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Regenerative therapy using autologous skeletal myoblasts
requires a large number of cells to be prepared for high-
level secretion of cytokines and chemokines to induce
good regeneration of damaged regions. However, myoblast
expansion culture is hindered by a reduction in growth
rate owing to cellular quiescence and differentiation,
therefore optimization is required. We have developed a
kinetic computational model describing skeletal myoblast
proliferation and differentiation, which can be used as a
prediction tool for the expansion process. In the model,
myoblasts migrate, divide, quiesce and differentiate
as observed during in vitro culture. We assumed cell
differentiation initiates following cell–cell attachment for
a defined time period. The model parameter values were
estimated by fitting to several predetermined experimental
datasets. Using an additional experimental dataset, we
confirmed validity of the developed model. We then executed
simulations using the developed model under several culture
conditions and quantitatively predicted that non-uniform
cell seeding had adverse effects on the expansion culture,
mainly by reducing the existing ratio of proliferative cells.
The proposed model is expected to be useful for predicting
myoblast behaviours and in designing efficient expansion
culture conditions for these cells.

1. Introduction
Cell culture is one of the most basic but essential processes
for cell-based regenerative therapies. Recently, many studies
on the culture-expansion process of stem cells, including
tissue-specific stem cells, embryonic stem cells and induced
pluripotent stem cells, have been reported. In vitro culture of
skeletal muscle-derived myoblasts, the progeny of quiescent
mononucleated muscle precursor cells (satellite cells), has also
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been extensively investigated. Such studies have subsequently led to clinical success of myocardial
regeneration therapy following autologous skeletal myoblast transplantation [1–4]. In addition, for
the future treatment of muscular dystrophies, allo- and autotransplantations of myoblasts have been
investigated [5–8].

In myocardial regenerative therapy, transplanted myoblasts are thought to secrete cytokines and
chemokines which induce angiogenesis, have anti-fibrosis and anti-apoptosis effects, and recruit stem
cells into the damaged regions [9–11]. Consequently, large numbers (greater than 108) of myoblasts are
necessary for successful cell therapy. In the case of autologous myoblasts, this requires significant cell
expansion from muscle biopsy samples. To achieve a stable supply of cell-based products for regenerative
therapy applications, developing a technology for the prediction of expansion cultures using autologous
cells is expected. As a first step, understanding cell behaviours during the expansion process is required.

Myoblast differentiation is considered to have a dominant effect on the expansion process, because
the cells lose their proliferative potential. The differentiation process, referred to as skeletal myogenesis,
is considered to occur via signals initiated through cell–cell adhesions [12]. Myoblasts are then fused
to each other and known lose their adhesion ability to the underlying substrate during the formation
of myotubes [13]. This property of non-adherence to the culture surface has a significant effect on
cell expansion in repeated subcultures. Therefore, to achieve an effective expansion culture of skeletal
myoblasts, strategies for the prevention of spontaneous cell differentiation and for maintaining an
undifferentiated state are required.

During in vitro culture of mouse myoblasts, basic fibroblast growth factor (bFGF) is known to
repress their differentiation [14]. Human muscle-derived stem cells are reported to increase their rate of
proliferation following addition of platelet-derived growth factor-BB combined with epidermal growth
factor (EGF) and bFGF [15]. The growth rates of human myoblasts are also reported to increase in the
presence of transforming growth factor-β or lysophosphatidic acid combined with bFGF [16]. Therefore,
several molecules, in particular, growth factors, can enhance proliferation and repress differentiation of
myoblasts in vitro.

In a previous study by our group, we found that disjunction time after cleavage furrow formation
during cell division of human skeletal muscle myoblasts (HSMMs) was decreased with increased
migration rate [17]. Based on this observation, it was assumed that the mean duration time of cell–cell
adhesion was also decreased, and thus the frequency of the process towards myotube formation was
decreased with increased migration rate. Using laminin-coated culture surfaces, with and without EGF
supplementation, myoblast migration rate is enhanced and the frequency of cell–cell contact reduced.
Therefore, myoblast expansion was enhanced by inhibiting their differentiation [17]. In addition, when
HSMMs are seeded at high cell density, many seeded cells are observed to become quiescent owing to
contact inhibition, similar to other anchorage-dependent cells, thus avoiding differentiation [18].

