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Serial and parallel processing in visual search have been long
debated in psychology, but the processing mechanism remains
an open issue. Serial processing allows only one object at a time
to be processed, whereas parallel processing assumes that
various objects are processed simultaneously. Here, we present
novel neural models for the two types of processing
mechanisms based on analysis of simultaneously recorded
spike trains using electrophysiological data from prefrontal
cortex of rhesus monkeys while processing task-relevant visual
displays. We combine mathematical models describing
neuronal attention and point process models for spike trains.
The same model can explain both serial and parallel processing
by adopting different parameter regimes. We present statistical
methods to distinguish between serial and parallel processing
based on both maximum likelihood estimates and decoding the
momentary focus of attention when two stimuli are presented
simultaneously. Results show that both processing mechanisms
are in play for the simultaneously recorded neurons, but
neurons tend to follow parallel processing in the beginning after
the onset of the stimulus pair, whereas they tend to serial
processing later on.
1. Introduction
A fundamental question in theories of visual search is whether the
process is serial or parallel for given types of stimulus material (for
comprehensive reviews, see [1–3]). In serial search, only one
stimulus is attended at a time, whereas in parallel search, several
stimuli are attended at the same time. The question of serial versus
parallel search has been extensively investigated by behavioural
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methods in cognitive psychology, but it is still highly controversial. In this article, we briefly review extant

empirical methods and their results and then present and exemplify a new method for distinguishing
between serial and parallel visual search. The method is based on analysis of spike trains of
simultaneously recorded single neurons measured in prefrontal cortex of rhesus monkeys while being
exposed to a pair of stimuli, which the animal should detect and later respond to with a saccade towards a
target object, first presented in [4]. A spike train is a sequence of recorded times at which a neuron fires an
action potential, and it is believed that spike times are the primary way to transmit information in the
nervous system. Point process modelling is a natural mathematical framework for addressing such
phenomena, and we embed this into models of visual attention. In this article, we define attention to a
stimulus on a cellular level as the stimulus a specific neuron is responding to. Thus, at a given time,
attention is divided if all neurons are not responding to the same stimulus. This provides alternative
means to quantify parallel versus serial visual processing. In particular, we do not average over trials or
neurons, but model each spike train individually within a larger model, to allow the finer dynamics and
interactions to reveal themselves. Thus, it is possible to follow attentional shifts in individual neurons, that
would otherwise be averaged out if these do not happen simultaneously in the entire neuron population.

1.1. Behavioural methods for distinguishing between serial and parallel visual search
In typical experiments on visual search, the task of the observer is to indicate as quickly as possible if a
certain type of target is present in a display. Positive (target present) and negative (target absent) mean
response times are analysed as functions of the display set size N (the number of items in the display).
The method of analysis was laid out by Sternberg [5–7] and further developed by Schneider & Shiffrin
[8]. The foundation is as follows.

In a simple serialmodel, theN items are scanned one at a time.When an item is scanned, it is classified as
a target or a distractor. The order in which items are scanned is independent of their status as targets versus
distractors. A negative response is made when all items have been scanned and classified as distractors.
Thus, the number of items processed before a negative response is made equals N. Furthermore, the rate
of increase in mean negative response time as a function of N equals the mean time taken to process one
item, Δt. A positive response is made as soon as a target is found. Because the order in which items are
scanned is independent of their status as targets or distractors, the number of items processed before a
positive response is made varies at random between 1 and N with a mean of (1 +N )/2. Thus, the rate of
increase in mean positive response time as a function of N equals Δt/2 (see [9] for experimental evidence
of serial processing in a behavioural task).

In a parallel model of attention, several stimuli can be attended at the same time. The first detailed
parallel model of visual processing of multi-element displays was the independent channels model
proposed by Eriksen and his colleagues (e.g. [10,11]). It was based on the assumption that display
items presented to separated foveal areas are processed in parallel and independently up to and
including the stage of pattern recognition. The independent channels model has been used to account
for effects of N on error rates. The linear relations between mean response time and N predicted by
simple serial models are difficult to explain by parallel models with independent channels. However,
the linear relations can be explained by parallel models with limited processing capacity [12,13].
Comparisons of serial and parallel models continue in the behavioural literature (e.g. [14–17]).

1.2. Method based on neurobiological data
As exemplified above, previous methods for distinguishing between serial and parallel visual search have
been based on behavioural data, and the evidence obtained by these methods has been somewhat indirect.
Moreover, thesemethods are all based on the assumption that processing is either serial or parallel, and that
it stays the same throughout the trial. In this article, we present a new method for distinguishing between
serial and parallel visual search, a method based on analysis of electrophysiological data. Furthermore, we
propose measures to quantify the processing mechanism in a continuum between serial and parallel
processing. The method relies on the probability-mixing model for single neuron processing [18,19],
derived from the neural theory of visual attention [1,20], which states that when presented with a
plurality of stimuli, a neuron only responds to one stimulus at any given time. The key property of a
serial model would be that, at any instant, all neurons respond to the same stimulus, while in the
parallel model, the neurons would be divided. These are the properties we intend to test in a simple case
of search in a monkey. By probabilistic modelling and statistical inference using multiple simultaneously
recorded spike trains, we infer and decode what the recorded neurons are responding to, providing a
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way to distinguish between parallel processing and serial processing on a neuronal level. The new method

appearsmore direct than previousmethods, and it is possible to analyse the time evolution of the processing
mechanism over the course of a trial.

Consider an experiment in which we record the action potentials or spikes from each of a number of
neurons of the same type, e.g. a set of functionally similar neurons in visual cortex with overlapping
receptive fields (e.g. [18]), or neurons in prefrontal cortex that are believed to be dynamically allocated
to process task-relevant information (e.g. [4]), which are the neurons we analyse in this paper.
Suppose two stimuli (stimulus 1 and 2) are both within the classical receptive fields of all of the
recorded neurons, but otherwise the receptive fields are empty. In this situation, we may test whether
processing is parallel, in the sense that some of the recorded neurons represent stimulus 1, while
others represent stimulus 2 at any one instant. We may assume that a neuron represents stimulus 1
rather than stimulus 2 if the likelihood of the observed spike trains becomes higher by assuming that
the neuron represents stimulus 1. We may also test whether processing is strictly serial by testing, for
example, whether there is a time interval Δ1 in which all of the neurons represent stimulus 1 and a
time interval Δ2, non-overlapping with Δ1, in which all of the neurons represent stimulus 2. Strictly
parallel or strictly serial processing of two or more stimuli may hardly be expected in a biological
system, and must be regarded as idealizations. However, we will show how to measure the goodness
of approximation of search processes in the brain to simple serial and parallel search, as well as the
time evolution of the processing mechanism.

