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Abstract

This thesis is about a method for speeding up natural-language analysis using a novel
compilation technique.  As its input, the compiler takes a unification-based linguistic
formalism (non-deterministic finite-state automata, where transitions are labeled by
attribute-value matrices according to a finite type logic with a simple-inheritance type
hierarchy).  As its output, the compiler generates machine instructions for the PowerPC
chip, a  pipelined RISC processor with superscalar instruction dispatch.

Because of its fine-grained knowledge about the task, the compiler is able to perform
optimizations that would be very difficult to achieve using traditional techniques.  Ex-
amples include heuristics for Static Branch Prediction, data cache control and schedul-
ing the machine instructions to benefit from superscalarity, so that certain unifications
are executed in parallel.

The system is evaluated by measuring the time it takes to extract noun groups in texts
of some thousand words in length.  On Apple PowerMacintosh machines, this task
could be accomplished in fractions of a millisecond, theoretically corresponding to a
speed of up to 21 million tokens per second.  Hence, the generated code is so effi-
cient that unification and pattern matching become neglectible factors in the overall
performance of a natural-language system.

Due to the achieved speed, the presented techniques could form the foundation tech-
nology of new, real-time NLP applications.

Keywords
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Formalisms · Compilation · PowerPC
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1 Introduction

This first chapter discusses the motivation for the Patti project and outlines its history,
before the larger context of its operation is explained.  The chapter concludes with ac-
knowledgements and presents an overview to the thesis.

1.1 Motivation
As widely known, the problem of dealing with human language is not an easy one.  It
is not surprising that quite elaborated algorithms have to be utilized, and naturally,
these tend to be slow — in many cases so slow that many applications of that technol-
ogy are not realized due to the restricted computing power.  But the complexity of the
task is only partly to be blamed for the long processing times:  another factor is that
not too many of the recent advances in computer technology had an impact on the
way how natural language processing systems are built.

The work described by the present thesis aims to exploit the progresses of modern
computer architecture for a highly efficient system to perform unification-based pat-
tern matching.  A compiler has been developed that takes a declarative linguistic for-
malism as its input, and generates high-performance Assembly code for the PowerPC
chip.  Due to its fine-grained knowledge about the task, the compiler is able to exploit
very low-level methods to ensure extremely efficient processing.  Examples include
Static Branch Prediction, data cache control instructions, or mechanisms to benefit
from the CPU’s superscalarity so that certain unifications are executed in parallel.

The achieved speed is evaluated by measuring the time to extract simple noun groups
from a number of different texts.  Depending on the hardware (several Apple Power



Macintosh models), the matching speed ranges between 1.8 million up to 21 million
tokens per second.  It thus shows that the large effort invested into the compilation
techniques is rewarded by an extremely high processing speed.  It will be shown that
these numbers are more of illustrative value, but in any case, the processing speed is
so high that unification and pattern matching become entirely neglectible factors in the
overall performance of a natural-language system.

To achieve this efficiency, certain drawbacks were necessary with regards to the ex-
pressiveness of the linguistic formalism: HPSG-style grammars probably could not be
processed this fast.  Nevertheless, the formalism offers a unification-based framework
with a simple-inheritance type hierarchy and allows to use disjunction and negation in
certain cases.  However, when the question was to decide between computational ef-
ficiency and linguistic expressiveness, the former was preferred more often than not.
The described system is hence clearly focused on Natural Language Engineering, not
on Computational Linguistics.

1.2 History of the Patti Project
The basic ideas about compiling a very similar formalism were developed by the au-
thor during his time at the department for Computational Linguistics at the University
of the Saarland, Germany (1993 – 1997).  An performance-oriented unifier was imple-
mented which worked very efficiently on bitvector-oriented data structures compiled
out of a declarative specification of the feature logic.  Some thoughts were pursued
about viewing the grammar as a programming language that can be compiled into ma-
chine code; however, this latter kind of compilation was not realized back then.

From March to September 1997, the author had the opportunity to work at the Ad-
vanced Technology Group of Apple Computer, Inc.  Among the tasks was to speed up
the Pattern Matching module of a general-purpose Natural Language Analysis system.
The author ported his previous compiler to Java, while extending it in numerous direc-
tions: the generation of instructions instead of data structures was added; the Unifica-
tion Oracle (cf. section 5.3) was designed; and the context of the unification operation
was changed from Chart Parsing to Finite-State Automata.  The run-time algorithm for
the traversal of finite-state transition networks was developed at Apple as well, and is-
sues in instruction scheduling were discussed with Apple employees.  According to the
corresponding Intellectual Property Agreement, certain parts of the present thesis
might possibly describe intellectual property of Apple Computer, Inc. The issue is
currently being resolved; the author is trying to get ownership of all the algorithms de-
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scribed in this thesis in order to put them under a GNU General Public Licence.

From October to December 1997, several minor changes to the code generation took
place.  The instruction scheduling was improved substantially, and the cache control
instructions were inserted.

1.3 Application of Patti
The Patti system is currently employed in a general-purpose “Linguistic Analysis Li-
brary,” developed for the (in the meantime dissolved) Advanced Technology Group of
Apple Computer, Inc.  When a text is passed to the library, it is sent through a Part-of-
Speech Tagger.  Currently, the English Constraint Grammar (ENGCG) developed by
Lingsoft is used (cf. [Voutilainen et al., 1992], [Voutilainen, 1995]).  For efficient repre-
sentation, the text-based tagger output is converted into a more compact format.

Patti is currently used to find basic linguistic units such as simple noun groups.  Its task
is thus comparable with Lingsoft’s NPtool (cf. [Voutilainen, 1993]) or parts of informa-
tion extraction systems such as SMES (cf. [Neumann et al, 1997]) and FASTUS (cf.
[Hobbs et al., 1997]).

The code generated by Patti is just one out of a number of modules in the Apple Lin-
guistic Analysis Library which work on the tagger output. Additional modules provide
the following functionality:

■ the text is segmented into cohesive parts, using a modification of the al-
gorithm described by [Hearst, 1994];

■ structural elements such as titles or itemized lists are discovered using
simple finite-state techniques not related to Patti;

■ based on the shallow analysis, anaphora are resolved (cf. [Kennedy/Bogu-
raev, 1996a], [Kennedy/Boguraev, 1996b], [Boguraev/Kennedy, 1997a]);

■ technical terminology is identified (cf. [Boguraev/Kennedy, 1997b]);

■ a quantitative salience measure is applied to find the most topical noun
phrases in each discourse segment;

■ finite-state automata (again not related to Patti) identify a “context” for
the most topical noun phrases.

The outcome of the analysis is then presented to the user using a set of viewers de-
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signed to support rapid on-line skimming of document content.  These viewers, de-
scribed by [Boguraev et al., 1998], display in a number of different ways the most
salient topics together with their context.  A previous application of very similar basic
technology was the construction of AppleGuide databases from index terms which
were automatically extracted out of the Macintosh user documentation (cf. [Bogura-
ev/Kennedy, 1997b]).

Fig. 1–1 depicts another viewer which graphically displays most of the internal data
structures of the Apple Linguistic Analysis Library.

Fig. 1–1: A specialized viewer, developed for debugging, displays internal data struc-
tures of the Apple Linguistic Analysis Library.  Shown are views to the range of noun
groups, detected with Patti, and to cohesiveness scores, used with the discourse seg-

mentation algorithm.  Similar visualizations exist for most other data structures.

1.4 Acknowledgements
As required by the legal requirements for an academic thesis, the described work was
clearly designed and implemented uniquely by the author.  Nonetheless, it was cer-
tainly influenced by numerous discussions of the basic ideas with a large number of
people.

First of all, the author would like to thank Branimir K. Boguraev who was responsible
for natural-language-based knowledge mining in the Intelligent Systems Program at the
former Advanced Technology Group of Apple Computer, Inc.  Prof. Hans Uszkoreit of
the University of the Saarland provided support already at an early stage of the pro-
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ject.  Daniel M. Russel (now at Xerox PARC, Palo Alto) made it possible that the work
could be completed by generously providing computing facilities.

Some general comments about the linguistic formalism were made by Karel Oliva
(University of the Saarland), Susanne Riehemann (CSLI, Palo Alto) and Chris Kennedy
(Northwestern University, Chicago).  PowerPC instruction scheduling issues were dis-
cussed with Ivan Posva of Apple’s “Yellow Box” department.  A number of helpful
comments came from Markus Becker, André Berthold and Christian Braun (University
of the Saarland).  Daniel Bobbert (University of the Saarland) and Michael Bosshard
(Nyce AG, Bern) ran the benchmarks of chapter 6 on their respective machines.

The name for the Patti project was proposed by Sara Schödler, first because of its alle-
giance to Pattern Matching, and second because of Patti Smith, to whose music the au-
thor was listening while coding — in obscure ways, this might have been influential to
the shape of the code.

1.5 Overview of the Thesis
The subsequent parts of the thesis are organized as follows:

■ Chapter 2 sketches related work which is relevant as background for
Patti.  Modern applications of finite-state technology are discussed before
turning to an extensive presentation of several methods to compile
unification-based feature grammars.  The chapter concludes with a
description of bitvector-based unification algorithms.

■ Chapter 3 describes the linguistic formalism which Patti takes as its input.

■ Chapter 4 explains how the run-time execution works.

■ Chapter 5, which constitutes the core of the thesis, describes in detail
how the formalism of chapter 3 is transformed into the run-time exe-
cutable of chapter 4.

■ Chapter 6 presents the results of the empirical evaluation and compares
them with other systems.  The chapter concludes with answers to a num-
ber of common objections.

■ Chapter 7 indicates possible directions for extending the Patti system in
the future.
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■ Appendix A outlines some basic concepts of modern computer architec-
ture such as RISC technology, Pipelining and Superscalar Instruction Dis-
patch.  The techniques of Static Branch Prediction and Cache Control are
introduced.  Finally, a subset of the PowerPC instruction set is described,
as far as needed to understand the listings in appendix C.

■ Appendix B describes the full set of instructions in the intermediate
processor-independent representation which the compiler generates.  
In some cases, its translation into actual PowerPC machine code is
described.

■ Appendix C shows an example input to Patti.  The intermediate repre-
sentation, as generated by the compiler, is itemized.  Finally, the actual
machine instructions, as produced by the PowerPC code generation
module, are listed.

■ Appendix D consists of literature references.
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2 Related Work

The following chapter intends to sketch related work which was relevant as back-
ground for the present thesis.  Patti is a compiler for non-deterministic finite-state au-
tomata where transitions are taken if their label (a typed feature structure) is unifiable
with a feature structure associated with the current token.  Therefore, it is based on
previous work in two different fields: Finite-State Technology (as applied to linguistic
tasks), and Unification-Based Grammar Formalisms.

First, it is elaborated why finite-state technology is currently very popular for Linguistic
Engineering tasks.  A short section refers to the formal properties of finite-state au-
tomata; many regard these as a reason to reject finite-state automata as linguistic for-
malism, in spite of their implementational advantages.  For this reason, the most im-
portant approaches for approximating context-free grammars with finite-state automata
are discussed.

The chapter then continues with a section describing a number of different methods to
compile attribute-value matrices for efficient run-time processing.  The main conceptu-
al differences between these systems and Patti are discussed subsequently.

Finally, the chapter concludes with bitvector-based algorithms for type and feature uni-
fication, both relevant for the Patti system.



2.1 Syntactic Analysis with
Finite-State Methods

For several years, a movement away from traditional phrase-structure approaches to
the problem of syntactic analysis of natural language has been observed.  Especially
with the intensifying transfer of language technologies out of academic research into
industrial projects, it became evident that the preferred methods of the 1980 years
could not suffice for the higher requirements of real-world applications.  As a conse-
quence of this development, finite-state methods had a revival as a very robust tech-
nique, suitable for highly efficient algorithms.

Of course, the present thesis neither is able to convey the mathematical theory behind
finite-state technologies, nor it is possible to sketch the multitude of its numerous ap-
plications in Linguistics, considering the sparse space restrictions.  For the former, the
reader might want to refer to [Lewis/Papadimitriou, 1981], while [Kornai, 1997] with
its references could serve as introduction to the latter.  Nonetheless, the subsequent
section intends to outline the rationale for which finite-state methods were of great im-
portance in Language Engineering, starting from the origins of the field up to the most
recent developments.

Notably, the idea of syntactic analysis with finite-state technologies is not as novel as it
might seem when considering the abundance of recent publications on this topic.  The
approach has indeed been proposed several times in the past; presumably the first sys-
tem had been developed towards the end of the 1950 years.  An outline of its archi-
tecture (which comes surprisingly close to that of current frameworks) is provided by
[Joshi/Hopely, 1997].

2.1.1 Efficiency

With almost all industrial applications of natural-language technologies, a central con-
cern is efficiency, both with regards to execution speed (time efficiency) and memory
consumption (space efficiency).

In both these areas, the traditional parsing algorithms (e.g. Earley’s Algorithm, Cocker-
Kassami-Young parsing, etc.)1 do not seem to be entirely capable to fulfill the require-
ments imposed by industrial-quality products.  [Abney, 1997] presents a highly infor-
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1 A collection of the most common Parsing algorithms (though in German) is given by
[Naumann/Langer, 1994].



mative collection of the execution speed of a number of different existing systems.  For
Chart Parsing, the preferred means of many implementations, he reports a processing
speed of less than one word per second.

As experience shows, efficiency can be improved to a certain extent by dexterous im-
plementation, fine-tuning the utilized algorithms2 and modifications to the grammars.3

In spite of these efforts, it seems unlikely that traditional parsing could be fast enough
to analyze documents in (at least approximately) imperceptible time.  In the case of a
large number of interactive natural-language applications, for instance Grammar
Checking or Speech User Interfaces, noticeable delays though void the usability and
acceptance of the technology, how sophisticated it might be otherwise.

2.1.2 Robustness

Besides the eminent engineering problems with time and space efficiency, there thor-
oughly exist additional reasons for turning away from those methods for syntactic anal-
ysis which exhaustively try to detect the structure of the input sentences.  The most
important rationale is robustness. For example, [Abney, 1997], p. 340 argues as fol-
lows in favor of (cascaded) finite-state automata as opposed to traditional exhaustive
parsing algorithms:

Unlike traditional parsers, there is no global optimization.  This contributes
not only to speed, but also to robustness.  Namely, a common problem with
traditional parsers is that correct low level phrases are often rejected be-
cause they do not fit into a global parse, due to the unavoidable incom-
pleteness of the grammar.  This type of fragility is avoided when low level
phrases are judged on their own merits.

Due to these reasons, traditional approaches to parsing lack the property of robust-
ness, while partial parsing methods seem to be a very viable alternative for a large
number of applications.

Recently, there were large achievements in the field of Message Understanding, or
more exactly: populating a database by extracting relevant information from natural-
language texts.  Leading systems such as FASTUS (cf. [Hobbs et al., 1997]) and SMES

Related Work          9

2 [Russi, 1990], p. 82, concludes his experiments as follows: “by carefully tuning a
parsing strategy, efficiency can be significantly increased.  Memory consumption
can be reduced by up to a factor of four and CPU time by up to a factor of three.”

3 For example, [Pulman, 1993] and [Brawer, 1995] present a number of efficiency-
oriented coding techniques for unification-based phrase-structure grammars.



(cf. [Neumann et al., 1997]) are able to extract material information from texts of a sig-
nificant level of complexity without the demand for a full syntactic analysis of the sen-
tences.  Certainly, a major factor for the current success of these Information Extraction
Systems is their robustness: The underlying technology copes much better than tradi-
tional, parsing-based systems with unrestricted,4 real-world texts.

2.1.3 Formal Language Issues

Even after decades of controversy about the issue which class of formalisms are ade-
quate to describe and formalize the syntax of natural languages, the final answer has
yet to be found.5

Since the beginnings of Mathematical Linguistics, it is common knowledge that the for-
mal expressiveness of finite-state automata (which only are able to cover regular lan-
guages) is certainly not satisfactory for natural languages.  Nevertheless, several authors
have pointed out that the human language processing is subject to certain restrictions,
as they would follow from a parser for regular languages.6

From an engineering perspective, it makes sense to process the output of a finite-state
transducer with other modules based on different technologies.  These subsequent
units do not have to be related to the actual grammar formalism — for example, pro-
cesses as complex as anaphora resolution work on the results of the Pattern Matcher
described by the present thesis (cf. section 1.3).  If these modules are able to filter out
analyses of the finite-state technologies, they can affect the mathematical properties of
the overall system.7

10 Chapter Two

4 Most systems however require certain, though small, adaptations to the respective
domain.

5 [Savitch et al., 1987] presents a selection of the most important publications on this
subject.

6 See the references for section 3.2.1 of [Gazdar/Pullum, 1985].  Another example
constitutes [Abney, 1997], p. 343ff., with the hypothesis that the longest-match
heuristics, commonly used with Pattern Matching algorithms, corresponds to a lin-
guistic property of English.  Abney claims to be able to model at least certain
garden-path phenomena more accurately than it would be possible with a phrase-
structure grammar.

7 An example for such a component would be a module which utilizes context-free
rules to filter out the output of a finite-state transducer.  Since the intersection of a
context-free language with a regular language is context-free (a proof is given by
[Lewis/Papadimitriou, 1981], p. 121), the language recognized by this system would
be context-free.



2.1.4 Finite-State Approximations of Context-Free
Grammars

It already has been mentioned that the Patti system is based on finite-state techniques.
In this context, it might be of interest that several different algorithms have been deve-
loped to construct finite-state approximations of context-free grammars (and of
context-free-equivalent augmented phrase-structure formalisms), despite the fact that
none of these methods have been incorporated yet into the system described by this
thesis.

Without doubt, the outcome of such a “compilation” algorithm can not be accurately
equivalent to its input formalism: It is a well established fact that the context-free lan-
guages are a proper superset of those languages finite-state automata can possibly rec-
ognize.8 Nevertheless, it is very well possible to construct a finite-state automaton
whose recognized language is an approximation of the original context-free language.
Below, some relevant transformation algorithms will be presented.  However, it is diffi-
cult to state a useful quantitative measure of approximation quality:9 On the one
hand, the language recognized by the approximation should not be substantially small-
er in comparison to the input grammar.  On the other hand, a heavily overgenerating
automaton is of not too much interest either.10

One proposal (cf. [Black, 1989]) relies on arbitrary depth cutoffs in rule application.
The application of context-free rules is followed up to a certain, pre-specified depth of
recursion; any further rule invocation is omitted.

[Pereira/Wright, 1996] object to this depth-cutting approach; they argue that with the
method described by [Black, 1989], the language of the resulting automaton neither is
a subset nor a superset of the language of the input phrase-structure grammar.  In con-
trast, they present an algorithm which produces an exact finite-state automaton for
many grammars generating regular languages and does not reject input exceeding a
fixed depth of embedding.  Basically, their method operates by constructing a non-
deterministic shift-reduce pushdown recognizer for the input grammar.  This recog-

Related Work          11

8 The proof follows from the pumping theorem for regular languages. See any text-
book on the theory of computation, e.g. [Lewis/Papadimitriou, 1981], p. 75.

9 [Pereira/Wright, 1996], p. 20, discuss a number of possible criteria to quantify ap-
proximation quality.

10 A trivial example for the latter case is an automaton for S*, S being the alphabet of
the input grammar.  The language of this automaton is a superset of the language of
any context-free grammar, but nevertheless, it is entirely useless as an approxima-
tion.



nizer is subsequently transformed into a FSA by eliminating the stack and turning re-
duce moves into e-transitions.  Since the moves of a typical pushdown recognizer de-
pend heavily on the contents of its stack, ignoring the stack entirely would lead to
massive overgeneration of the FSA in many cases.  This is partly avoided by incorporat-
ing information about the stack contents into the states of the resulting automaton.  To
achieve this goal, the (in general infinite) set of possible stacks at a given state is parti-
tioned according to an equivalence relation.  In effect, this collapses recursion by ig-
noring repetitive parts of the stack.  Thus, the resulting automaton will not reject any
input that is acceptable by the given context-free grammar, whatever the depth of em-
bedding is.  However, the FSA will in some cases accept strings rejected by the CFG,
and the information about the depth of embedding is lost.