Taken together, previous studies indicate that when human myoblasts are cultured in vitro, these
cells are composed of three subpopulations of cells, comprising those in proliferative, quiescent and
post-mitotic states. In post-mitotic state, cells have initiated, but not completed their differentiation
process. Considering that the composition ratio between these three states varies with time, there must
be optimal seeding and subculture conditions for the expansion of a given myoblast. Our research group
previously acquired data for the relationship between the degree of confluence and cell attachment
during subsequent subculture, the optimized conditions for seeding density and the time to subculture,
all of which were proposed and verified via in vitro cell culture using an automated culture system [19].
However, the proposed culture conditions were only applicable to myoblasts derived from the same
batch as that used in the study from which the culture conditions were derived. Therefore, these
conditions were not applicable for the expansion culture of any autologous cell type. Generally, it is
very difficult to predict when and where cell differentiation will occur under a given condition, because
duration time of cell–cell attachment is considered to depend not only on migration rate, but also on the
local cell density, which is strongly dependent on the initial cell distribution.

For predicting such complex cell culture phenomena and designing an optimized cell culture,
mathematical modelling and numerical simulations are effective strategies. In several previous studies,
proliferation of anchorage-dependent mammalian cells is described by stochastic models such as cellular
automata [20,21]. Based on the simulation results using such stochastic models, the effect of heterogeneity
within the spatial distribution of seeded cells on growth rates has been predicted [22–24].

Our research group previously proposed a two-dimensional cellular automaton model describing
monolayer keratinocyte culture [25]. By fitting the model simulation results to the observed growth
curves, kinetic parameters expressing the cell culture process, such as inoculated cell adhesion,
exponential growth and contact inhibition, can be estimated quantitatively [26,27]. As an extension of
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this model, a model describing three-dimensional culture of chondrocytes embedded in collagen gel has
been developed [28,29].

In this study, we have developed a novel model describing the proliferation and differentiation
process observed during in vitro myoblast culture, by implementing cell migration and differentiation
processes into our previous two-dimensional model. The developed model will be a useful tool for the
prediction of expansion culture of autologous skeletal myoblasts.

2. Model development
2.1. Two-dimensional cell placement model
The model was developed by implementing the three features of migration, quiescence and cell
differentiation, which are required for describing in vitro culture of HSMMs, into the two-dimensional
cell placement model reported previously [25]. The following assumptions were made

1. A fraction of the inoculated cells (myoblasts) can attach to the culture surface. The ratio of
adherent cell concentration at t = 24 h to the seeding density (t = 0 h) is defined as 0 ≤α ≤ 1.

2. A cell to be attached to the surface starts cell division after a given duration of time, required for
attachment and acclimation, defined here as a lag time tL.

3. During the acclimation phase, cells neither migrate nor differentiate.
4. After the first cell division, both daughter cells repeat cell division at every generation time τg.
5. If there is no vacant space for placement of daughter cells, then cell division of the mother cell

does not occur owing to contact inhibition.
6. Cells migrate on the surface with a migration rate of Vm. The rate and direction of migration are

changed autonomously and by the surrounding cells through intercellular interactions.
7. A proliferative cell enters quiescent state only when the cell is in the early G1 phase of the cell

cycle, and there is no vacant space around the cell. This assumption is based on the observation
that only post-mitotic cells in the first 3–4 h of G1 phase entered quiescence [30].

8. A quiescent cell neither divides nor differentiates.
9. A quiescent cell instantly returns to a proliferative cell when vacant space appears around the

cell.
10. When a proliferative cell attaches to one of the neighbouring cells for a given critical period of

time (differentiation time tdif), this cell initiates the differentiation process and makes a strong
connection to the neighbouring cell.

11. The strong connection(s) made by the differentiation process never break.
12. The maximum number of strong connections made by the differentiation process is two per cell.
13. A cell that initiated the differentiation process is called a ‘post-mitotic cell’. This cell neither

divides nor returns to a proliferative state.
14. Cell death and cell removal do not occur during the culture period.

To implement these assumptions, we used a two-dimensional cellular automaton consisting of an
N × M two-dimensional array of squares having a finite number of possible states that interact with
neighbouring squares. Periodic boundary conditions were applied to this two-dimensional calculation
space. The squares change their state at every time step, based on the assigned rules. To make a model
based on the cellular automaton, the following assumptions were also made.

