
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Lebedeva IV, García A, Artacho
E, Ordejón P. 2023 Modular implementation of

the linear- and cubic-scaling orbital minimization

methods in electronic structure codes using atomic

orbitals. R. Soc. Open Sci. 10: 230063.
https://doi.org/10.1098/rsos.230063
Received: 19 January 2023

Accepted: 29 March 2023
Subject Category:
Physics and biophysics

Subject Areas:
computational physics

Keywords:
density functional theory, linear-scaling methods,

code modularization
Author for correspondence:
Irina V. Lebedeva

e-mail: liv_ira@hotmail.com
© 2023 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

6601948.
Modular implementation of
the linear- and cubic-scaling
orbital minimization methods
in electronic structure codes
using atomic orbitals
Irina V. Lebedeva1,2,3, Alberto García4,

Emilio Artacho1,5,6,7 and Pablo Ordejón2

1CIC nanoGUNE BRTA, Donostia-San Sebastián 20018, Spain
2Catalan Institute of Nanoscience and Nanotechnology—ICN2 (CSIC and BIST), Campus UAB,
Bellaterra 08193, Spain
3Simune Atomistics, Avenida de Tolosa 76, Donostia-San Sebastián 20018, Spain
4Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra 08193, Spain
5Donostia International Physics Center DIPC, Donostia-San Sebastián 20018, Spain
6Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge
CB3 0HE, UK
7Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain

IVL, 0000-0002-2880-0275; AG, 0000-0001-5138-9579;
EA, 0000-0001-9357-1547; PO, 0000-0002-2353-2793

We present a code modularization approach to design efficient and
massively parallel cubic- and linear-scaling solvers for electronic
structure calculations using atomic orbitals. The modular
implementation of the orbital minimization method, in which
linear algebra and parallelization issues are handled via external
libraries, is demonstrated in the SIESTA code. The distributed
block compressed sparse row (DBCSR) and scalable linear algebra
package (ScaLAPACK) libraries are used for algebraic operations
with sparse and dense matrices, respectively. The MatrixSwitch
and libOMM libraries, recently developed within the Electronic
Structure Library, facilitate switching between different matrix
formats and implement the energy minimization. We show results
comparing the performance of several cubic-scaling algorithms,
and also demonstrate the parallel performance of the linear-scaling
solvers, and their supremacy over the cubic-scaling solvers for
insulating systems with sizes of several hundreds of atoms.
1. Introduction
The success of electronic structure theory [1] in modelling new
materials and devices [2,3] has stimulated the development of

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.230063&domain=pdf&date_stamp=2023-04-26
mailto:liv_ira@hotmail.com
https://doi.org/10.6084/m9.figshare.c.6601948
https://doi.org/10.6084/m9.figshare.c.6601948
http://orcid.org/
http://orcid.org/0000-0002-2880-0275
http://orcid.org/0000-0001-5138-9579
http://orcid.org/0000-0001-9357-1547
http://orcid.org/0000-0002-2353-2793
http://creativecommons.org/licenses/by/4.0/

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
2
hundreds of electronic structure codes [4]. Historically almost all of these individual software packages

are written in distinct ways, although many tasks performed are similar. Except for numerical and
performance-related libraries such as basic linear algebra subroutines (BLAS) [5], higher-level linear
algebra utilities (serial linear algebra package—LAPACK [6] and its parallel counterpart, scalable
LAPACK—ScaLAPACK [7]), message passing interface (MPI) level [8] etc., significant parts of the
codes are replicated with some variations. Electronic structure packages are growing rapidly,
incorporating more and more new features. Also, the codes have to adapt to the constant hardware
evolution, which in the case of monolithic code architecture implies significant efforts on re-
engineering. In this situation, it seems more efficient to change the traditional monolithic paradigm of
software development to the modular one in which common tasks arise [9].

In addition, such an approach allows to separate the tasks related to high-level routines focused on
the calculation of physical properties from the implementation of the underlying routines for
parallelization and algebra. On one hand, this means that the implementation of new models and
algorithms becomes much simpler and does not require the knowledge of technical details related to
parallelization. On the other hand, much better performance is achieved using specialized external
libraries, and thus much larger systems can be modelled. Significant efforts (e.g. the European project
MAX [10]) are underway to stimulate the paradigm change in software design and to facilitate
exascale computing. Here, we show the benefits of modularization by the example of SIESTA [11–15].

SIESTA [11–15] was specifically designed for linear-scaling calculations [16,17] in which the
computational time grows linearly with the number of atoms [16–21]. Such methods make possible
calculations of large systems at a considerably less computational cost compared with common cubic-
scaling approaches. SIESTA uses strictly localized atomic-like functions for basis sets in which the
Hamiltonian and overlap matrices, H and S, are sparse. If, additionally, the confinement of the
wave functions is imposed, the coefficient matrix C expanding wave functions in the basis is also
sparse. Reducing the problem of solving the Kohn–Sham equations to the minimization of a properly
constructed energy functional within the Ordejón–Mauri [16–18,22] and Kim [23] approaches, the
inversion of the overlap matrix is avoided and only expressions involving products and sums of
sparse H, S and C matrices need to be computed, all in linear-scaling effort.

The linear-scaling solvers in SIESTA, although available from the start [12], are not widely used in
practice. One of the reasons is that the implementation of these physical methods involved also
coding of the algebra and parallelization of sparse matrices, which inevitably increased the code
complexity and hindered progress. Recent efforts on linear-scaling methods have produced the
distributed block compressed sparse row (DBCSR) library [24] that efficiently handles algebraic
operations for sparse matrices and is massively parallelized [25,26]. Using this library, we have
implemented an improved and more reliable version of linear-scaling solvers in SIESTA (figure 1).

Another recent initiative that has helped re-designing SIESTA is the Electronic Structure Library (ESL)
[9,31], a collaboration platform for shared software development. We use ESL’s libOMM library [9,27]
distributed within the omm-bundle [32]. It encodes the Ordejón–Mauri [16–18,22] and Kim [23]
functionals, originally without the additional approximation of wave function confinement, rendering
dense C matrices and cubic scaling. Such an approach provides an alternative to conventional cubic-
scaling methods, which can be faster in long simulations by avoiding computationally expensive
orthonormalization and using history on previous steps [28]. We refer to unconstrained minimization
methods of suitable energy functionals, with either linear or cubic scaling, as the orbital minimization
method (OMM) [21,28,33,34]. In libOMM [9,27,28], the minimization is customarily performed via
conjugate gradients (CG). The parameters of the quartic function describing the energy dependence
along the search direction are computed analytically [17,28].

Although the original libOMM library provides cubic scaling [9,27,28], it has been straightforward to
extend it to linear scaling, the equations being almost the same, the key difference being the use of sparse
matrices instead of dense. Normally two separate pieces of the code dealing with sparse and dense
matrices would be used for the same equations. This code duplication can be avoided in libOMM
thanks to the MatrixSwitch (MS) library [29], an interface between high-level physical routines and
low-level routines for matrix algebra. MS, which is also distributed within the omm-bundle [32] of
ESL [9,31], simplifies the coding of matrix operations and allows a single code independent of matrix
format, by means of format-independent high-level commands. Depending on matrix format, MS calls
the appropriate linear algebra library. An example of calculations using the MS library is shown in
listing 1 (see electronic supplementary material for MS overview).

Recently, the MS library was extended to support sparse matrices [9,30] via the DBCSR [24–26]
library. Here, we consider dense and sparse matrices in the parallel-distributed dense block cyclic

SIESTA

ESL

MatrixSwitch

ScaLAPACK

dense sparse

DBCSR

libOMM

Figure 1. The use of libraries within the revised orbital minimization method (OMM) solver in the electronic structure code SIESTA
[11–15]. The red rectangular box corresponds to SIESTA. Blue ellipses indicate the libraries used [7,9,24,25,27–30]. The libraries in
the dashed frame belong to the Electronic Structure Library (ESL) [9,31]. The arrows demonstrate calls to the libraries.

