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Compartmental equations are primary tools in the study of disease
spreading processes. They provide accurate predictions for large
populations but poor results whenever the integer nature of the
number of agents is evident. In the latter instance, uncertainties
are relevant factors for pathogen transmission. Starting from the
agent-based approach, we investigate the role of uncertainties and
autocorrelation functions in the susceptible–infectious–susceptible
(SIS) epidemic model, including their relationship with
epidemiological variables. We find new differential equations that
take uncertainties into account. The findings provide improved
equations, offering new insights on disease spreading processes.
1. Introduction
Communicable diseases are health disorders caused by pathogens
transmitted from infected individuals to susceptible ones [1]. In
general, the transmission process occurs with variable success rate,
subjected to stochastic uncertainties during the infectious period of
the host. These uncertainties comprehend aspects related to
biological transmission mechanisms and availability of adequate
contact between hosts and susceptible individuals. For large and
well-connected populations, stochastic factors are discarded in favour
of deterministic differential equations, also known as compartmental
or mean-field equations [2–4]. Recent advances in network theory [5]
provided a far more clear picture of interactions among elements of

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.191504&domain=pdf&date_stamp=2020-02-19
mailto:asmartinez@usp.br
http://orcid.org/
http://orcid.org/0000-0001-7803-1331
http://orcid.org/0000-0001-8459-9812
http://orcid.org/0000-0002-4395-0511
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191504
2
the population, improving predictions for heterogeneous social structures. Generalizations for compartmental

equations have been able to reproduce pandemics and prove analytical results, taking into account complex
network topologies, highlighting the role of central hubs in general disease spreading dynamics [6–11].

By contrast, the stochastic nature of disease transmission cannot be omitted for a number of scenarios. It
becomes more pronounced for small populations, where the characteristics of each agent forming the
population are relevant variables to the spreading process [12]. Incidentally, this is often the case in emerging
diseases [13]. Because the population cannot be treated as homogeneous, average values are no longer
adequate, impacting the accuracy of compartmental equations. Stochastic models deal with the issue by
proposing simpler rules to express the disease transmission, taking the relevant stochastic factors into
account. More importantly, the stochastic analysis expands the machinery used to study the problem beyond
population averages. It includes tools such as correlations [12] and autocorrelation functions, which extract
inner details of the stochastic dynamics and subsequently provide insights to solve them. For instance, in the
standard Brownian motion, the autocorrelation function of the position displays a delta-like behaviour due
to white noise, i.e. 〈x(t)x(t0)〉∝ δ(t− t0). This means that the position of a particle x(t) is uncorrelated to its
position x(t0) at time t0, except when t = t0. This feature leads to the well-known linear growth of the spatial
variance with time [14]. In disease spreading, autocorrelation functions have also been used to study time
series of epidemiological data and assess the impact of spatial influences on stochastic fluctuations [15–20].

Here, we derive exact differential equations for both the instantaneous average density of infected agents,
〈ρ(t)〉, and its correspondingvariance,σ2(t), in the susceptible–infectious–susceptible (SIS) epidemicmodelwith
N agents. We find that uncertainties play an important role in small populations or small prevalence of the
disease, impacting estimates of epidemiological parameters from data. Numerical and analytical evidence
allow us to formulate two closure relations for 〈ρ3(t)〉, and derive systems of differential equations for 〈ρ(t)〉
and σ2(t). The selection of the appropriate closure relation depends solely on the nature of the fluctuations
present in the system. This issue has been examined in detail before [21–24]. It turns out that the nature of
the fluctuations can be assessed from the normalized autocorrelation function Dρρ(t), including scenarios
with finite population sizes. Non-Gaussian fluctuations develop whenever the absorbing state (disease
eradication) influences the outcome of disease spreading [21]. We exploit the relationship between Dρρ(t) and
〈ρ3(t)〉 to craft a closure relation in this case. For non-Gaussian fluctuations, a different closure relation
emerges as a consequence of vanishing skewness coefficient κ3(t). The resulting differential equations for
Gaussian fluctuations have been reported before [25,26], and also derived in a more general formulation for
population dynamics based on Langevin equations [27]. We combine the system of equations into a single
nonlinear second-order differential equation, and discuss an analytical solution. The new equations provide
significant improvements over the traditional compartmental equation, as they account for stochastic effects,
while being far more amenable to analytical studies than the master equation of the disease spreading process.

