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ABSTRACT

Unmanned Aerial Vehicles (UAVs) represent a serious threat to forward deployed

forces of the United States Army. The defense against such threats is currently provided

primarily by the Bradley Stinger Fighting Vehicle (BSFV) The problem addressed is how

to evaluate the effectiveness of the BSFV against a UAV This thesis develops a computer

simulation methodology for modeling the capability of a gun system to engage a UAV.

Specifically, a review is made of the BSFV, BSFV 25mm Ammunition, and UAVs.

These reviews formed the basis for a computer simulation, coded in Common Lisp Object

System (CLOS), modeling the characteristics of three objects: a Projectile, a Launcher

and a UAV Although assumptions were made to simplify the model, simulation runs

demonstrated that the rate of fire and aiming system used for launching projectiles resulted

in one or more hits in 125 out of 154 engagement sequences These engagement

sequences were against a UAV flying at constant speed and altitude in crossing and

inbound/outbound flight profiles. While all data used in this simulation were unclassified,

the methodology presented could be used for further classified study, potentially

producing a lower cost means for determining the effectiveness of air defense weapons

against UAV threats.
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I. INTRODUCTION

A. GOALS

The goal of this thesis is to develop a method to determine the ability of the

Bradley Stinger Fighting Vehicle (BSFV) 25mm Cannon to counter the emerging threat of

Unmanned Aerial Vehicles (UAVs). The intent is to simulate the BSFV engagement of a

UAV, to analyze the results to understand this capability, and to provide insight for

improving existing weapons, munitions and systems. This work develops an approach and

is unclassified Bradley effectiveness results contained herein do not represent actual

operational characteristics, but are illustrative of an application of the simulation system

described

B. BACKGROUND AND MOTIVATION

As the Army evolves toward the Twenty First Century, the need for knowledge

about the capability of its weapons against emerging threats becomes more important

Commanders must improve their ability to detect, locate, identify and engage targets at

maximum range. UAVs will likely be a target on the battlefields of the Twenty First

Century Research today may provide commanders at all echelons with an awareness of

the capabilities possessed by today's weapons and needed by tomorrow's weapons to

effectively engage and defeat a hostile UAV.

A UAV can perform a wide variety of missions, but such vehicles are primarily

used to gather information about a specific area of interest. As capabilities increase, the

mission of the UAV will be similar to that of manned aerial vehicles. The relatively low

cost of such unmanned vehicles, along with the ability to accomplish a mission without

risking human life, are a valuable asset for military forces around the world. The increased

use of the UAV by other countries leads to concerns about actions to counter this threat

Defending against a UAV is the shared responsibility of several components on the

battlefield. One such component is the Forward Area Air Defense (FAAD) weapons of an

Army Division. The FAAD Weapons that engage an air target are: [Ref. 19]

• Line-of-Sight-Rear (LOS-R) FAAD Weapon. A system composed of a

missile component and a machine gun that is Identification Friend or Foe (IFF)



•

capable. The Army's current system is the AVENGER. The AVENGER has

an organic Forward Looking Infra-Red (FLIR) sensor

Man Portable Air Defense System (MANPADS). A shoulder fired system

with an IFF capable missile. The Army's current system is the Stinger. It has

no organic sensor capability.

Bradley Fighting Vehicle (BSFV). A system composed of a Bradley Fighting

Vehicle (BFV) with an externally mounted Stinger weapon system. The BSFV

has a 25mm cannon and Stinger missiles on-board with no organic sensor

capability.

It is imperative to study the capability of these weapons to defend against a UAV.

A FAAD weapon system is very likely to encounter a UAV flying at low altitude that

is difficult to detect and engage. The potential widespread use of UAVs on the

battlefields of tomorrow requires the study of the effectiveness of today's weapons

against this threat Such research will help planners design weapons to counter the

future UAV threat. This thesis will focus on the capability of the BSFV 25mm Cannon

to engage and hit a UAV.

C. RESEARCH QUESTIONS

This thesis will examine the following research areas:

• Review the physical capabilities to bring fire to bear on a target such as the

cannon elevation limits and the operational flight characteristics of a UAV.

• Analyze the types of ammunition available.

• Determine the potential of a hit based on:

• the simulation of a projectile, constrained by the characteristics of the

Bradley Cannon and ballistics data derived from unclassified

specifications.



the simulation of a UAV, derived from the unclassified specifications

and operational characteristics of a Pioneer UAV.

D. ORGANIZATION

Chapter II of this thesis provides a general overview of unmanned aerial vehicles

and provides a detailed description of the Pioneer UAV. Chapter III provides a detailed

description of the Bradley Fighting Vehicle and its role as an air defense weapon. Chapter

III looks specifically at the 25mm Cannon and its ammunition. Chapter IV outlines the

UAV and Cannon model and provides the limitations, assumptions and profiles for the

simulation. Chapter V details the results of the simulations and analyzes the data and

provides an evaluation of the results. Chapter VI presents conclusions and

recommendations for further research The source code is provided in the Appendices A -

I





11. UNMANNED AERIAL VEHICLES

A. BACKGROUND

Although UAVs were envisioned as far back as 1916, the first modern UAV was

an unmanned B-17 controlled from a second aircraft. The controlling aircraft accompanied

the unmanned B-17 to a target area where it was then remotely flown closer to the actual

target These unmanned B-17 aircraft were used extensively during the atomic bomb tests

in the South Pacific to monitor radiation. [Ref 13]

Following the Soviet interception of Francis Gary Powers' U-2 in 1960, the Air

Force and other national agencies directed resources into UAV development programs.

The AQM-34 was one such system. Variations of the AQM-34 flew more than 17,500

missions around the world from 1958 to 1975. [Ref. 13]

A highly successful system, known as Buffalo Hunter, flew more than 1,600

missions in Southeast Asia It was a variation of the AQM-34 that usually operated at

altitudes of more than 60,000 feet The operational concept later evolved to include very

low-level photo-reconnaissance missions over North Vietnam. Other missions included

signal intelligence (SIGINT) and psychological operations missions flown by the 100th

Strategic Reconnaissance Wing. The last mission of Buffalo Hunter took place over

Saigon on April 30, 1975 during the final stages of the United States' evacuation [Ref

13]

Post-Vietnam era UAV developments were led primarily by the Central

Intelligence Agency and the U.S. Army The Field Artillery's Aquila target acquisition,

designation and reconnaissance system (TADARS) began development in 1974, but was

terminated in 1987 after extensive testing. In 1985 the U.S. Army Intelligence Center at

Fort Huachuca, Arizona was designated as the UAV proponent, less Aquila, to develop a

family of UAVs to provide organic, near real-time support to battlefield commanders The

requirements for deep and close UAVs were approved by the Training and Doctrine

Command (TRADOC) in December 1988. [Ref. 13]



B. GENERAL OVERVIEW

1. Capabilities and Value

Since the Vietnam conflict, the ability of UAVs to gather and return sensitive

intelligence has improved as the UAV has grown smaller, lighter and quieter with

increased operational range and flight endurance [Ref 7] Current UAV systems can

provide real-time multi-spectral video to ground forces in less than a minute while the

aircraft is being remotely piloted from either a permanent control station at sea or a

portable station on the ground. The high resolution video platforms, which usually have

day and night image capability, are gyro-stabilized. On average, today's UAVs can fly for

up to six hours and have ranges of 100-300 miles from their control station. These aircraft

can often fly further if control is transferred to a forward station. [Ref. 12]

The advantage these UAVs have over other aircraft with similar imaging

capabilities is their relative low cost without risk of human life. Even though NATO

peacekeepers have met little resistance (as of this publication) in Bosnia, bad weather can

still pose a threat to manned aircraft [Ref. 18] UAVs can also be used in advance of

other air units to check terrain for possible unmarked hazards like low power lines.

2. Operation

An internal pilot flies the UAV from the control station using gauges and on-board

cameras; external pilots fly the aircraft by sight and are directly responsible for control of

the plane's take-off and landing procedures. Once a mission is recorded, the plane is

launched and taken to a set altitude and heading by the external pilot. The mission is then

handed off to the internal pilot who controls the duration of the mission until return for

recovery or landing. Most UAVs are outfitted with an autopilot system, navigational

equipment, and communications capabilities that allow the plane to be flown in an

autonomous mode with human monitoring. Once missions are underway, the person at

the control station is able to modify parameters for future legs of the flight plan. Weather

conditions, for example, often require a change in altitude to allow the point of interest to

be viewed [Ref. 12]

An example of the operation of a UAV for a military style deep fire mission would

involve the use of two UAVs with ranges of 200 kilometers each. One UAV flies a



mission to locate and confirm a suspected missile launch site. The other UAV is used as

an airborne communications relay station, facilitating the information flow from the UAV

on the missile site to the planners in the rear area of the battlefield. This simple example

illustrates the operation of the UAV in two roles: as a reconnaissance vehicle and as a

communications relay station.

C. PIONEER UNMANNED AERIAL VEHICLE

1. Description

The pioneer aircraft has a shoulder-wing, pod-and-twin-tailboom configuration,

with fixed tricycle landing gear and an arrester hook. Payloads are mounted in a small slot

located on the front belly of the aircraft. The wings, booms and tail unit are detachable

This simplifies dismantling and assembly in the field and facilitates the prompt dispatch of

several vehicles at one time. [Ref 7]

A Pioneer fitted with standard electronic equipment for a reconnaissance mission is

depicted below.

Figure 1: Computer Generated Pioneer UAV Image

The Pioneer operates at ranges up to one hundred nautical miles and altitudes up

to twelve thousand feet for as long as five hours. Pioneer carries an independently

controlled high resolution daytime TV or a nighttime infrared camera which transmits real-



time imagery back to a ground or ship-based control station. The Pioneer can take off

from a fixed airport runway on its own power or it can be launched from the ship's flight

deck with a rocket assist. Similarly, the Pioneer lands at land based sites with runways or

it is recovered by a fifty foot high net raised over a ship's flight deck The Pioneer cruises

at between sixty and one hundred knots.

Continuous communications between the ground control station and the UAV
allow for constant control and monitoring of Pioneer's flight systems, navigation, and

video payload. A single operator can fly and control a Pioneer. Once the craft is airborne,

it is controlled by the control station. This station is equipped with high resolution color

graphics displays. The control station operator can manipulate the cameras and other

equipment on board the Pioneer. All imagery data can be frozen, stored, and recorded for

future processing. [Ref 7]

The control station supports graphical entry of a mission flight plan on a digitized

color map display. During flight operations, the map display shows the UAV's position

and the payload' s optical axis. The control station can automatically transmit commands

to the UAV to fly each leg of the mission flight plan. Another option is to transmit the

entire flight plan to the UAV, which will then fly the plan autonomously Control stations

can be deployed in a manner to increase the operational range and flexibility of the

Pioneer. [Ref. 7]

2. Operational Status

The Pioneer was used successfully in the Gulf War and continues to be used by the

U.S. Navy, U.S. Army, and U.S. Marine forces [Ref. 7]. The Pioneer is currently used for

surveillance, over-the-horizon targeting, naval gunfire spotting, overland reconnaissance,

and real-time battle damage assessment

3. Specifications

A Pioneer UAV system is composed of five air vehicles, nine payloads, one ground

control station, one pilot control station, one launcher, and a recovery system Table 1

contains details of the air vehicle specifications.



Power Plant 19.4 kW (26 hp) Sachs SF 350 2 cylinder 2 stroke engine

Wing Span 5.11 m

Length 4.26 m
Max Payload 45 kg

Max Speed 176km/h

Cruising Speed 120km/h

Loiter Speed 1 1 1 km/h

Max S/L Rate of Climb 4.1 m/s

Operating Height Range 305-3660 m

Data Link Range 185 km

Endurance 5.5 hrs

Table 1: Specifications of Pioneer UAV [Ref. 7)

D. CURRENT UAV PROGRAMS

Congressional interest has focused on developing UAVs that have a common

architecture and can interact on the battlefield To ensure this coordinated effort, in 1988

Congress halted all service UAV funding and established the Joint Program Office for

UAVs (JPO-UAV). This office was chartered to develop a Department of Defense (DoD)

master plan for UAVs and establish a family of common interoperable UAVs. [Ref. 13]

Since 1989, this family of UAVs has evolved into the UAV-Short Range (UAV-

SR), UAV-Close Range (UAV-CR) and UAV-Endurance (UAV-E). Table 2 shows the

operational characteristic of each type ofUAV. [Ref 13]

Fielding Date FY98 FY95

Range 50 km 200 km

Flight Endurance 3 hrs 10 hrs

Service Ceiling 13,000 AGL 15,000 AGL

FY98

500 nm

24 hrs

25,000 AGL

Table 2: Specification Classes of Current UAV Programs [Ref. 13]
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III. BRADLEY FIGHTING VEHICLE

A. GENERAL OVERVIEW

The Bradley Fighting Vehicle was designed to be a common vehicle for both the

infantry and scout roles. The Bradley Fighting Vehicle is made of all-welded aluminum

armor and is about seven meters long, three meters wide, and three meters high. The

Bradley has two main components: the chassis and the turret. [Ref. 15]

Figure 2: Bradley Fighting Vehicle

The chassis is powered by a Cummins VTA-903T diesel engine with a Martin

Marietta HMPT-500 hydromechanical transmission. The turret contains the main

armament consisting of a McDonnell D"ouglas M242 25mm Chain Gun Additionally the

turret contains a 7.62 mm M240C coaxial mounted machine gun to the right of the 25mm

cannon. [Ref. 14]

Since its initial fielding in 1983, the Bradley has taken on many different

configurations and roles. Some of these are: Personnel Carrier, Cavalry Fighting Vehicle,

11



and Bradley Stinger Fighting Vehicle. Variants of the Bradley Fighting Vehicle are

equipped with the Hughes TOW anti-tank missile and the Stinger anti-aircraft missile

system. The chassis of this vehicle is also used for the Multiple Launch Rocket System

(MLRS) and serves as an ammunition carrier. Currently contractors are building various

Bradley based prototype systems to replace older systems mounted on the Ml 13 chassis

such as the Bradley Fire Support Team Vehicle.

