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PEEFAOE.

The distinctive features of the following work belong partly

to the course of which it forms a part, and need but a brief

statement.

I. The device by which mathematical teaching is to be most

promoted is, the author conceives, to be found in the minute sub-

division of subjects, and the drill of the student in the separate

details before combining them into a whole. The system to which

we are thus led is seen in the arrangement of Chapters I., II., and V.

II. By exercises in which the subject is taken up in a concrete

form, the formation of mathematical conceptions is greatly facili-

tated. An application of this principle is seen in the cases where

the student is exercised in finding the values of trigonometric func-

tions by construction and measurement.

III. The problems for exercise are quite varied in their charac-

ter, and are intended to test not only the student's knowledge of

the usual methods of computation, but his ability to grasp them

and trace them out in the numerous forms they may assume in

practical applications.

IV. In the arrangement, strictly logical order has been sub-

ordinated to order of teaching. In accordance with this principle,

all the simpler applications of the trigonometric functions have

been disposed of before their complex relations.

V. The scope of the work is generally limited to the subjects

and treatment necessary in the fullest course of mathematics

usually taught in our colleges and technological schools. The

concluding chapter of each part perhaps exceeds the limit thus
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set. That of Part I. is an introduction to the employment of

imaginary quantities in trigonometric developments, while that of

Part II. is an introduction to the higher forms of solid geometry.

YI. To the usual list of subjects treated, has been added t

chapter on the theory of polygons. This theory is closely con

nected with a variety of subjects, including geometry, quaternions,

mechanics, graphical statics, surveying, and navigation, and there-

fore deserves a more prominent place than has hitherto been

assigned to it.
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Elements of Trigonometry

PART I.

PLANE TRIGONOMETRY.

CHAPTER I.

OF G0N10METRY, OR TEE MEASURE OF ANGLES.

1. Definition. Trigonometry is that branch of geometry

in which the relations of lines and angles are treated by algebraic

methods.

2. Def. An angle is the figure formed by two straight lines

emanating from the same point, called the vertex of the angle.

Def. The lines which form an angle are called its sides,

3. Measures of Angles. An angle is measured by the length

of a circular arc having its centre at the

vertex of the angle and its ends on the sides

of the angle. /

If the angle to be measured is AOB, /

we conceive that with an arbitrary radius
j

Oa an arc is drawn from a to h. \

"We regard as the positive direction that j|\ /
in which the arc is described by a motion

opposite to that of the hands of a watch, and as the negative direc-

tion that in which the hands move.

Hence we may consider the angle as measured either by the
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arc ah considered as positive, or the conjugate arc aMb considered

as negative. The numerical sum of these two arcs is equal to a

circumference.

As an example of the use of algebraic signs, we may mention

their application to the latitude of places to distinguish them as

north and south. Thus, a city in 42° north latitude is said to have

a latitude of -f- 42°, and one 42° south of the equator is said to be

in latitude — 42°.

The absolute length of the arc will depend not only upon

the magnitude of the angle, but upon the radius with which the

arc is drawn. To avoid ambiguity from this cause, the unit of

arc is supposed to be some fixed fraction of the circumference,

and therefore greater the greater the radius. The arc is then

indicated by the number of units and parts of a unit which it con-

tains, and this number is the same for the same angle whatever

the radius may be.

To indicate the angle corresponding to any arc we call it the

angle of the arc, or, for brevity, the angle-arc.

4, The Sexagesimal Division, The following is the usual

division

:

The circumference is divided into 360 units, called degrees

;

Each degree is divided into 60 minutes

;

Each minute is divided into 60 seconds.

Then

1 circumference = 360° = 21 600' = 1 296 000";

1 quadrant or right angle = 90°.

This is called the sexagesimal division of the circle.

5. The Centesimal Division. The sexagesimal division of the

circle is by no means so convenient as one in which each unit is

10 times or 100 times greater than the next smaller unit. The

centesimal division was introduced by the French geometers at

the time of the Revolution. In this system

The circumference is divided into 400 grades

;

The grade is divided into 100 minutes /

The minute is divided into 100 seconds.
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Hence 1 circumference = 400 grades = 40 000 min. = 4 000 000

sec. ; which is commonly written

400*r
- = 40 000' = 4 000 000".

Notwithstanding its greater convenience, this system never

came into general use, owing to the difficulty of changing all the

mathematical tables to correspond with it.

6. Decimals of Degrees or Minutes. Sometimes, instead of

seconds, decimals of a minute are used. Both minutes and seconds

may be dispensed with and decimals of a degree be used in their

place.

"7, General Measure of an Angle. The best way of thinking

of angular measure is to conceive the side OA of the angle to turn

round on O until it reaches the position OB. In thus turning, a

point A upon it will describe the circular arc which measures the

angle A OB. The length of this arc will then be proportional to

the amount by which OB turns in passing from OA to OB.

The side may pass from OA to OB not only by describing

the arc ab, but by moving through a whole revolution plus the arc

ab, or through any number of revolutions plus the arc ab. When
we consider the angle in the most general way, all these motions

will equally measure the angle. Hence we may suppose, indif-

ferently,

Angle AOB = angle-arc ab,

or Angle AOB = angle-arc ab -f- 360°, /

or Angle AOB = angle-arc ab + 720°, /

etc. etc.
j

^ —

j

2—A

If we put C for 360°, or the circum- \

ference, the general measure of the angle is ^
Angle AOB = iC -\- angle-arc ab, (1)

" ""

in which i may be any integer whatever, positive or negative.

We may consider this same form to include the negative

measure aMb. For, since ab -f- aMb = C, we have

Arc ab = C — arc aMb.

By substituting this value in (1) it becomes

Angle AOB = (i+ l)C- arc aMb.
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Since we have i = — 2, — 1, 0, 1
? 2, 3, etc., #<? infinitum,

i-\-l may go through the same system of integral values as i.

In general, if an angle is n° less than a circumference, we may
call it, indifferently,

Angle of (360 — n)° or angle of — n°.

The general measure of the angle expressed in the form (1)

has its most convenient application in Astronomy. The heavenly

bodies perform unceasing revolutions, and thus describe continually

increasing angles ; but each revolution brings them back to what

we may consider the same position relative to the centre of motion.

8. In order to give entire algebraic precision to the measure

of an angle, we must suppose a distinction between the side from
iVhich we measure and the side to which we measure. In all the

preceding examples we have supposed the measure to befrom OA
to OB. Had we measured from OB to OA, the arc ab would

have been described in the negative direction, or aM b would have

been described in the positive direction. Hence we should have

had
Angle BOA = — arc ab or -(- arc aMb,

which is the negative of the corresponding measure from OA to

OB. Hence

:

By interchanging the sides we change the algebraic sign of

the angle.

To give uniformity to this mode of measurement, the side OA,

from which we measure, is supposed fixed, while the other side

varies in direction according to the magnitude of the angle.

When angles are represented in a general way, the side OA
may be conceived as extending out horizontally towards the right.

Then the other side, OB, will have a definite direction for every

angle we choose to assign. For example

:

For 90° the side OB will point upward.

" 180° " " " " " to the left.

" 270° " " " " " downward.
« 360o u u u « « to the right.

« 450° " " " " " upward,

etc. etc.
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Counting the angles in the negative direction,

For — 90° the side OB will point downward.
« _ 180° " " " " " to the left.

m _ 270° " " " " " upward.

etc. etc. /

9, Division into Quadrants. The circle
[

which measures angles is, for convenience,
\

supposed to be divided into quadrants, as in

the figure.

An angle between 0° and 90° is in the first quadrant.

" " " 90° " 180° " " second "

u « « 180o u 270° « « third "

« " « 270° " 360° " " fourth "

Counting the angles negatively from OA,

An angle between 0° and — 90° is in the fourth quadrant.

" " " - 90° " - 180° " " third "

« « « _ 180° " - 270° " " second "

« " " - 270° u — 360° " " first
«

Exercises.

1. From the point O emanate a set of 5 lines making equal

angles with each other, and another set of

6 lines making equal angles with each

other, the line OA being common to the

two sets. Compute the values in degrees

of the ten angles A Ob, bOB, BOc, etc., d ~~~

to/OA.

2. What is the value of that angle

whose negative measure is numerically

double its positive measure ?

3. If a side starting from the zero point move through — 1905°,

in what quadrant will it be found, and what will be the smallest

positive measure of the angle %

4. Two arms start together from the same position OA to turn

round O, the one going in the positive direction, so as to revolve
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in 60 seconds, the other in the negative direction, so as to re-

volve in 36 seconds. At what angle and in what time will they

meet?

5. If two revolving arms start out together from the position

0° in the same direction, the one going 5° a minute and the other

8° a minute, through what arc will each have moved when they

again come together? At what angle will they meet? If they

continue turning, after how many revolutions of each will they be

together at their starting point ?

6. Four lines, a, b, c, d, emanate from the same point o,

making angle boc = 2aob, cod = 2boc, doa = 2cod. What are

the values of the four angles which they form ?

7. If an angle of 140° is multiplied successively by — 2, — 3,

— 4, — 5, — 6, — 7, in what quadrants will the respective multi-

ples fall, and what will be the smallest positive measures of the

several angles formed ?

8. Show that the following pairs of angles are supplementary

:

90°+a?and 90° — x;

270° -x and 270° -fa?;

60° - x and 120° + x.

9. Show that the following pairs are complementary

:

45° -a? and 45° + a?;

225° -x and 225° + x;

60° — x and 30° + x.

The Division of Angles.

10. Bisection. If the angle AOB = n°, and if Ob is its

bisector, then A Ob = %n°.

If the side OB revolves about O, and

the side Ob also revolves in the same

direction half as fast, then Ob will con-

tinually bisect the angle AOB.
When OB completes a revolution, re-

turning to the position OB, the bisector /

Ob will have moved through 180°, and c

will therefore lie in the opposite direction, Oc. Another revolu-



OF Q0S10METUY.

tion of OB will bring the bisector to the position Ob again, yet

another to Oc, and so on. Hence :

Tlie general measure of an angle has two bisectors 180° apart.

11. Trisection. If the side Ob is to continually measure one

third the angle AOB as OB revolves, B

then we must have \ ^
AOb = iAOB.

If OB, starting from the position *
/

in the figure, goes through one revo-

lution, Ob will go through 120° to the

position Oc. A second revolution of

OB will bring Ob 120° farther, to Od,

and a third to its first position, Ob,

after which it will repeat its movements. Hence

:

One third the general measure of an angle has three special

angular values differing by 120°.

12. Division into n Parts. If, as OB revolves, Ob continually

measures — of it, then every revolution of OB will turn Ob

through - of a revolution. Hence

:

The nth part of the general measure of an angle has n special

angular values.

13. Analytic Deduction. It will be remarked that, in the

preceding sections, what we take the wth part of is not the angle

A OB, but the general measure of this angle. This will be clear

from the following analytic deduction of the same result.

Let the smallest measure of the angle AOB be a. Then the

other measures of this angle (§ 7) will be

a+C, a + 20, a + 3C . . . a + W.
Dividing these quantities by n, the quotients will be

I l+lc, °-+*-G, etc. (1)

The (n+ l)th angle of this series will be

n ' n n l

'
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a.

which will correspond to the same position of OB as - does.

The continuation of the series will be

%+C+ -C, ^+0+ -0, etc.,

showing that the positions will be continually repeated in regular

order.

Exercises.

1. If AOB = 30°, or 30° + O, or 30°+ 20, etc., at what

angles will \AOB fall?

2. How many degrees between the minute-lines on a clock-face ?

3. At what angles with XII. are the hour and minute hands of

a clock together %

4. If the hour-hand is so displaced that when the minute-hand

is at XII. the hour-hand is 2m past XII., at what angles will

the hands be together %

5. What values may two thirds of the general measure of an

angle of 105° have ?

6. If an angle is in the third quadrant, what are the limits be-

tween which its bisectors must fall ?

7. Between what three sets of limits must a be contained in

order that 3a may fall in the fourth quadrant ?

8. Show that while one sixth of the general measure of an

angle has six different values, two sixths has only three values, and

three sixths only two values. Show that this diminution arises

from several values falling together when multiplied by 2 or 3.

As an example, take the case when a = 48°; \a = 8°, 68°, etc.

14. Natural Measure of Angles. The division of the circum-

ference into 360° is entirely arbitrary, and any other angle than

the degree may be taken as the unit. B

In purely mathematical investigations, where /\
%

no division into degrees is required, the length / \

of the radius is taken as the unit of measure. / \

This unit is called the radian. O^- 'x

The radian is therefore the angle subtended ^^^^ch 1
"3^^

by an arc whose length is equal to the radius.
arc XB = radius ox
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To find the relation of this unit of angle to the degree,

minute, and second, we note that the ratio of the entire circum-

ference to the diameter is 3.141 592 65, etc. (Geom., Book

VI., §5.)

Hence its ratio to the radius is double this number, or

6.283 1S5 3, etc. Since the circumference measures 360°, the unit

360°
radius will measure a OQO 1 >r Q , or 57°.295 779 5 . . . . Hence

v.Zoo lOO o

1 radian = 57.295 779 5 ... . degrees.

= 3437.746 77 ... . minutes.

= 206 264.806 .... seconds.

In mathematics we use the symbol

circumference -i circumference
n = —r. = j.- = 3.141 592 65

diameter radius

Hence, when we take the radian as the unit,

\n represents an angle of 90°

;

re
" " " " 180°;

2tt " « « « 360° = circumference

;

2n7t " " " " n circumferences.

Exercises.

Considering the radius of the circle as unity, what is the length

of circular arcs subtending the following angles ?

1. 28° ir 15".6. Ans. 0.493 72.

2. 14° 8
7 37".8 " 0.246 85.

3. 22° 25' 53".4 " 0.391 51.

4. 90° " 1.570 80.

Note. In these exercises the angle is first to be reduced to a common
denomination of measure, either degrees, minutes, or seconds. For instance,

28° 17' 15".6 = 101835".6 = 1697'.26 = 28°.287 67.

If the radius is 100 metres, how many degrees and minutes

will arcs of the following lengths subtend %

5. 100 metres. Ans. 57° Yi' 44".8.

6. Y2 metres. " 41° 15'.1.

7. 310 metres. " 177° 37'.
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"With what radius will

—

8. Arc of 32 metres' length subtend an angle of 32° ?

Ans. 57m.296.

9. Arc of 32 metres' length subtend an angle of 32' ?

10. " " 32 " " " " " " 32" ?

11. " « 1 metre " " " " " 67"?

Ans. 3078m.6.

12. Two railways met at right angles at 0. They are to be

connected by a quadrant PQ, of which the inner rail shall be

600 metres in length. What is the common _

distance OP and OQ of the switches from the ' "^N J

point in which the two inner rails would \
|

meet? Ans. 381m.97. \

13. In the preceding case, if the rails are 5

feet apart, how much longer will the outer

rail of the curve be than the inner one ?

Ans. 7.854 feet.

14. Show that if three circles, equal or unequal, mutually touch

each other externally in the points A, P, and (7, the sum of the

three included arcs AP -f- PC -f- CA, expressed in angular meas-

ure, is equal to a certain constant. What is this constant ?

15. If the two lesser circles, still touching each other, touch

the greater one internally, show that the sum of their arcs minus

the arc of the greater circle, expressed in angular measure, is equal

to the same constant as that of the preceding problem.

16. The earth's equatorial diameter being 12,756 kilometres,

what is the length of one degree of the equator in kilometres and

in miles, assuming 1 metre = 39.37 inches.

17. Explain why a degree of latitude is greater at the poles

than at the equator, although the radius of the earth is less.

Bemark.—At this stage of his progress, if not sooner, the student should be

familiarized with the use of the logarithmic and trigonometric tables, and should

employ them in all computations in which they are applicable



CHAPTEK II.

THE TRIGONOMETRIC FUNCTIONS.

The Sine, Tangent, and Secant.

15. To investigate the numerical relations between the sides

and angles of geometric figures, certain functions of angles are

employed in trigonometry. These functions are defined in the

following way

:

Let OX be that side of the angle from which we measure, the

length OX being taken as the radius of a circle. Also, suppose

OB, the side to which we measure

;

M, the point in which OB intersects the circle

;

XQ, the line tangent to the circle at X
;

N, the point at which

this tangent meets the

side OB
;

MP, the perpendicu-

lar from M upon OX.
Then taking the ra-

dius OX as unity, and

expressing other lengths
\

in terms of this unit : i

I. The lengthMP <

is called the sine of the

angle XOB.
II. The length NX

is called the tangent
of the angle XOB.

III. The length ON is called the secant of the angle XOB.

/
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The absolute lengths of the lines representing the sine, tan-

gent, and secant, considered as lines, will vary with the radius of

the circle. This is avoided by taking for the sine, tangent, and

secant, not the lines which represent them, but the ratios of

the lines to the radius of the circle, which ratios will be pure

numbers.

"We have now to prove that these

numbers are the same for the same

angle whatever be the radius.

Let XON' be the angle.

From the vertex O draw the two

arcs XM and X'M' with any two radii

OX and OX.
Erect the respective sines and tangents PM, XX, P'M', X'X'.

Then because the triangles OPM, OXX, OP'M, and OXX'
have the angle at common, and the respective angles at P, X,

P', and X' all right angles, and therefore equal, these triangles

are equiangular and similar.

Comparing the sides about the equal angles we have the ratio

PM : OM = P'M' : OM; \

XJST : OX = XN' : OX'-,
\

(a)

OX : OX = OX : OX'; )

Because OM = OX = radius of inner circle,

and OM'— OX = radius of outer circle,

we have, by definition,

PM : OM = sine of POM;
XX : OX = tangent of POM;
OX : OX = secant of POM

The equations (a) now show that the sine, tangent, and secant

of the angle will be represented by the same numbers whether we
measure them in the inner or outer circle. Therefore :

To each angle of a definite magnitude corresponds

One definite number, called the sine of the angle;

Another definite number, called the tangent of the angle;

Another definite number, called the secant of the angle.
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17. Notation. If we call a any angle,

Its sine is written sin a
;

" tangent " tan a
;

" secant " sec a.

Note. The representation of the trigonometric functions by lines is for the

sake of clearness. They are not really lines, but ratios of lines which are pure

numbers. But in studying these numbers the ideas are fixed by representing

them by lines, as is done in some departments of algebra. We have only to

remember that the lines are not the functions themselves, but lengths propor-

tional to the functions, and therefore admitting of being used to represent the

functions. These lengths are, however, really equal to the products of the radius

by the corresponding functions. For example, if

PM
sin XOM = -fz: ,Radius

then sin XOM . Radius = PM.

18. Eemarlc. The sine of an angle is equal to half the chord

of twice the arc of the angle, the radius being supposed unity.

Hence

:

Any chord in a circle is equal to the radius multiplied by

twice the sine of half the angle subtended by the chord.

Exercise.

Let the student find by actual measurement with dividers and

scale the sine, tangent, and secant of every 10°

from 0° to 90° in the following way

:

With a radius equal to some unit or some

whole number of units on a scale, describe the

quadrant XB. Either 4 inches, 5 inches, or

a decimetre would be a convenient radius.

Divide the quadrant into 9 arcs of 10°

each. Through each point of division, M
for instance, draw a radius and continue it

until it intersects the tangent at N. Then

measure

—

1. The distance of each division-point on the arc from the line

OX, which distance, divided by the radius, will give the sine of the

corresponding angle.
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2. The distance of each point of intersection, JV, from X, which

being divided by the radius will give the tangent of the angle.

3. The length of each OX, which being divided by the radius

will give the secant of the corresponding angle.

The results should all be expressed in decimals to three places,

exhibited in a little table in the following form, and afterward

compared with the values found in the trigonometric tables :

Angle. Sine. Tangent. Secant.

0°

10°

20°

30°
. . .

etc.
• •

With care the average deviation of the measures from the

truth ought not to exceed .005, except in the cases of the tangent

and secant of 70° and 80°, which are so great that they cannot be

easily found in this way.

19. To find, oy measurement, the angle corresponding to a

given sine, tangent, or secant.

Analysis. If a sine is given, the end of the arc correspond-

ing to the required angle must be at a distance from the line OX
equal to the given sine, the radius being unity. Y
Therefore if we take on the perpendicular

OY & distance OR equal to the product of

the radius by the given sine, and through M
draw a parallel to OX, the point in which it

intersects the arc will give the required angle.

To find the angle corresponding to a given

tangent we take a distance XS equal to the product of the given

tangent into the radius. Join OS. The angle XOS will be that

required.

For a secant we take the product of the radius by the secant in

the dividers, and from O as a centre draw an arc cutting XN in

a point N. Joining ON, the angle XON will be that required.
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Exercises.

1. Find by measurement the angles of which the sines are

}, 0.3, 0.4, 0.6.

2. Find arc-tan £, 1, 1.5, 3.

The expression arc-tan is used for brevity to mean the arc corresponding to

a given tangent.

3. Find arc-secant 1.5, 2.

20. Functions of unlimited angles. Thus far we have con-

sidered only the sines, tangents, and

secants of angles less than 90°; that is,

of angles in the first quadrant (§9).

As our angle increases to an entire cir- mjC

cumference, the functions are deter- '

mined by the same construction modi-

fied to suit the case.

The following are the general defi-

nitions:

We first generalize the construction.

On the sides of the angle we take equal lengths OX and OM
as the unit of measurement and radius of the circle.

At X we erect a line TXT' perpendicular to OX, extending

indefinitely in both directions.

We also suppose the revolving side OM to be produced indefi-

nitely in both directions, and XO to be produced so as to form

the diameter XTJ.

Then, however the side OM may revolve

—

I. The sine of the angle XOM is always represented by the

perpendicularfrom M upon the line OX. The sine is positive or

negative according as M is above or below OX.

II. The tangent of the angle XOM is always represented by

the distancefrom X to the point in which the side OMproduced

intersects the line TXT' . The tangent is positive or negative

according as the point of intersection is above or below X.

III. The secant ofXOM is the length of OMproduced inter-

cepted between O and the vertical line TXT'. The secant is
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positive or negative according as it is in the direction from to-

ward M or in the opposite direction. The positive direction of

OM is supposed to revolve with the side OM, and therefore to be

always from O toward M.

21. Changes in the value of the sine. If we suppose the

side Om of the angle XOm to revolve around 0, carrying the

sine mp with it, the latter will increase to

its maximum value, equal to radius unity,

when m reaches Y, and angle XOm =
90°. Hence

sin 90° = + 1.

As m moves from Y to X' , the sine

will diminish from 1 to zero. Because

angle XOX = 180°,

sin 180° = 0.

If m passes over X into the third quadrant, the perpendicular

M'P' will be below the line X'OX. This change of direction is

expressed by changing the algebraic sign of the perpendicular from

-f- to — . This is in accordance with the following general principle

:

Whenever distances measured in one direction are considered

positive, those in the opposite direction are negative.

Hence also

:

In the third quadrant the sine is negative.

When the point m reaches the position Y' it will have

moved through three quadrants or 270°, and the sine will coincide

with the radius OY ' of length unity. Hence

sin 270° = — 1. (1)

As m moves from Y' to X, the sine will increase from — 1

to 0. Hence:

I. In the fourth quadrant the sine is nega-

tive.

II. sin 360° = sin 0° =- 0.

The changes of algebraic sign as the angle

goes through the four quadrants are shown in the

annexed diagram.

Angles having equal sines. If angle X 'OM = XOm, the

Algebraic signs

of the sine.
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two angles XOm and XOM will be supplementary. Also in this

case the triangles XOm and X'OM will be identically equal; so

that

PM—pm.
Now PM represents by construction the sine of XOM, and

pm the sine of XOm. Hence

:

The sines of supplementary angles are equal.

In symbolic language this theorem is expressed thus : If a be

any angle, then
sin (180° — a) = sin a (2)

and sin (90° + a) = sin (90° — a).

If the points M ' and M" are equally distant from Y' , so that

angle M'OY' = angle Y'OM", which angle call y, the sines

P'M' and P"M" will be equal. Hence, whatever be y,

sin (270° -y) = sin (270° + y).

22. Changes in the tangent. As the line Om revolves round

O and m approaches Y, the point of intersec-

tion JV will move upwards without limit. As

m reaches Y, Om will become parallel to the

tangent line, and the point H will recede to ^/^
infinity. Hence

:

/ \
The tangent of 90° is infinite. ~x\

When m is in the second quadrant, suppose V

in the position 31, the revolving side OM will \^
not intersect the tangent line at all in the posi- Y '"

tive direction OM. We must therefore suppose the revolving line

to be produced in the negative direction ON' so as to intersect

the tangent line at N' below X. The distance XN' is then to be

regarded as negative. Hence

:

In the second quadrant the tangent is negative.

Following the motion, we see that when m reaches X', N'
reaches X and the tangent becomes zero. Hence

tan 180° = 0.

When m is in the third quadrant, impasses above X and the tan-

gent is positive, so that

In the third quadrant the tangent is positive.
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Continuing the reasoning, we see that the tangent of 270° is

infinite, and that in the fourth quadrant the tangent is negative.

23 Changes in the secant. The secant is defined as the

distance ON from to the point N, in which the revolving side

intersects the tangent line XN.
When m falls on X and the angle is zero, the secant is equal to

OX, or unity. Hence
sec 0° = 1. (3)

As m moves from Xto Y, the secant increases without limit

and becomes infinite when m reaches Y. Hence

sec 90° = oo . (4)

As m moves from Y through X' to Y\ the intersection of

the revolving line with the tangent line falls in the negative part

of OM, or in the direction ON' . Hence

:

In the second and third quadrants the secant is negative.

At Y', when the angle is 270°, the secant again becomes in-

finite.

Between Yf and X, or in the fourth quadrant, it is again

positive.

24. If we suppose the revolving line to make an integral

number of revolutions from any point, it will return to its original

position, and all the trigonometric functions will have the values

corresponding to that position. Hence, if O is a circumference

and n any integer,

sin (nC -f- a) = sin a ; 1

tan (nC+ a) = tanar ; \ (5)

sec (nO -\- a) = sec a. J

In other words,

The values of the -trigonometric functions wre not altered ~by

increasing the angle by any integral number of circumferences.

If the angle is increased indefinitely, the values of these func-

tions continually repeat themselves. This fact is expressed by
saying that these functions are periodic.



IIIK TRIGONOMETRIC FUNCTIONS. 19

Exercises.

Prove the following expressions for the trigonometrical func-

tions of angles of more than 00° by the necessary diagrams. The

angle x may be supposed less than 90°, though this restriction is

not necessary to the validity of the formulae.

1. sin (90° + x) = sin (90° - a?); 1

2. sin (180° + x) = - sin x
;

[
(6)

3. sin (270° + x) = — sin (90
c- x). J

1. tan (90° + x) = - (tan 90° - x)\ 1

5. tan (1S0° + x) = tan x
;

[
(7)

6. tan (270° + x) = - (tan 270°- a?). J

7. sec (90° + a?) = — sec (90°— x); 1

8. sec (180° + x) = — sec x; \ (8)

9. sec (270° + x) = — sec (270°— a?). J

10. sin (—a?) — — sin a?; 1

11. tan (— a?) = — tan x\ \ (9)

12. sec (— x) = sec x. J

Note. When we have the values of the trigonometric functions from to

90°, we can by these formula? find the values for all angles.

The Cosine, Cotangent, and Cosecant.

25. In the preceding sections we have supposed the side of

the angle from which we count the degrees to go out toward the

right, and the positive direction of motion to be opposite to that

of the hands of a watch. But this restriction is only to fix the

thought. We may suppose the angle to have any situation and

to be counted in any direction without changing the values of the

sine, tangent, and secant, provided that we reckon the lengths of

the lines representing the functions in the right way.

Let us count the angle from OY in the direction toward OX.
The tangent line must then touch the circle at Y, and its positive

direction must be toward the right.

Then (radius OY= 1) the lines

PM= sin POM,
]

Ylf= tan POM,
\

(a)

ON = sec POM, J
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will have the same values as in an angle equal to POM counted

in the usual way from OX toward Y.

Moreover, the changes of sign will

he the same as before through the whole

circle, namely

:

From X to Y' (now the second

quadrant) the sine PM will be positive

because it is measured to the right.

From Y r
to X' (the third quadrant)

it will be negative because it is measured toward the left.

It will also be negative from X' to Y (now the fourth quadrant).

The corresponding propositions can be shown for the tangent

and secant.

Now because angleXOM+ angleMOY= angleXOY— 90°,

MOY is the complement of XOM. Therefore the equations (a)

may be written

PM= sin comp. of XOM;
YW— tan comp. of XOM;
OX = sec comp. of XOM.

Because when we have an angle its complement can always

he determined by subtracting it from 90°, we can always find the

sine, tangent, and secant of the complement when we know the

angle. Therefore the sine, tangent, and secant of the comple-

ment of an angle may be regarded as three additional trigono-

metrical functions of the angle itself. They are named thus

:

The sine of the complement is called the cosine of the angle.

The tangent of the complement is called the cotangent of

the angle.

The secant of the complement is called the cosecant of the

angle.

Thus the new functions are defined in the following way :
•

cosine a = sin (90° — a); 1

cotang a = tan (90° — a); I (10)

cosecant a = sec (90° — a). J

The words cosine, cotangent, and cosecant are abbreviated to

cos, cot, cosec, respectively.



THE TRIGONOMETRIC FUNCTIONS. 21

The forms (10) enable us to find the cosine, cotangent, and

cosecant of an angle when we know the sine, tangent, and secant

of its complement. Thus if the cosine of 60° is required, we have

cos 60° = sin (90° - 60°) = sin 30°.

Also, by substituting 90° — a for a, we find

sin a = cos (90° — a); 1

tan a = cot (90° - a); I (11)

sec a = cosec (90° — a). J

The versed-sine and co-versed-sine. Besides these six func-

tions, two others, the versed-sine and co-versed-sine, are sometimes

used. Their definitions are

:

Versed-sine = PX= 1 — cosine
;

Co-versed-sine = OY — PM= 1 — sine.

26. The six trigonometrical functions may be represented on

a single diagram. The

functions as written are X cotajw^nt^y^

all those of the angle

XOM. For the secant

and cosecant we have

ON'= see XOM,
ON' = cosec XOM,

because XOM is the

complement of MO Y.

Because PM || OP'

and OP || P'M, there-

fore OP = P'M, so that

we may take either OP or P'M as the cosine of XOM.

27. The general definitions of §20 may be extended to com-

plementary functions, thus

:

Having OY _L <9Xand OY= OX
= 1, we draw through Y an indefinite

line YT parallel to OX. Then—
IV. The cosine of any angleXOM

is represented oy the distance OP to

the foot of the sine, positive or negative

according to its direction.
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Y. The cotangent of any angle XOM is represented by the

length from Y to the point in which OM produced inter-

sects YT.

