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PREFACE

THIS book is an exposition of the physical principles upon
which the art of electrical engineering -is based, together with a

discussion of the application of these principles in some of the

simpler forms of electric apparatus and machinery. The first

four chapters of the book may be looked upon as an introduction

to the detailed study of continuous current machinery, the last

five to the detailed study of alternating current machinery and

the transmission and distribution of energy by alternating cur-

rents. The text is the development of a course of lectures

given by the author to the junior class in electrical engineer-

ing at the Massachusetts Institute of Technology. The time

allotted to this course, exclusive of home preparation, is fifty-

five hours of lectures, twenty-three hours of recitations, and

twenty-three hours for the solution of problems under the

supervisi6n of an instructor.

A preliminary edition of the book was published in 1910,

primarily for the use of the students at the Institute, and this

preliminary edition was preceded by mimeographed notes cover-

ing practically the same ground. The present edition differs

from the preliminary edition chiefly in the addition, at the end

of each chapter, of a summary of the important definitions and

principles developed in that chapter and of a list of problems,
with answers, illustrative of these principles. Certain sections of

the text have also been rewritten, particularly the sections on

energy, inductance, and capacity; the conception of linkages

between the electric and magnetic circuits has also been more

fully developed. The typographical errors of the preliminary
edition have been corrected and additional steps have been

inserted in some of the mathematical deductions.

There will undoubtedly be those who, after an examination

of the text, will pronounce it more of a treatise on physics than
on electrical engineering. But electrical engineering is primarily
the application of physics, and of necessity the principles of

electrical engineering are the principles of physics. This fact is

235471



vi PREFACE

too frequently overlooked, and the student is rushed into the

study of electric machinery and other advanced subjects with

but the vaguest conception of the physical principles upon which

the operation of electric apparatus ,
is based. In the author's

opinion, a clear conception of the principles of physics and the

ability to apply these principles in co-ordinating the experimental

facts of physics, both qualitatively and quantitatively, is abso-

lutely essential before one can get a clear understanding of the

more complicated reactions that take place in electric machinery
and transmission circuits. It is with the hope that others may
find this text useful in filling the gap between elementary physics

and applied electricity that the author offers it to the public.

The method of treatment adopted throughout is to describe

first certain simple and typical experiments which illustrate a

given principle, second, to state the principle in an exact manner

in its general form, and then explain the application of the prin-

ciple in one or more practical cases. The problems given at the

end of each chapter serve as a further illustration of the principles

developed. The attempt has also been made to make each sec-

tion lead naturally into the next and to show how the various

phenomena of electricity and magnetism are interrelated. The

analogy between the flow of electricity and hydraulics is brought
out repeatedly, and emphasis is laid upon the similarity of

magnetic and electrostatic phenomena. In the discussion of

alternating currents sine functions are used until the meaning/,
of the various terms, such as effective value, phase difference^/

etc., has been made clear; the vector method is then introduced,

and finally the symbolic method is developed.

The calculus is employed from the very beginning of the book.

The calculus is taught the students of electrical engineering in

practically every technical school in the country. The author

has adopted the common-sense view that since the student is

provided with so useful a tool he should learn how to use it,

particularly as this tool is one of the greatest labor-saving devices

ever invented. In every case, however, the. physical meaning
of the formulas developed has been clearly stated.

The. problems at the end of each chapter are of two kinds,

which for convenience may be designated as practical and

theoretical. To fix principles in the student's mind problems

may be devised which, though seldom met with in practice, are
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much more effective than purely practical ones. Practical prob-

lems, however, should not be neglected, for the student should

also gain facility in making the simple calculations of ordinary

practice. In addition, many of the problems of the latter class

have been selected to bring out the principles of certain special

phenomena and methods of practice which are not treated in

detail in the text.

To those who may use the book in the class-room the fol-

lowing suggestions are offered. When the time available .is

limited, the articles printed with close spacing, for example,

Article 42, may be omitted. The student should be made to

understand that the summaries at the end of each chapter are

not to be memorized, but are given merely as a bird's-eye view

of the chapter. The solution of as many problems as possible

in conjunction with the study of the text will also enable the

student to test his understanding of the latter; it is with this

object in view that the answers to the problems have been given.

The student should be required to follow closely in all written

work the recommendations of the American Institute of Electrical

Engineers, given in Appendix A.

The author takes this opportunity of expressing his indebted-

ness to Messrs. Gary T. Hutchinson, W. A. Del Mar, and H. S.

Osborne and to the various members of the Electrical Engineer-

ing Department of the Massachusetts Institute of Technology
for many valuable suggestions and criticisms. The majority of

the problems in this edition were prepared by Mr. R. G. Hudson,
to whom the author is also indebted for his assistance in the

reading of proof.

HAROLD FENDER
EAST BLUE HILL, MAINE,

August 14, 1911
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Electrical Engineering
i

FUNDAMENTAL IDEAS AND UNITS

1. Introduction. The fundamental conceptions with which

we have to start are the ideas of space, time and matter. We
notice all about us that matter is changing its position in space,

or moving, and that each motion requires a certain interval of

time. By measuring the amount of matter involved, the amount

of motion that takes place and the time required, scientists have

found that these quantities are invariably related in definite

quantitative ways ;
in other words, that .every change in the

motion of matter takes place in accordance with definite laws.

Many of the fundamental conceptions used in scientific work
are based on assumptions which are incapable of proof, but which,
on account of their simplicity and plausibility, we accept as true.

For example, we accept as true that the interval of time required
for a given change in the position of a given portion of matter will

always be the same, provided the conditions under which the

change takes place are exactly duplicated; again, we accept as

true that whenever the velocity of a particle of matter changes,
this change is due to the influence of some other particle or par^

tides of matter or to some agent associated with the particle

or particles. Such assumptions have been called
"
Articles of

Scientific Faith."

In order to express the laws of nature in a quantitative man-

ner, it is necessary to define clearly 1. What shall be taken as a

measure of each quantity, 2. What is meant by equal amounts
of this quantity, and 3. What shall be taken as the unit of this

quantity.

2. Length. Two straight lines which can be superimposed
one upon the other, so that the ends of the two lines exactly coin-

cide, are said to be equal in length. The distances between any
two pairs of points ABsmd A'B' respectively are said to be equal
when the straight lines drawn between A and B and between A'
and B r

are equal. If we choose the distance between any two

arbitrary points as a unit or standard of length, then any other
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length may be expressed as the number of these equal unit lengths

into which the line between the two given points may be divided.

The unit or standard of length employed in all scientific work

is the centimeter, abbreviated cm.; it is the yi^th portion of the

length of a certain platinum-iridium bar known as the Interna-

tional Meter and preserved at the International Bureau of Weights
and Measures near Paris; the length of the bar is measured

when it is at the temperature of melting ice, i.e., at centigrade.

Some of the other common units of length employed in scientific

and engineering work are related to one another as follows:

1 meter =100 centimeters

1 millimeter =0.1 centimeter

1 kilometer =1000 meters

1 inch =2.5400 centimeters

1 mil =0.001 inch

1 foot =30.480 centimeters

1 yard =91.440 centimeters

1 mile =5280 feet

1 mile =1.6093 kilometers

1 mile =1609.3 meters

3. Surface. The unit of surface is the area of a square each

side of which is one unit in length; some of the common units of

surface are related to one another as follows :

1 square inch =6.4516 square centimeters

1 circular mil =0.78540 X 10"
6

square inch

1 circular mil =0.00050671 square millimeter

1 square foot =929.03 square centimeters

1 square yard =8361.3 square centimeters

1 acre =43,560 square feet

1 acre =4046.9 square meters

1 square mile =27,878,400 square feet

1 square mile =640 acres

1 square mile =2.5900 square kilometers

4. Volume. The unit of volume is the volume of a cube each

edge of which is one unit in length. Some of the common units

of volume are related to one another as follows :

1 liter =1000 cubic centimeters

1 cubic inch =16.387 cubic centimeters

1 cubic foot =28,317 cubic centimeters

1 cubic foot =1728 cubic inches
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1 cubic foot =7.4805 gallons (Liquid; U. S.)

1 cubic yard =0.76456 cubic meter

1 quart (Liquid; U. S.) =0.94636 liter

1 gallon (Liquid; U. S.) =231 cubic inches

1 gallon (Liquid; U. S.) =3.7854 liters

5. Angle. Let AB and AC m Fig. 1 be two straight lines

intersecting in the point A. With A as a center and any dis-

tance as a radius, draw a circle about A in the plane ABC. Let

Bf and C' be the points where this circle cuts the lines AB and

BC respectively. Then the ratio of the arc B'C' to the radius

AB' or AC' is called the angle between the lines AB and BC;
that is,

i ^ A r> arc B'C' (1)
Angle CAB = .

W
AB'

This ratio is independent of the length A B', since the arc is

proportional to the radius. The unit angle as thus defined is

called the " radian
"

;
that is, a

radian is the angle subtended by
an arc which is equal to the radius.

Angles are also expressed in terms

of another arbitrary unit called

the "
degree." One degree is the A '

angle subtended by -g^th part of

the arc of a circle. Since the total Flg - 1 -

length of a circumference is equal to 2 ?rX( radius), the total plane

angle about a point is equal to 2?r radians. Also, from the defi-

nition of the degree, the total plane angle about a point is 360

degrees. Hence

1 radian =57.296 degrees.

The angle between two planes which intersect in a line MN
is defined as the angle between the two lines in which these two

planes intersect a third plane drawn perpendicular to M N.
The angle made by a given line with any other line which

it does not intersect is defined as the angle between the given
line and a line drawn through any point in this line parallel to

the second line.

6. Time. We accept as an article of scientific faith that the

time required for a given change in the position of a given portion
of matter will always be the same provided all the other conditions
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under which the displacement occurs are exactly duplicated. The

simplest motion of this kind is that of a pendulum suspended at

a given point with reference to the earth and oscillating so that

any given point of the pendulum passes over the same distance

during each oscillation. We may then take as the numerical

measure of any interval of time the number of vibrations made in

this interval by such a pendulum. The unit or standard of time

ordinarily adopted in scientific work is the time required for one

oscillation of a pendulum, which, when kept under absolutely

constant conditions, would make 86,400 oscillations in a mean
solar day; this unit is called the second. The solar day is the

interval of time between two successive transits of the sun across

the meridian of the earth at the point of observation; this in-

terval varies in length at different times during the year but

the average length of the interval for one year is constant as far

as we know. Some of the common units of time are related to

one another as follows:

1 hour =3600 seconds

1 day =86,400 seconds

1 civil or calendar year =8760 hours

1 civil or calendar year =31,536,000 seconds

1 solar year =365.2422 days
1 solar year =31,556,926 seconds

1 leap year =8784 hours

7. Displacement. Let a point which had a position P at

any instant have at some later instant a position Q. The

straight line drawn from P to Q is called the linear displacement
of the point. Let AB be any other straight line in space and

imagine a plane drawn through P and the line AB and another

plane through Q and the line AB; the angle between the planes
PAB and QAB is called the angular displacement of the point
about the axis AB.

8. Vectors. The line P Q representing the linear displace-

ment of a point has both length and direction; the length of the

line may be represented by a number and its direction by the

angles made by PQ with any three arbitrarily chosen axes of

co-ordinates. In the majority of problems that arise in engineer-

ing work the various points of a body move in parallel planes ;

in this case the direction of the linear displacement PQ of any
point can be expressed numerically by the angle made by the
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line PQ with an arbitrary line of reference fixed in any one of

these planes. For example, in Fig. 2 let the plane of the paper
be the plane in which the point moves, let OX be a line fixed

in this plane and let PQ be the linear displacement of the point.

Draw a line through P parallel to OX and let 6 be the angle

between this line and PQ; then both the amount and direc-

Fig. 2.

tion of the linear displacement of the point are completely deter-

mined when we know the magnitude of the length PQ and its

direction. A quantity of this kind which requires for its com-

plete representation a magnitude and a direction is called a

vector quantity and the line representing such a quantity is called

a vector. A quantity which has magnitude only, but not direc-

tion, such as time, mass, etc., is called a scalar quantity.

When a point moves from P to Q and then back from Q to P,
the final displacement of the point is zero; this may be expressed

mathematically by the formula PQ+QP=Q, or PQ=-QP.
That is, the vector P Q
is equal but opposite

to the vector QP; the

vector QP is said to be

in the opposite sense

to the vector PQ. It

is therefore necessary
in dealing with vectors

to specify definitely

the sense of the vec-

tor; this may be done

by writing the letters

representing the ends

of the vector in the order such

Fig. 3.

that motion from the first to
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the second is in the positive sense of the vector, or by placing
on the line representing the vector an arrow pointing in the

positive sense of the vector. In dealing with vectors which lie

in the same or in parallel planes- (i.e., co-planar vectors), it is

usual to select an arbitrary line drawn from an arbitrary point

as tne axis of reference and t take as the positive sense of each

vector its sense away from this arbitrary point of origin. The

direction of each vector may then be expressed by the angle

measured around to the vector in the counter-clockwise direction

from the line of reference. For example, in Fig. 2, the vector PQ
makes an angle of 30 with the line of reference OX. In Fig. 3 the

vector P Q makes an angle of 330 with X, which is equivalent

to an angle of - 30 with X.

9. Composition of Vectors. Since by definition the linear

displacement of a point when it moves from a position P to a

position Q is the straight line PQ, this displacement is inde-

pendent of the actual path over which the point moves from

P to Q. For example, in Fig. 4, the point may move in a straight

line from P to any other point B, then in a straight line to a point

C, and finally to the point Q. The lines PB, BC and CQ are

called the components of

the vector PQ, and PQ
is called the resultant of

the vectors PB, BC,
CQ. PQ may therefore

be considered to be made

up of any number of

component vectors, pro-

vided that when all of

these components are

placed end to end they
form a continuous path
from P to Q such that

a point moving from P to Q over this path moves in the positive

sense of each component successively. Similarly the resultant

of any number of vectors PB, BC, CQ, etc., is found by

placing the lines representing these vectors end to end in such

a manner that a point moving along the path formed by these

lines always moves in the positive sense of the vectors
;
the line

drawn from the beginning of the first vector to the end of the
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last of the series is then the resultant. The above facts may be

represented by a formula thus: PQ = PB+BC+CQ where the

line over the second term indicates that the lines PB, BC, and

CQ must be
" added "

in the manner just

described. Addition ^xX
" ^

of this sort is usually

called geometric or

vector addition
;

the

line over the second

term then indicates

that PB, BCandCQ
must be added geometrically or vectorially.

Similarly, we may subtract a vector PB from any other vector

PQ by adding toPQ a vector QB' equal to PB and in the opposite
or negative sense. This may be represented by a formula thus:

PB'=PQ-PB. (See Fig. 5.)

The addition of two or more co-planar vectors may also be

expressed analytically.

For example, let it be re-

quired to find the resultant

R of the three vectors A,

B, and C, Fig. 6. Choose

any arbitrary line OX as

a line of reference and let

r , a , b and C be the

angles made by R, A, B,

and C respectively with

the line OX, and call these

angles positive when meas-

ured in the counter-clock-

wise direction around from

OX and negative when measured in the clockwise direction. Then
the component of R parallel to OX is

R cos r
= A cos a + B cos b+C cos C

and the component of R which makes an angle of 90 with OX is

R sin
r
=A sin a + B sin b+C sin

C

Hence the length of R is

Fig. 6.
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and the angle which R makes with OX is Or) where

A sin ft + 5 sin b+C sin 9C
tan Or

=

For example, let

A =3
B=2
C=5

Then

A cos n+B cos ft+ C cos 6f

a =30

ft. =60

(26)

=(3 X 0.8664- 2 X 0.707+ 5 X 0.5)
2

+(3 X 0.5+ 2 X 0.707+5 X 0.866)
2= 9.74

tan r

0r

7.244
:

6.512

=48.05

= 1.1124

We shall see later on that many of the quantities met with in

engineering problems, such as velocity, force, moments, electric

current, etc., can be represented by vectors. In certain cases

it will be seen that it will be unnecessary to specify the location

of the vector, but that any two vectors which are equal in length

and are parallel may be considered equivalent; in other cases

we shall find that we may consider two equal and parallel vectors

as equivalent only when they lie in the same plane, or in the

same line, or it may be that the vector cannot be considered

equivalent to any other vector. When the location of a vector is

thus limited it is said to be localized in a plane, on a line or at a

point, as the case may be. The above laws for the composition
and resolution of vectors apply
to localized vectors only in case

the vectors, or vectors equiv-
alent to them, meet in a point.

The angular displacement
of a point about any axis is a

quantity which requires for its

representation a vector local-

ized in a line. For example, let

P and Q, lying in the plane of

Fig 7>
the paper, be the initial and

final positions of the point; let

the axis of rotation be a line drawn perpendicular to this plane at

A. By definition, the angular displacement of the point about this
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axis is then the angle PAQ. A line drawn in the axis throughA hav-

ing a length equal numerically to the angle PAQ will serve to repre-

sent both the axis of rotation and the numerical value of the angular

displacement. To represent the sense of the rotation, i.e., whether

from P to Q or from Q to P, it is customary to choose arbitrarily the

positive sense of the axis, and then call the rotation positive when

the motion of the point is in a clockwise or right-handed direction

when viewed by a person looking in the sense of this line. In

the case illustrated, if we choose the positive sense of the axis

to be toward the reader the line representing the angular dis-

placement from P to Q will be drawn upward perpendicular to the

plane of the paper; the line representing the displacement from Q
to P will be drawn downward. The angular displacement of a

point about any axis is therefore completely defined by a line having

(1) a definite length, (2) a definite direction, and (3) localized in the

axis of rotation. We may also represent the displacement of the

point from the position P to the position Q by an angular displace-

ment about any other axis, such as an axis through B parallel to the

axis through A, but the vector representing this angular displace-

ment about the axis through B will not be equal to the vector repre-

senting the angular displacement about the axis through A, since

the angles PAQ and PBQ are not equal. Again, two equal and

parallel vectors do not represent equivalent angular displace-

ments unless these two vectors lie in the same line.

10. Velocity. Let, in any small interval of time dt, a point
P be displaced a distance dl with respect to any other point 0;

then the limiting value at any instant of the ratio
,
when dt is

dt

taken extremely small, is called the linear velocity of the point P
at that instant relative to the point 0. Representing linear

velocity by v, we have

dl ,

When the point moves in a straight line over equal distances in

equal small intervals of time its linear velocity is said to be uni-

form; in this case the linear velocity of the point may be defined

as the linear displacement of the point in unit time. Since linear

displacement is a vector quantity, i.e., has both magnitude and

direction, and time is a scalar quantity, linear velocity is also a
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vector quantity; for a vector quantity divided by a scalar is a

vector quantity. Therefore a change either in the magnitude or

in the direction of the linear velocity constitutes a change in the

linear velocity. The magnitude of the linear velocity of a point is

frequently called the linear speed of the point; that is, the linear

speed of a point is simply a number expressing the distance over

which the point moves in unit time; linear speed is therefore a

scalar quantity. For example, a point moving in a circle in such

a manner that in equal small intervals of time it passes over equal
distances measured along the circumference of the circle, is said to

be moving with a constant speed; its velocity, however, is changing
at every instant, since the direction of motion is continually

changing.

Linear speeds may be expressed in various units, such as the

number of centimeters per second, feet per second, miles per hour,

etc. The more common units are related as follows :

1 kilometer per hour =0.91 134 foot per second

1 kilometer per hour =54.681 feet per minute

1 mile per hour =0.44704 meter per second

1 mile per hour =1.46667 feet per second

1 mile per hour =88 feet per minute

Angular velocity is defined in exactly the same way as linear

velocity, i.e., the angular velocity of a point about any axis

18
de

O)=
dt (4)

where d6 is the angular displacement of the point about that

axis in the small interval of time dt. Angular velocity is rep-

resented by a localized vector in the same way that angular

displacement is represented by a localized vector. The term

angular speed is used to express the magnitude of the angular

velocity in the same way that linear speed is used to express

the magnitude of linear velocity. Angular speeds may be ex-

pressed in degrees per unit time, radians per unit time or revo-

lutions per unit time. The more common units are related as

follows :

1 radian per second =57.296 degrees per second

1 radian per second =0.159155 revolution per second

11. Acceleration. The rate of increase of linear velocity with

respect to time is called the linear acceleration; i.e., when the linear
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velocity of a point increases by a small amount dv in a small inter-

val of time dt, then the linear acceleration is

_dv=
~d~t' (5)

Note that dv is the difference between the two vectors represent-

ing the linear velocities at the beginning and end of the small in-

terval of time dt, and that in general the direction of the vector

representing this difference will have no fixed relation to the

direction of the vectors representing these two velocities. How-

ever, when the direction of the line of motion does not change,

i.e., when these two velocities are in the same direction, the accel-

eration will likewise be in the same or the opposite direction to

the velocity. In this case the linear acceleration is equal to the

second derivative of the displacement, that is,

JPl
~dP (6)

where dl is the linear displacement in time dt. On the other

hand, when the speed remains constant (i.e., only the direction

of the velocity changes) it can be readily shown that this vector

difference, and therefore the direction of the acceleration a, is at

every instant perpendicular to the path of motion and is toward

the center of curvature of this path, and is equal to the square
of the linear speed s divided by the radius of curvature r of this

path; that is,

s
2

.

a=V (7)

The commonest linear acceleration with which we have to deal

is the acceleration of falling bodies, or, as it is commonly called, the

acceleration
" due to gravity." This acceleration is constant for

all kinds, shapes and sizes of bodies falling in a vacuum, for any
given place on the earth's surface, but varies slightly with the

latitude and with the altitude of the point of observation. At
mean sea level and 45 latitude its value, as determined by
Helmert in 1884, is 980.5966 centimeters per second. This value

is sometimes used as the unit of acceleration; it is called the ac-

celeration of gravity and is represented by the symbol g. Other

common units of linear acceleration are related as follows :
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1 kilometer per hour per second

=27.778 centimeters per second per second

=0.62137 mile per hour per second

=0.028327 gravity

1 mile per hour per second

=44.704 centimeters per second per second

= 1.46667 feet per second per second

=0.045589 gravity
=3600 miles per hour per hour

Gravity =980.5966 centimeters per second per second

Gravity =32.172 feet per second per second

The variation of gravity with altitude and location is very

slight, and the approximate values 981 centimeters per second per

second and 32.2 feet per second per second are as a rule sufficiently

accurate for engineering work, independent of altitude or location.

The angular acceleration of a point is similarly defined as the

rate of change of its angular velocity. In case the point is rotating

in a circle about a fixed axis, its angular acceleration may be

defined as the rate of change of its angular speed about this axis.

If CD is the angular speed then the angular acceleration is

_do)=
~di' (8)

T /}

Since a> =
,
where dO is the angular displacement in time dt,

dt

we also have, under the same conditions, that

_<P6
~df' (9)

12. Mass. The quantity of matter in a body or its mass

can be defined only in terms of some effect produced on the body by
some other body or bodies exterior to it. It has been found by

experiment that two bodies, which appear to our senses to be

identical in every respect, will exactly counter-balance each other

when suspended one from each end of an equal-armed balance in a

vacuum. We may, then, go a step further and define the mass of

any two bodies as equal irrespective of their volume, shape or

chemical composition, if, when they are suspended simultaneously

in a vacuum, one from each end of an equal-armed balance, there

is no tipping of the beam of the balance from its original position.

This criterion for the equality of two masses holds only in case the
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bodies and the balance . are neither electrically charged nor mag-

netised, and both bodies are supported at the same distance

from the earth, and the equilibrium of the balance is not affected

by the presence of any other bodies (except the earth) in the

vicinity.

This is an entirely arbitrary definition, but it has been found

that mass as thus defined is a fundamental property of matter.

Any arbitrary portion of matter may be taken as the unit of mass;

the mass of any given portion of matter may then be expressed as

the number of such equal units, which taken together, and sus-

pended from one arm of an equal-armed balance in a vacuum, will

just counter-balance the given body suspended from the other arm.

Note that mass is a scalar quantity.

The unit or standard of mass adopted in all scientific work is

the gram, abbreviated g; it is the TcWth portion of a certain

platinum-iridium cylinder, known as the International Kilogram
and preserved at the International Bureau of Weights and Meas-

ures near Paris. Some of the common units of mass are related

to one another as follows:

1 metric ton =1000 kilograms
1 centigram =0.01 gram
1 milligram =0.001 gram
1 pound (avoirdupois) =453.592 grams
1 short ton =2000 Ibs.

1 short ton =907.185 kilograms
1 short ton =0.907185 metric ton

1 long or gross ton =2240 Ibs.

13. C. G. S. or Absolute System of Units. We have seen that

the standard units adopted in scientific work for the measurement
of the fundamental quantities of length, mass and time are the

centimeter, gram and second. Units for the measurement of all

other quantities such as surface, volume, velocity, acceleration,

force, etc., can be expressed in terms of these units; such units are

called derived units in contradistinction to the three fundamental
or absolute units of length, mass and time. The system of units

derived from the units of centimeter, gram and second is known as

the absolute system, or the c. g. s. system, from the initials of the

three fundamental units.

14. Density and Specific Gravity. The density of a uniform
substance is defined as the mass of the substance per unit volume.
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In the c. g. s. system density is the weight in grams of one cubic

centimeter of the substance. When the substance is not uniform,
its density at any point is denned as the mass of an infinitesi-

mally small volume taken about the point divided by this volume
;

i.e., calling dv the volume and dm the mass of this volume, the

density is

dm
"dv

'

(10)

The specific gravity of a substance is defined as the ratio of the

weight of a given volume of the substance to an equal volume of

water at standard temperature. Sixty-two degrees Fahrenheit is

usually taken as the standard temperature, although there is no

general agreement on this point. Density on the c. g. s. system
and specific gravity are practically numerically equal.

16. Center -of Mass. A body of mass M which has any size or

shape may be considered as made up of a number of small par-

ticles of masses m
lj
m2 ,

ms , etc., such that m
l
Jrm2 -\-m5 -\ =M.

These particles may be considered as small as we wish, that is

we may consider each particle so small that it occupies but a point

in space. If we consider three mutually perpendicular planes

X, Y, Z, fixed in space, and represent by x
lt y l}

and z l the

perpendicular distances of the particle m l from these planes

respectively, and by xa , y 2,
and z2 the perpendicular distances of

the particle m2 from these three planes respectively, and so on

for the other particles, then the point whose distances from these

three planes are respectively

w +mx
M

-
(11)

M
2 !_

M
is defined as the center of mass of the body. The center of mass

of a body is therefore the point the distance of which from each

of three mutually perpendicular planes is the average distance of

the matter in the body from each of these planes. It can be shown

that the position of the center of mass of a body relative to any
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point in the body is independent of the position of the planes of

reference.

The center of mass of a system of any number of bodies is

defined in exactly the same manner, except that M in this case

is taken as the total mass of all the bodies.

1 6. Linear Momentum and Moment of Momentum. When
a body as a whole is in motion, or when there is any relative

motion of parts of the body, the various points of the body will

in general move with different velocities. It is therefore con-

venient, in analysing the motion of a system of bodies, to con-

sider each body as made up of a number of individual particles

and to take these particles so small that the mass of each may
be considered as occupying but a point in space. The product of

the mass (m) of each particle times its linear velocity (v) is defined

as the linear momentum of the particle, i.e., linear momentum =mv.
Linear momentum is a vector quantity, since v is a vector quan-

tity and m is a scalar quantity. The vector sum of the linear

momenta of all the particles of a rigid body is called the total

linear momentum of the body. From the above definition of

center of mass it can be shown that the total linear momentum
of a body is equal to its total mass times the linear velocity of

its center of mass.

Consider a fixed axis, and a particle of mass m at a distance

r from the axis, and let the particle be moving with a velocity v.

Then the product of m, r and that component u of the velocity
v perpendicular to the plane passing through the particle and
the axis, is defined as the moment of momentum of the particle

about the fixed axis; i.e., moment of momentum mm. The
moment of momentum of a particle is to be taken positive if

the particle moves in a clockwise direction as seen by an observer

looking along the axis in the positive sense, negative if in the

opposite direction. The component u of the linear velocity of

a particle at right angles to a plane passing through the particle

and any fixed axis, is equal to the product of the distance r of

the particle from the axis times the angular velocity a> of the

particle about this axis; therefore the moment of momentum
of the particle may also be written mr^a). In the case of a rigid

body each particle of which has the same angular velocity o) about
a given axis, the moment of momentum about this axis is

equal to wSmr3

,
the summation including all the particles of the
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body. The quantity ^ mr2
is called the moment of inertia of the

body about the given axis of rotation, and is usually written 7;

then 7=Swr 2

(12)

The moment of momentum of a solid body rotating in this man-
ner is called the angular momentum of the body ; angular momen-
tum then equals 7w. The moment of inertia of a body of given
dimensions and given distribution of material about a given
axis may be written Mk* where M is the total mass of the body
and k is a length such that ^ ,

F= *^. (I2a)M
The length k is called the radius of gyration of the body about the

given axis.

17. Conservation of Mass, Conservation of Linear Momentum,
Conservation of Moment of Momentum. It has been found that

every phenomenon of nature, which has so far been tested by
experiment, takes place in such a way that the three following
conditions are invariably satisfied :

1. Matter cannot be created or destroyed. As a consequence
of this condition, if any number of bodies are kept entirely sepa-
rate from the rest of the universe, for example, in a closed vessel

through the walls of which no matter can pass, then the total mass

of these bodies must likewise remain constant, irrespective of any

changes that may take place in these bodies. This condition is

known as the law or principle of the conservation of mass.

2. When the linear momentum of one or more bodies changes
relative to any fixed point, then there must be an equal and

opposite change in the linear momentum of some other body or

bodies relative to this point. This condition is known as the

law or principle of the conservation of linear momentum.
3. When the moment of momentum of any body or bodies

about any fixed axis changes, then there must be an- equal and

opposite change in the moment of momentum of some other body
or bodies about this same axis. This condition is known as the

law or principle of the conservation of moment of momentum.
18. Force. In general terms, a force is that which produces

or tends to produce a change in the motion of a body. Since,

by the principle of the conservation of linear momentum, any

change in the motion of a particle A is accompanied by a change
in the motion of some other particle or particles B, it is convenient
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to consider the force acting on A as due to the presence of the

particle or particles B. Or, we may say that the change in the

motion of A is due to a force produced on A by the particle or

particles B. In other words, we may consider the changes in

motion of material particles as being due to a property possessed

by these particles themselves.* We take arbitrarily as the

measure of the force with which a particle A is acted upon by
a particle B the time rate of change of the linear momentum of

A relative to any fixed point, when the relative motion of the two

particles with respect to each other is unaffected by the presence
of any other particle or particles ;

the direction of the force on
A due to the particle B is defined as the direction of the rate of

change of the linear momentum of A. From the principle of

the conservation of linear momentum we then conclude that the

force with which B is acted upon by A is equal and opposite
to the force with which A is acted upon by B, that is,

"
action

and reaction are equal and opposite." When the masses of

the two particles A and B remain unchanged, the time rate of

change of linear momentum of each particle is equal to the product
of its mass and its acceleration, i.e., the force with which A acts

on B is ma and the force with which B acts on A is m^, where
m and m^ are the masses of A and B respectively and a and a t are

the accelerations of A and B respectively. The direction of the

force acting on A is then the direction of the linear acceleration

of A, and the direction of the force acting on B is the direction

of the linear acceleration of B. The acceleration of A will then

*This conception of the something that causes changes in the motion of

jnatter as localized in material particles merely gives us a convenient way
of describing experimentally observed facts. It is also conceivable that the

changes in the motion of matter are due, not to a propert}r inherent in mat-
ter itself, but to a property possessed by the medium or the "

ether'
'

in

which the particles of matter are immersed. However, a particle of matter
is a tangible thing, whereas the existence of the ether is purely hypothetical.
For this reason we shall adhere to the older conception that every force,
whether it be gravitational, electric, or magnetic, has its origin in a material

particle and that it can make its influenca felt on other particles at a distance

from it. As far as engineering is concerned, we need not concern ourselves

with the mechanism by which this action takes place, about which, at best,
we can only theorize. Analogies, where they help one to form a mental

picture of how certain effects might be produced, are extremely useful and
will be frequently employed; but it must be remembered that analogies do
not explain anything.
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be in the opposite sense to the acceleration of B, and the ratio

of the acceleration of A to that of B will be equal to the inverse

ratio of the respective masses. Since acceleration is a vector

quantity, force is likewise a vector quantity; therefore, when
there are several forces acting on a particle, the resultant force

on the particle is the vector sum of all the forces acting; this

resultant force is also equal to the product of the mass of the

particle by its acceleration in the direction of the force. The
line through a particle in the direction of the force acting on it

is called the line of action of the force.

The unit of force in the c. g. s. system of units is that force

which will give unit linear acceleration (one centimeter per second

per second) to a mass of one gram; this unit force is called the dyne.

A similar unit in the foot-pound-second system, called the poundal,
is sometimes used; it is defined as the force which will accelerate

one pound one foot per second per second.

It is a matter of experience that each particle of matter which

has neither electric nor magnetic properties (to be described later),

when allowed to fall in a vacuum from any given height at any

point near the earth's surface, falls to the earth in a vertical line

with a constant acceleration independent of the size, shape, or

material of the body. We therefore say that the earth exerts

a force on each particle of the body proportional to its mass,
and that therefore the total force with which the earth "

attracts
"

a given body is equal to the total mass of the body multiplied by
its acceleration when falling freely to the earth in a vacuum.

We have seen (Article 11) that the acceleration
" due to gravity

"

is constant for any given point with reference to the earth's

surface, but varies slightly with the location and also with

the elevation above the earth. For most practical purposes the

acceleration due to gravity may be taken as 981. The attraction

of the earth on a body offers a ready means for measuring a force,

since it is only necessary to balance the force to be measured

against the force exerted by the earth on a known mass, or by
measuring the change produced by the force to be measured in

the shape of some body, e.g., a spiral spring, which has been pre-

viously "calibrated "
by suspending known masses from it. These

are the usual ways of measuring forces, since the determination

of the acceleration due to any other force than "
gravity

"
is

extremely difficult.
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When forces are measured in this way, they are usually ex-

pressed in terms of units which are given the same name as the

corresponding units of mass. For example, by a force of one

gram is meant the force with which the earth attracts one gram
at sea level and 45 latitude; this is equal to a force of 980.5966

dynes, or approximately 981 dynes. Similarly, a force may be

expressed as so many kilograms or so many pounds. It should be

noted that forces specified in this way are not absolutely definite

unless the place at which the force is measured is also stated; the

variation at ordinary places of observation, however, is so slight

that it is negligible in ordinary engineering work.

The relations between grams, kilograms, pounds, tons, etc., are

the same whether these quantities are considered as masses or

forces; these relations are given in Article 12. The units kilograms
and pounds as forces are related to the dyne and the poundal
at sea level and 45 latitude as follows :

1 kilogram =980,596.6 dynes
1 kilogram =70.927 poundals
1 pound =444,791 dynes
1 pound =32.172 poundals

19. Moment of Force or Torque. Consider a fixed axis and

a particle at a distance r from this axis. Let / be the com-

ponent of the force / acting on this particle perpendicular to the

plane passing through the particle and the axis. The product

f r is called the moment of the force f about this axis. It can be

deduced from the principle of the conservation of moment of

momentum that, when there are any number of external forces

acting on a system of particles, the rate of change of the total

moment of momentum of the system about any fixed axis is

equal to the algebraic sum of the moments of all the forces about

this axis, irrespective of any forces which the individual particles

may exert on one another.

When a rigid body moves in such a manner that each point
has at any instant the same angular velocity about a given axis,

the rate of change of the angular momentum of the body about

this axis is equal to the product of the moment of inertia (/) of the

body about the given axis and the angular acceleration (a) about

this axis; hence,

/a = 2/ r (13a)
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The moment of a force about any axis is frequently called the

torque about this axis; we then have that the algebraic sum of all

the torques (T lf
T.2,

T3 , etc.) about any axis is equal to the product
of the moment of inertia (7) of the body about this axis and the

angular acceleration (a) about this axis, that is

Ia = T 1 + T 2+ Ts+ . (136)

When the line of action of any force passes through the axis, the

torque corresponding to this force is of course zero. When two

forces are acting on a body, the condition for constant angular

velocity is that the corresponding torque be equal and opposite.

The unit torque in the c. g. s. system of units is the torque pro-

duced on a particle by a force of one dyne acting perpendicular to

the plane determined by the position of the particle and the

axis of rotation and at a distance of one centimeter from the

latter this unit is called the centimeter-dyne. Other common
units of torque are the pound-foot and the centimeter-gram. The
relations of these units one to another are the same as for the

units of energy (see Article 21) having corresponding names.

20. Motion of a System of Particles Acted upon by Several

Forces. When only one of a system of particles is acted upon by a

force external to the system (for example, a stretched string at-

tached to a point in a solid body) the particle on which the force

is acting will in general exert a force on the other particles of the

body and those particles in turn will each exert a force on the par-

ticle to which the force is applied. It can readily be shown that,

as a consequence of the principle of the conservation of linear

momentum, the resultant acceleration of the system of particles in

this case will be such that the center of mass of the system will be

given an acceleration equal to the external force acting on the

particle divided by the total mass of the body; that is, a single

external force acting on any particle of a system will produce the

same acceleration of the center of mass of the system as would be

produced by the same force acting on a single particle located at

the center of mass of system and having a mass equal to the

total mass of the system. In the case of several external forces

acting on the system, the acceleration of the center of mass of

the system will be equal to the resultant force divided by the

total mass, or calling M the mass of the system, F the resultant

of all the external forces acting on it, and A the linear acceleration

of the center of mass, then
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F =MA. (14)

In general, each particle of the system will also have its angular

velocity about any axis changed due to the action of a force on any
one particle. In the case of a rigid body, it can be shown that in

addition to the change in the velocity of the center of mass pro-
duced by this force, each particle of the body wih1

be given an

angular acceleration about an axis through the center of mass per-

pendicular to the plane determined by the center of mass and the

line of application of the force, and that this angular acceleration

will be equal to the moment of the force about this axis divided

by the moment of inertia of the body about this axis. The con-

dition for no angular acceleration is then that the line of action

of the force (or of the resultant force when there is more than

one force acting) pass through the center of mass; vice versa, when
there is no angular acceleration of the body, the line of action

of the force (or of the resultant force when there is more than one

force acting) must pass through the center of mass.

When there are two equal and opposite external forces acting
on a rigid body, there can be no linear acceleration of the body,

i.e., no acceleration of its center of mass. However, when the

lines of action of these two forces do not coincide, the moment of

the two forces about any axis will not be equal, hence there will be

an angular acceleration of the body about its center of mass. The
axis of this acceleration will be through the center of mass per-

pendicular to the plane determined by the line of action of the

two forces, and the resultant moment of the two forces about this

axis will be equal to the product of either force by the perpendicu-
lar distance between their lines of action. Two such equal and

opposite forces are called a couple, and the value of the resultant

moment is called the strength of the couple. Two couples balance

each other, i.e., there is no angular acceleration, when their

strengths are equal.

21. Work and Energy. Whenever one portion of matter

effects a change in some other portion of matter, the former is

said to do work on the latter. The attribute or condition of

matter in virtue of which one portion of matter can effect changes
in other portions of matter is called energy; that is, energy is

the capacity for doing work. One means by which a body A
may produce a change in another body B is by exerting a force on
the latter and producing, as a result of this force, a displacement
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of this body as a whole or a displacement of its individual parts ;

in this case the body A is said to do mechanical work on the

body B. As the measure of the amount of mechanical work
done on a particle of matter by the force which causes its dis-

placement is taken the product of the displacement of the particle

by the component of this force in the direction of the displace-

ment, provided this component of the force remains constant

during the displacement.

In general, the direction of the displacement as well as the

amount and the direction of the force will change as the position

of the particle is changed; in such a case, the above definition

applies only to an infinitesimal displacement of the particle, i.e., to

a displacement so small that while the particle is being displaced

this small amount, the force may be considered constant both in

amount and direction. The mechanical work W done on a

particle displaced any finite distance / is then the sum of the

products of the force for each infinitesimal displacement times

the component of this displacement in the direction of this force
;

i.e.,

W= (fcosO)dl (15)

where/ represents the force during any infinitesimal displacement,
dl the displacement and the angle between the direction of the

displacement and the direction of the force.

As the measure of the amount of work done on a body when
a change is produced in it by other means than by a displacement
of the body as a whole or by a displacement of its individual

parts under the action of a force, is taken the amount of me-

chanical work which would be required to produce exactly this

same change were this change effected solely by a displacement
of the body as a whole or by a displacement of its individual parts

by means of a force exerted on it. For example, when the tem-

perature of a body is increased by any means whatever, the

body is said to have an amount of work done on it equal to the

amount of mechanical work which would have to be done on it

to produce exactly this same rise of temperature.

The results of all known experiments justify the assumption
that whenever work is done on a body this body is in turn given

the capacity for doing an exactly equal amount of work on other

bodies, arid that the capacity of some other body or system ot
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bodies for doing work is diminished by an exactly equal amount.

That is, whenever work is done, some body or system of bodies

loses an amount of energy equal to the amount of work done

and some body or system of bodies gains an exactly equal amount

of energy. This assumption, which is justified by all known

experiments, is known as the principle of the conservation of

energy. This principle, together with the principles of the Con-

servation of Mass, the Conservation of Linear Momentum and

the Conservation of Moment of Momentum, are the four cardinal

principles of all natural science and engineering.

It is found convenient in discussing the various properties

of matter to look upon each property of a portion of matter as

representing a definite amount of energy and to give a special

name to the energy associated with each property. For example,
the energy associated with a body in virtue of its speed is called

its kinetic energy; the energy associated with a body in virtue

of its position with respect to other bodies which exert forces

on it is called its potential energy; the energy possessed by a

body in virtue of its temperature is called its heat energy or its

thermal energy; the energy associated with a body in virtue of

its chemical nature is called its chemical energy, etc. In this

terminology the principle of the conservation of energy may
be stated thus: The only possible changes which can take place

in the energy associated with a system of bodies which neither

influences, nor is influenced by, any other bodies, are changes
in form; the total amount of energy in the system remains unaltered.

It can readily be shown that the kinetic energy of a particle

of mass m moving with a linear speed s is \ ms2
. A rigid

body which is rotating with an angular speed a>, about an axis

fixed in the body and passing through its center of mass, which

axis at the same time has a linear speed s (for example, the arma-

ture of a railway motor moving relatively to the earth) has a

total amount of kinetic energy equal to

iMs2 + i/o>2

(16)

relative to the earth, where M is the total mass of the body and
/ is the moment of inertia of the body about the axis of rotation

fixed in the body. The expressions for other forms of energy
will be given when the corresponding properties of matter are

discussed.
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The unit of work or energy on the c. g. s. system is the work
done when a force of one dyne displaces a particle a distance of

one centimeter; this unit is called the erg. Other common units

of work and energy are related to one another and to the erg as

follows :

1 gram-centimeter =980.5966 ergs (at sea level

and 45 lat.)

1 joule =1 watt-second

1 joule =107

ergs

1 kilogram-meter =105

gram-centimeters
1 foot-pound =1.35573 joules

1 foot-pound =0.138255 kilogram-meter
1 small calorie =0.001 large calorie

1 small calorie =4.186 joules

1 small calorie =3.088 foot-pounds
1 British thermal unit =251.996 small calories

1 British thermal unit =1,054.9 joules

1 British thermal unit =778.1 foot-pounds
1 kilowatt-hour =3,600,000 joules

1 kilowatt-hour =2,655,400 foot-pounds
1 horsepower-hour =2,684,300 joules

1 horsepower-hour =1,980,000 foot-pounds
22. Power. Power is denned as the time rate of doing work,

or as the time rate of change of energy; the two definitions are

equivalent.

When an amount of energy dW is transferred in an infinitesimal

interval of time dt, then the corresponding power is

.

dt (17)

When this rate of transfer of energy is constant, then the power

may be defined as the amount of energy transferred, or the

work done, in unit time. It should also be noted that since energy
or work is the product of force and displacement, power may also

be defined as the product of force and velocity.

In the c. g. s. system the unit of power is the power required

to do work at the rate of one erg per second. This unit is seldom

used as it is an extremely small quantity; instead is employed
a unit which is 10,000,000 ergs per second, called the watt; one

watt is therefore equal to one j oule per second. Other common units
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of power are related to one another and to the watt as follows :

1 kilowatt

1 megawatt
1 metric horsepower
1 metric horsepower
1 horsepower
1 horsepower

= 1000 watts

= 1000 kilowatts

=75 kilogram-meters per second

=0.735448 kilowatt

=33,000 foot-pounds per minute

=0.74565 kilowatt

It is to be noted that torque multiplied by angular velocity

(in radians per unit time) gives the power of a rotating body ex-

pressed in the corresponding units. In stating the performance
of electric machines use is frequently made of the expression
"
torque at one-foot radius "; this is equivalent to expressing the

torque in pound-feet. (In the expression
"
torque at one-foot

radius," the word torque is incorrectly used, since torque is in-

dependent of the radius what is meant is the "
force

"
at one

foot radius.) The following are useful relations :

Power in kilowatts = 1.4197 XlO"4 X torque in pound-
feet X revolutions per minute.

Power in horsepower = 1 .9040 X 1 0"
4X torque in pound-

feet X revolutions per minute.

23. Harmonic Motion. A particular type
of motion which is not only of considerable

importance itself, but also serves as a useful

analogue in the discussion of electric circuits,

is that known as harmonic motion. Harmonic
motion is defined as motion such that the

acceleration of the moving body is propor-
tional to, and in the opposite direction to,

the displacement of the body from its position

of equilibrium. (The equilibrium position of a

body is that position in which the resultant

force acting on the body is zero.) Harmonic

motion is illustrated by the motion of a pen-

dulum, the motion of a weight attached to a

spring, the motion of each particle of a tuning

fork, the motion of the balance wheel of a

watch, etc. The first three are examples of harmonic motion of

translation, the latter of harmonic motion of rotation.

Consider the case of a simple pendulum. Let B be the bob
of the pendulum and let it be so small that it may be considered

Fig. 8.
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as a single particle of mass m, and let this bob be suspended by
a weightless thread of length I from a fixed point P. Let the

bob be displaced from its. position of equilibrium and at any
time t let its displacement, measured along the arc in which it

moves, be x = arc OB. The linear velocity at which the bob

dx
is moving at any instant is then and its kinetic energy is

therefore / dx\ 2

im I I

\dt)

The potential energy of the bob at this instant is

mg Q =mgl (I cos ft)

/>

where ft
= and g is the acceleration due to gravity. The total

energy of the bob is then

Tf=i m (\\mgl (l-cos ft)
\dt /

and if there is no friction this energy must be constant, and there-

fore the rate of change of this total energy with respect to time

must be zero. Hence

dW dx d*x
, dfi

dft 1 dx
whence, since =

,

dt I dt

_
For ft small, sin ft

=
ft when ft is expressed in radians

;
whence

T /

7*

for small, sin B = and therefore
i I

<Px_ g

* T (18)

Equation (18)* tells us that the linear acceleration of the bob

along its path of motion is proportional to, and in the opposite

direction to, its displacement; hence this is a case of harmonic

motion.

*This equation may also be deduced directly from a consideration of the

forces acting on the bob at any instant.
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The solution of any differential equation of the form

d*x

~dt^-
)X

where CD is a real constant, is

x=X 8in(ot + 0) (19)

where X is the maximum value of x, and 8 is a constant angle

determined by the value of x for t=0 and the maximum value

X of the variable x. Let x be the value of x for t =0, then

(20)

This angle 9 is called the phase angle of x, and measures the degree
of

"
fullness

"
of x when t=Q, just as the phase of the moon

represents its degree of fullness. When 0=0, x starts off with

TT

its zero value and increases
;
when 6 =

,
x starts off with its

maximum or full value and decreases. The constant o> depends

upon the value of t required for x to pass through all possible

values which it may take and back again to its original value;
the amount by which t must increase in order that x may pass

through all its possible values and back again is

This value T is called the period of x. The number of periods

corresponding to an increase of unity in t (e.g., if t represents

time in seconds, the number of periods per second) is called the

frequency of x; that is, the frequency is

/=^or
= 2,r/. (22)

Equation (19) may be represented by a sine curve, Fig. 9,

where abscissas are o) t and ordinates x; the distance along the

axis of ait between the points where the curve cuts this axis in

the same direction is equal to 2ir radians or 360 degrees. The

curve marked "x" in the figure is plotted for the case when 9 =

that is, for x a maximum and decreasing at o>=0. The curve
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marked "
v
"

is for 6 = TT. Note that the angle 6 in any case

is also equal to the distance to the left of the origin at which

the curve first crosses the base line in the positive direction.

A function of the form X sin (a)t + 0}, that is, a function which

can be represented by a single sine wave, is sometimes called

\ \

Fig. 9.

a simple harmonic function, or briefly, a harmonic function. Other

periodic functions are called non-harmonic functions.

In the case of the simple pendulum let the bob be held out

a distance A from its equilibrium position, and at a given instant

let it be released. Let time be counted from this instant; then

for t =0 we have
35=4

and the velocity at this instant is

dx

Substitution of these values in (19) gives

A =X sin

0=XQ cos 9

whence 9= and X =A. Therefore the displacement of the
tt

bob from its equilibrium position at any instant is

x =A sin ( a) + \ =A cos a) t

and its velocity at this instant is

dx
v= = ft)A sin CD t

dt
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where
G>=-*ly.

Note that the displacement has its first positive

maximum after the start for a) t = 2 TT and the velocity its first

positive maximum for o> t
;
hence the velocity reaches a pos-

itive maximum a quarter of a period ahead of the displacement, or

the velocity leads the displacement by 90 (see Fig. 9). Two sine

waves of the same frequency which reach their positive maxima
at different times are said to differ in phase by the angle corre-

sponding to the time interval between successive positive maxima
of the two waves. When both waves are expressed as sine

functions, the difference in phase is the difference between the

phase angles of the two functions. In the above example

la)t + -~\x=A sin

v=a)A sin

whence the phase angle of x is and the phase angle of v is TT;
2i

therefore the difference in phase between the two is

77 7T
TT - = or 90 degrees.

The function with the larger (algebraically) phase angle always
leads. Note that the leading curve is to the left.

24. Temperature. The physical properties of any piece of

matter depend, among other things, upon its temperature, i.e.,

upon its relative hotness or coolness referred to some standard sub-

stance under standard conditions. The idea of temperature is

familiar to every one, and one's so-called temperature sense en-

ables one to form a rough judgment of the relative hotness or cool-

ness of two or more bodies. For scientific purposes, however, a

more reliable and more delicate means of
"
measuring

" tem-

perature is desirable. Any device which serves this purpose is

called a thermometer.*

The standard temperature-measuring device is the constant

volume hydrogen thermometer, which consists essentially of a

suitable receptacle containing a constant mass of hydrogen gas

kept at constant volume, with means provided for measuring any

*A thermometer designed to measure very high temperatures is called a

"pyrometer."
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variation that may be caused to take place in the pressure of the

gas. The numerical value of the temperature of any substance

is then defined in terms of the relative pressure of this gas when the

receptacle is immersed in the substance, referred to the pressure

of this gas when the receptacle is immersed in melting ice at a pres-

sure of 760 mm. of mercury, the pressure of the gas in each case

being measured after it has reached a constant value. The tem-

perature of melting ice at a pressure of 760 mm. of mercury is

arbitrarily taken as zero degrees, and the temperature of saturated

steam at a pressure of 760 mm. of mercury is taken as 100 degrees.

Calling P! the pressure of the hydrogen gas when the receptacle is

immersed in the melting ice and p2 its pressure when immersed

in the saturated steam, and p its pressure when immersed in any

given substance S (the pressure in each case being measured after

the lapse of a sufficient time for it to reach a constant value), the

numerical value of the temperature of the given substance is

7) P,
defined as t = - XlOO degrees centigrade.

Prpi
The Fahrenheit scale of temperature is derived in the same

manner, except that the temperature of the melting ice is taken as

32 degrees and that of the saturated steam as 212 degrees. A
temperature of t

f degrees Fahrenheit is then equal to

tc =f- (tt
-

32) degrees centigrade. (23)

For practical purposes, the volume expansion of mercury in

glass, or of alcohol in glass, is used as a measure of temperature.

For strictly accurate measurements, such mercury-in-glass or

alcohol-in-glass thermometers should be calibrated by comparison
with a standard hydrogen thermometer, but for ordinary work it

is sufficient to determine the two points on the thermometer scale

corresponding to the temperature of melting ice and saturated

steam under standard conditions, and to assume that the volume

expansion of the thermometer fluid is proportional to the tem-

perature.

25. Heat Energy. All known experiments lead us to believe

that whenever the temperature of a body increases, energy is

transferred to it, and that whenever the temperature of a body
decreases energy is transferred from it; further, that there is

a fixed numerical relation between the quantity of energy trans-

ferred to a given body and its change in temperature. This nu-



FUNDAMENTAL IDEAS AND UNITS 31

merical relation can be determined directly only in case the

change in temperature is produced by mechanical work, since,

by definition, the measure of energy is the product of a force

by a distance. Careful experiments have shown that the work

required to raise the temperature of one gram of water from

to 100 centigrade is 418.6 XlO7

ergs. We may then take as

the unit of heat energy the one-hundredth part of the work

required to raise one gram of water from to 100 degrees centi-

grade. This unit is known as the mean small calorie, and in

terms of it, the amount of energy involved in various heat effects

may be measured with comparative ease. It should be noted

that the work required to raise one gram of water one degree

is different at different temperatures; the variation is negligible,

however, except in the most refined work.

The above numerical relation between the mean small calorie

and the erg is called the mechanical equivalent of heat on the c. g. s.

system. Another way of expressing the mechanical equivalent
of heat is, the number of foot-pounds of work required to raise

the temperature of one pound of water one degree Fahrenheit

or at near its maximum density (39.1 Fahrenheit) ;
this may

likewise be used as a unit of heat energy, and is known as the
"
British Thermal Unit." See Article 21 for the relations between

the various units of heat energy.

Practically every phenomenon in nature is accompanied by a

change in temperature of one or more bodies. In certain cases

the entire amount of energy transferred in the process may be

caused to appear as heat energy, and when this can be done the

total amount of energy transferred can be measured with a fair

degree of accuracy. Usually, the heat energy developed in any

process is not in a useful form; in such cases the heat energy
is said to be "

dissipated."

26. Efficiency and Losses. In any machine or apparatus
which is employed for transforming energy from one form into

another or for transferring energy from one place to another,
a certain amount of energy is always converted into forms which

cannot be readily utilized. In general, this useless energy appears
as heat energy. The rate at which energy is put into a machine

is called the power input into the machine and the corresponding
rate at which the machine gives out useful energy is called the

power output, or the load on the machine. The difference between
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the power input and the power output is called the power loss.

The ratio of the output P to the input Pt for any given output
of a machine is denned as the efficiency of the machine at this

output; this ratio is usually expressed as a percentage. The

per cent efficiency e is then

e = 100^. (24)
* i

The ratio of the difference between the input P
i
and the output

P to the input Pi expressed as a percentage, is called the per cent

power loss p; that is,

p __ p
p = 100 - = 100-e. (25)

P.i

Sometimes it is more convenient to express the power loss as a

percentage of the output P . Let p' be the percentage loss

expressed in this manner
;
then

(26)-
P 100-p

The efficiency of a machine varies as a rule with the load

or output.. For no load, i.e., no output, the efficiency is zero,

since in general energy must be supplied to the machine to operate

it, even though the machine does no useful work; as the load

comes on the efficiency increases up to a certain output, depend-

ing on the design of the machine, and then decreases.

The rated load or rated power output of a machine which

is designed for continuous service is the maximum rate at which

useful energy may be transferred through the machine con-

tinuously without injury to any of its parts. In most electric

machinery this is determined by the rise of temperature pro-

duced by the energy dissipated or
"

lost
"

in the windings and

iron cores. As a rule, the insulation of the windings will deterio-

rate if the temperature of the machine exceeds 75 centigrade.

27. Newton's Law of Gravitation. From the observations by
various astronomers of the revolution of the planets about the sun,

and of the revolution of the moon about the earth, Newton was

led to the belief that every particle of matter in the universe

attracts every other particle with a force proportional to the pro-

duct of the masses of the two particles, and inversely proportional
to the square of the distance between them, namely with a force

' T (27)
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where & is a constant depending upon the units in which m, m', r,

and / are measured. Further observations and careful laboratory

experiments by Cavendish and others have confirmed this belief

which is now accepted as one of the fundamental " laws "
of

nature. The constant k has been determined by experiment to be

6.66 XlO"
8 when m and m' are expressed in grams, r in centi-

meters, and / in dynes. For small masses, therefore, such as one

ordinarily deals with in the laboratory, this force is extremely

small, and can be detected only with the most delicate instruments.

As we shall see presently, the mutual attraction or repulsion

between magnetic poles and also the mutual attraction or repul-

sion between electric charges obey a law of exactly the same form.

Hence the study of forces which obey this law becomes of prime

importance. It should be borne in mind that any conclusions

derived from this law of force action will apply to any one of the

three agents, gravitational masses, magnetic poles, and electric

charges. In order to express such deductions in terms of physical

quantities, we shall consider first the forces produced by magnetic

poles.

PROBLEMS

1 . Find the speed in meters per second and in feet per second

of an electric locomotive travelling at a uniform speed of 60 miles

per hour. If the locomotive is travelling at this speed around

a curve of 1000 feet radius, what is the direction and amount

of the acceleration in feet per second per second and in miles

per hour per second?

Ans.: 26.8 meters per second; 88.0 feet per second; 7.74 feet

per second per second
;
5.28 miles per hour per second. Accelera-

tion toward center of curvature.

2. In Problem 1, if the distance between rails is 4 feet, 8.5

inches, how many inches would the outer rail have to be elevated

above the inner rail in order that the flanges of the locomotive

wheels exert no side thrust on the rails?

Ans.: 13.60 inches. (In practice the elevation would be

about half this
;
that is, the actual force on the outer rail would

be about half what it would be were both rails in the same hori-

zontal plane.)

3. If in Problem 1 the outer rail of the curve is elevated 6

inches and the locomotive weighs 100 tons, what will be the
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average shearing force exerted on each of the spikes holding
the rails to the ties? Assume the total force to be exerted against
15 spikes, and neglect the friction of the rail against the ties.

Gauge of track 4 feet, 8.5 inches.

Ans.: 1794 pounds.
4. A man stands on the floor of a trolley car which is travelling

at the rate of 20 miles an hour around a curve of 100 feet radius.

How many degrees from the vertical must the man lean to prevent
his falling over? Assume the man may be represented by a

rod standing on its end. Draw a complete vector diagram of

the forces acting.

Ans.: 15.0.

5. The tangential force exerted by a brake on a pulley which
is rotating at a speed of 500 revolutions per minute is 200 pounds.
If the diameter of the pulley is one foot, calculate the torque
in pound-feet developed by the pulley, and the amount of work
in horsepower-hours done by the pulley in 10 minutes.

Ans.: 100 pound-feet; 1.587 horsepower-hours.
6. The radius of gyration of a cylinder about its own axis

D
is equal to where D is the diameter of the cylinder. What is

the moment of inertia of an iron cylinder 5 feet in diameter and
4 feet long? Specific gravity of iron 7.7

; give answer in pound-
foot units. _ 2

Ans.: 59,100 pound-foot.

7. If the cylinder in Problem 6 is rotating at a speed of 1000

revolutions per minute what is its kinetic energy in foot-pounds
and in horsepower- hours?

Ans.: 324,000,000 foot-pounds; 163.6 horsepower-hours.
8. If the force driving the cylinder in Problem 7 is removed,

how many hours will it take the cylinder to come to rest if the

opposing torque due to friction is constant and equal to 300

pound-feet?

Ans.: 5.73 hours.

Note : The data given in Problems 6 to 8 are fairly representa-

tive of a large turbo-generator, except that the friction torque
is not constant. Unless a brake of some kind is used the rotating

part of such a machine will continue in motion for several

hours after the steam is shut off.

9. A weight of 500 pounds falls from rest a distance of 100
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feet into a tub of water. If the tub contains 10 gallons of water,
and all the kinetic energy lost by the weight when it is brought
to rest goes into heating the water, what will be the rise in the

temperature of the water produced thereby, assuming no radia-

tion of heat energy? Give answer in degrees centigrade and

degrees Fahrenheit.

Ans.: 0.430 centigrade; 0.774 Fahrenheit.

10. The thermal efficiency of the best modern boiler is about

65 per cent
; i.e., of the total energy in the coal 65 per cent can

be transferred to the steam. The efficiency of a modern steam

engine working under the best conditions is about 20 per cent;

i.e., of the total energy in the steam which passes through the

engine only 20 per cent is converted into mechanical energy.
A pound of high-grade coal contains 14,000 British thermal units

of energy. Assuming a boiler efficiency of 65 per cent and an

engine efficiency of 20 per cent, how many pounds of coal will

be required to produce one horsepower-hour at the engine shaft?

What is the over all efficiency of boiler and engine?
Ans.: 1.40 pounds of coal per horsepower-hour; 13 per cent.

(In practice a considerably greater amount of coal is required

per horsepower-hour, due to the fact that an engine seldom

works at full load all day and the efficiency is less for light loads.

A large steam plant developing from 10,000 to 40,000 horsepower
maximum load uses about 2 pounds of coal per horsepower hour;
small plants of a few hundred horsepower capacity use about 5

pounds of coal per horsepower hour.)

11. If the efficiency of a water wheel is 80 per cent, how many
cubic feet of water per second falling through a distance of one

foot will be required to develop energy at the rate of one horse-

power? Let Q be the number of cubic feet per second, H the
" head "

or distance through which the water falls, and P the

horsepower; what is the relation between P, Q, and // for a

wheel of 80 per cent efficiency?

QH
Ans.: 11 cubic feet per second; P=

12. A lead ball which has a mass of 1 pound is suspended
by a light string from a fixed support; distance from center of

mass of ball to support 1 yard. The ball is displaced a horizontal

distance of 3 inches from the vertical and then let go. What is

the expression for the displacement (in inches) of the ball from the
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vertical t seconds later, neglecting the effect of friction
;
what will

be its maximum velocity in inches per second and what will be

its displacement from the vertical at this instant; what will

be the frequency of the pendulum?
Ans.: x=3 cos (3.270 inches; 9.81 inches- per second every

time the displacement from the vertical is zero; 0.52 cycles per

second.

13. Plot to scale the values of the displacement, velocity,

and acceleration of the vibrating bob in Problem 12. What
are the phase relations between the velocity and the displace-

ment; between the velocity and the acceleration?

Ans.: The velocity leads the displacement by 90 and lags

90 behind the acceleration.

14. What will be the kinetic energy of the ball in Problem 12

when it is half way between its equilibrium position and its point

of maximum deflection? What will be its potential energy at

this instant? Give answers in joules and in foot-pounds.

Ans.: Kinetic energy 0.251 foot-pounds or 0.340 joules;

potential energy 0.084 foot-pounds or 0.114 joules.

15. Two lead spheres each 1 foot in diameter are placed near

each other with their nearest points 1 inch apart. The density

of lead is 11.3. Calculate the force (gravitational) in dynes with

which the two spheres attract each other, assuming the total

mass of each sphere concentrated at its center.

Ans.: 1.73 dynes.



II

MAGNETISM

28. Magnets. Magnetic Poles. It has long been known

that a certain mineral, called the loadstone, has the property of

attracting pieces of iron or steel with a readily perceptible force,

even though the loadstone and the piece of iron or steel be com-

paratively small. In other words, between loadstone and iron or

steel there is a force of attraction many times greater than the

force of attraction between like masses of ordinary matter. It

has also been known for many centuries that a steel bar can be

given this same property by stroking it lengthwise with a piece of

loadstone, and that when the bar thus treated is freely suspended,

it takes up a definite position with respect to the earth, one end

of the bar pointing approximately toward the north geographical

pole and the other end toward the south geographical pole. A
steel bar having this property is called a magnet, the north pointing

end is called its north or positive pole and the south pointing end its

south or negative pole. In general, a magnet may be defined as a

body which possesses the property of attracting with a readily per-

ceptible force pieces of iron or steel, and which, when freely sus-

pended, takes up a definite position with respect to the geographical

meridian. As we shall see later on, it is possible to
"
magnetise

"

a steel bar in other ways than by stroking it with a piece of load-

stone; in particular, when an insulated wire is wrapped around

such a bar and an electric current is established in the wire, the

bar becomes magnetised; this is the modern way of making a

magnet and the only way of making a powerful one.

29. Paramagnetic and Diamagnetic Substances. It is found

by experiment that a magnet attracts not only iron and steel, but

to a less extent nickel and cobalt. Bismuth, on the other hand, is

repelled by a magnet. Substances which of themselves are not mag-
nets but which are attracted by a magnet are called paramagnetic

substances, or simply magnetic substances; substances which of

themselves are not magnets but which are repelled by a magnet are

called diamagnetic substances. Except in the case of iron, steel,

37
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nickel, and cobalt, the force of attraction for paramagnetic bodies

is extremely small; of the diamagnetic substances bismuth is the

only one which is strongly repelled by a magnet, and the repul-

sion even of bismuth is weak compared to the attraction of iron.

Whether or not a substance is attracted or repelled by a

magnet depends upon the nature of the medium surrounding the

magnet and the substance. For example, it is found by experi-

ment that a solution of perchloride of iron is attracted by a magnet
when the solution and the magnet are surrounded by air. On the

other hand, if the magnet is immersed in the solution and a bubble

of air formed in the latter, the air will be repelled by the magnet.
Therefore perchloride of iron is paramagnetic with respect to air,,

and air is diamagnetic with respect to perchloride of iron. In

other words, paramagnetic and diamagnetic are purely relative

terms. It is customary to take air as the standard of reference,

although in certain cases it would be preferable to take free space

or the " ether
"

as the standard. However, the difference be-

tween air and free space in respect to their magnetic qualities is

practically inappreciable, so that a body which is magnetic with

respect to air is likewise magnetic with respect to free space. In

the following discussion, when the terms paramagnetic and dia-

magnetic are used, air is to be understood as the standard of

reference; i.e., air is assumed to be non-magnetic.

30. Attraction and Repulsion of Magnetic Poles. A piece of

iron or other magnetic substance which of itself is not a magnet,

will be attracted by either pole of a magnet when placed near this

pole. However, when two magnets are placed near each other,

the mutual force between the two may be either an attraction or a

repulsion. When the two like poles of the two magnets are

nearer together than their unlike poles, the force is a repulsion;

when the unlike poles are nearer together, the force is an attraction.

This is readily tested by suspending one of the magnets by a thread

attached to its middle point and bringing the two ends of the

second magnet successively near one end of the suspended magnet.

We therefore conclude that like magnetic poles repel each other

and unlike poles attract each other. Experiment also shows that

the force of attraction or repulsion of two magnets falls off rapidly

as the distance between them is increased.

31. Magnetic Charge. A Magnetic Pole as a Force-Producing

Agent. It is found by experiment that the forces produced by
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magnets on one another and upon magnetic bodies placed in their

vicinity may be accounted for in terms of a something confined

solely to the external surfaces of such bodies. In the case of a

long, slim magnet this force-producing agent is confined almost

entirely to the ends of the magnet. Since the two ends of a mag-
net possess opposite properties, it is necessary to look upon this

force-producing something as different at the two ends of the

magnet. This something at the north pointing end of a magnet

may be called a "
positive magnetic charge/' and the something

at the south pointing end a
"
negative magnetic charge." How-

ever, it is customary to use the expression
" north (or positive)

magnetic pole
"

to signify this something at the north pointing
end of a magnet and the expression

" south (or negative) magnetic

pole
"

to signify this something at the south pointing end. When
used in this sense, the word "

pole
"

signifies the force-producing

agent associated with the surface of a magnet rather than the

particular part of the magnet at which this force-producing agent
is located.

It is to be noted that although the external forces produced by
a magnet may be accounted for in terms of a something confined

solely to its external surface, there is also a change produced

throughout the substance of a body when it is magnetised. For,
when such a body is broken in two, the two broken ends are

found to be the seat of equal and opposite magnetic poles.

There are also certain very special cases in which the poles of a

magnetised body must be considered as distributed throughout
its interior, but the theory developed below for surface poles may
be readily extended to such cases.

32. Induced Magnetisation. In order to express in an exact

quantitative manner the value of the mutual forces produced on

one another by magnetic poles it is always necessary to take into

account the effect of any magnetic bodies which may be in their

vicinity. As we have seen, when a magnetic body which itself is

not a magnet (a small rod of soft iron, for example) is placed in

the vicinity of a magnetic pole, this substance is attracted whether

the pole is a north or a south pole. In fact, the body acts exactly
like a magnet, except that the strength and position of its poles

depend on its position with respect to the magnet attracting it.

The magnetic body is therefore said to be magnetised by
"
induc-

tion." Since the magnetised body is always attracted, the loca-
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tion of the poles induced on it is always such that two of the unlike

poles on the attracting magnet and on the magnetised body re-

spectively are nearer together than the like poles on these two

bodies. A diamagnetic body placed in the vicinity of a magnet
is similarly magnetised by induction, except that in this case,

since there is a repulsion between the inducing magnet and the

diamagnetic body, the like poles are nearer together. For

example, a small rod AB of soft iron placed in the vicinity of a

magnet in the various positions shown in Fig. 10, is magnetised as

\n_

Fig. 10.

indicated. When the rod is removed from the vicinity of the

magnet the induced poles disappear almost entirely. In case a

hard steel rod, originally unmagnetised, is placed near the mag-

net, it becomes likewise magnetised by induction, though to a

less extent than the soft iron. If, however, the steel rod is removed

from the vicinity of the magnet it is found to retain to a consid-

erable degree its magnetisation, that is, the rod becomes a "
per-

manent "
magnet.

The phenomenon of induced magnetisation is a most important
one both in practice and in theory, and we shall return to this sub-

ject for a more detailed study. The chief fact to be borne in mind

for the present is that any magnetic or diamagnetic body placed in

the vicinity of a magnet has magnetic poles, induced on its surface,

and that these induced poles produce forces on every magnetic pole,

permanent or induced, which may be in the vicinity. For example,
when two magnets are separated from each other by a given dis-

tance and there are no magnetic or diamagnetic bodies in the

vicinity, they will exert a certain force upon each other. When a

magnetic body, such as a piece of unmagnetised soft iron, is placed
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near them (see Fig. 11), the force acting on each magnet will

evidently be changed, since the poles s and n induced on the

Fig. 11.

soft iron also exert forces upon each magnet. In the case illus-

trated, the resultant force acting on each magnet will be increased

and also changed in direction. Again, when the entire region

around the two magnets is filled with a magnetic liquid (per-

chloride of iron, for example), magnetic poles are induced on

the surface of the liquid where it comes in contact with the poles

of the magnets, Fig. 12, and these

induced poles are of the opposite

sign to those of the magnet at

this surface. The effect of these

induced poles in this case is to

decrease the resultant force on

each magnet, Art. 56. The as-

sumption that air is non-magnetic

is equivalent to assuming that there

are no poles, either permanent
or induced, produced on the air

in contact with a magnet. Fis- 12 -

33. Point-Poles. Experiment shows that it is physically im-

possible to have a magnetic
"
charge

" or pole of finite amount con-

centrated in a point. However, for the purposes of mathematical

analysis of the forces produced by magnets, it is frequently con-

venient to consider a magnetic pole as occupying but a point in

space. We may call such a pole a point-pole. A physical

approximation to such a point-pole is the pole on a very small area.

34. Properties of Magnetic Poles. We are now in a position

to state the properties which must be attributed to magnetic

poles in order to account for the experimentally observed facts

concerning their mutual action. When the induced magnetic poles

as well as the permanent poles are taken into account, and air is

assumed to be non-magnetic these properties are the following :

Magnetic Liquid
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1. Like poles repel each other; unlike poles attract each other.

2. Whenever a magnetic pole of one sign exists on a body there

is always an equal pole of the opposite sign on some other part of

the same body. Neither kind of pole can be produced by itself.

3. Two point-poles of "strengths" m and mf respectively located

a distance r apart repel each other with a force proportional to the

product of the strengths m and mf and inversely proportional to the

square of the distance between them; but independent of the

medium between them; that is, with a force

ram' (1)

7~
where fc is a constant depending upon the units in which m, mf

} r,

and / are measured.

Since we have not as yet specified what we shall take as a

measure of the strength of a magnetic pole, we may select the unit

of pole strength so that this constant k is unity when r is measured

in centimeters and / in dynes. Equation (1) then becomes

m mf . (la)

In this expression for the force between two magnetic poles

the strengths of the poles m and mf are to be expressed as positive

numbers when they are north or positive poles and as negative
numbers when they are south or negative poles. Hence when m is

a north pole and mf a south pole, or vice versa, the force of repul-

sion / is likewise negative, that is, the force / is an attraction; this

is in accord with the first property attributed to these poles. The

expression (la) as thus understood may be looked upon as a

definition of the measure of the strength of a magnetic pole. For,

in accordance with this law of the mutual action of two point-poles,

we may define the strengths of two such poles ra and m' as equal
when each repels with the same force /, a third point-pole m"

placed at the same distance from each. A unit point-pole is then

a point-pole which repels with a force of one dyne an equal point-pole

placed one centimeter away. This unit is called the c. g. s. electro-

magnetic unit of pole strength.

The above law of mutual action of two magnetic poles applies

directly only to point-poles, for when the poles are extended over

a surface the distance r between the poles has no definite meaning,
since the distance between every pair of points taken respectively
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in the two surfaces will be different. However, we may readily

obtain an expression for the mutual action of two such poles in the

following manner. Each pole may be considered as divided into

a large number of areas so small that they may be considered as

Fig. 13.

points, and we may call the pole strengths of these areas m
lt m2,

etc., for the first pole and m' l} m' 2 , etc., for the second pole, and
rn ,

rl2 , etc., r21 ,
r22 ,

etc. the distances between m^ and m'^ m v

and m' 2 , etc., and m '

2 and ra'j, m 2 and m' 2 , etc., respectively.

The total force exerted by one pole on the other will then be

11 , 2 2 m2 m
3 j- -7- "-*-

~

'11 '12 '21 '22

where the terms of the right-hand side of the equation are added

vectorially.

35. Pole Strength per Unit Area. In order to calculate the

actual value of this force it is of course necessary to know the value

of the pole strength of each of these elementary surfaces; or, what
amounts to the same thing, the pole strength per unit area at each

point of the surface. Calling ds the area of any elementary sur-

face and dm the pole strength of this surface, the pole strength per
unit area, is then

dm

"*.
(2)

or the pole strength of this area is

dm=crds (2a)

There are experimental methods for determining the value of

the pole strength per unit area of a magnetised surface; one

method is described in Article 37.

36. Magnetic Field of Force. Field Intensity or Magnetising
Force. A magnetic pole placed anywhere in the region of space

occupied by, or surrounding, a magnet, or in the vicinity of an
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electric current (see Chapter III), will have a force exerted upon it :

the region of space in which a magnetic pole is acted upon by a

force is therefore called a magnetic field of force. In general, when
a magnetic pole is placed in the vicinity of a magnet or of a mag-
netic body this pole will induce new poles on the magnet or mag-
netic body. Again, in order to place a magnetic pole inside a

magnet it is necessary to cut a hole in the magnet, and, as pointed

out in Article 46, whenever a hole or gap is cut in a magnet,

magnetic poles in general appear on the walls of this gap. Hence,
when a magnetic pole is placed near or inside a magnet or magnetic

body, new poles will in general be formed. However, the force

which would be exerted by the poles originally in the field on a pole

placed at any point in the field, whether inside or outside the mag-

net, may be calculated from the fundamental law of the mutual

action of two magnetic poles (equation la). Similarly, the force

exerted by an electric current on a magnetic pole may be calcu-

lated from the fundamental law of the mutual action of a current

and a pole (see Chapter III). The force in dynes which would be

exerted on a unit north point-pole placed at any point in a magnetic

field, due solely to the poles and currents originally in the field, is

defined as the intensity of the magnetic field at that point due to these

agents. The field intensity at any point is also called the mag-

netising force at that point.

It should be noted that the unit of field intensity is not the

dyne, but is a dyne per unit pole; compare with power, the unit of

which is not the erg, but is an erg per second. No specific name has

been given to the c. g. s. unit of field intensity, but it is usually

expressed as so many
"
gilberts per centimeter," the meaning of

which expression is explained in Article 60 . Magnetic field intensity

or magnetising force is also expressed in terms of
"
ampere-turns

per centimeter
"

or
"
ampere-turns per inch," the meaning of

which expressions is explained in Chapter IV. The relations be-

tween these various units are

1 c. g. s. electromagnetic unit =1 gilbert per centimeter

1 c. g. s. electromagnetic unit =0.79578 ampere-turns per
centimeter

1 c. g. s. electromagnetic unit =2.0213 ampere-turns per
inch

Since the force in dynes produced by a magnetic point-pole of

strengthm at a distance r centimeters away on a point-pole of strength
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unity is , the intensity of the magnetic field at a point P a

distance of r centimeters from a point-pole of strength m, due solely

to this pole ;
is

H=

whether this point be outside or inside a magnet. The field in-

tensity H will be in the direction of the line drawn from m to P
where m is positive, and in the direction of the line drawn from P
to m when m is negative. Field intensity is therefore a vector

quantity.

The field intensity at any point due to any number of point-

poles is then the vector sum

H=2 (3a)

r
2

where the symbol S with a line over it is used to represent a vector

Tfl

sum. Each pole then contributes a component to the result-
r
2

ant intensity, where m is the strength of this pole and r is its

distance from the given point.

The force exerted on any point-pole of strength m in a magnetic
field is

F=mH (4)

where H is the field intensity at the point occupied by the pole

m due to all the poles in the field except the pole m. The field due

to any given pole can of course produce no mechanical force on this

pole itself;
" a man cannot lift himself by his boot-straps."

When the field intensity has the same value at every point

throughout a given region, the field is said to be uniform through-
out that region; we shall find several examples of practically uni-

form magnetic fields.

37. Example Illustrating the Application of Above Definitions.

The following example will serve to illustrate the ideas just dis-

cussed. The problem chosen is to find the field intensity
at any point on the axis of a magnet having the shape of

a long right cylinder and having its poles confined entirely to

the end surfaces of the cylinder and of the same strength per unit

area at each point of these end surfaces. Let & be the strength

per unit area of the north pole of this magnet and cr the pole

strength per unit area of its south pole. Consider first the field



46 ELECTRICAL ENGINEERING

intensity clue to its north pole. Let the point P, Fig. 14, at which

the intensity is to be determined, be at a distance a from this pole,

and let the radius of the magnet be r. Consider a ring drawn in the

end surface with its center at N on the axis of the magnet, and

let the radius of this ring be x and its width be dx. The elementary

pole at any small area ds of this ring will produce a field intensity

at P, and this force will have a component in the direction NP and

a component perpendicular to NP. The elementary pole on an

equal small area ds' diametrically opposite ds will likewise produce
a field intensity at P numerically equal to that produced by the

Fig. 14.

pole at ds, but in the direction shown. Hence the components of

the field intensities, due to the poles at ds and ds
f

, perpendicular to

NP are exactly equal and opposite, and therefore exactly neutral-

ise each other; similarly for any other two diametrically opposite

points in this ring. Hence the resultant intensity due to the

entire ring is in the directionNP and is equal to

<T X 2 TT xdx a

For 2 TT xdx is the area of the ring, and therefore cr X 2 TT zcfo is the

total pole strength of the ring; a?+ x* is the square of the distance

of the point P from each element of the ring, and is the

cosine of the angle between the field intensity at P due to each

point in the ring and the line NP. The total field inten-

sity Hn , at P, due to the entire north pole of the magnet is then

the sum of the field intensities due to all the contiguous elemen-

tary rings into which the pole face N may be divided. Hence

Jx=r

r* x = r

- =TT a a (a
2
H

_ (+*> J_

+ 3?) d(a
2+x2

)
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= 7Tcr a -2(a
2 + z2P =2 77 o- 1 - /f

L. J L Va2+ r2J

where 9 is the angle between the axis of the magnet and the line

drawn from P to the edge of its north pole. The field intensity

due to the south pole of the magnet is similarly

Hs
= -27T<T(l-COS0')

where 0' is the angle between the axis of the magnet and the line

drawn from P to the edge of its south pole.

Consequently the total field intensity is

H = Hn+ Hs =2 IT a- (cos 9
f

-cos 9}. (5a)

Each end of this magnet is a circular disc over which is uni-

formly distributed a magnetic pole. It is interesting to note

what are the limiting values of the field intensity due to a single

magnetically charged disc* when the point P is (1) very close to the

disc, and (2) when the point P is at a considerable distance from

the disc. In the first case, cos 9 becomes negligibly small in compari-
son with unity, since 9 becomes practically 90. Hence at the

point on the axis of a uniformly magnetically charged disc at an

infinitesimal distance from its surface, the field intensity due to this

disc alone is

and is independent of the size of the disc, but depends only upon
its pole strength per unit area.

It can also be shown that a magnetic pole distributed in any
manner over any plane surface, produces a field intensity at a

point just outside this surface which has a component normal to

this surface at this point equal to

Hn =27TC7 (5c)

independent of the shape or size of the surface, where cr is the pole

strength per unit area of the surface directly opposite this point.

In general, however, there will also be a tangential component to

the field intensity, that is, a component parallel to the surface
;
also

the other pole of the magnet will be sufficiently close to produce a

field intensity at this point, which intensity may have both a

normal and a tangential component.

*e. g., the end of a very long cylindrical magnet when the other end is so

remote that it produces no appreciable effect.
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When the point P is at a great distance from the pole face, so

that a is large compared with r, the angle 9 becomes very small

and therefore this angle in radians is equal to its tangent, i.e.,

a

Whence, expanding cos 9 into a series and neglecting all terms

of a higher order than the second, we have

cos 9 = 1

whence

I -cos 9=
2a2

and therefore equation (5) becomes
"

cr m. _

where m=ir r2
cr is the total pole strength.

Hence the field intensity at a point on the axis of a magnet a con-

siderable distance from the magnet may be calculated approximate-

ly by assuming the poles concentrated in points at the ends of the

magnet. In most practical problems a sufficiently accurate value

of the field intensity at any point due to a bar magnet may be

obtained by considering the poles of the magnet to be concentrated

in points at its ends, except when the point under consideration

is very close to a pole, but the limitations of this assumption should

always be borne in mind.

38. Force Required to Separate Two Equal and Opposite Poles

in Contact. A useful application of equation (56) is the calcu-

lation of the force required to separate two equal and opposite

poles distributed uniformly over plane surfaces, such as the two

poles of two equal bar magnets placed end to end. Call the two

surfaces A and B and let them be separated by an infinitesimally

narrow gap. Then, if cr is the pole strength per unit area of the

north pole on the wall of the gap, the field intensity inside the gap

produced by either surface is H =2 TT cr, and therefore this sur-

face attracts each unit pole on the other surface B with a force of

2 TT cr dynes. Hence, calling S the area of each surface, the total

pole strength of the surface B is cr S and consequently the sur-

face A attracts the surface B with a force of

(6)



MAGNETISM 49

dynes. This formula is deduced on the assumption that the only

forces acting are those due the two poles which are separated; if

there are any other forces present (for example, the forces due to

the other ends of the magnets and to the direct action of the

electric current in the coil surrounding the magnets if the latter are

electromagnets) their effect also must be taken into account. The

formula is also based upon the assumption that the poles are con-

fined solely to the end surfaces and are uniformly distributed over

these end surfaces, which is practically never realized. The

formula does give a rough means, however, for determining the

average value of the pole strength per unit area, since both the

force F and the area S are readily measured.

39. The Earth's Magnetic Field. Since a magnet suspended
at any point near the earth's surface tends to point in a definite

direction, indicating the existence of a force acting on the magnet,
the region of space in the vicinity of the earth is a magnetic field of

force. For points at a considerable distance from any large masses

of iron or wires carrying electric currents, the intensity of the

earth's field is practically uniform over a large area, though there

is a considerable variation in both the magnitude and the direction

of the earth's field with longitude and latitude, and also a small

variation from day to day and from year to year. The earth's

field at any point in general has both a horizontal and a vertical

component (downwards in the northern hemisphere, approxi-

mately). The horizontal intensity of the earth's field in the longi-

tude of Washington and at latitude 45 north is roughly 0.2 c. g. s.

electromagnetic units (defined above) and the vertical component
0.55 c. g. s. electromagnetic units. In any laboratory, however,

particularly in the vicinity of electric trolley lines, the value of

the magnetic field may differ considerably from this and varies

continually.

40. Magnetic Moment. Equivalent Length of a Magnet.
To hold a magnet in a uniform magnetic field in any other direction

than that which it would take if acted upon only by the forces

due to this field, requires a certain torque or moment, and the

maximum value of this moment will correspond to a position of

the magnet at right angles to its equilibrium position when acted

upon only by the forces due to the field. The ratio of the value of

the maximum moment which can be exerted by a uniform mag-
netic field on a given magnet to the value of the field intensity, is
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called the magnetic moment of the magnet. In the ideal case of a

magnet which has its poles concentrated in two points a distance /

apart, the magnetic moment is equal to ml where m is the strength
of the north pole of the magnet. For, the total force acting on

each pole of such a magnet when placed in a uniform field of inten-

sity H is m H, and when the magnet js at right angles to this field

the moment acting on it is m HI, whence the ratio of this maximum
moment to the field intensity H is ml. The equivalent length of

any magnet is defined as the ratio of its magnetic moment to the

total strength of its north pole.

41. Equality of the Poles of a Magnet. Equilibrium Position

of a Magnet in a Uniform Magnetic Field. When a magnet of any

shape is supported in a uniform magnetic field, for example, that

due to the earth, in such a manner that it is free to move (e.g.,

floated on a piece of cork) , the magnet takes up a definite position

and remains at rest. Hence the two poles of the magnet must be

of equal and opposite strength; for, calling H the intensity of the

field and m and m' the total strengths of the two poles respectively,

the force acting on one pole of the magnet is mH and the force

acting on the other pole is m'H, and therefore the ,total force

on the magnet is (m+ m') H. But since there is no motion of the

magnet relative to the earth, which produces the field, this total

force must be zero; hence m = m f
. Further, since there is no

rotation of the magnet, its position of equilibrium must be such

that the line of action of the two forces mH and m'H coincides.