B. BRADLEY STINGER FIGHTING VEHICLE

1. Introduction

Following the withdrawal of the Ml 63 20mm self-propelled Vulcan Air Defense

system, the U.S. Army began using the Bradley Fighting Vehicle to transport Stinger

missiles and the soldiers that employ them. This combination of the Bradley Fighting

Vehicle with the Stinger teams was the initial Bradley Stinger Fighting Vehicle (BSFV).

[Ref 14]

2. Description

The current BSFV has a firing pod containing four Stinger missiles on the left side

of the turret (see Figure 3). The main armament for the system is the 25mm cannon and

the Stinger missiles. This version of the Bradley has a five man crew consisting of a squad

leader, a senior gunner, a driver and two Stinger gunners The Stinger missiles can be

fired from the pod or mounted on to grip stocks for dismounted shoulder firing. [Ref. 14]

12



Figure 3: Bradley Stinger Fighting Vehicle

3. Operational Status

The BSFV is currently fielded to all U.S. Army Air Defense Battalions assigned to

Mechanized Divisions. The BSFV is the most forward deployed Air Defense weapon on

the battlefield and performs the short range (less than five kilometers) Air Defense mission

for the U.S. Army. Although the BSFV is not a combat proven Air Defense weapon, the

Bradley's 25mm cannon reportedly exceeded all expectations during the Persian Gulf War

During combat operations in the Persian Gulf, the Bradley maintained an operational

readiness rate above ninety percent. The BSFV has performed extremely well in rigorous

live fire tests and field testing at the National Training Center (NTC) at Fort Irwin,

California [Ref 14]

4. Characteristics of the BSFV

The BSFV is a lethal weapons platform that enhances the firepower and

survivability of air defense assets on the battlefield. Table 3 below outlines the

characteristics of the BSFV.
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COMBAT WEIGHT 23.5 tons

HEIGHT 1 16 inches

WIDTH 128 inches

GROUND CLEARANCE 1 8 inches

ACCELERATION (0 TO 32 KMPH) 7.7 seconds

ROAD SPEED 66 kmph

CROSS-COUNTRY SPEED 48 kmph

CRUISING RANGE 480 km

VERTICAL OBSTACLE 36 inches

TRENCH 100 inches

FORDING DEPTH 3.5 feet

MAIN ARMAMENT 25mm (900 rounds)

Tow (5 rounds)

Stinger (6 rounds)

MAXIMUM EFFECTIVE RANGE 25mm ground 3000 meters

25mm air 2000 meters

Stinger 4000 meters+

Tow 3700 meters

Coax 7 62mm 900 meters

Table 3: General Characteristics of the BSFV [Ref. 15]

5. 25mm Cannon

Elevation +60 degree to -10 degree

Traverse 360 degree continuous

Sight Thermal, Direct View Optics

Sight Magnification 3x and 12x

Firing Rate - Low 75-125 rounds per minute

Firing Rate - High 175-225 rounds per minute

Table 4: General characteristics of the BSFV Gun (Ref. 15]

The 25mm cannon subsystem is a weapon system designed to attack and defeat

enemy armored vehicles and other targets, such as aircraft, using armor-piercing (AP) or

high-explosive (HE) projectiles. The gun is an electrically powered, chain driven

14



automatic weapon. It is fed by a metallic link and has dual feed capability. The 25mm

ammunition cans hold up to seventy rounds of AP and two hundred and thirty rounds of

HE ammunition. The 25mm Cannon has three parts: the barrel assembly, feeder

assembly, and receiver assembly. The gun has both electrical and manual fire control.

[Ref. 16]

The major components and functions of the 25mm cannon are:

• The Barrel Assembly

• gives directional control to the projectile and

• includes a muzzle brake that reduces blast flash and absorbs some of

the recoil.

• The Feeder Assembly

• removes linked ammunition from feed chutes,

• strips rounds from links,

• places round into bolt face,

• removes spent cartridge case from bolt face,

• provides a means of selecting two types of ammunition,

• provides a means to manually operate the gun during power failure, and

• sends electrical signals to the turret controls indicating position of the

bolt.

• The Receiver Assembly

• rams and fires the rounds,

• extracts and ejects spent cartridge cases or unfired rounds,

• suppresses the recoil force from barrel and breech, and

• contains a mechanical interlock mechanism that stops the gun if a round

misfires or hangfires. [Ref. 15]

The 25mm Cannon is normally operated in the electrical mode. The weapon

control box allows for selection of the 25mm Cannon, ammunition type (AP or HE), rate

of fire, and arming of the 25mm Cannon. Firing rate can be single shot, low rate (around

75 to 125 rounds per minute) or high rate (around 175 to 225 rounds per minute)

Indicator lights on the weapon control box show which mode is selected. Weapon select

will not function if the gun is out of sear. When AP or HE is selected, the feed select

solenoid is enabled. Once the feed selection is made and the gun is armed, it can be fired

using one of three triggers (gunner's, commander's hand station, or traverse hand wheel).

When the trigger is pressed, the sear solenoid is energized releasing the sear pin from the

15



master link on the chain. The sear pin action energizes the electric motor which drives the

track and bolt assembly, and feeder. The feeder places a live round in front of the bolt and

the bolt moves forward and locks to the breech When the gun is in breech locked

position, the sear pin is engaged against the chain's safety link. When the round is fired,

the bolt unlocks and the sear pin is released allowing the cycle to continue. The spent case

is extracted by the rearward motion of the bolt. The rotor then turns to place the spent

case into the eject chute while a new round is placed in front of the bolt. In single shot

and low rate, the motor is turned off and the sear pin is engaged to contact the master link

and stop the gun in the sear position. On the next forward motion of the bolt, the spent

case is pulled out of the ejection chute by the ejector on the bolt carrier. [Ref 16]

Ammunition for the 25mm cannon is stored below the weapon in an ammunition

can The ammunition can has two sections for AP and HE ammunition Each ammunition

belt feeds through its own forwarder and chute. The forwarders are manually operated

and used while loading ammunition The ammunition can has two sensors that tell when

the 25mm cannon is low on ammunition This leaves the end of the ammunition belt in a

position that allows the ammunition to be easily attached to the old belt. [Ref 16]

6. Ammunition Assessment

a. Introduction

Two types of ammunition are used by the BSFV's 25mm cannon. The

ammunition characteristics are outlined in Table 5 below.

M791 APDS-T

M792 HEI-T

ARMOR PIERCING

HIGH EXPLOSIVE

INCENDIARY TRACER

BLACK TIP

YELLOW

NONE
M758

Table 5: Two Types of Ammunition [Ref. 16]

Target identification is the critical element in ammunition selection. Both the M791

and M792 can be used against slow moving, fixed-wing aircraft and helicopters. Rounds

should be fired in twenty to twenty-five round bursts with the high rate of fire selected.

The M791 has a higher probability of hit than M792; however, the M792 has a higher
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probability of kill given a hit. At ranges beyond twelve hundred meters, the M791 is more

effective against helicopters. At ranges less than twelve hundred meters, the M792 is

more effective against helicopters. Beyond two thousand meters, the 25mm cannon loses

its effectiveness to kill [Ref 16]

b. M792 High-Explosive

The M792 projectile is a high-explosive incendiary tracer that is commonly

referred to as a "heat" round Because the projectile is explosive in nature, if it hits the

target it causes the more damage to an air target than the M791 Armor-Piercing projectile.

Its characteristics are given in Table 6 below.

Specified Muzzle Velocity 1 100 meters per second

Drop at 300 meters -0.402 meters

Drop at 500 meters -1.200 meters

Drop at 700 meters -2.542 meters

Velocity dispersion +/- 5 meters per second

Angular dispersion +/- .89 mils

Table 6: M792 Projectile [Ref. 17]

c. M791 Armor-Piercing

The M791 projectile is a armor piercing projectile that is commonly

referred to as a "SABOT 1

round. It has a higher probability of hit against an air target

than the M792 High-Explosive projectile. Its characteristics are given in Table 7 below.

Muzzle Velocity 1345 meters per second

Drop at 300 meters -0.251 meters

Drop at 500 meters -0.708 meters

Drop at 700 meters -1.413 meters

Table 7: M791 Projectile [Ref. 17]
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IV. SIMULATION MODEL

A. INTRODUCTION

This chapter describes the UAV and projectile object models and the algorithms

that simulate the gunner and determine when a projectile hits the UAV. The UAV flight

profiles are introduced as are the object model limitations and assumptions. The models

were implemented in Franz Common Lisp Object System (CLOS) using Allegro Common

Windows for graphics display.

B. GENERAL OVERVIEW

This simulation model uses data from unclassified sources and personal insight

from military experience and interviews with operators of the UAV and Bradley Fighting

Vehicle systems In general, for this simulation to provide accurate results, the author

must address:

• the limitations and assumptions about the environment, and

• the assumptions about the UAV and Projectile behavior

This model represents a methodology that provides insight into the potential

effectiveness of a BSFV against an unmanned aerial craft

C. SCENARIO

The general approach in this model is for the gun to fire at a sustained rate of fire

at an aim point in front of the aircraft. In this method of firing, adjustments are

determined by firing at the target and correcting the aim based on observations from a

second individual (the squad leader). The gunner will attempt to establish a volume of fire

in front of the aircraft so that the aircraft flies into the projectiles After the aircraft has

flown through the wall of projectiles, the gunner will adjust the aim point to once again

establish a volume of fire in front of the aircraft This continues until the aircraft is either

destroyed or out of range. This scenario is modeled through the simulation of a UAV in

flight and projectiles fired from a launcher described in the following sections..
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D. CHARACTERISTICS OF UNMANNED AERIAL VEHICLE

The characteristics of the Pioneer UAV described in Chapter II and information

obtained during conversations with experienced Pioneer UAV pilots are the basis of the

UAV model in this simulation A comparison of Tables 8 and 9 below with Table 1

shows that the simulated UAV is somewhat larger than the Pioneer UAV, although

otherwise very similar, in order to represent the average size of UAVs of the same class as

the Pioneer UAV.

The mission and flight profile of the UAV is comparable to that of a Pioneer UAV
conducting reconnaissance against armored vehicles in the forward battle area. The

modeled UAV flies at altitudes of 2500 or 3500 feet and at an operating speed of 65

knots. The altitude is selected to maintain line of sight between the aircraft and its

controller. This line of sight restriction forces the aircraft to maintain a higher altitude at

greater distances from the controller. The speed is a function of the UAV type, the

payload, and the mission; in general, 65 knots is the operating speed selected for

reconnaissance of the forward edge of the battlefield [Ref. 18]

Wing Span 24 feet

Length 29 feet

Operating Speed 74 .80 mph or 65 knots (110 feet per second)

Operating Altitude 2500 or 3500 feet

Table 8: Characteristics of Simulated UAV

The simulated UAV is composed of thirteen rectangular surfaces. Each surface is

independently tested for penetration by a projectile. The UAV surfaces and their

dimensions are listed in Table 9 below.
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Body

Belly and Top 2 feet 14 feet

Nose and Rear 3 feet 2 feet

Sides, Left and Right 3 feet 14 feet

Wings, Left and Right 3 feet 1 1 feet

Tail Extensions, Left and Right 1 feet 16 feet

Tail 3 feet 10 feet

Tail Fins, Left and Right 3 feet 3 feet

Table 9: Simulated UAV Surfaces

The line drawings in Figure 4 below illustrate two aspects of the simulated UAV
Any projectile that penetrates a surface is classified as "hitting" the UAV in that area.

n

side
Right Side View

nose

left wing

left

tail extension

b

o

d

y

right wing

rear

Top View

right

tail extension

tail

Figure 4: Line Drawing of UAV

Appendix A contains the Lisp Code that generates the graphical display and

models the flight of the UAV
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E. CHARACTERISTICS OF PROJECTILE AND THE LAUNCHER

The projectile was modeled after the M792 High-Explosive 25mm round discussed

in Chapter III. The muzzle velocity is 3608 feet per second and the drop characteristics of

the round were derived using Heun integration with the data in Table 6. This method

results in the drop values listed in Table 10 below. The dynamic model used to obtain

these results assumes no aerodynamic lift acting on the projectile and drag proportional to

the square of the velocity. In the absence of further information, and for simplicity,

angular and velocity dispersion figures were modeled as uniformly and independently

distributed random variables with zero mean and range equal to plus or minus the given

dispersion figures.