VI. The cosecant ofXOM is represented by the length of the

side OM, intercepted between O and the line YT.
The algebraic signs of the several functions in the four quad-

rants are shown in the following diagram.

Tangent.Sine. Secant.

' + -f-

/ X1

— + >

+ — J

2// ^Ni
/ — + \

V — + /
3 \__^/ 4

Cosecant. Cotangent. Cosine.

28. The following are the limiting values of the trigonometri-

cal functions

:

I. Bine and cosine. The sineMP and cosine OP are neces-

sarily not greater in absolute value than OM= 1. The limits of

these functions are therefore -f- 1 and — 1.

II. /Secant and cosecant. Since the tangent line lies without

the circle, a secant can never be less than unity in absolute magni-

tude. But we have found that it may increase to infinity in either

the positive or negative direction. Hence the limits of the secant

and cosecant are 1 and infinity, and — 1 and — oo

.

III. Tangent and cotangent. The limits of the tangent are

easily seen to be — oo and -J-
oo

, or a tangent and cotangent may
have any value whatever.

29. When we know the numerical values of the sine, tangent,

and secant of all angles from 0° to 90°, we have the values of all

six functions of any angle whatever, because as we go around the

circle the values of the functions are simply repetitions of the

values between 0° and 90°.

Let a be any angle less than 90°. Then any angle in the first

quadrant may be represented by a.

In the second quadrant it may be represented by 180° — a.

" third " " " " 180° -for.

" fourth " " " " 360° -a.
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The student should now have no difficulty in demonstrating

the following relations by completing the

construction indicated in the margin and

attending to the general definitions §§ 20,

27. Some of these relations have already

been given or explained.

Second Quadrant

(12)

sin (180° - a) = sin «

;

cos (180° — a) = — cos a: = — sin (90° — a);

tan (180° — a) = — tan a
;

cot (180° — *) = — cot a = — tan (90°— a);

sec (180° — a) = — sec a

;

cosec (180° — a) = cosec a = sec (90° — <*). ,

Third Quadrant.

sin (180° + a) = — sin a

;

cos (180° + a) = — cos a = — sin (90° — a);

tan (180° + a)= tan ^
;

cot (180° + a) = cot a = tan (90° - or);

sec (180° -(- or) = — sec a
;

cosec (180° -\- a) — — cosec « = — sec (90° — a)

Fourth Quadrant.

sin (360° — a) = — sin a
;

cos (360° — a) = cos « = sin (90° — a);

tan (360° — a) = — tan a
;

cot (360° — a) = — cot a = — tan (90°— a);

sec (360° — a) = sec a
;

cosec (360° — a) == —
- cosec a = — sec (90°— a). .

(13)

(14)

We may equally express the six functions of all angles in terms

of the six functions of angles not greater than 45°. Let y repre-

sent any angle not greater than 45°. We may then represent

Any angle from 0° to 45° by y ;

« " 45° " 90° " 90° — y\

90
c 135 c 90° + y;



24 PLANE TRIGONOMETRY.

Any angle from 135° to 180° by 180° — y;
« « 180o u 225° « 180° + y 5

" " 225° " 270° " 270° - y

;

« « 270° " 315° " 270° + /;
" " 315° " 360° " 360° — y.

Then, in addition to the relations (12), (13), and (14), which will

remain true when we write y instead of <*, we shall have the fol-

lowing, which the student should prove.

To do this let the student suppose that in the diagram §26 angle XOM=y,
and let him construct the six functions for angles of 90° + ^, 270° - y, etc.,

and compare the lines representing them with the lines on the diagram of § 26.

The set corresponding to the first quadrant are already given in (10) and (11).

Second Quadrant.

sin (90° -\- y) =z cos y ;

cos (90° -\- y) = — sin y ;

tan (90°+.y;j} = — cot y;

cot (90° + y) — — tan y ;

sec (90° -f- y) = — cosec y ;

cosec (90° + y) = sec y.

(15)

Third Quadrant.

sin (270° — y) = — cos y ;

cos (270° — y) = — sin y ;

tan (270° — y) = cot y ;

cot (270° — y)= tan/;

sec (270° — y) = — cosec y ;

cosec (270° — y) = — sec y.

Fourth Quadrant.

sin (270° + y) = — cos y ;

cos (270° + y)= siny;

tan (270° + y)
—— cot y ;

cot (270° + y) = — tan ^

;

sec (270° -(- ^) = cosec y

;

cosec (270° -\- y) = — sec /.

(16)

(17)
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Among the preceding forms of this chapter, the following are

of especially frequent application :

sin a = cos (90° — a) = cos (a— 90°) = — cos {a -f 90°);
]

cos a = sin (90° - a) = - sin (a - 90°) = + sin (a +90°).
J

(
18

)

Exercises.

1. Express the six functions of the following angles in terms of

the three functions sine, tangent, and secant of angles less than 90°
:

sin 105°
;

200°
;

295°.

cos 105° 200°
.

295°.

tan 105°
;

200° 295°.

cot 105° 200°. 295°.

sec 105°

;

200°: 295°.

cosec 105°
;

200°
;

295°.

2. The following table shows the values of four of the func-

tions for every 10° of the first 40° to two places of decimals. By
means of these values extend the table to 360°, showing the values

of all four functions for each angle

:

Angle. Sin. Tan. Cot. Cos.

0°

10°

20°
30°

40°

50°

60
c

70°

etc., to
360°

0-00

+ 0-17

+ 0-34

+ 0-50

+ 0-64

0-00

+ 0-18

+ 0-36

+ 0-58

+ 0-84

00

+ 5-67

+ 2-75

+ 1-73

+ 1-19

+ 1-00

+ 0-98

+ 0-94

+ 0-87

+ 0-77

3. Demonstrate the relations (18) by drawing a diagram show-

ing an arbitrary angle a and an angle 90° greater and less, with

the lines representing the sines and cosines.

4. What relations subsist between the following pairs of func-

tions ?

(a) sin (45° -|- a) and cos (45° — a)
;

(b) sin (135° + a) and cos (135° - a)
;

(c) tan (225° + a) and cot (225° - a)
;

(i) sec (315° + a) and cosec (315° — a).
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30. Special values of trigonometric functions. If angle

XOM = 45°, we shall also have OMP = 45°, and therefore

OP2 + PM 2 =± 2PM 2 = 0M\ ^
whence PM= 0MV\.
Therefore sin XOM= sin 45° = V\. (a)

In the same way we find

XT= OX,

whence tan XOM = tan 45° = 1. (b)

Again, OT
whence sec XOM

VOX' + XT 2 = V2 OX;

sec 45°= V2.

'Next, let angleXOM= 30°.

Make angle XOM ' = XOM= SO .

The triangles M'OM' and TOT' then have

each of their angles 60°, and so are equilateral.

Therefore MP = i MM' = iOM = iOX.
Hence sin 30° = f (d)

In the same way
XT = i 0T9

OT' — XT2 = OX 2 = 1;

2

(')

\0M V
or $0T 2 = 1, 0T=Vi =^ xr=

1/3'

4/3
2"'Also, OP = VOP2 - MP2 = VI - i =

Hence tan 30° = —zz,
Vs

w
2

sec 30° = —p.,
Vs

00

Vs
cos 30° = -£-. w

Functions of'18°. It is shown in geometry that if the radius

of a circle be divided in extreme and mean ratio, the greater seg-

ment will be the chord of 36°
; that is, twice the sine of 18°.

Putting 1 for the radius and r for the greater segment, the

condition that the division shall be in extreme and mean ratio is

1 : r :: r : 1 — r,
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or, equating the product of the means to that of the extremes,

?
>2 = 1 — r.

The solution of this quadratic equation gives

-\±Vb
r= g .

The positive root is the only one we want. Hence

4/5-1
sin 18° =

We then find

cos 18° = radius
2 - sin

2 18° = 1 - sin
2 18°.

Hence cos ^ = VlO+2^ JrJ

31. Angles corresponding to given trigono-

metric functions. When the value of a trigonometric func-

tion is given and the angle is required, there are always two

solutions to the problem.

The Sine. It has already been shown that two supplementary

angles have the same sine. Hence if a is an angle corresponding

to a given sine, 180° — a will be another angle equally correspond-

ing to it.

We may also say that if 90° — /3 be an angle corresponding to

any sine, 90°
-f- fi W1U also correspond to it, because the sum of

these two angles is 180°. The same statement applies to the

angles 270° - fi and 270° + p.

Unless there is some restriction upon the angle to be chosen,

we cannot decide which angle to take. The most common restric-

tion is that the angle must be between the limits — 90° and + 90°,

or must be in either the first or fourth quadrant. There will then

be between these limits one angle and only one for a given sine.

Since the measurements of latitude on the surface of the earth are

restricted between limits — 90° and -f- 90°, the latitude of a place

is completely fixed by its sine.

The Cosine. The construction of the cosine shows that it has

equal values for positive and negative angles. Hence if a be an

angle corresponding to a given cosine,— a or 360°— a will equally

correspond to it.



28 PLANE TRIGONOMETRY.

Hence when an angle is determined by its cosine, either of

these two angles may be chosen unless some restriction is placed

upon the choice. The most common restriction is that the angle

shall be positive and less than 180° ; that is, in the first or second

quadrant. For every cosine there will be one and only one angle

between the limits 0° and 180°.

The Tangent. Since two angles which differ by 180° have the

same tangent, it follows that if a be an angle corresponding to any

tangent, 180° -|- a will equally correspond to it. Hence there is

always a choice between these two angles, unless some restriction

is placed upon the angle.

The Cotangent. The cotangent being determined, like the

tangent, by the intersection of the revolving side with a tangent

line, every pair of angles corresponding to the same tangent will

also correspond to the same cotangent. Hence a and 180°
-f- &

always have the same cotangent.

The Secant. We readily see that the angles a and — or or

360° — a have the same secant. Hence if a: be an angle corre-

sponding to a given secant, 360° — a will be another angle corre-

sponding to that same secant.

The Cosecant. From the diagram (§ 27) it is easy to show

that any two supplementary angles have the same cosecant.

Exercises.

What other angles have the same sines as the following ?

1. 105° ; 2. 185°
; 3. 290°.

What other angles have the same cosines as the following ?

4. 72°; 5. 165°; 6. 320°.

What other angles have the same tangents as the following %

7. 50°; 8. 205°; 9. 355°.

10. A pair of angles having the same sine differ by 24°. What
angles are they ?

11. A pair of angles having the same cosine differ by 110°.

What angles are they ?

Note. There are two pairs of angles which answer each of the two last

questions.

Find two values of a from each of the following equations

:
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12. sin a = — cos 23°. Ans. a = 247° or 293°.

13. cos a — — sin 23°.

14. sin a = cos ft. Ans. a = 90° —
ft or 90° + ft.

15. tan a = cot 72°.

16. cot or = — tan 175°.

17. tan a = — cot /3.

18. sec a = cosec 32°.

19. cosec** = — sec 32°.

20. sec a = cosec ft.

21. sin a = sin 23°.

22. sin a = cos (90° — x). Ans. or = x or 180° — a?.

23. sin a = cos (90° + x). Ans. a: = — x or 180° -f x.

24. sin <* = cos (270° + x).

25. sin a = cos (270° — x).

26. cos a = cos (180° — x).

27. costf= cos (180° + a).

32. Extension to unlimited angles. Since when any inte-

gral number of circumferences is added to an angle its trigono-

metric functions remain unaltered, we must, to find the most

general expression for the angle corresponding to a given function,

add an arbitrary number of circumferences to the angles found in

the last section. Then the most general expression for angles

which have the same sine will be

7i<7+90°+ or and nC+ 90° — a,

in which n may take all integral values, positive and negative,

including zero, and a must have such a value that 90— a shall

correspond to the given sine.

This statement also means that all the angles formed by giving

different values to n, while a remains constant, will have the

same sine.

Example. Let us suppose the given sine to be that of 65°.

Then a = 25°, and the pairs of angles

65°, 115°; - C+65°, - (7+115°;

(7+65°, 0+115°; —2(7+65°, -2(7+115°;
2(7+65°, 2(7+115°; etc. etc.,

etc. etc.;

will all have this same sine.
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Exercises.

1. Having given
sin 2a? = J,

find the four corresponding values of x within the first circumfer-

ence. Note that sin 30° = J. Ans. 15°, 75°, 195°, 255°.

2. Having given

sin 2a == VJ

,

find the four corresponding values of a.

First find the two values of 2a, and then, by §§ 10-13, the two values of half

of each of these angles.

3. Having given
cos 2/3

find the four corresponding values of /3.

4. Having given

cos 2/3

find the four corresponding values of /3.

5. If tan 2a — — 4/3, find four values of a.

6. Show that if the value of tan -| a be given there will be only-

one value of a to correspond to it within the first circumference.

7. If sin \x = sin 15°,

find what two values may x have, and show that these values will

have the same cosine.

8. Form the most general expression for all angles having the

same cosine.

9. Form the most general expression for all angles having the

same tangent.

Relations bet-ween the Six Trigonometric Functions.

33. When we know any one trigonometric function of an

angle two definite values of the angle can then be determined, by

constructions like those of § 19. Knowing the angle, the values

of the other functions can be found. Hence from any one func-

tion of an angle all the others can be found. We have now to

investigate the algebraic relations by which this may be done,

seeking to express each function in terms of the five others.

Let us put
a == angle XOM.
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Because OPM is a right-angled triangle,

OP' + PM 2 ^ 0M\
or

Cofasi& jWiuV/

\OMl^ \OMJ
Hence

cos
a a -\- sin

3 a = 1,

which gives

cos a = ± Vl— sin
2
a. (1)

The significance of

the double sign ± is this

:

whenever a sine is given

there will be two angles to correspond to it, of which one will be

as much less than 90° as the other is greater. The cosines of these

angles will be equal with opposite algebraic signs.

The similar triangles OPM and OXN give

OP:PM=OX:XN;
OP: OM = OX: ON.

Substituting for the lines their algebraic equivalents, the first

proportion gives

cos a : sin a = 1 : tan a.

sin a sin a
(2)Hence tan a

cos a VI- sin oc

which gives the tangent in terms of the sine and cosine.

The second proportion gives

cos a : 1 = 1 : sec a,

1 1
whence sec a =

vl — sin
2 a

(3)
cos a

"We conclude from this

:

The product of the cosine cmd secant is equal to unity.

In other words, the secant and cosine are reciprocals of each

other.

By a similar cou-rse of reasoning upon the complementary tri-

angle we find that the cosecant and sine are reciprocals of each

other.
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The similar triangles OP 'M and YN' give

OP' :P'M = OY: YN'

\

but OP' = PM=sma,
whence sin a : cos a = 1 : cot a,

cos or 4/1 — sin
8 a

and cot a = -. =
:

. (4)
sin a sin a v J

Comparing with (2) we have the relation : The product of the

tangent and cotangent of any angle is unity.

In other words, the tangent and cotangent are reciprocals of

each other.

We thus reach the general conclusion that the three comple-

mentaryfunctions are each the reciprocal of one of the three other

functions, namely

:

cosine = -:
secant

'

1
cotangent = -7 7

;

tangent

'

sine'

Exercises.

1. If sin y = 0.60, find cos y, tan y, cot y, sec y, and cosec y
2. Find the values of the same functions when cos y = 0.60.

3. Prove that the mean proportional between a cos x and

a sec x is a.

4c. Prove that the mean proportional between a tan ft and

h cot fi is Vab.

34. Expression of each function in terms of the others. By
means of the relations (1) to (4) any one trigonometric function

may be expressed in terms of any other by algebraic substitutions.

The following are the expressions which we thus obtain. All

not already given should be deduced by the student as an exercise.

sin a -

cosecant =

a

I

_L
-— LOb

VI + tan
2 a

=

VI + cot
2

1

a

Vsec2 a —
sec a

1

cosec a
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1 cot a
cos a = Vl — sin

2 a =
Vl + tan

2 a Vl + cot* a

1 Vcosec2 a — 1

tan <x =

sec <z cosec or

sin a Vl — cos
2 a 1

y 1 — sin
2 a cos « cot a

1= y sec
2
or — 1 =

l^cosec
2
oc — 1

|/1 — sin
2 « _ cos a: __ 1

COt " 7" sln~^ Vl - cos
2 a tana

1
,— /

= == — y^cosec
2 a — 1.

y sec
2 a — 1

1 1
sec « = = == = Vl 4- tan

3 a
1/1 — sin

2 a cos or

y
7

! + cot
2 ^ cosec a

cosec a

cot a Vcosec
2 a — 1

1 1 Vl + tan2
ar

sin or Vl — cos
2
or tan <*

,/t-i it- sec «= y 1 + cot
2 a = =•

.

^
Vsec2

or - 1

Note. In algebraic work of this sort the student will find it convenient,

instead of writing sin a, cos a, etc., in full, to use a single symbol for each

function; for example, he may put:

s = sin a ; — = cosec a.
s

t = tan a ; — = cot a.

1
c = cosa; — — sec <x.

c

It will be seen that the second members of most of these equa-

tions are surds, showing that their values may be either positive

or negative. The result may be expressed thus

:

Whenever one trigonometric function is given, the four other

functions which are not its reciprocal may have either of two

equal values with contrary signs.
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This arises from the fact that every such function may belong

to either of two angles, and affords an example of the correspon-

dence between geometric and algebraic results.

Exercises.

1. From the special values of sin 30° and sin 45° found in

§ 30, namely,
sin 30° = i,

sin 45° = VJ,

find the values of the other five functions of 30° and of 45°.

Ans. cos 30° ==—? ; cos 45° = VJ.

tan 30°= -V; tan 45° = 1.
1/3'

cot 30°= VS; cot 45° = 1.

sec 30° sec 45°= V2.
_2_

cosec 30° = 2 ; cosec 45° = V2.

2. It has been shown that the three products sin X cosec
y

tan X cot, and cos X sec are each unity, -y N"

When we replace the functions by the

lines which represent them, the pro-

ducts represent the areas of the rect-

angles contained by the lines, and unity

is replaced by the square of the radius.

Hence we have the following theorems,

which are to be proved by the similar triangles in the accompany-

ing figure, where the construction is that of the trigonometric

functions.

I. Eectangle XT. YJV= OX% corresp. to tan X cot = 1.

II. Eectangle MP.ON= OX\ " " sin X cosec = 1,

III. Eectangle OP.OT ^ OX\ " " cos X sec = 1.

3. From the value of sin 18° in § 30 find the sides of the regu-

lar inscribed and circumscribed decagons of a circle of radius a.
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Prove the following relations :

4 i i
« cos

3
a?

4. 1 + sin x = ;—

.

1 — sina?

sec -f- cosec 6 1 -\- cot tan 0-\-l

sec — cosec ~ 1 — cot 6 ~ tan 0—1'

sec
2 6 -\- cosec

2

tan d + cot =
sec cosec

7. sec 6 -\- tan = s —^.
sec — tan u

tan + sec — 1
8. : 7T-

1
tt-t-z = tan 6 4- sec 0.

9.

/a zr~r*T = tan + sec
tan 6 — sec + 1 '

tan — sin sec

sin
3 6 ~ 1 + cos 6'

10. "What angle is that of which the tangent is double the sine ?

11. What must be the value of the cosine in order that the tan-

gent may be n times the sine I Ans. -.

12. Prove (r cos xf -f- (r sin x sin uf + (^ sin a? cos w)
2 = ?*

2
.

13. Prove {a sin ;/)
3+ (# cos y sin #)

2

-f- (a cos y cos 6)
2= a\

14. Prove (cos a cos J — sin a sin 5)
2

+ (sin a cos 5 4" cos a sm V — 1-

15. Of what angle is the secant double the sine ?

16. Of what angle is the secant four times the cosine?



CHAPTER III.

OF RIGHT TRIANGLES.

35. Fundamental relations. Let ON be a right triangle of

which a and o are the sides which contain the right angle, c the

hypothenuse, a and fi the angles opposite a and b respectively.

N

If we take ON as a radius and draw the arc iOT from the

centre 0, the side NO will, by definition, represent the sine of

XON, and 00 its cosine, when the radius is ON. That is,

NO .00 _

"We may show in the same way, by taking N as the centre and

NO as the radius.

00
sin /?;

NO
cos /?. (2)

We might also have deduced these equations from (1), because

/3 = 90° — a, whence

sin /? = sin (90° — a) = cos or

;

cos J3 = cos (90° — a) — sin or.

Again, by taking 00 as a radius, we find

0(7
= tan a = cot /?

;

(91 = tan j3 = cot or. (3)
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Putting NC = a, 00 = b, ON = c, the equations (1), (2),

and (3) give the relations

a = c sin a =5 tan a\

(4)b = c cos a = a cot <*;

c = a cosec a = b sec or.
_

We may express the same relations in terms of /?, using the

complementary functions, as follows

:

a = c cos J3 = b cot fi ;
-i

J = c sin f3 = a tan j3 ;
L (5)

c = a sec /? = 5 cosec /?. J

These relations may be summed up in the following general

theorems

:

I. The hypothenuse of any right triangle is equal to a side into

the secant of its adjacent angle or the cosecant of its opposite angle.

II. A side is equal to the hypothenuse into the sine of the

opposite angle or the cosine of the adjacent angle.

III. One side is equal to the other side into the tangent of the

angle adjacent to that other side or the cotangent of the angle ad-

jacent to itself

Exercise.

Show by the above equations how each side will be expressed

in terms of the others when a == 30° and when a = 45°, using the

values of sin a, etc., already found—namely,

sin 45° = 1/J; tan 45° = 1 ; etc.,

and sin 30° = -§ ; cos 30° = —-
;

and show how the results agree with those of elementary geometry.

36. Examples and exercises in expressio?i. In the accom-

panying figure OQN, ONP, and OXN
Q

are right angles, and we put

a = angle XON\
fi = angle NOQ.

It will also be noticed that

Angle XNP = a

tan 30°=—^; etc.—

and Angle ONX = XPJST= 90° - a.
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It is now required to express all the other lines in terms of

OX and trigonometric functions of a and /3.

Solution. We have

OX=OXsecor;
XN= OXtan or;

OP = OX sec a = OX sec
2 a;

NP = OP sin a = OX sin a sec
2 a = OX tan « sec or;

or XP = OX tan a = OX sec a: tan a (as before)

;

OQ = OX cos /? = OX sec « cos /?

;

NQ = OX sin p = OX sec a sin /?.

Exercises.

1. By the same process express 0$, QN~> OX, XX, XP, and

XP in terms of OX and trigonometric functions.

2. Express the same quantities in terms of XP.
3. Express XX separately in terms of OX and XP, and by

multiplying the two values prove the geometric theorem that

XX is a mean proportional between OX and XP.
4. In a right triangle the sides which contain the right angle

are a and b, (a > b), and d is the difference of the angles at the base

(hypothenuse). Express the length of the perpendicular from the

vertex upon the base in two ways, and the lengths of the segments

into which it divides the base each in one way. The expressions

are all to be in terms of a, b and o\

Ans. (in part). One expression for the perpendicular is

2? = a sin (45° — 6).

Solution of Right Triangles.

Since in a right triangle one angle—the right angle—is given,

only two other independent parts are required t© solve the tri-

angle. These two parts may be any two of the sides or one side

and one angle. What parts soever are given, the remaining parts

may be found by the equations (4) and (5). The following are all

the essentially different cases.
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37. Case I. Given the two sides a and b adjacent to the

right angle*

The first equation (4),

a = b tan a,

a
gives tan a = r-

Therefore the quotient of the two sides gives the tangent of

the angle opposite the dividend side.

From the tangent the angle a is itself found by the trigo-

nometric tables; then sec a. or cos a; then the hypothenuse c

from the equation

c = b sec a
cos a

Example. Given a = 9 metres, b = 12 metres, to find the

remaining parts of the triangle.

Solution by numbers and measurement.

tan a = T\ = 0.75.

On the tangent line XN ( § 22) measure a distance from X
equal to 0.75 of the radius OX; join the end of the distance to 0,

and measure the angle XON which the joining line makes with

OX. This angle will be a. The length of the joining line divided

by OX will be the secant, which multiplied by b •= 12 will give

the hypothenuse c.

The third angle, /3 = 90° — or.

Logarithmic Solution.

log a 0.95 424 cos a 9.90 309

log b 1.07 918 log b 1.07 918

tan a 9.87 506 log c 1.17 609

a, 36° 527
.2 c, 15 metres.

1

/?, 53° r.s

* It is recommended that in commencing tnis subject the student first solve a

few of the problems by his own process, and without the use of any tables but

those he may construct for himself by measurement as described in § 18.
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1. Given a =
2. " a =
3. " a =
4. " «==

5. " a =
6. " a =

4,

EXEECISES.

5 = 5; find remaining parts.

5;

84.107; "

876.59: «

43.148, 5 =

2.7938, 5 :=

759.28, 5 = 51.85;

8628, 5=27316;
The first two exercises are made purposely simple, that they

may be performed by measurement.

38. Case II. Given the hyjpothenuse and one side.

Solution. From the equation

c sin a = a

a
we obtain sin a

which may be used to find a when a and c are given. Then the

remaining side is found by the equation

b — c cos a.

Example. Given a = 13, c = 20, to find the remaining parts.

Solution by numbers and measurement.

a 13

20
sin a = — = 0.65.

Take a distance equal to 0.65 of OX'm the dividers, and find

out what, angle it will fit in the diagram (§ 15) to form a sine of

an angle. This angle will be a. Measure off cos a perpendicu-

larly to OB, take its ratio to OX, and multiply it by c = 5. This

will give the side b.

Logarithmic Solution.

log. 13 1.11 394 cos a 9.88 078

log. 20 1.30 103 log 20 1.30 103

log b 1.18 181

b, 15.199

sin a

a

9.81 291

40° 32'.5

49° 27'.5
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Exercises.

c= 9: find remaining parts.1. Given a = 7, ci

2. " & = 9, c= 16; " "

3. " a = 82.143, c = 120.412

;

" " "

4. " b= 2.9235, c= 9.827; " " "

5. A circle of radius r is drawn with its centre at a distance

jp from a straight line. What length will it cut out from the line %

What will be the result if r < p ?

39. Case III. Given an angle and one side, as a and a.

Solution, The equations (a) give

z a
o = =z a cot a = a cot p ;

tan a:

a
c =

sin «
= # cosec a = a sec yff.

Note. One angle being given, the remaining one may be found from the

equation
0=90° -a.

Exercises.

1.

2.

3.

4.

5.

find a and b.

C

:*-P

Given a — 72° 39', c = 19.5
;

" <* = 16° 25
/

.6, c = 10.925
,

« /? = 43° 28 /

.4, J = 8.1273 ; find a and c.

" /3= 8° 29'.2, 5 -- 0.9271 ; " "

An engineer, desiring to find

the distance from a point A on one ±
bank of a river to a point P on the

other bank, measured off a base line

AC b yards in length, in a direction

perpendicular to AP. He then

measured the angle A CP, and found

it to be a. What are the expressions for the distances AP and

CP%
What will be the distance if A C = 80 yards and or = 85° 22'.5 ?

6. An engineer, desiring to determine the height of a vertical
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wall, measured off a distance PO = h feet on level ground, and

then from a point E, a feet above

the ground, measured the angle

HEX = a between the line of

sight EX and the horizontal

line EH. Express the height

PX of the wall algebraically in — ___ .

terms of a, o, and ar, and com-

pute the height when b = 400

feet, a = 6 feet, and the angle a = 22° 17'.

Method of solution. Find the height iZX and add HP = a.

7. Desiring to find the height of an inaccessible rock M above

a plane, its angle BPM M
was measured from a

point P and found to

be a. The observer then

advanced a metres to-

wards the rock to Q, and ^
there again measured the P ^ Q a? B

angle of elevation and found it to be y. Express the height BM
of the rock.

Method of solution. Let the vertical height PM= h and

QB = x. Then we have the two right triangles PBM and

QBM, which give

h = (a -\- x) tan a
;

h = x tan y.

From these two equations we obtain the following values of h

and x:

sz.

x = a tan a
tan y — tan of

-. a tan a tan y
tb = -.

tan y — tan a

Find the height when a — 2000 yards, a = 30° 28', and

y — 40° 53'.

8. The altitude of a triangle is 7.2648, and the angles at the

base are 72° 29.3' and 40° 30.5' respectively. Compute the base
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and sides. Also, find the general expression for the length of the

base in terms of altitude and angles at base.

9. From the top of a tower 108 feet high the angles of de-

pression of the top and bottom of another tower standing on the

same horizontal plane are found to be 28° 56' and 53° 41/ respec-

tively. Find the distance between the towers, the height of the

second tower, and the distance between the summits of the two

towers.

10. In a circle of radius r, express the length of each side, and

of the apothegm, of a regular inscribed polygon of n sides. Find

first the special values for the triangle, square, pentagon, hexagon,

and octagon. Ans. For the octagon : side = 2r sin 22^°;

apothegm = r cos 22^-°.

11. If the side of a regular octagon is 10 metres, what are the

radii of the inscribed and circumscribed circles?

12. At what altitude is the sun when a tower 20 metres high

-casts a shadow 75 metres long upon a horizontal plane ?

13. It was found that the length of the shadow of a monument

upon a horizontal plane diminished 22 metres when the sun's alti-

tude increased from 30° to 45°. What was the height of the

monument ?

14. If /3 is one of the acute angles of a right triangle, and c its

hypothenuse, express the altitude in terms of c and J3.

15. Two lighthouses, each 30 metres above the sea and 500

metres apart, are seen by a ship in line with them to differ 1° in

elevation above the horizon. "What is the distance from the

nearer, supposing the ocean a plane ?

16. The great pyramid of Gizeh is 762 feet square at its base,

and each side makes an angle of 51° 51' with the horizon. Find

—

(a) Its height if continued to its apex.

(b) The slope of its edges.

Actually, instead of being continued to its apex, it terminates

in a platform 32 feet square. Find

—

(c) The perpendicular height of this platform above the base.

{d) The length of each edge from the corner of the platform to

the corner of the base.



CHAPTEK IV.

RELATIONS BETWEEN FUNCTIONS OF SEVERAL ANGLES.

The Addition and Subtraction Theorems.

40, Problem. To express the sine and cosine of the sum of
two angles in terms of the sines and cosines _.

of the angles themselves.

Solution. Let XOM= a and MOJV= ft

be the two angles. XOJV = a -\- ft is then

their sum.

Let ON be the unit radius. FromN drop

NMiOM; NQlOX
Prom M drop

MPlOX; MPiNQ. °

Then sin (a + ft) = NQ = NR + MP;
r

cos (a + ft)=OQ = OP- MR.
OQS and NMS being right angles, we have

Angle RNM= comp. R8M= comp. OSQ = SOQ = a.