In the following sections, we first present the statisticalmethods and probabilisticmodels that we employ
to distinguish between parallel and serial processing, and then show and discuss the results obtained using
both simulated data and experimental data. In §2, we introduce the experimental data used to measure the
degree of parallel and serial processing in a realistic biological situation, and explain our proposed statistical
criteria and measures to distinguish between parallel and serial processing. We propose two models, the
hidden Markov model (HMM) and the correlated binomial model (CBM), to account for the spike train
data in an attention framework, and calculate their likelihood functions. The maximum-likelihood
estimates (MLEs) provide a prior measurement of parallel versus serial processing. We can also decode
the momentary focus of attention given the fitted models, which provides a posterior measurement. In §3,
we present the results of the analysis conducted on the experimental data. As the sequel shows, we found
evidence of parallel processing (different neurons responding to different stimuli) early in trials but serial
(focused) processing (all neurons responding to the same stimulus) later in trials.
2. Material and methods
We present two models that relate the theories of visual attention to neuronal behaviour, providing a tool
to distinguish or quantify between parallel and serial processing through spike train analysis. Under the
assumption of serial processing, the neurons are correlated, acting together as a population. This
dependence can arise through two different pathways: (i) there exists an underlying variable driving
the neurons towards attending to the same stimulus, creating a dependence, even if the neurons are
conditionally independent given the state of this underlying variable; and (ii) the neurons are directly
positively correlated, driving them to synchronize their attention.

The first pathway is naturally described by an HMM, where the hidden Markov chain switches
between different states influencing the neuronal attention. If time is discretized and there are two
stimuli, this leads to a mixture of binomials at each discretized time step, where the number of
components in the mixture distribution equals the number of states of the Markov chain. The
binomial distributions provide probabilities of the number of neurons attending to each stimulus, in
dependence of the hidden state of the Markov chain. The second pathway can be represented by a
CBM, a mixture of an ordinary binomial and a modified Bernoulli [21], which is used independently
at each discretized time step. For both models, the attended stimulus for each neuron is unobserved,
and the inference is based on spike train data. We estimate parameters using MLE by marginalizing
out the unobserved attention variables. The estimated parameters in either model describe neuronal
properties and are used to obtain a prior measurement of the degree of parallel or serial processing.
For both models, we also decode the hidden states from the posterior probabilities of the latent
attention variables, i.e. an estimate of the stimulus the neurons were most probably attending to given
their observed spike trains. The decoding of attentional behaviour provides a posterior measurement of
the degree of parallel or serial processing. The diagram in figure 1 summarizes the flow of the
analysis including parameter estimation, decoding and interpretation.
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Figure 1. Flow diagram of the analysis.
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2.1. Experimental data
The neural spike train data are recorded from neurons in prefrontal cortex of two rhesus monkeys
presented with two visual stimuli [4]. They studied dynamic attentional construction, and found that
in the early stage after stimulus onset when processing competing stimuli, the global attention is
distributed among all objects, with each neuron having a tendency towards its contralateral hemifield.
In the late stage, the global attention is reallocated and neurons are redirected to the target stimulus.
The data contain multiple simultaneously recorded neurons responding to two competing stimuli.
Note that neurons were not selected for task-related responses; instead neuronal activity was isolated
before starting the task, and all recorded neurons were included in the analysis. The data are
organized in daily sessions, and each session consists of a different set of recorded neurons. At the
beginning of a session and before starting the task, microelectrodes were advanced until neuronal
activity could be isolated. Each neuron was then included in all trials up to where it was lost. Then
the following trials were with the remaining neurons. We only analyse the sessions where at least five
neurons are recorded to have enough data to distinguish between parallel and serial processing,
yielding a total of 48 sessions. Note, however, that at single trials towards the end of a session, there
might be less than five neurons if many neurons got lost during the course of a session. Otherwise,
there has been no preselection of data. The monkey fixed attention on a central red dot on a computer
screen, then each trial began with a central cue indicating the target object of the specific trial. Each of
two cues was paired with one of the two alternative targets. After a brief delay, a choice display was
presented for 500ms containing two objects: one to the right and one to the left of the fixation point.
The two stimulus objects consisted of a combination of either the cued target (T), an inconsistent non-
target (NI) because it was used as a target on other trials, a consistent non-target (NC) never serving
as a target, or nothing but a grey dot (NO). The stimulus locations were denoted by whether they
were contra- or ipsilateral with respect to the recorded neuron. After a brief delay, the monkey was
rewarded with a drop of liquid for a saccade to the T location if a T had been shown, or if no T had
been presented, for maintaining fixation (no-go response) for later reward. In the following, we call a
combination of two stimuli a condition. Table 1 shows the 12 possible conditions. More details on the
data can be found in the electronic supplementary material.

We analyse the spike trains of the choice phase where the two stimuli are shown. To account for
neuronal response times, we discard the first 100ms after stimulus onset, using the interval from 100
to 500ms in the choice phase when estimating the parameters of the two models. In figure 2 are
shown the recorded spike trains of an example cell during this phase and 100ms before and after.
The neuron seems to favour the target T with a higher firing rate, and its attention starts from the
contralateral stimulus and is later redirected to the target stimulus, following the overall tendency of
most neurons reported by Kadohisa et al. [4].
2.2. Measures for parallel versus serial processing
Here we define different measures of the degree of serial and parallel processing based on the estimated
parameters of the models when a population of n neurons are presented with two non-overlapping
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Figure 2. Raster plots of measured spike trains recorded from an example cell (MN110411task_3_0). Kernel smoothing estimates
of the firing rates are shown in red. The dashed lines indicate the interval of the choice phase where two stimuli are shown.
The 12 conditions (table 1) are indicated in the title of the subplot. The left title indicates the stimulus on the contralateral
side, and the right indicates the stimulus on the ipsilateral side with respect to the recorded neuron.

Table 1. The 12 conditions used in the trials (combinations of stimuli). Conditions can be merged into three groups: target in
the contralateral side (conditions 1–3), target in the ipsilateral side (conditions 4–6) and all combinations with no target
(conditions 7–12). Contra- and ipsilateral sides are with respect to the recorded neuron. T, target; NI, inconsistent non-target; NC,
consistent non-target; NO, no display.