Listing 1. An example of the calculation of the total charge in the OMM approach using the MatrixSwitch library.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
3

(pddbc) and parallel-distributed compressed sparse row (pdcsr) MS formats for which algebraic
operations are handled with the help of the ScaLAPACK [7] and DBCSR [24] libraries, respectively.
Although basic functionality for sparse matrices was already provided in this recent MS version
[9,30], a revision of the library was needed towards treating sparse and dense matrices on the same
footing, and to enable linear-scaling calculations. The incorporation of the solver library into an
electronic structure code also implies additional matrix manipulations such as conversions between
the matrix formats supported by the code and the solver library as well as reading and writing of
restart files. The corresponding subroutines have been here implemented in MS and are discussed below.

roya
4
After a brief overviewof theOMMapproaches, the new implementation of linear- and cubic-scalingOMM

in SIESTA is presented, including the necessary changes in theMS and libOMM libraries forming part of ESL.
The results of the first tests are discussed, and recommendations on the efficient use of OMM are given.
 lsocietypublishing.org/journal/rsos

R.Soc.Open
Sci.10:230063
2. Overview of orbital minimization method approaches
In density functional theory (DFT) [35,36], the problem of finding the ground state of a many-electron
system is reduced to an energy minimization for the system of 2n non-interacting electrons moving in
an effective potential and described by one-particle states {|ψi〉} (i = 1,…, n) each of which is occupied
by two electrons of opposite spin (assuming no spin polarization, for simplicity). The set of states
{|ψi〉} is one of the many possible bases in the occupied subspace of the Hilbert space of the system
and can be chosen orthonormal or not. In the latter case [37], the overlap matrix SW with the elements
(SW)ij = 〈ψi|ψj〉 is not the identity matrix (SW≠ I, (IW)ij = δij) and the density matrix operator that
determines the projection onto the occupied subspace is then given by

r̂ ¼ 2
Xn
i,j¼1

jcii(SW
�1)ijhcjj, ð2:1Þ

involving the inverse of SW [17,18,22]. Here and below, we limit our consideration to insulating systems.
The linear-scaling methods applicable to metals are discussed e.g. in [38–41].

The corresponding band structure energy becomes [16–18,22]

E ¼ Tr[Ĥr̂] ¼ 2Tr[SW
�1HW], ð2:2Þ

where Ĥ is the Hamiltonian operator, andHW is the matrix with the elements ðHWÞij ¼ hcijĤjcji. Note that
the traces in equation (2.2) are taken on spaces of different dimensions: the size of the basis set for the first, and
of the occupied states in the second. Also, the second equality holds for zero temperature.

In the basis of m functions {|ϕi〉} (strictly localized atomic orbitals in SIESTA)

jcii ¼
Xm
m¼1

Cm
i jfmi, ð2:3Þ

where we refer to C as the coefficient matrix. Then HW ¼ CyHC and SW ¼ CySC, where Hij ¼ hfijĤjfji,
Sij = 〈ϕi|ϕj〉 and Cy is the Hermitian conjugate of C. The energy functional in equation (2.2) is minimized
to find the ground state energy. The most common approach is direct diagonalization of the Hamiltonian
matrix H (an m ×m matrix for the basis set of size m). Energy and charge density are then obtained using
the wave functions and energies of the n lowest eigenstates. By contrast, in the iterative approaches [42],
the energy is minimized with respect to variations in the states {|ψi〉}. Here one needs to calculate the
inverse of the overlap matrix SW

−1 or impose the orthonormality condition (SW)ij = δij. In any case,
the computational time increases as O(n3) with the system size, while the memory required to store
the wave functions grows as O(n2).

In OMM approaches [16–18,22], the expensive orthonormalization step is avoided via the
modification of the energy functional in such a way that it automatically induces the
orthonormalization of the wave functions during minimization

~E ¼ 2Tr[ðIW þ ðIW � SWÞÞHW]

¼ 2Tr[ð2IW � CySCÞCyHC]: ð2:4Þ
This expression can be derived from consideration of Lagrange multipliers [16,17] or expansion of the
inverse overlap matrix to first order in the deviation from the identity [18,22]: SW

−1≈ IW + (IW− SW).
The solution obtained from equation (2.4) is the same as from equation (2.2).

Within the same approximation, the density matrix of equation (2.1) is computed as [17]

r ¼ C(IW þ ðIW � SWÞ)Cy ¼ 2Cð2IW � CySCÞCy ð2:5Þ
and the forces on atom I as [17]

FI ¼ �Tr r
@H
@RI

� �
þ Tr rE

@S
@RI

� �
, ð2:6Þ

where we refer to rE ¼ 2CHWCy as the ‘energy density’.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
5
If the basis functions and wave functions are chosen to be strictly localized, the Hamiltonian, overlap

and coefficient matrices, H, S and C, are sparse and O(n) scaling with system size is achieved [16–18,22].
Note that this is not the case for equations (2.1) and (2.2) as the inverse of S is not sparse (although sub-
cubic scaling can be achieved using selected inversion to compute just the needed elements of the inverse
[43]). In the case of periodic systems, localized wave functions are close to the Wannier functions that
decay exponentially with the distance from the centre of localization in insulators and in metals at a
finite temperature. Imposing localization constraints on the wave functions, however, leads to a
deviation from the exact solution of equations (2.2) and (2.4). Also the localized wave functions
obtained are not strictly orthonormal and do not comply with the system symmetries [23]. However,
the degree of approximation can be controlled with the cut-off radius RC for the wave functions. Here,
we limit our consideration to insulators with a substantial band gap, where RC of several Å is
normally enough [17,18].

In the Ordejón–Mauri functional [16–18,22], the localization of the wave functions gives rise to many
shallow local minima and flat regions in which the algorithm can be trapped for a long time during the
energy minimization. This problem is solved in the Kim functional [23] by including unoccupied states
and introducing a chemical potential η, i.e. the energy separating occupied and unoccupied states. The
corresponding functional is obtained by (i) an eigenspectrum shift H→H− ηS, (ii) changing
dimensions of C from m × n to m × n

0
, where n

0
> n, and (iii) changing the energy functional in

equation (2.4) as ~E ! ~Eþ hn, and energy density ρE in equation (2.6) as ρE→ ρE + ηρ. It should be
noted, however, that although the multiple-minima problem is solved in the Kim functional, it is
sometimes hard to choose a proper value for η. It should always lie within the band gap, but the
bands can move up and down during self-consistency or molecular dynamics (MD), η possibly
getting into the valence or conduction bands and, as a result, converging to an erroneous solution.
Care should be taken to ensure that the solution reproduces the correct number 2n of electrons.

If the localization constraints on thewave functions are removed, the exact solution of equations (2.2) and
(2.4) is obtained [28]. Even in this case, however, one energy minimization can demandmany CG iterations.
This relates to the problem of length-scale or kinetic energy ill-conditioning [42,44]. The efficiency of the CG
algorithm depends on the ratio of the maximal and minimal extremal curvatures of the function minimized,
which in OMM are determined by the maximal and minimal eigenvalues of the Hamiltonian. The
eigenspectrum of the Hamiltonian is broad, given the large kinetic energy of high-energy eigenstates.
Although such states contribute negligibly to the ground state solution, the problem becomes ill-
conditioned and the convergence is slow. It is, however, possible effectively to reduce the width of the
eigenspectrum by suppressing the kinetic energy contribution of high-energy states through
preconditioning [45,46], by which the CG gradient matrix is multiplied by the preconditioning matrix [28]

P ¼ Sþ T
tT

� ��1

, ð2:7Þ

where τT is the scale for kinetic energy preconditioning and T is the kinetic energymatrix. Another approach
for improving the efficiency of CG minimizations is reducing the generalized eigenvalue problem to the
standard form via the Cholesky factorization [28]. Both of these approaches involve matrices that are not
sparse (the preconditioning matrix or the reduced Hamiltonian) and are considered here only for cubic-
scaling OMM.
3. Modular solver architecture
3.1. Solver input and output
A scheme of the implemented OMM solver is shown in figure 2. At each self-consistent-field (SCF) step,
the solver receives as an input the Hamiltonian and overlap matrices in the basis of strictly localized
atomic orbitals, H and S, and the information on the system geometry. SIESTA uses for matrices the
standard compressed sparse row format, that is the matrix information is stored in local one-
dimensional arrays containing data values and column indices for individual non-zero elements of
local rows as well as indices of the first non-zero elements and numbers of non-zero elements for each
local row. The blocks of rows are distributed on a one-dimensional process grid (figure 4a). Here and
in MS we refer to this format as pdrow to distinguish from the pdcsr format supported by DBCSR. H
and S are received by the solver in the pdrow format. The density matrix ρ is the output, also in pdrow
(see equation (2.5)). This matrix is used to update H for the next SCF step outside the solver. At the

OMM solver

matrix format
conversion: H, S

solver library
(libOMM)

matrix format
conversion: ρ

H, S
in SIESTA format

geometry

new MD step?

reading
C† restartMD

step no.1

C† initialization
or update

H, S
in MS format

H, S,
geometry

update

ρ in MS format
converged C† in MS format

guess C†

writing
C† restart

ρ in SIESTA format

Figure 2. Scheme of the revised OMM solver. Blocks within the solver are shown in blue. The rest of the SIESTA code is shown as a
red block. Arrows indicate data flow. Hamiltonian, overlap and density matrices are denoted as H, S and ρ. The Hermitian conjugate
of the coefficient matrix of expansion of the wave functions in the basis of localized atomic orbitals is denoted as Cy. The
Hamiltonian and overlap matrices are converted from internal SIESTA to MatrixSwitch (MS) format for further calculation of ρ
and Cy with the help of the libOMM library. The restart file for Cy can be read once at the first molecular dynamics (MD) step.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
6

end of each MD step, the solver is called again to compute the energy density matrix ρE, which, along
with ρ, is later used to calculate forces (see equation (2.6)) and stresses. The scheme of the ρE
calculation is analogous to that of ρ shown in figure 2.