Velocity Dispersion 16 4 feet per second

Angular Dispersion 0.05006219 degrees

Average Muzzle Velocity 3608 feet per second

Drop at 1031 feet 1.44 feet

Drop at 1665 feet 4.02 feet

Drop at 2260 feet 7.89 feet

Effective Range 6 100 feet

Table 10: Simulated Projectile Characteristics

The simulated launcher characteristics are listed in Table 1 1 below. The simulated

launcher has a single rate of fire while the BSFV has both a low and high rate of fire

Elevation

Traverse

Firing Rate - Burst

+60 degree to -10 degree continuous

360 degree continuous

300 rounds per minute (1 every .2 seconds)

Table 11: Simulated Projectile Launcher Characteristics

Appendix A contains the Lisp code that models the projectile and launcher
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F. DETERMINING A HIT

The algorithm that determines if a projectile has penetrated any of the simulated

UAVs surfaces has four steps. Step 1 screens out all projectiles that are too distant from

the UAV This step is illustrated in Figure 5 below

Stepl

H

Projectiles (P) outside ofcircumference are not tested for hit

PI would not be tested while P2 would be tested for a hit

Figure 5: Step 1 of Hit Algorithm

Step 1 tests if the projectile is within 225 feet of the center point of the UAV. This

distance is chosen because of the projectile velocity and the time step used in the

simulation. The minimum range from the UAV to the projectile is 2500 feet (equal to the

minimum UAV altitude). Analysis of the projectile at 2500 feet using Heun integration

indicates that the projectile travels less than 225 feet in a time step. (This follows because

a projectile fired at zero degrees elevation travels 223 feet in the next l/lO* second after

reaching the 2500 foot minimum range for engagement.) Step 1 screens out

computationally costly calculations for projectiles incapable of hitting the UAV in the

current time step.
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Step 2 determines if the projectile has crossed the plane that contains a given UAV

surface. This step is illustrated in Figure 6 below.

QTIT'T* ^ CURRENT
k3 1 ILX L ^ PROJECTILE

^r POSITION

P2
,.•"

p3

INFINITE PLANE

pi
.-*'

p4
Mr

PROJECTILE IS TESTED TO SEE IF IT CROSSED
A PLANE USING NORMAL VECTOR DERIVED FROM

^f THREE POINTS THAT LIE IN THE PLANE

PREVIOUS
PROJECTILE POSITION

[True, sign(n • Vprev) * sign(ii • Vcurr)

Plane Crossed = \ >

[False, otherwise

where n = normal to geometric plane or vii x vi:

Vprev = vector from p 1 to previous position

Vcuit = vector from pi to current position

vm= vector from pi to p4

vi2 = vector from pi to p2

Figure 6: Step 2 of Hit Algorithm

Step 2 determines if the projectile's previous position and current position lie on

different sides of the plane which contains the UAV surface. Points pi, p2, p3 and p4 are

arbitrary points in the plane containing the UAV surface The normal vector for the plane

is determined by computing the cross product of two vectors in the plane. The dot

product of the normal of the plane and the vector formed by the previous projectile

position and point pi is compared with the dot product of the normal of the plane and the

vector formed by the current projectile position and the point pi If the comparison
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reveals that these two values have the same sign, then the projectile did not cross the

plane

STEP 3
CURRENT
PROJECTILE
POSITION

PLANE
projectile position on plane

x=?y=?z=?

PREVIOUS
PROJECTILE POSITION

1

)

Equation of a plane: ax + by + cz + d = 0,

where x, y, and z are coordinates of a point on

the plane, a, b, and c are the x, y, and z components

of the normal, and d is a parameter of the plane.

• h known from previous step => values for a, b, and c

• A pomt pi is on the plane

=> d = ax + by + cz where x, y, and z come from pi

2) Parametric equation for projectile path:

b = bp + k(bc - bp) where < k < 1

where bp = previous projectile position

be = current projectile position

Equation 2 is substituted mto equation 1 to solve for the k

where the bullet crosses the plane. This value for k is used

m equation 1 to fmd the pomt where the bullet crosses the

plane.

Figure 7: Step 3 of Hit Algorithm
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Step 3 determines the X, Y and Z coordinate of the bullet's impact on the plane by

assuming a straight line path between the previous position and the current position and

using the normal computed in Step 2. This step is illustrated Figure 7 above.

Step 3 requires numerous calculations which use the vector from the previous

projectile position to its current position and the normal vector to solve for the point on

the plane along the path of the projectile This result will also be used in Step 4 to

determine if the point of impact on the plane lies inside the boundaries of the UAV surface

being tested for penetration.

Step 4 simply computes the vectors from the impact point of the projectile on the

plane to each corner point of the UAV surface. If the sum of the angles between the

vectors is equal to two times pi, then the projectile must be inside the UAV surface and is

classified as a hit. If the sum is not equal to two times pi, then the projectile lies on the

boundary of or outside of the UAV surface and is classified as a miss. This step is

illustrated in Figure 8 below.

STE P 4

UAV SURFACE

^^^2 \J.
'

^ Projf ctile on ""- «^V 4
^L^"^ the plane ^N

^*~»«««^
i>>^

If angles between VI and V2,V2 and V 3
,

V3 and V4,V4 and VI sum up to 360 degrees
then the projectile is inside the boundaries
of the UAV surface

A ngles between vectors are computed as:

V • V i = ^V i V 2 co s 6

s~\ V 1 • V 2

6 = flCOS
V i V 2

Figure 8: Step 4 of Hit Algorithm
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The formulas used in steps 1 to 4 are coded in Lisp in Appendix D

G. CHARACTERISTICS OF THE PERFECT GUNNER

The modeled perfect gunner provides insight into the potential effectiveness of a

projectile against a UAV. The perfect gunner can successfully engage the target with the

highest probability of hit and kill, given that the object to be shot at is in range and the

gunner knows its speed, altitude, and has an operational gun The perfect gunner takes

aim with all data known about the target to be engaged and is limited solely by the

characteristics of the projectile, its launcher, and the algorithms used to determine the aim

point to fire upon

Due to the difficulty associated with engaging aerial targets, a high volume of fire

should be established in front of the target [Ref 20]. The perfect gunner fires five

projectiles per second at an aim point in front of the UAV. This aim point is determined

by two algorithms:

1 an "Adjust Fire Elevation" algorithm that computes the elevation (vertical angle

of fire) needed to hit the UAV at its current altitude, and

2. an "Adjust Fire Azimuth" algorithm that computes the azimuth (horizontal angle

of fire) needed to ensure the wall of fire is in front of the UAV.

1. Adjust Fire Elevation

a. Degree Offset Adjust Fire Elevation

This algorithm has three steps and the code is found in Appendix E Step 1

aims the gun at the current UAV position and computes the angle (Theta 1 ) as if the

projectile travels on a straight path Step 2 computes the angle (Theta 2) from the gun to

the actual projectile location at the range to the target. This actual location is determined

by firing a spotting round at the current UAV position and taking the coordinates when it

passes the current UAV down range position. Step 3 computes the angle (Theta 3) to the

future UAV position accounting for the time of flight of the projectile. This angle (Theta

3) is added to the difference between Theta 1 and Theta 2. The result is an elevation that

takes into account the drop error of the spotting round and the time of flight. Test results

indicated that this elevation angle should be further adjusted to determine the angle needed

to ensure the projectile would be in front of the UAV. After preliminary testing of the
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algorithm, a one degree (positive for inbound and negative for outbound) super elevation

constant was chosen to ensure the projectile is in front of the UAV. Figure 9 below

graphically depicts Step 1-3 Code for this algorithm is listed in Appendix D.

Theta 1 - Angle from Gun to Current UAV Position

Theta 2 - Angle from Gun to Bullet fired at UAV with Theta 1 as elevation angle

Theta 3 - Angle from Gun to Future UAV Position, where the future UAV position

is determined based on the time of flight of the bullet fired for Theta 2

Where Angle is computed:

IZ
a t a n VT + Y

Current UAV Position

Actual Shots location

after being fired with

Theta 1 as elevation

Theta 3

Theta 1

Theta 2

Shot to be taken is

(Theta 3 + (Theta 1 - Theta 2)) + Constant

where Constant is 1 degree for incoming and -1 degree for outgoing.

Figure 9: Adjust Fire Elevation

b. 45 Degree Offset Adjust Fire Elevation

This algorithm has 2 steps and the code is found in Appendix E. Step 1

aims the gun at the future UAV position and computes the straight line angle (Theta 3

from Figure 9 above) for this shot. Step 2 fires a series of test projectiles at increasing

increments (1/2 degree per step) until a test projectile's old position and current position

28



lie on opposite sides of the Z plane of the UAV. This elevation is then used and the

gunner establishes a wall of fire on the path of the UAV.

2. Adjust Fire Azimuth

The azimuth from the gun to the UAV is computed by determining the azimuth

from gun to the future UAV position This calculation uses the future position of the

UAV computed in the Adjust Fire Algorithm. In the simple case of Zero Degree offset

engagements the azimuth will be either or 180 degrees Figure 10 illustrates the adjust

fire azimuth algorithm

AX

Azimuth from Gun to UAV
where azimuth = atari (Y, X)

UAV Position (X Y Z)

Azimuth \
Angle

Y

Figure 10: Adjust Fire Azimuth
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H. FLIGHT PROFILES ANALYZED

Two flight profiles were considered in the tests using the perfect gun. These

profiles ensure that at least one or more in-range engagements are possible. The following

profiles are analyzed:

• degree offset inbound, outbound UAV
• 45 degree offset crossing UAV
Figure 1 1 below illustrates graphically the three flight profiles at 2500 feet and

3500 feet and the engagement footprint (the area between maximum and minimum gun

ranges)

Max Range

Minimum Range

UAV
10DDEGREE

Inbound/Outbound

/

I

/
y
y

UAV

145
DEGREE

\

FIRE UNIT

\
s

\

Figure 11 - Flight Profiles and Engagement Footprint

The flight profiles were run first with the perfect gunner taking shots within the

appropriate minimum and maximum ranges of the gun. The results are described in what

follows to allow conclusions to be drawn about the effectiveness of the modeled projectile
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and aiming method, and to evaluate the model in general. This is intended to provide

insights into the potential effectiveness of the projectile against a UAV

The flight profiles begin at the edge of the engagement footprint and are analyzed

while inside the footprint Table 12 below illustrates the ranges of the Gun, which has a

6100 foot effective projectile range and an elevation limit of 60 degrees for UAVs at 2500

and 3500 feet.

WWWfWWW

degree inbound, outbound

2500 feet 1443 feet

3500 feet 2020 feet

45 degree crossing

2500 feet 1443 feet

3500 feet 2020 feet

5564 feet

4996 feet

5564 feet

4996 feet

Table 12: Ranges of Gun for flight profiles

The flight profiles are analyzed until the UAV has flown from maximum range to

minimum range for incoming UAVs and from minimum range to maximum range for

outgoing UAVs. Crossing Shots are evaluated from acquisition at maximum range to loss

of acquisition at maximum range (from left to right).

I. LIMITATIONS AND ASSUMPTIONS

• PROJECTILES

• are only effected by gravity and head on drag forces;

• are ineffective beyond 6100 feet;

• fly a straight line between 1/1
th
second updates;

• do not detonate upon impact of a UAV surface because of the soft

nature of the UAVs surfaces;

• have a random muzzle velocity of 3608 +/- 16.4 feet per second;

• have an angular dispersion of .05006219 degrees.

UAV:

flies at a constant altitude (2500 or 3500 feet) and
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• flies at a constant speed (65 knots).

• GUNNER:

• detects all UAVs in the engagement footprint,

• can accurately determine the speed and altitude of the UAV,

• is oriented on the target line prior to the UAV crossing the engagement

footprint,

• is only posed with one threat UAV at a time,

• is oriented on the target line for degree incoming/outgoing shots and

oriented near (within 223 feet) the target line for 45 degree offset

simulations,

• has unlimited ammunition.

J. SUMMARY

This chapter presents a complete simulation model with a scenario similar to that

of a BSFV in the Air Defense role, a UAV with characteristics similar to that of a Pioneer

class UAV, and a projectile and launcher modeled after the BSFV turret and the M792

25mm Heat round Algorithms developed to determine the penetration of any UAV

surface by the projectile and to aim in a manner similar to that of doctrinal US Army firing

techniques allow for testing of the Modeled Launcher and Projectile with aiming

capabilities against the simulated UAV using the profiles described earlier Chapter V

reviews each profile, displays the results, and offers an analysis of each run.
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V. RESULTS

A. DEGREE OFFSET INBOUND/OUTBOUND

1. Introduction

The following tables show the results obtained using the simulation described in

Chapter IV of a BSFV against the UAV flying the degree offset inbound/outbound flight

profile. The tables show the acquired range where the perfect gunner establishes his aim

and commences firing, and the cease fire range where the perfect gunner stops engaging

due to the UAV passing beyond the wall of fire. At each acquired range it is assumed that

the target has no damage The simulation results shown included randomly generated

angular and velocity dispersions, so repeat runs will give different results. However, these

results are typical of results obtained from other runs

,,M

: .... : ... .. :...:

1443 1577 16 2 2 4

1577 1719 12 2 2

1719 1869 13 2 2

1869 2019 13 2 1 3

2019 2181 14 2 2

2181 2349 15 2 1 3

2349 2528 16 2 2

2528 2720 17 1 1

2720 2924 18

2924 3146 19 2

3146 3380 20 2 1 3

3380 3632 22 4 4

3632 3908 24 2 2

3908 4196 25 1 1

4196 4508 27 2 2

4508 4838 28

4838 5192 30 1 2 3

5192 Max 33 2 2

Table 13: 2500 Foot Altitude, Degree Offset Outbound Simulation
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. ' .