condition 1 2 3 4 5 6 7 8 9 10 11 12

contralateral T T T NI NC NO NI NI NC NC NO NO

ipsilateral NI NC NO T T T NC NO NO NI NI NC
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stimuli in their receptive fields. These measures will vary with time, i.e. depend on the time since
stimulus onset, but for ease of notation, we suppress time from the notation here. Later we will
introduce the time dependency. We assume a homogeneous situation where all neurons follow the
same distribution and are exchangeable, except for individual firing rates as responses to single
stimuli. These measures are based on the basic probability-mixing model for the attention of single
neurons employed in [18,19], where a neuron responds to a stimulus mixture with certain
probabilities, such that the single neuron at any given time represents only one of the stimuli in the
mixture. First, we consider the marginal distribution of the attended stimulus for each neuron. Let p
denote the marginal probability of attending to one of the stimuli, say stimulus 1, such that the
probability of attending stimulus 2 is 1− p, where 0 < p < 1. If the neurons are independent, then the
probability that all neurons attend the same stimulus is pn + (1− p)n, and if the neurons are positively
correlated, this is a lower bound of the probability that all neurons attend the same stimulus. Thus, p
provides a measure of the tendency of serial or parallel processing. A narrow distribution (extreme
probability, p either close to 0 or 1) favours serial processing, since in this case most neurons will
attend the same stimulus. A wide distribution (non-extreme probability, p close to 0.5) favours parallel
processing, since in this case neuronal attention will tend to split between the two stimuli. Second, we
consider correlations between neurons. Since the neurons are exchangeable, the correlation coefficient,



Table 2. Effects of neural attentional probability and correlation to serial and parallel processing.

extreme probability p≈ 0 or p≈ 1 non-extreme probability p ≈ 1/2

strong correlation ρ≈ 1 serial serial

weak correlation |ρ|≪ 1 serial parallel
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denoted by ρ, between any two neurons (pairwise correlation) is identical. Stronger positive
correlation implies more tendency to serial processing, no matter what p is. Thus, if either the
correlation is strong (ρ close to 1) or p is close to 0 or 1, serial processing is favoured, while if both the
correlation is weak and the probability is not extreme, parallel processing is favoured. We summarize
the different cases in table 2.

We propose a single statistic as an alternative measure to distinguish between serial and parallel
processing that take into account the entire joint distribution. Assume a stimulus mixture of two
components and a population of n neurons reacting to the mixture. The number of neurons, Z,
attending the first stimulus follows a distribution with probability mass function (PMF) f (z) for z∈ {0,
1,…, n}, such that P(Z = z) = f (z), which depends on the specific model. A distribution centred around
n/2 indicates apparent parallel processing, and a distribution centred at 0 and/or n indicates apparent
serial processing. Note that this distribution incorporates both the marginal probability of attention of
the single neurons and the correlation between neurons. Define the statistic Dn by

Dn ¼
Pn

z¼0 jz� n=2jf(z)
n=2

: (2:1)

The statistic Dn can be explained as a normalized expected deviation between the number of
neurons attending to one stimulus and the half of the total number of neurons. If we split the
neuron population according to which stimulus they attend giving two proportions (summing to 1),
then Dn is the average difference between the two proportions, and it can take values between 0
and 1. The smaller Dn is, the more parallel processing is favoured. The Dn statistic depends on the
total number of recorded neurons n. However, if we consider specific models for the PMF, for
example, the binomial models introduced below, the dependence of n can be removed by using the
asymptotic version

D� ¼ lim
n!1Dn, (2:2)

which provides a measure for the entire neuronal population relevant for the given task.
The comparison of serial and parallel processing catches the differences among simultaneously

recorded neurons within one trial in terms of their attended stimulus, which is hard or impossible to
analyse by traditional methods by averaging across neurons and trials. We thus develop a new
methodology modelling each single spike train and the correlation between spike trains. The serial
and parallel processing can be distinguished using the estimated parameters. To summarize, to
measure the degree of serial/parallel processing, we use the attentional probability p, the correlation
of neuronal attention ρ, and the deviation statistics Dn or D�.
2.3. Models
In this section, we present two models to explain the spike train data in an attention framework. We
discretize the 400ms of the trial where both stimuli are presented, and which we use for the analysis,
into I smaller intervals and let the models evolve dynamically over these intervals. Within any of
these small time intervals, we assume that the attention of each neuron is not changing. Within a trial,
let Xi

t [ {0, 1} denote the attended stimulus of neuron i at time t for i = 1,…, n, t = 1,…, I, and let Yi
t

denote the spike train of neuron i in the t’th interval. We set Xi
t ¼ 1 when neuron i attends stimulus 1

at time t, and Xi
t ¼ 0 when attending stimulus 2. Stimulus 1 is defined as the contralateral stimulus

with respect to the recorded neuron, stimulus 2 is the ipsilateral stimulus. Thus, pt ¼ P(Xi
t ¼ 1). This

probability depends on the stimulus pair; however, at t = 1 it is only related to the location of the
attended stimulus, since this is the initiation of the processing mechanism before the specific stimuli
are perceived, and is thus the same for all stimulus pairs.
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2.3.1. Point process model for the spike trains

We assume a point process model for the spike trains and perform maximum-likelihood estimation
[18,22,23]. The conditional intensity function (CIF) of a general point process model is defined by

h(tjHt) ¼ lim
Dt!0

Pr(N(tþ Dt)�N(t) ¼ 1jHt)
Dt

, (2:3)

where N(t) is the number of spikes in the interval (0, t], and Ht denotes the spike history up to time t.
Then h(t|Ht)Δt approximates the probability of observing a spike in (t, t + Δt] for Δt small.

Suppose a spike train y in the interval [Ts, Te] contains the spike times y = {t1, t2,…} with Ts≤ t1 <
t2 < · · ·≤ Te, and that it attends the same stimulus during the entire interval. The probability of
observing y given the attended stimulus xt is given by [22,23]

P(yjxt) ¼
Y
t[y

h(tjHt; xt)

" #
exp �

ðTe

Ts

h(sjHs; xt) ds
� �

, (2:4)

where h(s|Hs; xt) is the CIF in equation (2.3), which we model using

h(sjHs; xt) ¼ r exp
X10
j¼1

b jDNs�ju

8<
:

9=
;: (2:5)

The base firing rate r := ri(x), where i = 1,…, n indicates the neuron, is neuron specific and a function
of the attended stimulus x and the location (contra- or ipsilateral). Note that only the attended
stimulus is relevant, not the condition. For each neuron, there are therefore seven rate parameters,
representing T, NI and NC at either side, and a parameter for NO. The exponential term models the
influence of the past spikes during the previous 10ms on the neuronal activity. The constant u = 1ms
is the discretization unit determined by the experiment, and ΔNt denotes whether there is a
spike (ΔNt = 1) or not (ΔNt = 0) in the time interval [t, t + u). For simplicity, we assume that only past
spikes of the neuron itself have an effect. All neurons are assumed to share the same set of
parameters βj, j = 1, 2,…, 10.