This paper is organized as follows. Section 2 opens our discussion with compartmental equations of
the SIS model, with emphasis on general aspects of parameter estimation. Section 3 reviews the
spreading process under the agent-based approach. Improved differential equations for the SIS model
are derived. Analytical and numerical properties of Dρρ(t) are investigated in §4, leading to dynamics
for non-Gaussian fluctuations. Dynamics for Gaussian fluctuations are addressed in §5. In each case,
the systems of differential equations are combined producing two distinct second-order differential
equations for 〈ρ(t)〉. In §6, we present our closing arguments, remarks and potential applications.
2. Compartmental equations
Let ρ(t) be the density of infected agents in a population of size N in the SIS model. In the compartmental
approach, the population is assumed to be large, homogeneous and highly interconnected. As a result,
agents can be regarded as statistically equivalent, and ρ(t) becomes a good descriptor of the system. The
assumptions impose that the system must be, on average, invariant under permutations. The simplest
way to satisfy permutation invariance assumes agents connected to each other. Incidentally, this
population structure shares the same characteristics as the complete graph [4,28].

The other relevant assumption concerns the transmission mechanism. Because the population is taken
as homogeneous, the adequate interaction between infected and susceptible agents occurs with
probability proportional to (1− ρ)ρ. This assumption constitutes the basis for the random mixing
hypothesis [3]. At the same time, recovery events are proportional to the infected density ρ. Following
this notation, the SIS compartmental equation for ρ(t) reads

dr
dt

¼ a(1� r)r� gr, (2:1)
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Figure 1. Deviations from compartmental predictions. Predicted values of ρeq− ρ versus observed ρ with (full circles) and without
(cross) corrections. Corrections are related to σ2/ρ, where σ2 is the variance of ρ. Monte Carlo simulations are performed with 106

samples in the complete graph with N = 50 agents, γ = 1/2 and α = 1. Linear fit (solid line) produces γdata = 0.50(3) and αdata =
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where α and γ are the transmission and recovery rate, respectively. Explicit generalizations are available
for several different networks [6–8], including complex networks. These special network structures
highlight the role of super-spreaders in real-world spreading processes [3].

For data fitting and parameter estimation purposes, it is convenient to consider the relative variation
of ρ(t) over time. Rearranging equation (2.1) and defining the steady-state density ρeq = 1− γ/α, we obtain

1
r

dr
dt

¼ d
dt

ln r ¼ a(req � r): (2:2)

From epidemiological data, equation (2.2) provides a simple way to extract α and γ by a linear fit. For
α≥ γ, dividing equation (2.2) by ρ(t) and plugging the solution r(t) ¼ req=(1� C1e�reqat), with C1 =
1− (ρeq/ρ(0)), leads to a simple exponential decay

1
r

d
dt

ln r ¼ a
req

r(0)
� 1

� �
e�areqt, (2:3)

where the decay rate depends only on epidemiological parameters. Again, equation (2.3) can be used to
extract α and γ using a linear fit in logscale.

It should be clear by now that equation (2.2) is an important tool to extract epidemiological
parameters. What would be the implications for epidemiological studies if equation (2.2) had
additional terms or corrections? Figure 1 displays the values of α−1 (d/dt) ln ρ using equation (2.2)
with data from numerical simulations (see Data accessibility and [29] for further details). In this
controlled computational experiment, predictions for α−1(d/dt) ln ρ deviate from ρeq− ρ. Even more,
figure 1 shows that early estimates of epidemiological parameters, typical during the onset of
epidemics, underestimate the transmission rate. Since agents are equivalent to each other in this
setting, the only remaining source of error is due to the discrete nature of transmission and recovery
events. Therefore, inherent stochastic events in spreading processes affect predictions whenever
uncertainties cannot be neglected. Thus, it seems reasonable to examine more closely this limitation of
the compartmental equations, which are far more familiar to epidemiology practitioners [30].

In what follows, we calculate corrections for equation (2.2) using a stochastic agent-based approach to
better grasp the emergence of uncertainties in the SIS model. The approach allows for a direct
comparison with numerical simulations, and it does not require the coupling of dynamical equations
with an external noise source to mimic fluctuations (Langevin formulation). We also note that the
averaging procedure employed in the numerical simulations is equivalent to the ensemble averaging.
In an ensemble average, the averages are estimated from a large set of independent realizations of a
given stochastic process that share the same initial conditions. One way to create an approximate
ensemble from real epidemiological data consists in partitioning the system into smaller subsets that
are weakly interacting with each other. This is the basis of ensemble formation in physics [31] and the
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core hypothesis of metapopulation models [32]. Even so, this is only a coarse representation of the
idealized ensemble. The problem is somewhat reduced in numerical simulations as the number of
realizations can be increased in exchange for computing time. In short, the advantage of ensemble
averaging is that it makes it possible to find equations that describe the general behaviour of
stochastic variables—for instance, the diffusion equation for the random walker.
3. Stochastic formalism
In the agent-based approach [33,34], the population consists of N distinguishable agents connected to
each other according to a predefined adjacency matrix A (N ×N). Each agent (k = 0, 1, · · ·, N− 1)
may assume one of two possible health states nk in the SIS model, either susceptible (nk = 0) or
infected (nk = 1). Following [35,36], there are 2N available configurations in the canonical basis |μ〉,
with μ = 0, 1, · · ·, 2N−1. Configurations are readily extracted from the binary construction μ = n02

