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Resilience, the ability to recover from adverse events, is of
fundamental importance to food security. This is especially
true in poor countries, where basic needs are frequently
threatened by economic, environmental and health shocks.
An empirically sound formalization of the concept of food
security resilience, however, is lacking. Here, we introduce a
general non-equilibrium framework for quantifying resilience
based on the statistical notion of persistence. Our approach
can be applied to any food security variable for which high-
frequency time-series data are available. We illustrate our
method with per capita kilocalorie availability for 161 countries
between 1961 and 2011. We find that resilient countries are
not necessarily those that are characterized by high levels or
less volatile fluctuations of kilocalorie intake. Accordingly, food
security policies and programmes will need to be tailored not
only to welfare levels at any one time, but also to long-run
welfare dynamics.

1. Background
A host of shocks—political conflicts, economic recessions, natural
disasters and epidemic diseases—continually threatens food
security, especially in the developing world. Resilience, the ability
to recover quickly from shocks, is thus of major interest to social
scientific researchers and policy-makers worldwide.

The formalization of resilience, however, is not straightforward.
Studies in economics, ecology, engineering and psychology
offer a diversity of approaches [1–3], increasingly focused on
the ability of networks to withstand shocks [4] and maintain
cooperative behaviour [5]. Recent work has proposed useful
conceptualizations of resilience as applied to international
development [6]. Most of these methods rest on the assumption
that the variables of interest—e.g. dietary intake or income—
are attracted to certain values that are inherently stable, i.e. that
equilibrium states exist. Resilience is consequently defined as the
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Table 1. Definitions of fundamental statistical properties and key-derived metrics.

category term definition

fundamental properties level kt value of a food security variable
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

trend g slope of a variable; the mean incrementE(�t) over the time series
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

volatilityσ quantification of mean fluctuation size in the time series
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

persistenceπ association between present and past increments in the time series
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

key-derived metrics resilience anti-persistence of shock effects (π < 0) given g≥ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

resistance lack of volatility (σ < 2|g|) given g≥ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ability to absorb shocks without being pushed out of a desirable equilibrium state into an alternative,
undesirable equilibrium state.

The problem with this approach is twofold. First, economies and social structures, especially in poor
rural areas, experience rapid, unpredictable change, and it is not clear that equilibrium-based models
appropriately capture this process. Second, even if ‘real’ food security equilibrium states exist, they are
very difficult to identify.

In this paper, we introduce a statistical definition of food security resilience that, when high-frequency
time-series data are available, provides a non-equilibrium alternative. Our approach is based on the
analysis of autocorrelation: the strength of association between past, present and future states of a
dynamical system. Strong autocorrelation is termed ‘persistence’, a concept commonly used in fields
as diverse as physics [7], climatology [8], physiology [9] and molecular biology [10]. A great deal of
econometric work has focused on the persistence of macroeconomic time series, e.g. gross national
product, commodity prices and inflation rates [11].

With respect to food security, the importance of quantifying the persistence of the effects of shocks is
clear: actors can be dragged down and kept low by past adverse events. The opposite quality could
be called ‘anti-persistence’: the ability to quickly disassociate from these negative impacts. For anti-
persistent actors, the consequences of disaster—decreased food consumption, asset loss, psychological
stress and so on—do not endure.

Resilience, however, is not only about independence from the past. We argue that the term should only
apply to actors whose long-term welfare trend is either improving or neutral; return to a deteriorating
long-term food security trend, however rapid, does not fit well with an intuitive notion of resilience. In
the approach we present here, resilience is thus defined with reference to both persistence of the effects of
shocks, as measured by a chosen food security variable, and the long-term trend of that variable.

More broadly, we suggest that persistence and trend are two of the four fundamental statistical
properties relevant to the analysis of food security time-series data. The other two properties, level and
volatility, are commonly analysed in international development research. Levels of a given food security
variable are evaluated with reference to a benchmark value (e.g. the level of caloric intake relative to
need) or relative to the levels of comparable households, countries or other actors. Volatility can be
meaningfully interpreted by evaluating variance in the food security series relative to the slope of the
long-term trend. We suggest that low volatility, also in the context of a non-deteriorating long-term trend,
defines an actor as ‘resistant’ to shocks. Resilience and resistance are thus distinct but complementary
concepts; the former is derived from trend and persistence, the latter from trend and volatility (table 1).

