June 2, 1964 wind heading west sky portinly cloudy

0725		
0740	2	BegAN watch
$074 t^{-}$	1	$S W$
074	W.T. Shearmates	

Sooty ter N_{w}
Peqryroma Sp? dark chitop birt handing straight
Soot/ Kerw slack and knst sauth, Alutys
gliding, thshg fising

Ptereromn St. diarkontopostron
Sooty tarn - fCok fading
w.t.s.
scen scattad
w.t.s.
bird sp?
dark ghasa W.T.S.
W.T. Tropic bind
s_{p} ?
W.T.S.

Niwalls shipruatén
Buluers petrel
Pthrdroma Sp? pasa.CUTS
Numers petrel.
PTirdroma $S p$?
PThrdrama sp?
Niwells shesanatar
Bulwars petrel. - sitiang on water
u
W.T. "Apribbid ifgire/water
fume 2 wiwd tron E

1025	2	E
1053	1	N
1104	1	E
113	1	E
1130	A	
1132	1	N
1145	1	N
125	1	N
1205	1	$S W$
1215	1	S
1216	3	E
1227	1	S
1235	1	S
1235	1	S
1242	1	S
1250	1	$S E$
1250	1	S
1305	1	N
1366	1	S
1313	1	S
1315	2	S
1320	1	S
1325	1	S
1329	2	S
1330	1	S
1332	2	E
1335	1	S

Lesost trignte Indimale 1 immo.
WT.S whe prom
Frigate
Frigata
Bulvend Prtrel axpomiater
Q tribroma sp?
Fairytern
WT Tropicbirb
Bulwars patral
Bulwer's Petrel
Buhwers Petiel
Bulwnis Petral
Buluer:
Wadge-Til (ligit phose)
Wedg-T il (light phoae)
Buhveri = Petrel
Bulwers Petred
Wadge-tail (Light phase!
Pferdroma
Bulwer's Petrel
Peinl Shatrwitar
Bulvera Petrad
Sootytarn
Sooty tar N
Sootyturn
WK.
gane 2

W.T.S.

Sorexy tern
W.T. S.

Bulwer's getral.
Burt sp?
Bird sp?
Woulge-Taillbight phasel
Wedge-Tail dah plax
Buhwer's Psthed
Wedjetoul Shearwater.
\Rightarrow Large Feedeing Flock Sooty terms Wedge tails
1800 Closed observitions -

June 3

stait olservation
laze sleametr-p. While belar Whermadoc petact
Buhrer. Pethel
Kurunder Petal?
Welder tail Sh. - (hight phax)
Bulwe. - Pothet

Bind zo.
Heacllis Shemmity
Wedge-Tail (light plosed Fong Soots Tem. Seediy floch
Puffinus so. Bind g . Puffinus sp.
Kermedec Pietel? Puffiniss as. Hatrunit Pterodroma sp.
Bulver's Pohe'
Buens's setrel
Pugfinis sid?
Reumeder Pitd?
Reumeder Pild
Bubour 备hel
Suffinis ap.

Pulfums sp.
wedqeíail Sheonater?
1隹medec Retad?
Cundubor's Sheacurats -
the wath
wated
Audutires Shemmater
Weige-tait Shearnats flew ent
Buluvers, jpetial
Buluers yelof
あ? whit whotern douk wito
Buluers petred abouting
Bulwars patral aclubur sise
Ptrdaowa sp?
Roikn Bisnl sharmuter- +yp
Bowin eitmal shanirato irea oove
Petrel Shearwater Wedgetait. Shearwater
A udabon's Shearuaty (?) Buluerio Petrels
roarcourts
NW
Pifferin ap. N Tavi Teen 2 Tiopni Bid

Jume 3

1545	1	W
1555	1	$S E$
1547	20	E
1547	2^{+}	E
$16: 15$	1	Shot
Flying hight,	likea	
$16: 35$	1	E
1650	2	E
$16: 55$	1	E
1700	3^{+}	perdm
1308	1	SE
		Finis

Newell's Scequiter
Newells' Skamales
Sooty Tern
Prufinion Iociled
Skwe homasticle fraeger
Ataredveats Petral
$\sigma_{\text {cinj }}$ Tems
Red'talled'inupac hid Bomin Arad Rethel $\rightarrow 178$

Juns 4 winds E
1

June 4

1717	1	$N E$	Moaked Boaly
1723	5	NE	Wedgitail
1723	2	N	Bomi Dolond Pithet
1725	2	$N W$	Boni deland Petrel
	1	25	Cose

\square
June 29
wind trom NW
sky 予clous.d
Th Cools Petrel was a medun sizid Petel widn a durl wap, whit fordocal, whit undeypars, grey bous; aproy wigg, initl a spectacilas. black IV a invere Meaciozs to roings and lach. The blar Wrisas very conspeciving on tos pey bokgiond.' Both hials cano in at cere rangs, which afforaled gord loak.
The Whit-bellid LCom Pettel wos "potted hoverny, "wallin" on th wrats 20 geet from, port bow. At wris utudy Sont with whit band acrozo the ump, and whit belly. Thoay and rupps beat whe dais. The ibach and wimpo were lights than tho head 7 bou bad Tail shape unotsewed.

$$
1^{2} / n^{2}
$$

$\left.\begin{array}{l}\text { Fanry tarus } \\ \text { Phoullorfumes yp? }\end{array}\right\} \begin{aligned} & \text { edge of } \\ & \text { storm }\end{aligned}$ Whit-belhid Stom Retro Gook's Retel Buffinis ss spidetrel (?)
Fail, Tem,
Covers patal pacger (?) fungin high, lamatis
hang blach white Sheanizls,
Brivin Noddy altemptos torta a
emale l-hach wht theamvils
surty Tem hit high Soot for Ton
ked-jooted babicy
Kermedu btrel
Cou h': Sctid?
Nodom
Sott, Tem

29 fure 1964

June 30
wind from Northwist, holen cloud

startwatch
Tropic bird sp?
Bindsp? poss. Socty tern
Sooty tarn
sooty tern
Fairy tern?
sootytarm
Soit y tarn
Souty tern
Sooly Tam
Cook's petrel E
R.Tropicbird on water
sootyturns
Coik! pairel
Sooty Tern
soots Tom
Sooty Tem
sootytirn
sooty tarn towl.
Sooty Pem
Söry Tion
Sooty Tem
Sooty Tem
Sook Tem
dach Bed-footed Borby
Sovk ten
Soot Fen
Sooth leen

30 June 1964

1120	5	3	Sooty Tor
1122	N	1	Sooty Tom
1130	N	1	Sooty Term
1140	SE	1	Sooty Tom
1140	5	1	Sooty Ten
$11: 58$	W	5	Sooty Terns
$12: 42$	SE	2	Sooty Terns
$13: 15$		1	W.T. Tropic
$13: 20$	SE	2	Sooty Terms.

DATE \qquad 2 July 64
Time at sunrise $=0641^{\prime}$ Position at sunrise $=169^{\circ} 30^{\circ} \mathrm{W} 140^{\circ} 30^{\prime} \mathrm{s}$
Time at sunset $=1754$ Position at sunset $=$ Audwu 1 s .
Miles traveled from 0000 hours to sunrise $=28$
Miles traveled from sunrise to sunset =
53
Miles traveled from sunset to 2400 hours =

4.
5.