[Rood, 1996] presents an algorithm along similar lines.  As with [Pereira/Wright,
1996], her finite-state approximation does not reject any input recognized by the
CFG, but in addition, it is exact to an arbitrary depth of recursion.

2.1.5 Unification-Based Transition Networks

Among the first approaches to natural-language analysis were adaptations of finite-
state techniques to cope with the recursive nature of certain linguistic constructions.
Recursive Transition Networks (RTNs) were developed as an extension to non-determi-
nistic finite-state automata.  As an alternative to the consumption of a symbol of the
input alphabet, RTNs are able to invoke other transition networks or even themselves.
However, the RTN formalism got obsolete, since its expressive power was shown to be
exactly the same as that of context-free grammars, for which superior parsing algo-
rithms exist.

Nevertheless, there exists a recent thesis based on RTNs: Thomas Russi’s grammar for-
malism, Unification-Based Transition Networks (UTNs), is an extension of the RTN con-
cept in two respects (cf. [Russi, 1990], p. 36):

■ terminal and non-terminal symbols are no longer atomic symbols, but
(untyped) feature structures;

■ in addition to the linear precedence and immediate dominance relations
encoded in the topology of the networks, additional constraints between
terminals and constituents can be specified using unification equations.

The relation of the UTN formalism with Patti is the combination of finite-state methods
with unification of feature structures, though Patti’s automata are not recursive and do
not allow yet to enforce agreement between different structures.
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2.2 Compilation Techniques for
Feature-Logic Grammars

It is a very old and common technique in Computer Science to transform a high-level
formalism (which is easy for humans to understand) into a low-level one (which is effi-
cient for computers to process). For example, the task of a Pascal compiler is to map
concepts such as loops into suitable sequences of machine instructions, which then
can be executed directly by the microprocessor.

The idea of compilation has been adapted to the problems of Natural Language Pro-
cessing several times.  Patti certainly goes farther with compilation than most other sys-
tems — to the author’s knowledge, there exist no other NLP-related compilers which
generate machine instructions for a real CPU (or equivalent Assembly-language code).
Nevertheless, other compilation algorithms have influenced the design of Patti.  The
subsequent sections thus present three representative methods to compile feature-
logic grammars.  These compilers exhibit an increasing degree of deviance from stan-
dard Prolog unification.  A concluding section then shows that in many typical natural-
language systems, hidden interpretation processes reduce performance, despite the
application of advanced compilation techniques.

2.2.1 ProFIT

An example for a straightforward compilation technique for feature-logic grammars is
the system developed by Gregor Erbach (cf. [Erbach, 1994]).  Prolog with Features, In-
heritance and Templates (ProFIT) is a compiler which is able to translate typed feature
structures into ordinary Prolog terms (and vice versa, for debugging).  To unify two fea-
ture structures at run-time, standard Prolog unification is utilized.

The mapping works along the following lines:

■ Since the feature structures are totally well-typed and the usual restric-
tions on appropriateness (such as the Feature Introduction Condition, cf.
[Carpenter, 1992], p. 85ff.) hold, feature names can be omitted by as-
signing a fixed position in the resulting Prolog terms.

■ Feature structures of consistent types are compiled to Prolog terms of the
same functor and the same arity.
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■ The first argument of the Prolog term is a variable whose only purpose is
to express whether two terms are coreferent or whether they just happen
to have the same type and the same values for all features.

■ The second argument serves to encode the actual type of the structure
and to represent those features which are not encoded as arguments of
the main term, because they were introduced by some sub-type of the
type encoded as functor.

■ Templates are expanded at compile-time by partial evaluation.

■ Clauses containing disjunctive terms are compiled to several clauses, one
for each consistent combination of disjuncts.  However, disjunction of a
finite set of atoms is encoded in a single Prolog term, using a technique
originally developed by Colmerauer (cf. [Pulman, 1993] or the references
in Erbach’s article).

ProFIT constitutes an example for a system where feature structures are compiled into
another formalism which is more efficient to process.  Obviously, the ProFIT system is
very closely tied to Prolog as run-time engine.  Therefore, the compilation algorithm
could not be adapted directly for Patti.

2.2.2 ALE

The typical approach to processing attribute-value logic grammars is to encode the
feature structures as Prolog terms, for example using a system such as ProFIT.  There is
no principal difference between those feature structures of the current sentence and
those of the grammar; both are data structures which are processed by a unifier whose
application is controlled by some parsing strategy.

[Carpenter/Penn, 1995] however notice that the feature structures in the grammar are
static: they are never modified while input is being processed at run-time.  Therefore,
Bob Carpenter and Gerald Penn propose a compilation process to transform the gram-
mars into a few efficient low-level instructions for the basic feature structure opera-
tions.  Correspondingly, their system (called ALE for “Attribute-Logic Engine”) compiles
grammar descriptions into Prolog code, rather than into a Prolog representation of fea-
ture structures.  At run-time, ALE then executes the code that was compiled for the
grammar rules.

The compiler performs certain optimizations by precalculating parts of the unification
result already at compile-time.  Another efficiency gain is due to a representation of
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feature structures that is very closely adapted to the way in which the Warren Abstract
Machine (the core engine of virtually all Prolog implementations) operates.  For in-
stance, disjunction of feature values is compiled into Prolog disjunctions — when a
term is not unifiable, the Prolog engine performs backtracking and tries to unify with
the next disjunct.

Although Carpenter and Penn claim that their compilation method is basically inde-
pendent of Prolog, many of their optimizations are only effective in the context of the
Warren Abstract Machine.  Only the notion of compiling the static parts of a grammar
into code was thus adapted for Patti; the other ideas were regarded as too closely
linked with Prolog.

2.2.3 AMALIA

Similar to Bob Carpenter and Gerald Penn, Shuly Wintner views a natural-language
grammar as program code which can be compiled into a lower-level formalism.  How-
ever, Shuly Wintner does not compile the input formalism (a subset of ALE’s specifica-
tion language) to Prolog programs, but into instructions for his Abstract Machine for
Linguistic Applications (AMALIA).  Abstract Machines are a very common technique in
Computer Science: the vintage P-Code Interpreters were Abstract Machines for Pascal,
and the contemporary Java Virtual Machines are merely another instance of the same
concept.  AMALIA is heavily influenced by the Warren Abstract Machine (WAM) for
Prolog.

The main benefit of Abstract Machines is their portability: Only the (ideally very sim-
ple) interpreter has to be modified, since the Abstract Machine Code is entirely
platform-independent.  However, as will be discussed more in detail in section 2.3.4,
the disadvantage of using an interpreter for Abstract Machine Code is a — potentially
very large — loss in execution speed.11

[Wintner/Francez, 1994] and [Wintner/Francez, 1995] provide a detailed technical de-
scription of AMALIA.  The remainder of the current section gives a very terse overview
thereof.

The basic formalism of AMALIA is a subset of ALE.  In terms of [Carpenter, 1992], all
feature structures have to be totally well-typed.  This allows to omit feature names
from the run-time representation by using an efficient positional encoding similar to

Related Work          15

11 For instance, compiled Java Bytecode is executed easily ten times faster than with
an interpreting Virtual Machine.  See http://www.pendragon-software.com/pendra-
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terms of first-order predicate logic.  The set of types is ordered by the subsumption re-
lation.  It is required that the type inheritance hierarchy be bounded complete: Every
set of consistent types must have a unique unifier (other than the contradictory type).
In addition, it is also required that the appropriateness specifications of the features
and the types be such that every feature is introduced by some least type, that appro-
priateness be monotone, and that the appropriateness specification does not contain
loops.

The machine’s engine is designed for unifying two different varieties of typed feature
structures: a query and a program. Both are compiled to AMALIA instructions:

■ Those feature structures that are part of the current sentence which is
about to be parsed are called query (in allegiance to the Prolog WAM).
Each query has to be compiled at run-time into instructions for AMALIA
before its execution.  Processing these instructions builds a graph repre-
sentation of the query in a special section of the machine’s memory,
called heap.12 Fig. 2–1 below illustrates the run-time representation of a
feature structure in the heap.

■ Those feature structures that are part of a grammar rule are called pro-
gram. Because these structures do not change at run-time, they can be
compiled in advance into instructions that try to unify the source AVM
with a feature structure on the heap.  If the unification succeeds, the
heap is modified accordingly.
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12 It appears that it would have been simpler if the query was immediately processed
into data structures on the heap, instead of compiling the query into machine in-
structions which in turn build data structures when executed by the Abstract Ma-
chine.  The side-effect of processing a query, viz. setting registers, is an important
notion with the WAM, but of no use for AMALIA (cf. [Wintner/Francez, 1995], sec-
tion 3.7, p. 8).  Unfortunately, Shuly Wintner never points out in his work why he
chose the former, seemingly much more complicated method which might consti-
tute a major overhead.  The taken path is comparable to an approach where upon
the run-time execution of a Pascal readln instruction, a compiler is invoked that
compiles each character of the entered string into a piece of P-Code that stores the
character in a specific memory cell when executed by the interpreter, instead of
simply copying the string.
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Fig. 2–1: In the AMALIA system, an attribute-value matrix (depicted to the left) is seen
as a directed, labeled graph (middle) where nodes correspond to types and edges are

labeled with attribute names.  The heap used for run-time representation (right) consists
of tagged cells.  STR cells are used for the nodes, REF cells for the edges of the graph.

The abstract machine code for a program AVM basically consists of the subsequent
three different types of instructions:

■ get_structure performs type unification of the (compiled) program
AVM with a feature structure on the heap.  In case of an uninstantiated
variable, a new feature structure is built; otherwise, precompiled code is
called, depending on the type of the heap AVM.

■ unify_variable loads the address of the next heap cell into a register.
This instruction is emitted when a node is accessed the first time.

■ unify_value unifies the next heap cell with a heap cell whose address
a register contains.  This instruction is emitted for additional accesses to
the same node.

Fig. 2–2 below depicts the code the compiler emits for a simple feature structure
which is part of the program (i.e. a grammar rule).

a

f1 3 d1

f3 3

 get_structure  a/2, X1  % X1 = a(
 unify_variable  X2  %  X2,
 unify_value  X2  %      X2)
 get_structure  d1/0, X2  % X2 = d1

Fig. 2–2: For the attribute-value matrix (supposed to be part of a grammar rule) to the
left, the compiler generates the Abstract Machine instructions depicted to the right.

During execution of these instructions, a pointer to the current heap cell is increment-
ed, hence the heap address does not need to be part of the machine instructions.
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Certain control instructions allow to process entire phrase structure rules, not only sin-
gle attribute-value matrices.  Because Patti utilizes finite-state techniques, the parsing-
related parts of AMALIA though are not relevant in the context of the present thesis.

A recently introduced, unique feature of AMALIA is its suitability for both parsing and
generation (cf. [Wintner et al., 1997]): depending on the task, the compiler is able to
generate two different object code files for the same grammar.  The output is then pro-
cessed by the very same interpreter for the abstract machine code.

2.2.4 Criticism of the Above Systems

The above described systems have in common that they transform a high-level gram-
mar formalism with typed feature structures into another representation, which is
more low-level and hence easier and faster to process.  In contrast to modern compil-
ers for programming languages such as Pascal or C, however, none of these linguistic
compilers generate output which is understood directly by the hardware of any com-
puter.  Instead, an intermediate interpreter has to ensure that the compilation result be
processable by the actual computing machinery.  Unfortunately, it is common practice
to develop even those interpreters in an interpreted programming language.  Not only
does this hold for prototype research systems, but also for architectures intended for
industrial processing of natural language.

This is certainly one reason why the processing efficiency of many “high-speed”
natural-language systems is barely optimal.  It is surprising how many hidden interpre-
tation steps still are in place, despite the application of a number of highly sophisticat-
ed compilation algorithms.  Fig. 2–3 might serve as an illustration thereof: even in a
NLP system specifically designed for high-speed processing (cf. [Samuelsson, 1994]),
there still remain several interpretation steps between the original formalism (in this
case: phrase-structure grammars acquired with explanation-based learning methods)
and the underlying machinery (e.g. an Intel Pentium or a Motorola 680x0 micro-
processor).

The reader might object that certain assumptions are slightly malicious, since the pic-
ture presents a worst-case scenario.  Indeed, modern RISC and VLIW instruction sets13

were designed to eliminate microcode interpreters.  Moreover, nowadays there exist
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13 See Appendix A for a brief discussion of Reduced Instruction Set Computing (RISC).
On superscalar RISC implementations, parallelism of several instructions is automat-
ically achieved.  On “Very Large Instruction Word” (VLIW) architectures, in con-
trast, the compiler (or Assembly programmer) has to specify explicitly which ma-
chine instructions can safely be executed in parallel.



Prolog-based systems which do not interpret WAM code, but directly compile Prolog
into actual machine instructions for the respective microprocessor.

Learned Grammar
Unification-based Phrase Structure Rules

 Compilation

 Compilation

 Interpretation  Compilation

 Interpretation

 Interpretation

 Interpretation

 Interpretation

LR Parsing Tables
Prolog Structures

LR Parser
Prolog Program

Compiled Parser
Warren Abstract Maschine Code

WAM Interpreter
C Program Source

Prolog Executable
CISC Machine Code

CISC Interpreter
Microcode

Hardware

Fig. 2–3: Interpretation and compilation steps in a typical system designed for fast syn-
tactic analysis of natural language (cf. [Samuelsson, 1994]), running Prolog on a

microcode-based CISC processor. Even after the application of advanced compilation
techniques (white arrows), there remain several interpreters (black arrows) between the

original formalism and the executing hardware.

The answer to this objection is twofold.  First, the depicted worst-case scenario is not
unrealistic at all:  Numerous Prolog (and Lisp) compilers work with Abstract Machines
instead of actual machine code, and it is probably still the case that microcoded CPUs
form the majority.

Second, and more important, even if those interpreters were replaced by compilers,
the efficiency could still be improved to a large extent.  The motivation for this auda-
cious-sounding hypothesis is the following:  “Compilation” does not necessarily mean
“entire elimination of overhead.”  This is especially true if one compiler works on the
output of another one.  Certain optimizations are only possible by using (both explicit-
ly or implicitly) knowledge about the given task.  The more general this task is, the less
optimizations will usually be applicable.  But ordinarily, only the first, top-level compil-
er is in possess of the full knowledge about the problem.  Not only do subsequent
compilers operate on a lower level, but they also have to cope with more general
problems.  For example, even a real Prolog compiler (which emits “concrete” machine
code) can not apply optimizations which might be possible with the knowledge that
the program is a driver for finite-state cascades, Earley parsing or some other special-
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ized NLP algorithm — its optimizations have to be based on general Prolog heuristics.
Furthermore, not even the most specific compiler is able to perform all possible opti-
mizations if its output formalism does not allow to express them.  For instance, a high-
level compiler might be able to perform an educated guess whether or not a certain
conditional branch in the program flow is likely to be taken.  There is however no
means to express such knowledge with Prolog, Lisp or even C as output formalism —
only if the high-level compiler directly emits Assembly code, the system can benefit of
this optimization.

As will become clear towards the end of the present thesis, the main goal in designing
Patti was to build a compiler which transforms a fairly high-level input formalism into a
very low-level output formalism, thus being able to exploit sophisticated heuristics in
order to speed up the system using techniques offered by modern Computer Architec-
ture.

2.3 Unification with Bit-Vectors
Although the notions of Type Unification and Feature Unification are part of the foun-
dation of modern Linguistics, it is not generally well-known that highly efficient meth-
ods, based on bit-vector operations, have been developed for implementing both
tasks.  The subsequent sections outline the basic ideas of these algorithms, while as-
suming familiarity with the linguistic concepts.

2.3.1 Type Unification with Bit-Vectors

Hassan Aït-Kaci and others have formulated an algorithm to determine efficiently the
greatest lower bound in a lattice [Aït-Kaci, 1989].  A very concise description thereof is
given by [Pulman, 1993].

Although Patti uses a different encoding for its types (hence its type unification algo-
rithm is very dissimilar), one of the optimizations (the “Unification Oracle”, cf. section
5.3) is based on the method developed by Aït-Kaci et al.  The subsequent section gives
an introduction to the basic idea.  Figure 2–4 provides an illustration of the algorithm
for an example lattice.

Aït-Kaci et al. encode the individual nodes in the lattice as bit-vectors.  To each node,
a corresponding vector position is assigned arbitrarily (cf. fig. 2–4, right part).  Then,
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they calculate the reflexive transitive closure of the immediate dominance relation to
determine the run-time encoding for each node.  In the vector for a node n, those bits
are set that correspond to nodes which are dominated by n.

The encoding of the Greatest Lower Bound of two nodes is found by performing an
AND operation on their vectors.  If there exists no Greatest Lower Bound, i.e. if there
is no node dominated by both nodes in question, the result is an all-zero bit-vector.

living
010001100

agent
001001010

export
000100101

non-living
000010011

person
000001000

plant
000000100

institution
000000010

computer
000000001

thing
111111111

Node )Bit

thing )0
living )1
agent )2
export )3
non-living )4
person )5
plant )6
institution )7
computer )8

Fig. 2–4: A method for unification in multiple-inheritance hierarchies [Aït-Kaci et al.,
1989].  The nodes are encoded as bit-vectors with as many bits as there are nodes in
the lattice.  For each node, those bits that correspond to the subsumed nodes are set.

Unification is performed as bit-AND on the vectors.  Unification failure (i.e. if there
exists no common lower bound) is indicated by an all-zero result.

2.3.2 Feature Unification with Bit-Vectors

A large part of the efficiency of the described system is due to the fast execution of the
unification operation.  Instead of performing actual feature unification, the unification
is emulated by logical operations on a bit-vector representation.  To the knowledge of
the author, this standard technique has first been proposed by Nakazawa et al. (cf.
[Nakazawa et al., 1988] and [Nakazawa/Neher, 1987]).

Nakazawa et al. describe a framework which incorporates disjunctive and negative
feature values and which provides computationally efficient data representations and
manipulations.  The data representation uses vectors of feature descriptions and the
logical operation of Boolean AND to unify them.  To each possible value of a feature,
one bit is assigned in the vector for the attribute-value matrix which contains the fea-
ture.  Disjunction of values is represented by setting those bits that correspond to the
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individual disjuncts.  Negation is represented by setting all bits that correspond to the
possible values of a feature but that of the negated values.

In their framework, the linguist can enforce the absence of a feature from a syntactic
category.  In addition to a bit for each possible feature value, they need hence another
bit for every feature to indicate if the feature itself is absent or present in the AVM.

Because their formalism is not typed, the run-time representations do not contain a
type identifier, and the bit-vectors for all top-level AVMs have the same length.  If a
feature is complex, i.e. its value is an entire attribute-value matrix instead of merely
(possibly disjoined and negated) atomic values, an additional bit-vector is required as
run-time representation for the value.  The paths in a feature structure can thus be of
arbitrary depth.

Fig. 2–5 gives an example feature structure and its run-time representation.