Let M denote the considered conditions (stimulus pairs) and let jMj denote the number of
conditions. For simplicity, we do not always distinguish between all 12 conditions shown in table 1,
but sometimes merge them into classes, such that there will be fewer parameters to estimate. In
particular, we will consider the three classes of conditions indicated in table 1, defined by whether
there is a target in the stimulus pair, and if there is, whether it is contra- or ipsilateral. Under
condition m, let the set Km contain all the conducted trials. In trial k, let the set N k contain all the
simultaneously recorded neurons and let yN k

t denote the spike trains from these neurons in the t’th
interval, and likewise for the hidden attentional states XN k

t . Each N k is a subset of the set of all
neurons N used in the session, N k # N , because not all neurons are used in all trials (electronic
supplementary material, figure S1).
2.3.2. Hidden Markov model and a mixture of binomial distributions

To combine the visual attention hypotheses with neuronal dynamics, we adopt an HMM. The HMM
assumes some underlying unobserved variable that drives the attention of the neurons. The HMM is
defined over the I time steps. We let the probabilities p of the single neurons, which can be
interpreted as attentional weights, depend on the state of the underlying HMM, which introduces
correlation between neurons, even if they are conditionally independent given the hidden state, and
the probabilities evolve over time following the dynamics of the HMM. Note that this implies that
within each of the I intervals, model parameters governing the stochastic neuronal activity (the spike
train generation) are constant. We use three hidden states, which describe three attentional regimes.
These could, for example, be attention mainly directed to the contralateral side, attention mainly
directed to the ipsilateral side, or approximately equal attention to both sides. Note, however, that the
probabilistic features within states are data driven. A transition between hidden states introduces a
weight reassignment of the attention to the stimuli, and thus, new laws for the generation of spike
trains. Let Ct∈ {1, 2, 3} denote the hidden state at time t. Figure 3 shows a diagram of the HMM for
I = 3. Conditional on Ct, the {Xi

t}i¼1,...,n are independent.
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Ct Œ {1, 2, 3}: hidden state during time interval t
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Figure 3. Diagram of the hidden Markov model. The HMM and attentional states from a group of n neurons to a mixture of two
stimuli, using I = 3 discretized time steps.
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Let the initial distribution of the Markov chain be given by l and the transition probability matrix
(TPM) by G:

l ¼ l1 l2 l3½ �

and G ¼
g11 g12 g13
g21 g22 g23
g31 g32 g33

2
4

3
5,

9>>=
>>; (2:6)

where
P3

k¼1 lk ¼ 1,
P3

l¼1 gkl ¼ 1 for k = 1, 2, 3 and λk, γkl≥ 0 for k, l = 1, 2, 3. Here, λk = P(C1 = k) and γkl =
P(Ct+1 = l|Ct = k) for t > 1. Let the vector pt :¼lGt�1 denote the distribution of Ct, thus, πt,k = P(Ct = k). The
TPM G depends on the stimulus pair, but the initial distribution l is only related to the location of the
attended stimulus. We denote by Gm the TPM of condition m.

Conditional on Ct, neurons are assumed independent. Denote the probability of attending stimulus 1
given state c by ac ¼ P(Xi

t ¼ 1jCt ¼ c), yielding the matrix:

A ¼
a1 1� a1

a2 1� a2
a3 1� a3

2
4

3
5: (2:7)

2.3.2.1. Attention probabilities and correlations
The vector

Pt ¼ lG t�1A ¼ ptA ¼ (P(Xi
t ¼ 1), P(Xi

t ¼ 0))¼ (pt, 1� pt) (2:8)

contains the probabilities of attention to the two stimuli. Straightforward calculations yield the moments
and the correlation ρt between Xi

t and X j
t

E(Xi
t) ¼ lG t�1 [a1, a2, a3]

0 ¼ pt, (2:9)

Var(Xi
t) ¼ pt(1� pt), (2:10)

E(Xi
tX

j
t ) ¼ lG t�1 [a2

1, a
2
2, a

2
3]

0, (2:11)

Cov(Xi
t, X

j
t ) ¼ E(Xi

tX
j
t )� E(Xi

t)E(X
j
t ) (2:12)

and rt ¼
Cov(Xi

t, X
j
t )

Var(Xi
t)

, (2:13)

where
0
denotes transposition. The values pt and ρt can be used to measure the degree of serial and

parallel processing as indicated in table 2.

2.3.2.2. A mixture of three binomials
By marginalizing out the hidden state Ct, the HMM structure implies that at each time point t the
neuronal attention of the n neurons follows a mixture of three binomial distributions, Bin3(πt, α, n).
Here, α = (α1, α2, α3) are the probability parameters of the three binomials, and the weights are given
by πt. The number of binomial trials equals the number of simultaneously recorded neurons n. The
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Figure 4. The probability mass function of the number of neurons attending stimulus 1. Parameter values are given in table 3. The
statistic Dn is defined in equation (2.1) and measures the degree of parallel/serial processing. Higher values indicate serial processing.
(a) HMM and (b) CBM.

Table 3. Parameters, probabilities of attention, correlations and the deviation statistics D10 and D� for the HMM and the CBM.
Values used to produce figure 4.

πt,1 πt,2 πt,3 p ρ D10 D�

hidden Markov model, α = (0.95, 0.45, 0.1)

Case 1 0.9 0.1 0.0 0.9 0.25 0.84 0.82

Case 2 0.5 0.05 0.45 0.54 0.69 0.82 0.82

Case 3 0.3 0.45 0.25 0.51 0.41 0.59 0.52

Case 4 0.05 0.7 0.25 0.39 0.17 0.43 0.32

correlated binomial model

Case 1 – – – 0.1 0.1 0.82 0.82

Case 2 – – – 0.1 0.9 0.98 0.98

Case 3 – – – 0.45 0.1 0.33 0.19

Case 4 – – – 0.45 0.9 0.93 0.91
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PMF for the mixture of three binomials is

fBin3(zjpt, a, n) ¼ pt,1f(zja1, n)þ pt,2f(zja2, n)þ (1� pt,1 � pt,2)f(zja3, n), (2:14)

where f(zjak, n) ¼ n
z

� �
az
k(1� ak)

n�z is the PMF of the binomial distribution.
The Dn statistic is calculated using equation (2.1). For the mixture of three binomials in (2.14), the

asymptotic version is given by

D� ¼ lim
n!1Dn ¼ 2(pt,1ja1 � 0:5j þ pt,2ja2 � 0:5j þ (1� pt,1 � pt,2)ja3 � 0:5j): (2:15)

Figure 4a illustrates how the probability and the correlation affect serial and parallel processing for
the HMM using n = 10 neurons for four different parameter settings, Cases 1–4. The four cases show
increasing degree of parallel processing. The parameter settings are shown in table 3, together with
the derived values of the probabilities of attention, correlations and deviation statistics D10 and D�.
2.3.2.3. Likelihood function
We denote the conditional probability of the N k spike trains at time t given Ct by a diagonal matrix:

P(yN k
t jCt) ¼

P(yN k
t jCt ¼ 1) 0 0

0 P(yN k
t jCt ¼ 2) 0

0 0 P(yN k
t jCt ¼ 3)