:

5564 4867 63 1

4867 4310 47

4310 3860 38 2 2

3860 3482 32 4 1 5

3482 3158 28 1 1 2

3158 2876 24 2 2

2876 2624 21 2 1 3

2624 2396 19 1 1

2396 2192 17 2 2

2192 2000 16 2 2

2000 1820 15 2 2

1820 1652 14 2 1 1 4

1652 1496 13 2 1 1 4

1496 Min 3 1 1

Table 14: 2500 Foot Altitude, Degree Offset Inbound Simulation

4996 4491 47 2 2

4491 4053 37 2 2

4053 3664 33

3664 3328 28 1 1 2

3328 3022 26 4 1 5

3022 2740 24 2 2

2740 2482 22 2 1 3

2482 2248 20 2 2

2248 2020 19 2 1 3

2020 Min

Table 15: 3500 Foot Altitude, Degree Offset Inbound Simulation
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2020

2200

2386

2776

2979

3195

3429

3675

3933

4191

4467

4761

2200

2386

2776

2979

3195

3429

3675

3933

4191

4467

4761

Max

20

16

17

17

18

20

21

22

23

23

25

22

Table 16: 3500 Foot Altitude, Degree Offset Outbound Simulation

2. Analysis

The tables clearly show that the simulated gun and projectile are capable of

penetrating the simulated UAVs surfaces in most engagement sequences (only 9 of 54

engagement sequences resulted in hits). Clearly the abundance of body hits are a result

of firing on the target line and the relatively large number of body surfaces (top body,

bottom body, left body, right body, nose and rear). Similarly, the lack of any success

against the UAVs fins are a result of the fin not being exposed on an inbound/outbound

simulation run From this, it can be concluded that the rate of fire and aiming method

coupled with the characteristics of the projectile are indeed adequate for engaging the

UAV inside the range of the projectile.

B. 45 DEGREE OFFSET CROSSING

1. Introduction

The following tables show the results obtained using the simulation described in

Chapter IV of the BSFV against the UAV flying the 45 degree offset crossing flight

profile. The tables show the acquired range where the perfect gunner establishes his aim
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and commences firing, and the cease fire range where the perfect gunner stops engaging

due to the UAV passing beyond the wall of fire. At each acquired range it is again

assumed that the target has no damage. As in the degree offset cases, these simulation

results also included randomly generated angular and velocity dispersions, so repeat runs

will give different, although similar, results.

4330 4244 45 18 1 1

4244 4167 47 18 1 1

4167 4092 49 13 1 1

4092 4022 52 13

4022 3955 54 13 1 1

3955 3895 56 12 2 2

3895 3839 59 12 2 1 3

3839 3790 61 12 1 1 2

3790 3742 64 12 1 1 2

3742 3701 67 11 2 1 3

3701 3664 69 11 1 1

3664 3632 72 11 2 2

3632 3605 75 11 1 1

3605 3582 77 11 2 2

3582 3564 79 11 1 1

3564 3550 83 11

3550 3540 86 11 2 2

3540 3536 89 11 1 1

3536 3536 92 12 1 1

3536 3540 95 12 2 2

3540 3549 98 12 1 1

3549 3563 101 11 1 1

3563 3582 104 12

3582 3606 106 12 2 2

3606 3634 109 12 2 1 3

3634 3667 112 12 1 1

3667 3704 113 12 2 2

3704 3748 116 12 2 2

3748 3796 119 12 2 2

3796 3846 121 12

3846 3902 123 12 1 1 2

3902 3962 126 12 2 1 1 4

3962 4029 128 13 2 1 3

4029 4100 130 12 2

4100 4178 132 13 1 1

4178 4260 133 13 1 1

4260 4349 135 14 1 1

Table 17: 2500 Foot Altitude, 45 Degree Offset Crossing Simulation
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4730 4662 45 1 7 1 1

4662 4600 47 ] 2 1 1

4600 4543 50 ] 2 1 1

4543 4489 53 ] 2 1 1

4489 4441 55 1

4441 4397 57 1 2 2

4397 4356 60 1 2 2

4356 4318 63 1 2 2

4318 4285 65 1 2 2

4285 4257 68 ] 1 1 2

4257 4232 71 ] 2 1 3

4232 4210 74 ]

4210 4192 77 ] 1 1

4192 4169 80 ] 1 1

4169 4163 83 ] 1 1

4163 4160 86 ] 1 1

4160 4162 90 ] 1 1

4162 4167 93 ] 2 2

4167 4176 96 ]

4176 4189 99 ] 2 2

4189 4206 103 ] 2 1 3

4206 4226 105 2 1 3

4226 4250 108 2 1. 3

4250 4279 111 2 1 3

4279 4312 114 1 1

4312 4349 117 2 2

4349 4389 120 2 1 3

4389 4435 122 12 2 1 1 4

4435 4484 125 12

4484 4358 127 12 1 1 2

4358 4597 129 13 1 1

4597 4660 131 13

4660 4727 135 13 1 1

Table 18: 3500 Foot Altitude, 45 Degree Offset Crossing Simulation
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2. Analysis

The tables clearly show that the simulated gun and projectile are capable of

penetrating the simulated UAVs surfaces in most engagement sequences (only 10 of 70

engagement sequences resulted in hits). Clearly the success of engaging the UAV in all

parts is due to the fact that as the UAV crosses, its wings, extensions, body and tail each

are exposed to the wall of fire. Once again, the simulation establishes the capability of the

projectile to successfully penetrate the UAV given the aiming method and rate of fire

utilized
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The goal of this thesis was to develop a method to determine the ability of the

Bradley Stinger Fighting Vehicle (BSFV) 25mm Cannon to counter the emerging threat of

Unmanned Aerial Vehicles (UAVs). The modeled objects all inherit unclassified

characteristics of the BSFV, one of its primary ammunition rounds, and a representative

UAV. Although many assumptions were made to simplify the model, simulation runs

clearly demonstrate that the rate of fire utilized in the simulation along with the aiming

system of placing a wall of fire in front of the target allow the projectile to penetrate the

surface of the UAV in 125 out of 154 independent runs of inbound, outbound and

crossing patterns From these tests, it would seem that the modeled BSFV, given

assumptions made about the gunner's aiming method and acquisition capability, is in fact

capable of successfully engaging the modeled Pioneer class UAV. This conclusion,

however, is only relative to this model and may not be substantiated in actual physical

experimentation Clearly, the most questionable assumption in the simulation is that the

gunner can acquire the UAV and orient the gun on the target line at maximum range. One

critical, and perhaps most unrealistic, implication made by this assumption is the ability of

the gunner to aim the system accurately in front of the UAVs flight path. However, in the

author's opinion, it is not unrealistic to assume that today's research and development

efforts may in fact allow that capability to become a reality in the near future through the

development of appropriate training aids to the gunner coupled with advances in aiming

and detection systems.

B. RECOMMENDATIONS FOR FUTURE RESEARCH

There are many ways to improve upon this methodology or to build upon it in its

current form. Much work remains to be accomplished regarding the number of

engagements a system can expect to get with the current human acquisition capability and

sensor acquisition. Additionally, the effects of nature on all facets of the model could be

added. To do this it would be necessary to bring into bear the effects of weather, terrain,

vision and human ability into the model. In its current state, the model can provide some
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insight into the probability of hit and kill based on some analysis of the surface area

vulnerabilities to the projectile in use and the results obtained in Chapter V. The source

code and algorithms developed in this research could be improved upon to work in a more

efficient and possibly more realistic manner, especially if used with classified data

regarding the gun and target.

Several simplifying assumptions were made during the design and implementation

of the simulation in order to allow the author to complete and test a fully functional

methodology Each assumption should be examined and relaxed to better reflect a true

representation of the modeled objects.

Lastly, it would be useful for this model to be ported to a desktop Personal

Computer (PC) which would involve rewriting Appendix B (Camera Code) to conform to

a PC platform.
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APPENDIX A: SCREEN IMAGES

The following screen images provide an example of the output generated during a

simulation run with the UAV flying a crossing, inbound and outbound profile. The

projectiles are represented by a horizontal line which allows for depth perception; the

wider the line the closer the projectile is to the gun.

xterm-ai4

Bullets fired: 22

Location of UiV: (-4171. 999706780925d0 O.OdO -350O.0 0.0 0.

3. 141592653589793d0)

Range Gun to Target: 5445. 693854173233d0

iziuth Gun to Target: 180. 00000210110483d0

Computing angles for elevation/azimuth to lay wall of fire!

Bullets fired: 23

Location of W: (-4447. 9996407031995d0 O.OdO -3500.0 0.0 (

3. 141592653589793d0)

Range Gun to Target: 5659. 92Q565140096d0

izirauth Gun to Target: 180. 00000210110483d0

Computing angles for elevation/azimuth to lay rail of fire!

Hit the IV at: Mail*

Bullets fired: 25

Location of UAV: (-4741. 999S70316057dO O.OdO -3500.

3. 1415926S3589793d0)

SAMPLE OUTPUT DURING A SIMULATION RUN
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Graphical Display of UflV and Project il

Graphical Display of UAV and Projectiles

UAV CROSSING INTO WALL OF FIRE
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Graphical Display of UAV and Projectiles;!

Graphical Display of UAV and Projectiles

UAV INBOUND INTO A WALL OF FIRE
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Graphical Display of UAV and Project ii

Graphical Display of UAV and Projectiles

UAV OUTBOUND INTO A WALL OF FIRE
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APPENDIX B: SOURCE CODE (UAV AND PROJECTILE FILES)

; File: pioneer-euler-angle-rigid-body.cl Franz Common LISP

;

** RIGID BODY CLASS DEFINITION **

, Defines a Pioneer UAV like rigid body

; Code written by R B McGhee, Naval Postgraduate School, & modified by D Wiley

, mcghee@cs.nps. navy mil

^

(defconstant *gravity* 32.2185)

(defclass rigid-body

((posture ;The vector (xe ye ze phi theta psi).

:initform '(-200 0)

:initarg
:
posture

: accessor posture)

(posture-rate ;The vector (xe-dot ye-dot ze-dot phi-dot theta-dot psi-dot).

:initarg : posture-rate

: accessor posture-rate)

(velocity ,The six-vector (u v w p q r) in body coordinates.

:initform '(000000)

:initarg : velocity

accessor velocity)

(velocity-growth-rate ;The vector (u-dot v-dot w-dot p-dot q-dot r-dot).

accessor velocity-growth-rate)

(forces-and-torques ;The vector (Fx Fy Fz L M N) in body coordinates
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initform (list (- *gravity*) 0)

accessor forces-and-torques)

(moments-of-inertia ;The vector (Ix Iy Iz) in principal axis coordinates.

initform '(1 1 1)

initarg : moments-of-inertia

accessor moments-of-inertia)

(mass

: initform 1

: initarg mass

accessor mass)

(node-list ;(xyz 1) in body coord for each node. Starts with (0 1).

initform '((0 1)(9 -1 1)(9 1 l)(-5 -1 l)(-5 1 1) ;0-4

(9 -1 2 1)(9 1 2 l)(-5 -1 2 l)(-5 1 2 1)(2 -1 1) ;5-9

(2 1 1)(-1 -1 1)(-1 1 1)(2 -12 1)(2 12 1) ,10-14

(-1 -12 1)(-1 12 1)(-17 -5 -3 1)(-17 -5 3 l)(-20 -5 -3 1);15-19

(-20 -5 3 1)(-1 -5 1)(-1 -4 1)(-17 -5 1)(-17 -4 1) ;20-24

(-17 5 -3 1)(-17 5 3 l)(-20 5 -3 l)(-20 5 3 1)(-1 4 1) ;25-29

(-1 5 1)(-17 4 1)(-17 5 l)(-20 -5 l)(-20 5 1)) ;30-34

,Defines a "pioneer UAV" as default rigid body

: initarg : node-list

accessor node-list)

(polygon-list

initform
'(

; comments read as looking from the "top" at the "body"

(12 4 3) ;topbody
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(1 2 6 5) ;front nose

(1 3 7 5) ;side leftbody

(2 4 8 6) ;side right body

(5 6 8 7) ;bottom body

(9 13 15 1
1 ) ;top left wing

(10 14 16 12);top right wing

(3 4 8 7) ;rear body

(17 18 20 19), left tail fin

(25 26 28 27) ;right tail fin

(21 22 24 23) ; bottom left extender

(29 30 32 3 1) ;bottom right extender

(23 32 34 33) ;bottom tail

)

initarg polygon-list

:accessor polygon-list)

(transformed-node-list ;(x y z 1) in earth coord for each node in node-list.

