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An organic triazine charring agent hybrid with zinc oxide

(OTCA@ZnO) was prepared and well characterized through

Fourier transform infrared spectrometry (FTIR), solid-state

nuclear magnetic resonance (SSNMR), transmission electron

microscopy (TEM) and thermogravimetric analysis (TGA).

The flame retardancy and thermal behaviour of intumescent

flame retardant ethylene-vinyl acetate (EVA) composites

combining OTCA@ZnO and ammonium polyphosphate

(APP) were investigated using limited oxygen index (LOI),

UL-94 vertical burning, cone calorimetry and TGA. The

structure and morphology of chars were investigated by

scanning electron microscopy (SEM), FTIR, laser Raman

spectroscopy analysis (LRS) and X-ray photoelectron

spectroscopy (XPS). Results revealed that OTCA@ZnO

exhibited excellent thermal stability and dispersity after

hybridization. The flame retardancy and smoke suppression

properties of EVA were significantly improved by

introducing APP/OTCA@ZnO. TGA results indicated that

APP/OTCA@ZnO presented an excellent synergistic effect

and promoted the char formation of EVA composites.

Residue analysis results showed more char with high quality

connected by richer P–O–C, P–N and P–O–Si structures

was formed in APP/OTCA@ZnO system than APP/

HOTCA/ZnO system, which consequently suppressed more

efficiently the combustion and smoke production due to the

in situ catalytic carbonization effect of hybrid.
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1. Introduction

Ethylene-vinyl acetate copolymer (EVA) as a copolymer of ethylene and vinyl acetate has been

extensively applied in lots of fields, such as gas pipe, insulating materials and so on, owing to its

excellent easy-processing, physical and mechanical properties. However, the same as the typical

organic polymers, EVA is also inherently flammable with a high smoke emission which restricted its

development and application. The halogen-containing flame retardants were excellent flame retardant

additives for EVA, especially used with Sb2O3, and yet corrosive smoke and toxic gases would be

frequently generated during combustion which unavoidably caused great harm to the humans’ health

and environment [1,2]. Therefore, a growing demand for halogen-free and environment-friendly flame

retardants (FRs) gradually rises up. Some hydroxides and nanometre materials are widely used for

flame retardant EVA due to their excellent low smoke and non-toxic properties. However, excessive

loading can cause a decrease in the mechanical properties of the material and in flame retardant

efficiency. Therefore, many researchers have recently improved the flame retardancy of polymers by

modifying flame retardants or combining with other agents. Vahabia et al. [3] applied hydroxyapatite

(HA) and a physical blend of HA and multi-walled carbon nanotube (HA-CNT) into EVA, and found

the peak heat release rate (PHRR) value of ethylene-vinyl acetate/ammonium polyphosphate/

hydroxyapatite (EVA/APP/HA) or EVA/APP/HA-CNTs was decreased dramatically compared with

pure EVA. Kim et al. [4] investigated the synergetic effect of a clay-organic intumescent hybrid system

of EVA nanocomposites and the flame retardant property of EVA was enhanced. Qian et al. [5] prepared

the ethylene-vinyl acetate/layered double hydroxides/zinc borate (EVA/LDHs/ZB) composite, and

found the ternary composites possessed a higher thermal stability than the EVA/LDH composites.

Among these halogen-free flame retardants, intumescent flame retardants (IFRs) with the advantages

of non-toxicity, environmental and low smoke have become one of the best candidates in flame retardant

polymer fields in recent years [6,7]. The existing results showed that the special IFRs with triazine

charring agents, which exhibited high flame retardancy because of the stable triazine ring structure

and easily charring characteristics during combustion, have been extensively investigated and they

could overcome the shortcomings of the traditional IFRs [8–10].

Further, for enhancing the efficiency of intumescent systems on polymers, lots of additive agents,

such as metallic oxides, 4A zeolite, fumed silica and so on, have been widely studied. It was reported

that a small amount of metal oxides (e.g. ZnO and La2O3) could significantly improve the thermal

stability and flame retardancy of intumescent flame retardant composites [11–13]. During combustion,

metallic oxides played roles of catalysing the decomposition and charring reaction of IFRs, and more

stable cross-linked structures formed in intumescent char layer [14,15]. Lewin et al. [16] studied the

catalytic effect of several metallic compounds in IFR systems. Sheng et al. [17] investigated the com-

ZnO, nano-ZnO, zeolite 4A and Al(H2PO2)3 as synergistic agents combined with IFR in PP, and Wu &

Yang [18] investigated some transition metal oxides like MnO2, ZnO and Ni2O3, which were applied

into PP/IFR system. The results indicated it was the interaction between APP and metal oxides that

enhanced the flame retardant properties of polymer. However, the existing works showed metal oxides

were usually blended physically with IFR in polymers, and thus it was difficult for the mixtures to fully

show their synergism due to the very low loading amounts (less than 2 wt%) and serious reunion of

oxides. The final properties of polymeric composites strongly depend on particles’ dispersion and

distribution in the matrix [19]. Moreover, the weak compatibility of metal oxides in composites also was

a severe disadvantage, which deteriorated the physical and mechanical properties [20]. So, the organic

surface modification of metal oxides, especially employing those modifiers with fire resistance, may be

a prospective method, which would not only settle the above matters, but also bring more efficient

synergistic effect of metal oxides within one compound unit with flame retardants.

