHT-ZB*BOY)*COS(THETAO)
A(6,1) = -MAS	S*XG*R0 + RH0/2*L**4*(NP*P0 +NR*R0) + RH0/2*
L**3	*(NV*V0+2*NDR*U0*DR)+RH0*L**3*U0*NPR0P
A(6,2) = -MAS	S*YG*R0 + RH0/2*L**4*NVQ*Q0 + RH0/2*L**3*(NV*U0+
A(6,3) = MASS	<pre>XG*P0 + MASS*YG*Q0 + RH0/2*L**4*(NWP*P0+NWR*R0)+</pre>
RHO/	2*L**3*NVW*V0
A(6,4) = -IY*	Q0 + IX*Q0 + 2*IXY*P0 +IYZ*R0 + MASS*XG*W0+
RHO/	2*L**5*NPQ*Q0 + RH0/2*L**4*(NP*U0+NWP*W0)
A(6,5) = -IY*	P0 + IX*P0 - 2*IXY*Q0 - IXZ*R0 + MASS*YG*W0+
RHO/	2*L**5*(NPQ*P0+NQR*R0) + RH0/2*L**4*NVQ*V0
A(6,6) = IYZ*	P0 -IXZ*Q0 - MASS*XG*U0 -MASS*YG*V0 +
RHO/	2*L**5*NQR*Q0 + RH0/2*L**4*(NR*U0 +NWR*W0)
A(6,10)= (XG*	WEIGHT-XB*B0Y)*COS(THETA0)*COS(PHI0)
A(6,11)= -(XG	<pre>*WEIGHT-XB*BOY)*SIN(THETA0)*SIN(PHI0) +</pre>
(YG*	WEIGHT-YB*BOY)*COS(THETA0)
A(7,1) = COS(PSI0)*COS(THETA0)
A(7,2) = COS(A(7,3) = COS(A(7,10)= VO*C SIN(PSI0)*SIN(THETA0)*SIN(PHI0) - SIN(PSI0)*COS(PHI0) PSI0)*SIN(THETA0)*COS(PHI0) + SIN(PSI0)*SIN(PHI0) OS(PSI0)*SIN(THETA0)*COS(PHI0) + V0*SIN(PSI0)* PHI0) - W0*COS(PSI0)*SIN(THETA0)*SIN(PHI0) + IN(PSI0)*COS(PHI0)
A(7,11)= -U0*	COS(PSIO)*SIN(THETAO) + VO*COS(PSIO)*COS(THETAO)*
SIN(PHIO) + WO*COS(PSIO)*COS(THETAO)*COS(PHIO)
A(7,12)= -U0*	SIN(PSIO)*COS(THETAO) - VO*SIN(PSIO)*SIN(THETAO)*
SIN(PHIO) - VO*COS(PSIO)*COS(PHIO) - WO*SIN(PSIO)*
SIN(THETAO)*SIN(PHIO) + WO*COS(PSIO)*SIN(PHIO)
A(8,1) = SIN(PSIO)*COS(THETAO)
A(8,2) = SIN(PSIO)*SIN(THETAO)*SIN(PHIO) + COS(PSIO)*COS(PHIO)
A(8,5) = SIN(A(8,10) = V0×S SIN(W0×C	PSI0)*SIN(THETA0)*COS(PHIO) - COS(PSI0)*SIN(PHIO) IN(PSI0)*SIN(THETA0)*COS(PHIO) - V0*COS(PSI0)* PHIO) - W0*SIN(PSI0)*SIN(THETA0)*SIN(PHIO) OS(PSI0)*COS(PHIO) SIN(PSI0)*SIN(THETA0) + V0*SIN(PSI0)*COS(THETA0)*
A(8,12)= U0×C	PHIO) + WOXSIN(PSIO)*COS(THETAO)*COS(PHIO)
SIN(OS(PSIO)*COS(THETAO) + VOXCOS(PSIO)*SIN(THETAO)*
SIN(PHIO) - VOXSIN(PSIO)*COS(PHIC) + WOXCOS(PSIO)*
SIN(THETAO)*COS(PHIO) + WOXSIN(PSIO)*SIN(PHIO)
A(9,1) = -SIN	(THETAO)
A(9,2) = COS(0)	THETAO)*SIN(PHIO)
A(9,3) = COS(0)	THETAO)*COS(PHIO)
A(9,10) = VO*(0)	COS(THETAO)*COS(PHIO)-WO*COS(THETAO)*SIN(PHIO)
A(9,11) = -UO3	COS(THETAO)*COS(PHIO)-WO*SIN(PHIO)
WO3	(SIN(THETAO)*COS(PHIO)

×

×

×

×

×

~	A(10,4) = 1.0 A(10,5) = SIN(PHI0)*TAN(THETA0) A(10,6) = COS(PHI0)*TAN(THETA0) A(10,10)= Q0*COS(PHI0)*TAN(THETA0) - R0*SIN(PHI0)*TAN(THETA0) A(10,11)= Q0*SIN(PHI0)/COS(THETA0)*1.0/COS(THETA0) + R0*COS(PHI0)/COS(THETA0)*1.0/COS(THETA0)
*	A(11,5) = COS(PHIO) A(11,6) = -SIN(PHIO) A(11,10)= -QO*SIN(PHIO) - RO*COS(PHIO)
~	A(12,5) = SIN(PHI0)/COS(THETA0) A(12,6) = COS(PHI0)/COS(THETA0) A(12,10)= Q0*COS(PHI0)/COS(THETA0)-R0*SIN(PHI0)/COS(THETA0) A(12,11)= Q0*SIN(PHI0)/COS(THETA0)*TAN(THETA0) + R0*COS(PHI0)/COS(THETA0)*TAN(THETA0)
¥ ¥	WRITE(10,200)((A(I,J),J=1,12),I=1,12)
¥ ¥ ¥	CALCULATE THE B MATRIX
	B(1,1) = RH0/2*L**3*XRDR*U0*R0+RH0/2*L**2*(XRDR*U0*V0+U0**2*
	2*XDRDR*DR) B(1,2) = U0*Q0*XQDB/2 + U0*W0*XWDB/2 + U0**2*XDBDB*DB B(1,3) = U0*Q0*XQDB/2 + U0*W0*XWDB/2 + U0**2*XDBDB*DB B(1,4) = U0*Q0*XQDS + U0*W0*XWDS + U0**2*2*XDSDS*DS+RH0/2*L**3* XQDSN*U0*Q0*EPS + RH0/2*L**2*(XWDSN*U0*W0 + 2*XDSDSN*
¥	B(1,5) = RH0/2×L××2×0.12×CD0×0.12×RPM B(1,6) = SIN(THETAO)
×	B(2,1) = RHO/2*L**2*YDR*U0**2 B(2,6) = -COS(THETA0)*SIN(PHI0)
×	B(3,2) = U0**2*ZDB/2*RH0/2*L**2 B(3,3) = U0**2*ZDB/2*RH0/2*L**2 B(3,4) = U0**2*ZDS*RH0/2*L**2 + RH0/2*L**2*ZDSN*U0**2*EPS B(3,6) = -COS(THETA0)*COS(PHI0)
×	B(4,2) =-RHO/2*L**3*U0**2*KDB/2 B(4,3) = RHO/2*L**3*U0**2*KDB/2 B(4,6) = -YB*COS(THETA0)*COS(PHI0) + ZB*COS(THETA0)*SIN(PHI0)
~	B(5,2) = RHO/2*L**3*U0**2*MDB/2 B(5,3) = RHO/2*L**3*U0**2*MDB/2 B(5,4) = RHO/2*L**3*(U0**2*MDS+MDSN*U0**2*EPS) B(5,6) = XB*COS(THETA0)*COS(PHI0) + ZB*SIN(THETA0)
×	B(6,1) = RHO/2*L**3*NDR*U0**2 B(6,6) = -XB*COS(THETAO)*SIN(PHIO) - YB*SIN(THETAO)
×	FORMULATE THE A AND B MATRIX FOR STATE SPACE REPRESENTATION
× ×	MULTIPLY MMINV AND DF/DX
* 60	DO 80 I = 1,6 DO 70 J = 1,6 SUM = 0.0 DO 60 K = 1,6 SUM = SUM + MMINV(I,K)*A(K,J) CONTINUE AA(I,J) = SUM
70 80	CONTINUÉ
×	

```
¥
×
      MULTIPLY MMINV AND DF/DZ
¥
¥
       DO 50 I = 1,6
          DO 40 J = 7,12
          SUM = 0.0
               DO 30 K = 1,6
               SUM = SUM + MMINV(I,K)*A(K,J)
              CONTINUE
30
               AA(I, J) = SUM
40
          CONTINUE
50
       CONTINUE
X
¥
      DO 5 I = 7,12
DO 6 J = 1,12
          AA(I,J) = A(I,J)
CONTINUE
6
5
      CONTINUE
¥
¥
      WRITE(10,200)((AA(I,J),J=1,12),I=1,12)
200
      FORMAT( 6E12.4)
¥
¥
¥
      MULTIPLY MMINV AND DF/DU
¥
¥
       DO 110 I = 1,6
          DO \ 100 \ J = 1,6
              SUM = 0.0
              DO 90 K = 1,6
              SUM = SUM + MMINV(I,K) \times B(K,J)
90
              CONTINUE
          BB(I,J) = SUM
CONTINUE
100
110
       CONTINUE
¥
¥
       WRITE( 9,300)((BB(I,J),J=1,6),I=1,6)
300
       FORMAT(6E12.4)
¥
¥
       D0 \ 405 \ I = 1,6
       READ (2,401)(GKK(I,J), J=1,21)
405
       WRITE(3,401)(GKK(I,J), J=1,21)
401
       FORMAT(3E20.10)
¥
¥
       ELSE
       END IF
¥
¥
       CALL ERRSET (209,256,-1,1,1)
       PRINT*, INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV, NCON, DX, ...
¥
¥
       OBJ, GW, IDG, NGT, IC, DF, AW, NRA, NCOLA, WK, NRWK, ...
¥
       IWK, NRIWK
       CALL DADS(INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,DX,...
                 VLB, VUB, OBJ, GW, IDG, NGT, IC, DF, AW, NRA, NCOLA, WK, NRWK, ...
                 IWK, NRIWK)
       IF (INFO.EQ. 0) DELPRT=0.2
¥
DERIVATIVE
NOSORT
¥
¥
¥
```

```
¥
¥
     CALCULATE BB*U PART OF XDOT = AA*X + BB*U
¥
¥
      DO \ 10 \ J = 1,6
          SUM = 0.0
          DO 15 K = 1,6
             SUM = SUM + BB(J,K) \times UMOD(K)
          CONTINUE
15
          XDOTU(J) = SUM
      CONTINUE
10
* CALCULATE AAXX
      DO 21 J= 1,12
          SUM = 0.0
          DO 25 K = 1,12
             SUM = SUM + AA(J,K) \times X(K)
25
          CONTINUE
          XDOTX(J) = SUM
21
      CONTINUE
   CALCULATE XDOT = AAXX + BBXU
       DO 31 J = 1,6
          XDOT(J) = XDOTX(J) + XDOTU(J)
31
       CONTINUE
       DO 35 J = 7,12
          XDOT(J) = XDOTX(J)
      CONTINUE
35
¥
       UDOTM = XDOT(1)
       VDOTM = XDOT(2)
      HDOTM = XDOT(3)
       PDOTM = XDOT(4)
      QDOTM = XDOT(5)
      RDOTM = XDOT(6)
      XDOTM = XDOT(7)
       YDOTM = XDOT(8)
       ZDOTM = XDOT(9)
       PHMDOT= XDOT(10)
       THETMD= XDOT(11)
       PSMDOT= XDOT(12)
    WRITE(8,600)
INTEGRATE XDOT TO GET THE STATE VECTOR X
×
¥
¥
       UM =INTGRL(6.0, UDOTM)
      VM= INTGRL(0.0, VDOTM)
WM= INTGRL(0.0, WDOTM)
PM= INTGRL(0.0, PDOTM)
      QM= INTGRL(0.0, QDOTM)
       RM= INTGRL(0.0, RDOTM)
      XPOSM = INTGRL(0.0, XDOTM)
YPOSM = INTGRL(0.0, YDOTM)
ZPOSM = INTGRL(0.0, ZDOTM)
       PHIM = INTGRL(0.0, PHMDOT)
       THETAM = INTGRL(0.0, THETMD)
       PSIM = INTGRL(0.0, PSMDOT)
¥
```