15. The area of each square is equal to the mean area of a single myoblast, Ac. Therefore, a single
cell is described by a square with a side of

√
Ac, and the distance between the squares of the

neighbouring cells is
√

Ac or
√

2Ac (between diagonally placed squares).
16. Each square positioned at (i, j) (i = 1, 2, . . . , N; j = 1, 2, . . . , M) has a state variable ξ (i, j)

representing one of the following states: zero for vacant space, one, two and three for occupied
with a proliferative cell, quiescent cell and post-mitotic cell, respectively. In a case considering
obstacles, such as a wall of a culture dish into which cells cannot migrate, a negative integer (−1)
was assigned.

The flow of the calculation is shown in figure 1. To initialize simulation, cells were seeded onto the
two-dimensional calculation space. This seeding process, comprising attachment and acclimation of part
of the seeded cells onto the culture surface, can be explicitly described using adhesion time, lag time (tL)
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Figure 1. Flow of calculations for in silicomyoblast expansion culture.

and attachment ratio (α), as described previously [25]. However, in this study, α × Xa,seed × Ac × N × M
proliferative cells were put randomly onto the two-dimensional space at the time t = tL, where Xa,seed
was a seeding cell density. After seeding, each cell executed the four cell behaviours (migration, division,
quiescence and differentiation) defined by the specific rules described below. When all cells executed all
four cell behaviours, t is increased by a time step �t of 0.1 h. The calculation was finished when t reached
a predetermined time. In the following, the rules of each cell behaviour are described in greater detail.

2.2. Rules of migration
Cells can migrate in one of eight distinct directions denoted by the variables dir, which are assigned
from north (dir = 0) to northwest (dir = 7) in clockwise order. For each time step, a cell moves to one of
the eight nearest neighbour (NN) squares or stays within the current square. To describe the migration
of cell c in the direction dir with the rate of Vm,c, first the cell migrates to the NN square located in
the direction dir of the current square, and second the variable tm,c is updated, a waiting time for the
next migration, as tm,c = l V−1

m,c, where l is the migration distance given by l = √
Ac when dir is even or√

2Ac when dir is odd. The waiting time tm,c decreases by �t for each time step. If the waiting time is
maintained (tm,c > 0), then this cell does not actively migrate, but can be passively exchanged with the
NN cells whose waiting times are less than zero.

When the waiting time of cell c becomes less than zero (tm,c ≤ 0), the direction dir and the rate Vm,c

of migration are determined by the following rules. First, the direction dir is determined stochastically
based on the probability Prm,dir. This probability is determined by the number of weak connections to be
broken ndis,dir as a result of displacement in the direction dir. Whenever a cell is placed next to another
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cell, these two neighbouring cells are considered to be weakly connected. When a cell connects with the
NN cell placed at the direction dir of the former, the number of weak connections between these cells
is defined as ne when dir is even, and no(≤ne) when dir is odd. Therefore, if the cell moves to the even
direction (dir = 0, 2, 4, 6), then the total number of broken weak connections is ndis,dir = 3ne (derived
by subtracting the total number of weak connections after cell displacement, ne + 4no, from that before
displacement, 4ne + 4no) under confluent condition (whereby all squares are occupied with cells). Under
the same condition, if the cell moves in the odd direction (dir = 1, 3, 5, 7), then the total number becomes
ndis,dir = 2ne + 3no instead. In this study, we assumed ne = no = 1.

We defined the weight Rm,dir for accepting migration in the direction dir as

Rm,dir = Fc
−ndis,dir , (2.1)

where Fc is a dimensionless parameter representing the strength to break a single weak connection. When
any strong connections are broken as a result of displacement in the direction dir, Rm,dir is forced to be
assigned with zero, regardless of the value of ndis,dir. Next, by using these weight values, we calculate

pm,dir = Rm,dir∑
d Rm,d

, (2.2)

for all dir directions. Finally, we have the probability to select dir as a migration direction as

Prm,dir =
(pm,dir)C(pm,d̃ir)

N∑
d[(pm,d)C(pm,d̃)

N
)]

, (2.3)

where subscripts C and N of the parentheses represent the values at the current and its neighbouring
square, respectively. d̃ir and d̃ represent the directions opposite to dir and d, respectively. If the
neighbouring square is vacant, then the value is set to unity (pm,d̃ir)N = 1. When the cell c moves to
the neighbouring square, its migration rate is also updated as follows.

