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DEFLECTION OF A THREE-HINGED ARCH

PREFACE

Early in boyhood, before the writer began the study of Civil Engineer-

ing, he took a special interest in arches for artistic reasons. While in

college, his natural fondness for such structures led him to become
interested in the advantages and disadvantages of one type over another

in stiffness and economy. The object of this thesis is to investigate the

relative stiffness of steel arch ribs with three, two and no hinges. Since

hingeless arches are not built with the spandrel-braced form on account

of the difficulty of fixing the ends, the rib type is chosen for this inves-

tigation.

An investigation of the comparative deflections of steel arch ribs is a

very complicated problem. The design of a three-hinged arch is not

affected by temperature nor by rib-shortening. The effect of tempera-
ture and rib-shortening on arches with two or no hinges varies for differ-

ent ratios of rise to span. Finally, different designers may assume differ-

ent ranges of temperature and percentages of over-stress. Realizing

these complications, the writer paid special attention to finding the

easiest methods of computation for the benefit of future investigators,

rather than to compute only the value for deflection.

The general process of finding the easiest methods of computation
used in this thesis is to analyze general equations into a number of con-

tributing factors
;
then to treat each factor separately. The advantages

of this process are: (i) each factor may have a very simple solution;

(2) it gives the computer a clearer conception of the problem; (3) it

offers an opportunity to study the relative importance of different con-

tributing factors and to neglect some of the factors; (4) it may suggest

the easiest solution by omitting certain negligible factors.

The special features of this thesis are : (i) the method of stress com-

putation for the three-hinged arch; (2) the method of computing
deflections for the three-hinged arch; (3) the method of computing
deflections due to axial thrust for two and no hinged arches; (4) the

assumption of moment of inertia for the preliminary design of the hinge-

less arch; (5) the method of stress computation for the hingeless arch.

Though no special merit is claimed, these few points are believed to be

new.

The writer wishes to express his appreciation and gratitude for

valuable suggestions and encouragement received from Prof. H. S.

Jacoby, chairman of the committee.



GENERAL CONSIDERATIONS

The arches chosen for this investigation give some advantage to two-

hinged and no-hinged arches in stiffness
;
because the lower the rise, the

greater the effect of rib-shortening and temperature upon cross-section

area, and hence the smaller the deflection. The reason for choosing

arches with a low rise is to bring out the good points of the three-hinged

arch even under unfavorable conditions and a desire to utilize arches

previously designed. The arch span is 2 58 feet long, has 20 panels, and a

rise of 26 feet. The dead load was assumed to be 59 kips and the live

load i8>^ kips. The effective depth of the arch rib was assumed to be

five feet throughout, and the unit-stress 15,000 pounds per square inch.

The discovery of some errors led the writer to revise the designs of the

three-hinged and no-hinged arches, and thereby to find some new
features of computation, including the moment table for the three-hinged

arch, the assumption of moments of inertia for the preliminary design of

tne hingeless arch, and the effect of varying the end cross-section.

The rise and fall of temperature were assumed to be 75 Fahrenheit.

Thirty per cent, overstress was allowed for the hingeless arch, but no

allowance was made for the old design of the two-hinged arch.

THE DESIGN

The method of stress computation used in this design is different

from what is generally employed. The writer believes that the new

process is quicker and easier. In Chapter V of Roofs and Bridges,

Part IV, by Professors Merriman and Jacoby, the working equations

for three-hinged arches are:

ff- M-P(i-*)*-^ (a)

2 2

Equation (a) is for a single concentrated load. As explained in the

same text, each leaf of the arch acts both as a simple beam and a strut.

By observing this simple treatment, much labor can be saved in com-

puting the bending moment at different sections by equation (b) .

M=M' M" (b)

Where M' is the bending moment as a simple beam, and M" is the bend-

ing moment as a strut. The identity of equations (a) and (b) may be

proved in the following way :

Vi' = P(i-2K); VV = 2PK = 2F2 ;
M' = P (i

- 2K) oc

TT PKl



M f - M" = P (i
- 2K) x -

- M" =

2h
+ PKx

M' is easily computed for panel loads. If M" due to a unit load at the

crown hinge is known, the complete moment table may be filled in by
mere inspection.

For a unit load at the crown, H = = 2.48077. The moment at

different sections



2 4



Section

0-2

2-6

6-8

TABLE 7.



bending moment as a strut. The movement of the crown hinge has

three contributing factors: the deflection due to negative bending
moment in both leaves of the rib; the deflection due to positive

bending moment in either leaf of the arch rib
;
and the deflection due to

rib shortening. The deflections due to the different contributing factors

can be easily obtained either graphically or analytically. The above

statement is now arranged in a different way to make it clearer.