)[COMP )absent )]
)[VFORM )FIN )]
)[VFORM )BSE )]
)[VFORM )INF )]
)[VFORM )PAS )]
)[VFORM )absent )]
)[AGR ) )]
)[AGR )absent )]V )+

N )–
COMP )that
VFORM )BSE

1

)[COMP )whether)]
)[COMP )for )]
)[COMP )that )]
)[N )absent )]
)[N )– )]
)[N )+ )]
)[V )absent )]
)[V )– )]
)[V )+ )]

0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1

Fig. 2–5: In the framework of Nakazawa et al., an attribute-value matrix (depicted to
the left) is encoded as a bit-vector (depicted to the right).  A vector position is assigned
to each possible feature value.  Additional bits mark for each feature if it is present or
absent; this is needed because the linguist can explicitly enforce the absence of a fea-

ture.  The illustration is taken from [Nakazawa et al., 1988], p. 468.
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3 Formalism

This chapter introduces the formalism which serves as input to the Patti compiler.
Both a special version of non-deterministic finite-state automata and the utilized fea-
ture logic are defined formally.  The chapter then continues with a section about how
linguists currently have to specify their knowledge.  Finally, the current direct-
manipulative Graphical User Interface is described.

3.1 Formal Definition
This section defines the input formalism for the Patti compiler and describes deviations
from the traditional definitions, as commonly found in the literature.

3.1.1 Non-deterministic Finite-State Automata
with Unification

Basically, the input formalism is a set of non-deterministic finite-state automata en-
hanced with unification.  Such an automaton is a quintuple M = ·K, S, D, s, FÒ, where

■ K is a finite set of states,

■ S is the set of all typed feature structures that are well-formed according
to the feature logic specified in the subsequent sections,

■ D, the transition relation, is a finite subset of K ¥ S ¥ K,

■ s Œ K is the initial state,

■ F Õ K is the set of final states.



Please notice the two deviations from the usual definition of this species of mathemati-
cal machines:14

■ the input alphabet does not consist of atomic symbols, but of typed fea-
ture structures,

■ each transition is labeled with a single feature structure, because
D Õ K ¥ S ¥ K.  In contrast, the standard definition of non-deterministic
finite-state automata allows for arbitrary strings over the input alphabet,
including the empty word e, since D Õ K ¥ S* ¥ K.

As usual, a configuration of M is defined as an element of K ¥ S*.  However, the rela-
tion |—M between configurations (“yields in one step”) is non-standard:15 ·q, wÒ |—M
·q’, w’Ò if and only if there are typed feature structures u, u’ Œ S such that

■ w = uw’,

■ ·q, u’, q’Ò Œ D, and

■ u is unifiable with u’, according to the usual definition of unification of
feature structures (see for example [Carpenter, 1992], definition 3.11).

The other definitions related to non-deterministic finite-state automata remain un-
changed compared to the common practice: |—M* is the reflexive, transitive closure of
|—M, and a string w Œ S* is accepted by M if and only if there is a state q Œ F such that
·s, wÒ |—M* ·q, eÒ.  Finally, L(M), the language accepted by M, is the set of all strings
over S* accepted by M.

3.1.2 Type Hierarchy

[Carpenter, 1992] defines the mathematical foundations of most current feature-logic
grammars.  According to his formalization, a type inheritance hierarchy is a finite
bounded complete partial order ·Type, vÒ, with Type being a finite set of types and v
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14 According to the standard definition (cf. [Lewis/Papadimitriou, 1981], p. 57, or any
other textbook on the theory of computation), a non-deterministic finite-state au-
tomaton is a quintuple ·K, S, D, s, FÒ, where K is a finite set of states, S is an alpha-
bet, s Œ K is the initial state, F Õ K is the set of final states, and D, the transition rela-
tion, is a finite subset of K ¥ S* ¥ K.

15 According to the standard definition, the relation |—M is defined as follows: ·q, wÒ
|—M ·q’, w’Ò if and only if there is a u Œ S* such that w = uw’ and ·q, u, q’Ò Œ D.



being the reflexive transitive closure of a direct subsumption relation < over Type ¥
Type.16 If s v t, s is called to subsume, or to be more general than, or to be super-
type of, t.  Conversely, t is called a subtype of s.  The usual restrictions on inheritance
hierarchies hold, as formalized by [Carpenter, 1992], chapter 2.  For instance, type hi-
erarchies must not be cyclic.

In addition to those common constraints, the Patti type hierarchies are restricted to
simple trees, where every type is directly subsumed by exactly one type.  The only ex-
ception is the single most general type Top,17 which is not directly subsumed by any
type at all.

The result of unifying two types s and t (s | _ _| t) is obtained by performing the greatest
lower bound operation.  In the case of a tree-structured inheritance hierarchy, the only
way in which s | _ _| t can be defined is if s v t or t v s, in which case the result is the
more specific of the two types.18

In the Patti input formalism, two designated types, called Atom and Matrix, have spe-
cialized meanings which facilitate the compilation process.  These two are the only
types directly subsumed by Top; no user-defined type is allowed to be a direct subtype
of Top.

3.1.3 Feature Structures

A feature structure over Type and a finite set of feature names Feat is a labeled, rooted,
directed graph F = ·Q, q0, q, dÒ where Q is a finite set of nodes, q0 Œ Q is a designat-
ed root node, q Œ Q Æ Type is a total node typing function and d Œ (Feat ¥ Q) Æ Q a
partial feature value function.19

A path is a sequence of features; let Path = Feat* be the collection of paths.  d is ex-
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16 Carpenter calls the direct subsumption relation “ISA.”
17 Carpenter though calls this type Bottom.  Many find this terminology counterintu-

itive, since they prefer to see the most general type on the top of the type lattice.
This thesis adheres to the latter view and deviates from Carpenter, Top thus being
the most general, Bottom ( )̂ the inconsistent type.

18 Cf. [Carpenter, 1992], p. 13.
19 The symbols F and q have already been utilized in section 3.1.1 to define finite-

state automata.  Despite of this ambiguity, it was decided to adhere to the com-
monly used notation for both feature structures and automata.  Many readers are
assumed to be familiar with the standard symbols, which is why deviating from the
usual terminology would introduce more confusion than it would resolve.



tended to paths so that d(p, q) is the node that is reached by following the features in
the path p from q.20

For efficiency reasons, the current version of Patti does not allow for structure sharing.
More precisely, there do not exist two non-empty paths p1, p2 such that d (p1, q0) =
d (p2, q0) where p1 y p2.  For this reason, there can not exist a path p y e such that
d (p, q) = q for any q Œ Q, i.e. cyclic feature structures can not arise.

Although disjunction and negation are not provided as an expressive means in general,
they are supported for subsorts of Atom. Extending both the syntax and the semantics
of the feature logic is rather straightforward; the reader might want to refer to [Carpen-
ter, 1992] for a thorough mathematical discussion thereof.

3.1.4 Appropriateness

The appropriateness conditions “specify the features that are appropriate for each type
and provide restrictions on their vaues in a way that respects the inheritance hierar-
chy” (cf. [Carpenter, 1992], p. 85).  To ensure maximal run-time efficiency, the appro-
priateness conditions of Patti are subject to more rigid restrictions than those in Car-
penters work.

An appropriateness specification over the inheritance hierarchy ·Type, vÒ and features
Feat is a partial function Approp Œ (Feat ¥ Type) Æ Type that meets the following con-
ditions:

■ for every feature f Œ Feat, there is a most general type Intro(f ) Œ Type
such that Approp(f, Intro(f )) is defined;21

■ if Approp(f, s) is defined and s v t, then Approp(f, t) is also defined and
Approp(f, s) = Approp(f, t);22
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20 More formally: d (e, q) = q and d (fp, q) = d (p, d (f, q)).  Cf. [Carpenter, 1992], p. 37.
21 This condition is exactly the same as Carpenter’s Feature Introduction Condition

(cf. [Carpenter, 1992], p. 86).
22 This condition is similar to Carpenter’s Upward Closure/Right Monotonicity Condi-

tion (cf. [Carpenter, 1992], p. 86).  Carpenter though merely requires Approp(f, s)
v Approp(f, t); in other words, subtypes are allowed to impose further constraints
on the type of an inherited feature.  Patti, in contrast, does not allow subtypes to
additionally restrain the type of their features.



■ if t = Approp(f, s) is defined and Matrix v t, then there exists no type
z y t such that t v z;23

■ there is no sequence of features f1, …, fn and types s1, …, sn such that
Approp(fi, si) = si+1 for 1 v i < n and Approp(fn, sn) = s1;24

■ if Approp(f, s) is defined, s must be subsumed by Matrix.

Speaking with Carpenter’s terminology, all Patti feature structures are finitely totally ty-
pable.25 Together with the appropriateness conditions stated above, this ensures that
the compiler is able to determine the exact amount of memory needed to hold all fea-
ture values, including those in deeply embedded feature structures.  Even more impor-
tant, the compiler can thus assign a fixed offset to each feature.  With the encoding
utilized by most other feature-logic compilers (cf. section 2.2), the time to retrieve a
feature value grows linearly with the path length.  By assigning fixed offsets, this re-
trieval can be performed in constant time, since it is not needed anymore to follow a
chain of pointers.

Notably, compilers for many programming languages exhibit a similar behavior when
processing record-like structures.  An example is given in fig. 3–1 below.
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23 In other words, any matrix type which is appropriate for a feature value must not
have subtypes.

24 This prohibits loops in the appopriateness specifications.  It corresponds to the Sub-
structure Requirement (cf. [Carpenter, 1992], p. 97) and ensures that all feature
structures are finitely totally typable.

25 A feature structure is totally well-typed if and only if every feature for which it is de-
fined is appropriate and takes an appropriate value and furthermore, every feature
which is appropriate must be given a value.  In the formalism utilized by Patti,
cyclic feature structures can not exist.  Every totally well-typed feature structure
hence has a least totally well-typed extension (cf. [Carpenter, 1992], p. 96), and is
thus finitely totally typable.



class b {
int       f;

};

class a {
class b   g;

};

class b {
class a   f;

};

class a {
class b   g;

};

class b {
class a   *f;

};

class a {
class b   g;

};

Fig. 3–1: A compiler for C++ avoids the need to follow a chain of pointers for retriev-
ing the value of a variable, even in the case of members of an embedded class.  In the
leftmost example, the compiler assigns an offset to g.f relative to the beginning of the
data for a structure of type a; g is not realized as a pointer.  However, this is not possi-
ble in all cases.  The C++ syntax has been designed to circumvent situations such as

the one depicted in the middle, where infinite loops would occur while determining the
run-time size of a structure.  The declaration will only be accepted by C++ compilers

with f explicitly declared to be realized using a pointer, as depicted to the right.

3.1.5 Enforcing Run-Time Presence

Experience has shown that linguists tend to define type hierarchies which specify more
linguistic knowledge than actually needed for the specific tasks.  As will become clear
in the chapter about the actual compilation algorithm, it thus makes sense to filter out
those types and features which are not used in any of the automata.  However, it
might be the case that other modules, external to the code generated by Patti, need to
access certain linguistic features.  Therefore, a mechanism is needed to enforce the
run-time presence of features and types, even if they would not be needed for pattern
matching.

For this reason, both types and feature definitions bear a flag called forcePresence.
Setting this flag means that external modules might need to access them, and the com-
piler preserves the type or feature from being filtered out.

3.1.6 Disjoinability

Depending on the utilized Part-of-Speech Tagger, certain features can have multiple
disjoined values, while the value of others is always a single atom.

For instance, the Lingsoft English Constraint Grammar (cf. [Voutilainen et al, 1992]) al-
ways gives a unique value for the feature “Adjective Degree”: It is either Absolute,
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Comparative or Superlative,26 but it never happens that the same reading of a token
gets assigned multiple tags from this set.  If a token could be both a comparative and a
superlative adjective, the tagger would emit two separate readings.  In contrast, the
feature “Person/Number” can have multiple values for a single reading of a token, e.g.
a disjunction of 2nd Person Singular and 3rd Person Plural.

Since the Patti system represents feature values as bit-vectors, the representation can
be more compact if the knowledge about disjoinability is taken into account.  For ex-
ample, it makes sense to identify prepositions by some atomic ID.27 For the sake of
argument, let there be 420 different prepositions.  If Patti is informed that this ID is
never disjoined for a single reading, merely 9 bits — Èlog 2 420˘ — are needed to rep-
resent this ID at run-time.  If it can be disjoined, however, a bit is needed for each pos-
sible disjunct, totalling to 420 bits.

For this reason, feature definitions carry a flag called isDisjoinable. Please notice that
clearing this flag does not imply that the respective values have to be unambiguous for
every token. It merely indicates that they must not be ambiguous for a reading of a
token; in case of ambiguity, several readings would have to be emitted by the tagger.

3.2 Grammar Specification
There is currently no means for linguists to specify the Patti input formalism in a text
file.  Certain modifications are performed via a direct-manipulative Graphical User In-
terface (entirely written in 100% Pure Java), while others require minor changes to the
Patti code, followed by recompilation.

This seemingly rather awkward approach was chosen due to the following reasons:

■ All persons which were working with the described system had full access
to the sources of Patti, which is why there was no need for a text-based
specification language.

■ The author is convinced that a direct-manipulative Graphical User Inter-
face (GUI) is superior to any text-based specification language.  Not only
does the visualization immediately reveal many concepts which other-
wise would demand hours of training, but it also prevents a number of
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common mistakes.  For instance, a well-designed interface prevents the
user from specifying cyclic type hierarchies.

■ With a GUI, most parts of the compilation can occur while the user is still
editing or viewing the grammar formalism.  This allows for more elaborat-
ed compilation algorithms without slowing down the edit-compile-debug
cycle.  Patti has been designed to support multi-threaded compilation,
using Java synchronization techniques.

■ A GUI can facilitate distributed Grammar Engineering.  Although not sup-
ported in the current version, Patti has been designed with a client/server
environment in mind, where multiple clients work on the same data.
Because of strict adherence to the object-oriented Model-View-
Controller (MVC) paradigm, any modification would be visible simultane-
ously with all clients.

The subsequent figures depict parts of the Graphical User Interface.  Patti’s Java code
runs without modification on other platforms than MacOS, such as Apple Rhapsody,
Microsoft Windows or UNIX/X-Windows.  Of course, the graphical display would
slightly differ, depending on the respective implementation of the Java Abstract Win-
dowing Toolkit.

Fig. 3–2: Many aspects of the type hierarchy can be edited with a direct-manipulative
Graphical User Interface, developed in 100% Pure Java using Sun’s Abstract Windowing
Toolkit (AWT).  Both standard and contextual menus are supported for actions such as
insertion of new types.  Double-clicking a type (or selecting a type, followed by choos-
ing the “Open” menu item or pressing the Enter key) opens an editor window for the

type, as depicted in figures 3–3 and 3–4. 
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Fig. 3–3: The Patti GUI displays the appropriate features for a matrix type.  The “Incor-
porate” radio buttons specify if the type should be present at run-time, even if never

used in a transition label of any finite-state automaton.  This allows for a smooth inter-
action with external modules, as described in section 3.1.4.

Fig. 3–4: A well-designed user interface can prevent common mistakes.  For example,
the underlying feature logic does not allow any features to be appropriate for atomic

types such as “Plural”.  This is reflected in the interface by the lack of a panel for feature
definitions.  Hence, this type of errors can not occur.

As noted above, only certain aspects of the input formalism are currently supported by
the Graphical User Interface.  Others need changes to the Java source code, followed
by recompilation.  The latter aspects include:

■ modifying the appropriateness conditions for features of a matrix type;

■ specifying finite-state automata;

■ editing attribute-value matrices.
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It is planned to enhance the GUI to cover these parts.  Fig. 3–5 below illustrates how
linguists have to specify a small finite-state automaton at the current time.

1 2

Adjective

degree ¬ Comparative

Noun

 CAutomaton ng = new CAutomaton(d, "Noungroup");

 CState     s1 = ng.start;
 CState     s2 = new CState(ng);

 CAVM       adj = new CAVM(d, "Adjective");
 adj.addFeature("degree",
   new CNegation(new CAtomicValue(d.getSort("Comparative"))));

 new CTransition(s1, s1, adj);
 new CTransition(s1, s2, new CAVM(d, "Noun"));

 s2.setAccepting(true);

Fig. 3–5: Currently, finite-state automata and AVMs have to be specified directly in the
Java code for Patti.  The automaton depicted in the left part is specified with a couple of

very simple, easy-to-understand Java function calls (right part).
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4 Runtime
Execution

This chapter describes how the formalism of chapter 3 is processed at run-time.  After
an introduction to the utilized data structures, it is explained how the longest matches
are detected in an efficient way, how an individual automaton is executed and how
unifiability is checked by the generated code.

4.1 Data Structures
For each sentence, a data structure called matchArray is created to hold all information
which is relevant to Patti.  It is an array with an entry for each token of the current sen-
tence, containing the following data:

■ the oracle word, a bit-vector whose purpose is to enable rapid prediction
whether a unification can possibly succeed.  Details will be given later
when discussing compilation in chapter 5.

■ a pointer to a data structure with all data for a token, most of which have
no importance for Patti.  In the context of the present thesis, the only
entry of interest is a pointer to the first item in the linked list of readings
for the token.  The data structure for a single reading consists of the fol-
lowing:28

28 Not included is a large bit-vector to encode the original tags, as assigned by the
Lingsoft English Constraint Grammar.  This is needed for debugging, but is of no ac-
tual use for Patti.  The code generated by Patti hence does not access this data.
Substituting ENGCG with a proprietary Part-of-Speech Tagger would entirely void
this bitvector.



■ a pointer to the next ambiguous reading, or NULL if there is none;

■ an integer to encode the type of the reading;

■ a bit-vector to hold the individual feature values.  The length of this
bit-vector depends on the above type. 

■ an array of pointers, one for each automaton in the grammar.  If a match
range ends at the current token, this entry points back to the beginning of
the range; otherwise, its value is NULL.

These data structures are best explained graphically: fig. 4–1 depicts the data for a
simple sentence, while fig. 4–2 illustrates the data structures for a token with two read-
ings.

0 1 2 3 4 5 6 7 8
■ the red cat sat on the drop ■

Oracle 00000 00001 01000 10000 00010 00100 00001 10010 00000

Token — Ptr Ptr Ptr Ptr Ptr Ptr Ptr —

m1 — — — 2 — — — 7 —

Fig. 4–1: The basic run-time data structure for Patti is an array with an entry for each
word of the sentence (columns 1–7).  Before and after the actual data, there are entries

which never will be part of a match (columns 0 and 8).  The “m” cells represent the
longest matches for each automaton: in the illustration, the automaton #1 has found a
match ranging from col. 2 to col. 3 (“red cat”), and another one ranging from col. 7 to

col. 7 (“drop”).

Token

not related 
with Patti

first reading )

not related 
with Patti

Reading

not related 
with Patti

next reading

type ID

bit-vector for 
feature values

Reading

not related 
with Patti

next reading

type ID

bit-vector for 
feature values

NULL

Fig. 4–2: The ambigous readings of a token are represented as a linked list.
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4.2 Matching in a Sentence
In case there are several automata in the grammar, each automaton X processes the
entire sentence on an individual basis.  After being finished with a sentence, the ap-
propriate mX cells will contain pointers indicating the maximal ranges of the matching
tokens.

Algorithm: MatchingInSentence (for automaton X)

Input:

■ matchArray — an array of match slots, as described in section 4.1.
All mX cells are expected to have a NULL value.

■ sentenceLength — number of tokens in the sentence.

Output: none.

Side-Effects: The mX cells in matchArray are set according to the longest ranges
of matching tokens.

Method:

maxAcceptedEntry := 0;
for i := 1 to sentenceLength do

acceptedEntry := ExecuteAutomaton(matchArray, i);
if (acceptedEntry > maxAcceptedEntry)

matchArray [acceptedEntry].mX := i;
maxAcceptedEntry := acceptedEntry;

endif;
enddo;

Fig. 4–3: For each token, it is determined where the longest match ends when the au-
tomaton starts at that token.  The match is only recorded if its end is the rightmost up

to now.  This excludes multiple matches where one is fully included in the other.
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)1 )1

)2 )5

)3 )4

)4 )–

)5 )6

)6 )6

1 2 3 4 5 6

1 — — — 2 5

Init

Fig. 4–4: A visualization of the algorithm described in Fig. 4–3.  The leftmost numbers
indicate the value of i and acceptedEntry, respectively.  For i = 4, no accepting state
was reached in the automaton.  With typical automata, this happens in most cases.
The small white rectangles ( ) depict the value of maxAcceptedEntry.  Those match

ranges that are actually recorded are painted in black, while gray bars stand for match
ranges that are not stored because acceptedEntry was less than or equal to

maxAcceptedEntry.  The bottom line indicates the final value of the “m” cells.

