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Global energetic and environmental crises have attracted
worldwide attention in recent years. Biomass is an important
direction of development for limiting greenhouse gas emissions
and replacing fossil fuel. As downstream products of biomass,
some industrially valuable polyols are costly to separate via
conventional distillation due to their near volatility. The use of
fully heat-integrated divided wall columns (DWCs), which carry
energy and equipment investment savings, is a promising
technique for purifying biopolyol products. However, the design
of DWCs is complex because of the greater freedom of units, so
the optimization of all variables is essential to minimize the cost
of separation. A response surface methodology (RSM)-based
Box–Behnken design (BBD) was proposed and applied to study
the interactions between groups of factors and the effects of
variables on total annual cost (TAC) savings. The optimization of
global variables with RSM was confirmed to be a powerful and
reliable method, and the TAC savings reached 41.09% compared
to conventional distillation. In short, efficient design, lower costs
and energy savings for polyol separation will promote the wide
application of environmentally friendly biopolyol.
1. Introduction
Withglobal efforts to reduce emissions and the increasingdepletion of
fossil fuels, more attention has been paid to producing fuels from
biomass. It has been reported that the per cent contribution of
biofuels to the total road transport fuel demand was 3% in 2013 and
is estimated to grow to 8% by 2035 [1]. Biodiesel is obtained by
direct transesterification of vegetable oils or tallows [2]; the by-
product glycerol is generated at a rate of approximately 10% during
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Table 1. Nomenclature.

β regression coefficients of the independent variables

ε error terms

D top product

N1 top section tray number

N2 tray number of prefractionator

N3 tray number of side column

N4 bottom section tray number

qF thermal feed states

R reflux ratio

rF ratio of feed tray number to total tray number in prefractionator

rS ratio of side stream tray number to total tray number in side column

S side stream

SL liquid split ratio

SG gas split ratio

T1 first column of conventional distillation

T2 second column of conventional distillation

W bottom product

x levels of the independent variables

indexes

C conventional distillation

D divided wall column

i linear coefficient

ii the squared effect

ij interaction effect

j quadratic coefficient
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the production of biodiesel [3]. The production of crude glycerol from biodiesel has increased dramatically in
the past decadeworldwide, increasing from 52million kg in 2016 to 295million kg in 2018 [4]. This by-product
glycerol from biodiesel production has led to a substantial surplus in glycerol supply and caused a significant
drop in price for both crude and purified glycerol in the past years [5]. The economically valuable usage of this
biomass co-product can be achieved via the chemical route of glycerol hydrogenolysis. The main products are
polyols, including ethylene glycol (EG), 1,2-propylene glycol (1,2-PG) and 1,3-propylene glycol (1,3-PG) [6–8],
which are important chemical solvents and raw materials widely used in the cosmetic, pharmaceutical, resin
and polyester polytrimethylene terephthalate industries, among others [4,9,10]. However, large amounts of
energy are consumed in conventional distillation to separate these polyols because of their near volatility. As
a result, one promising way to address this challenge is to employ cutting-edge intensification technologies
such as divided wall columns (DWCs) (table 1).

DWCs, in which both columns are located in a single-shell, and three-product streams are collected
by the insertion of a dividing wall, have been studied since 1949 [11]. DWCs can not only save space and
investment requirements because of the reduced number of columns and heat exchangers (figure 1) but
also reduce energy costs by reducing the remixing effect [12] of streams; the economic savings can reach
30% [13]. Therefore, the application of DWCs to separate near-volatile biopolyol would save substantial
costs relative to that of conventional approaches. However, fully heat-integrated DWCs have more
degrees of freedom than conventional columns, and the design of such units is complex. Many
researches about the short-cut design of DWCs were based on the Fenske–Underwood–Gilliland–
Kirkbride (FUGK) method aimed at minimum vapour flow rate [12,14,15]. Besides, recent articles
have reported other systematic methods and models for DWC design: a rigorous model validated in
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Figure 1. Schematic diagram of a DWC.
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the experiment was used for the scaled design [16]; coordinate descent methodology with a random
research [17] and optimization-based design approach with an automated initialization procedure
were employed to determine variables of DWCs during the initial design [18]. As a result, not only
the short-cut design but further optimization for these complex chemical units should be attached
great importance for separation mission, and different values of these variables could have an unequal
effect on the energy or capital costs of the separation process. An effective optimization method is
needed to obtain the best combination of variables for DWCs.