2
64

3
75: (2:16)



Table 4. Parameters and interpretation of the HMM and the CBM. Parameters to be estimated in each session. Interpretation of
and differences between the models.

parameter explanation dimension

hidden Markov model

l (equation (2.6)) initial distribution, the same for all

conditions M
2

Gm (equation (2.6)) transition probability matrix for each

condition m [ M
6jMj

A (equation (2.7)) conditional probability of neuronal attention 3

correlated binomial model

ρt,m (equation (2.19)) correlation coefficients for m [ M and

t = 1,…, I

jMj � (I � 1)þ 1

pt,m (equation (2.19)) probability parameter for m [ M and

t = 1,…, I

jMj � (I � 1)þ 1

common to both models

ri (equation (2.5)) base firing rates, one for each neuron in N 7jN j
β (equation (2.5)) weights in the CIF model, the same for all

neurons in N
10

interpretation HMM CBM

motivation extends the probability-mixing model with

dynamic weight reassignment

treats neuronal attention as correlated

binomial variables

neuronal correlation

within a time interval

modelled through the hidden state of the

Markov chain

modelled directly by parameters

neuronal correlation

between time intervals

modelled by the Markov chain independent

parameter dimension 15þ 6jMj þ 7jN j 12þ 2jMj(I � 1)þ 7jN j
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The likelihood function of all spike trains in one session is then given by

L ¼
Y
m[M

Y
k[Km

lP(yN k
1 jC1)

YT
t¼2

[GmP(y
N k
t jCt)]

( )
: (2:17)

By conditioning on the hidden attentional states XN k
t , we obtain

P(yN k
t jCt) ¼

Y
i[N k

P(yitjCt)

¼
Y
i[N k

[P(Xi
t ¼ 1jCt)P(yitjXi

t ¼ 1)þ P(Xi
t ¼ 0jCt)P(yitjXi

t ¼ 0)]

¼
Y
i[N k

[aCtP(y
i
tjXi

t ¼ 1)þ (1� aCt )P(y
i
tjXi

t ¼ 0)],

(2:18)

where P(yitjxit) is given in equation (2.4). We obtain MLEs of the parameters by maximizing the likelihood
function. The parameters to be inferred are summarized in table 4.
2.3.3. Correlated binomial model

In the CBM, the neurons are assumed directly correlated. It was studied in [21,24] and is denoted by
CBin(n, p, ρ). In this model, the number of neurons z attending stimulus 1 follows a mixture of two
distributions. One is an ordinary binomial distribution with parameters n and p. The other is a fully
correlated distribution where z∈ {0, n}, which can be viewed as a modified Bernoulli distribution with
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support {0, n} with parameter p. The weight of the Bernoulli component is the correlation coefficient ρ.

The probability mass function is given by

fCBin(zjn, p, r) ¼ (1� r)f(zjn, p)þ rp(z=n)(1� p)(n�z=n)I{0,n}(z), (2:19)

where I{0,n}(z) is the indicator function which equals 1 for z∈ {0, n} and 0 otherwise.
The distribution of the neuronal attentions at t = 1 is assumed identical for all stimulus pairs,

CBin(n, p1, ρ1), and at t > 1 they follow CBin(n, pt,m, ρt,m) for stimulus pair m. Contrary to the HMM,
the behaviour at different time steps is independent. Instead, the correlation is modelled directly by
the parameter ρ. Compared with the HMM, where the correlation is caused by the attentional
reassignment according to a hidden state, the CBM is more direct.

The probability of attention is given by the parameter pt,m, and the correlation is ρt,m. The asymptotic
version of the deviation statistic D� defined in equation (2.2) to measure the degree of serial and parallel
processing is given by

D� ¼ 2(1� r)jp� 0:5j þ r: (2:20)

Figure 4b shows the PMF of the correlated binomial distribution for the four parameter settings given in
table 3.

2.3.3.1. Likelihood function
Under the CBM, the attention of the simultaneously recorded neurons follow a mixture of a binomial and
a modified Bernoulli. The likelihood of the spike trains in condition m at time t in trial k, yN k

t , is given by

Pm(y
N k
t ) ¼ (1� rt,m)

Y
i[N k

[P(yitjXi
t ¼ 1)pt,m þ P(yitjXi

t ¼ 0)(1� pt,m)]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
binomial

þ rt,m pt,m
Y
i[N k

P(yitjXi
t ¼ 1)þ (1� pt,m)

Y
i[N k

P(yitjXi
t ¼ 0)

( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

modified Bernoulli

,
(2:21)

where P(y i
tjxit) is given in equation (2.4). The likelihood of the data of an entire session is

L ¼
Y
m[M

Y
k[Km

YT
t¼1

Pm(y
N k
t ): (2:22)

We summarize the differences of the HMM and the CBM in table 4. In both models, it is assumed that
in the early stage, i.e. the first discretized interval from 100ms to 100 + 400/T ms, neuronal attention is
only affected by the position of stimuli (ipsi- or contralateral) and not by stimulus types (T, NI, NC or
NO). This assumption is supported by the empirical findings by firing rate averaging showing
attentional reallocation over time [4]. It is also assumed that under the same stimulus types, the
attentional parameters are identical, implying that in all the trials of one condition, neurons follow the
same distribution and differences from trial to trial due to randomness.

2.4. Decoding the attentional state
Decoding means to infer the attended stimulus from the observations and the estimated parameters. The
basic idea is to compute the posterior distribution given the spike train, P(Xi

tjY ¼ y), for neurons i = 1,…,
n, which provides estimates of the attended stimulus of single neurons. The estimated PMF of the
number of neurons attending one stimulus, P(

Pn
i X

i
tjY ¼ y), is then used to calculate Dn, defined in

equation (2.1). In the following, the decoding is explained for the two models in more detail. To show
the main idea, we suppress time and neuron indicator from the notation for the moment, denoting
the hidden state by C, the attended stimulus by X and the spike train data by Y. The posterior of X
given Y = y is

P(XjY ¼ y) ¼
X
c

P(XjC ¼ c, Y ¼ y)P(C ¼ cjY ¼ y): (2:23)

The strategy is to first estimate P(C = c|Y = y) and then P(X|C = c, Y = y) conditional on C = c. We are
particularly interested in the PMF and the deviation statistic of the attended stimuli, which we can
calculate using P(X|C = c, Y = y) for different states C.
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2.4.1. Decoding in the hidden Markov model

The hidden states Ct in the HMM model is decoded at each discretized time step by the forward–
backward algorithm. Let yN k

s:t denote the spike trains in intervals s to t, for 1≤ s < t≤ I in trial k, where
N k denotes the simultaneous recorded neurons in the k’th trial. The probability of Ct conditional on
the observed spike trains at all time intervals 1 to I can be expressed as