Silicon-containing compounds are types of environment-friendly and highly efficient flame

retardants which could form a protective carbonaceous layer with excellent barrier effect at high

temperature [21–24]. It was reported that silicone could comparatively lower the heat release rate and

release product of toxic gas (CO), and the synergistic effect was especially obvious between silicone

and IFR with the protective char layer containing Si–O and Si–C bonds [23,24]. Further, silicones

could improve the interfacial compatibility of fillers and matrix by chemical interactions, which

regulated the structure and property of composites [25,26].

In this work, based on the flame retardant effectiveness of triazine compounds and silicon, and the

synergistic effect of ZnO, a hybrid organic–metallic charring agent (OTCA@ZnO) had been prepared.

The flame retardancy and thermal stability of EVA composites containing APP and OTCA@ZnO were

studied through LOI, UL-94, cone test and TGA. The residues were studied to explore the flame



Scheme 1. Route for the synthesis of OTCA.
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retardant mechanism by SEM, FTIR, LRS and XPS. APP/HOTCA/ZnO system as a comparing subject of

APP/OTCA@ZnO system was also systematically investigated to identify the more efficient flame

retardant action of the hybrid system.
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2. Experimental procedure
2.1. Materials
EVA containing vinyl acetate units of 17.6–20.4 wt% was bought from BASF-YPC Co., Ltd (Nanjing, China).

2,4,6-Trichoro-1,3,5-triazine (CYC) and ethylenediamine (EDA) were supplied by Tianjin Hebei Chengxin

Chemical Co. Ltd and Fuchen Chemical Reagents Factory, China, respectively, and used as received. APP

(n . 1000) was produced by Polyrocks Chemical Co. Ltd, China. g-Aminopropyltriethoxy silane, N,N-

dimethyl acetamide (DMAc), dichloromethane (DCM), triethylamine (TEA) and nano-ZnO were

provided by Sinopharm Chemical Reagent Co., Ltd, China. DMAc was used after purification.

2.2. Preparation of OTCA@ZnO
Firstly, 20 ml DMAc solution containing 32 g g-aminopropyltriethoxy silane was added into a three-

necked flask equipped with a mechanical stirrer. Then, 27 g CYC and 14.6 g TEA in 20 ml DMAc was

slowly added dropwise with vigorously stirring in an external ice-water bath. The reaction

temperature was increased to 508C in an oil bath after 3 h and a solution of 19.2 g EDA and 14.6 g

TEA in 10 ml DMAc was dropped for 30 min. After 3 h, 14.6 g TEA was added and the reaction

temperature increased to 95–1008C for another 3 h. Thereafter, the mixture after vacuum distillation

was cooled and poured into 50 ml DCM. The precipitate was then filtered and washed with DCM.

After drying to a constant weight under vacuum at 1008C, the intermediate OTCA (light yellow

powder) was obtained. Scheme 1 presents the routes of synthesis for OTCA. FTIR (KBr, cm21): 3012

(CH3), 2925 (CH2), 1586 and 1512 (C3N3), 1028–1005 (Si–O), 813 (Si–C).

Secondly, 200 ml mixed solution of ethanol/water (v/v 9/1) and 32 g OTCA, with pH altered to 9

with 5 wt% ammonia solution, was stirred for 2 h. Meanwhile, 8 g nano-ZnO activated at 1508C for 2 h

and 150 ml ethanol were added into a conical flask and ultrasonic agitation was carried out for 2 h.

Then, the mixture was dropped into OTCA/ethanol/water solution and refluxed gently with stirring

for 6 h. Next, the reaction mixture was cooled to room temperature and filtered to obtain raw product.

The solid was washed three times with hot water. Finally, after drying at 1008C under vacuum

overnight, a white powder was obtained (yield: 86%). Scheme 2 presents the preparation route of

OTCA@ZnO. The content of Zn in OTCA@ZnO was 7.2 wt% tested by ICP-MS (iCAP Q, Thermo,

Waltham, USA) and the content of ZnO was 9.0 wt% calculated by Zn content. FTIR (KBr, cm21): 3427

(OH), 2929 (CH2), 1586 and 1513 (C3N3), 1083 (Si–O), 809 (Si–C), 434 (Si–O–ZnO). 13C SSNMR (Solid,

ppm): d ¼ 168 and 76 (s, 3C, C3N3), d ¼ 44 (s, 6C, NH–CH2), d ¼ 26 (s, 2C, CH2), d ¼ 14 (s, 2C, Si–

CH2). 29Si SSNMR (Solid, ppm): d ¼ 254 (m, 1Si, Si–O–ZnO), d ¼ 257 (m, 2Si, Si–O–Si). The

corresponding spectra of OTCA and OTCA@ZnO were given in the electronic supplementary material.