0 +
n1 2

1 + · · · + nN−12
N−1. As an example, for N = 4, the configuration |0〉 = |0 0 0 0〉 represents the

infected-free configuration, whereas all agents are infected in |15〉 = |1 1 1 1〉.
Here, we treat the disease spreading process as a Markov process. The corresponding master

equation reads

d
dt

jP(t)i ¼ �ĤjP(t)i, (3:1)

where jP(t)i ¼P2N�1
m¼0 Pm(t)jmi is the probability vector, with Pμ(t) being the instantaneous probability to

find the system in the configuration |μ〉; and Ĥ is the generator of time translations, given by the
following expression:

Ĥ ¼ a

N

XN�1

k,‘¼0

Ak‘(1� n̂k � ŝþ
k )n̂‘ þ g

XN�1

k¼0

(n̂k � ŝ�
k ): (3:2)

Operators are assigned the hat symbol to distinguish them from scalars. The operators n̂k extract the
health state of the k-th agent, n̂kjn0 � � �nk � � �i ¼ nkjn0 � � �nk � � �i, while ŝ+

k are the usual spin-1/2 ladder
operators, i.e. ŝþ

k jn0 � � � 0k � � �i ¼ jn0 � � � 1k � � �i and ŝ�
k jn0 � � � 1k � � �i ¼ jn0 � � � 0k � � �i, respectively. The main

advantage of using equations (3.1) and (3.2) lies in their applicability for arbitrary networks, without
further assumptions on the probability distribution.

As an example, consider a system in which the adjacency matrix describes a linear chain with periodic
boundary conditions, i.e. Akℓ = δk,ℓ±1 and A0,N−1 =AN−1,0 = 1. Clearly, the connections between agents are
invariant under translations, so that agents are statistically equivalent. However, the number of
connections is now reduced to two instead of N− 1 and violates the random mixing hypothesis.
Figure 2 exhibits numerical simulations for the linear chain and predictions using the compartmental
equation with effective transmission rate (2/N )α. It should come as no surprise that the predictions
become increasingly worse for vanishing γ, since agents can only infect their nearest neighbours, thus
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introducing correlations. By contrast, the agreement between simulated data and the prediction provided

by equations (3.1) and (3.2) is far more accurate, reinforcing their validity for general networks.
Despite the known effects of network structures on the dynamics of epidemics [11,28,37,38], there are

instances in which the uniqueness of agents can be a minor concern. In these cases, uncertainties stem
from the stochastic nature of disease spreading processes. They produce additional corrections to the
dynamical equations, with enhanced effects for a finite population of size N. We set aside the
complexities associated with network structures by adopting the complete graph. The complete graph
replicates the random-mixing hypothesis because each agent interacts with the remaining N− 1
agents, Aij = 1− δij. The choice also allows an adequate comparison with the compartmental equations.

Equations (3.1) and (3.2) can be used to evaluate statistics relevant to the epidemic model. Among
them, the average density of infected agents,

hr(t)i ; 1
N

X2N�1

m¼0

hmPm(t), (3:3)

where hm ;
P

khmjn̂kjmi is the total number of infected agents in the configuration |μ〉. By virtue of equation
(3.3), it is clear that the time derivative of 〈ρ(t)〉 depends solely on dPμ/dt. In turn, equation (3.1)
states dPm=dt ¼ �PnhmjĤjniPn ¼ �Pn HmnPn, which concerns the calculation of the matrix elements
Hμν. Although their explicit evaluation exists, we are actually interested in the summation

P
m hmHmn.