Since the optimization of DWCs is a mixed integer nonlinear programming problem (MINLP), which
cannot be solved by commercially available process simulators, various methods have been suggested for
optimizing DWCs. Dünnebier and Pantelides [19] proposed a local optimization code—CONOPT—which
was interfaced with the gPROMS process modelling tool. This method can provide initial design parameters
for rigorous analysis and obtain relatively optimal results but cannot achieve the exhaustive optimization of
DWCs. Gómez-Castro et al. [20] proposed an optimization technique using genetic algorithms for an
alternative design with a post-fractionator instead of a prefractionator, and multi-objective genetic algorithms
were also used to optimize heat pump-assisted reactive DWC considering the economic and thermodynamic
efficiency performances [21]. To handle disturbance and implementation error of DWCs, Luo et al. [22]
developed an online optimization method assisted with steady-state analysis. In addition, a sequential
quadratic method using the mixed integer linear programming problem [23] or MINLP [24] approach was
also used for conceptual design of DWCs. However, this kind of method is difficult to implement.
Premkumar & Rangaiah [25] and Long et al. [26] optimized only one variable at a time while keeping others
constant, and this simple method did not consider interactions between variables. For optimization of
DWCs, especially for separating near-volatile polyols, a large number of structural and process variables
should be taken into account to reach the maximum cost savings. These variables interact with each other
and should be optimized simultaneously to obtain the optimal design.

Response surface methodology (RSM) is a useful technique in process optimization studies for
building regression models, optimizing a response and identifying the relationships of several
variables and their interactions [27]. RSM uses quantitative data from a specified experimental design
to solve multivariable problems, and its design is clearer and easier than those of other methods. As a
result, RSM is generally used in optimization research on multivariable systems, including the
simulation of structural or process parameters in DWCs [28,29]. However, previous studies did not
achieve global optimization or consider the interactions between key variables.

This work proposes a simple and efficient method to optimize the variables of a DWC with full
consideration of the interactions between key factors. The design of a DWC for biomass polyol
separation was studied with the aim of minimizing the total annual cost. Finally, an actual simulation
was run to validate the fitness of the regression models.
2. Design and optimization methods
2.1. Design
The conversion rate of glycerol and the composition of generated three polyol in hydrogenolysis reaction
mainly depend on the catalyst and reaction conditions [5,6,8,30]. In this research, the separation study
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Figure 2. Conventional distillation sequence (a) and an equivalent DWC of four column for initial design (b).
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was based on the product from the industrially valuable biomass conversion using Cu/Ni-based catalyst
[8,31,32] with high conversion rate of glycerol, and the composition of main biopolyol products from
glycerol hydrogenolysis was chosen to be 1,2-PG (approx. 30 mol%), EG (approx. 40 mol%) and 1,3-
PG (approx. 30 mol%), because it was challenging but meaningful to obtain three purified products
with close quantity through distillation. As a result, these polyol mixtures were separated through
DWC and conventional distillation sequences to compare their total annual costs (TACs). Physical–
chemical properties for polyol were taken from the Aspen Plus component database. The NRTL [33]
model was chosen to describe the phase behaviour of this polyol system and all binary interactive
parameters from Aspen Plus were listed in electronic supplementary material, table S1 and consisted
with reports 34–36. Moreover, polyol has relatively high boiling point (1,2-PG: 461.3 K; EG: 470.8 K;
1,3-PG: 483.7 K) at 1 atm and its boiling needs expensive high-grade heat source during distillation
process. On another hand, as shown in electronic supplementary material, figure S1, when the liquid
mole fraction of EG is lower than around 0.2, the relative volatility of 1,2-PG/EG and EG/1,3-PG was
lower at vacuum condition than that at high pressure, and this decline becomes relatively heavy from
15 to 5 kPa, which is bad for polyol’s separation. As a result, considering both relatively lower heat
requirement and higher separation efficiency, 15 kPa was chosen as the operation pressure of
distillation unit. Moreover, the vapour–liquid equilibrium data of polyol [34–36] are presented
graphically in electronic supplementary material, figure S2 which indicated that the boiling points of
1,2-PG, EG and 1,3-PG were 406.3, 415.2 and 431.7 K, respectively, at operation pressure.

