A System of Equations Having No Nontrivial Solutions

Hansraj Gupta*
(September 21, 1967)

The object of this note is to prove the Theorem: The system of equations

$$
a_{1}^{r}+a_{2}^{r}+\ldots+a_{n-1}^{r}=b_{1}^{r}+b_{2}^{r}+\ldots+b_{n-1}^{r}, \quad r=2,3, \ldots, n ;
$$

has no nontrivial solutions in positive integers.
Key Words: Diophantine equations, Prouhet-Terry-Escott problem, symmetric functions.

1. The object of this note is to prove the

Theorem: The system of equations
$a_{1}^{r}+a_{2}^{r}+\ldots+a_{n-1}^{r}=b_{1}^{r}+b_{2}^{r}+\ldots+b_{n-1}^{r}$, $\mathrm{r}=2,3, \ldots, \mathrm{n}$;
has no nontrivial solutions in positive integers.
In what follows, we write

$$
\begin{array}{ll}
\boldsymbol{A}_{r} \text { for } a_{1}^{r}+a_{2}^{r}+\ldots+a_{n-1}^{r}, & \geqslant 1 ; \\
B_{r} \text { for } b_{1}^{r}+b_{2}^{r}+\ldots+b_{n-1}^{r}, & r \geqslant 1 ;
\end{array}
$$

and all small letters denote integers $\geqslant 0$ unless stated otherwise.
2. Proof of the Theorem: Let $a_{1}, a_{2}, \ldots, a_{n-1}$ be roots of the equation

$$
\begin{equation*}
x^{n-1}-\lambda_{1} x^{n-2}+\lambda_{2} x^{n-3}-\ldots+(-1)^{n-1} \lambda_{n-1}=0 \tag{2}
\end{equation*}
$$

so also let $b_{1}, b_{2}, \ldots, b_{n-1}$ be roots of the equation

$$
\begin{equation*}
y^{n-1}-\mu_{1} y^{n-2}+\mu_{2} y^{n-3}-\ldots+(-1)^{n-1} \mu_{n-1}=0 . \tag{3}
\end{equation*}
$$

Then, we have
$A_{r}-\lambda_{1} A_{r-1}+\lambda_{2} A_{r-2}-\ldots+(-1)^{r} r \lambda_{r}=0$,

$$
\begin{equation*}
r=1,2, \ldots, n, \ldots \tag{4}
\end{equation*}
$$

with $\lambda_{r}=0 \quad$ for $r \geqslant n$.

[^0]From (4) we have

$$
r!\lambda_{r}=\left|\begin{array}{lllllll}
A_{1} & 1 & 0 & 0 & 0 & \cdot & 0 \tag{5}\\
A_{2} & A_{1} & 2 & 0 & 0 & \cdot & 0 \\
A_{3} & A_{2} & A_{1} & 3 & 0 & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
A_{r-1} & A_{r-2} & A_{r-3} & A_{r-4} & A_{r-5} & \cdot & r-1 \\
A_{r} & A_{r-1} & A_{r-2} & A_{r-3} & A_{r-4} & \cdot & A_{1}
\end{array}\right|
$$

with a similar expression for $r!\mu_{r}$.
Without loss of generality, we can take

$$
\begin{equation*}
A_{1}=B_{1}+h, \quad h \geqslant 0 . \tag{6}
\end{equation*}
$$

Writing c_{r} for $r!\lambda_{r}$, and d_{r} for $r!\mu_{r}$, we then get

$$
\begin{aligned}
& c_{1}=d_{1}+h ; \\
& c_{2}=A_{1}^{2}-A_{2}=B_{1}^{2}+2 h B_{1}+h^{2}-B_{2}=d_{2}+2 h d_{1}+h^{2}, \\
& c_{3}=A_{1}^{3}-3 A_{1} A_{2}+2 A_{3},
\end{aligned}
$$

$$
=\left(B_{1}+h\right)^{3}-3\left(B_{1}+h\right) B_{2}+2 B_{3},
$$

$$
=d_{3}+3 h d_{2}+3 h^{2} d_{1}+h^{3} .
$$

Assuming that

$$
c_{k}=d_{k}+\binom{k}{1} h d_{k-1}+\binom{k}{2} h^{2} d_{k-2}+\ldots+\binom{k}{k} h^{k}
$$

for $k=1,2,3, \ldots, r-1$, (4) gives
$B_{r}-\frac{1}{1!}\left(d_{1}+h\right) B_{r-1}+\frac{1}{2!}\left(d_{2}+2 h d_{1}+h^{2}\right) B_{r-2}-\ldots$.