The latter can be easily calculated noting that
P

m hmhmj
P

k ŝ
þ
k jni ¼ (hn þ 1)(N � hn) andP

m hmhmj
P

k ŝ
�
k jni ¼ (hn � 1)hn. More specifically, the non-vanishing matrix elements hmjPk ŝ

þ
k jni

connect configurations whose number of infected agents differ by one, and the number of possible
configurations is N− ην. For example, with N = 4 and |ν〉 = |0010〉, the configurations in question are
|1010〉, |0110〉, |0011〉. A similar argument can be made for

P
k ŝ

�
k , reducing ημ by one and ην matching

configurations. Therefore,

dhri
dt

¼ � 1
N

X2N�1

m¼0

hmHmnPn(t) ¼ a[req � hr(t)i]hr(t)i � as2(t), (3:4)

with instantaneous variance σ2(t) = 〈ρ2〉 − 〈ρ〉2 (see appendix A for details). A brief inspection of
equation (3.4) shows that the correction −ασ2(t) always slows down the growth rate of 〈ρ(t)〉. As a
result, it directly affects the estimation of epidemiological parameters as shown in figure 1.

We emphasize that the inherent fluctuations of the disease spreading process is summarized by σ2(t)
in equation (3.4). An initial uncertainty evolves during the course of the spreading process, restricted
by the fact that agents can only be either susceptible or infected, i.e. there is no half infection nor half
cure. In a sense, σ2(t) shares the concept of shot noise in condensed matter physics [39]. Moreover,
equation (3.4) recovers equation (2.1) for vanishing σ2(t), a situation that often arises for large
populations since the relative uncertainty scales with N−1/2. For small populations or small values of
〈ρ(t)〉, equation (3.4) highlights the influence of noise in the spreading process, even if agents are
statistically equivalent.

Noting that σ2(t) depends on time, there must exist an additional differential equation for σ2(t).
Indeed, the same rationale behind equation (3.4) can be used to find (d/dt)σ2, as detailed in appendix
A ( in accordance with [26] or [27]). The equation of motion reads

1
2
ds2

dt
¼ a[req þ hri]s2 � aD3(t)þ a

2N
hr(1� r)i þ g

2N
hri, (3:5)

where Δ3(t) = 〈ρ3(t)〉− 〈ρ(t)〉3. Again, numerical simulations support our findings (see figures 3 and 4).
Despite the encouraging results, equation (3.5) creates an explicit dependence on the third statistical
moment 〈ρ3(t)〉, even if o(1/N ) corrections are omitted. Formally, we could calculate the differential
equation for Δ3(t) but then we would have to deal with 〈ρ4(t)〉 and so on, creating a set of hierarchic
equations for the statistical moments of ρ(t).

Let us briefly assume that it is possible to estimate a surrogate dynamic for Δ3(t) by some ingenious
method. In this case, equations (3.4) and (3.5) form a system of differential equations for 〈ρ(t)〉 and σ2(t).
However, Δ3(t) also measures the fluctuation strength and it can change radically for different sets of
parameters (N,γ/α) as long as N remains finite. The inset in figure 4a exhibits the changes in σ2(t) as
one reduces N. Holding N fixed and varying γ/α also triggers this phenomenon. Figure 5 provides a
concrete example of two distinct behaviours for fluctuations for fixed N: Gaussian and non-Gaussian
fluctuations. An existing relationship between Δ3(t) and the instantaneous coefficient of skewness,
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κ3(t), provides a way to investigate symmetric fluctuations [26]. Likewise, the density autocorrelation

function provides insights on Δ3(t) for non-symmetric fluctuations. Since the nature of these two types
of fluctuations is so dissimilar, we shall study them separately.
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4. Autocorrelation function
Uncertainties described by Gaussian fluctuations are expected to play a significant role in widespread
epidemics. However, the situation changes when a small fraction of the agents is infected. The SIS
model used in this paper does not account for external infection sources, such as wild animals or
immigration; once the number of infected vanishes the spreading process comes to a halt. This
constraint means that the absorbing state |0〉 prevents the occurrence of symmetric probability
distributions around low densities. The effect can be found in large populations but it is enhanced in
small populations: fluctuations can eradicate the disease. Thus, we need to look for a statistics other
than κ3(t) to model the dynamics of Δ3(t) for non-Gaussian fluctuations. The statistics should involve,
at most, ρ(t) up to the power two; otherwise, it could reintroduce higher statistical moments. In that
regard, two-point autocorrelation functions fulfil these requirements.