Meanwhile, the hydrolysis product of OTCA named as HOTCA was prepared following the above

procedure except without ZnO, and HOTCA physically blended with nano-ZnO would be used as a

comparative object of the hybrid OTCA@ZnO.

2.3. Preparation of flame retardant EVA composites
EVA and all additives were dried in vacuum at 808C overnight. EVA samples were melt-mixed via a

torque rheometer (KX-160, Jiangsu, China) with the process temperature of 1308C and the rotation
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Scheme 2. Route for the synthesis of OTCA@ZnO.
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speed of 40 r.p.m. Then, they were hot-pressed to produce sheets with different sizes used in subsequent

tests. The formulations are presented in table 1.
2.4. Instruments and characterization
Fourier transform infrared (FTIR) spectra of compounds and residues after cone test were recorded by a

Nicolet 6700 FTIR spectrometer (Nicolet, USA) with KBr pellets. 1H NMR, 13C NMR and 29Si NMR

spectra were obtained from an Agilent 600 M spectrometer (Agilent, America). Transmission electron

microscopy (TEM) images were taken on JEM-2100 (JEOL, Japan) with 200 kV acceleration.

Thermogravimetric analysis (TGA) tests were performed on a TGA instrument thermal analyser (TA

Q50, USA). About 2–5 mg of a tested sample was heated from 508C to 7008C under neat N2 atmosphere

at rate of 208C min21.

Limited oxygen index (LOI) values were measured using a FTT 0080 LOI instrument (Fire Testing

Technology Ltd (FTT), UK) according to American Society for Testing and Materials (ASTM) D2863-

17 and the sample dimension was 130 � 6.5 � 3.2 mm. UL-94 vertical burning rating tests were

performed by an FTT0082 tester (FTT, UK) following the procedures in ASTM D3801–10 (sample

dimension: 125 � 12.7 � 3.2 mm). The forced combustion behaviour was measured by an FTT0007

cone calorimetry (FTT, UK) according to ISO 5660-1 with an external heat flux of 50 kW m22 (sample

dimension: 100 � 100 � 3 mm).
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Figure 1. TEM images of nano-ZnO (a) and OTCA@ZnO (b,c).
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Figure 2. TGA (a) and DTG (b) of HOTCA, HOTCA/ZnO and OTCA@ZnO under N2 atmosphere.
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The morphologies of the char were observed in a FEI Quanta 250 FEG field-emission scanning electron

microscopy (SEM) with a voltage of 20 kV. Raman spectroscopy analysis (LRS) spectra were obtained from

a LabRAM HR Evolution Raman spectrometer (HORIBA, Japan) with excitation by a 532 nm helium-neon

laser line and scanning in the range of 50–4000 cm21. X-ray photoelectron spectroscopy (XPS) was recorded

by a PHI Quantera-II SXM (Ulvac-PHI, Japan) using Al Ka excitation radiation (X-ray power of 2.5 kW).
3. Results and discussion
3.1. Morphology and thermal properties analysis of OTCA@ZnO
Figure 1 presents TEM images of nano-ZnO and OTCA@ZnO. nano-ZnO possessed shapes like long rods

and strongly aggregated into clusters of several micrometres in size due to the high surface energy and lots

of hydroxyl groups on the surface. However, the hybrid material presented microstructure-like spheres and

the dispersion was greatly improved into nanometre scale. This may be explained that the hybridization

consumed the surface hydroxyl groups through the condensation reactions and lowered the surface

energy of nano-ZnO. The organic modifier layer covering on surface of nano-ZnO generated the large

steric hindrance, obstructing the aggregation of particles. From figure 1, the average particle size of

OTCA@ZnO was about 100 nm, which increased from the average particle size of 80 � 15 nm of nano-

ZnO. Further, most of particles of OTCA@ZnO showed darker centre and lighter edge, which was

typical of hybridization structure of inorganic nanometer particles. TEM images also revealed that the

well dispersed hybrid containing OTCA and nano-ZnO was successfully prepared.