3.2. Solver library
The solver uses the libOMM library [9,27,28,32] to perform the CG minimization of the energy functional
given by equation (2.4). As an input, the libOMM library requires H and S, as well as the initial guess for
Cy, in one of the MS formats [9,29,30,32]. As an output, it provides the converged Cy, and ρ or ρE in the
same format. The pddbc format is used for parallel calculations with dense matrices. In this case, all
matrix elements are stored and algebraic operations are performed using the ScaLAPACK library [7].
The matrix is divided into two-dimensional blocks distributed on a two-dimensional or one-
dimensional process grid. For parallel calculations with sparse matrices, the pdcsr format is used. The
matrix is also divided into two-dimensional blocks distributed on a one-dimensional or two-
dimensional process grid (figures 4b,c, respectively). However, in this case, zero blocks are not stored.
The algebraic operations are performed by the DBCSR library [24–26]. At the moment, libOMM
supports only equal rectangular blocks.

The equations implemented in the libOMM library are compatible with all OMM flavours discussed
in the previous section, including the Ordejón–Mauri and Kim functionals, with and without localization
constraints. However, to make the libOMM library functional for sparse matrices, some parts to the code
have been reformulated. Now block-size information is passed to the MS library during the allocation of
intermediate matrices required for the CG minimization using m_allocate() (see electronic
supplementary material). Also, sparsity is imposed on the gradient matrix G (with the elements
Gm

i ¼ @~E=@ðCm
i Þ�) following the sparsity pattern of the initial guess for C. Already during G

calculation [28], only matrix elements that fit into the sparsity pattern are computed in the
contributions to G that are given by products of matrices (using keep_sparsity = true option of
mm_multiply()). In the rest of the contributions, non-zero elements that do not fit into the sparsity
pattern are omitted and no longer stored, while zero elements within the sparsity pattern are stored
as zeros. The sparsity of the density (ρ) and energy density (ρE) matrices is assumed to be the same as
of the overlap matrix S and only elements of these matrices that fit into the sparsity pattern are

pdcsr (sparse) pddbc (dense)

The pointers to the arrays and the block size of A_pdrow are passed to MatrixSwitch

An array of column indices in the increasing
order is prepared to facilitate format conversion

1. An intermediate matrix distributed on the 1D process grid and
keeping the block size of A_pdrow is created:

Arrays with row and column indices
of local non-zero blocks are prepared

Local non-zero blocks of the pdcsr matrix
are reserved via m_reserve_blocks ()

Local non-zero blocks are filled in
one by one via m_set_element ()

2. The intermediate matrix is redistributed into the final matrix A with
the requested block sizes and distribution over computational nodes:

via dbcsr_complete_redistribute () via pdgemr2d ()

Non-zero elements are
filled into local two-dimensional
arrays including all elements of
the local rows

m_register_pdrow (A_pdrow,...)

m_copy (A, A_pdrow)

Figure 3. A series of calls to the MatrixSwitch library required for the format conversion of matrix A from the pdrow format used in
SIESTA (A_pdrow) to the pdcsr and pddbc MatrixSwitch formats (A) handled with the DBCSR and ScaLAPACK libraries, respectively.

pdrow matrix on 1D MPI grid pdcsr matrix on 1D MPI grid pdcsr matrix on 2D MPI grid

(a) (b) (c)

1 2

core 1

core 2

core 3

core 4

Figure 4. Example of matrix format conversion from the pdrow format used in SIESTA to pdcsr MatrixSwitch format handled with
DBCSR: (a) pdrow matrix distributed on the one-dimensional process grid with four CPU cores, (b) pdcsr matrix with 2 × 3 blocks
distributed on the same one-dimensional process grid and (c) pdcsr matrix with 2 × 3 blocks distributed on the 2 × 2 two-
dimensional process grid. Arrows indicate steps 1 and 2 of subroutine m_copy() as explained in figure 3. Small squares
represent elements of the 8 × 12 matrix. Black squares are zero elements that are not stored. Red, yellow, blue and green
squares correspond to elements stored on cores 1, 2, 3 and 4, respectively.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
7

computed. Additionally, the expression for the calculation of ρE has been corrected as compared with the
previous libOMM version [28] in accordance with equations (2.4)–(2.6) and [17]. The Cholesky
factorization and kinetic energy preconditioning are available only for dense matrices.

3.3. Cy matrix format conversion
In order to incorporate the libOMM library into SIESTA within the OMM solver, the following steps are
required (figure 2): (1) matrix format conversion from/to the SIESTA format to/from the MS formats and
(2) initialization and update of Cy, according to the current geometry of the system. The matrix format
conversion is realized using calls to MS subroutines m_register_pdrow() and m_copy() (see
electronic supplementary material). The first of this subroutines has been added to the MS library and the
second one has been extended to allow the conversion from/to the pdrow format to/from the pdcsr and
pddbc formats. The conversion is performed as follows (figure 3). First the pointers to arrays of the pdrow
matrix and its block size are passed to MS. Then a pdcsr/pddbc matrix distributed on the one-dimensional
process grid with the same block size for rows as the initial pdrow matrix is filled in element by element
(figure 4). The missing elements of the pddbc matrix or within non-zero blocks of the pdcsr matrix are
filled with zeros. Note that to speed up the conversion and guarantee linear scaling, column and row

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
8
indices of non-zero blocks of the pdcsrmatrix should be passed to the DBCSR library before filling the values

via the call to m_reserve_blocks() (see electronic supplementary material). Once the one-dimensional-
distributed pdcsr/pddbcmatrix is ready, it can be redistributed on a two-dimensional process grid. In the case
when the finalmatrix is distributed on the one-dimensional process grid and has the same block size for rows
at the initial pdrow matrix, the last step is omitted.

The conversion from pdcsr and pddbc to pdrow is implemented in a similar way. It is assumed that the
row and column indices of non-zero elements of the pdrow matrix are already known. Only the values of
the matrix elements are restored.

3.4. Cy matrix initialization and update
The initialization of the Cy matrix in the sparse form is performed in SIESTA in the following way. It is
supposed that each atom carries the number of localized wave functions equal to the atomic charge (in
units of elementary charge) divided by two, Qat/2. If Qat is odd, (Qat + 1)/2 localized wave functions are
assigned to one atom and (Qat− 1)/2 to the next one. This procedure is repeated for all the atoms in the
system. Then the Cy matrix in the pdrow format with the total number of rows that corresponds to the total
number of localized wave functions, NWF=Q/2, where Q is the sum of atomic charges in the system, is
prepared. The local rows are assigned according to the block size bWF . By default, it equals the block size
for the basis functions, bBF, multiplied by the ratio of the total number NWF of localized wave functions to
the basis set size NBF: bWF= bBFNWF/NBF . For each local row, the local environment of the atom hosting
the corresponding localized wave function is analysed. The row elements that correspond to atoms beyond
some cut-off radius RC from the atom considered are supposed to be zero. The row elements that
correspond to atoms within the cut-off radius RC are initialized by random values. This sparsity pattern is
maintained during the energy functional minimization. The Cy matrix in the pdrow format is converted to
the pdcsr or pddbc formats in the same manner as the Hamiltonian and overlap matrices, H and S.

It should be mentioned also that the initial cut-off radius RC,ini for initialization of the Cy matrix can
be set different from RC used for the energy minimization. Choosing a small initial radius RC,ini (several
Å) helps to avoid convergence problems and is useful not only in calculations with sparse matrices but
also with dense ones.

At each new MD step, the sparsity pattern of the Cy matrix is checked again. The elements that now
should be zero because the corresponding atoms got away by more than RC are set to zero and no longer
stored. The elements corresponding to the atoms that got closer than RC are now stored and treated as
non-zero but are assigned to zero as the initial guess. Linear extrapolation of the Cy matrix based on
the information from the two previous MD steps is also possible.