4.3 Executing an Automaton
An eminent factor for the high performance of Patti is that automata are not compiled
to tables which are interpreted by some driver routine.  Instead, specific machine in-
structions are generated for each state and each transition.  In order to facilitate under-
standing the algorithm, it however makes sense to specify the execution of automata
in the traditional way.

The algorithm calculates the set of configurations which the current configuration
yields in one step.  One of them will become the current configuration of the next
pass, while the others are pushed onto a stack.  If the automaton can not consume any
more symbols, either because no transition label can be unified with the current token
or because the end of the sentence has been reached, the next configuration is re-
trieved from the stack.  If this is not possible, because the stack is empty, the rightmost
token is returned which was consumed when entering an accepting state.

In the worst case, the execution time grows exponentially with the input length.  In
practice, however, the non-determinism stack hardly ever gets utilized.
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Algorithm: ExecuteAutomaton

Input:
■ matchArray — an array of match slots, as described in section 4.1;
■ startToken — number of token to be consumed first.

Output: number of rightmost token consumed upon entering an accepting state,
or NULL if no accepting state was entered.

Side-Effects: none.

Method:
state := s; /* start state of automaton */
curToken := startToken;
lastToken := lengthOf(matchArray); /* index of last slot */
result := NULL;
loop

if (state Œ F) /* is current state accepting? */
result := max(curToken, result);

endif;
if (curToken < lastToken)

and $s $ targetStateNow: (·state, s, targetStateNowÒ Œ D
Ÿ BIT-AND(matchArray [curToken].oracle, oracle(s)) y 0
Ÿ s | _ _| matchArray [curToken].token y ^)

for "t "targetStateDeferred: (·state, t, targetStateDeferred Ò Œ D
Ÿ t y s
Ÿ BIT-AND(matchArray [curToken].oracle, oracle(t)) y 0
Ÿ t | _ _| matchArray [curToken].token y ^) do
push ·targetStateDeferred, curToken + 1Ò;

enddo;
curToken := curToken + 1;
state := targetStateNow;

elseif (StackNotEmpty( ))
·state, curTokenÒ := pop;

else
return result;

endif;
endloop;

Fig. 4–5: Although specific machine instructions are generated for every state,
every transition and every feature unification of an automaton ·K, S, D, s, F Ò, the algo-
rithm is best described as if it was driven by tables for the states and transitions.  The

oracle mechanism is described below in section 5.3; the formal definitions of automata
and feature structures were introduced in chapter 3.
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4.4 Unification
In constrast to most other feature-logic natural language processing systems, the actual
result of the unification operation is not needed with Patti.  To execute the automata,
it is only necessary to know whether transitions can be taken, i.e. whether or not the
unification fails.  This can increase efficiency, since no data structures have to be built.

As already mentioned several times, Patti compiles machine instructions out of the
transition labels.  Basically, the run-time unification loops over the readings of the cur-
rent token to check if one of them is satisfying the restrictions stated by the transition
label.  If none of the readings passes these tests, the unification fails.

Let the transition label be FS = ·Q, q0, q, dÒ and the current reading be FS’ = ·Q’, q0’,
q’, d’Ò.  The first test is type unification: It is checked whether the type of the transition
label is consistent with the type of the current reading, which is the case if either q (q0)
v q ’(q0’) or q ’(q0’) v q (q0).  Next, it is checked for every path p y e in FS whether FS’
satisfies the description stated by p:

■ If the first feature in the path is introduced by some subtype of q (q0’), this
means that the unification can not fail due to this description.  While
other unifiers would copy the value (i.e. q(d(p, q0))) into the result,
nothing has to be done in the case of Patti, since a mere copy operation
can not cause the unification to fail.

■ If q(d(p, q0)) is subsumed by Matrix, the third and fifth appropriateness
condition of section 3.1.4 together guarantee that the embedded feature
structures in both FS and FS’ are of the same type.  The unification then
can not fail due to this description, and no checks have to be performed.

■ Otherwise, d(p, q0) is an atomic feature whose value is actually present in
the current reading.  The generated code loads the corresponding bits
into registers and performs the check, depending on the run-time repre-
sentation of the value.  If the isDisjoinable flag (cf. section 3.1.6) was set
upon feature introduction, the value is represented as a bit-vector.  Unifi-
ability is then checked with bit-AND instructions, similar to the method
described in section 2.3.2.  Otherwise, the value is represented as an in-
teger number; unifiability is checked with a test for numeric equality.
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5 Compilation
Algorithm

This chapter explains how Patti compiles the finite-state automata and type hierarchies
of chapter 3 into machine-independent Intermediate Code, so that the automata can
be executed at run-time as described in chapter 4.

A first section discusses how the type and feature definitions are reduced to those
parts which are actually required for the respective tasks.  Then, a specialized mecha-
nism to speed up unifications is introduced, before the generation of intermediate
code is described in a final section.

5.1 Extraction of Used Parts
Seemingly, linguists tend to specify much more knowledge about the described lan-
guage than is actually needed for a given task.  For example, the type hierarchy which
was used as input to Patti at Apple Computer29 contains a large number of types for
different kinds of anaphora, although none of the current automata ever require some
specific kind.  Although this might make sense from a purely linguistic perspective, it is
not ideal for implementation: a typical grammar contains numerous types and features
which are not required to determine the desired results.  For this reason, the first com-
pilation step is to reduce the input type hierarchy to a subset which is actually used by
the automata.

29 A concrete application of the Patti system was briefly described in section 1.3.



5.1.1 Mark Used Types and Appopriateness
Conditions

The first step to determine the actually utilized subset of types and feature introduc-
tions is to mark those types which are specified in the transition labels of finite-state
automata.  Every type and feature appropriateness specification bears a flag named
inUse, initially set to false.  A markUsage method is invoked for every transition label in
any automaton.  Depending on the object class,30 markUsage performs the following:

■ in case of a feature structure, the inUse flag of its type is set.  For every
feature in the structure, the appropriateness condition is marked to be
used, and the markUsage method of the specified feature value is called;

■ in case of an atomic feature value, inUse of the corresponding type is set;

■ in case of a negation, markUsage is called for the negated value;

■ in case of a value disjunction, markUsage is called for every disjunct.

5.1.2 Mark Objects with Enforced Run-Time Presence

As described in section 3.1.5, the run-time presence of a type or a feature can be en-
forced, even if this type or feature is never accessed in the code generated by Patti.
For each type whose forcePresence flag is set, the compiler sets its inUse flag.  For each
feature appropriateness specification whose forcePresence flag ist set, the compiler sets
the inUse flag of the type which is appropriate for the values of that feature.

Fig. 5–1: The steps described in 5.1.1 and 5.1.2 determine those types which will be
part of the run-time representation (black rectangles) and those which will not

(white rectangles).
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5.1.3 Extract Marked Matrix Types

A pre-order depth-first search is performed on the matrix section of the type hierarchy.
Types whose inUse flag is not set are ignored.  For any other matrix type M, an object
CM of class CompMatrix is created to hold the following information:

■ A 16-bit integer as run-time identification number for the type. To the
first type whose inUse flag is true, an ID of 1 is assigned.  Each subse-
quent type gets an ID which is incremented by 1.  Because M is encoun-
tered in the traversal before any of its subtypes, any subtype of M with a
run-time realization will get a greater ID than M.

■ An array with the feature definitions which are introduced by CM. Not
only do these comprise the feature definitions introduced by M, but also
the feature definitions introduced by any supertype of M up to, but not
including, the closest supertype whose inUse flag is true.

The relation of matrix types to their subtype is preserved; the resulting CompMatrix
objects are organized in trees as well.  The described mapping process hence gener-
ates a forest of CompMatrix objects, where each tree (called cluster) corresponds to a
subpart of the original type hierarchy.

fi

Fig. 5–2: The matrix part of the type hierarchy is mapped into a forest of objects.  Only
those parts of the hierarchy that are actually in use (indicated by black color) will form a

part of the result structure.

5.1.4 Extract Marked Atomic Types

A pre-order depth-first search is performed on the atomic part of the type hierarchy as
well.  If a type is neither used in the patterns nor declared to be included at run-time,
it is ignored.  However, for any atomic type A whose inUse flag is set, a CompAtom ob-
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ject is created.  Corresponding to the dominance relation of the original type hierar-
chy, the CompAtom objects are organized in a forest of trees or clusters.

fi

Fig. 5–3: The atomic part of the type hierarchy is mapped into a forest of CompAtom
objects.  Only those types whose inUse flag is set (depicted in black) become part of

the result structure; the others (depicted in white) will not be present at run-time.

5.2 Calculation of Run-Time
Representation

Having determined which types and appropriateness conditions will be present at run-
time,  the next step is to calculate the actual run-time representation for the surviving
objects.

5.2.1 Count Leaves in Atomic Clusters

The just created forest of CompAtom objects is traversed by performing a pre-order
depth-first search on every atomic cluster.  For each CompAtom object CA, the follow-
ing information is calculated:

■ the number of leaves to the left of CA in the same cluster.  For the top-
most node in the cluster, this is zero;

■ the number of leaves  in the subtree dominated by CA. For a leaf, this
number is 1, because every node is contained in the tree which is domi-
nated by itself;

■ the number of leaves to the right of CA in the same cluster.  For the top-
most node in the cluster, this is zero.

42 Chapter Five



1 · 1 · 3

1 · 1 · 3

0 · 1 · 4

0 · 5 · 0

2 · 2 · 1

2 · 1 · 2 3 · 1 · 1

4 · 1 · 0

Fig. 5–4: Counting the leaves in an atomic cluster.  The node with the thick frame has
two leaves to its left (first number); it dominates a subtree with two leaves (second

number); to its right, there is one leaf (third number).

5.2.2 Calculate Bit-Vector Size for Matrix Types

The run-time representation of a matrix type has been described in section 4.1.  It in-
cludes a 16-bit integer type ID, and a bit-vector to hold the individual feature values.
In section 5.1.3, it has been described how the type ID is obtained; the subsequent
sections will now cope with the assignment of features to bits in this vector.

For every utilized appropriate feature, the compiler assigns some bits in the run-time
vector.  For this purpose, a method calcRuntime is called for every CompMatrix object
CM.  It checks first whether the object’s run-time representation has been calculated
previously.  If this is not the case, the following actions take place:

■ If CM is the topmost of its cluster and thus has no supertype, the size of
the associated bit-vector is initially set to zero.

■ If CM has a supertype, calcRuntime is called for that supertype, before
the mapping from features to bit-vector positions is copied.  This ensures
that inherited features are stored at the same vector positions as with the
type which has introduced them.

■ For every feature f whose appropriateness is introduced by CM (i.e.
Intro(f) = CM), a range of bits is reserved in the bit-vector.  Let be t =
Approp(f, CM).

■ If t is subsumed by Matrix, calcRuntime is called for t, and the number
of bits needed to hold a structure of type t is added to the length of
CM’s bit-vector. 
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■ If t though is subsumed by Atom, the number of bits to be reserved de-
pends on the disjoinability of f (cf. section 3.1.6).  Let n be the number
of leaves in the atomic cluster to which t belongs.  If the isDisjoinable
flag is set, n bits are reserved; otherwise, merely Èlog 2 n˘ bits are re-
quired to hold the value of f.

5.2.3 Compile Transition Labels

Having completed the steps described in the previous sections, Patti now compiles
each feature structure FS which labels a transition in an automaton.  First, it is deter-
mined which type IDs a reading can possibly have in order to be unifiable with FS.  As-
suming z to be the type of the reading and s to be the type of FS, there are three cases
to distinguish:

■ z is subsumed by s.  Due to total well-typedness, all features in FS are
specified in the reading.  If z is a proper sub-type of s, z might contain
more features than s does.31 However, since Patti is only interested in
whether the unification fails, the values of these additional features do
not matter.

■ z is a proper super-type of s.  In this case, it can happen that some fea-
tures in FS do not have a counterpart in the current token’s reading; the
corresponding checks thus have to be omitted.32 See fig. 5–5 for an illus-
tration thereof.

■ z and s are inconsistent types.  In this case, the unification fails.

Let R be TypeID(z ), i.e. the numeric type ID of the current reading.  Because the as-
signment of type IDs is based on a pre-order depth-first search (cf. section 5.1.3), the
first of the above cases is indicated by TypeID(s ) v R v TypeID(lastUnif(s )), where
lastUnif(s ) is the type with the largest ID among those consistent with s.  If R is in this
range, all features in FS have a counterpart in the reading, and corresponding unifica-
ton code will be generated for each feature.

If R does not fall between TypeID(s) and TypeID(lastUnif(s )), it is checked for every su-
pertype t of s (i.e. for all types t such that t < s) whether R = TypeID(t).  In that case,
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only a subset of the features in FS might have a counterpart in the reading to be uni-
fied with.  If R is not equal to the ID of any super-type of s which is also present at
run-time, the unification fails.

Note that the root of the cluster to which s belongs is the most general type consistent
with s and used at run-time; let firstUnif(s ) be that type.  Since it makes sense to de-
tect unification failures as quick as possible, one of the first actions that happen at run-
time is to check whether TypeID(firstUnif(s )) v R v TypeID(lastUnif(s)).

5

6

7

8

9 10

)Feature f )Intro(f ) 

)g )5
)h )8
)i )9

 8

 g )…
 h )…

Fig. 5–5: Not all features in a transition label need to be appropriate for the type of a
unifiable run-time feature structure.  Assuming the type hierarchy in the middle and the
features being introduced as depicted in the table to the right, readings of type 5, 8, 9
and 10 are unifiable with the transition label AVM to the left.  While both g and h have
to be checked when unifying with a reading of type 8, 9 or 10, only g has to be consid-

ered upon unification with a reading of type 5.  firstUnif(8) is 5, lastUnif(8) is 10.

For the transition label for fig. 5–5, Patti would generate two versions of the code: a
version to check both g and h, to be executed when R Œ {8, 9, 10}, and a version to
check g only, to be executed when R = 5.33

To test the unifiability of FS with a reading of type z, a number of machine words are
loaded from memory into registers, and certain checks have to be performed on each
word.  An multi-dimensional array accessedWordz, i indicates the i-th word to be load-
ed; checksz, i holds the checks to be executed on that very word.

The compiler now processes every path p in FS:

■ Due to the reasons stated above, p is to be ignored if z properly sub-
sumes the type which introduces p.

■ If q (d(p, q0)) is subsumed by Matrix, p is ignored, since non-atomic em-
bedded feature structures have no run-time counterpart.
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33 The typeDispatch intermediate instruction branches to the respective code section,
depending on the value of R.  The intermediate instructions are described in Ap-
pendix B.



■ Otherwise, d(p, q0) is an atom — or a set of atoms, connected by dis-
junction and negation symbols.  The position and length of the sub-
vector holding the value of p have already been determined by the com-
pilation step described in section 5.2.2.34 Therefore, it is fairly easy to
determine which machine words have to be loaded for p, and
accessedWords is extended accordingly.

■ If the isDisjoinable flag is set, the run-time bit-vector is determined for
each atom in d (p, q0) by concatenating left “0” bits, below “1” bit and
right “0” bits (left, below and right being the number of leaves calculat-
ed by the method of section 5.2.1).  If two atoms are connected by
disjunction, their vectors are bit-ORed; if two atoms are connected by
conjunction, their vectors are bit-ANDed; if an atom is negated, the
complement of its vector is taken.  checks is modified to hold an AND
check (cf. section B.3.7) with the resulting vector for d (p, q0).

■ If the isDisjoinable flag is not set, all atoms in d (p, q0) are replaced by a
disjunction of the atomic leaves they subsume.  By applying the usual
transformation rules of Boolean algebra, the value is then brought into
conjunctive normal form.  Single negated atomic leaves are realized as
NEQ, non-negated as EQ checks (cf. section B.3.7).  In case of a single
(possibly negated) leaf, the EQ or NEQ object is added to checks; in
case of multiple leaves (joined by Boolean connectives), a CNF object
is created and added to checks to hold the structure of the expression.

After having processed all paths, firstVWAcc(s ) is set to hold the offset of the very first
bit-vector word which has to be accessed at run-time.  The PowerPC code generation
uses this information to issue data cache control instructions.

5.3 The Unification Oracle
In a typical NLP system, the major part of the performed unification operations do fail.
It would be desirable to have a kind of “oracle” which reliably predicts whether a uni-
fication will fail, so that the time to perform the unsuccessful unification can be saved.

This section presents such an oracle which greatly contributes to Patti’s efficiency. Note
that in general, the oracle does not replace unification:  it merely determines whether
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34 Let be n the length of the bit-vector for z before reserving the m bits to hold the
value for p.  The sub-vector then starts at bit n and has a length of m.



or not a unification is worth trying.  In the former case, the unification could still fail,
despite of the oracle’s prediction.  In the latter case, however, it is sure that the unifi-
cation will actually fail: The oracle’s failure predictions are guaranteed to be correct.35

5.3.1 A Unification Failure Oracle for Flat Hierarchies

For the sake of simplicity, the reader might neglect for a moment the inheritance hier-
archy and assume that two AVMs be only unifiable if they are of the very same type.
The complications due to type unification will be discussed later in section 5.3.2.

Let the run-time representation of a token contain a bit-vector of size 32, called oracle
word.36 Further, let oracle(s ) be for any type s a bit-vector of size 32, whose only bit
set is the bit with the number (TypeID(s ) mod 32).

When the tagger output for a token is converted into the Patti format, all bits of its ora-
cle word OW are initially set to zero.  For each reading with type t, OW is bit-ORed
with oracle(t); the result is then stored back to OW.

The oracle now works as follows:  In the generated machine code for each state of the
finite-state automata, one of the first actions is to load the oracle word of the current
token into a register.  Before performing the unification with a transition label of type
z, the oracle word is bit-ANDed with oracle(z ).  If the result is an all-zero vector, the
unification is cancelled immediately.  Note that on many processors, performing a bit-
AND on a register and comparing the result with zero is an extremely efficient opera-
tion.  On PowerPC, this test consumes one single machine cycle.37
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35 A similar kind of “failure oracle” is common practice in Natural Language Process-
ing to speed up syntactic analysis.  For example, the FIRST set, employed in numer-
ous Chart Parsing algorithms for context-free grammars, constitutes a comparable
filter: membership of the subsequent terminal’s category in the FIRST set for the cat-
egory of an active edge does not assert that the edge actually forms a part of the
final solution.  Non-membership though guarantees that an edge can be safely
omitted.

36 Most current microprocessors have 32-bit integer registers.  Since logical operations
are most efficient if their arguments fit into a single register, 32 was chosen as size
for the oracle word.

37 This is only true if independent instructions can be scheduled between the bit-
AND/comparision and the conditional branch, or if the compiler is able to predict
correctly whether the conditional branch will be taken.  Otherwise, a small delay
can occur.  See sections A.2.2 and A.2.3 for an introduction into Superscalar In-
struction Dispatch and Branch Prediction.



Why does this work?  Assume the current token had a reading of type z. Due to the
calculation of OW described above, the bit number (TypeID(z ) mod 32) would be set
in OW.  This bit would be common to both vectors OW and oracle(z ).  Thus, the re-
sult of a bit-AND operation of OW and oracle(z ) would be a vector with this bit set.
Hence, the bit-AND operation would lead to a non-zero result.  But in that case, the
oracle would not have predicted the unification to fail.