Figure 2 shows TGA and DTG curves of HOTCA, HOTCA/ZnO and OTCA@ZnO under N2

atmosphere and the corresponding data are listed in table 2. HOTCA had two decomposition steps and

the main process took place between 4008C and 5508C. The initial decomposition based on 5% weight

loss (T5%) began from 2438C and the char residue was 35.6 wt% at 7008C. The physical blending of nano-



Table 2. Thermal properties of HOTCA, HOTCA/ZnO and OTCA@ZnO.

samples T5% (8C) T50% (8C) Tpeak (8C)

Rpeak
char residue (%)

(%/min) 5008C 6008C 7008C

HOTCA 243 513 500 0.59 57.1 37.5 35.6

HOTCA/ZnO 226 538 501 0.39 61.4 45.7 42.8

OTCA@ZnO 336 599 499 0.35 69.9 49.9 46.1

APP 319 591 565 0.55 80.1 47.3 34.2

IFR-3 310 589 499 0.32 65.0 49.3 46.3

IFR-3-Cal 323 603 586 0.41 77.2 50.9 38.2
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ZnO lowered the T5% from 2438C for HOTCA to 2268C because of the catalysing effect of the nano-oxide. Yet

the char for HOTCA/ZnO was slightly increased (about 1.4 wt%) according to the experimental and

calculation values of HOTCA and nano-zinc oxide. As for OTCA@ZnO, the hybridization greatly

affected the decomposition behaviour of HOTCA and it had good thermal stability with T5% up to

3368C. Further, OTCA@ZnO showed an excellent char-formation ability with 46.1 wt% at 7008C, more

than HOTCA/ZnO with the same content of ZnO. This may be explained by the in situ catalytic

carbonization effect of ZnO within one compound unit. Therefore, the hybridization could greatly

enhance the thermo-stability and charring ability of OTCA@ZnO.
3.2. Flammability analysis
LOI and UL-94 results of EVA and EVA composites are presented in table 1. Obviously, EVA was

extremely flammable with LOI only 17.0% and UL-94 no rating (NR). The separate introduction of

APP or OTCA@ZnO showed inferior flame retardancy in EVA; whereas, the combination of APP and

OTCA@ZnO enhanced the flame retardancy of EVA composites. EVA/IFR composites with APP/

OTCA@ZnO in the range of 20.00/5.00 and 16.67/8.33 (wt/wt) all could reach UL-94 V-0. Meanwhile,

the combustion time decreased and the melted dropping behaviour was restricted. Especially when

the weight ratio of APP/OTCA@ZnO was 2 : 1, EVA/IFR-3 obtained the highest LOI (29.7%) and also

passed UL-94 V-0 rating. These indicated that there was a good flame retardant synergistic effect

between APP and OTCA@ZnO.

Further, the flammability analysis of EVA/APP/HOTCA/ZnO (EVA/IFR-6) and EVA/APP/HOTCA

(EVA/IFR-7) with the same weight ratio of EVA/IFR-3 was also investigated in order to verify that the

interaction between flame retardant and metal oxide was more efficient within one compound unit. LOI

value of EVA/IFR-6 reached 27.4% and it only passed UL-94 V-2 rating, which revealed that this novel

organic–metallic hybrid possessed more efficient flame retardancy than that of the physically mixing

system of OTCA and nano-ZnO. The action mechanism would be further analysed subsequently.

It was more obvious that EVA/IFR-7 with HOTCA as char-forming agent presented the worse flame

retardant properties. Meanwhile, UL-94 V-2 rating and 27.3% LOI still could be obtained by adding

only 20 wt% IFR with the ratio of APP and OTCA@ZnO maintaining at 2 : 1.
3.3. Fire behaviour: forced combustion
Cone calorimeter test was used to evaluate the combustion behaviour and flame characteristics of EVA

composites as an effective large-scale method in this study. Several key parameters on the combustion

behaviour have been collected and the corresponding data are summarized in table 3.

Figure 3 shows the heat release rate (HRR) and total heat release (THR) curves of EVA and EVA

composites. Clearly, neat EVA intensely combusted after ignition, and had one sharp PHRR of

2688 kW m22. When adding 25 wt% APP, OTCA@ZnO, IFR-3 or IFR-6, PHRR values greatly

decreased to 1358, 817, 392 and 701 kW m22, respectively, and the corresponding reductions were

about 49.5%, 69.6%, 85.4% and 73.9% in comparison with neat EVA. Meanwhile, THR value of EVA/

IFR-3 was also the lowest among the above systems and decreased to 128 MJ m22 from 213 MJ m22

for EVA with the reduction of nearly 40%.
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For EVA/IFR-3 and EVA/IFR-6, both HRR curves showed two peaks, which generally corresponded

to the formation and breaking processes of intumescent char layers. Yet the second peak of EVA/IFR-3

not only was much lower but also appeared obviously later than that of EVA/IFR-6. As known,

ZnO could exert a flame retardant synergistic effect in IFR systems [14,15], which enhanced the

strength of protective carbonaceous shield restraining the heat release during combustion, and the

synergistic effect was greatly strengthened by the hybridization of ZnO for EVA/IFR-3. That is to say,

the hybridization was helpful for zinc oxide to promote forming more high-quality chars by in situ
catalytic reactions among FRs within one compound unit, and correspondingly the heat release for

EVA/IFR-3 was restricted with the lowest PHRR and THR. Obviously, the physical mixture of APP/

HOTCA and ZnO had lower flame retardant efficiency than the hybrid system.