P(CtjyN k
1:I )/ P(yN k

tþ1:I jCt)P(CtjyN k
1:t ), (2:24)

where

P(CtjyN k
1:t )/ P(yN k

t jCt)
X
ct�1

P(Ctjct�1)P(ct�1jyN k
1:t�1) (2:25)

is the forward probability, calculated recursively by a forward sweep over 1 to I, and

P(yN k
tþ1:I jCt) ¼

X
ctþ1

P(yN k
tþ2:T jctþ1)P(y

N k
tþ1jctþ1)P(ctþ1jCt) (2:26)

is the backward probability, calculated recursively by a backward sweep over 1 to I. When calculating the
forward and backward probabilities, the likelihood conditional on the hidden state, P(yN k

t jCt), is
obtained by conditioning on the neuronal attention {xit}i[{N k}:

P(yN k
t jCt) ¼

Y
i[N k

X
xit[{0,1}

P(yitjxit)P(xitjCt): (2:27)

After decoding the hidden state P(CtjyN k
1:I ), the next task is to decode {Xi

t}i[{N k} conditional on Ct:

P(xitjyN k
t , Ct) ¼ P(xitjyit, Ct)/ P(yitjxit, Ct)P(xitjCt): (2:28)

For all spike trains in trial k, yN k
1:I , we have thus obtained the discrete posterior distributions of the hidden

states P(CtjyN k
1:I ) and the attended stimulus of each spike train P(Xi

tjy i
t, Ct), at all time steps t = 1,…, I. This

yields the marginal posterior P(Xi
tjyN k

1:I ) ¼
P

Ct[{1,2,3} P(X
i
tjyit, Ct)P(CtjyN k

1:I ).
At each time step t, conditional on Ct, spike trains are independent and the posterior probabilities

P(Xi
tjyit, Ct) are different from spike train to spike train. Thus, the attended stimuli of all neurons

follow a Poisson binomial distribution, a generalization of the ordinary binomial distribution where
each Bernoulli trial has a distinct success probability [25]. The PMF of the Poisson binomial
distribution is calculated numerically using methods from [26]. Marginalizing out Ct, at each time step
t we then have a mixture of three Poisson binomial distributions. The PMF of this mixture distribution
can be regarded as probabilities of the number of neurons that have attended stimulus 1, conditional
on their observed spike trains. The deviation statistic Dn defined in equation (2.1) can then be
obtained from the PMF.
2.4.2. Decoding in the correlated binomial model

In the CBM, spike trains between different time steps and different trials are independent (except for the
memory component, the exponential term in equation (2.5)). Thus, decoding can simply be done
independently for each discretized time step in each trial. Now, let Ct be an index indicating either the
binomial or the Bernoulli component in the mixture. As previously, we first decode Ct by calculating
P(CtjyN k

t ), then find the PMF by calculating P(Xi
tjy i

t, Ct). We have

P(CtjyN k
t )/ P(yN k

t jCt)P(Ct), (2:29)

where the two cases Ct = 1 and Ct = 2 are given by the two components in equation (2.21). Then for each
case of Ct we decode the attended stimulus Xi

t. When Ct = 1, i.e. the binomial case, Xi
t is obtained for each

spike train independently with P(xitjyit, Ct ¼ 1) / P(yitjxit, Ct ¼ 1)P(xitjCt ¼ 1), resulting in a Poisson
binomial distribution. When Ct = 2, i.e. the fully correlated Bernoulli case, the attended stimuli of all
neurons are the same, which is obtained by P(xtjyN k

i , Ct ¼ 2)/ P(yN k
i jxt, Ct ¼ 2)P(xtjCt ¼ 2), and the

result is still a modified Bernoulli. Finally, the PMF is a mixture of a Poisson binomial and a modified
Bernoulli.



P(X=1), HMM correlation, HMM

2 4 6 8 10

D* and Dn, HMM

2 4 6 8 102 4 6 8 10

1 2 3 4 5

P(X=1), CBM

time step
1 2 3 4 5

time step
1 2 3 4 5

time step

correlation, CBM

0

0.4

0.8

0

0.2

0.4

0.6

0.4

0.5

0.6

0.7

0.8

0

0.4

0.8

0

0.2

0.4

0.6

0.4

0.5

0.6

0.7

0.8
D* and Dn, CBM

Case 1
Case 2
Case 3

Dn

D*

HMM, Case 1 HMM, Case 2 HMM, Case 3

CBM, Case 1 CBM, Case 2

0 0.1 0.2 0.3 0.4 0.5

CBM, Case 3

time (s)

0 0.1 0.2 0.3 0.4 0.5

time (s)

0 0.1 0.2 0.3 0.4 0.5

time (s)

0 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.0

(a)

(b)

Figure 5. Examples of simulated data for the HMM and the CBM. (a) The probabilities of attending the contralateral stimulus, p (left),
the pairwise correlation coefficients ρ (middle) and the deviation statistic values Dn and D� (right) are shown as functions of time.
Different colours represent the three parameter settings. (b) Example spike trains are shown for the corresponding case and model.
In each sub-figure, 10 trials are shown, separated by horizontal white space lines. In each trial, 10 simultaneous spike trains are plotted.
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3. Results
3.1. Simulated data
We first simulate spike train data and check if ourmodels andmethodswork properly on the simulated data.
For both theHMMand theCBM,we consider three parameter settings. In all cases,we use 10 simultaneously
recorded neurons, repeated for 20 trials. The base rates and responseweights are the same for the three cases.
We consider only one stimulus condition, such that each neuron has two base rate parameters, one for the
contralateral and one for the ipsilateral sides. For the HMM, we use a time step of 0.1 s and a total of
10 time steps. For the CBM, we use a time step of 0.1 s and a total of five time steps. Note that the number
of parameters in the CBM scales linearly with IjMj (table 4), and it is therefore not statistically viable to
discretize with a large I for the CBM. This is not the case for the HMM. Figure 5 shows probabilities of
attending the contralateral stimulus, the pairwise correlation coefficients, and the deviation statistic values
as functions of time for different parameter settings, as well as example simulated spike trains.
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Figure 6. Simulation study: deviation statistics values computed from parameter estimates and true parameters. The estimates of Dn
(equation (2.1)) are shown in blue, and the estimates of D� (equation (2.2)) are shown in green as quantiles of the 100 repetitions.
The dashed lines represent the full 0–100% quantiles, and the solid lines represent the 25–75% quantiles. The blue dots are the
medians. The red crosses are the true values used in the simulation. (a) HMM and (b) CBM.
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We apply the model fitting to the simulated data, and the simulation and model fitting procedure are
repeated 100 times. Figure 6 shows the distribution of the estimates of the deviation measures. Further
details, results and figures can be found in the electronic supplementary material.