270
6.

Time at sunrise $=06 y \%$ Position at sunrise $=$ Mayo Pays
Time at sunset $\quad=180>$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=$
Miles traveled from sunrise to sunset =

$=$	7
$=$	0

Miles traveled from sunset to 2400 hours $=$
TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE

1. Moored Mayo Payo
2.
3.
4.
5.
6.

DATE

Time at sunrise $=0637$ Position at sunrise $=168^{\circ} 06{ }^{\circ} \mathrm{W} 13^{\circ} 37$,
Time at sunset $=1759$ Position at sunset $=16831 \mathrm{w} 1347.55$
Miles traveled from 0000 hours to sunrise $=85$
Miles traveled from sunrise to sunset $=28$
Miles traveled from sunset to 2400 hours $=44$

4.
5.
6.

DATE \qquad
Time at sunrise $=06$ yup Position at sunrise $=P$ ago Pays
Time at sunset $=1807$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=$
Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours $=$
TIME OF FIX
I.
Mooned Pays Puzo
2.
3.
4.
5.
6.

DATE

Time at sunrise $=064$ Position at sunrise $=$ Mayo Paqu
Time at sunset $=1807$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=$
Miles traveled from sunrise to sunset =
$=$
$=$ LONGITUDE LATITUDE
1.
2.

Miles traveled from sunset to 2400 hours =
Moored Page Pa 40
3.
4.
5.
6.

DATE

Time at sunrise $=0644$ Position at sunrise $=P$ a yo $P a y 0$
Time at sunset $=1809$ Position at sunset $=170^{\circ} 30^{\circ} \mathrm{K} 12^{\circ} 44^{\circ} \mathrm{s}$
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=94$
Miles traveled from sunset to 2400 hours $=84$

3.
4.
5.
6. DATE \qquad
Time at sunrise $=0630$ Position at sunrise $=170^{\circ} 30^{\circ} \mathrm{L} 10^{\circ} 02^{\prime} 5$
Time at sunset $=1819$ Position at sunset $=171^{\circ} 00$ \& $07.47^{\prime} 5$
Miles traveled from 0000 hours to sunrise $=40$
Miles traveled from sunrise to sunset $=142$
Miles traveled from sunset to 2400 hours $=62$

4.
5.
6.
\qquad
Time at sunrise $=0637$ Position at sunrise $=$
$171^{\circ} 5^{\circ} \mathrm{w}$
$05^{\circ} 13$'s
Time at sunset $=1831$ Position at sunset $=\mathrm{Hu} / \mathrm{I} / \mathrm{s}$.
Miles traveled from 0000 hours to sunrise $=9 /$
Miles traveled from sunrise to sunset $=47$
Miles traveled from sunset to 2400 hours $=0$

| TIME OF FIX | TYPE OF FIX | LONGITUDE | LATITUDE |
| :--- | :--- | :--- | :--- | :--- |
| 1. 0800 | Celosyias | $172^{\circ} 00.5^{\circ} \mathrm{w}$ | $65^{\circ} 11.45$ |
| 2. 1200 | crsuar | $172^{\circ} 12.66^{\circ}$ | $64^{\circ} 24.1^{\circ}$ is |
| 3. 2000 | | $172^{\circ} 13.8^{\circ} \mathrm{W}$ | $04^{\circ} 28.7^{\circ} 5$ |

4.
5.
6.

DATE \qquad
Time at sunrise $=6637$ Position at sunrise $=1 y / 1 / 1 \mathrm{~s}$.
Time at sunset $=183$, Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=$
Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours $=$
0

TIME OF FIX	TYPE OF FIX	LONGITUDE	LATITUDE
1.0800	visual	$172^{\circ} 10.9 \mathrm{~m}$	$04^{\circ} 28.7 \mathrm{~s}$

2. 1200 Rata. 2 lis. $172^{\circ} 11.5^{2} \quad 04^{\circ} 28.5^{\circ} 5$
3. $2000 \quad 172^{\circ} 13.8^{\prime} \mathrm{w} 04^{\circ} 28.7{ }^{\circ}$
4.
5.
6.

\qquad
Time at sunrise $=\alpha 37$ Position at sunrise $=\mathrm{M} v / \mathrm{l}$.
Time at sunset $=1832$ Position at sunset $=$ Phoenix $/ \mathrm{s}$.
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=99$
Miles traveled from sunset to 2400 hours $=0$

4.
5.
6.

DATE

Time at sunrise $=0635^{\circ}$ Position at sunrise $=104027 \mathrm{ix} / \mathrm{s}$.
Time at sunset $=1832$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=0$
Miles traveled from sunset to 2400 hours $=0$

| TIME OF FIX | TYPE OF FIX | LONGITUDE | LATITUDE |
| :--- | :--- | :--- | :--- | :--- |
| 1. 0800 | VISual | | |
| 2. 1200 | $170^{\circ} 43.4 \%$ | $03^{\circ} 43.35$ | |

4.
5.
6.

DATE \qquad
Time at sunrise $=063$, Position at sunrise $=$ $=$ Phoenix l

Time at sunset $=1831$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise = $=0$

Miles traveled from sunrise to sunset $=0$
Miles traveled from sunset to 2400 hours $=0$

4.
5.
6.

DATE \qquad
Time at sunrise $=063$ Position at sunrise $=$ Phoenix $/ \mathrm{s}$.
Time at sunset $=1831$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=0$
Miles traveled from sunset to 2400 hours $=$
$\frac{\text { TIME OF FIX TYPE OF FIX LONGITUDE }}{\text { 1. } 0800 \text { RadITUUE }}$
2.
3.
4.
5.
6.

DATE \qquad
Time at sunrise $=063$ Position at sunrise $=$ Phoenix $/ \mathrm{s}$.
Time at sunset $=1832$ Position at sunset $=$ Fiuderbury $/ \mathrm{s}$.
Miles traveled from 0000 hours to sunrise $=$
$=0$

Miles traveled from sunrise to sunset $=40$
Miles traveled from sunset to 2400 hours $=0$

5.
6.

DATE

Time at sunrise $=063$, Position at sunrise $=$ Enderbury $/ \mathrm{s}$.
Time at sunset $=1832$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours $=0$
TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE

1. 0800
2. 1200
3. 2000
4.

Radar visual 171006.3 i
0308.1 s
$171^{\circ} 06.24$
$03^{\circ} 07 \mathrm{~s}$
4. 171007 h
$03^{\circ} \mathrm{og} \mathrm{s}$
5.
6.

DATE

Time at sunrise $=063$, Position at sunrise $=\operatorname{ch}$, erbury s
Time at sunset $=1832$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=0$
Miles traveled from sunset to 2400 hours $=0$

4.
5.
6.