The TAC was obtained by summing the annual utility-related expenses and adding 10% (10-year
payback period) of the installed equipment cost. Detailed calculations based on the research of Liu
et al. [37] and Douglas’ cost correlations [38] were applied according to equation (2.1).

TAC ¼ capacity cost
payback period

þ operating cost: ð2:1Þ

Aspen Plus simulator was used to design the biomass polyol separation model. The conventional
distillation sequence and DWC model used in the simulation are shown in figure 2a and 2b,
respectively. Figure 2b shows the equivalent four-column model of the simulated DWC, and N1, N2,
N3 and N4 represent the tray numbers of the top, prefractionator, side and bottom parts of the DWC.
The conditions of the feed mixture and product requirements are listed in table 2.
2.2. Optimization

2.2.1. Response surface methodology and Box–Behnken design

Box–Behnken design (BBD), which has been widely used in optimizing chemical industrial processes
[39–41], was employed under RSM to study the interactions between variables and optimize the
system to achieve maximum TAC savings. The comparison [42,43] between the BBD and other
response surface designs (central composite, Doehlert matrix and three-level full factorial design) has
demonstrated that BBD was more efficient than other methods especially when the factor number was
higher than two and could avoid experiments being performed under extreme conditions where



Table 2. Feed condition and product requirement.

properties stream name

pressure 15 kPa feed D S W

composition (mass) 1,2-PG 0.3 0.99 — —

EG 0.4 — 0.99 —

1,3-PG 0.3 — — 0.99

average volatility 1,2-PG 2.44

EG 1.78

1,3-PG 1

flow rate (kmol h−1) 100 30 40 30
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unsatisfactory results might occur. The BBD only had three levels (low, medium and high, coded as −1, 0,
and +1, respectively) and required a few simulations or experimental runs to determine the possible
inter-parameter effects on TAC savings in this research. Equation (2.2) is the nonlinear regression
model used to fit the simulated data considering all the linear terms, square terms and linear-by-linear
interaction terms [44].

y ¼b0þ
Xk

i¼1

bixiþ
Xk

i¼1

biix
2
i þ

XX

i,j

bijxix jþ1, ð2:2Þ

where β0 is a constant, βi is the slope or linear effect of input factor xi, βij is the linear-by-linear interaction
effect among the input factors xi and xj, βii is the quadratic effect of input factor xi, and ε is the error term.
MINITAB software was employed to fit the response surface and optimize the TAC savings.
2.2.2. Variable analysis

Most reported studies have focused on the optimization of the tray number or reflux ratio of DWCs,
while other variables, including the thermal feed states (qF), locations of the feed and side stream, and
split ratios of liquid (SL) and gas (SG), have often been ignored by researchers [13,45,46]. However, a
suitable feed position would increase the efficiency of separation and avoid a material remixing effect,
and different feed qF values have a large effect on the proportion of gas–liquid phases and mass
transfer, especially in the prefractionator. Therefore, both feed location and qF value influenced the
composition of the streams in the top and bottom of the prefractionator, thereby affecting the
concentration distribution in the connecting side column and the purity of the side stream. In
addition, the side stream should be located at the position with the highest concentration of side
product and is affected by the gas–liquid and composition distribution of the side column. As a
result, the qF value and locations of the feed and side products should be simultaneously optimized.
The locations of the feed and side stream can be represented as the ratio of the feed tray number (rF)
and side stream tray number (rS), respectively, to the total trays in the prefractionator and side
column. Larger ratios mean lower locations of the streams. These ratios can more clearly display the
relative location and consider changes in total trays.

The adjustment and control of vapour splits was often a challenge in design and the operation of
DWCs. Fortunately, recent studies [20,47,48] showed considerable progress in the design of vapour
splitter and effective control for vapour split in DWCs, some of which were very promising to be put
into practical industrial use [47,48]. On the other hand, Rangaiah et al. [49] reported that the liquid
and vapour splits had an important effect on the energy consumption of DWCs, so the optimization
of liquid and vapour splits was achievable and necessary in the process of DWCs. As far as we know,
varied reflux ratio (R) values correspond to different gas–liquid proportions and determine product
purity to some extent. Similarly, the liquid and gas split ratios affect gas–liquid mass transfer by
varying the liquid–gas proportions in the prefractionator and side column. As a result, this so-called
‘pseudo reflux ratio’ in the prefractionator and side column will greatly influence product purity and
the total cost of the DWC and should be studied comprehensively during optimization.