3.5. Cy matrix input and output
The restart file for the Cy matrix can be written at each SCF step and read at the beginning of the run. These
operations are performed by calling new MS subroutines m_read() and m_write(), respectively (see
electronic supplementary material). If the Cy matrix in the pdcsr or pddbc format is distributed on a two-
dimensional process grid, it is first converted into a one-dimensional-distributed matrix (by analogy with
the format conversion routines). Then the blocks of rows are consecutively passed to the head core and
written to the file. To read the file, the reverse operations are performed. The block sizes and process grid
for the Cy matrix do not need to be the same as used when writing the restart information. Upon reading,
the sparsity pattern of the Cy matrix is corrected according to the current system geometry.

3.6. SIESTA input parameters
The input parameters for SIESTA corresponding to the revised OMM solver are described in table 1. To
use the OMM solver, SolutionMethod should be set to BLOMM (OMM with block matrices).
4. Tests
4.1. Computational details
The test calculations have been carried out for single-layer boron nitride (BN) under periodic boundary
conditions. Supercells of BN from 12 × 12 to 96 × 96 with up to 18 400 atoms are considered. The lattice

Table 1. Principal input parameters for the revised OMM solver in SIESTA (SolutionMethod BLOMM) and their
default values.

input parameter default value description

OMM.UseSparse true whether to use sparse matrices

OMM.UseKimFunctional true whether to use the Kim [23] (or Ordejón–Mauri

[16–18,22]) functional

OMM.Use2D true whether to distribute matrices on a two-

dimensional process grid

OMM.ReadCoeffs false whether to read the initial localized

wave functions (LWFs), i.e. the Cy

matrix, from the restart file

(�.WF_COEFFS_BLOMM)
OMM.WriteCoeffs false whether to write the LWFs

(Cy matrix) to the restart file
OMM.RelTol 10−9 the tolerance for the energy convergence in

conjugate-gradient (CG) iterations.

When 2(En− En−1)/(En + En−1), where En
is the energy at CG iteration n,

becomes smaller than this tolerance, CG

iterations are stopped

OMM.BlockSizeC bWF = bBFNWF/NBF the block size for LWFs (rows of the Cy

matrix). By default, equals the block

size for the basis functions bBF (input parameter

BlockSize) multiplied by the ratio of the

total number NWF of LWFs to the basis set size

NBF
OMM.Eta 0 eV the chemical potential for the Kim functional

OMM.RcLWF 9.5 Bohr the cut-off radius RC for LWFs determining the

sparsity pattern of the Cy matrix
OMM.RcLWFInit 0 Bohr the initial cut-off radius RC,ini for LWFs. It is the

same as OMM.RcLWF if set to 0

OMM.Extrapolate false whether to estimate LWFs at the next molecular

dynamics (MD) step by the linear extrapolation

of the results of two last MD steps

only for the cubic-scaling OMM

OMM.Precon -1 the number of self-consistent-field (SCF) steps for

which to apply the preconditioning [28]. If

negative, the preconditioning is applied at all

SCF steps

OMM.PreconFirstStep OMM.Precon OMM.Precon for the first MD step

OMM.TPreconScale 10 Ry the scale τT for the kinetic energy preconditioning

(see equation (2.7))

OMM.Cholesky false whether to apply the Cholesky factorization [28]

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
9

102

10

10–1

10–2

103

no. of atoms, N
104

1

w
al

l t
im

e
(h

ou
rs

)

diagonalization
dense, O.-M., preconditioning
dense, O.-M., Cholesky
dense, O.-M.

sparse, O.-M., RC ���

sparse, O.-M., RC = 4 Å

sparse, Kim, RC = 4 Å,
 η = –5.5 eV

Figure 5. Wall time (in hours) for four MD steps for a single boron nitride (BN) layer computed using different approaches versus
number N of atoms in the system: (black squares) diagonalization, (green triangles up) OMM with dense matrices (using ScaLAPACK)
and preconditioning using a kinetic-energy scale τT = 10 Ry, (dark green triangles down) OMM with dense matrices with Cholesky
factorization (open green triangles up) plain OMM with dense matrices, (magenta diamonds) OMM with sparse matrices (using
DBCSR) without wave function localization (wave function cut-off radius RC→∞), (red circles) Ordejón–Mauri functional with
RC = 4 Å and (open red circles) Kim functional with RC = 4 Å and chemical potential η =−5.5 eV. In all the cases without
wave function localization, the Ordejón–Mauri functional is considered. The calculations are performed on 96 CPU cores. A
double-zeta polarized (DZP) basis set is used. The block size is bWF = 6 for the wave functions and bBF = 13 for the basis functions.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
10
constant is set at 2.48 Å. The height of the simulation cell is 20 Å. The calculations have been performed at
the single G point. The local density approximation [47], norm-conserving Troullier–Martins [48]
pseudopotentials and standard built-in double-zeta polarized (DZP) basis set [49] are used. The
atomic orbitals are set to zero beyond the cut-off determined by the energy shift of 10meV (cut-off
radii 2.5–4.5 Å). The real-space grid is equivalent to the plane-wave cut-off energy of 100 Ry. The
linear mixing scheme with a mixing parameter of 0.1 is applied to converge the ground state. The
tolerance is 10−4 for the density matrix and 10−3 eV for the matrix elements of the Hamiltonian.

To test performance of different approaches in MD simulations, several MD steps starting from the
converged ground state have been computed (the ground state is converged previously with the same
method as used for MD). The microcanonical ensemble with an initial temperature of 300 K is
considered. The Verlet algorithm [50] with a time step of 1 fs is used. The Pulay mixing scheme [51]
with a mixing parameter of 0.2 is applied during the MD simulations.

The matrices involved in the calculations consist of equal blocks. For the DZP basis set, each boron
and nitrogen atom has 13 basis functions, and hosts three or two wave functions depending on
whether the unoccupied states are included into consideration or not, respectively. Therefore, the
block size for the wave functions is usually chosen to be bWF = 6 and for the basis functions bBF = 13.
The matrices are distributed on a two-dimensional process grid. The cut-off radius for localized
wave functions in typical calculations with sparse matrices is RC = 4 Å. The chemical potential for the
Kim functional is η =−5.5 eV. CG iterations are performed until the difference of energies at
consecutive CG iterations divided by the average energy at these iterations reaches 10−9. The tests
with the preconditioning for dense matrices have been carried out using the scale for the kinetic
energy of τT = 10 Ry [28].

4.2. Results
To compare the performance of diagonalization and OMM with dense and sparse matrices, we have
performed test MD simulations for single-layer BN in different sizes. Figure 5 demonstrates that the
approaches in which the wave functions are not confined in space have much worse scaling with system
size than the methods with localized wave functions within a cut-off radius RC. The scaling of the former
approaches is close to cubic for large systems (exceeding 1000 atoms in our calculations). It should be
noted, however, that for small systems (within 1000 atoms) the scaling is sub-cubic. The reason is that for
such systems the solver contribution to the total time plotted in figure 5 is comparable to the
contributions of other parts of the code that have linear scaling with system size. Among the methods
using dense matrices, OMM with applied preconditioning or Cholesky factorization, which improve

3
(a)

(b)

2

w
al

l t
im

e
(h

ou
rs

)

1

0 0.5

no. of atoms, N (104)

1.0 1.5 2.0

1

10–1

10–2

10–3

tim
e

fr
ac

tio
n

103

no. of atoms, N

104

H update (DHSCF in SIESTA)
solver library (libOMM)
H, S and ρ format conversion

C†, restart writing

Figure 6. (a) Wall time (in hours) for three MD steps with 12 SCF iterations each for a single BN layer described using the Kim
functional versus number N of atoms (in 104 atoms). A linear fit is shown by the solid line. (b) Relative contributions of the OMM
solver subroutines to the total time versus N: (magenta circles) Hamiltonian update on a three-dimensional grid (DHSCF subroutine
in SIESTA [13]), (open purple diamonds) solver library libOMM, (red triangles down) format conversion of H, S and ρ and (open grey
triangles right) writing restart for localized wave functions (Cy). The calculations are performed on 192 CPU cores for a DZP basis,
RC = 4 Å, η =−5.5 eV, bWF = 6 and bBF = 13.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
11
convergence, shows a slightly better scaling compared with diagonalization or plain OMM. Also OMM
using the DBCSR library with no localization of wave functions (RC→∞) clearly has a better scaling than
OMM using ScaLAPACK. This is explained by the fact that the former, although having a dense
coefficient matrix, still exploits the sparsity of the Hamiltonian and overlap.