The conclusion from this simulation study is that parameters can be successfully estimated, and the
Dn and D� values computed from the parameter estimates are close to the true values. The Dn values
from the decoding analysis have large variances, due to the small sample size of 10 neurons.
However, the median Dn values from the 100 decoding repetitions are often close to the encoding
results based on the parameter estimates.

3.2. Experimental data
The experimental spike train data from [4] were fitted to both models. For a discretization with I steps, an
equal length of 400/I ms were assigned to all time intervals. Three different discretizations of I = 3, 5 or 10
were used, and two different classes of conditions with either all 12 or only 3 classes determined by
whether there is a target in the stimulus pair, and in that case, whether it is contra- or ipsilateral
(table 1). However, for the CBM only I = 3 or 5 were used since otherwise there are too many
parameters to estimate, especially if all 12 conditions are individually modelled. The models were
fitted to each of the 48 sessions independently.

3.2.1. Parameter estimation in HMM

Figure 7 illustrates parameter estimates for the HMM under different condition and step number settings.
Figure 7a shows the probability of attending the stimulus at the contralateral side, pt = P(Xt = 1) at
different time steps and types of conditions, as kernel density plots from all 48 estimates. It shows
that neuronal attention slightly prefers the contralateral stimulus in the beginning right after stimulus
onset (the black density curve is centred towards larger values than 0.5), and later on tends to follow
T and avoid NO. Note that here we conduct model inference using all 12 conditions, and only
combine similar conditions for presentation.

In figure 7b, the estimates of the correlation ρt are plotted against the estimates |pt− 0.5| for each time
step t = 1,…, 5, on top of a two-dimensional kernel density estimate (bandwidth: 0.25) of the points as
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Figure 7. Experimental data: results for the HMM. (a) Kernel density representation of the estimates of pt, the probability of
attending to the contralateral stimulus, obtained using I = 3 and all 12 conditions (combined for presentation). At t = 1, all
conditions follow the same distribution, so there is a single black curve. For the subsequent time steps, the condition types
are: stimulus pairs with T on the ipsilateral side; stimulus pairs with T on the contralateral side; stimulus pairs with NO on the
ipsilateral side; and stimulus pairs with NO on the contralateral side. (b) Estimates of correlation ρ against estimates of
probability extremeness |p− 0.5| at the different time steps obtained using I = 5 and all 12 conditions, on top of a two-
dimensional kernel density estimate as heatmaps serving as a visual tool presenting smoothed estimates of the tendency
of parallel/serial processing from the point estimates. Yellow implies higher point density, red implies lower point density.
(c) Estimates of D� (equation (2.2)) using three merged conditions with I = 5 (left), all 12 conditions with I = 3 (middle left),
I = 5 (middle right), and I = 10 (right).
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heatmaps. The heatmaps serve as a visual tool presenting smoothed estimates of the tendency of
parallel/serial processing from the point estimates, as measured by the probability p and the
correlation ρ as indicated in table 2. There are 48 estimates in the leftmost panel at t = 1 (no difference
between conditions), and 48 × 12 estimates in the remaining panels from 12 conditions in 48 sessions.
A straight line is plotted on the anti-diagonal for easier reading. The lower left region of the heatmap
represents a tendency of parallel processing, and all other regions represent a tendency of serial
processing. In the leftmost panel corresponding to the first time step, a big portion of the estimates
fall in the lower left region. This implies parallel stimulus processing in the early stage. Later, the
estimates tend to move to the right and upper regions, indicating serial processing. However, there are
points on both sides of the straight line at all time steps. This is evidence supporting both processing
mechanisms at all time steps throughout the entire spike train.

In figure 7c, we investigate the asymptotic deviation statistic D�. The average D� is calculated over the
48 session estimates for each condition, for different discretizations and merging of conditions. In all
cases, D� increases over time, implying stronger serial processing.
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3.2.2. Parameter estimation in CBM

The estimates of the CBM are shown in figure 8. The results are similar to the HMM. Figure 8b shows
apparent parallel processing at t = 1, while later on the estimates of the correlation and the probability
becomes more extreme. For t > 1, most of the estimates of the correlation coefficient are close to either
1 or 0, meaning one component in equation (2.19) is dominating over the other. This is because of the
small number of simultaneously recorded neurons in most trials (typically two to four neurons),
which is insufficient for obtaining good estimates in a mixture model. This is a weakness of the CBM
since it only contains two extreme components representing either full independence or full
correlation. To check this hypothesis, we looked at the estimates from session ‘MN110411’ with the
largest average number of simultaneously recorded neurons (the rightmost neuron in the electronic
supplementary material, figure S1b), and found that the estimates of the correlation lie almost
uniformly across 0–1, indicating that the estimates of either 0 or 1 of the correlation in other sessions
can be an artefact of small sample sizes.

3.2.3. Decoding

Here, we decode the attended stimulus of the neurons conditional on the observed spike trains.
The parameters used in the decoding algorithms are the estimated parameters obtained by MLE.
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Figure 9 shows the decoding of the attended stimulus for an example trial containing 10 simultaneously
recorded spike trains in session ‘MN110411’, condition NO-T. The same dataset is decoded using the
HMM with I = 3 and 5, and the CBM with I = 3. The values of the Dn statistics are calculated based on
the decoded probabilities of a single trial containing simultaneously recorded neurons.

In figure 10, we show box-plots of the Dn values from multiple trials across all sessions as a function
of time: HMM with I = 3 and 5, and CBM with I = 3. Note that the results in figures 7c and 8c are prior
measures based on estimated parameters, and figure 10 shows posterior measures based on the decoded
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attended stimulus for specific spike train data. If a trial has too few simultaneously recorded spike trains,

the Dn values calculated from the decoded attentions will have large variance across trials, and results are
unreliable. Therefore, we only consider trials with at least 10 simultaneously recorded spike trains. Note
that this is only in the decoding analysis; in the parameter estimation all trials were used. We see a similar
trend as in the Dn values based on the estimates: the Dn values are increasing with time, indicating
stronger serial processing. Finally, in both models and at all time steps, there is evidence of both
parallel and serial processing, implied by the wide box-plots.
ing.org/journal/rsos
R.Soc.open

sci.7:191553
4. Discussion
In this study, we combine the point process spiking neuron models describing spike trains with the
neural interpretations of serial and parallel processing hypotheses in visual search. We propose an
HMM and a CBM to describe neuronal attention in neurophysiological measurements from prefrontal
cortex in rhesus monkeys. Results show that parallel processing is favoured in some sessions while
serial processing is favoured in other sessions, and there is evidence for both parallel and serial
processing at all time steps. Overall, we see a tendency towards parallel processing in the early stage
after stimulus onset, and serial processing in the late stage. This means that, right after stimulus onset,
the neurons tend to split their attention to different stimuli, and later the neurons become more
synchronized, sharing the same attended stimulus. Furthermore, at the early stage neurons prefer the
contralateral stimulus, while in the late stage neurons favour the T and avoid NO, which agrees with
the study conducted by averaging across spike trains [4]. Although we do not know the special
functions of the tested cells, the data strongly suggest that, as time goes by, prefrontal cortex moves
from a state in which a multitude of inputs drive the response, to a state dominated by one of the
stimuli, also in trials with no target.