Vm,c = Vmax − (Vmax − Vconf)
5 ndis,dir

4(ndis,dir + 1)
, (2.4)

where Vmax and Vconf are the migration rates when the cell is isolated (thereby no surrounding cells
exist) and when the cell is completely surrounded by other cells (confluent state), respectively. Note
that equation (2.4) was determined as a decreasing function of ndis,dir, which satisfies Vm,c = Vmax when
ndis,dir = 0, and Vm,c = Vconf when ndis,dir = 4, which is the average number of broken weak connections
during migration under confluent conditions.

2.3. Rules of division
Each cell has a waiting time for the next division td,c, which is decreased by �t for each time step. When
the waiting time is less than zero, and there is at least one vacant NN square, this cell can divide and
update td,c as td,c = td,c + τg, where τg is a generation time. In a simulation, we determined the value
of τg for each update by giving a random value between 0.9tg and 1.1tg with a uniform distribution
(therefore tg is the mean generation time). If there is no vacant NN square, then this cell cannot divide
(contact inhibition) and does not update the waiting time. During cell division, the mother cell puts its
daughter on one of the vacant NN squares stochastically as described previously [25]. Practically, the
probability that the mother cell puts the daughter on an NN square placed at the direction dir of the
mother is given by

Prd,dir = Rd,dir∑
dir′ Rd,dir′

, (2.5)

where

Rd,dir =

⎧⎪⎪⎨
⎪⎪⎩

2, when the NN square is vacant and dir is even

1, when the NN square is vacant and dir is odd

0, when the NN square is filled by the other cell.

(2.6)

2.4. Rules of quiescence
If the mother or daughter cell is surrounded by other cells, and there are no vacant NN squares, at the
moment when the cell is placed as a result of cell division, then this cell enters the quiescent state. If
the cell is in the quiescent state, the waiting time for the next division does not decrease for each time
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step. Whenever a vacant square appears at the NN of a quiescent cell, this quiescent cell returns to a
non-quiescent proliferative cell state at the next time step. Quiescent cells neither divide nor differentiate.

2.5. Rules of differentiation
If a non-quiescent proliferative cell attaches to one of the NN cells for a critical period of time (tdif), this
cell initiates the differentiation process and makes a strong connection to the NN cell, only when the NN
cell can make a strong connection. Note that each post-mitotic cell can make a maximum of two strong
connections. The strong connections never break, and post-mitotic cells never divide.

Symbols appearing in this article are summarized in appendix.

3. Material and methods
3.1. Cell culture
Human skeletal muscle myoblasts (Lonza, Walkersville, MD) were maintained in 75 cm2 T-flasks
(Nulgen Nunc, Rochester, NY) containing 15 ml Dulbecco’s modified Eagle’s medium (Sigma-Aldrich,
St Louis, MO) supplemented with 10% (v/v) fetal bovine serum (Invitrogen, Grand Island, NY) at 37°C
in air containing 5% (v/v) CO2 by sequential subculture processes.

3.2. Live imaging of cell migration
Viable cells were seeded at a density of 2.3 × 105 cells cm−2, with a small number of cells (75 cells cm−2;
0.033%) stained with CellTracker™ Green (Invitrogen) to track migration of individual cells. After 36 h
of seeding, migration of individual myoblasts was observed using a confocal laser scanning microscope
(FV10i, Olympus, Tokyo, Japan) with a 10× objective lens every 10 min at nine positions for 1 h. The
migration rate of each cell was determined by measuring the distance between centroids of a stained cell
on the images captured at different time points as described previously [17].

4. Results and discussion
4.1. Estimation of the model parameters
To predict cell growth of specific cell types under specific environments by numerical simulation of the
model, we have to estimate the model parameter values before executing the simulations.

The length of a side of the square
√

Ac was assumed to be the square root of the averaged cell size.
In the case of HSMMs, the average area occupied by a single cell was estimated to be 1.8 × 103 µm2,
calculated by the area of culture surface (632 cm2) multiplied by the confluence degree (0.48) divided by
the cell number (1.7 × 107), using previously reported data [19]. Confluence degree was defined as the
ratio of the area occupied by the cells to the entire area of the culture surface. Therefore, the length was
estimated to be 42 µm.