5.3.2 A Unification Failure Oracle for Simple-
Inheritance Hierarchies

With a type hierarchy, a transition label feature structure of type s can unify with a
token even if none of the readings are of type s — it suffices that the type of one of
the readings be unifiable with s.  As mentioned above, this slightly complicates the or-
acle.

The run-time algorithm — perform a bit-AND of the current token’s oracle word with
oracle(s ), predict failure if the outcome is an all-zero vector — does not need to be
modified.  However, a different method is employed to calculate oracle(s ).

The algorithm is based on a commonly known type unification algorithm for multiple-
inheritance hierarchies ([Aït-Kaci et al., 1989]; cf. section 2.3 for a brief description).
In contrast to Aït-Kaci et al., Patti is not interested in the result of the type unification,
but solely in the fact whether or not the unification fails.  In addition, the problem is
further alleviated because the current formalism merely allows for simple inheritance
type hierarchies.

After setting an Integer variable leavesEncountered to zero, a post-order depth-first
search is performed on the forest constructed in section 5.1.3 (“Extract Marked Matrix
Types”).  For each encountered matrix type s, the 32-bit vector oracle(s ) is calculated
as follows:

■ If s dominates no subtypes (i.e. s is a leaf in the type hierarchy):
oracle(s ) is a bit-vector whose bit number (leavesEncountered mod 32)
is set, whereas all other bits are cleared.  Afterwards, increment
leavesEncountered by 1.

■ If s is not a leaf: Set oracle(s ) to the result of a bit-OR on all oracle
vectors of the dominated subtypes.

The described algorithm establishes a mapping from leaves in the type hierarchy to
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positions in the vector (see right part of figure 5–5 for an example).  If two matrix types
are unifiable, they have at least one leaf in common, thus the corresponding oracle
words have at least one commonly set bit.  Therefore, bit-AND of two vectors can lead
only to an all-zero result if two types are not unifiable (as with the algorithm by Aït-
Kaci et al.).

However, it is in general not valid to deduce unifiability from non-zero results.  If there
are more than 32 leaves, several leaves will share the same bit in the vector.

D
00100000

F
00010000

E
00010000 G

00001000
H

00000100

I
00001100

K
00000010

L
00111110

J
00000010

A
10000000

B
01000000

C
11000000

M
00000001

Leaf )Bit

)A )0
)B )1
)D )2
)E )3
)G )4
)H )5
)J )6
)M )7

Fig. 5–5: The forest of used matrix types is traversed in a post-order depth-first search.
In this example hierarchy, the type names correspond to the order in which the nodes
are visited.  For a leaf, the corresponding bit in its vector is set (see table to the right).

For other types, the vector is obtained by bit-ORing the vectors of all sub-types.

Another difference to the algorithm of Aït-Kaci et al., besides the restriction to simple
inheritance, is that the result of a bit-AND is not indicative for the type of the unifica-
tion result.  In fig. 5–5, for example, the very same bit-vector is assigned to both E and
F.  Since the bit-AND is only used for oracle purposes and not to determine the actual
unification result, this does not affect the usability of the algorithm.

Of course, it would have been possible to assign a bit to every type (as Aït-Kaci et al.
do), not only to the leaves.  This would enlarge the size of the bit vectors.  However,
since the oracle vectors are limited to 32 bits, this would make it more probable for a
bit to be shared by several inconsistent types, hence decreasing the number of cases
where the subsequently discussed Unification Success Oracle is applicable.

5.3.3 The Unification Success Oracle

The Unification Oracle, described in the previous section, is able to reliably predict
most cases of unification failures due to type mismatches.  However, as has been
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pointed out beforehand, it is not a reliable prediction for unification success: Even if
the oracle predicts success, the unification might fail and thus still has to be tested be-
fore a transition can be taken.  Nevertheless, there are specific conditions under which
the oracle is indeed able to tell reliably whether a feature structure FS of type s is
unifiable with a token whose oracle word is OW, without performing the actual unifi-
cation:

■ FS is an empty feature structure. In this case, type inconsistency is the
only reason for which the unification could possibly fail;

■ from the fact that a non-zero result is obtained from bit-ANDing OW
with oracle(s ), it can be deduced that the token has a reading whose
type is indeed unifiable with s. This condition is fulfilled if the variable
leavesEncountered is less than or equal to 32 after being finished with the
forest traversal described in section 5.3.2.38

These conditions are easy to verify at compilation time.  If they both hold for the label
of a transition, that unification can be safely omitted, since then, the oracle predicts
unification success if and only if the unification would be successful.  Thus, if a transi-
tion label feature structure is empty, and if not too many types are in use, the unifica-
tion is compiled to a single bit-AND operation on a register, resulting in a tremendous
impact on efficiency.

This optimization can be applied surprisingly often.  In fact, most transitions were la-
beled with empty feature structures in the automata used at Apple Computer.

5.4 Intermediate Code Generation
For every automaton, a sequence of Intermediate Code instructions is generated.  The
purpose of the Intermediate Code, described in appendix B, is to keep the machine-
dependent parts of the compiler sources in a small, designated place.  With this sepa-
ration, it is much easier to port Patti to a new target instruction set — only the code
generation out of the intermediate code would have to be enhanced, but not the
compiler itself.
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38 If the number of leaves in the matrix forest is between 33 and 63, certain bits are
shared by several leaves, while others are unique.  The Patti compiler is slightly
more complicated than described — it determines which bits of an oracle word are
unique and which are not — in order to allow for this optimization with hierarchies
that use up to 63 matrix types.



5.4.1 Intermediate Code for Automata

The intermediate code for an automaton consists of the instructions listed below.  Each
automaton bears a distinctive identification number, which will be part of the function
name of the final code.  The start state always gets an ID of 1; its code thus immedi-
ately follows the prolog instruction.  Let startAccepting be “yes” if the start state is ac-
cepting and “no” otherwise.

Once: declaration automatonID = ·ID of AutomatonÒ
prolog startStateAccepting = ·startAcceptingÒ
— code for for each state, according to section 5.4.2 —
epilog
declarationEnd

5.4.2 Intermediate Code for States

Let ID be the identification number of the state State whose intermediate code is
being generated.  Let Target1, …, Targetn be the IDs of the target states of the transi-
tions leaving State, let Accepting1, …, Acceptingn be “yes” if the respective target state
is accepting and “no” otherwise, and finally let Label1, …, Labeln be the labels of the
respective transitions.

The intermediate code for State then consists of the subsequent parts; together, they
implement the algorithm of section 4.3.

Once: state·IDÒ stateEntry accepting = ·yes|noÒ

For 1 v i < n:

tr·IDÒ_·iÒ code for Labeli failAction = “jump target=tr·IDÒ_·i + 1Ò”,
label = “tr·IDÒ_·iÒ”, successCode =

call target = n·IDÒ_·iÒ
jump target = state·Target iÒ
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Once: tr·IDÒ_·nÒ code for Labeln failAction = “jump target=pop”,
label = “tr·IDÒ_·nÒ”, successCode =

jump target=state·TargetnÒ

For 1 v i < n – 1:

n·IDÒ_·iÒ code for Labeli failAction = “jump target=n·IDÒ_·i + 1Ò”,
label = “n·IDÒ_·iÒ”,  successCode =

jump target=push·IDÒ_·iÒ

push·IDÒ_·iÒ push newState = ·Target iÒ,

newStateAccepting = ·Accepting iÒ

Once: n·IDÒ_·n–1Ò code for Labeln-1 failAction = “return”,
label = ” n·IDÒ_·n–1Ò”,  successCode =

jump target=push·IDÒ_·n–1Ò

push·IDÒ_·n-1Ò push newState = ·Targetn – 1Ò,
newStateAccepting = ·Accepting n – 1Ò

return

5.4.3 Intermediate Code for Transition Labels

The routine to generate the intermediate code for a transition label takes two argu-
ments: First, a branch instruction failAction to be executed on unification failure, and a
sequence of intermediate instructions successCode to be executed on unification suc-
cess.

The code for a transition label FS always starts with an invocation of the unification or-
acle.  The oracle was described in section 5.3; its purpose is to predict reliably
whether a unification will fail due to type inconsistencies.  In the general case, the ora-
cle filters out most candidates which will lead to unification failures, thus greatly saving
execution time.  In the code below, let oracleWord be the oracle word for FS, as deter-
mined by the algorithm of section 5.3.2.

Under certain conditions itemized in section 5.3.3, the oracle is even able to predict
reliably whether a unification will succeed.  In this special case, the actual unification
does not need to be performed at all, and the oracle instruction is immediately fol-
lowed by the code to be executed on unification success, which is passed as success-
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Code parameter.  The code for the transition label then looks as follows:39

Once: oracle oracleWord=·oracleWordÒ,
prediction=doesMatch,
failAction=·failActionÒ

·successCodeÒ

Otherwise, the unification oracle does filter out many mismatches, but nevertheless,
the unification checks still have to be executed.  The code then loops over all read-
ings, until one is unifiable with FS (let s be the type of FS):

Once: oracle oracleWord=·oracleWordÒ,
prediction=doesMatch,
failAction=·failActionÒ

readingLoopInit firstVectorWordAccessed=·firstVWAcc(s )Ò
·labelÒ_do readingLoopBody failAction=·failActionÒ,

firstVectorWordAccessed=·firstVWAcc(s )Ò,
firstUnif=·firstUnif(s )Ò,
lastUnif=·lastUnif(s )Ò

As discussed in section 5.2.3, it depends on the type of the encountered reading
whether or not certain checks have to be executed in order to verify unifiability.  Let
z1, …, zk be the realized super-sorts of s in order of descending generality, i.e. zk = s
and zi – 1 v zi for 1 < i v k.
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If k = 1, no type dispatch has to happen at all, and the code continues as follows:40

Once: ·labelÒ_chk1 code for FS, s failAction = “jump target=·labelÒ_nxt”
·successCodeÒ

·labelÒ_nxt readingLoopNext failAction=·failActionÒ,
bodyLabel=”·labelÒ_do”,
predictMoreReadings=true 

If k > 1, the code continues as follows:

Once: typeDispatch failAction=·failActionÒ,
typeIDs=[TypeID(zk), …, TypeID(z 1)],
targets=[·labelÒ_chk·kÒ, …, ·labelÒ_chk1]

For 1 v i v k:

·labelÒ_chk·iÒ code for FS, zi failAction = “jump target=·labelÒ_nxt”
·successCodeÒ

Once: ·labelÒ_nxt readingLoopNext failAction=·failActionÒ,
bodyLabel=”·labelÒ_do”,
predictMoreReadings=true 

5.4.4 Intermediate Code for Transition Labels,
Assuming Some Type for the Current Reading

Let n be the number of words in the bit-vector holding the feature values which need
to be accessed in order to check the unifiability given the assumption that the current
reading of the current token is of type s.  Let now accessedWords, 1, …, accessed-
Words, n be the words which need to be accessed, and let checkss, 1, …, checkss, n be
the checks which have to be performed on these words.41
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40 Please refer to section B.3.4 in the appendix for an explanation of the predict-
MoreReadings parameter.

41 The computation of both multi-dimensional arrays has been described in section
5.2.3.



The straightforward implementation would be to load accessedWords, i immediately
before executing checkss, i.  However, this would cause numerous CPU stalls, because
the result of a load instruction is not available at the time when the immediately fol-
lowing instruction is processed.  A better implementation schedules independent in-
structions between a load and the calculations on its result, where this is possible.  To
achieve this, Patti applies a technique called Software Pipelining (cf. [Kacmarcik, 1995],
p. 351): the respective load and check parts of two “cycles” are interleaved, as depict-
ed in fig. 5–6.

load accessedWords, 1

execute checkss, 1

load accessedWords, 2

execute checkss, 2

load accessedWords, 3

execute checkss, 3

load accessedWords, 4

execute checkss, 4

load accessedWords, 1

load accessedWords, 2

execute checkss, 1

load accessedWords, 3

execute checkss, 2

load accessedWords, 4

execute checkss, 3

execute checkss, 4

Fig. 5–6: The standard approach would be to load a word from memory into a register,
immediately followed by calculations on that register.  Due to the relative slowness of

the memory subsystem, this however causes stalls on many pipelined CPUs.  In the left
illustration, the CPU has to wait (thick line) for the first load to finish before the checks
on that word can be performed.  In the right illustration, the CPU does something use-

ful (loading the second word) while waiting for the first word to be ready.

Compilation Algorithm          55



The following intermediate code is generated in order to check unifiability with a fea-
ture structure of type s:

Once: loadVectorWord offset=·accessedWords, 1Ò, register=2

For 1 < i < n:

loadVectorWord offset=·accessedWords, iÒ,

register=·1 + ( i mod 2)Ò
checkWord failAction=·failActionÒ,

register=·1 + (( i – 1) mod 2)Ò,
checks=·checkss, i – 1

Ò

Once: checkWord failAction=·failActionÒ,
register=·1 + (n mod 2)Ò ,
checks=·checkss, nÒ
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6 Empirical Evaluation

The algorithms presented by this thesis were designed for high efficiency; many provi-
sions have been taken to make the system as fast as possible.  Therefore, it would be
interesting to know about the actual performance.  The subsequent chapter thus de-
scribes how the speed was measured and lists the outcome of those experiments.

Unfortunately, there exist no standard benchmarks to evaluate the speed of natural
language systems.  For this reason, it is hard to give a comparison or a ranking.  Never-
theless, there exist some articles which compare different systems; these numbers are
repeated as an illustration.

The chapter concludes with a thorough discussion of common objections to the uti-
lized evaluation scenario.

6.1 Measuring the Speed
In the opinion of the author, it makes more sense to evaluate the performance of
natural-language engineering systems with an actually utilizable task than with purely
hypothetical “toy” examples.  To evaluate the speed of Patti, the extraction of simple
noun groups was chosen.  Example of such noun groups include tall and small dogs,
National Cable TV Association or blue velvet.  The corresponding automaton is repro-



duced in appendix C.42

As outlined in section 1.3, the Apple Linguistic Analysis Library sends the input texts to
a server over a TCP/IP network.  The server performs Part-of-Speech Tagging and re-
turns the tagged text to the client in a text-based representation.  The Library then
converts the tags into the bit-vector format of Patti.  Before subsequent modules are in-
voked, the Pattern Matching routine (as generated by Patti) is called.  From this de-
scription, it should be clear that the total time for linguistic analysis — between passing
a Unicode text to the library and retrieving the most salient discourse referents — is of
no concern for evaluating the Patti system on its own merits.  For example, neither the
speed of the Lingsoft Part-of-Speech Tagger, the delays of TCP/IP networking nor the
Unicode conversion times are of any interest in the context of the present thesis.

Therefore, just the execution time for the routine generated by Patti was measured.
This routine, reprinted in appendix C, consists of 144 PowerPC instructions which per-
form the necessary pattern matching and unification operations.  As its input, it takes
the bitvector-oriented representation of a single sentence;43 as its output, it returns the
longest ranges44 of all matching noun groups. 

The group, called the Information Infrastructure Standards Panel (IISP),
is sponsored by the American National Standards Institute (ANSI) and is
open to all organizations actively working on NII and GII, both members
and non-members of ANSI.

Fig. 6–1: To evaluate the Patti system empirically, the execution time for the
automaton of appendix C is measured.  In the depicted sentence,
the automaton detects eleven noun groups, printed in bold italics.

58 Chapter Six

42 At Apple, a slightly more complicated automaton was used to extract the noun
groups.  However, as pointed out in section 6.4.4, neither the size of the automata
nor the number of features do greatly affect the performance.  Indeed, the same
timing experiments were conducted with the actual automaton as well, with essen-
tially equal results.  Therefore, the more illustrative example automaton of ap-
pendix C was used for the timing experiments described in this chapter.

43 One might object that the time for converting the tagger output into bitvectors is
not measured.  This and other common objections will be discussed in section 6.4.

44 In other words, “greedy match” is performed.  For example, National Standards
would be recognized by the automaton as well, but this is not returned because it is
fully contained within American National Standards Institute. Of course, the time to
filter out non-longest matches is included with the measured time.



The execution time for this routine was measured with the profiling utility provided by
Metrowerks CodeWarrior Professional Release 2.  This development environment al-
lows to measure the execution time for each invocation of a routine.  A graphical utili-
ty, depicted in fig. 6–2, displays for each procedure:

■ how often the routine was called;

■ the total time for all invocations;

■ the minimal, maximal and average time spent.

The timing utilizes the real-time clock facility of the PowerPC chip whose granularity is
128 nanoseconds.  The results are displayed in milliseconds, with an accuracy of 1 mi-
crosecond.

Fig. 6–2: The Metrowerks Profiling Utility displays the execution time for every routine
in the Linguistic Analysis Library.  For a text which consists of 4092 tokens, Pattern
Matching (the third item in the list) was called 206 times (once for each sentence).

Finding the noun groups took 0.489 milliseconds in total, 2 µs for the average sentence
and 7 µs in maximum, while the minimal matching time was less than 512 ns, which is

rounded to 0.000 ms.  A maximum stack space of 6690 bytes was needed.  These
numbers translate to a (though theoretical, see text) matching speed of roughly

8.4 million tokens per second.
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A variety of input texts were used to evaluate the speed:

■ Forbes: an article from Forbes magazine (cf. [Hutheesing, 1996]) about
the strategy of Gilbert Amelio,  CEO of Apple Computer at that time, to
rescue his company.  The article consists of 4092 tokens in 206 sen-
tences.45

■ Desktop Printing: the “About Desktop Printing” file which is put into the
“MacOS Read Me Files” folder when installing most Printer Drivers on
Macintosh System 7.  The text consists of 2894 tokens in 224 senten-
ces.46

■ ANSI: a newswire text (“The American National Standards Institute Hosts
the First National Conference of Information Superhighway Panel”) from
1994.  The text consists of 681 tokens in 22 sentences.47

These texts were analyzed with the Linguistic Analysis Library on the following machi-
nes:

■ an Apple Power Macintosh 6100/60av48 with a 60 MHz PowerPC 601
processor and 40 MB RAM, running MacOS 8.0 in the US-English ver-
sion; 

■ an Apple Power Macintosh 9500/150 with one49 150 MHz PowerPC 604
processor and 88 MB RAM, running MacOS 8.0 in the US-English ver-
sion;

■ an Apple Power Macintosh G350 with one 334 MHz PowerPC G3 pro-
cessor and 192 MB RAM, running MacOS 8.1 in the US-English version. 

Each text was analyzed three times; fig. 6–3 below indicates the average results of this
timing experiment.51
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45 The text is available at http://www.coli.uni-sb.de/~brawer/patti/forbes.txt
46 The text is available at http://www.coli.uni-sb.de/~brawer/patti/desktop.txt
47 The text is available at http://www.coli.uni-sb.de/~brawer/patti/ansi.txt
48 This is one of the first released (and hence slowest) Power Macintosh models.
49 Since the Apple Linguistic Analysis Library is not multi-threaded, the results would

not benefit from multiple processors.
50 As of January 1998, this the the fastest Power Macintosh model (and probably the

fastest existing desktop computer at all).
51 As expected, the results were not differing notably for individual runs on the same

machine with the same data.  For example, noun group extraction for the Forbes
text took 489 µs, 495 µs and 487 µs on the PowerMacintosh 9500/150.



6100/60av 9500/150 G3

Time Tokens/s Time Tokens/s Time Tokens/s

Forbes 2182 µs 1.9 Mio. 490 µs 8.4 Mio. 192 µs 21.3 Mio.

Desktop Printing 1474 µs 2.0 Mio. 366 µs 7.9 Mio. 152 µs 19.0 Mio.

ANSI 332 µs 2.1 Mio. 101 µs 6.7 Mio. 39 µs 17.5 Mio.