Hence, when the magnet is in the shape of a long rod or needle, a

line drawn from its south to its north pole will give the direction

of the field. This fact is usually expressed by saying that the

needle points in the direction of the magnetic field. When the

motion of the magnet is limited to a definite plane, for example,
when it is floated on a piece of cork or mounted on a pivot of the

kind used in a magnetic compass, it will point in a direction cor-

responding to the component of the field intensity in this plane.
42. Measurement of the Horizontal Component of the Intensity

of a Magnetic Field. When a bar magnet or magnetic needle is sup-
ported in a magnetic field in such a manner that it is free to vibrate

about a vertical axis, and is set vibrating about this axis, it will oscil-

late with a definite period depending upon the horizontal compo-
nent of the intensity of the magnetic field

;
due to the friction of the

air and of its support it will ultimately come to rest in line with
the horizontal component of the field intensity. Let this hori-
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zontal component be H (Fig. 15),

and let the magnet be so small

that the intensity H is constant

over the space occupied by it. Let

the magnetic moment of the mag-
net beM

,
and the angular displace-

ment of the magnet from its posi-

tion of equilibrium (the direction of

H) at any instant be 0. Let m be

the numerical value of the strength
of each pole of the magnet, and I its Flg - 15t

equivalent length. Then the torque acting on the magnet, neglect-

ing the friction of the air and the support, tending to bring it

back to its position of equilibrium is ml H sin 0. When
is small, sin is approximately equal to 0, and the torque is then

approximately ml HO or MHO. This torque is in such a

direction as to oppose an increase in the angular displacement of

the magnet, consequently the angular acceleration of the magnet
about the vertical axis, neglecting the damping effect due to

friction, is

where / is the moment of inertia of the magnet (see Article 19).
This equation shows that the motion of the magnet is harmonic

(see Article 23) i.e., the magnet will oscillate about its equilib-
rium position with a period equal to

M H
The frequency with which the magnet vibrates is then

~M~H

whence the intensity of the horizontal component of the field is

H 477
"

2//2 m~w~ (7)

Note that the intensity H is proportional to the square of the

frequency of vibration of the magnet. Hence, if the frequencies
of vibration of the same magnet when suspended successively in

two magnetic fields are /i and /2 ,
the ratio of the horizontal in-

tensities of these two fields is

I*lJjL
H* ft

which gives a simple method of comparing the horizontal inten-

sities of two magnetic fields.

In order to calculate H from the formula (7), it is necessary to
know in addition to the frequency of vibration

f, the moment of
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inertia / and the magnetic moment M of the magnet. The
moment of inertia / can be readily calculated when the magnet is in

the form of a bar of rectangular cross section or in the form of a

right cylinder, or it may be determined experimentally. A second
relation between the moment M and the field intensity H can be
obtained from the following experiment. Remove the bar magnet
from the point P and suspend in its place a small magnetic needle

(Fig. 16). Place the bar magnet with its center at a distance a
from P with its axis perpendicular to the direction of H and in

the same horizontal plane as the point P. The magnetic needle
will now be acted upon by two magnetic fields, the original field H
and the field due to the magnet. The intensity of this latter

field will be
m m

fi =

H)'
2 ml

771

Fig. 16.

I I I \ 2

When a is chosen large in comparison with then i^~j will be

practically negligible in comparison with unity; hence to a close

approximation

_2ml_2M~
a3

" =
~tf

where M is the moment of the bar magnet. When the magnetic
needle is taken sufficiently small the value of the field intensity at

the needle due to the bar magnet will be practically uniform over
the space occupied by the needle, and therefore the resultant field

intensity at the needle will also be uniform and will make an angle

0=tan'
1

-jj-
with the direction of the original field H. This angle

may be readily measured by noting the deflection of the needle

when the bar magnet is removed to a great distance, for when
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the bar magnet is present, the needle points in the direction

of this resultant field intensity, h + H, and when the bar magnet
is removed the needle points in the direction of the original in-

tensity H. Hence, the value of h in terms of and H is

h = H tan

whence 2M u= H tan
a3

or M=\a*Hian0
which substituted in the above equation for H gives

~2T (7a)

a tan

and all the quantities in the right-hand member can be measured
or calculated. Similarly, the substitution .of this value for H in

the equation just deduced for M gives

(76)

from which the magnetic moment may be calculated.

When the horizontal component of the field intensity has thus
been determined, the direction and numerical value of the result-

ant intensity can be found by placing at the point P a magnetic
needle which can turn only about a horizontal axis (a so-called
"
dip circle "), and setting this horizontal axis perpendicular to

the horizontal component to the field. This needle will then point
in the direction of the resultant field intensity, and if the angle it

makes with the horizontal be a, the value of the resultant inten-

sity is

(7C)

cos a
It should be noted that there are other and more convenient
methods for the measurement of the intensity of a magnetic field,
based on the measurement of an elec-

tric current. But since as the measure
of an electric current is taken the force

produced by a magnetic field on a wire
in which the current is established, it is

necessary to start with an independent
method for the measurement of mag-
netic field intensity.

43. Flux of Magnetic Force Due
to a Single Pole. Lines of Magnetic
Force Due to a Single Pole. Con-

sider a point-pole m at any point P
(Fig. 17). The field intensity at any Fig. 17

point Q at a distance r from m is and is in the direction PQ
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when the pole is positive or in the direction QP when the pole
is negative. Consequently at every point in the surface of a

sphere of radius r drawn about m as a center the field intensity

will have the same value and will be normal to the surface of
r*

the sphere. Hence the product of the area of this sphere and

the field intensity at its surface is

, m
4 77 r. =4 77 m

which is independent of the radius of the sphere but depends only

upon the strength of the pole m. The product of the area of any

sphere drawn about a point-pole as its center and the field intensity

at the surface of this sphere is called the flux of force due to this

pole, and this flux of force is said to be outward from the pole when
the pole is positive and inward towards the pole when the pole is

negative. A magnetic pole of strength m then produces a flux of

f rCe
l//=477W (8)

outward. (When m is negative the flux outward is also negative,

which is equivalent to a positive flux inward.)

The flux of force from a magnetic point-pole can be represented

graphically in a simple manner. Imagine the surface of any

sphere surrounding the pole divided into 4 TT m equal areas and

cones drawn with these areas as their bases and their common
vertex at the pole m, and let the lateral walls of these cones extend

out indefinitely. The number of these cones then represents the

flux of force from the pole m. Each of these cones may be repre-

sented by a line coinciding with its axis, and the number of these

lines will also represent the flux of

force from the pole m,, and these

lines will coincide in direction with

the field intensity at every point in

their path. Such lines are called

magnetic lines of force.

From the definition of these

lines of force, it follows that the

number of these lines per square
centimeter of area normal to their

direction at any point will be equal
to the field intensity at that point;
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for the unit area normal to their direction at any point Q at a distance

r from the pole will be unit area in the surface of a sphere of radius

r,*and since a total of 4 TT m equally spaced lines are considered as

radiating out from the pole m, the number crossing this unit area

is equal to the total number of these lines divided by the total

surface of the sphere, that is = . Hence the lines of force
471-r

2
r
2

due to a point-pole m coincide in direction at every point with

the direction of the field intensity at that point due to this pole

and the number of these lines crossing unit area at right angles to

their direction is equal to the field intensity at this area due to

the pole m. The lines due to a single north pole radiate out to

infinity; those due to a south pole radiate in from infinity.

It should be borne in mind that these lines really represent

cones, and therefore it is entirely logical to speak of a fraction of

a line of force. For example, from a pole of strength - there
4?r

would - be but a single cone, which would fill all space; that is,

the cone would be a sphere with m at its center. A unit area

normal to the direction of the field intensity at a distance of 10

centimeters from this pole would cut out = -th
47TX102 1256

of this cone, or this unit area would be cut by only - th of

this cone of force, which, from the manner in which these cones

are drawn, is equal to the field intensity at this point.

A simple relation also exists between the number of these lines

of force crossing' any area and the field intensity normal to that

area. Let ds ( Fig. 19) be any plane area at any point P taken

Fig. 19.

so small that the field intensity at every point in this area may be

considered as having the same value and the same direction, and
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let the normal to this area make the angle a with the direction of

the field intensity, that is, with the direction of the lines of

force through ds. Let ds' be the projection of ds on a plane

through P perpendicular to the direction of the field intensity.

Then the number, d\jj,
of lines of force crossing ds' must be the same

as the number crossing ds, since the perpendiculars dropped from

the periphery of ds on the plane of ds' are parallel to the

lines of force. But the field intensity H at the point P is equal
to the number of lines of force per unit area crossing ds', that is

^~ds'

But ds' =ds. cos a, hence

u d*b
1 =

ds. cos a

u d
*l>or H cos a=!-

ds

Therefore the number of lines of force per unit area at any point in

a magnetic field, due. to a point-pole of strength m, is equal to the

component of the field intensity at this point normal to this area.

An important point to be noted in regard to a line of force is

that a line crossing a surface in the direction from the side A to the

side B is to be considered as equivalent to a negative line crossing

180-oc

Fig. 20.

this surface in the direction from the side B to the side A. For,

calling a the angle between the direction of the field intensity H
and the normal drawn outward from B, then the angle between

the direction of the field intensity and the normal drawn outward

from A is 180 a. Hence the number of lines of force crossing

the surface ds is (H cos a) ds in the direction from A to B, or is

[
H cos (180 a)] ds = (

H cos a) ds in the direction from B to A .

44. Gauss's Theorem. An extremely useful relation in the
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theory of magnetism is that the algebraic sum of the lines of force

outward across any closed surface of any shape whatever is equal
to 4 77 times the algebraic sum of the strengths of all the poles
inside this surface. This follows immediately from the fact

that from any north pole of strength m there radiate out 4 77 m
lines of force and therefore all these 4 IT m lines of force from

a north pole inside such a surface will cut this surface in the direc-

tion from the inside outward, while to a south pole of strength m'

there radiate in 4 77 m' lines of force, and therefore all these 4 77 m'

lines of force radiating into a south pole inside such a surface cut

this surface in the direction from the outside inward. Also, the

lines of force due to any pole outside this surface, whether the pole

be a north or a south pole, will either not cut the surface at all or

will cut it an even number of times, as many times in the direction

from outside inward as in the direction from inside outward.

Since a line of force inward is equivalent to a negative line of force

outward, in calculating the algebraic sum of the lines of force out-

ward the lines of force due to the south poles inside the surface are

to be substracted from the lines of force due to the north poles in-

side the surface
;
the lines of force due to any pole outside the sur-

face contribute nothing to the algebraic sum of the lines of force

outward, since each line leaves the surface as many times as it

enters it. Hence the algebraic sum of the lines of force which cut

a closed surface in the direction from the inside outward is equal
to 4 TT times the algebraic sum of the strengths of all the poles inside

this surface.

45. Lines of Force Representing the Resultant Field Due to

any Number of Magnets. So far we have been considering the

lines of force due to each point-pole as a separate set of lines, there

being as many sets of these lines as

there are individual point-poles. In

any actual case, however, whenever

there is one magnetic pole there

must be somewhere else in the field

an opposite pole of equal strength.

That is, in any actual case, the sum
of the strengths of all the north

poles in the field is equal to the sum
of the strengths of all the south ds

poles in the field. A field due to Fig. 21.
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any number of such equal and opposite poles may also be repre-

sented by a single set of lines, drawn out from the north poles in

the field, 4 TT of these ''resultant
7 '

lines being drawn from each unit

north pole, and each line coinciding in direction at each point

with the resultant field intensity at that point. All of these lines

will also end on south poles, 4 TT of them on every unit south pole.

Also, the number of these resultant lines of force per unit area

crossing any elementary area ds at any point in the field is equal
to the component Hn of the resultant field intensity normal to

this area, i.e.

HnJ^ <9>

ds

when the area ds is taken normal to the direction of the field in-

tensity the number of lines of force per unit area is equal to the

resultant intensity H, since in this case the normal component is

equal to the resultant.

Consider first the number of lines of force, considered as sepa-

rate sets of radial lines from each pole, which cross any elemen-

tary area ds in a magnetic field due to any number of poles. In

Fig. 21 let H 1
H2 etc., be the field intensities at ds due to the in-

dividual poles producing the field, and let a,, a2 , etc., be the angles
between the normal to ds and the directions of the respective field in-

tensities at ds. Then the number of lines of force crossing ds in the

direction of this normal to ds due to the first pole is (H 1
cos aj

ds; the number of lines of force crossing ds in this same direction

due to the second pole is (H2 cos a2) ds; etc. Therefore the total

number of these lines of force crossing ds in direction of the normal

is

d\fy (H l
cos a>i + H2 cos a 2 + -

) ds

But H
l
cos a t -f H2 cos a2+ =H cos a

where H is the resultant field intensity at ds and a is the angle

between the normal to ds and the direction of this resultant field

intensity. Hence the net number of lines of force crossing ds in

this direction may also be written

d\jj
= (Hcosa)ds (10)

and therefore the net number of lines of force crossing any
surface S is

(Hcosa)ds (10a)

/

= I

J
m

where H is the resultant field intensity at any element ds of this
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surface and a is the angle between the outward normal to this sur-

face at ds and the direction of the resultant field intensity at ds,

1 I indi

J s

and I indicates the.sum or integral of (H cos a)ds for all the

J s

elementary areas ds into which the surface is divided.

To prove that the resultant field intensity H may be repre-
sented by a single set of lines, let a closed surface A (Fig. 22) be
drawn in the field in such a manner that it encloses all the north

poles but none of the south poles. Then, by Gauss's Theorem, the

Fig. 22.

algebraic sum of the lines of force coming out from this surface ,is

4 TT times the total strength of all the north poles inside this sur-

face. Hence, calling M the total strength of all the north poles in

the field, we have from equation (10a) that

J.
(H cos a) ds=47rM.
A

Divide this surface A into 4 TT M areas such that the integral of

( H cos a) ds over each of these areas is equal to unity, that is, such
that the net number of lines of force coming out through each of

these areas is unity. Through the perimeters of these areas draw
tubes in such a manner that the lateral walls of each tube are

tangent at each point to the direction of the resultant field intensity
at that point. These tubes will fill all space. No tube can cross

another since the resultant field intensity can have but a single
direction at any one point, and by hypothesis the walls of these
tubes are tangent at every point to the resultant field intensity at
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that point. Let a second surface B be drawn in the field in such
a manner that it encloses all the south poles but none of the north

poles. Let S be the area cut out of the surface A by any one of

these tubes, and S' the area cut out of B by this tube.

Consider the closed surface formed by the lateral walls of this

tube and the two areas S and S'. Since there are no poles between
S and S', we have from Gauss's Theorem that the net number of

lines of force leaving this closed section of the tube is zero. But
the net number of lines of force crossing the lateral walls of this tube

is zero, since for each area ds in these lateral walls (
H cos a) ds

( H cos 90) ds =0. But this tube is drawn in such a manner that

entering it at S the net number of lines of force is unity, since the

integral of ( H cos a) ds over this surface S is unity, where a is the

angle between the direction of the resultant field intensity at ds

and the normal drawn from ds into the tube. Hence the net

number of lines of force leaving the tube at S' must also be unity.

Consequently the number of these tubes entering the closed sur-

face B surrounding all the south poles is equal to the net number
of lines of force (considered as individual sets of lines) entering
this closed surface. But since the total strength of all the south

poles inside this surface B is equal to the total strength of all the

north poles inside the surface A, the total number of these tubes

entering the closed surface B is equal to 4 TT M. Hence all the

tubes leaving the closed surface A surrounding the north poles
enter the closed surface B surrounding the south poles. This

same relation holds when the two surfaces A and B are drawn

infinitely close to the north poles and south poles respectively;

consequently 4 TT of these tubes must originate at every unit

north pole in the field and 4 TT of them end on every unit south

pole in the field. Also, the net number of lines of force cross-

ing any surface in the field other than that on which there is a

pole, is equal to the number of these tubes crossing this surface.

Hence these tubes are mathematically identical with the lines

of force considered as separate sets radiating from or to each

individual point-pole in the field, and therefore if we represent each

of these tubes by a line coinciding with its axis, we may consider

these latter lines as
"
resultant

"
lines of force. From equation

(10) the number d\l/ of these resultant lines of force per unit area

crossing any elementary area ds at any point in the field is equal
to the component of the resultant field intensity normal to this

area, that is

HcosaJ^ (106)
ds

where H is the resultant field intensity and a is the angle between
the normal to this area and the direction of the resultant field

intensity at this point. When the elementary area is taken normal

to the direction of these lines the resultant field intensity is equal
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to the number of these lines per unit area crossing this elementary

area, that is

where dsn represents an elementary area normal to the direction

of these resultant lines of force.

It should be noted that the idea of lines of force is based upon
the idea of field intensity, and consequently the statement that

the number of resultant lines of force per unit area perpendicular

to their direction is equal to the field intensity is not a definition.

A definition presupposes a knowledge of all the terms in it, and

consequently the use of this statement as a definition is a species

of
"
arguing in a circle." The definition of field intensity at any

point is the force in dynes due to the agents producing the field

that would be exerted upon a unit north point-pole placed at that

point (see Article 36). These resultant lines of force are simply
a convenient means of representing the resultant magnetic field,

these lines being drawn in such a manner that their direction at

each point coincides with the direction of the resultant field in-

tensity at that point and their number per unit area at that point

crossing a surface perpendicular to their direction is equal to the

resultant field intensity at that point.

A rough picture of the direction of the lines of force represent-

ing the horizontal component of the resultant field outside any

Fig. 23.

number of magnets can readily be obtained by placing the magnets
on a table and sprinkling fine iron filings over the table in their
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vicinity. When the table is tapped lightly, the filings arrange
themselves in the direction of the horizontal component of the

field intensity. This is due to the fact that the filings are mag-
netised by induction and each then acts like a small magnetic

needle, setting itself in the direction of the component of the field

intensity parallel to the surface of the table. It should be noted,

however, that in general the field intensity has a value inside the

magnets also and that therefore there are lines of force inside the

magnets as well as outside.

In Fig. 23 are shown the lines of force due to a north point-

pole and an equal south point-pole considered as two separate sets

of lines, one set radiating out from the north pole and one set

radiating into the south pole, and in Fig. 24 are shown the result-

ant lines of force due to these same two poles. In each case the

lines are drawn so that their number per unit area at any point

perpendicular to their direction is proportional to the field intensity

at this point.

From the definition of the lines of force representing the re-

sultant field, it follows that where

the field intensity is great these lines

of force will be close together, and

where the field intensity is weak
these lines of force will be far apart.

Again, since 4?rof the lines originate

from each unit north pole and end

on each unit south pole, it follows

that these lines will be close together
Fig - 24- where they enter or leave a surface

on which the pole strength per unit area is large, and will be far

apart where they enter or leave a surface on which the pole strength

per unit area is small. Again, since a surface has two sides, these

lines will in general leave both sides of a surface on which there

is a north pole and enter both sides of a surface on which there

is a south pole.

46. Intensity of Magnetisation. When a narrow gap is cut in

a magnet, either permanent or induced, it is found that in general

poles appear upon the walls of this gap and that these poles are

equal and opposite, a north pole appearing on the wall of the gap
nearer the south pole of the original magnet, and a south pole on

the wall of the gap nearer the north pole of the original magnet.
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The strength per unit area of the poles which appear on the wall

of such a gap is found to depend upon the direction in which the

gap is cut. There is one direction at each point in the magnet
for which this pole strength per unit area is a maximum, and

when the gap is cut perpendicular to this direction no poles appear
on its walls. (In the case of a long bar magnet, a gap cut ^at

its center perpendicular to its axis will have maximum pole

strength per unit area, while on a gap cut at this point parallel

to its axis there will be no poles formed.)

A magnetised body may then be considered as made up of

magnetic filaments such that were the lateral walls of any one of

these filaments separated from the rest of the magnet by a narrow

air gap, no poles would be formed on these lateral walls. The

two ends of any such filament where it terminates in the surface

of the magnetised body must then have equal and opposite mag-
netic poles ;

if the filament is cut transversely by a narrow air gap
at any point, equal and opposite poles will be formed at the two

walls of this air gap, and these poles will in turn be numerically

equal to the poles at the ends of the filament in the original sur-

face of the magnetised body. (For, since each filament is a mag-

net, it must have equal and opposite poles, and by definition each

filament has no poles on its lateral walls.) Such a filament is con-

sidered as existing only in a magnetised body; the filament is

broken by the transverse air gap just as a string is broken when it

is cut in two.

Consider such a filament cut at any point by an air gap per-

pendicular to its axis, and let dsn be its cross section at this point,

and let dm be the pole strength of the north pole formed where it

ends in the gap. Then the pole strength per unit area of this pole

is

dm

dsn

or vice versa, the strength of -am
the pole dm formed where the

filament is cut by the gap is

dm=(rn dsn
If the filament is broken at

any other point, poles of exactly the same strength will be formed

on the broken ends, a north pole on the end nearer to the original

south pole of the magnetised body and a south pole on the
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opposite end. Also, the strength of the poles where this filament

ends in the original surface of the magnetised body will be

numerically equal to dm. Consequently where the cross section

dsn of the filament is great the strength per unit area of the pole
which would be formed were it broken in two is small, and where

the cross section is small the pole strength per unit area is large.

The strength per unit area of the pole which would be formed on

the walls of a gap cut at any point in a magnetised body perpen-
dicular to the direction of the magnetic filaments of which the

body may be considered as made up is defined as the intensity of

magnetisation* of the body at this point, and may be represented

by the symbol J. That is,

, dmJ= =an (11)
dsn

where dsn is the cross section of the filament at the point under

consideration and dm is the strength of the north pole which would

be formed on one wall of a narrow gap coinciding with the cross

section dsn . The direction of the intensity of magnetisation J is

chosen arbitrarily as the direction of the magnetic filament at

this point and the positive sense of J is chosen as the sense of the

line drawn into the gap from the wall of the gap on which the north

pole is formed.

When a magnetic filament is cut by a gap ds which is not at

right angles to the axis of the filament, the numerical value of the

strength of the pole formed on either wall of the gap must be equal
to the strength of the pole which would be formed on a gap dsn

cut normal to the filament, since the pole formed on either gap
must be equal to the strength of the pole at either, end. of the fila-

ment in the original surface of the magnetised body. Let <r be the

pole strength per unit area of the north-pole end of the filament

in the surface of the gap, let a be the angle between the direction

of this filament and the normal drawn outward into the gap from

*Intensity of magnetisation at any point may also be defined as the mag-
netic moment per unit volume of an infinitesimal length of the magnetic
filament passing through that point. For, calling dsn the cross section of

the filament, (Tn the numerical value of the pole strength per unit area at

each end of the infinitesimal length dl of the filament; the magnetic moment
of this element of the filament is (CTn dsn ) dl and the volume is dsndl, whence

the magnetic moment per unit volume is (Tn ;
and therefore this definition is

equivalent to that given above.



MAGNETISM 65

this north pole, and let dsn be the projection of ds on a plane

normal to the direction of the filament. Then from (11)

dm=crds=Jdsn

But
dsn =ds cos a

whence

cr=Jcosa (Ha)

That is, the pole strength per unit area which would be formed on

the wall of a narrow gap cut in any direction at any point in a

magnet is equal to the component of the intensity of magnetisa-
tion in the direction of the normal drawn outward from this wall

into the gap.

Intensity of magnetisation may be represented by lines just

as magnetic field intensity may be represented by lines. This is

done by choosing arbitrarily the size of a unit magnetic filament

and representing each unit filament by a line coinciding with its

axis. As the unit magnetic filament is taken a filament such that

were it cut by a narrow air gap at any point, the strength of the

pole formed on either wall of the gap would be equal to . The
47T

line representing such a filament is called a line of magnetisation;

the direction of this line coincides with the direction of the inten-

N

Fig. 26. Lines of Magnetisation in a Bar Magnet.

sity of magnetisation. Hence from every unit south pole in the

surface of a magnetised body 4 IT lines of magnetisation originate,

these lines run through the magnetised body to the surface over

which the north pole is distributed, 477 of them ending in every
unit north pole in the surface of the magnet.

The reason for introducing the factor is to have number of
4?r

these filaments leaving a south pole equal to the lines of force

entering that pole and the number of these filaments entering a north

pole equal to the lines of force leaving that pole. It should be
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noted that these filaments are confined entirely to magnets or

magnetised bodies, while lines of force in general exist in all the

space surrounding a magnetic pole, whether this space be occupied

by a non-magnetic or by a magnetic body.
The relation between the number of lines of magnetisation dN

crossing any elementary surface ds and the intensity of magnetisa-
tion at ds is given by the formula

dN=4:7r (J cos a) ds (12)

where a is the angle between the direction of these lines at ds and

the direction of the normal to ds. J cos a is the component of the

intensity of magnetisation normal to the surface ds. Compare
with the mathematical expression (10) for the number of lines of

force crossing an area.

Since in the case of a long bar magnet the poles are confined

almost entirely to its ends, the lines of magnetisation inside the

magnet near its center must be parallel to the sides of the magnet.
When such a magnet is cut in two by a plane surface perpendicular
to its axis, the magnetic poles which appear on the walls of the

gap thus formed must then, from equation (11), have a strength per
unit area equal to the intensity of magnetisation at this surface.

(This is strictly true only in case the gap between the two parts of

the magnet is of infinitesimal width.)

This fact suggests a method for the experimental determination

of the intensity of magnetisation of a bar which can be separated in

two parts. For, by equation (6), the force required to separate the

two equal and opposite poles which appear on the walls of the gap
formed by separating the two parts of the bar is

where S is the cross section of the bar and or the strength of these

poles per unit area, which may be assumed constant over each wall

of the gap. Hence in this case the intensity of magnetisation is

2TTS

and both F and S are readily measured. In employing this

method certain corrections have to be made for the effect of the

action of other forces on the poles which are separated. A
description of the method and apparatus will be found in Foster's

Pocket Book, p. 94.

(In the above discussion the matter forming a magnet is con-
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sidered as absolutely continuous, and no hypothesis is made as to
its molecular structure, just as in the ordinary theory of the elastic

properties of matter a beam or column is considered as made up of

continuous fibers and no account is taken of the molecular struc-
ture of these fibers.

The modern theory of the molecular structure of a magnet
assumes that each molecule of the magnet contains one or more
electrically charged particles, which by their motion give rise to
lines of magnetic force which form closed loops threading the
molecules of the magnet. Inside the magnet these lines of force
are in the direction from the south pole of the magnet to its north

pole and outside in the direction from its north pole to its south
;

the pole of a magnet is then simply an apparent property possessed
by the surface of the magnet where it is cut by these lines. These
closed lines of force are then identical with what will be defined

presently as lines of induction. This hypothesis, while probably
correct, can be fully understood only after one has become thor-

oughly acquainted not only with the facts concerning magnetism,
but also with the phenomena of electric currents and electrostatics.

We shall therefore still continue to consider a magnetic pole as an
actual entity which has the properties which have been assigned
to it, and to avoid confusion, shall distinguish carefully between
lines of force, lines of magnetisation and lines of induction.)

47. Lines of Magnetic Induction. Flux of Induction. We
have seen that a magnet may be considered as made up of a

number of magnetic filaments, or lines of magnetisation, at the

ends of which are located the poles of the magnet, and that these

poles in turn give rise to lines of force equal in number to the

number of lines of magnetisation in the magnet. The lines of

magnetisation are confined entirely to the substance of the magnet
and are considered as originating at its south pole and running

through the magnet to its north pole. Lines of force exist both in

the magnet and in the surrounding space and are considered as

originating at the north pole of the magnet and running through
both the medium surrounding the magnet and the magnet itself to

its south pole. In the substance of the magnet there are therefore

both lines of magnetisation and lines of force, but the lines of force

in a magnet due solely to the poles of this magnet are in the opposite

direction to the lines of magnetisation. In the case of an induced

magnet, e.g., a piece of soft iron in a magnetic field produced by
some other agent, the resultant lines of force are in general in the

same direction as the lines of magnetisation. In any case the

algebraic sum of the lines of magnetisation and the lines of force

crossing any surface in space, whether this surface be in a magnetic
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body or a non-magnetic body or in free space, is defined as the

number of lines of magnetic induction crossing that surface, or the

flux of magnetic induction across that surface. The unit of flux of

magnetic induction is called the maxwell, that is, 1 maxwell =
1 c. g. s. line of magnetic induction.

From equations (10) and (12) the mathematical expression for

the number of lines of magnetic induction crossing any elementary
area ds is

d
<j) =(4 77 Jcos a t + H cos a2) ds (14)

where J and H are the intensity of magnetisation and the field

intensity respectively at ds and c^ and a2 are the angles between the

normal drawn to ds and the directions of the intensity of mag-
netisation and field intensity respectively. The direction of the

lines of induction through the elementary area ds is taken as the

direction of the vectorwhich is equal to the vector sum of 4 77J and

H. As a rule, in all practical applications when the field inten-

sity and intensity of magnetisation are due to the same cause

(e. g., when a piece of soft iron is magnetised by the action of an

electric current), these two quantities are in the same direction,

and this expression may then be written

d<f)=(4:TTJ+ H) cos a. ds. (Ha)
where a is the common angle made by J and H with the normal

to ds; in this case the lines of force, lines of magnetisation, and

lines of induction all coincide in direction.

From the definition of lines of magnetisation, there can be no

lines of magnetisation in air or in any other non-magnetic sub-

j

stance. Hence in air or in any other

non-magnetic substance the lines of

force and the lines of induction are iden-

tical, but this is never the case in a mag-
netic or diamagnetic substance, for when

Aj such a substance is placed in a magnetic
Fig- 27. field it becomes magnetised by induction

(see Article 32) and consequently lines of magnetisation, as well

as lines of force, are produced in the substance.

Consider first the lines of magnetisation in a single magnet and

the lines of force due to its poles. Let N be the total number of

lines of magnetisation in this magnet, *//
the number of lines of

force outside the magnet, and
i// t the number of lines of force inside

the magnet. Outside the magnet the total number of lines of in-

N
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duction is then simply \jtQ
. Inside the magnet, across the section

A taken perpendicular to its axis at its middle point, pass all the

lines of magnetisation N and the
i/i x lines of force, the former in

the direction S to N and the latter in the direction from N to S.

Hence the total number of lines of induction through the magnet
across this area A is

But since the total number of lines of magnetisation is equal to

the total number of lines of force, we also have

whence
\fj(} =r N .

But
\lfn

is also equal to the total number of lines of induction out-

side the magnet. Hence the total number of lines of induction

passing through a permanent magnet from its south to its north

pole is equal to the total number of lines of induction passing back

outside the magnet from its north to its south pole. Therefore each

line of induction must be a closed loop, part of which lies inside

the magnet and part outside. The magnet may then be looked

Fig. 28. Lines of Magnetic Induction due to a Bar Magnet.

upon as a sheath which binds these lines of induction closely

together (Fig. 28); these lines spread out from one end of the sheath,

bend around and re-enter the sheath at the other end. Fig., 28

should be compared with Fig. 29 which shows the lines of force due

to a single magnet. It should be noted that since some of the lines

of magnetisation end in the lateral walls of the magnet, part of

these lines of induction pass through its lateral walls. In the case

of a long slim magnet, however, practically all the lines of indue-
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tion pass through its ends. In general, wherever there is a mag-
netic pole on the surface of a magnetic substance there must also

Fig. 29. Magnetic Lines of Force due to a Bar Magnet.

be a line of induction passing through this surface; or, vice

versa, wherever a line of induction passes through the surface of

a magnetic substance there must be a pole on its surface.

Since each line of induction due to a single magnet forms a

closed loop it follows that such a line of induction will always cut

a closed surface an even number of times, as many times in the

direction from the outside to the inside as in the direction from

the inside to the outside. Hence, adopting the same convention as

Line of Induction

Closed Surface

Fig. 30.

in the case of lines of force, namely, that a line entering a surface is

equivalent to a negative line leaving that surface, it follows that the

algebraic sum of the lines of induction outward across any closed

surface is always zero, even though this surface encloses the pole of
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a magnet. The difference in this respect between lines of force and

lines of induction should be carefully noted; 1, lines of force

end on magnetic poles, while lines of induction pass through mag-
netic poles; 2, the lines of force due to a magnet therefore have

ends, while the lines of induction are closed curves; 3, the alge-

braic sum of the lines of force outward across a closed surface is

equal to 4 TT times the algebraic sum of the magnetic poles enclosed

by this surface, while the algebraic sum of the lines of induction

across any closed surface is always zero.

48. Flux Density. We have seen that the number of lines of

force per unit area crossing any elementary surface ds is equal to

the component of the intensity of the magnetic field normal to this

area (equation 10). We shall also find that the number of lines

of induction per unit area crossing any elementary surface plays
a very important role in the theory of magnetism and electro-

magnetism. When the surface is taken normal to the lines of

induction through it, the number of these lines of induction per
unit area crossing this surface is called the density of the lines

of induction at the point occupied by this elementary surface or

simply the flux density at that point, and the direction of this

flux density is defined as the direction of the lines of induction at

this surface. Flux density is therefore a vector quantity, since

it has both magnitude and direction. The symbol usually em-

ployed for flux density is the capital letter B.

The mathematical expression for the flux density in terms of

the intensity of magnetisation / and the field intensity H when
both / and H are in the same direction is therefore

(15)

See equation (14a).

When J and H are not in the same direction 4?rJ and H must
be added vectorially ;

see equation (14). This can be done by re-

solving J and H along two mutually perpendicular axes, adding
the components of 4 TTJ and H along these respective axes, and

taking the square root of the sum of the squares ;
see Article 9.

The unit of flux density on the c. g. s. system is one line of in-

duction per square centimeter, or one maxwell per square centi-

meter; this unit is called the gauss. Flux density may also be

expressed as so many c. g. s. lines per square inch, or so many
thousands of c. g. s. lines per square inch. A thousand lines is
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called a kilo-line. Hence the following relations between the

various units of flux density :

1 gauss = 1 maxwell per square centimeter

1 gauss = 1 c. g. s. line per square centimeter

1 line per square inch =0.15500 gauss
1 kilo-line per square inch =155.00 gausses
From the definition of flux density, the number d < of lines of

induction crossing any elementary surface ds may be expressed in

terms of the flux density by the formula

d(j>
= (Bcosd) ds (16)

where B is the flux density at ds and a the angle between the

direction of the lines of induction through ds and the normal to

ds; this follows immediately from equation (14). Compare this

with the expression for the number of lines of force across any

elementary surface ds (equation 10).

The above definition of flux density and equations (14) and

(15) are applicable to any magnetic field, no matter how this field

may be produced, whether by a single permanent magnet, by any
number of magnets, or by an electric current. Moreover, just as

the separate sets of lines of force due to any number of magnets

may be represented by a single set of
"
resultant

"
lines of force,

so the separate sets of lines of induction due to any number of mag-
nets may be represented by a single set of

"
resultant

"
lines of

induction, and these resultant lines of induction always form

closed loops, just as the lines of induction due to a single magnet
are closed loops.

For, let ds be any elementary surface in the field, BI B2 etc.,
the flux densities at ds due to the respective magnets, and a,, 03,

etc., the angles between the normal to ds and the directions of the
lines of induction through ds due to the respective magnets. Then
the number of lines of induction across ds due to the first magnet
is (Bl cos aj) ds; the number of lines of induction across ds in the
same direction due to the second magnet is (B2 cos 03) ds; etc.

Hence the net number of lines of induction across ds in the same
sense due to all the magnets is

d(j>= (B l
cos a,! + B 2 cos a2+ -

) ds = (B cos a) ds

and the total number of lines of induction across any finite surface
is then

<j)
= C (B l cos a,) ds + C (B 2 cos a2) ds +- = C (B cos a) ds

J s J s J s
where B is the resultant or vector sum of B\ B 2 etc., and a is the

angle between the normal to ds and the direction of the resultant
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flux density B. Hence we may look upon the independent sets of

lines of induction f (B i
cos aO ds, C (B 2 cos a2) ds, etc., as combin-

J s J s

ing and forming one set of lines equal in number to f (B cos a) ds,
s

.

the direction of each of these lines at each point in its path

coinciding with the direction of the resultant flux density at that

point.
Since the net number of lines of induction due to a single mag-

net outward across any closed surface is zero (Article 47, last para-

graph), the algebraic sum of the lines of induction due to any
number of magnets, outward across any closed surface, must also

be zero, that is

C (B cos a) ds C (B l
cos a^ ds + C (B2 cos a2) ds+ - =

J
|5|

J
|5|

J
|5|

since each term of the middle member of this equation is zero.

Hence the lines of induction due to any number of magnets,
whether these magnets be permanent or induced, must form closed

loops, and therefore the number of these lines coming up to any
surface on one side must always be equal to the number of these

lines which leave the other side of this surface. When we come
to the study of electric currents wre shall also see that the lines of

induction produced by an electric current are also closed loops.
Hence a line of induction always forms a closed loop, no matter how
it may be produced.

49. The Normal Components of the Flux Density on the Two
Sides of any Surface are Equal. The fact that the number of lines

of induction coming up to one side of a surface must equal the

Normal

Fig. 31.

number of these lines which leave the other side, is a very impor-
tant one in the theory of magnetism, and may be expressed mathe-

matically as follows. Let Bl and B3 be the flux densities on the
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two sides of any surface directly opposite any point P in this sur-

face, and let at and cu> be the angles between the direction of the

normal drawn through the surface at this point and the directions

of these flux densities. Let ds be any elementary area of the sur-

face at P. Then the number of lines of induction coming up to

ds on one side is ( BI cos a
t) ds, and the number of lines of induction

leaving ds on the other side is (B2 cos a2) ds. Therefore, since the

number of lines of induction coming up to ds must equal the num-
ber leaving ds,

(Si cos a,) ds = (B 2 cos a2) ds

or

#! cos a, =B 2 cos a2 (17)

That is, the normal components of the flux densities on the two sides

of the surface are equal, and this is true even though the surface is

the seat of a magnetic pole. When there is no pole at the surface,
the tangential components of the flux densities (Bl sin ^ and B2

sin 03) are also equal, but when there is a pole at the surface, the

tangential components will not in general be equal. In the latter

case the lines of induction make an abrupt change in direction.

See Article 54.

50. The Tangential Components of the Field Intensity on the

Two Sides of any Surface are Equal. While lines of induction are

always continuous lines forming closed loops, and therefore always

B

Fig. 32.

pass through any surface in their path, lines of force originate at or

end on magnetic poles. Hence the normal components of the field

intensities on the two sides of a surface on which there are mag-
netic poles are not equal ;

the tangential components of these field

intensities are however always equal, even though the surface be

magnetised. This may be proved as follows. Let AB be the

normal through the surface at any point Q and let PI be a point on
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this normal just outside the surface on one side and P2 a point on
this normal just outside the surface on the other side, and let

QPi and QP2 be equal. Then the field intensities at PI and P2

due to any pole at any point X other than Q will differ in mag-
nitude and direction by an amount depending upon ,the distance

QPl and QP2 and in the limit, when Pl and P2 coincide with Q y

these field intensities due to the pole at X will be exactly equal
both in magnitude and direction. Hence both the normal and
the tangential components of the field intensities at PI and P3

due to a pole at any other point than Q will be respectively equal
when Pl and P2 coincide with or are infinitely close to Q. If,

however, there is a magnetic pole at Q, this pole will produce equal
and opposite field intensities at PI and P2 ,

and these intensities

will still beequal and opposite when Pl and P2 are infinitely close to

the surface. But since by hypothesis PI and P2 are on the normal
to the surface at Q, the field intensities at these two points due to

the pole at Q will also be normal to this surface and therefore have
no tangential components. Hence the pole at Q has no effect

upon the tangential components at PI and P2 . Therefore, since

the tangential components at P! and P2 due to all the other poles
in the field are also equal, the resultant tangential components at

P! and P? due to all the poles in the field are equal. The resultant

normal components of the field intensities at PI and P2 are how-
ever not equal when there is a pole at.Q, since the field intensity at

P! due to the pole at Q is opposite to the field intensity at P2 due
to this pole.

Calling 04 and o^ the angles between normal drawn through any
point of a surface and the directions of the field intensities Hl and
H2 on the two sides of this surface, we then have that

H! sin ttj
= H2 sin a2 (18)

51, Conditions which must be Satisfied at every Surface in a

Magnetic Field. The above deductions concerning lines of mag-
netic induction and lines of force hold whether the magnets pro-
ducing the field are permanent or induced. The two surface con-
ditions just deduced hold for every surface in the field, and
consequently must hold at the surface of any magnetic body placed
in the field. By taking this fact into account one can calculate in

certain simple cases the exact distribution of the magnetic poles
induced on the surface of a magnetic body when placed in a

magnetic field, and also the distribution of the lines of force and
the lines of induction. (See J. J. Thomson, El. of Elec. & Mag.
p. 257ff .) These surface conditions may be summed up :

1. The normal components of the flux densities on the two
sides of any surface are always equal.

2. The tangential components of the field intensities on the
two sides of any surface are always equal.
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52. Induced Magnetisation. We have seen that when a mag-
netic body which itself is not a magnet is placed in a magnetic

field, this body becomes a magnet; this phenomenon is de-

scribed by saying that the body becomes magnetised by in-

duction. To fix ideas, let this field be that in the vicinity of the

north pole of a bar magnet, and let the magnetic body be a soft iron

B

Fig. 33.

rod placed as shown. As we have already seen, the end A of

this rod becomes a south pole and the end B a north pole. Con-

sequently inside the rod AB there will be (1) a field of force due

to the original field of the bar magnet in the direction from A
to B and (2) a field of force due to the magnetic poles

"
in-

duced " on the rod, which field will be in the direction from B to

A. Let H be the numerical value of field intensity at any point
P inside the rod due to the original magnetic field, H' the

numerical value of the field intensity at this point due to the poles

induced on the rod, and J the numerical value of the intensity of

magnetisation of the rod at this point. The induced intensity of

magnetisation / may be considered as produced by the original

field H. The intensity H' which is due to the induced poles and

which therefore is approximately in the opposite direction to the

original field H, would of itself tend to magnetise a body in the

opposite direction, and is therefore called the
"
demagnetis-

ing force
" due to the ends of the rod. Experiment shows that

this demagnetising force H' is always less than the magnetis-

ing force H but is not negligible unless the field in which -the rod

is placed is uniform and the rod itself is very long. The resultant

field intensity at P will then be the vector difference

Hr
= H - H'

When H and H' are in exactly opposite directions the resultant

field intensity Hr is the arithmetical difference between H and

#' or Ur
= E-Rr

This condition is approximately realized in the case of a long,
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slim bar placed in a uniform magnetic field parallel to the di-

rection of the field. Experiment also shows that when a body
which of itself is not a magnet (e.g., the soft iron rod we are

considering) is placed in a magnetic field, the intensity of mag-

netisation produced at any point in the body is in general in the

direction of the resultant field intensity. (Certain exceptions will

be noted later, Article 57). Consequently, across any elementary

surface ds drawn normal to the direction of the resultant field in-

tensity there will be Hr
ds lines of force and 4 TT J ds lines of mag-

netisation, both as a rule in the same direction, namely from A to B
(see equations 10 and 12). Hence the total number of lines of

induction across this area will be (see equation 14a)

d<f>
=(Hr+ 4iTJ) ds

and therefore the flux density at the point P, i.e., the number of

lines of induction per unit area normal to the direction of these

lines, will be , ,

(19)

53. Magnetic Permeability. The resultant intensity of mag-
netisation J produced in a piece of iron or steel when it is placed
in a magnetic field is in general many times greater than the

original intensity of the field, and therefore the number of lines

of induction through the space occupied by this piece of iron or

steel is greatly increased by its presence,* although the number
of lines of force through this space is in general decreased (the

latter is always true except when there are no poles produced on

the surface of the body which is magnetised by induction we
shall see later when we come to the study of electric currents how a

bodymay be magnetised without producing any poles on its surface) .

Hence iron or steel, or in fact any magnetic substance, is said

to be more "
permeable

"
to lines of induction than a non-mag-

netic body (diamagnetic bodies are less permeable), and the ratio

*The fact that when a magnetic body is placed in a magnetic field the

number of lines of induction through the space occupied by the body is in-

creased, is frequently described by saying that the lines of induction tend
to crowd into a magnetic body when placed in a magnetic field. In general,

however, the presence of such a substance in a magnetic field not only
causes the original lines of induction to crowd into the substance, but also

gives rise to an additional number of these lines. This is particularly true

in the case of an iron rod placed in the magnetic field produced by an elec-

tric current flowing in a coil of wire.
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of the resultant flux density at any point of the body to the result-

ant field intensity is called the permeability of the body at that

point, and is usually represented by the symbol ^. That is

._? (20)
"

~ff,

where Hr is the resultant field intensity, which in case just con-

sidered is equal to H-H'. Since there can be no lines of mag-
netisation in a non-magnetic body, the flux density and field in-

tensity in such body are numerically equal, and therefore for all

non-magnetic bodies p = 1. For magnetic bodies p.
is always greater

than ] and for diamagnetic bodies less than 1. Strictly speaking,

the permeability is unity only for air, since all bodies are slightly

magnetic or diamagnetic with respect to air. However, p is

practically unity for all substances other than iron, steel, nickel,

cobalt and bismuth; for the last p is less than unity and for the

rest greater than unity.

The permeability of any of these substances is not a constant,

but depends upon the intensity of the resultant magnetic field,

and also upon its previous history, whether it is already a magnet
before being placed in the field of force and upon how the

field of force inducing the magnetisation is established. In

fact, the permeability may be negative, that is, the resultant flux

density may be in the opposite direction to the resultant field

intensity. This is always true of a single permanent magnet by
itself. In practice, however, the permeability of a body is taken

to mean the ratio of the flux density to the resultant field intensity

when the body is originally unmagnetised and then placed in a field

which is continuously increased from zero to its final value.

64. Refraction of the Lines of Induction at the Surface of

Separation of Two Bodies of Different Permeabilities. It can

readily be shown, by making use of the surface conditions given
in Article 51, that wherever a line of induction crosses the surface

of separation between two bodies of different permeabilities, this

line is refracted toward the normal at this surface in the body
of lesser permeability. Let the permeabilities of the two bodies

directly opposite any point Q in the surface separating them be

/*i and /Kg respectively : let HI and H2 be the field intensities in the

two bodies respectively at points infinitely close to Q on the two

sides of the surface; let BI and B2 be the flux densities at these two

points and ^ and o^ the angles between the normal drawn through
the surface at Q and the directions on the two sides of the surface

of the Tine of induction through Q. The line of force through
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Q will coincide in direction with the line

of induction (provided the bodies are not

crystals and are magnetised solely by
induction), hence a

t and a* will also be

the angles between the normal at Q and
the directions of the lines of force on the

two sides of the surface. Hence from the

surface conditions given in Article 51,

Hence

But

m
#! cos ax

= B2 cos 02

Hi sin 0*1
= H2 sin ctg

f to
H2- tan a2 .

Hl and B2
= ^H2 . Whence

Fig. 34.

tan = tan a2 . (21)

Hence if /^ is less than ^ then at is less than a^; that is, the line

of induction is bent toward the normal in the body of lesser per-

meability. For example, the permeability of soft iron is about

3000 under ordinary conditions. Hence a line of induction coming
up to the surface inside the iron at an angle of 45 say, comes out

into the air at an angle of a= tan' 1
sinnr w^n the normal, that

is, comes out into the air practically at right angles to the surface.

Therefore, when a piece of soft iron is placed in a magnetic field in

air practically all the lines of induction which pass through it enter

and leave its surface approximately at right angles to the surface.

55. Value of the Pole Strength per Unit Area Induced on the

Surface of Separation of Two Bodies of Different Permeabilities.

From the surface condition that the number of lines of induction

coming up to the surface is equal to the number of lines leaving
the surface, can also be deduced an expression for the net pole
strength per unit area induced on the surface of separation be-
tween the two bodies. Let ds (Fig. 35) be an elementary area in

this surface at Q and draw about ds a closed cylinder having the
cross section ds and its ends infinitely close to ds. Applying
Gauss's Theorem (Art. 44) to this closed cylinder, we have

4 TT o~ ds = HI cos a x ds H2 cos a,2 ds

whence = 7-= cos ai-
H,

H,
cos

where cr is the pole strength per unit area on ds. But since the
number of lines of induction coming up to ds is equal to the num-
ber of lines of induction leaving ds, we also have

BI cos (LI
=B2 cos d2

or, since Bl =pl Hl and B2 =p2H2
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substituted in the above equation, gives

o. =J^LcosoLr 1 _^1 ~i

47T frj

(22)

Fig. 35

Hence if the line of induction at Q passes from a medium of low
to one of high permeability (i.e., t^>t^j the pole induced on the

surface is negative, while if the line of induction passes from a med-
ium of high to one of low permeability (i.e., ^ <&) the pole induced
on the surface is positive. This explains the fact, noted in Article

29, that the direction of the force produced on an originally unmag-
netised body placed near a magnet depends upon the nature of the
medium between the body and the magnet, and that whether this

force is an attraction or a repulsion depends upon the relative per-
meabilities of the body and the surrounding medium. When ^
and /*2 are both different from unity there will be a pole induced
on each of the substances in contact; equation (22) gives the alge-
braic sum of these pole strengths per unit area.

56. Field Intensity at any Point in Magnetic Medium of Constant

Permeability Completely Surrounding a Point-Pole and Filling all

Space. An important relation in the theory of magnetism is that

the resultant field intensity at any point in a magnetic medium
of constant permeability /A completely surrounding a point-pole

of strength m isH =
2 ,
where r is the distance of the point

from the pole. This is equivalent to stating that the pole
m induces on the surface of the medium in contact with it

a pole of opposite sign, the numerical strength of which is equal

to
(
1 I m, for then the resultant field intensity will be

"
(23)
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To prove this, consider a magnetic filament of infinite length
and infinitesimal cross section, and let the poles of this filament

have the constant strengths m and m. We may imagine the pole
m at infinity and therefore producing no field intensity at any

point in the vicinity of m. Again, since the filament is assumed
to have infinitesimal cross section, we may neglect the non-

uniformity produced by it in the medium surrounding m. The
lines of force due to the pole m will therefore be equally spaced
lines radiating out from m in all directions. When the pole is

surrounded by a non-magnetic medium, i.e., one having unit per-

meability, the lines of induction in the surrounding medium will

coincide with these lines of force; the lines of induction come up to
the pole through the magnetic filament, as lines of magnetisation,
and then radiate out from the pole, as lines of force, into the sur-

rounding medium. Since the pole m is constant by hypothesis,
the intensity of magnetisation of the filament must also be con-

stant; whence the number of lines of magnetisation, 4irm, in the
filament is constant, and since the filament has an infinitesimal

cross section, the lines of force inside the filament will be negligible
in comparison with the number of lines of magnetisation. Hence
the number of lines of induction coming up to the pole m through
the filament must also be constant and equal to 4 TT m; con-

sequently the number of lines of induction radiating out into the

surrounding medium is 4 TT m independent of the nature of the
medium.

When the pole is surrounded by a non-magnetic medium, the

field intensity at any point isH= ,
and since the medium is non-

magnetic the flux density is also B =
-^. Since the lines of

induction are the same whether the surrounding medium is

magnetic or non-magnetic, the flux density at any point in any
medium whatever completely surrounding a point-pole of strength

m is B=. Consequently, when the medium has a permeability /x,

the field intensity at any point in it due to the pole m must be

H =
. The number of lines of force outward across the

p. pr
2

surface of any sphere surrounding m is therefore -
;
but by

Gauss's Theorem this must be equal to 4 TT times the algebraic
sum of the poles inside this sphere; hence calling mi the value
of the strength of the pole induced by m on the surface of the

medium in contact with it, we have, 4 TT (m + mi) == and there-

fore W;= ( 1 J m.
\ M

From the fact that the resultant field intensity at any point in a
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medium of constant permeability completely surrounding a point-

pole of strength m is
3 ,

it follows that the resultant force of repul-

sion on a second point-pole of strength m f

placed in the medium at

any point is /
=

,
where r is the distance between the poles and ^

is the permeability of the medium. It should be noted that this

is the resultant force acting on m' due to both the pole m and the

pole 1 1 -)m induced by m on the surface of the medium in con-
V A*/ mm f

tact with it. The force due to m alone is - and is independent

of the nature of the surrounding medium.
The above deductions hold only when the poles are completely

surrounded 'by the medium of constant permeability /x. In any
actual case this can never be true, since a magnetic pole can exist

only where there is a surface of separation between two substances

of different permeabilities.

57. Magnetic Hysteresis. As noted in Article 53, the flux

density produced in a given piece of iron or other magnetic sub-

stance by a given field intensity depends upon the previous his-

tory of the sample. To make this fact clearer, consider the special

case of an originally unmagnetised rod of soft iron placed in a uni-

form magnetic field with its axis parallel to the direction of the field,

and let this field be gradually increased from zero up to some maxi-

mum value Hm and then decreased to zero, then increased in this

reversed direction to an equal negative maximum value Hm ,
de-

creased to zero again and then again increased to the same maxi-

mum value Hm in the original direction. It is found by experi-

ment that the relation between the flux density and the field

intensity during the various steps in this process may be repre-

sented by a curve of the form shown in Fig. 36. (The experi-

mental method of determining such a curve is described in Chapter

IV.) From this curve it is seen that at first, when the field

intensity is small, the flux density increases relatively slowly as the

field intensity increases. When the field intensity is increased

further, the flux density increases very rapidly; when the field in-

tensity becomes still greater, the flux density increases more and

more slowly, and finally any further increase in the field intensity

produces only a comparatively slight change in the flux density.

When the field intensity is now reduced the flux density instead

of returning to the same values it had for the increasing values of

the field intensity, decreases less rapidly than it increased, that is,
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the decreasing values of the flux density lag behind the values

corresponding to an increasing field intensity. This phenomenon

-II

-12 -10 -

-B

B

-14000

II

+ 10 +

Fig. 36.

has therefore been given the name hysteresis, a Greek word meaning
"
lagging behind."

When the field intensity is reduced to zero
;
the flux density still

has a considerable value; this value is called the " remanent

magnetism
"

of the sample. To reduce the flux density to zero
;

the field intensity has to be reversed and increased to a value

corresponding to the abscissa of the point where the left-hand

branch of the curve cuts the axis of field intensities. This value

of the field intensity is called the "
coercive force." When

the field intensity is still further increased in the negative
direction the flux density reverses in direction, increasing very

rapidly at first and then more slowly. When the field intensity
reaches the same value in the negative direction as its maximum



84 ELECTRICAL ENGINEERING

value in the positive direction, the flux density likewise reaches a

maximum in the negative direction equal to the maximum value

it had in the positive direction. When the field intensity is now
reduced to zero and then increased again in the positive direction

to its original maximum value, the flux density passes through the

series of values represented by the right-hand branch of the curve,

which is perfectly symmetrical with the left-hand branch. The

closed curve formed by these two branches is called the "
hysteresis

loop."

It should be noted that when the sample is originally un-

magnetised the curve giving the relation between the flux den-

sity and the field intensity when the field intensity is first increased

from zero up to the maximum value, does not coincide with either

branch of the hysteresis loop, but is a curve which in general lies

between the two branches of the loop. After the completion of a

cycle of changes in the field intensity from a positive maximum to

an equal negative maximum and then back again to the positive

maximum, the field intensity may then be reversed back and forth

any number of times between these equal positive and negative

maximum values, and the relation between the flux density and

the field intensity will be the same for each cycle of changes in the

field intensity as for the first cycle. If the iron is not originally

unmagnetised, the first hysteresis loop will be shifted above or

below the axis of field intensities, but after a number of reversals

of the .field intensity between given positive and negative values,

the loop will become practically symmetrical with this axis, par-

ticularly if the iron is continually jarred. In the armatures of

electrical machines and the cores of transformers, in which the field

intensity reverses a large number of times every second and the

iron is continually jarred, the relation between flux density and

field intensity, after a short interval of time, is represented by
a symmetrical loop of the form shown in Fig. 36.

The area enclosed by the hysteresis loop depends upon the

maximum value of the flux density reached during the cycle, but

the general shape remains about the same. Fig. 37 shows a series

of loops corresponding to various values of the maximum flux

density. The area of the loop is also different for various kinds of

iron or steel. As we shall see when we come to the study of electric

currents (Chapter IV), the area of this loop represents a certain

amount of energy dissipated as heat energy in the iron; in fact, the
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ergs of heat energy dissipated per cycle is equal to times the
4 TT

area of this loop, when both the flux density and the field in-

tensity are plotted to the same scale.

B

+ 50

Fig. 37.

On account of this energy loss due to hysteresis, it is desirable

to have all parts of the magnetic circuit of an electric machine in

which there is a varying magnetic flux made of iron or steel in

which this hysteresis loss is a minimum. It has been found that in

iron which contains about three per cent silicon this hysteresis

loss is about half what it is in the best grade of low carbon steel.

This so-called
"

silicon steel
"

is now being extensively used in the

construction of electric machines, particularly transformers.

An examination of this hysteresis loop also makes clear how a

bar of steel may be permanently magnetised by placing it in a

magnetic field. For, when the bar is removed from the field it

retains an intensity of magnetisation approximately equal to the

flux density where the hysteresis loop cuts the axis of flux densities,

that is, an intensity of magnetisation approximately equal to the

remanent magnetism. Experiment shows that a hard steel bar
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thus magnetised may be handled with comparative roughness
without reducing to any considerable extent the strength of

its poles, but in the case of a soft iron bar even the slightest jar

will cause it to lose its magnetism almost entirely. The property

possessed by a hard steel bar of retaining its magnetisation is

called its
"
retentiveness."

58. Normal B-H Curves. Magnetic Saturation. The curve

giving the relation between the flux density and the resultant field

intensity when the latter is increased from zero up to successively

40 50 ~60~

H in C.Q.S. Electromagnetic Units

Fig. 38.*

greater values is called the " normal B-H curve." In Fig. 38 are

given the normal B-H curves for cast iron, cast steel and annealed

sheet steel (low carbon) such as is ordinarily used in the construc-

tion of electric machines. In Fig. 39 are given the corresponding

curves showing the relation between the intensity of magnetisation
and the field intensity (calculated from the B-H curves by equation

18), and in Fig. 40 the corresponding permeability curves (calcu-

lated from the B-H curves by equation 19). It will be noted

that the intensity of magnetisation corresponding to values of the

flux density above the sharp bend or knee in the B-H curves,

^Standard curves used by General Electric Co.
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Fig 39.

B
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increases very slowly and soon becomes practically constant

independent of the value of the field intensity. In fact, experi-

ment shows that it is impossible to produce an intensity of

magnetisation in a given substance greater than a certain defi-

nite value, which is different for different substances. When
a magnetic substance is thus magnetised to its maximum in-

tensity of magnetisation it is said to be "
saturated." Such a

substance is practically saturated for any value of the field in-

tensity well above the knee of the B-H curve.

It should be noted that the B-H curves for iron and steel de-

pend to a very great extent upon the physical structure and chemi-

cal constitution of the sample, and the heat treatment to which

it has been subjected. It has also been recently discovered that

when iron is annealed in an alternating magnetic field, the per-

meability is increased in certain cases as much as 50 per cent. The
B-H curves of two samples taken from the same lot of material

may even differ considerably. The curves also depend upon the

temperature of the sample at the time the observations are taken,

though the variation due to ordinary changes of temperature is

slight. For very high temperatures, however, all magnetic sub-

stances become practically non-magnetic. This temperature cor-

responds to the major recalescence point, which is about 750

degrees for steel of the quality used in armature and transformer

punchings. When iron is kept continuously at a moderately high

temperature (100C), the hysteresis loop also gradually increases

in size, and therefore the energy loss in the magnetic circuits of

electric machines due to
"
hysteresis

"
increases with time. This

effect is called
"
aging." There is practically no aging of silicon

steel.

59. 'Magnetic Potential. Whenever the position of a mag-
netic pole with respect to another pole is "changed, work must in

general be done, either by the poles themselves or by the external

agent which produces this change in the relative position of the two

poles. For, every magnetic pole produces a force on every other

pole, and consequently when one pole moves with respect to the

other there is a force and a displacement, and, by definition, work
is equal to the product of the displacement by the component of the

force in the direction of the displacement (Article 21). The total

work which two permanent poles of like sign at a given distance

apart can do on each other, is the work done when the two poles
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move from their original positions to an infinite distance apart.

This amount of work may be looked upon as the relative potential

energy of the two poles, since it is the work they are capable of, or

have the
"
potentiality

"
of, doing on each other. Similarly, the

work done by any number of magnetic poles in moving a unit

north point-pole from a given point to an infinite distance may be

looked upon as the relative potential energy with respect to these

poles of a unit north pole located at this point. This quantity
is called simply the potential at the point; i.e., the potential

at any point in a magnet field is the work done by the poles

producing the field in moving a unit north point-pole'from that point

to infinity, provided these poles remain constant in strength and

their relative positions remain unaltered. Potential is then work
divided by pole strength, and since both work and pole strength
are scalar quantities, potential is also a scalar quantity. Hence

potentials may be added algebraically.

The potential at any point P due to a point-pole of strength
m at a distance r away can be readily calculated. Consider any

Fig. 41.

point Q on the line drawn through the pole m and the point P;
let this point be at a distancex from m. Then the force which would

act on a unit north pole at Q is in the direction from m to Q.
x2

When the unit pole moves a distance dx along this line, the work

done by m on it is . Consequently, when the unit pole

moves along this line from P to infinity the work done is
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Joo

r noo
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--=m\ - - =~
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Hence the potential at any point due to a point-pole m at a dis-

tance r away is

y= (24)
r

When m is a south pole, is negative, which means that the
r

unit pole does work against the force due to m, instead of this

force doing work on the unit pole. It can readily be shown that

the work done by the pole m on the unit north pole, when the latter

moves from the point P to infinity, is independent of the path
over which the unit pole moves. For, the work done on the unit

pole when it moves a distance dl in any direction making an angle

with the line from mto Q is (dl cos 0). But dl cos 9 is equal

to the projection of dl on the line from m to Q. Calling this

projection dx, we have that the work corresponding to the dis-

placement dl is
,
which integrated between the limits x=r

and = oo
; gives the same value of the potential as before.

Hence the potential at any point due to a point-pole of strength
m depends only on the position of this point with respect to m
and the value of m.

The potential at any point due to any number of point-poles

m l m2 etc., at the distances r l r2 etc., from this point is then the

algebraic sum

V=m1+ m,+ (24fl)
r, r2

and the potential at any point due to any magnetised surface is

(T ds
~

'
(246)

where ds is any elementary area in this surface, <r the pole strength

per unit area at ds, and r the distance of ds from the point con-

sidered, and J s
indicates the sum of the expressions

^
for ail

r

the elements into which the surfaces are divided.
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60. Difference of Magnetic Potential. The difference of

potential between any two points 1 and 2 in a magnetic field
;
or

Fig. 42.

specifically, the drop in magnetic potential from the point 1 to

the point 2, is equal to the work that would be done by the agents

producing the field were a unit north point-pole moved from 1 to

2. Let Vl and 72 be the potentials at the two points respectively,

then- the drop of potential from 1 to 2 is V^ V 2 . Let dl repre-

sent an elementary length in the path over which the unit pole

moves, H the field intensity at dl and the angle between dl

and the direction of the field intensity at dl; then the work that

would be done by the agents producing the field on a unit north

point-pole when the latter moves from 1 to 2 is f
2

(H cos 9) dl
J i

where

V,-V Z
= C (H cos 9) dl (25)J i

When Y2 is greater than V l the drop of potential from 1

to 2 is negative, that is the integral f
-

(H cos 9) dl is a negative

quantity. A negative drop of potential in any direction is equiva-
lent to a positive rise in that direction.

When the magnetic field is due solely to magnetic poles the

drop of magnetic potential around any closed path is zero, since

the magnetic potential at any point due to any number of poles
can have but a single value. This, however, is not true when
the path links an electric current (see Chapter IV).

When the two points 1 and 2 are an infinitesimal distance dl

apart, the drop of potential along dl is likewise an infinitesimal

quantity and may be written dV where dV stands for an in-

finitesimal increase of potential along dl and therefore dFfora
decrease or drop of potential along dl. We then have that

-dV =(H cos9)dl
n dV

or H cos u =
dl (25a)
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That is, the component in any direction of the field intensity at

any point is equal to the negative of the "
space rate" of change of the

potential in that direction. When the elementary length is taken

in the direction of the field intensity equation (25a) becomes

H = _dV (256)

dl
t

where dl
t
means an elementary length taken tangent to the line

of force through this point. Hence a large field intensity cor-

responds to a rapid fall of potential in the direction of the field

intensity, and a small field intensity a gradual fall of potential in

the direction of the field intensity. Consequently, the expression
"
potential gradient

"
is frequently used for field intensity, where

by
"
potential gradient

"
is meant the drop of potential per unit

length in the direction of the lines of force. The unit of magnetic

potential difference in the c. g. s. system is called the gilbert.

Hence magnetic field intensity may be expressed as so many
gilberts per centimeter.

When the magnetic field is produced by an electric current it

is usual to express the drop of magnetic potential as so many
"
ampere-turns

"
(see Chapter IV.). The relation between gilberts

and ampere-turns is

1 gilbert =0.79578 ampere-turns.

61. Equipotential Surfaces. A magnetic equipotential sur-

face is a surface drawn in a magnetic field in such a mariner that

the drop of magnetic potential along any path in the surface is

zero. Such a surface is perpendicular at each point to the line of

force through that point, otherwise the field intensity at the

point in question would have a component along the surface and

consequently there would be a difference of potential between

this point and the neighboring point in the direction of this com-

ponent. The lines of force representing a magnetic field are

therefore always normal to any equipotential surface which may
be drawn in the field. Calling dn an elementary length measured

outward along the normal to such a surface at any point, the

field intensity at this point is

dV (26)H = "3an

which is the same as equation (256), only expressed in a differ-

ent form.
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SUMMARY OF IMPORTANT DEFINITIONS
AND PRINCIPLES

1 . A unit point-pole is a pole which repels with a force of one

dyne an equal point-pole placed one centimeter away.
2. Two point-poles of strengths m and m' at a distance r centi-

meters apart repel each other with a force of

m m' .

f= dynes.
r2

3. The field intensity at any point of a magnetic field is defined

as the force in dynes which would act on a unit north point-pole

placed at that point due solely to the agents (magnetic poles or

electric currents) producing the original field. The unit of field

intensity in the c. g. s. system is the gilbert per centimeter.

4. The field intensity at a distance r from a point-pole of

strength m is

TT m -n
ti = gilberts per cm.

r2

5. The mechanical force exerted on a point-pole of strength m
is

F=mH dynes

where H is the field intensity in gilberts per cm. at the point

occupied by m due to all the poles (and electric currents) in the

field except the pole m.

6. The normal component of the field intensity at any point

P just outside a magnetically charged surface due solely to the

pole on this surface is

H=2 TT a gilberts per cm.

where cr is the pole strength per unit area at the point on the

surface directly opposite P.

7. The magnetic moment of a magnet is defined as the ratio

of the maximum moment exerted on a magnet, when placed in a

uniform magnetic field, to the intensity of this field. The magnetic
moment of a bar magnet of length I with poles of strength m
and m concentrated in points at its two ends is ml.

8. The frequency of vibration of a magnetic needle suspended
in a magnetic field is proportional to the square root of the field

intensity.

9. Lines of magnetic force are lines drawn in a magnetic field

in such a manner that they coincide in direction at each point P
with the field intensity at P and their number per unit area at each



94 ELECTRICAL ENGINEERING

point P across a surface at right angles to their direction at P is

equal to the field intensity at P.

10. The number of lines of force, or flux of force, crossing any
elementary area ds is

d\l*=(H cos a) ds

where H is the field intensity at ds and a is the angle between the

direction of H and the normal to ds; or H cos a is the component
of H normal to ds.

11. Gauss's Theorem: The algebraic sum of the number of

lines of force outward from any closed surface is equal to 4 TT times

the algebraic sum of the poles inside this surface, i. e.
}

(H cos a) ds =4 TT 2, m
\s\

where / represents the surface integral over the closed surface S.
J \s\

12. A magnetised body is considered to be made up of mag-
netic filaments such that were the lateral walls of any one of these

filaments separated from the rest of the body by a narrow air gap,
no poles would be formed on these lateral walls.

13. The intensity of magnetisation J at any point of a mag-
netised body is the value of the strength per unit area of the pole
which would be formed on the walls of a gap cut in the body at this

point perpendicular to the direction of the magnetic filament

through this point. The direction of the intensity of magnetisa-
tion is the direction of the filament, and the positive sense of the

filament is the sense of the line drawn into the gap from the wall on

which the north pole is formed.

14. A line of magnetisation, or unit magnetic filament, is a

filament of such a size that were it broken by a narrow gap at any

point, the strength of the pole formed on either wall of the gap

would be .

15. The number of lines of magnetisation crossing any ele-

mentary area ds is

dN =4 TT (Jcos a) ds

where J is the intensity of magnetisation at ds and a is the angle

between the direction of J and the normal to ds.

16. The number of lines of magnetic induction, or flux of in-

duction, crossing any surface is defined as the algebraic sum of
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the lines of magnetisation and the lines of force crossing that

surface. The direction of the line of induction at any point is

the direction of the vector which is equal to the vector sum of 4 TT J
and H at this point. The unit of flux of induction in the c. g. s.

system is the maxwell; one line of induction is equal to one

maxwell.

17. The flux density B at any point is denned as the number of

lines of induction per unit area crossing an elementary surface

drawn at this point normal to their direction. The flux density

is the vector sum

5=477 J+H.

The unit of flux density in the c. g. s. system is the gauss.

18. The number of lines of induction crossing any elementary
area ds is

d (f)=(B cos a) ds

where a is the angle between the direction of B and the normal to

ds:

19. A line of force originates at a north pole and ends at a

south pole and may exist in either a magnetic or non-magnetic
substance. A line of magnetisation originates at a south pole

and ends at a north pole and exists in a magnetic substance only.

A line of induction is a closed loop without ends and may exist in

either a magnetic or non-magnetic substance. In a non-magnetic
substance lines of force and lines of induction are identical, in a

magnetic substance they are never identical.

20. The magnetic permeability //,
of a body is the ratio of the

flux density B established in the body to the resultant field

intensity H, when the body, originally unmagnetised, is placed in

a magnetic field which is continually increased from zero to the

value H; that is

B
^~H

The flux density is not a constant but depends upon the value of H.

21. When the field intensity in a magnetic body is changed
from one value to another and then back again to its original value,
the flux density does not return to its original value. This phe-
nomenon is known as magnetic hysteresis. As a result of this

phenomenon a certain amount of heat energy is always dissipated
in a magnetic body when it is subjected to a varying magnetic field.



96 ELECTRICAL ENGINEERING

22. The magnetic potential V at any point in a magnetic field

is the work which would be done by the agents producing the field

in moving a unit north point-pole from this point to infinity. The
unit of magnetic potential in the c. g. s. system is the gilbert. The

potential at any point due to a point-pole of strength m at a dis-

tance r centimeters away is

T7- Wl MTV = gilberts.
r

The resultant potential due to any number of poles is the algebraic

sum of the potentials due to all the individual poles.

23. The drop of potential from any point 1 to any point 2 is

C2

V,\-V2
= f\H cos 0) dl gilberts

where dl is the length in centimeters of any element of the path
from 1 to 2, H the field intensity in gilberts per cm. at dl, and

the angle between the direction of H and dl. When the field is

due solely to magnetic poles the drop of potential is independent of

the path from 1 to 2. This is not true when the path links an

electric current.

24. A magnetic equipotential surface is a surface drawn in a

magnetic field in such manner that the drop of magnetic potential

along any path in the surface is zero. Such a surface is per-

pendicular at each point to the line of force through that point.

PROBLEMS

(Note : In calculating forces and field intensities when a slender

bar magnet is specified, the poles are to be considered concentrated

in points at its ends.)

1. Two slender bar magnets each with poles of 100 c. g. s. units

and 10 inches in length lie upon the same straight line with their

centers 15 inches apart. What is the force in dynes exerted by one

magnet on the other if the nearest poles on the respective magnets
are of opposite signs?

Ans. : 50.7 dynes.

2. Two slender bar magnets A and B are placed parallel to

each other and 10 inches apart with their centers on a line per-

pendicular to their axes and with opposite poles on the respective

magnets adjacent. The poles of A are 50 c. g. s. units and the

poles of B are 30 c. g. s. units. A is 20 inches in length and B is 10
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inches in length. What is the amount (in dynes) and the direction

of the total force exerted by one magnet on the other?

Ans.". 2.52 dynes in the direction perpendicular to the axis of

each magnet.
3. Find the amount and direction of the field intensity due to

a slender bar magnet at a point 10 cm. from the magnet on a line

normal to the axis of the magnet through its north pole. The

magnet is 10 cm. in length and the strength of each pole is 50 c. g. s.

units.

Ans.: 0.368 gilberts per cm. at an angle of 61.3 with the axis of

the magnet.
4. A slender bar magnet with poles of 25 c. g. s. units is placed in

a uniform field the intensity of which is 100 gilberts per cm. What
is the force in dynes acting upon each pole? What is the total

force acting on the magnet?
Ans.: 2500 dynes on each pole ;

total force zero.

5. Two similar bar magnets A and B are placed end on with

their two nearest pole-faces -fa inch apart and of opposite sign.

Each magnet is 20 inches long and the pole strength of each pole is

100 c. g. s. units uniformly distributed over the respective end sur-

faces of the magnet. If the cross section of each magnet is 1

square inch, find the force in dynes exerted on each other by the

two adjacent poles. What is the force produced by one magnet
on the other due to the action of the other poles?

Ans.: An attraction of 9736 dynes. A repulsion of 6.79 dynes.

(Note that this latter force is less than 0.1% of the force due to the

adjacent poles.)

6. A slender bar magnet 30 cm. in length and with poles of

80 c. g. s. units is pivoted at its center and placed in a uniform mag-
netic field, the intensity of which is 300 gilberts per cm. What is

the torque acting upon the magnet about its center, when the axis

of the magnet is perpendicular to the field intensity? What is

the magnetic moment of the magnet?
Ans.: 720,000 cm-dynes. 2400 c. g. s. units.

7. A slender bar magnet I centimeters long produces a field

intensity of H gilberts per cm. at a point on a line through the

axis of the magnet at a distance of 101 centimeters from its center.

What is the field intensity produced by this magnet at a point on a

line through the center of the magnet perpendicular to its axis and
at the same distance I from its center?
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In solving this problem note that ( -\

*

is negligible compared

with unity.
TT

Ans.: gilberts per. cm. Note: The ratio of these two
Zi

intensities depends solely upon the exponent of r in the funda-

mental formula, equation (1), for the mutual action of two poles.

Gauss determined this ratio experimentally to be 2:1, which was
the first accurate experimental proof of the inverse square
law.

8. A slender bar magnet 5 square centimeters in cross section

and 30 centimeters in length has a pole strength of 1500 c. g. s.

units. Find the field intensity and the flux density at the center

of the magnet ;
state the direction of each.

Ans.: 13.3 gilberts per cm. in the direction from north to south

pole of the magnet. 3757 gausses in the direction from south to

north pole of the magnet.

y 9. A slender iron bar 3 sq. cm. in cross section and 40 cm.

in length is placed in a uniform magnetic field, the intensity of

which before the introduction of the bar is 160 ampere-turns per
inch. After the bar of iron is placed in this field with its axis

parallel to the direction of the field intensity, a uniform intensity

of magnetisation of 1000 c. g. s. units is established in the bar (i.e.,

the lines of magnetisation are to be assumed straight lines parallel

to the axis of the bar). Calculate the field intensity in gilberts per
cm. and the total flux of induction at the center of the. bar; state

the direction of each.

Ans.: 64.2 gilberts per cm. in the direction from the south to

the north pole of the bar. 37,773 maxwells in the same direction

as field intensity.

10. The field intensity at the center of a slender bar magnet
100 cm. long and 4 sq. cm. in cross section is 500 gilberts per cm.

If the flux density at the center of the magnet is 5000 gausses and

is parallel to the direction of the field intensity, what is the strength
of each pole, assuming the lines of magnetisation to be straight

lines? What would be the field intensity in the region occupied by
the magnet if the magnet were removed?

Ans.: 1432 c. g. s. units. 501.15 gilberts per cm. *

11. A slender magnet has a magnetic moment of 5000 c. g. s.

units. The magnet is 50 cm. in length and 2 sq. cm. in cross
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section. Calculate the intensity of magnetisation and the flux of

magnetisation at the center of the rod.

Ans.: 50 c. g. s. units. 1257 c. g. s. units.

4 12. A slender bar of iron 50 cm. long and 5 sq. cm. in cross

section is placed in a uniform field the intensity of which is 50

gilberts per cm., the axis of the iron bar being parallel to the

direction of the field intensity. If the permeability of the iron at

the degree of saturation attained is 300, find the intensity of mag-
netisation and the flux density at the center of the bar.

Ans.: 862 c. g. s. units. 10,870 gausses.

13. Fig. 36, p. 83, represents the hysteresis loop for a sample
of iron. Calculate the torque required to revolve a sample of

this iron having a volume of 50 cu. cm. at a uniform speed of 300

revolutions per minute in a uniform magnetic field which has an in-

tensity of 12 gilberts per cm. The demagnetising action of the

poles induced on the iron and mechanical friction are to be

neglected.

To solve this problem equate the energy dissipated per second

in the iron due to hysteresis to the mechanical power expressed
in terms of torque and angular speed.

Ans.: 1770 cm-dynes. (Note that this torque is independent
of the speed, but depends only upon the area of the hysteresis

loop, i.e., the torque is T = . Hence the torque is propor-
8 7T

2

tional to the hysteresis loss per cycle of variation of field inten-

sity. This is the principle of Ewing's hysteresis tester.)

14. Three equal north point-poles of 25 c. g. s. units each

are placed at the vertices of an equilateral triangle, each side of

which is 5 inches in length. Find (1) the intensity of the field at

the center of the triangle ; (2) the magnetic potential at the center

of the triangle ; (3) the intensity of the field at a point on a line

through any two poles midway between them
;
and (4) the magnetic

potential at a pointvon a line through any two poles midway
between them. South poles may be neglected.

Ans.: (1) 0. (2) 26.0 gilberts. (3) 1.33 gilberts per cm.

in the direction away from the third pole. (4) 25.8 gilberts.

15. The numerical strength of each pole of a round bar magnet
is 200 c. g. s. units, and these poles are uniformly distributed over

its end surfaces. The cross section of the magnet is 1 sq. in. and
its length is 10 inches. Calculate the magnetic potential at the
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center of the north pole of the magnet. In making this calculation

find first the potential at this point due to the north pole con-

sidered as a uniformly magnetically charged disc and then add

(algebraically) to this the potential due to the south pole con-

sidered as a point-pole. Why is this approximation justified?

What is the drop of magnetic potential from one pole to the other?

Is the drop through the magnet the same as the drop between these

two points through the air around the magnet?
Ans.: 1249 gilberts. Since the angle subtended by the south

pole is small, see Article 37. 2498 gilberts. Yes.



Ill

CONTINUOUS ELECTRIC CURRENTS

62. The Electric Current. When a strip of zinc is dipped

into a dilute solution of sulphuric acid in water, hydrogen gas

is given off from the strip, but if the zinc is pure, this action

ceases almost immediately. A copper strip dipped into the

same solution is not appreciably affected, provided the two strips

B

Copper Strip-

Dilute
Sulphuric Acid

.Zinc Strip

Fig. 43.

do not touch each other. Now connect the ends of the two strips

by a copper wire (Fig. 43); the following phenomena are then

observed :

1. The zinc gradually wastes away and hydrogen gas is lib-

erated at the copper strip.

2. The wire, the strips, and the solution all become heated.

3. A magnetic field is produced around the wire, the strips and

the solution.

4. A magnet placed in the vicinity of the apparatus will exert

a mechanical force on the wire, the strips, and the solution.

5. When the copper wire connecting the two strips is broken in

two and the two ends a and b (Fig. 44) are both dipped into a

solution of copper sulphate, it is found that the wire a wastes

away where it is immersed in the copper sulphate solution and

copper is deposited on the wire b where it is immersed in the solu-

101
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tion. In addition, this solution becomes heated, has a magnetic
field produced around it, and a magnet placed near it exerts a

mechanical force upon it.

6. When the ends A and B of the copper wire are reversed, so

Copper
Stri:
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them, and any such device is said to be the seat of an electro-

motive force. The electric dynamo, the operation of which

will be described later, is a device which is capable of producing

very powerful electromotive forces and electric currents thou-

sands of times greater than the maximum current which can be

produced by a simple battery of the form just described. But

before we can speak accurately of the quantitative values of

electric currents and electromotive forces, it is necessary to define

what shall be taken as the measure of these quantities.

63. Conductors and Insulators or Dielectrics. First, however,

it is important to note that the degree to which the effects described

above are produced when different kinds of substances are used

in place of the copper wire to connect the poles of the battery,

depends to a very great extent upon the nature of these substances.

For example, when there is nothing but air between the poles of

the battery none of the effects described above are observed.

Again, a dry silk string may be used to connect the poles of the

battery, and no effects will be observed. When a moist string is

used, the effects produced are similar to those produced when the

poles are connected by the copper wire, but to a markedly less

degree. Any substance which, when connected to the poles of an

electric battery, has a magnetic field produced around it as long as

it remains in contact with these poles, is called a conductor of

electricity; if no magnetic field is established around the substance,

it is called an insulator or dielectric. It should be noted, however,
that when a battery of sufficiently high electromotive force is

used, any substance connected to its poles will have a magnetic
field produced around it, though to a far less extent than would

be produced around a metallic wire connected to its poles. In

fact, there is no known substance which is a perfect insulator,

though the results of all known experiments lead us to believe

that a perfect vacuum, if obtainable, would be such. However,
for most practical purposes, such substances as glass, glazed por-

celain, rubber, ebonite, gutta-percha, paraffine, silk, cellulose and

shellac may be considered as insulators, while all metals, carbon,
fused salts and solutions of most mineral salts and acids are

conductors.

A conductor completely surrounded by insulators is said to be

completely insulated. A wire is also said to be insulated when its

lateral walls only are surrounded by an insulator. That is, a
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rubber-covered wire, for example, with its ends connected to the

poles of a battery, is spoken of as an "
insulated wire connected

to the battery."

64. Electricity Analogous to an Incompressible Fluid Filling

all Space. The following analogies will be found helpful in

understanding the significance of the various properties which

experiment leads us to assign to the something called electricity.

In the first place, experiment shows that this something must

Elastic
nave man7 properties anal-

'waiu ogous to those which would

be possessed by an incom-

pressible fluid filling all space,

including the space occupied

by matter. In this analogy,

the force of gravitation act-

ing on the fluid is to be neg-

lected. The properties pos-
45 - sessed by free space or any

space occupied by a dielectric are found to be analogous to the

properties which would be possessed by this space were the

incompressible fluid in this space enclosed in minute cells with

elastic walls, forming a cellular or honey-comb structure with

continuous walls completely filling this space; while the prop-
erties possessed by a conductor are analogous to the properties

possessed by a space in which the walls of the cells are completely

destroyed. Any particle of this fluid in the space corresponding
to a dielectric can then move only as the result of a strain pro-

duced in the elastic structure which enmeshes it, while any particle

of the fluid in the space corresponding to a conductor can move

freely throughout this space. A conductor may then be looked

upon as analogous to an elastic sack (or tube, in the case of a wire)

completely filled with this incompressible fluid, the elastic walls

of the sack being formed by the walls of the cellular structure

representing the dielectric surrounding the conductor.

The property possessed by a battery of being capable of pro-

ducing a " flow of electricity
"

is analogous to the pressure pro-

duced by a pump. The analogy to a simple battery of the form

described above is a pump which maintains a constant pressure

(approximately) in the same direction whether or not there is a

flow of the fluid through the pump. Since a battery is always
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made of conductors, the walls of this pump must also be con-

sidered as elastic.

A conductor connected to the two poles of a battery is then

analogous to the rubber hose completely filled with water (which

may be taken as an approximately incompressible fluid) with

its two ends connected respectively to the outlet and intake of the

pump, which is also completely filled with water. The pump will

then force a current of water through the hose, and the strength

.Constant Pressure Pump

Cellular Structure
with Elastic Walls

Rubber Hose

Fig. 46.

of this water current (i.e., the quantity of water per unit time flow-

ing through any cross section of the hose) will depend upon the

pressure developed by the pump and the resistance due to the

friction of the water against the walls of the hose. The effects

produced in and around the wire connected to the battery are

similarly found to depend upon a property of the battery (called

its electromotive force) analogous to the pressure developed by
the pump, and upon a property of the wire (called its resistance)

analogous in certain respects to the resistance of the rubber hose

to a water current.

When the current of water is established in the hose, a fall of

pressure is produced in the hose in the direction of the flow of the

water, and consequently the pressure acting on the walls of

the hose will vary from point to point. Hence, near the outlet of

the pump the walls of the hose will expand and near the intake

the walls will contract. Consequently, there will be more water in

the portion of the hose near the outlet of the pump an<J less near

the intake, than there was in these portions of the hose before it

was connected to the pump. Experiment shows that an analogous
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phenomenon occurs when a wire is connected to an electric bat-

tery. The portions of the wire near the two poles of the battery
manifest properties which they did not possess before; these prop-
erties are such that they may be attributed to an excess of

electricity, or a "
positive charge

"
of electricity on the portion

of the wire nearer the pole of the battery from which the electric

current is said to flow, and a deficit of electricity, or a "
negative

charge
"

of electricity, on the portion of the conductor nearer the

pole of the battery toward which the current is said to flow.

On account of the inertia of a mass of water, time is required to

set the water in the hose in motion when the latter is connected to

the pump. It is also found that time is required for the effects

which we ascribe to the flow of an electric current to reach a steady
state. As we shall see later, the property of electricity which is

analogous to inertia may be expressed in terms of the magnetic
field produced by electricity in motion. There is no experimental
evidence to lead us to assign to electricity a property analogous to

weight.

The expansion of the walls of the rubber hose by the pressure

produced by the pump likewise produces a pressure on the cellular

structure representing the dielectric surrounding the wire, and

produces a displacement of the cells and the fluid (e. g., water)

which they contain. When the current of water in the hose be-

comes steady, the motion of these cells ceases, but while the cur-

rent in the hose is being established, there is also a motion of these

cells and the water they contain. As we shall see later, an effect

is produced in the dielectric while the current in the wire is being

established or changes in any way, which may be attributed to

a flow or displacement of electricity through the dielectric, anal-

ogous to the displacement of the water in the cellular structure

surrounding the rubber hose, which displacement ceases when the

electric current reaches a constant value.

The displacement of the cells of the structure surrounding the

rubber hose produces a change in the shape of these cells, and

therefore a strain in their walls. Analogous effects are observed

in the dielectric surrounding a wire connected to a battery or

other device which is capable of producing the phenomena which

we attribute to the flow of an electric current. This effect is par-

ticularly noticeable when the " electromotive force
"

of the cur-

rent-producing device is high, and may even cause a rupture of
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the dielectric, i.e., an electric spark. A similar effect would be

produced should the pressure developed by the pump produce a

strain in the walls of the cells in the structure around the hose

sufficient to break the walls of these cells.