Figure 1 illustrates these statistical features using per capita kilocalorie availability data from Namibia,
Malawi and Peru over the years 1961–2011. Note that the various trajectories in figure 1 have different
implications for policies and programmes. For example, livelihood support interventions, such as
disaster insurance and irrigation schemes, may be needed to build resilience and promote rapid recovery
in Namibia and Malawi. Meanwhile, safety net interventions to strengthen resistance, such as subsidized
food sales or food aid, might be appropriate to prevent food insecurity in Peru.

2. Method
2.1. A non-equilibrium formulation of resilience
As noted earlier, the chief advantage of our conceptualization of resilience, compared to other
approaches, is that it does not necessitate the identification of ‘equilibrium states’ or ‘basins of attraction’
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Figure 1. Illustration of resilience and resistance with respect to per capita kilocalorie availability with the examples of Namibia, Malawi
and Peru between 1961 and 2011. Namibia exhibits a slightly declining long-term trend and high persistence of the effects of shocks;
neither of the criteria for resilience is met. By contrast, the trend is neutral to positive for the Malawi and Peru cases. Malawi exhibits
strong persistence throughout the time series. Slopes of time increments tend to be autocorrelated—rising for a decade, falling for two
decades, and then rising again—and so the country is not considered resilient. The Peru series, unlike the other two countries, is very
anti-persistent. The anti-persistence is seen in the relatively rapid reversals of slope; the effects of shocks do not last. Because the Peru
series is both upward trending and anti-persistent, we label it resilient. All three countries, however, are volatile, and so not resistant.

of food security variables [1]. Dynamic economic models often focus on the relationship of current
welfare to a theoretical long-run equilibrium state. In ecology, a ‘basin of attraction’ is a state space
within which systems are thought to maintain their fundamental identity, and ecological resilience is
often defined as the ability of a system to stay within such a space [12]. Recent works have transferred this
notion to microeconomic settings, with resilience defined as the capacity to remain, in the face of shocks,
in a non-poor basin of attraction [1]. For example, Cissé & Barrett [6] measure resilience by evaluating
the probability of attaining a well-being threshold over a given time horizon.

The challenge with equilibrium-based analysis is to accurately make inferences from observable
data about the structure of welfare dynamics. Barrett & Carter [13] list some of the most important
issues complicating such inferences: unstable equilibria can be difficult to identify in small samples,
because their very instability makes observations around these points rare; in cluster sampling designs,
homogeneity within clusters can mask equilibrium points because of regression towards the mean; and
the structure of the underlying production function mapping capital inputs to outputs, and thus to well-
being, may be shifting over time. More generally, estimating nonlinear production functions (particularly
cubic polynomials, the minimal specification for S-shaped poverty trap functions) in the presence of
stochastic errors requires distributional assumptions which may be difficult to test empirically, even with
fine-grained panel data.

There are also conceptual difficulties with defining resilience with reference to a welfare threshold.
First, such a metric is intrinsically unstable in the face of shocks: by definition, the probability to become
poor increases, and thus resilience declines, after major asset losses, diseases, etc. This approach results in
a characterization of resilience that includes both intrinsic properties of actors and exogenous conditions.
Another issue with equilibrium approaches is the assumption that all actors follow the same (stochastic)
dynamics: two actors with the same welfare level at a given time, must, on average, experience the
same level of welfare in the future. To reconcile this assumption with observed differences in welfare
trajectories requires the identification and measurement of a large number of control variables. This
may be impossible, particularly if the structures of production functions vary across actors based on
unobserved attributes (e.g. risk aversion).

In summary, movement away from an equilibrium state depends on knowing the values which define
that equilibrium. If one cannot know whether the pre-shock and post-shock values of a welfare variable
are in equilibrium or are unstable, one cannot judge the degree to which the subsequent trajectory should
be interpreted as resilient. The approach we advance in this paper does not solve this problem, but
rather avoids it: we link resilience not to a target food security level or target speed of recovery, but
rather evaluate it as the ability of an actor to disassociate from adverse past events while maintaining
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an improving or neutral long-term food security trend. This method requires high-frequency time-series
data; when such data are not available, alternative methods such as those developed by Cissé & Barrett
[6] are preferable.