Fig. 6–3 The execution time for the code generated by Patti was measured on a number
of different machines.  Depicted are the average time, calculated from three indepen-
dent runs.  The value for “Tokens/s” is the number of tokens in a text divided by the

number of seconds needed for extracting its noun groups.  This number is however only
of theoretical value; cf. section 6.4.3 for discussion of this topic.

6.2 Interpretation of Results
These results were quite surprising to the author: although it was expected that the nu-
merous optimizations would lead to a very fast system, the performance is an im-
provement of several orders of magnitude, compared to other systems (cf. section 6.3).
This achievement was not prognosticated.

It is hard to type out the reasons for this accomplishment, and it is even harder to
quantify them on an individual basis.  It has been noted several times in the literature
that “research directed towards improving the throughput of unification-based parsing
systems [has to be] concerned with the unification operation itself, which can consume
up to 90% of parse time” (cf. [Carroll, 1994]).  While a number of different methods
has been developed to speed up the unification operation, there exists probably no
other system which compiles the unifications into machine instructions, scheduled to
benefit from advanced computer architecture.  Another factor of utmost importance,
viz. the opposition of compilation and interpretation, has already been discussed in
section 2.2.4.
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An additional acceleration is due to the fine-tuned utilization of specialized cache con-
trol instructions.  If all cache control instructions are removed from the generated
code, the system slows down by roughly one third.52

It has yet to be explained why the achieved performance is different for the three
input texts.  However, it is not too surprising that the speed is increasing for longer
texts: certain hardware provisions such as instruction caches or dynamic branch pre-
diction buffers are more effective when the same code is executed more often.  An
additional, probably more important factor might be the initialization overhead which
is constant for each sentence — texts with longer sentences are thus analyzed with a
better performance.

6.3 Comparison to Other Systems
Unfortunately, it seems that no evaluation criteria are commonly accepted for compar-
ing the speed of systems similar to Patti.  At least, [Abney, 1997] enumerates the
speeds for some systems which perform partial syntactic analysis:

■ traditional chart parsers run at less than 1 token per second53

— Tacitus: ~0.12 tokens/s;

■ “skimming” parsers run at 20–50 tokens per second
— Fastus: 23 tokens/s; Scisor: ~30 tokens/s; Clarit: ~50 tokens/s;

■ deterministic parsers can be more than an order of magnitude faster
— CG: 410 tokens/s; Fidditch: 1200 tokens/s; 
— Cass2: 1300–2300 tokens/s; Copsy: ~2700 tokens/s.

Because of the differing hardware used by the respective systems, these numbers are
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which corresponds to a theoretical speed of 6.2 (instead of 8.4) million token per
second.

53 Other sources give better results for Chart Parsers.  For instance, [Carroll, 1994] re-
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normalized to a Sun4/Sparcstation 1.54 Assuming a coëfficient of roughly 10 for an
Apple Power Macintosh G3, Patti’s speed would outperform the fastest system of the
above list by almost three orders of magnitude.

6.4 Common Objections
While discussing the preliminary ideas which finally led to the Patti system, a number
of objections came up, most of them related to the evaluation of the system, as de-
scribed in the current chapter.  For this reason, the subsequent sections outline these
arguments, and try to respond to the criticism.

6.4.1 “Merely Tuning Constant Factors”

One researcher (of Xerox PARC, Palo Alto, California) objected that the work along the
lines presented by this thesis would not constitute a significant benefit to the field: it
would merely minimize constant factors, while a major improvement would require
the development of entirely new algorithms with better mathematical complexity
properties.

In the opinion of the author, this argument is certainly true — from a theoretical point
of view.  From an engineering perspective, however, it nonetheless does make a differ-
ence whether the speed of a system is twenty million or barely two tokens per second.
The timing experiments indicate that very fast language analysis is indeed feasible,
even without a revolution in NLP by developing entirely new algorithms with different
mathematical properties.

6.4.2 “Evaluating Caches, not Algorithms”

Another researcher (of DFKI GmbH, Saarbrücken, Germany) pointed out that this kind
of timing experiment would not be meaningful, since the most important factor are
the CPU and its caches.  In other words, he argued that large parts of the efficiency of
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the system are not due to the utilized algorithms, but due to the caching mechanisms
of the PowerPC chip.

Again, this argument has its point — it is surely true that mechanisms such as super-
scalarity or a good caching are extremely influential on the results.  On the other hand,
the whole purpose of the Patti system is to utilize these mechanisms offered by mod-
ern hardware.  Issuing cache control instructions, for instance, is something which
could be done with other algorithms as well — but Patti seems to be the first NLP sys-
tem actually doing so, with a considerable achievement in performance.

6.4.3 “I/O not Counted”

Yet another researcher (of the Department for Computational Linguistics, Saarbrücken,
Germany) was objecting that only the time to find the noun group ranges is included
in the timing experiments above.  His desire was to know about the performance of
the overall system, for example including disk I/O, instead of just one single compo-
nent.

This objection is certainly valid from the perspective of a person who has to compare
different system architectures, or who has to decide which system to buy.  However,
the author thinks these factors not being relevant in the context of the present thesis,
whose topic is indeed a specialized component and not an overall system architecture.
Including the time for disk I/O is, at least in the opinion of the author, highly problem-
atic to evaluate the efficiency of a matching or unification algorithm.  For example, it
might very well be that a system does not involve any disk operations at all: it might be
part of an Embedded System (where there is no hard disk), or it might not need to ac-
cess the disk.55

However, it must be concluded that with a performance as high as achieved by Patti,
other factors (such as disk I/O related to Virtual Memory) become more important.  In
a system that takes 20 minutes to analyze a two-page text, 140 milliseconds for disk
access are neglectible.  In a system that takes two seconds, the 140 milliseconds are
more important in comparison.  In a system that takes 500 microseconds, factors such
as virtual memory are an utterly prominent factor.  A “matching speed of 8 million to-
kens per second” is thus mostly of illustrative value; this number would only be true if
pattern matching and unification were the only operations that happen in a system.  If
the 8 million tokens do not fit into memory and hence need to be paged in and out, it
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will take more than one second to analyze them, because of the interference with the
Operating System.

Nonetheless, it can be stated that advanced compilation technology, of which Patti
constitutes an instance, can speed up natural-language processing tremendously, so
that this task becomes an entirely neglectible factor in the overall system performance.

6.4.4 “Conversion into Bit-Vectors not Counted”

A seemingly straightforward objection is that the time to convert the part-of-speech
tags into the bit-vectors is not included in the above numbers.

The rationale for not comprising this conversion time56 is that this step is essentially su-
perfluous.  The Apple Linguistic Analysis Library was designed to eventually include a
proprietary PoS tagger, instead of utilizing an external one.  There is no reason why this
tagger could not directly emit the bit-vectors in the format required by Patti, instead of
converting internal data structures into a text-based representation and vice versa.

6.4.5 “What about Larger Grammars?”

Several persons pointed out that the described timing experiment was done with a
very small grammar.  The question is the one about scalability: how would the system
behave if presented with a substantially larger grammar?

There are different parts of the grammar to separate when discussing this topic:

■ A larger number of states in the finite-state automaton is unlikely to affect
the performance of the system to a significant extent.  The time needed
for traversing a finite-state automaton does not depend on the number of
its states.  A very slight degradation of performance could however occur
since a larger number of states leads to more machine code.  Larger code
sections are not loaded at once into the Instruction Cache of the CPU,
which is why a very short delay could occur on jumping from one state
to another, if there exists a large number of states.
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■ A larger number of types can only affect performance if more than just a
small subset of all types is actually used in the grammar.  This was not
true for the automata at Apple.  However, if a large number of types is
present at run-time, this possibly could lead to some degradation of per-
formance.  The predictions of the Unification Oracle (cf. section 5.3)
would be wrong more often, so that the unification operation could be
omitted in less cases.

■ A larger number of introduced features is not expected to slow down the
processing, since only those features which are specified in the transition
label AVMs are compiled to code.  Although more introduced features
lead to larger memory needs, this is very unlikely to affect performance,
because of the careful usage of cache control instructions.

■ A larger number of features in the transition label AVMs potentially could
alter the performance of the system for similar reasons as stated above,
since the size of the generated code depends on the number of features
in the automata.  However, that code is only executed if the Unification
Oracle predicts a match.  Therefore, only minor degradation of speed is
expected.

■ The greatest concern about scalability is probably with a larger number of
automata: Since each automaton runs independently from the others on
the entire sentence, the author expects that the processing time will in-
crease proportionally with the number of finite-state automata.  A possi-
ble solution is to combine several automata into a single one (see the ex-
tension proposed in section 7.1.2).  It might however be that the prob-
lem does not turn out to be severe, since a typical grammar probably
does not consist of hundreds or thousands of automata.

6.4.6 “What about Memory Requirements?”

Some readers might miss information about memory requirements from the numbers
given above.

The reason for this is related to the architecture of the Apple Linguistic Analysis Li-
brary: In most applications, there is no need to preserve all detected information until
all text has been processed.  For example, the information about gender or part-of-
speech is not needed after a certain stage in processing; this allows to minimize mem-
ory needs.  In addition, most linguistic modules do not have to operate on the entire
text at once — with a carefully designed system architecture, it is possible to analyze a
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smaller chunk of a text (e.g. a paragraph) on its own.  Then, only relatively few infor-
mations must be preserved; most memory can be released immediately after being
done with the current chunk.

Therefore, it does not make too much sense to compare (partial) parsing systems with
respect to their memory needs — this total memory requirement is almost meaning-
less with a well-designed overall system architecture.

There is, however, a mode in which the Apple Linguistic Analysis Library preserves all
detected information.  This is utilized for the debugging viewer which was mentioned
in section 1.3.  The total memory needs (including many data structures which nor-
mally would be released at an early processing stage) is 55.7 Kilobytes for the “ANSI”
text, 191.0 Kilobytes for “Desktop Printing” and 279.5 Kilobytes for “Forbes.”
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7 Future Extensions

The subsequent chapter discusses some possibilities to improve the Patti system.
However, certain extensions not related to Patti are considered more urgent.  For in-
stance, the inclusion of an efficient Part-of-Speech tagger into the Linguistic Analysis Li-
brary would allow to distribute the library as a stand-alone module that does not de-
pend on any external parts to provide interesting functionality.

7.1 Extensions to the Formalism
It would be possible to extend the input formalism in several directions.  However,
one has to keep in mind that the primary aim of the Patti system is to build an ex-
tremely fast processing engine that is well suited for Natural Language Engineering pur-
poses.  It is not intended to provide a full framework which would be able to process
HPSG-style grammars or similar high-level linguistic formalisms.  Nevertheless, certain
extensions could be included without greatly affecting efficiency.

7.1.1 Coreferences between AVMs

There is currently no way to model agreement phenomena, although this would be
very useful, e.g. for detecting German noun phrases.  The formalism could be en-
hanced to allow coreferences between features, even in different transition labels.
This extension would be comparable to the notion of registers in Augmented Transi-
tion Networks.



Indeed, coreference of those atomic-typed features whose representation is a bit-vec-
tor could be efficiently implemented along the following lines:

■ Depending on the size of the bit-vector, one or several integer registers
hold the bit-vector corresponding to the unification result.

■ These registers are initialized with all-1 vectors before entering the start
state.

■ For each occurrence of the same coreference index, the compiler gener-
ates code which performs a bit-AND operation of the register(s) with the
feature value in the run-time representation.  An all-zero result means
unification failure.

■ In case a value is specified in addition to the coreference, this leads to
another bit-AND operation (with an immediate value).  Again, zero
means unification failure.

■ The contents of the involved registers are saved on the non-determinism
stack.

■ To reduce the number of needed registers, an established method from
compiler construction (register allocation by graph coloring, cf. [Wilhelm/
Maurer, 1992], p.561) might be adopted.

The run-time algorithm though gets more complicated with coreferences between ma-
trices, and with coreferences between atomic-typed features whose representation is
an integer.  It is not clear how an efficient implementation would look like.

7.1.2 Output for Accepting States

Currently, the automata act as acceptors: their only output is the range of their longest
match in the input string. It might be a useful enhancement to allow automata to build
AVMs as side-effect of being in an accepting state.  Associating an AVM with the entire
automaton would be easy to implement, but an individual AVM for each accepting
state would probably be more useful.

7.1.3 Cascades of Finite-State Automata

As has been pointed out in section 2.1, cascaded finite-state automata form a very
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promising approach to (partial) parsing.  With output for accepting states, as described
above in section 7.1.2, the formalism could easily be enhanced to allow for cascades.
The necessary modifications to the compiler seem to be very straightforward and easy
to implement.

7.1.4 Weakening Appropriateness Conditions

The appropriateness conditions of section 3.1.4 could be weakened to allow for non-
finitely typable feature structures.  The implementation could be realized along the
lines of the AMALIA system.  However, it is not clear whether this extension is actually
needed for the linguistic engineering tasks covered by Patti.  For instance, there seems
to be no Part-of-Speech tagger which would emit cyclic feature structures.

7.1.5 Multiple Inheritance

Most parts of the compiler were designed with Simple Inheritance type hierarchies in
mind.  Nonetheless, an extension to Multiple Inheritance is feasible, since the current
run-time unification is not necessarily restricted to Single Inheritance.  However, this
would constitute a major effort involving broad changes to the compiler code.  In ad-
dition, it is not clear if Multiple Inheritance hierarchies are actually needed at all for
the (engineering) applications of the Patti system.

7.1.6 Finite-State Approximation of Context-Free
Grammars

One of the algorithms which were outlined in section 2.1.4 could be incorporated
with the Patti system to allow for context-free grammars as input formalism.  It might
be a very interesting alternative to design yet another, new approximation algorithm
which would approximate the input grammar with a cascade of finite-state automata.
A finite number of recursive rule invocations would correspond to different cascade
levels, while additional invocations would be covered b y a d a p t i n g one of the conven-
tional techniques mentioned above.
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7.2 Improving Code Generation
Although a large effort was made to implement good instruction scheduling, the opti-
mal sequence is not emitted in every case.  Certainly, the run-time performance of the
system could benefit from improving the code generation module.  However, this is
certainly not the most important extension, given the already very high speed which is
achieved now.

7.3 Support for Additional Platforms
The system in its current state is only functional for PowerPC machines running
MacOS.57 For greater usability, the system should be ported to additional platforms.
The subsequent discussion has only to cope with the output generated by the Code
Generation module, because the compiler itself has been developed in 100% Pure
Java.  Portability of the compiler itself is therefore granted.

7.3.1 Porting to Other Operating Systems

The Pattern Matcher does not use any functions provided by the Operating System.
Since the generated code adheres to the PowerPC Application Binary Interface (cf.
[IBM/Motorola, 1997]), it is supposed to work under all Operating Systems supported
for PowerPC (MacOS, A/IX, Linux, Mach/OpenStep/“Rhapsody”, Windows NT, BeOS
and several embedded systems). However, it has only been tested under MacOS.

The rest of the Apple Linguistic Analysis Library is written in ANSI C.  The only OS
functionality needed are Memory Management and Networking; the latter is coded to
the POSIX Open Transport libraries.  Finally, all text is represented in Unicode.  Very
easy portability is hence granted.

7.3.2 Assembly Language for Other CPUs

To support additional processors, only the code generation module has to be en-
hanced.  The compilation algorithm (cf. chapter 4) is machine-independent, and the
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intermediate language (cf. appendix B) has been designed with portability in mind.
Thus, it is assumed that the amount of work for porting the compiler to another CPU is
rather limited.

The efficiency of Assembly code for different CPUs should be comparable, provided
these share their most important characteristics with PowerPC, being superscalar pipe-
lined RISC machines.  Because typical CISC processors allow less fine-grained instruc-
tion scheduling, a slight degradation of performance is predicted there.  However,
these are merely speculations: to determine the actual speed on another CPU, the
code generator will have to be ported.

7.3.3 ANSI C as Code Generation Output?

Instead of porting the code generation to a number of different instruction sets, one
could argue that it might make sense to port it once to a language which is available
on virtually every machine, for example ANSI C.  Of course, this would solve the prob-
lem of portability, but a rather large degradation of performance is expected, even
when using highly optimizing C compilers.

The reason for this has been pointed out several times in the present thesis:  A compil-
er which operates on a high-level formalism has a more explicit knowledge of the
problem, thus it can base its decisions on more accurate heuristics.  Two concrete ex-
amples might serve as an illustration thereof:

■ Static Branch Prediction (cf. section A.2.3) is a means for the compiler to
inform the CPU whether or not a particular branch is likely to be taken.
Patti knows in many cases about the branch probability and can express
this knowledge in the generated Assembly code, whereas a C compiler is
restrained to extremely simple heuristics.  For example, data can only be
taken from a stack if the stack is not empty.  Patti’s heuristic (“automata
written by linguists are mostly deterministic, thus the stack is probably
empty”) is better than that of a C compiler (“forward branches are likely
to fail”)58.  In this particular case, equivalent C code will lead to a mis-
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predicted branch and cause a delay for several clock cycles whenever the
stack is checked for emptiness.59

■ Cache instructions (cf. section A.4.4) are a means for the compiler to in-
form the CPU that a specific memory address will be accessed soon.  The
memory subsystem can then initiate a transfer from memory into the
cache while useful calculations are executed in parallel.  When the ad-
dress is later actually accessed, the processor does not need to wait for
the data to arrive.  It would be rather difficult for a C compiler to emit
this instruction.60 Experiments indicate a performance loss of roughly one
third if these cache control constructions are omitted from the generated
code (cf. section 6.2).

For these reasons, generating C code would loose many of the advantages with regards
to efficiency.  As in the previous section, however, a definitive decision can not be
made on merely theoretical grounds.  To determine how much efficiency is lost when
producing C code as output of the system, the code generator will have to be ported.

7.4 Completion of Graphical User
Interface

Certainly the most urgent extension to the Patti system is in the area of the specifica-
tion of the input grammars.  As pointed out in section 3.2, the author believes for sev-
eral reasons that a text-based input language would not be a promising path.  Instead,
the direct-manipulative Graphical User Interface should be enhanced to cover all parts
of the input grammar formalism.
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A PowerPC
Instruction Set

A certain awareness of the basic principles of PowerPC Assembly Language Program-
ming is required in order to understand both the code generation module of the Patti
compiler (as described in Appendix B) and the example output (as described in Ap-
pendix C).  Since it can’t be presumed that the typical reader of the present thesis is
familiar with those topics, the subsequent chapter will give a very brief introduction to
some basic concepts before turning to that subset of PowerPC instructions which is ac-
tually emitted by Patti.

However, it is neither possible nor intended for this thesis to form a textbook on As-
sembly Language Programming or to cope in general with PowerPC optimization is-
sues.  For the former, the reader might want to consult a Computer Architecture text-
book such as [Hennessy/Patterson, 1994].  For the latter, [Kacmarcik, 1995] gives an
excellent introduction.  The PowerPC instruction set is described in [IBM/Motorola,
1995] and [IBM/Motorola, 1997].  For each model in the PowerPC series, a separate
volume has been published to describe its peculiarities (e.g. [IBM/Motorola, 1993],
[IBM/Motorola, 1994]).  A thorough discussion of efficiency-oriented PowerPC Assem-
bly coding, seen from the viewpoint of the compiler writer, can be found in [Hoxey et
al., 1996].

A.1 RISC vs. CISC
The PowerPC instruction set adheres to the general principles of Reduced Instruction
Set Computing (RISC).  Other examples for RISC architectures include the Intel 860,
MIPS R3000, Motorola M88000 and the SPARC chips, whereas e.g. the Intel



80x86/Pentium and Motorola 680x0 series constitute instances of the more traditional
Complex Instruction Set Computing (CISC) architecture.