: accessor transformed-node-list)

(H-matrix

:initform (unit-matrix 4)

: accessor H-matrix)

(time-stamp

accessor time-stamp)))

(defmethod initialize ((body rigid-body))

(setf (transformed-node-list body) (node-list body))

(setf (velocity-growth-rate body) (update-velocity-growth-rate body))
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(setf (posture-rate body) (earth-velocity body))

(setf (time-stamp body) (get-internal-real-time)))

(defmethod update-posture ((body rigid-body) delta-t) ;Euler integration,

(setf (posture-rate body) (earth-velocity body))

(setf (posture body)

(vector-add (posture body) (scalar-multiply delta-t (posture-rate body)))))

(defmethod move-body ((body rigid-body) azimuth elevation roll x y z)

(setf (posture body) (list x y z roll elevation azimuth))

(setf (H-matrix body)

(homogeneous-transform azimuth elevation roll x y z))

(transform-node-list body))

(defmethod update-rigid-body ((body rigid-body)) ;Euler integration,

(let* ((delta-t (get-delta-t body)))

(update-posture body delta-t)

(setf (H-matrix body) (homogeneous-transform (sixth (posture body))

(fifth (posture body)) (fourth (posture body)) (first (posture body))

(second (posture body)) (third (posture body))))

(transform-node-list body)

(update-velocity body delta-t)

(update-velocity-growth-rate body)))

(defmethod get-delta-t ((body rigid-body)) 1)

(defmethod update-velocity ((body rigid-body) delta-t) ;Euler integration,

(setf (velocity body)

(vector-add (velocity body)

(scalar-multiply delta-t (velocity-growth-rate body)))))
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(defmethod earth-velocity ((body rigid-body))

(let* ((linear-velocity (firstn 3 (velocity body)))

(rotational-velocity (cdddr (velocity body)))

(posture (posture body))

(R-matrix (rotation-matrix (sixth posture) (fifth posture)

(fourth posture)))

(linear-earth-velocity (post-multiply R-matrix linear-velocity))

(T-matrix (body-rate-to-euler-rate-matrix (sixth posture)

(fifth posture) (fourth posture)))

(rotational-earth-velocity (post-multiply T-matrix

rotational-velocity)))

(append linear-earth-velocity rotational-earth-velocity)))

(defmethod transform-node-list ((body rigid-body))

(setf (transformed-node-list body)

(mapcar #'(lambda (node-location)

(post-multiply (H-matrix body) node-location))

(node-list body))))
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; File: bullet cl Franz Common LISP

;
** RIGID BODY CLASS DEFINITION **

; Defines a bullet like rigid body

; Code written by D A Wiley, Naval Postgraduate School,

, dawiley@cs.nps.navy.mil

(defclass bullet (rigid-body)

((forces-and-torques

:initform '(00000 0))

(old-posture ;The vector (xe ye ze phi theta psi)

:initform '(000000)

initarg old-posture

accessor old-posture)

(time-of-flight

initform

: accessor time-of-flight)

(polygon-list

: initform '((1 2)))))

(setfkl 0.0001)

(defmethod update-velocity-growth-rate ((body bullet))

(let ((u-dot (-(*(- kl) (first (velocity body)) (abs (first (velocity body))))

(* (sin (fifth (posture body))) *gravity*)))

(w-dot (+ (* (- kl) (third (velocity body)) (abs (third (velocity body))))
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(* (cos (fifth (posture body))) *gravity*))))

(setf (velocity-growth-rate body) (list u-dot w-dot 0))))

(defun distance-bullet-plane (xp xb yp yb zp zb)

(sqrt (+(square(- xp xb))(square(- yp yb))(square(- zp zb)))))

(defun updatebullets (bullet-list)

(cond ((null bullet-list) nil)

(t (update-rigid-body (first bullet-list))

(if (relevent-bullet airplane- 1 (first bullet-list))

(setf bullet- 1 (cons (first bullet-list)

(updatebullets (rest bullet-list))))))))

(defun relevent-bullet (plane bullet)

(if (and (above-ground-bullet (third (posture bullet)))

(< (distance-gun-object bullet)

(distance-gun-object airplane- 1 )))t))

(defun above-ground-bullet (projectile)

(if (< projectile 1.0) t))

(defun distance-gun-object (object)

(let ((x (first (posture object)))(y (second (posture object)))

(z (third (posture object))))

(sqrt (+ (square x)(square y)(square z)))))

(defmethod update-posture ((bullet bullet) delta-t)

(setf (posture-rate bullet) (earth-velocity bullet))

(setf (old-posture bullet) (posture bullet))

(setf (posture bullet)

(vector-add (posture bullet) (scalar-multiply delta-t (posture-rate bullet)))))
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File: uav-components cl Franz Common LISP

** The makeup of a UAV rigid body and functions

for screen output, this file is used in conjuntion

with the determine-hit.cl for testing independently

the surface of a UAV * *

Code written by D. A. Wiley, Naval Postgraduate School,

dawiley@cs. nps. navy . mil

(defconstant *top-body* '((-5 -1 0)(9 -1 0)(9 1 0)(-5 1 0)))

(defconstant *nose* '((9 -1 0)(9 1 0)(9 1 2)(9 -1 2)))

(defconstant *left-body* '((9 -1 2)(9 -1 0)(-5 -1 0)(-5 -1 2)))

(defconstant *right-body* '((-5 1 2)(-5 1 0)(9 1 0)(9 1 2)))

(defconstant *bottom-body* \(9 -1 2)(9 1 2)(-5 1 2)(-5 -1 2)))

(defconstant *left-wing* '((-1 -12 0)(2 -12 0)(2 -1 0)(-l -1 0)))

(defconstant *right-wing* '((-1 1 0)(2 1 0)(2 12 0)(-l 12 0)))

(defconstant * left-tail-extender* '((-IV -5 0)(-l -5 0)(-l -4 0)(-17 -4 0)))

(defconstant *right-tail-extender* '((-17 4 0)(-l 4 0)(-l 5 0)(-17 5 0)))

(defconstant *left-tail-fin* '((-20 -5 3)(-17 -5 3)(-17 -5 -3)(-20 -5 -3)))

(defconstant * right-tail-fin* '((-20 5 3)(-17 5 3)(-17 5 -3)(-20 5 -3)))

(defconstant *tail* '((-20 -5 0)(-17 -5 0)(-17 5 0)(-20 5 0)))

(defconstant *rear* '((-5 -1 2)(-5 -1 0)(-5 1 0)(-5 1 2)))
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(defconstant *uav-components* (list *top-body* *nose* *left-body*

*right-body* *bottom-body* *left-wing*

*right-wing* *left-tail-extender* *right-tail-extender*

*left-tail-fin* *right-tail-fin*

*tail* *rear*))

(defconstant *uav-components-strings* '(" *top-body*
" " *nose*

" " *left-body
* "

" *right-body*

"

" *bottom-body * "
" *left-wing*

"
" *right-wing*

"
" *left-tail-extender*

"

"*right-tail-extender*
,M,

*left-tail-fin*""*right-tail-fin*
M
"*tail*""*rear*"))

(setf*bullet-#*0)

(deflin provide-feedback (uav-part bullet-ID)

(cond ((equal uav-part (nth *uav-components*))

(format t "~%Hit the UAV at: ~A" (nth *uav-components-strings*)))

((equal uav-part (nth 1 *uav-components*))

(format t "~%Hit the UAV at: ~A" (nth 1 *uav-components-strings*)))

((equal uav-part (nth 2 *uav-components*))

(format t "~%Hit the UAV at: ~A" (nth 2 *uav-components-strings*)))

((equal uav-part (nth 3 *uav-components*))

(format t "~%Hit the UAV at: ~A" (nth 3 *uav-components-strings*)))

((equal uav-part (nth 4 *uav-components*))

(format t "~%Hit the UAV at: ~A" (nth 4 *uav-components-strings*)))

((equal uav-part (nth 5 *uav-components*))

(format t "~%Hit the UAV at: ~A" (nth 5 *uav-components-strings*)))

((equal uav-part (nth 6 *uav-components*))

(format t "~%Hit the UAV at:: ~A" (nth 6 *uav-components-strings*)))
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((equal uav-part (nth 7 *uav-components*))

(format t "~%Hit the UAV at: ~A" (nth 7 *uav-components-strings*)))

((equal uav-part (nth 8 *uav-components*))

(format t "~%Hit the UAV at: ~A" (nth 8 *uav-components-strings*)))

((equal uav-part (nth 9 *uav-components*))

(format t "~%Hit the UAV at: ~A" (nth 9 *uav-components-strings*)))

((equal uav-part (nth 10 *uav-components*))

(format t "~%Hit the UAV at: ~A" (nth 10 *uav-components-strings*)))

((equal uav-part (nth 1 1 *uav-components*))

(format t "~%Hit the UAV at: ~A" (nth 1 1 *uav-components-strings*)))

((equal uav-part (nth 12 *uav-components*))

(format t "~%Hit the UAV at: ~A" (nth 12 *uav-components-strings*)))

(t (pprint "error in providefeedback function"))))
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APPENDIX C: SOURCE CODE (STROBE CAMERA FILE)

; File: camera. cl Franz Common LISP

;

** CAMERA CLASS DEFINITION **

; A Camera "takes a picture" of rigid-body class objects

; and displays the image A sequence of images may be

, displayed by superimposing them or by first erasing the display

; window and then creating and displaying the next image.

; Requires: rigid-body cl

; by Shirley Isakari CS4314 Winter 1994 Final Project

; Modifications & enhancements to Prof. McGhee's Strobe-Camera CLOS code

3

(require xcw)

(use-package :cw) ; Note that this is required for use of mouse and color

; This forced renaming of some original functions, i.e.

; move and translate. Causes some problem when compiling

(cw: initialize-common-windows)

(defclass strobe-camera (rigid-body)

((focal-length

: accessor focal-length

:initform 150)

(posture

accessor posture ;xyz phi theta psi

:initform (list 0))

(camera-window

accessor camera-window
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initform (cw:make-window-stream :borders 5

:left 300

:bottom 300

width 400 ;1000

height 400 ;900

title "Graphical Display ofUAV and Projectiles"

background-color white

:foreground-color white

:activate-p t))

(H-matrix

initform (homogeneous-transform 0))

(inverse-H-matrix

accessor inverse-H-matrix

initform (inverse-H (homogeneous-transform 0)))

( enlargement-factor

accessor enlargement-factor

initform 100)))

(defun create-camera- 1 ()

(setf camera- 1 (make-instance 'strobe-camera))

(queue-mouse camera- 1))

; To be used as the draw-color argument in take-picture and new-picture

; functionss (and also jack-picture, jack-video, jack-movie functions)

(defconstant *white* 0)

(defconstant *yellow* 1)
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(defconstant *red* 2)

(defconstant *green* 3)

(defconstant *black* 4)

(defconstant *cyan* 5)

(defconstant *magenta* 6)

(defconstant *blue* 7)

(defmethod take-picture ((camera strobe-camera) (body rigid-body) draw-color)

(let ((camera-space-node-list (mapcar #'(lambda (node-location)

(post-multiply (inverse-H-matrix camera) node-location))

(transformed-node-list body))))

(dolist (polygon (polygon-list body))

(clip-and-draw-polygon camera polygon camera-space-node-list draw-color))))

(defmethod erase-camera-window ((camera strobe-camera))

(cw.clear (camera-window camera)))

(defmethod erase-block ((camera strobe-camera) (body rigid-body))

(let ((center (perspective-transform camera

(post-multiply (inverse-H-matrix camera)

(first (transformed-node-list body))))))

(cwdraw-filled-rectangle (camera-window camera)

(make-position :x (- (first center) 150)

:y (- (second center) 150))

300 300 : color white)))
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(defmethod new-picture ((camera strobe-camera) (body rigid-body) draw-color)

(erase-camera-window camera)

(take-picture camera body draw-color))

(defmethod clip-and-draw-polygon

((camera strobe-camera) polygon node-coord-list draw-color)

(do* ((initial-point (nth (first polygon) node-coord-list))

(from-point initial-point to-point)

(remaining-nodes (rest polygon) (rest remaining-nodes))

(to-point (nth (first remaining-nodes) node-coord-list)

(if (not (null (first remaining-nodes)))

(nth (first remaining-nodes) node-coord-list))))

((null to-point)

(draw-clipped-projection camera from-point initial-point draw-color))

(draw-clipped-projection camera from-point to-point draw-color)))

(defmethod draw-clipped-projection ((camera strobe-camera)

from-point to-point draw-color)

(cond ((and (<= (first from-point) (focal-length camera))

(<= (first to-point) (focal-length camera))) nil)

((<= (first from-point) (focal-length camera))

(draw-line-in-window camera

(perspective-transform camera (from-clip camera from-point to-point))

(perspective-transform camera to-point) draw-color))

((<= (first to-point) (focal-length camera))

(draw-line-in-window camera

(perspective-transform camera from-point)
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(perspective-transform camera (to-clip camera from-point to-point))

draw-color))

(t (draw-line-in-window camera

(perspective-transform camera from-point)

(perspective-transform camera to-point) draw-color))))

(defmethod from-clip ((camera strobe-camera) from-point to-point)

(let ((scale-factor (/ (- (focal-length camera) (first from-point))

(- (first to-point) (first from-point)))))

(list (+ (first from-point)

(* scale-factor (- (first to-point) (first from-point))))

(+ (second from-point)

(* scale-factor (- (second to-point) (second from-point))))

(+ (third from-point)

(* scale-factor (- (third to-point) (third from-point)))) 1)))

(defmethod to-clip ((camera strobe-camera) from-point to-point)

