perty of the angle of convergence, by which the most minute differences in the distances of objects and the slightest relief on their surfaces can be detected, and by which also in the abnormal conversion introduced in its action by the pseudoscope all our sensations are reversed. Therefore the pseudoscope is the great test of the phenomena of binocular vision ; for by reversing certain sensations which by constant habit we may hardly notice, it renders them more conspicuous by the comparison of the abnormal state brought out by its action, and proves the theory of binocular vision in the most effective manner.

A truth is never better established than when it can be shown that the same principles are capable of producing contrary effects when they are applied in a contrary way.

Professor Wheatstone, by adding the pseudoscope to the stereoscope, has thus in the most scientific and ingenious manner completed his splendid discovery, and left very little (we might almost venture to say that he has left nothing) for further investigations in the physiology of binocular vision.

II. "On the Calculation of the Numerical Value of Euler's Constant, which Professor Price, of Oxford, calls E." By William Shanks, Esq., Houghton-le-Spring, Durham. Communicated by the Rev. B. Price, F.R.S. Received March 28, 1867.

In the year 1853 Dr. Rutherford, of the Royal Military Academy, Woolwich, sent a paper on the Computation of the value of π to the Royal Society, and the paper was published in the 'Proceedings' of that learned body*. The value of π is there given to 607 decimals, the first 440 being the joint production of Dr. Rutherford and the author of this paper, and the remaining 167 decimals having been calculated by the present writer, for the accuracy of which he alone is responsible. Subsequently, the Astronomer Royal, G. B. Airy, Esq., kindly presented the author's paper on the Calculation of the value of e, the base of Napier's logarithms, to upwards of 200 decimals; the aforesaid paper also contained the Napierian logarithms of 2,3 , and 5 , as well as the modulus of the common system, all to upwards of 200 places of decimals. This paper was not, however, published, but deposited in the Archives of the Royal Society ; but an abstract, containing the numerical results, was printed in the 'Proceedings' \dagger. In a paper sent by the author to the Astronomer Royal, and forwarded by him to the Royal Society, will, the author believes, be found the reciprocal of the prime number 17389, consisting of a circulating period of no less than 17388 decimals, the largest on record. Some few remarks are also given touching circulates generally, and the easiest modes of obtaining them. The writer now desires to supplement what he then did, by giving the

[^0]numerical value of Euler's constant, which is largely employed in "Infinitesimal Calculus," to a greater extent than has hitherto been found, and free from error.

In Crelle's Journal for 1860, vol. lx. p. 375, M. 'Oettinger has contributed an article on Euler's constant, and especially on "certain discrepancies" in the value given by former mathematical writers. Adopting. the formula there employed, as being well adapted for the purpose, the writer of this paper has both corrected and extended what has been previously done; and as very great care has been bestowed upon the calculations, so as to exclude error, he confidently believes that his results are, as far as they go, absolutely correct. He may remark that, since the separate values of n in the formula (which, see below) produce identical results as far as they go, and the higher the value of n the more nearly we can approximate to the value of the constant, we thus have sufficient proof afforded of the correctness of the value found when n is $10,20,50$, or 100. If the writer can command sufficient leisure, he may resume the calculation by and by, and, making $n 1000$, he may thus verify, as well as extend, the value of Euler's constant given in this paper. The numbers $10,20,50,100,200$, and 1000 , especially 10 and its integral powers, are more easily handled than others, particularly in those terms of the formula which contain Bernoulli's numbers. The harmonic progression is here "summed" much further than was requisite for finding \mathbf{E} to 50 or 55 decimals; but this was of some importance in ensuring correctness in the decimal expression of each of the higher terms of S_{100} and S_{200}. It may be observed that the numbers of decimal places in E , obtained from n being $10,20,50,100$, and 200 , are nearly proportional to $10^{\frac{1}{3}}, 20^{\frac{1}{3}}, 50^{\frac{1}{3}}, 100^{\frac{1}{3},}$ and $200^{\frac{1}{3}}$-a rather curious coincidence.