When the outlet and intake of the pump which we have been

considering are closed, we have an arrangement analogous to an

electric battery with its poles insulated from each other. Since

our pump is assumed to maintain a constant pressure independent
of the current flowing through it, and since the walls of the pump
are elastic, near the outlet these walls will be stretched and near

the intake contracted. Consequently there will be an excess of

water near the outlet and a deficit near the intake, compared to the

quantity of water that would be in these portions were there no

pressure produced by the pump. The two poles of a battery pos-

sess analogous properties, which may be attributed to an excess

of electricity, or "
positive charge

"
of electricity, on the pole of

the battery from which the current is said to flow, and a deficit of

electricity, or a "
negative charge

"
of electricity, on the pole

toward which the current is said to flow. The cellular structure

surrounding the pump will likewise be in a state of strain, due to

the pressure produced in it by the pump. Experiment shows that

analogous effects are also produced in the dielectric surrounding
the battery.

Again, if a closed sack which has elastic walls is connected to

the outlet of the pump, more water will be forced into the sack by
the pump; while if this sack is connected to the intake of the pump
water will be drawn out of it. These effects are analogous to the

effects produced when a conductor is connected to one of the poles

of a battery but not to the other. When the conductor is con-

nected to one pole it manifests a new property which may be at-

tributed to an increase of electricity on it, or to a "
positive charge

"

of electricity gained by it, and when connected to the other pole it

manifests a new property which may be attributed to a drain of

electricity from it, or to a "
negative charge

"
of electricity on it.

It should be noted that the above discussion is merely a state-

ment of analogies and does not explain anything. These analogies
are useful as they enable one to form a picture of the way the ob-

served effects might take place, but the exact mechanism of these

effects may be entirely different. Like all other analogies, the

above must not be pressed too far. For example, the elastic hose
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or sack which we have considered as representing a conductor,

changes in shape when connected to the pump, but there is no evi-

dence that a wire or other conductor changes in shape when it

manifests the properties which are attributed to a "
charge of

electricity
" on it.

65. A Wire as a Geometrical Line. In the discussion of the

phenomena which are attributed to the flow of an electric current

a wire will usually be considered as equivalent to a geometrical

line. This, of course, is not strictly accurate, since a wire always
has a finite cross section. However, in many cases the error

involved is practically inappreciable; when this is not so, atten-

tion will be called to the fact. The exact expression for a wire

of finite cross section may always be derived when we have

deduced the relation which holds for a geometrical line, for we

may express this same relation for the wire of finite cross section

by considering the wire made up of an infinite number of fila-

ments of infinitesimal cross section, each of which filaments is

equivalent to a line, and then determine the resultant effect due

to all these filaments. In general, such an expression is extremely

difficult to evaluate; only in one or two simple cases will it be

necessary to do this.

66. Definition of the Strength of an Electric Current. Defini-

tion of a Continuous Current. The quantity of electricity that

flows through any section of a wire in unit time may be called

the strength of the current of electricity in this section of the

wire, just as the quantity of water flowing through any section

of a pipe in unit time may be called the strength of the water

current in this section of the pipe. By
"
quantity

"
of water

flowing through any section of a pipe is meant the volume of

water flowing through this section; therefore quantity of water

has a perfectly definite meaning and can be readily determined,

either directly or by measuring its mass. There is no experi-

mental evidence, however, to lead us to attribute to electricity

either mass or volume, in the ordinary sense of these terms. To

define the strength of an electric current in this manner, there-

fore, it would be necessary first to define what is to be meant by
"
quantity

"
of electricity. It is more convenient, however, to

define the strength of an electric current in some other way,
and then to define

"
quantity

"
of electricity in terms of the

electric current, particularly as this method of procedure is in
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accord with the usual experimental methods employed in engineer-

ing work in the determination of the "
quantity

"
of electricity.

We might take any one of the effects described above as the

measure of the strength of the current flowing in the wire. Scien-

tists have agreed, however, to take as the measure of the strength

of an electric current flowing in a /'

wire, the mechanical force which /
is exerted on the wire when it is S
placed in a magnetic field. (This

effect was illustrated above by
the mechanical force produced on

the wire by a magnet placed near

it.) When a constant magnetic / Fig. 47.

field is established at the wire by some external agent (for ex-

ample, by means of a permanent magnet) it is found that in gen-

eral the force exerted on the wire when it is connected to a bat-

tery of the kind described in Article 62 remains constant (at

least appreciably so for several seconds or more, though, unless

special precautions are taken, this force will gradually change).

The current in the wire is said to be continuous* as long as this

force remains constant. This force is found to depend upon
the flux density at the wire of the magnetic field produced by this

external agent and also upon the direction of this flux density

with respect to the direction of the wire, and upon the length of

the wire. For a continuous current in the wire, the force dF
produced on any elementary length dl of the wire (see Fig. 47)

by a magnetic field when the flux density at dl is B and makes

an angle 9 with the direction of dl, is found to be proportional

to the product of the flux density B, the sine of the angle 0, and

the length dl; that is, the mechanical force dF is proportional
to ( B sin 9 ) dl. The direction of this force is found by experiment
to be perpendicular to the plane determined by the direction of the

flux density B and the direction of the length dl.

Various modifications may be made in the rest of the circuit

which will cause the force acting on a given length of wire to

change, even though the flux density B and the angle 9 at each

point is kept unaltered. For example, another piece of wire may
be inserted between one end of the original wire and the pole of

*The following definitions are those adopted by the American Institute

of Electrical Engineers.
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the battery to which it was originally connected, that is, placed
"
in series

" with the original wire; or a second battery may be

connected in the circuit. Any modification which causes a change
in the force acting on a given length of wire when the flux density
B and the angle 9 at each point is kept constant, is attributed

to a change in the strength of the electric current in the wire. In

short, the strength of the current in any section of the wire is

arbitrarily defined to be proportional to this force when the flux

density B and the angle 9 at each element of this section is kept

constant. We then have that the force on any elementary length

dl, besides being proportional to (B sin 9} dl is also proportional

to the strength of the current; that is

dF=kI(Bsin0)dl
where 7 is the strength of the current in the elementary length dl

of the wire, B is the flux density of the magnetic field at dl pro-

duced by any external agent, 9 the angle between the direction

of this flux density and the direction of dl, and k is a factor

of proportionality. Experiment shows that this quantity k is

independent of the nature of the substances which form the wire

and the medium surrounding the wrre, but depends only upon
the units in which the force, the flux density, and the length are

measured. The unit of current strength may therefore be chosen

such that when the force dF is measured in dynes, the flux den-

sity B .in gausses, and the length dl in centimeters, this factor

of proportionality k is equal to unity. The above equation then

becomes*

dF=I (B sin 9) dl

from which

dF (1)
I =

(B sin 9} dl

Note that is the mechanical force per unit length of wire
dl

at dl, and that B sin 9 is the 'component of the flux density at

dl perpendicular to the wire at this point. Hence, as the measure

of the strength of the electric current in a wire is taken the ratio

of the force per unit length of the wire which would be produced

by a magnetic field to the component of the flux density of this field

perpendicular to the wire. This definition and its mathematical

'*This relation is known as Biot and Savart's Law.
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expression, equation (1), applies to a variable as well as a con-

tinuous current.

When the force is expressed in dynes, the length in centimeters,

and the flux density in gausses, the unit of electric current strength

as thus denned is called the c. g. s. electromagnetic unit of current,

or the absolute unit of current, or the abampere. One abampere
is then equal to one dyne per centimeter per gauss. In practice,

a unit of one-tenth the size of this unit is employed ;
this practical

unit is called the ampere. Hence

1 abampere = 10 amperes.
Instead of employing the expression

" An electric current has

a strength of so many amperes or abamperes
" one usually says a

current is so many amperes or abamperes.

When the element dl is in a non-magnetic medium, which is prac-

tically always the case in any current-measuring instrument, the

flux density at dl is equal to the field intensity at this element,

and consequently in this case equation (1) becomes

/=
dF (la)

(H sinQ) dl

where H is the field intensity in gilberts per centimeter at the

element dl.

67. Definition of the Direction of an Electric Current. Left-

Hand Rule. As noted in Article 62, when the ends of the wire

connected to the poles of the battery are interchanged, the force

produced by any external magnetic field on the wire also reverses.

An electric current must therefore be looked upon as having
direction as well as magnitude. We also saw in the last paragraph
that the direction of the mechanical force on each elementary

length of the wire, i.e., the direction in which this elementary

length tends to move, is perpendicular to the plane determined

by this elementary length and the direction of the flux density
of the magnetic field at this elementary length. As the direction

of the electric current (I) is taken arbitrarily the direction in

which the middle finger of the left hand points when the thumb,

forefinger and middle finger of this hand are held mutually per-*

pendicular, and the thumb is pointed in the direction in which

the wire tends to move and the forefinger is pointed in the direction

of the component of the flux density perpendicular to the wire.

This rule is called the left-hand rule; it is readily remembered
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by noting the corresponding letters in middle and I, thumb and

move, forefinger and flux.

68. Conductors in Series and in Parallel. Experiment shows

that when a number of conductors are connected end to end

(Fig. 48) and are completely surrounded by insulators, then the

strength of the current as above defined is the same in all these

conductors, provided the current strength does not vary with

Battery

Fig. 48.

time. Two or more conductors thus connected end to end are

said to be connected in series.

Experiment also shows that when any portion of an electric

circuit between any two points A and B is formed by two or

more insulated conductors (Fig. 49), the strength of the current

coming up to the junction point A or leaving the junction point
B is equal to the sum of the strengths of the currents in the con-

B

L

Fig. 49.

ductors joining A and B, provided the current strength does

not vary with time. For example, in Fig. 49

and the conductors joining the two points A and B are said

to be connected in parallel.

When any portion of a circuit is made up of one or more con-

ductors connected in series with one or more groups of conductors

in parallel, this portion of the circuit is said to be connected in

series-parallel.
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69. Total Force Produced by a Magnetic Field on a Wire Carry-

ing an Electric Current. From the above discussion and equa-
tion (1), it follows that the total mechanical force F produced by

any external magnetic field on an insulated wire carrying an

electric current 7, when the wire is of any length I and bent into

any shape whatever, is equal to the vector sum

(B sin0)dl (2)

where dl is any elementary length of the wire measured in the

direction of the current, B the flux density of the field at dl, and

6 the angle between dl and the direction of B and f indicates

the vector sum of the expressions ( B sin 6} dl for all the elementary

lengths into which the wire is divided. All quantities in this

equation are in c. g. s. units. In general, the flux density and

the angle will be different for each point of the wire. The

direction of the mechanical force dF acting on each element will

also be different for each element, since the plane determined by
the direction of the flux density and the direction of the element

will in general be different; hence the necessity for taking the

vector sum.

70. Force Produced by a Uniform Magnetic Field on a Straight

Wire Carrying an Electric Current. One of the simplest cases

is that of a straight wire in a uniform magnetic field. Consider

such a wire carrying a current 7, placed at an angle 6 with the

direction of the lines of induction; let the flux density of this

magnetic field be B. In this case B and 6 are constant for all

points along the wire, and the mechanical force on all elements

of the wire is in the same direction; the integration is then a

simple algebraic one and therefore the total force on the wire is

rl

F =IB sin J O dl =IB I sin 0. (2a)

When the wire is perpendicular to the direction of the field the

force acting on the wire is

F =IBl (2b)

since =90 and sin 90 = 1. In case the wire is in a non-magnetic

medium, equation (26) becomes

F=IHl (2c)

All quantities in these equations are in c. g. s. units.

71. Magnetic Field Produced by an Electric Current in a

Wire. We have seen that when a wire carrying an electric cur-
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rent is placed in a magnetic field, this field exerts a mechanical
force on the wire. It is also found by experiment that an equal
and opposite mechanical force is exerted on the magnet or other

agent producing this field; this, of course, is in accord with the

general principle of nature that "
action and reaction are equal

and opposite." The region around a wire carrying an electric

current is therefore a magnetic field of force, for by definition

a magnetic field of force is any region in which a magnetic pole
will be acted upon by a mechanical force. The intensity of the

field of force due to a wire carrying an electric current may be

readily determined from equation (1).

Consider an elementary length dl of the wire in which the cur-

rent is 7 abamperes and let this length be measured in the direction

of the current.

Let the magnet-
ic fi e 1 d w h i ch

produces the

mechanical force

dF on this ele-

mentary length

be that due to a

unit north point-
'

pole at any point
P at a distance

of r centimeters away. The flux density of the magnetic field at dl

due to this unit pole is then independent of the permeability of the

medium surrounding the pole and the wire (see Article 56). The

angle 9 between the direction of this flux density and the length
dl is the angle between the direction of dl and the direction of

the line drawn from the pole to dl. The mechanical force exerted

by the unit point-pole on the length dl is then

'sin 0>

and is perpendicular to the plane determined by the point P and

the length dl. The direction of this force is determined by the

left-hand rule, see Article 67; in the diagram this force is down
into the plane of the paper. The current / in the elementary

length dl exerts an equal and opposite force on the unit point-
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pole at P. Therefore the intensity d77
t
- of the magnetic field at

P due to the current 7 in the elementary length dl is

_ (7 sin 0} dl (3)

independent of the permeability of the surrounding medium, and is

in the opposite direction to that of the force on dl due to the

pole at P. All quantities in this equation are in c. g. s. units.

A current / flowing in an elementary length dl therefore produces
a field intensity at any point P equal numerically to that pro-

duced by a point-pole of strength (7 sin 0) dl coinciding with dl,

where 9 is the angle between the direction of the current in dl

and the line drawn from P to dl, except that this intensity does not

depend upon the permeability of the surrounding medium, whereas

the resultant intensity at P due to a point-pole at dl is inversely

proportional to the permeability of the medium surrounding P
and dl; see Article 56. The direction of this intensity is also

different from that of the intensity due to a pole at dl. The latter

is in the direction from dl to P, while the intensity of the magnetic
field due to a current in dl is perpendicular to the plane determined

by dl and P. Equation (3) applies to a variable current as well'

as to a continuous current. (In the case of a rapidly varying

current, however, the value of H at any instant does not cor-

respond to the value of 7 at that instant, but to the value of 7 at

some previous instant, since time is required for the magnetic
field to be propagated through space; in free space the velocity
of propagation is very great, being the same as the velocity of

light.)

72. Direction of the Lines of Force Produced by an Electric

Current. The lines of force due to the current 7 in the elementary

length dl are circles

which have their

planes perpendicular
to the straight line

(OO' in the figure)

drawn through dl and

which have their cen-

ters on this line. For,

the circumference of Fig. si.

such a circle is perpendicular at each point to a plane drawn

through this point and dl; this circumference must therefore

O 4-4-H-f-
dl

" O
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coincide in direction with the field intensity at this point; see

the preceding article. From the deductions of the preceding
article it also follows that the positive sense of these lines of force

is the same as that in which a right-handed screw placed along
the wire at dl must be turned to advance it in the positive

sense of the current. When the positive senses of two quantities

are thus related, the quantities are said to be in the right-

handed screw direction with respect to each other.

The current in every other elementary length of the circuit

will likewise produce a magnetic field, the lines of force of which

are circles which have a like relation to the current in the elemen-

tary length which produces them. The lines of force represent-

ing the resultant field due to a current in any finite length of wire

will not in general be circles, but it can be shown that each of the

resultant lines of force is a closed loop which "
links

"
the wire in

the right-handed screw direction with respect to the current.

Note an important difference between the lines of force due to

an electric current and those due to magnetic poles : the lines of

force due to magnetic poles are not closed but end on the poles, while

A the lines of force due to an electric

current are always closed loops, link-

ing the circuit which produces them.

When there is any magnetic body in

the vicinity of an electric current this

body will in general have poles in-

duced on it by the magnetic field

due to the current, and part of the

lines of force representing the result-

ant field will end on these poles and

the rest will be closed loops linking

the electric circuit. The lines of

induction are always closed loops

whether or not there are magnetic

poles in the field.

73. Magnetic Field Due to a Cur-

rent in a Long Straight Wire. A
useful application of equation (3) is

the calculation of the intensity of

the magnetic field at any point due to a current in a long

straight wire.

dl

O
a 2\

-'P

B
Fie. 52.
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In Fig. 52 let BA be a straight wire and let P be any point at

a distance r from it (measured perpendicular to the wire), I the

current in the wire from B to A in abamperes, dl any elementary

length in the direction of / at a distance I from the point where

the perpendicular from P cuts the wire, the angle between dl

and the line from P to dl, and x the distance from P to dl. Each

element of the wire will produce a field intensity at P perpendic-

ular to the plane of the paper, downward, and therefore the field

intensities at P due to all the elements of the wire may be added

algebraically. The field intensity at P due to the current in the

length dl is, from equation (3),

(I sin 9} dl

and therefore the total field intensity at P due to all the elements

of the wire is

(/ sin 0) dlf/i

H=\
J -I x2

2

where l
t
= OA and 1 2

= OB. The simplest way to evaluate this

integral is to express the different variable quantities in terms of

the variable angle a (see Figure 52 ) . From the figure we have
T

sin =cos a x = - and / =r tan a. Differentiating the latter
cos a

expression we get dl = ;
Let a

t
be the numerical value of

cos
2 a

the angle OPA and a2 the numerical value of the angle OPE.
Substituting these values in the above equation we get

. -. (I cos a) da * . r1 * I \ (4\H= I =-| sin a I

=
I sin a^ + sin cu I

* 'in a2 )

All quantities in this equation are in c. g. s. units.

When the wire is of infinite length (or practically, when the dis-

tance of the point P from the ends of the wire is great compared to

the perpendicular distance r) a r
and a2 become equal to 90, and

therefore sin a,=l and sin a2
= 1 . We then have that the field

intensity at a distance r from a straight wire of infinite length

carrying a current I is
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All quantities in this equation are in c. g. s. units. The direction

of the field intensity is perpendicular to the plane drawn through
the wire and the point; the lines of force are therefore circles

with their centers along the wire and their planes perpendicular
to the wire. The relation between the direction of these lines

of force and the direction of the current is conveniently remem-
bered by the rule that the lines of force are in the direction in

which a right-handed screw must be turned to advance it in the

direction of the current. Equations (4) apply to a variable as

well as to a continuous current.

The above formula has been deduced on the assumption that

the wire may be considered as a geometrical line. It can also be

shown that the field intensity at any point P at a distance from r

from a long circular wire of finite cross section is also given by the

above formula provided the point P lies outside the wire, and the

current density is uniform over the section of the wire
;
see Article

104. At any point inside such a wire the field intensity is also per-

pendicular to the plane through the point and the axis of the

wire but is equal to

2 / r (46)

?'-rsr
where r is the distance of the point from the center of the wire, a

is the radius of the wire and / is the total current in the wire,

and all quantities are in c. g. s. units. Experiment justifies

assumption that the current density in a wire is constant, pro-

vided the wire is of uniform structure and the current is a con-

tinuous current. This is not true when the current varies rapidly

with time, but is approximately true for ordinary variable or

alternating currents used in practical work, provided the wire

is non-magnetic and has a diameter less than one inch. The
above formula for the field intensity outside a wire is also ap-

proximately true for a wire which has a cross section of any shape,

provided the distance of the point from the wire is great com-

pared to the greatest diameter of the wire.

74. Magnetic Field Due to an Electric Current in a Circular

Coil of Wire. Another useful application of equation (3) is the

calculation of the intensity of the magnetic field at any point due

to a current in a circular coil of wire. The solution of this problem

except for points on the axis of the coil is quite difficult; the

solution for a point on the axis of the coil is obtained as follows.
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Let the coil have but a single turn and let us consider the wire form-

ing the coil as a geometrical line making a circle of radius r. Let P
be any point on the axis of this coil at a distance a from the plane

of the coil. Let I be the current in the wire, dl any elementary

length in the circumference of the wire and dl' an equal elementary

length diametrically opposite dl. The current in dl
f
will be in the

opposite direction from that in dl. In Fig. 53 ISt the current be

dl

Fig. 53.

up toward the reader at dl and down at dl'. (The standard con-

vention for showing a current coming up is a circle with a dot

in it, and for a current going down a circle with a cross in it.)

The field intensity at P due to the current in dl is then, from

equation (3),

Idl

since the line drawn from P to dl is perpendicular to dl, whence in

equation (3) sin = 1. This field intensity is perpendicular to the

plane through dl and P, and is therefore in the plane of the paper
in Fig. 53, perpendicular to the line from dl to P in the direction

indicated. This field intensity dH may be resolved into two

components, one parallel to the axis OP of the coil, and the other

perpendicular to OP. Similarly, the current in dl' produces an

equal field intensity dH' perpendicular to the line from dl' to P,

which may also be resolved into two components, one parallel to

and the other perpendicular to OP. The perpendicular com-

ponents due to dl and dl' are equal; similarly for any other pair

of equal elementary lengths diametrically opposite in the circum-

ference of the circle. Hence the resultant field intensity at P is

the sum of the components parallel to OP of the field inten-
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sities at P due to all the elementary lengths in the circumference

of the circle. The component parallel to OP of the field intensity
dH due to any element is

ju Idl r
dH. sina=

which, integrated along the circumference of the circle, gives as

the value of the resultant field intensity at P*

"J: -f

'

(5)
i -* \ A,

[ Cl" "J^ f

y**
/

]

1=0

All quantities in this equation are in c. g. s. units.

The direction of the field intensity at any point along the axis

is the direction in which a right-handed screw placed at this

point advances when it is turned in the direction of the current.

The field intensity at the center of the coil is found by putting
a equal to zero nr the above equation, which gives

H Jit* (5a)

r

The field intensity at any point on the axis of a circular coil

which has any number of concentric turns may also be calculated

from equation (5), by calculating the intensity due to each turn

separately and adding these separate intensities. In the case of

a circular coil with a concentrated winding of N turns, i.e., when
the N turns are so close together that they may all be considered

as occupying but a single geometrical line, the field intensity at

the center of the coil is, from (5a),

27TNI (56)
rl

c
=

r

The winding of a coil may be considered as concentrated when
the radius of the coil is large compared with the linear dimensions

of the cross section of the winding.
In Article 108 is deduced by a different method the field in-

tensity for a point inside a long coil wound in the form of a long

cylindrical helix or
"
solenoid."

75. Absolute Measurement of an Electric Current. When a

current is established in an insulated wire wound into a circular

coil of N turns, the strength of this current can be determined

experimentally in terms of quantities which can be measured or
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calculated. Let such a coil (Fig. 54) be set up with the plane of its

windings parallel to the direction of the earth's magnetic field

and let a small magnetic needle be suspended at the center of the

coil in such a manner that it is free to turn about a vertical axis.

When there is no current in the coil, this needle will then point in

a direction parallel to the plane of the .coil. When a current is

established in the coil, this current will set up a magnetic field at

right angles to the plane of the coil, and therefore the direction

of the resultant field at the center of the coil will be changed and

the needle will .therefore be deflected a certain angle ff. This

angle will be equal to the angle between the direction of the result-

ant field and the direction of the horizontal component of the

earth's field at the center of the coil. This latter field intensity,

which we may call He ,
can be determined by the method described

in Article 42. The intensity of the field at the center of the coil

H
c

is given by equation (56).

H,

We then have that

Fig. 54

, a H
c 2-rrNI

tan 6= -= .

or
rHe tan0 (6)

27T N
where all the quantities are in c. g. s. units.

Since all the quantities in the right-hand member of this equa-
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tion can be measured, the strength of the current / can be cal-

culated. Such a device is called a tangent galvanometer. The
accuracy of the instrument depends upon the accuracy with which
the horizontal component of the earth's field may be measured, but
an accurate measurement of the latter is difficult. Besides, in any
ordinary laboratory or testing room the electric circuits in the

building and the surrounding streets also produce magnetic
fields which act on the needle, and these fields are continually

changing. Such an instrument is therefore seldom used now-

adays.

Amuch more accurate method of determining the absolute value

of an electric current is to cause the same current to flow through
two parallel coils, one of which is suspended from one arm of a

delicate balance. The stationary coil then produces a magnetic
field which produces a pull on the movable coil and the amount of

this pull can be readily measured. From equations (2) and (3)

the amount of this pull in terms of the current and the dimensions

of the coils can also be deduced, and since both the pull and the

dimensions of the coil can be measured, the strength of the

current can be calculated. Such an instrument is called an "
ab-

solute" current balance. This is also the principle of the Kelvin

current balances; in the latter, however, the current strength is not

determined directly from the pull and the dimensions of the coils,

but is calculated from the position of a "
rider

" on an arbitrary

scale; the latter is
"
calibrated

"
by comparison either with an

absolute balance or with a silver voltameter (see Article 79).

76. Comparison of the Strengths of Electric Currents. Gal-

vanometers and Ammeters. We have just seen how the strength
of an electric current flowing through the coils of a current balance

may be measured in terms of the dimensions of the coils and the

pull of the fixed coil on the movable coil. The accurate measure-

ment of an electric current by this method requires a balance con-

structed with great care and numerous precautions have to be

taken in using it. Much simpler and cheaper instruments can

be constructed which will indicate by the deflection of a needle

or spot of light the relative magnitude of the electric currents which

may be established in them.

The simplest form of such an instrument is a device which

consists essentially of a magnet suspended inside a coil of insulated

wire which may be connected in series with the conductor in which
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the current to be measured is established. The magnetic field

produced inside the coil by the current produces a force on

the needle and causes it to deflect from its position of equilibrium;

this force, and therefore the deflection, varies with the current in

the coil. A device of this kind is called a moving needle, or Thom-

son, galvanometer. The value of the current corresponding to

a given deflection can be determined once for all (provided the

conditions of operation remain unchanged) by connecting in series

with the galvanometer a standard current balance and noting

the value of the deflection corresponding to various current

strengths as indicated by the standard balance; that is, the gal-

vanometer can be "
calibrated

"
by comparing it directly with

the standard balance. In practice, instead of using a standard

balance, one ordinarily uses a "
secondary

"
standard, that is,

some other instrument which has been previously calibrated by

comparison with a "
primary

"
or absolute standard.

The needle galvanometer just described does not " hold "
its

calibration for any great length of time, on account of the effects

of temperature, moisture, etc., on the fiber supporting the mag-
netic needle and also on account of the variation in the direction

and intensity of the earth's magnetic field. A superior form of

galvanometer for most practical purposes consists of a coil of fine

insulated wire suspended by a metal fiber or thin metal strip, be-

tween the two poles of a powerful permanent magnet made in

the form of. a horseshoe. The fixed end of the metal strip sup-

porting the coil is connected to a suitable terminal or "
binding

post
" on the frame of the instrument and the other end to one end

of the wire forming the coil. The other end of the coil is con-

nected through a second metal strip, usually wound in the form

of a light spiral spring, to a second terminal or binding post. When
the two terminals of such an instrument are connected in series

with the circuit in which the current to be measured is established,
the same current is also established in the wire forming the

movable coil, and the force produced on this coil by the magnetic
field due to the permanent magnet causes a deflection of the coil.

(See equation 2.) This deflection can be read by noting the

deflection of a spot of light reflected from a mirror attached to

the coil. This type of galvanometer is called a moving coil, or

D'Arsonval, galvanometer, from the name of the physicist who
introduced it. A D'Arsonval galvanometer can be calibrated
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by comparing it with a standard instrument in the same

way that a moving needle, or Thomson, galvanometer is

calibrated.

An instrument extensively used for the measurement of

electric currents, and known as the Weston ammeter, is essen-

tially a D'Arsonval galvanometer. In this instrument the

movable coil, instead of being suspended by a metal strip, is pro-

vided with a fine pivot which rests in a jewel bearing. The

current is
"
led to and from " the instrument by means of two

small flat spiral springs connected to the two ends of the coil

respectively and also to the terminals on the outside of the case

of the instrument. These springs also serve to hold the coil

normally in a definite position. A light metal pointer is attached

to the coil, and the position of the pointer is read off on a scale

which is marked to read directly in amperes. The scale of such

an instrument is seldom exactly correct, and for accurate work

the instrument must be calibrated in the manner described above.

There are other makes of ammeters based upon the principle

of the D'Arsonval galvanometer, and still others in which the

current in the coil of the instrument sets up a magnetic field which

exerts a force on a piece of soft iron and thereby causes the de-

flection of a pointer over a graduated scale. For a detailed

description of ammeters, the reader is referred to any text-book

on electric measuring instruments.

77. Electrolysis and Electrolytes. Having now seen how

the strength of an electric current may be measured, we are ready

to investigate some of the other phenomena which are attributed

to the flow of an electric current. An important group of phenom-
ena are those which take place in a conducting solution when a

current is established through the solution. In the first place, in

any solution which is a conductor, chemical decomposition always

takes place. The change that takes place in the copper sulphate

solution described in Article 62 is an illustration. Any substance

the constituents of which are separated when an electric current

is established in it, is called an electrolyte, and the process of sepa-

ration is called electrolysis. All conducting liquids other than

molten metals are electrolytes; gases, when they become conduct-

ing, are also electrolytes. Some solids are also electrolytes, an exam-

ple of which is silver iodide. The decomposition that takes place in

the electrolyte is found to be confined entirely to the portions of
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the electrolyte in contact with the metal plates or wires (called the

electrodes) which connect the electrolyte to the rest of the circuit.

The results of the decomposition are therefore usually said to be

deposited at the electrodes; though, of course, if the substance

liberated is a gas, it will immediately escape through the surface

of the liquid, or if the substance liberated is soluble, it will go into

solution, or if it is a solid which is not soluble, it may fall to the

bottom of the vessel containing the electrolyte. In certain cases

when the result of the decomposition is a metal,the metal becomes

firmly attached to the electrode where it is liberated. The copper

deposited on the copper wire in the copper sulphate solution in

Article 62 is an example. The important industry of electroplat-

ing is based upon this fact.

The electrode through which the current enters the solution

is called the anode, and the electrode through which the current

leaves the solution is called the cathode. With very few exceptions,

an element, or such a group of elements as is called a "
radical,"

is always deposited at the same electrode, no matter from what

compound it may be liberated. Hydrogen and metals are always

deposited at the cathode.

As the result of a series of careful experiments Faraday found

that a simple relation exists between the rate at which a sub-

stance is deposited from an electrolyte,'when an electric current

is established in it, and the strength of the current. This rela-

tion is

1. The rate (mass per unit time) at which a substance is de-

posited from an electrolyte, when an electric current is established

in it, is directly proportional to the strength of the current estab-

lished.

Faraday also found that a simple relation exists between the

masses of the various substances deposited, when the same current

is established in several electrolytes, and the chemical equiva-
lents* of these substances. This relation is

2. When the same current is established through different

*The chemical equivalent of an element or radical is the atomic weight
of the element or radical divided by its valence. By valence is meant the

number of atoms of hydrogen with which one atom of the element or radi-

cal will form a stable combination. For example, the valence of oxygen is

2, since 2 atoms of hydrogen combine with 1 atom of oxygen to form
water. The valence of copper in cuprous compounds is 1 and in cupric
compounds 2.
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electrolytes the rates (mass per unit time) at which the various

substances are deposited are directly proportional to the chemical

equivalents of these substances.

These two statements of experimental facts are known as

Faraday's Laws of Electrolysis.

78. Electrochemical Equivalent of a Substance. Faraday's
first law may be expressed mathematically by the equation

"=*/ (7)
t

where 7 is the current established in the electrolyte, m the

mass of a given substance deposited in time t, and k a constant

of proportionality, the value of which depends only upon the

nature of the substance and the units in which m, t and / are

measured. This constant is called the electrochemical equivalent

of the substance. Its value for any substance may be readily

determined experimentally by measuring the current 7 by means

of an absolute current balance, and measuring the mass of the

substance deposited when this current flows through the electrolyte

for a given length of time. The values of the electrochemical

equivalent for silver, copper, hydrogen and oxygen, when m is

measured in grams, t in seconds and 7 in amperes, are

Silver
>

0.001118

Copper (from cupric solutions) 0.0003293

Hydrogen 0.00001044

Oxygen 0.0000829

In equation (7) the current is assumed to be continuous
;
when

the current varies with time the mathematical expression of

Faraday's first law is

dm
=fci

dt

or the total mass of the substance deposited in time t is

ftm=k I idt (la)
J o

79. The International Ampere. Knowing the value of the

electrochemical equivalent of a given substance, for example,

silver, one can readily determine the strength of the current flow-

ing through an electrolyte from which this substance is deposited,

by measuring the number of grams of this substance deposited
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in a measured interval of t seconds. The only apparatus required
is a suitable receptacle for holding the electrolyte and suitable

electrodes for leading the current in and out. Such a piece of

apparatus is called a voltameter. From the ease and accuracy
with which these measurements can be made, the International

Congress of Electricians (Chicago, August 21, 1893) adopted the

following as the definition of the ampere:
"As a unit of current (shall be taken), the International

Ampere, which is one-tenth of the unit of current of the C. G. S.

system of electromagnetic units, and which is represented suffi-

ciently well for practical use by the unvarying current, which,
when passed through a solution of nitrate of silver in water,
in accordance with the accompanying specification (A), deposits

silver at the rate of 0.001118 gramme per second."

The specification A referred to describes in detail the con-

struction of the voltameter and the method of using it. This

specification will be found in full in Foster's Electrical Engineer's

Pocket Book, page 10. The above definition of the ampere has

been legalized by most of the civilized countries,* and is therefore

sometimes called the "
legal

"
definition of the ampere.

80. Quantity of Electricity. In the case of a current of water

flowing through a pipe, the strength of the water current is defined

as the quantity of water which flows across any cross section of

the pipe in unit time. In the case of what is called a current

of electricity, we have found it convenient to define first

the strength of the electric current. From the analogy which is

found to exist between the properties which must be attributed

to the something called electricity and the properties of an

incompressible fluid, the quantity Q of electricity flowing across

any cross section of a conductor in any time t may be defined

as the product of the strength of the current / at this cross section

by the time /, that is,

Q=It (8)

provided the current is a continuous current, i.e., does not vary
with time. In case the current does vary with time the general

definition of the quantity Q of electricity which flows across

any given cross section of the conductor in any interval of time t,

*Germany and Switzerland are exceptions; in these countries the electro-

chemical definition is taken as the fundamental definition of current strength.
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is the integral with respect to time of the variable current at

that section, that is

Q=[idt (8a)
J o

where i represents the value of the current at any instant, dt an

infinitesimal interval of time measured from this instant, and t

the total time during which the current flows. From the relation

expressed by equation (7a) the quantity of electricity which
flows through an electrolyte in any interval of time may be

determined by measuring the mass of the substance deposited
at either electrode in this interval. In Article 109 is described

the method usually employed for measuring the quantity of

electricity corresponding to a variable current.

Since in the case of a continuous current the total current

strength is the same at all cross sections of a given conductor, it

follows that the quantity of electricity flowing across each cross

section of the conductor in any given interval of time must also

be the same at each cross section. Note the analogy with an

incompressible fluid. Hence the flow of a current of strength 7

through the conductor for t seconds may be looked upon as

equivalent to the transfer of / 1 units of electricity from one end
of the conductor to the other, just as a current of ten cubic feet

of water per second in a pipe for five seconds is equivalent to a

transfer of 10 x 5 =50 cubic feet of water from one end of the pipe
to the other. In the case of water in a pipe the 50 cubic- feet of

water which enter the pipe may not be the same as the 50 cubic

feet which leave the pipe at the other end. In the same way, it

is not necessary that we look upon the electricity which enters

one end of a conductor as being the same electricity as leaves the

conductor at its other end.

The unit of quantity of electricity in the c. g. s. electromag-
netic system of units is the quantity of electricity transferred by
a current of one abampere for one second. This unit is called

the absolute unit of quantity or the abcoulomb. The practical
unit of quantity of electricity is the coulomb, which was defined

by the International Congress of Electricians as follows:
" As the unit of quantity (shall be taken), the International

Coulomb, which is the quantity of electricity transferred by a

current of one international ampere in one second."

The ampere-hour, i.e., the quantity of electricity corresponding
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to a current of one ampere for one hour is also employed in practice.
In accordance with these definitions we then have

1 abcoulomb =10 coulombs

1 ampere-hour =3600 coulombs

81. Electric Resistance. Joule's Law. One of the phe-
nomena always associated with an electric current in a conductor

is the dissipation of heat energy in the conductor. In the case

of a wire of uniform structure kept at a constant uniform tempera-
ture experiment shows that the rate at which heat energy is dis-

sipated in a given length of the wire, between any two points 1

and 2 say, when a continuous current is established in the wire,

is directly proportional to the square of the strength of the current

in this wire. That is, calling Ph the rate at which heat energy
is developed in the wire between the points 1 and 2, and 7 the

strength of the current in this portion of the wire, then

Pk
=RP (9)

where R is a constant depending upon the dimensions and tem-

perature of the wire, the nature of the substance forming the wire,

and the units in which Ph and 7 are measured, but is independent
of the current strength. This factor R is called the resistance of

the wire, and the statement of the experimental fact represented

by this equation is called Joule's Law, from the name of the

scientist who first clearly enunciated the fact. The resistance

of a given length of wire may then be defined as the ratio of the

rate at which a continuous current produces heat energy in the wire

to the square of the strength of this current. When the rate Ph at

which the heat energy is dissipated is expressed in ergs per second

and the current 7 in abamperes, a resistance of one unit is equal to

the ratio of one erg per second to one abampere-squared. This

unit of resistance is called the c. g. s. electromagnetic unit of resist-

ance or the abohm. When the rate Ph at which heat energy is dis-

sipated is expressed in joules per second (one joule by definition is

equal to 10
7

ergs) and the current 7 in amperes, a resistance of one
unit is equal to the ratio of one joule per second to one ampere-

squared. This unit is called the practical unit of resistance or the

ohm. The relation between the ohm and the abohm is therefore

1 ohm=109 abohms.

To express small resistances a unit one-millionth of the size

of an ohm is ordinarily used; this unit is called the microhm. To
express large resistances a unit one million times the size of an
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ohm is frequently used; this unit is called the megohm. Hence
1 ohm =108 microhms

1 megohm = 10 ohms.

The resistance of a wire to a variable current is the same as

its resistance to a continuous current provided the wire is small

and the current does not vary rapidly with time. In the case of

a large wire the resistance of any current filament (see Article 101)

is the same to the variable as to a continuous current, but the re-

sistance of the wire as a whole is greater. The rapid variation

of the current with time causes a different distribution of the

stream lines of the current and thereby produces a greater heating

than that which takes place due to a continuous current. See

Article 121.

82. Absolute Measurement of Electric Resistance. The
determination of the electric resistance in terms of the quantities

specified in the above definition would require the measurement

of the heat energy dissipated in the wire in a given interval of

time when a continuous electric current of known strength is

established in the wire and the wire kept at constant temperature.
The interval of time can be readily measured, and the current

strength may be determined directly by an absolute current bal-

ance or by means of any kind of galvanometer or ammeter which

has been calibrated. The heat energy dissipated in the wire

could be determined by some calorimetric measurement. Calori-

metric measurements, however, are difficult and at best are not

susceptible of a high degree of accuracy. A much more accurate

method of measuring the electric resistance of a wire in terms of

quantities which may be measured or readily calculated, is the

following, which is based upon the principle of electromag-
netic induction (see Chapter IV), but the only quantities to be

measured are those which have already been defined. A metal

disc D, mounted on a metal axis coincident with the axis of a coil

of wire C, is arranged so that it can be rotated with a constant

angular velocity CD. The coil C and the resistance R to be meas-

ured are connected in series with a battery B. A galvanometer
G has one of its terminals connected by a wire to the axis of the

disc and the other terminal to one end of the resistance R, the other

end of R is connected by a wire to a metal " brush "
making

contact with the rim of trie disc. We have then two closed circuits

in each of which the resistance R forms a part; one circuit is the
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battery, the coil and the resistance R and the connecting wires,

and the other circuit is the galvanometer, the disc, the resistance

R and the connecting wires. When the disc is set in rotation, it

is found that the current through the galvanometer depends upon
the angular speed at which the disc is driven (due to the cutting

by the disc of the lines of induction produced by the current in the

coil, see Chapter IV), and as a result of the 'two principles known
as KirchhofFs Laws (see Article 98), it can be deduced that when
the current in the galvanometer is zero, the relation between

C

Fig. 55.

the value of the resistance R as above defined, in abohms, and

the angular speed in radians per second, must be

-rr

(10)

where M represents the number of lines of induction threading
the disc D due to the magnetic field set up by a current of one ab-

ampere in the coil C. This quantity M can be calculated in terms

of the dimensions of the coil, which can of course be measured,
as can also the angular speed a). This method for determining
the value of a resistance is known as Lorenz's Method. There

are still other methods for determining experimentally the value

of a resistance in terms of quantities which can be actually meas-

ured or calculated, some of which are described in J. J. Thomson's

Elements of Electricity and Magnetism, page 462 ff.
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The results of a large number of measurements by these various

methods show that a column of mercury 106.3 centimeters long
which has a uniform cross section of 1 square millimeter has a resist-

ance of one ohm at zero degrees centigrade. A column of mercury
of these dimensions has a mass of 14.4521 grams. Hence the

adoption of the following definition of the ohm by the International

Congress of Electricians :

"As a unit of resistance (shall be taken), the International

Ohm, which is based upon the ohm equal to 10
9
units of resistance

of the C. G. S. system of electromagnetic units, and is represented

by the resistance offered to an unvarying electric current by a

column of mercury at a temperature of melting ice, 14.4521

grammes in mass, of a constant cross sectional area, and of the

length 106.3 centimeters."

This definition, like that of the ampere, has been legalized by
most civilized countries.

Although the absolute measurement of a resistance is com-

paratively difficult, the comparison of the values of two or more

resistances is a very simple matter and can be carried out with a

high degree of accuracy. All these methods of comparison are

based upon KirchhofFs Laws. (See Article 92.)

83. Specific Resistance or Resistivity. As already noted, the

resistance of a conductor depends upon its dimensions. It is

found by experiment that the resistance of a conductor of uniform

cross section throughout its length, when the conductor is kept
at a uniform temperature throughout and the current density

(see Article 101) is uniform over its cross section, varies directly

as the length of the conductor and inversely as the area of its

cross section (perpendicular to its length), but does not depend

upon the shape of its cross section. That is, calling I the length
of the conductor, A the area of its cross section, and R the resist-

ance of this conductor, then

r, I (11)R=PA
where p is a factor of proportionality which depends upon the

material of which the conductor is made and the temperature at

which the conductor is kept, and also upon the units in which

R, I, and A 'are expressed. The value of this factor p for any

conductor, at any temperature, is called the specific resistance

or the resistivity of the conductor at that temperature. When R
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is expressed in microhms, I in centimeters and A in square centi-

meters, this factor p is equal to the resistance in microhms of

a cube of the conductor 1 cm. on each edge, provided the stream

lines of the current are parallel to four parallel edges of the cube

and the current density over the section at right angles to these

streamlines is uniform (see Article 101). The specific resistance

of the conductor may then be expressed as so many microhms

per centimeter-cube. Similarly, when R is expressed in microhms,
/ in inches and A in square inches, this factor p is equal to the

resistance in microhms of an inch-cube of the conductor; the

specific resistance of the conductor may then be expressed as so

many microhms per inch-cube. Again, when R is expressed in

ohms, I in feet and A in circular mils* this factor p is equal to

the resistance in ohms of a portion of the conductor one foot long

and one circular mil in cross section; the specific resistance of a

conductor may then be expressed as so many ohms per mil-foot.
'

There is still another way of expressing the specific resistance

of a conductor, which was formerly much used and is still em-

ployed sometimes in wire specifications. The cross section of a

bar or wire of uniform cross section is equal to the volume of the

bar divided by its length, and the volume of the bar is in turn

equal to its mass divided by the density of the material of which

it is made. Hence, using the same symbols as above, and in

addition calling m the mass of the conductor and 8 its density

or specific gravity, we have

A= and therefore R=o =08
8 I

^ A ^ m
For a given material at a given temperature p 8 is also constant,

m
*A mil is defined as one-thousandth of an inch and a circular mil is de-

fined as the area of a circle one mil in diameter. Since the area of a circle

varies as the square of its diameter, the area of a circle in circular mils is

equal to the square of its diameter in mils. This unit of area is therefore

very convenient for expressing the area of the cross section of a circular wire,

since the factor TT is eliminated. The area of a circle one-thousandth of an

inch in diameter is equal to ^ (0.001 )
2

square inches or to
^-(0.

001x2.54) 2

square centimeters; hence

1 circular mil= 0.78540 X 10 6
square inches

=5.0671 X 10 6
square centimeters
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where k is a constant (equal to p 8) for a given material at a given

temperature. The specific resistance of a conductor may then also

be expressed indirectly in terms of this factor k. When R is ex-

pressed in ohms, I in meters and m in grams, this factor k is equal

to the resistance of one gram of the conductor made into a wire of

uniform cross section and one meter in length ;
this factor k is then

said to be the specific resistance of the conductor in ohms per meter-

gram. It should be noted that this method of expressing the spe-

cific resistance of a conductor involves the density of the conductor,

while the other methods do not. The determination of the specific

resistance of a conductor in meter-grams, however, does not

require a determination of the density, but merely the measure-

ment of the resistance, length and mass of a given wire of the

conductor, since k=. However, to calculate from the value

of k the specific resistance in microhms per centimeter-cube, or

per inch-cube, or ohms per mil-foot, does require a knowledge of

the density of the conductor.

The various units of specific resistance are related as follows:

1 microhm per inch-cube =2.5400 microhms per centi-

meter-cube

1 microhm per centimeter-cube =6.0153 ohms per mil-foot

1 ohm per meter-gram =^ microhms per centi-

meter-cube

1 ohm per meter-gram
__oi.5 o^ms per mji_foo^

To calculate the resistance of a wire of uniform cross section when
its specific resistance is given, the formulas

i r-R= p or R=kr A m
are directly applicable, but care must be employed to express all

the quantities entering into the formula in the same system of

units. For example, the resistance in ohms of a wire which has

a specific resistance of 1.6 microhms per centimeter cube, a

length of 1000 feet and a cross section of
-J- square inch, is

^ = 1.6X10-
10QQXl2X2 -54

=0.0302ohms.
0.25X(2.54)

2

Experiment shows that the resistance of a given length of

wire of uniform cross section is independent of the shape into
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which the wire is bent, provided the diameter of the wire is small

compared to the radius of curvature of the curve into which it

may be bent, which condition is equivalent to saying that the
" stream lines

"
of the current are all of the same length (see Article

101). This condition is almost always realized in practice, and

consequently formulas (11) and (lla) are in general directly ap-

plicable to the calculation of the resistance of a wire whether the

wire be straight or curved or wound into a coil of any shape.

These formulas are also applicable to the calculation of the resist-

ance of a rod or bar, provided the rod or bar is not bent into a

sharp curve and the distance between its points of connection to

the circuit is large compared to the linear dimensions of its cross

section. When the stream lines of the current are not all of the

same length, as, for example, when a current is established in a

heavy short bar bent into a sharp curve, the resistance of the bar

can be calculated only when the distribution of these stream lines

is known. Again, when the stream lines of the current are not

parallel, e.g., the leakage current through the insulation of a cable,

these formulas are not applicable (see Article 102).

With the exception of silver, copper has the lowest specific

resistance of any metal. The specific resistances of a few common
metals at centigrade are given below.

Microhms Ohms per Ohms per
per Cm.-Cube Mil-Foot Meter-Gram

Silver 1.49 8.94 0.156

Copper (very pure, annealed) 1.56 9.35 0.139

Aluminum (99% pure) 2.56 15.4 0.067

Iron (very pure) 9.07 54.5 0.707

Steel rails (average*) 14.00 84.2 1.09

Silver is seldom used for electric conductors on account of its

high cost. Copper is the metal most frequently used. Aluminum,

although it has a greater resistance than copper "for the same

length and cross section (i.e., same volume), has, on account of its

low density, a less resistance for the same mass or weight; its

cost for the same resistance as that of an equal length of copper
is about 10% less. It is therefore used to a considerable extent

for overhead transmission lines
;
its mechanical strength, however,

is inferior to that of copper. Pure iron is too costly for use as a

*The resistance of steel rails varies considerably with their chemical

composition.
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practical conductor. Steel, however, in the form of track rails or
"
third

"
rails is largely used in railway work, but is seldom used

as a conductor in the form of wires, except for short telephone

lines, and even here it is being largely supplanted by copper.

Any impurity in a metal increases its resistance. All alloys

have a greater resistance than that of the best conductor in them.

For certain purposes, particularly in the construction of
"

resist-

ance boxes " and "
rheostats," a high specific resistance is de-

sirable. Various alloys are made for this purpose, the specific

resistances of which can be found in any electrical engineer's

handbook. For the resistance of copper and aluminum wires of

various sizes see Appendix B.

84. Electric Conductance and Conductivity. The reciprocal

of electric resistance is defined as electric conductance. That

is, when R is the resistance of a conductor, the conductance is

. .

where / is the continuous current established in the conductor and
Ph the rate at which heat energy is developed in it. The unit of

conductance on the c. g. s. electromagnetic system of units is

one abampere-squared per erg per second; this- unit is called the

absolute unit of conductance or the abmho. The practical unit

of conductance is one ampere-squared per joule per second, or one

ampere-squared per watt; this unit is called the mho. (Note
that the word "mho" is simply the word ohm written backwards.)

The reciprocal of specific resistance or resistivity is called

specific conductance or conductivity. For example, a specific

resistance of 10 ohms per mil-foot is the same as a conductivity
of 0.1 mhos per mil-foot.

85. Matthiessen's Standard of Conductivity.- Matthiessen
1

,

about 50 years ago, found that the specific resistance of the

purest copper at that time obtainable was 0.141729 ohms per

meter-gram at cent. Matthiessen, however, failed to state the

density of his copper, so that the exact value of this specific re-

sistance in microhms per centimeter-cube or in ohms per mil-foot

is no.t known. However, assuming 8.89 as the probable value

of this density, Matthiessen's value of 0.141729 ohms per meter-

gram is equivalent to 9.5900 ohms per mil-foot. The corre-

sponding value of the conductivity, namely 0.10427 mhos per

mil-foot, has been adopted by electrical engineers in this coun-
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try and in England as the " standard conductivity "; this

standard is usually referred to as Matthiesseris standard. The

relative conductivity of any conductor is then equal to the percent-

age ratio of its conductivity per mil-foot at centigrade to the

conductivity (0.10427) of Matthiessen's standard; that is, the rela-

tive conductivity of a conductor which has a resistance of 15.5

ohms per mil-foot at centigrade (i.e., 0.0647 mhos per mil-foot)

is 62%. Note that the lower the relative conductivity the higher

is the specific resistance. It is of interest to note that copper can

be made at present of a greater purity than that used by Matthies-

sen and consequently having a relative conductivity greater tha'n

100% of Matthiessen's standard. Commercial copper wire usually

has a conductivity of from 96% to 99% ;
the " harder "

the wire

the lower its conductivity. Commercial aluminum has a con-

ductivity of about 62%.
86. Temperature Coefficient of Electric Resistance. It is

found by experiment that the variation of the resistance of a

conductor with temperature may be expressed by the formula

R =R (l+ftt) (13)

where R is the resistance of the conductor at any given
" stand-

ard "
temperature, R the resistance of the conductor at a tem-

perature t degrees above this temperature, and ft a coefficient

which is approximately constant independent of the temperature
rise t, but does depend upon the temperature corresponding to R .

Zero degrees centigrade is usually taken as the standard tem-

perature, and the value of this coefficient ft when the rise of

temperature is referred to cent, is called the resistivity tem-

perature coefficient of the conductor, or briefly, the temperature

coefficient of the conductor. The value of ft for commercially

pure copper depends somewhat upon the purity of the metal

and also upon the rise of temperature t. The American Institute

of Electrical Engineers, however, has adopted the constant

value 0.0042 as sufficiently accurate for all grades of commercially

pure copper and for any value of the temperature rise ordinarily

met with in electric machinery, that is, for any rise of temperature
not greatly in excess of 100 cent. The temperature coefficient

of any other commercially pure metal, except the magnetic
metals such as iron, nickel, cobalt and bismuth, has practically

the same value. The temperature coefficient for iron is 0.00625

per degree cent.
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The temperature coefficient of carbon is negative and is not a

constant. For example, the resistance of a carbon-filament lamp
is less when the lamp is burning than when it is cold. The tem-

perature coefficient of most insulators is also negative and very

large ; moreover, it is far from being constant.

The temperature coefficient of alloys depends largely upon
their constituents. It is possible to make alloys for which the

temperature coefficient is zero over a considerable range of tem-

perature. Such alloys are extremely useful in the construction

of standard resistance coils, since the resistance of such a standard

remains constant for any ordinary variation of temperature and

consequently its resistance does not have to be "
corrected

"
for

temperature.

Equation (13) enables one to calculate the resistance of a con-

ductor at any temperature when its resistance at any other

temperature and its temperature coefficient are known. For,

calling Rt
the resistance of the conductor at t cent, and R

t
, its

resistance at t
f

degrees centigrade, we have

Hence, taking the ratio of these two equations, we have

Rt 1+

R
t
,=. R

t
.

L+#
Substituting for ft the numerical value of 0.0042, and dividing

the numerator and denominator of the fraction in the right-hand
member by 0.0042, gives

238 + ^
238 + *

The operation expressed by this equation is readily performed by
one setting of a slide rule, when a temperature scale is marked
off on the lower scale of the slide, marking 238 as 0, 248 as 10,
258 as 20, etc. Then, if the resistance at 25 cent, is 3 ohms,

say, the resistance at any other temperature, say 60, is found by

setting 25 on this new scale opposite 3 on the lower scale of the

rule and reading off on the lower scale the number corresponding

to 60 on the new scale, i.e., 3.4 ohms.
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Equation (13fo) also gives a convenient method of determining
the average temperature of a coil of copper wire when heated in

any manner, as, for example, by the current established in it.

For the resistance of the coil
"
cold," i.e., at room temperature,

may be measured and also its resistance when heated. Knowing
these two resistances R

t
and R

t
S and the room temperature t, the

value of t' is readily calculated. For example, if the resistance

of a coil at 20 cent, is found to be 5 ohms and its resistance

when heated 6 ohms, then when 20 on the temperature scale of

the slide rule is set opposite 5 on the lower scale, the reading on

the temperature scale opposite 6 on the lower scale gives the

average temperature, 71 cent. The rise of temperature due

to the heating of the coil is then 71 -20 ==51. This method
of measuring the temperature rise of a coil is largely used in

practice.

87. Difference of Electric Potential. Electric Energy. When
a steady current of water is forced through a pipe, the work W
done in any interval of time by this current in any length of the

pipe (between the points 1 and 2, say) is equal to the drop in pres-

sure V from 1 to 2, multiplied by the quantity of water Q which

is forced across each section of the pipe between these two points

in this interval, i.e.,

W = VQ
W

or 7=
Q

In other words, the drop in pressure from 1 to 2 is equal to the

work done by, or the potential energy lost by, the current of

water between the points 1 and 2 per unit quantity of water

forced through the pipe.

The drop of pressure between the two points may also be ex-

pressed in terms of the quantity of water per second forced across

each section of the pipe between these two points, i.e., the strength

I of the water current, and the rate at which work is done by this

current, i.e., the power P developed by the current. For the

quantity of water forced across each section of the pipe in an

interval of time t is Q =It and the work done is W = Pdt. Whence,
from the above expression for the drop of pressure
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That is, the drop of pressure between any two points along a pipe

through which a water current is flowing is equal to ratio of the

power developed by the current to the strength of the current.

This relation holds for a varying current as well, as for a steady
current

; i.e., the instantaneous pressure drop is equal to the instan-

taneous power divided by the instantaneous value of the current

strength.

When there is no pump or motor connected in this given

length of pipe, all the work done by the water current appears as

heat energy, that is, the potential energy lost by the water in this

length of pipe is converted into heat energy. When the water in

going from 1 to 2 passes through a water-motor, part of the poten-

tial energy lost by the water is converted into mechanical energy

by the motor. Hence, when the same quantity of water per

second as before is forced through the pipe^the water between the

points 1 and 2 will lose potential energy at a greater rate, and

consequently the drop of pressure between these points will be

greater than before. Again, the water in going through a pump
has work done on it, and consequently the water in passing

through the pump has its potential energy increased. Hence

the drop in pressure through the pump in the direction of the

flow of water is negative, that is, there is a rise of pressure through
the pump in the direction of the current. In general, whenever

the water does work, or loses potential energy, there is a drop of

pressure in the direction of the current, and whenever work is

done on the water, or the water gains potential energy, there is a

rise of pressure in the direction of the current.

In any given system of pipes connecting any number of pumps
and motors, in which the pipes, pumps and motors are all com-

pletely filled with water, the rate at which work is done by the

water in driving the motors, in producing heat energy in the pipes

and the water passages of the pumps and motors, and in accelerat-

ing itself, is exactly equal to the rate at which work is done on the

water by the pumps. That is, the total amount of potential

energy of the water remains unaltered
;
the gain in potential energy

by any particle of water as it is forced through a pump is exactly

equal to the simultaneous loss of potential energy by some other

particle of water somewhere else in the system. The water current

then acts simply as a means for the transfer of energy ;
the work
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done on the water at each instant is exactly equal to the work

done by it at that instant.

Since the pressure in a current of water has but a single value

at each point in this current, it follows that the total drop of

pressure around any closed path formed by any number of such

pipes, pumps and motors must be zero. Also, since the water is

incompressible (at least, practically so) the quantity or volume

of water flowing up to any junction of two or more pipes in any
interval of time must be exactly equal to the quantity of water

which flows away from this junction in this same interval of time.

Or, calling the quantity of water which flows away from any given

point equivalent to an equal negative quantity flowing to that

point, an equivalent statement of this same fact is that the alge-

braic sum of the strengths of the water currents flowing up to

any junction of the pipes is always zero.

Similarly, it is found by experiment that whenever there occur

any of the phenomena which are attributed to the flow of an

electric current, there is always a loss of energy by one or more

parts of the circuit or by some body in the vicinity of the circuit,

and a gain of energy by other parts of the circuit or by bodies in

the vicinity of the circuit. For example, in the simple circuit

formed by a wire connecting the poles of a battery, the battery

loses chemical energy, and the wire and the conductors forming
the battery become heated, or gain heat energy. The energy lost

by any part of the circuit or by any body in its vicinity is said to

result in a gain of an equal amount of electric energy by the electric

current, and the energy gained by any part of the circuit or by

any body in its vicinity is said to be due to the loss of an equal

amount of electric energy by the electric current. That is, the

electric energy gained by the current in any portion of the circuit is

defined as the amount of energy lost by this part of the circuit or

by any other bodies as the result of the existence of the current in

this part of the circuit; and the electric energy lost by the current

in any portion of the circuit is defined as the amount of energy

gained by this portion of the circuit or by any other bodies as the

result of the existence of the current in this portion of the circuit.*

*Electric energy as thus defined is to be distinguished from electrostatic

energy; electric energy is the work done on or by electric currents, while

electrostatic energy is energy possessed by electric charges. Electrostatic

energy is discussed in detail in Chapter V.
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Experiment shows that the net electric energy, as thus defined,

gained by the electric current in any closed electric circuit in any
interval of time is zero. (This is also true for any stream line of

electric current, whether the current be continuous or variable.)

That is, any electric energy gained by the current in any part of its

path, e.g., the energy lost by a battery or other source of electromo-

tive force, is lost by the current in some other part of its path,

e.g., as heat energy, mechanical energy, chemical energy, or in the

case of a variable current, as magnetic and electrostatic energy.

The electric energy of an electric current is entirely analogous to

the potential energy of a current of water in a pipe or system of

pipes completely filled with water. The potential energy gained

by the water in any part of its path, e.g., from a pump, is all given

out by the water in some other form of energy, e.g., the heat energy

developed in the pipe and the work done on any hydraulic motor

that may be connected in the pipe. An electric current may then

be considered as a means for the transfer of energy, just as a

stream of water completely filling a closed pipe or system of pipes

is a means for the transfer of energy. The net amount of potential

energy in the water current remains constant; similarly the net

amount of electric energy in the electric current remains constant.

We have seen how the rate at which potential energy is lost or

gained by a current of water flowing through a given length of

pipe (i.e., the power developed by this current) may be expressed
in terms of the strength of the current and the drop of pressure

along the given length of pipe. We are therefore led to the

conception of electric pressure, or, as it is also called, electric

potential, as a property of an electric current analogous to hydraulic

pressure. As in the case of the flow of water, we are concerned only
with the difference of pressure and not with the absolute pressure of

the water, so in discussing the flow of electric currents we need

concern ourselves only with the difference of electric pressure
or difference of electric potential. We may then define the

drop of electric pressure, or the drop of electric potential, from any

point 1 to any other point 2 along a wire carrying an electric cur-

rent as the ratio of the rate at which electric energy is lost by the

current between these two points to the value of the current from

1 to 2. That is, calling P the rate at which electric energy is lost

by the current between the points 1 and 2 (i.e., the power developed

by this current) and / the value of the current from 1 to 2, the
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drop of electric potential from the point 1 to the point 2 is defined

as

P (14)

which is a relation of exactly the same form as that between

hydraulic pressure, the rate at which potential energy is lost by
the current of water through the pipe, and the quantity of water

per second flowing through the pipe. Drop of electric potential,

or potential difference, is frequently abbreviated "
p.d."

The unit of electric potential drop, or of potential difference,

in the c. g, s. electromagnetic system of units is equal to one erg

per second per abampere and is called the abvolt. When the rate

at which energy is lost by the current is expressed in joules per
second -(i.e., watts) and the electric current in amperes, the unit

of potential drop is one joule per second (i.e., one watt) per ampere ;

this unit is called the volt, and is the unit almost invariably used

in practice. There is still another unit of potential difference

which is employed in discussing electrostatic phenomena. This

unit is called the c. g. s. electrostatic unit. The relations between

these various units are

1 volt = 108 abvolts

1 c. g. s. electrostatic unit =300 volts

1 c. g. s. electrostatic unit =3X 10
10 abvolts

On the hypothesis that an electric current is an actual flow of

an incompressible something, the above definition of drop of

electric potential is equivalent to the definition that " the drop of

electric potential from any point 1 to any point 2 is the work done

by unit quantity of electricity when it moves from the point 1

to the point 2." The definition given above, however, is prefer-

able, since it does not involve any hypothesis.

In designating the two terminals of any portion of a circuit

that terminal which is at the higher potential is called the positive

terminal and the terminal at the lower potential the negative

terminal.

When a potential difference is expressed in volts, the word
"
voltage

"
is commonly employed instead of the term potential

difference. The word " tension
"

is also employed to mean the

same thing as potential difference. For example, one speaks of

the voltage of a generator, a high tension transformer, etc.
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88. Measurement of Drop of Electric Potential. Experiment
shows that the drop of electric potential as defined by equation

(14) is strictly analogous to the hydraulic pressure in a system
of pipes, pumps and motors completely filled with water. In

particular, it is found that the drop of electric potential around

any closed circuit is always zero, whether this circuit be a simple

circuit like that formed by a battery with its poles connected by
a wire, or whether this circuit be part of any network of circuits,

no matter how complicated the network may be. Hence, when
a wire is connected between any two points 1 and 2 of any
circuit whatever, the drop of potential from the point 1 to the

point 2 through the wire will be exactly equal to the drop of

potential from the point 1 to the point 2 through the conductors

forming the original circuit. In general, when a wire is con-

nected to an electric circuit, the current established in the wire

will cause a change in the strength of the current in the original

circuit, which will in turn cause a change in the drop of potential

between the two points. Hence, in general, the drop of potential

in a wire when it is connected to any two points of a circuit

is not the drop which originally existed between these two points.

However, by making the resistance of the wire sufficiently great,

the current which is established in it can be made negligibly

small, and the change produced in the current in the original

circuit by the presence of the wire may be neglected. Again,

(see Article 94) when any two dissimilar substances are placed
in contact a small difference of potential is produced between

them. Hence if the wire is made of a different material from

that of the conductors forming the circuit, the difference of po-
tential between the two ends of the wire will not necessarily

be equal to the difference of potential between the two points of

the conductor in contact with which the two ends of the wire

are placed. This difference, however, is inappreciable in ordinary

practical measurements.

The fact that the drop of electric potential between any two

points is the same over any path connecting these points, leads to

a simple method of actually measuring the potential drop between

any two points of an electric circuit in which is established a

continuous current. For, experiment shows that when a continu-

ous current is established in a wire which is of uniform structure

kept at uniform temperature in an unvarying magnetic field, then
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the only form of energy produced in or around the wire is heat

energy. Hence from the definition of electric energy given above,
the total loss of electric energy by the current in this wire is equal
to the heat energy which is produced in the wire. But by Joule's

Law (Article 81), the rate Ph at which heat energy is developed
between any two points 1 and 2 of such a wire under these con-

ditions, is equal to RI2

,
where R is the resistance of the wire be-

tween the points 1 and 2, and 7 is the current in the wire. Hence
the drop of potential from the point 1 to the point 2 is, from the

definition given above (equation 14) ,

V=^ = RL (15)

That is, the drop of potential between any two points 1 and 2

in the direction of the current in a wire of uniform structure and
of uniform temperature throughout, when this wire is kept in an

unvarying magnetic field, is equal to the product of the resistance

of the wire between these two points by the strength of the cur-

rent in the wire; this product RI is frequently called the "
resist-

ance drop
" between the two points. We have already seen how

the current strength and the resistance may be measured; conse-

quently the above relation gives a method for actually measuring
the drop of electric potential between two points of such a wire.

To measure the drop of potential between any two points
1 and 2 of any circuit, it is then only necessary to connect

to these points a wire of known resistance and measure the

strength of the current established in it. Then/if the resistance of

the wire is sufficiently high to make the current in the wire neg-

ligibly small, the difference of potential between the two points
is equal to the product of the resistance of the wire by the current

established in it. This is the principle of the ordinary continuous

current voltmeter, which is simply an ammeter with a high resist-

ance coil in series with it. The scale of the instrument is cali-

brated to read directly in volts instead of in amperes; that is,

the scale reads directly the product of the strength of the current

through the wire forming the coils of the instrument and the high
resistance coil in series with it and the value of the total resistance

of this wire. For accurate measurements with such an instru-

ment the effect of changes of temperature in changing the resist-

ance of the coils has to be taken into account. Also, care must be

taken not to place the instrument in a strong magnetic field, since
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such a field may alter the magnetic field in which the coil of the

instrument is designed to move. The effect of using wires of

different materials in the various parts of the instrument, or for

the connections to the instrument, is usually inappreciable in

ordinary practical measurements.

89. Ohm's Law. Equation (15) may also be expressed in

the form

j

and in this form is known as Ohm's Law, from the name of the

scientist who discovered the relation expressed by this formula.

In words, Ohm's Law is that, when a continuous current is estab-

lished in a wire of uniform structure throughout, kept at a con-

stant temperature in an unvarying magnetic field, then the ratio

of the potential drop between any two points along this wire to

the strength of the current established in the wire is constant,

independent of the strength of the current.

90. Electric Power and Electric Energy. From the definition

of drop of electric potential given in Article 87, it follows that the

rate P at which electric energy is lost by an electric current of

strength I between any two points 1 and 2 of an electric circuit

is equal to the drop in potential V from the point 1 to the point 2

multiplied by the value of the current from 1 to 2", that is

P = VI (17)

When an electric current loses electric energy it is said
"
to develop

an amount of power
"

equal to the rate at which it loses energy.

Hence the power developed by an electric current in any portion
of an electric circuit is equal to the product of the strength of the

current in this portion of the circuit by the drop of potential in

this portion of the circuit.

When the current I is measured in abamperes and the potential

drop V in abvolts, the product VI gives the power in ergs per

second. When I is measured in amperes and V in volts the prod-

uct VI gives the power in watts. Large amounts of electric power
are usually expressed in kilowatts, i.e., thousands of w^atts. See

Article 22 for the relation between the various units of power.

Since both the current and the potential drop may be readily

measured, the amount of power developed by a current can be

readily determined
;
in fact, electric power can be measured with
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much greater accuracy than any other kind of power. It should

be noted that an electric current can develop power only as the

result of a loss of an exactly equal amount of power by some
device associated with the electric circuit

;
that is, there must

always be a generator of electric power somewhere in the circuit,

e.g., a battery or a dynamo driven by some external source of

energy.

The relation expressed by equation (17) holds not only for a

continuous current but also for the instantaneous values of the

quantities involved, irrespective of how these quantities may vary
with time.

The amount of work done by the current in any portion of a

circuit in which the potential drop in'the direction of the current

is V, when the current is continuous for a time t and has a strength

7, is

W = VIt (18)

When the potential drop and the current vary with time, the

total amount of work done by the current in the time t is

(18a)

When the voltage, current and time are expressed in abvolts,

abamperes and seconds respectively equations (18) give the energy
in ergs ;

when these quantities are expressed in volts, amperes,
and seconds respectively these formulas give the energy in joules

or watt-seconds; when these quantities are expressed in volts,

amperes and hours respectively, these formulas give the energy in

watt-hours. Large amounts of energy are expressed in kilowatt-

hours, i.e., thousands of watt-hours. For the relation between

the various units of energy see Article 21.

91. The Wattmeter. Instead of measuring the current and

the potential drop separately by two different instruments, it is

possible to measure the value of the product VI directly by means

of a single instrument. Such an instrument is called an electro-

dynamometer or wattmeter. This instrument consists essentially of

two coils, one of which is stationary and the other mounted inside

the fixed coil on a suitable suspension or pivot in such a manner

that the planes of the two coils are vertical and the movable coil

can turn about a vertical axis. One coil Cv ,
called the "

voltage

coil," is connected in parallel with, or
" shunted "

across, the

terminals 1 and 2 of the circuit in which it is desired to
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measure the power, and the other coil C
if

called the "
current

coil," is connected in series with the circuit. The current coil

is usually stationary and the voltage coil is movable. A high

resistance R is connected in .series with the voltage coil, so that

only a very small current is established through this coil; this

current then depends only upon the difference of potential be-

tween the points 1 and 2. The current in the current coil, which

is the same as the current in the line, sets up a magnetic field

the strength of which is proportional to the strength of this cur-

rent (see Article 67) ;
this magnetic field produces a moment or

Fig. 56.

torque on the voltage coil, which torque is proportional to the

strength of this magnetic field and to the strength of the current

established in the voltage coil. Hence the torque produced on

the movable coil is proportional to the product of the difference

of potential from 1 to 2 and the current in the circuit between

these two points. If the opposing torque produced by the sus-

pension of the movable coil, or by a suitable spring attached to it,

is proportional to the angular twist given the coil, its deflection

will then be proportional to the power transferred to the circuit

between these two points. A suitable pointer attached to the

movable coil and arranged to move over a suitably graduated
scale will then indicate directly the value of the power.

92. Electromotive Force. The heat energy developed in an

electric circuit due to the resistance of the conductors forming the

circuit, that is, the heat energy expressed quantitatively by the

formula Wh
= HPt, is only one of a number of forms of energy into

which electric energy is converted. For example, electric energy

may manifest itself by producing chemical changes, that is, by
being converted into chemical energy; or by producing a mag-
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netic field, which in turn can produce mechanical motion, that is,

electric energy may be converted into magnetic energy which in

turn is converted into mechanical energy, etc. Again, whenever an

electric current is established some body or bodies lose some form

of energy, which, in accordance with the definition of electric

energy, is converted into electric energy. For example, when a

wire is connected to the two poles of a battery, chemical changes
take place in the battery which result in a loss of chemical energy

by the battery; that is, the chemical energy of the battery is con-

verted into electric energy. Again, it is found by experiment
that work is required to change the number of lines of magnetic
induction linking any part of an electric circuit; the work which

is thus done is, by the definition of electric energy, converted into

electric energy.

In any portion of a circuit in which work is done on an electric

current or in which the current does work, other than that done

as a consequence of the resistance of this portion of the circuit,

there is said to exist an electromotive force. An electromotive force

may then be looked upon as that which produces or opposes the

flow of electricity, other than the opposition due to the resistance

of the conductor in which it flows. As the measure of the electro-

motive force in any portion of a circuit is taken the rise of poten-
tial which it would produce in the direction of the current in this

portion of the circuit were there no resistance drop in this portion

of the circuit. As noted in Article 88, the resistance drop is

always in the direction of the current
;
hence in any portion of a

circuit in which there is a resistance drop the electromotive force

is equal to the resultant rise of potential in the direction of the

current in this portion of the circuit plus algebraically the resistance

drop in this portion of the circuit. An electromotive force is then

considered positive with respect to the current when it produces a

rise of potential in the same direction as that of the current
;

negative when it produces a rise of potential in the opposite direc-

tion to that of the current. An electromotive force in the opposite

direction to that of the current is frequently called a back or

counter electromotive force. From the definition of potential drop

(Article 87) it follows that wherever the current and the electro-

motive force are in the same direction there is a gain of electric

energy by the current, or the current has work done on it
;
wher-

ever there is a back electromotive force the current loses electric
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energy, or does work. Electromotive force is frequently abbre-

viated e. m. /.

An electromotive force is analogous to the pressure developed

by a pump, while a back electromotive force is analogous to

the back pressure due to hydrostatic head or to the back

pressure due to an hydraulic motor. The resistance drop in a

conductor is analogous to the drop of pressure, or
"

loss of head,"

due to the friction of a pipe. When the terminals of any device

which develops an electromotive force are connected by a con-

ductor, the electromotive force may be looked upon as the cause

of the flow of the electric current, just as the pressure developed

by a pump may be looked upon as the cause of the flow of the

water current through a pipe connecting its outlet and intake.

Just as the pressure developed by the pump is equal to the drop
in pressure in the pipe and the water passages of the pump due to

their frictional resistance (provided there is no acceleration of the

water or other source of back pressure in the pipe), so is the electro-

motive force developed by any device equal to the drop of electric

pressure, or potential drop, due to the electric resistance of the

conductors forming the electric circuit (provided the electric cur-

rent is continuous, i.e., does not vary with time, and there is no

back electromotive force in the circuit). Again, when the outlet

and intake of a pump are connected respectively to the intake

and outlet of an hydraulic motor, the pressure developed by the

pump is no longer equal to the drop in pressure due to the fric-

tional resistance of the pipe and water passages of the pump and

motor, but is equal to this drop plus the back pressure due to the

motor
; similarly, when any device which develops an electromotive

force is connected by conductors to another device which develops
a back electromotive force (e.g., an electric motor) the electromotive

force of the first device is not equal to the resistance drop in this

circuit, but is equal to this drop plus the back electromotive force

developed by the second device.

Since an electromotive force is measured by the difference of

potential it produces, the units of electromotive force are the same
as those of potential difference, namely, the abvolt, volt, and the

c. g. s. electrostatic unit (see Article 87).

93. Generalized Ohm's Law. The relation between current

strength, electromotive force, potential drop, and resistance in any
portion of an electric circuit in which a continuous electric current
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is established may be stated in a comprehensive manner in a

single formula. Fig. 57 represents diagrammatically any portion

of an electric circuit; the terminals of this circuit are designated

by the numbers 1 and 2. An electromotive force developed in

this circuit in the direction from 1 to 2 is designated by the symbol
E 12 and an electromotive force in the opposite direction by the

symbol E2l . Similarly, a current in the direction from 1 to 2 is

designated by / 12 and a current in the

.opposite direction by 721 . The drop of

potential from 1 to 2 is designated by
V12 and a drop of potential from 2 to 1

is designated by F21 . The resistance

of the conductors forming this part of

the circuit to the current from one ter-

minal to the other is represented by the

symbol R; this resistance is, of course,

independent of the direction of the circuit. Then, since E 12 repre-

sents a rise of potential in the direction from 1 to 2, and RI 12 is a

drop of potential from 1 to 2, the net rise of potential from 1 to 2

is E 12 RI 12 . But the net rise of potential from 1 to 2 is equal to

the net drop of potential from 2 to 1
;
hence

or

V 2l
=E 12 RI 12

7 _E- V2l

R
(18a)

The net rise of potential from one terminal to another of any por-
tion of an electric circuit is frequently called the terminal electro-

motive force of this portion of the circuit, or the electromotive

force impressed upon this portion of the circuit by the rest of the

circuit. Hence, calling E' 12 the terminal or impressed electromo-

tive force in the direction from 1 to 2, we have that E' 12
= T/r

12
=

V2l ,
and therefore equation (18a) may be written

E 12 -E' 12 (186)/a-
R

Equations (18a) and (186) are two ways of expressing the same

fact; they hold, of course, only when the current entering one

terminal is the same as the current leaving the other.

Equation (186) is frequently called the Generalized Ohm's Law,
since this expression reduces to the same form as the expression for

Ohm's Law (equation 16) when no electromotive force is developed
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T?f V
in the circuit, i.e., when E 12 =0 then 721 = - = . Equation (186)R R
is an extremely useful one, since it gives a simple and entirely general

formula for calculating the current in any portion of a circuit when
the electromotive force developed in this portion of the circuit, the

impressed or terminal electromotive force, and the resistance of

this portion of the circuit are known. In applying this formula

care must be taken in not confusing the electromotive force de-

veloped in the given portion of the circuit with the electromotive

force impressed across its terminals.

When the generated electromotive force E and the current /

are in the same direction, i.e., in an electric generator or in any
other device in which electric energy is generated, equation (186)

may be written

E'=E-RI (18c)

In this case the terminal electromotive Ef
force is always less than

the generated electromotive force E. When the generated elec-

tromotive force E and the current / are in opposite directions, i.e.,

in an electric motor or in any other device which absorbs electric

energy, equation (186) may be written

E'=E+RI (18rf)

In this case the impressed electromotive force E' is greater than

the back electromotive force E.

For example, a continuous current dynamo may be used

either as a generator or a motor. If the electromotive force

generated by the machine is 110 volts in each case, and the resist-

ance of its armature is 1 ohm, then when a current of 10 amperes
is supplied by the dynamo running as a generator the terminal

electromotive force is 110 -(IX 10) =100 volts; while if the dy-
namo is running as a motor the impressed electromotive force

must be 110+ (1X10) =120 volts.

In employing the special forms (18c) and (ISd) of the general

equation (186), the relative directions of the various quantities

must not be lost sight of. In the generator equation (18c) the

generated electromotive force E, the terminal electromotive force

E' and the current 7 are all in the same direction. In the motor

equation (18d) the generated electromotive force E and the cur-

rent / are in opposite directions; the impressed electromotive

force Ef

,
considered as localized in the rest of the circuit connecting

the terminals of the portion of the circuit under consideration, acts
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around the closed circuit of. which the given portion is a part in

the same direction as the current, and therefore in the opposite

direction around the circuit to the back electromotive force E.

The student should bear in mind that the various formulas

given in this article are all simply different ways of expressing a

single relation. This relation is that the current in any portion of

a circuit formed by one or more conductors in series is equal to the

algebraic difference between the generated and impressed electro-

motive forces divided by the resistance of the given portion of the

circuit.

94. Contact Electromotive Force. It is found by experiment
that whenever an electric current is established in two or more

conductors connected in series, the current always gains or loses

electric energy at each point of contact between dissimilar con-

ductors. For any given point of contact, it is found that whether

there is a gain or loss of energy depends upon the direction of

the current with respect to the two conductors. For example,
when a copper wire is connected to an iron wire and a current

is established across the junction of these two conductors, the

wires in the vicinity of the junction become cooled when the cur-

rent is in the direction from the copper to the iron, while if the

current is in the opposite direction, from the iron to the copper,

the wires in the vicinity of the junction become heated. These

effects as a rule are scarcely appreciable, but when special pre-

cautions are taken they can readily be detected. In the first

case, then, the current gains electric energy at the junction, and

in the second case it loses electric energy at the junction.

In general, then, at the junction between any two dissimilar

conductors there is an electromotive force, and the direction of

this electromotive force is independent of the direction of the

current. Experiment also shows that the value of this electro-

motive force of contact, as it is called, does not depend upon the

strength of the current or upon the area or shape of the surface

of contact between the two conductors, but depends only upon
the nature of the two conductors in contact and upon the tem-

perature of the junction. The value of this contact electromotive

force between metallic conductors is quite small, only a small

fraction of a volt (e.g., between copper and zinc at 25 degrees

centigrade it is 0.00045 volt), and in practical work it is therefore

usually negligible. However, in case of a metal conductor in
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contact with an electrolyte the contact electromotive force may
be several volts. In this case, only a very small part of the

electric energy absorbed by or given out by the current manifests

itself as a loss or gain of heat energy at the junction of the two

conductors, but the gain or loss of electric energy by the current

appears as a loss or gain of chemical energy at the junction of

the two conductors. That is, the transfer of energy involved

in the chemical changes which take place at the junction is many
times greater than the transfer of heat energy from or to the

junction between dissimilar metals. As in the case of two metals

in contact, however, this contact electromotive force between

conductors and electrolytes is independent of the strength or the

direction of the current through the junction and is also inde-

pendent of the area and the shape of the surface of contact, but

depends only upon the ^nature of the conductors in contact and

the temperature of the conductors at the junction.

It is found by experiment that whenever any number of

conductors are connected in series, and there are no electromotive

forces in this chain of conductors other than the electromotive

forces of contact at their junctions, then the net electromotive

force between the ends of this series of conductors is the same

as if the two end conductors were connected directly to each

other, provided all the conductors are kept at the same uniform

temperature and the chemical action at the cathode in each electrolyte

in the series is just the reverse of the chemical action at the anode

in this electrolyte. This fact is sometimes called the Law of Succes-

sive Contacts. For example, if a copper wire is connected to

an iron wire which in turn is connected to an aluminum wire,

the net electromotive force between the free ends of the copper
and the aluminum wire is the same as if the copper wire were

connected directly to the aluminum wire. Similarly, when two

copper wires are soldered together, the net effect of the solder is

nil, whether the two copper wires are in actual contact or are

joined only through the solder. (If the flux used in soldering acts

chemically on the wires, an electromotive force may be produced
at the junction ;

this electromotive force, although small, may be

sufficiently large to cause considerable trouble when delicate meas-

urements are to be made.) Again, the net electromotive force of

a silver voltameter is zero, since at the anode silver goes into solu-

tion as silver nitrate and at the cathode silver is deposited from
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the silver nitrate solution, that is, the chemical actions at the two

electrodes are just the reverse of each other.

The two exceptions to this law of successive contacts are

1. When the chemical actions at the two electrodes in any

electrolyte in the series are not the reverse of each other, and

2. When the conductors forming the series are not at the same

temperature.
In either case, when the conductors forming the ends of the

series are connected together, there will in general be a current

established in this closed chain, since the net rise of potential

due to the net electromotive force in the series must be balanced

by an equal fall of potential, for the total drop of potential

around any closed circuit is always zero. The value of the

current established in the closed circuit thus formed will be

equal to the resultant or net electromotive force divided by
the total resistance of all the conductors in the series (see Arti-

cle 98).

95. Chemical Batteries. The action of all chemical batteries

is based upon the first exception to the Law of Successive Con-

tacts. For example, in the case of the simple copper-sulphuric

acid-zinc battery described at the beginning of this chapter, the

electromotive force of contact between the zinc and the sulphuric

acid solution is in the direction from the zinc to the acid and

is about one volt greater than the contact electromotive force

between the copper and the acid. This latter electromotive

force is in the direction from the copper to the acid; hence

the net electromotive force of the battery from the zinc pole
to the copper pole is about one volt. The copper pole is the posi-

tive pole and the zinc pole the negative pole.
* That is, there is a

net rise of potential through the battery from the zinc to the cop-

per pole equal in value to about one volt. Consequently, when
the two poles of the battery are connected by a copper wire,

a current is established in this wire equal in value to this

electromotive force divided by the total resistance of all the

conductors in series. For example, calling the electromotive

force of the battery 1 volt, the resistance of the wire 1 ohm,

*The standard symbol for a battery is two parallel lines thus

I

The short line represents the negative and the long line the positive pole.
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and the resistance of the conductors forming the battery 0.2 ohms,

the current in the circuit will be =0.833 amperes. The resistance
i.Zi

of the conductors forming the battery is usually called the internal

resistance of the battery, and is never negligible unless the wire

forming the external circuit has a very large resistance. It

should also be noted that in the example just cited there is also

a contact electromotive force between the zinc pole and the copper
wire forming the external circuit, but since this electromotive

force is but a very small fraction of a volt it is usually negligible

in practical work. For a description of the construction of the

common forms of chemical batteries used in practice, see any elec-

trical engineer's handbook.

It is found by experiment that the net electromotive force

of any chemical battery or cell is constant, provided the chemical

nature of the electrodes and the electrolyte in contact with them
does not change. One electrode may waste away and the other

increase in mass, due to the chemical action which takes place
at them, but as long as their chemical composition and that of

the electrolyte in contact with them does not change and the

temperature remains constant, the electromotive force of the

battery remains constant. In general, however, when an electric

current is established through a battery, the electrodes not only

change in mass, but some of the products of the chemical actions

which take place collect at the electrodes, and thus change the

nature of the substances in contact, and consequently the

electromotive force of the battery changes. For example, when
a current is established through the copper-sulphuric-acid-zinc

battery, zinc sulphate is formed at the zinc electrode, and

bubbles of hydrogen gas collect at the copper electrode and

the electromotive force of the battery falls off. The battery in

such a case is said to become polarised, and the decrease of its

electromotive force is said to arise from a back electromotive force

of polarisation. There are various methods for preventing the

polarisation of a battery; see any electrical engineer's handbook.

The polarisation of a dry battery is particularly noticeable, since

the electrolyte in such a battery, instead of filling the entire

space between the poles of the battery, simply impregnates a

practically solid mass between these poles. Consequently, the

products of the chemical actions at the poles of the battery cannot
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diffuse rapidly through the battery but collect at the poles where

they are formed. However, when such a battery is left open-
circuited for a time after it is used, these products gradually dif-

fuse through the battery, and its electromotive force gradually
returns to practically its original value, provided none of the

active materials has been completely destroyed.

96. Definition of the International Volt. Many of the

ordinary forms of batteries undergo chemical changes in their

various parts even when left open-circuited. This is due chiefly

.
to impurities in the chemicals of which they are made. It is

possible, however, to construct a battery which will remain

practically unaltered for several years, provided no current is

taken from it. Hence such a battery, or cell, makes a very
convenient standard of electromotive force or potential difference.

One of the most satisfactory cells of this kind is that known as

the Clark cell, and in terms of this cell the International Congress
of Electricians defined the volt as follows :

" As a unit of electromotive force (shall be taken) the Inter-

national Volt, which is the E.M.F. that steadily applied to a

conductor whose resistance is one international ohm, will produce
a current of one international ampere, and which is represented

sufficiently well for practical use by Hii of the E.M.F. between

the poles or electrodes of the voltaic cell known as Clark's cell,

at a temperature of 15 C., and prepared in the manner described

in the accompanying specification (B)."

The specification referred to is to be found on page 10 of

Foster's Electrical Engineer's Pocket Book. This definition has

been legalized by most civilized countries.