DATE

Time at sunrise $=063$, Position at sunrise $=$ inderbuly $/ \mathrm{s}$.
Time at sunset $=1834$ Position at sunset $=173^{\circ} 30^{\circ} \mathrm{w} 03^{\circ} 22^{\prime} \mathrm{s}$
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=135$
Miles traveled from sunset to 2400 hours $=40$

4.
5.
6.
\qquad
Time at sunrise $=0632$ Position at sunrise $=M C / r+a n / s$
Time at sunset $=184$, Position at sunset $=M c \mathrm{kean} / \mathrm{s}$.
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=0$
Miles traveled from sunset to 2400 hours $=0$

4.
5.
6.

DATE

Time at sunrise $=0633$ Position at sunrise $=m \times k e a n$ /s.
Time at sunset $=184$, Position at sunset $=\quad$ "
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours =
0

4.
5.
6.

The at sunrise 0633 Position at sunrise Me/Kear Is.
The at sunset 1841 \qquad Position at sunset $\left.175^{\circ} 3\right)^{\circ} \mathrm{K} 01^{\circ} 41$ s Miles traveled from 0000 hours to sunrise 0 miles traveled from sunwise to sunset 145^{-} Miles traveled from sunset to 2400 hours
\qquad 56

5.
6.
7.

DARE 21 July 64
Time at sunrise. \qquad 0640 Position at sunrise Baker is. The at sunset \qquad 1855 Position at sunset \qquad Miles traveled aron 0000 hours to sunni se \qquad SN^{-} M4.2es traveled from sunset to 2400 hours \qquad 0
Miles traveled from sunrise to sunset \qquad TIME OF FIX TYPE OF FIX LONGITUDE IATSTUDE
1.
2.

0800
1200
Radar + visual
$176^{\circ} 30$ i
$0^{\circ} 125^{\circ}$
3.2000

$$
176^{\circ} 29.72
$$

$0^{\circ} 10.5^{\circ} 2$
4%
$176^{\circ} 29$ i $0^{\circ} 12.72$
5.
6.
7.
\qquad 22 July 64
Time at sunrise 0745 Position at sunrise Baker /s. The at sunset 2000 Position at sunset Howard \%. M1 es traveled from 0000 hours to sunrise 0 \qquad Males traveled from sunmse to sunset $\quad 37$ Miles traveled from sunset to 2400 hours \qquad 0 \qquad TIME OF PIX TYPE OF FIX
r LONGITUDE
E LATITUDE

1. 0800

Radar a Visual
$176^{\circ} 30^{\circ}$ is
$00^{\circ} 19 \mathrm{~N}$
2. 1200
$176^{\circ} 40^{\circ} \mathrm{W}$
$00^{\circ} 49.2 \mathrm{~N}$
3.
4.
5.
6.
7.

DATE 23 July 64
Time at sunrise. \qquad 0749 Position at sunrise Horlud/s. The at sunset 2004
\qquad Position at sunset \qquad Miles traveled aEron 0000 hours to sunrise \qquad 0 Mines traveled from sunset to 2400 hours \qquad MITes traveled from surmise to sunset \qquad 0 TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE
2.
2. At anchor Howland Is.
3.
4.
5.
6.
7. Position at sunrise Norland ls. Time at sunset $199^{\circ 9}$ Position at sunset \qquad Miles traveled from 0000 hours to sunrise 0 Miles traveled from sunrise to sunset \qquad 0 \qquad
Males traveled from sumeet to 2400 horne \qquad 0 \qquad TIME OF FIX TYPE OF FIX LONGITUDE \qquad 1. At anchor Howland Is.
2.
3.

4
5.
6.
7.

DATE 25^{-}Joy 64
Time at sunrise 0749 Position at sunrise Horlard/s. Time at sunset $195^{\circ} \quad$ Position at sunset $175^{\circ} 17^{\prime} w 02^{\circ} 32$
\qquad $-$ NiLes traveled from sunset to 2400 hours 58
Miles traveled from sunrise to sunset 146

TINE OF FIX
2.
2.
3.
4.
5.
6.
7.
mime at sunwise $0>26$ Position at sunrise $173^{\circ} 24^{\circ n} 04^{\circ} 32^{\prime}$ Time at sunset 1945° Position at sunset $171^{\circ} 33^{\circ} \mathrm{W} 06^{\circ} 5^{\circ} \mathrm{T}$ MILes traveled from 0000 hours to sunrise 36
MiLes traveled from sumblae to sunset 177
Miles traveled from sunset to 2400 hours 62
TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE

4.

50
6.
7.

DATE 28 JU， $6(4$
Tlime at sunxise 0649 Position at sunztae $166^{\circ} 18^{\prime} 412^{\circ} 25^{\prime \prime} \mathrm{N}$ Thme at sinset \qquad 1930 Postt102 胃t sunsot $164^{\circ} 36^{\circ}$～ $14^{\circ} 28^{\circ}$ MHIes trateled Irom 0000 houxt to sunnise 98 N11．es traveled from summise to suneet 171 Miles traveled from sumset to 2400 hours 65^{5} TIME OF FIX TYPE OF FIX \qquad LONGXTUDE LATITUDE

4.

50
6.

78
DATE 29 July 64
Time at sunrise \qquad Position at suncise $163^{\circ} / 2^{\prime} \mathrm{w} 16^{\circ} \mathrm{N}$ Time at sunset \qquad 1920 Position at sunset $161^{\circ} 21^{\circ} \mathrm{W} 18 \% 6^{\prime} \mathrm{V}$ Mises traveled acrom 0000 hourg to sumrsise \qquad 91 ．
M上丨es traveled from sunset to 2400 hours \qquad fygu 63

Mま3es traveled from surrtise to sunset \qquad 175

5.
6.
7.

Date 30 JO， 64
TIme at sunwise \qquad 0610 Position at sunwise $15^{\circ} 9^{\circ} 15^{\circ}$ 世 $20^{\circ} 07^{\prime}$ Time at sunset \qquad Position at sunset \qquad
Miles traveled Prom 0000 hours to sunrise \qquad 91

活11es traveled from sundae to sunset \qquad
Miles traveled from sunset to 2400 hours \qquad
TIME OF FIT X TYPE OF FY Y TONGTMUDE

LATITUDE
I． 0800 celestial a lo van

$$
159^{\circ} 04.8^{\circ}
$$

2． 1200
celestail＋radar $15^{\circ} 27.3 \mathrm{H}$ $20^{\circ} 36^{\circ} \sim$
3.
4.

5
6.