NM= sin ft;

NR = JVM cos a = sin. ft cos a

;

OM = cos ft;

M<P = OM sin a = cos ft sin or;

whence, from (1),

sin (a
-f- ft) = sin a cos ft -\- cos a sin ft.

We find in the same way

OP = OM cos a = cos ft cos a

;

i?_zlf/ == JVM sin ar = sin ft sin or

;

whence, from (1),

cos (a -f- ft) = cos a cos /? — sin a sin ft.

(2)

(3)
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The formulae (2) and (3) constitute the addition theorem of

trigonometry.

To find the corresponding subtraction theorem it is only neces-

sary to change the sign of ft. We have

sin (— ft) = — sin ft;

cos (— ft) = cos ft.

Therefore, changing ft to — ft in (2) and (3), we find

sin (a — ft) = sin a cos ft
— cos a sin ft ; (4)

cos (a — ft) = cos a cos ft -f- sin a sin /?. (5)

It is, however, interesting to show how these equations may be

obtained independently by a geometrical construction.

Let POM be the angle a, and NOM ^
the angle ft. Then

PON = a-ft.
Take ON for the unit radius and

drop
NPlOP; NMiOM;
MQiOP; NPiMQ. o

Then sin (a - ft) = PN = QB = MQ - MB;
cos (a-ft)=OP = OQ + PN.

Because OMN is a right angle,

NMR = comp. OMQ = Jf6><0 = a
;

ifiV = sin ft ;

0Jf = cos ft ;

Jfi? = J/i^ cos NMP = sin /? cos tf

;

jlf# = OM sin Jf#() = cos ft sin a?

;

OQ = OM cos if(9$ = cos ft cos a;

PN = MN sin NMP = sin /? sin or.

Making these substitutions, we have the results (4) and (5) for

sin (a — ft) and cos (a —
ft).

41. $m0 and cosine of twice an angle. If we suppose

ft = a, we have from (2) and (3) expressions for the sine and

cosine of the double of an angle, namely

:

sin 2 a = sin a cos a -\- sin a cos a, (6)

or sin 2 a = 2 sin a cos a
;

cos 2 <* = cos
3 « — sin

2 a = (cos a -f- sin or) (cos a: — sin a). (7)
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Also, by putting for cos
2 a its value, 1 — sin

2
a, and vice versa, we

have
cos 2a = 1 — 2 sin

2 a = 2 cos
2
or — 1. (7')

EXEECISES.

1. Because 90° = 60°+ 30°, we have, by putting a = 60° and

P — 30° in the equation (2),

sin 90° = sin 60° cos 30° + cos 60° sin 30° = 1.

It is required to test this equation by substituting the numeri-

cal values of the sines and cosines of 30°, 60°, and 90° (§ 30), and

to test in the same way the equations obtained by putting a = 60°

and J3 = 30° in (3), (4) and (5).

2. Because a = a — x -f- a?, we have, from (2),

sin a = sin (a— x) cos x -f- cos (a — x) sin x.

It is required to write the corresponding equations obtained by
making the same substitution in (3), and the equations obtained in

the same way from (4) and (5) by the identical equation

a = a -\- x — x.

3. Derive the addition theorem for the cosine from that for

the sine by substituting y — 90° or 90° — y for /? in the equation

(2), and applying the equations (18) of § 29 (Chap. II.).

4. By means of the addition theorem prove the equations

sin (a -\- /3 -j- y) = sin a cos /? cos y -f- cos a sin fi cos y

-f- cos a cos fi sin y — sin a sin f3 sin y ;

cos {a -\- fi -\- y) = cos a cos fi cos y — sin a sin /? cos y
— sin a cos /? sin y — cos a? sin /? sin ^.

Note. This is readily done by putting a -\- /? for a, and y for /J, in the

equations (2) and (3), thus giving

sin (a -\- (5 -f- y) = sin (a -f- /?) cos y+ cos (a+ fi) sin y

;

cos (a -\- (3 -{- y) = cos (a -f /5) cos ^ — sin (a -f- ft) sin y ;

and then developing by the addition theorem.

5. Prove the following values of sin 3a and cos 3a :

sin 3a = 3 sin a cos
2 « — sin

3 a
;

cos 3a = cos
3 a — 3 sin

2
<* cos or.

6. Transform the expression

# cos ( a+ a?) + 5 cos (/? -}- #) + c cos (^ -f~ a?)

into
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cos x (a cos a-\-b cos ft -\- c cos y)

— sin x {a sin a -\- h sin ft -j- c sin y).

7. If we have

a cos oc -f- 1) cos /? -f- c cos y =
and & sin ar -|~ Z> sin /? -|- g1 sin y = 0,

prove that we must also have

& sin (a -\-x) -\-h sin (/? -\- x) + e sin (y -\- x) = 0,

whatever be the value of x.

42. TAtf Addition Theorem for tangents. Dividing equa-

tion (2) by (3), we have

sin (a 4- ft) , ^ sin a cos /? 4- cos a- sin /?

; T ,i = tan {a+ /?) = £-£-, r-C
COS (a -\-

ft)
\ 1 / cos a cos ^ _ sm a sin ^

Dividing both numerator and denominator of the last member by

cos a cos ft, the equation becomes

, ^ tan a 4- tan fttm ^ + /0 = 1_J gJ> (8)

We obtain in the same way from (4) and (5),

tan a — tan /?

to («-fl = IT
—^ (9)

Putting ft = a in (8) we have

^ —
1 — tan

2 a

'

2 tan a
tan2a =———

.

(10)

Exercises.

1. Assuming /? = 180°, prove by (8) of this section that

tan (a + 180°) = tan a.

2. Assuming a = 30°, substitute in (10) the value of tan 30°

given in § 30, and thus obtain the value of tan 60°.

43. Products of sines and cosines. Taking the sum and

difference of equations (2) and (4) of § 40, and reversing the

members of the equation, we find

2 sin a cos ft = sin (a -\- ft) _|_ sin (a — ft) ;)

2 cos a sin ft = sin (a
-J- ft)

— sin (a — ft). )
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In the same way we find from (3) and (5),

2 cos a cos ft = cos (# + /?) + cos (a — /?) ; )

2 sin a sin ft = — cos (<*+ /?) -f- cos (or — /?). )

Exercises.

1. Prove that if a— /S = 90°,

then cos {a -f- /?) = 2 cos a cos fi = sin 2«r = — sin 2/?.

2. Prove that if a+ = 180°,

then sin (a —•. /3) = 2 sin a cos ft = sin 2/3 = — sin 2ar.

44. $wm of sines and cosines. If in the four equations (11)

and (12) we put
ot-\- fi = x

and a-/3 = y,
we shall have

and /? = i(a? — y).

By substituting these values in (11) and (12) and reversing the

members of the equation, we find

sin x -\- sin y = 2 sin £(a? -f- y) cos -J(a? — y)
;

"

sin a? — sin y = 2 cos -J-(a? -f- y) sin £(a? — y) ;

cos a? -}- cos y = 2 cos -J(a? -f- ^/) cos J(a? — y) ;

— cos x -(- cos y = 2 sin -§-(# -f- ?/) sin |{a? — y).

Dividing the first of this group of equations by the third, we get

sin a? -f- sin y ...

-r = tan i(» + 2/)- (
14

)cos x -\- cosy &\
\
yj \ i

Dividing the second by the fourth, we get

sin x — sin y ^ , ,
. , . K .

- = cot *(a?+ y). (15)
cos 2/

— cos a?
&\ \

v) \ j

If in the last two equations of (13) we suppose y = 0, which

makes cos y = 1, they become

1+ cos a? = 2 cos
2
£a?;

|_

.

1 — cos x = 2 sin
2

ix;\

a pair of equations which frequently come into use.

If we put a = Ja?, these equations become

1 -f- cos 2a = 2 cos
2 a

1 — cos 2a = 2 sin
2 a

which may also be derived directly from (T
;

).

(13)

(16')
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Dividing the second of (16) and (16') by the first, we find

1 — cos x
zr—. = tan

2 %x
; (17)

1 -+- COS X * ' V
'

1 — cos 2a—. g- = tan
2
a. (17')

1 -f- cos 2a v J

45. The problem of dimidiation. It is often required to

express the sine or cosine of half an angle in terms of the sine or

cosine of the entire angle. To effect this let us put in equations

(6) and (7) 2a = y. They then become

sin y = 2 sin \y cos \y

;

cos y = cos
2

\y — sin
2

^y,

= 1-2 sin
2

\y,

= 2 cos
2

\y — 1.

Let our first problem be :

Given, cos y,
Required, sin \y.

Solving the equation cos y = 1 — 2 sin
2

\y, we obtain

i/l — cos V
sin^ = |/ ^-. (19)

Let our next problem be

:

Given, cos ^;
Required, cos ^-^.

Solving the equation cos y — 2 cos
2

\y — 1, we obtain

i/l + COSV
cosir = r

2
• (20)

Let our third problem be

:

Given, sin y

;

Required, sin \y.

In the equation

sin y = 2 sin -J/ cos Jy

we put cos \y = Vl — sin
2

\y and square both members, obtaining

sin
2 y = 4: sin

3

\y (1 — sin
2

\y).
"Reducing,

sin
2

y
sin

4

\y — sin
3

\y+ —j— = 0.

Considering sin J^ as an unknown quantity, this equation can
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be solved as a quadratic. Transposing the last term and adding

J to each member, it becomes

• 41 -si ,1 1 — sin8 Y cos3 Y .sm4

\y - sin
2

\y+ £ = ^-^- = —£— ;

extracting the square root of both members,

• o - -
cos ysm Jr - J = ± -^-;

whence, by solving,

sm ir = r—

2

_z--

Let our fourth problem be

:

Given, sin y

;

Required, cos |-^.

In the equation

2 sin |-x cos \y = sin ^
we put sin \y = Vl — cos

2

%y, and then proceed as before.

Solving with respect to cos \y, we shall find

(21)

V 1 =f= cos y , .

cos£r= ^ £. (22)

We have now to study the different values which these expres-

sions for sin \y and cos \y may have in consequence of the double

signs of the surds and the double signs under the radical sign.

Equations (19) and (20) show that if the cosine of an angle y is

given, the sine and cosine of half that

angle may have either of two opposite

values. The geometrical explanation

of this is that to cos y may correspond

either of two angles, y or 360° — y. ^*\>\'' \~"jSb*

The halves of the general measure of

y are \y and \y + 180° (§ 10). The

halves of the general measure of 360° — y are 180° — \y and — \y
(see diagram).

Therefore the half angle may have either of four values. But

because sin (180° -f- iy)= sin (— \y\ and sin (180° — \y) = sin \y,

the sines and cosines of these four angles will have only two differ-

ent values. This result agrees with equations (19) and (20).
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mayBut suppose the sine of y to be given. The angle y
then have either of two supplementary

values, y and 180° — y. The halves of

the general measure of these angles will

be \y, 90° - iy, 180° + \y , and

270°
-f- \y. The sines and cosines of these

four angles are all different. Therefore ^°

the algebraic expression for the sines

ought to be susceptible of four values

instead of two, as in the first case. Now this is true of equations

(5) and (6), because they show that

sinfr = + y ^o or -*A± cos y

or + 4/i
-cosZor _ 1

/l-^sZ:

and cosjr
J\ — cos y= f

2

or
,
i/i + cosr

^ r
2

or

or

i/1 — cosy
r

2

,/l + cos y
V

' 2 *

Exercises.

1. We have already found sin 30° = \ ; from this find the

sine, cosine, tangent, and cotangent of 15° and of 75°.

2. From the values of the six trigonometric functions for 45°

(§30) find those for 22i°.

3. From the values for 18° find those for 36°.

46. Miscellaneous relations. The following equations are of

occasional use in the applications of trigonometry, and can all be

derived from the formulae of the last two chapters. Their deriva-

tions are therefore presented as an interesting exercise.

1. sin (45° - x) = cos (45° + x).

COS X
2. sin x = ——

.

cot X

3. sin x = sin (60° + x) -- sin (60° --x).
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2 tan %x

19.

4.

5.

sin sd — i f. 2 -i •

1 -f- tan
2 %x

2
~ tan -J^ -{-cot-Jo?'

6.
sin (30° + a?) — sin (30° --X)

sin x — .—

7. sin x = 2 sin
2 (45° + Ja?) - 1 = 1 -

8. cos f = sin s cot £

.

1 — tan
2 le

2 sin
2
(45° - %x).

= sin € cot £

.

1 — tan
2 &e

9. cos s

10. cos # =

1 + tan
2

-K
cot \a — tan -§#

cot \a -f- tan -J^*

1
11.

12.

13.

14.

1 K

COS& — ^ . ;-
, -, •

1 -f- tan a tan J#

cos a = 2 cos (45° -f £«) cos (45° -

2

-44

C0° * ~"
tan (45° + \a) + tan (45° -

2 cot \e
tan6?=

cot
2^-r

2
tan —

-M

16.

17.

cot £0 — tan \&
2 cot 2# = cot a — tan #.

sin 20
tan = —: ^.

tan (45° + Ja) - tan (45° -
tan a =18. ___
sin (^4 -|- -S) tan J[ + tan B cot i? + c°t A
sin (A — B)

~
" tan ^4 — tan ./?

~~
cot i? — cot A'

cos (J. -f- B) _ cot i? — tan A _ cot J. — tan B
cos

(
A — B) ~ cot B -\- tan A ~ cot A -{- tan i?'

21. cos a cos J = cos
2 \{a -\- ~b) — sin

2
\{a — h).

22. sin a sin J — cos
2 %(a — h) — cos

2

J(a -f- b).

23. tan # -|- cot a = 2 cosec 2#.

24. sin
2

<z cos
2
/? — cos

2 a sin
2

j3 = sin (or -j- /?) sin (<*—/?).

25. cos
2

a: cos
2
/? — sin

2 a sin
2
/? = cos (a

-f- /?) cos (a— ft).



CHAPTER Y.

TRIGONOMETRIC PROBLEMS.

47. Problem I. Hawing given two equations of theform
r sin cp = a,

r cos cp = b,

where a and b are given numbers, it is required to compute r

and cp.

Solution. Dividing the first equation by the second, we find

sin cp a= tan cp = T .

cos cp o

From this value of tan cp we find cp itself, then the sine or

cosine of (p, and then r from either of the equations

a b

sin cp cos cp

Example. If r sin cp = 332.76, and r cos cp = 290.08, it is

required to find r and cp.

log sin <p, 9.877 25 (5)

" r sin <p, 2.522 13 (1)

" r cos cp, 2.462 52 (2)

" r = log r sin cp — log sin cp, 2.644 88

" r = log r cos cp — log cos <p, 2.644 88

r, 441.45

The numbers in brackets show the order in which the num-

bers of the computation are written. In writing log r sin cp and

r cos cp spaces are left for inserting log sin cp and log cos cp after cp

is found, so that either of the latter may be subtracted to obtain

r. It is generally best to obtain r from both r sin cp and r cos cp,

because then if any mistake is made in cp it will be shown by a

difference in the results.

log COS % 9.817 64 (6)

" tan 9, 0.059 61 (3)

9, 48° 55'.2 (4)

(1)

(8)

(9)
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On the other hand, a practical computer will not write down

either sin cp or cos (p, but will subtract in his head and write down

log r only.

Exercises.

1. Given r sin cp = 1.297 43, r cos cp = 6.002 4 ; find r and cp.

2. " " =0.08219, " =0.128 8; " "

3. « " =194 683, " =8460.7; " "

48. Distinction of quadrants. In the preceding examples

we have supposed r sin cp and ^ cos cp to be positive, and have

taken cp in the first quadrant. But either or both of these quan-

tities may be negative. Whatever their signs, there are always

two values of cp, differing by 180°, corresponding to any given

value of tan cp (§ 31). Hence the problem admits of two solu-

tions in all cases. In the one r will be positive, in the other

negative.

But in practice only that solution is sought which gives a posi-

tive value of r. This being the case, sin cp and cos cp must have

the same algebraic signs as the given quantities r sin cp and r cos cp

respectively. ISTow consider each case in order :

I. ?* sin cp and r cos cp both positive. The angle cp must then

be taken in the first quadrant, because only in this quadrant are

sin cp and cos cp both positive.

II. r sin cp positive and r cos cp negative. Sin cp is positive

only in quadrants (1) and (2) (§ 21), and cos cp is negative only in

quadrants (2) and (3). Hence the requirement of signs can be

fulfilled only in the second quadrant, and

90°<<p<180°.

III. r sin cp and r cos cp both negative. The only quadrant in

which sine and cosine are both negative is the third. Hence in

this case

180°< <p<270°.

TV. rsin cp negative and r cos cp positive. The only quadrant

in which sin cp is negative and cos cp positive is the fourth. Hence

in this case

270°<^<360°.
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Exercises.

1. Given r sin cp = — 237.09, rcos cp = -\- 192.91 ; find r and cp.

2. " " + 2713.8, " - 9269.2

;

"

3. " " -1.9634, " -0.09654; " "

4. " " -3.6925, " +396.72; " "

5. " " -1S.005, " -2.6943; " "

6. Given 7-sin (9? + 47° 50') = 7.2693,

r cos (<? + 47° 50') = - 12.2916,

to find r and cp.

Note. In this last exercise compute the value of (<p -|- 47° 50') as if it

were one quantity, and subtract the angle 47° 50' from the result.

7. Given r sin (d + x) = — 249.88,

r cos (0+ x) = — 92.62,

^sin(<9-^) = 702.02,

ucos(6 — x) = 516.93;

find the values of r, u, 0, and x.

8. Given r (sin 6 + cos 0) = 298.07,

r (sin 6 — cos 0) = 96.04

;

find r and 6.

49. Problem II. Having given two equations of theform
x cos a -j- y sin a = ^?,

a? sin a: — y cos a = q7

it is required to find the values of x and y.

The elimination is conducted by the method of addition and

subtraction, as follows

:

Multiply the first equation by cos a and the second by sin a.

We thus have

x cos
2 a

-f- y sin a cos a =p cos or

;

x sin
2

<z — 3/ sin a cos a = q sin ar.

Now adding these equations together and remembering that

sin
2 a -f- cos

2 a = 1,

we have
a? = p cos a -f- ^ sin a,

which is the required value of x.
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Next multiply the first equation by sin a and the second by
— cos a. We have

x sin a cos a -\- y sin
2 a = p sin a

;

— x sin a cos <* -f- y cos
2 a = — q cos or.

By addition,

y = ^? sin a: — ^ cos or.

It will be noticed that in these equations x and y are given in

terms of p and ^ by equations of the same form as the original

ones.

Exercise.

Find the value of p and q from the equations

p sin a -j- q cos a = a
;

^? cos or — ^ sin a = 5.

50. Problem III. From the equations

r sin (/? -|- e) = a,

r sin (/? + 6) = J,

tofind the values of r and /?,

—

the other four quantities, a, b, s
>

and 6, being supposed known.

Solution. Developing the sines of fi -f- a and fi -j- 6 (§ 40),

we have
r sin /? cos £ -f- r cos /? sin £ = a ;

)

r sin /? cos 6 -f~ r cos /? sin 6 = b. J
^ '

Regarding r sin /? and r cos /? as the two unknown quantities, we
see that their coefficients are cos £, sin £, cos 6 and sin 6. Multi-

plying the first equation by cos 6 and the second by cos e, we have

r sin /? cos £ cos 6 -f- r cos /3 sin £ cos 6 = a cos 6
;

r sin /? cos £ cos & -\-r cos /3 cos £ sin = b cos £.

Subtracting,

r cos /? (sin £ cos 6 — cos £ sin 6) = a cos 6 — b cos £.

Noting that the coefficient of r cos /3 is sin (£ — 6\ we find, by

division,

a cos — b cos £
r cos p = :

—

t
^—

•

^ sm (e — 6)

To find the value of r sin /3 we multiply the first equation (a)

by sin # and the second by sin £, and subtract. We thus find

r sin /3 (sin £ cos — cos £ sin 6) = 5 sin £ — a sin 6.
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b sin s — a sin 6
Hence r sin /* =

sin (£ _ ^ •

Supposing the numerical values of a, b, e, and 6 to be given,

these equations give the values of r sin /? and r cos /?, from which

r and /? can be computed by Problem I.

Exercises.

Find the values of r sin cp and r cos cp from the following

equations by the preceding method :

1. r cos (cp -\-s) = a, r cos (cp— 6) = J.

J COS £ — (2 COS
Ans

- *"
sm<P = sin(*+ 0)

;

J sin £ 4- a sin
roo8 »'=

sin(S+ 0) •

2. z8 cos (cp -\- s) = a, r sin (^»+ 0) = &•

J cos e — asm
Ans. nmffl = > ^—

;

^ COS (fi — C7)

5 sin £ 4- a cos
r cos cp =

t
^r—

.

^
COS (£ — 0)

3. r sin (<p+ e) = a cos ^, r cos (cp — e) = a sin ^.

a cos (y+ £)
Ans. rsmcp=- ~ '-•

cos 2f '

6 sin (v — £)
y cos cp = ^— \

cos2e

4. Find the values of r and cp from the equations

7>cos(<p4-0) = 3.790 8,

r cos (cp — 6)= 2.060 7,

when = 31° 27'.4.

51. Problem TV, To reduce an expression of theforrr*

a sin 6 -|- b cos

&? # monomial, a and b being given quantities.

Solution. Determine the values of two auxiliary quantities k

and s from the equations

Jc cos £ = #,

&sin £=5,
as in Problem I.
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The given expression will then become, by substitution,

k cos £ sin 6 -\-Jc sin e cos 6 = h sin (d -\- e).

We might equally have supposed Tc sin € = a and h cos e = b>

when the given expression would have become h cos (6 — e).

Example. Reduce the expression

1239.3 sin x — 724.6 cos x

to a monomial.

Jc sin s = — 724.6

Jc cos s = 1239.3

log = - 2.860 10

log = 3.093 18

log tan s
,
- 9.766 92

*, - 30° 18'.8

log COS £, 9.936 15

log*, 3.157 03

Jc, 1435.6

We therefore have

1239.3 sin x - 724.6 cos x = 1435.6 sin (x — 30° 18'.8).

EXEECISES.

Reduce to monomials the expressions

:

1. 27.615 cos m — 23.208 sin p.

2. 3.600 3 sin (6 - 7° 52'.6) + 5.907 sin (0+ 53° 57'.6).

3. Reduce to a monomial the expression

92.65 sin 6 cos a — 196.23 cos 6 sin a,

when a = 162° 48'.7.

4. Reduce to a monomial the expression

cos a cos -f- sin a sin 6 cos H,

when a = 62° 39'.5 and H= 22° 36'.8.

52. Problem Y. 7^ reduce an expression of theform
a sin x cos -f- 5 cos a? sin (1)

to aform which shall not contain the product of any two trigono-

metricfunctions.

Solution. We have, from § 43,

sin x cos = \ sin {x -f- 6) -f- -J-
sin (a? — 0) ;

cos a? sin — J sin (as -f- 6) — \ sin (a? — 6).
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Making these substitutions in the expression (1), it becomes

i(a+ b) sin (x+6) + #a - b) sin (x - 6)

Exercises.

Clear from products of sines and cosines

:

1. m cos a sin ft — n sin a cos ft.

2. a cos 6 cos /* + ° sin sin pi.

3. # cos 6 cos m — b shi 6 sin /*.

53. Peoblem VI. From the equations

r cos ft cos A — a,
^

r cos /? sin A = 5, I (1)

/* sin /? = c, J

to find the values of r, ft, and A, the values of a, b, and c being

given.

Method of solution. Dividing the second equation by the

first we obtain

tanA = -; (2)

from this equation we find A, and then sin A or cos A from the

tables. Then
a b

rco& ft = r = ——

-

(3)
cos A sm A w

can be computed. The value of r sin ft being given by the third

equation (1), the values of r and ft are found by Problem I.

Example. Find r, ft, and A from the equations

r cos ft cos A = — 53.953
;

r cos /?sinA = -f 197.207;

r sin ft = — 39.062.

Work log cos ft, 9.992 21

log r cos /?, 2.310 60

log r sin ft,
- 1.591 75

log tan ft,
- 9.281 15

log r, 2.318 39

r, 208.16

ft, - 10° 49'

log r cos /? cos A, -

log r cos ft sin A,

sin A,

- 1.732 01

2.294 93

9.984 33

log tan A, •

log r cos /?,

- 0.562 92

105° 18'.0

2.310 60
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Exercises.

Find the values of r, /?, and X from

:

1. r cos /? cos X = 1.271 83

;

r cos /? sin X = — 0.981 52

;

r sin /3 = 0.890 02.

2. ^ sin /? sin A = 19.765 3
;

r sin /? cos X = — 7.192 8

;

rcos/3 = 12.124 2.

Miscellaneous Exercises.

1. Compute go and r from the equations

1.268 22 sin go = 0.948 30 + r sin (25° 27'.2)
;,

1.268 22 cos go = 0.281 16 + r cos (25° 27'.2).

First eliminate r.

Ans.. a?= 60° 53'. 8;

r = 0.371 7.

2. Find go and a? from the equations

3 sin go
-f- cos a? = 2a?. Ans. go = 71° 34';

sin a>
-f" 2 cos 63 = x. x = V%.

After finding sin go and cos go in terms of # employ the equation

sin3 go
-f- cos

2 go = 1.

Find a? from the following quadratic equations, and express

the results without surds

:

2a?
3. a?

2+ 1 = -—

.

Ans. a? = cot i a or tan ^ a.
1

sin a * *

a a . 1 o a 1 ± sin a
4. a? +1 = 2a? sec a. Ans. a? =

cos a.

5. 1 — a?
a = 2 a? cot a. Ans. a? = tan £« or — cot \a.

a a -i o j. a
sin a ± 1

6. ar — 1 = 2 a? tan or. Ans. a? =
cos a.

Find (9 from the equations

:

7. 27.615 cos — 23.208 sin 6 = 19.094.

8. 3.6003 sin (0 - 8°) + 5.907 sin {6+ 54°) = 2.6253.

Keduce the first members by Prob. IV.

9. a sin 6 -(- J cos -f- <? = 0.

From this last equation find sin 6, cos 0, and tan 6 by separate

quadratic equations.



CHAPTER VI.

SOLUTION OF TRIANGLES IN GENERAL.

54. A plane triangle has six parts, three sides and three angles.

Of these parts the three angles are not independent of each other,

because when two angles are given the third may be found from

the condition that the sum of the three angles is 180°. Hence, if

two angles are given, the case is the same as if all three were given.

When any three independent parts are given the remaining

three may be found, but in order to be independent one of the

three given parts must be a side.

55. The fact that the sum of the three angles of a plane

triangle is 180° enables us to express a trigonometric function of

any one angle as a similar function of the sum of the other two

angles. It has been shown that

sin x = sin (180° — x)
;

cos x = — cos (180° — x)
;

tan x = — tan (180° — x)
;

cot x = — cot (180° — x)
;

sec x = — sec (180° — x)
;

cosec x = — cosec (180°— x).

If a, ft, and y are the three angles of a triangle, we have

« = i80°-(/? + r)n
fi = 180°-(y+ *);\ (a)

y = 180° - (a + /J). J

Therefore

sin a = sin (fi -f- y) ;

'

sin /? = sin (y + a)
;

sin y = sin (a -f- ft) ;

cos a = — cos {fi-\-y)\

etc. etc.

(i)



62 PLANE TRIGONOMETRY.

By dividing the equations (a) by 2 we find

i/?= 90° -£(/+ «);

Therefore
sinja = cos%(/3-\-y)

cos^a = sin J(/? + x)

tanJ <* = cot ^ (/? -|- 7)

cot J « = tan J (/? + Y)

etc. etc.

(*>

(2>

From what has been said the given parts may be

One side and the angles

;

Two sides and one angle

;

The three sides.

Also, when the sides and one angle are given, this angle may be

either that between the given sides or opposite one of them.

Hence there are four cases in all to be considered.

56. Case I. Given the angles and one side.

Theorem I. The sides of a plane triangle are proportional

to the sines of their opposite angles.

Proof. Put

a, b, c, the three sides

;

a, /?, y, their opposite angles.

From one angle, as y, drop a perpendicu-

lar yD upon the opposite side, c. Then

yD = 5sin a
;
yD = a sin /3. (§ 35)

Therefore

a sin fi = b sin a.

Dividing by sin a sin /?,

a b

sin a ~ sin /?*

By dropping a perpendicular from a upon a we should find, in

the same way,

b c

sin fi
~ sin y

'
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a b e
Therefore -— = -

—

a = -—
, (3)

sin a sin /3 sin y* v J

or a : b : c = sin a : sin /3 : sin ;/. Q.E.D. (4)

ZW\ The common value of the three quotients -:
,

-:—-,J ^
sin a' sin ft

and -— is called the modulus of the triangle,
sm y

Theorem II. The modulus of the triangle is equal to the

diameter of the circumscribed circle.

This theorem may be demonstrated by the student from the

property that an inscribed angle is measured by one half the arc

on which it stands.

Theorem I. enables us, when the angles and one side of any

plane triangle are given, to find the remaining two sides. If the

side given is c, we have
csm a

a =

b =
csin/3

(5)

smy

or, puttingM for the modulus, we have

a = M sin a ; 1

b = Jlfsin/?; \ (6)

c = M sin y. J

If we put p, p', and p" for the lengths of the perpendiculars

from a, /?, and y respectively upon the opposite sides, we find,

from the preceding figure,

p = b sin y = c sin /? ; 1

p' = c sin a = a sin y ; \ (7)

p" = b sin a = a sin /?. J

By these equations we may find the lengths of the perpen-

diculars.

Exercises.

1. Given a = 78° 23'.2, p = 52° 16'.3, a = 796.25 ; find b and c.

2. " «= 5° 26'.2,/? = 72° 36'.8, 6=19.263; " b and c.

3. « a = 50° 58'.7, /? = 32° 50'.8, c = 169.37 ; " a and 5.
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B

V~~C

4. In order to find the distance of a point G across a river

from the points A and B, a sur-

veyor measured a base line AB
and found it to be 829.72 metres.

Placing a theodolite at A, he found

Angle BAG= 82° 37'.6.

Carrying his theodolite to i?, he

found

Angle ABG= 70° 3'.3.

Required the distances .A (7 and BG across the river, and the

length of the perpendicular from G on AB.
5. In a triangle Ai?£7 the angle B exceeds the angle A by

10°, the angle G exceeds the angle B by 20°, and the side AG is

2.72 904 metres. Find the angles and sides of the triangle and

the length of the perpendiculars from the angles upon the oppo-

site sides.

6. The base of an isosceles triangle is 132.643 metres, and the

angle at the vertex is 32° 53'.7. Find the sides and the altitude.