2.2. The structure of welfare trajectories
We now formalize the above approach. Let kt be a food security variable, measured at sufficiently high
frequency across a set of actors. As a rule, we cannot assume that kt is a stationary time series: evolving
policy, technology, etc., as well as endogenous effects, are likely to shift kt over time. To account for
these non-equilibrium dynamics, we consider not kt directly, but rather its increment �t = kt − kt−1, as
our dependent variable. Our approach to the analysis of food security trajectories is then based on two
assumptions: (i) that the increments �t are (weakly) stationary and (ii) that they can be modelled by an
autoregressive moving average (ARMA) (p, q) process of the form

�t = g +
p∑

i=1

βi(�t−i − g) +
q∑

j=1

θjεt−j + εt, (2.1)

where εt are independent, identically distributed shocks with standard deviation σ . Equation (2.1)
models an actor’s food security change at time t as a linear function of its past changes and of random
exogenous influences. In this model, the β and θ parameters measure, respectively, the marginal effect
of average past increments and the marginal effect of average past shocks on the current increment.
The larger these parameters, the more autocorrelated the food security trajectory. When fitting the data
to estimate the parameters (g, β, θ , σ ) of this model, parsimonious orders (p, q) for the ARMA process
can be identified using a standard Bayesian criterion such as the Akaike information criterion (AIC). In
particular, low orders will be favoured when the number of data points is small.1

Within the framework of equation (2.1), food security trajectories can be analysed in terms of four
fundamental dynamical properties.

1. The level of the food security variable kt itself. We choose to measure level in the subsequent
analysis by the mean of kt over the entire time series for each actor.

2. The trend g of the variable, i.e. the mean increment E(�t). We consider an actor with a positive
(negative) trend as improving (deteriorating); when the trend is not significantly different from
zero, we say that the time series is neutral.

3. The volatility of the increment time series �t. We distinguish between the absolute volatility, the
standard deviation σ and the relative volatility

ρ = σ

2|g| − 1. (2.2)

The ρ metric compares the value of σ to the long-term trend g. We consider that a time series
is not volatile in relative terms when shocks are too small to invert the trend, i.e. when g +
εt < −g at the one sigma level. This condition requires time series with faster growth trends to
face proportionally larger shocks in order to be considered volatile. Note that volatility contains
inseparable information on both intrinsic shock magnitude and actor response to shocks.

4. The persistence of shocks as captured by the increments �t, relative to their average value g.
As noted earlier, persistence quantifies the extent to which present increments are partially
determined by past increments, i.e. the extent to which the increments retain a memory of
their lagged values. Complete information about such serial associations is provided by the
autocorrelation function γ (s), with γ (s) the correlation coefficient between the lagged increment
�t−s and the present increment �t. In many cases, however, a more compact measure of
persistence is desirable. Within the ARMA framework of equation (2.1), βi represents the
partial correlation coefficient between the present excess increment (�t − g) and its lagged value
(�t−i − g), while θj is the partial correlation coefficient between (�t − g) and past shocks εt−j.

1A rule of thumb requires a minimum of 50 points for ARMA modelling of empirical data to be meaningful [14], though 100 points
would be recommended by many analysts.
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This suggests the following simple definition for overall persistence:2

π =
p∑

i=1

βi +
q∑

j=1

θj. (2.3)

We call an actor’s response to shocks anti-persistent if π < 0, random if π = 0, and persistent if
π > 0. As noted before, the condition that π < 0 can be understood intuitively as expressing that
the fluctuations of food security increments �t are quickly reversed—shocks do not last. A time
series exhibiting this property is more predictable in the long run than one for which shocks have
persistent effects (π > 0). Observe, however, that high persistence is not necessarily associated
with high volatility: the two quantities are independent features of a time series. See also the
electronic supplementary material, E.

Several remarks are in order. First, structural breaks in the trend (e.g. caused by wars, massive aid
flows and other protracted events) should be identified a priori and taken into account when fitting the
welfare variation trajectory with an ARMA model. In particular, persistence can be overestimated when
such breaks are present in the data [18]; an actor with a trend that is best approximated by a spline
or other nonlinear function will be misinterpreted by the ARMA model in equation (2.1) as one with
a linear trend but large, long-lasting deviations away from this trend. Second, in most applications the
order (p, q) will be small (p + q ≤ 2). We highlight two special cases: when p = q = 0, the food security
trajectory cannot be distinguished from a random walk with drift (a ‘stochastic trend’ or ‘unit root’)
and when (p, q) = (0, 1) and θ1 = −1, the trajectory consists of a linear trend with independent shocks (a
‘deterministic trend’). Third, the constant 1