The mean generation time tg can be calculated by ln(2) divided by the true specific growth rate. Using
the reported value (0.033 h−1) [19], we estimated tg as 21 h.

The following three parameters, mean migration rate of isolated cells Vmax, mean migration rate in
confluent state Vconf and connection strength Fc, are all related to the cell migration process. Based on our
previous report [17], Vmax was estimated to be 23 µm h−1. Vconf was directly measured by the experiment
executed in this study, and was estimated to be 12.8 ± 7.4 µm h−1 (n = 22). Thus, in the model, we set Vconf
as 13 µm h−1.

Connection strength was estimated by fitting to histograms of disjunction time after cleavage furrow
formation observed during cell division [17]. Here we used histograms obtained under the following two
conditions; (i) on a plain surface and (ii) on a laminin-coated surface. These histograms were reproduced
from data published in our previous study [17] and are shown in figure 2a,b (white bars). To obtain
corresponding simulation data, we executed the following simulations. Only two cells were seeded on
a space of 5 × 5 squares with periodic boundary conditions, and the cells did not divide, quiesce or
differentiate. For the given parameter Fc, we collected much data on the duration of any contact between
the two cells to create a histogram. We then searched for the histogram which had the least-square fit to
the experimental results (figure 2a,b, black bars). For simulations on a laminin-coated surface, Vmax was
set to 39 µm h−1. From these simulations, the Fc value was determined to be 4.
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Figure 2. Estimation of connection strength Fc by fitting to histograms of disjunction time distribution obtained under two conditions.
Histograms of disjunction times after cleavage furrow formation in each cell division obtained on plain (a) and laminin-coated
(b) surfaces are shown. White bars: experimental results reproduced from the data published in our previous study [17]. Black bars:
simulation results when Fc was set to 4, with which the simulation results were best fit to the experimental data. For the simulations
of plain and laminin, the maximummyoblast migration rate (Vmax) was set to 23 and 39µm h−1, respectively.

The last parameter to be estimated was the differentiation time tdif. Using the estimated values of√
Ac, tg, Vmax, Vconf and Fc, we started numerical simulations of the model with the adherent cell

density of Xa = 1.1 × 103 cells cm−2 and proliferative cell ratio of Rp = 0.84. These data are reported
from HSMM culture on a plain surface obtained at t = 48 h [19], and predicted the subsequent time
evolutions of Xa and Rp. In this simulation, it was assumed that all non-proliferative cells at t = 48 h
were post-mitotic cells, based on the occupation ratio of cells in a culture dish at t = 48 h, calculated as
Xa × Ac = (1.1 × 103 cells cm−2) × (1.8 × 10−5 cm2 cell−1) = 0.02. With this occupation ratio, if we assume
that a part of non-proliferative cells are not differentiated but in the quiescent state, these quiescent
cells will return to a non-quiescent proliferative state in the next time step (i.e. after 0.1 h), and the
experimental condition of Rp = 0.84 will not be able to be maintained. We searched for the parameter
value of tdif, which the model predicted time evolutions of Xa and Rp which were the least-square fit to
the reported values at t = 72 and 144 h [19] (figure 3a,b closed circles and solid curve). As a result, tdif was
estimated to be 11 h.

4.2. Validation of the model
Using the above parameter fittings, the growth curves can be simulated for a given initial condition.
Here, we simulated the growth curve of myoblasts cultured on a laminin-coated surface and compared
the results with experimental data reported previously [19].

When myoblasts were cultured on a laminin-coated surface, the mean migration rate was known to
become faster than that on a plain surface, and was estimated to be 39 µm h−1 [17]. Therefore, Vmax

should be increased to this estimated value. All the other parameter values were assumed not to be
changed using laminin-coated surfaces. In the validation, we started numerical simulations with the
conditions of Xa = 1.4 × 103 cells cm−2 and Rp = 0.86. These data are reported from HSMM culture on
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Figure 3. Estimation of differentiation time tdif by fitting to time courses of adherent cell density and proliferative cell ratio obtained
on a plain surface. Closed circles: experimental data of adherent cell density (Xa) measured in cells cm−2 (a) and proliferative cell ratio
(Rp) (b) obtained in the previous study [19], plotted against culture time. Error bars represent standard deviations. Solid lines: simulation
results when tdif was set to 11 h, with which the simulation results were best fit to the experimental data.
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Figure 4. Model validation by comparing simulation results with experimental data. Open squares: experimental data of adherent cell
density (Xa) measured in cells cm−2 (a) and proliferative cell ratio (Rp) (b) obtained on a laminin-coated surface [19], plotted against
culture time. Error bars represent standard deviations. Solid lines: simulation results when the parameter values determined for the
current culture condition were used.