Po

DATE \qquad
mime at sunrise \qquad Position at sunrise \qquad
Time at sunset \qquad Position at sunset \qquad
Miles traveled afrom 0000 hours to sunrise \qquad $-$

Miles traveled from sunset to 2400 hours \qquad
Miles traveled from sunrise to sunset \qquad TIME OF REX
2.
2.
3.
4.
5.
6.
7.
whibe wene pelial

$$
\text { m } 27 \times 28 d u
$$

$$
\begin{aligned}
& 28-165-39 \quad 13-18.8 \\
& 27-16849.2 \quad 0940
\end{aligned}
$$

C.22... Baró brown in Thos, Andưor type on bottom, Night hriwk lika sitiks ontop of mingz
white cecllor. biack Ey= pactich *ague 'bU"'on back uppar part dark brown underaifos Audubow like.

$$
\begin{aligned}
& \text { July I } \\
& \text { SE }
\end{aligned}
$$

0630	Startwatch		
0635	W.	1	W.T.

RI. Tropic
quant
shart $u x+c h$
Sooxytarn

WT. Trupichat
wT Tropicbind
Promilariforuas
Whitz-weckad patral
W.T. Trepic bind.
W.T. Tropic brd

Sooty term
w. T. Tropui bird
kiT. Tropic
RT Tropic
WT: 'Tropic
W.T. Tropic
W.T. Tropic
W. T. Tripic

Cock'spatral?
Bonin Alland Peted?
W.T. Tropiebid
W.T. Tropie bard
W.T. Twopic bnd

Ahearwater (siboey, it al)
sfarnata (siblay et al)

$$
\begin{array}{c|c|c|cc}
1605 & 1 & 5 & \text { W. T. Tiupic } \\
1606 & 3 & 5 & \text { S.og Ten } \\
& \text { clore at } & 1720
\end{array}
$$

July 2
winds from south sky H/8 cloudly

startwatzh
R.F. Booby

RFFBooby
W.T. Tropic Bird
W.t. Tropichind

Common Noddy
Wh-t. Tropichid
Red -f Booly
Wh-t. Tropickin'
Whti Trupechd
Wh.t. Tropachid
wht. Topeibid Jualy
R-forko Boory
R. Footed Booly
wt. t. Tropuitnd cucluy
Wt. . 1 . Tropabirid
Bram Booky
$\left.\begin{array}{l}\text { Oh. Frigaticinid } \\ \text { Wh-t. Trginhirs } \\ \text { Red-t Dookn }\end{array}\right\}$ Kcting flak
Red - pooled
Wh-t. Tropurbil
Fain Thn
Wh-t. Tropirabid
Common N ofoly
Pitral
quit

1022 thw wivilda Eidenthed meetrm sizied dagh whit Pitrel, whet forekend, no won lach

Tuly 26,1464

 \&füt swalls, white caps.
1120. Crossed borw of stip farlh dirs. fir descuptecon of whiternainel Pited on ogere in' fuly Bien soulor on wretch sow wilts cillan wiekant fencesilar. Bach copp, loloch patch aurud eys, primement whito collur, back briwn, wince dont boun; mokito wrebureds, wing white witt $b t_{c} h$ biode.

$$
9,8
$$

i6il medum-sizjor Potid/ whit frobled, blach eyp patich, blach cap tank boum foch + wring, ns pather, vamp. hights hewn, hait dout hown, relatively shat * blunt. Passed cloze la birs. white undengoits, black boruie, underning, 1816 medum sujed Petyot whiti forehcias beich eap, bled/eoy patar, pley back,
 brown, give, no C 特akle, louser bock douh herw, nuxp featkes light how or Con towl dork biors. 7.2. Lightrump fienther goase a conagicusa-y hight patioh (eveseent'shaped on V a hape) fothinjoutho -1) upper tan coveit conspicieres ot rome distond. Whitenolernailh ant bach bordend undersiein. Passed chor淄 bitu.
165\% Edentecal ts 151 h brit welh W paltern on bach no distinet howerg, ponsed aloge to bow.
P 96 stantical of entrey 1858 Bomi Asland
2) July 1964 (cont)

cam shie cratuex cumidns shonda
or20 all friob were too for mot wertely, they appeoned of be foedem

21. 85 ft. from (west oi) east rock beach

22. 45 ft. from rock beach due east of pom. \#8 Boerhaavia 5
$s-0$
$m-0$
$1-5$
$s-0$
$m-0$
$1-12$
large coral rocks with gravel and send pockets
I° slope e.
23. On the ne. side, along the em line from pom. \# 9 10 xt . due west of p .in. \#8

24. 25 it. due west of pom. \#8

Tribulus 5
s-0
-
1-5
sandy soil
I. slope west

Digitaria 8
s-I
ma
1-I
Lepturus 1
s.-0
mo
1-1
25. 40 ft. due west of pom. \#8

Digitaria 2

$$
\begin{aligned}
& \text { s-0 } \quad \text { sandy soil } \\
& m-0 \\
& I-2 \text { (very large) }
\end{aligned}
$$

26. IO ft. due s. of pom. \#\#

Lepturus $4 \quad \begin{gathered}s- \\ m-4 \\ l\end{gathered}$
Species Present \# Soil

Boerhaavia	3	s-0	sandysoil
		m-0	
Digitaria		I-3	
	4	s-0	
		$\mathrm{m}-4$	
Portulaca		1-0	
	4	s-0	
		$\mathrm{m}-0$	
		I-4	

27. 25 it. due south of $\mathrm{p} \cdot \mathrm{m} \cdot \neq 8$.

Leptumis 6 s-0
m-0
I-6 \quad sandy soil
Portulaca 4
s-0
$\mathrm{m}-2$
I-2
Boerhaavia 1
S- 0
$\mathrm{m}-0$
1-I
Digitaria, 2
s-0
m-0
\qquad
28. 45 ft . due south of p.m. \#8

Leptumus 6

$$
\begin{aligned}
& s-0 \\
& m-0 \\
& I-6 \\
& s-0 \\
& m-0 \\
& I-2 \\
& s-0 \\
& m-0 \\
& I-3
\end{aligned}
$$

$$
\begin{array}{ll}
m-0 \\
1-6 & \text { sand soil }
\end{array}
$$

Boerhaavia 2
29. IO ft. due east of p.m. \#8

Digitaria	3	s-0	sand soil
		$\mathrm{m}-0$	
		I-3	
Portulaca	9	s-0	
		m-0	
		I-9	
Boerhaavia		s-0	
		$\mathrm{m}-0$	
		I-I	

30. 25 ft . due east of $\mathrm{p} \cdot \mathrm{m}$.

3I. 40 ft. due east of p.m. Digitaria 5 s-

Lepturus s.- seedling or a one crowned plant.
m. - two croms or many, clump two to five in. in dia. at ground level.
I.- more than five in. in dia. at ground level.

Portulaca s.- seedling, plants one to six inches high.
$m_{0}-$ plants six to eight inches high, stems to four in. in dia. at ground level.
1.- plants about eight inches high, stems more than four in. in dia. at fround level.

Boerhaavia s.- seedling, stems one to five in. loné.
m.- stems five to twelve in. lomg.
1.- stems exceeding twelve inches in length.

Digitaria s.- seedling or a one crowned plant.
m.- plant two to eight cromed, from three to eicht in. in dia. at ground level.
I.- plant with eight or more crowns, more than eight in. in dia. at ground level.

Tribelus so- seedling, stems less than six in. in length.
m. - stem from siz to eighteen in. in length.
I.- stems in excess of eighteen in. in length.