Table 3. Simulation results for the conventional distillation sequence and DWC.

parameter conventional column DWCs

column T1 T2 N1 N2 N3 N4

tray number 54 61 26 38 41 9

feed location 29 37 17

side stream location — — 21

reflux ratio 10.5 9.3 16.4

liquid split — — 0.33

gas split — — 0.41

reboiler duty (GJ h−1) 19.36 25.71 29.98

condenser duty (GJ h−1) 19.01 25.62 29.85

TAC ($) 2 500 300 1 620 195

TAC savings (%) — 35.2
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3. Results and discussions
3.1. Design of the conventional columns and divided wall columns
A conventional two-column distillation sequence was designed from the conceptual stage to rigorous
simulation through Aspen Plus, and the feed locations, tray numbers and reflux ratio were then
optimized based on the minimum TAC. A short-cut design of the DWC was developed based on the
FUGK model according to reported research [50,51]. The results of both designs are shown in table 3,
and the TAC savings were calculated according to equation (3.1).

Savings ¼ TACC � TACD

TACC
� 100, ð3:1Þ

where TACC and TACD are the TACs of conventional distillation and the DWC, respectively. From
table 3, the DWC could save 35.2% of the TAC with a lower energy loading and number of trays
compared to the conventional distillation sequence.
3.2. Optimization of the divided wall columns
Table 4 shows the relative factors and levels of whole variables in the biopolyol-separation DWC. The
values of these variables were chosen to fall within a reasonable range based on the initial short-cut
design to make the simulation converge. For each run of studied variables, other variables were
varied to minimize the TAC in the process of obtaining a quality product. The quadratic model of the
response is summarized in electronic supplementary material, table S2, and the low p value (less than
0.005) and high R2 value (greater than 0.9) indicated that these models fit the simulation runs well [52].
3.2.1. Optimization of qF and the locations of feed and side products

Interactions between the thermal feed states and the locations of the feed and side stream were
investigated through RSM, and the results are shown in figure 3. From figure 3a,b, an extremely high
location of the feed negatively affected the TAC savings, which may be because the composition of
the feed was considerably different from that at high locations. Figure 3c indicates that the effect of
different combinations of qF and rS on TAC was not significant, while middle values were good for
TAC savings.

The optimization plot in figure 4 gives the greatest TAC savings (39.64%) according to the variables of
qF, rF and rS, which had coded values of 0.72, 0.182 and −0.11, respectively. In addition, feed location (rF)
had a significant effect on the TAC savings of the DWC compared with that of the other two variables,
and a higher rF would minimize TAC. A middle location of the side column and near-saturated liquid
feed would be the optimum conditions for the biopolyol DWC.



Table 4. Levels of variables for BBD.

factors levels

code value −1 0 1

thermal feed states (qF) −0.5 0 0.5

feed location (rF) 0.4 0.45 0.5

side stream location (rS) 0.47 0.52 0.57

top section tray (N1) 21 26 31

prefractionator tray (N2) 31 38 45

side column tray (N3) 33 41 49

bottom section tray (N4) 7 9 11

liquid split (SL) 0.3 0.33 0.36

gas split (SG) 0.38 0.43 0.47

reflux ratio (R) 15.6 17.4 19.1

savings (%)
40.05

38.40

40

(a) (b) (c)
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Figure 3. Three-dimensional response surface plots between the variables qF, rF and rS.
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cur (0.7195) (–0.1093)(0.1821)

Figure 4. Optimization plot for qF, rF and rS by BBD.
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3.2.2. Optimization of N1–N4

Interactions between the trays in the four parts of the DWC (N1–N4) were investigated through RSM,
and the results are shown in figure 5. The interaction between N2 and N3 had the greatest effect on
TAC savings, while the N1–N4 interaction affected TAC to a lesser extent. In each interaction of terms,
N2 and N3 were obvious key factors for TAC savings, which may be due to the middle column being
the main separation zone between the intermediate component (EG) and light component (1,2-PG) or
heavy component (1,3-PG).