2 in the definition of ρ is to some extent arbitrary: its value is
contingent upon a quantification of Prob(g + εt < −g) � 1. Here, we use the definition that an event is
rare if its magnitude is larger than the standard deviation. Fourth, while ARMA modelling provides a
solid, well-understood framework for understanding serial correlations, more general formulations (e.g.
autoregressive fractionally integrated moving average (ARFIMA) models or autoregressive conditionally
heteroskedastic (ARCH) models, non-constant trends) can be used if required, provided the number of
data points is large enough to allow for such refinements. Fifth, trend, volatility and persistence can also
be defined non-parametrically, e.g. from the empirical mean, standard deviation and autocorrelation
coefficients of the increment series �t. These alternative definitions can be used as consistency checks.3

Finally, note that shocks themselves do not need to be observed in order to quantify resilience; time-series
data on food security outcomes is sufficient. Given the difficulty of measuring the inherent magnitude of
shocks, this is an important feature of our approach.

With these observations in mind, we propose the following formal definition of food security
resilience: an actor is resilient if the long-term food security trend is not deteriorating (g ≥ 0) and food
security increments are negatively correlated in time, i.e. exhibit anti-persistence (π < 0; see the electronic
supplementary material, figure S9). Secondarily, we can think of an actor as resistant to shocks if the long-
term food security trend is not deteriorating (g ≥ 0) and the fluctuations in increments do not indicate
volatility (ρ < 0; see the electronic supplementary material, figure S10). These definitions mathematically
express our suggestion that a desirable food security trajectory is one which can resist and recover from
shocks along a generally non-negative trend.

3. Results
3.1. Dataset
We now illustrate these concepts with a real-world dataset: annual per capita kilocalorie (kcal) availability
between 1961 and 2011 for 161 countries in the world, taken from the FAOSTAT database [19]. Note that
our approach can accommodate any quantitative variable at any scale. We choose national-level kcal
availability because this indicator is one of the most common proxies for food security. However, other

2Though among the simplest definitions available, the particular definition of persistence given in equation (2.3) is not the only one
possible. Alternatives in the literature include the power spectrum at zero frequency, variance ratios [15], mean reversion [16], half-life,
approximate entropy [17], and, for series with long-range autocorrelation, Hurst exponents and detrended fluctuation analysis [10].
3Note that the shocks εt need not be normally distributed in general. Rather, the skewness S and kurtosis K of the fit residuals should be
thought of as providing additional information about the underlying welfare dynamics. An actor with positive residual skewness (such
as Montenegro, S = 2.75) and another with negative residual skewness (such as Croatia, S = −5.02) for instance, have qualitatively
different trajectories. The former undergoes more frequent negative shocks; when positive shocks to growth occur, however, they tend
to have a larger magnitude. Analysing departures from normality can thus be part of a finer-grained analysis of welfare trajectories.
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Figure 2. Global changes in kcal availability for 1961–2011. (a) Evolution of the global average (blue) and standard deviation (red) in
country-level kcal availability, indicating both growth and convergence during this period (with an exception around 1990). (b) Evolution
of the sample skewness (blue) and sample kurtosis (red) for the same dataset, indicating non-normality of the global distribution of kcal
availability.
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Figure 3. Convergence in food security: the distribution of kcal availability was bimodal in (a) 1961 but became unimodal by (b) 2011.
This is consistent with a decrease in the cross-sectional standard deviation, see figure 2.

welfare variables for which high-frequency data are available, including those at household level, could
also be used.

The kcal dataset is constructed using food balance sheets that add domestic agricultural/livestock
production to imports, and then subtract exports, livestock feed, seed and losses during storage
and transport. The annual net totals are converted to kilocalories and then divided by the country’s
population in each year to obtain per capita kcal availability. See the electronic supplementary material, A
for details. Note that this figure does not capture the often pronounced distributional inequalities within
countries. In addition, kcal consumption is only one aspect of food security, which also encompasses
nutrient intake, food safety, cultural preferences and other dimensions [20]. At best, per capita kcal
availability figures can be thought of a coarse upper bound estimate of a single aspect of country-level
food security.