a laminin-coated surface obtained at t = 48 h [19], and predicted the subsequent time evolutions of Xa

and Rp.
As shown in figure 4a, the growth curve obtained in the simulation was very similar to the

experimental data. Furthermore, the simulated tendency of Rp against culture time was in good
agreement with that of the experimental data, although the absolute quantities were a little larger
than the experimental data at all time points (figure 4b). As one possible cause for this discrepancy,
we considered that not all attached proliferative cells could incorporate BrdU. Because the duration
of incubation with BrdU was 12 h [19], whereas the generation time was estimated to be 21 h, a small
number of normal proliferative cells could not incorporate BrdU if the DNA-synthesis phase was less
than 9 h. Here, it should be noted that all model parameter values were determined using obtained
experimental data, and the developed model was absent of adjustable parameters.

Next, we investigated the effect of increasing the migration rate of myoblasts on the distribution of
each cell type in a two-dimensional space at given confluence degrees (Cd). We executed the simulations
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Figure 5. Snapshots of cell distribution at various confluence degrees. Each square of two-dimensional calculation space represents one
of the following four entities; vacant area (black), proliferative cell (blue), quiescent cell (green) and post-mitotic cell (yellow).

starting from the same initial condition of Xa = 1.0 × 103 cells cm−2, α = 0.85 and tL = 24 h. We compared
the cell distributions at Cd = 0.1, 0.3, 0.5 and 0.8 obtained in the cases of Vmax = 23 (corresponding
to the cases on the plain surface), 39 (on the laminin-coated surface) and 62 µm h−1 (on the laminin-
coated surface with EGF-supplementation to the culture medium) [17]. As shown in figure 5 (together in
electronic supplementary material, S1–S3 for the above three conditions of Vmax = 23, 39 and 62 µm h−1,
respectively), the ratio of post-mitotic cells at any given Cd became smaller when the migration rate
increased. This implies that the simulation of the developed model qualitatively recapitulated our
previous experimental results that the existence of laminin and/or EGF led to the promotion of myoblast
growth while keeping a high proliferative cell ratio by reducing the frequency of cell–cell contacts during
cytokinesis, thus suppressing differentiation [17]. Taken together, for all in silico cultures under different
conditions, the results of the simulations gave satisfactory agreements with the values obtained by the
in vitro experiments.

4.3. Predictions made by the model
In several previous studies using mathematical models to determine expansion of anchorage-dependent
cells, initial cell distribution was found to strongly affect the subsequent growth, and non-uniform
seeding was found to slow down the increase in cell number owing to contact inhibition [22]. Simulations
also predicted that this adverse effect of non-uniform seeding became severe only when cell motility
was small and thus the effect can be neglected in cases using cells with high motility [23]. In the case
of myoblast expansion, the effect of initial cell distribution on the subsequent growth is not obvious,
because the growth rate depends on contact inhibition and on both cell migration and differentiation. In
the following, by executing computer simulations of the developed model, we predicted the growth of
myoblasts when the cells were seeded non-uniformly. We compared these predictions with the results
obtained when the cells were seeded uniformly.

We started the simulation with a randomly given initial cell distribution on the two-dimensional
calculation space. To simulate non-uniform distributions, we defined the probability density distribution
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uniform seeding (a = •) non-uniform seeding (a = 0.1)

Cd = 0.1

Cd = 0.3

Cd = 0.5
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(b)(a)

Figure 6. Effect of initial non-uniform seeding on subsequent myoblast growth. (a,b) Snapshots of cell distribution at the time points
when seeding, Cd = 0.1, 0.3, 0.5 and 0.8, in the cases of uniform seeding and non-uniform seeding defined with a= 0.1, respectively.
The colour of each square represents vacant area (black), proliferative cell (blue), quiescent cell (green) or post-mitotic cell (yellow).