Let Cρρ(t) be the instantaneous autocorrelation function between ρ(t) and ρ(t + δt), lagged by a single
time window

Crr(t) ; hr(tþ dt)r(t)i � hr(t)i2: (4:1)

Here, averages are evaluated by considering samples from an ensemble instead of the usual Fourier
transform, as the ergodic hypothesis is unavailable. For Markov processes,

hr(tþ dt)r(t)i ¼ 1
N2

X
m

X
k,j

hmjn̂ke�Ĥdtn̂ jjP(t)i: (4:2)

The evaluation of this expression involves the same rationale used for equation (3.4), as detailed in
appendix B. Plugging the result into equation (4.1), we find Cρρ(t) = σ2(t) + αδt[ρeq〈ρ

2〉− 〈ρ3〉] + o(δt2).
The crucial information here is the relationship between 〈ρ3(t)〉 and Cρρ(t): provided Cρρ(t) can be
fitted from epidemiological data, it seems plausible to use it to model 〈ρ3(t)〉 and, thus, create a
surrogate dynamics for Δ3(t). Unfortunately, the lack of a simple functional form prevents the fitting
of Cρρ(t) with at most two parameters.

Instead, consider the normalized autocorrelation function

Drr(t) ;
Crr(t)� s2(t)

adthri2 ¼ req �
hr3i
hri2 þ req

s2

hri2 : (4:3)

For vanishing σ2(t) and N≫ 1, Dρρ(t)≈ ρeq− 〈ρ(t)〉 recovers the r.h.s. of equation (2.2). Hence, Dρρ(t) can
be associated with (d/dt)ln〈ρ〉 in the same limit.

According to equation (2.3), an exponential decay of Dρρ(t)/〈ρ(t)〉 occurs whenever 〈ρ(t)〉 is
reasonably described by compartmental equations. As the system evolves, Dρρ(t)/〈ρ(t)〉 experiences a
strong divergence (figure 6). Afterwards, Dρρ(t)/〈ρ(t)〉 either converges to a constant value; or engages
in a regime of exponential growth (figure 7). The first case signals that 〈ρ(t)〉 describes the spreading
process with uncertainties summarized by σ2(t). Fluctuations that increase ρ(t) are as likely as those
that decrease it. Thus, the probability density function (pdf) associated with of the fluctuations of
〈ρ(t)〉 is symmetrical. We call them Gaussian fluctuations for the lack of a better name.

By contrast, an exponential growth of Dρρ(t)/〈ρ(t)〉 exposes the influence of the absorbing state on the
evolution of the system. Its impact becomes more noticeable as 〈ρ(t)〉 approaches the disease eradication,
and for small population sizes. In such cases, the fluctuation pdf becomes asymmetrical, resulting in the
degradation of 〈ρ(t)〉 in contradiction with equation (2.1). The fluctuations, in this case, are non-Gaussian.
Therefore, Dρρ/〈ρ〉 separates fluctuations into two distinct classes: Gaussian and non-Gaussian.

One could argue that a reciprocal timescale t�1 ¼ (1=2)(d=dt) ln (D2
rr=hri2) emerges because the

exponential decay becomes the dominant mode of 〈ρ(t)〉∝ ρ1e
−t/ξ, after some time instant t, with peak

value ρ1. Table 1 exhibits a few estimates for τ−1 and ξ−1 from which one can infer τ = ξ/2. As a result,
Dρρ(t)∝ et/λ with λ = ξ after non-Gaussian fluctuations are in place.
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Table 1. Reciprocal times derived from simulated data with N = 20 agents. |Dρρ/〈ρ〉|∝ et/τ, 〈ρ〉∝ e−t/ξ, and Dρρ(t)∝ et/λ.
Values are consistent with τ = ξ/2 and λ = ξ.

γ/α τ−1 ξ−1 λ−1

0.5 0.015(3) 0.007(6) 0.007(6)

0.6 0.053(8) 0.026(9) 0.026(9)

0.7 0.122(5) 0.061(8) 0.061(8)

0.8 0.229(3) 0.112(1) 0.112(0)

0.9 0.340(8) 0.170(7) 0.169(9)
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By virtue of equation (4.3), we now exploit the relationship between Δ3(t) and Dρρ(t) to propose an
equation for the expected dynamics of non-Gaussian fluctuations in equation (3.5):

1
2a

ds2

dt
¼ hris2 þ [hri � req þDrr(t)]hri2 þ s(t)

N
, (4:4)

where s(t) = [(2− 〈ρ〉− ρeq)〈ρ〉/2]− σ2(t). Equation (4.4) agrees well with simulated data for the entire
time interval considered (figure 8) However, the same agreement is not observed for the approximate
formula Dρρ(t) =−D1e

t/ξ for the entire time interval. In fact, away from the non-Gaussian regime
where the fit is accurate, most of the data fall off the proposed curve. Figure 9 explains the reason:
Dρρ[ρ] = a〈ρ〉−1 + b is a straight line that intercepts the origin only after the time interval enclosed by
the rectangle. The width of the segment shrinks with increasing values of N. Prior to this interval, the
curve Dρρ[ρ] slightly deviates from a straight line, with non-vanishing intercept b. Although an
estimate of Dρρ[ρ] could be useful in this regime, a far more accurate calculation can be obtained by
different means, as we show in the next section.