From table 3, it was not difficult to find the time to ignition (TTI) with addition of APP was obviously

shortened and the decrease was more obvious with the incorporation of APP/HOTCA/ZnO and

APP/OTCA@ZnO. It was reported that the pyrolysis of EVA started from the deacetylation of VA

monomers [27,28], and APP could accelerated the decomposition [28]. Also, ZnO regardless of the

existence form could further catalyse the pyrolysis process.

The fire performance index (FPI) and the fire growth index (FGI) were investigated to more clearly

understand the fire hazard of EVA composites. FPI and FGI are defined as the proportion of

TTI/PHRR and the ratio of PHRR and the time to peak HRR (Tp), respectively. FPI relates to

probability for escape in a full-scale fire situation and the larger FPI value of material means the lower

fire risk [29]. For FGI, an opposite relationship appears. A smaller FGI value signifies a longer time

will be taken to peak HRR, and the material possesses a lower fire danger. Seen from table 2, there

were the largest FPI and lowest FGI values for EVA/IFR-3 among all the samples, and in other

words, when APP/OTCA@ZnO was incorporated, the composite’s burning intensity reduced and the

flame growth was prohibited, undoubtedly beneficial to fire escape and fighting.

Figure 4 gives the smoke production rate (SPR) and smoke release product (TSP) curves of samples. It

was found that with adding APP, OTCA@ZnO, APP/HOTCA/ZnO or APP/OTCA@ZnO into EVA, all
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the Peak-SPR values (PSPR) decreased compared to neat copolymer. Especially, when adding APP/

OTCA@ZnO, it reduced from 0.198 m2 s21 for EVA to 0.073 m2 s21, with 63.1% reduction. The results

were attributed to the presence of OTCA@ZnO in IFR, which inhibited the smoke production rate. For

TSP, the value of EVA/APP/OTCA@ZnO was slightly higher than neat EVA but much lower than

EVA/APP, EVA/OTCA@ZnO and EVA/APP/HOTCA/ZnO, which suggested APP/OTCA@ZnO

system possessed more excellent smoke suppression properties than other flame retardant systems.

The emission of toxic gas (CO) and CO2 was evaluated and figure 5 shows the product curves of CO

(COP) and CO2 (CO2P). With adding APP, OTCA@ZnO, IFR-3 or IFR-6 into EVA, all the generations of

CO and CO2 were restrained. Similarly, the combination of APP and OTCA@ZnO could most efficiently

inhibit forming CO and CO2 during combustion of composites. This also was attributed to the formation

of stable char layer preventing the complete burning of polymer.

Figure 6 gives the mass loss curves, and the char residues are also listed in table 3. EVA/APP/

OTCA@ZnO lost its mass much slower than neat EVA, EVA/APP, EVA/OTCA@ZnO and EVA/APP/

HOTCA/ZnO. Meanwhile, the residue of EVA/APP/OTCA@ZnO at 600 s was 17.1 wt%, the highest

value in all samples. This also was owing to the stable expansive char crust, which prohibited

transmitting heat and combustible gas generated from burning as mentioned above.

Digital photographs of the residues after cone calorimeter test are displayed in figure 7. Neat EVA left

nearly no residue after combustion. With the introduction of OTCA@ZnO or APP alone, sufficient

amounts of residues were formed after cone test and yet the residual chars were broken up or

discontinuous with no expansion, which only provided poor thermal protection. This was attributed

to the result that EVA/APP composite presented inferior flame retardancy although the most residues

were left in TGA tests. For EVA/IFR-3 and EVA/IFR-6, the expanded chars were formed after cone

test, and yet the quantity and expansion degree of the char layer for the latter were much lower than

those for the former. From figure 7, the residue of EVA/IFR-6 was thin and not strong with lots of
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holes and cracks on the outer surface labelled using ovals in figure 7 (d1), while the residue for EVA/IFR-

3 was quite thick, homogeneous and strong, which proved the better carbonization effect of OTCA@ZnO

than HOTCA/ZnO. The high-quality intumescent char layer could effectively prevent the transfer of

heat/combustible gas, consequently improving the flame retardancy of EVA composites.

In general, all the forced combustion result analysis illuminated APP/OTCA@ZnO system could

promote forming more stable intumescent char layer and obtain better flame retardant and smoke

suppression properties than APP/HOTCA/ZnO system, which signified the synergistic effect of metal

oxide could be more efficiently exerted within one compound unit.

3.4. Thermal analysis
Thermogravimetic analysis was used to rapidly evaluate the thermal degradation behaviour and

charring ability of APP, OTCA@ZnO and IFR-3. TGA and DTG curves are presented in figure 8, and

the data are collected in table 2. For APP, two decomposition processes appeared: the first one

occurred at 3198C, generating the volatiles (mainly NH3 and H2O) and cross-linked polyphosphoric

acids; the second one, between 4808C and 6008C, was the main decomposition process of APP [10].