function of

p(x) = exp[−x/axmax]
(axmax)[1 − exp(−1/a)]

(4.1)

in a region of x = [0, xmax], where xmax = N
√

Ac is the length of a horizontal side of the space. This
function also satisfies

∫xmax
0 p(x) dx = 1. The uniformity of the cell distribution, a (>0), is defined as a

variable that satisfies the following equation

p(axmax) = 1
e

p(0). (4.2)

This means that p is exponentially decreased from p(0) to e−1p(0) when x is increased from 0 to axmax.
Therefore, the limit of a → ∞, p(x) → x−1

max (constant) is achieved. Using this function, the fraction of
the cells seeded between xa and xa + �x is given by p(xa) �x. In the present two-dimensional cellular
automaton, the probability that a square positioned at xi = (i − 1/2)

√
Ac (i = 1, 2, . . . , N) is occupied with

a cell at the time of seeding is given by p(xi)
√

Ac. Cell distribution along the y-axis (vertical coordinate)
was assumed to be constant. Cells cannot migrate or divide into the regions of x < 0 and x > xmax, whereas
periodic boundary conditions were applied along the y-axis.

We considered cases in which myoblasts were seeded on a laminin-coated surface with EGF
supplementation in the culture medium. Under this condition, Vmax was set to 62 µm h−1 [17], whereas
all the other parameter values were not changed. We started simulations by seeding cells on a two-
dimensional calculation space composed of 240 × 40 squares with Xa = 1.0 × 103 cells cm−2 and Rp = 1.0.
For a given a value, we obtained a randomly generated non-uniform initial cell distribution. Practically,
when a ≥ 1, the generated initial cell distribution was very similar to the uniform distribution. Starting
from these initial cell distributions, time evolutions of spatial distribution and existing ratios of each cell
type were calculated.

Typical time evolutions of cell distributions initiated with uniform and non-uniform seeding are
shown in figure 6 (together in electronic supplementary material, S4 and S5 for the conditions of uniform
and non-uniform seeding, respectively). Even though we started the simulations using the same seeding
density, the resultant cell distributions at given confluence degrees were very different. In the case of
uniform seeding, many small growing colonies were distributed broadly in the space (figure 6a and
electronic supplementary material, S4). On the other hand, in the case of non-uniform seeding with
a = 0.1, one large colony grew from the left side to the right (figure 6b and electronic supplementary
material, S5). In both conditions, many proliferative cells existed at the edge of the colonies, while post-
mitotic and quiescent cells mainly existed inside the colonies. Because the area of the colony edge was
small in the case of non-uniform seeding, the number of proliferative cells was relatively small.

Existing ratios of proliferative, quiescent and post-mitotic cells were changed drastically with
uniformity of the initial cell distribution (figure 7a). When uniformity a was large enough (a ≥ 1), the
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Figure 7. Effect of initial non-uniform seeding on the ratio of each cell type and the required time to confluence. (a) Existing ratios of
proliferative (closed area), quiescent (striped area) and post-mitotic (open area) cells at the time when the confluence degree reaches
0.5 are arranged against the uniformity parameter of initial seeding (a). a= ∞ corresponds to uniform seeding. (b) Required time for
the confluence degree to reach 0.5 arranged against a. Error bars represent standard devotions (n= 3; simulation runs).

initial distribution was almost uniform, and more than two-thirds of cells were proliferative at the time
when the confluence degree was 0.5. As a was decreased, the existing ratio of proliferative cells was
also decreased (figure 7a). When a = 0.1 (in the case shown in figure 6b), the ratio of proliferative cells
was 0.22, less than one-third of that in the case of uniform initial seeding (0.69 when a = ∞). On the
contrary, the existing ratios of quiescent and post-mitotic cells were increased by decreasing a. Non-
uniform initial seeding also slowed down the increase in cell number. As shown in figure 7b, particularly
when a ≤ 0.1, the required time for the confluence degree to reach 0.5 became much larger than that in
the case of uniform seeding (a = ∞). These results imply that heterogeneous seeding should be avoided
for effective expansion culture of myoblasts, because non-uniform initial seeding creates adverse effects
on the culture by reducing the existing ratio of proliferative cells at a given confluence degree (figure 7a)
and by decreasing the mean growth rate (figure 7b).