For practical purposes, one can either monitor how D2
rr(t)=hr(t)i2 evolves along time or Dρρ

as a function of 〈ρ〉−1. Both methods capture the transition between fluctuation regimes. In the
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ρ)ρ, obtained by taking the derivative of equation (2.1).
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non-Gaussian regime, one should use equations (3.4) and (4.4). Approximations for Dρρ(t) should be used
with care as indicated in figure 8.

For the sake of completeness, we derive the second-order differential equation for 〈ρ(t)〉. Taking the
time derivative of equation (3.4) and using equation (4.4), one arrives at the desired expression

d2hri
dt2

¼ areq
dhri
dt

� 2a2hri2Drr(t)� 2a2s(t)
N

: (4:5)

Results show an excellent agreement with simulated data, regardless of fluctuation type (figure 10).
Furthermore, one can employ the approximation Dρρ≈−D1/〈ρ(t)〉, with D1≥ 0 for fixed N and
epidemiological parameters as well. Under this assumption, agreement is observed only in the non-
Gaussian regime, as expected. It is instructive to study equation (4.5) when o(1/N) corrections are neglected

d2hri
dt2

� areq
dhri
dt

þ 2a2D1hri: (4:6)

The characteristic equation provides a coarse estimate for

j�1
est ¼ �areq

2
1� 1þ 8D1

req

 !1=2
2
4

3
5: (4:7)

This expression allows one to quickly grasp the dependence between ξest and the parameter D1. However,
there are several issues with ξest. The most important one deals with the hypothesis that o(1/N) terms
contribute less than other terms in equation (4.5). In fact, they are similar in magnitude and should not
be discarded. A far more reliable estimate can be obtained assuming σ2(t) can be written as a power
series, i.e. s2(t) �Pm¼1 s

2
me

�m(t=j). Collecting only terms proportional to e−t/ξ, one deduces D1 in
equation (4.7) should be replaced by D1 þ (1=N)[(s2

1=r1)� (2� req)=2]. For instance, numerical data
suggest ξest = 0.201 (N = 20 and γ/α = 0.9), with D1 = 0.065, ρ1 = 0.25, σ1 = 0.063.
5. Gaussian fluctuations
For large population sizes N≫ 1, stochastic effects are well represented by Gaussian fluctuations and
dominated by finite second moments. Noting that the skewness coefficient κ3 = (Δ3 − 3〈ρ〉σ2)/σ3

vanishes for Gaussian distributions, we conclude D
gauss
3 � 3hr(t)is2(t). Indeed, figure 5 shows the

ansatz is not too far-fetched since D3(t)� D
gauss
3 (t) � o(s2=N) for ratios γ/α = 0.1 and 0.5 for N = 50.
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Ignoring o(1/N ) corrections in equation (3.5), the following differential equations are obtained:

1
a

d
dt

lnhri ¼ req � hri � s2

hri (5:1a)

and

1
2a

d
dt

lns2 ¼ req � 2hri: (5:1b)

Both equations have been derived previously (see [26,27]). As long as σ2(0) > 0, uncertainties play a role
in the SIS epidemic model; σ2(0) = 0 implies σ2(t) = 0 and warrants the validity of equation (2.2). Thus,
the instantaneous factor σ2(t)/〈ρ(t)〉 in equation (5.1a) improves compartmental predictions if σ2(t)≠ 0.
Figure 11 portrays the corresponding direction field.

Despite the insights provided by equations (5.1a) and (5.1b), some issues still remains. The most
relevant one deals with the evaluation of σ2(0) from real epidemiological data. In essence, σ2(0)
encapsulates the measurement of ignorance about the system at t = 0. In practice, one would rely
on clever measurements—possibly, with bias—to estimate σ2(0). Alternatively, the issue can be
avoided entirely by combining the system of differential equations for ρ(t) and σ2(t) into a single
differential equation

d2hri
dt2

¼ 3a(req � 2hri) dhri
dt

� 2a
3
hri(req � hri)

� �
: (5:2)