When combined OTCA@ZnO with APP, it showed excellent thermal stability and char-formation

ability testified by the T5% of 3108C and the char residue of 46.3 wt% at 7008C. To further study the

synergistic effect between OTCA@ZnO and APP, TGA curve of IFR-3 calculation (IFR-3-Cal) was also

given in figure 8 calculated based on the following formula:

Wcalculation ¼WAPP � 67:0%þWOTCA@ZnO � 33:5%: ð3:1Þ
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Table 4. TGA analysis results of EVA and EVA composites.

samples
T5%

(8C)
Tpeak1

(8C)

Rpeak1 Tpeak2

(8C)

Rpeak2
char residue (wt%)

(%/min) (%/min) 5008C 6008C 7008C

EVA 372 373 0.30 487 2.55 5.3 1.03 1.01

EVA/APP 364 377 0.28 484 2.01 20.7 18.3 17.4

EVA/OTCA@ZnO 365 379 0.25 483 1.87 20.8 13.6 13.1

EVA/IFR-3 366 380 0.30 489 1.88 20.0 15.3 14.7

EVA/IFR-6 354 375 0.21 487 2.11 16.6 12.8 12.8
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Seen from figure 8 and table 2, the experimental T5% and Tp of IFR-3 both were lower than those of

the theoretical values, which indicated the thermal degradation behaviours of APP/OTCA@ZnO

changed as their incorporation and APP promoted the degradation of IFR. However, the charring

ability of IFR-3 was greatly improved with the char residues of 46.3 wt% (7008C), while the

calculation value was only 38.2 wt%. These results indicated that under higher temperatures (more

than 6008C), IFR-3 expressed more excellent thermal stability and more residues were formed. It could

be speculated that some chemical interactions between APP and OTCA@ZnO might take place under

low temperature, generating small volatile molecules and forming cross-linking structures.

Accordingly, the high-temperature degradation was restrained by the rapid formation of stable char

layer promoted by the catalysis effect of ZnO. These results implied an obvious char-forming

synergistic effect between OTCA@ZnO and APP, which significantly improved the charring property

and thermo-stability of IFR under higher temperature.

Figure 9 shows the TGA and DTG curves of EVA and EVA composites, and the results are listed in

table 4. Two decomposition processes could be seen for EVA, which were corresponding to the

deacetylation step of VA monomers losing acetic acid (gas) from 3208C to 4208C and the polyene

backbone decomposition between 4208C and 5208C [27–29]. The main decomposition was the second

step, leaving 1.01 wt% residue at 7008C. From table 4, both T5% values of EVA/IFR-3 and EVA/IFR-6

decreased compared to the initial temperature of neat EVA (3728C), especially the latter with a

reduction of 188C, which indicated that the existence form of metal oxide greatly influenced the

decomposition behaviour of EVA composites. It was known that ZnO could catalyse the degradation

of the matrix in IFR/polymer composites. Thus, EVA/IFR-6 with the physical blending of ZnO

presented a lower initial temperature of 3548C. When zinc oxide was hybrid with organic compound,

the close contact of ZnO with EVA and IFR would be restrained and so the catalytic decomposition

effect of zinc oxide would not be obvious enough until the decomposition of organic components. That

was to say, the hybridization could delay the catalysis decomposition effect of zinc oxide. Both EVA/

IFR-3 and EVA/IFR-6 presented good char-formation abilities and still, the former generated more

stable char residues under higher temperatures due to the in situ catalytic char-forming effect of zinc

oxide in hybrid. The char residues acted as a protective shield inhibiting the outward diffusion of

inflammable volatiles and heat which consequently resulted in better flame retardancy for EVA/IFR-3.
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Figure 10. SEM images of the freeze-fractured surface EVA/IFR-3 (a,b) and EVA/IFR-6 (c,d).
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3.5. Dispersion state and compatibility of fillers
The dispersion state and compatibility of APP/OTCA@ZnO and APP/HOTCA/ZnO (figure 10) in EVA

was investigated by SEM. Comparing figure 10a,c, it can be seen that EVA/IFR-6 had plenty of small

holes and bulges, apparently as a result of poor compatibility of pristine nano-ZnO particles with the

matrix, while EVA containing OTCA@ZnO does not have this appearance. The dispersion around

APP is presented in figure 10b,d, and it can be observed that the compatibility between the char-

forming agent and APP was not bad. From figure 10d, it is worth noting that a large amount of nano-

zinc oxide was accumulated around APP and the charring agent, and most of them existed in the

form of agglomerate. Such a distribution not only deteriorated the compatibility of the fillers with the

matrix, but also many nano-ZnO were not sufficiently in contact with APP and the char-forming

agent, which resulted in a significant reduction of flame retardant efficiency. In contrast, the hybrid

nano-zinc oxide was encapsulated by OTCA, showing a better compatibility in the matrix and APP. In

this way, nano-zinc oxide together with the char-forming agent could be more uniformly dispersed in

matrix, thereby improving the flame retardant efficiency. This distribution also explained why the

initial decomposition temperature of EVA/IFR-3 was higher than that of EVA/IFR-6.