$$
\begin{aligned}
& +\frac{(-1)^{r-1}}{(r-1)!}\left\{d_{r-1}+\binom{r-1}{1} h d_{r-2}\right. \\
& \left.+\ldots+\binom{r-1}{r-1} h^{r-1}\right\}\left(B_{1}+h\right) \\
& \quad+\frac{(-1)^{r}}{r!} r c_{r}=0, \quad n \geqslant 2 .
\end{aligned}
$$

Since

$$
\begin{aligned}
& B_{k}-\frac{d_{1}}{1!} B_{k-1}+\frac{d_{2}}{2!} B_{k-2}-\ldots+\frac{(-1)^{k-1}}{(k-1)!} d_{k-1} B_{1} \\
&+\frac{(-1)^{k}}{k!} k d_{k} \equiv 0, \quad k>1
\end{aligned}
$$

we get

$$
\begin{equation*}
c_{r}=d_{r}+\binom{r}{1} h d_{r-1}+\ldots+\binom{r}{r} h^{r} . \tag{7}
\end{equation*}
$$

Symbolically, this result can be written in the form

$$
c_{r} \simeq(d+h)_{r}, \quad r=1,2, \ldots, n-1, n, \ldots
$$

In particular

$$
c_{n}=d_{n}+\binom{n}{1} h d_{n-1}+\ldots+\binom{n}{n} h^{n}
$$

Since $c_{n}=0=d_{n}$, we must have

$$
\begin{equation*}
h\left\{\binom{n}{1} d_{n-1}+\ldots+\binom{n}{n} h^{n-1}\right\}=0 . \tag{8}
\end{equation*}
$$

[^1] Verein 67 (1964/65) Abt. 1, 2-13.

As the expression in the curly brackets is positive, (8) can hold only with $h=0$. This shows that $c_{i}=d_{i}$, i.e., $\lambda_{i}=\mu_{i}$ for $i=1,2,3, \ldots, n-1$. Hence eqs (2) and (3) have the same roots and a 's are b 's in some order.

Alternatively

$$
\begin{aligned}
A_{n} & =\lambda_{1} A_{n-1}-\lambda_{2} A_{n-2}+\ldots+(-1)^{n-2} \lambda_{n-1} A_{1}, \\
& =\frac{c_{1}}{1!} A_{n-1}-\frac{c_{2}}{2!} A_{n-2}+\ldots+(-1)^{n-2} \frac{c_{n-1}}{(n-1)!} A_{1}, \\
& =\frac{1}{1!}\left(d_{1}+h\right) B_{n-1}-\frac{1}{2!}\left(d_{2}+2 h d_{1}+h^{2}\right) B_{n-2}+\ldots \\
& +\frac{(-1)^{n-2}}{(n-1)!}\left\{d_{n-1}+\binom{n-1}{1} h d_{n-2}+\ldots\right. \\
& \left.+\binom{n-1}{n-1} h^{n-1}\right\}\left(B_{1}+h\right), \\
& =B_{n}+\frac{h}{(n-1)!}\left\{\binom{n}{1} d_{n-1}+\binom{n}{2} h d_{n-2}+\ldots\right. \\
& \left.+\binom{n}{n} h^{n-1}\right\} .
\end{aligned}
$$

Since $A_{n}=B_{n}$, the result follows as before.
3. H. Schmidt ${ }^{1}$ has proved a special case of our theorem when $n=3$.

Proceeding on the same lines as we have done in section 2, it can be proved that any $(n-1)$ of the n equations

$$
A_{r}=B_{r}, l \leqslant r \leqslant n,
$$

have only nontrivial solutions.

[^0]: *An invited paper. Present address: 35 Balrampur House, Allahabad-2, India.

[^1]: ${ }^{1}$ H. Schmidt. Über einige diophantische Aufgaben 3 und 4 Grades. Jber. Deutsch Math.