)	
	X(1) = UM X(2) = VM X(3) = WM X(4) = PM X(5) = QM X(6) = RM X(7) = XPOSM X(8) = YPOSM
×	X(9) = ZPOSM X(10) = PHIM X(11) = THETAM X(12) = PSIM
* *	ZDEPTH = ZORD - X(9) THMANG = X(11)*57.3 UMOD(1)=DRM UMOD(2)=DBM DBPM= UMOD(3) UMOD(3)=DBM UMOD(4)=DSM UMOD(5)=DRPM UMOD(6)=DBOY
	PHANG=PHIM/0.0174532925 THMANG=THETAM/0.0174532925 PSMANG= PSIM/ 0.0174532925 PITCHM=THMANG DEPTH=-ZPOSM
* **; *	****CONTROL LAW***********************************
* * * * * * *	DBS = UMOD(2) DBP = UMOD(3) DS = UMOD(4) DR = UMOD(1)
× × ×	PUT IN STERN AND BOW PLANE STOPS
* *	IF(ABS(DBS).GT.0.6) THEN DBS = 0.6*ABS(DBS)/DBS
×	IF(ABS(DBP).GT.0.6) THEN DBP = 0.6*ABS(DBP)/DBP

```
ENDIF
      IF(ABS(DS).GT.0.6) THEN
Ж
¥
        DS = 0.6 \times ABS(DS)/DS
¥
       ENDIF
       INTGRD = (UM*UM+VM*VM+WM*WM+PM*PM+QM*QM+RM*RM+...
¥
                 XPOSM*XPOSM+(YPOSM-YORD)*(YPOSM-YORD)..
¥
                 +(ZPOSM-ORDDEP)*(ZPOSM-ORDDEP)+PHIM*PHIM+.
                 THETAM*THETAM+PSIM*PSIM) + (DSM*DSM+DBM*DBM+DRM*DRM)
       OBJ1 = INTGRL(0.,(0.5)*INTGRD)
       OBJ = OBJ1
       RN=TIME/(FINTIM/10.-DELT/10000.)
 DYNAMIC
       PN=TIME/(FINTIM/20.-DELT/10000.)
        D=INT(RN)+1
        P=INT(PN)+1
        IF(0.GE.11) 0=10
        IF(P.GE.20) P=20
 ADDITIONALLY THE PLANES SHOULD BE AT EQUILIBRIUM SO THE
* VEHICLE WILL PROCEED AT THIS NEW DEPTH WITHIN SOME TOLERANCE
  ¥
        DSM=DX(0)
         DBM=DX(10+0)
         IF(0.GE.10) DSM=0.000
         IF(0.GE.10) DBM=0.000
         DRM=DX(20+P)
         RPM=DX(30+0)
  ¥
             CONSTRAINTS FOR A DIVE
  ¥
  ¥
   ×
      ORDERED DEPTH = ORDDEP
         GW(1) = (ZPOSM-ORDDEP)*.5
   ¥
      AUV'S FINAL STATE MUST BE LEVEL FLIGHT AS FOLLOWS
GW(3) = THETAM
   ¥
          GW(4) = -THETAM
          GW(5) = PHIM
          GW(6) = -PHIM
          GH(7) = PSIM
          GW(8) = -PSIM
          GW(9)=(YPOSM-YORD)/.4
          GW(10)=(YORD-YPOSM)/.4
          GW(11) = -ZPOSM
        AVOIDING THE OBSTACLE
    ×
    ×
           DIST1=SQRT((XPOSM-XOBS1)*(XPOSM-XOBS1)+...
    ×
                 (ZPOSM-ZOBS1)*(ZPOSM-ZOBS1))
    ¥
           IF (DISTI.LT.DSAVE1) DSAVE1=DISTI
    ¥
           GW(6) = (1.-DSAVE1)
    ¥
     ¥
           NDX=XPOSM/17.425
           NDZ=ZPOSM/17.425
           NDT=TIME*6./17.425
           WRITE(11,66) XPOSM, YPOSM, DEPTH
     TERMINAL
            FORMAT (1X, F10.3, F10.3)
     ×
     ¥66
            IF(INFO.EQ.0) THEN
            PRINTX, 0, P
      9000 CONTINUE
            ELSE
            ENDIF
            IF(INFO.EQ.0) CALL ENDJOB
            CALL RERUN
      ¥
      END
      STOP
```

÷

FILE: TNLO DSL A1

```
TITLE RUN:16-5 NONLINEAR AUV MODEL / STERN PLANE AND BOW PLANE SEPARATED
X (1) UPDATED:05/20/88
X (2) RIGHT OBJ EQUATION
* (3) ADS CONSTRAINTS ON DEPTH, PITCH, YAW, ROLL AND Y POSITION
FIXED ISTRAT, IOPT, IONED, IPRINT, INFO, IGRAD, NDV, NCON
FIXED IDG, NGT, IC, NRA, NCOLA, NRWK, IWK, NRIWK, O, H,D,C,PP
       DIMENSION AH(42,42)
D
ARRAY WK(5000), IWK(1000)
ARRAY DX(40), VLB(40), VUB(40), GW(11), DF(41), IDG(11), IC(11)
PARAM NRA=42, NCOLA=42, NRWK=5000, NRIWK=1000
PARAM IGRAD=0, INFO=0, NDV=40, NCON=11, NGT=11
TABLE DX(1-2)=2*.0, DX(3-40)=38*0., IDG(1-10)=10*-1
TABLE
      IDG(11)=1×1
      VLB(1-09)=09*-.17452, VLB(11-19)=09*-.2443,VLB(20)=0.,VLB(10)=0.
VUB(1-09)=09*.17452, VUB(11-19)=09*.2443,VUB(20)=0.,VUB(10)=0.
VLB(21-39)=19*-.62367,VUB(21-39)=19*.623627,VUB(40-41)=2*0.
TABLE
TABLE
TABLE
TABLE VLB(40-41)=2×0.
PARAM ISTRAT=3, IOPT=1, IONED=1, IPRINT=0000
       H=0, OBS1=0.,YZONE=0.
INCON
METHOD RECT
CONTROL FINTIM=21.0, DELT=.10
PRINT XPOS, YPOS, ZPOS, PITCH, THEANG, DR, DS
*RINT THETAD, W, DEPTH, PITCH, XPOS, DEPTH, NDX, NDZ, NDT
*RINT DS,DB,DR,DEPTH,PITCH,XPOS,YPOS,ZPOS,NDT
XAVE
       THETA, W, Z, DEPTH, PITCH, DS, DB, BOWANG, STNANG
*RAPH(DE=TEK618) TIME,DS
*RAPH(DE=TEK618) TIME, DEPTH
*RAPH(DE=TEK618) TIME,WDOT
*RAPH(DE=TEK618) TIME,W
*RAPH(DE=TEK618) TIME, THETDD
*RAPH(DE=TEK618) TIME, THETAD
*RAPH(DE=TEK618)
                   TIME, THETA
*RAPH(DE=TEK618) TIME,PITCH
*RAPH(DE=TEK618) TIME, BOWANG
*RAPH(DE=TEK618) TIME, STNANG
¥
D
        DIMENSION MM(6,6),G4(4),GK4(4),BR(4),HH(4)
        DIMENSION B(6,6), BB(6,6)
D
D
        DIMENSION A(12,12), AA(12,12)
        COMMON / BLOCK1 / F(12), FP(6), MMINV(6,6), UCF(4)
D
FIXED
        N, IA, IDGT, IER, LAST, J, K, M, JJ, KK, I
INTEGER
ARRAY
       WKAREA(54), X(12)
CONST
×
¥
       LONGITUDINAL HYDRODYNAMIC COEFFICIENTS
¥
                        ,XQQ =
                                            ,XRR =
                                                               ,XPR =
CONST XPP =
                                            ,XVP =
                                                               ,XVR =
                        , XWQ =
       XUDOT=
                                                                               . . . .
                                                               ,XVV =
       XQDS=
                        ,XQDB=
                                            ,XRDR=
                                                                               , . . .
                        ,XVDR=
                                            ,XWDS=
                                                               ,XWDB=
       ХММ =
                                                                               , . . .
       XDSDS=
                        ,XDBDB=
                                            ,XDRDR=
                                                               ,XQDSN=
                                                                               . . . .
       XHDSN=
                        ,XDSDSN=
¥
```

¥ LATERAL HYDRODYNAMIC COEFFICIENTS × CONST YPDOT= ,YRDOT= ,YPQ = ,YQR = YVDOT= ,YP = ,YWR = ,YR = ,YVQ = · · · · YWP = ,YV = ,YVW = YDR = ,CDY = × NORMAL HYDRODYNAMIC COEFFICIENTS ¥ ¥ ,ZPP = CONST ZQDOT= ,ZPR = ,ZRR = ,ZQ = ZHDOT= ,ZVP = ,ZVR = ZH = ZVV = , . . . ,ZDS = ,ZDB = ZQN = ,ZWN = ,ZDSN= ,CDZ = × ROLL HYDRODYNAMIC COEFFITIENTS × ¥ ,KQR = ,KVQ= , KRDOT= CONST KPDOT= ,KPQ = , . . . , . . . , KP = , KR = , KV = KVDOT= , KWR = ,KVW = KWP = , KDB = KPN = ¥ ¥ PITCH HYDRODYNAMIC COEFFICIENTS ¥ ,MRR = ,MVR = ,MDB = , MPP = ,MPR = CONST MQDOT= , MQ = ,MVP = MHDOT= , . . . , MVV = ,MDS = MN = , MWN = ,MDSN = MQN = × YAW HYDRODYNAMIC COEFFICIENTS ¥ ¥ , NRDOT= ,NPQ = ,NQR = CONST NPDOT= , NP = , NR = ,NVQ = NVDOT= , NWR = , NV = , NVW = NWP = , . . . NDR = ¥ ¥ MASS CHARACTERISTICS OF THE FLOODED MARK IX VEHICLE ¥ , BOY = ,XG = ,VOL = CONST WEIGHT = , ZG = , IY = , IXY = ,XB = ,ZB = YG = IX = ,IZ = ,IXZ = , . . . ,YB = IYZ = , RHO = , KPROP = , DEGSTN= 0.0 ,G = ,G = ,NU = ,NU = ,XITEST= L = L = A0 = , DEGRUD= 0.0 ¥ ¥ XONST XOBS1=36.0 *ONST ZOBS1=-12.0 × INPUT INITIAL CONDITIONS HERE IF REQUIRED × ¥

```
INITIAL
      DSAVE1=SQRT((XPOS-XOBS1)*(XPOS-XOBS1)+(ZPOS-ZOBS1)*(ZPOS-ZOBS1))
×
NOSORT
      ORDDEP = 17.425
      YORD=40.0
¥
      D=0
      H=H+1
      IF(H.EQ.1) THEN
      U = 0.0
      V = 0.0
      W = 0.0
      P = 0.0
       Q = 0.0
      R = 0.0
XPOS = 0.0
YPOS = 0.0
      ZPOS = 0.0
      PSI = 0.0
      THETA = 0.0
      PHI = 0.0
¥
      U0 = 6.0
      V0 = 0.0
      1.10 = 0.0
      P0 = 0.0
      Q0 = 0.0
       R0 = 0.0
      PHI0 = 0.0
       THETAO = 0.0
       PSIO = 0.0
       DB= 0.0
      DS = 0.0
DR = 0.0
       RPM = 500
       LATYAW = 0.0
       NORPIT = 0.0
       RE = UO*L/NU
       CD0 = .00385 + (1.296E-17)*(RE - 1.2E7)**2
¥
¥
       DEFINE LENGTH FRACTIONS FOR GAUSS QUADUTURE TERMS
¥
       G4(1) = 0.069431844
       G4(2) = 0.330009478
G4(3) = 0.669990521
       G4(4) = 0.930568155
¥
×
       DEFINE WEIGHT FRACTIONS FOR GAUSS QUADUTURE TERMS
¥
       GK4(1) = 0.1739274225687
       GK4(2) = 0.3260725774312
       GK4(3) = 0.3260725774312
       GK4(4) = 0.1739274225687
Ж
¥
       DEFINE THE BREADTH BB AND HEIGHT HH TERMS FOR THE INTEGRATION
¥
       BR(1) = 75.7/12
       BR(2) = 75.7/12
       BR(3) = 75.7/12
       BR(4) = 55.08/12
¥
```