7. One diagonal of a parallelogram measures 23 metres, and it

makes angles of 32° 17' and 63° 24' with the sides. Find the

lengths of the sides and the angles of the parallelogram.

8. From a point at a distance a from the centre of a circle of

radius r tangents are drawn to the circle. Express the lengths of

the tangents and the distance between the points of tangency, and

compute the result when r = 7, a = 12.

57. Case II. Given two sides and the angle op-

posite one of them.
Let the given parts be a, b, a. We then compute the parts /?, y,

and c by the formulae (a) and (3) already found.

a h •

sm/3 = -sin or;

c =

180° -(a+ fi);

bsiny &sin;r

(8)

sin/? '
' sma

This case may have two solutions, as is shown in geometry.

The two solutions are found in the above equations, because to a
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given value of sin/? corresponds either of two angles fi (§21),

which will be supplements of each other.

But if one solution gives «-f /? > 180° it is not admissible,

and only the lesser value is used to give the triangle. This will

be the case when a > b.

It may also happen that sin /3 = - sin a comes out greater than

unity. There is then no possible triangle which fulfils the con-

ditions.

Example. Given a = 152.08, b = 236.74, a= 32° 29'.6 ; find

the remaining parts.

log b, 2.374 27

log sin or, 9.730 14

co log a, 7.817 93

log sin fi, 9.922 34

/?, 56° 44'.9

a, 32° 29'.6

a+ fr 89°14 /

.5

180° OO'.O

or

r,
90° 45'.5

log sin y, 9.999 96

log -^-,,2.45193& sin fi

log o, 2.4518

c, 283.07

or

or

or

or

123° 15'.1

32° 29'.6

155° 44'.7

180° OO'.O

24° 15'.3

9.613 62

2.451 93

2.065 55

116.29

find the remaining parts.

Exercises.

1. Given a = 24, b = 33, a = 31° 28'

2. " a = 34, 5 = 35.79,/? = 17° 59'

3. " a = 29, J = 34, a = 30° 20'

4. " J =19, c = 18, r=15°49'
5. " a = 24, c = 13, ar = 115°0 /

6. From a point P at a distance a from the centre of a circle

of radius r a line is drawn, making the angle /? with the line from

P to the centre of the circle. At what distances from P will the
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line intersect the circle ? Compute the distances when r = 72,

a = 98, and /? = 28° 56'
'.

7. Show that if, in the present case, we take the side which is

not given as the base, we can find the altitude of the triangle im-

mediately, and afterwards may find the three required parts of the

triangle from the altitude.

Case III. Given the three sides.

Theorem III. In a triangle the square of any side is equal

to the sum of the squares of the other two sides minus twice the

product of these two sides into the cosine of the angle included

by them.

In symbolic language this theorem is expressed in any of the

forms _ 9 ,
_

a2 = b
2

-f- g — 2bc cos a, 1

or b
2 = a2+ c

2 -2ac cos /?,
[

(9)

or c
2 = a2

-\- b
2 — 2ab cos y. J

Proof. It is shown in geometry that in any triangle the side

opposite an acute angle is greater than the sum of the squares

of the other two sides by twice the product of one of these sides

into the projection of the other side upon it.

If a be the acute angle, we have, by this theorem,

a2 = b
2

-f- c
2 — 2b X (projection of c on b).

By §35, II., and the definition of projections.

Projection of c on b = c cos a
;

substituting this value of the projection,

a2 = b
2+ c

2 — 2bc cos a. Q.E.D.

The other equations may be proved in exactly the same way.

If the containing angle is obtuse, the square of the opposite

side will be greater than the sum of the squares of the containing

sides. But this case is included in the trigonometric formula,

because then cos a is negative and — be cos a is positive. Hence

the formula is applicable to all cases when regard is had to the

algebraic sign.

From the first of equations (9) we obtain

C0* a= Wc ' (1°>
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which with the two companion formulae enable us to find the

angles when the three sides are given.

59. If the angle is small, it cannot be accurately determined

by means of its cosine ; we therefore transform the expression as

follows

:

Subtracting each member of the equation from unity, we have

V+ tf-a1
' 2bc-b*-c* + a*l_ cos „= i _ -—r = _

.

But 1 - cos a = 2 sin
2 \a (§ 44), and 2bc -b*-c2=-(b — c)\

Therefore

J sin 2a-
2ho

-
2bc

Let us now put s for half the sum of the three sides, so that

s = i(a + b + c).

Then a + b — c = 2s — 2c,

a-b + c = 2s-2b;
and the preceding equation reduces to

sinH « = (*-^- C)
. (11)

The expressions for the other two angles are obtained by the

same process, the letters a, b, c and a, /?, y being permuted in the

orders I, c, a
; fi, y, a and c, a,b

; ^, or, j3. We thus find

(5 — c) (s — a)

2 ca

. (s — a)(s — b)

*™*ir = - s
(12)

These equations answer our purpose, but in determining an

angle the tangent is the function to be preferred, because an angle

can be determined more accurately from its tangent than from its

sine or cosine. To obtain expressions for the tangent add unity

to both sides of the equation (10). We then have

„ ,
b

2 + c
2 -a2

b
2 + 2bc+ c

2 -a2

l+ COs« = 1 + _
s
__ = _

.

Since 1 -|- cos a = 2cos
2 \a (§ 44), this equation reduces to

2cos ia = = .
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Whence cos
2
Jo: =

s(s — a)
(13)

Dividing (11) by this equation, and writing the corresponding

equations for the other angles, we find

(s-b)(s-e)
s(s — a)

tan
2

\ a =

tan
2

£/?

tan
2£/ =

(s — g){s — a)

(s — a)(s — b)

s(s —c)

(14)

The computation will be simplified a little by computing

E ^ aA* -a)(s- b) (s - c)

s

We shall then have

tan J a =
H

tan J /3 =

tanj^ =

(•-a)'

(s-*) ; (15)

By means of these equations we may compute two of the

angles, and find the third by subtracting their sum from 180°.

But in practice it is better to compute the three angles indepen-

dently, and check the accuracy of the work by taking their sum.

If this sum comes out materially different from 180°, there is

some mistake in the work ; if not, it may be presumed correct.

Example. Given a = 273.960, I = 198.632, c = 236.914

;

find the angles.

a = 273.960

I = 198.632

c = 236.914

2s = 709.506

,9 = 354.753

s—a = 80.793

s- 1 — 156.121

s- c = 117.839

log (s -a), 1.907 37

log -b), 2.193 46

log (s -c), 2.071 29

sum of logs, 6.172 12

log s, 2.549 92

log R\ 3.622 20

log H, 1.811 10

log tan Jar, 9.903 73

log tan J/?, 9.61764

log tan ^,9.739 81
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Ja, 38° 42'.1
;

a = 77° 24'.2

£/?, 22° 31'.2

;

/» = 45° 2'.4

Jy, 28° 46'.8

;

r = 57° 33'.6

Sum = 180° 0'.2 (Check.)

The discrepancy of 0'.2 is the result of the unavoidable errors

from the omission of the decimals of the logarithms beyond the

fifth.

Another check on the accuracy of the work is obtained by

computing the modulus of the triangle from its three separate

expressions (§ 56, 3), and noting whether they agree, thus

:

log a, 2.437 69 log b, 2.298 05 log e, 2.374 59

sin a, 9.989 42 sin /?, 9.849 79 sin y, 9.926 32

log modulus, 2.448 27 2.448 26 2.448 27

The three results agree within the unavoidable limits of error.

Exercises.

1. Given a = 3, 5 = 4, <? = 5 ; find the angles.

2. " a = 37 593, b = 29 867, c = 40 005 ; " "

3. « a = 2.796 1, b = 23.928, c = 25.046 ; " "

4. The base of a parallelogram is 13, each side is 6, and it&

lesser diagonal is 12. Find its angles.

5. If the sides of a parallelogram are a and b, and one diagonal

is^>, express its angles.

6. The parallel sides of a trapezoid are 12 and 17, and the non-

parallel sides 6 and 7. Find its four angles.

Suggestion. Divide the trapezoid into a triangle and a parallelogram.

7. In a triangle are given the two sides,

p and <?, and the medial line r from the

vertex to the middle point of the base.

Prove Base = V2p* + 2q* — 4r8
.

8. Given the three medial lines r, r', rn of a triangle ; find

the sides of the triangle from the preceding result.

Ans. | i/2r
8+ 2r" — r'

n
; f V2r2+ 2r"

2 — r"; f V2r'
2+ 2r"*— r\

9. Of the bisectors of the angles at the base of a triangle, the

one cuts the opposite side in the ratio m : n, and the other in the
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Ans. cos a =

ratio p : q. By means of the equation (10) express the cosine of

the angle at the vertex of the triangle.

jfn* -f- q*m
2 —p^m*

2pqmn

Note. In the solution of this question apply

the theorem of geometry which defines the ratio in

which the bisector of an angle cuts the opposite side.

60. Case IV. Given two sides and the included
angle.

This case may be readily solved by Theorem III., because if

the given sides are b and c, and the given included angle is tf, we
have for the third side

a = Vlf + £
2 — %bc cos a.

Then, having the three sides, the remaining angles may be found

as in the last section. But there is a more convenient method

founded on the following theorem

:

Theorem IV. As the sum of any two sides

is to their difference,

so is the tangent of half the sum of the angles opposite these sides

to the tangent of half their difference.

Proof From the equation

b : c : : sin ft : sin y, (Th. I.)

we have, by composition and division,

b+ c : b — c : : sin ft -f- sin y : sin ft — sin y.

But sin /?+ sin y = 2 sin i(ft+ y) cos i(ft - y); (§44)

sin ft — sin y = 2 cos i(ft -f- y) sin \{fi
— y).

Substituting these values, and expressing the proportion as a

fraction,

b -f- e _ sin j{ft -f- y) cos j(ft — y)

b — c ~ cos i(ft -f- y) sin i(ft — y)

= tan Hfi+y)QQkHfi-f) (§33)

_ taniQg+ y)

tan i(ft — y)'

Therefore

b-\-c :b — c timi(J3+ y):tmi(ft-y). Q.E.D. (16)
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The solution is now obtained as follows : "We have

K/*+r)=9o°-i« 5

tan #J3 +y)= cot Ja. (§ 55)

Because the angle a is given, the only unknown term of the

proportion is tan £(/? — y). This is given by the equation

tan i(fi -y)= |^ tan ftf + r), (17)

which is derived from the proportion (15).

By this equation we obtain £(/? — y\ which being added to

and subtracted from £(/? + Y) gives /3 and y. The remain-

ing side of the triangle may then be found by Case I. But

when this side as well as the angles are required, a more elegant

method may be followed, which will be explained in the next

section.

Example. Given b = 4.567, c = 3.456, a = 56° 7'.8 ; find the

remaining parts.

180°

a, 56° 7'.8

b, 4.567

c, 3.456

b - c, 1.111

b+c, 8.023

log (b - c), 0.045 71

colog(5+ c), 9.095 66

log tan i(/3 + y), 0.273 14

log tan i(/3 - y), 9.414 51

+ y, 123° 52'.2

W + y), 61°56'.l

4(/J - r),
14° 33'.6

A 76° 29'.7

^, 47° 22'.5

log 5, 0.659 63 log c, 0.538 57

log sin fi, 9.987 82 log sin y, 9.866 76

log Mod., 0.671 81 log Mod., 0.671 81

a = 3.899 8 log sin a, 9.919 23

log a, 0.591 04

Exercises.

1. Given a = 12.34, b = 43.21, y = 34° 12'; find rem. angles.

2. " 5 = VZ, c = V3, a = 35° 53'; " "

3. " a = 35.79, c = 1.246 8, /? = 97° 53' ; « "

4. " a = 189, b = 114.75, ^ = 107° 48' ; « "
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61. If in the present case all three remaining parts are

wanted, formulae may be derived as follows

:

From the equations (3) we derive

b _ sin J3 c _ sin y
a ~ sin a ' a sin a

*

Adding these equations we have

b + e _ sin j3 -f sin y _ 2 sin -§-(/? + y) cos j(/? — y)

a ~~
' sin a sin a

2 cos ja cos j(/? — /)

2 sin |-« cos -Ja

cos j(/? — r)

sin ^«

Subtracting the equations (#) we have

& — c_ sin yff — sin y _ 2 cos J(J3 -f ^) sin -|(/? — ^)
#"" "~

sin a 2 sin ^a cos \ol

COS f«
v J

From the equations (c) and (J) we obtain

a sin £(/? — ^) = (b — 6) cos £a, )

# cos £(/? — r) = 0&+ c) sin i« ;

J

which equations are readily solved by Prob. I. Chap. V.

By taking the quotient of these equations we may readily

deduce the relation (16).

Exercises.

1. Given £=2956.2, c=9090.8, a=9S° 29'.6; find /?, y, and a.

2. A surveyor lays off two lines from the same point : the one

due north, 279.25 metres, the other east 15° north, 109.262 metres.

How far apart are the ends of the lines, and what is the direction

of the line joining them ?

3. The sides of a parallelogram are 26 and 15, and one angle is

126° 52'.2. Find the lengths of the two diagonals and the angles

which they make with the sides.

4. Given the two diagonals d and df of a parallelogram and

the angle e which they form ; express the sides and angles of the

parallelogram algebraically and compute them for the special case

d = 5, d' = 6, s = 49° 18'.
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Areas of Triangles.

62. Theorem V. The area of a triangle is equal to half the

product of any two sides hy the sine of tJieir included angle.

Proof. It is shown in geometry

that the area is half the base into the

altitude. Now in the figure,

Altitude h = o sin y.

Therefore, a being the base, 7 ^
a

x

^

Area = \ah = \ah sin y. Q.E.D.

Cor. 1. If two triangles have two sides of the one respectively

equal to two sides of the other, and the angles which these sides

form supplementary, the triangles will he equal in area.

For the sines of the supplementary angles are equal.

Cor. 2. Since we may take any one side as a base, if we call

h, h' , h" the altitudes above the respective sides a, h, and c, we
shall have a7l = W = ch^
and db sin y = he sin a = ca sin /?.

For these expressions are each double the area of the triangle.

Exeecises.

1. Given a = 75, I = 29, /? = 16° 15'.6 ; find the remaining

parts and the areas of the two triangles which may be formed.

2. Express the area of a parallelogram of which two adjoining

sides are of given length, a and h, and make with each other a

given angle 6\

3. Express the area of a triangle in terms of a base, c, and the

two adjacent angles, a and /?. . ± a
sin a sin f3

•t*ns. <2,c —.
t j

-pjr.

sin {a -f- /3)

4. In a parallelogram is given a diagonal of length d, and the

angles and cp which the diagonal makes with the two sides

adjoining it. Express the area of the parallelogram.

5. Express the area of the parallelogram in terms of the lengths,

d and d' , of its diagonals, and the angle s at which they intersect.

6. In a quadrilateral are given the four sides, a = 25.63,

h = 24.09, c = 9.92, d = 29.97, and the angle, 78° 25
r

, which

the sides a and h form with each other. Compute the angles and

the area of the quadrilateral.
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7. A triangleABC is to be divided into two parts of equal area

by a line parallel to AB. What will be the ratios of the segments

into which the other two sides are divided ? Ans. Vi : 1 — V'-J-

8. A city lot fronts 60 feet on a street, and the parallel sides

ran back, the one 100 and the other 135 feet. It is to be divided

into two equal parts by a line parallel to its sides. What will be

the frontage of each part, and the length of the dividing line?

BemarJc.—The figure of the lot is a trapezoid, and the problem

is that of dividing a trapezoid into two equal portions by a line

parallel to the base. Let us put

a, b, the parallel sides

;

m : 1 — m, the ratio in which the non parallel sides, and there-

fore the altitude, is divided by the dividing line

;

k, the length of the dividing line.

The unknown quantities of the problem are then m and Jc. If

we put h for the altitude of the entire trapezoid, the altitudes of

the two parts will be mh and (1 — m) h respectively. Therefore

the areas will be . 7 7 . -,

—^— mh and — 1—~ (1 — m) h

the equality of which gives the first condition. For the second

condition we have the geometrical theorem that the difference be-

tween the dividing line and either of the parallel sides is propor-

tional to its distance from such side. This gives the proportion

a — k : k — b :: m : 1 — m,

whence (Jc — b) m = (a — Jc) (1 — m).

The quotient of this equation by the preceding one gives an

equation from which m is eliminated, and from which we find the

value of Jc. a/^+E

We then find for m the equation

a — Jcm = 7.
a — b

Applying this method to the problem under consideration, we find

Jc = 118.796 feet

;

m — 0.462 97;

frontages of lots, 27.778 and 32.222 feet.



CHAPTEK VII.

THE THEORY OF POLYGONS.

63. A polygon is completely determined when the positions

of its vertices, taken in regular order, are given. The polygon

may then be formed by joining each pair of consecutive vertices

by a straight line.

The positions of the vertices may be defined by their co-ordi-

nates, on a system now to be explained.

64. Co-ordinates of a point. In geometry the position of a

point is fixed by assigning to it certain lines or numbers indicating

its situation relative to a fixed line, and a point on that line.

Def. Any numbers or lines which determine the position of a

point are called the co-ordinates of that point.

Rectangular co-ordinates. Let OX be the fixed line of refer-

ence, and O a point of reference on that line p
from which we measure.

Let P be a point whose position is to be

expressed. From P drop a perpendicular

PA upon OX. Then

:

6 a
X

The line PA is called the ordinate of the point P.

The line OA is called the abscissa of the point P.

The ordinate and abscissa are called rectangular co-ordi-

nates of the point.

The indefinite line OX along which the abscissas are measured

is called the axis of abscissas or the axis of X.
The zero point from which the co-ordinates are measured is

called the origin.
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"When the rectangular co-ordinates are given the position of

the point is completely determined.

To find the point when -the ordinate and abscissa are given, we
measure off from 0, on the line OX, a distance equal to the given

abscissa.

At the end of this distance we erect a perpendicular equal to

the given ordinate.

The end of this perpendicular will be the required position of

the point.

The abscissa of a point is represented by the symbol x, the

ordinate by the symbol y.

If x is positive, its length is laid off from toward the right

;

if negative, toward the left

If the ordinate y is positive, it is measured upward from the

axis of X\ if negative, downward.

Exercises.

Draw a line OX 4 or 5 inches long as a line of reference, and

lay off points having the following co-ordinates from a zero point

near the middle of the line :

1. x = 1, y = 2iaches

;

2. x = 2, y = 1 a

3. x = 2, y = 2 «

4. x = 1, y = 1 a

5. X = 1, y = - 2 a

6. x = 2, y = - 1 a

7. x — — 2, y = -• 2 a

8. x = — 1, y = 2 a

9. x = 0, y = - 2 u

Polar co-ordmates. Dra\*r a line from to P, and call r i

length and cp the angle XOP. Then P

OD:= x = r cos <P,
.-''

DP.= y = r sin <V,

and Problem I. of Chapter V. reduces to

:

s^. . . , ...

Given the co-ordinates x and y of a O D

gomt, tofind the distance and direction of thepomtfrom the origin.
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Since the quantities r and cp completely determine the position

of P, they are also co-ordinates. To distinguish them they are

called polar co-ordinates.

Exercise.

Eight points have the following several co-ordinates. Find

the values of cp and r (the values of r being all equal), and note

what relation exists among the values of cp.

1. * = + 4, y = + 3;

2. x = + 3, y = +4;
3. x = — 3, y = - 4;

4. a? = — 4, 2/ = +3;
5. a? = — 4, y = — «;

6. a> = — 3, y = - 4;

7. * = + 3, 2/ = - 4;

8. x = +4, y =-3.

65. Definition of direction of lines and angle between

them. Two finite lines which do not meet are considered to form

a certain angle with each other ; namely, the angle which would

be formed if they were continued until they met, or if a line paral-

lel to the one were drawn through any point of the other.

Since at the point of crossing four angles are formed, we may,

in the absence of any convention, regard either of these angles as

that between the lines. But as opposite angles are equal, these

angles only have two different values.

Also, in the absence of a convention, we may regard any angle

as either positive or negative. Hence to a given inclination of

the lines may be assigned any one of four different values, which

values are divisible into two supplementary pairs.

Example. If two lines intersect at an angle of 85°, we may
consider their inclination, or the angle which they form, to be

either 85°,

or 95°,

or - 85° = 275°,

or - 95° = 265°.
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This ambiguity is avoided by the following conventions

:

1. We assign to each line a positive and a negative direction.

The positive direction is that from the beginning to the end of a

finite line. The angle they form is then that between their posi-

tive directions. This is the same as the angle between two lines

going out from the same point in the respective positive directions

of the lines.

2. We consider one side of the angle as that from which we
measure, and we measure the angle to the other side in a positive

direction, as explained in §§ 3 and 8.

The four values are thus reduced to one.

If two lines are parallel, their angle is 0° or 180° according as.

they are similarly directed or oppositely directed.

Projections of Lines.

66, Def. The projection of a finite straight line AB upon

an indefinite line XY is the distance A'B' between the feet of

the perpendiculars from A and B upon the indefinite line.

Bk b

B^

To find the length of a projection. Through one end of the

line, as A, draw A

C

parallel to XY, meeting BYm 0. Then

AO=XY;
AO=AB cos BAG.

Hence
Projection XY = AB cos BA C. (1)

That is,

The projection is equal to the length of the line projected into

the cosine of the angle which the two Imesform with each other.
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Algebraic sign of a projection. Let the positive direction of

the line OB be from to B, and let the line turn on O into the

successive positions 00 and OD.

If on the line of projection we re-

gard directions toward the right as posi-

tive, the projection A'B' will be positive.

The whole line 00 will be projected

at the point O; the projection will

therefore be zero, a result given bj the

formula (1), because cos 90° = 0.

The projection A 'D' of OD will be negative because it falls

in the negative direction. This also corresponds to the formula,

because the angle between the two directions OD and A'
B' is

obtuse.

If we suppose OB to perform a complete revolution around O,

we readily see that its projection goes through the same series of

changes as the cosine of the angle which it forms with the line of

projection.

6*7. Projection of sides of apolygon. Let ABODE be any

})olygon the positive directions of whose sides correspond with

the circuit we should form in going round the polygon, so as

to reach its vertices in alphabetical

order. We shall then have, for the

projections on the line X,

Proj. of AB - A'B', which is +
" BC=B'C, " -

CD = CD', " -
" DE=D'E', " —
" EA = E'A, " +.

The positive direction being arbitrary, we might equally take

the directions AE, ED, DO, etc., as positive. Each of the pro-

jections would then have the opposite algebraic sign from that

just given.
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The student will remark that the projection of the line is

positive or negative according as the projection of its end is on

the positive or negative side of the projection of its beginning.

We wish now to determine the sum of the projections, and for

this purpose must understand the algebraic addition of lines.

68. Algebraic addition of lines. In geometry the sum of

two segments AB and BCis denned
, , , ,

as the segment A C, formed by put-
A

ting AB and BO end to end in the same straight line.

In trigonometry and modern geometry we distinguish between

the beginning and the end of each segment, and between the posi-

tive and negative directions upon the segment ; the positive direc-

tion being from the beginning toward the end ; the negative,

from the end toward the beginning.

When this distinction is attended to we must, in designating a

segment by letters at its termini, write that letter first which is at

the beginning of the segment, so that the letters shall follow each

other in the positive order. The segment BA will then be the

negative of the segment AB.
We now generalize the definition of the addition of lines as

follows

:

Def. The algebraic sum of several lines is formed by placing

the beginning of each line after the first at the end of the line

next preceding. This sum is then the segment from the begin-

ning of the first line to the end of the last one.

Example.—In the preceding figure we have

AO+ CE=AE,
as in geometry, because both segments are positive.

But if we consider the segment CD as beginning at C and

ending at D, then, by the above definition, the algebraic sum

of the segments AC and CD will be the segment AD, from

the beginning of AC to the end of CD. That is, a negative

segment will be subtractive in the same way that in algebra

the addition of a negative to a positive quantity implies sub-

traction.



THEORY OF POLYGONS. 81

In general, whenever A, B, C, D, E, ^represent points npon

a straight line, we have

AB + BO+ CD + DE+ EF = AE,

however these points may be situated.

If the end of the last line coincides with the beginning of the

first, the sum will be zero, by definition. Hence, however the

points A, B, and O may be situated, we have

AB + BA = 0;

AB + BO+ CA = 0.

69. Let us now return to the projected polygon. On the pre-

ceding system, the sum of the projections of the several sides upon

the line X is

A'B' + B'C / + CD' + D'E' + E'A' = 0.

The same thing would be true if we took any other straight

line as the line of projection. Hence

:

Theorem I. The algebraic sum of the projections of the sides

of a polygon upon any straight line is zero.

Since the projection of each side is equal to its length into the

cosine of the angle it makes with the line of projection, this theo-

rem may be expressed in the following form :

If the sides of a polygon be a, b, c, etc., and the angles which

these sides make with any straight line be a, /?, yy
etc., we shall

have
a cos a -\- o cos p -f- c cos y -f- etc. = 0.

We may imagine the sides of the polygon all taken up and

placed with their beginnings at the

same point, their length and direction,

remaining unchanged.

Their several projections will then

have the same values as before, and

in consequence the algebraic sum of

the projections will still be zero.

70. We now have the following

theorem, the demonstration of which is left as an exercise for the

student

:
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Theorem II. If the algebraic sums of the projections of three

or more straight lines upon any two non-parallel lines are each

zero, these lines when placed end to end without changing their

directions will form a polygon, the end of the last line falling

upon the beginning of the first.

Note. To fix the ideas the student may

suppose the lines as first given to all ema-

nate from one point, as in the last figure.

The demonstration is begun by show-

ing that in case the sum of the projections

upon a straight line is zero, then, when the

lines are placed end to end, the end of the

last line and the beginning of the first must

lie on the same perpendicular to the line of

projection. Thus, in the figure, the sum of the projections of the four un-

broken lines is zero, although they do not form a polygon. But, with such a

figure, the projections will not be zero on any other non-parallel line.

71. Theorem III. If a, b, c, etc., be the sides of a polygon,

and a, j3, y, etc., the angles which these sides form with any

straight line, we shall have

a sin a -f- b sin /3 -|- c sin y -f- etc. = 0.

Proof. Let OX be the base line from which the angles a, /?,

y, etc., are counted ; AB, any side

of the polygon; a, its length;

a, the angle which AB makes

with X
Draw OYperpendicular to OX,

and let PQ be the projection of

AB npon OY. AB will then

make with Y an angle 90° — a, and we shall have

Projection PQ = a cos (90° — a) = a sin a.

Treating all the other sides in the same way, the algebraic sum

of their projections upon Y is found to be

a sin a -\- b sin /? + c sin y -f- etc.,

which sum is zero by Theorem I.

Theorem IY. If the sum of the projections of a series of

straight lines upon any two non-parallel lines be zero, the sum of

their projections upon any third line will be zero.
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Note. This theorem follows immediately from Theorems I. and II., hut

we prove it algebraically in order to show an elegant application of the addition

theorem.

Proof. Put

ar, /?, y, etc., the angles which the straight lines make with one

of the lines of projection
;

7t, the angle which the first two lines of projection make with

each other.

Then a — jr, (3 — n, y — n, etc., will be the angles which the

lines make with the second line of projection.

By hypothesis we have

a cos a -\- b cos /3 -f- c cos y -f- etc. = ; (a)

a cos (a — 7t) -f- b cos (ft
— it) -f- c cos (y — it) -f- etc. = 0.

The last equation, by the addition theorem, reduces to

cos n (a cos a -f- b cos f$ -\- c cos y -|~ . . .
)

-|- sin ^ (a sin « + Z> sin J3 -\- c sin y -j- . . . ) = 0.

The first term of this equation vanishes by (a).

Hence, the whole sum being zero, the second term must also

vanish, which requires that we either have

sin n = 0,

which will give 7t = or 180°,—in which case the two lines would

be parallel,—or

a sin a -\- b sin /3 -\- c sin y -f- etc. = 0. (b)

Since, by hypothesis, the two lines are not parallel, the equa-

tion b must hold true.

Now let 6 be the angle which any third line of projection

forms with the first line. The angles which the lines a, b, c, etc.,

form with this third line will then be

a — 6, 0—0, y — 0, etc.

Therefore the sum of the projections upon this line will be

a cos (a — 6) -\- b cos (0 — 6) + c cos (y — 6) -f- etc.,

which reduces to

cos 6 {a cos a -f- o cos /3 -\- e cos y + etc.)

-\- sin 6 (a sin a -\- b sin y -f- c sin y -f- etc.),

a sum which vanishes by (a) and (b), whatever be the value of 6
y

thus proving the theorem.
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12. Cor. From §§ 69 and 71 it follows that if all the sides of

a polygon but one are given in length and direction,

—

a, ft, c, etc.,

being the lengths, and ar, ft, y, etc., the angles with a fixed base

line,—and if I be the omitted side and <? its angle, we shall have

I sin S, = — a sin a — ft sin ft
— c sin y — etc.; V . .

I cos 8, = — a cos « — 5 cos y — c cos y — etc.; J

which will determine I and <?, by Prob. I. Chap. Y.

Example. A surveyor measures off courses and distances as

follows :

I. North 80° 28' east, 42.68 metres.

II. North 23° 22' east, 22.79 "

III. North 65° W west, 31.96 "

IY. South 59° 58 r
west, 40.13 "

What distance and direction will

carry him to his starting-point?

"We note that the expression

North r
c
east

means
r° east of north.

Taking the east and west line

OX as the base from which we o—

—

x
measure angles, we readily find

the angles made by each side with the base, as shown in the

following table, which also gives the values of a sin a, ft sin yff,

etc., and a cos «, ft cos ft, etc., as computed from the given data

:

Side. Length. Angle. a sin a,

etc.
a cos a,

etc.

a
b

c

d

42.68
22.79
31.96
40.13

9° 32'

66° 38'

155° 49'

210° 2'

+ 7.069

+ 20.921

+ 13.093
- 20.085

+ 42.090

+ 9.039
- 29.155
- 34.742

+ 20.998 - 12.768

Hence from (2) we have, for the last side,

I sin Z = — 20.998;

I cos 3 = + 12.768;
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from which we find

1 = 24.575;

3 = 301° 18'.1.

Expressed in the language of surveyors, the angle Z indicates the

direction, South 31° 18'.2 East.

It will be seen that we have taken as the positive direction of

the last line that from the point last reached to the starting-point.

This is in accordance with the convention that the positive direc-

tions of the several sides of a polygon are so taken that in passing

around it the directions shall all be positive or all negative.

But we might equally consider the problem: Having pro-

ceeded along a series of connected lines, AB, BO, etc., of which

the lengths and directions are given, to E, what is our distance

and direction from our starting-point A ? It is evident that the

distance and direction are the length and direction of the line AE,
which is simply the negative of the side EA necessary to com-

plete the polygon. If we call e the angle of direction of AE, the

equations for determining I and e would be
.