In the practical use of a Clark cell as a standard of comparison
of potential differences, an arrangement is used which obviates

the necessity of taking any current from the cell. The principle

of this method is to balance the electromotive force of the cell

against an equal resistance drop. See Article 100.

97. Thermal Electromotive Forces. As noted in Article 94

the Law of Successive Contacts does not hold in case the tempera-
ture of the chain of conductors forming the electric circuit is

not the same for all these conductors. For example, when an

iron and a copper wire are connected to each other at their two

ends in such a manner that they form a closed loop, the electro-

motive force, and therefore the current, in this loop will not be
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zero if the two junctions between the iron and the copper are

kept at different temperatures, or even if there is a difference

of temperature between any two points of the same wire. These

thermal electromotive forces, as they are called, are however only

a small fraction of a volt even for a considerable difference of

temperature, and consequently in any circuit in which there

are other electromotive forces of the order of a volt or more,

they may be neglected. One important practical application

of these thermal electromotive forces, however, is in the thermo-

electric couple or electric pyrometer for measuring high tempera-
tures. The ordinary form of electric pyrometer consists essen-

tially of a platinum and a platinum-iridium wire fused together

at one end and connected in series with a millivoltmeter (i.e., a.

voltmeter designed to measure differences of potential of the

order of a thousandth of a volt). The junction between the two

wires, suitably protected by a porcelain or quartz tube, is placed

in the furnace the temperature of which it is desired to measure.

The difference of potential indicated by the voltmeter is then

practically proportional to the difference between the temperature
of the hot junction in the furnace and the temperature of the

ends of the two wires where they are connected to the voltmeter.

98. Kirchhoff's Laws. We have already had occasion, in

several instances, to make use of the two experimental facts that

1. The algebraic sum of the currents coming up to any junction

in a network of conductors is always zero, and

2. The algebraic sum of the potential drops around any
closed loop in a network of conductors is always zero.

These two experimental facts are known as Kirchhoff's Laws,
from the name of the scientist who first clearly enunciated them.

By making use of these facts one can always predetermine (1)

the currents in each branch of a network when the resistance

of each branch and the electromotive force in each branch are

known, or (2) the resistance of each branch of a network when
the current in each branch and the electromotive force in each

branch are known, or (3) the electromotive force in each branch

when the current in each branch and the resistance of each branch

are known. These two laws are therefore of fundamental im-

portance.

It should be carefully borne in mind in applying these laws

that a current leaving any point is equivalent to an equal negative
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current entering that point, and that an e. m. f. in any chosen

direction is equivalent to a rise of potential in that direction.

In working out any problem concerning a network of circuits it

is convenient to make a diagram of the network and to place on

each branch in this diagram a number or symbol to represent the

value of the current in this branch and an arrow or subscripts

to indicate the direction of the current represented by this num-
ber or symbol, and wherever there is an e. m. /. to place a number
or symbol to represent the value of this e. m. f. and an arrow or

subscripts to indicate its direction. Then at any junction point

those currents represented by arrows pointing toward the point

are to be considered positive (say) and those represented by
arrows pointing away from the point are to be considered nega-

tive; and for any closed loop those currents and e. m.f's repre-

sented by arrows pointing around the loop in the clockwise

direction (say) are to be considered positive and those pointing
around the loop in the counter-clockwise direction are to be con-

sidered negative. With this understanding, we then have,

S /=0 at every point (19a)

2 E =2 R I for every closed loop (196)

where /, R, and E represent the current, the resistance and the

e. m. f. respectively in each branch of the loop, and the symbol
2 indicates the algebraic sum of the expression following it.

Equations (19) enable one to write down a set of simultaneous

equations for the given network, but it will be found that at

least one of the current equations may be derived directly from

the other current equations, and that at least one of the

potential equations may be derived from the other potential

equations. That is, the number of independent equations of

each form will be one less than the number which it is possible

to write down. It should also be noted that it is frequently

unnecessary to write down formally all the possible independent

equations; many of the simpler problems can be solved by writ-

ing down two independent expressions for the potential drop
between each pair of points and equating these two expressions;

this is illustrated by the Generalized Ohm's Law (Article 93) which

is but a special case of Kirchhoff's second law. The following

examples will serve to indicate the use of KirchhofFs Laws :
*

*The solution of network problems by means of determinants is given
in detail in Del Mar's Electric Power Conductors.
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a. Resistances and Electromotive Forces in Series. Con-

sider any number of conductors in series (Fig. 58) and let a drop of

potential F12 be established between the two ends of this series of

conductors. Let the current in these conductors be in the direc-

tion from 1 to 2 and let I12 be its value; I 12 will be the same in each

conductor, since they are in series. Let R'
', R", Rf

", etc., be the

resistances of the various conductors and E' 12,
E" 12 ,

E'" 12, etc.,

the electromotive forces in this portion of the circuit between the

points 1 and 2 in the direction from 1 to 2. Then the potential

drop from 1 to 2 is also #'/12
- E' 12+R" 712

- E"+ R'" I12-E'" 12,

etc. Hence

V12 =(R'+ R"+R'", etc.) Ii 2-(E' 12+E 12+E'" 12; etc.). (20)

Therefore the resistances between the points 1 and 2 are equivalent
to a single resistance

R = R' + R+R"' }
etc. (20a)

and the electromotive forces between the points 1 and 2 are

equivalent to a single electromotive force

E12
= E' 12+ E"12+ W" 12, etc. (206)

When the equivalent electromotive force E12 is positive and greater

than the product of the current I12 and the equivalent resistance R,

i-A/WWH U/WWH U/WWH
R' R" R'" -

'
'12

Fig. 58.

the drop of potential from 1 to 2 will be negative, that is, there will

be an actual rise of potential from 1 to 2; this corresponds to the

condition when the part of the circuit from 1 to 2 is supplying

energy to the rest of the circuit which completes the closed loop
from 2 to 1. When E 12 is negative or is less than the product
R I12,

the potential drop from 1 to 2 is positive, which represents

a transfer of energy to this part of the circuit from the portion

of the circuit closing the loop from 2 to 1.

b. Resistances and Electromotive Forces in Parallel. When
a number of resistances R', R", R'", etc., are connected in parallel

between two points 1 and 2, and there are electromotive forces
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L
12

E' J2 , E'\ 2 ,
7'" ]2 , etc., in these respective branches, the drop of

potential FJ2 from the point 1 to the point 2 must be the same
for each branch, and the total Ej

current entering the point 1

must be equal to the total

current leaving this point.

Hence, calling 7 12 the total

current entering the point 1

in the direction from 1 to 2,

and 7' 12,
7" 12,

7"' 12 , etc., the

currents in the respective Fig- 59.

branches in the direction from 1 to 2, we have

712 =7' 12+7" 12 +7'" ]2 + etc.

and

Rf
If

l2
- E' 12

= R" 7" 12
- E\ 2

= R"' 7"'12
- #'" 12 =etc. (21a)

from which relations the currents in the individual branches may
be calculated when the resistances and the electromotive forces

in these branches are known. Again, if the drop of potential

(21)

V
1 from is given instead of the total current 712,

we have

instead of the first equation the relations

V12
= R' f- E', 2

=R 7" 12
- E" =R" 7"' 12 -#'" 12 (216)

which are also sufficient for the calculation of the currents in the in-

dividual branches. In case there are no electromotive forces in the

branches between the points 1 and 2, we have from equation (216),

y
putting R = -, where 7 12 is the total current from 1 to 2, that

/12 R I 12 =R' r iz
=R"r i2 =R'" 7"' 12

whence

7
/

1 1" 1 TL 1 o L 10 * 1 > *-

etc.

R Rf R R" R R"r

therefore, adding these equations and substituting for 7 12 its value

from equation (21), gives1111,=
|

1 f-etc.
72 Rf R" R"f

(21c)

That is, the equivalent resistance R of any number of branch cir-

cuits in parallel, in which there are no electromotive forces, is the

reciprocal of the sum of the reciprocals of the resistances of the

individual branches; or, the equivalent conductance \ =) of any
R

number of branch circuits in parallel, in which there are no electro-
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motive forces, is equal to the sum of the conductances of the in-

dividual branches. It also follows from equation (216) that when
there are any number of branch circuits connecting any two points,
and there are no electromotive forces in these branches, the total cur-

rent divides among the various branches in such a manner that the

ratio of the current in any branch to the current in any other

branch is equal to the inverse ratio of the resistances of these two
branches. It should be carefully noted that none of these relations

are true when there are electromotive forces in any of the branches.

In the special case of two resistances in parallel, but no e. m. f.

in either branch, equation (21 c) becomes

R' XR" (21d)

99. The Wheatstone Bridge. A special 'arrangement of

electric circuits which is extensively used in the comparison of

resistances is that known as the Wheatstone Bridge, and is shown

diagrammatically in Fig. 60. B is a battery of any kind. G a

galvanometer, and R lt R2,
R3 ,

and #4 are the resistances of the

B

branches between the points 1 and 2, 2 and 3, 3 and 4, and 4 and 1

respectively. The currents in each branch of this network can be

calculated for any values of these resistances when the electromo-

tive force of the battery, and the resistances of the battery and

the galvanometer (including the connecting leads) are known.

However, there is a simple relation among the four resistances

R
lt
R 2 ,

R 3 ,
and #4 for which the current in the galvanometer

circuit will be zero, independent of the electromotive force of the

battery and the resistances of the battery and galvanometer cir-

cuits. The condition that there be no current in the galvanometer

is that there be no difference of potential across its terminals.
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Call 712,
723 ,

7 14 ,
and 743 the currents in the branches 12, 23, 14, and

43 respectively, the order of the subscripts indicating the direction

of the current in each instance. Applying Kirchhoff's first law to

the points 2 and 4 we then have for no current in the galvanometer,

and applying KirchhofFs second law .to the loops 1241 and 2342

we have

R, Il2
= Rt 714 and R2 I 23

=R3 743

but since 7 12 =723 and 7 14 =743 ,
the last equation may be written

R 2 112
=R3 7j 4 . Whence, taking the ratio of this equation and the

equation R v I12
=R4 7 14 we get

R 2 R3

or

R4 =^-.R3 (22)
/to

Hence, when the ratio of the two resistances R
l
and R2 is known,

and the resistance R3 is changed until there is no current in the

galvanometer, which will be indicated by the galvanometer show-

ing no deflection when connected into the circuit, the resistance

R4 can be calculated from this equation.

In the simplest form of Wheatstone Bridge, the resistances

R! and R2 are formed by a continuous wire of uniform cross

section and the resistance R3 is formed of a single standard re-

sistance coil. Instead of altering this resistance R3 ,
the galva-

nometer terminal 2 is moved along the wire until the galvanometer

deflection becomes zero. The ratio of the two resistances R l

and R 2 is then equal to the ratio of the lengths of this wire between

the points 12 and 23 respectively. Calling these lengths 112 and

/23 respectively, we then have that

Rt =
l

f.R3 (22a)
^23

Whence it is possible to determine by a very simple experiment

the resistance of any conductor in terms of a single standard

resistance. Hence it is necessary to measure absolutely (see

Article 82) the resistance of but a single
" standard "

of resistance,

and all other resistances can be expressed directly in terms of

this standard.

100. The Potentiometer. Another important network is that

used in the so-called
"
potentiometer method "

of comparing
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potential differences. A simple arrangement of this kind is

shown in Fig. 61. B is a battery or other source of- electro-

Fig. 61.

motive force which is connected to the two ends of a wire of

uniform cross section. To the end 1 of this wire is also connected

a standard cell C, say a Clark cell, in series with a galvanometer G
and a high resistance to prevent a large current from flowing

through the cell while the adjustments are being made. The
other end of this circuit is an adjustable contact 3 which can be

moved along the wire. The like poles of the two batteries must

be connected to the same end of the wire, and the electromotive

force of the battery B must be greater than the electromotive

force of the standard cell. Let the contact 3 be moved along

the wire until the galvanometer shows no deflection (in the final

adjustment the high resistance is to be short-circuited). Then,

applying KirchhofFs second law to the loop 1C<731
;
we have,

since there is no current in the galvanometer, that

where E is the electromotive force of the standard cell, R 13 the

resistance of the wire from 1 to 3, and / the current in the wire.

Tjl

The potential drop per unit length of the wire will then be
^13

where 1 13 is the length of the wire between 1 and 3, and the potential

drop across any length of the wire, llx say, will then be E.
'l3

Hence, if the standard cell is replaced by any other battery, the

electromotive force E' of which is to be measured, and x is

the position of the sliding contact at which the galvanometer
shows no deflection, the electromotive force of this battery will be
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Ef = E, provided the current from the battery B, and therefore
HI

the current in the wire 12, does not change.

This potentiometer method of comparing electromotive forces

is extensively employed in calibrating electrical measuring in-

struments. In practice, the wire 12 is usually replaced in

whole or in part by a set of resistance coils, the resistances of

which are accurately known.

101 . Stream Lines of Electric Current. So far we have con-

fined our attention to conductors which are in the form of wires

or long rods or bars, which we have assumed may be considered

as geometrical lines. Certain problems arise in practice, however,
when this method is not permissible; for example, the calculation

of the insulation resistance of a cable, the calculation of the

magnetic field intensity within the substance of a wire, etc. In

such cases it is necessary to look upon the conductor carrying
the current as made up of

"
current filaments," just as a mag-

netised body is conceived to be made up of magnetic filaments.

Experiment shows that when an insulating gap is cut in a

conductor in which an electric current is established, this gap in

general produces a change in the amount of the effects produced
in and around the conductor, e.g., a change in the force produced
on the conductor by a magnetic field, a change in the amount of

heating produced, etc. The amount of these changes produced

depends upon the direction in which the gap is cut. It is possible
to cut a very narrow gap in the conductor in such a direction that

no change whatever is produced in any of these effects, just as

it is possible to cut a very narrow gap in a magnet without pro-

ducing any new poles (see Article 46). A conductor of any shape
whatever in which a current is established may then be divided

into filaments separated from each other by insulating walls of

infinitesimal thickness without producing any change in the effects

produced in and around the conductor. These filaments may be

considered of very small cross section and may therefore be

treated as geometrical lines. They may be looked upon as the

lines along which the electric current flows; these filaments are

called the stream lines of the electric current. Such stream lines

are analogous to hydraulic stream lines.

Since each of these current filaments may be insulated from

the rest of the conductor without altering the phenomena pro-
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duced by the electric current, each filament may be treated as an
insulated wire. The definitions of the strength and the direction

of an electric current (Articles 66 and 67) are then directly ap-

plicable. The direction of the current at any point of a conductor

is then the direction of the current filament at that point; the

positive sense of the filament is taken arbitrarily as the direc-

tion of the current. The strength of the current in any filament

is the same at every cross section of the filament. Let di be the

current in any filament and let the cross section of this filament

at any point P be dsn ,
then the current density at P is

di (23)
<T =

dsn

The total strength of the current across any surface of area S is

then

i= I (a- cos a) ds (23a)
J s

where ds is any element of this surface, and a is the angle between

the direction of the current at ds and the normal to ds. Compare
with equations (16), of Chapter II.

The results of all known experiments show that the stream

lines of an electric current must be considered as closed loops

without ends; in this respect these stream lines are analogous
to lines of induction. In the case of a continuous current, i.e.,

a current which does not vary with time, these stream lines are

confined entirely to conductors. The stream lines of a variable

current, however, may be partly or entirely in a dielectric, even

though this dielectric be a perfect insulator; the stream lines in

a dielectric represent the displacement current (see Chapter V).

It should be noted that the direction of the stream lines in

any body depends upon the position of the points of connection

of the body to the rest of the circuit. These stream lines always
run through the body in the general direction of the line connecting
the two points of contact or terminals. The stream lines will

not in general be parallel to one another, particularly when the

distance between the terminals is large compared with the linear

dimensions of the cross section of the body perpendicular to

the direction of these lines. However, as has already been

noted, in the case of a long wire, a long rod or strip, or a long

section of a rail, these lines, except for a negligible distance in
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the immediate vicinity of the terminals, are practically parallel

to the axis of the conductor when the conductor is of uniform

cross section and the terminals are at the two ends of the con-

ductor. Under these conditions the current density is also

uniform over the cross section of the conductor provided the

current does not vary with time.

In the case of a variable current the back electromotive

force set up by the varying magnetic field due to the current

is greater in those filaments in the interior of the conductor than

in those near the surface, and as a consequence the current density

is greater near the surface of the conductor; this phenomenon is

known as the " skin effect." (See Article 121). In the case of

copper or aluminum wires of the size ordinarily employed in

practice this skin effect is not appreciable except for rapidly vary-

ing currents
;
in the case of rapidly alternating currents (frequency

greater than 60 cycles per second) this effect may be quite appreci-

able. In the case of steel rails the skin effect produces a con-

siderable increase in the apparent resistance of the rail even when

frequencies as low as 15 cycles per second are employed.
102. Resistance Drop and Electric Intensity. Electric Equi-

potential Surfaces. Consider an elementary length dl of a current

filament at any point P of a conductor. Let ds be the cross

section of this filament at the point P. Then, from equation (11),

the resistance of the elementary length dl is

dl
dR=pH

ds

where p is the specific resistance of the conducting material.

The resistance drop in the length dl due to a current di in this

filament is then

dvr =dR.di =p dl
ds

But is equal to the current density cr at the point P. Hence
ds

the resistance drop per unit length of the filament at any point
Pis

The resistance drop per unit length of a current filament at any
point is called the electric intensity at this point. This, relation
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between current density and electric intensity is of exactly the

same form as the relation between magnetic field intensity and

flux density (see equation 20 of Chapter II) ;
the reciprocal of the

electric resistance, i.e., the specific conductivity, is exactly anal-

ogous to magnetic permeability.

The c. g. s. electromagnetic unit of electric intensity is the

abvolt per centimeter
;
the practical unit is the volt per centimeter

or the volt per inch. Electric intensity is also sometimes expressed

as so many c. g. s. electrostatic units per centimeter length.

These units are related to one another as follows :

1 abvolt per centimeter = 10"
8
volts per centimeter

=2.54 x 10"
8
volts per inch

1 c. g. s. electrostatic

unit per centimeter =300 volts per centimeter

The resistance drop in an elementary length dl of a current

filament may then be written H
e
dl and therefore the total

resistance drop between any two points 1 and 2 on the same

current filament is

(25)

and the total resistance drop between any two points 1 and 2,

whether on the same or different current filaments, is

/2
( He cos 0} dl (25a)

where He is the electric intensity at the elementary length dl

of the path between 1 and 2 and is the angle between the

direction of the electric intensity at dl and the direction of dl.

Compare with equation (25) of Chapter II.

When there is no contact or induced electromotive force in

the path from 1 to 2, this resistance drop is equal to the total

potential drop along this path ;
when there is a contact or induced

electromotive force e, 2 in the path from 1 to 2 the total drop of

potential from 1 to 2 is

/2
(
H

e cos 0) dl - e l2 (256)

Since the total electric potential drop around any closed path is

zero, this reduces to

/ (Hcos0}dl=^e (25c)

for a closed path; that is, the total resistance drop around any
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closed path is equal to the total electromotive force in this path,
which is simply another way of stating Kirchhoff's second law.

Any surface all points of which are at the same electric poten-
tial is called an electric equipotential surface. Such a surface is

perpendicular at each point to the current filament through that

point and is therefore perpendicular to the electric intensity at

that point. Compare with magnetic equipotential surfaces.

103. Insulation Resistance of a Single Conductor Cable.

As an example of the use of the

above conceptions, take the prob-
lem of calculating the insulation

resistance of a single conductor

cable in a lead sheath. Fig. 62

represents the cross section of such

a cable. When all points of the

wire are at the same potential and
all points of the sheath are at the

same potential, the surface of the

wire and the inside surface of the

sheath are equipotential surfaces. Fig. 62.

Hence the stream lines of the current through the insulation

(which, it is to be remembered, is never a perfect insulator but

only an extremely poor conductor) must, from symmetry, be radial

lines. Let

/ ^length ofj cable in centimeters

r
l

= radius of wire in centimeters

r.2
= internal radius of sheath in centimeters

7=total current in amperes through the insulation, i.e., I

is the leakage current, not the main current through the

wire

V= difference of potential in abvolts between the wire and
the sheath, assumed constant.

p=the specific resistance of the insulation in ohms per
centimeter-cube.

Then the current density at any point in the insulation at a dis-

tance x from the center of the wire is

2-rrxl

whence the electric intensity at this point is
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=
P<T

27TXI

and therefore the difference of potential between the wire and the

sheath is*

2 77 IJ TI X

The insulation resistance of the given length of cable is then

2 -rrl

In
r
-l (26)

Note that the insulation resistance varies inversely as the

length; this is evidently true when it is remembered that each

elementary length of the insulation of the cable (measured along

the axis of the wire) is in parallel with all the other elementary

lengths.

Compare equation (26) with the formula, equation (20) of

Chapter V, for the electrostatic capacity of a sheathed cable.

It can be shown that in every case the formula for the insula-

tion conductance (i.e., the reciprocal of the insulation resistance)

between any two conductors is identical with the formula for the

electrostatic capacity of these two conductors when ^- is sub-

P
stituted for the dielectric constant K in the formula for capacity.

See Article 152 for various capacity formulas.

104. Field Intensity at any Point Due to a Current in a Wire
of Circular Cross Section. Another application of the conception
of current filaments is the proof of equations (4) and (4a) of Article

73, for the case of a solid wire of circular cross section. A rigid

proof of these equations requires the use of a geometrical theorem

A

Fig. 63.

known as the Theorem of Inverse Points. This theorem may be
stated thus: let P be any point either inside or outside a circle

*Zn stands for the natural logarithm.



CONTINUOUS ELECTRIC CURRENTS 171

of radius a at a distance r from the center of the circle, and let

a2

the point Q be on the line P at a distance from the center

on the same side of as P. Then the ratio of the distances of

any point A, on the circumference of the circle, from Q and P

respectively, has the constant value - The two points P and Q

are called inverse points with respect to the circle.

To prove this theorem, draw from A the line A Q, making the

angle a= OPA with the radius OA; we wish to show that the point

Q where this line cuts OP is such that Q = and = Since
r XT

the two triangles QA and OA P have one angle in common and a

second angle equal, they are similar. Hence their corresponding
sides must be proportional, that is

or

OP~OA~AP

QA
x

whence OQ= and -- =
. a constant. When the point P is

r x r

outside the circle, Fig. 63, its inverse point Q is inside the circle and

Fig. 64.

when the point P is inside the circle, Fig. 64, its inverse point Q
is outside the circle. This follows immediately from the fact

that OQ=aY-)and therefore when r is greater than a, OQ is less

than a, and when r is less than a, Q is greater than a.

Now consider a straight hollow wire or tube of infinite length
and let the walls of this tube be of infinitesimal thickness t. Let
a be the radius of this tube and I the total current flowing in its

walls. These walls may be considered as made up of filaments of

infinitesimal cross section tds where ds is an elementary length
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in the circumference of the circle representing the cross section of

the tube. When the current is uniformly distributed in the

walls of the tube, the current in each filament is

ids I ds
dl==2^t ~~2^

Let P be any point at a perpendicular distance r from the axis

of the tube, and let x be the perpendicular distance of P from a
filament A, Then from equation (34a) this filament produces a

field intensity

X TTCL X

in the direction perpendicular to A P. (The direction of the cur-

rent is assumed up toward the reader.) This intensity may be
resolved into two components, one parallel to OP and the other

perpendicular to OP. A second filament ds' of equal cross sec-

Fig. 65.

tion symmetrically located at A' on the other side of the line OP
will produce an equal field intensity dH' at P in the Direction

perpendicular to A' P. Its component parallel to OP will be

equal and opposite to the component of dH in this direction.

Similarly for any other pair of symmetrically located filaments.

Hence the resultant field intensity at P due to the entire tube is

equal to the sum of the components perpendicular to OP of the

field intensities due to all the filaments, and will be in the direction

perpendicular to OP.
The component perpendicular to OP of the field intensity at

P due to the filament ds is

dHn =n
TT a

cos a

x

Let Q be the inverse point of P with respect to the circle represent-

ing the cross section of the tube, and let ft represent the angle
P QA and d ft the angle at Q subtended by the arc ds. Draw a

line AB through A perpendicular to QA; this line will make the

angle a with ds, since the angle between OA and QA is a, and OA
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is perpendicular to ds and QA to AB. Hence the projection of

ds on this line AB is (ds cos a). Hence, since ds is infinitesimal,

d ^ But gince Q and p are inyerse intg = __
QA x r

ax r r jowhence QA = . Therefore dp=
r

ds cos a_a _

x ~r
"

Hence

dHn = - dft=-i-
TTa r TT r

and therefore the total field intensity at P when P is outside the
tube is

J0=27T

/>=2 2/
dtfn =j: d=7
0=o ^J *

r

Therefore the field intensity at any point outside a tube of circular

cross section carrying a current I is the same as would be pro-
duced by a current of the same strength concentrated in a line

coinciding with the center of the tube. Since a solid wire of cir-

cular cross section may be considered as made up of a series of

concentric tubes, this formula is likewise true for any point P
outside a solid circular wire.

When the point P is inside the tube the inverse point Q is out-
side. Hence in this case the two limiting values of the angle ft

are identical and equal to TT; therefore the total field intensity at

Pis
/>

TrJ
^=J

/3= 7T

Trr
i

That is, the field intensity at any point inside a circular tube in

which the current is uniformly distributed is zero.

At any point P inside a solid circular wire in which the current
is uniformly distributed the field intensity is therefore due only
to the current inside the cylinder the cross section of which is the

circle through P concentric with the center of the wire. Calling r the
distance of the point from the center of the wire, a the radius of

the wire and / the total current, the current in this cylinder is then
?rr2 r*

2
7 ==

I, since ?rr2
is the area of the cross section of the cylinder

and Tra 2
is the area of the cross section of the whole wire. Hence

the field intensity at the point P inside the wire is
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That is, at any point inside the solid circular wire the field inten-

sity varies directly as the distance of the point from the center of

the wire, while outside the wire the field intensity varies inversely
as the distance of the point from the center of the wire.

SUMMARY OF IMPORTANT DEFINITIONS AND
PRINCIPLES

1. As the measure of the strength of an electric current in a

wire is taken the ratio of the force per unit length of the wire,

which would be produced on the wire by a magnetic field, to

the component of the flux density of this field perpendicular to

the wire. The c. g. s. electromagnetic unit of current strength
is the abampere. The practical unit is the ampere

1 abampere =10 amperes.
2. Left-hand Rule. The direction of the current (I) in a wire

is the direction in which the middle finger of the left hand points

when the thumb, forefinger and middle finger of this hand are

held mutually perpendicular and the thumb is pointed in the

direction in which the wire tends to move and the forefinger is

pointed in the direction of the component of the flux density

perpendicular to the wire.

3. A continuous electric current is a current the strength of

which does not vary with time.

4. A conductor is a substance in which, when connected to

the poles of a battery, a continuous electric current is established.

An insulator or dielectric is a substance in which, when connected

to the poles of a battery, no continuous current, or only a very
small continuous current, is established.

5. Two or more conductors connected end to end in such a

manner that the same current flows through each are said to be

connected in series. Two or more conductors joining any two

points of an electric circuit in such a manner that the total current

entering these conductors at one point leaves these conductors

at the other point are said to be connected in parallel.

6. The mechanical force acting on a wire I centimeters long

carrying a current of 7 abamperes due to the magnetic field in

which the wire is placed is

7-1

F = I (B sin 9} dl dynes
J

where B is the flux density in gausses at any elementary length
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dl of the wire and is the angle between the direction of B and

the direction of dl. For a straight wire in a uniform field this

reduces to

F=IBlsin 9 dynes.

7. The magnetic field intensity at any point P due directly to

a current of 7 abamperes in a wire I centimeters long is

u

(7 sin 6} ,, .,,- dl gilberts per cm.-
J i

where 6 is the angle between dl and the line drawn from P to dl

and r is the distance from P to dl. The field intensity due directly

to the current is independent of the magnetic nature of the bodies

in the field; if any magnetic poles are induced by this field the

field intensity due to these poles must be added (vectorially) to

the above.

The magnetic field intensity at a point due to a current of 1

abamperes in a very long straight wire of circular cross section at

a point r centimeters from the wire is

27
77= gilberts per cm.

r

when the point is outside the wire. When the point is inside a wire

having a radius of a centimeters and the wire is solid, the field

intensity is

77= gilberts per cm.
a2

provided the current density in the wire is uniform.

The field intensity at the center of a circular coil with a con-

centrated winding of N turns carrying a current of 7 abamperes is

u 2 77 N I ...H = gilberts per cm.
r

where r is the mean radius of the coil in centimeters.

8. The lines of magnetic induction due to an electric current

are always closed loops linking the current. The positive sense

of these lines is the same as the direction in which a right-handed

screw placed along the wire must be turned to advance the screw

in the direction of the current.

9. Any substance the constituents of which are separated when
an electric current is established in it is called an electrolyte and
the process of separation is called electrolysis. The terminal at

which the current enters an electrolyte is called the anode and the
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terminal from which the current leaves the electrolyte is called

the cathode; the name electrode is used for either terminal.

10. The relation between the mass m of a substance deposited

in time t by a continuous current I and this current is

2-tf
t

where & is a constant, called the electrochemical equivalent of the

substance, which constant depends on the nature of the substance

and the units in which the various quantities are measured. For

a variable current this formula becomes

dm
=ki

dt

The electrochemical equivalent of a substance is proportional to

its chemical equivalent.

11. The quantity of electricity Q which flows through any sec-

tion of a conductor is defined as the product of the strength / of

the current in this section by the time t during which the current

flows, i.e.,

Q=It
This applies only to a continuous current

;
in the case of a variable

current the quantity is

Q=f idt

J o

When the current is expressed in abamperes and the time in sec-

onds the unit of quantity is the abcoulomb; when these quantities

are expressed in amperes and seconds respectively, the unit is the

coulomb.

1 abcoulomb =10 coulombs

12. The electric resistance of a conductor is defined as the ratio

of the rate at which a continuous current produces heat energy in

the conductor to the square of the strength of this current, pro-

vided the conductor is of uniform structure and is kept at uniform

temperature throughout. The power dissipated in a conductor by
a continuous current of strength 7, due to the resistance R of the

conductor is _
Ph
=RP

This formula gives the power in ergs per second when the current

7 is expressed in abamperes and the resistance R is expressed in

c. g. s. electromagnetic units or abohms
;
when the current is ex-
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pressed in amperes and the resistance in ohms (the practical unit)

this formula gives the power in watts.

1 ohm=109 abohms

13. The resistance of a conductor of length /and cross section

A is

,.,<
where the factor p, called the specific resistance of the conductor,
is a constant for a given material at a given temperature. This

formula applies only when the stream lines of the current are

parallel and perpendicular to the section A and the current density

is uniform over this section. When p is expressed in ohms per
centimeter-cube the dimensions of the conductor must be expressed
in centimeters

;
when p is expressed in ohms per inch-cube the

dimensions must be expressed in inches
;
when p is expressed in

ohms per mil-foot the length must be expressed in feet and the

cross section in circular mils.

14. The reciprocal of electric resistance is called the electric

conductance.

15. The variation of the resistance of a conductor with tem-

perature is expressed by the formula

where R is the resistance at zero degrees centigrade, R the resist-

ance at any other temperature t degrees centigrade, and ft is the

temperature coefficient of resistance. The temperature coefficient

of copper is 0.0042
;
the temperature of other pure, non-magnetic

conductors has approximately the same value. When this value

of the temperature coefficient is employed the relation between the

resistances R
t
and R

t
' at any two temperatures t and if degrees

centigrade is given by the formula

238+ t

16. The electric energy gained by the current in any part of a

circuit is defined as the amount of energy lost by this part of the

circuit or by any other bodies as the result of the existence of the

current in this part of the circuit
;
the electric energy lost by the

current in any part of a circuit is defined as the amount of energy

gained by this portion of the circuit or any other bodies as the

result of the existence of the current in this part of the circuit.
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17. The drop of electric potential from any point 1 to any point
2 along a wire carrying an electric current is defined as the ratio

of the power developed by the current between these two points

to the value of the current from 1 to 2. Hence the power devel-

oped by a current I (i.e., the rate at which electric energy is lost

by the current) in any portion of a circuit in which the drop of

potential in the direction of the current is V is

P = VI

This formula gives the power in ergs per second when the current

/ is expressed in abamperes and the potential drop V is expressed
in c. g. s. electromagnetic units or abvolts

;
when the current is

expressed in amperes and the potential drop in volts (the practical

unit) this formula gives the power in watts

1 volt=108
abvolts.

18. The drop of potential in a wire due solely to the resistance

of the wire, or the resistance drop, is

Vr =RI volts

where all quantities are in practical units.

19. An electromotive force is that which produces or opposes
the flow of electricity, other than the opposition due to the resist-

ance of the conductor in which it flows. As the measure of the

electromotive force in any portion of the circuit is taken the rise

of potential which it would produce in the direction of the current

in this portion of the circuit were there no resistance drop in this

portion of the circuit. When the electromotive force produces an

actual rise of potential in the opposite direction to that of the

current it is called a back electromotive force.

20. The net rise of potential E' l2 from terminal 1 to terminal 2

of any circuit is called the terminal electromotive force of the cir-

cuit when the current in this portion of the circuit is from 1 to 2
;

when the current in this portion of the circuit is in the direction

from 2 to 1 the net rise of potential E' l2 from 1 to 2 is called the

impressed electromotive force, due to the rest of the circuit. The

relation between the electromotive force E12 generated in this

portion of the circuit, the current 712 in this portion of the circuit,

the terminal or impressed electromotive force E' ia and the resist-

ance R of this portion of the circuit is

R
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where all quantities are expressed in practical units. This relation

is known as the Generalized Ohm's Law.

21. In general, an electromotive force exists at the surface of

contact of any two dissimilar substances, and the value of this

electromotive force of contact depends only upon the nature of the

substances in contact and upon the temperature of the junction.

22. Contact electromotive forces are appreciable only when the

substances in contact act chemically upon each other or when
there are two junctions in the circuit kept at different tempera-
tures. The electromotive force of a chemical battery is due to the

contact electromotive forces between the substances of which the

battery is made. The electromotive force of a thermocouple is

due to the difference in the electromotive forces at the hot and

cold junctions.

23. KirchhofFs Laws. These so-called
" laws "

are the two

experimental facts :

a. The algebraic sum of the currents coming up to any junction

in a network of conductors is equal to zero, i.e.,

27-0
b. The algebraic sum of the resistance drops around any closed

loop in a network of conductors is equal to the algebraic sum of

the electromotive forces in this loop, i.e.,

2 E=tRI
24. The total resistance of two or more conductors in series is

equal to the sum of the resistances of these conductors. The

resultant electromotive force of two or more electromotive forces

in series is the algebraic sum of these electromotive forces.

25. The total conductance of two or more conductors in par-

allel is equal to the sum of the conductances of these conductors,

provided there are no electromotive forces in these conductors.

The resultant resistance of two conductors in parallel, when there

are no electromotive forces in these conductors, is

The resultant electromotive force of two or more equal electromo-

tive forces in parallel is the same as each electromotive force.

26. A conductor of any shape in which an electric current is

established may be divided into filaments separated from each

other by insulating walls of infinitesimal thickness without alter-

ing any of the effects produced in or around the conductor, pro-
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vided these filaments are drawn in the proper directions. Such
filaments are called the stream lines of the electric current.

27. The electric intensity at any point in a conductor coincides

in direction with the stream line through that point and is equal
to the product of the specific resistance p of the conductor and the

current densitv cr at that point, i.e.,

B.-P.*
The resistance drop between any two points 1 and 2 in a conductor

of any shape is

=/:
( He

cos 6} dl

where He is the electric intensity at the element dl of the path
between 1 and 2 and 9 is the angle between the electric intensity

at dl and the direction of dl.

28. Electric equipotential surfaces and stream lines of electric

current are mutually perpendicular.

29. The formula for the insulation conductance between any
two conductors is identical with the formula for the electrostatic

capacity between these two conductors when 4 TT divided by the

specific resistance p is substituted for the dielectric constant K
in the formula for capacity.

*

PROBLEMS
1. A straight wire carrying a current of 20 amperes is placed

in the gap between the poles of two magnets, the pole-faces of

B c which are each 1 inch square.

If the flux in the air gap may be

represented by straight lines and

the flux density is 1000 gausses,

calculate the force in dynes act-

ing upon the wire, when the wire

is perpendicular to the flux lines.

Ans.: 5080 dynes.

2. Given the electrical circuit

shown in the figure. The wire

at A is insulated so that all the

current flowing at F must pass

around the circular loop in a

counter-clockwise direction be-

fore continuing to B. The current may be assumed to flow in
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a geometrical line in all parts of the circuit and in the battery.
Dimensions: Radius OA =2 inches, AB =6 inches, BC = 4

inches, CE = 8 inches, EF = 4: inches, and FA =2 inches. If

the current from B to C is 50 amperes, find the field magnetic

intensity at due to the entire circuit.

Ans.: 7.11 gilberts per cm.

3. A current of 100 amperes is established in a long iron rod

the diameter of which is 1 inch. The rod has a permeability of

300 c. g. s. units. What is the magnetic flux density 0.25 inch

from the center of the rod due to this current? What is the total

number of lines of induction per foot length inside the rod?

Ans.: 2360 gausses. 91,400 maxwells.

4. The current established in a solution of copper sulphate

(CuS04) is 100 amperes. Determine the weight of copper de-

posited on a platinum cathode in one hour. What quantity of

electricity is transferred through the solution?

Ans.: 118.7 grams. 100 ampere-hours or 360,000 coulombs.

5. A copper wire two miles in length has a cross section of

0.07 square inch and has a resistance of 1.13 ohms. What is the

length in feet of a wire of the same material 20,000 circular mils

in cross section and having a resistance of 1.5 ohms?
Ans.: 3150 feet.

6. The resistance per mil-foot of copper is 9.59 ohms at cent.

What will be the resistance at this temperature of 40 grams of

copper wire which has a cross section of 2500 circular mils and
a specific gravity of 8.89?

Ans.: 0.0447 ohms.

7. The resistance of the armature winding of a given electric

motor at 24 cent, is found to be 1.702 ohms. The armature

resistance is again measured after the motor has been in service

for several hours and found to be 1.980 ohms. What is the aver-

age increase in the temperature of the armature winding?
Ans.: 43 cent.

8. A 100-volt generator and a 50-volt battery are connected

in series. The internal resistance of the generator is 1 ohm and
the internal resistance of the battery 7 ohms

;
the resistance of

each of the two wires connecting the battery and the generator is

1 ohm. What is the current in this circuit and the terminal

voltage of the battery ( 1) when the electromotive forces of the bat-

tery and the generator oppose each other, and (2) when these elec-
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tromotive forces are in the same direction around the circuit?

The electromotive forces are to be assumed constant; actually,

the electromotive force of the battery will depend upon the amount
and direction of the current, due to the polarisation which takes

place. (3) How much of the power developed by the engine

driving the generator is converted into electric power in each case?

(4) At what rate is energy transformed into chemical energy in

the first case? (5) At what rate is chemical energy transformed

into electric energy in the second case? (6) At what rate is energy
transformed into heat energy in each case?

Ans.: (1) 5 amperes and 85 volts
; (2) 15 amperes and 55 volts

;

(3) 500 watts and 1500 watts; (4) 250 watts; (5) 750 watts; (6)

250 watts and 2250 watts.

9. A house service consists of 5 (32 C.P.) lamps of 110 ohms
resistance each, 8 (16 C.P.) lamps of 220 ohms resistance each and

an electric heater of 10 ohms resistance, all connected in parallel.

The voltage between the service wires at the entrance to the house

is 115, and each of the two wires leading from the entrance to the

load has a resistance of 0.1 ohm. What is the energy in kilowatt-

hours delivered to the house during a period of 4 hours?

Ans.: 9.28 kilowatt-hours.

10. Three batteries with electromotive forces of 15, 20 and 25

volts respectively and with internal resistances of 4, 3 and 2 ohms

respectively, have their positive terminals connected together and

their negative terminals connected together. (1) What is the ter-

minal electromotive force of each battery, and (2) what is the

current in each?

Ans.: (1) 21.15 volts; (2) 1.538 amperes, 0.385 amperes, 1.923

amperes.
11. Fig. B represents a so-called

"
three wire system

" which

is largely used for distributing

electric energy for light and

power. A and B are two gene-

rators (the field windings are

omitted for simplicity) with

their electromotive forces act-

ing in the same direction. C
and D are the loads, which

*> may be either lamps or

rig. B. motors, a and b are the out-
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side
" mains " and c is the " neutral

"
wire. (Motors are also

frequently connected across the outside mains a and b.) Let the

generated electromotive forces of the two generators A and B
each be 110 volts, their internal resistances be 1.5 and 2 ohms

respectively, the effective resistances of the loads C and D be 8

ohms and 10 ohms respectively, and the resistance of each of the

three wires a, b and c be 0.1 ohm. (1) What are the currents

taken by the loads C and Df (2) What is the current in the

neutral wire c? (3) What are the terminal voltages of the

generators A and B, and (4) the impressed voltages at the load?

Ans.: (1) 11.43 amperes and 9.11 amperes; (2) 2.32 amperes;

(3) 92.8 volts and 91.8 volts; (4) 91.4 volts and 90.8 volts.

12. Energy is delivered from a 230-volt generator to a factory

over a transmission line which has a total resistance of 0.2 ohms.

What is the current, the potential difference at the factory and

the efficiency of transmission when the power taken by the factory

is 50 kilowatts?

Ans.: There are two possible currents, depending upon the

resistance of the load. These currents are 291.2 amperes and

858.8 amperes; the corresponding potential differences are 171.8

volts and 58.2 volts
;
the corresponding efficiencies are 74.7% and

25.3%. In practice the resistance of the load is always such that

the smaller current and therefore the higher efficiency is obtained.

13. Fifty kilowatts of power are to be delivered to a factory

5000 feet from a power house. The voltage at the power house is

600. What must be the cross section of the wire in circular mils

used for the transmission line in order that the efficiency of trans-

mission be 90%? Assume the wire to have a conductivity of

98% and the temperature to be 20 cent. What would be the

cost of the copper for this line if the price of copper is 20 cents

per pound?
Ans.: (1) 163,800 circular mils. This corresponds approxi-

mately to a No. 000 B. & S. gauge wire. (See Appendix B.) (2)

$1016 if No. 000 wire is used.

14. The inside diameter of a lead-sheathed, rubber-insulated

cable which has a cross section of 250,000 circular mils is 1 inch.

If the rubber has a specific resistance of 150X107

megohms per

centimeter-cube at 20 cent., what is the insulation resistance per

mile of this cable at this temperature? (Cables are usually made
of stranded wires, and the cross section of the strand is therefore
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not a perfect circle; in this problem, however, the wire may be

assumed solid and of circular cross section.)

Ans.: 1027 megohms per mile.

15. Prove that the resistance of a uniformly tapered wire (i.e.,

a wire such that its diameter changes by a constant amount per

unit distance measured along its axis) is

R = n ohms
IT fir,

where p is the specific resistance of the wire per centimeter-cube

I is its length in centimeters, and rl and rz are the radii in centi-

meters of its cross section at its two ends. The current density

at any cross section of the wire is to be assumed constant over

that cross section. Compare with the resistance of a wire of uni-

form cross section.



IV

ELECTROMAGNETISM

105. Electromotive Force Due to Change in the Number of

Lines of Induction Linking a Circuit. Linkages between Flux

and Current. In the last chapter were described two types of

devices for producing an electric current, the chemical battery and

the thermo-electric couple. In engineering work, however, neither

of these devices is used as a "
generator

"
of electric energy, except

in small amounts for testing purposes and where only small cur-

rents are required, on account of the high cost of generating elec-

trical energy by such devices. Practically all electric generators

and all electric motors are based upon an entirely different prin-

ciple, namely, that whenever the number of lines of magnetic induc-

tion linking a circuit is changed an electromotive force is produced in

this circuit. This important fact, which is the basis of electrical

engineering, was discovered by Faraday in the early part of the

last century. Electrical engineering as an art, however, cannot

be said to date back earlier than about 1880, when the develop-
ment of the incandescent lamp by Edison first created a demand
for large amounts of electric energy.

The electromotive forces produced in an electric circuit by

changing the number of lines of induction linking the circuit are

called
" induced "

electromotive forces, and the currents due to

these electromotive forces are called
" induced "

currents.

As has already been noted, every electric circuit forms one or

more closed loops and every line of induction forms a closed loop.

A line of induction and an electric circuit may therefore link each

other in the same way that two links of a chain link each other.

When the electric circuit is in the form of a coil of a number of

turns the same line of induction may thread several turns of the

coil; in this case the line of induction is said to form with the

circuit a number of linkages equal to the number of turns which

it threads. The total number of linkages corresponding to any
number of lines of induction is the sum of the linkages of all the

lines. In the special case of a coil of N turns and
<f>

lines of

185
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induction each of which threads all these turns, the total number
of linkages is X = N

<f> ;
if only part of the lines thread all the

turns the number of linkages will be less than N <. The symbol
X will be used throughout for number of linkages ; linkages are

expressed in the same unit as flux of induction, i.e., in maxwells.

With this understanding the experimentally determined rela-

tion between the value of the induced electromotive force and the

change in the number of lines of induction linking a circuit may
be stated as follows : The value of the electromotive force induced in

an electric circuit is equal to the time rate of change of the number

of linkages between the circuit and the lines of induction threading

it. Or, using the word "
flux

"
as synonymous with "

lines of

magnetic induction," this law may be stated more briefly as, the

electromotive force induced in a circuit is equal to the time rate of

change of the linkages between the flux and the circuit.

The direction of this induced electromotive force is found

to be such that it would of itself set up a current in the circuit

in such a direction as to oppose the change in the flux link-

ing the circuit. We have already seen (Article 72) that the

direction of the lines of magnetic induction set up by a cur-

rent in any circuit is always such that these lines link the cir-

cuit in the direction in which a right-handed screw placed

along the wire forming this circuit would have to be turned to

advance it in the direction of the current. Hence the direction

of the electromotive force induced in a circuit when the flux linking

this circuit is changed is opposite to the direction in which a right-

handed screw placed along the conductor forming the circuit

would advance if turned in the direction in which the lines of

induction are increased. Hence, calling d\ the increase in time

dt of the number of linkages between the circuit and the flux

threading it, the induced electromotive force in the right-handed
screw direction with respect to the direction of the lines of induc-

tion linking this circuit is

_d\ (1)

~dt

Where X is expressed in maxwells or c. g. s. lines of induction and

t in seconds, this equation gives the value of the induced electro-

motive force in abvolts. The value of the induced electromotive

force in volts, when X is expressed in maxwells and t in seconds, is

since 1 volt = 10
8
abvolts
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dt

When the circuit in question consists of a single loop the link-

ages X are equal to the flux <, and the induced electromotive

force is then

e=- dA abvolts = - ID'
8^ volts (16)

dt dt

When the circuit in question is formed by a coil of N turns of

insulated wire and each line of induction links each turn X =
N<f)

and the total electromotive force induced in the coil is

e =-N^ abvolts = - 10 ~*N
*

volts
'

(lc)
dt dt

The minus sign in the above equations is useful to indicate

the relative direction of the induced electromotive force resulting
from increasing the lines of induction linking the circuit in the

same direction as the lines of induction due to the current which

may be in the circuit. The direction of the current in a circuit

and the direction in which the lines of induction due to this cur-

rent link the circuit are always related to each other by the right-

handed screw law, while the induced electromotive force resulting

from an increase of the number of lines of induction linking the

circuit in the right-handed screw direction with respect to the

current in the circuit is in the opposite direction to the current.

In other words, increasing the number of lines of induction linking

a circuit in the same direction as the lines of induction established

by the current in the circuit, produces an electromotive force in

the opposite direction to the direction of the current
;

that is,

produces a back electromotive force. A decrease in the number of

lines of induction in this same direction produces an electromotive

force in the same direction as that of the current. As far as the

numerical value of the electromotive force is concerned, the minus

sign in equations (1) may be neglected.

106. Work Required to Change the Number of Lines of Induc-

tion Linking an Electric Circuit. When the electromotive force

induced in any circuit by changing the number of linkages be-

tween the flux and the circuit sets up an electric current in the

circuit, or if an electric current already exists in the circuit, work

must be done to produce this change in the linkages. For, if the

current 'has the strength i and the induced electromotive force in
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the direction of the current the value e at any instant, then, in

any infinitesimal interval of time dt measured from this instant,

the current in this part of the circuit gains an amount of electric

energy equal to eidt, where e is the induced electromotive force

in the direction of the current. But we have just seen that the

value of the induced electromotive force in the direction of the

current resulting from an increase d X in the number of linkages

of the flux and the circuit in the same direction as the lines of

induction due to this current, is . Hence the amount of
dt

electric energy gained by the current when the linkages of the

flux and the circuit are increased by an amount d \ is

dW=eidt = - idt= -id\ (2)
dt

When i is in abamperes and X in maxwells this equation gives the

work done in ergs.

Hence, when the number of lines of induction linking any part

of a circuit is actually increased, the current in this part of the

circuit loses electric energy, and when the number of lines of

induction linking any part of the circuit is actually decreased,

the current in this part of the circuit gains electric energy. This

agrees with the general principle which has already been noted,

that an electromotive force in the opposite direction to the direc-

tion of the current, that is a back electromotive force, corresponds
to a loss of electric energy, and an electromotive force in the direc-

tion of the current corresponds to a gain of electric energy.

107. Electromotive Force Induced by the Cutting of Lines of

Induction. Right-hand Rule. When the change in the num-
ber of lines of induction linking a wire is caused by the motion of

the wire through a magnetic field, the wire may be looked upon
as cutting the lines of induction, and the rate of change of the

number of lines of induction linking the wire may be looked upon
as the rate at which the wire cuts the lines of induction. The
direction of the induced electromotive force in the wire will then

be the direction in which the middle finger of the right hand points
when laid along the wire and the thumb and forefinger of this

hand are held perpendicular to each other and to the middle

finger, with the thumb pointing in the direction of the motion

of the wire and the forefinger in the direction of the flux density.
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This right-hand rule for the direction of the induced electromotive

force is equivalent to the rule given above, but is more convenient

in the case of a wire moving across a magnetic field. For example,
if the lines of induction are perpendicular to the plane of this page
and are in the downward direction, a straight wire held parallel

to the sides of the page and moved from left to right will have an

electromotive force induced in it in the direction from the bottom

to the top of the page, while if the wire is moved from right to

left the induced electromotive force will be in the direction from

the top to the bottom of the page. In the above equations for

the induced electromotive force (equations 1) and the electric

energy gained by the current (equation 2) in any part of a circuit,

d A may then be interpreted either as the change in the number
of linkages between the flux and the wire or as the number of

lines of induction cut by the wire; in the latter case the electro-

motive force is to be taken as positive if its direction as determined

by the right-hand rule is in the direction of the current in this

part of the circuit, while if in the opposite direction to that of the

current it must be taken as negative, i.e., a back electromotive

force.

When the change in the number of lines of induction linking a

wire is due solely to the motion of the wire through a magnetic

field, equations (1) and (2) may be

deduced directly from equation (2)

of Chapter III, by the application

of the principle of the conservation

of energy. Consider the special

case of a straight wire of length I
^

carrying an electric current i, and F

let this wire be in a magnetic field .

due to any other source. To sim-

plify the discussion let the lines of

induction be perpendicular to the

wire and let the flux density have

the same value at each element of

the wire. In Fig. 66 the lines of

induction are taken in the direc-

tion downward perpendicular to the plane of the page, the wire

is taken parallel to the edge of the page and the direction of the

current from the bottom to the top of the page. Then from

B Downward

Motion

Fig. 66.
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equation (2b) of Chapter III, the mechanical force produced on

the wire by the agent producing the field is F = Bli, and is in the

direction from the right to the left (determined by the left-hand

rule, see Article 67). To move the wire a distance dx to the right

then requires that some external agent do an amount of work

dW=Blidx. But Idx is the area swept over by the wire and

B is the flux density normal to this area, and since dx is but an

infinitesimal distance, B may be considered constant over this

area. Hence Bldx is the number of lines of induction cut by
the wire in moving the distance dx, that is Bldx =d

<f),
and there-

fore the electric energy gained by the current is dW =idl
(f>.

Hence

the rate at which the current gains electric energy is i ? and
dt

therefore the rise of potential in the direction of the current is

- (see equation 14, Chapter III) which by definition (Article 92)
dt

is equal to the electromotive force in this direction. The numerical

values of the electromotive force and the electric energy gained

by the current are identical with those given by equations (1)

and (2). The direction of the induced e. m. /. in this case is in the

direction of the current, which agrees with the right-hand rule

stated above. If the wire is allowed to move in the direction of

the mechanical force acting on it, work is done on the wire or

whatever opposes its motion, and the energy for doing this work

comes from a loss of electric energy by the current in the wire.

In this case, the induced electromotive force is in the opposite

direction to that of the current, which also agrees with the right-

hand rule.

From the relation =BH it also follows that the value
dt dt

of the electromotive force in abvolts induced in the wire when it

moves perpendicularly across a magnetic field may also be ex-

pressed by the formula

(3)

where v is the velocity in centimeters per second at which the wire

moves perpendicular to itself, I is the length of the wire in centi-

meters and B the flux density in gausses.

When the wire moves through a non-magnetic medium, the
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flux density B at the wire is equal to the field intensity H, and

equation (3) becomes

Hlv (3a)

108. Intensity of the Magnetic Field inside a Long Solenoid. -

A useful application of equation (2) and the conception of the

cutting of lines of induction by a wire, is the calculation of the

intensity of the magnetic field produced by an electric current

in a coil made in the form of a long cylindrical helix of constant

cross section; such a coil is called a solenoid. Let Nf

(Fig. 67)

be the number of turns of wire per centimeter length of this solenoid,

and i the current in abamperes in the wire. Let a unit north

point-pole be placed at any point inside the solenoid. There will

be 4 TT lines of induction radiating out from this unit point-pole,

independent of the nature of the medium inside the solenoid,

whether it be magnetic or otherwise (see Article 56). If the

diameter of the solenoid is small compared to its length, practically

all the 4 TT lines of induction which radiate out from the unit

pole will pass through the lateral walls of the solenoid. Let the

pole be moved a distance dx parallel to the axis of the coil
;
then

each of these 4 IT lines of induction will move over a distance dx

in the lateral surface of the solenoid and will therefore cut a cur-

rent equal to iN' dx, provided the thickness of the insulation

between successive turns may be neglected. Since there are 4 TT

of these lines the total work done against the force produced on

the unit pole by the current is 4 TT iN' dx, provided the point at

which the pole is placed is so far from the ends of the solenoid that
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coil and the direction of the magnetic field intensity through the

coil is the same as the relation between the direction in which

a right-handed screw is turned and the direction in which it

advances. The reader may prove by a similar argument that the

component of the field intensity at any point inside the solenoid

at right angles to its axis is zero, provided the lines of induction

which go out the ends may be neglected. (In proving this the

relative directions of the lines of induction and the current on the

two sides of the solenoid must be taken into account.) Hence

the resultant field intensity in gilberts per centimeter at any point

inside a long solenoid a considerable distance from the ends of the

solenoid due directly to the current in the solenoid is

#=4?r N' i (4)

and is parallel to the axis of the solenoid, where i is the current

in abamperes and N' the number of turns per centimeter length.

Hence the magnetic field inside a long solenoid near its center

due directly to the current in the coil is uniform.

If the solenoid is wound on an iron core, magnetic poles wr
ill

be induced on the ends of the core, and these poles will also pro-

duce a certain field intensity, which inside the iron will be in the

opposite direction to that due directly to the current, but the

field intensity due directly to the latter will be exactly the same

as previously existed in the air. When a slender iron rod, of a

length considerably less than the length of the solenoid, is placed

inside the solenoid with its axis parallel to the axis of the solenoid,

these induced poles may be assumed concentrated in points at

the ends of the rod. Let the strength of these poles be m and

m, and the length of the rod be / centimeters. Then the field

intensity at the center of the rod due to these induced poles, or

the so-called
"
demagnetising force

" due to the ends of the rod,

is approximately
m m 8m

ft"& (4)

and the resultant field intensity at the center of the rod is therefore

Hr=H- Ht=4irN'i j (4 )

An exact determination of the pole strength m is extremely

difficult, and for this reason magnetic tests are seldom made on
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rods; instead a ring or rod and yoke are usually employed (see

Article 109).

109. Determination of the Number of Lines of Induction Link-

ing an Electric Circuit. Measurement of Quantity of Elec-

tricity. From the fact that an electromotive force is induced in an

electric circuit when the number of lines of induction threading the

circuit is changed, it is possible by a simple experiment to measure

the number of lines of induction through any region in space.
Consider first a coil of TV turns connected in a circuit of which
the total resistance, including that of the coil, is R, and let the

number of lines of induction threading this circuit be changed
from <, to

(j> 2 ,
and let t be the time required for this change to

take place. Then the average e. m. f. induced in the circuit

during this interval is numerically E =LL rll provided each
t

line of induction links each turn, and therefore the average value

of the induced current is

R Rt

or (,-<

R
But It is the quantity of electricity which flows through the

circuit in this interval t. Hence the important relation that,

when the number of lines of induction linking a coil of N turns

is changed by an amount
(j> l <f> 2 ,

a quantity of electricity

_(<f> 1 -<f> 2)N (5)

R
is transferred across each section of the wire forming the circuit,

where R is the total resistance of the circuit, where all quantities
are in c. g. s. units. Hence, if when a coil which forms part of a

circuit which has a total resistance of R abohms is pulled quickly
out of a magnetic field, a quantity of Q abcoulombs of electricity

is
"
discharged

"
through the circuit, the number of lines of in-

duction in maxwells which threaded the coil when it was in the

field is

, R Q
N

Or, if the coil is reversed in the field (i.e., turned 180 degrees about
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any axis in the plane of the coil), or if the direction of the field

through the coil is reversed, the number of lines of induction in

maxwells originally threading the coil is

*-

When a momentary current is established in a galvanometer
of which the moving element is fairly heavy and has a long period
of vibration, it can be shown that the momentary force or impulse

produced on this element causes it to swing out from its position

of equilibrium by an amount which is approximately proportional

to the quantity of electricity discharged through the galvanom-
eter.* Hence, if the coil we have just been considering is con-

nected in series with such a long period or ballistic galvanometer,
and the change in the number of lines of induction threading the

coil is made so rapidly that the current established in the circuit

lasts for only a small fraction of the time required for the moving
element of the galvanometer to make a complete swing, the first

swing of the moving element will be proportional (approximately)
to the quantity of electricity Q discharged through the circuit,

that is, proportional to ?- _L!L_

R
From the relation established in the preceding article, the

change in the number of lines of induction, <^> 1 *< 2 , can be calcu-

lated in the special case when the coil is wound on a non-magnetic

spool which is placed inside and at the center of a long solenoid

with an air core, and the current in the solenoid is reversed in

direction. Let

N\ =the number of turns per centimeter length of the solenoid

or
"
primary

"
coil.

7=the strength of the current in abamperes in the solenoid

or
"
primary

"
coil.

JV2 =the number of turns on the spool or
"
secondary

"
coil.

R=the total resistance in abohms of the secondary coil, the

galvanometer and any extra resistance which may be

in the secondary circuit.

*S=the area in square centimeters of the mean cross section

of the secondary coil.

Then the field intensity at each point of the area S is H =4 TT N\ I,

*J. J. Thomson, Elements of Electricity and Magnetism, p. 377.
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which is also equal to the flux density, since the permeability
is unity. Hence the number of lines of induction threading the

secondary coil is 4 TT N'JS. Hence, when the current in the

primary coil is reversed, the change in the number of lines of

induction threading the secondary coil is 8 TT N'JS. The quan-

tity of electricity discharged through the galvanometer is then

87rN'JSN2 (6;

R
where all quantities are in c. g. s. units. Hence, by calculating Q
and noting the galvanometer swings when currents of various

strengths are reversed in the primary coil, a curve can be plotted

giving the quantity of electricity corresponding to a swing of any

value; such a curve will be approximately a straight line. We
have then an instrument for measuring the quantity of electricity

t -ansferred through a circuit by a momentary current, and con-

sequently a means of determining the quantity Q in equations

(4), and therefore a means for measuring the change in the number
of lines of induction linking any coil.

110. Determination of the B H Curve and Hysteresis Loop.
-

A useful application of equations (5) is the determination of the

B H curve and hysteresis loop (see Article 57) of a sample of

iron or other magnetic substance made in the form of a closed
" anchor "

ring or
"
toroid." Let such a ring be uniformly

wound with a coil of wire C' which is connected through a suitable

switch S and a variable resistance or rheostat Rf
to a battery B

or other source of electromotive force. Over this primary wind-

ing on the iron ring let a second coil C be wound and connected

through a resistance R" to a ballistic galvanometer G which has

been calibrated in the manner described in the preceding article.

Let NI be the total number of turns of the primary coil, Na the

total number of turns in the secondary coil, and R the total

resistance of the secondary coil, the galvanometer and the resist-

ance R" in series with the coil and galvanometer. (The resistance

R" is inserted in the secondary circuit so that the galvanometer
deflection may be kept within the range of the galvanometer scale.)

It can be shown (Article 114) that when a current of I abamperes
is established in the primary coil the lines of force set up in the

ring are circles concentric with the center of the ring and the

average intensity of this magnetic field is H = - -
gilberts
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per centimeter, where / is the length in centimeters of the mean
circumference of the ring. (This formula is an approximation,
and applies only when the radial thickness of the material forming
the ring is small compared with the radius of the mean circum-

ference of the ring, i.e., the dotted line in Fig. 68.) A circular

Mean circumference

Fig. 68.

ring thus uniformly wound with a coil of wire carrying an electric

current has no magnetic poles induced on it, hence this value of

H is the total field intensity inside the ring and is independent of

the magnetic nature of the ring. When the ring is made of a

magnetic material such as iron, the flux density, i.e., the number

of lines of induction per square centimeter, inside the ring will

not be equal to the field intensity H but will have some other

value B. These lines of induction, however, will coincide in

direction with the lines of force, and therefore across any radial

section A of the ring there will be BA lines of induction. Hence,
if the ring is originally unmagnetised* and a current of 7 abam-

peres is established in the primary winding, the number of lines

of induction through the secondary coil will change by an amount

<f>=BA as the result of establishing in the ring a field intensity

H = ^. This change of BA lines of induction through the

coil will cause a transfer of Q = abcoulombs of electricityR
*The ring can be demagnetised at the start by reversing the current in the

primary winding back and forth and gradually decreasing its strength.
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through the galvanometer, producing a swing of the moving ele-

ment. The quantity of electricity Q corresponding to this swing
can be read directly from the calibration curve of the instrument,
and therefore the flux density B corresponding to the field in-

7? (~)

tensitv H can be calculated from the formula B= -.

AN
2

By increasing the value of the primary current in successive

steps and noting the deflection of the galvanometer corresponding
to each change in the primary current, the B H curve for the

sample is readily determined. To determine the hysteresis loop

corresponding to any maximum field intensity H, the primary
current is reversed back and forth a number of times between

the positive and negative values corresponding to H and H,
and is then decreased in steps from the value corresponding to H
to the value corresponding to H, and the galvanometer deflec-

tion corresponding to each step noted. The primary current is

then increased in steps from H to H, and the corresponding

deflections of the galvanometer again noted. From these obser-

vations the value of the flux density corresponding to each value

of H in this cycle of changes may be calculated, and hence the

hysteresis loop may be plotted.

111. The Continuous Current Dynamo. The name continu-

ous current dynamo is given to any machine in which a constant

or continuous electromotive force is developed by the rotation

of one or more conductors in a magnetic field. Such a machine

may be used as a generator of electric energy when driven by
some external means such as a steam engine, water wheel or gas

engine ;
or when electric energy is supplied to it, it may be used as

an electric motor, converting electric energy into mechanical

energy. The principles involved in the construction of dynamo,
whether it is designed for use as a generator or as a motor, are

identical.

The conductors in which the electromotive force is induced

in a continuous current generator are usually insulated copper
wires or copper bars, called armature conductors, which are im-

bedded in slots in the exterior surface of a hollow iron cylinder

(see Fig. 69). These slots are parallel to the axis of the cylinder.

The cylinder itself, which is called the armature core, is made up
of sheets of soft iron or sheet steel which has a high permeability ;

the planes of these sheets are perpendicular to the axis of the
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cylinder. In large machines these flat rings of sheet steel are

fitted on to a cast iron frame, called the armature spider, which

resembles the spokes and hub of a wheel. The armature spider

(or, in small machines, the steel sheets themselves) is mounted on

a shaft or axle which runs through it and projects out at each end.

The ends of the shaft are mounted in suitable bearings, and, in

case the machine is to be driven by, or is to drive, a belt, a pulley

is mounted on one end of the shaft. The armature conductors,

core and spider taken collectively are called the armature of the

machine.

The magnetic field in which the armature conductors are

rotated is produced by an electric current in two or more coils

Armature Core

Armature Conductors

Shaft

Average Path
Lines of Induction

Fig. 69.

of insulated wire, called field coils, which are wound on stationary
iron or steel cores which are placed symmetrically around the

armature core, as shown in the figure. The ends of these field

cores next the armature are broadened out so that they cover

from 50 to 70 per cent of the armature surface, and are made
concave toward the armature so that the end surfaces, called

the pole faces, form part of a cylindrical surface concentric with
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the armature and of a slightly greater radius. These broadened

ends of the field cores are called the pole shoes, and are frequently

made separate from the field cores and are bolted to the latter

when the machine is assembled. The air space between the pole

shoes and the armature core is called the air gap. The ends of

the field cores away from the armature are connected by a yoke
of iron or steel

;
this yoke is called the field yoke. The field coils,

field cores, pole shoes and field yoke taken collectively are called

the field of the machine. The field cores, pole shoes, air gap,

field yoke, and armature core taken collectively are called the

magnetic circuit of the machine, since the lines of induction are

practically all confined to the space occupied by these parts.

The average permeability of this magnetic circuit is high, and

consequently a comparatively small amount of energy is required
to maintain an electric current of sufficient strength in the field

coils to establish a large number of lines of induction through
the armature winding. (See Article 113.) The field cores, pole

shoes and field yoke form a powerful electromagnet when an

electric current is established in the field coils
;

the lines of

force enter the air gap from the north pole of this magnet, and

pass from the air gap into the south pole of this magnet.
In the simplest type of armature winding, the armature

conductors are all connected in series by insulated copper wires

or bars, called the end connectors, across the two ends of the

armature core, and form a closed coil around this core. Hence

the net electromotive force induced in this closed winding is the

sum of the electromotive forces induced in the individual arma-

ture conductors. The field winding produces practically no lines

of induction which cut the end connectors
;
the entire electromotive

force induced in the armature winding is that due to the cutting

of lines of induction by the armature conductors which lie in the

air gap. Hence, when the armature conductors are distributed

symmetrically around the armature core, the net electromotive

force induced in the armature winding is zero, since for each

conductor cutting the magnetic field on one side of the air gap,

there is a corresponding conductor cutting an equal field on the

other side of the armature in the opposite direction with respect

to the motion of the conductor. A study of Fig. 69 will make
this clear; a dot in an armature conducto'r indicates an electro-

motive force in the direction, toward the reader, and a cross an
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electromotive force in the direction away from the reader; the

e. m. f. induced in those conductors not under a field pole is practi-

cally zero. The average paths of the lines of induction are

shown by the dotted lines.

In spite of the fact that the net electromotive force induced

in the closed armature winding is zero, a continuous electromotive

force can be obtained from this machine by bringing out suitable

connections or taps from the winding, and making contact with

these connections in a suitable manner. This can be best under-

stood from Fig. 70, which shows diagrammatically an armature

winding of a simple two-pole machine, with the end connectors on

the end of the armature facing the reader in heavy lines and the end

connectors on the other end as dotted lines. The middle point of

each of the front connections is connected to a bar of a device called

a commutator, which is a cylinder of copper bars insulated from

each other by sheets of mica. This cylinder is mounted rigidly

on the shaft of the armature, from which the bars are also insulated.

From the segment marked 1 there are two paths through the arma-

ture winding to the segment
marked 5, and the electro-

motive force induced in each

of the armature conductors

in each of these paths is in

the direction from 1 to 5.

Hence the net electromotive

force between 1 and 5

through each of these paths

is the arithmetical sum of

the electromotive forces in-

duced in all the conductors

in each path, i.e., in half the

total number of armature

conductors. The two halves

of the armature winding

are then similar to two electric batteries in parallel; the electro-

motive force of one half the winding opposes the electromotive

force induced in the other half of the winding and consequently

no current flows in the closed circuit formed by the entire winding.

However, when the segments 1 and 5 are connected by an external

conductor, the electromotive force impressed on this circuit will be
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equal to the electromotive force induced in each half of the wind-

ing, and consequently a current will be established in the external

conductor, one half of the current flowing through each half of

the armature winding; just as in the case of two batteries in

parallel and connected to an external circuit half the current

flows through each battery, provided the electromotive forces

and the internal resistances of the two batteries are respectively

equal. As the armature turns in the direction indicated the

electromotive forces induced in the individual conductors form-

ing each path between 1 and 5 will not all be in the same direction,

but some of the electromotive forces will oppose the other, and

hence the net electromotive force between 1 and 5 will decrease.

However, when the armature has rotated through an angle

corresponding to one segment of the commutator, another pair

of segments, 8 and 4, come into the position formerly occupied

by 1 and 5 and the electromotive force between 8 and 4 will be

exactly the same as the electromotive force which previously
existed between 1 and 5, provided the armature rotates with

a constant speed. Similarly for the next pair of segments, and
so on. Consequently, if in the positions B and Bf

are mounted
two fixed contacts, under which the commutator segments slide

as the armature rotates, the electromotive force between these

two contacts will remain practically constant, and the greater

the number of commutator segments the more nearly constant

will this electromotive force be. The fixed contacts which rub

against the commutator segments are called brushes, and in most
modern machines are made of carbon blocks. These brushes are

held in a suitable support, called the brush-holder, and the parts

of this brush-holder in contact with the brushes are insulated by
suitable bushings from the brackets which connect them to a

common support called the rocker-arm, which is mounted on

some part of the stationary structure which forms the frame

of the machine. This rocker-arm is so mounted that the position

of the brushes can be adjusted until no sparking occurs between

them and the commutator segments when a current is established

through the machine. The brush at the lower electric potential
is called the negative brush, and the brush at the higher electric

potential is called the positive brush. The electromotive force

induced in a dynamo is always from the negative to the positive

brush, whether the dynamo be used as a generator or as a motor.
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Series Connected

When the machine is to be used as a generator it is driven

by some form of
"
prime mover," i.e., a steam engine, gas engine,

or water wheel, and the circuit which is to be supplied with

electric energy is connected in series with the two brushes B and

B'. The field coils may be connected either in series with this

external circuit; or they may be connected directly across the

brushes of the machine; or there may be two sets of field coils,

one set connected across the brushes and the other set in series

with the external circuit. In the first case the machine is called

a series connected generator, in the second a shunt connected

generator, and in the third case a compound connected generator.

These various forms of connections are shown in Fig. 71. All

these types of generators are called self-excited generators, since

they produce their own magnetic field.

There is in general sufficient
"

resid-

ual magnetism
"

in the iron part of

the machine to establish a weak mag-
netic field in the air gap, which in turn

establishes a small electromotive force

between the brushes when the arma-

ture is rotated
;
this electromotive force

in turn establishes a small current in

the field windings which increases the

magnetic field in the gap ;
this in turn

increases the induced electromotive

force, and this cumulative process goes

on until the field current reaches a

steady value. In the simple shunt

connected generator, for example, the

field current increases until the in-

duced electromotive force in the arma-

ture establishes a difference of potential

between the brushes of the machine

^r^r>r^\_ equal to the product of the resistance

of the shunt field by the strength of

the current in this field.
~ ^ The total current taken from the
Compound Connected i i /> c ,

Fig . 71 brushes of any type of continuous cur-

rent generator for a given induced, or
"
armature," electromotive force, will depend upon the resist-

Shunt Connected

Series Field
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ances and electromotive forces in the external circuit and also

upon the resistances of the armature circuit between the brushes

and upon the resistances of the field windings. When the various

resistances and electromotive forces are known the strengths of

the currents in the external circuit and the various windings of

the machine can be calculated by Kirchhoff's Laws. Since in an

electric generator the current always gains electric energy, the

direction of the current through the armature is the same as that

of the electromotive force developed in the armature. Hence the

current always leaves the armature of a generator at the positive

brush and enters at the negative brush.

A continuous current dynamo, series, shunt or compound
connected, may also be used as a motor. In this case its ter-

minals are connected to some source of potential difference which

establishes a current through its field coils and through its arma-

ture. The magnetic field produced by the current in the field

coils exerts a mechanical force on the armature and causes it to

rotate. Work is then done on whatever is connected to the

armature, and the energy to do this work comes from the source

of electromotive force, e.g., the generator, which establishes the

current through the machine. Since to transfer the energy from

the generator to the motor it is only necessary to have two wires

or mains, as they are usually called, the motor may be at a great

distance from the generator ;
hence the great advantage of trans-

mitting energy by means of an electric current. Since in an

electric motor electric energy is always lost by the current in the

motor, the electromotive force developed by a motor is always
in the direction opposite to that of the current

;
that is, an electric

motor always develops a back electromotive force. The current

therefore always enters the armature of a motor at the positive

brush and leaves it at the negative brush.

For a fuller description of the construction of electric dynamos
and a discussion of the various factors which affect their operation

as generators or motors, the reader is referred to any text-book

on dynamo-electric machinery. In particular, it should be noted

that dynamos designed for the generation or utilisation of large

amounts of electric power in general have a number of pairs

of poles and in most cases a corresponding number of sets of

brushes, with all the positive brushes interconnected and all the

negative brushes interconnected. The armature in such " multi-
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polar
" machines may have a single winding of the form described

above, or there may be two or more independent windings on

the same armature core. The general principles involved in

the construction and operation of such machines are, however,

identically the same as in the case of the simple two-pole machine.

112. Calculation of the Electromotive Force Induced in the

Armature of a Continuous Current Dynamo. The value of the

electromotive force induced in the armature winding of a continu-

ous current dynamo may be readily calculated from equation ( 1) .

Let

N =the total number of armature conductors.

p =the number of field poles.

p' =the number of parallel conducting paths between the

JV
positive and negative brush sets, that is, is equal to

p
the number of armature conductors in series between

the positive and negative brush sets.

<f)
=the total useful magnetic flux per pole in c. g. s. lines or

maxwells
;
that is, < is the total number of lines of in-

duction which pass through the armature core from a

north pole to the adjacent south poles of the field magnet.
n =the number of revolutions of the armature per second.

The time required for each conductor to pass entirely around

the armature is then and therefore the time taken for it to pass
n

through the magnetic field under each pole is . Hence the
up

average value of the electromotive force induced in each armature

conductor as it passes under each pole is np <f>
abvolts. Since

the conductors are uniformly distributed around the surface of

the armature, this is also the average value at each instant of

the electromotive force induced in these conductors. Since

N
there are conductors in series between the positive and negative

P'

brush sets, the average value of the total electromotive force

between the brushes is

np6N .. (7)E = L. volts

p'XlO
8

When the number of commutator segments is large, the in-
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stantaneous values of the electromotive force between the brushes

are practically equal to this average value. For, since the brushes

always make contact with segments in the same position with

respect to the field which produces the flux, the only possible

variation in the electromotive force between the brushes (when

(f>
and n remain constant) is the variation that might occur as

the armature rotates through an angle corresponding to one

commutator segment. But in the distance corresponding to

this small displacement of an armature conductor, the flux density

remains practically constant (except for the three or four con-

ductors which are just passing under or are just leaving a pole

tip), and hence the rate at which the conductors are cutting

lines of induction, and therefore the induced electromotive force,

does not change appreciably in this interval.

Equation (7) holds whether the dynamo is used as a generator

or as a motor. In the case of a generator, this electromotive

force is in the direction of the current, and in case of a motor

in the opposite direction from that of the current. It should

be noted, however, that the flux per pole in a generator or motor

in general depends not only upon the current in the field coils

but also upon the current in the armature
;
this is caused by the

fact that the armature current also sets up lines of induction in

the opposite direction to those due to the field current and the

resultant flux per pole is decreased. See under Armature Re-

action in any text-book on dynamo-electric machinery.
113. Magnetomotive Force. In equation (7) for the electro-

motive force of a continuous current dynamo, the only quantity
which cannot be readily predetermined is the flux per pole. This

quantity can, however, be calculated when the dimensions of

the magnetic circuit, the permeability of its various parts, the

number of turns on the field coils and the "back ampere-turns"
of the armature are known. The following considerations will

make this clear.

Consider a wire wound into a coil of any form having N turns,

and let a current of / abamperes be established in this wire.

We have already seen that a magnetic field will be established

around such a coil, and that the lines of force representing this

field will be closed loops linking the coil. Consequently, between

any two points in the field around this coil there will be in general

a drop (or rise) of magnetic potential. We wish to find the



206 ELECTRICAL ENGINEERING

relation between the total drop of potential around any closed

path linking this coil and the value of the current established

in it. By definition (Article 60), the drop of magnetic potential

along any path in a magnetic field is the work done by the agent

producing the field when a unit north point-pole moves around

this path, that is, the drop of potential around any closed path

is the line integral J (H cos 0) dl around that path, where dl is

any elementary length in the path, H the field intensity at dl,

the angle between the direction of dl and the direction of H, and

the symbol f L|
represents the integral around this closed path.

We have also seen that it is physically impossible to have a

north magnetic pole without at the same time having an equal

south magnetic pole on the same piece of matter. Hence it is

physically impossible to move a unit north pole around a closed

path linking a coil without at the same time linking the coil

with an equal south pole, unless the magnet at the ends of which

these poles exist is threaded through and bent into a closed loop

linking the coil. Hence to move a unit north point-pole around

a closed coil without at the same time having the current in the

coil exert a force on the south pole connected to this north pole,

we may conceive of this unit

north point-pole as at the end

original position
of a flexible magnetic filament,

the south pole of which is so far

removed from the coil that the

force exerted by the latter on

I this south pole is negligible.

'The north pole end of this fila-

ment can then be threaded

through the coil and back
Flg- 72> around to its original position

over the desired path, as shown in Fig. 72. The only force

exerted by the coil on the filament as it is thus bent around

will be the force produced by the coil on the north pole of

the filament, and therefore the work done by the current will

be J (H cos 9)dl. But we have also seen, Article 56, that 4 TT

lines of induction exist in a filament which has unit poles,

in the direction from the south to the north pole of the fila-
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ment. Hence, when the unit north pole is moved through the

coil in the right-handed screw direction with respect to the current

and back again along a closed path linking the coil, the number
of lines of induction through the coil is increased by 4-7T. Hence

from equation (2), the work done by the current on the pole is

also equal to 4?r NI, since the total number of linkages is ^irN.

Hence the drop of magnetic potential around a closed path linking

a coil of N turns in the right-handed screw direction with respect

to the current in the coil is equal to 4irN times the strength of the

current in the wire forming the coil. That is

(HcosO)dl=4:TTNI (8)

This relation is analogous to that between the resistance drop in

an electric circuit and the electromotive force in the circuit, see

equation (25c) of Chapter III. Hence the expression 4:irNI is

called the magnetomotive force of the coil.

Magnetomotive force is measured in the same unit as drop
of magnetic potential, that is, the c. g. s. electromagnetic unit of

magnetomotive force is the gilbert. The magnetomotive force is

proportional to the product of the number of amperes in each

turn of the coil and to the number of turns in the coil; this

product NI, when I is expressed in amperes, is called the ampere-
turns of the coil. The magnetomotive force may then be ex-

pressed as so many ampere-turns. The ampere-turn is the unit

of magnetomotive force used in practice; the relation between

the gilbert and ampere-turn is

1 gilbert =0.79578 ampere-turn.
114. Magnetic Reluctance. The analogy between the rela-

tion connecting the drop of magnetic potential and magnetomotive
force and the relation between resistance drop and electromotive

force may be extended still further. Consider first the simple case

of a coil of insulated wire uniformly wound around a closed

anchor ring, such as described in Article 110. Let the cross sec-

tion of this ring be A, and the length of the mean circumference

of the ring be /. From symmetry, the lines of force produced by
an electric current in the coil wound on this ring will be circles

concentric with the center of the ring, and each line of force must
therefore link all the turns of the coil. The field intensity will

also have the same value for every point on any one of these

circles. Hence, calling H the field intensity at any point on the
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mean circumference of the ring, the drop of magnetic potential

around this circumference is

When the radius of the ring is large compared with the radius of

the section A, the field intensity at the mean circumference

may be taken as the average field intensity over this area A.

Hence, calling p the permeability of the iron forming the ring,

the average flux density over the area A is ^H, and therefore

the total flux or number of lines of induction through A is
<f> =p. HA.

Hence A77

t*?
_l_ (9)

The expression - - is analogous to the expression for the re-

sistance of a wire of length I, cross section A and specific resist-

ance
,
and it is therefore called the reluctance of the magnetic

circuit formed by the ring.

The reluctance of any portion of a magnetic circuit has no

meaning unless the two ends of the given portion of the circuit

where the lines of induction enter and leave it are magnetic

equipotential surfaces and the total number of lines of induction

through each cross section of the given portion of the circuit is

the same. When these conditions are satisfied, the reluctance

R may be defined as the ratio of the difference of magnetic

potential Vm between the two end faces of the given portion of

the circuit to the total flux of induction < "through the circuit, i.e.,

R=^ (10)

9
When the difference of magnetic potential is expressed in gilberts

and the flux in maxwells, the unit of reluctance is called the

oersted. The relation expressed by equation (10) is of exactly
the same form as Ohm's Law for an electric circuit

;
it is therefore

sometimes called
" Ohm's Law for a magnetic circuit." Magnetic

flux, magnetomotive force and magnetic reluctance are strictly

analogous to electric current, electromotive force and electric

resistance respectively, except that no energy is required to maintain

a magnetic flux through a reluctance, while energy is always required
to maintain an electric current through a resistance.
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Since lines of magnetic induction are always closed loops,

the flux of magnetic induction coming up to any surface must

always equal the flux of induction leaving that surface. There-

fore at any junction in a network of magnetic circuits

2<=o (11)

This is the same as Kirchhoff's first law for an electric circuit.

Similarly, since the drop of magnetic potential Vm around any
closed loop is equal to the total magnetomotive force in this

path,

2<f>R=24irNI (Ha)
where R is the reluctance of any closed tube of induction and

<j>

is the flux through this tube. This last relation is the same as

Kirchhoff's second law for a network of electric circuits.

The difficulty in applying these laws to a magnetic circuit

arises from the fact that the magnetic flux is not confined to

approximately geometrical lines like the currents in a network

of insulated wires, but in general fills all space surrounding the

coils which establish the magnetomotive forces
; also, when there

is iron in the circuit the permeability depends on the flux density

and the previous history of the iron. (The distribution of magnetic
flux in and around an iron circuit is analogous to the distribution

of current in and around an uninsulated mass of copper of the

same shape as the iron circuit immersed in a liquid having a

conductivity about equal to that of carbon.) Ohm's Law for the

magnetic circuit, however, tells us that in order to obtain a large

flux with the least number of ampere-turns it is necessary to

provide a path of low reluctance for the lines of induction. Hence

in nearly all electric machinery a closed or nearly closed iron or

steel circuit is provided for the lines of induction, since iron and

steel have a high permeability, and therefore for the same dimen-

sions a much less reluctance than a non-magnetic substance.

Only in the special case of the uniformly wound circular ring

discussed above, however, are the lines of induction confined

entirely to an iron circuit
;
in general a certain number also exist

in the air and in whatever other substances are in the vicinity

of the iron circuit. For example, in the case of a dynamo, a

certain percentage of the total number of lines of induction estab-

lished by the field coils
" leak

" around through the air from

one pole to the next without linking the armature conductors.

The predetermination of the ratio of the total flux to the useful
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flux, i.e., the ratio of the total number of lines of induction to the

number which link the armature conductors, can be made only

very roughly; this ratio, which is called the "leakage factor,"

may, however, be determined by experiment ;
in modern dynamos

is found to vary from 1.1 to 1.5, depending upon the arrangement
of the field magnets.

115. Calculation of Ampere-Turns Required to Establish a

Given Flux. The following example will illustrate the way in

which the number of ampere-turns required to establish a given

flux may be calculated to a rough degree of approximation.

Let it be required to find the number of ampere-turns necessary

to establish a total flux
<j> through the armature of a two-pole

dynamo. Let the armature be made of sheet steel punchings
and the field cores, pole shoes, and field yoke be a single piece of

cast iron.

Let

A
g
=area of the air gap under each pole.

Aa =the mean cross section of the path of the lines of induc-

tion through the armature.

Af=the mean cross section of the path of the lines of in-

duction through the field.

l
g

=the radial depth of the air gap ; usually called the length

of the air gap.

la =the mean length of the path of the lines of induction

through the armature.

If
=the mean length of the path of the lines of induction

through the field.

k =the leakage factor.

Then the flux density in the air gap is -? and this is also equal
Ag

to the field intensity in the air gap, that is H
g
=-^-

. Hence the

Ag
rt I 7

drop of magnetic potential across both air gaps is 2 H
g

l
g
= ?_J! .

,
Af

The flux density in the armature is -?-
;
from the B H curve

Am
for sheet steel punchings find the corresponding value of H;
call this value Ha . Then the drop of magnetic potential through
the armature is Ha la . The total flux through the field will be



ELECTROMAGNETISM 211

k <h, and therefore the flux density in the field will be -2; from
A

t

the B H curve for cast iron find the corresponding value of H;
call this value H

f
. Then the drop of magnetic potential through

the field will be H
f

l
f

. Hence, equating the total drop of magnetic

potential around the entire magnetic circuit to the total magneto-
motive force ^irNI linked by the mean path of the flux, we have

Ha la+ Hf
l
f
=4 TT NI (12)

9

all in c. g. s. electromagnetic units. From this relation the number
of ampere-turns can be calculated. For calculations of this sort

it is much more convenient to have the B H curves plotted

in c. g. s. lines per square inch as ordinates against field intensity
in ampere-turns per inch. When

(j>
is expressed in maxwells,

H is expressed in ampere-turns per inch, I in inches, A in square
inches and / in amperes, equation (8) becomes

It should be noted that the ampere-turns thus calculated are the

net ampere-turns required to establish the given flux through
the armature, that is, the difference between the ampere-turns
which must be on the field coils and the back ampere-turns of

the armature. (See under Armature Reaction in any text-book

on dynamo-electric machinery.)