In the range of system sizes considered, OMM with kinetic energy preconditioning is the fastest
among the approaches without wave function localization, followed by OMM with the Cholesky
factorization, diagonalization and plain OMM (figure 5). The crossover between preconditioned dense
OMM and the linear-scaling methods takes place for the system with about 1200 atoms. For the plain
dense OMM and for diagonalization, the crossovers with linear-scaling methods occur earlier, at about
300 and 700 atoms, respectively.

Our timings for single-layer BN have confirmed that the Ordejón–Mauri and Kim approaches in which
the wave functions are localized within a cut-off radius RC show linear scaling with system size (figure 6a).
The computational times corresponding to different parts of the solver (matrix conversion, libOMM library,
initialization and update of the coefficientmatrix, reading andwriting of restart for localizedwave functions)
and other parts of the SIESTA code such as the subroutine for theHamiltonian update called after the density
matrix change at each SCF step (DHSCF), all do change linearly upon increasing the system size. As a result,
relative contributions of different parts of the code do not depend on the system size (figure 6b). This is
different from the cubic-scaling methods, in which the solver very early takes most of the computing time
upon increasing the system size, since the rest of the code has linear scaling. It should also be noted that,
for the system considered, the solver takes only 40–50% of the computational time, comparable, for
example, to the subroutine for the Hamiltonian update (DHSCF in SIESTA). Most of this time

1.4(a)

(b)

1.3

1.2

1.1

1.0

2.0

1.8

1.6

1.4

1.2

1.0

0 5 10 15 20 25

re
la

tiv
e

tim
e

re
la

tiv
e

tim
e

0 10 20
block size for basis set, bBF

block size for wavefunctions, bWF

30 40

Figure 7. Relative time for the solver library libOMM during four MD steps for a single BN layer with a 60 × 60 supercell (7200
atoms) using the Kim functional versus block size: (a) the block size for the basis set, bBF, is changed and the block size for the
wave functions is kept as bWF = 6 and (b) bWF is changed and bBF = 13. The relative time is given with respect to the result for
bWF = 6 and bBF = 13. In (a), the dashed line is shown to guide the eye for the data obtained for bBF divisible by the number of
basis functions per atom. The calculations are performed on 192 CPU cores for a DZP basis, RC = 4 Å, η =−5.5 eV.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
12
corresponds to the minimization of the energy functional given by equation (2.4) performed by the solver
library libOMM. The matrix format conversion takes only 0.5–1.0% of the total time. Writing of the restart
files for localized wave functions takes up to 0.3% of the time, and initialization and update of the
coefficient matrix take a negligible time within 0.01%.

The dependence of computational time on block size for the Kim functional with DBCSR are
presented in figure 7. In the case of the double-zeta polarized (DZP) basis set, each boron and
nitrogen atom hosts three localized wave functions and 13 basis functions. Accordingly the
computational time drops significantly at block-size values bBF for the basis functions divisible by 13
(figure 7a). For such block sizes, the computational time grows upon increasing the block size (note
that the growth continues beyond the block sizes shown in figure 7a) and has the minimum at
bBF = 13. The wave function block-size bWF dependence reaches the minimum at bWF = 6−10. At small
bWF, a fast growth of the computation time is observed. It can be attributed to an increase in the
number of non-empty blocks considered upon decreasing the block size. At large bWF, the
computational time also grows but at a slower rate. This dependence can be explained by increasing
the number of matrix elements that are stored and explicitly considered in matrix operations.
Therefore, we find optimal block sizes both for the wave functions and basis functions of the order of
10. Furthermore, chemical considerations can be exploited when dividing matrices into blocks. Still,
the optimal choice of block sizes for complex systems is not straightforward and requires further
investigation [26].

The CPU scaling of the libOMM solver library in calculations with sparse matrices using DBCSR is
shown in figure 8a. A similar CPU scaling is observed for systems of different size (figure 8a), with
different block and basis set sizes. The computational time decreases by a factor of about 2.5 upon

1.0(a)

(b)

0.8

co
st

 (
C

PU
 •

ho
ur

s)
re

la
tiv

e
co

st

relative time

0.6

0.4

0.2

0

2

1

1 2

2 4 6

wall time (s)

8 10 12

480

288
240

192576

576

432
384

384

288

288

192

192

144

144

96

96

240
480

7200 atoms, CG + ρ
10 368 atoms, CG + ρ
16 200 atoms, CG + ρ

7200 atoms, ρE
10 368 atoms, ρE
16 200 atoms, ρE

Figure 8. (a) Computational cost (in CPU·hours) versus wall time (in s), for one call to the solver library libOMM including one
conjugate gradient (CG) iteration and calculation of the density matrix ρ, for different supercells of BN using the Kim functional:
(black squares) 60 × 60, (red circles) 72 × 72 and (blue triangles) 90 × 90 (7200, 10 368 and 16 200 atoms, respectively). The
number of CPU cores used is indicated. (b) Relative computational cost versus relative time for the calls to the solver library
including one conjugate gradient iteration and calculation of the density matrix ρ (closed symbols) or calculation of the energy
density ρE (open symbols) for different supercells of BN. Relative values are given with respect to the results for 192 CPU
cores. The calculations are for a DZP basis, RC = 4 Å, η =−5.5 eV, bWF = 6 and bBF = 13.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
13
doubling the computational cost. Such a speed-up is observed for CG energy minimization and
subsequent calculation of ρ. It should be noted, however, that calls to libOMM for calculation of ρE
involving only two matrix multiplication operations show much better CPU scaling. This can be
appreciated from a twice steeper slope of computational cost versus computational time as compared
with the calls for energy minimization and calculation of the density matrix (figure 8b). It can,
therefore, be expected that the solver parallelization might be further improved via proper code
refactoring. The use of OpenMP, GPUs and the library for small matrix multiplication (LIBXSMM) [52]
are known to lead to a superior DBCSR performance [25,26], which also requires investigation.

4.3. Recommendations for orbital minimization method solver use
The new modular implementation of the OMM solver makes it easier to disentangle technical problems in
e.g. parallelization fromdrawbacks of theOMM itself. Here, we present the first implementation of the solver
using external libraries that represents the starting point for further performance improvement and method
polishing. Ways to improve the solver performance were mentioned in the previous subsection. We briefly
discuss now the drawbacks of the OMM and how they can be addressed.

One of the most important methodological problems of the OMM approach is in the minimization,
which can require a large number of CG iterations. As shown in figure 9, the first SCF iteration from
scratch is rather costly both for the linear and cubic-scaling OMM. For the linear-scaling methods, the
first SCF iteration can include thousands of CG steps, followed by tens of SCF iterations with hundreds
of CG steps each. After that each SCF step needs just a few CG iterations, becoming very fast. It should

103

102

10

no
. o

f
C

G
 it

er
at

io
ns

1

0 10 20
SCF step

30 40 50 60

sparse (Ordejon–Mauri)
sparse (Kim)
dense
dense (preconditioning)
dense (Cholesky)

Figure 9. Number of conjugate-gradient (CG) iterations versus number of self-consistent-field (SCF) steps for the calculation of the
ground state of a 12 × 12 BN supercell (288 atoms) from scratch using OMM with sparse matrices: (closed black squares) Ordejón–
Mauri and (open black squares) Kim functionals, and OMM with dense matrices using the Ordejón–Mauri functional: (open magenta
diamonds) plain, (closed magenta diamonds) preconditioned with kinetic-energy scale of τT = 10 Ry and (blue crosses) with the
Cholesky factorization. The calculations are performed on 96 CPU cores for a DZP basis, RC = 4 Å, η =−5.5 eV, bWF = 6 and bBF =
13. Linear mixing with a mixing parameter of 0.1 is used.

1

de
vi

at
io

n

10–2

10–4

10–6

10–8
0 5 10

cut-off radius RC (Å)

15 20

Kim energy (eV atom−1)
Kim force (eV Å−1)

O.-M. energy (eV atom−1)
O.-M. force (eV Å−1)

Figure 10. Deviations of energy (in eV atom−1, closed symbols) and force (in eV Å−1, open symbols) for the 60 × 60 supercell of
boron nitride (7200 atoms) with atoms displaced by 0.05 Å from their equilibrium positions from the results for the infinite cut-off
radius for the wave functions RC→∞ versus cut-off radius RC (in Å): (black squares) Ordejón–Mauri (O.-M.) and (red diamonds)
Kim methods. A DZP basis set is used. The chemical potential for the Kim method is η =−5.5 eV. The block size is bWF = 6 for the
localized wave functions and bBF = 13 for the basis functions.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
14
be noted that except for the very first SCF iterations, the linear-scaling and plain cubic-scalingOMMrequire
roughly the same numbers of CG steps. However, kinetic energy preconditioning or Cholesky factorization
significantly reduce the number of CG iterations required, with a considerable computational-time
reduction (see also figure 5). Therefore, it is always recommended to use either of both ways to deal with
kinetic energy ill-conditioning in dense OMM. The extension of these approaches to sparse matrices is
not straightforward and requires further investigation.