Washington Island, June 9-13, 1964

June 9s 1964-Plant collections were made by C.D. Hackman and D. Gill along the path leading around the north side of the island while C.R. Long and P. Marshall collected along the road which borders the south side of the island. The two endemic birds were seen by both parties. A Cyperus with a white head was found growing in waste areas along the road on the west and north . The trunks of Cocos support a number of lichens and mosses which are particularly thick on the wet sides of the trunk (where water drains from the fronds and the crom of the tree). The Cocos plantation is serviced by roadways which branch off of the shore road in towards the vegetated rim of the atoll and the lagoon. These are very damp and support a roadside vegetation composed of Polypodium, Nephrolepis, Asplenium, Synedrella, Cynodon and Fleurya. One bracket fungus and several capped funsi were observed and collected - all growing on Cocos. Mr. William Frew, - the resident manager for the Burms, Philp Co., Ltd. was kind enough to provide bed and board for several days.
June 10, 1964 - With the assistance of P. Marshall and D. Gill peat samples were gathered from the west bog. Plant collections were made from the west bog, the canal leading northeast into the open bog and, later in the afternoon, from the wasto areas immediately behind the village.

June 11, 1964 - Peat samples were taken from the bog bordering theireshwater lagoon. Mr. Frew arranged for the writer to have the use of a small boat with outboard motor in order to cross the lake and visit Te Manounou on the east end of the island. The Cocos forest, propagating itself, comes directly to the waters edge. In a few isolated areas on the north and south shores of the lake there are Scirpus reeds growing near the shore or continuous with the shore. More often these clumps of reeds are found out from the shore in up to one foot of water - rooted in muck on top of what were at one time coral heads of the lagoon. Canals and locks on the southwest and east sides of the island are used to regulate the water level of the lake during the rainy season. At this season the bof is in some places about a foot above the water level of the lake. At other times the entire bog is under water. At the entrance to the canal on the east was growing a shrubby member of the Onagraceae. Our reference for topography and direction was a map made by Captain Brett Hilder. A copy of this map has been forwarded to us courtesy of the Bums, Philp Co., Itd. While the succession at the north, east and south sides of the lakse may be quite slow, it was noted that both Cocos and Pandanus were forming a line of elevated vegetation on the west end of the lake. This extends from the forest on the south to the canal (but thinning). The east and west portions of the bog are separated by a peninsula of forest which is well established. Collections were made on the east shore. The Pisonia trees on the beachrock at the east end are reproducinc themselves. Along the east shore the Messenschmidtia and Pisonia give excellent examples of wind shearing of vegetation. Along the canal on the east were noted large Cyrtosperma, breadfruit, and young Pandanus. Large areas of the forest as well as the open bog are covered with Polypodium. The red-footed boobies nest in the Pisonia and Messerschmidia on the east end. One correction to Hilder's map would be that the peat in some areas is in excess of 6 ft..

June 12, 1964 - Surf conditions dangerous. A survey of the cultivated and ornamental plants on the island was made. The following were observed and collected:*
> $\frac{\text { Artocarpus }}{\text { and } W \text { incisus }}$ (Thunb.) I.f. - used as a source of food Carica papaya L_{0} - used as a source of food.

> Pandanus tectorius Park - used as a source of food and construction
> Cocos nucifera trade. - used as a source of food, construction and
> Calophyllum inophyIIum I. - used as a source of wood.
> Ficus sp. - used as a source of shade.
> Hibiscus rosa-sinensis L. - used as decoration.
> Morinda citrifolia I. - used as a source of food.
> Psidium guajava I_{0} - used as a source of food.
> Mirabilis jalapa I. - used as decoration.
> Citrus aurantifolia (Christ.) Swingle - used as a source of food. Tagetes erecta I. - used as decoration.

> Iycopersicon esculentum Mill. - used as a source of food.
> Lactuca sativa I. - used as a source of food.
> Colocasia esculenta (I.) Schott. - a prime source of food.
> Acalypha wilkesiana Muell.-Arg. - used as decoration.
> Zephyranthes rosea (Spreng.) Lind. - used as decoration.
> Acanthaceae (shrub) - used as decoration.
> Allium fistulosum I. - used as a source of food. Cucurbita pepo I_{0} - gourds used as ornaments. Boehmeria nivea (I.) Gaud. - used as a source of fiber.

June 13, 1964-The surf conditions at the Boar passage where an earlier landing had been made are still unsatisfactory. The passage on the north side, Ore Abaram, proved to be excellent. We push out into the surf at $11: 30 \mathrm{am}$. for the Takelma.

[^0]June 9, 1964 (July, in black)
I. Cocos - Pandanus - Scirpus, in the west bog along the canal.
2. Close-up of the Scirpus reed, west bog.
3. Cocos - pandanus Scirpus, in the west bog along the canal.
4. Scirpus bog, west bogig core sampler.
5. Pandanus in Scirpus forming an elevated hummock, looking north from the canal, west bog.
6. Cocos forest, Scirpus, Polypodium on Cocos trunk, Colocasia cultivated in cleared area alons the canal.
7. D. Gill and P. Marshall in the Scirpus bog - west end, south side, Pandanus edge in back.
8. Cyperus - to 2 ft. forming an "understory" in the Scimpus bor - on Fringe or open spaces near the reeds and also under the reeds.
9. Pandanus edge and Scirpus bog.
10. Dense Cocos forest, Asplenium, Pisonia - south side of island along copra trail.
11. Cocos plantation, Asplenium nidus, Polypodiun covering the Cocos trunks and the ground. Note piles o husks and shells.
12. Cocos, Pisonia, Boermeria - west end of the island.
13. Alons the road on the north side of the island - Cocos, Polypodium, Boermeria.
14. North side - growing in the tracks and to the side of the road Cyperus.
15. Boermeria shrubs - in the waste area behind the west village.
16. Copra drying racks.
17. (as above).

June II, 1964
18. Wwo Gilbertese helpers - West of the Iresh water lagoon in bog Scirpus, Nephrolepis, Polypodium.
19. Pandanus, Scirpus -lookine north from the canal.
20. Along the canal, west bog, looking east - Pandanus, Polypodium, Cocos and Scirpus.
21. Cocos, young Pisonia, Polypodium covering the soil surfaces, east end of the island near village.
22. (as above), Cocos litter quite heavy, soils dark, much humus.
23. Village huts of Te Manounou.
24. Fimbristylis, Boorhaavia on gravel near village, east end.
25. Wind sheared pisonia and Messcischmidia, east end looking south.
26. (as above).
27. Pisonia trees at the east end - nesting red-Iooted boobies:
28. Mro Iriends along path paralleling the canal, east end - dense Cocos and oyrtosperma.
32. Freshwater lagoon with Scirpus clumps along the edge, Looking west. 33. Cocos forest bordering the canal, east ond, Polypodium and shrub: (fam. Onagraceae).
35. North side of the lagoon - Cocos and Scirpus stands.
36. (as above).
37. The east bog - Scirpus, Pandanus, Polypodium along the canaI.
38. Humps of Polypodium on bare bog - in the east bog near the canal. Area flooded regularly.

```
* 2x2 Color Slides
```

June 12, 1964 (August, in red)
2. Cordia growing in the west villa,ge, in flower.
3. Artocarpus about 40 ft. - foliage evergreen, north side of village.
4. Zephryanthes - in flower, frowing in the lawn of the plantation house.
7. William. Frev, dispensary, and Hibiscus fosa-sinensis varieties.
8. Waste area east of village- Morinda, Scaevola.
9. Morinda citrifolia, flower and fruit.
10. Waste area behind the west villace - Morinda, Scaevolog, Pisonia, soil covered with solid stand of herbs annals - Verbesina.
11. Waste area by the road north of the villace - Boermeria, Polypodiun, Pandanus, Pisonia. Along this road there was also a grove of Artocarpus from exclusively for construction wood.
12. Cocos along the road on the n\%. end, Polypodium on ground.
13. Artocarpus, Boermeria, Cocos and polypodium alons road nw. end.
14. Edge of the Cocos forest, east bog, dense Polypodium in the foreground.
15. Convolvulus covering shrubs on the nw. end.
16. Messerschmidia, Cocos alons the shore on the nw. side.