W116. Self and Mutual Induction. When the current in any
electric circuit varies with time, the magnetic field produced by
this current also varies with time; hence any electric circuit

which is linked by the lines of induction due this varying current

will have an electromotive force induced in it In particular, the

circuit in which the current in question is flowing will have an

electromotive force induced in it
;
the electromotive force induced

in a circuit due to the variation of the current in this circuit is

called the electromotive force of self induction in this circuit-

Similarly, the electromotive force induced in any other circuit 2

as the result of the variation of the current in any circuit 1 js

called the electromotive force of mutual induction in circuit 1

due to circuit 2. If a varying current in any circuit 1 produces
an electromotive force in some other circuit 2, then a varying
current in 2 will likewise produce an electromotive force in 1

;

hence the name " mutual "
for such electromotive forces.
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The numerical value of the ratio of the electromotive force

induced in a circuit, due to the change of the current in this

circuit, to the time rate of this change, is called the coefficient of

self induction or the self inductance of this circuit. That is, when
di

the current in the given circuit varies at the rate and, as a
dt

result of this variation, an electromotive force e is induced in

this circuit, then the self inductance of this circuit is

L=
<&_ (13)

~dt

When the electromotive force is expressed in abvolts, the current

in abamperes and time in seconds, the unit of self inductance is

called the abhenry; when these quantities are expressed in volts,

amperes and seconds respectively, the unit of self inductance is

called the henry. A millihenry is the one-thousandth part of a

henry. These units are therefore related as follows :

1 henry =109
abhenries

1 millihenry =106
abhenries

Similarly, the numerical value of the ratio of the electro-

motive force elz induced in any circuit 1, due to a change in the

current i2 in any other circuit 2, to the time rate of the change
of this current iz ,

is called the coefficient of mutual induction or the

mutual inductance M12 of circuit 2. with respect to circuit 1
;
that is

^12 =
di, (14)

dt

Mutual inductance is expressed in the same unit as self inductance*

The self inductance of a circuit may also be expressed in terms

of the number of linkages (see Article 105) between the circuit

and the flux produced by the current in it. From the funda-

mental law of electromagnetic induction, a change in the number
of linkages between a circuit and the flux linking it induces in

this circuit an electromotive force equal to the time rate of change
of these linkages. Hence, calling d\ the change in the number
of linkages between the circuit and the flux due to a change in

the current in the circuit by an amount di, we have as another

expression for the electromotive force of self induction
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d\
e=

dt

Equating this value of the self-induced electromotive force to

that given by equation (13) we have that the self inductance in

abhenries is

L-% (15)
di

where X is expressed in maxwells and i in abamperes. Hence the

self inductance of a circuit is equal to the change of the linkages

between the circuit and the flux threading it per unit change
in the current in this circuit. As will be proved presently, when
the permeability of every body in the magnetic field is constant

and the circuit remains unaltered in size and shape, the linkages

between the circuit and the flux threading it due to the current

in this circuit are directly proportional to the strength of the current

in the circuit; under these conditions, therefore, the self induc-

tance is a constant of the circuit (for a given distribution of current)

equal to the number of linkages between this circuit and the flux

produced by unit current in it.

Similarly, the mutual inductance in abhenries of a circuit 2

with respect to any other circuit 1 is equal to the change of the

linkages X 12 of circuit 1 by the flux due to the current i2 in 2 per
unit change in the current in 2, i.e.,

M d\, (16)
JK* 12 .

ai3

where X 12 is in maxwells and ia in abamperes. When the per-

meability of every body in the magnetic field is constant and the

two circuits are fixed with respect to each other and remain un-

altered in size and shape, the mutual inductance of one circuit

with respect to another is constant (for a given distribution of the

currents) and equal to the number of linkages between one circuit and
the flux produced by unit circuit in the other; moreover, as will be

proved presently, the mutual inductance of one circuit with respect
to the other is equal to the mutual inductance of the second circuit

with respect to the first.

117. Proof of the Relation between Inductance and Linkages.
The intensity at any point of the magnetic field due to an electric

current is given by the equation (see Article 71) H =i
|

v
l

'
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where i is the strength of the current in the circuit, dl any
elementary length of the circuit, r the distance of the point in

question from the elementary length dl and the angle between

the line drawn from the point to dl and the direction of dl, and the

symbol J represents the vector integral of the expression

around the entire circuit. As long as the shape and posi-

tion of the circuit remain unaltered, the quantity under the integral

sign remains unaltered
;
hence the field intensity .at any point due

directly to a current in a given circuit is proportional to the

strength of this current, no matter what the shape or size of the

circuit may be, provided the shape and size remain unaltered.

The field intensity at any point in the surrounding region due to

the magnetic poles which may be induced by this current on any
magnetic bodies in the vicinity will also be proportional to the

strength of this current, provided the permeabilities of these bodies

are constant. Under these conditions the directions of the result-

ant lines of force and the resultant lines of induction established

by the electric current will remain unaltered when the strength
of the current is changed, but their number crossing any surface

will vary directly as the strength of the current. The lines of

force and the lines of induction will also coincide in direction.

Hence the number of lines of induction crossing any area in the

magnetic field due to a current in a single circuit is directly pro-

portional to the strength of the current in this circuit, provided
all the surrounding bodies have a constant permeability.

In particular, the number of lines of induction threading the

circuit itself is proportional to the strength of the current in the

circuit. Therefore, calling i the strength of the current in the

circuit at any instant, the number of lines of induction threading
the circuit at this instant is proportional to i, and therefore the

number of linkages X between the circuit and the flux due to the

current in it is proportional to i, that is

\=Ai
where A is a constant depending upon the shape and size of the

circuit and the magnetic nature of the bodies in the field, but in-

dependent of the strength of the current, provided the permeability

of every body in the field is constant. Note that this constant A
is equal to the number of linkages between this circuit and the
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flux produced by unit current in it, for when i = l, X=A. More-

over, from equation (15), this constant is the self inductance of

the circuit, for =A. The self inductance of a circuit may be
di

looked upon as a constant which represents the extent and dis-

tribution of the magnetic field due a current in the circuit, but

is independent of the value of the field intensity provided the

permeabilities of all bodies in the field are constant.

Similarly, the number of lines of induction threading a given

circuit 1 due to a current ia in another circuit 2 is proportional to

the current in 2, and therefore the number of linkages X 12 of

the circuit 1 by the flux due to the current in 2 is proportional to

the current i2 ,
that is

A, 2 =Bi2

where B is a constant depending upon the size and shape of the

two circuits, their relative positions and the nature of the bodies

in the magnetic field, but independent of the strength of the

current, provided the permeability of every body in the magnetic

field is constant. Note that this constant B is equal to the number
of linkages of the circuit 1 by the flux due to unit current in

2, for when i'2
=

l, X 12 =J5. Moreover, from equation (16), this

constant is the mutual inductance of circuit 2 with respect to

circuit 1
,
for - = B. In the case of two circuits three con-

di2

stants are required to represent the extent and distribution of

the magnetic field due to the currents in these circuits, the self

inductance of each circuit and a single coefficient of mutual in-

ductance (see Article 120).

118. Magnetic Energy of an Electric Current. Since when the

strength of the current in a circuit is increased a back electromotive

force is induced in the circuit (due to the increase in the flux

linking the circuit), a certain amount of energy is required to

establish an electric current, just as energy is required to establish

a water current, i.e., to set a mass of water in motion. This

energy comes from the source of the electromotive force which

establishes the current, just as the energy for accelerating the

velocity of a body comes from the source of the mechanical force

which sets the body in motion. Since the magnetic field sur-

rounding the circuit may be considered as the source of the back

electromotive force in the circuit, the energy required to establish
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the electric current may be said to be "
stored

"
in the magnetic

field, just as the kinetic energy of a moving body may be looked

upon as stored in the body itself as a consequence of its inertia,

which may be looked upon as the source of the opposition which

the body offers to being set in motion. Again, when the strength
of the current in a circuit decreases, an electromotive force is

induced in the circuit in the same direction as the current, and

therefore a certain amount of the energy stored in the magnetic
field of the current is converted into some other form of energy

by means of the current in the circuit (e.g., heat energy), just as

when the velocity of a moving body decreases a definite amount

of its kinetic energy is converted into other forms of energy (e.g.,

heat energy).

In general, no matter how a magnetic field may be formed,
whether by means of electric currents or magnetic poles, a

definite amount of energy is required to establish it and when
the field is destroyed this energy appears in some other form.

Every magnetic field therefore represents a certain amount of
"
stored," or potential, energy. This energy of a magnetic field

is called magnetic energy; when the magnetic field is due to electric

currents this energy is also called the electrokinetic energy of the

currents, the latter name being due to the analogy between this

energy and the kinetic energy of a moving body.
The magnetic or electrokinetic energy of the magnetic field

set up by a current in a circuit may be expressed in terms of the

current strength and the inductance of the circuit. Let i be the

current in abamperes in the circuit at any instant and let L
be the self inductance of the circuit, in abhenries

;
then the

linkages X between the circuit and the flux due to the cur-

rent in it at this instant are X = Li. The back electromotive

force due to an increase di in the current in time dt is then e =L
,

dt

provided L is constant, and therefore the energy transferred to

the magnetic field by the current in time dt is
*

dW=eidt = Lidi

Therefore the total amount of energy stored in the magnetic field

of the current when the strength of the current increases from

to any value i is

TF=
/ Lidi=%Li* (17)
J o
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The energy stored in the field when the current is established

is equal to the energy returned to the circuit when the current is

interrupted, for

/o
ri

Lidi ~
I Lidi

i Jo
provided L is constant. The energy returned to the circuit from

the magnetic field gives rise to an electromotive force which

tends to keep the current flowing in its original direction, just as

when the motion of a body is opposed in any way, the kinetic

energy of the body tends to keep it moving in its original direction.

The instantaneous value of this electromotive force at the in-

stant a circuit is opened is generally sufficiently great to establish

a momentary current through the air or whatever else separates

the ends of the opened circuit, and consequently the current

continues to flow for a fraction of a second across the space be-

tween the open ends of the circuit, producing the familiar spark
or arc which occurs when a circuit is opened (unless certain special

precautions are taken). The energy which produces this spark
is the energy which is stored in the magnetic field around the cir-

cuit when the current is established, and is generally not sufficient

to maintain for more than a fraction of a second a current through
the high resistance of the insulator between the open ends of the

circuit. However, whenever a current is established through an

insulator its resistance falls to a comparatively low value, at which

it remains as long as the current through it is maintained. Hence,
when the gap formed by opening the circuit is short, the electro-

motive force originally in the circuit may be sufficient to maintain

a comparatively large current through the gap. It is this heavy
current established across the gap by the electromotive force

originally in the circuit which constitutes the so-called arc, and

which rapidly burns away the conductors at the gap unless a

suitable switch or circuit-breaker is provided for opening the

circuit. When the current in the circuit is large or the electro-

motive force in the circuit high, the circuit-breaker must open the

circuit rapidly and make a long gap between the opened ends.

It should be noted that the above formula for the energy

required to establish a magnetic field is deduced on the assump-
tion that the self inductance is constant, which is true only when
the permeability of every body in the magnetic field is constant.

In the case of iron and other magnetic bodies the permeability
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is not constant, and in addition to the transfer of energy to and

from the magnetic field, a certain amount of energy is converted

into heat energy (due to hysteresis, see Article 126), both when

the current is established and also when the current is inter-

rupted, or whenever there is any change whatever in the current

strength.

119. Analogy between the Magnetic Energy of an Electric

Current and the Kinetic Energy of a Moving Column of Water.

As already noted, the magnetic energy of an electric current is in

many ways analogous to the kinetic energy of a moving column

of any liquid, as for example, a current of water in a pipe. The

kinetic energy of such a " water current
"

is the work required

to set the water in motion
; similarly, the magnetic energy of an

electric current may be looked upon as the work required to
"
set

the electricity in the circuit in motion." When the water comes

to rest, its kinetic energy is converted into some other form,

principally heat energy. Similarly, when an electric current is

interrupted, thus causing the
"

electricity to come to rest," the

magnetic energy of the current is converted into some other form,

e.g., heat energy in the conductors and in the spark which appears

at the break in the circuit.

The kinetic energy of a moving column of water can also be

expressed by a formula similar to the formula W = ^ Li? for the

magnetic energy of an electric current. Consider a stream of

water flowing through a pipe of uniform cross section of A sq.

cm. and let the water completely fill the pipe; let / be the length

in cm. of a given section of the pipe, and let V be the linear velocity

of the water in cm. per second. Then, since the mass of 1 cu.

cm. of water is 1 gram, the kinetic energy of the water in the given

length of pipe is i (IA) V2
. Let J be the volume or

"
quantity

"

of water that flows across any section of the pipe in one second,

then J = AV. Hence the kinetic energy of the water column may

also be expressed as \ J2 = \ KJ2

,
where K = - is a constant

-TL -A.

depending upon the dimensions of the pipe. The analogy between

this last expression and the formula Li2
for the magnetic energy

of an electric current is at once evident, when an electric current

is considered as the quantity of electricity per second flowing across

any section of the wire. Note, however, that while the factor K
in the expression for the kinetic energy of the water current
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depends only upon the length and cross section of the given length
of pipe, the factor L in the expression for the magnetic or elec-

trokinetic energy of an electric current depends not only upon the

length and cross section but also upon the shape of the wire form-

ing this circuit, upon the shape of the circuit, and upon the nature

of the surrounding bodies.

120. Magnetic Energy of Two or More Electric Currents. As

already noted (Article 116), when the strength of the current in an

electric circuit changes the corresponding change in its magnetic
field induces an electromotive force not only in this circuit but

also in every other circuit in the vicinity. Consequently if a

current already exists in any neighboring circuit, or if the induced

electromotive force establishes a current in such a circuit, there

will be a transfer of energy from one circuit to the other. Whether
work is done on the current or is done by the current in a given
circuit depends upon the relative direction of the current and the

electromotive force induced in this circuit. In any problem

dealing with the mutual effects of -two or more circuits it is there-

fore necessary to adopt some convention in regard to the algebraic

signs of the various currents
;
this is conveniently done by choosing

a given sense of the lines of induction as positive (e.g., left to right)

and to consider the current in any circuit as positive if the lines

of induction which it sets up thread this circuit in this same sense,

negative if these lines thread the circuit in the opposite sense.

For example, when two coils of wire are placed side by side, the

currents in the two coils are to be considered -in the same sense

if the lines of induction set up by the current in one coil thread

the other in the same direction as the lines of induction set up by
the current in the latter.

Consider first the simple case of two circuits in the vicinity

of each other, and let the circuits be fixed in size, shape and rel-

ative position, and let the permeability of every body in the field

be constant. Let I/
x and L2 be the self inductances of the two

circuits and M12 the mutual inductance of circuit 2 with respect

to circuit 1 and M21 the mutual inductance of 1 with respect to 2
;

let i
v and i2 be the currents in the two circuits at any instant.

Then, from Article 117, the total linkages of the two circuits by
the flux threading them are respectively

i2 .
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where the X's and i's may be positive or negative. Let the two

currents increase by the amounts di
t and di2 in time dt; then the

back electromotive forces induced in the two circuits are re-

spectively

dt dt dt

d\2 T
di2 dit

e2=- =L/2
--\-M 2l

dt dt dt

and the amounts of energy stored in the magnetic field by the

respective currents are

dWl =e l
i

l
dt=L

l
i

ldi l +M l2i^di2

dW2
= e2i2dt=L2i2di2+ M^izdi^

The total amount of energy stored in the magnetic field by
two currents when they increase from zero to their final values

/! and 72 may be calculated as follows. First, let circuit 2 be open,

so that no current can flow in it
;
under these conditions i2 =0

and di2 =0, and therefore the work done by the current in circuit

1 when the current in this circuit increases from zero to 1^ is

o

Now keep the current in circuit 1 constant and let the current in

2 increase from to 72 ;
under these conditions i\ =Il and di^ =0,

and therefore the work done by the current in circuit 1 is

Ml2I l
di2=M lJ 1

I2

and the work done by the current in circuit 2 is

Hence the total work done by the two currents in establishing

the magnetic field corresponding to the final values of the currents

/! and 72 is

Note that this formula does not contain the coefficient M2l .

The explanation of this is the fact, already noted several times,

that the mutual inductance of one circuit with respect to another

is the same as the mutual inductance of the second circuit with

respect to the first circuit. To prove this, let the current in 2 now
be kept constant and let the current in 1 be decreased to zero;
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under these conditions i'2 =72 and di2 =0 ;
and therefore the work

done on the current in 1 by the magnetic field is

and the work done on the current in 2 by the magnetic field is

21/A=M2JJ2

Now open circuit 1 and let the current in 2 fall to zero
;
under these

conditions i\ =0 and di^ =0, and therefore the work done on the

current in 2 by the magnetic field when this current falls to zero is

-
f L2i2di2=L2P 2

J / 2

Hence the total work done by the magnetic field when it disappears

is

W =%LJ\ +M2JJ2+iL2I
2
2 (206)

From the Principle of the Conservation of Energy, the energy
stored in the field when it is established must be equal to the work

done by the field when it disappears, hence the expression for the

energy stored in the field must be equal to the expression for the

energy given back by the field
;
therefore

M21=M12

It also follows from the Principle of the Conservation of Energy
that the total amount of energy stored in the magnetic field by
the two currents is independent of the manner in which these two

currents are established, and therefore the expression

W =iZ^7+ MI&+ iLA (21)

is a perfectly general one for the energy of the magnetic field due

to the currents t\ and i2 in two circuits which have constant self

inductances L
v and L2 and a constant mutual inductance M.

Equation (21) may also be written

W= i (Z,k+M 12t2) i,+ \ (L2i2+MM i2

which, in turn, from equation (18), may be written

w =4x^+4x^2
By exactly similar reasoning it can be shown that the energy

of the magnetic field due to the electric currents in any number
of circuits is

TT = iSXt (22)

where i is the current in any circuit and X is the number of link-

ages between this circuit and the total flux which threads it, and

the summation includes all the circuits in the field.
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It should be noted that all the formulas in this article are

based upon the assumption that every body in the magnetic field

has a constant permeability.

121. Calculation of Inductance. Skin Effect When the

permeability of every body in the magnetic field is constant, it is

in general possible to obtain an expression for the inductance of a

circuit in terms of the dimensions of the circuit. To obtain an

exact expression for this quantity, however, it is necessary to

consider the conductors forming the circuit as divided into current

filaments (see Article 101) and to determine the back electromotive

force induced in each of these filaments when the current changes.
The inductance of a circuit therefore depends upon the distribu-

tion of the current in the conductors, and, as already noted

(Article 101), the distribution of the current in a conductor depends

upon the rapidity with which the current varies with time. The

explanation of this will now be apparent ;
when the conductor

has a large cross section or is a magnetic substance (e.g., a steel

rail) the lines of induction within the substance of the conductor

are an appreciable proportion of the total number of lines of induc-

tion which link the conductor; moreover, ^inc_e_.a_Jine of induction

which lies wholly within the substance of the conductor links only

that portion of the current which threads the loop formed by
this line, it follows that the number of lines of induction which

link the inside filaments is greater than the number which link

the outside or surface filaments, and consequently the back elec-

tromotive force induced in the inside filaments is greater than

that induced in the outside filaments. The result of this is that

a greater proportion of the current flows through the outside fila-

ments than through the inside filaments, i.e., the current density

is greatest near the surface of the conductor. In certain simple
cases the exact distribution of the current for a given impressed
electromotive force can be determined by expressing the condition

that the impressed electromotive force acting on each filament

must be equal to the sum of the resistance drop and the back

electromotive force induced in that filament. This phenomenon
of a non-uniform current distribution caused by a rapid variation

of the current with respect to time is called the "
skin effect." As

noted in Chapter VII, this skin effect causes an increase in the ap-

parent resistance of the circuit
;
the self inductance of a circuit is

diminished by the skin effect.
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In the case of wires of the size ordinarily employed in practice

the skin effect may be neglected and the current density assumed

to be constant over the cross section of the wire provided the

current varies comparatively slowly with time. (In the case of

an alternating current the frequency may be as high as 60 cycles

per second provided the conductor is non-magnetic ;
the skin effect

in a steel rail, however, is quite appreciable even for low fre-

quencies.) The assumption of no skin effect is equivalent to as-

suming that the back electromotive force induced in each filament

of the conductor is the same, and therefore that the number of

linkages of the conductor as a whole may be taken as the average

of the linkages of all the filaments taken separately. Approxi-
mate formulas for self inductance may also be obtained by neglect-

ing altogether the lines of induction inside the substance of the

conductor.

122. Self Inductance of Two Long Parallel Wires. As an

example of the approximate method of calculating inductance,
consider a circuit formed by two non-magnetic parallel wires,

when the wires are so long that the magnetic field due to the cur-

rent in the conductors connecting their ends may be neglected.

dx D

(Current Down)

-D-x

(Current Up)

Fig. 73.

Let the wires be of the same size and have a radius of r centi-

meters, and let them be spaced D centimeters between centers.

Let the current in each wire be i abamperes ; away from the reader

in A (Fig. 73) and toward the reader in B. Then the field in-

tensity at any point P at a distance x from the center of the wire

A on the line between A and B is (see equation 4a of Chapter III).

x D-x

.Hence, the number of lines of induction crossing an area at P
of width dx and unit length parallel to the two wires is, since the
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field intensity is perpendicular to this plane and the permeability
of the air surrounding the wires is unity,

Hence, the total number of lines of induction per centimeter

length of the wires threading the space between the two is

D-r
=

|

d<l>=2/ Inx-ln(D-x)
J x=r _\x=r

41 In

(The abbreviation "In" is used for the natural logarithm and

the abbreviation "
log

"
for the common logarithm.) Whence

the inductance of one centimeter length of both wires is

L = =4 Tttf abhenries
/ r

Or, since each wire is linked by half the resultant lines of in-

duction linking the,space between the two, the inductance of

each wire per unit length is

L =2 In abhenries
r

These formulas, however, are only approximate, since the lines

of induction inside the wires have been neglected. It can be

shown (see Alex. Russell, Alternating Currents, Vol. 1, p. 55) that

the exact formula for the inductance of each of two non-magnetic

parallel wires for slowly varying currents is

L=0.5+2 In abhenries per cm. (23a)
r

or

or

L =0.01524+ 0.1403 log millihenries per 1000 ft. (236)
r

L =0.08047 + 0.7411 log millihenries per mile (23c)
r

It should be noted that since D and r occur in these formulas only

as a ratio, it is immaterial in what units D and r be expressed,

provided they are both expressed in the same unit.

The minimum value of the inductance is when the wires touch.

In this case D=2r, and therefore L =0.0575 millihenries per
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1000 feet and is independent of the size of the wire. An ab-

solutely non-inductive circuit is impossible, although this condi-

tion may be closely approximated by placing the wires forming

the circuit close together, e.g., by twisting them together.

123. Self Inductance of a Concentrated Winding. Let L x be

the self inductance of a single loop of wire of any shape ;
then the

flux linking this loop due to unit current in it is < =L t
. Consider

a coil made of N turns of wire, each turn of exactly the same

dimensions as this single loop and let these N turns be so close

together that they may all be considered as coinciding exactly

with one another, i.e., let the N turns be considered as concen-

trated in a geometrical line. Then unit current in each of these

turns will set up a flux
<j>

which will link each of the N turns
;

therefore the total flux linking each turn will be N
<f>
= NL

l} and

since there are N turns the number of linkages between the total

flux and the entire coil will be N2

L^ which, from Article 117, is

equal to the self inductance Ln of the entire coil, i.e.,

Ln =Ar2
L, (24)

Hence the self inductance of a concentrated winding is proportional

to the square of the number of turns in it.

124. Self Inductance of a Long Solenoid. In contradistinc-

tion to a concentrated winding, consider the case of a long air-core

solenoid, which is one form of a distributed winding. Let N be

the number of turns in the solenoid, I its length in centimeters and
A its mean cross section in square centimeters. Then, from

equation (4), the magnetic field intensity at any point inside the

solenoid at a considerable distance from its ends due to a current

of one abampere in the coil is H =- - and is parallel to the

axis of the solenoid. The total number of lines of induction link-

ing each of the central turns (neglecting the lines within the sub-

stance of the wire) is therefore

The flux linking the end turns is less than this, since some of the

lines of induction go through the lateral walls of the solenoid; as

an approximation, however, in the case of a long solenoid all the

lines of induction may be assumed to link these end turns also.

On this assumption the total number of linkages between the coil
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and the flux per unit current in the coil, i.e., the self inductance of

the coil, is then

where all the quantities are in c. g. s. units.

The self inductance of a solenoid, therefore, does not vary with

the square of the number of turns when the variation is made by
changing its length, for in this case the number of turns varies as

the length, and therefore the inductance varies' directly as the

number of turns, or directly as the length. Hence when a sole-

noid is used as a variable inductance, by connecting in the circuit

a greater or less number of its turns by means of a sliding contact,

for example, the inductance varies directly as the distance be-

tween the fixed terminal and the slider, provided this distance is

large compared with the diameter of the solenoid. When the

slider is close to the fixed terminal, the turns between the two

form an approximately concentrated winding, and therefore the

inductance when only a small part of the winding is used varies

approximately as the square of the distance between the two

terminals.

It should be noted that when a coil of any kind is used 'as a

part of an electric circuit, there is always a mutual inductance

between the rest of the circuit and the coil. This mutual induc-

tance, however, may be made practically negligible by making
the leads to the coil sufficiently long and twisting them together.

125. Total Energy of a Magnetic Field in Terms of the Field

Intensity and Flux Density. The total energy of the magnetic
field due to any number of electric currents may also be expressed
in terms of the field intensity and the flux density. Consider the

case when every body in the magnetic field has a constant permea-

bility; the flux density and field intensity at every point in the

field will then be proportional to- each other and in the same

direction. Under these conditions the energy corresponding to

the final values of the currents must be independent of the manner
in which these currents are established; we may then for con-

venience assume that the currents all increase proportionally from

zero to their final values. Under these conditions, if we imagine
all space filled with tubes drawn in such a manner that the walls

of each tube are tangent at each point to the direction of the flux

density at that point due to the final values of the currents, then
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the walls of these tubes will also be tangent to the flux density
at any instant while the currents are rising from zero to their final

values. These tubes will also be closed on themselves and from

equation (8) the current linked by each tube at any instant will

be i = 7 I Hdl, where dl is any elementary length measured
71

J \L\

along the axis of the tube and H the intensity of the field at dl.

When all the currents change by a certain small amount, producing
a change of flux density dB at every point in the field, the change
in the flux through each tube will be d

<f>
=dB.ds where ds repre-

sents any section of the tube at right angles to its axis, and dB
the change in the flux density at this point. dB and ds will of

course vary from point to point in the field but, from the manner
in which these tubes are drawn, the product dB.ds will be constant

for every section of any one tube. The work done in changing the

flux through each tube by an amount d
</>

is

= - dB.ds I

4?r
J \

Hdl

\L\

and the total work done corresponding to all the tubes is the

volume integral

I dB.ds
\
Hdl

4ir
J \S\ J |L|

throughout all space. But, since dB.ds is constant along any

tube, this may be written

-
I I HdBds.dl=-~ I

t 77 I I 47T I

J \S\ J \L\ J \

HdBdv
\v\

since ds.dl represents an elementary volume dv at each point.
Hence the work done per unit volume of space, when the currents

in the various circuits change proportionally by an infinitesimal

amount, is

dw=Hd.B
47T

Hence the total work done per unit volume of space by any number
of currents in establishing their resultant magnetic field is

HdB=jirz=^- (26)

provided the permeability of every body in the field is constant.
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When the permeability of the bodies in the field is not con-

stant, but varies with the field intensity, the reasoning employed
i r B

in deducing the expression I HdB for the work done by

the currents per unit volume of the field, breaks down
; for in this

case the direction of the tubes which we considered as filling all

space may change as the currents change in value. However, the

expression
-

I HdB for the energy per unit volume required

J o

to establish the field (only a portion of this, however, is stored in

the field, see Article 126a) is applicable to any case where the

direction of the lines of induction remains unaltered and coincides

with, or is in the opposite direction to, the lines of force. This

condition is realized in the special case of a closed anchor ring

which is magnetised by a coil uniformly wound around it (as

described in Article 110) and is also approximately realized in the

magnetic circuits of most electrical apparatus.
126. Heat Energy Due to Hysteresis. When the permeability

of every body in the magnetic field is constant, the energy trans-

ferred to the magnetic field when the flux density increases from

zero to any value B is exactly equal to the energy transferred from

the magnetic field to the electric currents when the flux density

decreases from B to zero; for, when B is proportional to H,

i CB if
HdB = I Hd B However, in the case of ordi-

4wJo 4
7J*

nary magnetic bodies such as iron or steel, we have already seen

(Article 57) that the relation between B and H when the flux

density increases is different from the relation between these two

quantities when the flux density decreases. Hence in this case

i cB
i r

I HdB is not equal to HdB. The first expres-

J o
^J B

sion, however, represents the work done by the currents in estab-

lishing themselves, while the second expression represents the

work done on the currents when the magnetic field disappears;

the difference between these two expressions must then represent

the production of some other form of energy in the magnetic sub-

stance, and experiment shows that this other form of energy is

heat energy. That is, whenever the flux density in a piece of any
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ordinary magnetic substance is changed, heat energy is always

developed. Consequently, when the flux density in a piece of

iron or steel is changed from any value B to any other value and

then brought back again to the original value B, an amount of

heat energy per unit volume of the substance equal to

w =
I
HdB (27)

47T I

J \B\

for this complete cycle of values, is produced in the substance.

Hence, when this cycle of values is plotted (with H and B to the

same scale) in a curve (i.e., the hysteresis curve), the area of this

curve divided by 4 TT gives the amount of heat energy per unit

volume " due to hysteresis
"

produced in the substance. When
H and B are expressed in c. g. s. electromagnetic units, this heat

energy is in ergs per cubic centimeter.

126a. Tractive Force of an Electromagnet. From the formula,

equation (26), for the energy per unit volume of a magnetic field,

can be deduced directly the force of attraction between two elec-

tromagnets or between an electromagnet and its keeper. Con-

sider the special case where the surface of separation of the two

parts of the magnetic circuit is perpendicular to the lines of in-

duction; let S be the area of this surface in square centimeters

and let dx be the infinitesimal amount by which the two parts of

the magnetic circuit are separated. When dx is infinitely small,

the change produced in the reluctance of the circuit is negligible,

and therefore the flux density in the air gap formed is the same

as originally existed in the iron
;
let this flux density be B and let

it be assumed constant over the surface of separation. The

volume of the magnetic field is changed by an amount Sdx, and

consequently the energy of the magnetic field, from equation (26),

is changed by the amount
B2

=
8^r

C

But the work done in separating the two parts of the circuit is

also equal to the product of the displacement dx, and the mechani-

cal force F in dynes required to produce the separation, i.e.,

dW= Fdx

Equating these two expressions, we have

F =
STT (28)
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rhen the flux density is not constant over the surface of separa

/on, the total force required is the surface integral

(28a)

SUMMARY OF IMPORTANT DEFINITIONS AND
PRINCIPLES

1. The number of linkages between a line of induction and a

coil of wire is equal to the number of turns of this coil linked by
the line of induction. The total number of linkages between a

coil and the flux threading it is the sum of the linkages of all the

lines of induction. For a concentrated winding of N turns and

each turn linked by <f> lines, the number of linkages is

\=N<f>
Linkages are expressed in mawells.

2. Whenever the flux threading a circuit changes an electro-

motive force is induced in this circuit equal to the time rate of

change of the linkages between the flux and the. circuit, i.e.,

e= abvolts = 10'
8

volts
dt dt

where X is in maxwells and t in seconds. The minus sign in the

above equation indicates that the direction of the electromotive

force resulting from an increase in the flux in the same direction

as that of the flux due to the current in the circuit produces an

electromotive force in the opposite direction to that of the current.

3. The work done on an electric current when the number of

linkages between the circuit and the flux linking it increases by
an amount d\ is

dW~ id\ ergs

where i is in abamperes and X in maxwells.

4. When the change in the linkages between an electric circuit

and the flux linking it is caused by the motion of a part of this

circuit (e.g. a wire) through a magnetic field, the induced electro-

motive force is equal to the rate at which this part of the circuit

cuts the lines of induction. The direction of the electromotive

force is the direction in which the middle finger of the right hand

points when laid along the wire and the thumb and forefinger

of this hand are held perpendicular to each other and to the

middle finger, with the thumb pointing in the direction of the
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motion of the wire and the forefinger in the direction of the flux

density. The value of the electromotive force induced in a wire

I centimeters long when it moves perpendicularly across a mag-
netic field of flux density of B gausses with a velocity of v centi-

meters per second perpendicular to itself is

e = Blv abvolts

5. The intensity of the magnetic field due to a current of i

abamperes in a long solenoid of A/"/' turns per centimeter length is

H = 4TrN'i gilberts per cm Q~[ l^~~f/jV ^
6. The quantity of electricity discharged through a circurtrof~?T

abohms resistance when the number of linkages between the

circuit and the flux threading it changes from \ v to X2 maxwells is

Q = abcoulombs
R

7. The average value of the induced electromotive force be-

tween the brushes of a continuous current dynamo is

_. npfb NE = J-L volts

p'XlO
8

where n is the number of revolutions per second, p the number of

field poles, p' the number of parallel paths through the armature,

<j)
the useful flux per pole in maxwells, and N is the number of

conductors which cut the flux.

8. The work required to carry a unit north pole around a

closed path is called the magnetomotive force acting around this

path. The magnetomotive force acting around a closed path
which links N turns of a circuit in which the current is i ab-

amperes is

4 TTN i gilberts

The product of the current in amperes by the number of turns is

called the ampere-turns of the coil.

1 gilbert =0.79578 ampere-turn
9. The reluctance of a given portion of a magnetic circuit is

defined as the ratio of the drop of magnetic potential along the

lines of induction to the total number of lines of induction through
the given portion of the circuit. The c. g. s. electromagnetic unit

of reluctance is the oersted. The reluctance of a portion of a

circuit / centimeters long, A square centimeters in cross section

and of a permeability p is

R= oersteds



232 ELECTRICAL ENGINEERING

provided the flux density is uniform and perpendicular to the cross

section.

10. The ampere-turns required to establish a given flux are

found by equating the drop of magnetic potential through the

magnetic circuit to the magnetomotive force, i.e.,

where H is in ampere-turns per inch, I is in inches, 7 in amperes,
and the integral is taken around the closed path formed by the

magnetic circuit.

11. The value of the ratio of the electromotive force induced

in an electric circuit, due solely to a change of the current in this cir-

cuit, to the time rate of this change, is called the self inductance

L of this circuit
;
hence the self-induced electromotive force is

T
di

e = L
dt

The c. g. s. unit of self inductance is the abhenry ;
the practical unit

is the henry.

1 henry =10
9
abhenries

When the permeability of every body in the magnetic field is

constant and the circuit remains unaltered in shape, the self in-

ductance is a constant of the circuit (for a given distribution of

current) equal to the number of linkages between this circuit and
the flux produced by unit current in it.

12. The value of the ratio of the electromotive force induced

in an electric circuit 1, due to a change of the current in any other

circuit 2, to the time rate of change of this current, is called the

mutual inductance M 12 of circuit 2 with respect to circuit 1
;
hence

the electromotive force induced in 1 due to a change of the cur-

rent ia in 2 is

612= M12 -^
dt

The units of mutual inductance are the same as the units of self

inductance. When the permeability of every body in the mag-
netic field is constant and the circuits are fixed with respect to

each other and remain unaltered in size and shape, the mutual

inductance of one circuit with respect to the other is constant (for

a given distribution of the currents) and equal to the number of

linkages between one circuit and the flux produced by unit current

in the other, and the mutual inductance of the one circuit with



ELECTROMAGNETISM 233

respect to the other is the same as the mutual inductance of the

second circuit with respect to the first.

13. The energy of the magnetic field due to a current i in a

circuit of constant self inductance L is

W = \L?
When L is in henries and i in amperes this formula gives the energy
in joules ;

when L is in abhenries and i in abamperes this formula

gives the energy in ergs.

14. The energy of the magnetic field due to the currents t\ and

i2 in two circuits which have constant self inductances L
v and L2

and a constant mutual inductance M is

When the inductances are in henries and the currents in amperes
this formula gives the energy in joules ;

when these quantities are

in abhenries and abamperes this formula gives the energy in ergs.

15. When the current in a conductor of large cross section

varies rapidly with time, the back electromotive force due to the

variation of the flux linking the conductor is considerably greater

in the inside filaments of the conductor than in the outside fila-

ments
; consequently the current density is greatest near the sur-

face of the conductor. This phenomenon is known as the skin

effect.

16. The self inductance of each of two long parallel non-

magnetic wires, assuming a uniform current density, is

L =0.01524 + 0.1403 log millihenries per mile
r

where D is the distance between centers and r the radius of each

wire, both in the same units.

17. The self inductance of a concentrated winding varies

directly as the square of the number of turns.

18. The self inductance of a long solenoid is approximately

47T7VM
L =-- abhenries

where N is the total number of turns in the solenoid, A its cross

section in square centimeters and I its length in centimeters.

19. The energy per cubic centimeter of any magnetic field

when the permeability of every body in the field is constant is

8?r
ergs
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where H is the field intensity in gilberts per centimeter, B the

flux density in gausses and /*
the permeability in c. g. s. electro-

magnetic units.

20. The heat energy dissipated per cycle per centimeter- cube

in a magnetic substance when an alternating magnetic field is

established in it is equal to the area of the corresponding hysteresis

loop divided by 4 TT.

21. The force required to separate two parts of a magnetic
circuit is D2 A**" iF= dynes

STT

where A is the area in sq. cm. of the surface of separation and B
the flux density in gausses normal to this surface, provided B is

constant.

PROBLEMS
1. A coil which has a concentrated winding of 100 turns is

revolved in a uniform magnetic field about an axis perpendicular

to the direction of the field. The intensity of the field is 100

gilberts per cm., the area of each turn of the coil is 10 sq. cm.
;

the coil is rotated with a uniform velocity of 25 revolutions per
second. What is the instantaneous value of the e. m. f. induced

in the coil, (1) when its plane is perpendicular to the field, (2) when
its plane is parallel to the field; (3) what is the average value of

the e. m. /. induced in the coil while it is rotating 180 from the

first position?

Ans.: (1) 0; (2) 1.013 volts; (3) 0.645 volts.

2. How many foot-pounds of work must be done to pull a

coil having a concentrated winding of 200 turns out of a magnetic

field, if the flux threading the coil is 100,000 maxwells and the

current in it is maintained constant at 100 amperes?
Ans.: 14.76 foot-pounds.
3. A straight wire 10 inches long is moved parallel to itself

across a magnetic field in a plane making an angle of 45 with the

direction of the field. What is the value of the e. m. f. in volts

induced in the wire if it is moved with a velocity of 5 feet per
second and the field intensity is 200 gilberts per cm.?

Ans.: 0.00548 volts.

4. A coil of 20 turns is wound over the middle of a long solenoid

with an air core. The solenoid has a cross-sectional area of 10

sq. cm. and has 50 turns per linear inch. If the 20-turn secondary
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is connected in series with a resistance such that the total resist-

ance of the secondary circuit is 1000 ohms, what quantity of

electricity in coulombs is discharged through the secondary circuit

when a current of 5 amperes is reversed in the primary?
Ans.: 4.95X10'7 coulombs.

5. A coil of 1000 turns is wound uniformly on a round iron bar

20 centimeters in length and 2 sq. cm. in cross section. If a con-

stant current of 5 amperes is established in the coil, calculate the

work in joules required to withdraw the bar from the coil, assuming

the permeability of the bar to be constant and equal to 400 c. g. s.

units and neglecting the demagnetising effect of the ends of the bar.

Ans.: 0.01252 joules.

6. An air-core solenoid of 1000 turns is 20 cm. long and has a

mean diameter of 5 cm. Calculate the field intensity on the axis

of the solenoid 5 cm. internally from one end, due to a current of

2 amperes in the solenoid; make this calculation by integrating

the effect due to each turn separately. What is the error involved

in using formula (4) for the field intensity at this point?

Ans.: 122.8 gilberts per cm. Formula (4) gives a value

20.8% too great.

7. A cast-iron ring 20 inches in mean diameter with a circular

cross section 2 inches in diameter has an air gap 0.1 inch in length.

(1) How many ampere-turns are required to produce an average

flux density of 5000 gausses in this air gap, assuming no leakage?

Use Fig. 38 to get the relation between flux density and field

intensity in the iron. (2) What is the percentage ratio of the

drop of magnetic potential in the gap to that in the iron?

Ans.: (1) 4090 ampere-turns; (2) 32.8%.

8. What is the total reluctance of the iron ring and air gap

described in Problem 7?

Ans.: 0.159 oersteds.

9. An iron ring 20 cm. in mean diameter and 4 sq. cm. in cross

section is wound uniformly with 2000 turns of wire. Determine

the self inductance of this winding in henries, assuming a constant

permeability of 500 c. g. s. units.

Ans.: 1.6 henries.

10. Two coils A and B are wound uniformly upon the same

magnetic circuit, one over the other. The self inductance of A
is 3 henries and the self inductance of B is 5 henries. Assuming

the permeability of the magnetic circuit to be constant, determine
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the total inductance of A and B when connected in series, ( 1) so

that their magnetic fields are in the same direction, and (2) so that

their magnetic fields are in opposite directions. (3) What is the

mutual inductance of A and B?

Ans.: (1) 15.74 henries; (2) 0.26 henries; (3) 3.87 henries.

11. A coil having a concentrated winding of 1000 turns has a

self inductance of 0.05 henries. What is the energy in joules of

the magnetic field due to the current in the qoil when this current

produces a flux of 2000 maxwells?

Ans.: 0.004 joule.

12. When a current of 4 .amperes is established in the field

winding of a 4-pole shunt generator, the flux of induction through
each field coil is 3X106 maxwells. The four field coils are con-

nected in series electrically and each has 800 turns. Assuming
constant permeability and no magnetic leakage, determine (1)

the self inductance of the entire field winding, and (2) the total

energy of the magnetic field of the generator.

Ans.: (1) 24 henries; (2) 384 joules.

13. A cast-iron ring 10 inches in mean diameter and 4 sq. in.

in cross section is divided into two halves. Upon each half of the

ring are wound uniformly 100 turns of wire. If the two halves of

the ring are placed together to form a complete ring and the two

coils are connected in series so that their magnetic fields add,

determine ( 1) the energy of the magnetic field per cubic centimeter

when the current established in the winding is 2 amperes, assuming
a constant permeability of 300 c. g. s. units, and (2) the initial force

in pounds required to pull the two halves of the ring apart.

Ans.: (1) 473 ergs; (2) 16.5 pounds.
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ELECTROSTATICS

127. Electric Charges. We have already seen (Article 64)

that it is possible to have a difference of electric potential between

two conductors without- having an electric current in these con-

ductors. For example, the difference of electric potential between

the two poles of a battery when there is no conductor connecting
its poles, that is, when the battery is

"
open-circuited," is equal

to the electromotive force of the battery. It is found by ex-

periment that when a conductor A of any kind is connected to one

of the poles of a battery but not to the other, a momentary electric

current is established in this conductor, but after a small fraction

of a second this current ceases. By Ohm's Law, every point of

this conductor must come to the same potential as the terminal

of the battery to which it is connected (neglecting any slight

contact electromotive force between the conductor and the

terminal). Similarly, in any other conductor B connected to

the other terminal of the battery but completely insulated from

the first terminal, a momentary electric current will be established,

but when this current ceases every point of the conductor B
will be at the same potential as that of the terminal to which

it is connected. Hence between the two conductors A and B a

difference of potential is established equal to that of the electro-

motive force of the battery. It is also found by experiment,
that the wires connecting the two conductors A and B to the

battery may be removed without changing this difference of

electric potential between them, provided the wires are small

and the position of the conductors A and B relative to each

other and all other bodies in their vicinity remains fixed and the

conductors remain perfectly insulated from each other and all

other conductors. This can be tested by again connecting the

conductors A and B to the same terminals of the battery ;
it will

be found that no current, not even a momentary current, is estab-

lished in the wires, thus showing that each conductor remains

at the potential of the terminal to which it was originally con-

237
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nected. A difference of electric potential may then exist between

two conductors which are entirely insulated from each other

and all other conductors.

It is found by experiment that whenever a difference of

electric potential is established between any two conductors

these conductors exert a force upon each other and in general

also upon all other conductors and dielectrics in their vicinity,

even when there are no currents in the conductors. These forces

are due solely to the difference of electric potential established

between the various bodies, and as long as these potential differ-

ences remain constant in value the forces are found to remain

constant. Just as the forces produced by magnets on one another

and upon magnetic substances may be expressed in terms of a

something associated with the surfaces of the magnets and mag-
netic bodies, so may these forces due to differences of electric

potential be expressed in terms of a something associated with

the surfaces of the conductors and the dielectrics in their vicinity.

The something that produces these forces which are due to differ-

ences of electric potential is called an electric charge. We wish

now to see what are the properties of these electric charges and

what is their relation to an electric current.

In the first place, it is found that forces of exactly the same
nature are produced between any two dielectrics, such as glass

and silk, when these two bodies are rubbed together and then

separated; also when an insulated conductor is rubbed with any

dielectric, such as a piece of silk, and the conductor and the

dielectric are separated, it is found that the two bodies attract

each other. Bodies which are charged in this way are said to be
"
charged by friction." In fact, this method of producing the

phenomena which are ascribed to electric charges was known to

the ancients
;
whereas batteries and generators are comparatively

recent inventions.

128. Positive and Negative Charges. Attraction and Re-

pulsion of Charged Bodies. It is found by experiment that

bodies which are charged in exactly the same manner, as for

example, two insulated conductors placed momentarily in con-

tact with the same terminal of a generator, always repel each

other, while they may repel or attract a body which has been

charged in some other manner. For example, an insulated

conductor A placed momentarily in contact with the positive
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terminal of a generator is found to repel a body B which has

been placed momentarily in contact with this terminal, but will

attract the body B if the latter is placed in contact with the

negative terminal of the generator. (These forces are perceptible

only in case the generator develops an e. m. /. of several thousand

volts or more.) Similarly, two pieces of glass which have been

rubbed with silk are found to repel each other, while the silk

and glass are found to attract each other. We are therefore led

to the conception of two kinds of electric charges, which are

called respectively positive and negative charges. A body which

repels a piece of glass which has been rubbed with silk is said to

be positively charged, or to
" have " a positive charge, while a

body which attracts a piece of glass which has been rubbed with

silk is said to be negatively charged or to
" have " a negative charge.

A conductor which is placed in contact with the positive pole
of a battery or other source of electromotive force is positively

charged, while a body placed in contact with the negative pole of a

battery or other source of electromotive force is negatively charged.
129. Charging by Contact and by Induction. It is found

by experiment that when an originally uncharged conductor U
(e.g., a solid piece of metal, not necessarily a wire) is placed in

contact with a charged conductor C, the uncharged conductor

likewise receives a charge which is of the same sign as that

of the charged conductor; that is, when the charged conductor

C is positively charged, the originally uncharged conductor U
placed in contact with it likewise becomes positively charged;
while if the originally uncharged conductor U is placed in contact

with a negatively charged conductor C"
',
the uncharged conductor

U becomes negatively charged. When the conductor U is

removed from contact with the charged conductor it is found
that it remains charged, provided it is perfectly insulated from all

other conductors. A conductor which is thus charged by being

placed in contact with another conductor is said to be "
charged

by contact."*

*It is also possible to charge the surface of a dielectric by placing it in

contact with a charged conductor or a charged dielectric. Very little is known

concerning the exact distribution of such charges on dielectrics. Fortunately,
where a charged conductor is in contact with a dielectric it is in general
immaterial whether the charge is considered as "residing" on the surface

of the conductor or on the surface of the dielectric or on both. These contact

charges on dielectrics must not be confused with the induced charges dis-

cussed later.
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It is also found by experiment that a conductor can be charged
without placing it in actual contact with a charged conductor;

merely placing the originally uncharged conductor U in the

vicinity of a charged body C will cause the originally uncharged
conductor U to become charged. In this case, however, when
the originally uncharged conductor U is perfectly insulated, it is

found that the portion of this conductor U nearer the charged

body C receives a charge of the opposite sign to that on C while

the more remote portion of the conductor U receives a charge of

the same sign as that of C. In other words, the conductor U
becomes charged by

" induction
"

in a manner similar to that

by which a piece of soft iron placed in a magnetic field becomes

magnetised by induction. There is, however, an important
difference between the phenomenon of electrostatic induction in

a conductor and the phenomenon of magnetic induction in iron.

When a piece of iron which is magnetised by induction is divided

into two parts and the two parts are separated slightly, so that a

narrow gap is formed between them, magnetic poles are found

to exist on the surfaces of the iron forming the walls of this gap.
When a conductor U (which may be made in two parts originally

in contact) is charged by induction and the two parts Ul and

t/, are separated a slight distance, the surfaces of U
l and U2

forming the walls of this gap are not charged. Again, when the

piece of iron which is magnetised by induction is separated into

two parts and either part is removed from the magnetic field,

this portion of the original piece of iron is found to have equal
and opposite poles which disappear almost entirely when the

iron is jarred; however, when a conductor which is charged by
induction is separated into two parts U

1
and U2 ,

it is found that

the two portions of the conductor retain their charges, one part
a positive charge and the other part a negative charge, as long as

the two parts are kept perfectly insulated from each other and

from all other conductors. The charges on the two portions of

the conductor also remain unaltered in amount (but not in dis-

tribution, as we shall see later) even when these two portions
are removed from the vicinity of the conductor which induced

the charges and are separated from each other by any distance.

Hence another important difference between the phenomenon
of electrostatic induction in a conductor and the phenomenon
of magnetic induction; the total strength of the poles on a mag-
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netic substance is always zero, no matter into how many pieces
the substance may be broken, but the positive and negative

charges induced on a conductor may be separated from each other

by dividing the conductor.

Experiment also shows that electric charges are induced on a

dielectric which is placed in the vicinity of a charged body, in

the same manner that charges are induced on a conductor. In

the case of a solid or liquid dielectric separated from the charged

body by air the portion of the dielectric nearer the charged body
shows a charge of the opposite sign to that on the charged body,
while the portion of the dielectric more remote from the charged

body shows a charge of the same sign as that on the charged body.

However, when a dielectric which is thus charged by induction

is separated into two parts, it is found that charges are produced
on the walls of the gap between the two parts, a negative charge
on the side of the gap nearer the positive induced charge on the

original surface of the dielectric, and a positive charge on the side

of the gap nearer the negative charge induced on the original sur-

face of the dielectric. Also, when the dielectric as a whole, or

any portion of it, is removed from the vicinity of the charged

body which induces the charges on it, it is found that these in-

duced charges entirely disappear. In other words, the phenome-
non of electrostatic induction in a dielectric is of a similar nature

to the phenomenon of magnetic induction in a magnetic substance,

except that it is impossible to produce by electrostatic induction

a "
permanently electrified

"
dielectric. The above facts are

true only of a dielectric which is an absolute non-conductor.

Every dielectric, however, is a conductor to a certain extent, and
the resultant effect produced in a dielectric when it is placed
in the vicinity of a charged body is therefore a combination of

the effect due to its true dielectric or insulating property and
the effect due to its conducting property. We shall see later

how both these effects may be taken into account.

An electric charge can be induced only at the surface of

separation of two dissimilar substances. There is no way of

determining experimentally
" on " which of the substances in

contact the charge is induced; for example, when a piece of

glass is placed in air in the vicinity of a charged body, there

is no way of determining whether the induced charge at the

surface of separation between the air and the glass is
" on "



242 ELECTRICAL ENGINEERING

the surface of the air or
" on " the surface of the glass. How-

ever, just as in the discussion of the phenomena of magnetism
it was found convenient to assume that air was non-magnetic (and
therefore at the surface of separation between air and any other

substance the induced poles are entirely on the other substance),

so in the discussion of the phenomena of electrostatics, it is found

convenient to assume that at the surface of separation between

air* and any other substance, there is no charge induced on the

air. In general, at the surface of separation between any other

two substances, whether they be dielectrics or conductors, it will

then be necessary, in order to account for the observed phenomena,
to assume that a charge is induced on the surface of both these

substances.

130. Point-Charges. It is found to be impossible to produce
a finite electric charge at a point in space, but just as in the dis-

cussion of magnetic phenomena it was found convenient to make
use of the conception of a point-pole, so in the discussion of

electrostatic phenomena it is convenient to consider a charge
of finite amount concentrated in a point. Such a charge may
be called a point-charge. A physical approximation to a point-

charge is the charge on a small area.

131. Properties of Electric Charges. When all the electric

charges produced in any manner whatever, including the charges

induced on dielectrics, are taken into account, it is found that the

forces produced on one another by any number of charged bodies

may be accounted for by attributing to these electric charges the

following properties:

1. Like charges repel each other and unlike charges attract

each other.

2. When a charge of one sign is produced on any body an

equal and opposite charge is produced either on the same or on

some other body.
3. Two point-charges q and q

f
located at a distance r apart

repel each other with a force proportional to the products of the

quantities q and q' of these charges, and inversely proportional

to the square of the distance between them, independent of the

nature of the medium between them; that is, with a force

*Strictly, this assumption is permissible only for one definite pressure;

a pressure of 760 mm. of mercury is the adopted standard.
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where ft is a constant depending upon the units in which q, c[ ,
r

and / are measured. Since we have not as yet specified the unit

in which an electric charge is to be measured, we may select this

unit such that the constant k in the above equation is unity. We
then have that the force of repulsion between two point-charges

having the values q and
<?'

is

r
2

When q and ( are of the same sign this force is positive, and
therefore there is an actual repulsion ;

when q and of are of opposite

signs this force is negative, that is, there is an actual attraction.

This agrees with the first property stated above. The line of

action of the force produced by one point-charge on another is

the line drawn between them.

The resultant force produced on a given point-charge q
f

by
any number of point-charges is the vector sum of all the in-

dividual forces acting on that charge, that is, is

*-<t 2^ (U)

where the summation includes all the charges in the vicinity,

induced or otherwise, on conductors or dielectrics. Since the

quantity of charge induced on a dielectric depends upon the

nature of the dielectric, this resultant force will also depend upon
the nature of the surrounding dielectrics, but the force due di-

rectly to any given charge q, whether on a conductor or induced

on a dielectric, is independent of the nature of the medium .

between q and g'.

The unit of electric charge is defined by equation (la); that

is, a unit point-charge is a charge which repels with a force of

one dyne an equal point-charge placed one centimeter away. This

unit is called the c. g. s. electrostatic unit of charge.

Since the properties of electric charges are of exactly the same

form as the properties of magnetic poles, with the one exception

that a charge of one sign can exist by itself on a conductor, it

follows that the definitions and deductions in regard to the proper-

ties of magnetic poles can be applied directly to electric charges,

except such properties as were deduced as a consequence of the
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fact that equal and opposite poles always exist on the same

body.*
132. Electrostatic Field of Force. Electrostatic Intensity.

Any region of space in which an electric charge would be acted

upon by a mechanical force is called an electrostatic -field of force.

The intensity of the electrostatic field at any point is denned as

the force in dynes which would be exerted by the agents pro-

ducing the field on a unit point-charge placed at that point.

The names electrostatic intensity and electrostatic force are also

used for this quantity. The electrostatic intensity at any point
due to a point-charge q at a distance r centimeters away is then

and the total field intensity at any point P due to any number
of point-charges is the vector sum

TT S 9 (2fl)H=*S
where q is the value of the point-charge at any point and r is the

distance in centimeters of this charge from the point P, and the

summation includes all the charges, induced or otherwise, on all

the conductors and dielectrics in the field.

The total field intensity at any point P due to any charged
surface is the vector integral

(26)

where ds is any elementary area of the surface, <r is the charge

per unit area, or the surface destiny of the charge at ds, and r is

the distance of ds from P.

133. Lines of Electrostatic Force. Flux of Electrostatic

Force. Lines of electrostatic force may be drawn in the same
manner as lines of magnetic force, that is, lines of electrostatic

force are lines drawn in such a manner that the direction of each

line at each point coincides with the direction of the electrostatic

intensity at that point and the number of these lines per unit

area at any point, normal to their direction, is equal to the value

of the electrostatic intensity at that point. The number of

*The same symbols will as a rule be used throughout for the corresponding

quantities; in any problem in which both electrostatic and magnetic quantities

must be used, the former may be distinguished by the subscript "e."
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these lines of electrostatic force crossing any area is denned as

the flux of electrostatic force across that area. The mathematical

expression for the flux of electrostatic force across any surface

S is then

$ =
f (Hcosa)ds (3)

where ds is any elementary area of this surface, H the elec-

trostatic intensity at ds and a the angle between the direction

of this electrostatic intensity and the normal to ds. Gauss's

Theorem, which is simply a consequence of the inverse square

law, also holds for electric charges; that is, the number of lines

of electrostatic force outward across any closed surface is equal

to the algebraic sum of the charges inside the surface. The

mathematical expression of this fact is

|

(H cos a ) ds =4 TT 2 q (3a)

where f represents the integral over the closed surface.

134. Lines of Electrisation. We have already seen that

when a charged conductor is separated into two parts by a narrow

gap, there is no electric charge produced on the walls of this gap.

It is also found that when a closed cavity of any kind is formed

inside a charged conductor, no electric charge is produced on the

walls of this cavity no matter how the external surface of the

conductor is charged. A charge can be produced on the walls

of such a cavity only by introducing a charged body into -this

cavity. Hence in a charged conductor there is nothing analogous

to lines of magnetisation inside a magnetised body.

In the case of a dielectric charged by induction, however, we
have seen that in general charges do appear on the walls of a

gap cut in the dielectric, just as magnetic poles appear upon the

walls of a gap cut in a magnetised body. It is possible, however,

just as in the case of a magnetised body, to cut in a dielectric

which is charged by induction a gap in such a direction that

no charge will appear on the walls of the gap. Hence we may
consider a dielectric which is charged by induction to be made

up of filaments the walls of each of which have such a direction

that were this filament separated from the rest of the dielectric by
a gap of infinitesimal width, there would be no charges induced

on the lateral walls of this filament. The two ends of such a

filament in the original surface of the dielectric will then have
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equal and opposite charges. We may then take each filament of

such a size that it terminates at each end in a charge which has

the numerical value . The positive sense of such a fila-

4?r

ment is taken as the direction along it from its negative to its

positive end; that is, these filaments are considered as running

through the dielectric from its negatively charged end to its

positively charged end. These filaments are called lines of

electrisation. The intensity of electrisation at any point in a

body is defined as the charge per unit, area which would appear
on a gap cut in the body at this point perpendicular to the line

of electrisation through this point. The direction of the intensity

of electrisation at any point is taken as the direction of the line

of electrisation through this point. Lines of electrisation, lines

of electrostatic force, and the electric charge induced on the surface

of a dielectric are then related to one another in exactly the same
manner as lines of magnetisation, lines of magnetic force and the

magnetic poles induced on the surface of a magnetic body. That

is, the number of lines of force ending on a negative charge in-

duced on a dielectric is equal to the number of lines of electrisation

originating from that charge, and the number of lines of electrisa-

tion ending on a positive charge induced on the surface of a dielec-

tric is equal to the number of lines of electrostatic force originating
from that charge. The relation between the intensity of electrisa-

tion at any point in the surface of a dielectric and the charge
induced on that surface is then

cr = J cos a (4)

where cr is the surface density of this induced charge at this

point, J the intensity of electrisation of the dielectric at this

point, and a the angle between the direction of the intensity of

electrisation at this point and the direction of the normal drawn
outward from the surface of the dielectric at this point. (See
Article 46.)

The number of lines of electrisation crossing an elementary
surface ds the normal to which makes an angle a with the

direction of the intensity of electrisation is

dN =4 TT (/ cos a) ds (5)

Since we have assumed (Article 129) that no charges are in-

duced on the surface of the air in contact with any other sub-

stance, the intensity of electrisation in air is zero.
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It should be clearly kept in mind that the above relations

hold only for charges induced on dielectrics. Since every dielec-

tric (other than a perfect vacuum) is a conductor to a slight

extent, charges are also induced on the dielectric due to its con-

ducting property; these latter charges, however, are usually

negligible in practical work.

135. Lines of Electrostatic Induction. Flux of Electrostatic

Induction. The algebraic sum of the number of lines of elec-

trisation and the number of lines of electrostatic force across

any surface in an electrostatic field is called the number of

lines of electrostatic induction across that surface, or the flux of

electrostatic induction across that surface. Experiment shows

that, except in the special case of certain crystals, the intensity

of electrisation at any point in a dielectric is in the same direction

as the intensity of the electrostatic field. Hence the mathemati-

cal expression for the number of lines of electrostatic induction

crossing an elementary surface dsn normal to the direction of the

field intensity is

J ds

where H is the intensity of the electrostatic field at ds, and J
the intensity of electrisation in the dielectric at ds. The number
of lines of electrostatic induction per unit area at any point normal

to their direction is called the electrostatic flux density* at this

point. The relation between electrostatic flux density, field inten-

sity and intensity of electrisation is then

B=H+ 4>rrJ (6)

Hence the flux of electrostatic induction across any elementary
surface ds may also be written

d<f)=(B cos a) ds (7)

where B is the electrostatic flux density at ds and a is the angle

between the direction of this electrostatic flux density and the

normal to ds.

Since the intensity of electrisation in air is zero, the lines of

electrostatic force and the lines of electrostatic induction in air

*The electrostatic flux density divided by the factor 4 TT is called the elec-

trostatic polarisation or the electric displacement. The factor 4 IT comes in

from the fact that one line of polarisation or one line of electric displacemen
is considered as originating from each unit charge on a conductor, while from

a unit charge on a conductor there originate 4 TT lines of electrostatic induction.
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are identical, and therefore the electrostatic intensity and the

electrostatic flux density in air are equal.

136. Dielectric Constant. Experiment shows that the elec-

trostatic flux density produced in any dielectric when placed
in an electrostatic field is directly proportional to the resultant

field intensity, and except in the special case of certain kinds of

crystals, the direction of the electrostatic flux density coincides

with the direction of the field intensity. The ratio of the

electrostatic flux density to the field intensity is called the

dielectric constant of the dielectric. That is, calling B the elec-

trostatic flux density at any point in the dielectric, and H the

resultant electrostatic intensity at this point, the dielectric con-

stant of the dielectric at this point is

K-* (3)

H
The dielectric constant is exactly analogous to magnetic perme-

ability. The values of the dielectric constants for a few sub-

stances are

Solid paraffin 2.29

Paraffin oil 1.92

Ebonite 3.15

Mica 6.64

Glass 6.5 to 7.5

Distilled water 76

Alcohol 26

Ordinary gases 1.000

Perfect vacuum 0.9995

Combining equations (6) and (8) we have that H+ 47rJ =
KH and therefore that

J=(K-l) H (9)

4?r

Hence in any dielectric for which the dielectric constant is unity

the intensity of electrisation is zero, and therefore there are no

lines of electrisation, and hence there are no charges induced on

the surface of such a dielectric. In a dielectric for which the

dielectric constant is greater than unity, the intensity of electri-

sation is not zero but a positive quantity, and therefore the field

intensity is less than the flux density ;
hence the number of lines

of electrostatic force inside a dielectric of which the dielectric
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constant is greater than unity is always less than the number

of lines of electrostatic induction.

137. A Closed Hollow Conductor an Electrostatic Screen. -

It is found by experiment that an electric charge cannot be pro-

duced on the inside surface of a hollow closed conductor by

charging the conductor either by contact with, or by induction

from, any agent whatever outside the conductor; nor can an

electrostatic field be produced inside the space enclosed by the

conductor by any agent whatever exterior to the conductor,

provided in each case there is no electric current in the conductor.

These two important facts were discovered by Faraday, who
built a large insulated metal chamber in which he set up the

most delicate measuring instruments he could devise; he was
unable to detect the slightest, electrostatic effect inside this

chamber no matter how highly the chamber was electrified on
the outside. All deductions from this discovery of Faraday's
have been found to be in accord with experiment, and we there-

fore accept as a fundamental law of electrostatics that any region

completely enclosed by a conductor is absolutely protected from

external electrostatic effects. It is also found that a metal gauze
or cage forms a practically perfect screen.

138. The Resultant Electrostatic Intensity Within the Substance

of a Conductor in which there is no Electric Current is Always Zero.

An important deduction from Faraday's discovery is that

the resultant electrostatic intensity within the substance of a

charged conductor is zero, provided there is no current in the con-

ductor, no matter how the conductor may be charged. For, should

a closed cavity be made in this conductor, no charge would appear
on the walls of this cavity, and therefore the original electro-

static field would not be altered; therefore the electrostatic field

inside this cavity must be the same as originally existed hi the

conducting material which filled this cavity, since the electro-

static intensity at any point due to any given distribution of

electric charges is independent *of the material at the point in

question. But the electrostatic intensity in the cavity is zero,

and since the charges producing the field are not altered by
forming the cavity, the electrostatic intensity in the conducting
material which originally filled this cavity must also have been
zero.

Since the resultant intensity in a conductor is zero, it follows
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that when a conductor is placed in an electrostatic field, the induced

charges which appear must be distributed in such a manner that

the field within the substance of the conductor due to these in-

duced charges is just equal and opposite to the original field in

the space occupied by the conductor.

139. The Total Charge Within any Region Completely En-

closed by a Conductor is Always Zero. We have just seen that

the electrostatic intensity is zero within the substance of a con-

ductor in which there is no electric current. Hence when any

region of space is completely enclosed by such a conductor the

total flux of electrostatic intensity out through any surface

drawn within the substance of this conducting shell is zero, since

there are no lines of electrostatic force crossing this surface.

Hence, by Gauss's Theorem, the total charge inside such a surface

is zero. Also, since it is one of the fundamental properties of

electric charges that a charge of one sign cannot be produced
without at the same time producing an equal charge of the op-

posite sign, the total charge outside such a closed surface must

also be zero. Hence a closed conducting surface divides all

space into two parts in, each of which parts the total charge is

zero. For example, let A be an insulated conductor which has

-Q

Fig. 74.

a charge of Q units
;
then on some other conductor or conductors B

there must be an equal and opposite charge of Q units. Let A
be completely surrounded by an insulated conducting shell C;

there must then be induced on the inside of this shell a charge
of Q units and on the outside of this shell a charge of + Q units.

140. The Electrostatic Intensity Just Outside a Charged Con-

ductor is Normal to the Surface of the Conductor. By the same

process of reasoning as that employed in Article 50, by which

it was shown that the tangential components of the magnetic
field intensities just inside and just outside a magnetically charged
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surface at any point are equal, it can be shown that the tangential

components of the electrostatic intensities just inside and just

outside an electrically charged surface are also equal at each point

of the surface. In the case of a charged conductor in which there

is no electric current we have just seen that the resultant electro-

static intensity inside the surface is zero, and therefore inside the

surface the tangential component is zero. Hence the tangential

component of electrostatic intensity just outside the surface must
also be zero. (When there is an electric current in the conductor

the tangential component of the electrostatic intensity at the

surface of the conductor is not zero, but is equal to where
3X1010

p is the specific resistance of the conductor in ohms per centimeter

cube and cr is the current density in abamperes per square centi-

meter, see Articles 102 and 148; this quantity, however, is usually

negligibly small.) Hence the important result: the resultant elec-

trostatic intensity just outside the surface of a charged conductor

is normal to the surface of the conductor; or, stated in other words,
the resultant lines of electrostatic force are always perpendicular
to the surface of a conductor where they enter or leave it. This

relation is absolutely true in case there is no electric current in

the conductor and also holds to a close degree of approximation
in any practical case when there is a current in the conductor.

141. The Electrostatic Flux Density Just Outside a Charged
Conductor is Independent of the Nature of the Surrounding Di-

electric. Let the dielectric in contact with the conductor have

a dielectric constant K, and let the surface density of the charge
on the conductor at any point P be cr. A charge will also be

induced on the surface of the dielectric in contact with the con-

ductor at P; let cr' be the value of this induced charge. Draw
around P a small right cylinder with

its axis normal to the surface of the

conductor at P and one end of the

cylinder inside the surface and the

other outside the surface. Let H be

resultant electrostatic intensity at P
just outside the surface of the con-

ductor, and let the end of the cylinder

have the area ds. Then when the ends

of the cylinder are infinitely close to Fig. 75.



252 ELECTRICAL ENGINEERING

the surface, the electrostatic intensity outside the conductor

will be normal to ds. Hence the total flux of electrostatic

force across the outside end of the cylinder will be Hds.

Across the lateral walls of the cylinder outside the conducting
surface the flux of force will be zero, since these lateral walls

are parallel to the direction of the field intensity. Across the

walls of the portion of the cylinder inside the surface the flux

of force will likewise be zero, since there is no electrostatic field

inside the conductor. Hence the total flux of force outward

through the walls of this cylinder is Hds. By Gauss's Theorem

this must be equal to 4 TT times the total charge inside this cylinder,

that is, equal to 4 TT (cr + <r') ds. Hence

#=477(0- +0-0
But since the lines of electrisation (which coincide in direction

with the lines of force) are perpendicular to the surface at P and

are into the dielectric from its surface, the intensity of electrisa-

tion of the dielectric just outside the conductor at P is

J=-cr'
see equation (4). From equation (6) the electrostatic flux density

at P is B = H+ 4:7rJ. Therefore substituting for H and / their

values in terms of cr and cr', we have

That is, the electrostatic flux density at any point just outside a

conductor is

5=4770- (10)

where cr is the surface density of the charge on the conductor at

this point, and is independent of the nature of the dielectric in con-

tact with the conductor at this point.* The resultant electrostatic

intensity just outside a charged conductor, on the other hand,
does depend upon the nature of the dielectric in contact with the

conductor, and is equal to

tf=l^ (11)K
where K is the dielectric constant of the dielectric in contact

with the conductor at the point in question.

An important difference between lines of magnetic induction

*In the deduction of this relation the contact charge, if any, produced on the

surface of, the dielectric, is neglected. In case there is a contact charge on the

dielectric this same relation holds when O" is taken to represent the surface

density of .the charge on the conductor plus the contact charge on the dielectric.
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and lines of electrostatic induction should be noted in this con-

nection. Lines of magnetic induction are always closed curves.

On the other hand, lines of electrostatic induction which are

due entirely to electric charges originate from and end on con-

ductors (or contact charges on dielectrics) ;
4 TT of them originate

from each unit positive charge on a conductor and 4 TT of them
end on each unit negative charge on a conductor. They do not,

however, end on charges induced on dielectrics, but pass through
these charges (see Article 54), in general making an abrupt change
in direction at the surface of a dielectric on which a charge
is induced. Lines of electrostatic force, however, are strictly

analogous to lines of magnetic force
;
4 77 of them originate from

every unit positive charge and 4 TT of them end on every unit

negative charge, whether these charges be on a conductor or are

induced charges on a dielectric. Hence in any dielectric which
has a dielectric constant greater than unity there are fewer lines

of force than lines of induction, for the lines of induction all pass

through the dielectric while some of the lines of force end on its

surface.

142. Conditions which Must be Satisfied at any Surface in an
Electrostatic Field. By identically the same process of reasoning
as that employed in Articles 49 and 50 it can be shown that at

every surface in an electrostatic field other than a conducting
surface the following conditions must be satisfied:

1. The normal components of the electrostatic induction on
the two sides of any surface at any given point in this surface

must be equal.

2. The tangential components of the electrostatic intensity

on the two sides of any surface at any given point in this surface

must be equal.

At the surface of a conductor the surface conditions are, as

we have just seen, that

1. Both the electrostatic intensity and the electrostatic induc-

tion inside the surface are zero.

2. Both the electrostatic intensity and the electrostatic induc-

tion just outside the surface are normal to the surface.

From these surface conditions the distribution of the charges
on conductors and those induced on dielectrics may be calculated

in certain simple cases.

143. Electrostatic Potential. The work that would be done
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by the agents producing an electrostatic field on a unit positive

point-charge, were such a point-charge moved from any point
P in the field to infinity, is called the electrostatic potential of the

field at the point P. The electrostatic potential at any point P
due to a point-charge q at a distance r from P is then

V JL (12)

r

and is independent of the path over which the charge is moved
from P to infinity, and therefore depends only upon the relative

position of the charge and the point P. (See Article 59.) Since

electrostatic potential is the ratio of work to charge, and since

both work and charge are scalar quantities, electrostatic poten-
tial is also a scalar quantity. Hence the resultant electrostatic

potential at any point due to any number of electric charges is

the algebraic sum of the potentials due to each charge separately.
Therefore the electrostatic potential at any point P due to a

charged surface of any kind is
"

o-ds (12o)

L8
where ds represents any elementary area of the surface, cr the

surface density of the charge at ds, and r the distance of the point
P from ds.

144. Difference of Electrostatic Potential. The difference of

electrostatic potential between any two points 1 and 2, or specifi-

cally, the drop in electrostatic potential from the point 1 to the

point 2, is the work that would be done by the agents producing
the electrostatic field on a unit positive point-charge were such

a charge moved from the point 1 to the point 2. Calling dl

an elementary length in any path from the point 1 to the point

2, H the electrostatic intensity at dl, and the angle between
the direction of the electrostatic intensity H and the direction

of the length dl, the drop of electrostatic potential from 1 to 2

along this path is then

/*2

(HcosO)dl (13)

When there is no contact or induced electromotive force in the

path from 1 to 2, the drop of electrostatic potential from any point
1 to any point 2 is independent of the path over which the charge
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is moved, and therefore under this condition the drop of electro-

static potential around any closed path in the field is zero.

However, as we shall see presently, when there is any contact

or induced electromotive force in the field, this contact or induced

electromotive force also produces an electrostatic field the lines

of force representing which are closed loops passing through the

surface of contact in the case of a contact electromotive force

and linking the lines of magnetic induction in the case of an in-

duced electromotive force. In such a case the drop of electrostatic

potential around any closed loop is equal to the algebraic sum of

the contact and induced electromotive forces in the loop, provided
the drop of electrostatic potential and the electromotive forces

are expressed in the same unit. (See Article 148.) Hence, when
there are any contact or induced electromotive forces in an electro-

static field the difference of electrostatic potential between any
two points depends not only upon the position of the two points
but also upon the path over which the unit charge is moved. For

example, in the conductor forming the armature winding of a

continuous current generator the resultant electrostatic intensity
is zero when there is no current in the armature conductors (see

Article 138). Hence the drop of electrostatic potential through
the winding from the positive to the negative terminal is zero, but

the drop of electrostatic potential from the positive to the negative
terminal through the surrounding air is equal to the electromotive

force of the generator. Compare also with the relation between

drop of magnetic potential around a closed loop and the magneto-
motive force linked by this loop, Article 113.

145. Electrostatic Equipotential Surfaces. An electrostatic

equipotential surface is a surface drawn in an electrostatic field

in such a manner that the drop of electrostatic potential along any
path in the surface is zero. Such a surface will intersect the lines

of electrostatic force at right angles. For, were any line of force

not perpendicular to the surface where it crosses the surface, the

electrostatic intensity at this point of intersection would have
a component parallel to the surface, and therefore work would
be done on a unit

1

point-charge were the latter moved along the

surface in the direction of this component; but this is contrary
to the condition that the surface is drawn in such a manner that

there is no difference of potential between any two points in its

surface.
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When a conductor in which there is no electromotive force

is placed in the electrostatic field, the conductor must become
an equipotential surface, for we have already seen that the electro-

static intensity is always normal to the surface of a conductor in

which there is no electric current, and therefore the drop of

potential along any path in the surface of the conductor is zero.

146. Parallel Plate Electrometer. The following exan pie

wT

ill illustrate the principles stated above, and will at the same
time show how electric charge and difference of electrostatic

potential may be measured. By the same process of reasoning
as that employed in Article 37 it can be shown that the electro-

static intensity due to a uniformly charged plane surface is in

the direction normal to this surface at any point at a perpendic-
ular distance from the surface small compared with the distance

of the point from the perimeter of the surface, and that its value is

#=27rcrn (14)

where crn is the surface density of the net charge at this surface.

By net charge is meant the algebraic sum of the charge on the

conductor, the contact charge (if any) on the dielectric in contact

with the conductor, and the charge induced on the dielectric.

Consider two equal plane metal discs A and B placed parallel

. a' and opposite to each other and im-

mersed in a dielectric of which the

B
f

dielectric constant is K, and let this

Fig. 76. dielectric completely fill all the sur-

rounding space. Let the plates A and B be given charges of

Q and Q units respectively. The only charges induced on

the dielectric will then be those at the surface of separation
between the metal plates and the dielectric. The charges Q
and Q and the charges induced on the dielectric must be dis-

tributed in such a manner that (1) the electrostatic intensity at

any point inside the plates is zero, and (2) the electrostatic in-

tensity at each point in the dielectric infinitely close to the surface

of the. plates is normal to the surface at this point. A uniform

distribution of the net charge at the two surfaces a and b which

face each other and no charge on the " back" surfaces a' and I/ will

satisfy these conditions for all points except those near the edges
of the plates. For, calling crn and crn the surface densities of

the net charge at the surfaces a and b respectively, the resul-

tant intensity (from equation 14) inside each plate will be
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2 TT crn 2 TT <rw
=

0, and the intensity at any point in the space

between the plates will be 2 TT crn + 2 TT crn =4 TT crn and will be

perpendicular to these surfaces, while at each point infinitely close

to the surfaces a' and b' the intensity will be 2 TT crn 2 TT crn =0,
which relations satisfy the surface conditions 1 and 2. It can also

be shown in that there is only one possible distribution of charges

which can satisfy these surface conditions
;
hence at all points at a

considerable distance from the edges of the plates the charges at

the surfaces of separation between the dielectric and the plates

must be distributed uniformly over the surfaces a and b and there

can be no charge on the surfaces of and b
f

(except near their

edges) .

Let cr be the value of the total charge on the conductor and

the contact charge, if any, on the dielectric at each point of the

surface a and cr' the value of the charge induced on the dielectric at

the surface a. Then crn =cr + cr' =cr /, where J is the intensity

of electrisation of the dielectric in the direction from a to b. But
( Jf 1 ^ J-T

J =---
, equation (9a), whence the resultant field intensity

4 7T

at any point in the space between the plates, not too close to their

edges, is

K
where cr is the surface density of the charge on the conductor. (Com-

pare with equation 11.) This electrostatic intensity is therefore

perpendicular to the surfaces of the plates, and the electro-

static field between the two plates is a uniform field except for

points not too close to the edges of the plates.

The force of attraction between the two plates may be readily

calculated. For, of the resultant intensity H = ,
half must

K.

be due to each plate, that is the resultant field intensity due to each

plate is -^-
. This, then, is the value of the force due to the plate

K.

A, say, on each unit charge on the plate B (or, vice versa, the force

due to the plate B on each unit charge on the plate A). Hence

the pull on each unit area of the plate A is
,
and when the

K
linear dimensions of the plates are equal and are large compared
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to their distance apart, so that the non-uniformity of the distribu-

tion of the charge at their edges may be neglected, the total force

of attraction between the two plates is

K KS
and therefore

where S is the area of each plate and Q the total charge on each

plate. The force F may be readily measured by suspending
one of the plates from one arm of a suitable chemical balance.

When the plates are separated by air, the force of attraction

2 TT O2

between the two plates is F=
,
since the dielectric con-

S
stant of air is unity. In this case the charge on each plate is

numerically equal to

^SF-
(156)

Hence, by measuring the force of attraction between the two

plates the charge on each p ate may be calculated. Again,
from the fact that the electrostatic field between the two plates

is uniform, the difference of electrostatic potential between the

plates may also be calculated. For, calling D the distance

between the two plates, we have, from equation (13), that this

difference of electrostatic potential is

J
D

_47ro- D_4ir Q D_ |g 77 F

/
r<H--r--nnr-Ninr

_

(16)

When the plates are separated by air, the dielectric constant is

unity, and therefore the difference of electrostatic potential

between the two plates is

(16a)

The arrangement of parallel plates above described, which

arrangement is called a parallel plate electrometer, gives us a

means of measuring both electrostatic charge and electrostatic

potential difference. The above calculations are all based upon
the assumption that the non-uniformity of the charge near the

edges of the plates may be neglected. The condition of uni-
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formity of charge on the suspended plate and uniformity of the

electrostatic field acting on it may be more closely realized by
suspending only the central portion of the upper plate, and letting

the rest of this plate form a flat metal ring which is kept station-

ary but connected by a conductor to the suspended portion.

That is, the upper plate is made in two portions; a central disc

suspended from the arm of the balance and an outside
"
guard

ring
" with its lower surface flush with the lower surface of the

ring and separated from the disc by a narrow air gap, the ring

and plate being conductively connected through the metal wires

from which the disc is suspended. The surface S in the above

formulas is then the area of the surface of this disc, and the charge

Q is the charge on this disc.

147. Relation between Electrostatic Charge and Quantity of

Electricity. Consider an electrometer of the form described in

the preceding article, and for simplicity let the plates of the

electrometer be of the same area and let there be no guard ring.

When the two plates are connected by a wire, any charge which

W

B

Fig. 77.

might have been on them disappears, and there is no appreciable

force of attraction between them. The plates are then un-

charged and are at the same electrostatic potential and also at

the same electric potential, as defined in Article 87, since there is

no current in the wire connecting them. (If the plates are orig-

inally charged before they are connected by the wire a momen-

tary current will be established in the wire, as we shall see pres-

ently, but this current lasts only for a small fraction of a second.)

Arrange two insulated wires W and W in series respectively

with the ballistic galvanometers G and Gf

',
and connect one end

of these wires respectively to the positive and negative terminals

of a generator or other source of electromotive force. Remove
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the wire connecting the two plates of the electrometer and con-

nect the other ends of the wires W and W to the plates A and B
respectively. The following phenomena will be observed :

1. A momentary electric current is established in the two

galvanometers, as shown by their deflections, and therefore a

certain quantity of electricity as defined in Article 80 is trans-

ferred across each section of the wire forming the galvanometer

windings and the wires W and W. If the galvanometers have

been calibrated (see Article 109) the quantity of electricity trans-

ferred through each can be measured and the direction of its

transfer can be observed. It will be found that equal quantities

of electricity are transferred through each galvanometer (provided

the connecting wires are small) and that the direction of transfer

or
"
flow

"
of electricity is from the plate B which is connected

to the negative terminal of the generator and towards the plate

A which is connected to the positive terminal of the generator.

2. The plates A and B will become charged, as shown by their

mutual attraction, the plate A positively and the plate B nega-

tively. The charges given the two plates will also be numerically

equal, as can be tested by observing the force which each produces
on some other charged conductor when placed successively in the

same relative position with respect to the latter.

When the value of the impressed electromotive force, or

trie distance apart of the plates, or the size of the plates, or the

dielectric between them, is altered, it is found that the charge

given each plate also changes ;
the quantity of electricity trans-

ferred through each galvanometer likewise changes. In each

case, however, it is found that the charge given each plate is

directly proportional to the quantity of electricity transferred

through each galvanometer. When the charge given each plate

is measured in electrostatic units, as defined in Article 131, and

the quantity of electricity transferred through each galvanometer
is measured in electromagnetic units as defined in Article 80, it is

found that the numerical value of the charge given each plate

is equal (approximately) to 3 x 10
10 times the numerical value

of the quantity of electricity transferred through each galva-

nometer. This figure 3 x 10
10

is approximately equal to the

velocity of light in air. Consequently, if as the unit of charge
is taken a unit 3 x 10

10 times the size of the electrostatic unit

as defined in Article 131, the numerical value of the electric
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charge given each plate will be equal to the number of electro-

magnet units of quantity of electricity transferred to it
; similarly,

if as the unit of charge is taken a unit 3 x 10
9
times the size of

an electrostatic unit the numerical value of the electric charge

given each plate will be equal to the number of coulombs trans-

ferred to it. Electric charge and quantity of electricity may
then be measured in the same units

;
these units are related as

follows :

1 c. g. s. electromagnetic unit or abcoulomb

=3 x 1010
c. g. s. electrostatic units

1 coulomb =3 x 10
9

c. g. s. electrostatic units

(The figure 3.00 x 10
10

is about as accurate as can be determined

by a direct comparison of electromagnetic and electrostatic units.

The electromagnetic theory of light requires that ratio between

the electromagnetic and electrostatic units be exactly equal to

the velocity of light in air, and the velocity of light by direct

optical methods is found to be 2.998X 10
10

centimeters per second.

The experimental fact that the ratio of the two kinds of units

is, as closely as can be measured, equal to the velocity of light

in air, is strong evidence for our belief in the truth of the electro-

magnetic theory.)

The phenomena just described are reversible; that is, when
the charge on a conductor disappears a current is established in

the conductor which transfers from each element of the surface

of the conductor a quantity of electricity equal to the charge

originally on this surface. For example, when the two plates

of the electrometer described above are disconnected from the

generator and then connected to each other through a ballistic

galvanometer, it is found that the quantity of electricity trans-

ferred through the galvanometer is exactly equal to the quantity
of electricity originally transferred through the galvanometers
when the plates were charged (provided the plates are otherwise

perfectly insulated), and the transfer of charge is in the direction

from the positive to the negatively charged plate ;
the plates also

no longer attract each other, i.e., the charges on the two plates

disappear.

148. Relation between Electrostatic Potential and Electric

Potential. The drop of electrostatic potential between any
two points has been defined as the work done by the agents pro-

ducing the electrostatic field when a unit positive point-charge is
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moved from one point to the other, and the drop of electric potential

between any two points as the work done by a continuous current

in an insulated conductor connecting the two points per unit

quantity of electricity transferred across each section of the conductor.

Hence, when as the unit of charge is taken the electromagnetic

unit as above defined and the erg is taken as the unit of work,
the unit of electrostatic potential drop is the number of ergs of

work done when one electromagnetic unit of charge is moved
from one point to the other; this unit is called the electromag-
netic unit of electrostatic potential difference. Similarly, when
the electrostatic unit is taken as the unit of quantity of electricity

and the erg as the unit of work, the unit of electric potential

drop is the number of ergs of work done when one electrostatic

unit of quantity is transferred across each section of the con-

ductor
;
this unit is called the electrostatic unit of electric potential

difference. The relations between these various units of potential

difference are given in Article 87.

In general, every source of electromotive force, either contact

or induced, produces an electrostatic field and electric charges

appear on any conductors in the vicinity. The results of all

known experiments show that the drop of electrostatic potential

through the dielectric between any two points which are connected

by conductors is exactly equal to the drop of electric potential through
the conductors between these points, provided both potential drops
are expressed in the same units. For example, in the experiment
considered above, when the momentary currents in the galvanom-
eters cease, the plate connected to the positive terminal of the

generator must be at the same electric potential as this terminal

(this follows from Ohm's Law) ; similarly, the plate connected to

the negative terminal must be at the same electric potential as this

latter terminal. Hence the difference of electric potential between

the two plates is equal to the electromotive force of the generator,

which electromotive force is readily measured by any of the

methods described in Chapter V. The difference of electrostatic

potential between the two plates can be determined by the method

given in Article 146. When the values of the potential drops
obtained from these two measurements are expressed in the same
units they are found to be equal.