Also starting from scratch, one can get into regions in parameter spacewhere the energy functional does not
haveaminimumin theCGlineminimization.Toavoid this situation,werecommendusingasmall cut-off radius
RC,ini for the initial guess of wave functions both for linear- and cubic-scaling OMM. It is also recommended to
preconverge the ground state using a small linear-mixingparameter. Starting fromas lowas 0.01 canbe required
for very large systems. It can then be gradually increased to normal values of 0.1–0.2. After getting close to the
ground state, the use of other mixing schemes is possible. If the geometry of the system is far from the optimal
one, a reduced step for geometry optimization may also be needed when starting.

In figure 10, we address the accuracy of force and energy calculations with the Ordejón–Mauri and
Kim functionals for BN. The deviation from the results for the wave functions without localization

royalsocietypublishing.org/journal/rsos
R.

15
(RC→∞) is plotted for different cut-off radii RC. It is seen that for both of the functionals, the accuracy
improves upon increasing the cut-off radius in a similar manner. The deviations of the energy and forces
within 0.01 eV atom−1 and 0.02 eV Å−1 are achieved already for the cut-off radius of RC = 4 Å. These
results confirm that for insulating systems with a substantial band gap, it is sufficient to consider cut-
off radii of several Å [17,18].

The Ordejón–Mauri and Kim functionals were designed for insulating systems with a substantial gap.
For metals, a smearing function needs to be introduced. However, this is not easy since the information
on individual Kohn–Sham eigenstates is missing in OMM. An idea for combining OMM with another
method resolving eigenstates close to the Fermi level was proposed in [28] but still requires
exploration. Note that modelling of metallic systems requires a much more significant computational
effort than modelling of insulators [38,39,41].

As for magnetic systems, the OMM calculations can be performed taking into account spin
polarization. At each SCF step, the coefficient matrices for spin up and spin down are found
sequentially. All the observations for non-spin-polarized systems discussed above still hold in this case.
Soc.Open
Sci.10:230063
5. Conclusion
We have demonstrated how modularization simplifies the implementation of new solvers in electronic
structure codes by revising the OMM solver in the SIESTA code [11–15]. Matrix algebra operations
and parallelization are efficiently handled via external libraries. In particular, the implementation
benefits from two ESL [9,31] libraries: libOMM [9,27,28,32] and MS [9,29,30,32]. The libOMM library
is used to perform the minimization of the energy functional, while the MS library serves as an
interface to low-level algebraic routines facilitating switching between different matrix formats. These
libraries have been extended to make possible not only cubic-scaling but also linear-scaling OMM
calculations for insulating systems with a substantial band gap. Now the energy functional
minimization in libOMM can be carried out for sparse matrices with the DBCSR library [24–26], in
addition to dense matrices using ScaLAPACK [7]. To facilitate incorporating libOMM into electronic
structure codes based on atomic orbitals, MS has been also supplemented with subroutines for matrix
format conversion and matrix reading and writing. The solver library libOMM can be easily further
developed in the MS language for the implementation of new solvers.

The extended MS and libOMM libraries available through ESL [9,31] can be used for implementation
of linear- and cubic-scaling OMM approaches in other codes. The libraries can be used with different
types of local basis sets. The only condition for achieving the linear-scaling behaviour is that either
the basis functions go to zero beyond some cut-off radius or the elements of the input matrices are
filtered with respect to some tolerance to ensure that the matrices are sparse. Note that
implementation of custom conversion routines is needed if the matrix format is different from the MS
or SIESTA formats.

To test the performance of the new OMM and traditional diagonalization solvers available in SIESTA,
large-scale calculations have been performed for a BN layer. When sparse matrices and localized
wave functions are used, linear scaling with system size is achieved in practice, as expected. Matrix
conversion, reading and writing of restart files, as well as initialization and update of the localized
wave functions take a small fraction of the computational time. For the linear-scaling methods that
fraction does not depend on system size. The cubic-scaling OMM with kinetic energy preconditioning
performs best for small systems, even better than diagonalization. For plain OMM, diagonalization
and cubic-scaling OMM with kinetic energy preconditioning, the crossovers with linear-scaling
methods are observed at about 300, 700 and 1200 atoms, respectively. The best performance for the
linear-scaling OMM with sparse matrices is achieved when the wave functions and basis functions are
divided into blocks of sizes around 10, taking into account the chemical structure. The OMM solver is
MPI-parallelized. When using the DBCSR library [24–26] for algebraic operations with sparse
matrices, the computational time decreases by a factor of 2.5 upon doubling the computational cost. It
is expected that CPU scaling can be further improved via refactoring some operations in the libOMM
library, using OpenMP and GPUs, etc.

To perform OMM calculations from scratch, it is recommended to start using a small linear-mixing
parameter (down to 0.01), a small step for geometry optimization, and cut-off radii for the
wave functions of a few Å. For the cubic-scaling OMM, the convergence becomes much faster with
kinetic energy preconditioning or Cholesky factorization. The extension of these approaches to sparse
matrices demands further investigation.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
16
Data accessibility. The data and relevant code for this research work are stored in GitLab: https://gitlab.com/irina_

lebedeva/siesta/-/tree/orderN (SIESTA), https://gitlab.com/ElectronicStructureLibrary/omm-bundle (omm-
bundle) and have been archived within the Zenodo repository: https://doi.org/10.5281/zenodo.7781100 [53]
(SIESTA), https://doi.org/10.5281/zenodo.7781174 [54] (MatrixSwitch and libOMM). The raw data for tests have
been archived within the Mendeley Data repository: https://doi.org/10.17632/c8kz58bg5z.1 [55].

Supplementary material is available online [56].
Authors’ contributions. I.V.L.: investigation, software, validation, visualization, writing—original draft; A.G.:
conceptualization, software, writing—review and editing; E.A.: conceptualization, project administration, resources,
supervision, writing—review and editing; P.O.: conceptualization, methodology, project administration, writing—
review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. The authors acknowledge the European Union MaX Center of Excellence (EU-H2020 grant no. 824143), the
Partnership for Advanced Computing in Europe (PRACE) for awarding us access to computational resources in
Joliot-Curie at GENCI@CEA, France (EU-H2020 grant no. 2019215186), computational resources at Pirineus and the
technical support provided by Consorci de Serveis Universitaris de Catalunya (RES grant nos. FI-2022-1-0023 and
FI-2022-2-0035) as well as technical and human support provided by IZO-SGI SGIker of the University of the
Basque Country (UPV/EHU) and European funding (ERDF and ESF). ICN2 is supported by the Severo Ochoa
programme from Spanish MINECO (grant no. CEX2021-001214-S) and by Generalitat de Catalunya (CERCA
programme). ICMAB is supported by the Severo Ochoa programme from Spanish MICIU (grant no. CEX2019-
000917-S). P.O. acknowledges support by Spanish MICIU, AEI and EU FEDER (grant no. PGC2018-096955-B-C43).
A.G. acknowledges support by Spanish MICIU, AEI and EU FEDER (grant no. PGC2018-096955-B-C44). P.O. and
A.G. acknowledge support from Generalitat de Catalunya (grant no. 2021SGR01519). E.A. acknowledges funding
from Spanish MICINN through grant no. PID2019-107338RB- C61/AEI/10.13039/501100011033, as well as a María
de Maeztu award to Nanogune, grant no. CEX2020-001038-M funded by MCIN/AEI/10.13039/501100011033.
Acknowledgements. We also thank Dr David López–Durán for useful discussions and providing the introduction to the
MatrixSwitch library.
References

1. Martin RM. 2004 Electronic structure: basic

theory and practical methods. Cambridge, UK:
Cambridge University Press.