1. Deflection due to positive bending moment as a simple beam.

2. Deflection due to negative bending moment as a strut.

3. Influence of crown movement on account of negative bending
moment in struts.

4. Influence of crown movement on account of positive bending
moment in either leaf as a simple beam.

5. Influence of crown movement on account of rib shortening.

2O Panels g> /<"?'

Three-Hinged Arch

The truth of the above method may be proved in the following way.
The influence of the work of shear is neglected. The deflection is:

ds

J
b
Mmds C

b
Tt

EI J E A

The first term contains the first four contributing factors. The

second term contains the fifth contributing factor. SinceM = M f M"
and m = m' m", the first term becomes

fM ds = f (M' - M") (m> - m") *_
J EI J El
a a

rM'm'ds
_ rM"m'ds _ (* M'm'ds C* M'm'ds

~ET~ ~J ^T ~J ^T +
J EI

a a a a

The first three terms have the limits a and c, because M' and m' do not
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extend to the other half of the arch. By mere inspection, the four terms

are the first four contributing factors. The expanded equation is,

Ttds .A
J*M'm'ds_

C

M''m'ds C MWds F*M"nf
El J El j El J ^ EA

Equation (c) may be changed into a more convenient form for use.

If/ equals the number of panel points from the nearest support to where

the deflection is sought ;
and g equals the number of panel points from

the nearest support to where the load is applied; M"c and m"c are the

Figure 6 Figure 7.

Deflection Diagrams with Scales Exaggerated

bending moments due to a load unity at the crown instead of a partial

load transferred to the crown; then equation (c) becomes,

+ fsrM
c"mc"ds

El

(3)

(4) (5)

GRAPHICAL REPRESENTATION OF CONTRIBUTING
FACTORS OF DEFLECTION

In Fig. 5 the left leaf of the original arch rib is a e c. When a load P
is applied, the leaf deflects as indicated by ae"c' in exaggerated scale.

7



The ordinates between ae'c' and ae"c
r

represent the deflections as a

simple beam; and this is called the contributing factor (i).

When a load P is applied at point 6, 0.6 p is transferred to the crown

hinge which causes negative bending moment. In order to represent the

effect of positive bending moment alone, a loadP' = 0.6 p is supposed to

act upwards at the crown hinge to counteract the effect of negative

bending moment. On account of factor (i), the left leaf lengthens and

the crown hinge moves upwards and towards the right. The final

position of the arch rib is ae"c'b. The ordinates between ae'c'b and

aecb represent the effect of contributing factor (4). The ordinates

between aecb and ae"c'b represent the combined effect of (i) and (4) as

in Fig. 5.

When a partial load is transferred to the crown hinge, it causes nega-

tive bending moment and each leaf acts as a strut. On account of the

negative bending moment, the original leaf adc in Fig. 6 deflects as

ad'c'. The ordinates between ad'c' and ad"c' represent the deflection

due to factor (2). On account of negative bending moment, each leaf

shortens and the crown falls to its new position c' . The ordinates

between adcb and ad"c'b represent the deflection due to factor (3) as

shown in Fig. 6. The ordinates between adcb and ad'c'b represent the

combined effect of (2) and (3).

The effect of axial thrust is simply the shortening of each leaf which

causes the crown to fall to its new position. In Fig. 7 the ordinates

between acb and ac'b represent the deflection due to factor (5).

As may be readily seen from the figures, factors (3), (4) and (5) are

due to crown movement and can be combined in computing the deflec-

tions at various points for any given loading, when the movement of the

crown is obtained.

RECIPROCAL DEFLECTIONS

By Maxwell's law of reciprocal deflections, the computation is

greatly simplified. For example, factor (4) is obtained directly from

factor (3), because jM'M"ds !

,El and /M'M'dslEI are identical.

Furthermore, Maxwell's law can be used as a good check on the final

results. The following table shows the scope of reciprocal deflections.

The figures i, 2, 3, etc., indicate reciprocal deflections. It is seen that

symmetrical figures on both sides of these inclined lines are equal.
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LOAD AT SECTION
Defl. at.

2

4
6

8

10

12

14

16

18

II IV VI

DEFLECTION AS A SIMPLE BEAM BY THE METHOD OF ELASTIC MOMENTS

As explained on page 223 of

Bridge Engineering by "Dr. J.A.L.