The following is a list of features that are commonly associated with RISC architec-
tures:

■ a large uniform register set;

■ a load/store architecture: A small, distinguished set of instructions trans-
fers data from memory into the registers and back; all calculations oper-
ate on registers exclusively.  In contrast, a typical CISC instruction set
contains numerous instructions that directly perform calculations on
memory;

■ a minimal number of addressing modes;

■ a simple fixed-length instruction encoding — CISC instructions can be of
variable length;

■ only minimal support for misaligned memory accesses.

This set of “rules” is designed to make fast processors easier to implement.  Note that
this does not necessarily mean that RISC technology would always be faster and
cheaper than CISC.  Certain efficiency-increasing mechanisms such as instruction
pipelines, a superscalar instruction dispatch and hardwired instructions are typical for
RISC microprocessors, but are sometimes applied with CISC instruction sets as well.

A.2 Processing Machine Instructions
As has been mentioned at the beginning of the current chapter, any reasonable intro-
duction to the concepts of Computer Architecture would exceed the scope of this the-
sis.  However, certain mechanisms are especially important to understand when deal-
ing with (RISC) Assembly code: Pipelining, Superscalar Instruction Dispatch and
Branch Prediction.  Therefore, the subsequent section briefly explains these methods
that are used for reducing the execution time on the PowerPC, and on most other cur-
rent CPUs as well.  The Patti Code Generation is designed to exploit these mechanisms
to a large extent, which constitutes a major reason for the efficiency of the described
system.
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A.2.1 Instruction Pipeline

The execution of every machine instruction takes some time, typically several clock cy-
cles.  By splitting the processing into a pipeline consisting of several stages, each stage
can work on a different instruction at the same time.  Thus, the overall processing time
is reduced.

For instance, the master instruction pipeline of the PowerPC 604 has six stages.  All in-
structions executed by the machine flow through these stages, although some instruc-
tions combine several stages into a single cycle, while others flow through additional
execution pipeline stages.

A.2.2 Superscalar Instruction Dispatch

A superscalar processor is one that can issue multiple instructions concurrently from a
conventional linear instruction stream.  In a superscalar implementation, multiple in-
structions can be in the same pipeline stage at the same time.  For example, the Pow-
erPC 604 contains two separate Integer Units.61 Under certain circumstances, the
CPU’s Instruction Dispatch Unit will dispatch two independent integer instructions to
these two units.  Hence, those two instructions are actually executed in parallel, al-
though they appear sequentially in the program.

Some highly optimizing compilers for high-level languages consider these instruction
scheduling issues, although many others do not.  The code generation module of Patti
is designed to utilize this parallelism, for instance to execute certain unifications in par-
allel.  For each individual Intermediate Code instruction, the corresponding PowerPC
machine code has been hand-optimized with regards to Superscalar Instruction Dis-
patch.  In addition, the design of the Intermediate Code (cf. appendix B) has been in-
fluenced by the desire for taking advantage of pipelining and parallelism.

A.2.3 Branch Prediction

Branch Prediction is a mechanism for the processor to guess whether or not a particu-
lar branch will be taken.  The ability to generate some type of reasonable prediction is
quite useful since a pipelined processor is usually not able to completely resolve a
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branch before it needs to be executed.  Thus, the processor speculatively executes the
instructions along a predicted path until the branch is later resolved.  If the prediction
was correct, the processor can continue the execution; otherwise, a backtracking pro-
cess takes place.62

Static Branch Prediction allows the Assembly language programmer (or the compiler) to
express their assumptions about the more probable behavior.  For example, it is neces-
sary to test if a stack is full before pushing additional data onto it — but in most cases,
this test will fail.  The Patti compiler expresses this knowledge by setting an appropriate
prediction flag in the generated branch instruction.  Then, the processor knows that it
is not probable for this branch to be taken, and will therefore speculatively execute the
instruction path for the non-overflowing case.

As has been mentioned in section 2.2.4, there is no means to express this kind of
knowledge in high-level languages. In comparison to a C compiler, Patti’s branch pre-
dictions will typically be closer to the actual behavior, since they can be based on
more appropriate heuristics.

A.3 Register Set
The PowerPC architecture defines 32 general-purpose registers, called r0 – r31.  The
PowerPC Run-Time Environment [IBM/Motorola, 1997] assigns special meanings to r1
and r2; function parameters are passed in r3 up to r15.  The architecture defines
register-to-register operations for all computational instructions.  Source data for these
instructions are accessed from the on-chip registers or are provided as immediate val-
ues embedded in the opcode.

Eight condition register fields (cr0 – cr7) hold conditions that can be used for condi-
tional branching.  Arithmetic, Boolean and Compare instructions set the value of a
specified condition register field; cr0 can be set implicitly as a side-effect of an integer
instruction.   Conditional branches test a specified condition register field and branch if
the respective condition is fulfilled.
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The link register (LR) is used for branching to subroutines: Branch instructions include
the option of placing the address of the instruction following the branch instruction in
the LR.  Other branch instructions set the program counter to the content of the LR
(i.e. return to caller).

There exist numerous other registers (floating-point registers, count register, time base
facility, etc.), none of which are used by the code currently generated by Patti.

A.4 Instructions
Below, only those instructions actually emitted by the current Patti code generation
module are discussed, and only with those options that are used by Patti.  For the full
instruction set, see [IBM/Motorola, 1995].  For instruction latencies and other concerns
with regards to scheduling, see [IBM/Motorola, 1993] and [IBM/Motorola, 1994].

A.4.1 Load and Store

lhz rT, d(rA) Loads two bytes from memory into the lower 16 bits of rT, starting at
address (rA) + d.  The other bits of rT are set to 0.

lwz rT, d(rA) Loads four bytes from memory into the lower 32 bits of rT, starting at
address (rA) + d.  The other bits of rT are set to 0.

stw rT, d(rA) Stores the lower 32 bit of register rT into four bytes in memory,
starting at address (rA) + d.

A.4.2 Integer Calculations

addi rT, rS, V The contents of rS are added to V, and the result is placed into rT.

andi. rT, rS, V The contents of rS are ANDed with 0x000000000000 || V, and the
result is placed into rT.  The result is compared to zero, and the con-
dition register field 0 is affected correspondingly.63

andis. rT, rS, V The contents of rS are ANDed with 0x00000000 || V || 0x0000, and
the result is placed into rT.  The result is compared to zero, and the
condition register field 0 is affected correspondingly.
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cmplwi cr, rS, V The contents of rS are compared with the 16-bit unsigned constant V.
The condition register field cr is affected, depending on the result.64

cmpwi cr, rS, V The contents of rS are compared with the 16-bit signed constant V.
The condition register field cr is affected, depending on the result.65

li rT, V Loads the 16-bit signed immediate value V into rT.66

mr rT, rS Moves the contents of rS into rT.67

subi rT, rS, V V is subtracted from the contents of rS, and the result is placed into rT.

xori. rT, rS, V The contents of rS are XORed with 0x000000000000 || V, and the
result is placed into rT.  The result is compared to zero, and the con-
dition register field 0 is affected correspondingly.

xoris. rT, rS, V The contents of rS are XORed with 0x00000000 || V || 0x0000, and
the result is placed into rT. The result is compared to zero, and condi-
tion register field 0 is affected correspondingly.

A.4.3 Branch Instructions

Some of the instructions below have a suffix which is either + or –.  This serves to ex-
press the Static Branch Prediction (cf. section A.2.3 above). Plus stands for “predict
branch to be taken,” minus stands for “predict branch not to be taken.”

b label Jumps unconditionally to the instruction indicated by label.

beq± cr, label Branches to the instruction indicated by label if the condition register
field cr has a certain value.68 The branch is taken if the outcome of a
compare instruction was “is equal”, or if a Boolean instruction had an
all-zero result, or if an arithmetic calculation lead to zero.

beqlr± cr Similar to beq±, but jumps to the address indicated by the Link Reg-
ister instead of a fixed location.  This can be used to return to the
caller of a subroutine if certain conditions are fulfilled.
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64 The Assembler assumes cr0 if the cr parameter is missing.
65 The Assembler assumes cr0 if the cr parameter is missing.
66 Actually, this is translated by the Assembler to addi rT, 0, V.
67 Actually, this is translated by the Assembler to or rT, rS, rS.
68 The Assembler assumes cr0 if the cr parameter is missing.



bl label Sets the Link Register to the address of the immediately following in-
struction, before jumping unconditionally to the instruction indicated
by label.  This can be used to call a subroutine; the return address will
be in the Link Register.

blr Jumps unconditionally to the instruction whose address is in the Link
Register.  This can be used to return to the caller of a subroutine.

bne± cr, label Branches to the instruction indicated by label, if the condition register
field cr has a certain value.69 The branch is taken if the outcome of a
compare instruction was “is not equal”, or if a Boolean instruction
had an non-zero result, or if an arithmetic calculation lead to some-
thing else than zero.

bnelr± cr Similar to bne±, but jumps to the address indicated by the Link Reg-
ister instead of a fixed instruction.  This can be used to return to the
caller of a subroutine if certain conditions are fulfilled.

A.4.4 Cache Control

dcbt 0, rA Transfer memory addressed by rA into data cache.

dcbt rA, rB Transfer memory addressed by (rA + rB) into data cache.

The dcbt is a hint that performance will possibly be improved if the block containing
the byte addressed by rA (or rA + rB) is fetched into the data cache, because the pro-
gram will probably soon load from the addressed byte.  The time between the dcbt in-
struction and the actual load can be used by the memory subsystem to transfer the
data into the cache while other instructions are executed in parallel.

A.4.5 Miscellaneous

mflr rT Move contents of Link Register into register rT
mtlr rS Move contents of register rT into Link Register
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B Intermediate Code

This appendix lists all elements of the intermediate representation language.  The In-
termediate Code is actually implemented as a set of Java classes, with member meth-
ods to perform the code generation for specific target platforms.  Currently, two plat-
forms are supported: PowerPC and, for debugging purposes, an “intermediate” plat-
form whose instruction set is just a text-based representation of the instructions de-
scribed in this chapter.  This was used to generate the listing of section C.4.

B.1 Miscellaneous
The following instructions are intended for interfacing with the Assembler and various
initialization and clean-up tasks.

B.1.1 declaration automatonID

This is emitted as very first instruction for an automaton whose numeric ID (an integer)
is automatonID. The PowerPC code generation translates this to a C “asm” function
declaration, followed by an opening curly bracket.  This tells the C compiler that the
subsequent lines are in-lined Assembly code.

B.1.2 declarationEnd

This is emitted as very last instruction for an automaton.  The PowerPC code genera-



tion translates this into a closing curly bracket, which indicates to the C compiler that
the end of in-lined Assembly code has been reached.

B.1.3 prolog startStateAccepting

The compiler emits this instruction, intended for general initialization upon entry, im-
mediately after declaration.  On PowerPC, the contents of non-volatile registers are
saved on the stack, as required by the PowerPC Application Binary Interface, and a
number of variables are set to their initial value.  The PowerPC instruction sequence
has been optimized for maximal throughput.70

Since the initialization of variables might be different if the start state of the automaton
is accepting, this is passed as parameter.

B.1.4 epilog

The compiler emits this instruction, intended for general clean-up tasks upon exit, im-
mediately before declarationEnd.  On PowerPC, the contents of non-volatile registers
are restored to their original values.  Again, the instruction sequence has been opti-
mized to minimize CPU stalls.

B.1.5 stateEntry accepting

This instruction is intended for general initialization tasks upon entering a new state.
The compiler emits it as first instruction for every state.  On PowerPC, the pointer to
the current token (r8) is incremented, and the information needed by the Unification
Oracle (cf. section 5.3) is loaded into register r9.71

Because the initialization of variables is different if the entered state is accepting, this
information is passed as parameter.
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70 A mflr instruction (used to load the contents of the Link Register into a General-
Purpose Register) causes a delay of one cycle in the Execute Stage if the next in-
struction is dependent.  Therefore, independent instructions are scheduled be-
tween mflr and the storage of its contents on the stack.

71 Actually, r9 is loaded before incrementing r8 by the size of an array element, but
with an additional constant displacement of just this size.  This avoids a one-cycle
stall that would occur in the code for the immediately following oracle instruction.



B.2 Branches
The instructions discussed in this section control the program flow.  In contrast to all
other types of instructions of the Intermediate Code, branches can be passed as pa-
rameters to other instructions.  For example, the checkWord instruction (cf. section
B.3.7) takes a branch as failAction parameter which is executed whenever a check
fails.

B.2.1 jump target

Jumps to the label target.  For PowerPC, the single instruction b target is emitted.

B.2.2 call target

Calls the subroutine which starts at the label target. For PowerPC, the single instruction
bl target is emitted.

B.2.3 return

Returns from a subroutine to its caller. For PowerPC, the single instruction blr is emit-
ted.

B.3 Unification Checks
The instructions described in this section check if a transition in the finite-state au-
tomaton can be taken — they determine if the label of a transition is unifiable with the
current token.  Most of these checks take a failAction parameter: this is a branch which
is to be executed if one of the checks fail.  Depending on the context, the compiler
passes either a jump or a return instruction for failAction.

If the check succeeds, the program flow continues without branching.  The compiler
hence emits a sequence of unification check instructions for a transition label, fol-
lowed by those instructions to be executed upon unification success.
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B.3.1 oracle oracleWord, prediction, failAction

The compiler emits the oracle instruction as first member of the code sequence which
is generated for a transition label.  Its purpose is to implement the Unification Oracle,
as described in section 5.3.

The bit-vector which was loaded upon entering the current state is ANDed with ora-
cleWord. If the result is an all-zero vector, it is sure that the unification will fail due to
inconsistent types.  In this case, the branch failAction is executed.

With the prediction parameter, the compiler can indicate its speculation about the
outcome.  The PowerPC code generation uses this for Static Branch Prediction (cf. sec-
tion A.2.3).  However, the current version of the compiler has no reasonable heuristics
about what the oracle will predict and always assumes that the oracle will detect unifi-
cation success.72

B.3.2 readingLoopInit firstVectorWordAccessed

The readingLoopInit instruction is intended as an opportunity to initialize variables
before looping over all readings of the current token.  The compiler emits it immedi-
ately before the readingLoopBody instruction.

The only parameter, firstVectorWordAccessed, indicates which word of the bit-vector
will first be accessed in the subsequent unification checks.  Some CPUs allow for spe-
cialized machine instructions to inform the memory subsystem that a specific memory
location will be accessed soon in the future.  This initiates then a transfer from the
RAM into the data cache, so that the data is already in the cache when it is actually
needed.

On PowerPC, register r10 is loaded with a pointer to the first reading of the current
token.  In addition, register r14 is loaded with a displacement that corresponds to
firstVectorWordAccessed.
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B.3.3 readingLoopBody typeName, failAction,
firstVectorAccessed, firstUnif, lastUnif

The readingLoopBody instruction performs a number of tasks at the same time.  It
would have been possible to split it into a number of smaller instructions, each one
performing a more specialized task.  However, the Intermediate Instructions are the
Basic Blocks for the code generation: individual machine instructions can only be
moved within the boundaries of a Basic Block.  Since instruction scheduling is a crucial
factor for high-performance Assembly-language coding, efficiency of the final code was
preferred to better readability.

The compiler emits this instruction immediately after readingLoopInit; it is reached
every time before a reading is tried to unify with that feature structure which labels a
transition in the finite-state automaton.

The typeName parameter is a Unicode string for the type of the compiled feature
structure.  It is useful to generate neat comments, but has no actual purpose besides
debugging.

As with most other unification check instructions, failAction indicates what should hap-
pen if the unification fails.  The compiler will always pass a jump to the corresponding
readingLoopNext instruction (cf. B.3.4), since it might still be possible that the next
reading matches.

firstVectorAccessed has the same value and purpose as with readingLoopInit; cf. B.3.2
for a description.

Due to the ID assignment algorithm described in section 5.1.3, all types greater than
or equal firstUnif and less than or equal lastUnif are unifiable with the type of the com-
piled AVM.  These two numbers, determined for each type upon compilation of the
type hierarchy, are passed as arguments.  The machine instructions generated for
readingLoopBody compare the type ID of the current reading with firstUnif and lastU-
nif; if the type ID of the current reading falls outside this range, failAction is executed.

A minor optimization can be performed if lastUnif is the same number as assigned to
the type with the greatest number of all types.  In this special case, it is not possible
that the current reading has a type ID which is greater than lastUnif, because there
does not exist such a type.  Therefore, this check will never fail and thus can be safely
omitted.  To indicate this special situation, the compiler passes 0 for lastUnif as a flag
for the code generation to omit the corresponding checks.73

Code Generation          87

73 The least assigned type ID is 1, which is why 0 can’t be the ID of any existing type.



A very similar situation occurs with firstUnif being equal to the least type ID; again, a
zero value for firstUnif serves to indicate this situation.

The PowerPC code generation tries to achieve high performance by a highly optimized
scheduling of the emitted machine instructions.  The instruction order has been tuned
to minimize stalls.  In addition, the dcbt instruction (cf. A.4.4) is emitted to ensure that
the subsequent reading is transferred from RAM into the faster CPU cache, while the
current reading is processed in parallel.

B.3.4 readingLoopNext failAction, bodyLabel,
predictMoreReadings

The readingLoopNext instruction is the branch target for unsuccessful unification
checks.  Its purpose is to prepare a number of variables for the next loop before jump-
ing to readingLoopBody again.  The label of the readingLoopBody instruction is
passed as bodyLabel parameter.  If all readings of the current token have been pro-
cessed without success, failAction is executed.

The compiler can pass its speculation about the likelihood of additional readings in the
predictMoreReadings parameter.  The PowerPC code generation utilizes both Static
Branch Prediction and a specialized instruction scheduling to optimize for the case in-
dicated by predictMoreReadings.  However, the compiler currently lacks a reasonable
heuristics, which is why predictMoreReadings is always set to true.74

B.3.5 typeDispatch failAction, typeIDs, targets

Depending on the type of the current reading, certain unification checks have to be
omitted.75 In accordance to the various situations that can occur, the typeDispatch
instruction jumps to a target depending on the ID of the current reading.  The targets
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74 The compiler could “know” that certain types (e.g. nouns and verbs) are likely to be
part of ambiguous readings, while others (e.g. determiners) are not.  It would prob-
ably make sense to set predictMoreReadings to false in the latter case.

75 If the type of the current reading is more special than the compiled AVM, the com-
piled AVM might specify features which are not appropriate for the current reading.
While in standard frameworks, those feature values would have to be copied into
the unification result, those unifications succeed by definition with Patti.  For this
reason, the checks for the features in question must be omitted. Cf. sections 5.2.3
and 5.4.3 for details.



parameter specifies which label to jump to when the type of current reading is in type-
IDs.

B.3.6 loadVectorWord offset, register

The loadVectorWord instruction loads a machine register with a 32-bit word (speci-
fied by the offset parameter) from the bit-vector which is part of the data structure of
the current reading.

It is certainly not the compiler’s job to determine which machine registers will actually
be used to hold calculation results, since the register files of the target platforms might
substantially differ.  However, to exploit the parallelism enabled by superscalarity (cf.
section A.2.2), the existence of two different “logical” 32-bit registers is assumed.
These registers, which are part of the abstract machine whose instruction set is de-
scribed in the current chapter, are called “1” and “2.”

On PowerPC, the general-purpose registers r11 and r12 are used for “1” and “2,” re-
spectively.  A single lwz instruction is emitted to load the corresponding vector word
into the register.

B.3.7 checkWord failAction, register, checks

Upon execution of checkWord, a part of the bit-vector of the current reading is as-
sumed to be already present in the logical register passed as parameter register. The
checks indicated by the array checks are performed on this register.  As soon as any of
these checks fails, failAction is executed.

A number of different types of objects can be passed in the checks array:

■ AND checks perform a bit-AND of a 32-bit argument with the value of
register. The check fails if the result is an all-zero vector.