3.6. Morphology analysis of char residues
The micro-morphologies of the char layers after cone test for EVA/IFR-3 and EVA/IFR-6 composites

were investigated by SEM to further analyse the action mode of in situ catalytic carbonization effect of

OTCA@ZnO on the char-forming process of EVA composites. From figure 11a1,a2, a continuous char

layer can be seen with some small holes or flaws on the surface owing to insufficient char formation

during the combustion process of EVA/IFR-6. This defective char could not effectively protect the

underlying material from degradation, which certainly was blamed for the weaker flame retardancy.

However, for EVA/IFR-3, the char residues were obviously more compact, smooth and tight, which

acted as a desired barrier from the permeation of combustion gas/oxygen and transfer of heat/mass

during burning. This also was one of the primary reasons for the excellent flame retardant properties

of EVA/IFR-3.

3.7. Structure analysis of char residues
Raman spectra are widely employed to investigate the graphitic structure and graphitization degree of

char residues in the flame retardant field, and there is a certain positive correlation between the

graphitization degree and the shield protection effect of char. Figure 12 presents the Raman spectra of

EVA/IFR-3 and EVA/IFR-6 residues after cone test. There are two characteristic bands to be noted in

the spectra: D band (approx. 1360 cm21) and G band (approx. 1580 cm21), which correspond to the
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Figure 11. SEM images of EVA/IFR-6 (a1: �500 and a2: �1000) and EVA/IFR-3 (b1: �500 and b2: �1000) residues after cone
test.
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vibration of amorphous or unorganized and graphitic structures of carbon materials, respectively [8,30].

And, the integral peak area ratio of D band and G band, R ¼ AD/AG, is inversely proportional to an in-

plane microcrystalline size of carbon materials. The lower R-value indicates a higher graphitization

degree of residues and the matrix will obtain a better shield protection from burning [30]. As seen

from figure 12, the R-values of EVA/IFR-3 and EVA/IFR-6 composites were 1.97 and 2.64, which

meant more graphitic char layer formed in APP/OTCA@ZnO system, and more amorphous or

unorganized structures formed in APP/HOTCA/ZnO system. The high graphitic structure in EVA/

IFR-3 residues more effectively prohibited the matrix from combustion, hence leading to better flame

retardancy though EVA/IFR-6 also could retain enough char residues after cone test, which was in

agreement with the above results. Further, EVA/APP presented a higher R-value (3.25), indicating

that the char contained more disordered or glassy carbon structure, which explained the inferior flame

retardancy of EVA/APP composite despite having the most char residues, as shown in TGA results.

3.8. Composition analysis of char residues
FTIR spectra of char residues after cone test for EVA/IFR-3 and EVA/IFR-6 are presented in figure 13,

which could be used to investigate the chemical composition. The absorption peaks at 3450–

3126 cm21 were ascribed to the stretching vibration of hydroxyl and amino groups, and the peak at

1638 cm21 belonged to C¼C absorption of polyaromatic resiudues [29]. The band appearing at

1400 cm21 was attributed to P-N structure, and meanwhile the absorption peaks located at 1175 and

1002 cm21 should be the corresponding contribution of the stretching vibration of Si–O–P and C–O–

P structures [31].

The above FTIR spectra revealed that there were abundant C–O–P, Si–O–P and P–N structures

existing in residues, indicating that some cross-linked reactions took place between APP and

OTCA@ZnO or HOTCA with zinc oxide as a kind of Lewis acid catalysing the cross-linked reactions

[32], consequently phosphorus- and silicon-containing polyaromatic char residues formed during

burning. Furthermore, comparing the two FTIR spectra, the characteristic peaks for EVA/IFR-3

at 1400 and 1175 cm21, corresponding to P–N and Si–O–P structures, showed higher intensity

than EVA/IFR-6. This also explained why EVA/IFR-3 possessed higher-quality char residues as

mentioned above.

3.9. XPS analysis of char residues
XPS spectra could be used to analyse the surface chemical structure of condensed phase [33], and the

element concentrations in residues from cone test are shown in table 5. It was found that

the elemental concentrations of P, O, N and Si, and the relative concentrations of P/C, O/C, N/C and

Si/C for EVA/IFR-3 residue were obviously higher than those for EVA/IFR-6 residue. This suggested

the hybrid compound played a key role in retaining more P, N and Si in char residues, which could

effectively strengthen the char quality as discussed earlier.
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Figure 14. C1s spectra of char residues for EVA-6 (a) and EVA-3 (b).
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Figure 16. N1s spectra of char residues for EVA-6 (a) and EVA-3 (b).
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Meanwhile, C1s, O1s, N1s, P2p and Si2p spectra of EVA/IFR-3 and EVA/IFR-6 residues are shown

in figures 14–18 and the fitting results are listed in table 6. As seen from figure 14, the binding energy