Recalling that setting σ2(t) = 0 is equivalent to using compartmental equations, one can borrow
inspiration from projective transformations and rational functions to search for solutions of equation
(5.2) starting from equation (2.1). More specifically, assume

hr(t)i
req

¼
Pm

k¼0 ak x
k(t)Pm

‘¼0 b‘ x‘(t)
, (5:3)

with x(t) ¼ e�areqt. The coefficients ak and bk are obtained for fixed integer m, in consonance with the three
critical points discussed earlier, and with the solution of compartmental equations (case σ2 = 0).
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A suitable candidate is

hr(t)i
req

¼ a0 þ a1e�areqt

b0 þ b1e�areqt þ b2e�2areqt
: (5:4)

Plugging the expression above in equation (5.2) and solving the coefficients, one obtains two solutions in
addition to the trivial solutions. The analytical solution that encircles all values (ρ, σ2) below the
separatrix, for α > γ, reads

hr(t)i1
req

¼ 1þ a1e�areqt

1þ 2a1e�areqt þ b2e�2areqt
, (5:5)

with constants a1 and b2 determined by initial conditions ρ(0) and (dρ/dt)t=0. Note that σ2(t) can be
computed from equation (5.1a), s2

1(t) ¼ hr(t)i21(a21 � b2)e�2areq . The constraint s2
1(t)�0 implies

a21 � b2�0, while the solution of the compartmental equation is obtained by setting b2 ¼ a21.
The remaining solution is

hr(t)i2
req

¼ 1
2þ b1e�areqt

, (5:6)

with b1 = [ρeq/ρ(0)]− 2. It corresponds to the case s2
2(t) ¼ r22(t) and includes the third critical point

(req=2, r
2
eq=4), along the separatrix. The role of the separatrix can be understood in terms of the signal-to-

noise ratio s(t) = 〈ρ(t)〉2/σ2(t). Below the separatrix, s(t) > 1 and the average 〈ρ(t)〉 becomes more relevant
than σ2(t), leading to the equilibrium density ρeq. At the separatrix, s(t) = 1 and it indicates that both
signal and noise are present in equal measures. Indeed, at the critical point (req=2, r

2
eq=4) one would

expect 〈ρ(t≫ 1)〉 to fluctuate around ρeq/2, confined between the other critical points. For large ρeq, it also
means large deviations. By contrast, noise becomes predominant for s(t) < 1, leading to non-biological
dynamics as illustrated in figure 11. Perhaps one can argue s(t) < 1 implies some of the samples used to
calculate 〈ρ〉 acquire negative values. In this case, the Gaussian description becomes inadequate to portray
the biological system. To reinforce this conclusion, one can consider the limiting case with vanishing 〈ρ(t)〉
but finite σ2(t): equation (5.1b) is approximated by dσ2/dt≈ 2ρeqσ

2 so that s2(t) ¼ s2(0)e2reqt. Therefore,
the negative parcel in equation (5.1a) grows exponentially along time, producing negative solutions.

The main point of equation (5.2) relies on its compatibility with day-to-day epidemiological data, usually
built upon the number of infected patientswithin a fixed timewindow. Furthermore,mathematical properties
of equations (5.1–5.5) lie well beyond the scope of this paper and merit a proper discussion elsewhere.
6. Conclusion
We have investigated the effects of uncertainties in the SIS epidemic model, finding new differential
equations for the average density of infected agents, ρ(t), and its corresponding variance, σ2(t). Our
findings reconcile the simplicity of canonical compartmental equations with the accuracy of agent-based
simulations, creating suitable tools for practitioners of epidemiology and related fields. At the core of this
research, we have demonstrated that uncertainty cannot be neglected in the SIS epidemic model
whenever the discreteness of the population is important, even when the population comprises
statistically equivalent agents. Uncertainties are inherent aspects of stochastic spreading processes, and
their time evolutions are key elements to describe how the number of infected agents vary along time.
Concerning their nature specifically, numerical simulations in fully connected networks reveal that
uncertainties can be organized into two broad classes, namely, Gaussian and non-Gaussian fluctuations.
Gaussian fluctuations, also known as symmetric fluctuations, dominate the spreading process whenever
〈ρ(t)〉 and σ2(t) are sufficient to describe the outbreak. This scenario implies the skewness coefficient
vanishes for large N, producing a simplified system of differential equations for 〈ρ(t)〉 and σ2(t).
Alternatively, the differential equations can be combined into a second-order differential equation for
〈ρ(t)〉, avoiding problems due to poor estimates of initial values of σ2(t) from raw data. Non-Gaussian
fluctuations are far more complex to assess, as they emerge as a consequence of large recovery rates in
small population. More specifically, the stochastic process tends to perceive the influence of the absorbing
state ρ = 0, creating asymmetric fluctuations. As a result, the skewness coefficient does not converge to a
simple mathematical form. Instead, differential equations for 〈ρ(t)〉 and σ2(t) are written using the
normalized autocorrelation function Dρρ(t). This function is relevant for the spreading process because it
can be interpreted as the likelihood of adequate contact between a given infected agent with susceptible
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ones, for vanishing variance and large population sizes. For non-Gaussian fluctuations, our numerical