(from-clip camera to-point from-point))

(defmethod draw-line-in-window ((camera strobe-camera) start end draw-color)

(cond ((= draw-color) (cw: draw-line (camera-window camera)

(cw:make-position :x (first start) :y (second start))

(cw: make-position :x (first end) :y (second end))

brush-width : color white))

((= 1 draw-color) (cw: draw-line (camera-window camera)

(cw:make-position :x (first start) :y (second start))

(cwmake-position :x (first end) :y (second end))
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brush-width :color yellow))

((= 2 draw-color) (cw: draw-line (camera-window camera)

(cwmake-position :x (first start) :y (second start))

(cw:make-position :x (first end) :y (second end))

brush-width color red))

((= 3 draw-color) (cw: draw-line (camera-window camera)

(cwmake-position :x (first start) :y (second start))

(cw:make-position :x (first end) :y (second end))

:brush-width : color green))

((= 4 draw-color) (cw: draw-line (camera-window camera)

(cwmake-position :x (first start) :y (second start))

(cwmake-position :x (first end) :y (second end))

:brush-width color black))

((= 5 draw-color) (cw: draw-line (camera-window camera)

(cwmake-position :x (first start) :y (second start))

(cw: make-position :x (first end) :y (second end))

:brush-width : color cyan))

((= 6 draw-color) (cw: draw-line (camera-window camera)

(cw: make-position :x (first start) :y (second start))

(cwmake-position :x (first end) :y (second end))

brush-width color magenta))

((= 7 draw-color) (cw: draw-line (camera-window camera)

(cwmake-position :x (first start) :y (second start))

(cw: make-position :x (first end) :y (second end))

:brush-width color blue))))
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(defmethod perspective-transform ((camera strobe-camera) point-in-camera-space)

(let* ((enlargement-factor (enlargement-factor camera))

(focal-length (focal-length camera))

(x (first point-in-camera-space)) ;x axis is along optical axis

(y (second point-in-camera-space)) ;y is out right side of camera

(z (third point-in-camera-space))) ;z is out bottom of camera

(list (+ (round (* enlargement-factor (/ (* focal-length y) x)))

200) ;to right in camera window

(+ 200 (round (* enlargement-factor (/ (* focal-length (- z)) x))

))))) ;up in camera window ;500 500

(defmethod move-camera ((camera strobe-camera) azimuth elevation roll x y z)

(setf (posture camera) (list x y z roll elevation azimuth))

(setf (H-matrix camera) (homogeneous-transform azimuth elevation roll x y z))

(setf (inverse-H-matrix camera) (inverse-H (H-matrix camera))))

(defmethod zoom-camera ((camera strobe-camera) zoom-amount)

(setf (slot-value camera 'enlargement-factor)

(+ (slot-value camera 'enlargement-factor) zoom-amount)))

(defun deg-to-rad (angle) (* .017453292519943295 angle))

(defconstant tilt-limit (* .017453292519943295 89.9))

(defun kill ()

(cw:kill-common-windows))

(defun reset-windows ()
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(kill)

(cw : initialize-common-windows))
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APPENDIX D: SOURCE CODE (PERFECT AUTOPILOT FILE)

, File pioneer-perfect-autopilot cl Franz Common LISP

;

** PERFECT AUTOPILOT CLASS DEFINITION **

; A Perfect Autopilot steers the body axes of the rigid-body to the

; desired orientation with no time delay.

; Requires: pioneer-euler-angle-rigid-body cl

; Code written by R.B. McGhee, Naval Postgraduate School, & modified by D Wiley

; mcghee@cs.nps.navy.mil

(defclass perfect-autopilot ()

((vehicle-name

, This is the name of an instance of the rigid-body class

accessor vehicle-name)

(current-trajectory-segment

:accessor current-trajectory-segment)

(current-time

initform

accessor current-time)

(longitudinal-acceleration-gain

accessor longitudinal-acceleration-gain)

(trajectory-segment-list

accessor trajectory-segment-list)))'

;This is a list of lists Each list contains

;start-time and commanded speed,

;heading-rate, and depth. Last segment is end-time followed by nil.
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(defmethod initialize-4 ((autopilot perfect-autopilot) vehicle gain trajectory)

(setf (longitudinal-acceleration-gain autopilot) gain

(trajectory-segment-list autopilot) (rest trajectory)

(current-trajectory-segment autopilot) (first trajectory)

(vehicle-name autopilot) vehicle))

(defmethod update-segment ((autopilot perfect-autopilot) time)

(if (and (not (null (second (current-trajectory-segment autopilot))))

(>= time (caar (trajectory-segment-list autopilot))))

(setf (current-trajectory-segment autopilot)

(pop (trajectory-segment-list autopilot)))))

(defmethod commanded-velocity ((autopilot perfect-autopilot) delta-t)

(setf (current-time autopilot) (+ (current-time autopilot) delta-t))

(update-segment autopilot (current-time autopilot))

(if (second (current-trajectory-segment autopilot))

(list (+ (first (velocity (vehicle-name autopilot)))

(* (longitudinal-acceleration autopilot) delta-t))

(fourth (current-trajectory-segment autopilot))

(fifth (current-trajectory-segment autopilot))

(third (current-trajectory-segment autopilot)))))

(defmethod longitudinal-acceleration ((autopilot perfect-autopilot))

(* (longitudinal-acceleration-gain autopilot)

(- (second (current-trajectory-segment autopilot))

(first (velocity (vehicle-name autopilot))))))
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(defmethod move-vehicle ((autopilot perfect-autopilot) delta-t)

(setf (velocity (vehicle-name autopilot))

(commanded-velocity autopilot delta-t))

(when (second (velocity (vehicle-name autopilot)))

(update-posture (vehicle-name autopilot) delta-t)

(setf (H-matrix (vehicle-name autopilot))

(homogeneous-transform (sixth (posture (vehicle-name autopilot)))

(fifth (posture (vehicle-name autopilot)))

(fourth (posture (vehicle-name autopilot)))

(first (posture (vehicle-name autopilot)))

(second (posture (vehicle-name autopilot)))

(third (posture (vehicle-name autopilot)))))

(transform-node-list (vehicle-name autopilot))))

(defmethod accelerometer-output ((autopilot perfect-autopilot))

(let ((longitudinal-velocity (first (velocity (vehicle-name autopilot))))

(pitch-angle (fifth (posture (vehicle-name autopilot))))

(roll-angle (fourth (posture (vehicle-name autopilot))))

(pitch-rate (fifth (velocity (vehicle-name autopilot))))

(yaw-rate (sixth (velocity (vehicle-name autopilot)))))

(list (+ (longitudinal-acceleration autopilot)

(* *gravity* (sin pitch-angle)))

(- (* longitudinal-velocity yaw-rate)

(* *gravity* (cos pitch-angle) (sin roll-angle)))

(+ (- (* longitudinal-velocity pitch-rate))

(- (* *gravity* (cos pitch-angle) (cos roll-angle)))))))

65



(defmethod mission-data ((autopilot perfect-autopilot))

(append (IMU-data autopilot)

(list (sixth (posture (vehicle-name autopilot))))))

(defmethod IMU-data ((autopilot perfect-autopilot))

(cons (current-time autopilot)

(append (accelerometer-output autopilot)

(angular-rate-output autopilot))))

(defmethod angular-rate-output ((autopilot perfect-autopilot))

(cons (fourth (velocity (vehicle-name autopilot)))

(cons (fifth (velocity (vehicle-name autopilot)))

(list (sixth (velocity (vehicle-name autopilot)))))))

(defun initialize-mission (*X* *Y* *Z* *AZM*)

(setf airplane- 1 (make-instance 'rigid-body))

(setf autopilot- 1 (make-instance 'perfect-autopilot))

(initialize-4 autopilot- 1 airplane- 1 1 *trajectory*)

(move-vehicle autopilot- 1 0)

(setf camera- 1 (make-instance 'strobe-camera))

(move-camera camera- 1 0)

(setf (first(posture airplane- 1)) *X*)

(setf (second(posture airplane- 1)) *Y*)

(setf (third(posture airplane- 1)) *Z*)

(setf (sixth(posture airplane- 1)) *AZM*)

(new-picture camera- 1 airplane- 1 *black*)

(setf*bullets-fired*0)
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(perfect-gunner-aim-shoot airplane- 1 2)

(dolist (bullet bullet- 1) (take-picture camera- 1 bullet *red*)))

;(queue-mouse))

(deftin execute-mission ()

(do* ((firecontrol (+ firecontrol 1))

(mission-data (list (mission-data autopilot- 1))

(cons (mission-data autopilot- 1) mission-data))

(new-node-list (move-vehicle autopilot- 1 . 1)

(move-vehicle autopilot- 1 .1)))

((not (second (velocity (vehicle-name autopilot- 1))))

(setf *mission-data* (reverse mission-data)))

(updatebullets bullet- 1)

(dolist (bullet bullet- 1)

(if (close-to-hit (posture airplane- l)(posture bullet))

(test-for-hit bullet airplane- 1)))

(if (and (> (first (posture airplane- 1)) 1)

(< (second (posture airplane- 1)) .1))

(gunner-fire-bullet-in *azimuth* *elevation* firecontrol))

(if (and (< (first (posture airplane- 1)) 1)

(< (second (posture airplane- 1)) .1))

(gunner-fire-bullet-out *azimuth* *elevation* firecontrol))

(if (>(second (posture airplane- 1)) .1) (gunner-fire-bullet-offset

*azimuth* *elevation* firecontrol))

(new-picture camera- 1 airplane- 1 *black*)

(dolist (bullet bullet- 1) (take-picture camera- 1 bullet *red*))))
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(setf "trajectory* '((0 60 0) (100 nil)))
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APPENDIX E: SOURCE CODE (DETERMINE A HIT FILE)

; File: determine-hit.cl Franz Common LISP

;

** Functions to test a projectile for penetration of a **

;

** UAV surface **

; Code written by D WILEY, Naval Postgraduate School, dawiley@cs.nps.navy.mil

. *************** *************;+::(<*************************************

(defconstant *distance* 223)

(defconstant *range-of-projectile* 6200)

(defun test-for-hit (bullet plane)

(let ((bullet-prev (convert-bullet (old-posture bullet)plane))

(bullet-curr (convert-bullet (posture bullet) plane)))

(cross-infinite-planep bullet-prev bullet-curr bullet)))

(defun convert-bullet (bullet plane)

(let ((bullet-pos (bullet-in-plane-coordinates bullet plane)))

(list (first bullet-pos)( second bullet-pos)(third bullet-pos))))

(defun bullet-in-plane-coordinates (bullet plane)

(let ((xb (first bullet))(yb (second bullet))

(zb (third bullet)))

(post-multiply (inverse-H (H-matrix plane))(list xb yb zb 1))))

,Tests to see if the old bullet position and its current bullet have crossed

;the geometric plane that the UAV component lies in, if that has happened

it then calls a function to find the

;X Y and Z coordinates of the bullet on the geometric plane

(defun cross-infinite-planep (bullet-prev bullet-curr bullet-ID)

(dolist (plane *uav-components*)
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(let* ((uav-component plane)

(point-on-geo-plane (first plane))

(vecl2 (vector-subtract (second plane)(first plane)))

(vecl4 (vector-subtract (fourth plane)(first plane)))

(normal-plane (cross-product vecl4 vecl2))

(vecl -bulletcurr(vector-subtract bullet-curr (first plane)))

(vecl-bulletprev(vector-subtract bullet-prev (first plane)))

(resultl (dot-product normal-plane vecl-bulletcurr))

(result2 (dot-product normal-plane vecl-bulletprev)))

(if (signs-samep resultl result2) t

(bullet-on-plane bullet-prev bullet-curr normal-plane

point-on-geo-plane uav-component bullet-ID)))))

(defun signs-samep (x y)

(if (or (and (>= x 0)(>= y 0))(and (<= x 0)(<= y 0))) t))

;Determines the X Y and Z coordinate of a bullet on a geometric plane

;given the previous position, new position and a point on the geometric plane

(defun bullet-on-plane (bullet-prev bullet-curr normal point uav-component bullet-ID)

(let* ((bpath (vector-subtract bullet-curr bullet-prev))

(xpath (first bpath))(ypath (second bpath))(zpath (third bpath))

(a (first normal))(b (second normal))(c (third normal))

(x (first bullet-prev))(y (second bullet-prev))(z (third bullet-prev))

(xPlane (first point))(yPlane (second point))(zPlane (third point))

(d (- (+(* a xPlane)(* b yPlane)(* c zPlane))))

(k (-(/(+(* a x)(* b y)(* c z)d)(+(* a xpath)(* b ypath)(* c zpath)))))

(planeX (+ x (* k xpath)))
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(planeY (+ y (* k ypath)))(planeZ (+ z (* k zpath))))

(angle-sum-test (list planeX planeY planeZ) uav-component bullet-ID)))

,Tests a bullet to see if it lies om any part of a rectangle on a plane by

;summing the angle between vectors and checking for the sum to be close to 2 pi

(defun angle-sum-test (bullet-on-plane UAV-surface bullet-ID)

(let* ((p UAV-surface)(b bullet-on-plane)

(vl (vector-subtract (first p) b))(v2 (vector-subtract (second p) b))