Waddell, the deflection of any

point of a simplebeam with respect
to its supports is equal to the mo-

ment which would occur if the

beam were conceived to be simply

supported at the ends and loaded

with Mds/EI. Factor (i) can be

easily computed by this method

as follows. All deflections are

to be computed for one kip.

ELASTIC LOAD FOR LOAD OF ONE KIP AT III

(Mds/EI) X io6
.

Section I II III IV V VI VII VIII

Elastic load 4.40 8.25 11.60 8.60 8.15 6.65 5.10 3.68

X
2.03

Section

i

2

3

4

5

6

7

8

9

10

ds

TABLE 9

//looo (ds/D X io3
(ds/EI) X 10* A.

13.72



DEFLECTION OF CROWN DUE TO THRUST
Thrust is equal to Hcosft + VsinQ. For a load unity at crown,

H = 2.48 and V =
0.5. The deflection is to be computed as it affects

all points along the arch rib.

The result is

= 0.00241f X 2 = 0.004834"
2 A E

For any other position of loading, an assumption is made that only a

portion of the load carried up to the crown hinge causes crown deflection

due to rib-shortening. This assumption is justified as the deflection due

I HH H 1

Deflections of Three-Hinged Arch

to rib-shortening is only a small portion of the total and it does not make
any appreciable error. The greatest difference occurs when the load is

at quarter point. The difference in thrust is (V Vi) sinft.

10



TABLE 10. LOAD AT 5

Section (770rie d^^- T2 dsX io*

2 A E 2 AE
o-i .19 408 147
1-2 .17 402 116

2-3 -15 367 83

3-4 -H 364 7i

4-5 -12 36l 52

469.0

Total deflection due to thrust = 0.00483400''

Deflection due to (F2 Vi) sinft = 0.00000469"
This comparison indicates that the difference is a negligible quantity.
Factors (i) and (2) are computed by the method of elastic moments

and checked by graphical methods. In order to describe the method,
the deflections for a load of one kip at point IV are given below. Com-

plete computations are filed in the C.E. Library of Cornell University.
1. Compute factors (2), (3) and (5) for a load unity at the crown.

These values are used for any position of a load with a corresponding
ratio.

2. Compute factor (i) for load at IV.

3 . Compute factor (4) for load at IV.

TABLE n. DEFLECTION IN 1000TH INCHES
Point (i)

2 10.6l

4 16.91

6 15-94

8 945
10

12

14

16

18

(3), (4)&(5) = 10-849 0.4(14.566 4.834) = 3.089

(4) (3) (5)

HORIZONTAL DEFLECTION DUE TO VERTICAL LOAD

An identical method is used for computing horizontal deflections

except that m stands for a bending moment due to a horizontal load of

unity and / for the thrust due to the same loading. The general equa-
tion is,

'w'ds C
b

M"m'ds C
b

M'm"ds . F*M*m*ds . C
T -j -WT-] +J

+
J

II

(2)



rM'm'ds
_ CM"m'ds _ CM'm"ds

~ET J ~ET J El
00 oo

(i) (2) (3) (4) (5)

(4) and (5) are equal to zero, because the summation for the right leaf of

the arch is equal and opposite to the summation for the left leaf. The

slight variation of thrust due to (Vz Vi) sin is a negligible quantity.

Deflections as a simple beam and as a strut, are computed by the method
of elastic moments.

UHonz.
Deflection

Vert. Load 1 _

onz. Defltc t ion [_

L v_ __ j

Vert.cal Deflect**

VH- Honz. Loa

\Fiovre

ion

\ /

Fiqure IS

Deflections of Three-Hinged Arch; Minimum Deflections shown by Dotted Lines.

HORIZONTAL DEFLECTION DUE TO HORIZONTAL LOADING

The same method is used here for computing the horizontal loading.

In this case all terms are positive. The deflection due to thrust is found

to be very small and that it is beyond the degree of precision required.

The general formula is,

(I) (2) (3) (4)

Factors (2) and (3) have a reciprocal relation. When one is known, the

other can be obtained by a simple ratio. Factor (4) needs to be com-

12



puted only once, as the rest are obtained by applying a simple ratio.

The work for computing the deflection is thus greatly simplified.

VERTICAL DEFLECTION DUE TO HORIZONTAL LOADING

Vertical deflections due to horizontal loading are obtained by
Maxwell's law of reciprocal deflections, because the vertical deflection

due to horizontal loading is equal to the horizontal deflection due to

vertical loading.