HH(1) = 16.38/12HH(2) = 31.85/12HH(3) = 31.85/12HH(4) = 23.76/12¥ MASS = WEIGHT/G ¥ DIVAMP = DEGSTN*0.0174532925 RUDAMP = DEGRUD*0.0174532925 ¥ ¥ N = 6DO 15 J = 1, NDO 10 K = 1,N MMINV(J,K) = 0.0MM(J,K) = 0.010 CONTINUE 15 CONTINUE × × × ¥ ¥ ¥ MM(1,1) = MASS -((RH0/2)*(L**3)*XUDOT) $MM(1,5) = MASS \times ZG$ $MM(1,6) = -MASS \times YG$ ¥ MM(2,2) = MASS -((RH0/2)*(L**3)*YVDOT) MM(2,4) = -MASS*ZG -((RH0/2)*(L**4)*YPDOT)
MM(2,6) = MASS*XG - ((RH0/2)*(L**4)*YRDOT) ¥ MM(3,3) = MASS - ((RH0/2)*(L**3)*ZWDOT) $MM(3,4) = MASS \times YG$ $MM(3,5) = -MASS \times XG - ((RH0/2) \times (L \times 4) \times ZQDOT)$ × MM(4,2) = -MASS*ZG - ((RH0/2)*(L**4)*KVDOT) $MM(4,3) = MASS \times YG$ MM(4,4) = IX - ((RH0/2)*(L**5)*KPDOT) MM(4,5) = -IXY $MM(4,6) = -IXZ - ((RH0/2) \times (L \times 5) \times KRD0T)$ $MM(5,1) = MASS \times ZG$ MM(5,3) = -MASS*XG -((RH0/2)*(L**4)*MWDOT) MM(5,4) = -IXYMM(5,5) = IY -((RH0/2)*(L**5)*MQDOT) MM(5,6) = -IYZ¥ $MM(6,1) = -MASS \times YG$ MM(6,2) = MASS*XG -((RH0/2)*(L**4)*NVDOT) MM(6,4) = -IXZ - ((RH0/2)*(L**5)*NPDOT) MM(6,5) = -IYZ $MM(6,6) = I7 - ((RH0/2) \times (I \times 5) \times NRDOT)$ ¥

```
¥
       LAST = N \times N + 3 \times N
       DO 20 M = 1, LAST
       WKAREA(M) = 0.0
20
       CONTINUE
¥
       IER = 0
       IA = 6
       IDGT = 4
       WRITE( \delta, 400)((MM(I,J), J = 1,6),I = 1,6)
¥
       CALL LINV2F(MM, N, IA, MMINV, IDGT, WKAREA, IER)
¥
       WRITE( 8,400)((MMINV(I,J), J = 1,6),I = 1,6)
400
       FORMAT(6E12.4)
¥
       ELSE
       ENDIF
¥
¥
       CALL DADS(INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV, NCON, DX, ...
                  VLB, VUB, OBJ, GW, IDG, NGT, IC, DF, AW, NRA, NCOLA, WK, NRWK, ...
                  IWK, NRIWK)
       IF(H.EQ.1) THEN
С
č
           WK(12) = .002
       CALL DADS(INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV, NCON, DX, ...
000
                  VLB, VUB, OBJ, GW, IDG, NGT, IC, DF, AW, NRA, NCOLA, WK, NRWK, ...
                  IWK, NRIWK)
       IF(INFO.EQ.0) DELPRT = 0.2
       IF(INFO.EQ.0) DELPLT = 0.2
¥
×
¥
×
DERIVATIVE
NOSORT
¥
×
¥
       PROPULSION MODEL
¥
×
       SIGNU = 1.0
       IF (U.LT.0.0) SIGNU = -1.0
IF (ABS(U).LT.X1TEST) U = X1TEST
       SIGNN = 1.0
       IF (RPM.LT.0.0) SIGNN = -1.0
       ETA = 0.012*RPM/U
       RE = U*L/NU
                .00385 + (1.296E-17)*(RE - 1.2E7)**2
       CD0 =
       CT = 0.008 \times L \times 2 \times ETA \times ABS(ETA)/(A0)
       CT1 = 0.008 \times L \times 2/(A0)
       EPS = -1.0+SIGNU×(SQRT(CT+1.0)-1.0)/(SQRT(CT1+1.0)-1.0)
       XPROP = CDO*(ETA*ABS(ETA) - 1.0)
¥
×
¥
       CALCULATE THE DRAG FORCE, INTEGRATE THE DRAG OVER THE VEHICLE INTEGRATE USING A 4 TERM GAUSS QUADUTURE
¥
¥
¥
¥
        LATYAW = 0.0
       NORPIT = 0.0
        DO 500 K = 1,4
           UCF(K) = SQRT((V+G4(K)*R*L)**2 + (W-G4(K)*Q*L)**2)
IF(UCF(K).GT.1E-10) THEN
```

FILE:	TNLO	DSL	Al		
500 *	TERMO TERMI TERM2 LATYA NORPI END I CONTINUE) = (RHO/2 CDZ×BF = TERMO 2 = TERMO W = LATYAL T = NORPIT	2)*(CDY*HH(K)*(V+G4(K)*R*L)**2 + 2(K)*(W-G4(K)*Q*L)**2) (V+G4(K)*R*L)/UCF(K) (W-G4(K)*Q*L)/UCF(K) + TERM1*GK4(K)*L + TERM2*GK4(K)*L		
* * *	FORCE EQ	UATIONS			
* * *	LONGITUDI	NAL FORCE			
×	FP(1) = M X ((X Z Z	MASS*V*R - 1ASS*YG*P*((QQ*Q**2 + (VP*V*P+XVF RHO/2)*L*; XWDS*DS+XF (DRDR*DR**2 (QDSN*U*Q*1)S**2)*EPS	- MASS*W¥Q + MASS*XG¥Q*¥2 + MASS*XG¥R*¥2 ≥ - MASS*ZG*P*R + (RHD/2)*L**4*(XPP*P**2 + XRR*R*2 + XPR*P*R) +(RHO/2)*L**3*(XWQ*W¥Q + ≥V*R+U*Q*(XQDS*DS+XQDB*DB)+XRDR*U*R*DR)+ <2*(XVV*V*2 + XWW*W*2 + XVDR*U*V*DR + U*W* +DB*DB)+U*2*(XDSDS*DS**2+XDBDB*DB*2+ 2))-(WEIGHT -BOY)*SIN(THETA) +(RHO/2)*L**3* DS*EPS+(RHO/2)*L**2*(XWDSN*U*W*DS+XDSDSN*U**2* +(RHO/2)*L**2*U**2*XPROP		
× ×	LATERAL F	FORCE			
*	FP(2) = (Y (C	-MASS¥U¥R (RHO/2)¥L¥9 (R¥U¥R + Y) (YV¥U¥V + Y) COS(THETA)9	- MASS*XG*P*Q + MASS*YG*R**2 - MASS*ZG*Q*R + «4*(YPQ*P*Q + YQR*Q*R)+(RHO/2)*L**3*(YP*U*P + /Q*V*Q + YWP*W*P + YWR*W*R) + (RHO/2)*L**2* YVW*V*W +YDR*U**2*DR) -LATYAW +(WEIGHT-BOY)* «SIN(PHI)		
×	NORMAL FO	DRCE			
~	FP(3) = M Z Z I (U	MASS*U*Q MASS*ZG*P* ZPR*P*R + ZVR*V*R) + DS+ZDB*DB) (RH0/2)*L* J**2*DS)*E	- MASS*V*P - MASS*XG*P*R - MASS*YG*Q*R + *2 + MASS*ZG*Q**2 + (RHO/2)*L**4*(ZPP*P**2 + ZR*R**2) + (RHO/2)*L**3*(ZQ*U*Q + ZVP*V*P + (RHO/2)*L**2*(ZW*U*W + ZVV*V**2 + U**2*(ZDS*)-NORPIT+(WEIGHT-BOY)*COS(THETA)*COS(PHI)+ *3*ZQN*U*Q*EPS +(RHO/2)*L**2*(ZWN*U*W +ZDSN* PS		
* ¥	ROLL FORCE				
×	FP(4) = F K (2 2	-IZ*Q*R +: MASS*YG*U* *XQ + KQR* (WP*W*P + (YG*WEIGHT (YG*WEIGHT ZB*BOY)*CO (RHO/2)*L*	<pre>IY*Q*R -IXY*P*R +IYZ*Q**2 -IYZ*R**2 +IXZ*P*Q + Q -MASS*YG*V*P -MASS*ZG*W*P+(RH0/2)*L**5*(KPQ* Q*R) +(RH0/2)*L**4*(KP*U*P +KR*U*R + KVQ*V*Q + KWR*W*R) +(RH0/2)*L**3*(KV*U*V + KVW*V*W) + - YB*BOY)*COS(THETA)*COS(PHI) - (ZG*WEIGHT S(THETA)*SIN(PHI) + (RH0/2)*L**4*KPN*U*P*EPS+ *3*U**2*KPR0P +MASS*ZG*U*R</pre>		

2	PITCH FORCE
*	<pre>FP(5) = -IX*P*R +IZ*P*R +IXY*Q*R -IYZ*P*Q -IXZ*P**2 +IXZ*R**2 MASS*XG*U*Q + MASS*XG*V*P + MASS*ZG*V*R - MASS*ZG*W*Q + (RH0/2)*L**5*(MPP*P**2 +MPR*P*R +MRR*R**2)+(RH0/2)*L**4* MVV*V*2 + MVP*V*P + MVR*V*R) + (RH0/2)*L**3*(MW*U*W + MVV*V*2+U**2*(MDS*DS+MDB*DB))+ NORPIT -(XG*WEIGHT- XB*BOY)*COS(THETA)*COS(PHI) (RH0/2)*L**4*MQN*U*Q*EPS + (ZG*WEIGHT-ZB*BOY)*SIN(THETA)</pre>
* *	YAW FORCE
Y	<pre>FP(6) = -IY*P*Q +IX*P*Q +IXY*P**2 -IXY*Q**2 +IYZ*P*R -IXZ*Q*R MASS*XG*U*R + MASS*XG*W*P - MASS*YG*V*R + MASS*YG*W*Q + (RH0/2)*L**5*(NPQ*P*Q + NQR*Q*R) +(RH0/2)*L**4*(NP*U*P+ NR*U*R + NVQ*V*Q +NWP*W*P + NWR*W*R) +(RH0/2)*L**3*(NV* U*V + NVW*V*W + NDR*U**2*DR) - LATYAW + (XG*WEIGHT XB*BOY)*COS(THETA)*SIN(PHI)+(YG*WEIGHT)*SIN(THETA)</pre>
×	IE(Z EQ 50 DITUTU
* * * *	WRITE $(8,500)(FP(I), I = 1,6)$ Z = 0.0 END IF
× ¥	NOW COMPUTE THE F(1-6) FUNCTIONS
~	DO 600 J = 1.6
	DO 600 $K = 1, 6$
600 *	$CONTINUE = MMINV(J,K) \times FP(K) + F(J)$
×	THE LAST SIX FOUNTIONS COME
* * * *	FIRST SET THE DRIFT CURRENT VALUES
×	UCO = 0.0 VCO = 0.0 WCO = 0.0
×	INERTIAL POSITION RATES FOR A
~	F(7) = UC0 + Uxcoccoccocc
×	SIN(PHI) - SIN(PSI)*COS(THETA) + V*(COS(PSI)*SIN(THETA)* COS(PHI) + SIN(PSI)*COS(PHI)) + W*(COS(PSI)*SIN(THETA)*
¥	F(8) = VCO + U*SIN(PSI)*COS(THETA) + V*(SIN(PSI)*SIN(THETA)* SIN(PHI) + COS(PSI)*COS(PHI)) + W*(SIN(PSI)*SIN(THETA)*
~	F(9) = WCO - WXSIN(TUERA)
×	COS(PHI) +V*COS(THETA)*SIN(PHI) +W*COS(THETA)*
* *	EULER ANGLE RATES F(10-12)
×	$F(10) = P + Q \times SIN(PHI) \times TAN(THETA) + P \times COC(DUE)$
×	F(11) = Q*COS(PHI) - R*SIN(PHI)
	F(12) = Q*SIN(PHI)/COS(THETA) + R*COS(PHI)/COS(THETA)