The optimization plot in figure 6 gives the maximum TAC savings (40.31%) according to the variables
N1–N4, which had values of −0.35, 0.62, 0.74 and −0.1, respectively. Moreover, TAC decreased with
increasing N2 and N3, and higher savings were achieved with high tray heights in the middle
column. As a result, a relatively large number of trays in the prefractionator and side column would
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lower the energy consumption. However, as the diameter of the top and bottom parts in the DWC
was the sum of the diameters of the middle columns, more trays at both ends would increase the
capital investment.
3.2.3. Optimization of liquid split ratio, gas split ratio and reflux ratio

As discussed above, the split ratios of liquid and gas and reflux ratio heavily influence gas–liquid mass
transfer in the middle part of the DWC. Therefore, interactions between SL, SG and R (figure 7) showed
the greatest effect on TAC savings through the response results. In particular, figure 7b shows that a
suitable SL, selected to match SG, was necessary to save costs for the biopolyol DWC. In addition,
under the premise of minimum R, a relatively low reflux ratio, which means a low energy load,
would greatly benefit the DWC (figure 7a,c).

As shown in figure 8, optimized SL (0.72), SG (0.18) and R (−0.11) values resulted in TAC savings
reaching 39.64%. Above all, an unsuitable SL would greatly reduce the savings for the DWC, which
may be because the feed and side stream are liquids and an improper distribution of liquid would
adversely affect gas–liquid contact in the column. An uneven proportion of gas–liquid in the middle
part of the column can be called a bad ‘pseudo R’. However, an extremely low reflux ratio in the
DWC would burden capital investment, while an excessively high value of R would require excessive



Table 5. Comparison of variables among the short-cut design, RSM and simulation.

variables short-cut design RSM simulation

qF 0 −0.055 −0.055
rF 0.447 0.486 0.486

rS 0.51 0.53 0.53

N1 32 24 25

N2 38 42 42

N3 41 47 46

N4 9 9 9

SL 0.33 0.35 0.35

SG 0.43 0.41 0.41

R 17.4 16.2 16.05

TAC ($) 1 620 195 1 492 429 1 472 926

TAC savings (%) 35.2 40.31 41.09
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energy consumption. As a result, a relatively low reflux ratio is appropriate for saving costs for the
biopolyol DWC and ensuring product quality.

3.3. Validation of the optimization
Several simulations were carried out to validate the fitted models from the RSM, and figure 9 shows the
comparison of results between BBD and rigorous runs. The RSM plots fit those of the actual simulation.
The final simulation was run according to the optimized values of all variables in the biopolyol DWC,
and the obtained results are compared with the short-cut design and RSM predicted values in table 5.

The optimized results from RSM were used as initial values for simulation with minor adjustments
for convergence and product quality. From table 5, the actual ultimate values of the variables were close
to those predicted by RSM. The TAC of the biopolyol DWC could be reduced to $1 472 926, and the
expense was reduced by approximately 6% compared with that of the short-cut design. However, it
could be concluded from a comparison between the short-cut design and final optimization that it
was necessary to increase the tray numbers of the prefractionator and side column with optimal split
ratios of liquid and gas. These adjustments would lower the number of trays in the top column and
the reflux ratio, thus reducing the investment and process cost. In addition, the purity (greater than 99
mol%) and yield of the corresponding streams (electronic supplementary material, table S3) in the
optimized DWC achieved the design requirements.
4. Conclusion
In this work, a DWC for separating near-volatile biomass polyols was designed, and a conventional
distillation sequence was set as the reference for economic evaluation. Then, a practical method was
proposed for the economic optimization of the DWC based on RSM. The optimization of whole
variables was efficiently carried out with BBD with the aim of maximizing TAC savings. The effects
and interactions between all factors were studied and discussed. The results showed that more trays
in the prefractionator and side column would be beneficial for TAC savings. Moreover, SL and SG,
which can be called the ‘pseudo reflux ratio’, were the most influential factors on the TAC of DWC.
Optimal values of these significant variables can reduce the capital investment and energy
consumption. Finally, the variable values predicted by RSM showed good agreement with those of the
actual simulation, and the final optimized biopolyol DWC reduced the TAC by 41.09% compared
with conventional distillation. As it is more expensive to separate near-volatile biopolyol than an
easily separated system, the optimization process could save considerable expense. Cost savings in the
separation of near-volatile biomass polyol would promote the development of green biomass and
improve its economic value. This paper demonstrated that RSM is a powerful and reliable technique
for the design and optimization of complex DWCs.
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