2. Mardirossian N, Head-Gordon M. 2017 Thirty
years of density functional theory in
computational chemistry: an overview and
extensive assessment of 200 density functionals.
Mol. Phys. 115, 2315–2372. (doi:10.1080/
00268976.2017.1333644)

3. Krylov A et al. 2018 Perspective: computational
chemistry software and its advancement as
illustrated through three grand challenge cases
for molecular science. J. Chem. Phys. 149,
180901. (doi:10.1063/1.5052551)

4. Molecular Sciences Software Institute (MolSSI).
2016. See https://molssi.org/.

5. BLAS technical forum. Since 1979. See http://
www.netlib.org/blas/blast-forum.

6. Anderson E et al. 1999 Lapack users’ guide.
Philadelphia, PA: SIAM. (doi:10.1137/1.
9780898719604)

7. ScaLAPACK. Since 1992. See http://www.netlib.
org/scalapack.

8. EMPI forum. Since 1991. See https://www.mpi-
forum.org.

9. Oliveira MJT et al. 2020 The CECAM electronic
structure library and the modular software
development paradigm. J. Chem. Phys. 153,
024117. (doi:10.1063/5.0012901)

10. European Centre of Excellence MAX (MAterials
design at the eXascale). 2019. See http://www.
max-centre.eu/.

11. SIESTA code. See https://gitlab.com/siesta-
project/siesta.
12. Ordejón P, Artacho E, Soler JM. 1996 Self-
consistent order-N density-functional
calculations for very large systems. Phys. Rev. B
53, R10441–R10444. (doi:10.1103/PhysRevB.53.
R10441)

13. Soler JM, Artacho E, Gale JD, Garcıa A, Junquera J,
Ordejón P, Sánchez-Portal D. 2002 The SIESTA
method for ab initio order-N materials simulation.
J. Phys.: Condens. Matter 14, 2745–2779. (doi:10.
1088/0953-8984/14/11/302)

14. Sánchez-Portal D, Ordejón P, Artacho E, Soler
JM. 1997 Density-functional method for very
large systems with LCAO basis sets.
Int. J. Quantum Chem. 65, 453–461. (doi:10.
1002/(SICI)1097-461X(1997)65:5<453::AID-
QUA9>3.0.CO;2-V)

15. García A et al. 2020 Siesta: recent developments
and applications. J. Chem. Phys. 152, 204108.
(doi:10.1063/5.0005077)

16. Ordejón P, Drabold DA, Grumbach MP,
Martin RM. 1993 Unconstrained minimization
approach for electronic computations that scales
linearly with system size. Phys. Rev. B 48,
14 646–14 649. (doi:10.1103/PhysRevB.48.
14646)

17. Ordejón P, Drabold DA, Martin RM, Grumbach MP.
1995 Linear system-size scaling methods for
electronic-structure calculations. Phys. Rev. B 51,
1456–1476. (doi:10.1103/PhysRevB.51.1456)

18. Mauri F, Galli G. 1994 Electronic-structure
calculations and molecular-dynamics
simulations with linear system-size scaling.
Phys. Rev. B 50, 4316–4326. (doi:10.1103/
PhysRevB.50.4316)
19. Galli G. 1996 Linear scaling methods for
electronic structure calculations and quantum
molecular dynamics simulations. Curr. Opin.
Solid State Mater. Sci. 1, 864–874. (doi:10.1016/
S1359-0286(96)80114-8)

20. Goedecker S. 1999 Linear scaling electronic
structure methods. Rev. Mod. Phys. 71,
1085–1123. (doi:10.1103/RevModPhys.71.1085)

21. Bowler DR, Miyazaki T. 2012 O(N) methods in
electronic structure calculations. Rep. Prog.
Phys. 75, 036503. (doi:10.1088/0034-4885/75/3/
036503)

22. Mauri F, Galli G, Car R. 1993 Orbital formulation
for electronic-structure calculations with linear
system-size scaling. Phys. Rev. B 47,
9973–9976. (doi:10.1103/PhysRevB.47.9973)

23. Kim J, Mauri F, Galli G. 1995 Total-energy
global optimizations using nonorthogonal
localized orbitals. Phys. Rev. B 52, 1640–1648.
(doi:10.1103/PhysRevB.52.1640)

24. Distributed block compressed sparse row (DBCSR)
library. See https://github.com/cp2k/dbcsr.

25. Borst̆nik U, VandeVondele J, Weber V, Hutter J.
2014 Sparse matrix multiplication: the
distributed block-compressed sparse row library.
Parallel Comput. 40, 47–58. (doi:10.1016/j.
parco.2014.03.012)

26. Kühne TD et al. 2020 CP2K: an electronic
structure and molecular dynamics software
package—quickstep: efficient and accurate
electronic structure calculations. J. Chem. Phys.
152, 194103. (doi:10.1063/5.0007045)

27. LibOMM library. See https://esl.cecam.org/
software/libomm/.

https://gitlab.com/irina_lebedeva/siesta/-/tree/orderN
https://gitlab.com/irina_lebedeva/siesta/-/tree/orderN
https://gitlab.com/ElectronicStructureLibrary/omm-bundle
https://doi.org/10.5281/zenodo.7781100
https://doi.org/10.5281/zenodo.7781174
https://doi.org/10.17632/c8kz58bg5z.1
http://dx.doi.org/10.1080/00268976.2017.1333644
http://dx.doi.org/10.1080/00268976.2017.1333644
http://dx.doi.org/10.1063/1.5052551
https://molssi.org/
http://www.netlib.org/blas/blast-forum
http://www.netlib.org/blas/blast-forum
http://dx.doi.org/10.1137/1.9780898719604
http://dx.doi.org/10.1137/1.9780898719604
http://www.netlib.org/scalapack
http://www.netlib.org/scalapack
https://www.mpi-forum.org
https://www.mpi-forum.org
http://dx.doi.org/10.1063/5.0012901
http://www.max-centre.eu/
http://www.max-centre.eu/
https://gitlab.com/siesta-project/siesta
https://gitlab.com/siesta-project/siesta
http://dx.doi.org/10.1103/PhysRevB.53.R10441
http://dx.doi.org/10.1103/PhysRevB.53.R10441
https://doi.org/10.1088/0953-8984/14/11/302
https://doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)65:5%3C453::AID-QUA9%3E3.0.CO;2-V
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)65:5%3C453::AID-QUA9%3E3.0.CO;2-V
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)65:5%3C453::AID-QUA9%3E3.0.CO;2-V
http://dx.doi.org/10.1063/5.0005077
http://dx.doi.org/10.1103/PhysRevB.48.14646
http://dx.doi.org/10.1103/PhysRevB.48.14646
https://doi.org/10.1103/PhysRevB.51.1456
http://dx.doi.org/10.1103/PhysRevB.50.4316
http://dx.doi.org/10.1103/PhysRevB.50.4316
http://dx.doi.org/10.1016/S1359-0286(96)80114-8
http://dx.doi.org/10.1016/S1359-0286(96)80114-8
http://dx.doi.org/10.1103/RevModPhys.71.1085
http://dx.doi.org/10.1088/0034-4885/75/3/036503
http://dx.doi.org/10.1088/0034-4885/75/3/036503
http://dx.doi.org/10.1103/PhysRevB.47.9973
http://dx.doi.org/10.1103/PhysRevB.52.1640
https://github.com/cp2k/dbcsr
http://dx.doi.org/10.1016/j.parco.2014.03.012
http://dx.doi.org/10.1016/j.parco.2014.03.012
http://dx.doi.org/10.1063/5.0007045
https://esl.cecam.org/software/libomm/
https://esl.cecam.org/software/libomm/

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230063
17
28. Corsetti F. 2014 The orbital minimization

method for electronic structure calculations with
finite-range atomic basis sets. Comput. Phys.
Commun. 185, 873–883. (doi:10.1016/j.cpc.
2013.12.008)

29. MatrixSwitch (MS) library. See https://esl.cecam.
org/software/matrixswitch/.

30. MatrixSwitch using DBCSR. See https://e-cam.
readthedocs.io/en/latest/Electronic-Structure-
Modules/modules/MatrixSwitchDBCSR/readme.
html.

31. Electronic Structure Library (ESL). See http://esl.
cecam.org.

32. omm-bundle. See https://gitlab.com/
ElectronicStructureLibrary/omm-bundle.