¥ ¥

```
×
¥
×
      IF (Z.EQ.1.0)WRITE (9,500)(F(I), I = 1,12)
      FORMAT(6E12.4)
¥00
×
      Z = Z + 1
×
¥
      UDOT = F(1)
      VDOT = F(2)
      WDOT = F(3)
      PDOT = F(4)
QDOT = F(5)
      RDOT = F(6)
      XDOT = F(7)
      YDOT = F(8)
      ZDOT = F(9)
      PHIDOT = F(10)
      THETAD = F(11)
      PSIDOT = F(12)
¥
      U = INTGRL (U0,UDOT)
×
      X(1) = 0
      V = INTGRL(0.0, VDOT)
      X(2) = V
¥
      W = INTGRL(0.0,WDOT)
      X(3) = W
¥
      P = INTGRL(0.0, PDOT)
      X(4) = P
¥
      Q = INTGRL(0.0, QDOT)
      X(5) = Q
¥
      R = INTGRL(0.0, RDOT)
      X(6) = R
¥
      XPOS = INTGRL(0.0,XDOT)
¥
      X(7) = XPOS
      YPOS = INTGRL(0.0, YDOT)
      X(8) = YPOS
Z = INTGRL(0.0,ZDOT)
X(9) = ZPOS
¥
¥
      PHI = INTGRL(0.0, PHIDOT)
      X(10) = PHI
¥
      THETA = INTGRL(0.0, THETAD)
      X(11) =
               THETA
¥
      PSI = INTGRL(0.0, PSIDOT)
¥
      X(12) = PSI
¥
      PHIANG = PHI/0.0174532925
      THEANG = THETA/0.0174532925
      PSIANG = PSI/0.0174532925
      ZPOS=-Z
¥
      DEPTH=ZPOS
      PITCH=THEANG
      BOWANG=(DB/.01745)
STNANG=(DS/.01745)
      INTGRD = (UXU+VXV+WXW+PXP+QXQ+RXR+XPOSXXFOS+(YPOS-YORD)X...
                (YPOS-YORD)+(Z-ORDDEP)*(Z-ORDDEP)+PHI*PHI+.
                 THETA*THETA+PSI*PSI) + (DS*DS+DB*DB)+(DR*DR)
       OBJ1 = INTGRL(0.,(0.5)*INTGRD)
      OBJ = OBJ1
```

```
¥
DYNAMIC
       RN=TIME/(FINTIM/10.-DELT/10000.)
       PN=TIME/(FINTIM/20.-DELT/10000.)
       O=INT(RN)+1
       PP=INT(PN)+1
       IF(0.GE.10) 0=10
       IF(PP.GE.20) PP=20
¥
* ADDITIONALLY THE PLANES SHOULD BE AT EQUILIBRIUM SO THE
* VEHICLE WILL PROCEED AT THIS NEW DEPTH WITHIN SOME TOLERANCE
¥
       DS=DX(0)
       DB=DX(10+0)
       IF(0.GE.10) DS=0.
       IF(0.GE.10) DB=0.
       DR=DX(20+PP)
       RPM=DX(30+0)
¥
¥
¥
            CONSTRAINTS FOR A DIVE
¥
¥
   ORDERED DEPTH = ORDDEP
       GW(1) = (Z - ORDDEP) \times .5
       GW(2) = (ORDDEP-Z) \times .5
   AUV'S FINAL STATE MUST BE LEVEL FLIGHT AS FOLLOWS
GW(3) = THETA
¥
       GW(4) = -THETA
       GW(5) = (YPOS - YORD)/.4
       GW(6)= (YORD-YPOS)/.4
       GW(7)=PSI
       GW(8)=-PSI
       GW(9)=PHI
       GW(10) = -PHI
       GW(11)=ZPOS
¥
¥
    AVOIDING THE OBSTACLE
×
       DIST1=SQRT((XPOS-XOBS1)*(XPOS-XOBS1)+(ZPOS-ZOBS1)*(ZPOS-ZOBS1))
¥
¥
       IF (DIST1.LT.DSAVE1) DSAVE1=DIST1
¥
       GW(6) = (1.-DSAVE1)
       NDX=XPOS/17.425
       NDZ=ZPOS/17.425
       NDT=TIME¥6./17.425
TERMINAL
       IF(INFO.EQ.0) THEN
* PRINT*, DSAVE1
*9999 FORMAT(1X, E15.4)
 9000 CONTINUE
       ELSE
       ENDIF
       IF(INFO.EQ.0) CALL ENDJOB
       CALL RERUN
¥
END
STOP
```

```
TITLE LINEAR AUV MODEL / STERN PLANE AND BOW PLANE SEPARATED TITLE WITH COMMANDS TO NONLINEAR MODEL
X (1) UPDATED:05/30/88
X (3) RIGHT OBJ EQUATION
* (4) ADS CONSTRAINTS ON DEPTH AND PITCH
* (5) OBSTACLE FURTHER DOWN THE TRAJECTORY AND ABOVE IT
* (6) CORRECT OBSTACLE AVOIDANCE ROUTINE ADDED
FIXED ISTRAT, IOPT, IONED, IPRINT, INFO, IGRAD, NDV, NCON
FIXED IDG, NGT, IC, NRA, NCOLA, NRWK, IWK, NRIWK, O, H,D,C,PP
D DIMENSION AW(42,42)
ARRAY
      WK(4000),
                 IWK(1000)
ARRAY DX(40), VLB(40), VUB(40), GN(07), DF(41), IDG(07), IC(07)
PARAM NRA=42, NCOLA=42, NRWK=4000, NRIWK=1000
PARAM IGRAD=0, INF0=0, NDV=40, NCON=07, NGT=07
      DX(1-2)=2*.0, DX(3-21)=19*0., IDG(1-6)=6*-1
TABLE
      DX(22-40)=19*0.
TABLE
TABLE IDG(7-0)=1×1
TABLE VLB(1-9)=9x-.17452, VLB(11-19)=9x-.2443,VLB(10)=0.,VLB(20)=0.
TABLE VUB(1-9)=9x.17452, VUB(11-19)=9x.2443,VUB(10)=0.,VUB(20)=0.
      VLB(21-39)=19*-.523627,VUB(21-39)=19*.523627,VUB(40-41)=2*0.
TABLE
TABLE
      VLB(40-41)=2×0.
PARAM ISTRAT=3, IOPT=1, IONED=1, IPRINT=0000
       H=0, OBS1=0.,YZONE=0.
INCON
METHOD RECT
CONTROL FINTIM=21., DELT=.1
PRINT XPOS,YPOS,ZPOS,XPOSM,YPOSM,ZPOSM
*RINT DS,DSM,DBPM,DBP,PITCHM,PITCH,XPOSM,YPOSM,XPOS,YPOS,ZPOSM,ZPOS,NDT
XRINT YPOSM, YPOS
*RINT THETAD, W, DEPTH, PITCH, XPOS, DEPTH, NDX, NDZ, NDT
      THETA, W, Z, DEPTH, PITCH, DS, DB, BOWANG, STNANG
XAVE
*RAPH(DE=TEK618) TIME,DS
*RAPH(DE=TEK618) TIME, DEPTH
*RAPH(DE=TEK618) TIME,WDOT
*RAPH(DE=TEK618) TIME,W
*RAPH(DE=TEK618) TIME, THETDD
%RAPH(DE=TEK618) TIME,THETAD
*RAPH(DE=TEK618) TIME,THETA
*RAPH(DE=TEK618) TIME,PITCH
*RAPH(DE=TEK618) TIME, BOWANG
*RAPH(DE=TEK618) TIME,STNANG
LINEAR MODEL/NON-LINEAR MODEL
        COMMON/BLOCK1/ MMINV(6,6), MM(6,6), AA(12,12),
D
                                                           BB(6,6)
D
        COMMON/BLOCK2/ B(6,6),A(12,12), UMOD(6),GKK(6,21)
        COMMON/BLOCK3/ F(12), FP(6), UCF(4)
D
        COMMON/BLOCK4/ G4(4), GK4(4), BR(4), HH(4)
D
        COMMON/BLOCK5/ XDOT(12), XDOTX(12), XDOTU(6)
D
FIXED
       N, IA, IDGT, IER, LAST, J, K, M, JJ, KK, I
INTEGER
ARRAY
      WKAREA(54), X(12)
×
¥
```

FILE: TX

DSL

Δ1

CONST							
× ×	LONGITUDINAL	HYDRODYNAMIC CON	EFFICIENTS				
ĈONST	XPP = XUDOT= XQDS= XWW = XDSDS= XWDSN=	, XQQ = , XWQ = , XQDB= , XVDR= , XDBDB= , XDSDSN=	,XRR = ,XVP = ,XRDR= ,XWDS= ,XDRDR=	, XPR = , XVR = , XVV = , XWDB= , XQDSN=	9 • • • • 9 • • • 9 • • • 9 • • •		
* * *	LATERAL HYDRO	DYNAMIC COEFFIC	ENTS				
CONST	YPDOT= YVDOT= YWP = YDR =	,YRDOT= ,YP = ,YWR = ,CDY =	,YPQ = ,YR = ,YV =	,YQR = ,YVQ = ,YVW =	, , ,		
* *	NORMAL HYDROD	YNAMIC COEFFICI	ENTS				
ČONST	ZQDOT= ZHDOT= ZH = ZQN =	,ZPP = ,ZQ = ,ZVV = ,ZWN =	,ZPR = ,ZVP = ,ZDS = ,ZDSN=	,ZRR = ,ZVR = ,ZDB = ,CDZ =	9 • • • 9 • • • 9 • • •		
× ×	ROLL HYDRODYN	AMIC COEFFITIEN	rs				
ĈONST	КРДОТ= КVДОТ= КWР = КРN =	, KRDOT= , KP = , KWR = , KDB =	,KPQ = ,KR = ,KV =	,KQR = ,KVQ= ,KVW =	9 • • • 9 • • • 9 • • •		
* *	PITCH HYDRODYNAMIC COEFFICIENTS						
* CONST	MQDOT= MWDOT= MW = MQN =	, MPP = , MQ = , MVV = , MWN =	,MPR = ,MVP = ,MDS = ,MDSN =	,MRR = ,MVR = ,MDB =	9 • • • 9 • • • 9 • • •		
× ×	YAW HYDRODYNAMIC COEFFICIENTS						
ĈONST	NPDOT= NVDOT= NWP = NDR =	, NRDOT= , NP = , NWR =	,NPQ = ,NR = ,NV =	,NQR = ,NVQ = ,NVW =	9 • • • 9 • • • 9 • • •		
* * *	MASS CHARACTERISTICS OF THE FLOODED MARK IX VEHICLE						
CONST *	WEIGHT = YG = IX = IYZ = L = A0 = DEGRUD= 0.0	, BOY = , ZG = , IY = , IXY = , RHO = ,KPROP = ,DEGSTN= 0.0	,VOL = ,XB = ,IZ = ,YB = ,G = ,NPROP =	,XG = ,ZB = ,IXZ = ,NU = ,X1TEST=	9 0 0 0 9 0 0		
* CONST CONST	XOBS1=36.0 ZOBS1= -12.0)					

```
¥
      INPUT INITIAL CONDITIONS HERE IF REQUIRED
¥
INITIAL
¥
¥
      DSAVE1=SQRT((XPOSM-XOBS1)*(XPOSM-XOBS1)+...
×
             (ZPOSM-ZOBS1)*(ZPOSM-ZOBS1))
      DSAVEV=DSAVE1
¥
¥
      INITIALIZE ALL MATRICES AND ARRAYS TO ZERO
NOSORT
      ORDDEP=20.0
      YORD=40.0
      D = 0
      H=H+1
      IF (H.EQ.1) THEN
N = 6
DO 2 J = 1,N
          JJ = J + N
DO 1 K = 1, N
          KK = K + N
          KKK= KK + N
          MMINV(J,K) = 0.0
          X(J) = 0.0
          X(JJ) = 0.0
          XDOT(J) = 0.0
          XDOT(JJ) = 0.0
          XDOTX(J) = 0.0
          XDOTX(JJ) = 0.0
          XDOTU(J) = 0.0
          UMOD(J) = 0.0
¥
          MM(J,K) = 0.0
          BB(J,K) = 0.0
          B(J,K) = 0.0
          AA(J,K) = 0.0
          AA(JJ,KK) = 0.0
          AA(J,KK) = 0.0
          AA(JJ,K) = 0.0
          A(J,KK) = 0.0
A(JJ,K) = 0.0
          A(J,K) = 0.0
          A(JJ,KK) = 0.0
          GKK(J,K) = 0.0
          GKK(J,KK)=0.0
          GKK(J,KKK)=0.0
          CONTINUE
1
2
       CONTINUE
¥
       INPUT THE LINEARIZATION POINT PARAMETERS
¥
¥
       UO =6.0
       V0 = 0.0
      140 = 0.0
       P0 = 0.0
       Q0 = 0.0
       R0 = 0.0
       PHI0 = 0.0
       THETAO = 0.0
       PSI0 = 0.0
       SUM = 0.0
       JFLAG = 0
       IFLAG = 0
       KFLAG = 0
```