simulations show that Dρρ(t) is proportional 〈ρ(t)〉. Therefore, the spreading process reduces, again, to a
closed system of differential equations for 〈ρ(t)〉 and σ2(t) (see equation (4.4)). Finally, we stress that this
research evaluates the impact of uncertainties only for homogeneous populations, i.e. connections
between agents are described according to the complete graph. An intriguing question is left open
concerning the role of uncertainties in disease spreading processes in other networks.

Numerical simulations are performedusing the directMonteCarlomethod [40]. It shares the same origins
as theGillespie algorithm [41], differing only on time step selection. In theGillespie algorithm, the time step is
a random variable distributed according to an exponential pdf; and the system always suffers a single
modification once the time step is selected, given by the off-diagonal elements of the transition matrix. In
the direct Monte Carlo method, the time step is fixed and equal in value to the average time step of the
Gillespie algorithm, both consistent with the Poisson hypothesis. Furthermore, after a single time step has
elapsed the system has a chance to remain in the same configuration (diagonal elements of the transition
matrix), in addition to the off-diagonal transitions. Direct Monte Carlo simulations tend to be slower than
Gillespie but allow for a simple evaluation of statistics at discrete time, including their derivatives and
autocorrelation functions, without additional processing algorithms or interpolation methods.
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Appendix A. Equations of motion
Let ĥ ¼PN�1

k¼0 n̂k. The equations of motion for 〈ρ(t)〉 and 〈ρ2(t)〉 are, respectively,

dhri
dt

¼ � 1
N

X2N�1

n¼0

hmjĥĤjniPn(t)

¼ � a

N2

X2N�1

m,n¼0

Pn(t) hmjĥ(N � ĥ)ĥjni �
XN�1

k¼0

hmjĥ(ŝþ
k )ĥjni

" #
þ

� g

N

X2N�1

m,n¼0

Pn(t) hmjĥ2jni �
XN
k¼0

hmjĥ(ŝ�
k )jni

" #

¼ � a

N2

X2N�1

n¼0

Pn(t)[h2
n(N � hn)� (hn þ 1)(N � hn)hn] þ

� g

N

X2N�1

n¼0

Pn(t)[h2
n � (hn � 1)hn]

¼ þahr(t)[1� r(t)]i � ghr(t)i (A 1a)

and

dhr2i
dt

¼ � 1
N2

X2N�1

m,n¼0

hmjĥ2Ĥjni

¼ � a

N3

X2N�1

n¼0

Pn(t)[(N � hn)h
3
n � (N � hn)(hn þ 1)2hn] þ

� g

N2

X2N�1

n¼0

Pn(t)[h3
n � (hn � 1)2hn]

¼ þ2ahr2(1� r)i � 2ghr2i þ a

N
hr(1� r)i þ g

N
hri:

(A 1b)
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Since σ2(t) = 〈ρ2(t)〉 − 〈ρ(t)〉2, the differential equation for σ2(t) reads

1
2
ds2

dt
¼ 1

2
dhr2i
dt

� hridhri
dt

¼ a[req þ hri]s2 � aD3(t)þ a

2N
hr(1� r)i þ g

2N
hri,

(A 2)

where Δ3(t) = 〈ρ3〉− 〈ρ〉3.
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Appendix B. Evaluation of Cρρ(t)
According to the definition in equation (4.1), we only need to calculate 〈ρ(t + δ)ρ(t)〉. Up to o(δt2),
following equation (4.2),

hr(tþ d)r(t)i ¼ hr2i � dt
N2

X2N�1

m,n¼0

Pn(t)hnhmhmjĤjni þ o(dt2)

¼ hr2i � adt
N3

X2N�1

n¼0

Pn(t)[h3
n(N � hn)� h2

n(N � hn)(hn þ 1)]

� gdt
N2

X2N�1

n¼0

Pn(t)[h3
n � h2

n(hn � 1)]þ o(dt2)

¼ hr2i þ adt[reqhr2i � hr3i]þ o(dt2): (B 1)

Hence, Cρρ(t) = σ2(t) + αδt [ρeq〈ρ
2〉− 〈ρ3〉] + o(δt2).
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