33. Tsuchida E. 2007 Augmented orbital
minimization method for linear scaling
electronic structure calculations. J. Phys. Soc.
Jpn. 76, 034708. (doi:10.1143/JPSJ.76.034708)

34. Bowler DR, Miyazaki T. 2010 Calculations for
millions of atoms with density functional
theory: linear scaling shows its potential.
J. Phys.: Condens. Matter 22, 074207. (doi:10.
1088/0953-8984/22/7/074207)

35. Hohenberg P, Kohn W. 1964 Inhomogeneous
electron gas. Phys. Rev. 136, B864–B871.
(doi:10.1103/PhysRev.136.B864)

36. Kohn W, Sham LJ. 1965 Self-consistent
equations including exchange and correlation
effects. Phys. Rev. 140, A1133–A1138. (doi:10.
1103/PhysRev.140.A1133)

37. Artacho E, del Bosch LM. 1991 Nonorthogonal
basis sets in quantum mechanics:
representations and second quantization. Phys.
Rev. A 43, 5770–5777. (doi:10.1103/PhysRevA.
43.5770)

38. Goedecker S, Colombo L. 1994 Efficient linear
scaling algorithm for tight-binding molecular
dynamics. Phys. Rev. Lett. 73, 122–125. (doi:10.
1103/PhysRevLett.73.122)

39. Goedecker S, Teter M. 1995 Tight-binding
electronic-structure calculations and tight-
binding molecular dynamics with localized
orbitals. Phys. Rev. B 51, 9455–9464. (doi:10.
1103/PhysRevB.51.9455)

40. Corkill JL, Ho K-M. 1996 Electronic occupation
functions for density-matrix tight-binding
methods. Phys. Rev. B 54, 5340–5345. (doi:10.
1103/PhysRevB.54.5340)

41. Mohr S, Eixarch M, Amsler M, Mantsinen MJ,
Genovese L. 2018 Linear scaling DFT calculations
for large tungsten systems using an optimized
local basis. Nucl. Mater. Energy 15, 64–70.
(doi:10.1016/j.nme.2018.01.002)

42. Payne MC, Teter MP, Allan DC, Arias TA,
Joannopoulos JD. 1992 Iterative minimization
techniques for ab initio total-energy
calculations: molecular dynamics and conjugate
gradients. Rev. Mod. Phys. 64, 1045–1097.
(doi:10.1103/RevModPhys.64.1045)

43. Lin L, Yang C, Meza J, Lu J, Ying L, Weinan E.
2011 SelInv—an algorithm for selected
inversion of a sparse symmetric matrix. ACM
Trans. Math. Softw. 37, 40. (doi:10.1145/
1916461.1916464)

44. Bowler DR, Gillan MJ. 1998 Length-scale ill
conditioning in linear-scaling DFT. Comput. Phys.
Commun. 112, 103–111. (doi:10.1016/S0010-
4655(98)00061-7)

45. Gan CK, Haynes PD, Payne MC. 2001
Preconditioned conjugate gradient method for
the sparse generalized eigenvalue problem in
electronic structure calculations. Comput. Phys.
Commun. 134, 33–40. (doi:10.1016/S0010-
4655(00)00188-0)

46. Mostofi AA, Haynes PD, Skylaris C-K, Payne MC.
2003 Preconditioned iterative minimization for
linear-scaling electronic structure calculations.
J. Chem. Phys. 119, 8842–8848. (doi:10.1063/1.
1613633)

47. Perdew JP, Zunger A. 1981 Self-interaction
correction to density-functional approximations
for many-electron systems. Phys. Rev. B 23,
5048–5079. (doi:10.1103/PhysRevB.23.5048)
48. Troullier N, Martins JL. 1991 Efficient
pseudopotentials for plane-wave calculations.
Phys. Rev. B 43, 1993–2006. (doi:10.1103/
PhysRevB.43.1993)

49. Junquera J, Paz Ó, Sánchez-Portal D, Artacho E.
2001 Numerical atomic orbitals for linear-
scaling calculations. Phys. Rev. B 64, 235111.
(doi:10.1103/PhysRevB.64.235111)

50. Allen MP, Tildesley DJ. 1987 Computer
simulation of liquids. Oxford, UK: Oxford
University Press.

51. Kresse G, Furthmüller J. 1996 Efficiency of ab-
initio total energy calculations for metals and
semiconductors using a plane-wave basis set.
Comput. Mater. Sci. 6, 15–50. (doi:10.1016/
0927-0256(96)00008-0)

52. Library for specialized dense and sparse matrix
operations, and deep learning primitives
(LIBXSMM). See https://github.com/hfp/
libxsmm, https://libxsmm.readthedocs.io/en/
latest/.

53. Lebedeva IV, García A, Artacho E, Ordejón P.
2023 Modular implementation of linear and
cubic-scaling orbital minimization methods in
SIESTA. Zenodo (doi:10.5281/zenodo.7781100).

54. Lebedeva IV, García A, Artacho E, Ordejón P.
2023 Extension of libOMM and MatrixSwitch
libraries for modular implementation of linear
and cubic-scaling orbital minimization methods
in electronic structure codes using atomic
orbitals. Zenodo. (doi:10.5281/zenodo.7781174)

55. Lebedeva IV. 2022 Performance of linear and
cubic-scaling solvers based on modular
implementation of the orbital minimization
method in the SIESTA code. Mendeley Data.
(doi:10.17632/c8kz58bg5z.1)

56. Lebedeva IV, García A, Artacho E, Ordejón P.
2023 Modular implementation of the linear
and cubic-scaling orbital minimization methods
in electronic structure codes using atomic
orbitals. Figshare. (doi:10.6084/m9.figshare.c.
6601948)

http://dx.doi.org/10.1016/j.cpc.2013.12.008
http://dx.doi.org/10.1016/j.cpc.2013.12.008
https://esl.cecam.org/software/matrixswitch/
https://esl.cecam.org/software/matrixswitch/
https://e-cam.readthedocs.io/en/latest/Electronic-Structure-Modules/modules/MatrixSwitchDBCSR/readme.html
https://e-cam.readthedocs.io/en/latest/Electronic-Structure-Modules/modules/MatrixSwitchDBCSR/readme.html
https://e-cam.readthedocs.io/en/latest/Electronic-Structure-Modules/modules/MatrixSwitchDBCSR/readme.html
https://e-cam.readthedocs.io/en/latest/Electronic-Structure-Modules/modules/MatrixSwitchDBCSR/readme.html
http://esl.cecam.org
http://esl.cecam.org
https://gitlab.com/ElectronicStructureLibrary/omm-bundle
https://gitlab.com/ElectronicStructureLibrary/omm-bundle
http://dx.doi.org/10.1143/JPSJ.76.034708
http://dx.doi.org/10.1088/0953-8984/22/7/074207
http://dx.doi.org/10.1088/0953-8984/22/7/074207
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevA.43.5770
http://dx.doi.org/10.1103/PhysRevA.43.5770
http://dx.doi.org/10.1103/PhysRevLett.73.122
http://dx.doi.org/10.1103/PhysRevLett.73.122
http://dx.doi.org/10.1103/PhysRevB.51.9455
http://dx.doi.org/10.1103/PhysRevB.51.9455
http://dx.doi.org/10.1103/PhysRevB.54.5340
http://dx.doi.org/10.1103/PhysRevB.54.5340
http://dx.doi.org/10.1016/j.nme.2018.01.002
https://doi.org/10.1103/RevModPhys.64.1045
http://dx.doi.org/10.1145/1916461.1916464
http://dx.doi.org/10.1145/1916461.1916464
http://dx.doi.org/10.1016/S0010-4655(98)00061-7
http://dx.doi.org/10.1016/S0010-4655(98)00061-7
http://dx.doi.org/10.1016/S0010-4655(00)00188-0
http://dx.doi.org/10.1016/S0010-4655(00)00188-0
http://dx.doi.org/10.1063/1.1613633
http://dx.doi.org/10.1063/1.1613633
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevB.64.235111
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
https://github.com/hfp/libxsmm
https://github.com/hfp/libxsmm
https://libxsmm.readthedocs.io/en/latest/
https://libxsmm.readthedocs.io/en/latest/
http://dx.doi.org/10.5281/zenodo.7781100
http://dx.doi.org/10.5281/zenodo.7781174
http://dx.doi.org/10.17632/c8kz58bg5z.1
http://dx.doi.org/10.6084/m9.figshare.c.6601948
http://dx.doi.org/10.6084/m9.figshare.c.6601948

	Modular implementation of the linear- and cubic-scaling orbital minimization methods in electronic structure codes using atomic orbitals
	Introduction
	Overview of orbital minimization method approaches
	Modular solver architecture
	Solver input and output
	Solver library
	{\bf C}^\dagger matrix format conversion
	{\bf C}^\dagger matrix initialization and update
	{\bf C}^\dagger matrix input and output
	SIESTA input parameters

	Tests
	Computational details
	Results
	Recommendations for orbital minimization method solver use

	Conclusion
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	Acknowledgements
	References