¥

1

INPUT THE MODEL STATES INITIAL CONDITIONS × ¥ UM = 6.0VM = 0.0WM = 0.0PM = 0.0QM = 0.0RM = 0.0XPOSM = 0.0YPOSM = 0.0ZPOSM = 0.0PHIM = 0.0THETAM = 0.0PSIM = 0.0= 6.0 U V = 0.0 = 0.0 М = 0.0 Ρ = 0.0 Q = 0.0 Ŕ = 0.0 = 0.0 XPOS YPOS ZPOS = 0.0PHI = 0.0THETA = 0.0PSI = 0.0¥ × ¥ INPUT THE VEHICLE INITIAL CONDITIONS ¥ × × INITIALIZE THE CONTROLS × DELBOY= 0.0 DBOY=0. DS= 0.0 DSM=0.0 × ¥ DBM=0.0 DB=0.0DR= 0.0 DRM=0.0 DRPM=0.0 RPM = 500.0LATYAW = 0.0NORPIT = 0.0 ¥ ¥ MASS = WEIGHT/G ¥ DIVAMP = DEGSTN*0.0174532925 RUDAMP = DEGRUD*0.0174532925 ¥ ¥ DEFINE LENGTH FRACTIONS FOR GAUSS QUADUTURE TERMS × G4(1) = 0.069431844G4(2) = 0.330009478G4(3) = 0.669990521G4(4) = 0.930568155× × DEFINE WEIGHT FRACTIONS FOR GAUSS QUADUTURE TERMS × GK4(1) = 0.1739274225687 GK4(2) = 0.3260725774312 GK4(3) = 0.3260725774312 GK4(3) = 0.3260725774312 GK4(4) = 0.1739274225687 ¥

-

79

× DEFINE THE BREADTH BB AND HEIGHT HH TERMS FOR THE INTEGRATION × BR(1) = 75.7/12 BR(2) = 75.7/12 BR(3) = 75.7/12 BR(4) = 55.08/12 ¥ HH(1) = 16.38/12HH(2) = 31.85/12 HH(3) = 31.85/12 HH(4) = 23.76/12 ¥ × THE LINEAR PROPULSION MODEL × ¥ × ETA = 0.012*RPM/U0 ETA = 1.0RE = UOXL/NU = .00385 + (1.296E-17)*(RE - 1.2E7)**2
= 0.008*L**2*ETA*ABS(ETA)/(A0) CD0 =CT CT1 = 0.008*L**2/(A0) EPS = -1.0+(SQRT(CT+1.0)-1.0)/(SQRT(CT1+1.0)-1.0) $XPROP = CD0 \times (ETA \times ABS(ETA) - 1.0)$ × CALCULATE THE MASS MATRIX ¥ ¥ MM(1,1) = MASS -((RH0/2)*(L**3)*XUDOT) $MM(1,5) = MASS \times ZG$ $MM(1,6) = -MASS \times YG$ $MM(2,2) = MASS - ((RH0/2) \times (L \times 3) \times YVDOT)$ MM(2,4) = -MASS*ZG -((RH0/2)*(L**4)*YPDOT) MM(2,6) = MASS*XG - ((RH0/2)*(L**4)*YRDOT) MM(3,3) = MASS - ((RH0/2)*(L**3)*ZWDOT) $MM(3,4) = MASS \times YG$ $MM(3,5) = -MASS \times XG - ((RH0/2) \times (L \times 4) \times ZQDOT)$ MM(4,2) = -MASS*ZG - ((RH0/2)*(L**4)*KVDOT) $MM(4,3) = MASS \times YG$ MM(4,4) = IX - ((RH0/2)*(L**5)*KPDOT) MM(4,5) = -IXYMM(4,6) = -IXZ -((RH0/2)*(L**5)*KRD0T) $MM(5,1) = MASS \times ZG$ MM(5,3) = -MASS*XG -((RH0/2)*(L**4)*MWD0T) MM(5,4) = -IXYMM(5,5) = IY -((RH0/2)*(L**5)*MQDOT) MM(5,6) = -IYZ $MM(6,1) = -MASS \times YG$ MM(6,2) = MASS*XG -((RH0/2)*(L**4)*NVDOT) MM(6,4) = -IXZ - ((RH0/2)*(L**5)*NPDOT)MM(6,5) = -IYZMM(6,6) = IZ - ((RH0/2)*(L**5)*NRDOT)¥ ¥ $LAST = N \times N + 3 \times N$ DO 20 M = 1,LAST WKAREA(M) = 0.020 CONTINUE ¥ IER = 0IA = 6IDGT = 4 \mathbf{Y}

¥	CALL LINV2F(MM, N, IA, MMINV, IDGT, WKAREA LED)
* * *	CALCULATE THE A MATRIX FOR THE LINEAR MODEL
	A(1,1) = RHO/2*L**3*(XQDS*DS*Q0+XQDB/2*DBP*Q0+XRDR*R0*DR)+ RHO/2*L**2*(XVDR*V0*DR+XWDS*DS*W0+XWDB/2*DBP*W0 + 2*U0*(XDSDS*DS**2 + XDBDB/2*DBP**2 + XDBDB/2*DBP**2
	XHU/2*L**3*XQDSN*Q0*DS*EPS+RHO/2*L**2*(XWDSN*W0*DS+ 2*XDSDSN*U0*DS**2)*EPS+RHO*L**2*U0*XPROP+RHO/2*L**3* XQDB/2*DBS*Q0+RHO/2*L**2*XWDB/2*DBS*W0+RHO*L**2*U0* XDBDB/2*DBS**2
	A(1,2) = MASS*R0+RH0/2*L**3*(XVP*P0+ XVR*R0) + RH0/2*L**2* (2*XVV*V0 + XVDR*U0*DR) A(1,3) = -MASS*Q0 + RH0/2*L**3*(XWQ*Q0)+RH0/2*L**2*(2*XWW*W0) XWDS*DS*U0+(XWDR*C2*D*P2*C*XWW*W0)
	A(1,4) = -MASSXYGXQ0-MASSXZGXR0+ RH0/2XLXXAVDSNXU0XDSXEPS) + RH0/2XLXX3X(XVPXV0) A(1,5) = -MASSXW0+2XMASSXXGXQ0 -MASSXYGXP0+RH0/2XLXX(X2XVP2V00) + RH0/2XLXXXGXQ0 -MASSXYGXP0+RH0/2XLXX(X2XVP00)
	A(1,6) = MASS*V0+2*MASS*XG*R0-MASS*ZG*P0+RH0/2*L**3*XQDB/2*DBS*U0)+RH0/2* A(1,6) = MASS*V0+2*MASS*XG*R0-MASS*ZG*P0+RH0/2*L**3*XQDB/2*DBS*U0 + XPR*P0) + RH0/2*L**3*(XVR*V0 + XRDF*U0*P2)
E	A(2,1) = -MASS*R0+RH0/2*L**3*(YP*P0+YR*R0)+RH0/2*L**2*(YV*V0+) $A(2,2) = PH0(2*L**2*(YV*V0+))$
	A(2,5) = MASS*P0+ RHO/2*L**3*(YWP*P0+YWR*R0)+RHO/2*L**2*(YW*W0) A(2,4) = MASS*W0-MASS*XG*Q0+2*MASS*YG*P0+RHO/2*L**2*YVW*V0 RHO/2*L**3*(YP*U0+ YWP*W0)
	A(2,6) = -MASS*XG*P0-MASS*ZG*R0+RH0/2*L**4*(YPQ*P0+YQR*R0) + A(2,6) = -MASS*U0+2*MASS*YG*R0-MASS*ZG*Q0+RH0/2*L**4*YQR*Q0 +
	A(2,10) = (WEIGHT - BOY) *COS(THETA0) *COS(PHI0) A(2,11) = -(WEIGHT - BOY) *SIN(THETA0) *SIN(PHI0) A(3,1) = MASS*00+RH0(2*1) * XXX700000
	+2*U0*ZDB/2*DBP+(ZWN*W0+2*ZDSN*U0*DS)*EPS)+RH0/2*L**3* A(3,2) = -MASS*P0+RH0/2*L**2*2*U0*ZDB/2*DBS A(3,3) = RH0/2*L**2*(ZWP*P0+ZVR*R0)+RH0/2*L**2*0*2*D*
	A(3,4) = -MASS*V0-MASS*XG*R0+2*MASS*ZG*P0+ RH0/2*L**2*2VV*V0 $P0 + ZPR*R0) + RH0/2*L**3*ZVP*V0$ $A(3,5) = MASS*U0 - MASS*YG*R0+2*MASS*ZG*00+PH0/2*L**3*ZVP*V0$
	A(3,6) =-MASS*XG*P0-MASS*YG*Q0+RH0/2*L**4*(ZPR*P0+2*ZRR*R0)+