The formula for Euler's constant, employed by M. Oettinger, as above stated, is -

Constant $=\mathbf{S} n-\log _{\varepsilon} n-\frac{1}{2 n}+\frac{\mathbf{B}_{1}}{2 n^{2}}-\frac{\mathbf{B}_{2}}{4 n^{4}}+\frac{\mathbf{B}_{3}}{6 n^{6}}-\frac{\mathbf{B}_{4}}{8 n^{8}}+\ldots$ c., where
$\mathrm{S} n=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots \frac{1}{n}$, and $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \& \mathbf{c}$. are Bernoulli's numbers.
$1+\frac{1}{2}+\frac{1}{3}+\ldots \frac{1}{10}=2 \cdot 928 \dot{9} 6825 \dot{3}$

$1+\frac{1}{2}+\frac{1}{3}+\ldots{ }^{\frac{1}{20}}=3.59773$	96571	43681	91148	37690	68908	38779	38367
10245	37897	60291	30827	89243	77995	58542	59259
83201	52499	71906	31865	55446	61736	61220	10084
85838	20720	04363	02603	48526	602.		
$1+\frac{1}{2}+\ldots \ldots{ }^{\frac{1}{25}}=3 \cdot 81595$	81777	53506	86913	48136	76474	73449	06181
89635	55401	83780	86220	32609	11027	77063	20242
32778	03544	32662	95332	52228	09675	62970	52433
81377	45056	57669	24455	54624	85197	30818	82894
77830	46585	03877	77968	87905	92007	71409	68243
+ (cir	culating	perio	consis	of 1	4 dec	al pl	

$1+\frac{1}{2}+$	9920	$\dot{5} 3383$	29425	05756	04717	92964	76909	19706
	01823	96745	38296	58902	43217	68318	06557	86735
	78157	82663	88434	12900	97472	82033	55398	82942
	33084	20093	94581	03200	90115	13091	15572	24477
	64889	95794	59834	14243	62248	23530	45299	19591
	+ (cir	latin	period	onsis	of 1,2	120	cimal	places).

$1+\frac{1}{2}+\ldots \ldots \cdot \frac{1}{100}=5 \cdot 18737 \quad 75176 \quad 39620 \quad 26080 \quad 51176 \quad 75658 \quad 2531579089$ $\begin{array}{llllllllll}72126 & 70845 & 16531 & 76533 & 95658 & 72195 & 57532 & 55049\end{array}$ 6605687768923120413549921069869777979182 $73403186170082894825424444909657618 \quad 56974$ $\begin{array}{llllllll}16326 & 13467 & 07313 & 21114 & 47132 & 49733 & 09103 & 51089\end{array}$ + (circulating period consists of $39,419,059,680$ decimal places).
$1+\frac{1}{2}+\ldots \ldots{ }_{2} \frac{1}{00}=5 \cdot 8780309481 \quad 214444760573863971308616368374$ 0024653027308446497194472287833002984018 1549964301866798923837326832118543905911 $765427785527568 \quad 865593020306049 \quad 2571575389$ $\begin{array}{llllllllll}22254 & 75748 & 47845 & 75246 & 64079 & 54805 & 61627 & 08837\end{array}$ + (circulating period consists of 2,498,236,128,143,832,017,541,600 decimal places).
The following value of Euler's constant has been found from the respective sums given above, of the $10,20,50,100$, and 200 first terms of the Harmonic Progression :-
E or Eul. const. $=577215664901532860606\left(\right.$ last term employed is $\left.-\frac{\mathbf{B}_{12}}{24.10^{4}}\right)$.