I sin e = a sin a -\- b sin /? -)- etc.;

)

I cos s = a cos a -\- b cos /?, etc.;
)

and, in the preceding example, we should have

I sin s = -f 20.998

;

I cos e = — 12.768

;

which would give

1 = 24.575;

s = 121° 18'.1.

Exercises.

1. A surveyor ran a course S. 12° 13 r
E., 289.26 metres, and

thence 1ST. 82° 49 r
E., 92.68 metres. What is his direction and

distance from his starting-point ? "What is the direction and dis-

tance of the starting-point from him ?

2. Five sides of an irregular hexagon taken in order have the

following lengths and directions relative to a fixed line

:

a. Length, 297.43 metres; direction, 332° 6
r

.8

b. " 606.07 " " 222°42,
.3

c. " 421.02 " " 157° 59
/

.8
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d. Length, 343.90 metres; direction, 5° 22'.1

;

e.
" 40.92 " " 125° 2'.2.

What is the length and direction of the remaining side \

73. Areas of polygons. When the sides of a polygon are

all given in length and direction, the area may be computed by a

process demonstrated in geometry,

but which we shall describe here.

Let ABCDE be any polygon,

and OX the base line from which

we measure angles.

The area of this polygon is

equal to

Area A'ABCC
c

minus Area A 1'AEDCC'. A' & ^T r/ c' ~

The first area is equal to the sum of the areas of the two

trapezoids

A'ABB' and B'BCC
The second is equal to the sum of the areas of the three

trapezoids g,^^ DIJ)EE >, and E'EAA'.
It will be noted that there is one trapezoid for each side of the

polygon, of which the non-parallel sides are the side of the poly-

gon and its projection upon the base line.

We have for the area of the first trapezoid, noting that the

base line OX is perpendicular to the parallel sides,

Area A'ABB' = \(AA' + BB f

) A'B'.

Putting, as before,

a, b, c, etc., for the length of the sides AB, BC, CD, etc.;

a, /?, y, etc., for the angles which they form with OX;
putting, also,

_£>, the length AA',
we have

BB ' =p -f- a sin a
;

A'B ' = a cos a.

Substituting these values, we have, for the area of the first trapezoid,

Area A'ABB' = i(2p -|" a sm a) a cos a-
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Passing on to the other trapezoids, we have, for the lengths of

the several perpendiculars,

BB ' =p -f- a sin a
;

CC =p + a sin a -\- b sin /3 ;

DD ' =p -\- a sin a-{-b sin ft -{-c sin y\

EE' —p -f- a sin a -f- b sin /ff+ c sin y -\- d sin 6

=p-esine; (§71)

Also, for the altitudes of the trapezoids between their parallel

sides,

A'B ' = a cos a
;

B'C = b cos /?;

(7
/

i>
/ = ccosr;

i>
/^7/

r=^Zcos tf;

^'J.' = 6 COS £.

We thus have, for the several areas,

%(2p -f- a sin a) & cos a
;

2 (2j? + 2a sin a -\- b sin /?) 5 cos /?

;

ii^P + 2a sm ** + 25 sin /? -|- c sm K) <? cos ^

;

2 (^p + 2a sin « -f
- 25 sm ^ + 2c sin y -J- a

7

sin 6") a7

cos 6"

;

i(^P + 2a sin or -|- 25 sin /? -f- 2c sin y
-\- 2d sin 6 -{- sin f) c cos £.

It has been shown that the required area of the polygon is

found by subtracting the last three of these areas from the first two.

But in reaching this conclusion we took no account of algebraic

signs, and so virtually considered the areas all positive. 'Now, as

the figure is drawn, cos a and cos ft are positive, and the cosines

of y, tf, and s are negative. Hence if we put the sign -|- before

each of the areas (a), the subtraction will be indicated by the

negative character of those products which have cos y, cos #, and

cos s as factors, and so the algebraic expression will be correct.

If we add up the quantities (a), beginning with the terms in p,
we see that the coefficient of p is

a cos a+ b cos ft -\- . . . + e cos *>

which is zero. Hence the quantity p disappears from the expres-

sion for the area. Since p is defined as the distance below A at

(a)
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which the base line 0Xis drawn, this is the same as saying that

the area of the polygon is independent of this distance, which evi-

dently must be true. In fact, if we suppose the base line OX to

move up or down, remaining parallel to itself, it will add and sub-

tract equal areas to or from the positive and negative trapezoids,

and so will leave the algebraic sum of the areas unchanged.

Now let us suppose^? zero, and put

yx
= a sin a

;

y2
= %a sin a -f- 5 sin /3 = yx

-|- a sin a -\- b sin /3
;

y3
= 2a sin a + 2h sin fi -J- c sin y = y2 -+ I sin ft -f- c sin y ; t(5)

^ = 2/3 + csin;r + ^sintf;

yb
= y4

-|- ^ sin d -|- 6 sin f

.

(We remark that y5
will come out equal to — e sin e if every-

thing is correct.)

We shall then have, for the double of the area of the polygon,

2 Area = y^a cos a -+ yjb cos /? -+• y3
e cos y -f- y4<# cos d -j- y5

6 cos f. (4)

As an example, let us compute the area of the polygon investi-

gated in the example of §72. The following table shows the

principal parts of the computation

:

a sin a,

b sin j3,

etc.

Smns of Pairs. Vi, 2/2.

etc.

a COS a,

6 cos /3,

etc.

Products.

h 7.069
- 20.921
- 13.093
- 20.085
- 20.998

+ 27.990

+ 34.014
- 6.992
- 41.083

- 7.069
- 35.059
- 69.073
- 62.081
- 20.998

+ 42.090

+ 9.039
- 29.155
- 34.742

+ 12.768

+ 297.5

+ 316.9
- 2013.9
- 2156.8

+ 268.1

- 3288.2

The first column gives the values of a sin a, ~b sin /3, c sin y>

etc., already computed in the preceding example.

The second column gives the values of a sin a -\- h sin /?,

h sin j3 +- g sin y, etc., which are added to each value of y to form

the value of y next following, as shown in (b).

The third column gives the values of y„ y„ y3 , y4 , yb ,
computed

by the formulae (5), from the numbers in the first two columns.
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The fourth column gives the values of a cos a, b cos /?, c cos y,

etc., already computed.

The fifth column gives the products which enter into the

equation (c).

The algebraic sum being twice the area, we have

Area of polygon = 1644.1 square metres.

74. It will be noticed that the area of the polygon comes out

negative, and the question arises, What interpretation is to be put

on this result ? The answer is that the conventions of positive and

negative as employed in this chapter, as applied to lines, express

only the directions in which the lines are reckoned. By a change

of direction the algebraic signs of all the trapezoids, and therefore

of the area of the polygon itself, will be changed. A little con-

sideration will show that this area will come out positive when we

go round the polygon in what we have called the negative direc-

tion, and vice versa.

The algebraic sum of the areas, whether positive or negative,

will always be the true area of the trapezoid under one important

condition : that none of the sides cross each other. In this case the

system of applying the algebraic signs will lead to the areas on the

two sides of the point of crossing having opposite signs. Hence

the result finally obtained will be the difference of the two areas.

Exercises.

1. If the lengths and directions of three of the four sides of a

quadrilateral are

a = 262.72 metres; a = 39° 49'

I = 109.79 " /? = 150° 26'

c = 300.63 " y = 242° 52'

find the remaining side and the area.

2. The sides of a quadrilateral, taken in regular order, have the

following lengths and directions, in part

:

a = 29; a = 12° 26'

I = 52; fi = 75° 58'

c to be found; y = 172° 3'

d = 66; d to be found.

Find c and S.
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3. Prove geometrically that if the sides of a polygon be joined

together in any order, their directions

remaining unaltered, the end of the

last side will still fall upon the begin-

ning of the first.

An example of the construction is shown

in the figure, where the sides are changed from'

the order abed to adbc.

4c. Express the lengths (x and a/)

and the directions (6 and d') of the diagonals of a quadrilateral of

which the lengths of the sides, taken in order, are a, ft, c, d, and

their directions a, /?, y, 6\

It is only necessary to express the values of the quantities x sin 0, x cos 0,

x' sin S', and x' cos 6' in terms of a, b, c, d, a, /3, etc. "We may suppose x and 6

to refer to the diagonal from the beginning of a to the beginning of c, and x'

and 6' to run from the end of a to the end of c.

5. Using the same notation as in § 71, prove

ft sin (j3 -— a) -\- e sin (y — a) -f- d sin (d — a) -\- etc. = ;

a + ft cos (ft — a) -j- c cos (y — a) -j- d cos (S — a)
-f- etc. = 0.

6. If or, /?, and y are the angles which the sides a, ft, and c of

a triangle make with a base line, and A
9
B, and (7 are the interior

angles of the triangle, it is required

—

(1) To show

A = 180° + fi — y ; B = 180° + y-a; C=180°+a-/3.
(2) By combining the equations of Ex. 5, to deduce the law

of sines (§ 56, 3) and the fundamental equations (§ 58, 9).

7. From the same point emanate three lines, OA, OB, 00,

of such lengths and directions that the sum of their projections

upon any third line vanishes. If we complete the three parallelo-

grams, of each of which two adjacent sides are two of the lines,

the areas of these three parallelograms will be equal.

Both a geometric and an algebraic proof may be given ; the former from

§ 70, Th. I., the latter from § 62.

8. From the corners A and B of a pentagonal field ABODE
an engineer measures angles as follows

:

Angle BAG = 79° 23 r

.6

;

Angle ABO = 47° 29 r

.7

;

Angle BAB = 130° 7'.0

;

Angle ABB = 153° 42'.7

;

Angle BAE = 152° 40 /

.2. Angle ABE = 164° 0'.8.

AB measures 192 metres. Find the remaining sides and the area.



CHAPTER VII.

TRIGONOMETRIC DEVELOPMENTS*

75. Lemma. When an arc becomes indefinitely small, the

ratio of the sine to its a/rc approaches unity as its limit.

Remark. In this lemma it is supposed that the arc is expressed

in terms of radius as unity.

Proof. It is laid down as an axiom of elementary geometry

that when the number of sides of an inscribed

regular polygon is indefinitely increased, the pe-

rimeter of the polygon approaches the circum- ^'
ference of the circle as its limit. That is, the <Cx

ratio
x^

x

perimeter of polygon
. .- -

c , . ., approaches 1 indefinitely.
circumference of circle rr J

Kow, if we divide the circumference into n equal arcs, the n
chords of these arcs, forming the perimeter of the inscribed poly-

gon, will each be twice the sine of half the arc (§ 18). That is,

we shall have

Perimeter of polygon = 2n X sine of each arc

;

Circumference of circle = 2n equal arcs.

Therefore the above ratio is equal to

sine of arc

arc itself
'

* The study of this chapter requires a knowledge of so much of series and im-

aginary quantities as is contained in Book XL, Chapters L, II. , and V., and Book
XII.

, Chapter L, of the author's " College Algebra." It may be advantageously

Tead in connection with Book XII. , Chapter II. , of that work. Students taking a
partial course may pass to spherical trigonometry without reading this chapter.
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which therefore approaches unity as its limit when n is increased

indefinitely.

76, Problem. To develop the sine and cosme of an angle m
terms of the ascending powers of the angle.

Let us suppose

sin x = s + Sjpn+ sji? -f- szx
z
-\- s4

cc
4 + sh

x* -f- etc.; (1)

cos x = c + c
x
x+ o^ + G

*
x* +^4+ CfP?+ etc. (2)

in which s , s„ 82 , etc., and o , e c„ etc., are coefficients whose values

are to be determined from some known properties of the sine

and cosine.

Since sine (— x) == — since, the series for sin a? must change

its algebraic sign when the algebraic sign of x changes. But only

the odd powers of x will then change their sign. Therefore the

even powers must not enter into the development, and we must

have s = s2
= s4

= etc. = 0.

The complete analytic proof of this proposition may be put into the following

form. Changing x to — x in the development (1), we have

sin (— x) = s — SiX-\- s2#2 — szxz -\- s^x* — etc.

But we have, by changing the signs of both members of (1),

— sin x — —s — sxx — SiX2 — s3xz — SiX4 — etc.

Because these developments must be identically equal, we must have

So — — So,

*a = — «a,

«4 = — Sif

etc. etc.,

which gives s = s» = s4 = etc. = 0.

Therefore the development of the sine becomes

sin x = s
x
x+ s3

a?
3 + sbx

b

-f- etc.

Dividing this equation by x, we have

since . ,— =s, + s3
x* + sbx* + etc.

Now suppose x to approach indefinitely near to zero. The

first member will then, according to the lemma, approach unity as

its limit, and the second member will approach s
1
as its limit.

Therefore we must have s
1
= 1, and the development becomes

sin x = x+ s3
x* -f- SfP?+ etc. (3)

Next take the development (2) for cos a?. If we suppose x = 0,



TRIGONOMETRIC DEVELOPMENTS. 93

we have cos x = 1. Therefore, putting x = 0, equation (2) will

become
1 = <?.,

which is the required value of c .

Again, because cos (— x) = cos x, the development of cos x

must remain unaltered when we change x into — x.

Because this change will reverse the signs of all the odd powers

of a?, the coefficients of ox, c„ etc., of these powers must all vanish,

and the development must be

cos x = 1 + <?
3
#2+ c

A
x* -f- C

6
X* ... (4)

77. We must now choose some property of the sine and

cosine which will enable us to form equations of condition for the

coefficients s
3 > s

b
,etc, and c%, <?

4 , c
t , etc. The most simple prop-

erty for this purpose is that expressed by the addition theorem :

sin (x-\-y) = sin x cos y -\- cos x sin y. (5)

Because the equation (3) is to be true for all values of x, it

must remain true when x -f- y is substituted for x. Making this

substitution in (3), we have

sin(a>+y) = x + y -f s
3
(x+ yf+ s

b
(x+ y)

5 + etc.

Developing the powers in the second member, and collecting

the terms multiplied by the first power of y, we have

sin (x -\- y) = x -\- s
3
x

3

-f- s
b
x5

-f- s,x
7

-f- . . . 1

+ 2/(1 + 3^2 + 5^ + 7s,x
6 + ...)[ (6)

-f- terms X y
2

, y\ etc., J

which we need not compute.

From (5) we have, by substituting for cos y and sin y their

assumed developments, (3) and (4),

sin (x+y) = sin x(l + ctf + ctf + ....) 1

+ cos x(y + s3f + etc.) I (7)

= sin x -\- y cos x -\- terms X y*, y% etc. J

Now the expressions (6) and (7) must be identically equal;

therefore the coefficients of each power of y must be identically

equal. Equating the coefficients of the first power of y, we have

1 -f- Ss3
x2

-f- 5s5
a?

4+ 7s,x
6
-\- etc. = cos x.

But we have, by (4),

cos a? = 1 + o^2+ e4x* -f- etc.
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This equation must be satisfied for all values of x. Equat-

ing the coefficients of like powers of x, we find

£:> w
etc. etc..

Next consider the addition theorem for the cosine

:

cos (x -f- y) = cos x cos y — sin x sin y. (9)

We find, by substituting x -\- y for x in (4),

cos (a>+ y) = 1+ 0,(2! + y)
2 + cSx+ 2/)

4+ etc.;

from which, developing to the first power of y as before,

cos (x -}- y) =1+ tfsa?
a + <v#

4 + c
6
cc

6

-f- etc.
^

+ y(2<v»+ 4^ + 6c
6
xb+ etc.) L (10)

+ terms X y% y\ etc. J

From the second member of (9), by substituting for sin y and

cos y their developments, namely,

cos y = 1 -f- #y+ etc.,

sin y = y + s3y
3 + etc.,

we find

cos (x-\-y) = cos x-\-y(— sin a?) -f- terms X y
2

, y% etc. (11)

Equating the coefficients of y in (10) and (11), we have

2cje+ 4c4
a?

3+ 6c
6
x5+ etc. = — sin x = — x — s

3
x* — s

b
xb— etc.

Equating the coefficients of like powers of a?,

a*=-l;
4c4
= - ss ;

fo6 = — *•-

etc. etc.

The equations (8) and (12), taken alternately, solve our problem.

1
~~2'

2l
1

3

(12)

From (12),, c2

a
(8)„ *s

u
(12)„ o.

a
(8)« *s

2. 3
>

^3 = 1

4 2. 3. 4'

1
3s

5
"" 2.3.4.5
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s
t

1
From (12)., 0. = - = - 2707576 ;

etc. etc. etc.

The law of the coefficients is obvious.
^
Substituting them in

the developments (3) and (4), we have

or
,

X° X'
sin x = x — g-, + £-

-j

— ^ + etc.

;

cos a?
2! + 4!-6! + etC -

(13)

78. Convergence of the series. These series are convergent

for all values of a?, a result which may be shown thus

:

The ratio of the successive pairs of adjacent terms in the

development of the sine are, omitting the minus sign,

X* X* x2
a?

a

2.3' 4.5' 6.7' 8.9
7 etc.;

that is, each term is formed from the preceding one by multiply-

ing by one of these factors. Now, however great may be x, we

can continue these fractions so far that their denominators shall

become greater than 2a?
2

, and so their values less than \. After

this point the sum of all the following terms will be less than that

of a geometric progression of which the first term is the term of

the development (13), whose quotient by the preceding term is

less than £, and whose ratio is \. Such a progression has a limit,

whence the sum of the series (13) must also have a limit.

The following two applications of these series will be useful

as exercises

:

1. Square each series, carrying the square as far as the sixth

or eighth power of a?, and show that the squares fulfil the condition

sin
2 x -{- cos

2 x = 1 identically.

2. Compute the values of the sine and cosine of 10° and 30°

to 5 places of decimals, remembering that we are to take the

natural measure of the arc x in radians (§ 14), and compare the

result with that in the tables.

We find, from § 14,

Arc 10° = 0.174 53
;

Arc 30° = 0.523 60.
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19. Sme and eosme m terms of imaginary exponentials.

It is shown in algebra that if we call e the sum the series,

1+1+
or

we shall have

2!~^~ 3!"t"4l

e

-f- etc., ad infinitum,

828 .... ,

X X X
^ = l + „,+ r +gT + ri + eto.

etc )••;

Putting i, the imaginary unit, = V— 1, substituting xi = x

for a?, and reducing, this equation becomes

a?
2

, x*
, f x3

,
xh

^=l-2j + iy
- etc. + ^-35 + 51

or, from the developments (13),

e** = cos x -f- i sin a?.

Changing xi into — a^, we have

e~ xi = cos x — i sin a?.

The sum and difference of these equations are

2 cos x = e** + e-** = e^+ -^

;

1

(14)

(140

2* sin x — e*1 — e' 00* = e** —

or 2 sin x = - (e** — e"**)

e**' (15)

= — i(exi — e- xf
).

For some purposes these equations may be written in the

symmetric form

e** -f- e-** = cos x+ cos (— a>) ; )

#"* — e ~ "* = i sin x — * sin (— a?). S ^ '

These are two of the most celebrated equations in algebraic

trigonometry, and are called Euler's equations, after their dis-

coverer, Leonhaed Eulee.

80. Demoivrds theorem. If in the equation (14) we substi-

tute nx for x it becomes

e™* = cos nx -f- i sin nx.

By raising (14) to the nth power we have

e
nxi _

(cos x -\-ism x)n.
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(16)Therefore (cos x + i sin x)n = cos nx + i sin nx,

which is known as Dcmoivre's theorem.

This theorem enables us to develop the sines and cosines of

multiples of an angle in powers of the sine or cosine of the simple

angle, as follows

:

81. Problem. To develop sin nx and cos nx in powers of

sin x and cos x.

Developing the first member of (16) by the binomial theorem,

and substituting for the powers of i their values (Algebra, § 325),

namely,
.'=-1,
i' == —i,

?=+ l,

etc. etc.,

we have *

(cos x+ i sin x)n == cos
n x+ W

J

-e) S)« cosn
"" 3 x sin3 x

+ \j) cos"
-4 x sin4 # -f- etc.

(17)

This development being identically equal to the second mem-
ber of (16), we have, by equating the real terms and putting, for

brevity,

c = cos x, s = sin x,

cos nx = c
n — [~j c

n ~ 2 s2+ (j) c
n-V — (|) c

n ' 6
s
6+ etc.

This series will go on to infinity unless n is a positive integer,

* We here use the very convenient abbreviated notation for the binomial co-

efficients, namely:

t) = t = " :

We then have

(^ \ _ n{n— 1) (n — 2)

3/
~

1.2.3 ;

V s /
~"

\n — sl

1. 2.3. . .

8
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in which case it will terminate with a coefficient (— ], in which
if

j — n when n is even, and j = n — 1 when n is odd.

If we suppose n equal to 2, 3, 4, etc., in succession, we have

cos 2a? = c
2 — s

2

;

cos 3a? = c
3 — 3cs*

;

cos 4a? = c
4 — zr1-^ cV 4- s

4

5

1 . -a

cos 5a?

cos 6a? = c
6 —

o"v+lr
6.5

+
6.5

(18)

1 . 2 ~ " '1.2 "

We may make the results more uniform by substituting for

the powers of s their values in powers of c, thus :

s* = 1 - c
2

;

s
4 = i _ 2c

2 + c
4

;

s
6 = 1 - 3c

2 + 3 c
4- c

6

;

etc. etc.

Making these substitutions, and reducing the numerical coefficients,

we find

cos 2a? = 2c
2 — 1

;

cos 3a? = 4c
3 — 3c

;

cos 4a? = 8c
4 — 8c

2 + 1

;

cos 5a? = 16c
5 - 20c

3 + 5c;

cos 6x = 32c
6 - 48c

4 + 18ca - 1 ; J

Next equating the coefficients of the imaginary terms of (17)

to i sin nx and dividing by i, we find

rn\
sin nx

(19)

|) C-
1 * -

(|)
c»-^+

(|)
o— 5 *

5 - etc.

= ,
j (j) c»-, _

(I)
„-s , + g\ c

„-s , _ et0.

f

Supposing 7i = 2, 3, 4, 5, etc., this form gives

sin 2a? — 2sc
;

sin 3a? = s
{
3c

2 — s
a

\ ;

sin 4a? = s \ 4cc
z — 4cs

2

}

;

sin 5a? = s
{
5c*— 10 c

2
s
2

-f- s
4

} ;

sin 6a? = s \ Qc
b - 20c* s* + 603'}

;

etc. etc.

(20)
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Substituting for the even powers of s their expressions (18),

we find

sin 3a? = s
{
4c

2 — 1
\ ;

sin 4a? = s {8c
z — 4c

J ;

sin 5x = s jl6c
4 - 12c

2 + 1\ ;

sin 6a? = * {32c
6 — 32c

3 + 6c\.

Instead of substituting for the powers of s their expressions

(18) in terms of the powers of c, we might have expressed the

powers of c in terms of s, and by substituting them in (20) have

developed the multiple sines in powers of s = sin a?.

82. Expression /orpowers of the cosine. The reverse prob-

lem, to express the powers of the sine or cosine of an angle in

terms of simple sines and cosines of multiples of the angle, is

of yet more frequent application.

Let us take the first equation (15),

2 cos a? = e*
1

-f- c
-

**,

and raise it to the wth power by the binomial theorem. We shall

then have

2n cosna? = e
nxi + (j)

e^~ 2)xi+ (|)
^-«"«+ ... +«-* (21)

To understand this general form let the student take the

special cases n = 4 and n = 5. Then

4 3
24 cos4a? = e

4xi + 4c2**+^ -f 4c" 2** + e
- to

*

;

l . w

5 4 5 4
25 cos5

a? = c
5a*+ 5c3** + r-"— c** + -^ e-** + 5c -**+ c" 5**.

Supposing n to be a positive integer, we see (1) that the co-

efficients of terms equally distant from the two ends of the series are

equal, and (2) that the exponents of e in such terms are equal and of

opposite signs. Also, if n is even, the middle term does not contain

a? ; but if n is odd, the terms on each side of the middle will con-

tain a?.

Therefore by joining the first and last terms, the term after

the first and that before the last, etc., the development (21) may be

put into the form
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2n cosn a? = e^+ e~^+(-)
{
e(» -»>**_}-

^ --<»- a a*
j

Bnt by the general equations (15') we have, putting wa? for a?,

^nori _|_ ^-nsi _ 2 COg ^j —; cos nx _|_ cog (_ n%^
whatever be the value of n.

Hence, substituting this value of the exponential terms,

2n cosn a? =
cos nx -f- [jj cos (^ — 2) x -\- ( x-

J
cos (n — 4) a?-f- etc.

-f- cos (— nx) -f- (t ) cos (2 — 7^) x + ( ~
J
cos (4 — w) a?-|- etc.,

the terms in the third line forming the end of the series, which

is doubled over so that the end comes under the beginning.

Giving to n the successive values 2, 3, 4, etc., we find

22
cos

2 x = cos 2a? -f- 2 -f- cos (— 2a?)

;

2
3

cos
3 x = cos 3a? -f- (f) cos a? -f- (J-)

cos (—#)+(!) cos (— 3a?)
;

24
cos

4 x = cos 4a? -f- (f) cos 2a? -f- ($) + (£) cos (— 2a?)

+ a)cos(-4a3);

2
5
cos

6 x = cos 5a?+ (f-)
cos 3a? -|-

(f) cos a?

+ (|) cos (- 5x) + (£) cos (- 3a?) + (f) cos (- a?).

"We have extended the series in this form that the student may

see the law of its formation, which is as follows : The successive

coefficients are the binomial coefficients. The coefficient of a? in

the first term is n, and it diminishes by 2 in each following term,

so as to become — n in the last term.

The two well-known formulae

cos (— nx) = cos nx,

'7/ = \n~^~s)>

will enable us to combine every pair of terms equally distant from

the extremes into a single one. For instance, we have

U/ ~~ 1.2.3.4 ~ 1.2"" \2/ 5

(23)

/5\__ 5.4.3.2 /5\

\4/- 1.2.3.4 ~ \l)
~ 5 -
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Combining them thus and dividing each equation by 2, we find

2 cos
2

x = cos 2a*+ 1

;

2
2

cos
3

x = cos 3a? -f- 3 cos x
;

2
s

cos
4 x = cos 4a? -J- 4 cos 2a? -|-

1 4.3

2* cos
5

a? = cos 5a? -f- 5 cos 3a? -f

2 '1.2

5.4
ij—2 cosa?;

(24)

2
5

cos
8

a? = cos 6x -f- 6 cos 4a? -f- —^ cos 2a? -f- ^ .
' '

;

etc. etc. etc.

A careful study of these forms will show the general law of

formation, and enable us to carry the powers forward to any

extent.

83. Powers of the sine. To find the powers of the sine we
take the second of equations (15),

2i sin a? = e* — e ~ *,

and raise it to the Tith power by the binomial theorem. "We then

have

nxi2nin sinn a? = _ ^^(» 2)xi _j_ (^ e
(n-4)xl

_J_ etc#

{n-2)xi

2J
e + etc.

(25)

The bottom line gives the last terms of the series, arranged in

the reverse order, so that terms equally distant from the extremes

are under each other.

The upper signs are to be used in the bottom line when n is

even • the lower ones when n is odd. This will be seen by form-

ing the developments for n = 5 and n= 6.

2H5 sin5
a? = e

5** -
(f) e

te
*+ ($)«* -

26
i
6 sin6 a?

-fxrt ^

e
**i _ (|)^+ (f) J* -\-e-^ (250

"We first take the case of n even. The nth. power of i is then

+ 1 or — 1 according as in is even or odd. Adding the terms

of (25) and substituting for the exponential functions their values

in terms of cosines from (15'), we find, when n is even,
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w (n\
(—1)2 2W sinna? = cos nx — ( -

J
cos (n — 2)a?

i (26)

+ (

-J
cos (n — 4:)% — etc.

When n is odd, the sum of each pair of corresponding terms

in (25) will give rise to a sine. Making the substitution and divid-

ing by i, we shall have

2Hn~ 1 sinna? = sin nx — (r-J sin (n — 2)a?

-f- ( a) sm (n — 4)a?— etc.

(26')

Giving n the successive values 2, 3, 4, etc., and applying the

forms (26) and (26') alternately, and changing all the signs in (26)

when %n is odd, we find

2
a
sin

2 x = — 2 cos 2a? + 2.

2
3
sin

3 x = — sin 3a? -f- 3 sin x — 3 sin (— a?) -f- sin (— 3a?),

or 2
2
sin

3
a? = — sin 3a? -|- 3 sin a?.

2
4
sin

4
a? = cos 4a? — (j-) cos 2a? -f- (|) — (f) cos (— 2a?)

+ (f)cos (-to),
or 28

sin* a? = cos 4a? — 4 cos 2a? + 3.

2
6
sin

6
a? = sin 5a? — ({) sin 3a? -f- §• sin a? — sin (— 5a?)

+ (J) sin (- 3a?) - (D sin (- a),

or 24
sin

5
a? = sin 5a? — 5 sin 3a? -f- 10 sin a?.

26
sin

6 x— — cos 6a?+ (£) cos 4a? — (f) cos 2a?+ (f)

— cos (6a?) + (|) cos (— 4a?) — (f) cos ( — 2a?),

6.5.4
or 26

sin
6 x = — cos 6a?+ 6 cos 4a? — 15 cos 2a? -f- i .

etc. etc.

1.2.3'

84. We might have obtained the above results for cos a?,

cos
a
a?, cos

3
a?, etc., and sin a?, sin

2
a?, etc., by consecutive multiplica-

tion, and substitution of sines or cosines of sums for products, by

§ 43. Thus, by § 44, eq. 16',

2 cos
8

a? = cos 2a? ~|- 1
;

X 2 cos a?,

2
2
cos

3
a? = 2 cos a? cos 2a? -f- 2 cos a?.
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.Substituting for the first term of the second member its values

(12) of § 43, we have

2' cos
3 x = cos Sx -[- cos a? -\- 2 cos x = cos 3a?+ 3 cos x.

Multiplying this equation by 2 cos a?, we should have an ex-

pression for cos
4
x, etc. But the use of exponentials enables us

not only to obtain the higher powers more expeditiously, but to

find the general law of the series, which is not readily done by

multiplication.

Exeecises.

1. In the expression

1 -f- 2 cos x+ 3 cos
8 x -f- 4 cos

3
x,

substitute for the powers of x their values in terms of the multiple

of x, and reduce the expression to one containing simple multi-

ples of x.

Solution. From (24),

4 cos
3 x = cos 3a? -{- S cos x

3 cos
3 x = -f- f cos 2a? +f

2 cos x = + 2 cos a?