-

¥

ł

FILE:	ТХ	DSL	Al
	A(3,10)= A(3,11)=	RHO∕2×L× -(WEIGHT -(WEIGHT	*3*ZVR*V0 - BOY)*COS(THETA0)*SIN(PHI0) - BOY)*SIN(THETA0)*COS(PHI0)
×	A(4,1) =	MASSXYG	(Q0 + MASS*ZG*R0 + RH0/2*L**4*(KP*P0 + RH0/2*L**3*(KV*V0+2*U0*(KDB/2*DBP-KDB/2*DBS))+ (*3*U0*KPR0P+ RH0/2*L**4*KPN*P0*EPS
	A(4,2) =	= -MASSXY(+ KVUXW)	3×P0 + RH0/2×L××4×KVQ×Q0 + RHU/2×L××2×(KV×60+++
	A(4,3) =	= -MASS*Z	GXP0 + RH0/2×L××4×(KWP×P0 + KWR×K0) + x×3×KVW×V0
	A(4,4) :	= -IXY*R0 RH0/2*L	+ IXZ*Q0 - MASS*YG*V0 - MASS*20+KWP*W0) **5*KPQ*Q0 + RH0/2*L**4*(KP*U0+KWP*W0)
	A(4,5)	= -IZ*R0 RH0/2*L	+ IY*R0 + 2*IY2*Q0 + IA2*L**4*KVQ*V0 **5*(KPQ*P0 + KQR*R0) + RH0/2*L**4*KVQ*V0 2*IY2*P0 + MASS*ZG*U0 +
	A(4,6)	= -IZXQ0 RHO/2XL	+ 1Y*Q0 - 2*172*K0 + RH0/2*L**4*(KR*U0+KWR*W0) **5*KQR*Q0 + RH0/2*L**4*(KR*U0+KWR*W0) *out-VR*B0Y)*COS(THETA0)*SIN(PHI0)
	A(4,10)	= -(YGXWE -(ZGXWE	IGHT-ZB*BOY)*COS(THETAO)*COS(PHIO) IGHT-ZB*BOY)*COS(THETAO)*COS(PHIO) IGHT-YB*BOY)*SIN(THETAO)*COS(PHIO)
	A(4,11)	+ (ZGXWE	IGHT-ZB*BOY)*SIN(THETAO)*SIN(PHIO)
×	A(5,1)	= -MASS*> RHO/2×L EPS + F	(G*Q0 + RH0/2*L**4*MQ*Q0 + RH0/2*L**3*HMAN0*Q0* **3*U0*(MDS*DS+MDB/2*DBP) + RH0/2*L**4*MQN*Q0* RH0/2*L**3*(MWN*W0 + 2*MDSN*U0*DS)*EPS+
	A(5,2)	= MASSXX	3×P0 + MASS*ZG*R0 + RH0/2*L**4*(MVP*P0 + G*P0 + MASS*ZG*R0 + RH0/2*L**4*(MVP*P0 +
	A(5,3) A(5,4)	= -MASSX = -IXXR0 RH0/2X	G*Q0 + RH0/2*L**3*MW*U0 + RH0/2*L**3*MMN*00*L*3 + IZ*R0 - IYZ*Q0 - 2*IXZ*P0 + MASS*XG*V0 + + IZ*R0 - IYZ*Q0 MPR*R0) + RH0/2*L**4*MVP*V0 L**5*(2*MPP*P0 + MPR*R0) + RH0/2*L**4*MVP*V0
	A(5,5)	= IXY*R0 L**4*M	$-IYZ \times PO = MASS \times XG \times 00 + MASS \times 2000 + 000 \times 2000 + 0000 \times 2000 + 0000 \times 2000 + 0000 \times 2000 + 0000 \times 2000 \times 20000 \times 200000 \times 200000 \times 200000 \times 200000 \times 200000 \times 200000000$
	A(5,6)	= -IX*P0 RH0/2*	+ IZ*P0 + IXT*Q0 + Z/1/2/2*L*X4*MVR*V0 L*X5*(MPR*P0+2*MRR*R0)+RH0/2*L*X4*MVR*V0
	A(5,10 A(5,11)= (XG*WE)= (XG*WE (ZG*WE	IGHT-XB*BOT)*COS(THETAO)*COS(PHIO) IGHT-XB*BOY)*SIN(THETAO)*COS(PHIO) IGHT-ZB*BOY)*COS(THETAO)
×	A(6,1)	= -MASS	<pre>(XG*R0 + RH0/2*L**4*(NP*P0 +NR*R0) + RH0/2* (NV*V0+2*NDR*U0*DR)+RH0*L**3*U0*NPR0P (NV*V0+2*L**4*NV0*Q0 + RH0/2*L**3*(NV*U0+)</pre>
	A(6,2)	I = -MASS NVWXW	YGXRU + RHU/2XLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	A(6,3)) = MASS*2 RHO/2	XG*PU + MASSATOXQU *L*X3*NVW*V0 + TY*00 + 2*TXY*P0 +IYZ*R0 + MASS*XG*W0+
	A(6,4)	$P = -11 \times Q$ RH0/2	XLXX5XNPQXQ0 + RH0/2XLXX4X(NPXU0+NMPXM0) XLXX5XNPQXQ0 - IXZXR0 + MASXYGXM0+
	A(6,5	$r = -11 \times r$ RH0/2 $r = TY7 \times P$	XLXX5X(NPQXP0+NQRXR0) + RH0/2XLXX4XNVQX0 XLXX5X(NPQXP0+NQRXR0) - MASSXYGXV0 + -IXZXQ0 - MASSXXGXU0 - MASSXYGXV0 +
	A(6,6 A(6,1 A(6,1	RHO/2 0)= (XG×W 1)= -(XG× (YG×W	*L**5*NQR*Q0 + RH0/2*L**4*(NR*00 +NRR*00) EIGHT-XB*BOY)*COS(THETA0)*COS(PHIO) WEIGHT-XB*BOY)*SIN(THETA0)*SIN(PHIO) + WEIGHT-YB*BOY)*COS(THETA0)

*	A(7,1) = COS(PSI0)*COS(THETAO) A(7,2) = COS(PSI0)*SIN(THETAO)*SIN(PHIO) - SIN(PSI0)*COS(PHIO) A(7,3) = COS(PSI0)*SIN(THETAO)*COS(PHIO) + SIN(PSI0)*SIN(PHIO) A(7,10) = V0*COS(PSI0)*SIN(THETAO)*COS(PHIO) + V0*SIN(PSI0)* SIN(PHIO) - W0*COS(PSI0)*SIN(THETAO)*SIN(PHIO) + W0*SIN(PSI0)*COS(PHIO) + V0*COS(PSI0)*SIN(PHIO) + W0*SIN(PSI0)*COS(PHIO) + V0*COS(PSI0)*COS(THETAO)*
¥	A(7,11)= -U0*CUS(PSIU)*SIN(THETAU) + V0*CUS(PSIU)*CUS(THETAU)* SIN(PHIO) + W0*COS(PSIO)*COS(THETAO)*COS(PHIO) A(7,12)= -U0*SIN(PSIO)*COS(THETAO) - V0*SIN(PSIO)*SIN(THETAO)* SIN(PHIO) - V0*COS(PSIO)*COS(PHIO) - W0*SIN(PSIO)* SIN(THETAO)*SIN(PHIO) + W0*COS(PSIO)*SIN(PHIO)
~	A(8,1) = SIN(PSIO)*COS(THETAO) A(8,2) = SIN(PSIO)*SIN(THETAO)*SIN(PHIO) + COS(PSIO)*COS(PHIO) A(8,3) = SIN(PSIO)*SIN(THETAO)*COS(PHIO) - COS(PSIO)*SIN(PHIO) A(8,10) = VO*SIN(PSIO)*SIN(THETAO)*COS(PHIO) - VO*COS(PSIO)* SIN(PHIO) - WO*SIN(PSIO)*SIN(THETAO)*SIN(PHIO)
×	<pre>W0*COS(PSI0)*COS(PHI0) A(8,11)= -U0*SIN(PSI0)*SIN(THETA0) + V0*SIN(PSI0)*COS(THETA0)* SIN(PHI0) + W0*SIN(PSI0)*COS(THETA0)*COS(PHI0) A(8,12)= U0*COS(PSI0)*COS(THETA0) + V0*COS(PSI0)*SIN(THETA0)* SIN(PHI0) - V0*SIN(PSI0)*COS(PHI0) + W0*COS(PSI0)* SIN(THETA0)*COS(PHI0) + W0*SIN(PSI0)*SIN(PHI0)</pre>
*	A(9,1) = -SIN(THETAO) A(9,2) = COS(THETAO)*SIN(PHIO) A(9,3) = COS(THETAO)*COS(PHIO) A(9,10)= V0*COS(THETAO)*COS(PHIO)-W0*COS(THETAO)*SIN(PHIO) A(9,11)= -U0*COS(THETAO)-V0*SIN(THETAO)*SIN(PHIO) W0*SIN(THETAO)*COS(PHIO)
×	A(10,4) = 1.0 A(10,5) = SIN(PHI0)*TAN(THETA0) A(10,6) = COS(PHI0)*TAN(THETA0) A(10,10) = Q0*COS(PHI0)*TAN(THETA0) - R0*SIN(PHI0)*TAN(THETA0) A(10,11) = Q0*SIN(PHI0)/COS(THETA0)*1.0/COS(THETA0) + R0*COS(PHI0)/COS(THETA0)*1.0/COS(THETA0)
×	A(11,5) = COS(PHI0) A(11,6) = -SIN(PHI0) A(11,10) = -QO*SIN(PHI0) - RO*COS(PHI0)
×	A(12,5) = SIN(PHI0)/COS(THETA0) A(12,6) = COS(PHI0)/COS(THETA0) A(12,10)= Q0*COS(PHI0)/COS(THETA0)-R0*SIN(PHI0)/COS(THETA0) A(12,11)= Q0*SIN(PHI0)/COS(THETA0)*TAN(THETA0) + R0*COS(PHI0)/COS(THETA0)*TAN(THETA0)
× × ×	WRITE(10,200)((A(I,J),J=1,12),I=1,12)

×	CALCULATE	THE B MATRIX
~	B(1,1) =	RHO/2*L**3*XRDR*U0*R0+RHO/2*L**2*(XRDR*U0*V0+U0**2* 2*XDRDR*DR)
	B(1,2) = B(1,3) = B(1,4) =	U0×Q0×XQDB/2 + U0×W0×XWDB/2 + U0××2×XDBDB*DBS U0×Q0×XQDB/2 + U0×W0×XWDB/2 + U0××2×XDBDB*DBP U0×Q0×XQDS + U0×W0×XWDS +U0××2×2×XDSDS*DS+RH0/2×L**3* XQDSN×U0×Q0×EPS + RH0/2×L*×2*(XWDSN×U0×W0 + 2×XDSDSN* U0××2×DS)×EPS
v	B(1,5) = B(1,6) =	RHO/2*L**2*0.12*CDO*0.12*RPM SIN(THETA0)
×	B(2,1) = B(2,6) =	RHO/2*L**2*YDR*U0**2 ~COS(THETA0)*SIN(PHI0)
×	B(3,2) = B(3,3) = B(3,4) = B(3,6) =	U0**2*ZDB/2*RH0/2*L**2 U0**2*ZDB/2*RH0/2*L**2 U0**2*ZDS*RH0/2*L**2 + RH0/2*L**2*ZDSN*U0**2*EPS ~COS(THETA0)*COS(PHI0)
×	B(4,2) =- B(4,3) = B(4,6) =	-RHO/2*L**3*U0**2*KDB/2 RHO/2*L**3*U0**2*KDB/2 -YB*COS(THETA0)*COS(PHIO) + ZB*COS(THETA0)*SIN(PHIO)
×	B(5,2) = B(5,3) = B(5,4) = B(5,6) =	RHO/2*L**3*U0**2*MDB/2 RHO/2*L**3*U0**2*MDB/2 RHO/2*L**3*(U0**2*MDS+MDSN*U0**2*EPS) XB*COS(THETA0)*COS(PHI0) + ZB*SIN(THETA0)
~	B(6,1) = B(6,6) =	RHO/2×L*×3×NDR×U0××2 -XB×COS(THETA0)×SIN(PHIO) - YB×SIN(THETAO)
* * *	FORMULATE	THE A AND B MATRIX FOR STATE SPACE REPRESENTATION
×	MULTIPLY I	MMINV AND DF/DX
X	DO 80 I DO 70	= 1,6 J = 1,6

-

9

84

I

FILE: TX DSL A1 SUM = 0.0DO 60 K = 1,6SUM = SUM + MMINV(I,K)*A(K,J) 60 CONTINUE AA(I,J) = SUM CONTINUE 70 03 CONTINUE × ¥ MULTIPLY MMINV AND DF/DZ × ¥ ¥ DO 50 I = 1,6 $D0 \ 40 \ J = 7,12$ SUM = 0.0DO 30 K = 1,6 SUM = SUM + MMINV(I,K)*A(K,J) 30 CONTINUE AA(I,J) = SUM40 CONTINUE 50 CONTINUE ¥ ¥ DO 5 I = 7, 12DO 6 J = 1, 12AA(I,J) = A(I,J)CONTINUE 6 5 CONTINUE ¥ ¥ WRITE(10,200)((AA(I,J),J=1,12),I=1,12) 200 FORMAT(6E12.4) ¥ × ¥ MULTIPLY MMINV AND DF/DU ¥ × DO 110 I = 1,6 $DO \ 100 \ J = 1,6$ SUM = 0.0 DO 90 K = 1,6 SUM = SUM + MMINV(I,K)*B(K,J) 90 CONTINUE BB(I,J) = SUMCONTINUE 100 110 CONTINUE ¥ ¥ WRITE(9,300)((BB(I,J),J=1,6),I=1,6) 300 FORMAT(6E12.4) ¥ ¥ $D0 \ 405 \ I = 1,6$ READ (2,401)(GKK(I,J), J=1,21) WRITE(3,401)(GKK(I,J), J=1,21) 405 401 FORMAT(3E20.10) ¥