(v3 (vector-subtract (third p) b))(v4 (vector-subtract (fourth p) b))

(angle-sum (+ (angle-between-vectors vl v2)(angle-between-vectors v2 v3)

(angle-between-vectors v3 v4)(angle-between-vectors v4 vl))))

(if (and (> angle-sum 6.25)(< angle-sum 6.30)) ; threshold for around 2 pi

(provide-feedback p bullet-ID))))

(defun angle-between-vectors (vl v2)

(let ((result (/ (dot-product vl v2)

(*(vector-magnitude vl)(vector-magnitude v2)))))

(if(>= result 1.0) (acos 1.0)(acos result))))

(defun close-to-hit (plane bullet)

(let ((xp (first plane)) (yp (second plane)) (zp (third plane))

(xb (first bullet)) (yb (second bullet)) (zb (third bullet)))

(if (< (distance-bullet-plane xp xb yp yb zp zb) *distance*) t)))

(defun distance-bullet-plane (xp xb yp yb zp zb)

(sqrt (+(square(- xp xb))(square(- yp yb))(square(- zp zb)))))

(defun updatebullets (bullet-list)

(cond ((null bullet-list) nil)

(t (update-rigid-body (first bullet-list))
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(if (relevent-bullet airplane- 1 (first bullet-list))

(setf bullet- 1 (cons (first bullet-list)

(updatebullets (rest bullet-list))))))))

(defun relevent-bullet (plane bullet)

(if (and (above-ground-bullet (third (posture bullet)))

(< (distance-gun-object bullet) *range-of-projectile*))t))

(defun above-ground-bullet (projectile)

( if (< projectile 1.0) t))

(defun distance-gun-object (object)

(let ((x (first (posture object)))(y (second (posture object)))

(z (third (posture object))))

(sqrt (+ (square x)(square y)(square z)))))
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APPENDIX F: SOURCE CODE (ADJUST FIRE FILE)

; File: adjust-fire.cl Franz Common LISP

5

;
** Gunners elevation and azimuth computations **

; A Perfect Gunner establishes a wall of fire in front

;
of a UAV until the UAV is killed or past the wall

, of fire

; Code written by D. A. Wiley, Naval Postgraduate School,

, dawiley@cs.nps.navy.mil

(defconstant * super-elevation* 0175) ; approximately 1 degree 0175

(defconstant *max-elevation-of-gun* 1.047197)

(defconstant *specified-velocity* 3608)

(defconstant * velocity-dispersion-feet* 16.4) ;+- 5 meters per shot = 16 4 ft

(defconstant *elevation-step* 005)

(defconstant * lead-radians* 02)

(defconstant *angular-dispersion-radians* 0.00087375)

(defun gunner-fire-bullet-offset (azimuth elevation firecontrol)

(if(or(= (length bullet-1)0)

(>(azimuth-angle (first bullet- 1))(- (azimuth-angle airplane- 1)

*lead-radians*)))

; fire a bullet if there has not been one fired or

;
your azimuth to bullet is > azimuth to plane

(cond ((evenp firecontrol)

(let ((x (first (posture camera- 1)))
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(y (second (posture camera- 1)))

(z (third (posture camera- 1)))

(roll (fourth (posture camera- 1)))

(bullet (make-instance 'bullet))

(azmRandom (get-random-angle azimuth))

(elevRandom (get-random-angle elevation)))

(initialize bullet)

(move-body bullet azmRandom elevRandom roll x y z)

(move-camera camera- 1 azimuth elevation roll x y z)

(setf (first(velocity bullet)) (get-random-velocity))

(push bullet bullet- 1)

(setf*bullets-fired*(+ *bullets-fired* 1))

(if (>= (fifth (posture(first bullet- 1)))

*max-elevation-of-gun*)

(pprint "At positive elevation limit")))

tt))

(perfect-gunner-aim-shoot airplane- 1 2)))

(defun gunner-fire-bullet-in (azimuth elevation firecontrol)

(if(or(= (length bullet- 1)0)

(>(fifth (posture (first bullet- 1))) (- (shot-l-theta-1 airplane- 1)

*lead-radians*)))

;fire a bullet if there has not been one fired or if

,you are still in front of the target, *lead-radians*

;assures plane has passed through wall of fire

(cond ((evenp firecontrol)

74



(let ((x (first (posture camera-
1 )))

(y (second (posture camera- 1)))

(z (third (posture camera- 1)))

(roll (fourth (posture camera-
1 )))

(bullet (make-instance 'bullet))

(azmRandom (get-random-angle azimuth))

(elevRandom (get-random-angle elevation)))

(initialize bullet)

(move-body bullet azmRandom elevRandom roll x y z)

(move-camera camera- 1 azimuth elevation roll x y z)

(setf (first(velocity bullet)) (get-random-velocity))

(push bullet bullet- 1)

(setf*bullets-fired* (+ *bullets-fired* 1))

(if (>= (fifth (posture(first bullet- 1)))

*max-elevation-of-gun*)

(pprint "At positive elevation limit")))

tt))

(perfect-gunner-aim-shoot airplane- 1 2)))

(defiin gunner-fire-bullet-out (azimuth elevation firecontrol)

(if(or(= (length bullet- 1)0)

(< (fifth (posture (first bullet- 1)))(+ (shot-l-theta-1 airplane- 1)

*lead-radians*)))

;fire a bullet if there has not been one fired or if

;you are still in front of the target, * lead-radians*

; assures plane has passed through wall of fire
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(cond ((evenp firecontrol)

(let ((x (first (posture camera- 1)))

(y (second (posture camera- 1)))

(z (third (posture camera- 1)))

(roll (fourth (posture camera- 1)))

(bullet (make-instance 'bullet))

(azmRandom (get-random-angle azimuth))

(elevRandom (get-random-angle elevation)))

(initialize bullet)

(move-body bullet azmRandom elevRandom roll xyz)

(move-camera camera- 1 azimuth elevation roll xyz)

(setf (first(velocity bullet)) (get-random-velocity))

(push bullet bullet- 1)

(setf*bullets-fired*(+ *bullets-fired* 1))

(if (>= (fifth (posture(first bullet- 1)))

*max-elevation-of-gun*)

(pprint "At positive elevation limit")))

1 1))

(perfect-gunner-aim-shoot airplane- 1 2)))

(defiin perfect-gunner-aim-shoot (UAV firecontrol)

(format t "~%Bullets fired: ~A" * bullets-fired*)

(format t "~%Location ofUAV: ~A" (posture airplane- 1))

(format t "~%Range Gun to Target: ~A" (distance-gun-object airplane- 1))

(format t "~%Azimuth Gun to Target: ~A" (rad-to-deg (azimuth-angle UAV)))

(setf*bullets-fired* 0)
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(setf bullet- 1 nil)

(if (and (> (first (posture UAV)) 1)(< (second (posture UAV)) .1))

(determine-angles-inbound UAV firecontrol))

(if (and (< (first (posture UAV)) 1)(< (second (posture UAV)) 1))

(determine-angles-outbound UAV firecontrol))

(if (>(second (posture UAV)) .1)

(determine-angles-offset UAV firecontrol)))

(defun determine-angles-offset (UAV firecontrol)

(let* ((theta-1 (shot-l-theta-1 UAV))

(theta-2 (shot-l-theta-2-inbound UAV theta-1))

(theta-3 (shot-l-theta-3-inbound UAV))

(azm (azimuth-angle (UAV-at-future-point UAV))))

(setf *azimuth* azm)

(format t "~%~%Computing angles for elevation/azimuth to lay wall of fire!")

(setf *elevation* (determine-elevation-offset UAV))

(gunner-fire-bullet-offset *azimuth* *elevation* firecontrol)))

(defun determine-elevation-offset (UAV)

(let ((new-UAV (UAV-at-future-point UAV)))

(do ((elevation (get-elev-angle-to-UAV new-UAV)(+ elevation *elevation-step*))

(close-flag nil))

(close-flag elevation)

(do ((test-bullet (make-test-bullet elevation)))

((or(not(relevent-bullet new-UAV test-bullet))

close-flag

(< (third (posture test-bullet))(third (posture new-UAV))))
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nil)

(update-rigid-body test-bullet)

(if (bullet-path-thru-UAV-plane-p new-UAV test-bullet)

(setf close-flag 1))))))

(defiin bullet-path-thru-UAV-plane-p (UAV bullet)

(let ((uav-Z (third (posture UAV)))

(prev-bullet-Z (third (old-posture bullet)))

(curr-bullet-Z (third (posture bullet))))

(if (and (> prev-bullet-Z uav-Z)(< curr-bullet-Z uav-Z))t)))

(defun make-test-bullet (elevation)

(let ((test-bullet (make-instance 'bullet)))

(initialize test-bullet)

(move-body test-bullet *azimuth* elevation 0)

(setf (first (velocity test-bullet)) *specified-velocity*)

test-bullet))

(defun UAV-at-future-point (UAV)

(let((new-UAV (make-instance 'rigid-body)))

(setf (first(posture new-UAV))

(- (first (posture UAV)) 100))

(setf (second(posture new-UAV)) (second(posture UAV)))

(setf (third(posture new-UAV))(third(posture UAV)))

(setf (sixth(posture new-UAV)) (sixth(posture UAV)))

new-UAV))

(defun determine-angles-inbound (UAV firecontrol)

(let* ((theta-1 (shot-l-theta-1 UAV))
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(theta-2 (shot-l-theta-2-inbound UAV theta-1))

(theta-3 (shot- l-theta-3 -inbound UAV))

(azm (azimuth-angle UAV)))

(setf *azimuth* azm)

(format t "~%~%Computing angles for elevation/azimuth to lay wall of fire!")

(setf * elevation* (+ (+ theta-3 (- theta-1 theta-2))*super-elevation*))

(gunner-fire-bullet-in *azimuth* *elevation* firecontrol)))

(defun determine-angles-outbound (UAV firecontrol)

(let* ((theta-1 ( shot- 1 -theta-1 UAV))

(theta-2 (shot-l-theta-2-outbound UAV theta-1))

(theta-3 (shot-l-theta-3-outbound UAV))

(azm (azimuth-angle UAV)))

(setf * azimuth* azm)

(format t "~%Computing angles for elevation/azimuth to lay wall of fire!")

(setf *elevation* (- (+ theta-3 (- theta-1 theta-2)) * super-elevation*))

(gunner-fire-bullet-out *azimuth* *elevation* firecontrol)))

(defun shot- 1 -theta-1 (UAV)

(let ((X (first (posture UAV)))

(Y (second (posture UAV)))

(Z (third (posture UAV))))

(elev-angle X Y Z)))

(defun shot-l-theta-2-inbound (UAV theta-1)

(let* ((Bullet (actual-shots-location-inbound theta-1 UAV))

(X (first (posture Bullet)))

(Y (second (posture UAV)))
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(Z (third (posture Bullet))))

(elev-angle X Y Z)))

(defun shot-l-theta-2-outbound (UAV theta-1)

(let* ((Bullet (actual-shots-location-outbound theta- 1 UAV))

(X (first (posture Bullet)))

(Y (second (posture UAV)))

(Z (third (posture Bullet))))

(elev-angle X Y Z)))

(defun actual-shots-location-inbound (elevation-angle UAV)

(setf *test-bullet* (make-instance 'bullet))

(initialize *test-bullet*)

(move-body *test-bullet* (azimuth-angle UAV) elevation-angle 0)

(fire-test-bullet UAV))

(defun actual-shots-location-outbound (elevation-angle UAV)

(setf *test-bullet* (make-instance 'bullet))

(initialize *test-bullet*)

(move-body *test-bullet* (azimuth-angle UAV) elevation-angle 0)

(fire-test-bullet UAV))

(defun fire-test-bullet (UAV)

(setf (time-of-flight *test-bullet*) 0)

(setf (first (velocity *test-bullet*)) *specified-velocity*)

(do()

((and (> (abs (first (posture *test-bullet*)))

(abs (first (posture UAV))))

(< (third(posture *test-bullet*)) (third(posture airplane- 1 )))))
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(update-rigid-body *test-bullet*)

(update-time-of-flight *test-bullet*))

test-bullet*)

(defun shot-l-theta-3-inbound (UAV)

(let ((X (- (first (posture UAV)) (* (* (time-of-flight *test-bullet*) 1 ) 6)))

(Y (second (posture UAV)))

(Z (third (posture UAV))))

(elev-angle X Y Z)))

(defun shot- l-theta-3 -outbound (UAV)

(let ((X (+ (first (posture UAV)) (* (* (time-of-flight *test-bullet*) .1) -6)))

(Y (second (posture UAV)))

(Z (third (posture UAV))))

(elev-angle X Y Z)))

(defun get-elev-angle-to-UAV (UAV)

(let ((X (first (posture UAV)))

(Y (second (posture UAV)))

(Z (third (posture UAV))))

(elev-angle X Y Z)))

(defun elev-angle (X Y Z)

(atan (abs Z) (sqrt(+ (* X X)(* Y Y)))))

(defun azimuth-angle (UAV)

(let ((X (first (posture UAV)))

(Y (second (posture UAV))))

(atan Y X)))

(defun update-time-of-flight (bullet)

81



(setf (time-of-flight bullet) (+ (time-of-flight bullet) 1)))

(defun update-time-of-flight (bullet)

(setf (time-of-flight bullet) (+ (time-of-flight bullet) 1)))