VERTICAL DEFLECTION OF A TWO-HINGED ARCH

The general formula for computing deflection is fMmds /El -\-fTtds /

A E. The deflection due to shear is to be neglected. The first term is

the deflection due to bending moment, while the second is due to

shortening of the arch rib on account of axial thrust. Here m stands

for the bending moment due to a load unity applied at the point where

the deflection is sought. Since a two-hinged arch is a combination of a

simple beam and strut, the bending moment at different sections is

equal to M'-M", M' being the bending moment when acting as a simple

beam, while M" is the bending moment when acting as a strut. Simil-

arly m equals m'-m". Substituting these values in the first term, it

becomes f(M'-M") (m'-m") ds/EI=fM'm
f

ds/EIfM"m'ds/EIfM'
m"ds IEI+fM"m"ds JET. The sum of the last two terms equals zero,

because they represent the vertical deflection due to a movement of

the end hinges. Since the hinges do not move, their sum must be zero.

As the formula shows, the first term of the expanded formula is the

deflection when acting as a simple beam ;
the second term is the deflec-

tion when acting as a strut due to H; the third term is the deflection

due to a horizontal movement of the hinge on account of M'
;
the fourth

term is the deflection due to a horizontal movement of the hinge on

account of M"'

. Since the last two drop out, the total deflection of the

arch rib due to flexure equals its deflection as a simple beam minus

its deflection as a strut. These deflections can be obtained easily

either analytically or graphically. The complete equation becomes:

Deflectionion -
J,

ds C ds
rtf f _i_ I JYn

EJ H
J

1 AE
(l)

TABLE 12

(2) (3)

Section



0.018



Point

2

4
6

8

10

II

H*-

H2
*

TABLE 15. H'H"

Load at Section

IV

H*
H*H*
H 2

*

H*H*

H'H"

VI
H6

VIII

H8

H

X

H*

H2

There is a very simple way to compute the deflection due to an axial

thrust. As it can be readily observed from the table, the deflection

Deflections of a Two-Hinged Arch

due to H cos 6 is proportional to H in both directions. Now it is only

necessary to compute one point for all deflections under any conditions

of loading. This is the deflection of the crown due to a load unity at

the crown. It is surprising what a great amount of labor is thus saved.

All deflections due to axial thrust therefore, can be obtained from a

simple ratio ofH . As stated elsewhere the deflection due to V sin may
be neglected. If more accurate results are desired, the effect of V
should be computed separately. All deflections due to this factor are

approximately proportional to x.

16



The method of combining different factors is illustrated in table 16,

where factor (i) stands for deflection as a simple beam, factor (2) for

deflection as a strut, and factor (3) due to rib-shortening. The results

are plotted for panel loads of one kip. Horizontal deflections are

computed by identical methods except that P" is to act horizontally

at the point where the horizontal deflection is sought.

TABLE 1 6.

Point

2

4
6

8

10

12

14

16

18

TOTAL VERTICAL DEFLECTION DUE TO A VERTICAL LOAD
AT VI. (IN INCHES)

Factor

(i)

0375

.0700

0935

.1045

.1050

.0950

.0780

550

.0285

Factor

~(2)

.0329

.O620

0845

.0938

.1040

.0988

.0845

.O620

.0329

Factor

(3)

.0006

.0012

.0016

.0020

.0020

.0020

.0016

.0012

.0006

Total

.0052

.0092

.6106

.0077

.0030

.0018

.0048

.0058

.0038

DESIGN OF A HINGELESS ARCH

Various assumptions of the moment of inertia have been tried for

the preliminary design, but none of them seems to be adequate. The

preliminary design was computed by assuming I to vary as sec. 6. The
final results are tabulated as follows :

Load at

Section

i

2

3

4

5

6

7

8

9
10

TABLE 17

V* H

.9927

.9720

9392

.8960

8437
. 784o

.7182

.6480

,5747

.5000

.0077



TABLE 18.

Section

o

i

2

3

4

5

6

7

8

9
10

AREA IN SQUARE INCHES
A i A 2

II9-5

93-1

75-9

72.3

65.0

67-9

72.8

76.9

78.4

78-3

77-3

135-0

106.5

83-5

74-7

68.6

59-2

67.2

72.8

74-7

75-8

75-2

Error

15-5

13-4

-7.6
2.4

-3-6
8.7

5-6

4.1

3-7

2-5

2.1

A l is computed by / varies as sec. 0, while, A% is computed by true

values of I. The error is far too great for the preliminary design.