When the drop of potential through the conductor is due solely

to its resistance, i.e.. when there is no induced or contact electro-
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motive force in the conductor, we have seen (Article 102) that the

product of the specific resistance of the conductor by the current

density at any point gives the drop of electric potential per unit

length at this point along the stream lines of the electric current,

which drop of potential per unit length was defined as the electric

intensity at the point in question. Since the electrostatic in-

tensity at any point is equal to the drop of electrostatic potential

per unit length measured along the line of force through this point

(this follows directly from the definition of electrostatic potential,

Article 144) ,
it follows that the electric intensity and the electrostatic

intensity are the same, provided they are both expressed in the

same units. Since the specific resistance of ordinary insulators

is very high the current density in them is very small for such

potential differences as are used in practice.

149. Displacement Current. When the two plates of the

electrometer are charged by connecting them to the two terminals

of a generator or other source of electromotive force, we have

seen that a momentary electric current is established through the

wires connecting the plates to the terminals, and that this current

is in the direction away from the plate which becomes negatively

charged and towards the plate which becomes positively charged.

In the case of an electric current which does not vary with time

we have seen that the path of the current is a continuous line

which forms a closed loop lying wholly within the conductors

forming the circuit. The question arises whether the path of

the variable current which results in the establishment of an

electric charge, such as that produced on the plates of the elec-

trometer, is not also closed on itself
;
that is, whether a momentary

current is not also established through the dielectric between the

plates. To determine this, it is necessary to see whether a mag-
netic field due to some external source produces a force on the

dielectric while the variable current exists in the conducting

part of the circuit. (See definition of the measure of an electric

current, Article 66.) To determine this by direct experiment
is extremely difficult, though it has been done. In addition,

the results of all known experiments are in accord with the assump-
tion that an electric current always exists in the dielectric sur-

rounding a conductor when a variable current exists in the con-

ductor; that is, when the charge on the conductor is varying there is

a current in the dielectric continuous with the current in the
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conductor. There are two important differences between the

properties of an electric current which can exist in a perfect

dielectric and the properties of a current in a conductor. (1)

The current in a conductor may be "
continuous," that is, not

varying with time, or it may be variable
;
in a perfect dielectric,

however, only a variable current can exist. (2) The current in

a perfect dielectric does not develop heat energy, while in a con-

ductor heat energy is always produced. In an imperfect insulator

both kinds of currents may exist; that part of the total current

which develops heat energy due to the resistance of the dielectric

is called the conduction current, while that part which depends

upon the time variation of the electrostatic field, and therefore

upon the time variation of the charges on the conductors in

contact with the dielectric, is called the displacement current.

In the case of a conductor in contact with a perfect insulator,

the charge given any element of the surface of the conductor in

any small interval of time dt is equal to the quantity of electricity

dq=idt transferred to that surface by the current i in the con-

ductor provided charge and current are measured in the same

system of units
; hence, since in this case the only current leaving

that surface is the displacement current in the dielectric, it follows

that the displacement current leaving that surface is

. = dq (17)

dt

That is, the displacement current leaving the surface of a conductor

in contact with a perfect dielectric is equal to the time rate of change

of the charge on that surface. When the dielectric in contact with

the conductor is not a perfect insulator, part of the conduction

current coming up through the conductor to its surface leaves

that surface as a conduction current through the dielectric.

Hence calling id the displacement current in the dielectric and ic

the conduction current in the dielectric, we have that the total

current coming up to the surface at any instant is

i=id+ic (18)

that is, the total current coming up to a surface at any instant is

equal to the total current leaving that surface at that instant.

Since id
=

,
where is the time rate of change of the charge

dt dt

on the surface, we have that
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dq=(i-ic ) dt

whence q=f' (i-ic ) dt (19)J o

where q is the total charge given to the surface in any interval

of time t. That is, the total charge given the surface of a conductor

in any interval of time is equal to the algebraic sum of the quantities

of electricity transferred to that surface in this interval by the con-

duction currents flowing toward this surface.

Since the electrostatic flux density at a point just outside a

charged conductor is B=4Trcr, where cr is the surface density

of the charge on the conductor, it follows that the current density

of the displacement current just outside a charge conductor,

which must be equal to the rate of change of the surface density

of the charge on the conductor, is

do- _ 1 dB (20)

dt 4^TT~dt

The results of all known experiments show that is a
47T dt

perfectly general expression for the current density of the displace-

ment current at any point in a dielectric, when B represents the
D

electrostatic flux density at that point. The quantity is

4?r

.sometimes called the electric displacement; it represents the quan-

tity of electricity transferred by the displacement current, or dis-

placed, across unit area perpendicular to the direction of the

electrostatic flux density.

The reader may find it difficult at first to grasp the idea of

displacement current in an insulator, but a re-reading of Article

64 will make evident how such a variable current might occur

in a dielectric. If electricity has the property of an incom-

pressible fluid filling all space, then what is called a positive charge

on a conductor represents a displacement of electricity in one

direction across the surface of separation between a conductor

and a dielectric, and what is called a negative charge on a con-

ductor represents a displacement of electricity across this surface

in the opposite direction. A corresponding displacement of

electricity occurs in the dielectric and also in the conductor,

but in the case of a dielectric the amount of displacement is limited

by a property of the dielectric analogous to the elastic property
of a solid, such as that forming the walls of the cellular structure
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described in Article 64, while a conductor has no such elastic

property. What is called a charged surface is then analogous
to the surface of separation between two bodies which are dif-

ferently strained.

150. Dielectric Strength. Discharge from Points. Corona.

Since the quantity of electricity displaced across unit area

in a dielectric is proportional to the electrostatic flux density at

this area, which in turn is proportional to the electrostatic inten-

sity at this point, the strain produced in the dielectric at any point

may be looked upon as proportional to the field intensity at that

point. It is found by experiment that when the electrostatic

intensity at any point in a dielectric is increased up to a certain

definite value, the dielectric is ruptured at this point, as is evi-

denced by the spark which occurs, which in general extends

through the dielectric from one of the charged conductors to the

other. This is analogous to rupture of any substance when it is

mechanically strained up to its breaking point. The value of the

electrostatic intensity which causes the rupture of a dielectric

is called the dielectric strength of the dielectric.

Recent experiments show that the dielectric strength of or-

dinary insulators, such as rubber, mica, porcelain, cloth, etc.,

depends not only upon the chemical nature of the insulator but

also upon its thickness. The dielectric strength of a thin piece

of insulation is greater than the dielectric strength of a thick

piece; also, several thin layers making a given thickness have a

greater dielectric strength than a single layer of the same total

thickness. In engineering work dielectric strength is usually

expressed as so many volts per inch; see Article 102.

Since the electrostatic intensity just outside a conductor is

proportional to the surface density of the charge on the conductor

(see equation 11) and since the surface density in turn is in general

greatest at sharp points in the surface of a conductor, the di-

electric as a rule breaks down first at the sharpest point of the

conductor. The protective effect of a lightning rod is based

upon this fact.

In the case of a non-uniform electrostatic field, such as the

field about the wires of a transmission line or in the insulation

of a cable, the field intensity under certain conditions can exceed

the dielectric strength of the insulation in the immediate

vicinity of the wire without exceeding the dielectric strength in
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the rest of the insulation. Under these conditions the part of

the insulation where the dielectric strength is exceeded apparently

becomes a fairly good conductor. In the case of gaseous and

liquid insulators this change in the nature of the insulation is

accompanied by the appearance of a bluish light in the vicinity

of the wire. The region around the wire in which this change
takes place is called the "

corona," and the whole phenomenon
is called the

" corona effect."

151. Electric Capacity. Electric Condenser. When the elec-

trostatic potential drop along the lines of electrostatic induction

varies with time, there is also a variation of the electrostatic

flux density, and, as noted in Article 149, this variation of the

electrostatic induction with respect to time gives rise to an

electric current (i.e., the displacement current). The numerical

value of the ratio of the displacement current through a given

portion of a dielectric between any two equipotential surfaces

to the time rate of change of the electrostatic potential difference

between these two surfaces is denned as the electric capacity of

this portion of the dielectric. That is, when the displacement
current in the given portion of the dielectric is i and the time rate

of change of the electrostatic potential difference is
,
the capacity

di

of the given portion of the dielectric is

C=
dv (21)

dt

Compare with the definition of self inductance of a circuit, Article

116. When the current is expressed in abamperes, the potential

difference in abvolts and the time in seconds, the unit of capacity
is called the abfarad; when these quantities are expressed in

amperes, volts and seconds respectively the unit of capacity is the

farad. When the current is expressed in c. g. s. electrostatic units

(i.e., electrostatic units of quantity per second), the potential

difference in electrostatic units and the time in seconds, the

capacity is said to be so many electrostatic units. Capacities

ordinarily dealt with are of the order of one-millionth of a farad
;

hence the micro-farad, equal to one-millionth of a farad, is also

used as a unit of capacity. The units are related to one another
as follows:
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1 abfarad = 10
9
farads

1 abfarad = 10
15 microfarads

1 abfarad=9X 10
20

c. g. s. electrostatic units

When the equipotential surfaces between which the displace-

ment current flows are the surfaces of conductors, the dielectric

and the conductors forming these surfaces are said to form an

electric condenser. The capacity of a condenser formed by two

conducting surfaces and a dielectric may be expressed in terms

of the charge on either conductor and the difference of potential

between them. When the conducting surfaces are such that the

displacement current leaving the first surface is the same as that

entering the second, the charges on the two surfaces must be equal

and opposite, see equation (19), and therefore the displacement

current is
,
where q is the numerical value of the charge at any

dt

instant on either conductor, see equation (17). Hence the capac-

ity of the condenser formed by the dielectric and the two con-

ductors is

C=JL J-i
dv dv (22)

dt

Therefore the capacity of the condenser is equal to the numerical

value of the charge on either surface per unit difference of potential

between the two.

The capacity of such a condenser is constant, i.e., is constant,
dv

and equal to the ratio of the charge q at any instant to the potential

difference v at this instant, provided the dielectric constants of

every body in the field are constant. This may be proved as

follows: The electrostatic intensity H produced at any point P
when a conductor is charged with ql

units of electricity depends
in general upon the size and shape of the conductor, the nature of

the surrounding bodies, and the size and shape of these bodies

and their position with respect to the charged conductor. For

these conditions fixed, the field intensity due to the charge q,

and whatever other charges it may induce is proportional to this

charge q t ,
and therefore the drop of potential due to this charge q,

between any two points in the field is proportional to qlt that is
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where A^ is a constant depending on the size and shape of the

charged conductor, the size, shape arid position of any other

conductors in the vicinity, and the nature, size, shape and position

of the surrounding dielectric bodies, but is independent of the

value of g,. Similarly the drop of potential between these same
two points due to any other charge q2 is proportional to q2 ,

that

is

v2
=A 2q2

Hence the total drop of potential between 1 and 2 due to both

charges is

v=vl + v2 =A lq l + A 2q2

By definition, however, in the case of a condenser q2
= ql ,

and

therefore the difference of potential between the two conductors

may be written

v=v
l
-v2 =A lq2

- A 2q2 =(A,- A 2) q }

Whence, from (22), the capacity of the condenser is a constant

equal to- .

A,-A 2

152. Simple Forms of Condensers. a. Parallel Plate Con-

denser. The parallel plate electrometer described in Article

146 is one of the simplest forms of electric condensers. Its

capacity is calculated directly from equations (16) which give

the relation between the charge on each plate and the difference

of potential between them. That is, the capacity of such a

parallel plate condenser is

O
C= =-- c. g. s. electrostatic units (23)

V
where K is the dielectric constant of

the dielectric between the plates, S
the area of each plate and D the dis-

tance between the plates.

b. Spherical Condenser. Another

simple form of condenser consists of

two concentric spherical shells, the

space between which is filled with a

uniform dielectric. Let the shells have

the radii rl and r2 and let the dielectric

constant of the dielectric between the

two shells be K. A charge of Q c. g. s. electrostatic units given the

inside sphere will induce a charge of Q units on the inside surface
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of the outer shell and a charge qf + Q units on the outside surface

of this shell and whatever other conductors may be connected

to it. This outside charge + Q, however, will have no effect on

the field intensity inside this shell (see Article 137).

From symmetry, the lines of electrostatic induction are radial

lines normal to the surfaces of two spheres; the total number

coming out from the charge Q is 4 TT Q (see Article 141). Hence
the electrostatic flux density at any point P in the dielectric is

B = = where r is the distance of P from the center of the
4?r T

* BO
spheres. Hence the field intensity at P is H= = 1_ and

therefore the difference of potential between the two spheres is

V =
r2

Hence the capacity of this condenser is

r rC==- K c. g. s. electrostatic units (24)

c. Coaxial Cylinders. Applying exactly similar reasoning to

the case of two coaxial cylinders which are sufficiently long in

comparison with their diameters so that the lines of electrostatic

induction going out the ends may be neglected, we have from

symmetry that the electrostatic flux density at any point P in

the dielectric between the two cylinders is B = =
2 irr r

where Q is the charge per unit length of the condenser, and r the

distance of P from the center of the cylinders. Hence the field

2 Q
intensity at P isH= and therefore the difference of potentialKr
between the two cylinders is

where r, is the outside radius of the inside cylinder and r2 the

inside radius of the outside cylinder. Hence the capacity per
centimeter of the condenser formed by two coaxial cylinders is

O KC== c. g. s. electrostatic units (25)
V

2lnL>



ELECTROSTATICS 271

This formula is applicable to a single wire enclosed in a lead

sheath. For practical calculations this formula may be written

C= microfarads per 1000 feet (25a)

log-
2

r,

or

n 0.03883 A' .

C = microfarads per mile (256)

log-
2

r,

d. Two Parallel Cylinders. In case of two parallel cylinders

which are not coaxial, Fig. 79, but a distance D apart, i.e., two

parallel wires, an approximate formula for the capacity per unit

+Q -Q

p
dx

Fig. 79.

length, in case the cylinders are long compared to their distance

apart, can be derived by assuming the charge on each cylinder is

uniformly distributed over the surface of the cylinder. In this

case the electrostatic intensity at any point P on the line joining

2 Q
the centers of the two cylinders due to the charge on 1 is Hl

=
Kx

and the electrostatic intensity at P in the same direction due to

2 Q
the charge Q on 2 is H2

=
;

therefore the total in-
K (D x)

2

between 1 and 2 is

tensity at P is ~jr
"+ 7^7^ - Hence the difference of potential

4Q D-r

Hence the capacity per centimeter of the condenser formed by the

two parallel wires when D is large in comparison with r is (ap-

proximately)
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K
V A 7

D
4 In

c. g. s. electrostatic units (26)

For practical calculations this formula may be written

0.003677 K

or

log
r

0.01941

log
r

microfarads per 1000 feet (26a)

microfarads per mile (266)

[Neither or is correct when the wires are close together,
r r

since the charge on the two wires is no longer uniformly dis-

tributed (see Alex. Russell, Alternating Currents, Vol. I, p. 99).

When the wires are far apart r is .negligible in comparison with

D, hence formula (26) is sufficiently accurate.]
153. Specific Inductive Capacity. In all the formulas for

capacity it is seen that the capacity varies directly as the dielec-

tric constant of the medium between the two conductors. Hence

by measuring the capacity Ca of a given condenser when the

plates are separated by air and then measuring the capacity Ck

when the plates are separated by any other dielectric, the dielec-

tric constant may be readily determined experimentally, since

CK= -. Since the numerical value of the dielectric constant
Ca

is equal to the ratio of two capacities, this constant is frequently

C C
2 C 8

called the "
specific inductive

capacity
"

of the dielectric.

154. Condensers in Series

and in Parallel. When two

or more condensers are con-

nected in series, equal and

opposite charges will be in-

Fig. so.
'

duced on each pair of plates

connected by a conductor. Hence if the condensers have capac-
ities d, d, d, etc., the total potential drop through all the con-

densers is
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Q Q Q Vi i A
=c,

+ ca

+ c3

= Q
(c+c+cj
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Hence the equivalent capacity of any number of condensers in

series is Cs where

C
s Q C, C2 C3

When the condensers are connected in parallel, the drop of

potential across each condenser is the same, and therefore the

Fig. 81.

total positive charge given all the condensers (equal to the total

negative charge) is

Hence the equivalent capacity of any number of condensers in

parallel is

c Q= (28)

Compare with resistances in series and parallel, Article 98.

155. Absorption in a Condenser. Residual Charge. Ex-

periment shows that when a given difference of potential is estab-

lished between the plates of a condenser the dielectric of which

is a solid, the charge taken by the condenser depends upon the

length of time this potential difference is maintained. Again,

when a charged condenser is discharged by connecting its plates

momentarily with a conductor, and this connection is then broken,

the plates at first appear to be entirely discharged, but after a

few seconds a charge again appears on them resulting in the re-

establishment of a difference of potential (less than in the first

case) between the plates. In short, a solid dielectric apparently

absorbs a certain amount of charge which it gives up only after

a considerable lapse of time. The charge which appears on the

plates of the condenser after the first discharge is called the
"

residual
"

charge ;
this phenomenon is called electric absorption.

The absorption of a dielectric is apparently due to impurities in
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it or to lack of homogeneity. It is greatest in substance like mica

and glass ;
it is doubtful if absorption occurs at all in absolutely

homogeneous substances.

156. Energy of an Electrostatic Field. An electrostatic field

represents a certain amount of stored energy just as a magnetic
field represents a certain amount of stored energy. Let a con-

denser be charged by being connected to a battery or other source

of electromotive force; the amount of energy stored in the elec-

trostatic field can be readily calculated. Let the capacity of the

condenser be C and let the drop of electrostatic potential from

its positive to its negative plate at any instant be v. Then the

charge on each plate of the condenser at this instant is numerically

equal to Cv. To change the charge by an amount dq = Cdv in

time dt requires a current of = C units for dt seconds. In
dt dt

the battery and the wires connecting the battery to the plates of

the condenser this current will be in "the direction from the nega-
tive to the positive plate of the condenser and in the dielectric

separating the plates of the condenser this current (as a displace-

ment current) will be in the direction from positive to the nega-
tive plate of the condenser, that is in the direction of the drop of

potential through the condenser. Hence an amount of energy
dv

equal to C . v. dt=Cvdv will be lost by the current in the con-
dt

denser. Hence, when the drop of potential between the two

plates of the condenser changes by an amount dv an amount of

energy equal to Cvdv is gained by the electrostatic field in the

dielectric separating the two plates. Therefore, when the differ-

ence of potential between the two plates is increased from zero to

v a total amount of energy

J,
:-CV = -=- qv (29)O C\ /f O i \ . /

is stored in the electrostatic field. In using these formulas, care

must be taken to express all the quantities in the same system
of units.

The energy which is stored in the electrostatic field comes

from the source of electromotive force to which the condenser is

connected. When the plates are disconnected from the source

of electromotive force and are connected to each other by a wire.
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the condenser discharges and the energy which was stored in the

electrostatic field is transferred to the wire as heat energy. A
charged condenser is then the seat of an electromotive force, and
the direction of this electromotive force through the condenser is

always in the direction from the negative plate of the condenser

to the positive plate. Hence, when the condenser is being charged
its electromotive force opposes the current, that is, the electro-

motive force of the condenser is a back electromotive force
; when

the condenser discharges, the electromotive force is in the direc-

tion of the current.

It can be shown by a similar process of reasoning to that

employed in Article 125 that the total energy of any system of

charged conductors may be expressed as the volume integral

=J-f R&d^J-f *
8?rj y StrJ v K

W= KH2 dv= dv (30a)
STTJ y STrJ v K

throughout all space, where dv is any elementary volume, H the

electrostatic intensity at dv, B the electrostatic induction at dv

and K the dielectric constant of the dielectric in the space occu-

pied by dv. Or, more briefly, the energy per unit volume of the

electrostatic field is

KH2 B2

(306)

8?r 8-n-K

157. Dielectric Hysteresis. No substance is a perfect dielec-

tric, but even the best insulators, such as porcelain or glass, are

conductors to a slight extent. Hence when a constant electro-

motive force is impressed across a condenser, a small continuous

current is established through the dielectric and therefore a cer-

tain amount of heat energy is dissipated in the dielectric. When
the potential drop across the condenser is V and the conductance

of the condenser is g, the rate at which heat energy is developed
is (Joule's Law) equal to gV

2
. When an alternating potential

difference (see Chapter VI) of the same effective value is estab-

lished across the condenser it is found that, when the dielectric

of the condenser possesses the property of electric absorption, the

heat energy dissipated in the condenser is greater than gV2
. This

increase in the heat energy dissipated in the dielectric is some-

times said to be due to dielectric hysteresis. The phenomenon,
however, is probably not due to a lag of the flux density behind

the resultant field intensity, as in the case of magnetic hysteresis,



276 ELECTRICAL ENGINEERING

but is rather due to the existence in the dielectric of small con-

ducting particles, insulated from one another, which form minute
condensers and in which the varying electrostatic field sets up
alternating currents of greater magnitude than would be set up
by a constant impressed electromotive force. The increase of

heat energy dissipated when an alternating potential difference is

established across the condenser over that dissipated when a con-

stant potential difference is established, is then due to the excess

of heat energy developed by the alternating currents in these

conducting particles.

SUMMARY OF IMPORTANT DEFINITIONS AND
PRINCIPLES

(Note: All formulas are in c. g. s. electrostatic units unless

otherwise specified.)

1. An electrostatic unit point-charge is a charge which repels

with a force of one dyne an equal point-charge one centimeter

away.
2. Two point-charges of q and cf units at a distance r centi-

meters apart repel each other with a force of

3. The electrostatic field intensity H at any point in an electro-

static field is the force in dynes which would act on a unit positive

point-charge place at that point due solely to the agents producing
the original field.

4. The field intensity at any point due to a point-charge q at

a distance r centimeters away is

5. The mechanical force exerted on a point-charge q is

F=qH
where H is the field intensity due to every agent in the field

except the charge q.

6. Lines of electrostatic force are lines drawn in an electro-

static field in such a manner that they coincide in direction at

each point P with the field intensity at P and their number per

unit area at each point P across a surface at right angles to their

direction is equal to the field intensity at P.
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7. Gauss's Theorem. The algebraic sum of the number of

lines of electrostatic force outward from any closed surface is equal
to 4 TT times the algebraic sum of the charges inside this surface.

8. A dielectric in an electrostatic field is considered to be made

up of filaments such that were the lateral walls of any one of these

filaments separated from the rest of the dielectric by a narrow

air gap, no charges would be induced on these walls.

9. The intensity of electrisation / at any point in a body is de-

fined as the charge per unit area which would appear on a gap
cut in the body at this point perpendicular to the line of electrisa-

tion through this point. The direction of the intensity of electri-

sation is the direction of the line of electrisation, the positive sense

of which is the sense of the line drawn into the gap from the wall

on which the positive charge is formed.

10. A line of electrisation, or unit filament, is a filament of such

a size that were it broken by a narrow gap at any point, the

numerical value of the charge formed on either wall of the gap

would be -.

47T

11. The number of lines of electrostatic induction, or flux of

electrostatic induction, crossing any surface is defined as the alge-

braic sum of the number of lines of electrisation and the lines of

electrostatic force crossing that surface.

12. The electrostatic flux density B at any point is the number
of lines of electrostatic induction per square centimeter crossing

an elementary surface drawn at this point normal to their direc-

tion. The electrostatic flux density is the vector sum

B =47rJ+H
13. In an electrostatic field due solely to electric charges, a

line of electrostatic force originates at a positive charge and ends

at a negative charge, and may exist in any dielectric but not in a

conductor in which no current is flowing. A line of electrisation

originates at a negative induced charge on a dielectric and runs

through the dielectric to a positive induced charge on the surface

of the dielectric. A line of electrostatic induction is a continuous

line which originates at a positively charged conductor (or at a

positive contact charge on a dielectric) and ends at a negatively

charged conductor (or at a negative contact charge on a dielectric),

but passes through the induced charges on dielectrics.

14. The dielectric constant, or specific inductive capacity, K, of
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a dielectric is the ratio of the electrostatic flux density B in the

dielectric to the resultant electrostatic intensity H when the

dielectric is placed in an electrostatic field
;
that is

K=*
H

15. A closed hollow conductor completely screens everything
inside from external electrostatic influences.

16. The electrostatic intensity within the substance of a con-

ductor in which there is no electric current is zero.

17. The total charge within any region completely enclosed by
a conductor is zero.

18. The electrostatic intensity at any point P just outside a

charged conductor in which there is no electric current is normal

to the surface and equal to

K
where K is the dielectric constant of the dielectric in contact with

the conductor at P and cr is the surface density of the charge on

the conductor just opposite P.

19. The electrostatic flux density at any point P just outside

a charged conductor in which there is no electric current is normal

to the surface and equal to

B =4770-

independent of the dielectric in contact with the conductor; cr is

the surface density of the charge on the conductor just opposite P.

20. The electrostatic potential V at any point in an electrostatic

field is the work which would be done by the agents producing
the field in moving a unit positive point-charge from this point to

infinity. The electrostatic potential at any point due to a point-

charge q at a distance r centimeters away is

The resultant electrostatic potential due to any number of charges
is the algebraic sum of the potential due to all the individual poles.

21. The drop of electrostatic potential along any path from

any point 1 to any point 2 is

,-,= A' (Hcos0)dl

where dl is the length of any element of the path from 1 to 2, H
the field intensity at dl and the angle between the direction of
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H and dl. When the field is due solely to electrostatic charges
the drop of potential is independent of the path from 1 to 2.

The drop of electrostatic potential around a closed path is equal
to the algebraic sum of the contact and induced electromotive

forces in this path, provided all quantities are expressed in the

same system of units.

22. An electrostatic equipotential surface is a surface drawn in

an electrostatic field in such a manner that the drop of electro-

static potential along any path in the surface is zero. Such a

surface is perpendicular at each point to the line of electrostatic

force through that point.

23. When as the unit of electrostatic charge is taken a unit

equal to 3 X 10
10

times the size of an electrostatic unit, called the

electromagnetic unit of charge, the charge produced at a conduct-

ing surface by a variable current is equal to the quantity of elec-

tricity (Article 80) transferred to that surface by the electric

current in the conductor.

24. When as the unit of electrostatic potential difference is

taken a unit equal to times the size of the electrostatic
3X1010

unit of potential difference, called the electromagnetic unit of

electrostatic potential difference, the electrostatic difference of

potential between any two points is equal to the difference of

electric potential (Article 87) in abvolts between these points.

25. When as the unit of electrostatic intensity is taken a unit

equal to times the size of the electrostatic unit of intensity,
3X1010

called the electromagnetic unit of electrostatic intensity, the electro-

static intensity at any point is equal to the electric intensity

(Article 102) in abvolts per centimeter at this point.

26. The displacement current id flowing away from a con-

ducting surface through the dielectric in contact with this surface

is equal to the time rate of change of the charge q on this surface,

i.e.,

i,-
dq

d
~dt

where all quantities are in the sam* system of units. The current

density of the displacement current at any point in a dielectric is

_L *!L

4^ ~dt
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where B is the electrostatic flux density and all quantities are in

the same system of units.

27. The value of the ratio of the displacement current between

two equipotential surfaces in a dielectric to the time rate of

change of the difference of potential between these two surfaces

is called the capacity C of the portion of the dielectric between the

two surfaces. The displacement current through a given portion

of a dielectric between two equipotential surfaces is then

where v is the difference of potential between the two surfaces.

The c. g. s. electrostatic unit of capacity, the electromagnetic unit

or abfarad and the practical unit or farad are related as follows:

1 abfarad = 10
9
farads =9X 10

20
c. g. s. electrostatic units.

When the two equipotential surfaces are conducting surfaces, the

dielectric and the two conducting surfaces are said to form an

electric condenser. The capacity of a condenser is also equal to

the numerical value of the ratio of the charge on either surface

to the difference of potential between the two.

28. The capacity of the condenser formed by two long parallel

wires of circular cross section is

0.01941 K . , ..

C= microfarads per mile

l 9~
where K is the dielectric constant of the surrounding medium, D
the distance between centers of wires and r the radius of each wire.

29. The resultant capacity of two or more condensers in series

is the reciprocal of the sum of the reciprocals of the various

capacities, i.e.,

1_1 1

C
=
C~1
+
C2

+

The resultant capacity of two or more condensers in parallel

is the sum of the various capacities, i.e.,

(7=C1+C2+-
30. The energy stored in the dielectric of a condenser is

TJ7
! rLJ l(f !W =- Of =- - =- qv
2 2 C 2

where C is the capacity of the condenser, q the numerical value of

the charge on either conductor, and v the difference of potential
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between the conductors. These formulas hold for any system of

units provided all quantities are expressed in the same system.

PROBLEMS
1 . A circular disc 20 inches in diameter and of negligible thick-

ness is charged uniformly on both sides with a total charge of

15X105
electrostatic units. (1) What is the intensity of the elec-

trostatic field at a point on a normal to the disc at its center 10

inches from the plane of the disc? (2) What would be the intensity

at this point if the disc had an infinite radius and the surface

density of the charge remains the same? (3) Under the latter con-

ditions what would be the difference in electrostatic potential be-

tween the point and the disc?

Ans.: (1)1358 c. g. s. electrostatic units
; (2) 4650 c. g. s. electro-

static units; (3) 118,000 c. g, s. electrostatic units.

2. Two plates A and B, the areas of which may be considered

to be infinite, are placed parallel to each other and 10 cm. apart.

A is charged positively with 50 electrostatic units of charge per

sq. cm. while B is charged negatively with the same density; the

charges are confined to the surfaces which face each other. (1)

Determine the pull per sq. cm. which A exerts upon B.

A slab of glass of infinite area and 8 cm. in thickness is now

placed between the two plates and parallel to them, but not touch-

ing either. The dielectric constant of the glass is 5. (2) Deter-

mine again the pull per sq. cm. which A exerts upon B; (3) the

intensity of electrisation in the glass; and (4) the electrostatic flux

density in the glass.

Ans.: (1) 15,700 dynes; (2) 15,700 dynes; (3) 40 c. g. s. elec-

trostatic units
; (4) 629 c. g. s. electrostatic units.

3. Determine the difference of electrostatic potential between

the two plates in Problem 2 when the plates are charged positively

and negatively respectively, with 0.05 c. g. s. electrostatic units

per sq. cm. (1) when the medium between the plates is air; (2) when
a slab of glass of infinite area, 6 cm. in thickness and with a dielec-

tric constant equal to 5, is placed between the plates and parallel

to them. The charge on the plates and the distance between the

plates remain constant in the two cases.

If the difference of potential between the two plates is kept
constant at 0.1 electrostatic unit, -what will be the numerical value

of the charge per sq. cm. on each plate (3) when the medium be-
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tween the plates is air; (4) when the slab of glass 6 cm. thick is

placed between the plates?

Ans.: (1) 6.29 c. g. s. electrostatic units
; (2) 3.27 c. g. s. electro-

static units; (3) 0.000795 c. g. s. electrostatic units; (4) 0.00153

c. g. s. electrostatic units.

4. Two parallel metallic plates each 100 sq. cm. in area are

separated by a distance of 0.5 cm. If the difference of potential

between the two plates is maintained at 1000 volts, determine

(1) the charge in microcoulombs on each plate when the plates

are separated by air; (2) when the dielectric between the two

plates is glass; (3) the work required to pull the glass out of the

electrostatic field. The dielectric constant of glass is 5. Assume
a uniform distribution of charge.

Ans.: (1) 0.01768 microcoulombs; (2) 0.0884 microcoulombs;

(3) 354 ergs.

5. Two metallic plates each 100 sq. cm. in area are charged
until the difference of potential between the plates is 300 volts

and the source of potential is then removed. The plates are 0.5

cm. apart and the medium between them is air. (1) Determine

the work done in separating the plates until they are one centi-

meter apart. (2) What is the difference of potential between the

plates if a sheet of glass 0.5 cm. thick and having a dielectric

constant of 5 is then pushed in between them?

Ans.: (1) 7.96 ergs; (2) 360 volts.

6. A transmission line 10 miles in length consists of two No.

0000 wires (B. & S. gauge) spaced 3 feet between centers. If a

potential difference of 1000 volts is established between the wires

and the line is open at the far end, determine the energy in the

electrostatic field surrounding the line. The diameter of a No.

0000 wire is 0.460 inch.

Ans.: 0.0443 joules.

7. The total inductance of a two-wire transmission line 25

miles in length is 84.6 millihenries. What is its capacity in micro-

farads?

Ans.: 0.223 microfarads.

8. Three condensers, A, B and C, the capacities of which are

25, 20 and 15 microfarads respectively, are connected in series.

If the potential drop across B is 100 volts, determine (1) the po-

tential drop across A; (2) the potential drop across C; and (3) the

potential drop across the three condensers in series. (4) What is
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the charge in microcoulombs on each condenser; and (5) the

capacity of the three condensers in series?

Ans.: (1) 80 volts; (2) 133.3 volts; (3) 313.3 volts; (4) 2000

microcoulombs
; (5) 6.38 microfarads.

9. When an e. m. f. of 200 volts is impressed across two con-

densers A and B of unknown capacity connected in series, the

potential drop through A is three times that through B and the

electrostatic energy of the system is 0.5 joule. What would be

the charge upon A and upon B when an e. m. /. of 100 volts is

impressed across the condensers in parallel?

Ans.: 0.00333 and 0.01 coulomb respectively.

10. A lead-covered cable is made of a No. 00 B. & S. wire sur-

rounded by a layer of rubber 0.25 inch thick, which is in turn

surrounded by a layer of gutta-percha 0.25 inch thick, the whole

being encased in the lead sheath. The specific inductive capacity
of the rubber and the gutta-percha is 2.2 and 4.5 respectively.

What is the ratio of the potential drop through the rubber to that

through the gutta-percha when a given difference of potential is

established between the wire and the sheath? The resistance of

the dielectric is to be considered infinite. The diameter of a No.

00 wire is 0.365 inch.

Ans.: 3.87.

11. What is the displacement current per mile of the above

cable when the difference of potential between wire and sheath

varies at the rate of 10,000 volts per second?

Ans.: 1810 microamperes.



VI

VARIABLE CURRENTS

158. Total Energy Associated with an Electric Circuit.

From the foregoing discussion of the magnetic and electrostatic

field it is evident that the energy associated with an electric

circuit may manifest itself in the following ways:
1. As magnetic energy, due to the magnetic field produced

by the current in the circuit.

2. As electrostatic energy, due to the electrostatic field pro-

duced by the differences of electric potential between the various

parts of the circuit.

3. As mechanical energy, due to the relative motion of the

various parts of the circuit or to the motion of conductors or of

magnetic or dielectric bodies in the surrounding field.

4. As chemical energy, due to chemical changes which may
take place in various parts of the circuit.

5. As reversible heat energy, due to thermal electromotive

forces.

6. As heat energy dissipated in the conductors (and to a

slight extent in the surrounding dielectric), due to their electric

resistance.

7. As heat energy dissipated in surrounding magnetic bodies

due to the variation of the magnetic flux through them
; i.e.,

magnetic hysteresis.

8. As heat energy dissipated in the surrounding dielectric

bodies due to the variation of the electrostatic flux in them;

i.e., dielectric hysteresis.

The effects produced by the first five forms of energy are all

reversible
; i.e., energy is required to establish a magnetic or an

electrostatic field, but the same amount of energy is given back

in some other form when these fields disappear ; energy is required
to move a conductor or a magnetic or a dielectric body in the field,

but the same amount of energy is given back in some other form
when the motion of the body is reversed

; energy is required to

produce any chemical action but the same amount of energy is

284
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given back in some other form when this action is reversed; the

heat energy given out at a junction of two dissimilar substances

when the current flows through the junction in one direction, is

given back as some other form of energy when the current is

reversed.

The effects produced by the last three forms of energy are

not reversible; i.e., energy is always dissipated in a conductor

through which a current is flowing, independent of the direction

of the current
; energy is always dissipated when the phenomenon

of magnetic or dielectric hysteresis occurs, independent of whether

the flux is increasing or decreasing.

The first five effects are sometimes said to be due to conserv-

ative forces, the last three to dissipative forces. The word forces

is here used in a general sense, meaning the something that pro-

duces or opposes the effects.

159. General Equations of the Simple Electric Circuit.

The transfer of energy from one region to another in space by
means of an electric current is in general accompanied by pro-

duction of energy in all these various forms, except in the special

case of a continuous current, i.e., a current which does not vary
with time; there is also in general a transfer of energy from one

form to another all along the circuit. To understand clearly the

effects produced by a variable current it is necessary to confine

one's attention at first to comparatively simple circuits.

Consider a circuit consisting of a coil having a resistance r

and an inductance L in series with a condenser having a capacity

C and a conductance g. The conductance of a condenser, that

Fig. 82.

is, the reciprocal of the resistance of the dielectric between its

plates, is sometimes called the leakance of the condenser. This

circuit is typical of the circuits one has to deal with in practice;
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in fact the most general form of circuit may be looked upon as

made up of such elementary circuits. This simple circuit may
be represented diagrammatically as shown in Fig. 82, the resist-

ance and inductance and the leakance and capacity being shown

separately simply for convenience. Let an electromotive force

e be impressed across the terminals _of this circuit. This im-

pressed electromotive force will establish a current in the circuit

and therefore a potential drop across the various parts of the

circuit. When there is originally no current in the circuit and

no charge on the condenser, this current will be around the circuit

in the direction of the impressed electromotive force, and will

produce a drop of potential through the coil and through the

condenser. The current in the coil will have the same value at

each part of its winding at any given instant (provided the capacity

and leakance of the coil may be neglected) and this current must

in turn be equal to the total current through the condenser.

Let i be the current in the coil, id the displacement current through
the condenser and ic the conduction current through the con-

denser. Then from Article 149

dq dq
but id=~7

f
,
where -r represents the time rate of change of the

charge on the condenser. Let v be the potential drop through the

condenser in the direction of the current through it, then from

Article 149

The conduction current through the condenser is, by Ohm's Law,
ic =gv. Hence

From Ohm's Law, the drop of potential through the coil

due to its resistance is ri. From Article 116 the drop of poten-
tial through the coil due to its inductance (i.e., the back electro-

di
motive force of induction) is L . Hence the total drop of po-

dt

tential through the coil is

. T di
n+L

dt
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and therefore the total drop of potential through the coil and the

condenser in series is

. T di
n+L \-v

dt

and this must be equal to the impressed electromotive force e,

that is,

e=ri+L \-v (2)
dt

Equations (1) and (2) are two equations in the two unknown

quantities i and v. The solution of practically every electrical

engineering problem that has to do with the transmission of

energy by variable or alternating currents is simply a special

solution of one or more sets of equations of this kind. It is

therefore necessary to understand thoroughly the physical mean-

ing of every term in these two equations and to become thoroughly
familiar with the various mathematical expedients employed
in their solution.

Since energy is transferred by the current to the electrostatic

field of the condenser, the potential drop v across the condenser

may be looked upon as the back electromotive force of the con-

denser (see Article 156).

These two equations may then be looked upon simply as a

special case of KirchhofPs two laws. In the first equation i

represents the current flowing to the junction between the coil

and condenser and gv+ C represents the total current flowing
dt

away from this junction. In the second equation, which may

be written e vL =
ir, the symbols e, v, and L each repre-

dt dt

sent an e. m. /., the last two being in the opposite direction to the

impressed electromotive force e, and therefore e vL repre-
dt

sents the sum of the e. m. f.'s in the loop formed by the source of

the impressed e. m. /., the inductance L, the resistance r, and the

capacity C, and ir is the total resistance drop in this loop. In

fact, Kirchhoff's Laws apply not only to steady currents but to

currents varying in any manner whatever, provided the instan-

taneous values of the currents are considered.

It should be clearly borne in mind that equations (1) and (2)
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apply directly only to a single circuit and when there is no dissipa-

tion of energy due to either magnetic or dielectric hysteresis or to

currents induced in surrounding bodies. When there is any

dissipation of energy due to hysteresis or eddy currents* a term

should be added to take into account this dissipation of energy.

In case there is iron or any other magnetic substance in the

magnetic field produced by the current there are both magnetic

hysteresis and eddy currents ;
in such a case equations (1) and (2)

give only a first approximation to the true relations between

current, potential difference and time; this approximation, how-

ever, is usually sufficiently close for practical work. We shall

see in Article 190 how a still closer approximation can be made
in the case of alternating currents.

In this chapter will be given the solutions of equations (1)

and (2) for a few simple cases. In every case the inductance

will be assumed constant ;
when there is iron in the magnetic field

of the current this assumption will give only a roughly approxi-

mate solution.

160. Establishment of a Steady Current in a Circuit Containing

T .
Resistance and Inductance. The
circuit is represented diagrammati-

cally in Fig. 83; E represents a

constant e. m. /. Let the time t be

reckoned from the instant the

switch S is closed; i.e., let the

switch be closed at time t =0. At

any instant an interval of time t

after closing the circuit.

MAM/ OTfr-H

E
Pig. 83.

whence

Integrating,

E

r
df __

dt

d(E-ri) .

E-ri

where G is a constant of integration. The value of G is found by

* The name eddy current is applied to the currents induced in the

magnetic circuit or in any metal forming the frame of an electric machine.
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the condition that at time Z=0 (that is, at the instant the circuit

is closed) i=0.* Substituting these values in the above equation

gives

G=ln E
hence at any instant t seconds after closing the circuit

L \ E
Writing each side of this equation as the exponent of the base e

of the natural system of logarithms, we get

-_E-ri
E

whence

t-_ /i_,-r\ (3)

r

The physical interpretation of this equation is that the current

IS

reaches its steady value 7= only after the time t measured
r

from the instant of closing the circuit has become sufficiently

great to make the term e L
sensibly equal to zero. Since,

r --
however, the ratio is usually quite large, this term L as a

-L/

rule becomes practically zero for t equal to a small fraction of

a second, and therefore the current reaches its steady value
ET

7 = - almost immediately after the circuit is closed. When

the self-induction is large, as in the case of a coil wound on a

closed iron core, the ratio may be relatively small, in which
, L

case several seconds may elapse before the current reaches its

steady value.

In any case, after an interval of time T=-, the current is

r

=0.632 -
2.71

That is, after an interval of time T=
,
the current reaches 63.2

r

*Otherwise at the instant the switch is closed energy would be trans-

ferred to the magnetic field at an infinite rate, which is impossible.
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per cent of its final value. The time required for the current in

such a circuit to reach 100 (1 e"
1

) =63.2 per cent of its final steady

value when a steady e. m. f. is impressed upon the circuit is called

the
"
time-constant

"
of the circuit. The time-constant of such a

circuit may be looked upon as a measure of the slowness with

which the current reaches its steady value, the greater the time-

constant the longer the interval before the steady value is reached.

For a circuit consisting of an inductance L and a resistance r the

time-constant is equal to . It should be noted that this L and
r

r refer to the entire circuit
;
hence when the impressed e. m. f. is

produced by a generator developing a steady armature e. m. f.

E, the resistance and inductance of the generator must also

be included. In addition, the above formulas hold only in case

the inductance of the entire circuit is a constant, and there is

no energy dissipated in hysteresis, which conditions never hold

Fig. 84.

when there is iron or any other magnetic substance in the mag-
netic field produced by the current. In such cases, however,
the formulas may be looked upon as a first approximation to the

true relation between current and time.

The relation between current and time given by equation (3)

may
be represented graphically by plotting the current i as the

ordinates against the time t as abscissas. The curve has the

general shape shown in figure 84; i.e., the current rises rapidly
at first and becomes asymptotic to the line corresponding to



VARIABLE CURRENTS 291

/ = _, which gives the final steady value of the current. The
r

abscissa T of the point having the ordinate i =0.632 is equal to

the time-constant of the circuit.

161. Decay of Current in a Circuit Containing Resistance and
Inductance. Let the circuit be r L
short-circuited on itself at any

| \AAAA/V
r
fflffiG^

instant when the current has the

value i
, say; let the time t be

measured from this instant, i.e., at

time 2=0 let i =i . The circuit is

represented diagrammatically in Fig. 85.

Fig. 85. In this case the impressed e. m. /. is zero, whence

dt

and therefore

r dt di

~L 7
which integrated gives

- r
l=lni+ G
L

where G is a constant of integration. The value of G is found

from the condition that at time 2=0, .i=i which values sub-

stituted in the above equation give G = ln i. Hence at any
instant 2 seconds after closing the circuit

rt_ i

~L
= U

i~

whence

and therefore

(4)

The physical interpretation of this equation is that the current

does not fall to zero immediately, but only after a sufficient time

jt
t has elapsed to make the term iL sensibly zero, which is usually

only a fraction of a second, unless the self-induction of the circuit
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is large compared with its resistance. The current falls to 100 e"
1 =

36.8 per cent of its original value in the time T = =the time-
r

constant of the circuit. The relation between the current i and

Fig. 86.

time t is shown graphically in Fig. 86. The current falls rapidly

at first and becomes asymptotic to the axis of t, i.e., to the line

corresponding to i=Q.

162. Charging a Condenser through a Resistance. The cir-

cuit is represented diagrammati-

cally in Fig. 87; E is a constant

e. m. /. Let the charge on the con-

denser be zero at the instant the

switch is closed, and let time be

measured from this instant; i.e.,

at time =0 let q =0 and i=Q.

Let q and i be the charge and

current respectively and v the p.d.

through the condenser at any in-

stant t seconds after closing the switch. Then at this instant,

assuming the ideal conditions of no leakance in the condenser and

no inductance of the circuit, -,_ .

MAM

E
Fig. 87.

dt E-v
From the first equation we have that i =
in the second equation gives

r
which substituted
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dt__
dv -d(E-v)

rC~E-v~ E-v
which integrated gives

where G is a constant of integration. For 2=0, v=0,* which
substituted in this equation gives G= In E. Substituting this

value of G in the last equation gives the equation

-L-Jn (*rC \ E
whence

(5a)

which substituted in the second equation above gives

,_E -

r

and since q = Cv at any instant we get immediately from (5a) that

q = C E (l- i'^c

Fig 88.

Equations (5) then give the values of the p.d. through the con-

denser, the current, and the charge at any instant. The variation

of v, i
t
and q with time is shown graphically in Fig. 88. Note

that both the p.d. through the condenser and the charge start at

*Otherwise at the instant the switch is closed energy would be transferred

to the electrostatic field at an infinite rate, which is impossible.
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zero rise rapidly at first and then approach more slowly their

constant values E and CE respectively. The current, on the
Tjl

other hand, has its maximum value - at the instant the switch
r

is closed and then falls, first rapidly and then more slowly, to zero.*

As a rule rC is extremely small, so that only a small fraction of

a second is required for these steady conditions to become
established.

The product rC measures the slowness with which the con-

denser becomes charged; it is called the time-constant of the

circuit. Compare with the time-constant of a circuit formed by
a resistance and an inductance in series.

163. Discharging a Condenser

through a Resistance. Let the con-

denser be charged to a p.d.v at

the instant t at which it is short-

circuited through a resistance r, Fig.

89. Assuming as before the ideal con-

ditions of no leakance and no indue-

MAM

Fig. 89.

tance, we have

dt

Eliminating i from these two equations gives

whence

whence

n av
-rC =v

dt

dt dv

rC

But at t =0, v =v
,
whence G = Inv .

Hence at any instant t seconds after the condenser is short-

circuited,

*Actually the current always starts from zero and rises to a maximum
value, due to the inductance of the circuit, which, though it may be small,
is never absolutely zero as assumed in the above discussion; see Article 201.
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V=V rC

!^

r

fc"

j_
rC

(6o)

(66)

(6c)

In this case both the p.d.

and the charge decrease at

first rapidly and then more

slowly to zero. The current

through the condenser, how-

ever, is negative, i.e., in the

opposite direction to the drop
of potential through the con-

denser. Hence the current

through the resistance is in

the direction from the + to

the plate of the condenser.

The current is a maximum

(in the negative direction)
r

at the instant of short cir-

cuit,* and then decreases in the same manner as the p.d. and

the charge.

164. Discharge of a Condenser through an Inductance. The

circuit is represented diagrammatically in Fig. 91. The condenser

is charged to a p.d.v and at time t = the switch is closed. At

any time t seconds later assuming the ideal conditions of no leakance

and no resistance,

Fig

dt
(a)

Fig. 91.

equation gives

From equation (6) we have that

^/? (i i)= C which substituted in the first

dt dt
2

* The current actually starts at zero due to the inductance of the cir-

cuit; see Article 201.
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tfv 1= V (c)

dt
2 LC

This equation is of exactly the same form as the equation for

'the pendulum; see Article 23. Compare also with the equation

for the vibration of a magnet in a uniform magnetic field, Article 42.

Its solution is

which substituted in equation (6) gives

C f

L
'

VVLC
The constants A and 6 are determined from the condition that

at time t=Q, v=v
,
and i=0. Substituting these values in (d)

and (e) we get

vn =A sin

Whence 0= and A =v . The equations for the p.d, arid cur-
2

rent at any instant are then

(76)

These two equations are plotted in Fig. 92. That is, both v and i

are harmonic functions, or
"
sine waves/' having a period equal

to 2 TT \/LC. The maximum value of the p.d. is v and the maxi-

fcmum value of the current is I>OA|
That is, the charge on the

condenser oscillates from q = Cv to q Cv
,
and the current

|c |c
oscillates between the values v \l

- and v ^l -, the charge
' L ' L

reaching the maximum when the current is zero and vice versa.

If the current in the inductance had been equal to i and the

p.d. across the condenser zero at time =0, then the equations

for p.d. and current would have been
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(8a)

(86)

Fig. 92.

A circuit of this kind is approximately realized in the case of

a transmission line, except that the inductance and capacity in-

stead of being lumped in a single coil and a single condenser are

Fig. 93.

distributed uniformly along the line, and the resistance of the line

is not negligible. As a first approximation we may consider the

line as equivalent to a lumped inductance and a lumped capacity

as shown in Fig. 93 and neglect the resistance. If the line, open
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at the receiving end, becomes short-circuited at any time P, by
a wire falling across it, for example, we have the conditions just
discussed.

Take the case of a line consisting of two number 0000 B. & S.

wires (solid) spaced 6 feet apart; let the line be 50 miles long

(100 miles of wire).

The inductance of the line will then be 0.193 henries and the

capacity 0.389 x 10"
6
farads. Let 500 amperes be flowing in the

line at the instant of short-circuit at P and let the p.d. across

the end of the line (i.e., across the condenser) be zero at this

instant. Then this p.d. will reach a maximum of

500J Q ' 193
=352,000 volts

^ 0.389 X 10
-6

and the current and p.d. will begin to oscillate with a period of

2 ?r\/0.193X0.389XlO-
6 =0.00172 seconds or 580 com-

plete swings or cycles per second. This abnormal rise in voltage
would of course puncture the insulators carrying the wires were

not some sort of
"
safety valve "

provided. Such a safety device

is the lightning arrester, which in its simplest form consists of one

or more spark gaps so arranged that when the voltage on the line

rises a predetermined amount above normal, a spark jumps across

the gap and thus reduces the voltage. Protecting a line against

lightning discharges is only one of the functions of a lightning

arrester; such a device is likewise necessary to protect the line

(and the apparatus connected therewith) against the abnormal

voltage which may be produced when heavy loads are switched

on or off the line.

Note that the ideal case of a condenser without leakance and

an inductance without resistance, which we have been consider-

ing, cannot be completely realized in practice, since the dielectric

of every condenser is a conductor to a certain extent (though

usually an extremely poor conductor) and every circuit made of

conductors has a certain resistance. The effect of resistance and

leakance is to damp out the oscillations of the electric current in

the same way that friction damps out the oscillation of a vibrating

pendulum. (See Article 202.)
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SUMMARY OF IMPORTANT RELATIONS
1. In general, the energy associated with an electric current

may manifest itself in eight different forms, i.e., as

Magnetic energy,

Electrostatic energy,

Mechanical energy,

Chemical energy,

Heat energy at the junction of dissimilar substances,
Heat energy due to the resistance of the conductors,
Heat energy due to magnetic hysteresis,

Heat energy due to dielectric hysteresis.

2. The general equations of a circuit formed by a coil and a

condenser in series are

i ndv
i=gv+C-

at

di
+ v

dt

where e is the impressed e. m. f. across the terminals of the circuit,

v the potential drop through the condenser, i the current in the

coil, r the resistance of the coil, L the inductance of the coil, g

the leakance of the condenser and C the capacity of the condenser.

These two equations are simply KirchhofPs Law applied to the

instantaneous values of the current, e. m. /. and p. d.

3. The current i in a circuit formed by a resistance r and an

inductance L, t seconds after impressing a constant e. m. f. E
across its terminals, is

provided there is originally no current in the circuit; r is the

resistance, L the inductance of the entire circuit.

4. The time-constant of a circuit formed by a resistance r and

an inductance L in series is .

r

5. The current i in a circuit formed by a resistance r and an

inductance L, t seconds after the terminals of the circuit are short-

circuited, is rt

i = i L

where i is the current in the circuit at the instant of short-circuit,

provided there is no e. m. f. in the circuit.
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6. When a condenser of capacity C is charged through a

resistance r by a constant impressed e. m. /. E, the p. d. across the

condenser, the current in the circuit and the charge on the con-

denser t seconds after the e. m. /. is impressed, are respectively

V = E (l - ~rC\

provided there is originally no charge on the condenser and no

current in the circuit and there is no inductance in any part of

the circuit.

7. The time-constant of a circuit formed by a resistance r and

a capacity C in series is rC.

8. When a condenser of capacity C, through which the p.d.

is v . is discharged through a resistance r, the p.d. through the

condenser, the current in the circuit and the charge on the con-

denser t seconds after the terminals of the circuit are short-circuited

are respectively
_j_

v=v e rC

q
=Cv rC

provided there is no current in the circuit at the instant of short-

circuit and there is no e. m. /. and no inductance in the circuit.

9. When a condenser of capacity C, through which the p.d. is

v
,

is discharged through an inductance L, the p.d. through the

condenser and the current in the circuit t seconds after the ter-

minals of the circuit are short-circuited are respectively

t

provided there is no current in the circuit at the instant of short-

circuit and there is no e. m. f. and no resistance in the circuit.

When the terminals of the circuit are short-circuited at the instant
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when the current is i and there is no p.d. through the condenser,
the p.d. and current t seconds after the terminals are short-circuited
are respectively

ln COS (WWJ
provided there is no e. m. f. and no resistance in the circuit.

PROBLEMS
1. An air-core solenoid of 5000 turns is 20 cm. long and has a

diameter of 5 cm.
;
the resistance of the solenoid is 2 ohms. When

a constant e. m. /. of 50 volts is impressed across the terminals of

this coil (1), at what rate does the current begin to increase; (2)

what is the final value of the current; and (3) what is the time-

constant of the coil?

Ans.: (1) 162.2 amperes per second; (2) 25 amperes; (3) 0.154

second.

2. In the preceding problem, (1) at what rate is energy being
stored in the magnetic field of the current when the current has

reached a value of 10 amperes ; (2) when the energy of the electro-

magnetic field is 30.8 joules at what rate is energy dissipated in

heating the coil
; (3) at what rate is the current changing when the

total power supplied to the coil is 250 watts?

Ans.: (1) 300 watts; (2) 400 watts; (3) 129.9 amperes per
second.

3. At the same instant that the e. m. f. impressed upon a coil

is removed, the ends of the coil are connected by a resistance of

3 ohms. At the instant immediately after this change in con-

nections is made the current in the coil is 12 amperes and is de-

creasing at a rate of 480 amperes per second. (1) What is the

time-constant of the circuit? (2) If the energy of the electro-

magnetic field is 7.2 joules at the instant that the change in

connections is made, at what rate is energy dissipated in the

circuit in the form of heat energy at that instant? (3) What is

the resistance and the inductance of the coil?

Ans.: (1) 0.025 second; (2) 576 watts; (3) resistance 1 ohm,
inductance 0.1 henry.

4. An e. m. f. of 20 volts is impressed upon a coil of 0.6 ohm
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resistance and 0.3 henry inductance. What is the value of the

current, in the coil 0.5 second after the e. m. /. is impressed?

Ans.: 21.1 amperes.

5. An e. m. f. of 30 volts is impressed upon a coil of 0.5 ohm
resistance and 0.2 henry inductance. One tenth of a second after

the e. m. /. is impressed, the source of the e. m. f. is removed and

the coil is short-circuited by a resistance of 0.1 ohm. Determine

the value of the current in the circuit 0.08 second later.

Ans.: 10.48 amperes.
6. A battery which has an e. m. f. of 10 volts and a resistance

of 0.5 ohm, a coil which has an inductance of 3 henries and a

resistance of 0.5 ohm, and a non-inductive resistance of 4 ohms

are all connected in series to form a closed electric circuit. Find

the value of the current flowing in a non-inductive resistance of

4 of an ohm 2 seconds after it is connected in parallel with the

4 ohm resistance.

Ans.: 4.34 amperes.
7. An e. m. f. of 250 volts is impressed upon a circuit con-

formed by a non-inductive resistance of 1000 ohms in series with

a condenser of 50 microfarads capacity. Find (1) the initial

rate at which the condenser is charged; (2) the current in the

circuit when the charge on the condenser is 5000 microcoulombs
;

(3) the energy in the electrostatic field when energy is dissipated

as heat energy in the circuit at the rate of 10 watts; and (4) the

charge in microcoulombs on the condenser when the current is

changing at the rate of 4 amperes per second.

Ans.: (1) 0.25 ampere; (2) 0.15 ampere; (3) 0.563 joule;

(4) 2500 microcoulombs.

8. A 100 microfarad condenser charged to a potential differ-

ence of 600 volts and is discharged through a resistance of 500

ohms. Find (1) the current when the current is decreasing at

the rate of 16 amperes per second; (2) the charge on the con-

denser when the energy of the electrostatic field is 2 joules; (3)

the potential drop through the condenser when the condenser is

discharging at the rate of 0.5 coulomb per second; and (4) the rate

at which the condenser is losing energy when the charge on the

condenser is 10,000 microcoulombs.

Ans.: (1) 0.8 ampere; (2) 20,000 microcoulombs ; (3) 250 volts
;

(4) 20 watts.

9. One-half a second after an e. m. f. of 1000 volts is im-
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pressed upon a circuit formed by a non-inductive resistance and a

condenser in series, the current is 10 rnilliamperes. If the resist-

ance is 10,000 ohms, what is the capacity of the condenser?

Ans.: 21.7 microfarads.

10. An electrostatic voltmeter connected across the terminals

of a condenser indicates a potential difference of 500 volts. The

capacity of the condenser is 35 microfarads and that of the volt-

meter is 5 microfarads. When an unknown resistance is connected

across the condenser terminals, it is noted that when the con-

denser has been discharging for 1 second the voltage across its

terminals has decreased to 100 volts. What is the value of the

unknown resistance?

Ans.: 15,530 ohms.

11. Two-tenths of a second after an e.m.f. of 100 volts is

impressed across the terminals of a circuit formed by a non-

inductive resistance of 5000 ohms in series with a 20 microfarad

condenser, a 30 microfarad condenser is connected in parallel with

the 20 microfarad condenser. Find the charge on the 30 micro-

farad condenser 0.3 second after this parallel connection is made.

Ans.: 2410 microcoulombs.

12. A 50 microfarad condenser is charged to a potential differ-

ence of 1000 volts and is then discharged through a coil of 0.3

henry inductance and negligible resistance. Find (1) the maxi-

mum value of the current in the circuit; and (2) the frequency at

which it oscillates. (3) Plot to scale the current and p.d. waves.

Ans.: (1) 12.91 amperes; (2) 41.1 cycles per second.



VII

ALTERNATING CURRENTS

165. Introduction. We have just seen that when a con-

denser is discharged through a coil having an inductance L but

no resistance that the current in the circuit and the p.d. across

the condenser vary harmonically, i.e., the instantaneous value

of the current at any instant is i=I sin cut and the instantaneous

value of the p.d. across the condenser at any instant is v = V cos a)t

where I and V are the maximum values of the current and p.d.

and a) is equal to the factor 2 TT divided by the period of oscil-

lation of the current and p.d. Both the current and p.d. vary

periodically from fixed maximum values (I and V respectively)

in one direction to equal maximum values ( 1 and V respec-

tively) in the other direction and back again to the maximum
values in the first direction. The current is therefore called an

alternating current and the p.d. an alternating p.d. This ideal

circuit we have been considering is a very special one; alternat-

ing currents employed in practical work are produced by an

entirely different method, namely, by the rotation of one or more

coils in a magnetic field. The machine for producing alternating

currents in this manner is called an alternator.

166. The Simple Alternator. The simplest form of alternator

consists of a coil of wire of one turn rotating in a uniform magnetic

Fig. 94.-

field, see Fig. 94. The ends of the wire forming the coil are

connected to two rings called slip rings; making contact with

304
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these rings are the brushes 1 and 2. Let the coil be rotated with

an angular velocity o>
;
let time be counted from the instant when

the wire a is above b and the plane of the coil coincides with a

vertical plane drawn through the axis of rotation, and let
<f>

be

the value of the magnetic flux of induction threading the coil

when in this position. Then
<f> =<j>

cos a>t is the value of the flux

threading the coil at any instant t; hence the e. m. f. induced in

the coil at this instant is; see Article 105,

d<& ,

e = =ft>
<f>

sin CD t

dt

and is in the direction from 1 to 2. The maximum value of the
/7T TT

e. m. /. is then a)
<f>

and occurs when o> t = or t . Calling E
2<y

this maximum value of the e. m. /., the induced e. m.f. in the direc-

tion from 1 to 2 may be written

e E sin a) t

The electromotive force in this case is a harmonic or sine function

of the time, the period is T = and the number of complete
6)

periods per second, or the frequency, is /
=

.

2ir

In alternators as actually constructed the coils of wire are

not made of a single turn, nor do they rotate in uniform magnetic

fields
;
the field of the alternator also has a large number of poles.

By properly designing the coils and the pole faces of such a ma-

chine it is however possible to produce in the coils when rotated

at constant speed an alternating e. m. /. which is practically a

harmonic function of the time. In any case, the e. m. /. will be

a periodic function of the time and can therefore be represented

by a series of harmonic terms, called a Fourier's Series, of the

form

e =E lsin a) t+E2sin (2 a) t + 2) + E3sin (3a)t + 3) + -

where a) depends solely upon the number of pairs of field poles

and the angular velocity of the rotating part of the machine

(which rotating part may be either the field or the armature) and

the E's and 0's are constants, in general different for each term.

The first term E l
sin a) t is called the fundamental or first harmonic,

the remaining terms are called the second, third, etc., harmonics.

The frequency of the nth harmonic is equal to n times the fre-
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quency of the fundamental. In most practical cases it is neces-

sary to consider only the first harmonic or fundamental.

In order to understand the properties of alternating electro-

motive forces and currents it is necessary first to get clearly in

mind certain fundamental definitions.

167. Definition of Alternating Current and Alternating Electro-

motive Force. An alternating current is defined as a current

which varies continuously with time from a constant maximum
value in one direction to an equal maximum value in the opposite

direction and back again to the same maximum in the first direc-

tion, repeating this cycle of values over and over again in equal

Fig. 95.

intervals of time T, in such a manner that the instantaneous

value of the current at any instant t is identically the same as

at any other instant t +kT where T is the time, constant in value,

required for the current to pass through a complete cycle of

values, and k is any integer, positive or negative. \ Similarly, an

alternating e. m. f. is defined as an e. m. /. which varies continu-

ously with time from a constant maximum value in one direction

to an equal maximum value in the opposite direction and back

again to the same maximum in the first direction, repeating this

cycle over and over again in equal intervals of time T, in such a

manner that the instantaneous value of the e. m. f. at any instant

t is identically the same as at any other instant t + kT where T is

the time, constant in value, required for the current to pass through
a complete cycle of values, and k is any integer, positive or nega-
tive. In Fig. 95 the successive values of an alternating current

are plotted as ordinates against time as the abscissa. Such a
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curve is called a current " wave." In the figure the positive and
negative portions of the current wave are shown unsymmetrical ;

such a non-symmetrical current or p.d. wave is physically possible',
but the current and p.d. waves

developed in ordinary electric

machines are usually perfectly

symmetrical, i.e., the positive and

negative portions of the wave are

exactly alike.

An oscillating current or e.m.f.

is a current or e. m. /. which alter-

nates in direction but changes in

amplitude. An oscillating cur-

rent wave is shown in Fig. 96.

A pulsating current is a current which varies with time but is

always in the same direction
;
such currents are obtained from an

arc rectifier.

163. Period, Frequency, Alternations, Periodicity and Phase.

To avoid repetition the following definitions are given in terms

of an alternating current; they also apply to an alternating elec-

tromotive force, an alternating potential difference, or to any
other periodic function of time.

The period of an alternating current is the time taken for

the current to pass through a complete cycle of positive and

negative values
; i.e., the period is equal to the time T denned in

the preceding article.

The frequency, or number of cycles per second, is the number
of periods per second.

The number of alternations per minute is the total number of

times per minute that the current changes in direction, from

positive to negative and fronl negative to positive. In engineer-

ing practice the number of cycles is usually referred to the second

as the unit of time and the number of alternations is referred to

the minute as the unit of time.

Let T be the period, / the frequency or number of cycles per

second, and a the number of alternations per minute, then

.-120/- (2)
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The equation of a harmonic or sine-wave current is

i=I sin ((At + 8) (3)

where o> is a constant equal to and 8 is a constant such that

I sin 8 gives the value of the current at time =0. The constant

a) is called the periodicity of the current, and the constant 8 is

called the phase of the current. The relation between periodicity,

period and frequency is

<u=Y =2ir/ (4)

y 169. Difference in Phase. In general, when a harmonic or

sine-wave electromotive force is impressed on a circuit the result-

ing current is likewise a harmonic function of time (after a very
brief interval) having the same frequency, but the e. m. /. and

current do not reach their maximum values simultaneously. In

other words, when e =E sin at represents the e. m. /., the current

is represented by i=I sin (ait + ff) where E and I are the maxi-

mum values of the e.m.f. and current respectively; o>=2 TT f

where / is the frequency ;
t is the time measured from the instant

when e=0 and is increasing in the positive direction and 8 is an

angle which measures the interval between the instants when the

e. m. /. and current reach successive maximum values. The e. m. /.

reaches its maximum value at time t = while the current
2 co,

reaches its maximum value when

2 a) \2 I

Hence when 8 is positive the current reaches its maximum value
f\

^seconds before the e.m.f. reaches its maximum
; when 8 is

(0
Q

negative the current reaches its maximum value seconds after
O)

the e. m. f. reaches its maximum. In the first case the current is

said to lead the e. m. /., and in the second case the current is said

to lag behind the e. m. f. The angle 8 is called the difference in

phase between the current and e. m. /. A careful re-reading of

the latter part of Article 23 will assist the reader in obtaining a

clear physical conception of phase difference.

When the phase difference is zero the current and e. m. /. are
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said to be in phase; when the phase difference is radians or 90

the current and e. m. f. are said to be in quadrature; when the

phase difference is TT radians or 180 the current and e.m.f. are

said to be in opposition.

In general, when we have any two harmonic functions of

time and of the same frequency - ,
such as

2 7T

x l
=X l sin (

and
X2 =X2 sin

the first function reaches its maximum value at time time t v
= (- l )

\2 '

and the second reaches its first maximum value for t2
= I 2 } .

ft>\2 /

Hence the first function x v reaches its first maximum an interval

of time t2 t l
=

(#i #2) ahead of the second function x2 ;
the first

ft)

function x l is therefore said to lead the second function x2 by the

angle 0!02 . Note the order of the subscripts: xl leads x.2 by

&i 6 2,' or x2 leads x 1 by the angle 2 lf A negative lead is

of course equivalent to an actual lag, and a negative lag is equiv-

alent to an actual lead.

170. Instantaneous, Maximum, and Average Values. The

instantaneous value of an alternating current is the value of the

current at any instant.

The maximum value of an alternating current is the greatest

instantaneous value during any cycle. For a harmonic alternat-

ing current the value of the current at any instant is given by an

equation of the form i=I sin (a)t+ 0)', in this case the constant

I is the maximum value.

The average value of an alternating current is defined as the

numerical value of the average of its instantaneous values between

successive zero values
; hence, when the instantaneous values are

plotted as ordinates against time as abscissa, the average value is

the average ordinate for any positive half cycle of instantane-

ous values. In the case of a harmonic current of the form

i=I sin(a)t + 0) the average value 7aver .
is equal to 2 over TT

times the maximum value I
,
that is,
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.

77

For, put a)t+0 = x, then the average value of E sin (cot + 0)
between the limits CD t + =0 and co t+ Q=ir is equal to the aver-

age value of I sin x between the limits x =0 and x =TT, or

1 /V
j p qTr 2~

I ^o s^n 2^ =
I

cos x = I
v
J o

77-L J TT

The average value over a complete period of an alternating current

having symmetrical positive and negative values is zero, since the

average of the positive instantaneous values over half a period is

equal to the average of the negative instantaneous values over

half a period.

The above definitions and deductions also apply to alternat-

ing electromotive forces and alternating potential differences.

In the case of any harmonic function of the form x=X sin (a* t + 0)

the same relation exists between its maximum and average value

as between the maximum and average value of a harmonic cur-

rent, that is,

Xavcr_=-X (So)
TT

171. Effective Values. The total amount of heat energy

developed during a complete period T in a resistance r through

which an alternating current is flowing is equal to

Jri
2 dt=r\ i

2
dt

O I/O

A steady current 7 in the same interval of time will develop in

this same resistance an amount of heat energy equal to rPT.

Hence the alternating current will develop in any given resistance

in any given time the same amount of heat energy as a direct

current / provided

or

I2 =-\ i
2
dt (6)

The right-hand side of this equation represents the mean of the

squares of the instantaneous values of the alternating current;
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hence an alternating current will develop the same amount of

heat energy in a given resistance as a direct current which has a

value equal to the square root of the mean of the squares of the

instantaneous values of the alternating current. The square root

of the mean of the squares of the instantaneous values of an alter-

nating current over a complete period is called the effective value

of the alternating current. In specifying the value of an alternating

current as so many amperes this effective value is always meant
unless specifically stated otherwise. In the same manner the

square root of the mean of the squares of the instantaneous values of

an alternating potential difference over a complete period is called

the effective value of the alternating potential difference. When
the value of an alternating potential difference is specified as so

many volts, this effective value is always meant unless specifically

stated otherwise.

The reason for selecting this particular function of the in-

stantaneous values of an alternating current or potential differ-

ence as the measure of the current or potential difference is that

the deflection of all instruments used in alternating current

measurements is a function of this effective value. Moreover,
Joule's Law for the heating effect of a steady current also applies

directly to the heating effect of an alternating current provided
the current is expressed in terms of its effective value; i.e., the

average power dissipated in a resistance r, when an alternating

current of effective value / flows through it, is rP.

In case the current is a harmonic function of time, a simple
relation exists between its effective and maximum values. Let

T be the period of the current and begin counting time when the

current is zero and increasing in the positive direction. The

equation of the current is then

i=I sin a)t

where I is its maximum value and o> = . The effective value

of the current is then

i c T
-

I 7 2 sw2
a) t dt

1 cos 2 x
But from the trigonometric relation that sin7x=

,
where

x is any variable, we have that
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. 1 cos 2 a) t

2 2

and therefore
T

Hence the effective value of the current is

7=A_ (6a)
\/2

Similarly the effective value of a harmonic electromotive force

which has the maximum value E is

E=^- (66)

V2
and the effective value of a harmonic potential drop which has

the maximum value V is

V= ? (6c)

Note that the effective value in each case is independent of the

frequency but depends only upon the maximum value. The

above relations hold only for harmonic functions; when the current,

electromotive force or potential drop is not a harmonic function

of the time equations (6) do not hold. (See Article 176.)

172. The Use of Alternating Currents. When an alternating

electromotive force is impressed across the terminals of an electric

circuit of any kind an alternating current of the same frequency
is established in this circuit.* When the strength of the current

between these two points at any instant is i and the potential

drop in the direction of the current is v, the input of electric energy
between any two points 1 and 2 of the circuit in any infinitesimal

*The current established for the first second or two after the alternating

electromotive force is impressed is not strictly an alternating current, since

its amplitude builds up gradually to a constant maximum, just as the value of

the current established in a circuit by a continuous electromotive force builds

up gradually from zero to a constant maximum, depending upon the resist-

ance and back electromotive forces in the circuit. The current for the first

second or two is then an oscillating current. The building up of an alternating

current is discussed in Article 201. For the present we shall confine our atten-

tion to what takes place in the circuit after the current has become a true

alternating current, alternating between constant positive and negative maxi-

mum values.



ALTERNATING CURRENTS 313

interval of time dt is equal to vidt, and therefore the rate at which

energy is transferred to this part of the circuit at this instant, or

the power input between 1 and 2 at this instant, is p =vi. Although
the average values of an alternating current and an alternating

p.d. over a complete period are both zero, the average value of

the power input (or output, when the potential drop is in the

opposite direction to the current) when the current and p.d. have

the same frequency is not zero except in certain special cases.

Hence an alternating current may be used to transmit electric

energy just as a continuous current is used for this purpose. In

fact, the transmission of electric energy over long distances can

be accomplished much more economically by the use of alternat-

ing than by the use of continuous currents. Alternating current

generators are much less expensive for the same power output,

and certain forms of alternating current motors, particularly the

induction motor, are cheaper to build and require less care in

operation than a direct current motor of the same power output.

An additional advantage of alternating currents comes from the

fact that by means of a device called an alternating current

transformer, power may be readily transferred from a circuit in

which the current is small and the voltage high to a circuit in

which the voltage is low and the current large. Since the power
lost in a transmission line depends upon the square of the current,

it is obvious that for economical transmission the current should

be kept small, and therefore the voltage high. On the other

hand, a high voltage is dangerous, particularly inside of buildings.

Hence electric power is usually generated at a comparatively low

voltage,
"
stepped up ".by means of a transformer to a high volt-

age for transmission, and then "
stepped down "

by means of

another transformer to a comparatively low voltage for local

distribution and use.

173. Alternating Current Transformer. An alternating cur-

rent transformer consists essentially of two independent windings

wound on the same closed iron core. When a current is estab-

lished in either winding a magnetic flux is established through

the iron core, and when this current varies with time the flux

varies with time and therefore an electromotive force is induced

in each winding. Let N l and N2 be the number of turns in series

in the two windings respectively, and let
(j>

be the number of lines

of magnetic induction established in the core at any insta-nt.
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When all the lines of induction link all the turns of both windings

(that is
,
when there is no magnetic leakage) the electromotive

forces induced in the two windings at this instant are e
1 =N1

?
dt

and e2=N2
- respectively. Hence these electromotive forces are

dt

directly proportional to the number of turns in series in the two

windings respectively. When the terminals of the first or primary

winding are connected to the terminals of an alternating current

generator and the terminals of the second or secondary winding
are connected to an alternating current motor or other receiving

device, energy will be transmitted through the transformer to the

receiving device. Neglecting the dissipation of heat energy in

the connecting wires and in the windings and core of the trans-

former, the power input into the primary winding of the trans-

former is equal to the power output of the secondary winding.

Hence calling t\ and ia the instantaneous values of the currents

in the two windings, wre have that

BI 1i
:== C2 ^2

e N i N
But =

;
therefore =

. That is, the electromotive forces
e2 N2 i2 N l .

induced in the two windings are to each other as the number of

turns in the respective windings, and the currents in the two

windings are to each other inversely as the number of turns in

the respective windings. These relations are only approximate,

since the assumed conditions are only approximately realized in

practice. For a full discussion of the alternating current trans-

former see any text-book on alternating current machinery.
174. Average Power Corresponding to a Harmonic P.D. and

a Harmonic Current. Power-Factor. The average power input

into a circuit when a harmonic current is established in the circuit

and a harmonic p.d. is established between the terminals of the

circuit can be readily expressed in terms of the effective values

of the current and the p.d. and the difference in phase between

the current and p.d. Let

i=I sin ((ot + t)

be the value of the current at any instant /; and let

v = V sin(a)t + 2)

be the value of the potential drop in the direction of the current i
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at this same instant. The power input into the circuit at this

instant is then

p=vi = V I sin (cot + #,) sin (cot+ 2)

From the trigonometric relations that

cos (a-fo) =cos a cos b sin a sin b

cos (a b) =cos a cos b + sin a sin b

we have, subtracting the upper from the lower, that

sin a sin b = J cos (a 6) J cos (a+ 6) (7)

Hence, substituting cot + 6^ for a and cot -f 2 for 6 we have

sin (cot+ 9,) sin (cot + 2) =J cos (0,
-

2)
-

i cos (2cot + 0, + 2)

Hence the instantaneous power is

p =vi = cos (0,
-

ft)
- cos (2cot + 61 (8)

Therefore the instantaneous power is also a harmonic function of

time but has twice the frequency of the current or p.d., and it is

unsymmetrical with respect to the axis of time unless ft ft= ,

i.e., unless the current and p.d. are in quadrature. The curves

Fig. 97.

for current, p.d. and power in the general case are shown in Fig.

97. Note that, in general, for part of the time the power is posi-

tive and for part of the time the power is negative ; whiph means

that energy is transferred to the circuit during part of each cycle

and transferred from the circuit during the remainder of the cycle.
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The average power transferred to the circuit during each

complete period T is

!_
CT

. =1 CTV I

/T7 I /77 I C\
1 J o 1 J o z

~)
'' 7 i "__ I / /J /I \ /c\ / I /3 I M \ 1 ^1

TJ
Therefore

7 / / 1

P =-JT (t
cos (9, -92}- sin (2a)t + 0, + 2)

T

o

Whence

and therefore the average power input is

P = VI 608(0,- 2) (9)

where V and I are the effective values respectively of the p.d. and

current, that is V and 7= ^; and 0!02 is the difference
V2 V2

in phase between the current and p.d.

Hence, when the current and p.d. differ in phase, the average

power input into the circuit is less than the product of the effective

current and the effective p.d. The ratio of the true power input
into a circuit to the product of the effective current and effective

p.d. is called the power factor of the circuit. In the case of a

harmonic current and a harmonic p.d. the power factor is there-

fore equal to the cosine of the angle which expresses the difference

in phase between the current and the p.d. Hence this angle

is frequently called the power-factor angle of the circuit.

Equation (9) may then be expressed in words as
" the average

power input into any circuit, when there is established a harmonic

current in the circuit and a harmonic p.d. of the same frequency
across the terminals of the circuit, is equal to the product of the

effective values of the current and the p.d. times the power factor

of the circuit."

When current and p.d. are in quadrature, i.e., when l 2
=

then cos (O l 2) =0, that is, the power factor is zero, and the

average power input into the circuit is also zero. The sine curve

representing the instantaneous power is then symmetrical with

respect to the axis of time. In this case as much work is done

on the current during one half of the cycle of the power curve as
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is done by the current during the other half of this cycle ;
the total

work done by the current in a whole cycle is zero. When current

and p.d. are in phase, i.e., when B 1 $2 =0 then cos (0 1 2) =1 ;

that is, the power factor is unity and the average electric power
input for the given current and p.d. is a maximum and equal to

VI, where V and / are the effective values of p.d. and current.

In this case the entire curve of instantaneous power lies above

the axis of time. When current and p.d. are in opposition, i.e.,

when l 2
= 7T then cos (0 1 2)= l; that is, the power

factor is again numerically equal to unity, but the average electric

power input is negative, i.e., work is done on the current at the

average rate VI. In this case the entire curve for instantaneous

power lies below the axis of time.

In general, whenever the power-factor angle 0^ 2 is greater

than + or less than -, that is, whenever the current leads or
2 2

lags behind the potential drop in the direction of the current by
more than 90, work is done on the current at the average rate

equal to the numerical value of the expression VI cos (O l 2).

This, part of the circuit then acts like a generator. Let the in-

stantaneous values of the net rise of potential in the direction of

the current in this part of the circuit, i.e., the terminal e. m. /.,

be represented by the equation e=E sin (a)t + f

). Then E is

numerically equal to V and 0' is equal to 2 + ir, for the rise of

potential at any instant is opposite to the drop of potential at

this instant. The average power output of this part of the circuit

is then

P = EI cos (0,-ff) (9a)

where E = V is the effective value of the terminal electromotive

force. This output P is positive when (O l

f

) is greater than

- and less than . Equation (9) gives the average electric
2 2

power input into the circuit and equation (9a) gives the average

electric power output of the circuit.

175. Power Corresponding to a Non-Harmonic P.D. and a Non-

Harmonic Current. When the p.d. and current are not harmonic

functions of time the above expressions for power, equations (9),

do not apply. An alternating p.d. or current, however, may

always be represented by a Fourier's series (see Article 166), no
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matter what may be the shape of the curve or
" wave "

represent-

ing it. For example, let the current and p.d. be

i =/! sin (a) * + 00 + Iz sin (2cot+ 2) + 73 sin (3a)t + a)

v = V, sin (o)t + 0'0 + V2 sin (2<ot + 0' 2) + V3 sin (3o)t + 0' 3)

In this case the instantaneous power is (see equation 7)

w=i [VJt cos (0,- 0'0 + V2I2 cos (02
- 0' 2) + V 3I3 cos (03

- 0' 3)

- VJ, cos (2o>*+ ft + 0'0
- V2I2 cos (4 o>+ 2+ 0' 2)

- V3I3 cos (6orf+ 3+ 0' 3) + VJ, cos (o>t+0' 2
-

0,)

+ V3I, cos (2o>t + 0' 3
-

9,) + VJ2 cos (a)t+02
-

0'0

+ V3I2 cos (cot+ 3

f -
2) + VJ3 cos (2<ot+03

-
0\)

+ 72/3 cos (cot+ 3
- 0'2)

- V2I, cos (3orf + 0, + 0' 2)

- VJ, cos (4o>t + 0, + 0' 3)
- VJ2 cos

- V3I2 cos (5o)t+02 +0'3)
- VJ3 cos

- V2I3 cos(5<ot+03 +0' 2)]

The average of this instantaneous power for a complete cycle of

the fundamental period T is

CD

1 r T
=
T mdf'

J o

P=-

Hence the average power is

P=Y^l Cos(O l -9' l)+^ cos (02 -02') +^ cos (03 -0,') (10)
2i 2i Zi

since the integral between the limits and T for each of the har-

monic terms containing t in the equation for instantaneous power
is zero. Hence when there exists in a circuit an alternating

current and an alternating p.d. of any kind whatever, the average

power is equal to the sum of the values of the average power

corresponding to each pair of harmonics of the same frequency
which exist in the Fourier's series for the current and p.d. That

is, the average power input corresponding to each pair of har-

monics of the same frequency is independent of what other har-

monics may be present. Note that when any harmonic is absent

in either the p.d. or the current this harmonic contributes nothing

to the average power. For example the term - cos (B3 6'^

equals zero for either 73 =0 or V3 =0.

It should also be remembered that in most practical cases the

curves representing p.d. and current are each symmetrical with
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respect to the axis of time, and therefore as a rule only the odd
harmonics are present.

176. Effective Value of a Non-Harmonic Current or P.D.

When the current is of the form

i =7j sin (a)t + 0j) + 72 sin (2 a)t + 2) + 73 (sin 3 cot + 3}

1 C T

the square of the effective value is, by definition, 7
2 =

I i
2
dt.

That is, the square of the effective value of the current is of

the same mathematical form as the average power correspond-

ing to the current i and an equal p.d. in phase with it. Hence
from equation (10)

r 2 T 2 72

J2 _*1_ -j_ ll_ +_ -I

cy c\ o

But
l

,

2

-, L, etc., are the effective values of the harmonics
V2 V2 V2

which have the maximum values I
1} 72 ,

73 , etc., respectively.

Hence, the effective value of any non-harmonic current is equal to

the square root of the sum of the squares of the effective values of

all the harmonics present in the current wave. Similarly, the

effective value of any non-harmonic p.d. is equal to the square
root of the sum of the squares of the effective values of all the

harmonics present in the p.d. wave. When Ilf 72 ,
73 , etc., are

taken to represent the effective values of the various harmonics

of the current and V1} F2 ,
F3 , etc., are taken to represent the

effective values of the various harmonics of the p.d. }
the effective

value of the resultant current may be written

and the effective value of the p.d. may be written

~~f F,
2+F,2+ -=^~ (Ha)

and the average power may be written

P =I
1 V 1 cos t + 7272 cos 2+ 7373 cos 0,+ -

(116)

where
l} 2 , 3 , etc., are respectively the differences in phase

between the harmonics of current and p.d. of the same frequency.
177. Equivalent Sine-Wave P.D. and Current. In practical

work the p.d. and current are seldom simple harmonic functions

of true, i.e., are seldom "
sine waves/' but each contains one or

more of the odd harmonics. As a rule, however, it is not neces-

sary to consider these harmonics separately, but as a first ap-

proximation the p.d. and current may each be considered as a
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sine wave having an effective value equal to the effective valuo

of the actual wave and differing in phase by an angle 6 such that

VI cos 6 represents the average power, where V and / are the

effective values of the true p.d. and current waves respectively.

In certain special cases, however, it is necessary to analyse the

waves into their constituent harmonics.

178. Determination of the Maximum Value and Phase of the

Harmonics in a Wave of Any Shape. When the wave shape of

a p.d. or current is known, the effective value and the phase of

the harmonic of any order may be readily determined. For

example, the instantaneous value of the current may be written

i =1, sin x+ I2 sin (2x+ 2 ) + 13 sin (3x+ 3 ) + etc. (a)

where x=27r ft and / is the frequency of the wave. The in-

stantaneous value of the current i corresponding to any value of

x is also given by the corresponding ordinate of the curve repre-

senting the current wave. We wish to determine the constants

r
v 72 ,

73 , etc., and 2 , 3 , etc., which will make the curve rep-

resented by (a) coincide with the actual current wave. Con-

sider, for example, the third harmonic. Multiply equation (a)

by sin 3x and integrate with respect to x over an entire period of

the wave, i.e., between the limits x =o and x =2 IT. We then have

J27T

f*2ir

i sin 3x dx = I
[7j

sin x sin 3x+ 72 sin (2x + 2) sin 3x

o J o

+ I3 sin (3x + 0.3 ) sin3x+ etc.] dx

But the integral of each term in the right-hand member of this

equation between the limits o and 2 77 is zero, except for the

particular term 7 sin (3x+ 0) sin 3x, the integral of which from

to 2 TT is-^ cos #3 =7r73 cos 3 . (See Article 175.) Hence

2ir

i sin 3x dx = TT 73 cos 3

o

i sin 3x dx may be determined graphically
9

by plotting the expression i sin 3x or ordinates against x as

abscissas, and determining the area of this curve by means of a

planimeter. Call this area A 3 ,
then

A 3
= 7rI3 cos03 (6)
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Next, multiply the equation (a) by cos3x=sin

exactly the same manner we then have that
r

I* \
i cos 3x cte =7T/3 cos -03 =TT I3 sin

in

1*
f I i

J o

and the value of I i cos 3x dx may be determined graphically

as in the first case by plotting the curve i cos 3x and finding its

area by means of a planimeter. Call this area B3} then

B3
= 7rI3 sin 3 (c)

From equations (6) and (c) we then have

2+B* (12a)
7T

and

*.-*,'
(126)

Note that in case the wave is symmetrical with respect to the

axis of time it is unnecessary to look for the even harmonics.