1 = 1

Sum = cos 3a? -f- f cos 2a? + 5 cos a? + f
2. Reduce the expressions

4 cos
3

a? — 3 cos x,

8 cos
4 x — 8 cos

2
a? -(- 1,

16 cos
5

a? — 20 cos
3

a? -f- 5 cos a?,

32 cos
6

a? — 48 cos
4

a? -|- 18 cos
2 x — 1,

to terms containing sines and cosines of multiples of a?, thus prov-

ing eq. (19).

3. Prove that the expression

1 — 2a cos 6 -f- a?

may be resolved into the two factors (1 — ae0i
) (1 — ae~ H ).

4. Eesolve the expression x?n — 2xn cos 6 -\- 1 into the product

of two factors, as in the last example.



104 PLANE TRIGONOMETRY.

Trigonometric Forms of Imaginary Expressions.

85, It is shown in algebra that an imaginary or complex ex-

pression may be reduced to a certain number of real units plus a

certain number of imaginary units. If we put

i, the imaginary unit, = V — 1,

a, the number of real units,

b, the number of imaginary units,

the complex expression will be

a+ bi. (1)

¥e have already shown (§ 47) that, whatever be the numbers

a and b, we can find a positive number r and an angle cp
y
such that

r cos cp = a;

r sin <p = b.

If we substitute these values of r and cp in (1) it will become

a-\-bi = r (cos (p-\-i$m cp).

But equation (14) gives

cos cp -f- i sin cp = e*K

Therefore a+ bi = re*1
. (2)

We hence conclude

:

Every complex expression com be reduced to the form
re*1

,

which is called the generalform of the complex expression.

The coefficient r is called the modulus of the expression.

A yet better term, used by the Germans, is the " absolute value"

of the expression.

The angle cp is called the argument of the expression.

Example. Reduce the expression

- 0.9223+ 1.0962a

to the general form.

Putting r cos cp = — 0.9223,

r sin cp = 1.0962,

and applying the process of §47, we find

r = 1.4326

;

cp = 130° 4'.54.
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This process being purely algebraic, the angle cp should be ex-

pressed in radial units. Reducing to this unit, we find

cp = 2.2703.

Therefore the required general form is

- 0.9223 + 1.0962* = 1.4326^™*.

The student who is acquainted with the geometric represen-

tation of imaginary quantities will see that the quantity r corre-

sponds to the modulus and <p to the angle of the complex expres-

sion as defined in algebra.

The geometric construction of the expression a -f- hi is effected

by laying off the length a on the axis of X, and at the end of this

length erecting a perpendicular equal to b.

If be the origin, we shall ha^e

OX = a;

XY=b.
Then joining Y we shall have

OY=r;
Angle XOY= cp.

86. Multiplication of complex expressions m the general

form. If any two complex expressions are

re*1 and qeei
,

we have by multiplying them

roe® + W.

This is another complex expression of the general form of

which rq is the modulus and cp -|- 6 the argument. Hence

:

The modulus of a product is equal to the product of the

moduli of thefactors.

The argument of a product is the sum of the arguments of the

factors.

If we multiply n equal factors, each represented by re**, the

result will be

Hence

:

The modulus of a power is equal to the corresponding power

of the modulus of the root.
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The argument of thepower is the argument of the root multi-

plied by the index of the power.

8*7. Periodicity of the imaginary exponential. From the

known equations (§ 24)

cos (cp -\- 27t) = cos cp,

sin (cp -f- 27t) = sin cp,

and the following equations given by the preceding theory,

e® +^ = cos (cp -\-2rt)-{-i sin (cp+ 2it),

e<i>i __ cos ^ _|_ i sjn ^
we have

re<& + 2T)i —. ^.^i

.

that is :

The value of a complex quantity remains unaltered when we

increase its argument by a circumference.

Since the addition of one circumference does not change it,

the addition of any number of circumferences will still leave it

unchanged. Hence

:

If the argument of a complex quantity increases indefinitely,

the values of the quantity itself will repeat themselves with every

circumference by which the argument increases.

A quantity whose value repeats itself in this way is said to be

periodic.

88. Let us next inquire for what special values of cp the ex-

ponential function efi* will be equal to the real or imaginary unit.

Considering again the equation

e4>i __ cos cp-\-i sin cp,

we notice that sin cp = whenever cp is a multiple of 180° or of

7t. When the multiple of it is even, we have cos cp = -j- 1;

and when it is odd, cos cp = — 1. Hence, putting

cp = n, 2#, Zn, etc.,

e~ wi = — 1

e
- 2ni — _|_ 1

we have
em = — 1

e2m — _|_ 1

Ziti
(a)

etc. etc.

In order that cos cp may vanish, the angle cp must be 90°, 270°,

450o
, etc. ; that is, it must be an odd multiple of \n. Sin cp will
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then be + 1 or — 1. Putting cp = \n, cp = |^, cp = \n, etc.,

on both sides of the preceding equation, we have

e\iti = _|_ l . e
- ini — _ i .

-J

€3« = _ {' e ~ ini = _|_ ^ I ^
e\ai _ _|_ ^ . ^ ~ 2^i — — £ j

By squaring each of these equations we shall reproduce the alter-

nate equations (a).

89. Hoots of unit?/. The foregoing theory enables us to find

very simple and elegant expressions for the roots of the equation

ap — 1 = 0,

or xn = 1.

From the general theory of equations, the equation xn— 1 = 0,

being of the nth degree, must have n roots ; that is, there are n
quantities which, being raised to the nth power, will produce 1.

These quantities are called the nth roots of unity.

Because ln is always 1, whatever be n, -f- 1 is itself one of the

nth. roots of unity.

Because (— l)n = 1 when n is even, — 1 is always an nth root

of unity when n is even.

Hence one or two of the n roots of unity, viz. + 1 and — 1>

are real ; all the others are imaginary.

90. Problem. To find the nth roots of unity.

Solution. Let a required root be reei
, r and 6 being quantities

to be determined. By the requirements of the problem, the nth

power of this quantity must be 1. Its nth power is

(ree€
)
n = rnenBi = rn (cos nO -f- i sin n6).

In order that this expression may be equal to unity, a real quan-

tity, the coefficient of i must vanish, and we must have

sin nO = 0,

which gives

cos nd = 1.

Hence
rn = 1,

which is satisfied by supposing
r = 1.

We must also have
nd = or 27r or 4^ or 67T, etc.
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Dividing by ft, we see that 6 may have any one of the values

= 0,

6 2~,

= 4-,

6
ft'

etc.

By substituting, in the assumed expression, reei for the value of

the root, we have
2v in- 6w

nth. roots of 1 = 1, en , en , en , etc.

Reducing to the trigonometric form, these expressions become

i;

cos 2- + i sin 2- :

W ' ft
'

cos 4—L- ^ sin 4-
;

ft ' ft

'

cos 6—h * sm 6-

:

ft ' ft

'

etc. etc.

The angle increases by 2- with each root, and by writing n con-

secutive values we shall be carried all round the circle.

The solution which we thus reach may be represented thus

:

Divide the circle into n equal arcs.

Let the length of each arc he or, so that na = 360° = 2?r.

The nth roots of unity will he

:

cos -f- i sin = 1

;

cos a -\- i sin a
;

cos 2a -\- i sin 2a
;

cos Ba -f- i sin Ba
;

(3)

cos (ft — l)a -f- i sin (ft -— l)a.

Example. To find the sixth roots of 1. Here

ft = 6;
180°

ft

30 c 2- = 60° = a.
n
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Hence the six roots are

1:

cos 60° + i sin 60 c
1 VI .

2 + 2
*'

VI

(4)

cos 120° + i sin 120° = — ^+ -^ i
;

cos 180° + * sin 180° = - 1

;

l Vs
cos 240° + i sin 240° = - - _ — i

;

1 V3
cos 300° + i sin 300° = ^— -y *.

The result can be readily proved by raising each of these quan-

tities to the sixth power.

The roots may also be constructed as in the anexed figure.

PA
If angle XOA = AOB = etc. = 60°, then, since -y^=

OP
sin 60° and -^ = cos 60°,

1,
OX
ox~
OP PA
ox+ ox''

OQ
,
BQ

h

A
/

/
/

\ /

\ /

y' P |

A
/0\

/ \
' \

\

\

ox + ox
etc. etc.,

are the sixth roots of unity.

EXEKCISES.

1. Find and construct the eighth roots of unity, or the roots of

the equation x* — 1 = 0.

2. Find the roots of the equation x12 — 1 = 0.

91. Relations between the roots of unity. If we represent

by x any such quantity as cos a -f- i sin or, we have, by what

precedes,

x2 = cos 2a -\- i sin 2a
;

a?
3 = cos 3a 4- i sin da;

x" = cos na % sin na.
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Hence the formation of the powers of x may he represented

geometrically by laying off equal arcs around a circle.

If x is any nth root of unity, then measuring off its angle a

n times will bring ns back to the starting-point.

If a is itself the nth. part of the circumference, then the re-

maining roots as given in (3) are the first n powers of x.

Hence :

All the roots of unity are powers of the root corresponding to

the smallest arc.

From this it follows that if we measure off with a pair of di-

viders, from to any division-point, the mth, for instance, and repeat

the measure n times, the nth measure will end at the zero-point.

This is evident of itself, because n measures of m arcs each will

measure off mn arcs ; and because n of the arcs make up a circum-

ference, the mn arcs will extend around the circle exactly m times.

But it does not follow that any such series of n measures will

include all the roots. Suppose, for example, that in the preceding

figure, where n = 15, we measure arcs of 6a. The 15 successive

points reached with the dividers will then be

0, 6, 12, 3, 9, 0, 6, 12, 3, 9, 0, 6, 12, 3, 9, 0.

This series includes only 5 of the points of

division, each of these 5 being repeated 3
Ti

times, while the remaining 10 have not been

included at all.

If we take the measure 4a in our divid-

ers, the points of division included in the

series will be

0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 0,

which comprise all n points. Hence in this case all the roots are

powers of x* or of cos 4a -f- i sin 4a.

92. We now have the following proposition, where we put

360°
a =

n

If m is prime to n, all the nth roots of unity may be repre-

sented as powers of cos ma -f- i sin ma.
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Proof. Starting from any point of the circle, and measuring

off equal arcs, each of length ma, let p be the smallest number of

measures which will bring us back to the starting-point. The

total length of arc measured off will then bepma.

Since we are brought back to the starting-point, we must have

measured off an entire number of circumferences. Let q be that

entire number.

Because each circumference = na
y
the whole q circumferences

measured = qna. Therefore

pmoc = qna,

and - = —

.

q m
Because, by hypothesis, m and n are prime to each other, the

fraction — is irreducible, and the smallest values of p and a are n

and m respectively.

Therefore any n measures will end at n different points of the

circumference, and will therefore include all n points.

Def. A root of unity whose powers include all other roots is

called & primitive root.

Cor. If n is a prime number, all the roots are primitive roots.

Exercises.

1. The 15th roots of unity being

cos 24° + i sin 24°, cos 48° + i sin 48°, etc.,

it is required to find which of these roots are primitive.

Prove the following propositions

:

2. If n is a prime number, all the wth roots of unity are prim-

itive roots.

3. If x be any primitive n\h root of unity, and if p be any

number prime to n, then xp will also be a primitive root.

Note. In the preceding theorem this is proved for the case when x is the

root corresponding to the smallest angle. The proposition now enunciated ex-

tends to the case in which we start from any multiple of this angle prime to n.





PART II.

SPHERICAL TRIGONOMETRY,

CHAPTER I.

FUNDAMEN1AL PRINCIPLES.

93. Def. Spherical trigonometry treats of the relations

among the six parts of a trihedral angle.

Def. The six parts of a trihedral angle are its three face-angles

and its three edge-angles.

94. Representation of a trihedral angle by a spherical tri-

angle. If be the vertex of a trihedral angle, and OM, OR, and

OQ its three edges, we may con-

struct a sphere having its centre at

0, and having an arbitrary radius

OA. The spherical surface will then

cut the edges at the three points A,

B, and equally distant from 0.

The three faces OMR, ORQ,
OQM will intersect the spherical

surface in three arcs of great circles, AB, BO, OA, which arcs

form a spherical triangle.

It is shown in geometry that the three angles A, B, and G of

the spherical triangle are equal to the respective edge-angles OM,
OR, and OQ of the trihedral angle. It is also shown that the

arcs AB, BO, and OA, which form the sides of the triangle,

measure the respective face-angles MOR, ROQ, QOM of the

trihedral angle.



114 SPHERICAL TRIGONOMETRY.

Therefore the six parts of the trihedral angle are represented

by the corresponding parts of the spherical triangle, and the rela-

tions among the parts of the one are the same as the relations

among the parts of the other.

The term spherical trigonometry is applied because the investi-

gations are generally made by means of the spherical triangle.

A trihedral angle, with its corresponding spherical triangle, may be readily-

constructed as follows : Cut a circular disk of pasteboard or stiff paper, from

four to six inches or more in diameter. From this disk cut out a sector of any

magnitude. It will be well to have several disks with sectors ranging from 45°

to 200° cut out. Divide the remainder of the disk by two radii into three

sectors, such that the greatest shall be less than the sum of the other two. Bend

the disk along each of the two dividing radii, cutting the latter part of the way

through if necessary, and bring the extreme radii together. We shall then have

a figure like O-ABG of the preceding diagram, the three plane sides forming the

trihedral angle, and the three arcs bounding the edge of the disk forming the

spherical triangle.

95. General remarks upon spherical triangles. A spherical

triangle may be defined as that figure which is formed by joining

any three points on the surface of a sphere by arcs of great circles.

The three points will then be the vertices of the triangle.

But between any two points we may draw two arcs of a great

circle, which together make up a complete great circle through

the points. One of these arcs will be less, the other greater, than

180°. To avoid ambiguity, the arc less than 180° is supposed

to be taken, unless otherwise expressed. We therefore adopt the

rule :

Each side of a spherical triangle is supposed less than 180°,

unless otherwise expressed.

This rule is a mere convention, which may be set aside whenever we desire

to give greater generality to our conclusions. Nothing prevents us from sup-

posing ourselves to pass from one vertex to another by passing several times

around the sphere. The corresponding side of the triangle will then consist of

several coincident great circles plus either of the arcs joining the vertices. If

we suppose a to be the shorter arc joining two vertices, the general arc measure

of the side through those vertices will be

n 360° + a or (n + 1) 360° - a.

96. Every spherical triangle encloses a portion of the spherical

surface, forming the area of the triangle. We then have the theorem

:
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Three great eirclea divide the surface of the sphere into eight

triangularportions.

This La shown as follows : One great circle

divides the surface into two equal parts. A
second great circle intersects the first in two

points, and divides each of those parts into

two lunes, so that the whole surface is then C'V~~ ^~"~/\y

divided into four lunes. A third great circle
*" -"""

cuts through all four of these lunes, and forms T
f

ei

f
ht ^he™a

A
tri-

o ' angles formed by three

eight spherical triangles. great circles.

In the same way, any two planes divide the space around their

line of intersection into four parts. A third plane intersecting

them divides the space around their point of intersection into

eight parts, forming eight trihedral angles.

Remark. The student should guard himself against consider-

ing a figure of which either side is a small circle of the sphere as

a spherical triangle. For example, the figure formed by two arcs

of meridians and a parallel of latitude is not a spherical triangle.

Such figures do not represent the parts of a trihedral angle, and so

do not correspond to the definition of a spherical triangle. All

the important problems connected with them may be reduced to

problems of spherical trigonometry, so that there is no need of

giving them special consideration.

Exercises.

The following exercises are introduced to test the student's fundamental

conceptions of spherical geometry, and especially of the relations of great circles

of the sphere. Their successful performance will show that he is prepared to

take up the subject of spherical trigonometry with advantage. A globe, on

which figures may be drawn at pleasure, will be of great service in assisting his

conceptions, and should be made use of whenever practicable.

1. A and A' are two opposite points on a sphere. If any third

point Xbe taken on the sphere, to what constant arc will the sum

XA-\- XA' be equal, and what will be the angle AXA' ?

Note. Opposite points are those at the ends of a diameter.

2. If one side of a spherical triangle be equal to a semicircle,

what relations will then subsist between the other two sides?

What will be the magnitude of the opposite angle ?
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3. Let A, B, and O be the three'vertices of a spherical triangle

;

a, b, and c, the sides opposite these vertices respectively ; A\ B\
and C\ the points opposite the vertices. It is then required :

(a) To express by the letters at their vertices the eight tri-

angles which will be formed when each side of the original

triangle ABO is produced into a great circle.

(b) To express the, sides of each of these eight triangles in

terms of a, b, and c, making use of the theorem that any two great

circles intersect each other in two opposite points.

(c) To express the angles in terms of the angles of the original

triangle, which we may represent by the letters A, B, and O
marking their vertices.

(d) It being found that the eight triangles are divisible into

four pairs, such that the sides and angles of each pair are equal, it

is required to show the relations of each pair.

4. If one angle of a spherical triangle is A, show that the sum

of the other two angles is contained between the limits 180° — A
and 180° + A.

Note. If the student finds any difficulty in this question he may begin by

supposing the triangle to be isosceles, and the two equal sides to increase from

0° to 180°.

5. Hence show that the spherical excess cannot exceed twice

the smallest angle.

6. If the three sides of an equilateral spherical triangle be con-

tinually and equally increased, what is the limit of their sum?

What is the limit of the angles as the sum approaches its limit ?

9*7. Fundamental equations. Let us put

#, b, c, the three face-angles of the trihedral angle—that is, the

angles subtended by the three sides of the spherical triangle;

A, B, C, the opposite edge-angles of

the trihedral angle, or the angles of the ^K^\\
spherical triangle. ^^"^ \\ \\

Then if O-ABC be any trihedral °<^-—~~
angle, we shall have N.

a = angle BOC; \
b = angle COA

;

c = angle A OB.
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Through any point A of OA pass a plane perpendicular to

OA, and let B and C be the points in which it meets the other

two edges. We shall then have

A = angle BA C,

while OAB and OA will both be right angles.

In the triangle BOO we have

BO 2 = OB1 + OG 2 - 20B . 00 cos a. (§ 58)

In the triangle BA we have

BO 2 = AB2 + A0 2 - 2^.5.^.^008^.

Equating these two values of BO 2

, and transposing, we find

20B . 00 cos a = OB2- AB2+ 002 - A0 2+2AB . A0 cos A.

But, because OAB and ^J.C'are right angles,

OB2 - AB2 = OA 2

;

0G- - AC 2 = OA2
.

Substituting these values, and dividing by 2OB . 00, we have

OA OA AB AC
C0Sa =0B'0C + 0B'0C C0QA '

Now 0A
OB

= C0S '
;

OA
oc =cosh

>

AB
0B= smc '

oo= smk

Therefore cos a — cos 5 cos c _j_ sm 5 sm c C08 ^ (#)

By treating the other edges in order in the same way, we
obtain two more equations, which may be written by simply per-

muting a, b, and c and A, B, and O circularly ; that is, by substi-

tuting for each letter the one next in order, a following c. Thus

we have the system of three equations:

cos a = cos b cos c + sin b sin c cos A ; i

cos b = cos c cos a -f- sin <? sin & cos 5 ; V (1)

cos c = cos a cos 5 -f- sin <z sin J cos (7. J

These three equations are the fundamental equations of spherical

trigonometry, because by means of them, when three parts are
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given, the other three may be found. For practical application

they are transformed and simplified in numerous ways.

98. Permutation ofparts. We have deduced the equations

(1) from (a) by merely permuting the letters. This process

may be applied generally in accordance with the following

theorem

:

If we havefound between the parts of a spherical triangle any

equation which is truefor all triangles, it will remain true when

we permute the sides in any way ; provided that we also permute

the opposite angles in the same way.

For if we have proved our equation by calling the three

sides a, b, and c, and the opposite angles A, B, and O, we could

apply the same proof to the other parts of the triangle, substi-

tuting

Side a for side b, and vice versa,

and
Angle A for angle B, and vice versa,

in the demonstration. We should then have a result in which a

and b changed places, and A and B changed places.

By interchanging a and c, and b and c, with their opposite

angles in the same way, we should form all the six equations

which could be written by permuting the symbols in the way

described.

If, however, we made any supposition respecting any side or

angle such that the reasoning applied to it would not apply to the

others, then the symbol of this side or angle could not be per-

muted. For instance, we cannot permute all the parts in a formula

true only for right triangles.

It follows from this that any true formula which expresses the

value of one part in terms of the two remaining pairs of parts

must be symmetrical with respect to the other pairs of parts. For

example, equation a remains unchanged when we interchange b

and c, else it would be wrong.

99. Theorem of sines. In a spherical triangle the sines of

the sides areproportional to the sines of the opposite angles.
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Proof. Let O-ABC be the trihedral angle of the spherical tri-

triangle, and let A be any point on ^
the edge A. ^

Through A pass a plane perpen- ^^
dicular to the edge OB, intersecting s^ I

the faces AOB and BOCin the lines
0<<i L

AB and BP. \\ /
Through A pass another plane \V,---'' P

perpendicular to 00, intersecting the \.
faces AOOmd COB in the lines AC and OP.

AP will then be the line of intersection of these planes.

Because the planes ABP and ACP are perpendicular to the

lines OB and OC respectively, they are each perpendicular to the

plane BOC of these lines (Geom.) Therefore their line of inter-

section, AP, is also perpendicular to this plane, and the triangles

APB and APC are right-angled at P. Hence

AP = AB sin ABP = AB sin B.

Also, because AB is perpendicular to OB,

AB = OA sin BOA = OA sin e.

Therefore AP = (9.A sin c sin i?.

We find in the same way

AP = OA sin b sin C;
whence

sin c sin B = sin J sin (7,

or

sin c sin J

sin C~ sin i?'

We may show in the same way, by permuting the parts,

sin a sin b sin c
(2)

sin^l
—

sinB ~~
sin C

The common value of these three ratios is called the modulus

of the spherical triangle.

100. The theorem of sines may also be obtained directly from

the fundamental equations as follows

:

From the first fundamental equation (1) we obtain

cos a — cos b cos c
cos A —

sin b sin c
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Squaring,

a . cos
9 a — 2 cos a cos J cos c + cos

9
5 cos

9
c

COS
9
.A = . . -, . a

!

sin 6 sin c

Hence
sin

9 A = l- cos
3
.A =

(1 — cos
9
b) (1 — cos

9
c) — cos

8
fl -j- 2 cos a cos J cos c—cos

9
5 cos

9
c

sin
2
J sin

3
c

_ 1 — cos
9 a — cos

9
b — cos

3
c -\-2 cos a cos 5 cos <?

sin
3
b sin

2
<?

Dividing by sin
9
a,

sin
3
^1 1 — cos

9 a — cos
9
b — cos

9
# + 2 cos a cos 5 cos <?

sin
3 # ~~

sin
3 # sin

3
5 sin

3
c

The second member of this equation is symmetrical with

respect to a> b, and e, and so remains unchanged when these quan-

tities are permuted among themselves. But if we derive the

_ sin
3 B _ sin

3
(7 . _ .

values oi . a , and -r-5— irom the last two fundamental equa-sm sm g ^

tions, the results will be simple permutations of the last equation,

and will therefore give the same values of . a -, and -=-=— that
sin sm c

we have found for -r-=—

.

sin a
Hence . 2 . . . n . , „

sm9
J. sm9

i? sm9
tf

sm3 # ~ sin
3
b sin

9
<?

'

Extracting the square roots, the general results will have double

(±) algebraic signs; but as the angles are all supposed to be less

than 180°, the positive signs are to be taken. Hence
sin A _ sin B sin C
sin a ~~

sin b
~~

sin '

the reciprocal of the relations (2).

101. Polar triangles. Def. When two triangles are so related

that the vertices of the one are the poles of the sides of the other,

the one is said to be the polar triangle of the other.

It is shown in geometry that the relation of a triangle to its

polar triangle is reciprocal ; that is, if Xand I^are two triangles,

and Yis the polar triangle of X, then X is the polar triangle of

Y. This reciprocity arises from the theorem

:
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If A, B, and C be the three poles of the sides QP, PP, and

PQ of a triangle PQP, then P, Q, and P will be the poles of

the sides BO, CA, and AB.
This theorem is readily proved by the geometry of the sphere.

Since every great circle has two poles, one at each end of a

diameter, it follows that the three sides of a triangle have six

poles in all. We may form a polar triangle to ABC hj taking

either of the poles of AB, either of the poles of BC, and either of

the poles of CA, and joining them by R
arcs of great circles. Hence there are y" x
eight possible polar triangles to every

given triangle. To avoid doubt which

triangle is to be chosen, we take for /

each vertex of the polar triangle that

pole of each side of the given triangle /'

which is on the side toward the triangle. p ~~~"~"

For example, if ABC is the given triangle, we take that pole

of AB which is on the side toward C, and so with the other sides.

Exercises.

1. What must be the sides and angles of a triangle that it may
coincide with its polar triangle ?

2. Show that if each side of a triangle is greater than 90° the

polar triangle will fall wholly inside of it, and if each side is less

than 90° it will be wholly within its polar triangle.

3. If two sides exceed 90° and the third side is less than 90°,

what will be the character of the polar triangle, and how will it be

situated relatively to the given one ?

102. Use of the polar triangle. It is shown in geometry that

each side of the polar triangle is the supplement of the opposite

angle of the other, and vice versa. This principle is applied to find

new relations between the parts of a triangle in the following way

:

1. We imagine ourselves to construct the polar of the given

triangle.

2. We write any or all the equations between the parts of the

polar triangle.
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3. "We substitute in these equations the supplementary parts

of the given triangle, and thus obtain equations between these

parts.

Let us put #', b\ c',

A', B', C,
the sides and opposite angles of the polar triangle. Since the

general equations (1) are true for every triangle, they are true of

this polar triangle. Hence

cos a/ = cos V cos c' -f- sin V sin c' cos A'.

But the polar triangle is so related to the original triangle that

a' = 180° - A, A! — 180° -a;
y = 180° - B, B' = 180° - b

;

c> = 180° - C, C = 180° - c.

Therefore

cos a' = — cos A, cos Af = — cos #

;

cos V = — cos B, cos jB' = — cos 5
;

cos c' == — cos 0, cos O f = — cos c

;

and sin a' = sin A, sin ^1' = sin a
;

etc. etc.

Making these substitutions in the equations (1), we find

cos A = — cos ^ cos (7 -|- sin ^ sin C cos & ; ]

cos i? = — cos C cos JL+ sin {7 sin ^1 cos J ; > (3)

cos (7 = — cos A cos B -\- sin ^1 sin JB cos <?. J

This process may be generalized thus

:

From every relation between the parts of a spherical triangle

we may derive another relation by changing the cosine of each

part into the negative of the cosine of the opposite part, and the

sine of each part into the sine of the opposite part.

But this relation will not always be different from the original

one. If we apply the process to the equations (2), for instance,

the same relations will be reproduced, each term being changed to

its reciprocal.

It is also to be remarked that the use of the polar triangle is

not absolutely necessary to deduce the new relations (3), because

they can all be obtained from the fundamental equations (1) by

eliminating first b and c, then c and a, then a and b. But the use
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of the polar triangle gives a much shorter and more elegant mode

of deducing them.

103. In the solution of spherical triangles we require for-

mulas which shall express any three parts in terms of the remaining

three ; the latter being supposed known, the former unknown.

A set of such equations may be derived from the fundamental

equations (1) by substituting in any one the value of the cosine of

a side obtained from another. Let us substitute in the third the

value of cos a from the first. We shall have

cos c = cos
2
b cos c -j- sin b cos b sin c cos A -{-sin a sin b cos O.

Transposing cos c, noting that 1 — cos
2
b = sin

2
b, and dividing by

,sin b, we have

= — sin b cos c -f- cos b sin c cos A ~\- sin a cos O,

which gives

sin a cos C = sin b cos c — cos b sin c cos A. (4)

The theorem of sines (2) also gives

sin a sin C = sin c sin A. (5)

Comparing these two last equations with the first equation (1),

we see that they form a set in which the second members contain

only the parts b, c, and A, namely, two sides and the included

angle ; while the first members contain the third side, a, and one

of the angles adjacent to it, namely, G.

Hence any two of these three equations may be used to find

the side a and the angle O when b, c, and A are given. Since

there are three equations where only two are necessary, there must

be a relation between them, which we find as follows

:

The first members are

cos a
;

sin a cos O;

sin a sin O.

The sum of the squares of these quantities is

cos
2 a -\- sin

2
a(cos

2 O -f- sin
2 C) = cos

2 a -\- sin
8 a = 1.

The sum of the squares of the first members being identically

equal to unity, the same should be true of the sum of the squares

of the second members, which is
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(cos b cos c -\- sin b sin c cos Af
-|- (sin b cos — cos b sin c cos A)2

-[- sin
3
c sin

2 A.

Forming these squares, we see that the product of the terms

in the squares of the first two quantities cancel each other, leaving

as the sum of the squares

cos
2
b cos

2
c -f- sin

2
b sin

2
c cos

2 A
-f- sin

2
b cos

2 + cos
2
b sin

2
c cos

2 A
-f- sin

2
c sin

2
^L,

a sum which we readily find to reduce to unity.

104. By permuting the sides b and c and their opposite

angles,B and O, we obtain a similar set of equations for a and the

adjacent angle B. Repeating the equations already found, we
have the following set of five equations from which we may deter-

mine #, B, and (7, when b, c, and A are given

:

sin a sin B = sin b sin A
;

sin a cos B = cos 5 sin c — sin 5 cos c cos -4
;

sin a sin (7 = sin sin ^L

;

> (6)

sin # cos C = sin 5 cos c — cos 5 sin c cos J.

;

cos # = cos J cos c -\- sin J sin c cos .A.

We may write a set similar to this for each of the other sides

of the triangle, namely

:

sin b sin C — sin c sin B
;

sin b cos C — cos sin a — sin cos a cos i?

;

sin 5 sin JL = sin a sin i?

;

I. (7)

sin 5 cos A = sin cos a — cos sin a cos B

;

cos 5 = cos c cos a -f- sm c sm ^ cos B-

sin c sin ^1 = sin a sin (7;

sin g cos -4. = cos a sin 5 — sin a cos 5 cos C\

sin <? sin i? = sin b sin (7; (8)

sin g cos i? = sin a cos J — cos a sin 5 cos C;

cos <? = cos a cos 5 -)- sin a sin 5 cos (7.

Then we obtain a similar set for the angles through the inter-

vention of the polar triangle. Applying the set (6) to the polar

triangle, it gives
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sin A sin b = sin i? sin #

;

sin ^L cos b = cos i> sin (7 -f- sin i? cos (7 cos #

sin JL sin c = sin £7 sin a
;

I (9)

sin A cos 6' = sin B cos (7+ cos B sin 6" cos #

;

cos A = — cosB cos tf-f~ sinB sin (7cos a.