(BE) of 284.8, 286.2 and 288.9 eV for C1s peaks were designated to C–C or C¼C groups in aliphatic

and aromatic fragments [34], C–O in P–O–C structures and C¼O groups oxidized, respectively,

during combustion [8,33]. From table 6, it should be noted the percentage of C–O groups in EVA/

IFR-3 residue (12.4%) was nearly two times higher than that in EVA/IFR-6 residue (7.1%), which

meant the introduction of the hybrid compound could promote composites forming more cross-

linking P–O–C structures. Further, for oxidized carbon atoms (C¼O), the percentage in EVA/IFR-3

residue (3.0%) was lower than that in EVA/IFR-6 residue (4.4%), and the higher oxidation indicated

the char barrier effect was not strong enough to restrain further oxidation of underlying matrix during

combustion.

The O1s fitting curves for the two samples are shown in figure 15. The signals at around 531.6 eV

showed the existence of C¼O of phosphate or carbonyl groups while the BE of 533.0 eV should be
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Table 6. Fitting results of XPS spectra for EVA/IFR-3 and EVA/IFR-6 residues.

elements

EVA-6 EVA-3

binding energy (eV) percentage (%) binding energy (eV) percentage (%)

C1s 284.8 88.5 284.8 84.6

286.2 7.1 286.2 12.4

288.9 4.4 288.9 3.0

O1s 531.6 18.3 531.6 10.5

532.9 81.7 532.7 89.5

N1s 400.0 11.4 400.0 34.7

402.1 88.6 401.9 65.3

P2p 134.5 100.0 134.3 100.0

Si2p 103.7 100.0 103.6 100.0
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assigned to –O– in P–O–C and P–O–Si groups [33,34]. Obviously, the higher percentage of –O– group

in EVA/IFR-3 residues implied that OTCA@ZnO promoted cross-linking reactions between FRs and

matrix forming more cross-linked –O– structures during combustion, which was in agreement with

C1s spectra fitting results.

The N1s spectra (figure 16) at 400.0 eV corresponded to C–N or C¼N in the triazine structures, and

the ones at about 402.0 eV positively polarized N atoms. This suggested more N atoms existed in the

form of C–N or C¼N in residues of EVA/IFR-3.
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As for P2p spectra, there was one peak centred at about 134.3 eV in the two residues, which

corresponded to C–O–P¼O and Si–O–P¼O structures [34]. Yet, as reported, the P2p band in

polyphosphoric acid from the decomposition of APP appeared at 132.8 eV [35]. Thus, the

disappearance of the band at 132.8 eV for APP decomposition products and the shift to about

134.3 eV for EVA/IFR composites after combustion signified the interactions between APP and the

charring agents, resulting in forming C–O–P¼O and Si–O–P¼O structures. It may be deduced that

the interaction in EVA/IFR-3 was more efficient than in EVA/IFR-6 because of the much higher

content of P in residues (table 5) which came from the polyphosphoric acid evolved into residues in

the char-formation process. As seen from the Si2p spectra of chars (figure 18), the binding energy at

around 103.6 eV was assigned to Si–O bonds in Si–O–P or Si–O–Si. And the existence of Si

improved the residue strength and thus helped the formation an excellent protective barrier.

Therefore, the above results suggested that the more efficient interactions in APP/OTCA@ZnO

system promoted the formation of richer P–O–C, P–N and P–O–Si cross-linked structures in char-

forming process, which facilitated the improvement of the strength and barrier properties of residues.
Soc.open
sci.6:181413
4. Conclusion
A novel hybrid OTCA@ZnO was prepared and the hybridization obviously improved the charring

ability and dispersity of OTCA@ZnO. The combination of APP and OTCA@ZnO showed higher

efficiency in enhancing flame retardancy and smoke suppression functions than APP/HOTCA/ZnO

system in EVA. When 25 wt% APP/OTCA@ZnO with the optimal ratio 2/1 was introduced, the

composite (EVA/IFR-3) obtained the highest LOI value of 29.7% and UL-94 V-0 rating. APP/

OTCA@ZnO influenced the combustion behaviour of EVA composites, resulting in lower HRR, THR,

FGI, SPR, TSR, COP and CO2P values than APP/HOTCA/ZnO system. This could be explained by

the more efficient interactions between IFR and zinc oxide within one compound unit. Thermal

analysis results presented an obvious synergistic effect in APP/OTCA@ZnO system, strengthening

efficiently the charring capacity of the hybrid system. The char residue reached 46.3 wt% at 7008C,

while 38.2 wt% residues were obtained by calculation. Further, the residue investigation indicated

APP/OTCA@ZnO system could form more compact and tight graphitic char layer containing richer

C–O–P, P–N and Si–O–P cross-linked structures due to the in situ catalytic carbonization effect of

hybrid. Just the high-quality char layer brought more efficient suppression of combustion and smoke

release for EVA composites. The organic–metallic hybrid may be a promising route for flame

retardant polymer materials.
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