Also, when the wave is symmetrical, the curves i sin 3x and

i cos 3x need be plotted for only a half period of the wave. Call-

ing 0,3 and ft3 the areas of these curves for half a period of the

wave, we then have

(136)

This method of determining the harmonics present in the

wave is of course applicable to the determination of the harmonic

of any order.

Fig. 98.

Example: Suppose the current is a symmetrical rectangular

wave as shown in Fig. 98. Let / be the value of the current
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during the positive half of the wave. Since the wave is sym-

metrical, only the odd harmonics can be present. Consider the

nth harmonic, where n is any odd positive integer. Then

r f I Y 21
an = \ I sin nx dx I cos nx }

=
V n / n

J o

and f* f1 Y
/3n
=

I / cos nx dx = I
- sin nx] =0

Jo o

since n is odd. Hence from equations (13)

and

n
Hence all the odd harmonics exist in a symmetrical rectangular

wave, the maximum values of the harmonics varying inversely
as their order n. A symmetrical rectangular wave having a maxi-
mum value / may then be represented by the infinite series

_
i

n
n=l

where n has all the odd values from 1 to oo and / is the frequency
of the wave.

179. The Fisher-Hinnen Method for Analysing a Non-Harmonic
Wave. (See Electric Journal, Vol. 5, p. 386 and Elektrotech-

nische Zeitschrift, May 9, 1901.) This method is much simpler
than that described above, exc.ept in the rare cases where the
resultant wave may be represented by a simple integrable func-

tion. The method is based on the following facts :

1. The algebraic sum of any n equally spaced ordinates of a
k

sine wave, when these ordinates are spaced th of a wave length
Tb

apart, where k is any integer which is not a multiple of n, is zero.

2. The algebraic sum of n ordinates of a sine wave when these

k
ordinates are spaced wave lengths apart, where k is a multiplen
of n, is equal to n times the ordinate of this wave at any one of

these points.
3. The maximum ordinate of any sine wave is equal to the

square root of the sum of the squares of any two ordinates spaced
a quarter of a wave length apart.
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4. Let ?/! be the ordinate of a sine wave at any point at an
angular distance xl from the origin, and let y2 be another ordinate
of this wave a quarter of a wave length to the right of xt . Then
the angular distance measured from the point xl toward the left

to the point at which this wave first crosses the x axis in the

positive direction is

Consider a wave of any form whatever (for example, the
wave shown in Fig. 95) and let the highest harmonic of this

wave be the nth. Let yly yz , y5 ,

------- y 2n-i be n ordinates of

360
this wave spaced degrees apart, where 360 corresponds to

a complete wave length of the given wave. Let a/, a3',
as', be

the corresponding ordinates of the fundamental or first harmonic
of this wave, a/', a"

, a/, be the corresponding ordinates of the
second harmonic of this wave, a"'

', a/', a/", etc., be the cor-

responding ordinates of the third harmonic, and so on; the cor-

responding ordinates of the nth harmonic being a^n\ a3
(n)

,

a5
(n)

,
etc. We then have that

= ' " ------------ n)

= a2n_/ + a,n_/' f a2n_/"+

The ordinates a/ to a2n_/ of the first harmonic are ordinates

of a sine wave and are spaced th of a wave length apart, and

therefore, from Proposition 1, their sum is zero. Similarly, the

ordinates /' to 2n-i" are ordinates of a sine wave of half the

wave length of the fundamental and therefore the angular dis-

2
tance between these ordinates is th of the wave length of the

n
sine wave of which they are the ordinates

;
hence the sum of the

ordinates a/' to a2n-/' is zero. Similarly for all the other ordinates

except those of the nth harmonic. The latter are spaced = 1

wave length apart, and therefore, from Proposition 2, their sum
is equal to n times the value of the ordinate of this harmonic
at any one of the points 1, 3, 5, etc. Hence the value of the

ordinate of the nth harmonic at the point 1 is

^i =- (2/1+ 2/3+ 2/5 + ------------2/2n.i)
n

Similarly, if y2 , y4 , y6 ,

---------y2H are ordinates of the given
wave one quarter of a wave length of the nth harmonic to the
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right of the first set of ordinates, their sum will be equal to n
times the ordinate of the nth harmonic a quarter of a wave length
of this harmonic from yl ;

call this ordinate Bn ,
then

Bn
=-

(2/2+ 2/4+ 2/6 + y2n)
n

Then from Proposition 3, the maximum value of the ordinate

of the nth harmonic is

Y \/A 2 + B 2
1 n v ^n ' n

From Proposition 4, the angular distance to the left of yt at which
this harmonic cuts the x axis in the positive direction is

f*-**
4

^
5

Bn
when 360 degrees are taken equivalent to a wave length of the

nth harmonic. When 360 degrees are taken equivalent to a wave
length of the given wave this angular distance is

<^n =Iton-
1 n

n Bn

Consider next the mth harmonic, and erect two sets of m
ordinates, the ordinates of each set being spaced 360 apart

(considering a wave length of the given wave as equivalent to

360) and the second set a quarter of a wave length of this har-

monic to the right of the first set. Then, if the harmonics of higher
order are not multiples of m, we have as before that the ordinate
of the mth harmonic at the point 1 is

Am = (2A + 2/3 + 2/5 2/2m-0m
and the ordinate of the mth harmonic at the point 2, which is a

quarter wave length of this harmonic to the right of 1
,
is

Bm = (2/2+ 2/4 + 2/5+ 2/2m)m
Whence the maximum value of this harmonic is

Y \/A 2 4-B 2
1 m v **m T >m

and it cuts the x axis at the angular distance

m Bm
to the left of the first ordinate when 360 degrees are taken equiv-
alent to the wave length of the original wave.

If there also exists in the given wave a harmonic of the nth

order, where n is a multiple of m, that is if n=km, where k is an

integer, then from Proposition 2, since each set of these m ordinates
97

is spaced =k wave lengths of the nth harmonic apart, we have

that the sum of the first set of m ordinates also contains m times
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the ordinate of the nth harmonic at the point 1. Calling An
the ordinate of the nth harmonic at the point 1 we then have
that

=- (y l + 2/3+ 2/5 + + 2/m-O
- An

'

m
Similarly,

Bm =-m
where Bn

'
is the ordinate of the nth harmonic at the point 2.

A similar correction must be applied for all other harmonics
of higher order than the rath if the orders of these harmonics
are multiples of m.

The waves of current and electromotive force with which
one has to deal in practice usually contain only the odd har-

monics; also, as a rule, the harmonics of higher orders than
the seventh are negligible. In this case the three harmonics,
the third, fifth, and seventh, are not multiples of each other

and consequently no correction term has to be applied. More-

over, it is sufficient to consider the ordinates of only half a wave

length. To determine the third harmonic divide the base line

of this half wave into 2n=6 equal parts and measure the ordinates

at the beginning of each of these six segments. Let these ordi-

nates be 2/ t , 2/2,
...... -

-2/6 . Let the beginning of the first segment
be taken where the given wave cuts the x axis and call this point
the origin, then yl =0 and we have

B3 =- (2/2+2/6-2/4)
o

Then the maximum value of the third harmonic is

and it cuts the x axis at the angular distance

to the left of the origin. The equation of the third harmonic

is then

y3 =Y3 sin 3 (x+<f>3)

Similarly, starting at the same point and dividing the half wave
into 2n -10 segments, we have for the 5th harmonic

A 5
= - (2/5+2/0-2/3-2/7)

o

B6 =- (2/2+ 2/6 + 2/10-2A-2/8)
5
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*-=I
w

'(l)
and the equation of this harmonic is

The determination of the seventh harmonic is carried out by an

exactly similar process, dividing the base line into 2n=l4 equal

parts.
The ordinates of the fundamental at the origin and at the

point corresponding to one quarter of a wave length from the

origin are then respectively

"-i
~ -A 3 "-a A-t

and B^yn+Bt-Bt+ B?
where ym is the ordinateof the given wave corresponding to the

point a quarter of a wave length from the origin (i.e., the mid-
ordinate of the given wave) and A 3 ,

A 5 ,
A7 ,

B3 ,
B5 ,

and B7 are
the quantities above determined. The maximum value of the
fundamental is then

and it cuts the axis of x at the angular distance

to the left of the origin. Its equation is therefore,

y l
= Yl sin(x+fa)

The equation of the given wave is then

y =Yl sin (x+ </>!)
+ Y3 sin 3 (x+fa) + Y5 sin 5 (x+ (f> 5 )

+ Y7 sin7 (x+fa) (I4a)
The effective value of the given wave is

*; 2 (146)
and the average value is

^aver=- Y^os^^ -Y3 cos 3 fa + - Y5 cos5fa+-Y7 cos7fa
77"L o 5 7 J

a*o
In employing the above formulas strict attention must be paid

to algebraic signs.

Example. In the curve shown in the figure the ordinates at

6 equally spaced points, starting from the point where the curve
cuts the base line are

y l =0 y4 =940

7/3=660
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and the ordinates corresponding to 10 equally spaced points,

starting from the point where the curve cuts the base line are

2/1=0 2/3 =719 2/5 =702 y7 =W8Q y, =639

2/2 =470 2/4=678 2/6=940 ys =92Q 2/10 =375

Fig. 99.

From the first set of ordinates we have for the third harmonic

Y3

>3
= 1 tan'

96.7

(96.7)
2 =150

7
'-16.6

From the second set of ordinates we have for the fifth harmonic

702 + 630-719-1086 = -92.;

470 + 940 + 375-678-920

5 =V(92.8)
2 + (37.4)

2 =100

For the fundamental we then have

A 1
=114.7 + 92.8 = -21.9

B^ =940 + 96.7- 37.4 = + 999.3

Yl =\/(21.9)
2 + (999.3)

2 =999.5
91 Q

4>
l =tan-

1 =-1.25
999.3
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The equation of the given wave is then

y =999.5 sin (x- 1.25) + 150 sin 3 (x + 16.6)

+ 100 sin 5 (x- 13.6)
Its effective value is

F
and its average value

3

180. Form Factor. The form factor of a wave is defined

as the ratio of the effective value to the average value. For

a sine wave the form factor is-%-- =-= = 1.11. The

form factor of a flat-topped wave is less; of a peaked wave
718

greater. The form factor of the wave shown in Fig. 99 is -

1.068.

181. Amplitude Factor. The amplitude factor of a wave is

defined as the ratio of the maximum value to the effective value.

For a sine wave the amplitude factor is 1.414. The amplitude
factor of the wave shown in Fig. 99 is 1.53.

182. Power and Reactive Components of P.D. and Current

Whenever we have to deal with two or more harmonic functions

of time, we may as a matter of convenience begin counting time

at an instant when one of these functions is zero and is increasing

in the positive direction. For example, when the current is

i=I sin (<0l-f-0i) and the p.d. v = V sin (<u + 2), we may begin

counting time at the instant when v=0 and is increasing in the

positive direction
; 2 is then equal to zero. Hence, dropping the

subscript from V and also writing 7 =\/2 I and V =\/2 V,

where I and V are the effective values of i and v respectively,

we have

v=V2 V sin ait

i=V2 I sin (ut + 0)

The average power is then

P = VIcos0 (15)

From the trigonometric formula that

sin (a+ b) =sin a cos b + cos a sin a

we may write the current

i =\/2 / cos sin a) t + \/2 I sin cos cot

that is, we may consider i as made up, of two components
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i*!
=V2 7 cos 9 sin cot

i2=V
/

2 7 sin 9 cos cot =\/2 7 sw 9 sin

The first component ^ is in phase with the p.d. and has the effective

value 7 cos
;
the second component is in quadrature ahead of

the p.d. and has the effective value 7 sin 0. The average power

corresponding to the first component i, is

V (7 cos 9) cos = 77 cos9 = P
and the average power corresponding to the second component ?'2 is

7T
7 (I sin 9) cos-=0

45

Hence the average power of a harmonic p.d. and current is equal

to the effective value of the p.d. times the effeetive value of the com-

ponent of the current in phase with the p.d. The component of the

current in phase with the p.d. is therefore called the power com-

ponent of the current. The component of the current in quadra-
ture with the p.d. is called the reactive component of the current,

since the power input corresponding to this component of the

current during each quarter cycle is exactly equal to the power

given back during the following quarter cycle.

Similarly, we may consider the p.d. as made up of two com-

ponents

Vl =\/2V cos 9 sin (cot + 0)

V2 =\/2V sin 9 cos (cot + 0) =V2V sin 9 sin [(cot + 9)
- -1

The first component vl is in phase with the current and has the

effective value V cos 9
;
the second component v2 is in quadrature

behind the current and has the effective value V sin 9. The

average power corresponding to the first component v
l is

7 (V cos 9) cos 0=7 V cos9 = P
and the average power corresponding to the second component
v2 is

I (V sin 9) cos-=0

Hence the average power of a harmonic p.d. and current is also

equal to the product of the effective value of the current times the

effective value of the component of the p.d. in phase with the current.

The effective value of the component of the p.d. in phase with
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the current is therefore called the power component of the p.d.;

and the effective value of the component of the p.d. in quadrature
with the current is called the reactive component of the p.d. The
reactive component of the p.d. is in quadrature behind the current

when the resultant current leads the resultant p.d. and is in

quadrature ahead of the current when the resultant current lags

behind the resultant p.d.

The name " wattless component
"

is sometimes used for

reactive component, since the average watts corresponding to

this component of current or p.d. is zero
;
the instantaneous watts

corresponding to this component, however, are not zero. Hence

the adjective
" wattless

"
is misleading.

183. Apparent Power. The product of the effective value

V of the resultant p.d. and the effective value I of the resultant

current is called the apparent power, that is

Apparent Power =VI (16)

From equation (15), we have

Average Power = VI cos

where is the difference in phase between p.d. and current.

Hence

Average Power /,Power Factor = - =cos V
Apparent Power

The terms volt-amperes and apparent watts are also frequently used

for apparent power; i.e., volt-amperes or apparent watts = (effec-

tive p.d. in volts) X (effective current in amperes).

184. Reactive Power. The expression reactive power is

used for the product of the effective current and the effective

value of the p.d. in quadrature with it
; or, what amounts to the

same thing, the product of the effective p.d. and the effective

value of the component of the current in quadrature with the p.d.

That is

Reactive Power = VI sinO (17)

where V and / are the effective values of p.d. and current respec-

tively, and 6 is the power-factor angle. From equations (15),

(16) and (17) it follows that the apparent power is equal to the

square root of the sum of the squares of the average power and

the reactive power, i.e.,

VI =V(77 cos 0)
2+ (VI sin 0)

2
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186. Addition of Alternating Currents and of Alternating
Potential Differences. In any technical problem that has to

do with the generation, distribution or utilisation of electric

energy by means of alternating currents it is of fundamental im-

portance to be able to predetermine the distribution of the cur-

rents and potential drops in the various windings of the machines

and in the transmission line or network which forms the distribu-

tion system. The fundamental principles involved in such calcu-

lations are the same as in the case of continuous currents, that is,

the two principles known as Kirchhoff's Laws. However, in the

ease of alternating currents, Kirchhoff's Laws in the simple form

in which they are stated in Article 98 apply only to the instan-

taneous values of the currents and electromotive forces; they do not

apply to the effective values of these quantities. Effective values

of alternating currents and electromotive forces are not additive.

Effective values of alternating currents and electromotive forces

are like the numerical values of continuous currents and electro-

motive forces
;
we cannot say, when two batteries are connected

in a circuit, whether the net electromotive force in the circuit

will be the sum or the difference of the electromotive forces of

the two batteries unless we know their direction with respect to

each other. Similarly, when two alternating electromotive forces

are acting in the same circuit, we cannot say what will be the net

electromotive force in the circuit unless we know their directions

with respect to each other. The numerical value of an alternat-

ing electromotive force is specified by its effective value, and the

difference in direction between two alternating electromotive

forces is specified by their difference in phase. Hence, to deter-

mine the effective value of two alternating electromotive forces, it is

necessary to know both ihdr effective values and their difference in

phase. Similarly, to determine the effective value *o/ the total

current leaving any junction in a network of circuits, it is necessary

to know not only the effective values of the currents coming up to

that junction but to know also the phase relations of these currents.

Consider first two harmonic alternating electromotive forces of

the same frequency,
e l
=E l sin a> t

and
ez
=E2 sin (a) t+ )

in series between any two points of a circuit. These two electro-
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motive forces then differ in phase by 0. If =
0, the two act

in the same direction at each instant; if = 180 the two oppose

each other at each instant; if has any other value the two

electromotive forces act together during part of each cycle and

oppose each other during the rest of the cycle. In any case, the

net or resultant electromotive force at any instant is

e =e l -f- e2
=E l sin a)t-\- E2 sin (a)t-\- 0)

The expression #, sin a)t + E2 sin (a)t + 0) may be put equal to

E sin (a)t + ] where the constants E and may be deter-

mined from the condition that the relation

Et sin a) t + E2 sin (a) t
-

f- )
=E sin (a)t-\-0 )

must hold at all times. For t = Q, we then have that

E2 sin0=E sin0 (a)

and for / =
,

2a)

E!+ E2 COS =E COS (b)

since sin ( - + 0] = cos and sin I - + } =cos

Squaring the equations (a) and (b) and adding, we get

E 2+ E 2
cos

2 + 2E,E2 cos + E 2 sin2 =E 2
cos

2 + E 2 sin2

whence

E 2 =E 2+E 2+ 2E lE2 cos (18a)

Dividing the equation (a) by the equation (b), we get

/) E2 sin ,.. , N

tan = (186)

Therefore

Si + e2
=E sin (a) t + )

where E is the maximum value of the resultant e.m.f. and is

given by equation (18a) and is the angle by which the re-

sultant e. m. /. leads ev and is given by equation (186).

Exactly similar relations hold for two harmonic currents of

the same frequency, and in fact for any two harmonic functions

of the same frequency in the same independent variable.

186. Representation of a Harmonic Function by a Rotating

Vector. The results just deduced may be arrived at graphically

by a very simple method. Let OQ in Fig.. 100 be any line fixed

in the plane of the paper and let the line OP, be equal in length

to Elt and be pivoted at and rotate about with an angular
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velocity <w ;
let this rotating line coincide with the line of reference

OQ at time 2 = 0. Then at any instant of time t, this line will

make an angle cot with OQ and the instantaneous value of the

e. m. (. 6i
= E! sin cot at any instant will be equal to the vertical

distance from Pl to OQ. Similarly, if OP2 is a second line

equal in length to E2 rotating about with the same angular

velocity a), and making the angle 9 with OQ at time Z = 0, then

the instantaneous value of the e. m. f. e2
=E2 sin (a>t + 0) at any

instant will be equal to the vertical distance from P2 to OQ.
Since both lines rotate with the same velocity the angle between

the two will be equal to 9 at all times
;
that is the phase angle

9 measures the difference in direction between the two rotating

vectors representing the two e. m. f.'s.

O
I

Q,

Fig. 100.

Let OP =E be the vector sum of OP, and OP2 . It is then

evident from the diagram that the instantaneous value of (ev -\-e^

at any instant is the vertical distance from P to OQ; also that

this line OP remains fixed in length and fixed in position with

respect to P, and P^ and is equal numerically to the maximum
value of e! + e2 ,

and at any instant makes the angle (a)t+ P OP,)

=(o) t -f ) with the line of reference. Hence the resultant e. m. f.

is

Si + ez
= EO si (to t + ^o)

where
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E =V E2
l+E\+2E 1

E2 cos & (19a)

which are identical with equations (18).

The above discussion of course applies to any two harmonic

functions of the same variable. For example, the resultant of

two harmonic currents

ij =/! sin cot

and i2 =/2 sin (cot+ 0}

is fc\ + i2 =I sin (out+ )

where

(20o)

(206)
_jF"

/2 SI'TI (/

aU U l + Iz cos0\

A re-reading of Articles 8 and 9 will be found helpful in

understanding the vector method of representing alternating cur-

rents and potential differences.

187. The Vectors Representing Any Number of Harmonic
Currents and P.D.'s of the Same Frequency are Stationary with

Respect to One Another. This is immediately evident from the

fact that the analytical expression for any harmonic function of

the time is A sin (a)t + 0), where A and are constants for each

such function, and CD, which is equal to 277 times the frequency,
is the angular velocity at which the vector representing this

function rotates. Hence the vectors representing any number
of such functions of the same frequency all rotate through equal

angles in any interval of time, i.e., their relative positions with

respect to each other remain unchanged. Consequently in prob-

lems which involve only harmonic currents and harmonic p.d.'s

and their phase displacements with respect to each other, the

vectors representing the currents and p.d.'s may be considered

as stationary.

It should be carefully noted that non-harmonic currents or

p.d.'s, or currents or p.d.'s of different frequencies cannot be

represented on the same diagram by stationary vectors.

188. The Lengths of the Vectors Representing Harmonic

Functions Taken Equal to their Effective Values. In any prob-

lem which has to do only with the effective values of harmonic
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currents, p.d.'s and e.m.f.'s and their phase relations, the lengths

of the vectors representing these quantities may be taken equal

to their effective values, since the effective values are directly

proportional to the maximum values of these quantities. We
then have that

1. The effective value of the resultant of any number of

harmonic currents (or p.d.'s or e.m.f.'s) of the same frequency is

equal to the vector sum of the vectors representing these currents

(or p.d.'s or e.m.f.'s.)

2. The average power corresponding to any harmonic current

and p.d. of the same frequency is equal to the product of the

lengths of the vectors representing them times the cosine of the

angle between these vectors. See equation (8).

189. Potential Drop due to a Harmonic Current in a Circuit

of Constant Resistance and Inductance. Let r be the resistance

i=I sin (2 IT ft)

rl I

Fig. 101.

and L the inductance between the two points 1 and 2 of the circuit

(see Fig. 101), and let this circuit be perfectly insulated and have

neither capacity nor mutual inductance with respect to any other

circuit. Let the current be i=I sin (27rft), where 7 is the maxi-

mum value of the current ( =\/2 X the effective value) and / is

the frequency ;
let v be the value of the instantaneous potential

drop from 1 to 2 in the direction of the current i. The instantaneous

drop of potential in the direction of the current is equal to the

resistance drop in the circuit plus the back e. m. f. in the coil
;

compare with equation (18d) of chapter III. The resistance drop
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,

is ri and the back e. m. /. (due to self inductance) is L (see Article
dt

116). Hence the total instantaneous potential drop is

T div=n-\-L
dt

Substituting for i its value 7 sin (2ir#) in the above equa-

tion we get

v =rI sin (2 TT ft) + (2 TT fL) I cos (2 TT ft)

=rI sin (2 TT ft) + (2 TT /L) 7 sw
(2

77 // + ~

Hence when the resistance and inductance are constant the p.d.

from 1 to 2 is also a harmonic function of the time, has the same

frequency, and consists of two components having respectively

the effective values ri and (2 irfL) 7, where 7= -4=. is the effective

V2
value of the current.

The first component of the p.d., namely ri, is in phase with

the current and the second component of ihep.d., namely (2irfL)I,

leads the current by 90. Hence the effective value of the

resultant p.d. is (see the vector diagram and also equations 1 9)

or 7=71r2
+(27r/L)

2

(21)

and this resultant p.d. leads the current by the angle

0-ton-1
27rL

(21a)

This angle 9 is the power-factor angle of the circuit. The power
factor of the circuit is then

cos 0== r

(216)

Note that the potential drop in a given portion of a circuit is

equal to the e. m. /. impressed across the terminals of this portion

of the circuit, which e. m. f. is in the same direction around the

closed circuit as the potential drop through the given portion of

the circuit
;
hence in the above formulas V may be taken to rep-

resent either the potential drop in the circuit or the e. m. /. im-

pressed on it.
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Since the first component of the p.d. is in phase with the

current, and the second component of the p.d. is in quadrature
with the current, it is the first component alone which determines

the average power put into the circuit
;
rl is therefore the power

component of the p.d. The electric energy r&dt which is con-

verted into heat energy in the resistance r during each interval

of time dt is not returned when the current reverses, since this

energy is proportional to the square of the current i and is there-

fore independent of the direction of i. The average rate at which

this energy is supplied to the circuit is represented by the constant

term in the expression for instantaneous power, equation (8).

As just noted, the second component of v, namely (27T/L)/,
is in quadrature with the current and therefore contributes noth-

ing to the average power, i.e., this is the reactive component
of the p.d. This is also evident from the fact that the energy
stored in the magnetic field while the current is rising from zero

to a maximum is equal to the work done on the current by the

field when the current decreases from its maximum value to zero.

Also note that this cyclic transfer of energy to and from the

magnetic field occurs twice during each cycle of the current, i.e.,

it is represented by the double frequency term in the expression

for instantaneous power, equation (8).

190. Effective Resistance, Reactance and Impedance of an

Alternating Current Circuit. In general when an alternating

current is established in an electric circuit, secondary currents are

established in the surrounding conductors (for example, as
"
eddy

"

currents in the iron cores of the magnetic circuits of electric ma-

chinery) ;
a certain amount of energy in addition to that dissipated

in the main or primary circuit is therefore also dissipated in the

conductors in which these secondary currents are established.

Also, due to the fact that the number of lines of magnetic induc-

tion linking the center of a wire is greater than the number linking

the outside of the wire (see Article 121) the induced back electro-

motivej-inside the wire is in general greater than that induced in

the outside filaments of the wire, and therefore the current density

is not uniform over the cross section of the wire, as is the case

with a continuous current; hence the effective resistance of a

conductor to an alternating current is greater than its resistance

to a continuous current. This skin effect, however, is not as a

rule serious for the frequencies 'and sizes of conductors used in



338 ELECTRICAL ENGINEERING

practice, except in the case of steel rails used for conductors in

railway work. Also, when there is iron in the magnetic field

established by the current, a certain amount of energy is dissi-

pated in the iron, due to. hysteresis. Hence the average rate

at which heat energy is dissipated when an alternating current

is established in a given, portion of a circuit is not equal to the

product of the square of the effective value of the current by the

resistance of the conductor in which the current is established,

as determined by a continuous current measurement, but is in

general greater than this. This portion of the circuit may, how-

ever, be considered as having an effective or apparent resistance r

such that this resistance multiplied by the square of the effective value

of the current gives the true average rate at which heat energy is dis-

sipated when the current is established in this portion of the circuit.

This effective resistance is in most practical cases approximately

independent of the current strength (as measured by the effective

value) but does depend upon the frequency of the current, and,
in case there is a loss of energy due to hysteresis, upon the effective

value and the wave shape of the current also. (The part of the

effective resistance which takes into account the hysteresis loss

in iron is not strictly constant, but varies approximately as the

1.6 power of the maximum flux density, and therefore as the

1 .6 power of the maximum value of the current.)

The average rate at which heat energy is dissipated when an

alternating current is established in any portion of a circuit may
then be written

Ph
= rP (22)

where r is the effective resistance of this portion of the circuit

and 7 is the effective value of the current.

The effective value of the resultant potential drop in any

portion of a circuit, however, is in general greater than rl. Let

V be the vector representing the resultant p.d. in any portion of

the circuit and let E be the vector representing any externally in-

duced e. m. /. in this portion of the circuit, both in the direction

of the current (e.g., if the portion of the circuit considered is the

armature of an alternator, E is the induced e. m. f. due to the

relative motion of the armature and the magnetic field). Then

the ratio of the numerical value of the vector difference E V
to the effective value of the current I in this portion of the circuit is
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defined as the impedance of this portion of the circuit. That is,

the impedance of this portion of the circuit is

E- V
Z=J- (23)

When there is no externally induced e. m. /., that is, when E is

zero, the impedance of the given portion of the circuit is

V
z=j (23a)

The square root of the difference between the square of the

impedance of any portion of a circuit and the square of the effective

resistance of this portion of the circuit is called the reactance of

this portion of the circuit, and is usually represented by the

symbol x. The reactance corresponding to the impedance z

and the effective resistance r is then

r
2

(24)

In the case o a harmonic current in a given portion of cir-

cuit in which there is no externally induced electromotive force,

rl is the component of the p.d. in phase with the current, and

xl is the component of the p.d. in quadrature with the current.

When the current lags behind the potential drop in the direction

of the current the reactance is taken as positive, when the current

leads the p.d. the reactance is taken as negative; that is, the sign

of x is chosen so that xl represents the component of the p.d. 90

ahead of the current. The angle by which the current lags behind

the p.d., or by which the p.d. leads the current, is then

0=tan-L -
(25)

r

and the power factor of the circuit is

cos = T
=- =- (25a)

It also follows from the definition of reactive power (Article

184), that the reactive power is equal to xP.

Since both reactance and impedance are ratios of p.d. to

current they are both measured in the same unit as resistance,

i.e., in practical units both the reactance and the impedance are

expressed in ohms.
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191. Reactance and Impedance of a Coil of Constant Resist-

ance and Inductance* to a Harmonic Current. From equations

(21) and the above definitions, it is evident that the impedance
of a circuit of constant resistance (independent of the value of

the current at any instant) and a constant inductance (inde-

pendent of the value of the current at each instant), to a har-

monic current is

/L)
2

(26)

and the reactance is

^=27T/L (26a)

Note that these relations are deduced on the assumptions that

the coil has no electrostatic capacity and that the current is a

sine wave.

192. Reactance and Impedance of a Coil of Constant Resist-

ance and Inductance to a Non-Harmonic Current. The reactance

of such a circuit to a non-harmonic current is readily found

when the equation of the current is known. Consider the special

case of a current which contains the third harmonic. This

current may be represented by the equation

i =/j sin (2 77 ft) + Is sin (6 77 ft + 6)

where A and 73 are the maximum values of the fundamental and

third harmonic respectively. When the wave shape remains

constant for all values of the current is a constant. Then
/,

the instantaneous value of the drop of potential through the

resistance and inductance is

di
v =ri + L =rl

l sin (2 TT ft) + rI3 sin (6 77 ft + 0)
dt

+ (2 TT fL) I, COS (2 77 ft) + (6 77 fL) 73 COS (6 TTft+0)

Combining the terms of the same frequency in the manner de-

scribed in Article 185, we get

v =vV+ (2 77 fL)
2 11 sin (2 77 ft + a,)

+vV2
+(677/L)

2
^3 sin (6 77 ft + a2)

where

* Such a coil is frequently called an "
impedance

"
coil.
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a^tan-1
2-^lL and a^O+ tan 1 67r/L

r r

(see equation 186).

The effective value of V is then (see Article 176)

and the effective value of i is

whence

7 7 2
7 2

Since is constant, - is constant; put a2 =
. Then

*i A ~t~7 3 7 X +73

the impedance of the circuit to this current is equal to

* =V r
2+ (2 TT /L)

2

(1 + 8a2

) (27)

and the reactance is

x =\/z2 -r> =2"nr /TV i + 8a2
(27a)

The constant a is the ratio of the effective value of the third

harmonic to the effective value of the resultant current.

Note that the effective value of the first harmonic in the p.d.

I,

'_
wave is V r*+ (2 7T/L)

2

,
while the effective value of the third

73

harmonic is =V r
2+ (6 TT /L)

2
. When the inductance L is large

\ &

compared with the resistance, the ratio of the third harmonic

in the p.d. wave to its fundamental must then be three times

as great as the ratio of the third harmonic to the fundamental

in the current wave. Vice versa, the third harmonic in the

current wave resulting from a given p.d. will be relatively only
one third as great in the current wave as in the p.d. wave. There-

fore an inductance in a circuit tends to dampen out the harmonics

in the current wave when a non-harmonic e. m. f. is impressed on

it, and to make this wave approach more nearly to a sine wave.

The higher the order of the harmonic the greater the damping,
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193. Current through a Condenser when a Harmonic P.D. is

Established across It. Capacity Reactance. Let the p.d. across

the terminals of the condenser be

v = V sin 2 TT ft

and let the total current through the

condenser in the direction of the po-

tential drop be i. Let C be the capacity

of the condenser and g the conductance

of the dielectric between its plates, i.e.,

the leakance of the condenser. Then,
since the total current through the con-

denser is the sum of the conduction cur-

rent, gv, through the dielectric plus the

displacement current C through the"
dt

dielectric (see Article 151), we have

Fig. 102.
dt

Therefore

i=gV sin (2 TT ft) + (2 TT fC) V cos (2 TT ft)

=g V sin (2 TT ft) + (2 TT fC) V sin (2Trft + -)

Hence the component of the current through the condenser due

to the conductance of the dielectric, i.e., the leakage current,

is in phase with the p.d. across the condenser, and the component
of the current through the condenser due to its capacity, i.e.,

the displacement or
"
charging

"
current, leads the p.d. by 90.

The effective value 7 of the total current is

where V is the effective value of the p.d. Hence the effective

resistance of a leaky condenser to an alternating current of fre-

quency / is (see Article 190)

(28)P <f+(27T/C)
2

and its impedance is

zc
= = l

(28a)
/

and therefore its reactance is
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F
(286)

xc
is negative, since the current leads the p.d. When the dielec-

tric is a perfect insulator #=0, and in this case rc =0 and the

reactance of the condenser reduces to

The reactance - corresponding to a capacity alone, with-
2 77 fC

out leakance, is called the capacity reactance of the condenser;
it must not be confused with the effective reactance of the con-

denser; the .two are equal only when there is no leakage. The

leakage conductance of condensers used in practice is usually

.quite small but is not always negligible.

194. Current through a Condenser when a Non-Harmonic
P.D. is Established across It. When the p.d. contains the third

harmonic, for example, its equation is

v = V, sin (2 TT ft) + V3 sin (Qirft + 0).

Neglecting the leakance of the condenser, the current is then

,c*
dt

=-(2 7T fC) V, COS 2 7T #+ (6 7T/C) V3 COS (6irft + 0)

The effective value of the p.d. is, see Article 176,

2 2

and the effective value of the current is, see Article 176,

(29)

where a = ^1
3 = ratio of the effective value of the third

' 1 I
V 3

harmonic of the p.d. to the resultant p.d.

When the leakance of the condenser is negligible the ratio of

the third harmonic to the fundamental in the current wave is

therefore three times as great as the ratio of the third harmonic

to the fundamental in the p.d. wave. Hence, when a non-

harmonic p.d. is impressed across a condenser, the upper har-

monics in the current wave are greater than the corresponding
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harmonics in the p.d. wave directly in proportion to their order.

For example, when the seventh harmonic in the p.d. wave has

an amplitude equal to 5 per cent of the fundamental, the seventh

harmonic in the current wave has aa amplitude equal to 35 per
cent of the amplitude of the fundamental in the current wave.

Compare with the effect produced by an inductance, Article 192.

195. Impedance of a Resistance, Inductance and Capacity in

Series to a Harmonic Current. When a harmonic current of

effective value 7 is established in such a circuit (see Fig. 103), the

p.d. across the resistance is Vr =rl and is in phase with 7. The p.d.

across the inductance is VL = (2 IT fL) I and leads I by 90. The

p.d. across the capacity (a condenser with negligible leakance) is

7

27T/C
- and lags behind 7 by 90. Hence the resultant p.d. is

27T/C
(30)

= I sin

(SirfL)I/

I v

Fig. 103.

The impedance of such a circuit is therefore

v iTz=~f=\ r

The reactance is therefore
2ir/C/

The angle by which the p.d. leads the current is

(30a)

(306)

(30c)
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Note that equations (30) apply only in case the condenser has

no leakance.

196. Resonance. When the inductance L and capacity C
in the case just considered are of such values that

27T/L=-
orwhen 27rfC

the reactance of the circuit is zero and the impedance is equal to

the resistance, and therefore the current corresponding to a

y
given p.d. V is /= ; that is, the current is a maximum and

depends only upon the resistance of the circuit. The frequency

corresponding to this condition is the same as the frequency
with which the current and p.d. would oscillate were the con-

denser short-circuited by the inductance; i.e., this frequency

corresponds to the free period of such a circuit. (See Article

164.) Note the analogy with the motion of a body, which is free

to vibrate, produced by a periodic force having a period equal to

the period of vibration of the body ;
for example, a heavy church

bell may be caused to swing with large amplitude (corresponding

to the maximum value of the current /) when a comparatively
small force (corresponding to the p.d. V) is applied by the man

pulling the rope, provided the successive applications of this

force are in time with the swinging of the bell.

When the frequency of the electromotive force impressed

across the terminals of the circuit is equal to the natural or free

frequency of the circuit, the circuit is said to be in resonance

with this impressed electromotive force.

Note also that, although the resultant p.d. across the resist-

ance, inductance and capacity in series, is equal to rl, i.e., is the

same as the p.d. across the resistance, the p.d. across the induc-

tance or across the condenser may be many times this. For

example, when the inductance L is 1 henry and the capacity C
is 7.04 microfarads, and the frequency is 60 cycles, the inductive

reactance is XL =2 TT X 60 X 1 =377, and the capacity reactance is

xr
- = 377. Hence the total reactance
27TX60X7.04X10-6
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of the circuit is xL+ xc =Q, and the circuit is in resonance with the

impressed e. m. /. When the resistance r is 1 ohm and the im-

pressed e. m. f. across the entire circuit is 100 volts, the current is

100
/ = , =100 amperesV (\Y+(W

The p.d, across the resistance is then 100X1=100 volts. The

p.d. across the inductance, however, is 2 TT X60X1 X 100 =37,700
volts and the p.d. across the condenser is

inn_ - =37,700 volts
27TX60X7.04X10-6

This brings out in a striking manner the fundamental fact that

alternating p.d.'s cannot be added algebraically; they must be added

vectorially.

197. Impedances in Series. In the case of continuous cur-

rents we have seen that several resistances r
1;

r2 ,
r3 , etc., in series

are equivalent to a single resistance R which is equal to the arith-

metical sum of
7*1,

r2 ,
r3 , etc., that is R=rl + r2 + r3 -\

---
. In

case of alternating currents this same relation -also holds for the

resistance of any number of impedances in series, such as a num-
ber of coils of wire in series. For, when the same current /

flows through each coil the average power dissipated in all the

coils is r1/
2 + r27

2+ r3/
2 + etc. =(r1 + r2 + r3 + etc.)/

2 where rl} r2 ,
r3 ,

etc., are the effective resistances of the respective coils. Hence,

calling R the effective resistance of all the coils in series, we have

from Article 190 that

JR=r 1 + r2+ r3+ etc. (32a)

In the case of a harmonic current the total potential drop through
all the coils in phasewith the current is then RI =(r t + r2 + r3 + etc.)/.

Similarly, calling x^ x2 ,
x3 , etc., the reactances of the respec-

tive coils to the harmonic current /, the p.d.'s across the separate

reactances are respectively xj, xj, xal, etc., and are all in quad-
rature with the current and are therefore either in the same or op-

posite direction. Hence the algebraic sum of these p.d.'s gives the

total p.d. in quadrature ahead of the current. Whence, calling

X the equivalent reactance of the circuit, we have from Article

190 that

XI =xj+ xj+ x 3I+ etc.

or

X =x l + x2+ x 3+ etc. (326)
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(Note that the reactances x may be either positive or negative;

an inductive reactance is positive, a capacity reactance negative.)

The resultant p.d. across all the coils in series is therefore

or

Whence, the equivalent impedance of such a circuit is, from

Article 190,

V=
7 etc.)

2

(32c)

Hence, the equivalent impedance of any number of impedances
z
if

z2 ,
za , etc., is not the sum of the separate impedances. In

general, the equivalent impedance can be calculated only when the

resistance r and the reactance x of each impedance is known.

Example: An alternating current of 100 amperes is to be

supplied to a receiver which has an equivalent resistance rl of 2

ohms and an equivalent reactance x l of 0.5 ohm. The line

has a resistance r2 of 0.1 ohm and an inductive reactance x2 of 1.5

ohms. The equivalent resistance of the line and receiver is then

R2+ 0.1 ==2.1 ohms and the equivalent reactance of the line

and receiver is X =0.5 + 1.5 =2.0 ohms. Hence the equivalent

impedance of the line and receiver is Z= 1/(2.1)
2+ (2.0)

2 =2.90

ohms. The impedance of the receiver alone is 21
=J//

(2)
2
4-(0.5)

2

=2.06 and the impedance of the line alone is 22 =1/(0.1)
2
4-(1.5)

2

= 1.50. Hence 2,4-22 =3.56 which is 23 per cent greater than

the true impedance of the line and receiver.

When the current sup-

plied to the receiver is 100

amperes, the p.d. at the re-

ceiver is V =100X2! =100
X 2.06 =206 volts arid the

p.d. at the generator is

V = 100 XZ = 100 X 2.90

= 290 volts
;
that is, the p.d.

at the receiver is 290-206
= 84 volts less than at the T

L
!~ 200

generator. The total poten- Fig . 104.

tial drop in the two wires forming the line, however, is 100
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= 100 X 1.50=150 volts, which is 79 per cent greater than

the true difference between the potential drops across the gen-
erator and across the receiver" terminals.

Fig. 104 will make these relations clear. The reason the p.d.

in the line is not equal to the difference of the p.d.'s at the

generator and the receiver is that the p.d. in the line and the

p.d. at the receiver are
t

not in phase.

198. Impedances in Parallel. In the case of continuous cur-

rents we have seen (Article 98) that when several resistances

r
i, 1*2,

r3 , etc., are connected in parallel, the currents in the various

V V V
resistances are respectively/!

=
,
/2
=

,
/3
=

, etc., and therefore
r, r2 r3

that the total current between the junction points of the several

resistances is 7=/ 1 + /2+ /3+ etc.,
= V (_ + _+_H--- ).

XT, r2 r 3
/

Whence the equivalent resistance R must be such that

J ^=1 +1+1 + ---
R V r, r 2 r,

In the case of alternating currents, the currents in any number

Fig. 105

of impedances connected in parallel between two points A and B
(Fig. 105) are respectively

_V

V
/.= etc.

z3

but these currents are not in phase, hence they cannot be added
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algebraically ; they must be added vectorially. The components
of the various currents in phase with the potential drop V between
A and B are respectively

r a V r
l

r
l

,.
A cos u l

= = V
z l zl z?

72 cos 2=--2=i Fete.

and the components of these currents in quadrature behind V are

respectively .

7 X sin #,=--= V
z, z, z?

72 sin 2=-
9
-=?LV etc.

The total current in phase with V is then

and the total current in quadrature behind V is

Hence the total current / is the vector sum of these two com

ponents, i.e.,

and therefore the equivalent impedance is Z, where

z
=
v
=
\ b?

4"^" ~J +
b?

+3+ ~ ~
(33)

199. Conductance, Susceptance and Admittance. Note that

7*

for any of the impedances the factor multiplied by the p.d.

across the impedance gives the component of the current in phase

with the p.d. and therefore this factor multiplied by the square

rV2

of the p.d., i.e., gives the average power dissipated in this
z2

impedance. In general, the ratio of the average rate Ph at which

heat energy is dissipated in any part of a circuit to the square of

the effective value of the p.d. V across this part of the circuit, is
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called the effective conductance
"
g" of this part of the circuit,

that is,

-p

g==
-yi (34)

The ratio of the effective value of the current in any part of a

circuit to the numerical value of the vector difference of the ex-

ternally induced e. m. f. E and the resultant p.d. V in this portion

of the circuit is called the admittance
"
y
"

of this part of the

circuit, that is,

/

~E^V (35)

The square root of the difference between the square of the ad-

mittance of any part of a circuit and the square of the effective

conductance of this part of the circuit is called the susceptance
"

b
"

of this part of the circuit, that is,

&=Vy-<f (36)

In the case of a harmonic p.d., established across the terminals

of a circuit in which there is no externally induced e. m. /., the

product of the susceptance and the p.d. gives the component of

the current in quadrature with the p.d., since the total current

is yV and the component in phase with V is gV, whence the

component in quadrature with V is \/(?/V)
2

(gV)
2 =

The sign of the susceptance b is taken positive when the p.d.

leads the current, negative when the p.d. lags behind the current
;

that is, the susceptance and reactance of a circuit always have

the same sign. Also, from the definition of reactive power (Article

184), it follows that the reactive power is bV2
.

From the above definitions and the discussion in Article 193,

it follows that the effective conductance, or as it is also called,

the leakance, of a condenser, is equal to the reciprocal of the

resistance of the dielectric between its plates, as measured by
means of a continuous current (provided there is no dissipation

of energy due to
"

dielectric hysteresis ") and the susceptance of

a condenser of capacity C to a harmonic current of frequency / is

bc
= -2>rrfC.

The susceptance of a condenser is negative, since the charging
current corresponding to the capacity C leads the p.d. The ad-

mittance of a condenser having a leakance g and capacity C to a

harmonic current of frequency / is then
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Compare with the resistance, reactance and impedance of a coil.

Also, from the above definitions, we have in general that,

corresponding to an impedance z = i/r2 + x*

}

the conductance is

r
g=

z2 (37a)

the admittance is

1

y=- =Vg2+ b
2

(376)
z

and the susceptance is

=
z
2

(37c)

Hence the resultant admittance of any number of circuits in

parallel, equation (33), is

-6 2+ 6 3--) 2

(37d)

where glt g2 , g3 , etc., and 6 t ,
62 ,

b3 , etc., are the conductances and

susceptances respectively of the various circuits.

Since conductance, susceptance and admittance are the ratios

of current to voltage, the unit in which these quantities are meas-

ured is the reciprocal of the ohm
;
these quantities are therefore

expressed in
" mhos."

For circuits in series, it is more convenient to use the quantities

resistance, reactance and impedance. For circuits in parallel, the

conductance, susceptance and admittance are more convenient,

since conductances and susceptances of parallel circuits are re-

spectively additive. Note that when g and b are given r and x

can be immediately calculated, since

r-l (38)

and

(38a)

Compare with equations (37).

200. Admittance of an Inductance and Capacity in Parallel to

a Harmonic Current. Resonance. Let L be the inductance of

a coil of negligible resistance, C the capacity of a condenser having
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negligible leakance, and / the frequency of the current. Let

the coil and condenser be connected in parallel as shown in Fig. 106.

L Then, the susceptance of the

- ^uuuu
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establish a harmonic current, but the expression for the current

may contain a constant term. In the case of any actual coil,

however, the resistance of the coil (which can never be actually
zero though it may be quite small) causes the constant term in

the expression for the current to become zero after a short time,
and the current becomes a true harmonic current, see Article 201.

Also, due to the resistance of the coil, and the leakance of the

condenser as well, the resultant admittance of a coil and condenser

in parallel can never be zero and hence for a given p.d. across their

common terminals the total current can never be absolutely zero.

However, when the resistance of the coil and the leakance of the

condenser are small compared with the reactance of the coil and
the susceptance of the condenser, the total current will be a

minimum when the impressed e. m. f. has the frequency
1

Example: When L \ henry and (7=7.04 microfarads, and

the frequency / is 60 cycles per second, -.=- and
2 TT/L 377

2 7T/C = and therefore the total admittance, neglecting the
377

resistance and leakance, is zero. Hence, when a coil of inductance

L and a condenser of capacity C, connected in parallel, are

connected to a 60-cycle generator and a sufficient time is allowed

for the current in both the condenser and the coil to become
true harmonic currents, a potential drop of 100 volts across

the common terminals A and B will establish a current of

100- =0.265 amperes in the condenser and also in the inductance,
377

provided the resistance of the coil and the leakance of the con-

denser are small compared with the reactance of the coil and the

susceptance of the condenser respectively.
201. Transient Effects Produced when a Harmonic E. M. F. is

Impressed on a Circuit. So far, we have considered the relation

between current and p.d. in various types of circuits when a har-

monic alternating current is established in the circuit. However,
when a harmonic e. m. f. is impressed across the terminals of a

circuit, time is required for a harmonic current to become estab-

lished just as in the case of a constant e. m. /. impressed upon a
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circuit time is required for a continuous current to become estab-

lished. (See Article 160.) That is, when an alternating e. m. f. is

impressed across the terminals of a circuit, the current at the

start is an oscillating current (see Article 167) and becomes an

alternating current with fixed maximum positive and negative

values only after the lapse of an appreciable, though usually

Fig. 107.

small, interval of time. Let the circuit be as shown in Fig. 107;
r and L represent the resistance and inductance of an impedance

coil, and C and g the capacity and the leakance of a condenser

Let the impressed e. m. f. be e =E sin (27T/ + /8). The general

differential equations of this circuit have already been given

(Article 159) and are

i=gv+C-
dt

v=e riL eft

dt
(6)

where i is the instantaneous current in the impedance coil (equal
to the .total displacement and leakage current of the condenser)

and v is the p.d. across the condenser in the direction of the cur-

rent. Substituting in (a) the value of v from (b) we get

dt
2

dt . dt

This is a differential equation of the second order. It is inte-

grated by finding first the complementary function, i.e., the solu-

tion corresponding to the right-hand number equal to zero, and
then adding to this the particular integral. The solution corre-

sponding to the right-hand number zero is i =Aeat
,
where the

value of a is found by substituting this value of i in the equation

(c), which gives
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whence

Put

2\L C/ > 4 \L C LC

.

2\L C

Then the complementary function is

J

LC

where ^and A 2 are constants of integration.

The particular integral of equation (c) is of the form

i=I sin(2irft + p-0), where

E

and 0=tan l
(

f+v-

where 6 = 2 ?r/C and x =2 77 /L. That this is true can be seen by
substituting i=I sin (27rft + fi 6} in equation (c), putting for /

and the values given by (/) and (g).

Note that x + represents the equivalent reactance and

r+ represents the equivalent resistance of the entire circuit.

Hence the particular integral 7 sin (2 TT ft -}- /B 0) represents a

current equal to the impressed e. m. /. divided by the equivalent

impedance of the entire circuit and lags behind the impressed
e. m. /. by the angle corresponding to the -power-factor angle of the

entire circuit. That is, the particular integral is the final alternat-

ing current which is established in the circuit by the impressed
c. m. f.

The complete solution of the current equation (c) is then
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-ut r- ml -ml

(39)

where

v- --
4 L C7 LC

sn

The constants of integration Aj and A2 are determined from

the values of the current i and the p.d. v across the condenser

at time t =0.

Since the constant u is always greater than the constant m,

the transient term
~ut

[A l ^nt
-f A 2

~mt
] in equation (39) becomes

smaller and smaller as time increases. In most practical cases,

only a fraction of a second is necessary for this term to become

negligible in comparison with the term

in
(2

TT ft + ft tan'
1

\ representing the true alternat-

ing current. Hence the transient term is usually neglected, as most

problems which arise in ordinary practical work have to deal only

with the steady state produced in a circuit when a given e.m.f. is

impressed upon it. However, there are cases in which the tran-

sient term becomes of paramount importance; in particular, in

predetermining the effect of switching on or off a heavy load

from a transmission line, the short-circuiting
- or grounding of a

line, and the effect of lightning discharges.

In most practical problems the leakance of the condenser is

negligible, that is, </=0. When this condition holds, the con-

stants in equation (39) have the values

r

~2L
I

\ , 47, I 1m= \ r =\ u2

2Z/V C ^ LC
R=r
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2.7T/C

202. Discharge of a Condenser having Negligible Leakance

through a Resistance and Inductance. As an example of the

application of equation (39), T

the manner in which a con-

denser of capacity C (Fig. 108)

charged to a p.d. V discharges

through a circuit containing a

resistance r and inductance L
will be determined. (Compare

i f 1 j- Fig. 108.

with the ideal case of the dis-

charge of a condenser through an inductance having no resistance,

Article 164.) At time t =0, the switch S is closed. The impressed

e. m. f. is therefore zero, hence the equation for the current is

i=t ut

[A v t
mt + A 2 t

mi
} (a)

where A l and A 2 are constants to be determined from the initial

current and p.d. across the condenser.

If there is originally no current in the circuit, the current must

start from zero (otherwise there would be an instantaneous transfer

of a finite amount of energy, iLi
2

,
to the magnetic field set up by

the current, which would mean an infinite rate of transfer, or

infinite power, which is impossible) and therefore at time t=Q,

{=0. We also have from the relation v + ri+L =0, that at

time t =0,

T
di ran v

V = -L or =--
dt L<ft

;

Jj. L

Hence, substituting these conditions in equation (a), we have that

_7
L

Whence, solving these two equations, we get

V V
and A z +

2mL 2mL

These values of A l
and A 2 substituted in (a) give

V
r- ..- , (40)

2mL
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Since the leakance g of the condenser is assumed to be zero, u
and m have the values

r
u=-

2L

LC
u is therefore always real, but m may be either real or imaginary,

depending upon whether u2 > or whether uz < ,
that is, upon

LC L/C

2
4L , 4L

whether r
2 > or r

2 s .

C
"

C

For r
2 > ,

the constant m is real and equation (40) may
C

therefore be written

mL
"^ sinh (mi) (40a)

This equation tells us that the current starts at zero, rises to

Fig. 109.

a maximum value in the negative direction (corresponding to

=0) and then decreases to zero. The shape of the curve repre-
dt

sented by equation (40) in this case is as shown in Fig. 109.

*The symbol sinh x is used to represent the expression

is called the hyperbolic sine of x.

_ -

which
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For r
2 < ,

we
C

have m= \l( !) (
u2

\
' \LC /

or m =

where j l and <H= u2

,
a real quantity. In this case

equation (40) may be written

= e~
ut sw (406)

snce
tu _

2]

=sm (cat). Equation (406) tells us that when

4L
r
2 < : _ the current in the circuit oscillates with a frequency

Fig. 110.

/= = \ u2 but that the amplitude of the oscillations
2?r 277^ LC

decreases as time increases, as shown in Fig. 110.

4Z/
For r

2 =
,
the constant m=0 and therefore

mt - mt
[s

u

also zero. Hence equation (40) for the current is indeter-
mt

e
-m<

minate. Evaluating the indeterminate expression we
m

get

m

(f-
v fc

dm
mt

dm
ra= m-0 m= o
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lence in this case equation (40) becomes

*'
= ^- (40c)

Li

which likewise represents a non-oscillating discharge such as shown
4 T

in Fig. 109. When r
2 = the current just ceases to be oscillatory.

Equation (40c) may therefore be looked upon as the limiting form

of the oscillating current given by (406).

SUMMARY OF IMPORTANT DEFINITIONS
AND PRINCIPLES

Note : The definitions given in paragraphs 1 to 9 inclusive are

in terms of current; they also apply to electromotive forces and

potential differences.

1. An alternating current is a current which varies con-

tinuously with time from a constant maximum in one direction

to an equal maximum in the opposite direction and back again
to same maximum in the first direction, repeating this cycle of

values over and over again in equal intervals of time.

2. The period T of an alternating current is the time taken

for the current to pass through a complete cycle of positive and

negative values.

3. The frequency / of an alternating current is the number
of complete cycles of values which it passes through in one second

4. The number of alternations a per minute is the total number
of times per minute that the current changes in direction

f
5. The equation of a harmonic current of maximum value / is

i=I sin (a)t + 0)

where w, called the periodicity of the current, is equal to =2irf,

and 6, called the phase of the current, is a constant such that

I sin 6 gives the value of the current at time t =0.

6. The difference in phase between a harmonic current and a

harmonic p.d. is the angle corresponding to the time between
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successive maxima values of the current and p.d. respectively.

7. The equation of a non-harmonic current of frequency /

may be written

where cy=2?r/ and the Ps and 0's are constants. The first term

in this expression is called the fundamental or first harmonic,

the succeeding terms the second, third, etc., harmonics.

8. The instantaneous value of an alternating current is its

value at any instant; the maximum value of an alternating

current is its greatest instantaneous value during any cycle;

the average value of an alternating current is the numerical value

of the average of its instantaneous values between successive

zero values. For a harmonic current

2
7 IA aver.

'

max.
IT

9. The effective value of an alternating current is the square
root of the mean of the squares of its instantaneous values over a

complete period, that is, j

where T is a complete period of the current and i its instantaneous

value at any instant. When an alternating current is expressed

as so many amperes this effective value is always meant unless

specifically stated otherwise. The effective value of a harmonic

current is

ff

V2~

10. When a harmonic current of effective value I and a har-

monic potential drop of the same frequency and of effective value

V exist in a circuit, the average electric power input into this

circuit during each cycle is

P = VI cos

where is the difference in phase between the current and p.d.

11. The power factor of a circuit is the ratio of the average

power input P to the product of the effective value
'V of the p.d.

by the effective value I of the current, i.e.,

P
Power factor =77;
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12. The average electric power input into a circuit when the

current and p.d. are not harmonic functions of time, or sine waves,
is equal sum of the values of the average power corresponding
to each pair of harmonics of the same frequency, i.e.,

P= VJl cos 6 l + VJ2 cos 2 + VJ3 cos 3 + etc.

where the V's and I's are the effective values of the successive

harmonics of the p.d.'s and currents, and the O's the difference

in phase between the corresponding harmonics of the same

frequency.

13. The effective value of a non-harmonic current is equal to

the square root of the sum of the squares of the effective values

of all the harmonics present in the current wave, i.e., is equal to

7 =V
/

/ 1

2 + /2 -f/3
2 +^c.

where /,, 72 ,
73 , etc., are the effective values of the harmonics.

Similarly the effective value of a non-harmonic p.d. is

V =Vy* + V* +
where Vl} V2 ,

V3 , etc., are the effective values of the harmonics

in the p.d. wave.

14. The equivalent sine-wave p.d. and current are the harmonic

p.d. and the harmonic current which have respectively the same
effective values as the actual p.d. and current and differ in phase

by the angle whose cosine is equal to the power factor.

15. The form factor of a wave is the ratio of the effective

.value to the average value.

16. The amplitude factor of a wave is the ratio of the maximum
value to the effective value.

17. The component of the current in any portion of a circuit

in phase with the potential drop through this portion of the

circuit is called the power component of the current in this portion
of the circuit. The component of the p.d. in phase with the

current is called the power component of the p.d. When the

current and p.d. are sine waves having the effective values V and

/ respectively and differing in phase by the angle 6, the effective

value of the power component of the current is 7 cos 6 and the

effective value of the power component of the p.d. is V cos 6.

The component of the current in quadrature with the p.d.

is called the reactive component of the current and the component
of the p.d. in quadrature with the current is called the reactive

component of the p.d. For sine-wave current and p.d. the
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effective value of the reactive component of the current is I sin

and the effective value of the reactive component of the p.d. is

V sin 6.

18. Apparent power, volt-amperes or apparent watts is the

product of the effective value of the p.d. by the effective value of

the current.

19. Reactive power is the product of the effective value of the

current (or p.d.) by the effective value of the component of the

p.d. (or current) in phase with it.

20. A sine-wave current (p.d. or e.m.f.) may be represented by a

vector equal in length to the effective value of the current (p.d. or

e.m.f.) making an angle with an arbitrarily chosen axis of reference

equal to its phase angle.

21. The average power corresponding to a sine-wave p.d.

and a sine-wave current is equal to the product of the length

of the vector representing the p.d. by the projection of the vector

representing the current on the p.d. vector, which in turn is equal

to the product of the length of the current vector by the pro-

jection of the p.d. vector upon the current vector.

22. The effective value of the potential drop due to a sine-

wave current of effective value I and frequency / in a circuit

having a constant resistance r and a constant inductance L is

and leads the current by the angle

23. The effective resistance r of any portion of a circuit to an

alternating current is the ratio of the average rate Ph at which

heat energy is developed in this portion of the circuit to the

square of the effective value I of the current in this portion of

the circuit, i.e.,

24. The impedance z of any portion of a circuit is the ratio of

the numerical value of the vector difference of the externally

induced e. m. /. E and the resultant p.d. V in this portion of the

circuit, both in the direction of the current, to the effective value

/ of the current, i.e.,



364 ELECTRICAL ENGINEERING

E-V
z =

When there is no externally induced e. m. f.

V
z=

25. The reactance x of any portion of a circuit is the square
root of the difference between the squares of the impedance
and the reactance of the given portion of the circuit, i.e.,

x =z-r
The reactance is taken positive when the current lags behind

the potential drop in the direction of the current, negative when
the current leads this p.d.

26. In the case of a sine-wave current and no externally

induced e. m. /. the angle by which the current lags behind the

p.d. is

0=tan lX
-

r

27. The impedance of a circuit of constant resistance r and

inductance L to a sine-wave current of frequency / is

and its reactance is

X=27TfL
28. The impedance of a condenser of capacity C and leakance

g to a sine-wave current of frequency / is

1z-

and its reactance is

27T/C

29. The impedance of a circuit formed by a resistance r, an

inductance L and a capacity C in series to a sine-wave current is

and the reactance is

X=2<7TfL ?-_
27T/C

provided the condenser of capacity C has no leakance.
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30. A circuit is said to be in resonance with the impressed
electromotive force when the frequency of the impressed e. m. /.

is the same as the 'natural or free frequency of the circuit. The

free frequency of a closed circuit formed by a capacity C and an

inductance L, when the resistance and leakance are negligible, is

1

31. In a circuit formed of two or more impedances in series,

the resultant effective resistance is the arithmetical sum of the

separate effective resistances, the resultant reactance is the

algebraic sum of the separate reactances, and the resultant

impedance is the square root of the sum of the squares of the

resultant resistance and reactance, provided the current and

p.d. are sine waves
;
that is

32. The effective conductance g of any part of a circuit to an

alternating current is the ratio of the average rate Ph at which

heat energy is developed in this portion of the circuit to the

square of the effective value V of the p.d. through it, i.e.,

9=
V̂2

33. The admittance y of any part of a circuit is the ratio of the

effective value of the current 7 in this portion of the circuit to the

numerical value of the vector difference of the externally induced

e. m. f. E and the resultant p.d. V in this portion of the circuit,

both in the direction of the current, i.e.,

y==E^V
When there is no externally induced e. m. /.

yj
v

34. The susceptance of any portion of a circuit is square root

of the difference between the squares of the impedance and the

reactance of this portion of the circuit, i.e.,

The susceptance is taken positive when the current lags behind
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the potential drop in the direction of the current, negative when
the current leads this p.d.

35. In the case of a harmonic current 'and no externally
induced e. m. /. the angle by which the current lags behind the p.d.

is

0=tan l-
9

36. The resistance r, the conductance g, the reactance x, the

susceptance b, the impedance z and the admittance y of a given

portion of a circuit when the current and p.d. are sine waves

are related as follows:

1 1
*-- y=~

y z

r= g- g=-
y
2 *

b X

37. The admittance of a condenser of capacity C and leakance

to a sine-wave current of frequency / is

and its susceptance is

b=-27TfC
38. In a circuit formed of two or more impedances in parallel,

the resultant effective conductance is the arithmetical sum of

the separate effective conductances, the resultant susceptance
is the algebraic sum of the separate susceptances, and the resultant

admittance is the square root of the sum of the squares of the

resultant effective conductance and susceptance, provided the

current and p.d. are sine waves, that is

39. The discharge of a condenser of capacity C but no leak-

ance through a resistance r and an inductance L in series is

oscillatory when



ALTERNATING CURRENTS 367

, 4L

and non-oscillatory when

PROBLEMS
1. The equation of an alternating current is t=100 sin 377t.

Find (1) the maximum value of the current, (2) the rate at which
the current is changing when the current is a maximum, (3) the

rate at which the current is changing when the current is zero,

(4) the effective value, (5) the average value, (6) the frequency,

(7) the period, and (8) the periodicity.

Ans.: (1) 100 amperes; (2) amperes per second; (3) 37,700

amperes per second; (4) 70.7 amperes; (5) 63.7 amperes; (6)

60 cycles per second; (7) 0.01667 second; (8) 377 radians per
second.

2. Find (1) the effective value, (2) the average value, (3) the

form factor, and (4) the amplitude factor of a semi-circular

shaped wave, the maximum value of which is A.

Ans.: (1) 0.816 A; (2) 0.785 A; (3) 1.04; (4) 1.23.

3. If a direct current of 10 amperes and an alternating current

of 10 amperes (effective) exist at the same time in a circuit, what
will an alternating current ammeter connected in series with

this circuit indicate?

Ans.: 14.14 amperes. v
4. The equation of the current in a circuit is

i=50 sin (CD I +20) + 30 sin (3 ait- 15) + 10 sin (5a)t + 30)
and the equation of the potential drop through it is

^=100 sin (a> -10)+40 sin (3 co -30)
Determine (1) the effective value of the current, (2) the effective

value of the potential difference across the circuit, (3) the average

power absorbed by the circuit, (4) the power factor of the circuit,

and (5) the equivalent sine waves of current and potential

difference.

Ans.: (1) 41.8 amperes; (2) 76.1 volts; (3) 2744 watts; (4)

86.3%; (5) i=59.2 sin cat and v= W7.S sin (ut 30.3).

5. The equations of the potential drop through the three

parts of a series circuit are vv =80 sin (ojt + 60), v2 =60 sin a) t and
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v3 =5Q sin ((tit 80). Find (1) the equation of the potential

drop through the entire circuit, and (2) the effective value of the

total potential drop.

Ans.: (1) v=110.6 sin (w + 10.5); (2) 78.2 volts.

6.* An e. m. f. of 150 volts, the frequency of which is 60 cycles,

is impressed upon a series circuit consisting of a resistance of 5

ohms, an impedance coil of 2 ohms resistance and 0.1 henry induc-

tance and a condenser of 50 microfarads capacity. Find (1) the

value of the current established in the circuit and the potential

drops, (2) through the 5 ohm resistance, (3) through the impedf

ance, and (4) through the condenser. Find the angle by which

the current lags behind the potential drop (5) through the 5 ohm
resistance, (6) through the impedance coil, (7) through the con-

denser and (8) through the entire circuit. Draw a complete
vector diagram.

Ans.: (1) 8.88 amperes; (2) 44.4 volts; (3) 336 vplts; (4)

472 volts
; (5) ; (6) 87.0

; (7)
- 90

; (8)
- 65.6.

7. (1) What is the maximum 60-cycle e. m. f. which may be

impressed upon a circuit formed by an impedance of 0.1 ohm
resistance and 0.3 henry inductance and a condenser of 23.45

microfarads capacity connected in series, if the effective punctur-

ing voltage of the condenser dielectric is 10,000 volts? (2) If a

25-cycle e. m. f. of the same value as this 60-cycle e. m. f. determined

above is impressed upon this circuit, what is the potential drop
across the condenser?

Ans.: (1) 8.84 volts; (2) 10.69 volts.

8. When an e. m. f. of 220 volts is impressed upon a circuit

formed by two impedances A and B connected in series, the power
absorbed by A is 300 watts and the power absorbed by B is

1200 watts. If the potential drop across A is 200 volts and the

current in A is 10 amperes, find (1) the potential drop across

B
} (2) the resistances, and (3) the reactances of A and B re-

spectively.

Ans.: (1) 125.4 volts; (2) 378 volts; (3) 3 and 12 ohms; (4)

19.8 ohms for A and 3.67 or 35.9 ohms for B.

9. The current established in a circuit consisting of a resist-

ance of 3 ohms in series with an impedance of unknown resistance
\

*The values of the e. m. /., potential difference, and current in Problem
6 and in all problems following are effective values and the wave forms

sinusoidal.
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and reactance is 12 amperes. If the power absorbed by the

circuit is 600 watts and the potential drop across the impedance
is 100 volts, find(l) the impressed voltage on the circuit, (2) the

power factor of the circuit, and (3) the angle by which the drop

through the impedance leads the current.

Ans.: (1) 111 volts; (2) 45.1%; (3) 82.0.

10. Two impedances A and B are connected in parallel. A
has a resistance of 5 ohms and an inductance of 0.02 henry, while

B is formed by a resistance of 10 ohms and a capacity of 100

microfarads in series. If a 25-cycle e.m.f. of 220 volts is impressed

upon this parallel circuit find (1) the total current, (2) the current

in each branch, and (3) the power factor of the circuit.

Ans.: (1) 36.1 amperes; (2) 37.3 and 3.41 amperes respec-

tively; (3) 89.2%.
11. At 60 cycles the impedances of two coils A and B are

each 10 ohms. At 25 cycles the impedance of A is 5.38 ohms
and the impedance of B is 8.67 ohms. Find the joint impedance
of A and B at 60 cycles when connected (1) in parallel, and (2) in

series.

Ans.: (1) 5.24 ohms; (2) 19.06 ohms.

12. A parallel circuit consists of a coil (A) of negligible resist-

ance and 0.05 henry inductance connected in parallel with a

condenser (B) of 140.7 microfarads capacity and negligible leak-

ance. This parallel circuit is connected in series with an im-

pedance (C) of 2 ohms resistance and 0.02 henry inductance.

Find (1) the current, and (2) the potential drop in A, B and

C respectively, when an e. m. /. of 220 volts and 60 cycles is im-

pressed upon this circuit. If a non-inductive resistance ( D) of

10 ohms is connected in parallel with (A), find (3) the current and

(4) the potential drop in A, B, C and D respectively. Draw a

vector diagram for each case.

Ans.: (1) 11.67, 11.67 and amperes ; (2) 220, 220 and volts
;

(3) 8.24, 8.24
;
15.53 and 15.53 amperes; (4) 155.3, 155.3, 121.0 and

155.3 volts.

13. When a 50-kw., 60-cycle, a.c. generator is delivering 30 kw.

at 80% power factor the terminal voltage is 230 volts. The

effective resistance of the armature between terminals is 0.05

ohm and the reactance 0.1 ohm. Neglecting the effect of armature

reaction, (1) what would be the terminal voltage of this machine

if the external circuit were opened? (2) What is the maximum
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load under which this generator could operate continuously at

80% power factor?

Ans.: (1) 246.5 volts; (2) 40 kw.

14. 500 kw. are delivered to a substation from a 6600-volt

power station over a transmission line of 6 ohms resistance. If

the current taken by the load is 100 amperes, find (1) the power
factor at the power station, and (2) the efficiency of the transmis-

sion line.

Ans.: (1) 84.9%; (2) 89.3%.
15. The potential differences at the load and generator ends of

a transmission line are each 6600 volts. The resistance of the

line is 6 ohms and the reactance 8 ohms. If the line current is

100 amperes, find (1) the power factor at the load, and (2) the

efficiency of the transmission line.

Ans.: (1)75.2%; (2) 89.2%.
16. A transmission line 25 miles in length consists of two

No. B. & S. wires (diameter 0.325 inch) spaced 3 feet apart.

At the end of this line is connected a 60-cycle induction motor

load (lagging current) of 1500 kw. operating at 25,000 volts and

at a power factor of 75%. What must be the potential difference

at the power station supplying this load? The leakage and ca-

pacity of the line are to be neglected.

Ans.: 28,400 volts.

17. Two 220 alternators A and B connected in parallel supply
an inductive load of 50 kw. at 90% power factor. If A supplies

one-third of this load at a power factor of 80%, find (1) the power
factor at which B supplies power to the load, and (2) the armature

current of each alternator, if both currents lag behind the gen-
erated e. m. /.'s.

Ans.: (1) 94.3% ; (2) 94.7 and 160 amperes.



VIII

SYMBOLIC METHOD OF TREATING ALTERNATING
CURRENTS

203. Symbolic Representation of a Vector. Let A = P in Fig.

Ill be any vector making an angle 6 with an arbitrary line of

reference X. The component of A in the direction of X is

\
A 2

= A sin 6 \

X
A!= A cos

Fig. ill.

then A cos and the component of A 90 ahead of this line of

reference is A sin 8. Put

A cos 6 = A, (la)

A sin =A 2

Employing the usual convention of indicating a vector sum we

may write A=A l+A 2}
where the line over A v and A 2 indicates

that A l and A 2 are to be added vectorially. Instead of using

this symbol, however, we may in the special case of two mutually

perpendicular vectors represent the vector A by the symbolic

expression

A=A l +jA 2 (16)

where the symbol / indicates that the vector A 2 leads the line of

reference by 90, while A
l coincides in direction with the line

of reference.

When a single letter is used to represent a vector in this

symbolic notation, it is usual to write a dot under the letter.

That is, the letter A by itself represents the length of the vector,

while A represents the vector expressed in this symbolic notation.

Squaring and adding- equations (la) and taking the square

root, we get

371
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Therefore, the length of a vector is equal to the square root of

the sum of the squares of the two components entering into its

symbolic expression. Taking the ratio of two equations (la) we get

tanO= (Id)

Whence, the angle which a vector makes with the line of reference

is equal to the angle whose tangent is the ratio of the second (or j

component) to the first component in its symbolic expression.

Similarly, any other vector A' = OP' making an angle 6'

with the same line of reference may be resolved into the two

components AJ =A' cos 9f and A 2
' = A' sin 0', and we may write

where j as before indicates that the vector A z
f
leads the line of

reference by 90 while A' coincides in direction with the line of

reference.

204. Addition of Vectors. From Fig. 112 it follows that the

resultant of two vectors A and A' is the vector which has the com-
. "

Fig. 112.

ponent A cos0+A' cos0f =A l+ A 1

/

parallel to the axis of reference

and the component A sin 9+ A' sin 9' =A 2+ A 2
'

leading the line

of reference by 90. The resultant of the two vectors A and A'

is then represented symbolically as

S =A + A'=(A 1 + A 1')+j(A 2+A 2') (2a)

The length of this vector is then

8 =V(A, + A
and it makes an angle .

,

~l

(26)
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with the axis of reference. Similarly, the sum of any number of

vectors is, in the symbolic notation,

etc.)

The length of this resultant vector is

and the angle which it makes with the axis of reference is

s

206. Subtraction of Vectors. The vector A A' (Fig. 113)

similarly the vector which has the component A cos A' cos 9'

-A',

\

-A'.

V'-''

Fig. 1 13.

= Ai AS in the direction of the line of reference and the com-

ponent A sin A' sin 6' =A 2 A 2

f

leading the line of reference

by 90. That is, the vector difference A- A' is represented sym-

bolically as

D=A-A'=(A l
-A

l')+j(A 2-A 2') (3a)

The length of this vector is then

D=V(A,-Atf+ (A*-Atf (36)

And it makes the angle

with the axis of reference. When this angle comes out negative,

the resultant vector makes a negative angle with the axis of
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reference or lags behind this axis; Fig. 113 illustrates such a case.

206. The Symbol "7
"

as a Multiplier Signifying Rotation.

So far, we have considered the symbol
"

j
"
simply as a means of

indicating the component of a vector leading the line of reference.

As we shall presently see, it is also frequently convenient to look

upon
"

7
"

as a multiplier as well as a symbol representing direc-

tion, and to define the operation jxA }
where A is the symbolic

expression for any vector, as equivalent to turning the vector A

through an angle of 90 in the positive direction. This convention

leads to a useful mathematical equivalent for the symbol
"

/."

Let A (Fig. 114) be a vector coinciding

in direction with the line of reference.

Then from the above convention jA
represents a vector of length A leading
the line of reference by 90. Multiply-

Fi . 1 14-

ing the symbolic expression jA for

the second vector by 7, we have from the above convention that

7X7*4 represents a vector of length A making an angle of 90

with the vector jA, that is, a vector equal in length to A, but

in the opposite direction to A. Therefore

jX]A=-A
or f = 1

whence

J=V~1. (4)

It should be borne in mind, however, that although the sym-

bol 7 is mathematically equal to the imaginary quantity V 1,

the physical meaning of 7 is not imaginary at all; it is simply
an abbreviation placed before the expression for a vector signify-

ing that the vector in question is to be turned through 90 in the

positive direction.; turning a vector through 90 twice in the

same direction is mathemati-

cally equivalent to writing a

negative sign before the vec-

tor. For example, in the

expression

-A
2 A,

for a single vector, A t and Fie- 115 -

A., both represent vectors coinciding in direction with the

line of reference, but in the expression for the resultant vec-
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tor A; ^e component A 2 is turned through + 90. Again,
when the resultant vector A=A

1 + jA 2 is turned through 90,
the expression for this vector in its new position is jA l A a,

as is readily seen from Fig. 115. But

^
\

'

since f = 1.

207. Symbolic Expression for a Vector Referred to Any Other

Vector as the Line of Reference. Let the vector A' (Fig. 116)
lead the vector A by degrees; it

is desired to write the symbolic ex-

pression for A' referred to the vector

A as the line of reference. The com- A

ponent of A' parallel to A is A' cos 9 Fig> 116 '

and the component of A' leading A by 90 is A' sin 9. Hence, the

symbolic expression for A' referred to A as the line of reference is

A' =A' (cos 9+ j sin 9} (5a)

Similarly, the symbolic expression for the vector A referred

to A f
as the line of reference is

A=A(CosO-jsinO) (56)

since A lags behind A' by the angle 9.

For example, let the vector A' have the length 10 and let

this vector lead a second vector A by 30. Then the symbolic

expression of A' referred to A as the axis of reference is

4' =10 (cos 30 + / sin 30)'

If the vector A' lags behind the vector A by 30, then its symbolic

expression referred to A as the axis of reference is

A' =10 (cos 30 -/ sin 30)

=8.65-/ 5

208. Difference in Phase Between Two Vectors Expressed in

Symbolic Notation. When the symbolic expression for a vector A
referred to any given line of reference is

the angle by which this line leads the line of reference is

9=tan^
At

Similarly, when the symbolic expression for any other vector A' is

A'=A/ + /A 2

'

the angle by which this vector leads the line of reference is
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Al
Hence the angle by which A' leads A is

-tan 1 2

A 1

or
tan(9'-9}=

lA2 ~^ Az
A \ / i \ A r

tan (('- =

Therefore A' leads A by

8X5+6X4

f - = 38 40'
5

(6c)

For example, let A=8 + j6 and A' = 5 + ?'
4. Then A' leads

A by the angle 9' 9 where

209. Symbolic Representation of a Harmonic Function. -

We have seen (Articles 182 and 186) that a harmonic alternating

current i=^2 I sin (cot +9), where / is the effective value of the

current, may be written

i=V2 I cos 9 sin cot +^2 1 sin 9 cos cot

and that the terms cos 9 sin cot maybe represented by a vector

equal in length to 7 t =7 cos 9

rotating about a fixed point

with the angular velocity co

and the term V 2 / sin cos cot

by a second vector of length
72 =7 sin 0, leading the first vec-

tor by 90 and rotating about

'this same point with the same

angular velocity. Hence theFi - 117

function i=\/2 1 sin (cot + 0) may be represented by a vector

(7)

rotating about this point with the angular velocity co, where /,

is a vector of length I cos
}
and jI2 a vector of length I sin 9

leading I, by 90, both rotating about the same point with the

same angular velocity co. Therefore we may look upon equation

(7) as the symbolic expression for the function i = V 2 I sin (cot + 9}.

Note, however, that the two vectors 7t and jI2 though constant

in length are continually changing in direction; therefore in the

expression
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both 7j and I2 and therefore I also, must be looked upon as functions

of time and not as constants, since a vector by definition is a quantity

having direction as well as magnitude.
Note the analogy with a body moving in a circle of radius a

with a constant linear speed s; the velocity of such a body is

constant in magnitude, but is continually changing in direction.

s
2

Hence the rate of change of the velocity is not zero, but is
,
and

r

the direction of this rate of change, i.e., of the acceleration, is

perpendicular to the direction of the velocity.

210. Symbolic Expression for the Derivative of a Harmonic

Function. Since a harmonic function of the form

may be written in the form

i =V 2 I cos 9 sin vt + Vz I sin cos cot

the derivative of i with respect to time is

di /

=V 2 oj I cos cos w v 2 Q) / sin u sin cot
at

But \/2 col cos 6 cos o)t is represented by a vector equal in length

to w I cos 0=0)1! leading by 90 the vector 7 t which represents

\/2 / cos 6 sin a)t; and \/2 col sin sin ut is represented by a

vector of length CD I sin = co I2 leading by 90 the vector y/2

which represents i/2 I sin cos cot. Hence the derivative of

the function represented by the vector

di
-=/ oj (/!+//,)=/ 01 7 (8)
at

That is, the derivative with respect to time of a vector rotating

with a velocity a> results in a vector equal in length to the product
of a) by the length of the original vector, which vector has a

direction 90 ahead of the original vector.

Vice versa, from equation (8) we also have that

,7.1 f (8a)
CD dt

that is, multiplying a rotating vector by j is equivalent to differ-

entiating the vector with respect to time and dividing by co.
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From this signification of the multiplier / it is at once evident

that to consider the multiplication of the expressions representing
two rotating vectors at right angles to each other, such as 7 and

jV as equivalent to / (IV) is'inconsistent with / as being equiva-

lent to the operation - -^. For (77) =7 + V , and there-
o) dt dt dt dt

fore to be consistent with equation (8a), the expression j (IV)
must equal 7/7+ 7/7.

Consequently, although the product of the two expressions

I\ + /^2 and7j + / 72 representing the current and voltage in a circuit

is IiVi 7272+ / (7x72+ 7.27!), when / is considered simply as a

multiplier equal to v 1, this expression, however, is inconsistent

with the meaning of /, as defined by equation (8a), since I
lf
I2,V l

and 72 are all rotating vectors. It is important to bear this

clearly in mind, since one is likely to make the mistake of taking
this product as the symbolic expression for the power corre-

sponding to the current 7 1 +/72 and the p.d. 7i +/72 ,
and to take

the "real" part of this product as representing the average power.
As a matter of fact, the value of the average power correspond-

ing to the current Ii+jI2 and the p.d. 7, + /72 is

(see Article 215). That is, the sign between the two terms in the

expression for the average power is just the opposite of the sign

resulting from the multiplication of 7 x + /72 and 7 1 +/72 and tak-

ing / as a multiplier equal to ^ i.

211. Symbolic Notation for Impedance. Impedance as a

Complex Number. When the current and p.d. in a circuit of

constant resistance r and constant inductance L are both harmonic

functions of the same frequency they may be represented respective-

ly by the two vectors 7 and V.

The component of the result-

. ant p.d. in phase with the cur-

rent is a vector coinciding in

direction with 7 and equal in

i length to the product of r by

Fig. us. the length of the current vec-

tor, that is, is represented by
the vector rl in Fig. 118. The component of the resultant p.d. 90

ahead of the vector 7 is a vector leading the current vector by
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90 and equal in length to the product of the reactance x by the

length of the current vector, that is, is represented by the vector

jxl. Hence the resultant p.d. is represented by the vector

V=rl+jxl = (r+ jx) I (9)

This relation also follows directly from the differential equation

V=rI+L_,=rI+Ljo)I=rI+jxI = (r+ jx) I

dt
'

for, since L is a constant, Lj a) = j aj L =jx.

When the current vector is referred to any arbitrary line of

reference rotating with the same angular velocity as the current

vector, the symbolic expression for the current vector is 7=/ 1 + /7 2

where A is the component of 7 parallel to this line of refer-

ence and 72 the component of 7 leading this line of reference by

90. The component 1^ flowing through the resistance r produces
a drop of potential rlj, in the phase with 7; this component 7j flow-

ing through the reactance x also produces a drop of potential

#7, leading 7 X by 90. The component 72 flowing through the

resistance r produces a drop of potential r72 in phase with 72 and

therefore leading 7 t by 90, since 72 leads 7
: by 90; this com-

ponent 72 flowing through the reactance x also produces a drop
of potential xI 2 leading 72 by 90 and therefore leading 7 X by 180.

Hence the total drop of potential in phase with I I is (

and the total drop of potential 90 ahead of 7 t is (x

Therefore, in symbolic notation the vector representing the

total potential drop, referred to 7 X as the line of reference, is

But this expression is exactly the same as would result from

multiplying (7 t+ /72) by (r+jx) and considering / as equivalent

to V 1, that is,

V = (r+jx) (/! + //,) (9a)

This relation also agrees with the interpretation of j as equiva-

lent to a differentiation with respect to <u, for since r and x are

constants, it is immaterial whether we write the differentiation

sign before or after these constants. Compare with the significa-

tion of the operation represented by the formula (V l+ JV2) (I, + /72)

where both terms in each expression are rotating vectors, Article

210.

The expression r+jx is not a vector, although it has the same
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mathematical form as the symbolic expression for a vector.

Its properties in any operation of multiplication or division are

exactly the same as the prop-
erties of a "

complex number/'
that is, a number which con-

j * sists of the sum of two terms,

one real and the other imagi-

nary. Since the product of the

symbolic expression for cur-

rent by this expression r+jx

gives the symbolic expression for the p.d. due to this current in

the impedance having a resistance r and reactance x, the expres-

sion r-\-jx may be looked upon as the symbolic expression for

impedance, and may be represented by the single symbol z with

a dot under it, i.e.,

z=r+ jx (10)

We may then write the .symbolic expression for the p.d. produced

by a current 7=/
1 + /72 in an impedance z=r+ jx as

V=zl (11)

Note that the length of the vector represented by zl

is equal to Iz and that this vector leads the vector 7 by the

angle 0=tari
1

. Hence multiplying the vector 7 -by the im-
r

pedance z gives rise to a vector equal in length to the

product of the length of the vector 7 by the numerical value of

the impedance, which vector leads 7 by the power-factor angle

of the impedance.
212. Symbolic Notation for Admittance. The relation be-

tween current and p.d. when both are harmonic functions of the same

frequency may also be expressed in terms of the admittance of the

circuit. Let g be the conductance and b the susceptance, and let

7 and V be the current and p.d. vectors. Then the component of

7 in phase with V is a vector coinciding in direction with the

vector V and equal in length to the product of the length of the

p.d. vector by the conductance, that is, is represented by the

vector of g V in Fig. 120. The component of the current lagging

behind the p.d. by 90 is a vector lagging behind the vector

V by 90 and equal in length to the product of the length
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of the p.d. vector
by

the susceptance, that is, is represented

by the vector -jbV; since +/ represents a lead of 90 and there-

fore / represents a lag of 90. Hence the resultant current

vector is

In the particular case of a leaky condenser this relation also

follows from the differential equation

dt

for since C is a constant Cjat V =ja)CV = jbV. In the case of a

condenser the charging current coCV leads the p.d. by 90, and

therefore the susceptance of the condenser is CD C, since the

susceptance of the circuit is the factor by which the p.d. must

be multiplied to give the component of the current lagging 90

behind the p.d.

When the p.d. is expressed as V
l + jV3 the operation repre-

sented by (g jb)(Vi + jV2) can also be shown by a process of

reasoning similar to that employed in Article 211 to be equiva-
lent to the product of g jb and V l + jV2 when / is con-

sidered as equivalent to V 1. Therefore in symbolic notation

the admittance of a circuit may be written as a complex
number

y=g-fl> (13)

and the current due to a p.d.
V across this admittance* may be

written

I=yV (14)

213. Division of a Rotating Vector by a Complex Number.

Since by equations (11) and (14) we have

V=zI = (r+ jx)I (a)

l=y v=(g-fl>) V (b)



382 ELECTRICAL ENGINEERING

the division of the vector V by (r+ jx) must be equivalent to

multiplying the vector V by (gjb), that is

V I

^=yV or -=y (15)
z z

Similarly, the division of the vector 7 by (g jb) must be equivalent

to multiplying 7 by (r+ jx) ,
that is

-=zl or -1=2
(16)

y
' '

y

But multiplying equation (a) by (r jx), considering / simply as a

multiplier equal to ^ 1, we get

(r-jx) F=(r-
2+ x2

) /

whence, dividing this equation by r
2+ x2

,
we get

which to be consistent with 1= (g jb) V requires that

r x
g = and 6 =

which agree with the relations already established in Article 199.