The early state of parallel processing can be related to feedforward or bottom-up processing, where the
sensory inputs are being processed before higher level cognitive modulatory influences of recurrent
feedback or top-down processing have begun [27,28]. In the later stage, where top-down signals have
had time to modulate the attention, the neural activity tends to synchronize around the attended object,
resembling serial processing. Thus, cognitive modulatory influences guiding attentional effects in
recurrent feedback connections occur after a small delay, and are related to serial processing, where all
processing capacities are being directed towards the attended object. Similar results have been observed
in event-related potentials in electroencephalography (EEG) measurements [29]. They found that
forward connections are sufficient to explain the data in early periods after stimulus onset, whereas
backward connections become essential after around 220ms. Even if the exact timing of the switch
between bottom-up and top-down signals is not clear, there is evidence that after 200ms back-
projections play a prominent role, even if selective responses are elicited already 100ms after stimulus
onset (see [28] and references therein). Quantification of the relative contribution of feedforward and
feedback signals characterizing visual perception remains unclear, and thus, the concepts of parallel and
serial processing and our suggested analysis tools provide a useful mean for elucidating these questions.

Our empirical findings support the selective attention for identification model (SAIM) [30,31]. The
SAIM models the human ability to perform translation-invariant object identification in multiple
object scenes. SAIM suggests that central for this ability is an interaction between parallel competitive
processes in a selection stage and an object identification stage. Presented with two objects, the
selection process begins with attending two stimuli, corresponding to parallel processing, and then as
time passes only one stimulus is represented, corresponding to serial processing. Qualitatively, this
behaviour is in agreement with our empirical findings. Another interesting parallel between SAIM
and the HMM presented here is that the underlying variable Ct driving the neuronal attention in the
HMM could correspond to the selection network in SAIM which directs the focus of attention
towards a stimuli.

Decoding analysis provides posterior probabilities of neuronal attentions, yielding an estimate of the
PMF and therefore also of Dn. This can be used to analyse attentional behaviour for any given
simultaneously recorded spike trains in future trials, as well as tracking the dynamics of the specific
stimuli single neurons are attending. The conclusions regarding parallel and serial processing from the
overall distribution of Dn on all trials and sessions from the decoding analysis are the same as in the
prior analysis using parameter estimates. Note that although both the prior and posterior analyses
provide similar results, the conclusions regarding neuronal attentional properties should be drawn
from the prior analysis based on the MLE. The MLE gives the optimal estimation of the neuronal
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properties based on all the available data. The decoding analysis, on the other hand, estimates what the

neuron’s attention could have been during a specific trial based on the data from this trial, and the
uncertainty of the decoding is represented by posterior distributions.

In [4], parallel processing in the early stage was reported. The same conclusion is drawn from our
analysis, where we find that the neurons prefer the contralateral stimulus in the early stage, and
integrating both hemispheres gives simultaneous parallel processing. Furthermore, there exists not
only such parallel processing considering the whole brain, but also parallel processing based on
neurons in a single recording site, as supported by our finding. Though the simultaneously recorded
neurons in one location show a tendency towards the contralateral stimulus in the early stage, there is
strong evidence showing they split their attention between stimuli located on both sides in a parallel way.

The models here are fitted to the specific dataset from [4] and the model structure contains the
experimental conditions specific for this dataset. However, with trivial adjustments, the models also
apply to generic neurophysiological data that consist of simultaneously recorded spike trains.
Currently, the models and methods only support two stimuli, and a future extension is the
generalization to an arbitrary number of stimuli.

The two models, the HMM and the CBM, yield slightly different results regarding the degree of serial
and parallel processing. This is partly because the two models are based on different assumptions. In the
HMM, the neuronal attention is guided by a common control, but otherwise the neurons are
independent. In the CBM, the neurons affect each other directly. In the HMM, there is temporal
correlation through the transition matrix, whereas in the CBM, the dynamics in a time interval is
independent of the past (except for the memory component in the spiking model). The models have a
different number of parameters, and consequently, different flexibility to fit the data at a cost of
statistical power. The number of parameters in the CBM increases linearly with number of
discretization steps I, and it is thus not possible to make a fine discretization in this model. However,
for small I, the CBM has fewer parameters than the HMM, and thus more statistical power, especially
if there are many conditions. The biological reality of attention, which we try to describe with these
simple models, is complicated, and the two models approximate the reality and explain neural
attention from different perspectives. Furthermore, the experimental data are noisy with limited
sample size and the models contain a large number of parameters, which leads to large variance of
estimators. Even if the difference between the two models is large in a given trial or session, the
overall results of the two models over a large number of sessions produce similar conclusions.
However, specific comparisons should be made under the same model, such as comparing the
processing mechanisms under different conditions.

An essential assumption in our models is that each neuron attends to only one stimulus at any given
time, which is supported by some recent studies [18,19]. However, the assumption might not be valid in
general. Suppose instead that a neuron responds to two stimuli with a firing rate that is a weighted
average of the firing rates it would have when presented with only one of the stimuli. Then our
models can be considered as approximations, where the probability p corresponds to the weight on
stimulus 1. In that case, the statistic Dn in equation (2.1) still makes sense, where f (z) is then a
distribution on the entire real interval [0, N ], and not a distribution on the integers from 0 to N.

We assume that in the early stage, neuronal attention is only affected by the position of stimuli (ipsi-
or contralateral) and not by stimulus types (T, NI, NC or NO). To test this assumption, we also ran the
HMM using three time steps, allowing each condition to have its own initial probabilities. The
conclusions remain the same, processing is more parallel right after stimulus onset, and becomes more
serial later on (results not shown). Because of the increased number of parameters, the CBM with
condition-specific initial probabilities is not statistically viable. Another issue is the variability between
sessions for the same model. Assuming the whole prefrontal area follows a probabilistic model, we
aim at estimating the model parameters of the entire system. However, in each session only a small
subset of 5–11 simultaneously recorded neurons is available, and the number is even smaller for
single trials (electronic supplementary material, figure S1), with each neuron having its distinct firing
rate and attentional pattern (figure 2 and electronic supplementary material, figure S2). Thus, there is
a large variance of the estimates from session to session, and a more stable result is obtained by
averaging and applying kernel density estimation. To obtain more accurate estimates, it is necessary to
have a larger number of simultaneously recorded neurons.
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