June 12, 1964 (August, in black)
29. Surf at Boar passage, w. end of Washington Island.
30. Beach on the Tr. end, Cocos and Cordia.
31. Curcurbita pepo I. - cultivated near thelvillage.
32. Gilbertese style open school, the Nivanga anchored ofishore.
33. Mirabilis jalapa I_{0} - cultivated alons the paths and beds surfounding the meeting hall.
34. View of the village on the west end - meeting house in foreground.
35. Village west end - hedges of Acalypha.
36. Dense Leucaena - waste area behind the west village.
37. Native gardens - west settlement.
38. Young fruit of Artocarpus.

May 23 - 24, 1964 (May, in black)
Eastern Island - May 23, 1964
2. large Casuarina growing on the west end; Verbesina, Lobularia, and Scaevola.
3. as in 2.
4. Lobularia, Scaevola, Verbesina, Casuarina; nestling black-footed
5. Anagalis, Gnaphalium on the ne. side of the ne-sw Imunay.
6. Black-footed albatross nestlings in Lobularia; bare nest areas.
7. Tribulus, Lobularia; west end of the e-wimuay.
8. Iobularia stand; black-footed albatross nestlings; Scaevola in back; W. end of the $w-o$ runway.
9. Scaevola - roots exposed by high waves of storm; erosion along the siv. shore of Eastern Island.
10. Along the south shore of Eastern Island; young Messerschmidtia and Casuarina.
11. PIuchea, Casuarina, Lobularia - on the n. side of the w-e runway near the intersection with the ne-sw runway.
12. Nestling black-footed albatross in Fimbristylis, Iobularia, Verbesina; at the sw. end of Eastern Island.

Sand IsIand, Prigate Point - Hay 24, 1964
13. Scaevola and Terminalia in strip parallel to and between the shore
14. Scaevola, Terminalia and Casuarina; in se. strip.
15. Euphorbia heterophylla under Casuarina.
16. Old bunker on se. shore; Casuarina, Cynodon.
17. Coccoloba, Setaria, young Casuarina, Boerhaavia along the se. shore.
18. Coccoloba and Casuarina trees along the se. shore.
19. SCaevola on hillocks OI sand on the se point; nestling black-footed albatross.
20. Scaevola on the se. end of the w-e munway.
21. Scaevola on the se. side of the w-e runway stabilizing and forming sand hillocks.

May 24-25, 1964 (May, in red)
Sand Island, Frigate Point - May 24, 1964

1. Scaevola on sand mounds; in bloom.
2. (as in I.)
3. Litter accumulation under Scaevola.
4. Lobularia, Verbesina and Euphorbia seedings along the Frigate Pt. road.

Easterm Island - May 25, 1964
5. Nestling black-footed albatross in Lobularia; Conyza seedlings; ne. end of the island.
6. Verbesina, Lobularia; south side of the w-e munway.
7. Black-footed albatross - adult and nestlinç - in Lobularia; s. side of the e-iv runway.
8. Iobularia, Boerhaavia in old nest area; w. end of the whe runway.
9. (as in 8.)
10. Sooty terns nesting in Lobularia and Fimbristylis; e. side.
11. Black-footed albatross nestling; Lobularia and young ScaevoIa at the e. end of the ne-sw runvay.
12. Shore vegetation opposite the end of the ne-sw munway; young Scaevola.
13. Iobularia, Conyza, Pluchea; e end of the ne-sw runway.
14. LobuIaria, young Scaevola, Messerschmidtia; on the beach e. end of the ne-sw runtay.
15. Beach at the e end of the ne-sw runway: looking no; note Iobularia growing in send.
16. Scaevola, Messerschmiatia; Iow branches layering out into bare areas; on the e shore; prevailing wind from the east.
17. Iow Messerschmidtia shrubs on beach; e. shore.
18. Solid stand of Messerschmidtia, Scaevola; note the Lobularia on the formerly "bare" break.
19. Ipomoea in flower; on e. side.
20. Verbesina on se. end of island; nestling black-footed albatross.

May 25, 1964 (May, in black)

Eastem Island, May 25, 1964

1. Red-tailed tropicbird on esgis nest of Casuarina litter; just wir the boat dock.
2. Casuarina in back; open area with Verbesina; nestling black-footed albatross; w. end of island.
3. Open area in Casuarina Srove, Lobularia; wond.
4. Boerhaavia formine a thick mat under Casuarina and Scaevola.
5. Verbesina - thick patch on the ne. end.
6. Lobularia, Scaevola, Casuarina; ne. ond.
7. Young Casuaninas Verbesina, Iobularia and Scaevola.
8. Portulaca oleracea I. and Verbesina seedlings.
9. Scaevola - Messerschmidia association on the e. end with Casuarina.
10. Scaevola -close-up of the flomer and leaves.
11. Red-tailed tropicbird nest in Casuarina litter.
12. Pluchea stend on the nvo side, wo of the e-w muntry; nestling blackPooted albatross in the Lobularie.
13. Pluchea stand further west alone the e-ir runway.
14. Blackiooted albatross nestlings in Lobularia with Scaevola in back; nw. side of e-iv runtray.
15. (as in 14.) - further west along the n. side of the runtray.
16. (as in I4 and 15.) - further w. along the n. side of the runway.
17. At the extreme w. end of the e-w runway; Lepidium and Boerhaavia.
18. Raised coral fravel nest of black-footed albatross in Iobularia; w . end of the e-viruntray.
19. Pimbristylis, Lobuloria and Conyza; wre end of e-v runway.
20. ITessenschmidia, Scaevola; n. side of the e-w runway; Fimbristylis and Iobularia.
21. Northrest side of e-w runtay; nesting black-footed albatross; Fimbristylis, Iobularia, Scaevola, Hesserschmidtia, Casuarina.
22. Pluchea, Fimbristylis; nve side oi the e-w runway; nestlinf blackfooted albatross.
23. Fimbristylis in bare coral gravel.
24. (2s in 21.)
25. Nesting sooty terns on egess not. side of the e-m runtray; younc Scaevola; nestling black-iooted albatross.
26. Nesting sooty terns; Scaevola shrub; Casuarina and Lobuleria.
27. (as in 25.) - close-up of bare nesting areas of the black-footed albatross.
28. Close-up of a black-footed albatross nestling; nt. side of the e-T munway.
29. (as in 28).
30. Coronopus, Anacmis, Lobularia; ne. side of the e-w runtay.
31. Coronoous, Pluchea, Fimbristylis; mid-n. side of the e-N runway.
32. Lobularia, Pluchea, Fimbristylis; nv side of the runway.
33. Dead sooty tem on nu end in Fimbristylis and Lobularia.
34. Many sooty tern dead; nv. side of the e-w runtay; young casuarina.
35. Long view (looking n.) of the nw. side and vegetation strip -of the e-Tr runway.
36. Red-tailed tropicbird nest on ground, in litter, under Scaevola.
37. Scaevola - flower and leaves close-up.