Applying these formulae to each of the angles in succession, we

have a set of equations by which, when two angles and the in-

cluded side are given, the remaining parts may be found. The

following are the remaining formulae obtained by permutation

:

sin B sin c = sin O sin b
;

sin B cos c = cos C sin A -\- sin O cos A cos J

sin B sin & = sin .A sin 5

;

I (10)

sin B cos a = sin 67 cos J. -f- cos 6" sin J. cos b
;

cos B = — cos (7cos JL -f- sin Csin ^1 cos J.

sin C sin # = sin ^ sin c
;

sin C cos a = cos A sin .Z? -f- sin .A cos i? cos c
;

sin (7 sin b = sin .Z? sin c
;

I (11)

sin C cos J = sin A cos ^ -(- cos A sin J5 cos c
;

cos O= — cos ^1 cos jB -|- sin ^1 sin i? cos c.

105. If in the three sets of equations (6) to (8) we divide the

second equation by the first, and the fourth by the third, and clear

of denominators, we shall have the following additional equations :

cot B sin A = cot b sin c — cos c cos A
;

cot C sin A = cot c sin 5 — cos b cos A
;

cot (7 sin B = cot c sin ^ — cos a cos B

;

cot u4 sin _Z? = cot & sin c — cos c cos B
;

cot J. sin O = cot a sin b — cos J cos O
;

cot .Z? sin C = cot 5 sin a — cos # cos (7.

Treating the equations (9) to (11) in the same way, we shall get

a similar set of equations ; but on examination they will be found

to differ from the equations (12) only in the arrangement of their

terms, so that they need not be written.

106. Although the foregoing equations need to be trans-

formed for most of their uses, they may in many cases be applied

(12)
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directly to the solution of spherical triangles. This is especially the

case when two sides and the included angle, or two angles and the

included side, are given and one or more of the remaining parts

required. If, for instance, A, B, and c are given, we may from are

the first two of equations (11) obtain the values of O and a by

Prob. I. Chap. V. Then from the next two we may obtain c and

(7, and from the last cos C, and thus a third value of C. If the work

is correct, these three values of O will all agree.

Example. Two of the face-angles of a trihedral angle are a —
132° 46'.7 and b = 59° 50'.1, and the included edge-angle is G =
56° 28'.4. Find the remaining parts.

The computation of A, B, and c may be effected by the equa-

tions (8), as follows

:

(1) cos b, 9.701 13 (6) sin b, 9.936 81

(2) sin a, 9.865 69 (7) cos G, 9.742 19

(3) sin C, 9.920 97 (8) cos b, 9.701 13

(4) sin b, 9.936 81 (9) sin a, 9.865 69

(5) cos a, — 9.831 98 (11) sin b cos <7, 9.679 00

(12) cos a sin b, - 9.768 79 (10) cos a, - 9.831 98

(13) -sinacos&costf, - 9.309 01 (20) sin a cos b, 9.566 82

(14) Diff., 0.459 78 (
21 ) -cosa sin&cos<7, + 9.51 98

(15) Add. log., 0.589 12 (22) Diff., 0.055 84

(2)+ (3) sin c sin A, 9.786 Q6 (23) Add. log., 0.329 84

(13)+(15) sine cos A, - 9.898 13 (26) sin B, 9.857 80

(18) cos A, 9.898 14 (3)+(4) sin c sin B, 9.857 78

(16) tan A, - <^888~53 (21)+(23) sin c cosB, 9.840 82

(17) A, 142° 16 /
.4 (24) tan B, 0.016 96

(19) sin c, 9.999 99 (25) B, 46° 7'.1

(27) sin c, 9.999 98

(31) Subtr. log., 8.4317 (30) Diff., 0.01158
(28) cob a cob b, -9.533 11 ^—

(29) sin a sin b cos G, 9.544 69 QQO ,
C, 0*7 .Zo .O

Note.—We may omit the "log" from the designation of the logarithms of

the trigonometric functions whenever no uncertainty will thus arise.
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In this computation the numbers in parentheses show the order

in which the lines may be written. Lines (15), (23), and (31)

are the addition or subtraction logarithms, from the tables for

finding the logarithm of the sum or difference of two numbers

which are given by their logarithms. The student can equally

well find the numbers, add them together, and take the logarithm

of their sum.

The agreement of the two values of sin G with each other and

with cos G shows the correctness of the calculation.

107. The following transformation, similar to that of Prob.

IY. Chap. V., will often render the work convenient. In the

second and last of equations (11) let us put

Jc sin K = sin A cos c ;

)

JfccosJT= -cosJL \
W

By substitution these equations will then become

sin {7 cos a = — Jc cos iT sin B -f- Jc sin iTcos B
= &sin(^- B);

cos G = Jc cos iT cos B -f- h sin iTsin B
= Jcco$(K- B).

To apply these equations we compute Jc and K from (a), and

then sin G cos a and cos G from (5). "We complete the work by

computing sin G sin a from the first equation of (11).

"We may also transform the fourth equation by computing h

and H from the equations

h sin H = sin i? cos c

;

h qosH = — cos .Z?.

We shall then have

sin (7 cos 5 = h sin (5"— A)
;

cos 6" = h cos (J5T— -4).

To transform the equations (8) on the same plan, we may com-

pute k, K, h and .ZTfrom

Jc sin K= sin a cos G;
'

& cos iT = cos a

;

7^ sin jS" = sin 5 cos G
h cos iT" = cos b.

©

(o)
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We then have, in the same way as before,

sin g cos A = Tc sin (b — K)
;

(d)

sin g cos B = A sin (a— H)
;

cos G = k cos (b — K) = A cos (a— iJT).

"We compute the same example as before by these formulae, as

follows

:

sin a, 9.865 69

sin C
9

9.920 97

sin b, 9.936 81

b-K - 89° 19'.9

a - H, 89° 14'.3

sin (b-K), - 9.999 97

log k, 9.898 16

cob(& — J5T), 8.066 9

sin #, 9.865 69

cos C, 9.742 19

sin 5, 9.936 81

& sin K, 9.607 88

Tc cos iT, -- 9.831 98

cos K, - 9.933 82

tan i£5 •- 9.775 90

K, 149° lO'.O

A sin H,

A cos H,

59° 50'.1

9.679 00

9.701 13

9.860 27

sin g sin A,

sin g cos A,

cos JT,

tan A
y

A,

sin g,

sin (a — H),

log A,

sin g sin B,

sin <? cos B,

tan j5,

9.786 66

- 9.898 13

- 9.898 14

cos H, - 9.888 53

tan H, 9.977 87

43° 32'.4

132° 46'.7

7.965 1

7.964 5

89° 28'.3

46°r.i

142° 16'.4

9.999 99

a,

cos c,

COS G,

9.999 96

9.840 86

8.123 6

9.857 78

9.840 82

0.016 96

Exercises.

1. Transform the equations (6), (7), (9), and (10) in the same

way that we have transformed (8) and (11).

2. From the values of A, B, and c, which we have obtained

in the last example, find those of a, b, and C with which we started.

3. If m be the arc joining the vertex A to the opposite side,

prove
cos b -\- cos g = 2 cos \a cos m.



CHAPTER II.

RIGHT AND QUADRANTAL IRIANGLES.

Fundamental Definitions and Theorems.

108. Def. A right spherical triangle is one which has a

right angle.

Def A quadrantal spherical triangle is one which has a side

equal to a quadrant.

Def. A trirectangular triangle is one which has three right

angles.

Def. A birectangular triangle is one which has two right

angles.

Def. A biquadrantal triangle is one which has two sides equal

to a quadrant.

Theorem I. Every birectcmgular triangle is also biquad-

rantal.

Proof. Let ABO be a spherical triangle in

which angle B = angle O = 90°. Then

:

Because angle B is a right angle, the pole of

the great circle BO is on the great circle BA.
Because angle is a right angle, this pole is

on the great circle OA. (Geom.)

Therefore the pole of BO is on both BA and OA, and there-

fore at their point of intersection A.

Because A is the pole of BO, AB and AO are quadrants.

Q.E.D.

Theorem II. Conversely, Every biquadrantal triangle is also

birectangular.

Proof. Because every point of the polar circle of the point

A is a quadrant distant from A, and because AB and AO are

quadrants, this polar circle must pass through both B and O.
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But only one great circle can pass through these points.

Therefore BO is the polar circle of A, and A the pole of BO.
Therefore the great circles AB and AG intersect BO at right

angles. Q.E.D.

Oor. Every trirectangulor triangle has three quadrants for
its sides ; and,

Conversely, Every triangle having three quadrants for its

sides is trirectangular.

TheopwEM III. In a birectangular triangle the oblique angle

is equal to its opposite side.

Proof. Because the plane of the great circle BO intersects

the planes of AB and of A at right angles, the arc BO measures

the dihedral angle between the planes AB and BO.

But the angle A is equal to this same dihedral angle.

Therefore BO = angle A.

Theorem IV. The polar triangle of a right triangle is a

quadrantal triangle.

This follows at once from the fact that the angles of the one

triangle are the supplements of the sides of the other.

Exercise.

Let the student translate the preceding definitions and theorems

into those relating to the face- and edge-angles of a trihedral angle,

and, which is the same thing, into those relating to the angles be-

tween three lines emanating from a point and the angles between

their planes.

109. Formulae for right triangles. Since in a right triangle

one of the parts, the right angle, is known in advance, if two other

parts be given the remaining three parts may A
be found. c.

An equation must therefore exist by

which, when any two parts are given, any g.

one of the three remaining parts may be

found ; hence between every combination of three parts out of the

five there must be an equation. The number of combinations of 3

5 .

4

in 5 being j^-= = 10, there must be ten such equations.
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To find these equations let C be the right angle, and therefore c

the hypothenuse. We seek for those equations in the sets (6) to

(12) of the last chapter, in which the angle C enters, and in which

the equation contains only three different parts. We then suppose

sin O = 1

;

cos C — ;

cot (7=0.
The set from which the required equations are taken, the num-

ber in the set, and the result are shown as follows

:

From (6) 3 , sin a = sin c sin A
;

(7)„ sin b = sin c sin B
;

(6) 4 , cos A = tan b cot c
;

(7)2 , cos B = tan a cot c
;

(8) 6 , cos c = cos a cos b
;

(9) 3 , cos B = cosb sin ^1

;

(9) B , cos A = cos asinB
;

(11) 5 , cos c = cot A cot ,5

;

(12) 5 , cot A = cot & sin &
;

(12) 6 , cot B = cotb sin #.

CD}

(3))

(*))

(5)

(6)|

(W
(8)

(9)1

(10) J

These ten equations will be found to include all combinations

of three out of the five parts a, b, c, A, B. From each of them

we may determine any one part in terms t f the other two ; for

example, the first equation gives not only

sin a = sin c sin A,
but

and

sin c

sin A =

sin a

sin A 9

sin a

sin c

Properly speaking, only six of these equations are really dis-

tinct, as the other four can be derived from them by a mere inter-

change of letters between corresponding parts. For instance, since

the same relation must hold between each oblique angle and its

opposite side, the second equation may be derived from the first.

The equations which are thus related are connected by braces

in the formulse above.
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110. Napier's rules. The six preceding formulae, which may
be found difficult to remember, have been included by Napier in

two precepts of remarkable simplicity,

and easily remembered.

Let us take for the five parts the

sides a and b as before, and, instead of

the other three parts, the complements

of the oblique angles and of the hy-

pothenuse. The fact that the comple-

ments are understood is indicated by accenting the letters in the

diagram. We suppose

B' = 90° - B; c' = 90° - c; A' = 90° - a.

Omitting the right angle, the five parts a, b, A!, c
r

, B' form a con-

tinuous series, B' being followed in regular order by a. Now if

we select any three of these parts, one of two cases must occur.

Either—

(1) The three parts all adjoin each other, as B f

, a,b; a, h, A',

etc., or

(2) Two of the parts adjoin each other and the third is separated

from each of them by the remaining intervening parts.

The middle part of the three in the first case, or the separated

part in the second, is called the middlepart

In the first case the extreme parts of the three are called

adjacent parts.

In the second case the adjoining parts are called opposite parts.

111. Napier's rules are

:

I. The sine of the middle part equals the product of the tan-

gents of the adjacent parts.

II. The sine of the middle part equals the product of the

cosines of the opposite parts.

The concurrence of the vowel a in tangent and adjacent, and of

the vowel o in cosine and opposite, will help in remembering the

relations.

Examples. 1. Let the parts be the hypothenuse and the two

adjacent angles, or c, A and B.

The middle part is c', and A' and B' are adjacent parts.
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By the rule,

sin (90° - O) = tan (90° - A) tan (90° - B),

or cos c = cot A cot B
f

agreeing with the formula (8).

2. Let the parts be a, A and C. The middle part is then ay

and A' and C are opposite parts. Therefore

sin a = cos (90° - A) cos (90° - C)

= sin .A sin c,

agreeing with the formula (1).

3. Let the three parts be the two sides containing the right

angle and one of the oblique angles, say a, b, and A. Then b is

the middle part, and the other two adjacent parts. Therefore

sin b = tan a tan (90° — A),

or sin b cot a = cot A,

agreeing with the ninth formula.

Exercises.

1. Given A = 62° 29
/

.3, b = 25° 58'.8 ; find a.

2. Given B = 35° 29'.6, a = 75° 5
;

.3 ; find A and b.

3. Given a = 43° 40'.5, c = 98° 29 7

.1 ; find A, B, and J.

4. Given a = 148° 28\2, A = 101° 3'.9
; find 5 and <?.

5. Given A = 50° 0'.8, B = 79° 57 r

.3 ; find a, 5, and c.

112. Relations between four parts. Although the preceding

formulae enable us, when two parts are given, to find the remain-

ing three parts, each part has to be found independently by

different equations. If all three parts are required, we may deter-

mine two of them by a single connected set of operations. For

this purpose we select the appropriate equations from the sets (6)

to (11) of the preceding chapter, choosing only those in which the

angle Centers the second member.

113. Case I. Given an angle and the adjacent side.

When C = 90°, the last three equations (9) of § 104 are

sin A sin c = sin a
; ]

sin A cos o = cos a cos B
; [

(11)

cos A = cos a sin B. J
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From the first two equations we obtain sin A and c. Since we
thus have separate values of sin A and cos A, the agreement of

the two values of A serves as a check upon the accuracy of the

computation.

If ft is also required, the first two equations (9) of § 104 give

sin A sin ft = sin a sin B ;

)

n ~
sin A cos ft = cos B.

)

From which we obtain ft and another value of sin A,

By simply reversing equations (11) we obtain a and B when

A and c are given.

Example. Given a = 75° 5'.3, ^ = 35° 29'.6, to find the

remaining three parts.

sin a, 9.985 12

sin ^, 9.763 88

cos a, 9.410 49

cos.#, 9.910 73

sin A sm c = sin #, 9.985 12

sinA cos c = cos a cos i?, 9.321 22

tan c, 0.663 90 c = 77° 46'.0

sin^L, 9.99510

cos A = cos a sin _£, 9.174 37 A = 81° 24'.4

sin A sin J, 9.749 00

sin A cos ft, 9.910 73

tan 5, 9.838 27 b = 34°34'.2

sin A, 9.995 10

EXEECISES.

1. Given a = 34° 34'.2, B = 81° 24'.4 ; find remaining parts.

2. Given A = 45° 45'.4, c = 61° 49'.3
; find a and ^.

3. Given a = 120° 29'.6, B = 22° 59'.8
; find c and JL.

4. Given A = 98° 0'.4, ft = 52° 7'.8 ; find a and .#.

5. Given B = 133° 33'.7, a = 7° 29'.3
; find J. and 5.

114. Case II. Given the two sides, a and ft.

Putting C = 90°, the equations (8) of § 104 become
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sin c sin A = sin a
;

sin c cos A = cos a sin b
;

cos c = cos # cos 5
; (13)

sin c sin B = sin 5

;

sin c cos i? = sin & cos J.

The values of c and J. are determined from the first three

equations ; those of c and B from the last three. The agreement

of the two values of sin c with the one value of cosine c affords a

check upon the accuracy of the work.

Exercises.

1. Given a = 39° 6'.8, b = 82° 39'.6 ; find A, B, c.

2. Given a = 103° 40'.2, 5 = 62° 29'.3
; find A, B, c.

3. Given a = 172° 1'.5, 5 = 158° 58'.8 ; find A, B, e.

115. Case III. Given the hypothenuse and one angle.

The first three equations of Case I. and the first three of

Case II. give

cos a sin B = cos A
;

cos a cos B = sin A cos c
;

sin a = sin A sin c
; [ (14)

cos a sin 5 = cos ^4 sin c

;

cos a cos 5 == cos c.

From which a, b, and i? may be determined.

Exeecises.

In a triangle, right-angled at C, prove the relations

:

1. sin A sin 2b = sin c sin 2^.

2. sin 2A sin c = sin 2a sin J?.

3. sin 2a sin 25 = 4 cos J. cos B sin
2

c.

4. sin
8
\c = sin

2
-|& cos

2
%b -f- sin

2
£5 cos

2
\a.

5. sin (c — b) — tan
2

-§-J. sin (5 + c).

6. sin a cos b = tan -JJ. sin (b -\- c).

7. In a right triangle of which the oblique angles are

A = 69° 23'.7, B = 60° 7'.6,

find the length of the perpendicular from the right angle upon the

base, and the angles which it forms with the sides.
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8. In a right triangle is given

c = 75° 25', a = 52° 16';

find the lengths of the segments into which a is divided by the

bisector of A.

Exercises in Geometric Application.

9. From a point P above a plane an oblique line PO is

drawn, meeting the plane in and making the angle A with the

plane. Let Q be the projection of P upon the plane, so that OQ
is the projection of OP. Through O a line OMis drawn, making

an angle QOM — B with the projection OQ. It is required to

express the angle POM in terms of A and B.

Ans. Cos POM = cos A cos B.

10. In the preceding case, if a perpendicular PS be dropped

from P upon OM, express the length OS in terms of the angle A
and B and the length OP. Ans. OS = OP cos A cos B.

11. Two planes intersect at right angles along a line /. From

any point P oi I one line is drawn in each plane, making the

respective angles A and B with I. Express the angle C between

these lines. Ans. Cos C = cos A cos B.

12. Two planes intersecting at right angles along a line I are

intersected by a third plane, making with them the respective

angles P and Q. Express the angles which the three lines of in-

tersection make with each other.

Ans. If we put PI for the angle between /and that edge

along which the dihedral angle P is formed, etc., we have

cos Q
cos PI

cos QI =

sinP'

cosP
sin Q>

cosPQ = cot P cot Q.

116. Isosceles triangles. An isosceles spherical triangle may
be divided into two symmetrical right triangles by a perpendicular

from its vertex upon its base. If we put

e, each of the equal sides

;

O, each of the equal angles at the base
;
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b, the base, or third side

;

B, the angle at the vertex

;

1\ the middle point of b
;

<p, the length of the perpendicular BP from B upon b,—
we shall then have two right triangles in each of which the

oblique angles are O and %B, the hypothenuse is c, and the sides

containing the right angle are p and %b. The equations of § 109

will then give

sin %b — sin c sin \B
;

sin jp = sin c sin (7

;

etc. etc.

Exercises.

1. The equal sides of an isosceles triangle are each 45°, and the

angle which they contain is 95°. Find the base and the angles at

the base.

2. If the base of an isosceles triangle is 95°, and the angles at

the base each 45°, find the remaining parts.

117. Quadrantal triangles. Since the polar of a right tri-

angle is a quadrantal triangle, the formulae for quadrantal triangles

may be obtained by applying the formulae of § 109 to the polar

triangle. The side c will then be a quadrant, and the relations

among the other parts will be

sin A = sin C sin a
;

cos a = — tan B cot G\

cos C = — cos A cos B
cos b = cos B sin a

;

cos G = — cot a cot b
;

sin B = tan A cot a.

If we take, as the five parts of the triangle,

A, B, 90° - a, 90° -l,G— 90°, (a)

and omit the hypothenuse c, the above formulae will be expressed

by a set of rules identical in expression with those of Napier. For

example, let us consider the parts a, b, C. Here C will be a

(15)
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middle part, and a and h adjacent parts. Applying Napier's rules

to this case, with the parts (a) we have

sin (0- 90°) = tan (90° — a) tan (90° - V)
;

which gives — cos C = cot a cot 5,

an equation identical with the fifth of the above list.

Exercises.

1. Let the student deduce the six equations (15) by applying

Napier's rules to the parts (a).

2. Through the same point there pass two lines intersecting at

right angles, and a plane P making the angle a with one of the

lines, and the angle /? with the other. Express the angle which

the plane P forms with the plane of the lines.

Ans. Sin A = Vsin2 a
-f- sin

2

p.

3. The sides of an obelisk have a slope of 8° from the perpen-

dicular. What is the face-angle at the base of the obelisk, the

slope of the edges, and the dihedral angle between two adjacent

lateral faces? Ans. Face-angle at base, 82° 4/.6 ; slope, 11° 14'.5
;

dihedral angle, 91° 6'.6.

In this problem, to reduce to a spherical triangle, consider the centre of the

sphere to be at a corner of the obelisk. The slope of the edge will not be

represented by either of the six parts of the triangle, but by the complement of

the perpendicular from the vertex upon the base.

4. A mason cuts a stone with a rectangular base and four lateral

edges, each making an angle of 60° with the base at its corners.

What is the inclination of each lateral face to the base, and the

dihedral angle between the faces, supposing such inclinations and

dihedral angles all equal ? Ans. 67° 47'.5 and 98° 12 /
.8.

5. In another stone the base is rectangular; one lateral face

makes an angle of 68° 29' with the base, and the lateral edge

bounding this face makes an angle of 52° 15' with the base. What
angles does the adjacent lateral face make with the first face and

with the base ?

6. When the angular distance of the sun from the south point

of the horizon is 75°, and from the west point 60°, what is its alti-

tude above the horizon ?



CHAPTER III.

TRANSFORMATION OF THE FORMULA OB SPHERICAL
TRIGONOMETRY.

118. Although the formulae already given suffice for the solu-

tion of every spherical triangle, there are many transformations

which will facilitate the applications of spherical trigonometry,

and render the solutions of triangles more accurate and convenient.

Let us first take the fundamental equation (1) of Chapter I.,

cos a = cos b cos c -f- sin b sin c cos A.

We may express this in the form

cos a = cos b cos c -f- sin b sin c — sin b sin c (1 — cos A)

= cos (b — c) — 2 sin b sin c sin
8 \A.

Moreover, because

— 2 sin b sin c == cos (b + c) — cos (b — <?), (§ 43)

we have, by substituting,

cos a = cos (5 — c) (1 — sin
3 %A) -f- cos (3 -f- c) sin

2
-JJL

= cos (b — c) cos
2 \A -\- cos (5 -f- c) sin

2

JJ..

This last equation may also be derived by the following elegant

process. The original fundamental equation may be written

cos a = cos b cos c (cos
2 \A -\- sin

2 %A)

-f- sin b sin o (cos
2 \A — sin

2
-|^1)

(because cos
2 \A -f- sin

2

-JA = 1, and cos
2 \A — sin

2

J-J. = cos A).

By conjoining the coefficients of cos
2 \A and of sin

2 %A, the

equation (2) follows by the addition theorem.

By a similar process, from the equation

cos A — — cos B cos -f- sin B sin C cos #,

we obtain

cos A = — cos (B -j- (7) — 2 sin i? sin (7 sin
2 \a

; (3)

cos .A = — cos (B -f- <7) cos
2

J& — cos (B — (7) sin
2

J&. (4)

By a slight modification of the process employed in forming

the equations (1) and (3) we may find

i«

|
(2)
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cos a = cos (b -f- c) -f- 2 sin 5 sin c cos
2
-^4

;

(5)

cos A = — cos (B — tf) -|- 2 sin i? sin (7 cos
8 £#

;

(6)

which equations the student may prove as an exercise.

119. Expressions when three sides or three cmgles wre given*

From the last equation (1) we find

. „ „ . cos (b — c) — cos a
sm2 \A = o • / • ;

2 sin b sm c
'

by which any angle is expressed in terms of the three sides.

By § 44, 13 we have

cos
(J>
— c) — cos a = 2 sin %(a -f- c — 5) sin J (a -(- & — c). (a)

If we put 5 for half the sum of the sides, namely,

s = i(a + b + c),

we have
%(a -{- c — b) = s — b

i(a -f- b — c) — s — c.

Substituting these values in (a), the expression for sin
a $A

becomes
sin (s — b) sin (s — c)

:1
Q>)

sin
2 \

A

then, by permutation,

sin b sin c

sin (5 — c) sin (s — a) fc

sm2
£i? = ;

—

—

: ;

sm c sm &

sin
3 iO =

sin (5 — a) sin (5 — b)

sin # sin 5

(7)

To find similar expressions for the cosines we take equation

(5), which gives

cos a — cos (b -f- c)
cos

8 \A
2 sin b sin £

But
cos a — cos (J -f" c) = 2 sin £(5 -f* c -f- a) sin i{b-\-c—a)

[from (J)].

Therefore

cos
3 \A =

cos
3 J^ =

cos
8 \G =

= 2 sin s sin (5 — a)

sin s sin (5 — a)

sin b sin c

sin s sin (5 — J)

sin c sin a

sin s sin (5 — c)

sin a sin 5

(8)
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Since an angle near 90° cannot be accurately determinea by its

sine, nor one near 0° by its cosine, neither of the formulae (7) or

(S) can be advantageously used in all cases. But by taking the

quotient of each equation (7) by the corresponding one of (8) we
have

tan
2

iA =

tan' iB =

tan
2 iC =

(9)

sin (s — b) sin (s — c) "

sin s sin (s — a)

sin (s — c) sin (s — a)

sin s sin (s — b)

sin (s — a) sin (s — b)

sin s sin (s — c)

120. Treating the equations (3) and (6) in the same way, and

putting S=i(A + B+ C),

we find the following expressions for the sides, in terms of the

three angles

:

. , , cos/S'cos(xS
r — A)

sin
2 \a = —

;

—

^r-—77-^

;

* sm B sin O '

. , , _ cosS cos (S— B)
sm2

%b = — =—77-

—

-
A
—

-

;

* sm C sm A '

cos 8 cos (# — (7)

sin A sin J?
sm' *c =

(10)

cos
2

£& =

cos
2
^» =

cos (S-B) cos (£-(7)

sin i? sin C
cos(S-C)cos(S-A)

sin (7 sin A

cos
2
£c =

tan
2 \a = —

tan
2 P = -

tan2
£<? = —

cos{S-A)cos(S-B)

(11)

sin A sin B
cos # cos (# — A)

cos(S-B)cos(S-Cy
cos # cos (S — B)

cos(S- G) cos (S— Ay
COS ytfcOS (£— 6')

cos(£- J.) cos (£ -- .#)'

(12)

For the solution of a triangle in which all three sides or all

three angles are given, the equations (9) and (12) are preferable.
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For convenience in compntation the following slight modification

may be made. Put •

_ a/em (s — a) sin (s — b) sin (s — c)
.

then from (9),

tan
8 *A

sin s

V
sin

2
(s — a) '

extracting the square root, and writing the remaining equations,

P
tan -JA =

tan \B =

tan \C

sin {s — a)
'

__£___.
sin («§ — J)

'

sin (s

In the same way, if we put

o)

(13)

P=y. cos #
cos (tf- ^L) cos (£- B) cos (#- C)>

we find, from (12),

tan \a = P cos (# — -<4) ; \

tan # = P cos (S-B)'A
tan Jc = P cos (8 — C). )

Example of Computation.

Given the three sides,

(14)

a = 76° 29'.3,

find the angles.

a= 76°29'.3

5 = 93° 18'.6

c = 122° 7'.7

& = 93°18'.6, e— 122° r.7;

5 = 145° 57'.8

5 - a = 69° 28'.5

5 - I — 52° 39
/

.2

2^ = 291°55 /
.6 s — c = 23° 50'.1

cosec 0.252 02

sin 9.971 52

9.900 36

9.606 49

9.865 20

sin (s — a), 9.971 52

tan \A, 9.893 68

\A, 38° 3'.35

A, 76° 6'. 7

9.865 20

sin (s — l\ 9.900 36

tani^, 9.964 84

\B, 42°41 /
.0

^, 85° 22'.0

\ogp% 9.730 39

log i?, 9.865 20

sin (s—e), 9.606 49

tan \G, 0.258 71

\C, 61° 8'.3

tf, 122° 16'.6
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We may now check the results by computing the values of

sin a sin b sin c , . _ .

snTZ' shTi?' shT6y '
ai Seeing whetlier the7 aSree -

We nud

sin a = 9.987 81 ; sin b = 9.999 27 ; sin c = 9.927 81

sin A = 9.987 11 ; sin B = 9.998 58 ; sin (7 = 9.927 10

.000 70 .000 69 .000 71

Although the agreement is not perfect, the deviations are no

greater than those due to the omission of decimals in the logarithms

and angles. The angle B is that for which the check is most

doubtful, because it is so near 90° that it may be changed V or 2'

without changing the last figures in log. sin. by more than one or

two units in the fifth place. In such a case certainty can be

reached only by a duplicate computation.

Exercises.

1. Given a = 105° 6'.8, b = 93° 39'.9, c = 50° 20'.3
; find the

angles.

2. Given A = 46° 59 ,

.3, B = 122°32 /

.6, C = 139° r

.3 ; find

the sides.

3. Given A = 78° 40'.7, B = 102° 29 r

.5, O = 86° 49 /

.4; find

the sides.

4. If the sides of a spherical triangle are each 120°, find the

following numerical expressions for the sine, cosine, and tangent

of each of the angles, and thence, by the aid of the tables, find

the angles themselves.

sines = V\
;

cosines = Vi ;

tangents = V2.

121. CagnolVs equation. Cagnoli's equation is

sin a sin b -\- cos a cos b cos C= sinA sin B— cosA cosB cos c. (15)

Proof. Multiplying the third equation (§ 97, 1) by cos C, we

have

cos c cos C= cos a cos b cos C+ sin a sin 5 cos
8
(7 )

= cos a cos 5 cos £7 -f- sin <z sin b — sin # sin b sin
2

(7.
j

The equation of sines (§ 99, 2) gives
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sin a sin G = sin A sin c
;

sin 5 sin G = sin i? sin c
;

whence, by multiplying,

sin a sin J sin
2 C = sin A sin i? sin

2
c

= sin ^4 sin B — sin .4. sin B cos
9

<?.

Substituting this value in (a), and interchanging the terms of the

equation,

sin a sin b -f- cos a cos J cos G
= cos <? cos G+ sin ^4 sin i? — sin JL sin B cos

2
e

= sin A sin B -\- cos c (cos C— sin A sin j5 cos c).