As shown in figure 7, these adverse effects on the expansion culture became prominent when a ≤ 0.1,
whereas they were not prominent when a ≥ √

0.1. In the simulations using a = 0.1 and
√

0.1, the largest
local densities of seeded cells were about 9.8 × 103 cells cm−2 and 3.3 × 103 cells cm−2, respectively, which
were calculated by the following formula

(
local cell density at x = 1

2

√
Ac

)
= Xa

exp(−1/2aN)
a[1 − exp( − 1/a)]

, (4.3)

with Xa = 1.0 × 103 cells cm−2 and N = 240. Therefore, when the cell density exceeds the critical value
(likely to be between 3.3 × 103 and 9.8 × 103 cells cm−2) even locally, the above adverse effects can
become prominent. Therefore, by considering heterogeneity in cell density that can occur at the time
of seeding [31], the seeding density of Xa = 1.0 × 103 cells cm−2 designed for the automated myoblast
culture system [19] was thought to be reasonable.

It should be noted that the results shown in figures 6 and 7 were derived under the condition
of Vmax = 62 µm h−1, in which myoblasts were seeded on a laminin-coated surface with EGF
supplementation to the culture medium [17]. When myoblasts are seeded on a plain surface or a laminin-
coated surface with no EGF supplementation, they migrate slowly (Vmax = 23 µm h−1 and 39 µm h−1,
respectively). In these cases, it is considered that the proliferative cells were likely to attach to one of their
NN cells for a relatively longer period of time and differentiation occurred more frequently. Accordingly,
the critical local cell density is thought to become smaller.
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5. Conclusion
To optimize culture conditions for effective expansion of skeletal myoblasts, it is desirable to be able
to predict the expansion process, particularly when autologous cells are used, because cell growth is
strongly dependent on the growth properties of a given sample. Here we developed a computational
model describing the expansion process of myoblasts based on our previous two-dimensional cell
placement model. In this study, we assumed that cells initiated differentiation when they attached to each
other for a defined period of time. Although the assumption of differentiation was simple, the developed
model satisfactorily described the available experimental data quantitatively. This implies that the model
can be used to predict cell number and proliferative cell ratio during expansion culture using a given
sample of myoblasts. With computer simulations using the developed model, we also predicted the
effect of non-uniform seeding on subsequent cell expansion and found this slowed expansion down.
Predictions made by these in silico simulations will be useful for designing an efficient culture system for
expansion culture of autologous myoblasts in the future.
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Appendix: glossary
Ac mean area of a single myoblast
Cd confluence degree (ratio of the area occupied by cells to the entire area of culture surface)
Fc connection strength
N, M number of squares along horizontal and vertical axes, respectively
Prd,dir probability that the mother cell puts the daughter cell on an NN square placed in the direction

dir of the mother; defined by equation (2.5)
Prm,dir probability that the cell migrates in the direction dir
Rd,dir weight for putting the daughter cell on an NN square placed at the direction dir; defined by

equation (2.6)
Rm,dir weight for accepting the migration in the direction dir; defined by equation (2.1)
Rp proliferative cell ratio
Vconf migration rate when the cell is completely surrounded by other cells (confluent state)
Vm migration rate of a myoblast (cell)
Vm,c migration rate of cell c
Vmax migration rate when the cell is isolated (no surrounding cells exist)
Xa adherent cell density
Xa,seed seeding cell density
a uniformity of cell distribution; parameter appears in equation (4.1)
dir variable denoting one of the eight discrete directions
d̃ir the direction opposite to dir
l migration distance
ndis,dir number of weak connections to be broken as a result of displacement to the direction dir
ne number of weak connections between a cell and the cell placed at the direction dir = 0,2,4,6
no number of weak connections between a cell and the cell placed at the direction dir = 1,3,5,7
p(x) probability density distribution function defined by equation (4.1)
pm,dir normalized weight for accepting migration in the direction dir; defined by equation (2.2)
t culture time
td,c waiting time for the next division of cell c
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tdif differentiation time
tg mean generation time
tL lag time
tm,c waiting time for the next migration of cell c
xmax length of a horizontal side of the space; parameter appears in equation (4.1)
�t time step
α the ratio of adherent cell concentration at t = 24 h to the seeding density (t = 0 h)
ξ (i, j) state variable of the square positioned at (i, j)
τg generation time; randomly assigned value between 0.9tg and 1.1tg
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