Similarly, multiplying equation (b) by (g+ jb) we get

(ff+ fl>) I = (g*+ b
2

) V

whence, dividing this equation by

which to be consistent with V(r+ jx) I requires that

gr=
g
2+b2

which agree with the relations already established in Article 199.

In general, the division of any rotating vector A by a com-

plex number of the form a=a
1 ja2 is equivalent to multiplying

the rotating vector by ,
that is

Consequently, impedance and admittance in the symbolic notation

may be treated as algebraic multipliers or divisors, the symbol

j in each case being considered as mathematically equivalent to
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vl, and whenever a "
/
" term occurs in the denominator of a

fraction, the fraction may, by the relation given by equation (17),

be put in a form having a "
/
" term only in the numerator.

V
Hence, an expression of the form =

,
where V is any rotating

tt1 ia2

' *
:

vector and ai/a2 is any complex number, represents a vector

a,V
having the component-= in phase with V and the com-

a2F a
'

2 + a*
2

ponent q=-- leading V by 90 .

From equations (15) and (16) the equivalent impedance Z of

two impedances zl and z2 in parallel when there is no externally

induced e. m. f. in either is

For, the admittances corresponding to z t and z2 are y l
= and

z
i

y2 = ; whence the equivalent admittance is Yy1 + y2
= + =

Z2
: Z

l
Z2

^ -; but Z _ = _J_Ii.. In any numerical example this expression
Z,Z2 Y ZL + ZZ

is readily "rationalized" by applying equation (17). Compare
with the formula in Article 98 for two resistances in parallel

when there is no electromotive force in either branch.

214. Kirchhoff's Laws in Symbolic Notation. Kirchhoff's

two laws for the relations between the instantaneous values of

the current and electromotive force in any circuit, may then be

expressed in symbolic notation as follows :

1. The sum of all the currents flowing to any point in any
network of conductors is zero. That is, at any point

/+ /' + /"----- =0 (18a)

where the currents are all expressed in symbolic notation and are

all referred to the same line of reference.

2. The sum of all the impedance drops in a given direction

around any closed loop in any network of conductors is equal to

the sum of all the externally induced e.m.f.'s (see p. 339) acting

in this loop in this direction. That is, around any closed loop

(186)
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where the currents, impedances, and electromotive forces are all

expressed in symbolic notation, and the currents and e.m.f.'s

are all referred to the same axis of reference. That is, the currents

'are to be expressed as 7=/1 +//2>
/' =//+///, etc. and the

e.m.f.'s as E=E
l + jI2 ,

Ef =El

'

+j E2

'

', etc. where all the compo-
nents of the currents and e.m.f.'s with the subscript 1 are parallel

to one another and all those with the subscript 2 are parallel

to one another and lead the first set of components by 90.

The electromotive forces due to inductance and capacity are

taken account of by the impedance; the electromotive forces

represented by the E's in equation (186) are the externally

induced electromotive forces such as those due generators or

motors or to the mutual inductance of the two windings of a

transformer.

In applying equations (18) to the calculation of the currents

and p.d.'s in any network of circuits, care must be taken to desig-

nate clearly the sense of the vectors representing the currents and
e. m. f.'s. This is most con-

veniently done by number-

ing all the junction points

in the network, and desig-

nating each current and e.

m. f. by a double subscript
written in the order corre-

sponding to the assumed

direction of the current or

e. m. /. vector. For exam-

ple, in Fig. 121, the e.m.f.

from to 1 is represented by
Eol while the e. m. /. from 1

to 0, which is equal to-EQl is represented by Elo . In the figure,

then, the net electromotive force from 1 to 2 is

121 -

E10

or

Each equation of the form (18a) or (186) is in reality equiv-
alent to two equations, since the sum of all the "

real
" terms

on one side must be equal to the sum of all the real terms on
the other side, and similarly, the sum of all the "

j
" terms on one

side must be equal to the sum of all the
"

/
" terms on the other
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side; the denominators of all fractions having been cleared of
"
/" terms by the transformation given by equation (17). This

is merely another way of stating the fact that the component in

any direction of the resultant of any number of vectors must be

equal to the algebraic sum of the components in this direction

of all the individual vectors. Applying these two laws to any
network enables one, therefore, to calculate both components of

every p.d. and every current, when the impedances and the

electromotive forces are known.

It should be clearly borne in mind that the above equations
are true only when the currents, the e.m.f.'s, and the impedances
are expressed as vector quantities. These equations are not

true when the numerical values of these quantities are employed.
The indications of alternating current voltmeters and voltmeters

give only the effective values of currents and p. d.'s respectively,

they do not indicate their phase relations. Hence, the sum of the

currents entering a junction as measured by ammeters in the vari-

ous branches is not necessarily zero; again, the sum of the potential

drops in the various branches of a closed loop, as measured by volt-

meters in the various branches, is not necessarily zero.

Again, these equations hold only when the currents and e.m.f.'s

are all simple harmonic functions of the same frequency and the

resistances and reactances are constant. When, however, the re-

sistances, inductances and capacities are constant, a similar set

of equations holds for each frequency that may be present. Since

the equations are all linear in the I's and E's, the currents and

e.m.f.'s of any given frequency will be uninfluenced by the pres-

ence of currents or e.m.f.'s of any other frequency. Hence, when

the harmonics present in each e.m.f. are known, the harmonics

present in each current may be calculated by solving the equa-

tions corresponding to the frequency of this particular harmonic,

these equations being exactly the same as would hold were all the

other harmonics absent.

Note particularly that the above equations do not hold for

transient currents; they apply only after the transient terms

(see Article 201) have become zero.

215. Expression for Average Power in Symbolic Notation.

When the current in any circuit is i =\/2I sin (a)t+ 0) and the

potential drop in the circuit (in the direction of the current) is
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v=\/2 V sin (tot+9
f

) the average power input into the circuit is

P= VI cos (9' -6)
where V and / are the effective values of the current and p.d.

(see equation 9 of Chapter VII) . The current i =\/2 7 sin(a) t+ 0}

may also be written

i =V2 / cos 6 sin a)t + \/2 / sin 9 cos oj t

and may therefore be represented by the vector

/=/,+//,

where

/! =1 COS 9

12 =I sin 9

Similarly, the p.d. v =\/2 V sin (a)t+
f

) may be written

v =\/2 V cos 9' sin a)t+V2 V sin 9' cos CD t

and may therefore be represented by the vector

where

V, = V cos9 l

V^VsinO,
Expanding the power equation we get

P = VI cos 9 cos 9' + VI sin 9 sin 9f

= Vcos0'Xlcos0+V sin 0'Xl sin 9

But V cos 9' = V l \
I cos 9 =/!,- V sin 0' = 72 ;

I sin 9 =72 .

Hence the average power corresponding to 7=7
x + /72 and

7 = 7^/7, is

P= VJ1+V2I2 (19)

Note that this expression is not equal to the real part of the product
of V = V l +jV2 and 7=7 1 + /72 ,

when "/" is considered equiv-

alent to V 1, which product gives

F7 = 7 1
7

1-7272+/(^172+F27 1 ).

The average power is the real part of this product with the sign

between the two terms 7^ and 7272 reversed.

216. Expression for Reactive Power in Symbolic Notation. -

The reactive power corresponding to the current i=\/2Isin(ajt + 9)

and the p.d. v =V2 7 sin ( cot+ 9') is (see Article 184)

U= VIsin(9'-9]

(Note that the reactive power is taken as positive when the

current lags behind the p.d., i.e., when

Expanding the equation for U we get
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U = VI sin Q' cos 9-VI cos 6f
sin

= V sin 0' I cos 9- V cos 0' I sin

Therefore

ff-FA-FA (20)

When /!, Vl} I2 and V2 have the same signification as in the

preceding article. Therefore the reactive power is not equal to

the "/" part of the product V = V,-\-jVz and I^I^jV^ when

/ is considered equivalent to V 1, but is the "
/
"
part of this

product with the sign between the terms VJ2 and V2Ii reversed.

217. Expression for Power Factor in Symbolic Notation.

The power factor corresponding to the current / =Il -f jI2 and the

p.d. V = Vl +jV2 is equal to the ratio of the average power

P= VJi + V2I2 to the product of the effect current / and the

effective p.d. V, that is

ftj.-Jfc-
V^+V^

(21)
VI

The power-factor angle, i.e., the angle the cosine of which is equal
to the power factor, is 6f

0, since & 6 is the difference in phase
between current and p.d. Therefore from (19) and (20)

[V
1 V T ~i

(21a)FA+FAJ
218. Examples of the Use of the Symbolic Method. Problem

I, Series Circuits. An impedance z l has a resistance of 3 ohms
and an inductive reactance of 4 ohms; a second impedance z2 has

^-rAA/WV-
V* V,,.

Fig. 122.

a resistance of 8 ohms and a capacity reactance of 6 ohms. 2
t

is then represented symbolically as

and z2 as

Let these two impedances be connected in series, Fig. 122, and

let an e. m. f. of 100 volts be impressed across them from a to c.

Choosing the vector representing the potential drop from a to c
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as the axis of reference, and calling the current from a to c I
c

we have, that (3+/4+ S-/6) Iac = 100+/0 whence

100 1100+/200
L nr

= = =o.o + ?l 6
11-2/ 121 + 4

Hence the effective value of the current is

7 = l/(8.8)
2
+(1.6)

2 =8.94 amperes
and it leads the potential drop from a to c by the angle

tan'1 =10.3
8.8

The potential drop across the first impedance is

Ya&=(3+/4) (8.8+ /1.6)=26.4-6.4+ / (35.2 + 4.8)

=20+/40
which has the effective value

7a6 =l/(20)
2
+(40)

2 =44.7 volts

and leads the potential drop Vac by the angle

40
tan 1 _=63.5

20

Vbo =894

Fig. 123.

The potential drop across the second impedance is

76c =(8-/6) (8.8 + /1.6)=70.4+ 9.6-y (52.8-1.28)

=80 -/40
which has the effective value

76c =l/(80)
2
+(40)

2 =89.4 volts

and lags behind the potential drop Vac by the angle
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4 I
40

tan ~*

80
=26.5

C

The complete vector diagram is given in Fig. 123. Note that the

current is plotted to ten times the scale of the p.d.

The power input into the first impedance is

Wab =8.8X20 + 1.6X40=240 watts

The power input into the second impedance is

Wbc =8.8 X 80- 1 .6X 40 =640 watts

The total power input is

Wac =8.8X100 + 1.6X0 =880 watts

which of course is the sum of Wab and W^.
Problem 2. Parallel Circuits.

Next, let these two impedances be connected in parallel, Fig.

124, and let the total current taken by the two be 100 amperes.

Choosing the vector representing the total current from a to

6 as the axis of reference, and calling I'ab =//+ /// the current

in No. 1 from a to b and I"ab =//' + ///' the current in No. 2

from a to 6, we have from equations (18) that

IS + jI*' + If+ jIf = 100 + /0
and

(3+ /4) (// + ///)- (8 -/6) (//'+ ///) =0
Whence

// + If + / (/,' + If) = 100+ j

37/ - 4/2

' -
/ (4// + 3//) =8//'+ 67/ + / (81f- 6//0

Equating the real and the "/
" terms in these two equations we get

// + //' = 100

3/
i
'_4/2'=8/ 1

"
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Solving these equations we get

7/=80
72

' = -40
7/'=20
72"=40

Whence the current in No. 1 from a to b is

7'a6 =80-/40
which has the effective value

/'=1/(80)
2
+(40)

2 =89.4 amperes

and lags behind the total current Iab by the angle

tan-
1 =26.5
80

The current in No. 2 from a to b is

which has the effective value

7" = \/(20)
2
+(40)

2 =44.7 amperes
and leads the total current Iab by the angle

tan'
1 ^=63.5
20

The potential drop across each impedance in the direction from

a to b is

7o6 =(3 + /4) (80-/40) =240+ 160 + / (320-120)

which has the effective value

V= V(400)
2+ (200)

2 =447 volts

and leads the total current by the angle

/an-
200

=26.5
400

I'=89.4

Fig. 125.

(Note ;
this problem can be solved more simply by calculating
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the admittances corresponding to the two impedances by equa-
tions (37) of Chapter VII, and then proceeding in an entirely

analogous manner to that employed in Problem 1. The method
above given, however, illustrates the manner in which any problem

concerning a network of circuits may be attacked.)

The vector diagram for the currents and p.d. is given in Fig.

125.

The p.d. is plotted to one-tenth the scale of the current.

The power input into No. 1 is

W =80X 400- 40X 200 =24,000 watts

The power input into No. 2 is

W" =20X 400+ 40X 200 = 16,000 watts

The total power input is

W = 100 X 400+ X 200 =40,000 watts

SUMMARY OF IMPORTANT DEFINITIONS AND
PRINCIPLES

1. A vector of length A making an angle 9 with any arbi-

trarily chosen axis of reference may be represented symbolically

by the expression

A=A
l +jA,

where A
l

is the component (
=A cos 6} of the vector A along the

axis and A 2 is the component (
=A sin 6 ) of the vector A making

a positive angle of 90 (counter-clockwise) with the axis. The

symbol
"

/
"

indicates that the component A 2 makes the angle
90 with the axis.

2. The length of any vector A l + jA 2 is A=v/A
1

2 + ^ 2
2 and

^
the angle which it makes with the axis is 6 =tan l

*

A,
3. The sum of two vectors A t +jA 2 and A,

f +jA 2

'
referred to

the same axis is

4. In addition to showing direction the symbol j also has the

following properties:

(a) Multiplying a vector by / rotates the vector through 90

in the positive direction.

(6) ii=fi.
(c) jK = Kj when K is a constant, real or complex.

(e) jXXj when X is a rotating vector.
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(d) jX =--; when X is a vector rotating with a constant
CD dt

angular velocity CD.

5. The symbolic notations for a sine-wave current, a sine-wave

p.d., and a sine-wave e. m. /. are respectively

where the two components of each quantity are any two compo-
nents at right angles to each other and each component is a vector

rotating with an angular velocity aj =2 IT f, where / is the fre-

quency.
6. The symbolic notation for an impedance of constant resist-

ance r and constant reactance x to a sine-wave current is the

complex number

7. The symbolic notation for an admittance of constant con-

ductance g and constant susceptance b to a sine-wave current is

the complex number

y=g-jb
8. The symbolic notation for the p.d. V in an impedance z

due to a current / is

V=zl

9. The symbolic notation for the current I in an admittance

y due to a p.d. V is

I=yV
10. The relation between impedance and admittance in sym-

bolic notation is

1

y

11. The symbolic notation for the equivalent impedance Z of

two impedances z
l and z

2 in parallel is

Z, 2,

12. An expression of the form where a t and a2 are
a, ]a 2

constants is equal to
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13. KirchhofFs Laws in symbolic notation are

where the currents 7 and the electromotive forces E are all referred

to the same axis of reference.

14. The average power corresponding to a p.d. V = V1 -\-jV2 and

a current 7=71 +/72 ,
both referred to the same axis of reference is

and the power factor is

VI

PROBLEMS
1. A vector A 10 units in length makes an angle of 60 in a

counter-clockwise direction with another vector B 15 units in

length. Find the symbolic expressions of (1) A and B respec-

tively, and (2) A + B, and (3) A-B referred to B as the axis

of reference in each case.

Ans.: (1) 5 + / 8.66 and 10; (2) 20 + / 8.66; (3) -10 + /8.66.
2. A certain vector is represented symbolically by the expres-

sion 12+ /24. Find the symbolic expression of a vector equal
in length (1) when it makes an angle of 40 with the axis of

reference, and (2) when it makes a right angle with the axis of

reference in the clockwise direction.

Ans.: (1) 20.6-/17.27; (2) -/26.8.
3. Three impedances A, B and C have resistances of 5, 8 and

3 ohms respectively and reactances of 14, and 10 ohms respec-

tively. Find the symbolic expressions of the resultant impedance
of these three impedances, (1) when they are connected in series,

(2) when they are connected in parallel, and (3) find the symbolic

expression of the resultant admittance of these three impedances
when they are connected in parallel.

Ans.: (1) 16+ /4; (2) 5.56-/0.902; (3) 0.1751 +/0.0284.
4. An e. m. /. of 150 volts and 25 cycles is impressed upon a

series circuit consisting of a resistance of 5 ohms, an inductance of

0.05 henry and a capacity of 1000 microfarads. If the vector
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representing the impressed e. m. f. is taken as the axis of reference

find(l) the symbolic expression for the current flowing in the circuit,

and (2) the average rate at which energy is given to the circuit.

Ans.: (1) 27.6-/ 8.17; (2) 4140 watts.

5. Two impedances A and B of 4 and 12 ohms resistance

respectively and 15 and 8 ohms reactance respectively are con-

nected in series. If the current established in this circuit is 10

amperes, find the symbolic expression for the potential drop, (1)

through A, (2) through B, and (3) through the entire circuit, all

referred to the current as the axis of reference.

Ans.: (1) 40 + /150; (2) 120-^80; (3) 160 + /70.

6. If the two impedances described in Problem 5 are connected

in parallel, and the current in A is 5 amperes, find the symbolic

expressions for the currents in A and B respectively referred to

the potential drop across the parallel circuit as the axis of reference.

Ans.: 1.289-/4.84 and 4.48+ /2.9S.

7. When a given 60-cycle e. m. f. is impressed upon a series

circuit of 5 ohms resistance, 0.1 henry inductance and 50 microfarads

capacity, the symbolic expression for the 'fundamental of the cur-

rent is 12 /1 and for the third harmonic of the current 6+ /8

referred respectively to the first and third harmonics respectively

of the impressed e. m. /. Find(l) the effective value of the im-

pressed e. m. f. and (2) the average power dissipated as heat energy
in the circuit.

Ans.: (1) 988 volts; (2) 1720 watts.

8. An impedance A is connected in series with two impedances
B and C connected in parallel. The resistances of A, B and C
are 3, 5 and 6 ohms respectively and the reactances are 5, 7 and

3 ohms respectively. If an e. m. /. of 200 volts is impressed across

the entire circuit, find the symbolic expression of the currents in

A, B and C referred to the potential drop in A.

Ans.: 11.4-/19.0; 12.4-/2.75; -1.01 -/16.3.
9. An e. m. f. of 100 volts is impressed upon a series circuit

formed by two impedances A and B in series. The impedance A
has a resistance of 4 ohms and a reactance of 6 ohms and the

potential drop across A is 100 volts. If the entire circuit absorbs

1 kilowatt of power, find the symbolic expression of (1) the cur-

rent, (2) the potential drop through A, and (3) the potential drop

through B
}
all referred to the e. m. /. impressed upon the entire

circuit.
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Ans.: (l)10/9.58.;(2)-17.5 + /98.3or 97.5 + /21.7;(3) 117.5

-/98.3 or 2.5 -j2l. 7.

10. Two impedances A and B are connected in parallel. The

respective symbolic expressions for the impedances of A and B
are 4+ /8 and 5 /3. If the total current supplied to this parallel

circuit is 20 amperes, find the symbolic expressions for (1) the

currents in A and B, and (2) the potential drop across the parallel

circuit, all referred to the total current supplied to the circuit.

Ans.: (1) 5.66-/9.81 and 14.34+3*9.81 ; (2) 101.1 +/6.0.
11. A 500-volt, 60-cycle alternator is delivering 25 kw. at a

power factor of 85%, lagging current. The armature has a resis-

tance of 0.25 ohm and an inductance of 0.001 henry. Referring all

vectors to the terminal voltage of the alternator, find the symbolic

expression for (1) the armature current, (2) the armature voltage,

and (3) the resistance drop in the armature.

Ans.: (1) 50.0-/31.0; (2) 524+ jll.l ; (3) 12.5-/7.75.
12. The generator in Problem 11 supplies power to a motor

over a line of 0.3 ohm resistance and +0.6 ohm reactance. If the

armature of the motor has a resistance of 0.2 ohm and a reactance

of 0.3 ohm, find the symbolic expression of the armature voltage
of the motor referred to the terminal voltage of the motor.

Ans.: -448.1 +/9.7.



IX

THREE-PHASE ALTERNATING CURRENTS

219. Polyphase Alternating Currents. A polyphase alterna-

tor is an alternator upon the armature core of which are wound

two or more independent windings which are arranged with respect

to each other in such a manner that the electromotive forces in

the various windings differ in phase by a constant angle. In a

two-phase alternator there are two independent windings, which

are arranged in such a manner that when the e. m. f. induced in one

winding is a maximum, the e. m. /. induced in the other winding
is zero, that is, the e. m. f. induced in one winding is in quad-
rature with the e. m. f. induced in the other winding ;

this effect

is obtained by placing the two windings on the core in such

a manner that when a group of conductors in one winding is

directly under a north pole, the corresponding group of con-

ductors in the second winding is midway between a north pole

and a south pole. In the case of a two-pole machine this means

that a group of conductors in one winding is placed 90 degrees

ahead of the corresponding group in the other winding ; similarly,

in the case of a multipolar machine, if we call the distance between

two successive poles of like sign equal to 360 "
electrical

"
degrees,

we may describe the relative position of the two windings as such

that the corresponding conductors in the two windings are spaced
90 electrical degrees apart. In general the two windings overlap

each other, or are "
distributed

" over the armature surface, but

for each conductor in one winding there is a corresponding con-

ductor in the other winding 90 electrical degrees, or one quarter
of the pole pitch, ahead of the conductor in the first winding.

A two-phase alternator may be provided with a separate pair

of slip rings for each winding, that is, four rings in all
;
or with

three slip rings, and one of these rings made to serve as a common
return for the two windings.

A three-phase alternator is similar in construction to a two-

phase machine except that three separate windings are employed,
the corresponding conductors in the three windings being spaced

396
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120 electrical degrees apart, and the

induced electromotive forces therefore

differ in phase by 120. These wind-

ings are connected electrically in two

different ways. The three windings

may be connected end to end as shown
in Fig. 126, and leads from the junc-

tions 1, 2 and 3, brought out to

three slip rings ;
or one end of each of

the three windings may be connected
? / A Connection

to a common junction, called the
"
neutral point/' as shown in Fig.

127, and the other ends 1, 2 and 3 brought out to three slip rings.

In some cases the common junction or neutral point is also con-

nected to a fourth slip ring. A three-phase alternator with its

windings connected as shown in Fig. 126 is said to be " mesh "

connected, the latter from the Greek capital letter

3
" A. " When the windings are con-

nected as shown in Fig. 128 the alter-

nator is said to be "
star

"
or

" Y "

connected. In large generators the

armature is stationary and the field

rotates; in such a case the armature

windings are connected to fixed ter-

minals and the two ends of the field

1 winding are connected to two slip
Fig - 127-

rings. Continuous current is supplied
to the field through brushes bearing on these two slip rings.

The advantages in using three-phase currents are chiefly :

1. The more satisfactory operation of three-phase motors as

compared with single-phase machines.

2. The saving in the amount of copper (25 per cent) as com-

pared with a single-phase system for the same voltage between

wires.

3. The lesser cost of three-phase generators and motors of the

same power and for the same voltage between terminals.

4. Better voltage regulation of three-phase generators.

220. Vector Sum of the Induced E. M. F.'s in the Three Wind-

ings of a Three-Phase Generator Equals Zero. Let Eia ,
E23

and E 3l , Fig. 128, be the three e.m.f.'s induced in the three wind-
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ings of a three-phase generator, taken as positive in the counter--

clockwise direction around the closed loop formed by the windings of

Fig. 128.

the generator. In a properly designed machine these e.m.f.'s have

equal effective values, but due to the relative position of the wind-

ings they differ in phase by 120; that is E12 leads E23 by 120 and

Eal leads E12 by 120. Hence the symbolic expressions for the

three e.m.f.'s referred to E12 as the line of reference are, when these

e.m.f.'s. are sine waves,

E= 1+ E

(1)

.=(-!-,%
and therefore

Hence the total e.m.f. at any instant acting around the closed

loop formed by the three windings is zero, and therefore when no

external circuit is connected to the three terminals, i.e., when
the generator is running on "

open
"

(external) circuit, there will

be no flow of current in the armature provided the e.m.f.'s are

sine waves.

Similarly, in the case of a three-phase F-connected generator,

Fig. 129, the induced e.m.f'.'s EQl ,
EQ2 ,

and E^ are all equal in

effective value and differ in phase by 120. Hence choosing Eol as

the line of reference and taking these e.m.f.'s as positive in the
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direction away from the neutral point, we have, when the e.m.f.'s

are sine waves, that

(2)

and therefore

#01 + #02+#03 =0

When the generator is running on open (external) circuit there

Fig. 129.

is of course no current in the coils, since each coil is open at one

end.

221. Relation Between Coil E.M.F. and E.M.F. Between

Terminals in a Y-Connected Three-Phase Generator. The e.m.f.

between any pair of terminals, or the equivalent
" A "

e.m.f.

of a F-connected generator is equal to the vector sum of the

e.m.f.'s in the two coils in the direction from one terminal to the

other. Using the above notation, and assuming sine-wave

e.m.f.'s, we have that the e.m.f. between the terminals 2 and 3 in

the F-connected generator in the direction from 2 to 3 is

E23
= E

Similarly for the e. m. f. 's between the terminals 3 and 1 and
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between the terminals 1 and 2; hence, the equivalent "A" e.

m. f.'s, that is, the e.m.f.'s between terminals, are

(3)-j V3
77F A /O 77*

That is, the equivalent A e.m.f. is equal numerically to the square

3 root of three times the effective value of

the Y e. m. f. and lags 90 behind the

e.m.f. in the opposite branch of the Y.

The A e.m.f. 's are therefore represented

by the sides of the triangle formed by

connecting the ends of the three vectors

representing the Y e. m. f.'s, the positive

direction being taken in the counter-

clockwise direction, see Fig. 130.

222. Currents from a Three-Phase

Generator. Generator and Load Both

Y-Connected. When the three terminals of a three-phase genera-

tor, either A or Y connected, are connected to either a Y or A
connected load, currents equal in effective value and differing in

phase by 120 will flow from each terminal, provided (1) that the

resistance and reactances of the generator windings are respec-

tively the same for the three windings, (2) that the resistances and

reactances of the windings of the receiving device or load are

respectively the same for the three windings, (3) that the e. m. f.'s

in each winding of the generator are equal in effective value and

differ in phase by 120, and (4) that the back e. m. f.'s, if any, in

the windings of the load are equal in effective value and differ in

phase by 120. When the e. m. f.'s in each phase of a three-phase

system are equal in effective value and differ in phase by 120

and the currents in each phase are equal in effective value and

differ in phase by 120, the system is said to be "
balanced."

Consider the simple case of a F-connected generator to

the three terminals of which are connected three equal im-

pedances in F, Fig. 131. Let z represent the total impedance

of each winding of the load plus, vectorially, the impedance of

the generator winding in series with it. For the closed loops

OlaO'620 and O260'c30, we have, assuming sine-wave currents and

e.m.f. 's, that
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E01-E02 =zIol -zI02 (a)

Also at the junction or 0' we have that

which give three equations in the three unknown quantities

701 /02 and 703 . Referring the e.m.f.'s to E01 as the axis of refer-

ence, equations (a) and (b) may be written

Fig. 131.

(d)

Substituting the value of 703 from equation (c) in the second of

these equations, gives

which subtracted from (d) gives

/3_ .3V3

Therefore

Similarly for the other two phases; hence

^701 ='01

2/ 2
=E02

z703 =E03

(4)
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Consequently, since the three e.m.f.'s are equal in effective

value and differ in phase by 120, the currents in the three im-

pedances have equal effective values and differ in phase by 120.

These currents, however, are not 'in phase with the corresponding

e.m.f.'s except in the special case when the reactance component
of the impedance is zero.

When the load is a motor or other device developing in the

three windings back e.m.f.'s equal in effective value and differing

in phase by 120, it can readily be shown that equations (4)

still hold provided the E's in these equations are taken to repre-

sent the vector difference of the generator e.m.f. per winding and

the back e.m.f. of the load per winding.

From the above discussion it therefore follows that when a

balanced F-connected load is connected to a F-connected gener-

ator, the current established in each winding of the load is exactly

the same as would be produced were this winding connected by
itself to a single-phase generator having an e. m. f. equal to the

e. m. f. induced in each winding of the generator and an internal

impedance equal to the impedance of each of these windings. It

also follows from equation (4) that the neutral point of the gener-

ator and the neutral point of the load must be at the same poten-

tial, since the rise of potential in the generator from the neutral

point to any one slip ring due to the induced e. m. f. is equal to

the drop in potential zl due to the resultant impedance of the

generator, line and load. Consequently, were the neutral points

of the generator and load connected by a wire, no current would

flow in this
"
neutral "

wire, provided the system is balanced. In

case the load is not balanced, a current would flow in the neutral

wire
;
such a wire is sometimes installed to reduce the voltage drop

between generator and load in case of unbalancing. In general,

however, a three-phase system is very nearly balanced, as three-

phase motors and rotary converters are designed to take the same
current per phase, and in the case of a lamp load or single-phase
motors used on a three-phase system, care is taken to distribute the

various lamps and single-phase motors equally on the three-phases.
223. Currents from a Three-Phase Generator. Generator A-

Connected and Load Y-Connected. When the generator is A-

connected the induced e.m.f.'s between terminals are E 12 ,
E23

and E3l . Hence, neglecting the resistance and reactance of the

generator, and assuming sine-wave e.m.f.'s and currents, we have
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E23 =zln3-In2) (6)

/OI + /o 2+ /o3=0 (c)

Referring E 12 and E23 to E 12 as the line of reference and substitut-

ing in (a) and (6) the value of 702 from equation (c), we have

Multiplying the second equation by 2 and adding it to the first gives

jV3E12 =3z!03

or

zl -lEl2
"OS ' =

\/3

Similarly for the other two phases ; whence

V3
:

?i .
(5)

V3
Hence, since the three A e.m.f.'s are equal in effective value and
differ in phase by 120, the currents in the three impedances are

equal in effective value and differ 120 in phase. Note that the
*

T? 'Jf 'Tf

vectors ^^, l^L and i_! are equal to the vectors represented
\/3 V3 V3

by the lines drawn from the center of the triangle formed by the

vectors E 12 ,

E
23 and E3l

-

y
hence the currents taken from slip rings

of a A-connected generator by a balanced load are, neglecting

armature impedance, exactly the same as would be produced

by a F-connected generator developing e.m.f.'s Eol ,
E02,

En3

per winding where

Compare with equations (3). A A-connected generator, when sup-
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plying a balanced load is therefore equivalent to a Y-connected genera-
te

tor developing an e.m.J. per winding Ey numerically equal to ^,
V3

where E^ is the e.m.f. per winding of the ^-connected generator.

As will be shown presently, when the impedance of the generator
is taken into account, as it must be in all practical problems, it

is also necessary, in order that the F-connected and the A-con-

nected generator produce the same current in the external circuit,

that the impedance per

winding of the equivalent
F-connected generator be

equal to one-third the im-

pedance per winding of the

A-connected generator.

224. Coil Current in a

A-Connected Generator for

Balanced Load. In a A-

connected generator the

current 7 taken from each

terminal of the generator
Fig, 132. must be equal to the vector

sum of the currents flowing to that terminal in the wind-

ings of the generator. Let 712 ,
723 and 73 ,

be the currents in

the three windings in the directions indicated in Fig. 133, and

as before let 701 ,
702 and 703 be the currents taken from the three

terminals. The first set of currents are called the " A "
or coil

currents and the second set the
" Y "

or line currents. When
the load is balanced, the three Y currents are equal in effective

value and differ in phase by 120, see Article 223. Hence,

referring all the currents to 703 as the axis of reference, and as-

suming sine-wave currents and e. m. /.'s, we have that

f 7 ) 703 (a)

Hence, substituting in (a) and (6) the value of 731 from (c) we have

(d)
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and

Multiplying (e) by 2 and adding (d) gives

-3712 =/\/3/03

whence

T J T1 12 -= * 03

Similarly for the other two phases ;
whence

r ~
(6)

Hence the current in each of the windings of a A-connected gener-

ator is equal numerically to the effective value of the Y or line

current divided by the square root of three, and lags 90 behind

the current in the opposite branch of the Y, provided the system
is perfectly balanced. Compare with the relation between the

A e. m. f.'s and the Y e. m. f.'s given by equation (3).

The Y currents, like the Y e. m. f.'s, may be represented by
three equal vectors differing in phase

by 120. The sides of the triangle

formed by joining the ends of these

vectors are then equal to three times the

currents, but their directions, taken

positive in the counter-clockwise direc-

tion, give the proper phase relation be-

tween the A and Y currents, see Fig.

133.

225. Coil E. M. F. and Impedance
of the Equivalent Y-Connected Gen-

erator and of the Equivalent Y-Con-

nected Load. A F-connected and a

A-connected generator may be looked upon as equivalent to each

other provided the voltage between terminals is the same in each

for the same current taken from the terminals. Let EA ,
7A and

ZA ,
and Ew Iv and zv ,

be the effective e.m.f. per winding, the effective

Fig. 133.
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current per winding and impedance per winding for a A and Y
connected generator respectively. On the assumption of sine-

wave currents and e. m. f.'s, the voltage between terminals and

2 in case of the A-connected generator is the vector difference

7?i 2 2A 712 ,
and the voltage between terminals in the case of the Y-

connected generator is, when referred to E 12 as the line of reference,

the vector difference / \/3 (Eos z
y
703), provided the system is

balanced, see equations (3). Hence in order that these two ex-

pressions be equal for all values of the line or Y current we must

have

# 12
= -/ V3 #03

and zJi2 = -JV3zyIn

But from equation (6) 7 J2
= - 703 ;

therefore
.. V O *

*A=3*y (7)

Therefore, in order that the voltage between terminals be the same

in a F-connected as in a A-connected generator, the coil e. m. /. in

the F-connected generator must be equal to = times the coil

V3
e. m. /. of the A-connected generator and both the resistance and

the reactance of each winding of the Y-connected generator must

be one-third the resistance and reactance respectively of the

A-connected generator.

By a similar argument it can be shown that a A-connected

load may be considered equivalent to a F-connected load pro-

vided the back e. m. f. in each winding of the equivalent Y is

taken equal to = times the coil e. m. /. of each winding of the

V3
A-connected load and both the resistance and reactance of each

winding of the equivalent Y are taken equal to one-third the re-

sistance and reactance respectively of each winding of the A.

226. Reduction of all Balanced Three-Phase Circuits to Equiv-
alent Y's. Any problem in regard to a balanced three-phase
circuit may therefore be solved by reducing all parts of the circuit

to an equivalent Y connection, provided the currents and e. m. f.'s

are sine waves. The transformations are made as follows :

Any A-connected motor or generator is considered as equiv-
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alent to a F-connected generator or motor in which the e. m. /.

per winding E
y

is equal to =
V3

of the A-connected machine, i.e.,

per winding E
y

is equal to = times the e. m. f. per winding
V3

(8a)

and the impedance per winding z
y of the equivalent Y-connected

machine as equal to the impedance per winding Z
A of the A-con-

nected machine divided by three, i.e.,

z,=|
(86)

Similarly, any A-connected load which has an impedance

per winding equal to fA may be replaced by a F-connected

load which has an impedance per winding

The current per winding 7A in any A-connected generator or

load is equivalent to a current I
y in the equivalent F-connected

generator or load, where

/,=V3/4 (8d)

or vice versa, when the current in the equivalent F is found to

be I
y ,

the corresponding current per winding in the A is

>

Similarly, when the equivalent F voltage is found to be E
y ,

the corresponding A voltage is

Each of the wires (e.g., the wire 3c in Fig. 131) connecting a

generator terminal to a load terminal is then in series with the cor-

responding phase of the equivalent F generator and F load.

When all parts of the circuit have thus been reduced to equiv-

alent Y's, each of the three phases may be treated as a single-

phase circuit, each circuit considered completed by a wire having

zero impedance connecting all the neutrals together, since all

the neutrals are at the same potential.

227. Power in a Balanced Three-Phase System. Consider

first a F-connected load, and let the potential drop per winding

be V
y ,

and the current per winding I
y ,

and the difference in
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phase between current and p.d. in this winding be 9y ,
then the

power input into each winding is V
y
l
y
cos 8

y ,
and therefore the

total power input is

P=3Vw'0
Similarly, in the case of a A-connected load, for which TA is

the potential drop per winding, 7A the current per winding, and

#A the difference in phase between current and p.d. in this winding,

the total power input is

P=37A/A cos0A
In the case of a generator or any kind of a load, the p.d. that is

most easily measured is the p.d. between terminals or the p.d.

between the mains where they connect with the terminals. In

case of a A-connected generator or load this, is the p.d. per wind-

ing, that is, VA ;
in the case of a Y-connected machine this is the

equivalent A p.d. and is equal to the p.d. per winding V
y
mul-

tiplied by the square root of three, that is

Since FA is the same as the p.d. between wires, VA is frequently
called the line voltage.

The current that is usually most readily measured is the

current in each main, that is, the current leaving each terminal

of a generator or entering each terminal of the load. In the

case of a Y connection this is equal to the coil current I
yi
and in

the case of a A-connected machine it is the equivalent Y current

and therefore is equal to the coil current 7A multiplied by the

square root of three. That is,

Since I
y is the same as the current per main, I

y
is frequently called

the line current. Hence in expressing the power input into a

F-connected load it is more convenient to substitute for Vy its

value in terms of the line voltage VA ,
which gives

\/3

=V3 7A / cos By (9o)

In the case of a A-connected load, the substitution for /A its

value in terms of the line current I
y , gives

V3
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A / co A (96)

Equations (9) are the expressions usually employed for the

three-phase power, and are usually written without the sub-

scripts; namely, the total three-phase power is usually written

P=VZ V I cos

It should be clearly borne in mind, however, that the 6 in this

expression is not the phase angle between the voltage V and the

current I, but is the phase angle between the voltage to neutral

and the line current, which in turn is equal to the phase angle

between the voltage between wires and the A current.

228. Example. Energy is supplied from a generating station

to a substation 50 miles away at a rate of 20,000 kilowatts. The

system is a balanced* three-phase system and operates at a fre-

quency of 25 cycles. The transmission line consists of three

No. 0000 B. & S. copper wires spaced six feet between centers.

It is desired to find (1) what will be the voltage between wires

at the generating station when the voltage between wires at the

substation is 60,000 volts, and the power factor at the substation

is 80 per cent, with the current lagging, (2) how much power is

lost in the- transmission line, and (3) what is the power factor

at the generating station. The electrostatic capacity of the line

may be neglected.

The current per wire is

20,000,000/= ^ =241 amperes
V3X 60,000X0.8

The voltage from line to neutral at the substation is

F 60,000 _
\/3

Taking I
y

as the line of reference, the symbolic notation for the

voltage to neutral is

V
y =34,600 (cos 6+ j sin 9)

where is the angle by which the voltage leads the line of

reference I
y (see Article 207). But cos # = 0.8, and, since the

current is lagging the angle by which the voltage leads the

current is positive, and therefore sin #= 4-0.6. Therefore

V
y =34,600 (0.8 + j 0.6) =27,700+ / 20,800

The resistance per mile of a No. 0000 wire is 0.258 ohms; its

inductance per mile for a spacing of six feet is 1.93 millihenries,

hence the reactance per mile at 25 cycles of a No. 0000 wire is
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2 TT X25X1.93X10'3 =0.303 ohms. Hence the total impedance
of each wire is

z
y
=50 X0.258+j50X0.303 = 12.

Hence the voltage to neutral at the generating station is

=30,800 + #4,500
The effective value of which is 39,300 volts, and therefore the

effective voltage between wires at the generating station is

y/ =V3 X 39,300 =68,000
The power lost in the line is equal to 3RI

y
2 where R is the

total resistance of each wire and I
y the line current. Hence the

power lost in the line is

3X 12.9X (241)
2 watts =2,250 kilowatts

The total power delivered to the line and substation is then

22,250 kilowatts. Hence the power factor at the generating
station is

22,250,000_
A/3 X 68,000X241

229. Rating of Three-Phase Apparatus. The rated voltage
of a three-phase machine always refers to the volts between termi-

nals or the A voltage EA ,
the power rating is the total power

for all three-phases, and the power factor (usually written cos 0)

is the ratio of the total power P to the square root of three times

the voltage between terminals times the current per terminal

I
y , and the machine is assumed to carry a balanced load. The
current per terminal is then

/= JL_
V3 EA cos 9

which is also the current per winding for a F-connected machine.

In the case of a A-connected machine the current per winding is

7 =- P
3 #A cos

230. Measurement of Power in a Three -Phase Circuit. Two
Wattmeter Method. To measure the power output of a three-

phase generator or the power input of a three-phase load, the

most obvious method is to measure the power for each phase

separately by connecting the current coil in the wattmeter in

series with the winding of that particular phase and the potential

coil of the wattmeter across the terminals of that winding. The
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total power output (or input) is then the sum of the outputs (or

inputs) for the three windings. In the case of a F-connected load

with an accessible neutral point this is readily accomplished,

Fig. 134, by inserting the current coil in series with the line and

connecting the potential coil between the. terminal of load and

its neutral point. (The output per phase of a F-connected

generator is similarly measured by connecting the current coil

in series with that phase of the generator and the potential coil

across the terminal of this phase and the neutral point of the

generator.) In case the load is balanced, the reading of the

wattmeter multiplied by three gives the total power. When the

load is not balanced a similar measurement must be made for

each phase and the three readings add-

ed; the three readings should be made %

simultaneously if the load is varying.

In the case of a A-connected gen-
Current Coil

erator or motor, the three windings
are usually connected inside the ma-

chine, and it is therefore not* feasible

to connect the current coil in series with

the windings. Again, the neutral point
of a F-connected generator or mo.tor

is frequently not accessible. The fol-

lowing method for measuring the power
is then usually employed, and gives the

true power whether the system is balanced

or not. Two wattmeters A and B are connected as shown in

Fig. 135; the current coil of A is connected in series with one

ino

Potential

Coil

Fig. 134.

V32

i23

o

Fig. 135.
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line wire a, and the current coil of B is connected in series with

a second line wire 6. The potential circuit of the meter A is

connected across from a to the third line wire c, and the potential

circuit of meter B is connected across from the line b to the

line c. Let the instantaneous value of the currents and p.d.'s

be represented by small letters with subscripts indicating their

directions. The instantaneous torque on the moving element

of meter A is then proportional to v3l i01 and the instantaneous

torque on the moving element of meter B in the same relative

direction is v32 i^. (That is, when the instantaneous currents and

p.d.'s are actually in the directions indicated by the arrows on the

coils, and the two meters are exactly alike, these are the values

of the instantaneous torques in each meter either both to the

left or both to the right.)

But v32
= v23

Hence the total torque on the moving elements of both meters is

V3 l 4l + ^32 ^02 =V 3 l fel
-

t'l 2) ^23 O'l2
- i2S)

=
031 *31 + ^23 *23

-
(081 + ^23) 1*12

But

3 i + 23
= -0i2

(since the total drop of electric potential at any instant around

a closed path is zero). Hence the total instantaneous torque on

the moving elements of the two meters is proportional to

012*12+ 023^23+ 031*31

which is equal to the total instantaneous power.

Since the reading of each wattmeter is proportional to the

average torque acting on its moving element, it follows that the

algebraic sum (the algebraic sum, since the average values of

v31 iol and v23 iQ2 may be of opposite sign) of the two wattmeter

readings gives the true average power, independent of whether

the load is balanced or not and also independent of the wave

shape of current and p.d.; provided the wave shape of the current

in the potential circuit is the same as the wave shape of the p.d.

across it. This provision is only approximately fulfilled when
the potential circuit of the meter contains iron.

Since the average value of the instantaneous products v31 iQl and

v32 i02 may be either positive or negative, the deflection of the watt-

meter needle may be either to the right or to the left of the zero.
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Wattmeters, however, are usually designed with a scale reading

only to the right ; consequently when a positive value of the aver-

age of the product vi corresponds to a deflection to the right, then

the needle goes off the scale to the left when the value of this

product is negative. However, by reversing the leads connecting
the current coil in the line, the direction of the current in the cur-

rent coil is reversed with respect to the current in the potential

coil, and the needle will then deflect to the right. (Note that the

terminal of the potential circuit connected directly to the sus-

pended coil of the meter should always be connected to the line

wire in which the current coil of the meter is connected
; otherwise,

since the impedance of this coil is only a fraction of the total

impedance of the potential circuit, practically the full voltage

across the potential circuit will also exist between the potential

coil and the current coil of the meter, and may cause the insulation

between the two to break down.)

To measure, then, the total three-phase power by this two

wattmeter method, it is necessary to connect the current coils of

the two wattmeters in the lines a and b in such a manner that the

needles of both meters deflect to the right. It is then necessary

to determine whether the two readings shall be added or sub-

tracted. This is determined from the fact that if the average
value of the two products v31 iol and vS2 i02 are both of the same

sign, then both meters will also read to the right if they are inter-

changed, and the connection to the middle wire c is kept unaltered.

If, however, the average values of these two products are of the

opposite sign, then when the two meters are interchanged and the

connection to c is kept unaltered, the deflection of each instrument

will reverse. Hence, the general rule, subtract the two readings if

on substituting one meter for the other (the connection to the common

wire c being kept unaltered], the deflection reverses; otherwise the two

readings are to be added.

231. Two Wattmeter Method Applied to a Balanced Three-

Phase System. In case the load is balanced and the currents

and p.d.'s are both harmonic functions or sine waves, the phase
relations of the currents and potential drops in the two watt-

meters can be readily deduced. Let 6 be the angle by which the

line current I
y lags behind the potential drop V

y (i.e., cos 6 is

the power factor of the load), then the vectors representing the

various currents and p.d.'s are as shown in Fig. 136.



414 ELECTRICAL ENGINEERING

The average value of the instantaneous product v3l iol is then

equal to the product of the lengths of the two vectors representing

v3l and v by the cosine of the angle between them, that is

P l
= average (vB1 iol)

= 7A I
y
cos (30 + 0)

Similarly, the average value of the instantaneous product v32 ioz

is equal to the product of the lengths of the two vectors repre-

senting v32 and in2 by the cosine of the angle between them, that is

P2
= average (v32 i02)

= VJy
cos (30- ff)

Hence when 6 lies between - 60 and + 60 both P l and P2 are

positive and therefore their sum gives the true three-phase power ;

when 6 is less than 60 or greater than + 60, Pj and P2 are

of opposite sign, and hence their difference gives the true three-

phase power. But cos 60 =i; hence when the power factor of

Fig. 136.

the load is greater than 50 per cent either leading or lagging, the

sum of the wattmeter readings gives the true power; when the

power factor of the load is less than 50 per cent the difference of

the wattmeter readings gives the true power.
*

In general, the power factor of the load is not known. How-
*Note that in the above discussion a negative value of means a leading

current.
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ever, in the case of a balanced load the following simple test may
be used to determine whether the wattmeter readings are to be
added or subtracted. Leaving all other corrections unchanged,
transfer the connection of the potential coil of meter A, say, from
the common wire c to the wire b. Then this meter will read the

average value of the product v2l iol ,
and therefore its reading will be

P/ = VA I
y
cos (30 -0)

Hence when-60 < 9 < +60, Pl and P/ will both be of the same

sign; when < -60 or > + 60, P, and P/ will be of the op-

posite sign. Consequently, if when this change in connection is

made, the deflection of meter A remains in the same direction,

the sum of the original readings of A and B gives the true power ;

if the deflection of A reverses, then the difference of the original

readings of A and B gives the true power. An inspection of the

vector diagram will show that this same rule applies to meter

B when the connection of the potential coil of B to. the common
wire c is transferred to the wire a, all other connections remaining
unaltered. Hence the general rule for a balanced load; connect

the two meters in circuit in such a manner that both deflect to

the right and take the two readings Pl and P2 . Then, keeping
all other connections unaltered, transfer the connection of the

potential coil of one meter from the common wire to the wire in

which the current coil of the second meter is connected; if the

deflection of the former meter remains in the same direction add

the original readings of the two meters
;

if the deflection of this

meter reverses, subtract the original readings of the meters.

In the case of a balanced load the power-factor angle 9 may
be expressed directly in terms of the wattmeter readings. For,

taking the sum and difference respectively of P2 and P l ,
we get

P2+ p i
= vjy [cos (30- 0) + cos (30+ 0)] =^/3VJy

cos 9

P2
- P, = VJy [cos (30

-
0)
- cos (30 + 9)]

=VJV
sin 9

whence taking the ratio of these two expressions, we get
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SUMMARY OF IMPORTANT DEFINITIONS AND
RELATIONS

1. The distance between the centers of successive magnetic

poles of like sign in any electric machine is said to correspond to

360 electrical degrees.

2. A two-phase generator has two independent windings on its

armature displaced 90 electrical with reference to each other; a

three-phase generator has three independent windings on its arma-

ture, successive windings being spaced 120 electrical degrees with

reference to each other.

3. A A-connected generator has its three windings connected

in series and terminals brought out at the three junction points ;

a F-connected generator has one end of each of its windings con-

nected to a common junction point called the neutral and the

other ends brought out to terminals.

4. The sum of the e. m. f.'s induced in the three windings of an

alternator when these e. m. f.'s are sine waves is zero.

5. The equivalent A e. m. f. of a Y-connected alternator is

numerically equal to the square root of three times the effective

value of the Y e. m. /. and lags 90 behind the e. m. f. in the op-

posite branch of the Y; that is,

provided the e. m. f.'s are sine waves.

6. The equivalent Y e. m. f. of a A-connected alternator is

numerically equal to the effective value of the A e. m. f. divided

by the square root of three and leads by 90 the e. m. f. in the

opposite side of the delta
;
that is,

E=&
\/3

provided the e. m. f.'s are sine waves.

7. A three-phase system is said to be balanced when the cur-

rents and e. m. f.'s respectively in the three phases are equal in

effective value and differ in phase by 120.

8. The equivalent A current of a F-connected alternator (or

load) is numerically equal to the effective value of the Y current

divided by the square root of three and lags 90 behind the cur-

rent in the opposite branch of the Y
;
that is

-

\/3
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provided the currents and e. m. f.'s are sine waves and the system
is balanced.

9. The equivalent Y current of a A-connected alternator (or

load) is numerically equal to the square root of three times the

effective value of the A current and leads by 90 the current in

the opposite side of the A; that is,

provided the currents and e. m. f.'s are sine waves and the system
is balanced.

10. The equivalent A impedance of a Y-connected winding is

equal to three times the Y impedance, that is,

11. The equivalent Y impedance of a A-connected winding is

equal to the A impedance divided by three, that is,

' ~3 '
A

provided the currents and e. m. f.'s are sine waves and the system
is balanced.

12. When all parts of a balanced three-phase system have been

reduced to equivalent Y's, each of the three phases may be

treated as a single phase circuit, each such circuit being considered

completed by a wire of zero impedance connecting all the neutrals,

provided the currents and e. m. f.'s are sine waves.

13. The total power input into a three-phase load is

P=V3VIcos0
where V is the p.d. between terminals (the A p.d.), I is the line

current (the Y current) and 6 is the power-factor angle (the

difference in phase between the Y p.d. and Y current or between

the A p.d. and A current). This relation holds only when the

currents and p.d.'s are sine waves.

14. When two wattmeters, connected in a three-phase circuit

as shown in Fig. 135, read Pl and P2 watts respectively, the total

power is

P=P l
P2

To determine which sign to use, substitute one meter for the other,

keeping the connection to the common wire unchanged; if the

deflection of this meter reverses take the difference, if the deflec-

tion does not reverse take the sum.
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When the system is balanced and the currents and e. m. f.'s

are sine waves, the power factor of the load is cos 6 where

p _ p
2 *

PROBLEMS
1. The ends of the three coils of a three-phase alternator are

brought out to six slip rings. When the three coils on this alterna-

tor are connected in Y and the machine is operated at its rated

speed and field excitation, the rated output of the machine is

30 kw. at 1000 volts. If the speed and field excitation are kept

constant, what would be (1) the rated output of the machine, and

(2) the rated voltage when the three coils are connected in A?
Ans.: (1) 30 kw.

; (2) 577 volts.

2. A 25-cycle, three-phase, A-connected generator develops an

e. m. f. per coil of 1000 volts effective value. This e. m. /. con-

tains the third harmonic and the effective value of this harmonic

is 10 per cent of the effective value of the resultant e. m. f. The

resistance per coil of the generator is 0.1 ohm and the reactance

per coil at 25 cycles is 0.3 ohm. (1) What will be the value of the

current per coil when the generator is supplying no external load?

(2) Will this current be a sine-wave current, and if so, what will

be its frequency?
Ans.: (1) 110.4 amperes ; (2) sine-wave current with frequency

of 75 cycles.

3. A 500-volt, 25-cycle, 100-kilovolt-ampere, three-phase, A-

connected alternator,, while operating at full load on a circuit

of 85% power factor, has one of its coils burnt out. With this

coil open-circuited, (1) what is the maximum balanced load at

85% power factor which the machine can supply continuously?

(2) What proportion of this load is supplied by each of the two

remaining coils?

Ans.: (1) 49.1 kw.
; (2) 32.1% and 67.9%.

4. The armature of a 230-volt, two-phase, 50-kilovolt-ampere
alternator is re-wound so that the end of one of the coils, A, is

connected to the middle of the other coil, B. If 13.4% of the

turns on coil B are removed, what will be the rating of the re-

sultant alternator?

Ans.: 230 volts, 3-phase, 43.3 kilovolt-amperes.
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5. A coil of high impedance is connected between two slip-rings
of a F-connected 200-volt alternator. Find(l) the potential differ-

ence between the middle point of the impedence coil and the

neutral point of the alternator, and (2) the potential difference

between the middle point and the third terminal of the

alternator.

Ans.: (1) 57.8 volts; (2) 173.2 volts.

6. The potential difference between each of the line wires A,
B and C and the neutral of a F-connected load on a three-phase

system is 100 volts and these respective F voltages differ in phase

by 120. The impedances of the three branches of the load

are respectively ZAO =W + jQ, ZBO =Q+jlQ and Zco =0-/10.
(1) What will an ammeter connected between the neutral of the

load and the neutral of the generator indicate? (2) If the cur-

rent coils of two wattmeters are connected in lines A and B
respectively and the potential coils are connected from A to C
and fro:n B to C respectively, what will each wattmeter read?

(3) What is the total power supplied to the load?

Ans.: (1) 7.32 amperes; (2) 1500 watts and 866 watts; (3)

1000 watts.

7. A three-phase F-connected generator supplies power to a bal-

anced load at a line voltage of 220 volts. The power is measured

by the two wattmeter method and each wattmeter reads 10 kw.

If the resistance and reactance of each phase of the armature is

0.1 ohm and 0.3 ohm respectively, find the induced e. m. f. per

phase of the alternator.

Ans.: 133.2 volts.

8. In series with each terminal of a balanced three-phase

load is connected a non-inductive resistance of 0.5 ohm. The p.d.

between the terminals of the load is 200 volts, the p.d. between

line wires just outside the resistances is 300 volts, and the p.d.

across the terminals of each resistance 100 volts. What is (1) the

total power supplied to the load, and (2) its power factor?

Ans.: (1) 20 kw.
; (2) 28.9%.

9. Each phase of a balanced three-phase, delta-connected load

is formed by an impedance coil in series with a non-inductive

resistance of 15 ohms. The voltage across the impedance coil in

each phase is 80, the voltage across the non-inductive resistance in

each phase is 150, the resultant voltage across the impedance coil

and the non-inductive resistance is 200. What would be the
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readings of the two wattmeters when connected to this load to

measure the power by the two-wattmeter method?

Am.: 3420 watts and 2190 watts.

10. The two wattmeters connected to a balanced three-phase

load read 5240 watts and 2380 watts respectively. (1) What is the

difference in phase between the current in the current coil of the

first wattmeter and the potential drop through the potential coil

of the second wattmeter? (2) What is the power factor of the

load?

. Ans.: (1) 123 degrees or 57 degrees ; (2) 83.9%.
11. The current coil of a single wattmeter is connected in one

of the line wires of a balanced three-phase load which takes 30

kilowatts at a lagging power factor of 80%. Call this wire A
and the other two line wires B and C respectively. What would

the wattmeter read when its potential coil is connected (1) between

A and B, (2) between A and C, and (3) between B and C?

Ans.: (1) 21.5 kilowatts; (2) 8.5 kilowatts; and (3) 13.0 kilo-

watts.

12. 20,000 kilowatts is supplied from a generating station to a

substation 50 miles distant over a three-phase line formed of

three No. 0000 B. & S. copper wires spaced 6 feet between cen-

ters. The resistance of each wire per mile is 0.258 ohms and the

inductance per mile of each wire is 1.93 millihenries. A voltage

of 60,000 is maintained between wires at the substation and the

power factor of the substation is 80% lagging current. The

system is balanced Calculate (1) the voltage between wires at

the generating station, (2) the total number of kilowatts lost in

the transmission line and (3) the power factor at the generating

station.

Ans.: (1) 68,200 volts; (2) 2250 kilowatts; (3) 78.3%.
13. Energy is supplied from a three-phase Y-connected gen-

erator over a three-phase line to a balanced three-phase load

formed by two motors connected in parallel. The motors take

respectively 50 kilowatts at 80% power factor lagging and 100

kilowatts at 90% power factor leading. The potential difference

between the terminals of the motors is 500 volts and the resistance

and reactance of each line wire are respectively 0.1 ohm and 0.2

ohm. (1) What is the symbolic expression for the total current

per wire taken by the load referred to the potential drop be-

tween the terminal of one terminal of the load and the neutral?
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(2) What is the numerical value of the potential difference be-

tween the generator terminal and the neutral?

Ans.: (1) 173.3 + y0.3; (2) 308 volts.

14. A three-phase Y-connected generator delivers power to a

balanced delta-connected load over a transmission line. The resist-

ance of each line wire is 0.3 ohm and the reactance of each line

wire is 0.5 ohm. The potential differences at the terminals of the

generator and the load are respectively 500 volts and 400 volts.

The power factor of the load is 80% lagging. Calculate (1) the

line current, (2) the power delivered to the load, (3) the power

output of the generator, (4) the power factor of the generator and

(5) the efficiency of the transmission line at this load.

Ans.: (1) 104.7 amperes ; (2) 58.0 kilowatts
; (3) 67.9 kilowatts :

(4) 78.4%; (5) 85.4%.
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THE following abbreviations are recommended by the American Institute

of Electrical Engineers and are used in all its publications. In general these

abbreviations should be used only when expressing definite numerical values.

NAME

Alternating current

Amperes
Brake horse power
Boiler horse power
British thermal units

Candle-power

Centigrade
Centimetres

Circular mils

Counter electromotive force

Cubic

Diameter

Direct current

Electric horse power
Electromotive force

Fahrenheit

Feet

Foot-pounds
Gallons

Grains

Grammes
Gramme-calories

High-pressure cylinder

Hours

Inches

Indicated horse power
Kilogrammes

Kilogramme-metres

Kilogramme-calories
Kilometres

Kilowatts

Kilowatt-hours

Magnetomotive force

Mean effective pressure

Miles

INSTITUTE STYLE

spell out, or a-c. when used as compound
adjective

spell out

b.h.p.

Boiler h.p.

B.t.u.

c-p.

cent.

cm.

cir. mils

counter e.m.f.

cu.

spell out

spell out, or d-c. when used as compound
adjective

e.h.p.

e.m.f.

fahr.

ft.

ft-lb.

gal.

gr.

g-

g-cal.

spell out

hr.

in.

i.h.p.

kg-

kg-m.

kg-cal.

km.

kw.

kw-hr.

m.m.f.

spell out

spell out

422
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NAME
Miles per hour per second

Millimetres

Milligrammes
Minutes

Metres

Metre-kilogrammes
Microfarad

Ohms
Per

Percentage
Pounds

Power-factor

Revolutions per minute

Seconds

Square

Square-root-of-mean-square
Ton-mile

Tons

Volts

Volt-amperes
Kilovolts

Kilovolt-amperes
Watts

Watt-hours

Watts per candle-power
Yards

INSTITUTE STYLE

Miles per hr. per sec.

mm.

mg.
min.

m.

m-kg.

spell out

spell out

spell out

per cent, or% in tabular matter only
Ib.

spell out

rev. per min., or r.p.m.

sec.

sq.

effective, or r.m.s.

spell out

spell out

spell out

spell out

kv.

kv-a.

spell out

watt-hr.

watts per c-p.

yd.

1. Use lower case characters for abbreviations. An exception to this

rule may be made in the case of words spelled normally with a capital.

Example: "B.t.u." and not "b.t.u." nor "B.T.U." (British thermal unit).

"U.S.gal." (United States gallon); "B. & S. gauge" (Brown & Sharpe gauge).

2. Use all abbreviations in the singular. Example: "17 Ib." and not

"17 Ibs." (17 pounds). "14 in." not "14 ins." (14 inches).

3. Use a hyphen to connect abbreviations in cases where the words would

take a hyphen if written out in full. When a hyphen is used, omit the

period immediately preceding the hyphen. Example: "3 kw-hr." and not

"3 kw.-hr." (3 kilowatt-hours).

4. Use a period after each abbreviation. In a compound abbreviation,

do not use a space after the period. Example: "i.h.p." and not "i. h. p."

(indicated horse power).
5. Never use "P." for "per" but spell out the word. Example: "100

ffr-lb. per ton" (100 foot-pounds per ton); "60 miles per hr." (60 miles per

hour).

6. Use "Fig." not "Figure." Example: "Fig. 3" and not "Figure 3."

7. In all decimal numbers having no units, a cipher should be placed

before the decimal point. Example: "0.32 Ib." not "
.32 Ib."

8. Use the word "by" instead of "x" in giving dimensions. Example:

"8 by 12 in." not "8 x 12 in."
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9. Never use the characters (') or (") to indicate either feet and inches,

or minutes and seconds as period of time.

10. Use capitals sparingly; when used as units, do not capitalize volt,

ampere, watt, farad, henry, ohm, coulomb, etc.

11. Do not use the expression "rotary" or "rotary converter"; use "con-

verter" or
"
synchronous converter."

12. Do not use a descriptive adjective as a synonym for the noun described.

Example: a "spare transformer," not a "spare"; a "portable instrument,"
not a "portable"; "automatic apparatus," not "automatics"; a "short cir-

cuit," not a "short."

13. Do not use the expressions a.c. current or d.c. current; a.c. voltage
and drc. voltage. Their equivalents, "alternating-current current," "direct-

current current," "alternating-current voltage," "direct-current voltage"
are absurdities.

14. Do not use the expressions, raising transformer," "lowering trans-

former"; these expressions are ambiguous. Use "step-up transformer,"

"step-down transformer."

15. Do not use the words "primary" and "secondary" in connection with

transformer windings. Use instead "
high-tension

" and "low-tension.' '

NOTATION.

The following notation forms 1324 of Section V of the Standardization
Rules of the Institute.

E, e, voltage, e.m.f., potential difference

I, i, current Z, z, impedance
P, power L, I, inductance

<, magnetic flux C, c, capacity

ft, B, magnetic density Y, y, admittance

R, r, resistance 6, susceptance
x, reactance G, g, conductance
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IN this country wires for electrical purposes, when less than half an inch

in diameter, are nearly always specified in terms of a wire gauge introduced by
the Brown and Sharpe Manufacturing Co. This gauge, called briefly the B. &
S. gauge,* is such that successive sizes differ in diameter by a constant per-

centage. A solid wire 460 mils in diameter is called a No. 0000 wire and a wire

5 mils in diameter is called a No. 36 wire. The next smaller size to a No. 0000

wire is No. 000, the next smaller size No. 00, the next No. 0, the next No. 1

and so on up to No. 36. The ratio of the diameters of No. 0000 and No. 36

is 4|p- 92, and the ratio of the diameters of successive sizes is constant; this

constant is therefore equal to the 39th root of 92. The 39th root of 92 is

approximately equal to the sixth root qf 2; hence the following approximate
relations (since the cross section varies as the square of the diameter and the

cube root of 2 is approximately 1.26) :

1 . The ratio of the cross sections of wires of successive sizes on the B. &
S. gauge is equal to 1 .26, the larger number on the gauge corresponding to

the smaller cross section. This same relation holds for the weights of succes-

sive sizes for a given length.

2. The ratio of the resistances of wires of successive sizes on the B. & S.

gauge is equal to 1.26, the larger number on the gauge corresponding to the

larger resistance.

3. An increase of 3 in the gauge number halves the cross section and

weight and doubles the resistance.

4. An increase of 10 in the gauge number decreases the cross section and

weight to one-tenth their original values and increases the resistance to 10

times its original value.

The cross section of a No. 10 wire is approximately 10,000 circular mils.

The resistance of this size copper wire is approximately 1 ohm per 1000 feet

at 20 cent, and its weight approximately 31.5 pounds per 1000 feet. From
the above relations the resistance, cross section and weight of any size of wire

may be calculated approximately with but little effort. The resistance of a

No. 10 aluminum wire is approximately 1.6 ohms per 1000 feet at 20 cent,

and its weight approximately 15 pounds per 1000 feet.

The above relations are for solid wire. Stranded wire is numbered on the

B. &. S gauge in accordance with its cross section, not its diameter. The

diameter of a concentric strand is approximately 15% greater than that of a

solid wire of the same number; its weight and resistance are from 1 to 2 per

cent greater, depending upon the number of twists per unit length and the

number of wires in the strand.

Below are given the exact relations between gauge numbers, diameter,

cross section, weight and resistance for copper wire of 100% conductivity

Matthiessen's Standard. For aluminum wire of 62% conductivity multiply

the weights by 0.47 and the resistances by 1.613.

* This gauge is also called the American Wire Gauge, abbreviated A. W. G.

425
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Solid Copper Wire 100% Matthiessen's Standard
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Stranded Copper Wire 100% Matthiessen's Standard

No.
B. &S.
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Summaries of important definitions and principles will be found on the

following pages:

Magnestism ........... 93
Continuous Electric Currents ...... 174

Electromagnetism ........ 230
Electrostatics . . . . . . . . . 276
Variable Currents . . . . . . . . . . 299

Alternating Currents . .

'

. . . . . . . 360

Symbolic Method .......... 391
Three-Phase Alternating Currents . . . 416

Abbreviations, 422.

Absolute system of units, 13.

See under name of quantity
individual units.

Absorption, electric, 273.

Acceleration,

definition and units of, 10.

of rigid body, 20.

Admittance,
definition of, 349.

of an inductance and capacity

parallel, 351.

symbolic notation for, 380.

units of, 351.

Admittances in parallel, 351.

A. I. E. E. style, 422.

Alternating current,

average value, 309.

definition of, 306.

effective value, 311.

establishment of, 353.

instantaneous value, 309.

Alternating currents, 304.

addition of, 331.

polyphase, 396.

use of, 312.

Alternations, definition of, 307.

Alternator, 304, 396.

American wire gauge, 425.

Ammeters, 122.

Ampere,
for definition of, 111.

international, 126.

Ampere-hour, 128.

Ampere-turns,
calculation of, 210.

definition of, 207.

Amplitude factor, 328.

Analysis of wave, 320, fif.

in Angle, 3.

Anode, definition of, 125.

Apparent power, 330.

Arc, electric, 217.

Armature,
electromotive force, 202, 204.

of a generator, 198.

Average value, 309.

B. & S. wire gauge, 425.

B-H. curves, 86.

experimental determination of, 195.

Balance, current, 122.

Balanced system, definition of, 400.

Ballistic galvanometer, 194.

Battery, electric, 155.

C. G. S. system of units, 13.

Cable, insulation resistance, 169.

429
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Calibration of meters. 122, 145, 194.

Capacity,
and inductance (see Inductance

and Capacity).

definition and units of, 267.

of various forms of condensers, 269 .

reactance, 342.

specific inductance, 272.

Capacities,

in parallel, 273.

in series, 272.

Cathode, definition of, 125.

Center of mass, definition of, 14.

Charging by contact and by induc-

tion, 239.

Charging current (see Displace-

ment Current).

Charge, electrostatic,

definition of, 237.

properties of, 242.

and quantity of electricity, 259.

residual, 273.

units of, 243, 261.

within a conductor, 250.

Charge, magnetic, 38.

Chemical energy, 23, 154.

Circuit, electric,

definition of, 102.

energy associated with, 284.

general equations of the simple,

285.

Circular mil, 133.

Coil current in a delta-connected

generator, 402.

Coil electromotive force of Y-con-

nected generator, 399.

Commutation, 200.

Complex number,
admittance as a, 380.

division of a rotating vector by,
381.

impedance as a, 378.

multiplication of a rotating vector

by, 378.

Components of a vector,

power and reactive, 328.

Compound wound dynamo, 202.

Concentrated winding, 120, 225.

Condenser, electric,

capacity of, 267, 269.

charging through a resistance, 292.

co-axial cylinders, 270.

definition of, 268.

discharging through an inductance,

295.

discharging through a resistance,

294.

discharging through a resistance

and inductance, 357.

harmonic current through, 342.

in parallel and in series, 272.

non-harmonic current through, 343.

parallel cylinders, 271.

parallel plate, 269.

reactance of, 342.

spherical, 269.

Condensers in series and in parallel,

272.

Conductance,
definition of, 136.

effective, 349.

units of, 136.

Conductivity, 136.

Matthiessen's standard of, 136.

Conductor, definition of, 103.

Conductors, electric, 103.

in parallel, 112.

in series, 112.

Contacts, law of successive,

Continuous current, establishment of,

288.

Copper,

specific resistance of, 135.

temperature coefficient, 137.

wires, 425.

Corona, 266.

Coulomb, definition of, 128.

Couple, definition of, 21.

Current, electric,

absolute measurement of, 120.

alternating (see Alternating Cur-

rent).

comparison of strengths of, 122.

continuous, definition of, 108.

decay of, 291.

definition of, 101.
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Current, electric Continued.

direction of, 111.

direction of, lines of force produced

by, 115.

displacement, 263.

establishment of, 288, 353.

force produced by magnetic field

on wire carrying an, 113.

magnetic field produced by, 115,

ff, 170.

oscillating, 307.

pulsating, 307.

stream lines of, 165.

strength of, 108.

units of, 111.

variable, 284.

Currents, electric, polyphase, 396.

Delta-connected generator,

equivalent Y impedance of, 405.

relation between coil current and

line current, 404.

Delta-connected load, 400.

Delta connection, 397.

Density, definition of, 13.

Diamagnetic substances, 37.

Dielectric constant, 248, 272.

hysteresis, 275.

strength, 266.

Dielectric, definition of, 103.

Difference in phase, definition of,

308, 375.

Discharge from points, 266.

Displacement current, 263.

Displacement, electric, 247.

mechanical, 4.

Dynamo,
alternating current (see generator

alternating current).

continuous current, 197.

electromotive force of, 204.

Dyne, definition of, 18.

Earth's magnetic field, 49.

Eddy currents, 288.

Effective value,

definition of, 311.

of a harmonic current or p. d., 311

Effective value Continued.

of a non-harmonic current or p. d.,

319.

Effective resistance, 337.

Efficiency, definition of, 31.

Electrical degrees, 396.

Electricity,

analogous to a non-compressible

fluid, 104.

quantity of,

definition and units of, 127.

measurement of, 193.

Electrisation,

intensity of, 245.

lines of, 245.

Electrochemical equivalent, 126.

Electrodes, 125.

Electrolysis, 124.

Electrolytes, 124.

Electromagnet, tractive force of, 229.

Electromagnetic induction, electro-

motive force due to, 185.

Electrometer, parallel plate, 256.

Electromotive force,

and potential drop, relation be*

> tween, 149.

armature, 202.

contact, 10.

definition of, 148.

due to electromagnetic induction

185.

impressed, 151.

of alternating current generator,

305.

of chemical battery, 102, 155.

of continuous current generator,

204.

of three-phase generator, 397.

terminal, 151.

thermal, 157.

Electromotive forces,

externally induced, 338, 350.

in parallel, 160.

in series, 160.

Electrostatic field, energy of, 274.

Electrostatic field of force, 244.

Electrostatic flux density, 247,

251.
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Electrostatic induction,

flux of, 247.

b'nes of, 247.

phenomenon of, 239.

Electrostatic intensity, 244.

inside a conductor, 249.

just outside a conductor, 250.

Electrostatic potential, 253.

and electrical potential, relation

between, 261.

Electrostatic screen, 249.

Electrostatics, 237.

Energy,
associated with a circuit, 284.

chemical, 23, 154.

conservation of, 23.

. definition of, 21.

electric, definition of, 141.

electric, measurement of, 147.

electrostatic, 274.

heat, 30, 228.

magnetic, 216, ff, 226.

units of, 24.

Equipotential surfaces,

electric, 167.

electrostatic, 255.

magnetic, 92.

Equivalent sine-wave p. d. and cur-

rent, 319.

Equivalent F, reduction of all bal-

anced three-phase circuits to,

406.

Equivalent Y-connected,

generator, 405.

load, 405.

Erg, definition of, 24.

Externally induced e.m.f.'s, 338, 350.

Farad, 267.

Faraday's Law of Electrolysis, 125.

Field of electrostatic force,

definition of, 244.

energy of, 274.

intensity of (see Intensity of

electrostatic field).

Field of magnetic force,

definition of, 43.

energy of, 216 ff, 226.

Field of magnetic force Continued.

intensity of (see Intensity of mag-
netic field).

Fisher-Hinnen method of wave anal-

ysis, 322.

Flux,

of electrostatic force, 244.

of electrostatic induction, 244.

of electrisation, 245.

of magnetic force, 53, 57, 67.

of magnetic induction, 67, 72.

of magnetisation, 66.

Flux density, magnetic,
and intensity of magnetisation, 71.

definition of, 71.

on the two sides of a surface, 73.

units of, 72.

Flux density, electrostatic, 247, 251.

Force,

definition of, 16.

due to electric charges, 238, 242.

on a magnetic pole, due to electric

current, 114.

due to magnetic field on wire carry-

ing a current, 113.

required to separate two magnetic

poles, 48.

units of, 19.

Force, flux of,

electrostatic, 244.

magnetic, 53, 57, 67.

Force, lines of,

electrostatic, 244.

magnetic, 53, 57, 67.

Force, moment of, definition of, 19.

Form factor, 328.

Foucault currents (see Eddy cur-

rents).

Fourier's Series, 305.

Free period of a circuit, 296, 345.

Frequency, definition of, 307.

Galvanometer,

ballistic, 194.

tangent, 122.

Galvanometers, 122.

Gauss, definition of, 71.

Gauss's theorem, 56.
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Generator, alternating current,

single-phase, 304.

three-phase, 396.

coil current, 404.

coil e. m. f., 399.

equivalent Y-connected, 405.

Generator, continuous cuurrent, 197.

e. m. f. of, 204.

Geometrical addition, 7.

Gilbert, definition of, 92.

Gradient, potential, 92, 167.

Gravitation, Newton's law of, 32.

Gravity,

acceleration of, 11.

center of, 14.

specific, 13.

Harmonic current, establishment of,

353.

Harmonic e. m. f. and current, 305.

Harmonic function,

definition of, 28.

represented by a rotating vector,

332.

symbolic expression for, 376.

symbolic expression for derivative

of, 377.

Harmonic functions, addition of, 331.

Harmonic motion, 25.

Heat energy,

definition and units of, 30.

Henry, 212.

Hysteresis,

dielectric, 275.

energy loss due to, 228.

magnetic, 82.

Hysteresis loop, experimental deter-

mination of, 195.

Impedance,
definition of, 337.

symbolic notation for, 378.

units of, 340.

Impedance coil, 340.

reactance of, to o harmonic cur-

rent, 340.

reactance of, to a non-harmonic

current, 340.

Impedance of a resistance, induct-

ance and capacity in series, 344.

Impedances, equivalent Y and delta,

405, 407.

in parallel, 348, 383, 389.

in series, 346, 387.

Impressed e. m. f., 151.

Inductance and capacity,

and linkages, 213.

calculation of, 222.

discharge of through a resistance,

291.

in parallel, 351.

in series, 295.

of concentrated winding, 225.

of a solenoid, 225.

of two parallel wires, 223.

self and mutual, 211.

units, of 212.

Inductance and resistance (see re-

sistance and inductance).

Induction,

electromagnetic, 185.

electrostatic, 247.

magnetic, 67, 76.

Induction, flux of, 39.

electrostatic, 244.

magnetic, 67.

Induction, lines of,

determination of, linking a circuit,

193.

electrostatic, 244.

magnetic, 67.

Instantaneous values, 309.

Insulation resistance of a cable, .169.

Insulator, 103.

Insulators, definition of, 103.

Intensity, electric, 167, 263.

Intensity of electrisation, 246.

and electrostatic flux density, 247.

Intensity of electrostatic field,

and.jeleetrostatic flux density, 247.

definition of, 244.

insjda_a~elesed-conchictor, 249.

just outside a closed conductor,

250:

Intensity of magnetic field,

and flux density, 71, 76.
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Intensity . of. -magnetic field Con.

definition of, 43.

due to bar magnet, 45.

due to current in circular coil, 118.

due to current in long straight

wire, 116.

due to current in solenoid, 191.

due to point-pole, 45, 80.

due to magnetically charged disc,

47.

in closed iron ring, 196, 207.

measurement of, 50.

tangential components of, 74.

units of, 44.

Intensity of magnetisation,

and magnetic flux density, 73, 77.

and pole strength per unit area, 65.

definition of, 62.

measurement of, 66.

Inverse points with respect to a

circle, 170.

"j," meaning of symbol, 371, 374,

378, 377.

Joules's Law, 129.

Kilowatt, definition of, 146.

Kilowatt-hour, definition of, 146.

Kinetic energy and magnetic energy,

analogy between, 218.

Kirchhoff's Laws,
for direct current circuits, 158.

for the magnetic circuit, 209.

in symbolic notation, 383.

Lag, definition of, 309.

Lead, definition of, 309.

Leakance, definition of, 285.

Left-hand rule, 111.

Length,

equivalent, of a magnet, 49.

units of, 1.

Line current, 408.

voltage, 408.

Lines of electrisation, 245.

Lines of electrostatic force,

and electrostatic intensity, 244.

Lines of electrostatic force Con.

and lines of induction, 244.

due to an electric charge, 244.

Lines of magnetic force,

and field intensity, 53, 57, 61.

and lines of induction, 67.

definition of, 54, 57.

due to an electric current, 115.

due to single pole, 53.

resultant, 57.

Lines of magnetic induction, 67.

cutting of, 188.

due to an electric current, 116.

measurement of, 193.

refraction of, 78.

Lines of magnetisation, 65, 67.

Linkages, definition of, 185.

Load, equivalent Y-connected, 406,

Losses, definition of, 31.

Magnet,
definition of, 37.

equality of the poles of, 49.

equilibrium position of, 50.

equivalent length of, 49.

frequency of vibration of, 51.

Magnetic charge, definition of, 38.

Magnetic energy, 216 ff, 226.

Magnetic field intensity,

definition of, 43.

due to an electric current, 113, ff,

170.

due to bar magnet, 45.

due to magnetically charged disc.

47.

due to the earth, 49, 50.

effect of surrounding medium on,

40, 80.

measurement of, 50.

tangential components of, 74.

units of, 44.

Magnetic field of force,

definition of, 43.

energy of, 226.

Magnetic flux 'see Flux of magnetic

force, Flux of magnetic induc-

tion, Flux cf magnetisation).

Magnetic induction, 39, 67, 76, 79.
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Magnetic moment,
definition of, 49.

measurement of, 52.

Magnetic point-pole, definition of,

41.

Magnetic poles,

attraction and repulsion of, 38.

definition of, 37, 38.

equality of, 42, 50.

force of repulsion between, 38, 41,

80.

force required to separate two

equal and opposite, 48.

properties of, 41.

Magnetisation,
curves of, 87.

flux of, 66.

induced, 39, 76.

intensity of, 62.

lines of, 65.

Magnetomotive force,

definition of, 205.

units of, 207.

Mass,
center of, 14.

conservation of, 16.

definition and units of, 12.

Matthiessen's Standard of Conduc-

tivity, 136.

Maximum values, 309.

Medium, effect of,

on electrostatic forces,

on magnetic forces, 40, 42, 80.

Mesh connection, 397.

Meter-gram, 124.

Mho, 136.

Moment of force, 19.

Moment of inertia, 16.

Moment, magnetic, 49.

Momentum,
conservation of, 16.

definition of, 15.

Motion,

harmonic, 25.

of a system of particles, 20.

Motor,
continuous current, 197.

electromotive force of, 204.

Mutual inductance,
definition and units of, 212.

Natural period of a circuit, 296, 345.

Neutral point, 397.

Newton's Law of Gravitation, 32.

Normal components, 73, 253.

Oersted, 208.

Ohm, 129.

Ohm's Law, 146.

generalized, 150.

Opposition, definition of, 309.

Parallel arrangement,
of condensers 273.

of conductors 112, 160, 348.

Paramagnetic substances, 37.

Pendulum, motion of, 25.

Period, definition of, 307.

Periodicity, definition of, 307.

Permeability, magnetic, 77.

Phase,

definition of, 307.

difference in, 308, 375.

Point-charge, definition of, 242.

Point-pole, definition of, 41.

Points, discharge from, 266.

Polarisation,

electrostatic, 247.

of a battery, 156.

Pole strength,

definition of, 42.

per unit area, 43, 79.

unit of, 42.

Poles,

magnetic (see magnetic poles).

of a battery, 102, 155.

Polyphase alternating currents, 396.

Potential,

electrostatic, 253, 261.

magnetic, 88.

Potential difference (see potential

drop).

Potential drop, electric,

and electromotive force, 149.

and electrostatic potential drop,

261.
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Potential drop, electric Continued.

definition of, 139.

measurement of, 134.

units of, 143.

Potential drop, electrostatic,

definition of, 254.

measurement of, 256.

units of, 143, 262.

Potential drop, magnetic,

and magnetomotive force, 205.

definition and units of, 91.

Potentiometer, 163.

Power, apparent, 330.

average, 314, ff.

definition of, 24.

electric, definition and units of, 146.

electric, measurement of, 147.

in a balanced three-phase system,

413.

in symbolic notation, 385.

in a three-phase circuit, measure-

ment of, 410.

of a harmonic p. d. and a harmonic

current, 314.

of a non-harmonic p. d. and a non-

harmonic current, 317.

reactive, 330.

units of, 25.

Power component, 328.

Power-factor,

definition of, 314.

in symbolic notation, 387.

in a three-phase system, 407, 415.

Quadrature, definition of, 309.

Quantity of electricity,

and electric charge, 259.

definition of, 127.

measurement of, 193.

units of, 127.

Rating of three-phase apparatus, 410.

Reactance,

capacity, 342.

definition of, 337.

of a coil, 340, 341.

of a condenser, 342.

units of, 340.

Reactive component, 328.

Reactive power, 330.

Reluctance, magnetic, 207.

Remanent or residual magnetism,
83, 202.

Residual charge, 273.

Resistance, electric,

absolute measurement of, 130.

and conductance, effective, 351.

definition of, 129.

effective, 337.

inductance and capacity in series,

344, 357.

insulation, of a cable, 169.

specific, 132.

temperature coefficient of, 137.

units of, 129.

Resistances,

comparison of, 132, 162.

in parallel, 160.

in series, 160.

Resistance and capacity in series,

decay of current in, 294.

establishment of current in, 292.

Resistance and inductance in series,

alternating current in, 335.

decay of current in, 291 .

establishment of current in, 288.

impedance of, 340.

Resistivity, 132.

Resonance, 295, 345, 351.

Right-hand rule, 188.

Right-handed screw law, 188.

Root mean square, 311.

Saturation, magnetic, 86.

Screen, electrostatic, 249.

Self-inductance,

definition and units of, 212.

Series arrangement,
of condensers, 272.

of conductors, 112, 160, 346.

Series dynamo, 202.

Shunt dynamo, 202.

Silver voltameter, 127.

Sine-wave (see harmonic function).

Skin effect, 222.
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Solenoid, intensity of magnetic field

inside, 191.

inductance of, 225.

Spark, electric, 217.

Specific gravity, 13.

inductive capacity, 272.

resistance, 132.

Speed, definition and units of, 10.

Star connection, 397.

Strength, dielectric, 266.

Successive contacts, law of, 154.

Surface, units of, 2.

Surface conditions,

in an electrostatic field, 253.

in a magnetic field, 75.

Susceptance,
definition of, 349.

units of, 351.

Symbolic expression,

rationalization of, 382.

Symbolic method, 371.

examples of, 387.

Symbolic notation, meaning of sym-
bol "j" in, 371,374, 377,378.

Tangent galvanometer, 122.

Tangential components, 74, 253.

Temperature, definition and units of,

29.

Temperature coefficient of electric

resistance, 137.

Terminal electromotive force,

definition of, 151.

of a three-phase generator, 399.

Three-phase alternating currents,

396.

Time, units of, 3.

Torque,
and power, 25.

definition and units of, 19.

Transformer, alternating current,

313.

Transient effects produced by a har-

monic e. m. f., 353.

Transmission line, 297, 409.

Turning moment (see Torque).
Two wattmeter method of measuring

power, 410.

Units,

absolute system of, 13.

for units of various quantities (see

under name of quantity meas-

ured).

Variable currents, 284.

Vector,

addition of, 7, 372.

components of, 6.

definition of, 4.

derivative of a rotating, 377.

division of, by a complex number,
381.

multiplication of, by a complex

number, 378.

referred to another vector as line

of reference, 375.

representation of a harmonic func-

tion, 332, ff.

rotating, 332.

subtraction of, 7, 373.

symbolic expression for, 203,

375.

Vectors,

composition of, 6,

definition of, 4.

difference in phase between,

Velocity, definition and units of, 9.

Volt,

definition of, 143, 157.

international, 157.

Voltameter, 127.

Voltmeter, 144.

Volume, units of, 2.

Watt,
definition of, 24.

Wattless component (see Reactive

component).

Wattmeter, 147.

measurement of three-phase power,
410.

Wave analysis, 320, ff.

Wheatstone Bridge, 162.

Wire as a geometrical line, 108.

Wire tables, 425.
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Work, Work Continued.

current and magnetic flux, re- required to separate magnetic
lation between, 187. poles, 88.

definition of, 21. units of, 24.

relation between current, flux and,

187.

required to establish a current, Y-connection, 397.

215, ff. reduction of all balanced three-

required to separate electric phase circuits, 2, 406.

charges, 254. terminal e. m. f. of, 399.
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