3.2. Preliminary observations
We first observe that kcal availability kt is far from being stationary (figure 2). Most countries increased
their kcal availability level in the last five decades, although 15 countries had lower levels in 2011 than
they did in 1961. These declines occurred despite robust growth in the global average over this period;
the entire series has a strong upward trend, broken only temporarily by a 5-year interval corresponding
to the breakup of the Soviet bloc in the late 1980s and early 1990s. An important feature of the global
distribution of kcal availability between 1961 and 2011 is convergence: while the 1961 kcal distribution
was bimodal, the 2011 distribution is unimodal (figure 3). However, the distributions of kt remain
significantly positively skewed and platykurtic at all times, indicating that global inequalities in food
availability remain high. Using the Dickey–Fuller F-test, a unit root can be excluded at the 1% level for
only six countries (Belgium, Ecuador, India, Panama, Sweden and Switzerland), indicating that kt series
are usually not consistent with trend-stationary processes. This is in itself a notable finding: a shock to
kcal growth usually has long-lasting impact on the levels of kt—that is, kt does not merely revert to its
original trajectory. No significant multi-year cycles were observed.
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volatility relative to growth (σ / 2|g|)
extremely volatile (•, 6]
very volatile (6, 3]
moderately volatile (3, 2]
mildly volatile (2, 1]
not volatile (1, –•)
data insufficient to calculate series

Figure 4. Volatility of per capita daily kilocalorie availability, based on annual data 1961–2011. Trend inversions g �→ −g are unlikely if
themeanfluctuationσ is less than twice the size of the long-termgrowth trend (σ < 2|g|). All four countries labelled in green—Egypt,
China, Algeria and Brazil—also have improving long-term trends, and so are considered resistant.

persistence parameter π
very shock persistent (0.5, 1]
shock persistent (0, 0.5]
random walk [0]
shock anti-persistent [0.5, 0)
very shock anti-persistent [–1, –0.5)
data insufficient to calculate series

Figure 5. Persistence of per capita daily kilocalorie availability, based on annual data 1961–2011. π > 0 (red) suggests persistence;
π = 0 (grey) suggests a randomwalk;π < 0 (green) suggests anti-persistent behaviour. Cambodia’s andMacedonia’s high persistence
are not statistically significant (electronic supplementary material C, table II). All countries coloured green except Chad and Madagascar,
both of which have a declining long-term kilocalorie trend, are resilient.

3.3. Resilience and resistance
Next we performed the regression (2.1) with AIC-selected orders (p, q) after checking that the increment
time series �t in (2.1) are stationary (in the Dickey–Fuller sense). Figures 4 and 5 show the performance of
all 161 countries in our dataset between 1961 and 2011 for the volatility parameter ρ and the persistence
parameter π ; similar maps for mean kilocalorie levels and long-term kilocalorie trends are in figures 6
and 7. Figure 7 shows marked geographical differences in the mean size of annual increments. With
respect to developing world regions, the performances of West Africa, the Middle East and Central
America (as well as Brazil in South America) are notable, in addition to the well-known success stories of
East and Southeast Asia. We see relatively worse performance in much of Central and Southern Africa,
as well as South Asia.

The patterns of volatility and persistence are more unexpected. By the ρ criterion—having an average
fluctuation size that does not threaten inversion of the long-term trend—only four countries in the world
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mean annual level kt
1700–2050
2050–2400
2400–2750
2750–3100
3100–3550
data insufficient to calculate series

Figure 6. Levels of per capita daily kilocalorie availability. Mean of all annual values for each country between 1961 and 2011 is shown.

mean annual increment g
[–18, 0]
(0, 5]
(5, 10]
(10, 15]
(15, 34]
data insufficient to calculate series

Figure 7. Trends of per capitadaily kilocalorie availability.Mean of all annual increments in each country between 1961 and 2011 is shown.

are not volatile: Egypt, China, Algeria and Brazil (figure 4). This structural strength is mostly because
of steeply positive long-term trends: Egypt, China and Algeria have the highest g in the sample, with
an increment of around 30 kcal yr−1, and Brazil is not far behind at 22 kcal yr−1. These four countries
are thus also resistant. However, most countries in the world, especially those with very flat trends
(e.g. Russia, Argentina, countries in Eastern Europe) and/or high-magnitude fluctuations (Central and
Southern Africa), frequently experience serious shocks.