1

```
×
      ELSE
      END IF
×
      CALL DADS(INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV, NCON, DX, ...
               VLB, VUB, OBJ, GW, IDG, NGT, IC, DF, AW, NRA, NCOLA, WK, NRWK, ...
               IWK, NRIWK)
      IF (INFO.EQ. 0) DELPRT=0.2
¥
DERIVATIVE
NOSORT
¥
¥
      LATYAN = 0.0
     NORPIT = 0.0
¥
¥
×
×
     CALCULATE BB*U PART OF XDOT = AA*X + BB*U
×
      DO \ 10 \ J = 1,6
         SUM = 0.0
         DO 15 K = 1,6
            SUM = SUM + BB(J,K)*UMOD(K)
15
         CONTINUE
         XDOTU(J) = SUM
      CONTINUE
10
   CALCULATE AA*X
¥
      DO 21 J= 1,12
         SUM = 0.0
         DO 25 K = 1,12
            SUM = SUM + AA(J,K)*X(K)
25
         CONTINUE
         XDOTX(J) = SUM
21
      CONTINUE
¥
   CALCULATE XDOT = AA*X + BB*U
      DO 31 J = 1,6
         XDOT(J) = XDOTX(J) + XDOTU(J)
31
      CONTINUE
      D0 35 J = 7,12
XDOT(J) = XDOTX(J)
35
      CONTINUE
¥
      UDOTM = XDOT(1)
      VDOTM = XDOT(2)
      WDOTM = XDOT(3)
      PDOTM = XDOT(4)
      QDOTM = XDOT(5)
      RDOTM = XDOT(6)
      XDOTM = XDOT(7)
      YDOTM = XDOT(8)
      ZDOTM = XDOT(9)
      PHMDOT = XDOT(10)
      THETMD= XDOT(11)
      PSMDOT= XDOT(12)
      WRITE(8,600)
¥
¥
    INTEGRATE XDOT TO GET THE STATE VECTOR X
```

¥

```
UM =INTGRL(6.0, UDOTM)
VM= INTGRL(0.0, VDOTM)
WM= INTGRL(0.0, WDOTM)
PM= INTGRL(0.0, PDOTM)
QM= INTGRL(0.0, QDOTM)
RM= INTGRL(0.0, RDOTM)
XPOSM = INTGRL(0.0, XDOTM)
YPOSM = INTGRL(0.0, YDOTM)
ZPOSM = INTGRL(0.0, ZDOTM)
PHIM = INTGRL(0.0, PHMDOT)
THETAM = INTGRL(0.0, THETMD)
INTGRD = (UM*UM+VM*VM+WM*WM+PM*PM+QM*QM+RM*RM+...
          XPOSM*XPOSM+(YPOSM-YORD)*(YPOSM-YORD)+..
          (ZPOSM-ORDDEP)*(ZPOSM-ORDDEP)+ PHIM*PHIM+.
          THETAM*THETAM+PSIM*PSIM) + (DSM*DSM+DBSM*DBSM)+...
          (DBPM*DBPM)+(DRM*DRM)
OBJ1 = INTGRL(0.,(0.5)×INTGRD)
OBJ = OBJ1
PSIM = INTGRL(0.0, PSMDOT)
X(1) = UM
X(2) = VM
X(3) = WM
X(4) =
        PM
X(5) =
       QM
X(6) = RM
X(7) = XPOSM
X(8) = YPOSM
X(9) = ZPOSM
X(10) = PHIM
X(11) = THETAM
X(12) = PSIM
ZDEPTH = ZORD - X(9)
THMANG = \chi(11) \times 57.3
UMOD(1)=DRM
UMOD(2) = DBSM
UMOD(3) = DBPM
UMOD(4) = DSM
UMOD(5) = DRPM
UMOD(6) = DBOY
PHANG=PHIM/0.0174532925
THMANG=THETAM/0.0174532925
PSMANG= PSIM/ 0.0174532925
PITCHM=THMANG
```

××

¥ ¥

¥

* ******	*CONTROL LAW***********************************
× X	DBS = UMOD(2)
	DS = UMOD(4) DR = UMOD(1)
¥ ¥ ¥	DBS = -(GKK(2,1)*U + GKK(2,2)*V + GKK(2,3)*W + GKK(2,4)*P + GKK(2,5)*Q + GKK(2,6)*R + GKK(2,7)*XPOS + GKK(2,8)*YPOS + GKK(2,9)*ZPOS + GKK(2,10)*PHI + GKK(2,11)*THETA +
* * *	<pre>GKK(2,12)*PS1 + GKK(2,15)*WM + GKK(2,14)*QM + GKK(2,15)* ZPDSM + GKK(2,16)*THETAM + GKK(2,17)*UMOD(2) + GKK(2,18)* UMOD(3) + GKK(2,19)*UMOD(4))</pre>
×××	GKK(3,5)*Q + GKK(3,6)*R + GKK(3,7)*XPOS + GKK(3,4)*YPOS + GKK(3,9)*ZPOS + GKK(3,10)*PHI + GKK(3,11)*THETA +
× × ×	ZPOSM + GKK(3,16)*THETAM + GKK(3,17)*UMOD(2) + GKK(3,18)* UMOD(3) + GKK(3,19)*UMOD(4))
× × ×	DS = -(GKK(4,1)*U + GKK(4,2)*V + GKK(4,3)*W + GKK(4,4)*P + GKK(4,5)*Q + GKK(4,6)*R + GKK(4,7)*XPOS + GKK(4,8)*YPOS + GKK(4,9)*ZPOS + GKK(4,10)*PHI + GKK(4,11)*THETA +
× > ¥	GKK(4,12)*PSI + GKK(4,13)*WM + GKK(4,14)*QM + GKK(4,15)* ZPOSM + GKK(4,16)*THETAM + GKK(4,17)*UMOD(2) + GKK(4,18)* UMOD(3) + GKK(4,19)*UMOD(4))
× ×	PUT IN STERN AND BOW PLANE STOPS
× ×	IF(ABS(DBS).GT.0.6) THEN DBS = 0.6*ABS(DBS)/DBS
* * *	ENDIF IF(ABS(DBP).GT.0.6) THEN DBP = 0.6*ABS(DBP)/DBP
× × ×	ENDIF IF(ABS(DS).GT.0.6) THEN DS = 0.6¥ABS(DS)/DS
×	ENDIF
***** *	*NON-LINEAR MODEL************************************
¥ ¥ ¥	PROPULSION MODEL
	SIGNU = 1.0 IF (U.LT.0.0) SIGNU = -1.0 IE (ABS(U) IT YITEST) U = YITEST
	SIGNN = 1.0 IF (RPM.LT.0.0) SIGNN = -1.0

-

ŧ

```
FILE: TX
                 DSL
                           A1
      RE = UXL/NU
      CD0 =
              .00385 + (1.296E-17)*(RE - 1.2E7)**2
          = 0.008 \times L \times 2 \times ETA \times ABS(ETA)/(A0)
      CT
      CT1 = 0.008 \times L \times 2/(A0)
      EPS = -1.0+SIGNN/SIGNU*(SQRT(CT+1.0)-1.0)/(SQRT(CT1+1.0)-1.0)
      XPROP = CDO*(ETA*ABS(ETA) - 1.0)
¥
¥
¥
¥
      CALCULATE THE DRAG FORCE, INTEGRATE THE DRAG OVER THE VEHICLE INTEGRATE USING A 4 TERM GAUSS QUADUTURE
¥
×
¥
      LATYAW = 0.0
      NORPIT = 0.0
      DO 500 K = 1,4
          UCF(K) = SQRT((V+G4(K)*R*L)**2 + (W-G4(K)*Q*L)**2)
          IF(UCF(K).GT.1E-10) THEN
                 = (RH0/2)*(CDY*HH(K)*(V+G4(K)*R*L)**2 +...
          TERMO
                    CDZ \times BR(K) \times (W - G4(K) \times Q \times L) \times 2)
          TERM1
                    TERM0*(V+G4(K)*R*L)/UCF(K)
                  =
          TERM2
                  = TERM0*(W-G4(K)*0*L)/UCF(K)
          LATYAW = LATYAW + TERM1*GK4(K)*L
NORPIT = NORPIT + TERM2*GK4(K)*L
          END IF
500
      CONTINUE
¥
¥
      FORCE EQUATIONS
×
¥
¥
¥
     LONGITUDINAL FORCE
¥
       FP(1) = MASS*V*R - MASS*W*Q + MASS*XG*Q**2 + MASS*XG*R**2-...
              MASS*YG*P*Q - MASS*ZG*P*R + (RHO/2)*L**4*(XPP*P**2 +...
              XQQ*Q**2 + XRR*R**2 + XPR*P*R) +(RHO/2)*L**3*(XWQ*W*Q +...
              XVP*V*P+XVR*V*R+U*Q*(XQDS*DS+XQDB/2*DBP)+XRDR*U*R*DR)+...
               (RH0/2)*L**2*(XVV*V**2 + XWW*W**2 + XVDR*U*V*DR + U*W*...
               (XWDS*DS+XWDB/2*DBP)+U**2*(XDSDS*DS**2+XDBDB/2*DBP**2+...
               XDRDR*DR**2))-(WEIGHT -BOY)*SIN(THETA) +(RHO/2)*L**3*
                                                                             . . .
               XQDSN*U*Q*DS*EPS+(RH0/2)*L**2*(XWDSN*U*W*DS+XDSDSN*U**2*...
               DS**2)*EPS +(RH0/2)*L**2*U**2*XPR0P+RH0/2*L**3*U*Q* ...
               XQDB/2*DBS +RHO/2*L**2*U**2*XDBDB/2*DBS**2+
               RHO/2*L**2*XWDB/2*DBS*U*W
¥
¥
     LATERAL FORCE
¥
       FP(2) = -MASS*U*R + MASS*XG*P*Q + MASS*YG*R**2 - MASS*ZG*Q*R +...
               (RH0/2)*L**4*(YP0*P*0 + Y0R*0*R)+(RH0/2)*L**3*(YP*U*P +...
```

YR*U*R + YVQ*V*Q + YWP*W*P + YWR*W*R) + (RHO/2)*L**2*

(YV*U*V + YVW*V*W +YDR*U**2*DR) -LATYAW +(WEIGHT-BOY)*...

. . .

1

89

COS(THETA)*SIN(PHI)

× ×	NORMAL FORCE
*	<pre>FP(3) = MASS*U*Q - MASS*V*P - MASS*XG*P*R - MASS*YG*Q*R + MASS*ZG*P**2 + MASS*ZG*Q**2 + (RH0/2)*L**4*(ZPP*P**2 + ZPR*P*R + ZRR*R**2) + (RH0/2)*L**3*(ZQ*U*Q + ZVP*V*P + ZVR*V*R) + (RH0/2)*L**2*(ZW*U*W + ZVV*V*2 + U**2*(ZDS* DS+ZDB/2*DBP))-NORPIT+(WEIGHT-BOY)*COS(THETA)*COS(PHI)+ (RH0/2)*L**3*ZQN*U*Q*EPS +(RH0/2)*L**2*(ZWN*U*W +ZDSN* U**2*DS)*EPS+ RH0/2*L**2*U**2*ZDB/2*DBS</pre>
* * *	ROLL FORCE
×	<pre>FP(4) = -IZ*Q*R +IY*Q*R -IXY*P*R +IYZ*Q**2 -IYZ*R**2 +IXZ*P*Q + MASS*YG*U*Q -MASS*YG*V*P -MASS*ZG*W*P+(RHO/2)*L**5*(KPQ* P*Q + KQR*Q*R) +(RHO/2)*L**4*(KP*U*P +KR*U*R + KVQ*V*Q + KWP*W*P + KWR*W*R) +(RHO/2)*L**3*(KV*U*V + KVW*V*W) + (YG*WEIGHT - YB*BOY)*COS(THETA)*COS(PHI) - (ZG*WEIGHT ZB*BOY)*COS(THETA)*SIN(PHI) + (RHO/2)*L**4*KPN*U*P*EPS + (RHO/2)*L**3*U**2*KPROP +MASS*ZG*U*R+</pre>
×	RHO/2×L**3*U**2*(KDB/2*DBP-KDB/2*DBS)
×	PITCH FORCE
×	<pre>FP(5) = -IX*P*R +IZ*P*R +IXY*Q*R -IYZ*P*Q -IXZ*P**2 +IXZ*R**2 MASS*XG*U*Q + MASS*XG*V*P + MASS*ZG*V*R - MASS*ZG*W*Q + (RH0/2)*L**5*(MPP*P**2 +MPR*P*R +MRR*R**2)+(RH0/2)*L**4* (MQ*U*Q + MVP*V*P + MVR*V*R) + (RH0/2)*L**3*(MW*U*W + MVV*V*2+U**2*(MDS*DS+MDB/2*DBP))+ NORPIT -(XG*WEIGHT XB*BOY)*COS(THETA)*COS(PHI) + (RH0/2)*L**3*(MWN*U*M+MDSN*U**2*DS)*EPS+ RH0/2*L**3* U**2*MDB/2*DBS-(ZG*WEIGHT-ZB*BOY)*SIN(THETA)</pre>
× ×	YAW FORCE
×	<pre>FP(6) = -IY*P*Q +IX*P*Q +IXY*P**2 -IXY*Q**2 +IYZ*P*R -IXZ*Q*R MASS*XG*U*R + MASS*XG*W*P - MASS*YG*V*R + MASS*YG*W*Q + (RHO/2)*L**5*(NPQ*P*Q + NQR*Q*R) +(RHO/2)*L**4*(NP*U*P+ NR*U*R + NVQ*V*Q +NWP*W*P + NWR*W*R) +(RHO/2)*L**3*(NV* U*V + NVW*V*W + NDR*U**2*DR) - LATYAW + (XG*WEIGHT XB*BOY)*COS(THETA)*SIN(PHI)+(YG*WEIGHT)*SIN(THETA) +(RHO/2)*L**3*U**2*NPROP-YB*BOY*SIN(THETA)</pre>
* * * * *	IF(Z.EQ.50.0)THEN WRITE (8,500)(FP(I), I = 1,6) Z = 0.0 END IF
× ×	NOW COMPUTE THE F(1-6) FUNCTIONS
×	DO 600 $J = 1, 6$
600	$P(J) = 0.0$ $D0 \ 600 \ K = 1,6$ $F(J) = MMINV(J,K) \times FP(K) + F(J)$ $CONTINUE$
×	THE LAST SIX EQUATIONS COME FROM THE KINEMATIC RELATIONS
* * *	FIRST SET THE DRIFT CURRENT VALUES
	UCO = 0.0 VCO = 0.0 WCO = 0.0
×	

I.