PROGRESS REPORT - A'A' - June, Iyú4
During the month of June five islands in the Iine group were visited and extensive zoological and botanical survey work was carried out. A total of Ió days were spent ashore while 14 were spent at sea.

Complete bird and mamal客 surveys were made on all islands, collections were made of biràs, mammals, insects (particularly ectoparasites), plants and reptiles, extensive banding operations were cairied out, blood samples were taken when possible, and rough vegetation cover maps were made. During the month of June 24,743 birds of 13 species were banded and 36 individuals of 12 species were collected.

At Sea Work
At sea watches were maintained between Pearl Harbor and Palmyra Island and between Starbuck Island and Pago Pago, American Samoa. A Iong-tailed Jaeger (İirst record for the central Pacific) and a Nanx Shearwater (range extension) were collected along with three other birds. Two birds were banded at sea.

Palmyra Island

Due to restrictions in the schedule imposed by higher authorities we were unable to spend surficient time here to make the stop worthwhile. Orientation of the scientific party and working out of operations between the ship and the S.I. party left little time for high efficiency work.

483 birds of three species were banded as outlined below.

Species
Red-Eooted Booby
Brown Booby
Cominon Noddy

No. Banded
474
1
8

Sixty blood samples were collected from Red-footed Eoobies. It was impossible
to obtain variety because of the distances involved (6 miles ro nd trip on foot) or to obtain larger numbers of samples under the time Iinitations imposed.

12 birds of 4 species were collected. A siçht record of an adult Iaughing Gull is new for the island and one of the few records from the central Pacific.

Washington Island

Our stay here was extended when Bob Iong was trapped ashore by high surf. Only limited ornithological work was possible from the ship during our 3 days offshore. Collections of birds were made from feeding flocks in the vicinity of the ship.

This illustrates again that ATFs are not able to deal with uniavorable surf conditions and that a party should never go ashore without adequate reserve food and water supplies. On Starbuck Island a whole day was lost when the party leit a day early to avoid possible worsening surf conditions.

Bill Freus, island manager, was extremejy helpful again. He provided accomodations ashore for the botonist who was surfe ring from prolonged seasickness and donated two rubber rafts to the part, to replace the tro faulty and poory inspected ones we had brought from Pearl Harbor.

CHRISTMAS Island
During our stay here overnight visits were made to Cook Island and yotu Tabu, base camp was established on Motu Upua, and three members of the party made an 80 mile round trip on bicycles to the eastern end $0 \vec{i}$ the island from our base camp. As before it proved impossible to survey the entire island in detail but the general survey was more complete tais trip than last.

Mr. Roberts, District Commissioner, informed us that all military personnel would be gone by June 30 and that we should have no trouble finding accomodations next trip. Only one incident between ship personmel and t e british marred our
visit and this was quickly smoothed over by the captain. 14431 bird of 10 species were banded as broken comn below. Species

Red-tailed TroicBird	30	19	10	--
Wedge-tailed Shearwater	--	500	500	--
Christras I. Shearwater	--	400	2300	--
Phoenix I. Petrel	--	600	800	--
Blue-faced Booby	--	--	--	11
Red-footed Booby	--	--	71	--
Sooty Tern	5690	--	--	--
Fairy T_rn	--	24	--	
Blue-gray Noddy	--	1	--	--
Hawaiian Noddy	2700	349	400	--

12 birds of five species were collected including a Christimas Island Shearwater?? with considerable areas of white in the plumage.

Twenty species of birds were recorded for the island of which 10 and probably 13 were breeding.

> MaIden İsLanu

The landing here was made under caln conditions and no trouble was experienced at any time. The S.I. party stayed in the oId AEC? camp leit from 1962. Because of the large size of the island considerable time was spent walking. An average days work required 15 miles of walking and on the last day part of the party covered 30 plus miles.

Birds were very scattered with alnost all species and individuais nesting on islands in the central lagoon. Predation by the mamal population seemed to be the major reason for this concentration on islands.
-4
1029 birds of 5 species were banded as broken down below. Species
Red-tailed Trop:cbird 2
number banded
Blue-faced Booby 612
Brown Booby 16
Red-footed Booby 339
Great Frigatebird 60
Seventeen species were recorded of which 10 and possibly 11 were breeding.The sight record of a Black-bellied Plover is an interesting adition to theisland list. and the breeding colony of Lesser Frigatebirds further augments thedata accumulated by ATF trips on this for erly littie known species.
A herd of live pigs was wipedout by the S.I. party as these seemed to be a major factor in reducing the bird population. One cat was seen and remains of others were found. Near absence of tracks would seem to indicate a very small population. House mice were connon everywhere on the island and several were collected.

The small reddish fish in the central lagoon reported by Bryan turned out to be brina shrimp.

Starbuck Island
Presence of large rocks in the reef makes lanaing in eny type of surf dangerous. All nembers of the party recieved numerous bruises and coral cuts in the process of launching boats. Our stay was shortened when we left early to avoid being trapped by worsening surf conditions. Presence of 300-500 cats on the island has reduced the population of birds and anithilated almost everuthing but Sooty Terns. The mortality on the large breeding colonies of this species was about 1000 bieds a night. Banding operations were somewhat hindered by the Pour hour round trip from camp to the nesting colonies.

8800 Sooty Terms were banded during our two ni hyson the island. 100-120
of birds
cats were killed and are evidently the only mammal present. Nine speciestrere recorded of which three were nesting.

Itinerary

June 1 Departed Pearl Hiarbor 1800
June 2-4 At sea
June 5 Landed on Palmyra 1600
June 6-7 On Palmyra
June 8 Departed Palmysa 1500
June 9 Landed on Washington IsIand 1000
June 10-12 At Washington Island
June 13 Departed Washington Island 1400
June I4 Ianded on Christmas Island 1400
June 15-19 On Christmas Island
June 20 Departed Christmas Island 1600
June 21 At sea
June 22 Ianded on Valden Island 1400
June 23-24 On Malden
June 25 Departed Valdien 0700
Ianded on Starbuck 1700
June 26-2\% On Starbuck
June 28 Departed Starbuck 0900
June 29-30 At sea

> Second Prouers Roport June-July Air 1964

Duning the second $3 I$ days of the urip I4 days were syont askono mino I? days revo spat at soa on in Pago Pago. Sirr islands rere visited duranق this Duriod and, trith the excopton of KurI Island, complete bind and plant surveys We: mado, Insect collections were rade where needed to fill in pievious collections and octoparasites were collected off on as many species as possible. 409 blood samples rewe taken, 105 biras collected, 40333 birds banded rith 3164 retums beine obtained, plant collections were made on 211 islends and Pish collections mere made on three island.s.