In the presence of strong persistence of the effects of shocks, such high volatility can disrupt the
long-term growth trajectory. We see, however, a slightly more positive global picture when looking at
the persistence parameter π : only a handful of countries hold on to past trends. The trajectory of most
of the world’s countries, in fact, is best characterized as a random walk; their kilocalorie availability
is neither dragged down by nor recovers from shocks. Note that this not an unambiguously positive
characteristic—the experience of shocks in these countries delays return to pre-shock levels and trends,
relative to anti-persistent countries.

No country in the entire sample is both resilient and resistant to shocks. However, 36 countries—all
of those labelled in green in figure 5, with the exception of Chad and Madagascar—are resilient. Within
this set are many of the least developed countries in the world, including (in order of decreasing g)
Benin, Lesotho, Mozambique, Bangladesh and Liberia. Given that many other countries at similar levels
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–0.15*
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Figure 8. Independence of the four fundamental properties of food security trajectories for the country kilocalorie availability dataset.
Corresponding insets are Spearman correlation coefficients. Except for a weak correlation between level and trend, all variables are
uncorrelated at p< 0.1.

of development do not bounce back well from shocks, investigating the determinants of resilience is an
important direction for future research.

4. Discussion
Three key policy and research implications emerge from this analysis. First, while previous works have
examined the dimensionality of food security in terms of what different variables measure [20–22], we
suggest that multiple interpretations of a single dynamic variable are possible. Assessing food security
change over time requires (at least) an investigation of: (i) levels attained, (ii) the trend of growth or
decline, (iii) the volatility of outcomes, and (iv) persistence of the effects of shocks. From subsets of these,
the qualities of resilience and resistance can be identified. Surprisingly, the four properties above are
independent of each other, which points to the need to think of them as complements, not substitutes, in
the diagnosis of food security trajectories (figure 8). This latter point is seen by comparing the 10 best and
worst performing countries in the kcal sample, with respect to each property (electronic supplementary
material, C).

Second, more research on the determinants of variation in persistence and volatility, and by
extension resilience and resistance, is critical. We fitted a simple linear model to test the hypothesis
that trade openness is positively correlated to kilocalorie volatility and negatively correlated to
persistence (electronic supplementary material, D). Using mean per capita income, literacy rate and
democratization as controls, we find that trade openness is not significantly associated with either
volatility or persistence.4 Gross domestic product per capita is negatively associated with persistence,
but the magnitude of the effect is small. These same variables, however, do better in predicting mean
kilocalorie levels (especially) and trends, again suggesting that distinct forces are driving the various
properties of food security trajectories. More detailed work, including on the sub-country level, is
needed; the approach outlined in this paper can be applied at any scale, including at the household
level, where much of the key research on the determinants of food security is done.

Third, we note that a set of 18 countries are both volatile and exhibit persistence with respect to the
effects of shocks. A subset of these—Angola, Cambodia, El Salvador, Iraq, Malawi, Mexico, Namibia and

4We also fitted a larger model including conflict deaths, oil revenue and transport infrastructure, but none of these variables improved
model performance, as evaluated either by overall goodness-of-fit or the magnitude and significance of individual parameters.
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Sierra Leone—have large segments of the population with low kilocalorie intake. Livelihoods and health
are likely to be severely impacted by shocks in these areas, and recovery is likely to be protracted. From a
resilience perspective, these are priority countries for international donors seeking to invest in bolstering
the ability of the state and the market to prevent and mitigate the impact of shocks on kilocalorie intake.
Global food security monitoring systems, especially those based on high-frequency long-term sentinel
sites [23], are critical to understand why these countries, but not others with similar levels or trends of
food security, are particularly volatile and shock-persistent.

In conclusion, we note that, for policy-making purposes, a deeper investigation of persistence and
volatility may improve forecasting of future trends in welfare. In a retrospective fitting of the ARMA
model presented here, the trend, volatility and persistence parameters move independently. More
generally, however, the stronger the persistence of shock effects, the more difficult future forecasting
of a trend will be; a shock occurring in a persistent country will be magnified, as deviations from the
past trend will last longer.5 By contrast, a country that is structurally anti-persistent will tend to revert
back to the trend more predictably. Similarly, the more volatile the fluctuations, the more difficult it will
be to predict the sign of the future trend. Data limitations may complicate country-level analysis of food
security, but household- and individual-level time series can help illuminate these issues.

Data accessibility. Data for this paper are available as the electronic supplementary material at https://github.
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