(defun get-random-velocity ()

(+ *specified-velocity* (* *velocity-dispersion-feet* (- (random 2.0) 1))))

(defun get-random-angle (angle)

(+ angle (* * angular-dispersion-radians* (- (random 2.0) 1))))
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APPENDIX G: SOURCE CODE (MOUSE HANDLER FILE)

; File: mouse. cl Franz Common LISP

, Mouse handler to allow adjusting azimuth/elevation of the launcher, zooming

, of the camera and firing of a bullet

; Must be invoked with the call (queue-mouse) at start of simulation

, Code written by D. T. Davis, Naval Postgraduate School, & modified by D Wiley;

(defconstant *ldegree* 0.017453)

(defconstant *positive-elevation* 1.05)

(defconstant *negative-elevation* -0 158)

(defmethod queue-mouse ()

(cw : sun-enable-super-and-hyper)

(cw: modify-window-stream-method (camera-window camera- 1) left-button-down

after 'mouse-handler)

(cw:modify-window-stream-method (camera-window camera-1) middle-button-down

: after 'mouse-handler)

(cw:modify-window-stream-method (camera-window camera-1) : right-button-down

:after 'mouse-handler))

(defun mouse-handler (wstream cw: mouse-state &optional event)

(let ((button-state (cw:mouse-button-state)))

;(format t "Mouse Handler Invoked: ~a ~%" button-state)

(case button-state
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(128 (slew-left)) ; left click

(64 (fire-bullet)) ; middle click

(32 (slew-right)) ; right click

(136 (zoom-out-X2)) , left click + alt

(40 (zoom-in-X2)) ,
right-click + alt

(144 (slew-up)) ; left click + shift

(48 (slew-down))))) ; right click + shift

(defun slew-left ()

(let ((x (first (posture camera- 1)))

(y (second (posture camera- 1)))

(z (third (posture camera- 1)))

(azimuth (- (sixth (posture camera-1)) *ldegree*))

(elevation (fifth (posture camera-1)))

(roll (fourth (posture camera-1))))

(move-camera camera-1 azimuth elevation roll x y z)))

(defun slew-right ()

(let ((x (first (posture camera-1)))

(y (second (posture camera-1)))

(z (third (posture camera- 1 )))

(azimuth (+ (sixth (posture camera-1)) *1 degree*))

(elevation (fifth (posture camera-1)))

(roll (fourth (posture camera-1))))
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(move-camera camera- 1 azimuth elevation roll x y z)))

(defun slew-up ()

(cond ((< (fifth (posture camera- 1)) *positive-elevation*)

(let ((x (first (posture camera- 1)))

(y (second (posture camera- 1)))

(z (third (posture camera- 1)))

(azimuth (sixth (posture camera- 1)))

(elevation (+ (fifth (posture camera- 1)) *1 degree*))

(roll (fourth (posture camera- 1))))

(move-camera camera- 1 azimuth elevation roll x y z)))

(t (pprint "At positive elevation limit"))))

(derun slew-down ()

(cond ((> (fifth (posture camera- 1)) * negative-elevation*)

(let ((x (first (posture camera- 1)))

(y (second (posture camera- 1)))

(z (third (posture camera- 1)))

(azimuth (sixth (posture camera- 1 )))

(elevation (- (fifth (posture camera- 1)) *1 degree*))

(roll (fourth (posture camera- 1))))

(move-camera camera- 1 azimuth elevation roll x y z)))

(t (pprint "At negative elevation limit"))))

(defun zoom-in-X2 ()
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(let ((x (focal-length camera- 1)))

(if(<=xl)

(setf (focal-length camera- 1) 2)

(setf (focal-length camera- 1) (* x 2))))

(format t "Scope set to power: ~a ~%" (focal-length camera- 1)))

(deflin zoom-out-X2 ()

(let ((x (focal-length camera- 1)))

(if(<=x2)

(setf (focal-length camera- 1)1)

(setf (focal-length camera- 1) (/ x 2))))

(format t "Scope set to power: ~a ~%" (focal-length camera- 1)))

(defun fire-bullet ()

(let ((x (first (posture camera- 1)))

(y (second (posture camera- 1))) (z (third (posture camera- 1)))

(azimuth (sixth (posture camera- 1)))

(elevation (fifth (posture camera- 1)))

(roll (fourth (posture camera- 1)))

(bullet (make-instance 'bullet)))

(initialize bullet)

(move-body bullet azimuth elevation roll xyz)

(setf (velocity bullet) '(3608 0))

(push bullet bullet- 1)))
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APPENDIX H: SOURCE CODE (ROBOT KINEMATICS FILE)

; File: robot-kinematics cl Franz Common LISP

9

; Utility functions

; Code written by R.B. McGhee, Naval Postgraduate School, & modified by D. Wiley

; mcghee@cs.nps.navy.mil

(defun transpose (matrix) ;A matrix is a list of row vectors,

(cond ((null (cdr matrix)) (mapcar 'list (car matrix)))

(t (mapcar 'cons (car matrix) (transpose (cdr matrix))))))

(defun dot-product (vector- 1 vector-2) ;A vector is a list of numerical atoms.

(apply '+ (mapcar '* vector- 1 vector-2)))

(defun cross-product (vl v2)

(cons (- (* (second vl)(third v2))(* (second v2)(third vl)))

(cons(- (* (first v2)(third vl))(* (first vl)(third v2)))

(list

(- (* (first vl)(second v2))(* (first v2)(second vl )))))))

(defun vector-magnitude (vector) (sqrt (dot-product vector vector)))

(defun square (x) (* x x))

(defun post-multiply (matrix vector)

(cond ((null (rest matrix)) (list (dot-product (first matrix) vector)))

(t (cons (dot-product (first matrix) vector)

(post-multiply (rest matrix) vector)))))

(defun pre-multiply (vector matrix)

(post-multiply (transpose matrix) vector))
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(defun matrix-multiply (A B) ;A and B are conformable matrices,

(cond ((null (cdr A)) (list (pre-multiply (car A) B)))

(t (cons (pre-multiply (car A) B) (matrix-multiply (cdr A) B)))))

(defun chain-multiply (L) ;L is a list of names of conformable matrices,

(cond ((null (cddr L)) (matrix-multiply (eval (car L)) (eval (cadr L))))

(t (matrix-multiply (eval (car L)) (chain-multiply (cdr L))))))

(defun cycle-left (matrix) (mapcar 'row-cycle-left matrix))

(defun row-cycle-left (row) (append (cdr row) (list (car row))))

(defun cycle-up (matrix) (append (cdr matrix) (list (car matrix))))

(defun unit-vector (one-column length) ;Column count starts at 1

(do ((n length (1- n))

(vector nil (cons (cond ((= one-column n) 1) (t 0)) vector)))

((zerop n) vector)))

(defun unit-matrix (size)

(do ((row-number size (1- row-number))

(I nil (cons (unit-vector row-number size) I)))

((zerop row-number) I)))

(defun concat-matrix (A B) ;A and B are matrices with equal number of rows,

(cond ((null A) B)

(t (cons (append (car A) (car B)) (concat-matrix (cdr A) (cdr B))))))

(defun augment (matrix)

(concat-matrix matrix (unit-matrix (length matrix))))

(defun normalize-row (row) (scalar-multiply (/ 1.0 (car row)) row))

(defun scalar-multiply (scalar vector)
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(cond ((null vector) nil)

(t (cons (* scalar (car vector))

(scalar-multiply scalar (cdr vector))))))

(defun solve-first-column (matrix) ;Reduces first column to (1 ... 0).

(do* ((remaining-row-list matrix (rest remaining-row-list))

(first-row (normalize-row (first matrix)))

(answer (list first-row)

(cons (vector-add (first remaining-row-list)

(scalar-multiply (- (caar remaining-row-list))

first-row))

answer)))

((null (rest remaining-row-list)) (reverse answer))))

(defun vector-add (vector- 1 vector-2) (mapcar '+ vector- 1 vector-2))

(defun vector-subtract (vector- 1 vector-2) (mapcar '- vector- 1 vector-2))

(defun first-square (matrix) ;Returns leftmost square matrix from argument

(do ((size (length matrix))

(remainder matrix (rest remainder))

(answer nil (cons (firstn size (first remainder)) answer)))

((null remainder) (reverse answer))))

(defun firstn (n list)

(cond ((zerop n) nil)

(t (cons (first list) (firstn (1- n) (rest list))))))

(defun max-car-firstn (n list)

(append (max-car-first (firstn n list)) (nthcdr n list)))
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(defun matrix-inverse (M)

(do ((Ml (max-car-first (augment M))

(cond ((null Ml) nil) ;Abort for singular matrix.

(t (max-car-firstn n (cycle-left (cycle-up Ml))))))

(n(l- (length M))(l-n)))

((or (minusp n) (null Ml)) (cond ((null Ml) nil) (t (first-square Ml))))

(setq Ml (cond ((zerop (caar Ml)) nil) (t (solve-first-column Ml))))))

(defun max-car-first (L) ;L is a list of lists. This function finds list with

(cond ((null (cdr L)) L) ;largest car and moves it to head of list of lists.

(t (if (> (abs (caar L)) (abs (caar (max-car-first (cdr L))))) L

(append (max-car-first (cdr L)) (list (car L)))))))

(defun dh-matrix (cosrotate sinrotate costwist sintwist length translate)

(list (list cosrotate (- (* costwist sinrotate))

(* sintwist sinrotate) (* length cosrotate))

(list sinrotate (* costwist cosrotate)

(- (* sintwist cosrotate)) (* length sinrotate))

(list 0. sintwist costwist translate) (list 0. 0. 1 )))

(defun homogeneous-transform (azimuth elevation roll x y z)

(let ((spsi (sin azimuth)) (cpsi (cos azimuth)) (sth (sin elevation))

(cth (cos elevation)) (sphi (sin roll)) (cphi (cos roll)))

(list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cphi)) .

(+ (* cpsi sth cphi) (* spsi sphi)) x)

(list (* spsi cth) (+ (* cpsi cphi) (* spsi sth sphi))

(- (* spsi sth cphi) (* cpsi sphi)) y)

(list (- sth) (* cth sphi) (* cth cphi) z)

90



(listO. 0. 0. 1.))))

(defiin inverse-H (H) ;H is a 4x4 homogeneous transformation matrix

(let* ((minus-P (list (- (fourth (first H)))

(- (fourth (second H)))

(- (fourth (third H)))))

(inverse-R (transpose (first-square (reverse (rest (reverse H))))))

(inverse-P (post-multiply inverse-R minus-P)))

(append (concat-matrix inverse-R (transpose (list inverse-P)))

(list (list 1)))))

(defun rotation-matrix (azimuth elevation roll)

(let ((spsi (sin azimuth)) (cpsi (cos azimuth)) (sth (sin elevation))

(cth (cos elevation)) (sphi (sin roll)) (cphi (cos roll)))

(list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cphi))

(+ (* cpsi sth cphi) (* spsi sphi)))

(list (* spsi cth) (+ (* cpsi cphi) (* spsi sth sphi))

(- (* spsi sth cphi) (* cpsi sphi)))

(list (- sth) (* cth sphi) (* cth cphi)))))

(defun body-rate-to-euler-rate-matrix (azimuth elevation roll)

(let ((sth (sin elevation)) (cth (cos elevation)) (tth (tan elevation))

(sphi (sin roll)) (cphi (cos roll)))

(list (list 1 (* tth sphi) (* tth cphi))

(list cphi (- sphi))

(list (/ sphi cth) (/ cphi cth)))))
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(deflin rad-to-deg (angle) (* 57.2957795130823 angle))

(defiin deg-to-rad (angle) (* .017453292519943295 angle))
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APPENDIX I: SOURCE CODE (COMPILE AND LOAD FILES)

, File: compile-files.cl Franz Common LISP

; Defines basic function to run simulation and compiles all

; files used in the simulation

, To run simulation, inside the CLOS interpreter do the following:

;
> (load "compile-files")

;
> (load "load-files")

;
> (test X Y Z) ; where X Y Z are the coordinates of the UAV

; ; Z is negative for altitudes above ground

; Code written by D A Wiley, Naval Postgraduate School,

; dawiley@cs.nps.navy.mil

(compile-file " strobe-camera. cl")

(compile-file "robot-kinematics. cl")

(compile-file "pioneer-euler-angle-rigid-body.cl")

(compile-file "pioneer-perfect-autopilot. cl")

(compile-file "bullet cl")

(compile-file "moused")

(compile-file "determine-hit.cl")

(compile-file "uav-components.cl")

(compile-file "adjust-fire.cl")

;UAV will fly from north to south along X axis

(defun test (X Y Z)

(initialize-mission X Y Z 3.141592653589793d0)
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(execute-mission))

; File: Load-files. cl Franz Common LISP

>

; Loads compiled files

; Code written by D. A. Wiley, Naval Postgraduate School,

; dawiley@cs.nps.navy mil

(load "strobe-camera. fasl")

(load "robot-kinematics. fasl")

(load "pioneer-euler-angle-rigid-body fasl")

(load "pioneer-perfect-autopilot. fasl")

(load "bullet fasl")

(load "mouse. fasl")

(load "determine-hit. fasl")

(load "uav-components.fasl")

(load "adjust-fire.fasl")
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