$$
\begin{aligned}
& \left.\mathrm{E}=\cdot 5772156649015328606065120900 \text { (last term is }-\frac{\mathrm{B}_{\mathrm{t} 2}}{24.20^{24}}\right) . \\
& \mathrm{E}=\cdot 577215664901532860606512090082402431042 \text { (last } \\
& \text { term is } \left.+\frac{\mathrm{B}_{\mathrm{⿺}}}{26.50^{26}}\right) . \\
& \mathrm{E}=5772156649015328606065120900824024310421 \\
& \quad 593359\left(\text { last term is }-\frac{\mathrm{B}_{\mathrm{\tau}_{2}}}{24.100^{24}}\right) . \\
& \mathrm{E}=577215664901532860606512090082402431042159335 \\
& 9399535989\left(\text { last term is }+\frac{\mathrm{B}_{\mathrm{⿺}}}{26.200^{26}}\right) .
\end{aligned}
$$

Certainly 50 decimals are correct, and probably 55 , in the value last given.

March 2, 1867.
Supplementary Paper to that of March 2, 1867, "On the Calculation of the Numerical Value of Euler's Constant." By Wilitam Shanks, Esq., Houghton-le-Spring, Durham. Received April 9, 1867.
When $n=500$, we have
$1+\frac{1}{2}+\frac{1}{3} \ldots \cdots \frac{1}{500}=6 \cdot 7928234299905246029892871453679736948198$ 1381439680911664308889685435662379055049 245764940373586 56039+

$$
\begin{aligned}
& \mathrm{E}=55772156649015328606065120900824024310421 \\
& \begin{array}{llllllll}
59335 & 93995 & 35988 & 05771 & 53865 & 48677 & \text { (last term }
\end{array} \\
& \left.-\frac{\mathrm{B}_{\mathrm{I4}}}{28.500^{28}}\right) \text {. }
\end{aligned}
$$

When $n=1000$, we have

$$
\begin{aligned}
& \begin{array}{llllllllll}
79169 & 70883 & 36657 & 73626 & 74995 & 76993 & 49165 & 20244
\end{array} \\
& 09599344374118450813+ \\
& \mathrm{E}=5 \cdot 57721566490153286060 \quad 65120900824024310421 \\
& 5933593995359880577202455619420050815825 \\
& \left(\text { last term }+\frac{\mathrm{B}_{\mathrm{I} 5}}{30.1000^{30}}\right) \text {. }
\end{aligned}
$$

Hence we see that 54 decimal places are correct in the value of $\mathrm{E}(n$ being 200) last given in the paper dated March 2, 1867,-also that 59 decimals are correct in the value of E when $n=500$. When $n=1000$, probably 65 decimals in the value of E are correct.

When $n=1$, we readily find $\mathrm{E}=57\left(\right.$ last term $\left.-\frac{\mathrm{B}_{2}}{4}\right)$.

$$
\begin{array}{lll}
" & =2, & \because \\
"=5 & =57721\left(\text { last term }-\frac{B_{4}}{8.2^{8}}\right) . \\
" & =5, & \mathrm{E}=5.5772156649015\left(\text { last term }+\frac{\mathrm{B}_{11}}{22.5^{32}}\right) .
\end{array}
$$

When $n=1, \mathrm{E}$ consists of 2 decimals.

$"$	$=10$,	,	21 decimals.
$"$	$=100$,	$"$	46 decimals.
$"$	$=1000$,	$"$	65 decimals, probably.
$"$	$n=r 2$,	$"$	5 decimals.
$"$	20,	$"$	28 decimals.
$"$	200,	$"$	54 decimals.
$"$	$n=$	5,	$"$
$"$	13 decimals.		
$"$	50,	$"$	39 decimals.
$"$	500,	$"$	59 decimals.

From the above we may fairly infer that when n is increased in a geometrical ratio, the corresponding number of decimals obtained in the value of E increases only in something like an arithmetical one, and that probably from 50,000 to 100,000 terms in the Harmonic Progression would require to be summed in order to obtain 100 places of decimals in the value of E, Euler's constant.

[^0]: * Vol. vi. p. 273.
 + Vol. vi. p. 397.