From the last equation (11), § 104, we have

cos G— sin A sin i? cos c = — cos A cos i?.

Making this substitution, we have the equation (15) as enunciated.

Of course two other similar equations may be obtained by per-

muting the symbols.

122. Gauss's equations. We write the four equations,

(a) Cagnoli's equation,

(b) and (e) the fundamental equations (1) 3
and (3)3 , and

(d) the identical equation 1 = 1, as follows

:

(a) sin a sin b+ cos a cos b cos G— sinA sinB — cos A cos J9 cos c
;

(5) cos a cos 5 -f- sin a sin 5 cos (7= cos c

;

(<?) cos G = — cos .A cos .Z? -|- sin ^4 sin Z? cos <?

;

(*> 1 = 1.

Taking the sum of the four equations, and substituting

cos (a — b) = cos a cosb -\- sin & sin 5,

cos (A-\- B) = cos ^4 cos B — sin ^4 sin B,

we have

cos (a — b)+ cos (7 cos (a — b) -f- cos (7+ 1 =
— cos (J. -f- j5)— cos c cos (A -\- B) -\- cos c -\- 1

;

or

(1 + cos G) [1+ cos (a - b)] = (1 .+ cos c) [1 - cos (A+ B)] (e)

If we form the sum — (a) — (b) -f- (o) -f (<#), and reduce in

the same way, we find

(1 + cos G) [1 - cos (a-b)] = (1 - cose) [1 - cos(A-B)] (f)

The sum - (a) + (b) - (c) + (d) gives
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(1 _ Cos C) [1 + cos (a+ b)] = (1 + cose) [1 + cos (.4 + B)] (g)

The sum (a) — (b) — (c) + (d) gives

(1 - cos G) [1 - cos (a+ b)] = (1 - cos c) [1 + cos (A - B)] (h)

In the equations (<?), (/), (#/), (A) we substitute the values of

1 ± cos, namely,

1-fcos 0= 2 cos
2

iC;

l_cos <7=2sin2

J<7;

etc. etc.,

and dividing by 2, we obtain

sin
2 \G sin

2
\{a + b) = sin

2

Jc cos
2

i(A - B)
;
(A)

sin
2
££7cos

2
\{a + b) = cos

2

Jo cos
2

J(^L + i?)
; (#)

cos
2 i^sin 2

J(a -b) = sin
2

Jo sin
2

J(^. -B);(f)
cos

2
Jtfcos

2

J(a — b) = cos
2

Jc sin
2

J(^L + B). (e)

Extracting the square roots, we have

sin \G sin \{a -f- b) = sin \c cos \{A — B)
;

sin \G cos i(a -\- b) = cos J<? cos %(A -f- B) ;

cos i sin J(a — b) = sin Jc sin i(A — B)
;

cos \G cos 4(0 — b) = cos Jc sin J(^L + .Z?).

In strictness, the second members of this equation may have

the negative as well as the positive sign. But it is easy to show

that when the sides and angles are all less than 180°, all the mem-

bers of the equations are positive. Hence the positive sign is the

only one necessary to be taken into account.

These equations are applicable when any three consecutive

parts of the triangle—two angles and the included side, or two

sides and the included angle—are given.

In the first case the three given parts are all in the right-hand

members of the equations ; in the second case they are all on the

left.

These equations are written in the most convenient order for

use in the first case ; in the second, the following is the order and

arrangement

:

sin \g sin J(A — B) = cos \G sin \{a — b)

sin \c cos \(A — B) — sin JG sin J(# -\- b)

cos \c sin \{A -f- B) = cos \G cos \(a — b)

cos ic cos i(A -f- B) = sin \G cos \(a + b).

(17)
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These are commonly known as Gauss's equations, after Gauss,

who first introduced them into astronomical computations. They

had, however, been previously published anonymously by Delambre.

Example. Given a = 132°46'.7, b = 59° SO'.l, C = 56° 28'.4,

to find the remaining parts.

a, 132° 46'.7 sin %e sin \{A - B), + 9.719 08

sin \g cos \{A - B\ + 9.672 34

tan \(A — B), 0.046 74

sin \c, 9.847 48

cos \c sin i(A + B\ 9.850 32

cos ic cos i(A + B), - 8.715 77

tan i(A + B), - 1.134 55

cos \c, 9.851 49

i(A-B), 48° 4'.6

§(A+ B), 94°11'.7

Jc, 44°44 /

.l

A, 142° 16'.3

.£, 46° r.i

c, 89°28 ,
.2

Exercises.

Compute the remaining three parts of each of the following

triangles by Gauss's formulae

:

1. A = 79° 28'.6, b = 28° 20'.3, c = 112° 1'.9.

2. A = 32°58 /

.5, j?= 65° 26'.7, o= 56°21'.2.

3. a = 112° 12'.6, 5 = 124° 48 /

.2, (7 = 18° 17
/
.0.

4. a = 52° 22'.2, ^ = 160° 0'.8, C = 129° 52'.4.

123. Napier's analogies. If, in the preceding problem, only

the two remaining sides in the one case, or the two remaining

angles in the other, are wanted, the process may be shortened.

Dividing the first of (16) by the second, and the third by the

fourth, we have

t^i(a + b) = tmic
cosi{A+ B) ;

,, \ smi(A — B)
t™i(a-l>)=tzn ic s

.

ni{A+ B) ;

)

h 59
c 50'.1 s

a+ b, 192c 36'.8

a — o, 72
c 56'.6

«*+ *),
96° 18'.4 <

i(a-b), 36 c 28 /
.3 c

iO, 28° 14'.2

sin i(a — *)> 9.77410

cos •W, 9.944 98

cos %(a — % 9.905 34

smi(a+ b), + 9.997 37

sin \C,+ 9.674 97

cos i(a+ b\ -- 9.040 80

(18)
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from which may be found a and b when A, B, and C are given.

In the same way we find, from (17),

. , . ™ , ^ sin i(a
ton HA— B) = cotiC^

toni(A+JS) = cot£<7

sin %(a -f b)
'

cos | {a — b)
(19)

cos i(a -\-b)\

from which A and B may be found when a, b, and O are given.

The equations (18) and (19) are known as Napier's analogies.



CHAPTER IT.

MISCELLANEOUS APPLICATIONS.

124. Tofind the distance between two points on the earth?s

surface and their direction from each other, when their latitudes

and longitudes are given.*

Let M and N be the two points

whose latitudes and longitudes are

given ; P, the pole ; and EQ, the

equator. JoinM to i^by the arc of g(

a great circle. Also let

cp = the lat. and A. = the long, ofM
;

<p
l = " « V = " " HT.

If from the pole P we draw

throughM and iV arcs of great circles PMR and PWS, meeting

the equator in R and S
9
we shall have

cp = i?J/ = latitude ofM
;

cp' = SN = latitude of JK

If we suppose P^ to be the meridian from which we reckon

longitudes,

Angle QPM = X;

Angle QPN — V.

Then because PB = PS = 90°, we have in the triangle MPN
PM = 90° - <p ;

PAT = 90° - <p'\

Angle P= A - V.

* It is assumed in the solution of this problem that the earth is a sphere.

Although the assumption is not strictly correct, the error to which it can give

rise can never amount to more than a few thousandths of the whole distance.
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This is a case, therefore, in which we have given two sides and

the included angle to find the remaining side. If we put d for

the required distance, the general formula gives

cos d = cos PM cos PN -f- sin PM sin PN cos P
= sin cp sin <p'

-f- cos <p cos <p' cos (A — A').
\

This equation will suffice to determine the distance between

the points in arc of a great circle.

To reduce it to statute miles, the degrees must be multiplied by

69-J-
; and to reduce to nautical miles, by 60.

To solve the problem completely we should know not only the distance but

the direction, or the angle which the great circle joining the two points makes

with the meridian. This angle is different at the two points, being equal to the

angle M of the spherical triangle at one point, and to N at the other. Hence

the complete solution requires the complete solution of the spherical triangle

PMN, for which we may use the Gaussian equations instead of the form (a).

Exercises.

1. Find (1) the distance,* both in degrees and nautical miles,

between New York and Liverpool, on an arc of a great circle

;

(2) the direction in which a ship would sail on leaving the one

port for the other, on an arc of a great circle, and the direction in

which she would be sailing on approaching her destination. The

positions of the cities are

:

New York lat. + 40° 42'.7, long. 74° O'.O west.

Liverpool lat. + 53° 24'.1, long. 2° 59'.1 west.

2. Compute the distance between Liverpool and Kio de Janeiro,

the position of the latter being

:

Latitude, - 22° 54'.7.

Longitude, 43° 9'.0 west.

Note that the latitude of Rio is algebraically negative, being reckoned south

from the equator.

3. If a ship sails from New York, starting due east, and con-

tinues her course on an arc of a great circle, what will be her

latitude when she reaches the meridian of Greenwich, and in what

direction will she then be sailing?

* By distance, as used here, distance on the arc of a great circle is to be

understood, unless explicitly stated otherwise.
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Geometrical Applications.

125. Def Three straight lines, each perpendicular to the

other two and all passing through a common point, are called a

system of rectangular axes.

Def. The common point of intersection is called the origin.

Def. Three planes, each perpendicular to the other two, are

called three rectangular planes.

Bemarh. It is shown in geometry that three rectangular planes

intersect each other in lines forming a system of rectangular axes.

If a sphere have its centre in the common point of intersection

of three rectangular planes, these planes will intersect its surface

in three great circles, forming in all eight trirectangular triangles.

126. Theoeem. The sum of the squares of the cosines of the

three angles which a straight line forms with three rectangular

axes is equal to unity.

This theorem is expressed in trigonometric language thus :

If ot, /?, and y he the angles which a straight line forms with

three rectangular axes, then

cos
2 a

-f- cos
2

/3 -|- cos
2

y = 1. (1)

Proof. Let the line pass through the common point of inter-

section of the axes. Let a sphere have

its centre at this point, and let X, Y,

Z, and P be the points in which the

axes and the line intersect the spherical

surface.

Join PX, PY, and PZ by arcs of

great circles, and produce ZP until it

meets XYm Q. Then—
Because the angles a, /3, and y are formed at the centre of the

sphere,

Arc PXmeasures angle a;

« PY « " /?;

" PZ " " y.

Because XYZ is a trirectangular triangle, Z is the pole of

XY, and ZQ is therefore perpendicular to XY. Therefore the
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spherical triangles XQP and YQP are right-angled at Q, and,

by § 109, 5,

cos PX = cos a = cos XQ cos QP

;

cos PY= cos /? = cos YQ cos $P.

Taking the squares of these equations and adding them to the

square of cos PZ = cos y, we have

cos
2
a:+ cos

3
/?+ cosV = cos

2 QP (cos
3XQ + cos

3 YQ)+ cos
3PZ

= cos
3 QP+ cos

2 PZ (becauseXT= 90°)

= 1 (because <>Z = 90°). Q.E.D.

Another proof. Let OX, Y, and 6>Z be the axes meeting

in 0, and let OP be the line

making with the lines OX, OY,
OZ the respective angles

POX= a;

POT= /?;

PO£ = r-

Through P pass three planes

parallel to the respective planes

formed by the axes, taken two and two, namely.

Plane PSVE
\\

plane XOT;
Plane PQTS \\ plane TOZ;
Plane PRWQ

||
plane Z<9X

These planes will then form a rectangular

OTQW- VSPP, of which OP will be a diagonal.

erty of this diagonal (Geom., § 692),

OP2
== 6>T 3 + OW 2 + OF 2

.

Moreover, because these planes are respectively parallel to the

three rectangular planes, and because each of the axes is perpendic-

ular to one of these planes, the three planes in question are each

perpendicular to one of the axes.

If we join PT, P W, and P V, these lines, being in planes

which, as just shown, are perpendicular to the axes OX, T, and

OZ, will be perpendicular to these axes (Geom.), and we shall have

OT = OP cos POX = OP cos a. l

OW= OPcosPOY= OPcos/3\ I (b)

OV = OP cos POZ = OP cos yl J

parallelopiped

By the prop-

(a)
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Taking the sum of the squares of these three equations, and

substituting for OT* + OW% + OV* its value (a), we have

OP2 = OP2
(cos

2 a + cos
2
/? + cos

2

y).

Dividing by OP2

,

cos
2 a -f cos

2
/? + cos

2 y = 1. Q.E.D. (2)

127. Corollary. It is easily shown that the angles «, /?, and

^ are the complements of the angles which OP forms with the

three rectangular planes. For, pass a plane through P and OZ.

Because OZ 1 plane XO Y, the cutting plane OZP is also perpen-

dicular to XOY, and the line OQ in which it cuts XOY 1 OZ.

But, by definition of the inclination of a line to a plane (Geom.,

§ 603), the angle POQ will be the inclination of OP to the plane

XO Y. Therefore, if we call this inclination a, we have

a + a = 90°

;

and in the same way,
b + /3 = 90°

;

c + y = 90°

;

5 and c being the inclinations of the line to the two other planes.

Therefore sin a= cos a, sin b = cos /?, and sin c = cos y ; whence

sin
2 # -f- sin

2
5 -\- sin

2
c = 1. (3)

Because parallel lines have equal inclinations to a plane, the

angles which any straight line makes with the three planes are

equal to those made by a parallel to that line through 0. Hence :

The sum of the squares of the sines of the three angles which

any straight line makes with three rectangular jplanes is equal to

unity.

128. Case of aplane cutting three rectangularplanes. "We

have the following theorem :

Theorem. If any plane mtersect three rectangular planes, the

sum of the squares of the cosines of the three angles which itforms
with them is equal to unity.

This can be demonstrated from the preceding theorem by

dropping a perpendicular from the common point of intersection

of the three rectangular planes upon the cutting plane. Because

the rectangular axes and this line are each perpendicular to one of

the four planes, the angles which they form with each other are
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equal to the angles between the planes. The theorem, having

already been proved for the angles formed

by the lines, must therefore be true of the

equal angles formed by the planes.

But the theorem may also be proved

independently as follows

:

Pass a sphere around the origin as a

centre, and let XY, ZZ, ZX be the arcs

of great circles in which the rectangular

planes intersect its surface.

Pass a plane through the centre par-

allel to the intersecting plane, and let FD be the great circle in

which it intersects the spherical surface.

Put

Angle YDE = a ; \ the three angles which the in-

Angle XFE = /?; I tersecting plane forms with

Angle XED = y ; J the three rectangular planes.

Join XI) by an arc of a great circle. Then

—

Because XT = XZ = 90°, Xis the pole of YZ, and

XD = 90°
;

Angle ADC — angle ADB = 90°.

Because AFD and AFD are triangles of which the side AD
is 90°,

cos AFD = cos /? = — cos FAD cos FDA
;

cos AFD = cos y = — cos FAD cos EDA
= _ sin FAD cos EDA

(because FAD = FAD + EAF = FAD + 90°).

Taking the sum of the squares,

cos
2
(3 + cos

3 y = cos
2 EDA

= 1- sitfEDA.

Because FDA = ADB - FDD = 90° - a,

sin
2 EDA = cos

2
a.

Hence
cos

2 a + cos
2

fi + cos
2 ^ = 1. Q.E.D. (4)

129. Corollary. In the same way that we proved the corol-

lary of the last theorem we may show

:
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If a plane intersects a system of three rectangular axes,form-

ing with them the respective angles a, b, c, then

sin
2 a + sin

3
b + sin

2
c = 1. (5)

Exekcises.

1. Having a system of three rectangular axes OX, Y, OZ, a

line OP is drawn from 0, making

Angle XOP = 60°
;

Angle TOP = 50°.

Find the angle ZOP and the angles which OP makes with the

three planes XOY, YOZ, ZOX.
2. Supposing OP = 32.965 centimetres, and the angles to have

the values in the preceding exercise,

find the lengths of the perpendiculars

dropped from P upon each of the

axes OX, OY, and OZ, and the dis-

tances of the feet of these perpendicu-

lars from the origin 0.

3. The same thing being supposed,

what are the lengths of the respective

perpendiculars dropped from P upon the three planes XOY,
YOZ,x&&ZOX%

4. The same thing being supposed, what are the lengths of the

projections of OP upon the three planes ?

130. Methods of defining the direction of a line in space.

The direction of a line in a plane is defined by the angle which

it makes with some fixed line in the plane. For example, if we
have a known fixed line OX, and it is re-

quired that another line OP through

shall make an angle -\- 45° with OX, this

completely fixes the direction of OP. That

is, there is only one line through which makes an angle of

-|- 45° with OX, when we employ the method of measuring angles

defined in Plane Trigonometry, Chap. I.

But if OP is not confined to one plane, its position is not fixed
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by the angle XOP, because any number of lines may be drawn

through 6>, some above the plane of the paper and some below it,

all making the same angle with OX. The student will see that

these lines are all elements of a cone having as its vertex and

OX as its axis.

Hence at least two conditions are necessary to define the direc-

tion of a line in space. These two quantities may be chosen in

various ways, of which the following is the most common.

We have (1) a plane of reference, the position of which we

suppose fixed, and (2) in this plane we have a fixed line of refer-

ence OX. We call the plane of

reference thefundamental plane.

Let OZ be a line through 0, per-

pendicular to the plane.

Let OP be the line of which the

•direction is to be defined. /

"

From any point P of this line %
N

drop a perpendicular PQ upon the

fundamental plane, and join OQ.

The direction of OP is then defined by the following two

angles

:

(1) The angle POQ which OP forms with its projection OQ;
that is, the angle between OP and the plane.

(2) The angleXOQ which the projection of OP makes with OX.

It will be remarked that the planes of these two angles are

perpendicular to each other.

To show that these two angles completely fix the direction of

OP, we first remark that when the angle XOQ is given the line

OQ is fixed.

Next, because PQ is perpendicular to the plane, the point P
and therefore the line OP must lie in the plane ZOQ, which is

fixed because its two lines OZ and OQ are fixed. If the angle

QOP in this (vertical) plane is given, there is only one line OP
which can form this angle.

Hence the direction of the line OP is completely determined

~by the two angles XOQ and QOP.
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The plane XOQ is, when used in this way, the fundamental

plane.

131. Relation of the preceding system to latitude and longi-

tude. To form another conception of these two angles, pass a sphere

around as a centre, and mark on its surface the points and lines

in which the lines and planes belonging to the preceding figure

intersect it. Then

:

The fundamental plane OXQ intersects the spherical surface

in the great circle MXQN. „

The line OX intersects it in X.

The line OQ intersects it in Q.

The lines OP and OZ intersect / /____,

it in P and Z.

¥e therefore have

Angle XOQ = arc XQ
;

Angle QOP = arc QP.

If now we imagine this sphere to

be the earth, the great circle MN to

be its equator, Z to be one of its poles, and P any point on its

surface, then

—

The arc QP or the angle QOP is the latitude of P.

The arc XQ or angle XOQ is the longitude of P, counted

from ZX as aprime meridian.

Thus the angles we have been defining may be described under

the familiar forms of longitude and latitude.

133. Position of apomt. To fix the position of any point

relative to a fundamental plane, we must select a point O in that

plane and a line OX as a point and line of reference. If P be

any point of which we wish to describe the position, we draw

the line OP and form the same construction as in article 130.

Then the position ofP is fixed by the two angles XOQ and QOP,
already described, and the distance OP.

Hence three quantities are required to fix the posiUon of a

point in space.



MISCELLANEOUS APPLICATIONS. 157

Def The quantities which fix or describe the position of a

point are called the co-ordinates of the point.

The angles XOQ and QOP and the length OP are therefore

co-ordinates of the point P, and are distinguished as polar co-

ordinates.

133. Polar distance and longitude. In the preceding figure,

because MXQN is a great circle, and Z its pole, we have

Angle XOQ = arc XQ = angle XZP
;

Arc PQ = 90° - arc ZP.

Therefore if we put

p, the arc ZP, which is called the polar distance of P;
cp, the arc PQ = angle QOP,

we have
sin cp = cos^>

;

->

cos cp = sin p

;

L (6)

A = angle XZP. J

Thus we may define the direction of a line by polar distance

and longitude, as well as by latitude and longitude. Applying the

same system to positions on the earth's surface, their distance from

the north pole of the earth is used instead of their latitude. Thus

we should have,

For New York, p = 49° IT'S;

For Kio de Janeiro,p = 112° 54Z.7.

134. Rectangular co-ordinates. The rectangular co-ordinates

of a point are its distances from

three rectangular planes. In the

figure the lines PQ, PR, and PS
are the rectangular co-ordinates

of P with respect to the axes

OZ, OX, and OY respectively.

In other words

:

The co-ordinate of a point rel-

ative to each axis is the length of the line parallel to that axis

from the point to the plane of the two other axes.
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We designate these co-ordinates thus : If P is the point whose

co-ordinates are x, y and z,

x is the line PP parallel to OX
;

y " " PS " " OY;
2 « " PQ « " OZ.

135. Problem. To find the relation between rectangular

and polar co-ordinates.

Let P be the point whose polar

co-ordinates are given.

From P drop PQ 1 plane XOY
From Q drop QE l 6>X.

"We then have

QP = z;

PQ = y;

OP = x.

The first of these equations follows immediately from the defi-

nition of rectangular co-ordinates.

To see the truth of the second we notice that because

PQ ||
plane XOZ, the perpendicular PQ is equal to the perpen-

dicular from P upon the plane XOZ.
Let us now put

cp, the angle QOP, or the elevation of OP, above the plane

XO Y. We may call this angle the latitude of P.

X, the angle XOQ which OQ, the projection of OP, makes

with OX. We may call this angle the longitude of P.

r, the length of OP.

We then find

z = QP = r sin <p ;

OQ = r cos q>;

y = PQ = OQ sin A. = r cos <p sin A

;

a? = 0i? = OQ cos A = y cos <p cos A ; „

which are the required expressions.

If we take the sum of the squares of these three equations, we
find, by simple reductions,

(7)

+Y+*=* (8)
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136. The second proof of § 120 affords very simple ex-

pressions for the rectangular co-ordinates, in terms of the angles

which OP makes with the rectangular axes.

In the figure we have

TQ=y;\ (9)

QP=z. J

Putting, as before, a, ft, and y for the angles POX, POY,
and POZ, which OP makes with the axes OX, Y, and OZ
respectively, we have, by (b), § 126,

x = r cos a ;
-\

y = r cos ft ; i- (10)

z — r cos y. J

Comparing these with equations (7), we have the following

values of a, ft, and y in terms of <p and A. :

cos a = cos cp cos A ; -^

cos /3 — cos cp sin X
; J-

(11)

cos y = sin 99. J

The sum of the squares of the second members is identically

equal to unity, as it should be.

137. We may find a linear expression for r in terms of the

rectangular co-ordinates by multiplying the equations (10) by cos a,

cos ft, and cos y respectively, and taking the sum of the products,

noting equation (2). We thus find

x cos a -\- y cos ft -f- z cos y = r.

138. The expressions (10) furnish us another definition of the

rectangular co-ordinates of a point in space, which will sometimes

be useful. Since OTP is a right angle, the point Tis the projec-

tion of P upon the axis OX. In the same way W and V are the

projections of P upon the other axes. Because OT, OW, and

V are the co-ordinates of P, we have the definition :

The rectangular co-ordinates of apoint are the distancesfrom
the origin to its projections upon the three axes.

139. The preceding formulae are directly applicable to posi-

tions upon the surface of the earth. Let us suppose to be the
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centre of the earth ; OZ, its axis, Z being the north pole ; P, a

point on its surface ; OY± OX; the great circleXY the equator,

and the plane XOY the plane of the equator.

Also let the great circle ZX be the meridian of Greenwich,

from which longitudes are counted, and let PQ be the perpen-

dicular arc of a great circle from P upon the equator.

The three rectangular planes will

then be

:

Plane XOY, the plane of the

earth's equator

;

Plane ZOX, the plane passing

through the earth's axis and through

Greenwich

;

Plane YOZ, the plane at right

angles to the other two.

The angle QOP = cp will then be

the latitude of the point P, and XOQ = \ will be its longitude.

The rectangular co-ordinates %, y, and z will be the distances of

the point P from the respective planes.

Hence if we put

p, the radius OP of the earth,

we shall have

z = p sin <p, distance from plane of equator

;

y = p cos cp sin A, distance from plane of Greenwich
;

x = p cos cp cos A, distance from third plane.

Exercises.

1. Assuming the latitude of "Washington to be + 38° 53'.6, its

longitude west from Greenwich 77° 3'.0, and its distance from the

earth's centre to be 6369 kilometres, it is required to compute :

(a) Its distance from the plane of the equator

;

(h) Its distance from the earth's axis

;

(c) The circumference of the circle which it describes every

day in consequence of the earth's rotation on its axis
;

(d) Its distance from the plane passing through Greenwich and

the axis of the earth.
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2. What is the length of the straight line through the earth

from Washington to Melbourne ? The position of Melbourne is

:

Latitude, — 37° 3S'.7
;

Longitude, 144° 58'.7 east of Greenwich
;

Distance, 6369 kilometres from earth's centre.

Find the angle between the two radii by § 134, and then the distance by § 61.

3. In the preceding problem, what are the lengths of the seg-

ments into which the straight line from Washington to Melbourne

is divided by the plane of the equator ? Begin by finding the dis-

tance of each point from the plane of the equator.

4. How far apart are the feet of the respective perpendiculars

from Washington and Melbourne upon the plane of the equator ?

And how far is each foot from the centre of the earth ?

140. Projection of one line upon another. In geometry and

trigonometry the projection of a finite line a upon an indefinite

line X is defined as the distance between the feet of the perpen-

diculars dropped from the ends of a upon X. Hence it has been

shown that if we put

p, the projection,

or, the angle which a makes with X,
we shall have

p = a cos a.

In demonstrating this proposition we have supposed a and X
to intersect, and therefore to lie in one plane.

When they are not in one plane a general definition of the

angle between two such lines is necessary.

Def. The angle between two non-intersecting lines is the same

as the angle formed by one of the lines and an intersecting line

parallel to the other.

Example. If Xand a do not intersect, the angle between X
and a is the same as the angle between X and any parallel to a

intersecting X.

The theorem which we have proved for a special case is per-

fectly general, and is as follows

:

If a he the angle between any two lines, a the length of one of

them, andp the projection of a upon the other, we have

p = a cos a.
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Proof. Let BGbe the projected line ; X, the line of projec-

tion ; BF and GG, the perpendiculars

from B and G upon X (These per-

pendiculars are not parallel.)

Then FG is by definition the pro-

jection of BG upon X.

Through F and G pass planes

each perpendicular to the line X.

These planes are parallel (Geom., —

§616).

The lines FB and GG being perpendicular to X, lie in these

respective planes (G-eom., § 586).

Therefore the points B and G lie in these planes.

Through F draw FH \\ BG, and meeting the plane through

GG at the point H.

Because the planes and lines are parallel,

FH=BG.
Join HG. Because H and G are in one plane 1 line X,

JIG l X.

Therefore

FG = FH cos HFG;
or, because FH = a and angle HFG = a,

FG = a cos a. Q.E.D.

141. Plane triangles in space. The following problem is of

constant occurrence in astronomy

:

Given

:

(1) The distance and direction of a point B from some point

of reference G, the centre of the earth, for example

;

(2) The distance and direction of another point G from B
;

Required the distance and direction of G from G.

It will be remarked that these distances and directions form

the sides of a plane triangle, of which G, B, and G are the vertices.

To attack the problem, we may assume G as the origin of co-

ordinates, and find the rectangular co-ordinates of B and G as

referred to G.
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Let us suppose

OX, Y, OZ, the three co-ordinate axes

;

r, the length OB;*
%

s, the length BO;
a, /3, y, the angles XOB,

YOB, and ZOB, which OB makes ^
with the three co-ordinate axes ; &

Bb, Bb', Bb", the perpendicu-

lars from B upon the three axes

;

Co, Co', Oc", the perpendiculars from O upon the three axes.

Then—
I. Putting x, y, and z for the co-ordinates of B, we have (§ 136)

x = Ob = r cos a ;
-\

y = Ob' = r cos ft ; I (12)

= 0£* = r cos y. J

II. If we designate the angles between BO and the co-ordinate

axes by a', ft, and j/, we have (§ 140)

be = s cos a!
; ^

JV = *cos/?'; I (13)

&V = 5 cos ;/. J

III. The lines Oc, Oc', Oc" are by definition the co-ordinates

of the point C. Hence if we put r" =00, and a", /3", y" the

angles which OC makes with the three co-ordinate axes, we have

r cos a

r" cos ft

= Oc,

= Oc';

= Oc":

(a)

t cos y
or, comparing with (12) and (13),

r" cos a" = r cos a -\- s cos a!

;

r" cos /3" = r cos /? + s cos /?'

;

r" cos x" = r cos 7 + 5 cos ;/. J

In practice the angles a, j3, y, etc., are not generally conve-

nient, because they are not independent. We therefore substi-

tute for them the polar co-ordinates cp and X, denned in § 135,

putting

*The lines OB and OC are omitted in the figure in order to avoid complexity.
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cp and X, the latitude and longitude expressing the direction

of OB.

9/, A/, the same for BO. We may conceive cp' to be the angle

which OB produced makes with the plane of ZZ; or, which is

the same thing, the angle between BO and a plane through B
parallel to XY. We also put

cp", X'\ the corresponding quantities for 00.

The general equations (a) combined with (11) then give

r" cos cp" cos X" = r cos cp cos X
-J- s cos cp' cos X' ;

-\

r" cos cp" sin A" = r cos <p sin A. -j- s cos 9/ sin X' ; L (14)

r" sin cp" = r sin cp -J- 5 sin 9/. J

When the six quantities which enter into the second members

are all given, r", cp" ^ and X" may be computed by Prob. VI. Chap.

IV. But the first two equations may be simplified by the follow-

ing transformation

:

Multiply the first equation by sin Ar

, and the second by cos V,

and subtract the first product from the second. The remainder

reduces to

r" cos cp" sin (X" — V) = r cos cp sin (A, — V).

Now multiply the first by cos A7

, and the second by sin A', and

add the products. The sum reduces to

r" cos cp" cos (X" —X') = r cos cp cos (X — X') -\- s cos cp'.

From these two equations and the third of (14) the values of

r", cp'\ and X" — X' may be computed by Prob. YI. Chap. Y.

We might equally have effected the transformation by using

sin X and cos X as multipliers, and proceeding exactly as before.

The equations to be solved would then be

r" cos cp" sin {X" — X) = s cos q*' sin {V — X)
;

^»

r" cos cp" cos (X" — X) = r cos <p -\- s cos cp' cos (X' — X) ; I (15)

r sin cp" = r sin <p -\- s sin cp'm J
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