Evidently the assumption I varies as sec. must be far from the true

value. The value of I in the following design is obtained after several

trials. The moment of inertia of the web is neglected.

Section

9-10

TABLE 19. COMPOSITION OF FLANGES

Area in- I

38.58

23.60

47-25

Composition
6 Ls 6" x 6" X9"/i6

3P1- 14 x &
3P1. 18 x %

8-9

6-8

4-6

0-4

2P1. 18

6 Ls 6 x 6 x -ft

3?1. 14 x &
3P1- 18 x V8

6 Ls 6 x 6 x

3P1- 14 x A
i PI. i8x K
iPl. i8x&

6 Ls 6 x 6 x

3PL 14 x A
i PI. i8x V*

6 Ls 6 x 6 x

3P1. 14 x&
i PI. 18 x ^
i PI. i8x ^

27.00

136.43

38.58

23-60

47-25

109.43

38.58

23.60

I3-50

10.13

85.80

38.58

23-60

7.88

70.05

38.58

23.60

7.88

_6.75_

76.81

316,900 in. 4

234,700 in.

167,700 in.'

125,850 inj

143,400 in.

18



PROPOSED METHOD FOR DESIGNING A HINGELESS ARCH
General methods for designing a hingeless arch are extremely

laborious. If mistakes are made, it requires a long time to correct

them. As stated by Dr. J. A. L. Waddell in Bridge Engineering, page
635, "the labor involved in making the computations is excessive." It

seems to the writer that the following interesting method could be used to

advantage. A hingeless arch is a two-hinged arch with end bending
moments added to keep the tangents fixed. Then the different factors

which enter the computations may be separated. The general process
is: (i) To find V as a simple beam; (2) to find H as a two hinge arch;

Moment /nf/uente Line,
Tfof

7fcc>

(3) to find 61 and 2 due to the applied load; (4) to find due to H unity;

(5) to find 0i and 2 due to M = unity applied at one end; (6) to find

H and V due to M = unity applied at one end; and (7) to solve the

algebraic equations with the computed data. Factors (i), (2), and (6)

are simple, but the rest may need further explanation.

The general equation for is,
= fMds /EL If a simple supported

beam is loaded, the point of maximum deflection will be the point of

zero shear for elastic loads, Mds /El. But the change of angle at each

end is fMds /El from the end to the point of maximum deflection.

Then the angles 61 and 2 are simply the reactions due to elastic loads.

Factors (3), (4) and (5), therefore, can be easily computed. It is to

be kept in mind, when M = unity is applied at one end, it causes

vertical reactions and the bending moment is diminishing from unity

19



at one end to zero at the other end. Moreover, bending moments will

cause horizontal reactions.

The algebraic equations are all simple ;
for example, if 61 and 2 are

231 IE and 42 /E respectively, and M = unity will cause 61 = 11.02 /E
and 62 = 6.2/E; then

11.02 MI-}- 6.2 MI 231

11.02 M2 + 6.2 MI = 42

MI andM2 being the bending moments at the respective supports.

The advantages of this method are: (i) some factors may be neg-

Deflections of a Hingeless Arch

lected; (2) if mistakes are made, they can be easily detected and

corrected. The writer has roughly checked one point with this method

by using a slide-rule with fairly good results. Since the writer has

directed his attention primarily to deflections, he is not able to spare

the time to develop this interesting method. Further investigation

is necessary in order to make this method a useful working instrument.

DEFLECTIONS OF A HINGELESS ARCH

The computations of deflections for a hingeless arch are quite simple.

There are two main factors: bending moment and axial thrust. Since

a hingeless arch is fixed at both ends, the arch is treated as a cantilever

for computing deflections due to bending moment. The plan is to start

from one end and to use the other as a check. Since their relative

position is fixed, the deflection of the other end with respect to the first

must be zero, the deflections can be obtained easily either analytically

or graphically.

20



The deflection due to axial thrust is computed in exactly the same

way as for a two-hinged arch. The deflection at the crown is first

computed, while the rest are obtained by means of a simple ratio of H.

Horizontal deflections are computed by similar methods, except
that the load unity is applied horizontally at the point where the deflec-

tion is sought.

TABLE 20.