×	INERTIAL POSITION RATES F(7-9)
×	<pre>F(7) = UCO + U*COS(PSI)*COS(THETA) + V*(COS(PSI)*SIN(THETA)* SIN(PHI) - SIN(PSI)*COS(PHI)) + W*(COS(PSI)*SIN(THETA)* COS(PHI) + SIN(PSI)*SIN(PHI))</pre>
×	<pre>F(8) = VCO + U*SIN(PSI)*COS(THETA) + V*(SIN(PSI)*SIN(THETA)* SIN(PHI) + COS(PSI)*COS(PHI)) + W*(SIN(PSI)*SIN(THETA)* COS(PHI) - COS(PSI)*SIN(PHI))</pre>
×	F(9) = WCO - U*SIN(THETA) +V*COS(THETA)*SIN(PHI) +W*COS(THETA)* COS(PHI)
× ×	EULER ANGLE RATES F(10-12)
¥	F(10) = P + Q*SIN(PHI)*TAN(THETA) + R*COS(PHI)*TAN(THETA)
×	F(11) = Q*COS(PHI) - R*SIN(PHI)
×	F(12) = Q*SIN(PHI)/COS(THETA) + R*COS(PHI)/COS(THETA)
× × ×00 ×	IF (Z.EQ.1.0)WRITE (9,500)(F(I), I = 1,12) FORMAT(6E12.4) Z = Z + 1
*	<pre>UDOT = F(1) VDOT = F(2) WDOT = F(3) PDOT = F(4) QDOT = F(5) RDOT = F(6) XDOTA= F(7) YDOT = F(8) ZDOT = F(10) THETAD = F(11) PSIDOT = F(12) U = INTGRL(0.0,VDOT) V = INTGRL(0.0,VDOT) V = INTGRL(0.0,VDOT) P = INTGRL(0.0,VDOT) Q = INTGRL(0.0,QDOT) R = INTGRL(0.0,QDOT) R = INTGRL(0.0,XDOTA) YPOS = INTGRL(0.0,XDOTA) YPOS = INTGRL(0.0,PHIDOT) THETA = INTGRL(0.0,PHIDOT) PHI = INTGRL(0.0,PHIDOT) ZNEW = -ZPOS PHIANG = PHI/0.0174532925 THEANG = THETA/0.0174532925</pre>
* * * *	

```
DYNAMIC
      RN=TIME/(FINTIM/10.-DELT/10000.)
      PN=TIME/(FINTIM/20.-DELT/10000.)
      0=INT(RN)+1
      PP=INT(PN)+1
      IF(PP.GE.20) PP=20
      IF(0.EQ.11) 0=10
¥
* ADDITIONALLY THE PLANES SHOULD BE AT EQUILIBRIUM SO THE
* VEHICLE WILL PROCEED AT THIS NEW DEPTH WITHIN SOME TOLERANCE
×
      DSM=DX(0)
      DBSM=DX(10+0)
      DBPM=DX(10+0)
      IF(0.GE.10) DSM=0.
      IF(0.GE.10) DBPM =0.000
IF(0.GE.10) DBSM =0.000
      DRM=DX(20+PP)
      RPM=DX(30+0)
×
×
           CONSTRAINTS FOR A DIVE
¥
¥
   ORDERED DEPTH = ORDDEP
×
      GW(1) = (ZPOSM-ORDDEP)*.5
      GW(2) = (ORDDEP-ZPOSM) \times .5
   AUV'S FINAL STATE MUST BE LEVEL FLIGHT AS FOLLOWS
GW(3) = THETAM*10.
¥
      GW(4) = -THETAM \times 10.
      GW(5)=(YPOSM-YORD)/.4
      GW(6)=(YORD-YPOSM)/.4
      GW(7) = -ZPOSM
¥
    AVOIDING THE OBSTACLE
×
×
      IF (DIST1.LT.DSAVE1) DSAVE1=DIST1
×
      IF (DISTV.LT.DSAVE1) DSAVEV=DISTV
×
×
       DIST1=SQRT((XPOSM-XOBS1)*(XPOSM-XOBS1)+...
             (ZPOSM-ZOBS1)*(ZPOSM-ZOBS1))
¥
       DISTV=SQRT((XPOS-XOBS1)*(XPOS-XOBS1)+...
¥
             (ZPOS-ZOBS1)*(ZPOS-ZOBS1))
¥
¥
       GW(8) = (1.-DSAVE1)
       NDX=XPOSM/17.425
       NDZ=ZPOSM/17.425
       NDT=TIME×6./17.425
TERMINAL
       IF(INFO.EQ.0) THEN
       PRINT*, DSAVE1, DSAVEV
 9000 CONTINUE
       ELSE
       ENDIF
       IF(INFO.EQ.O) CALL ENDJOB
       CALL RERUN
¥
END
```

```
STOP
```
REFERENCES

- Rowden, W. H., "Policy Guidance for the NAVSEA Integrated Robotics Program," <u>COMNAVESEA Ltr 2269</u>, March 1988.
- Levece, J. A., "Positive Future for Battlefield Robotics," <u>Military Robotics</u>, v.2, no. 7, pp. 3-4, April 6, 1988.
- 3. Levece, J. A., "Towtaxi ROV Delivered," <u>Military</u> <u>Robotics</u>, v.2, no. 8, p. 7, April 20, 1988.
- 4. Levece, J. A., "Dolphin UUV for Minsweepers," <u>Military Robotics</u>, v.2, no. 6, p. 4, March 23, 1988.
- Levece, J. A., "RECON UUV Reaches New Depths," <u>Military Robotics</u>, v.2, no. 9, p. 5, May 4, 1988.
- Levece, J. A., "Unmanned Spaceship to Test Aerobraking," <u>Military Robotics</u>, v.2, no. 10, p. 5, May 18, 1988.
- 7. Kambhampati, s. and Davis, L. S., "Multiresolution Path Planning for Mobile Robots," <u>Computer Vision</u> <u>Laboratory Report</u>, University of Maryland, College Park, May 1985.
- 8. Wong, E. K. and Fuk, K. S., "Hierachical Orthogonal Space Approach to Three-Dimensional Path Planning," <u>IEEE Journal of Robotics and Automation</u>, V. RA-2, No. 1, March 1986.
- 9. Herman, M., "Fast, Three-Dimensional, Collision-Free Motion Planning," <u>Proceedings 1986 IEEE</u> <u>International Conference on Robotics and Automation</u>, V. 2, pp. 1056-1063, April 1986.
- 10. Singh, S. and Wagh, M. D., "Robot Path Planning Using Intersecting Convex Shapes," <u>Proceedings 1986 IEEE</u> <u>International Conference on Robotics and Automation</u>, V. 3, pp. 1743-1748, April 1986.

- 11. Kuan, D. T., Zamiska, J. C. and Brooks, R. A., "Natural Decomposition of Free Space for Path Planning," <u>Proceedings IEEE International Conference</u> on Robotics and Automation, pp. 168-173, 1985.
- 12. Khatib, O., "Real-Time Obstacle Avoidance for Manipulators and Mobile Robots," <u>International</u> <u>Journal of Robotics Research</u>, V. 5, No. 1, Spring 1986.
- 13. Tournassoud, P., "A Strategy for Obstacle Avoidance and Its Application to Multi-Robot Systems," <u>Proceedings IEEE 1986 Conference on Robotics and</u> <u>Automation</u>, V. 2, pp. 1224-1229, April 1986.
- 14. Krogh, B. H., "Guaranteed Steering Control," <u>Proceedings of the 1985 American Control Conference</u>, V. 2, pp. 950-955, June 1985.
- 15. Thorpe, C. E., "Path Relaxation: Path Planning for a Mobile Robot," <u>CMU Robotics Institute Report CMU-</u> <u>RJ-TR-84-5</u>, April 1984.
- 16. Krogh, B. H. and Thorpe, C. E., "Integrated Path Planning and Dynamic Steering Control for Autonomous Vehicles," <u>Proceedings 1986 International Conference</u> <u>on Robotics and Automation</u>, V. 3, pp. 1664-1669, April 1986.
- 17. Gilbert, E. G. and Johnson, D. W, "Distance Functions and Their Application to Robot Path Planning in the Presence of Obstacles," <u>IEEE Journal of Robotics and</u> <u>Automation</u>, V. RA-1, No. 1, March 1985.
- 18. Johnson, D. W. and Gilbert, E. G., "Minimum Time Robot Path Planning in the Presence of Obstacles," <u>Proceedings of the 24th Conference on Decision and</u> <u>Control</u>, V. 3, pp. 1748-1753, December 1985.
- 19. Sanders, D. W., <u>A Feasibility Study in Path Planning Application Using Optimization Techniques</u>, Master's Thesis, Naval Postgraduate School, Monterey, California, December 1987.

- 20. Vanderplaats, G. N. and Sugimoto, H., <u>ADS Design</u> <u>Optimization Program</u>, FORTRAN Source Code, Naval Postgraduate School, Monterey, California, June 1982.
- 21. International Business Machines Program Number, 5798-PXJ, <u>Dynamic Simulation Language</u>, June 1984.
- 22. Olson, T. F., <u>Application of Numerical Optimization</u> <u>in Modern Control</u>, Master's Thesis, Naval Postgraduate School, Monterey, California, December 1986.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145		2
2.	Library, code 0142 Naval Postgraduate School Monterey, California 93943-5002		2
3.	Chairman, Code 69Hy Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943-5004		3
4.	Professor D. L. Smith, Code 69Sm Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943-5004		10
5.	Professor R. McGhee, Code 52Mz Computer Science Department Naval Postgraduate School Monterey, California 93943-5004		1
6.	Professor R. Christi, Code 62Cx Electrical and Computer Engineering Department Naval Postgraduate School Monterey, California 93943-5004		1
7.	Dr. G. N. Vanderplaats Engineering Design Optimization, Inc. 1275 Camino Rio Verde Santa Barbara, California 93111		1
8.	LCDR David W. Sanders, USN 204 First Street Butler, Pennsylvania 16001		1
9.	LCDR T. Olson, USN 6905 Ashbury Dr. Springfield, Virginia 22152		1

I.

.

10.	Russ Weneth, Code u25 Naval Surface Weapons Center White Oak, Maryland 20910	1
11.	Paul Heckman, Head, Underseas AI & Robotics Branch Naval Ocean System Center San Diego, California 92152	1
12.	RADM G. Curtis, USN PMS-350 Naval Sea Systems Command Washington, D. C. 20362-5101	1
13.	LT Relle L. Lyman, Jr., USN Code 90G Naval Sea Systems Command Washington, D. C. 20362-5101	1
14.	LT Richard Boncal, USN Raymes Neck Road, RFD 2 York, Maine 03909	1
15.	LT Winston Smith 7979 Cornet Place Pensacola, Florida 32514	3

Thesis S6092 Smith c.l Local path planning using optimal control techniques.

J