■ EQ checks first mask out certain bits of the value of register.  If the result
is equal to a 32-bit argument, the check succeeds and nothing happens.
If the result however is not equal, failAction is executed.

■ NEQ checks first mask out certain bits of the value of register.  If the re-
sult is not equal to a 32-bit argument, the check succeeds and nothing
happens.  If the result however is equal, failAction is executed.  NEQ is
hence the opposite to EQ.
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■ CNF checks allow to specify number of sets of disjoined EQ and NEQ
checks; failAction is executed unless one disjunct from every set suc-
ceeds.

The PowerPC code generation has been carefully tuned to take use of the optimal
code sequence in most cases.  For example, the specialized masking instruction
rlwinm. (which is not described in Appendix A for the sake of brevity) is emitted for
EQ/NEQ if this allows to replace longer sequences of bit-AND and compare instruc-
tions.

B.4 Nondeterminism Stack
Since the underlying formalism is basically a non-deterministic finite-state machine, a
stack is needed to hold machine configurations when several transitions can be taken.
This stack is controlled by the instructions described in this section.

B.4.1 push newState, newStateAccepting

The purpose of the push instruction is to save the current machine configuration onto
the non-determinism stack.

The parameter newState indicates which state will be current when popping.  It is
passed with newStateAccepting whether this state is accepting, since this allows for an-
other nano-optimization.76

In the (albeit very rare) case when the stack is already full, the push instruction has no
effect.  The PowerPC code generation reflects the low probability of this event by ap-
propriately setting a flag for Static Branch Prediction.
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B.4.2 pop startStateLabel, automatonID, states,
targets, probab

The task of the pop instruction is to remove an entry from the non-determinism stack
and to change the current machine configuration accordingly.  After loading a number
of registers from the stack, the new state is retrieved from the stack, and the Program
Counter is set to the location which corresponds to the entry of that state.

In the (highly probable) case of an empty stack, the matching starts over from the next
token by changing a number of registers before jumping to startStateLabel.

If there is no next token, because the end of the sentence has been reached, control is
passed to the caller by executing the code which is corresponds to the epilog instruc-
tion described in section B.1.4.

The states, targets and probab parameters indicate for each state its ID, branch target
and probability to be the topmost element on the stack.  Of course, the probabilities
of all states sum up to 1.  The constructor of the pop instruction sorts the states accord-
ing to their probability in descending order.

The code generation for PowerPC benefits from this, even if the current version of the
compiler assigns equal probability to all states.  After each non-taken branch, the prob-
ability increases that the next test will succeed.  A statistical model has been devel-
oped to calculate the probability that one state is topmost, conditional to the fact that
a set of other states is known to be not the topmost element on the stack.
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C Example

This chapter gives an example input to Patti, shows the intermediate processing steps
in the compiler, and lists the Assembly code generated as output.

C.1 Automaton
The subsequent automaton is a simplified version of the one currently utilized in the
Linguistic Analysis Library to extract simple noun groups.  A number of states and tran-
sitions have been removed in order to limit the length of the listings in this chapter.
The restriction on attributive, non-comparative adjectives has no linguistic motivation;
it serves merely to illustrate how feature unification is performed.

1

4

Noun

2 3
Adjective

Coord. Conj.

Adjective
degree )¬ Comparative
position )attributive

Noun

Noun

Adjective



C.2 Compiled Type Hierarchy
Only very few types survive the steps of section 5.1 (“Extraction of Used Parts”).
Therefore, it would not make sense to depict the entire original type hierarchy used at
Apple, consisting of 80 types and 184 features.

The reduced type hierarchy includes the following:

■ Matrix Sorts: Adjective, Noun, Verb, Adjective, Adverb, Preposition, Pro-
noun, To, Determiner, Cardinal, Negation, Interjection, Coordinating Con-
juction, Subordinating Conjunction, Agreement and Tense/Aspect.

■ Atomic Sorts: Boolean (sub-types: False, True), Person/Number (Singular
(Sg1, Sg2, Sg3), Plural (Pl1, Pl2, Pl3)), Gender (Masculine, Feminine,
Neuter), Case (Nominative, Genitive, Dative, Accusative), Degree (Abso-
lute, Comparative, Superlative), Adjective Position (Attributive, Predica-
tive), Tense (Finite, Present, Past, Future) and Consistency (Countable,
Mass).

Most of these types are present at run-time because of the forcePresence flag, not be-
cause they are utilized in the automaton of C.1.

94 Appendix C



C.3 Intermediate Code
declaration automatonID=1
prolog startStateAccepting=no

state1: stateEntry accepting=no
tr1_1: oracle oracleWord=1, prediction=doesMatch,

failAction=<jump tr1_2>
call target=n1_1
jump target=state4

tr1_2: oracle oracleWord=2, prediction=doesMatch,
failAction=<jump pop>

readingLoopInit firstVectorWordAccessed=0
tr1_2_do: readingLoopBody typeName=”Adjective”, failAction=<jump tr1_2_nxt>,

firstVectorWordAccessed=0, firstUnif=3, lastUnif=3
tr1_2_chk1: loadVectorWord offset=0, register=2

checkWord failAction=<jump n1_1_nxt>, register=2,
checks=[ EQ(·0001 0000 0000 0000 0000 0000 0000 0000Ò,

·0011 0000 0000 0000 0000 0000 0000 0000Ò), 
AND(·1000 0000 0000 0000 0000 0000 0000 0000Ò)]

jump target=state2
tr1_2_nxt: readingLoopNext failAction=<jump pop>, bodyLabel=tr1_2_do,

predictMoreReadings=true
n1_1: oracle oracleWord=2, prediction=doesMatch, failAction=<return>

readingLoopInit firstVectorWordAccessed=0
n1_1_do: readingLoopBody typeName="Adjective", failAction=<jump n1_1_nxt>,

firstVectorWordAccessed=0, firstUnif=3, lastUnif=3
n1_1_chk1: loadVectorWord offset=0, register=2

checkWord failAction=<jump n1_1_nxt>, register=2,
checks=[ EQ(·0001 0000 0000 0000 0000 0000 0000 0000Ò,

·0011 0000 0000 0000 0000 0000 0000 0000Ò), 
AND(·1000 0000 0000 0000 0000 0000 0000 0000Ò)]

jump target=push1_1
n1_1_nxt: readingLoopNext failAction=<return>, bodyLabel=n1_1_do,

predictMoreReadings=true
push1_1: push newState=1, newStateAccepting=no

return
state2: stateEntry accepting=no
tr2_1: oracle oracleWord=2, prediction=doesMatch,

failAction=<jump tr2_2>
call target=n2_1
jump target=state2

tr2_2: oracle oracleWord=4, prediction=doesMatch,
failAction=<jump tr2_3>

call target=n2_2
jump target=state3

tr2_3: oracle oracleWord=1, prediction=doesMatch,
failAction=<jump pop>
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jump target=state4
n2_1: oracle oracleWord=4, prediction=doesMatch,

failAction=<jump n2_2>
jump target=push2_1

push2_1: push newState=1, newStateAccepting=no
n2_2: oracle oracleWord=1, prediction=doesMatch, failAction=<return>

jump target=push2_2
push2_2: push newState=2, newStateAccepting=yes

return
state3: stateEntry accepting=no
tr3_1: oracle oracleWord=2, prediction=doesMatch,

failAction=<jump pop>
jump target=state2

state4: stateEntry accepting=yes
tr4_1: oracle oracleWord=1, prediction=doesMatch,

failAction=<jump pop>
jump target=state4

pop: pop startStateLabel=state1, automatonID=1, states=[1, 2, 3, 4],
targets=[state1, state2, state3, state4],
probab=[0.25, 0.25, 0.25, 0.25]

epilog
declarationEnd

C.4 Generated PowerPC Code
The following lists the Assembly code, as generated by the PowerPC code generation
for the Intermediate Code of section C.3.  Since comments greatly facilitate debug-
ging, Patti includes them with its output, although they are ignored by the Assembler.

The 144 PowerPC Assembly statements are translated by the Assembler77 into 576
bytes of machine code in the final executable object file.

/***************************************************************************/
/*                                                                         */
/*  PatternMatcher.c                                                       */
/*  ================                                                       */
/*                                                                         */
/*  Linguistic Analysis Library                                            */
/*  Pattern Matching                                                       */
/*                                                                         */
/*  Compilation Date: Tue Dec 30 08:39:06 GMT+01:00 1997                   */
/*  Copyright 1997 by Apple Computer, Inc.                                 */
/*                                                                         */
/***************************************************************************/
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// Warning
// =======
// The entire content of this file has been generated by a compiler. Do not
// change this file, or your changes will be overwritten at the next run
// of the pattern compiler.
// If you have any questions, please send an e-mail to Sascha Brawer
// <brawer@coli.uni-sb.de>.

#include "PatternMatcher.h"
#include "TextAnalyzerPrivate.h"

#if defined(powerc) || defined(__powerc)

// ---------------------------------------------------------------------------
//   ApplyPattern1 (PowerPC)
// ---------------------------------------------------------------------------
//  Applies pattern #1 to a single sentence.
//
//  Register Usage On PowerPC
//  =========================
//  r0  ---             intermediate calculation results
//  r3  stopMatch       end of match arena
//  r4  startMatch      slot before that one fed into first transition
//  r5  stack           first free item in nondeterminism stack (grows upwards)
//  r6  freeStackSpace  number of free slots in nondeterminism stack
//  r7  acceptedSlot    last slot that was consumed by a transition into an
//                      accepting node
//  r8  curMatchSlot    current match arena slot
//  r9  oracle          oracle vector of current token
//  r10 reading         pointer to current reading
//  r11 ---             intermediate calculation results
//  r12 ---             intermediate calculation results
//  r13 nextReading     pointer to next reading
//  r14 ---             intermediate calculation results
//
//  cr0 ---             intermediate boolean calculation results
//  cr1 ---             intermediate boolean calculation results
//  cr5 wasLastReading  true if nextReading is NULL pointer
//  cr7 ---             intermediate boolean calculation results

asm void ApplyPattern1(
register LAMatchSlot*       stopMatch,      // last match slot
register LAMatchSlot*       startMatch,     // first match slot
register LAMatchStackEntry* stack)          // memory block for stack

{
mflr      r0                             // fetch content of link register
mr        r8,r4                          // curMatchSlot = startMatch;
li        r7,0                           // acceptedSlot = NULL;
li        r6,kStackSize                  // freeStackSpace = kStackSize;
stw       r13,-76(sp)                    // save content of r13
stw       r14,-72(sp)                    // save content of r14
stw       r0,8(sp)                       // save content of link register

state1:     lwz       r9,sizeof(LAMatchSlot)(r8)     // oracle = ++slot
addi      r8,r8,sizeof(LAMatchSlot)      //   ->oracleWord;

tr1_1:      andi.     r0,r9,1                        // if (!Oracle(Noun))
beq-      tr1_2                          //   go to <transition 2>
bl        n1_1                           // check other transitions
b         state4                         // go to <state 4>
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tr1_2:      andi.     r0,r9,2                        // if (!Oracle(Adjective))
beq-      pop                            //   go to <failure>
lwz       r10,LAMatchSlot.token(r8)      // token = curMatchSlot->token;
li        r14,32                         // <offset of 1. accessed word>
lwz       r10,LAToken.firstReading(r10)  // reading = token->firstReading;

// do {
tr1_2_do:   lhz       r11,LAReading.typeID(r10)      //   type = reading->typeID;

lwz       r13,LAReading.nextReading(r10) //   nextReading
//      = reading->nextReading;

cmplwi    cr0,r11,3                      //   if (type != <Adjective>)
cmplwi    cr5,r13,0                      //   bool wasLastReading

//        = (nextReading == NULL);
dcbt      0,r13                          //   cache *nextReading;
dcbt      r14,r13                        //   cache nextReading->vec[0];
bne-      tr1_2_nxt                      //     next_reading;

//   /* Check Adjective */
tr1_2_chk1: lwz       r12,32(r10)                    //   vector = reading->vec[0];

xoris     r0,r12,0x1000                  //   if (Adjective.degree
andis.    r0,r0,0x3000                   //       == Comparative)
beq-      tr1_2_nxt                      //     next_reading;
andis.    r0,r12,0x8000                  //   if (Adjective.position

//       != Attributive)
beq-      tr1_2_nxt                      //     next_reading;
b         state2                         // go to <state 2>

tr1_2_nxt:  mr        r10,r13                        //   reading = nextReading;
bne+      cr5,tr1_2_do                   // } while (!wasLastReading);
b         pop                            // go to <failure>

n1_1:       andi.     r0,r9,2                        // if (!Oracle(Adjective))
beqlr-                                   //   return;
lwz       r10,LAMatchSlot.token(r8)      // token = curMatchSlot->token;
li        r14,32                         // <offset of 1. accessed word>
lwz       r10,LAToken.firstReading(r10)  // reading = token->firstReading;

// do {
n1_1_do:    lhz       r11,LAReading.typeID(r10)      //   type = reading->typeID;

lwz       r13,LAReading.nextReading(r10) //   nextReading
//      = reading->nextReading;

cmplwi    cr0,r11,3                      //   if (type != <Adjective>)
cmplwi    cr5,r13,0                      //   bool wasLastReading

//        = (nextReading == NULL);
dcbt      0,r13                          //   cache *nextReading;
dcbt      r14,r13                        //   cache nextReading->vec[0];
bne-      n1_1_nxt                       //     next_reading;

//   /* Check Adjective */
n1_1_chk1:  lwz       r12,32(r10)                    //   vector = reading->vec[0];

xoris     r0,r12,0x1000                  //   if (Adjective.degree
andis.    r0,r0,0x3000                   //       == Comparative)
beq-      n1_1_nxt                       //     next_reading;
andis.    r0,r12,0x8000                  //   if (Adjective.position

//       != Attributive)
beq-      n1_1_nxt                       //     next_reading;
b         push1_1                        //   goto success;

n1_1_nxt:   mr        r10,r13                        //   reading = nextReading;
bne+      cr5,n1_1_do                    // } while (!wasLastReading);
blr                                      // return;

push1_1:    cmpwi     r6,0                           // /* push onto stack */
li        r0,1                           // if (freeStackSpace == 0)
beqlr-                                   //   return;
stw       r8,LAMatchStackEntry.slot(r5)  // push curMatchSlot
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stw       r7,LAMatchStackEntry.acceptedSlot(r5) // push acceptedSlot
stw       r0,LAMatchStackEntry.state(r5) // push <state 1>
subi      r6,r6,1                        // freeStackSpace--;
addi      r5,r5,sizeof(LAMatchStackEntry) // stack++;
blr

state2:     lwz       r9,sizeof(LAMatchSlot)(r8)     // oracle = ++slot
addi      r8,r8,sizeof(LAMatchSlot)      //   ->oracleWord;

tr2_1:      andi.     r0,r9,2                        // if (!Oracle(Adjective))
beq-      tr2_2                          //   go to <transition 2>
bl        n2_1                           // check other transitions
b         state2                         // go to <state 2>

tr2_2:      andi.     r0,r9,4                        // if (!Oracle(CoordConj))
beq-      tr2_3                          //   go to <transition 3>
bl        n2_2                           // check other transitions
b         state3                         // go to <state 3>

tr2_3:      andi.     r0,r9,1                        // if (!Oracle(Noun))
beq-      pop                            //   go to <failure>
b         state4                         // go to <state 4>

n2_1:       andi.     r0,r9,4                        // if (!Oracle(CoordConj))
beq-      n2_2                           //   try <transition 2>;
b         push2_1                        //   goto success;

push2_1:    cmpwi     r6,0                           // /* push onto stack */
li        r0,1                           // if (freeStackSpace == 0)
beqlr-                                   //   return;
stw       r8,LAMatchStackEntry.slot(r5)  // push curMatchSlot
stw       r7,LAMatchStackEntry.acceptedSlot(r5) // push acceptedSlot
stw       r0,LAMatchStackEntry.state(r5) // push <state 1>
subi      r6,r6,1                        // freeStackSpace--;
addi      r5,r5,sizeof(LAMatchStackEntry) // stack++;

n2_2:       andi.     r0,r9,1                        // if (!Oracle(Noun))
beqlr-                                   //   return;
b         push2_2                        //   goto success;

push2_2:    cmpwi     r6,0                           // /* push onto stack */
li        r0,2                           // if (freeStackSpace == 0)
beqlr-                                   //   return;
stw       r8,LAMatchStackEntry.slot(r5)  // push curMatchSlot

// /* acceptedSlot not pushed:
//    <state 2> is accepting */

stw       r0,LAMatchStackEntry.state(r5) // push <state 2>
subi      r6,r6,1                        // freeStackSpace--;
addi      r5,r5,sizeof(LAMatchStackEntry) // stack++;
blr

state3:     lwz       r9,sizeof(LAMatchSlot)(r8)     // oracle = ++slot
addi      r8,r8,sizeof(LAMatchSlot)      //   ->oracleWord;

tr3_1:      andi.     r0,r9,2                        // if (!Oracle(Adjective))
beq-      pop                            //   go to <failure>
b         state2                         // go to <state 2>

state4:     lwz       r9,sizeof(LAMatchSlot)(r8)     // oracle = ++slot
addi      r8,r8,sizeof(LAMatchSlot)      //   ->oracleWord;
mr        r7,r8                          // acceptedSlot = startMatch;

tr4_1:      andi.     r0,r9,1                        // if (!Oracle(Noun))
beq-      pop                            //   go to <failure>
b         state4                         // go to <state 4>

pop:        cmpwi     r6,kStackSize                  // if (freeStackSpace==kStackSize)
beq+      nextToken                      //   goto nextToken;
subi      r5,r5,sizeof(LAMatchStackEntry) // stack--;
lwz       r0,LAMatchStackEntry.state(r5) // pop state
lwz       r8,LAMatchStackEntry.slot(r5)  // pop slot
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cmplwi    r0,1                           // /* p(s1) = 0.25 */
lwz       r7,LAMatchStackEntry.acceptedSlot(r5) // pop acceptedSlot
addi      r6,r6,1                        // freeStackSpace++;
beq-      state1
cmplwi    r0,2                           // /* p(s2) = 0.25,
beq-      state2                         //    p(s2|~s1) = 0.3333333333 */
cmplwi    r0,3                           // /* p(s3) = 0.25,
beq+      state3                         //    p(s3|~s1,~s2) = 0.5 */
b         state4                         // /* p(s4) = 0.25,

//    p(s4|~s1,~s2,~s3) = 1.0 */
nextToken:  cmplwi    cr7,r7,0                       // cr7 = (acceptedSlot == NULL);

addi      r11,r4,2*sizeof(LAMatchSlot)   // slot* next = startMatch + 2;
addi      r4,r4,sizeof(LAMatchSlot)      // startMatch = startMatch + 1;
cmplw     cr1,r4,r3                      // cr1 = (startMatch < stopMatch);
beq+      cr7,nextToken1                 // if (cr7) goto nextToken1;
lwz       r0,(LAMatchSlot.m1-sizeof(LAMatchSlot))(r7)

// slot* x = acceptedSlot->m1;
dcbt      0,r11                          // cache <next slot>
cmplwi    cr0,r0,0                       // bool cr0 = (x == NULL);
bne       cr0,nextToken1                 // if (!cr0) /* x != NULL */
stw       r4,(LAMatchSlot.m1-sizeof(LAMatchSlot))(r7)

//   acceptedSlot->m1 = startSlot;
nextToken1: mr        r8,r4                          // curMatchSlot = startMatch;

li        r7,0                           // acceptedSlot = NULL;
blt       cr1,state1                     // if (cr1) goto <start state>;

epilog:     lwz       r0,8(sp)                       // restore link register
lwz       r13,-76(sp)                    // restore register r13
mtlr      r0
lwz       r14,-72(sp)                    // restore register r14
blr

}

#else
#error "Only PowerPC platforms are supported for now."

#endif
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