Point

2

4
6

8

10

12

14

1 6

18

VERTICAL DEFLECTION OF A HINGELESS ARCH FOR
VERTICAL LOAD AT X
Factor

(i)-
.52

i .08

.60

1.28

2.60

1.28

-.60

i .08

.52

Factor

(2)

40
1.48

2.79

3.77

4.13

377
2.79

1.48

.40

Total
-.12

.40

2.19

5.05

6.73

5.05

2.19

.40

.12

(A) DISCUSSION ON THE DESIGN

The new method of stress computation for a three-hinged arch

seems to have advantages over the usual methods because the M' and

M" (tables 4 and 5) tables can be filled in by mere inspection. The

point of division can be readily obtained by comparing these two tables.

This method can be applied to a spandrel-braced arch as well.

Attention has been called to the assumption of moment of inertia

for the preliminary design of a hingeless arch. The writer desired to

find an equation for the /-curve with a given rise but on account of

the limited time, he was not able to design hingeless arches with different

rises. The best that the writer can do at present is to recommend the

/-curve for a rise equal to one-tenth of the span. He hopes that some-

one interested in this problem will discover the necessary equation.

The assumption that / varies as sec 6 is far from the true value. For

a preliminary design of hingeless arches with one-tenth rise, the assumed

moment of inertia should be,

Section

Section

10 (Crown)
Ic c 10%

6

c 10%
4
Ic

21
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Hinge/ess Arch.
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200000

Before choosing the final flange area, y = fyds/I+ fds/I should be

investigated to see how much it differs from that for the preliminary

design. This is important, because a slight variation will greatly

affect the stresses of temperature and rib-shortening.

Change of flang area does not materially affect H nor influence

the required area to any

great extent, except near the

end sections. It is very

interesting to note that too

much material near the end

section may reduce the

security of the structure.

In designing the hingeless

arch, sections i and o were

first assumed to be constant

with 136 square inches; and

the final required area for

section o was found to be

142 square inches. When
section i is reduced to no
square inches, while the

other sections remain the

same as before, the final

area for section o becomes

135 square inches. Too

much material near the end

section, therefore, is undesir-

able. The explanation is : a hingeless arch is a combination of a canti-

lever and a two-hinged arch. The hinges are imaginary and movable.

If too much material is added near the end section, it increases the stiff-

ness of the end sections unnecessarily, and in turn it increases the action

as a cantilever, thus requiring a larger section near the spring line.

(B) DISCUSSION ON METHODS OF DEFLECTION COMPUTATIONS

The method of computing the deflections for a three-hinged arch

is valuable and interesting. The computation has been made as easy

as for a simple beam. Moreover, this new method presents a clear

conception of the different contributing factors.

The deflection under a full load is chiefly due to axial thrust. It is

interesting to note that the deflection curve for a three-hinged arch
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under full load is composed of two straight lines (see Fig. 33).

This clearly shows that the deflection due to axial thrust is proportional
to x which in turn is proportional to H, and V. For arches with two
and no hinges, the deflections under full load are very nearly propor-
tional to H (see Fig. 33).

The method of computing deflections due to axial thrust for arches

with two and no hinges is useful and simple. It is only necessary to

compute for one point to obtain all deflections under all kinds of loading.
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Comparison of Deflections for Hingeless, Two-Hinged and Three-Hinged Arches
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(c) DISCUSSION ON DEFLECTION

The relative deflections for load at II, IV, VI, VIII and X are plotted

in diagrams 26 to 54 inclusive; and comparisons are made for horizontal

and vertical deflections due to horizontal and vertical loads. Finally

comparisons are made for loads giving maximum and minimum deflec-

tions and for full loads.

So far as the deflection of the crown is concerned, a two-hinged arch

is stiffer than a three-hinged arch for full and partial loads. At the

quarter points, however, the reverse is true. The hingless arch is the

stiffest of all under all conditions.

Morn J)tle<,ttOn$ for Hc^t Load

Comparison of Deflections for Hingeless, Two-Hinged and Three-Hinged Arches

When the arches are under horizontal loads, the relative deflections

of arches with two and three hinges remain the same as before stated.

While under full loads, there is practically no difference in deflection

for these two types of arches. The deflection for a hingeless arch due

to horizontal loads is a negligible quantity; while for arches with two

and three hinges, the horizontal deflection due to horizontal loads is

about 15 per cent, of Vertical Deflection at the quarter points.

The hingeless arch is the stiffest both under horizontal and vertical

loads. It has very small deflections due to horizontal loads, and hence

the vibration due to a fast railroad train is greatly reduced. In the

writer's opinion, with a favorable location, the hingeless arch would be

the first choice if the greatest stiffness is required. Under ordinary

conditions, a three-hinged arch is preferable.
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