Furthen cvidence was gainch durinu the second haln of the trip we ganding tho tmpuntance of cats as a Imiting factor on bird distribution. In the Oct. Wov。 payiminamy ropont it ras woposod thet prosenco on cats on an island rould pevent the brooding on petrels, shoarrajous, on smell tomse jutionce
 o Ziminate Rev-Sooted Boobies, Fricates and yoesibly Blue-Racod Boobies fmow an jaloud. Dreorts by the Smithsonian yerty on Homand, Barer and Bnewbuy have Beon dinected townd the comjete elimination on cats on these islandse Me 2ather immotitate aesponse of the bircis to the olinination of cats has been
 yo Cumb tro specios of tho sheamatem-petrel group looking for hest sites or unting on the gound and one species of mall tem nectine for the finst time
 We found ton nests on Blue-faced Boobios and one nost of a Rou-tailed
 Lemn Gound nosting on previous visits. On Inderbumy IsImd, mone the Iast theo

Iooking fo: hest situes ana sevoral speries or terns nesting successfuliy on thomain part of tho island (these same teans hed previously nestod oniy on thesmali islonk in the contma Iegoon)。 Irom this it seews only Io gical thatcats ane one of the major Iimitine factors on Garaner, LhuI, Sydney, Canton,Stamiouck, Molien, Janvis and Christmes Islands and thet elimination of thesecats rould Gocaty increase both tho mumon of suecies and individuals using theislunds as broeding sites.
Full IslandA Innding was made on the north side of the island and 42 houns werespent nere by the Smithsonian party. Mo. Iong (Botonist) walked about halethe island. The rest of the panty concentrated its efrorts on the tern colonyon the nowth side。
EIeven bird suecies were obsemved of whin foum were breeding 20,500 Sooty Toms rene banded, 18 were collocted and 67 blood samples rove tairen.
Do~s, cats and rats wene all prosent on the island. All the Gilbertesenativos wene oracuated in December so that there are no Ionger any humaninhabitants on the island.

Phoonix IsIanc.
wh cosy Imaing was marie on the rest side of the isiond and a total of E7 houns roüo spont ashone. A complote nest count was macie of the island and a rocetation covon map was roughed out.

22 bird species were observed of which 77 were breeding. 13,500 birds of 19 species were banded with 961 returns being recorded from II species. This is brokon down below by specios.

Species
Todge-tailed Shearwater
No. Banded
18
Christmas Is. Shearwater 400
Audubon's Shearwater 700
White-thr. Stom Petrel 33
Bulwer: S Petrel
Red-tailed Tropicbird
92
Blue-faced Booby 875
Brown Booby 38
Red-footed Booby I?
Great Feigate 100
Iesser Noigate 164
Ruddy Tumenstone 16
Wandering Tattler 2
Bristle-thighed Curlew 3
Gray-backed Tern 100
Sooty Tem 10300
Fairy Tern 300
Slue-gray ITodily 35
Moddy Tomn 400

No. Returns
I

--

2
2

91 blood samples were taken from 6 species of birds and one species of mamal. 3 ? birds of 9 species were collected.
Enderbury I.slandA total of 66 hours wore spent ashore during thich tho usual conslotenost counts, bird surveys and vegetation maps were made.3734 birds of 7 species were bandod with 771 rotums recorded from 4 specios.

Nodgo-tbailod Shoamwater
Red-tailod. Tropicbird
343
319

No. Returns

 67 615
Blue-fiaced Booby 35 2
Brom Booby
432 87
Rod-footed Booby 100
Sooty Term 2500
McKean Islend
Spont 46 hours ashore doing the usual bird surveys and vegetation maps.
In adittion, 110 blood samples were taken, 27 birds of 6 species were collected,
and 9244 binds of 14 species were bandod with 625 returns being recorded. 21species wore observed on the island of wich 27 were banded.Spocies

No. Bended.

13

Nodgc-tailed Shearwater
Christmas Is. Shearwater
Amdubon's Shoarrater4.95
Whito-thr. Stom Potrel. 56
Sulnor:s Petrel
Rled--toillod Mropicbird$12 ?$
37.ue-faced. Booby Booby

No. Retums

4

-- 3
4
3 --1363

Baker Island
23 hours were spent ashore here carring out the survey work. 12 species of birds were observed of which four were breeding (an increase of 3 in the number of breeding species over previous trips). 2I4 birds of three species weio banded with 15 retums recorded. The absence of cats seems to be the factor responsible for the increase imbird numbers and also for the increase in the mouse population. The presence of mice had been previously know only From the remains found in a cat stomach. On this trip ainost every board had a mouse hiding under it.

Species
Rod-tailod Tropicbird
Blue-facod Booby
No. Banded
4

147
63

A considerable amount of time ashone was spent burning all cat hiding places and tearing apart all the old trash heaps to chase out cats. Four cats Wero killed and these alnost certainly represented all that romained of the formor large populationo

Howland Island

71 hours were spent ashore doing survey work. 13 species of birds were observed of which 8 were breeding. Wedee-tailed Shearwater and Phoonix Island Petrel are now to the island and the Grey-backed Tom is a new breeding specieso A17 of these changes are believed due to the eradication of cats during the Februcry trip.

81 blood samples were collecteci, I9 birds of 4 species were collected, and 3741 birds of 7 species were banded with 792 returns.

Species
Red-tailed Tropicbird
B7ue-faced Booby
Brom 20oby
Red-footed. Booby
Groat Mrigatebird
Lesser Frigatebird
Sooty Iem

No. Banded
84
491
6
77
4.9

33
2400

No. Returns
4
779
I
8
--
--
July 1 At sea
July 3 Landed Pago Pago, Ancrican Samoa
July 6 Doparted Pajo Pego, Anerican Samoa
JuIy 8 Amrived Muln IsJ.and
July 10 Departed hril Isiand
Amived Phocnix Island
July It Departed Pheenix. IsIand
Arrived Enderbury Island
unly 17 Departed Encerbusy Island
July 18 Arcived NoKcan Island
culy 20 Dopartod Nokien Island
Juiy 21 Armived Baler IsIand
July 22 Doparted Boker Island
Arrived Howland Island
JuIy 25 Departed Howlend Island
JuIy 30 Arrived Pearl Harbor

Time at sunrise $=00$ Position at sunrise
Time at sunset $=1748$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=$

$$
\begin{array}{ll}
163^{\circ} 25^{-1} \mathrm{r} & 11^{\circ} 01 \mathrm{~s} \\
165^{\circ} 27^{\prime} \mathrm{W} & 12^{\circ} 13^{\circ} \mathrm{s}
\end{array}
$$

Miles traveled from sunrise to sunset
140
$=\quad 100$

Miles traveled from sunset to 2400 hours $=100$

4.
5.

ATFtrp Jum 2-4

- 1200 poitios

DATE FUN2 2, 1964
Time at sunrise $=555^{\circ}$ Position at sunrise $=19^{\circ} 06^{\prime} \mathrm{N} 15^{\circ} 31^{\circ} \mathrm{W}$
Time at sunset $=14 / 5$ Position at sunset $=16^{\circ} 00 \mathrm{c} 159^{\circ} 23^{\prime} \mathrm{C}$
Miles traveled from 0000 hours to sunrise $=72$
Miles traveled from sunrise to sunset $=96$
Miles traveled from sunset to 2400 hours $=$

TIME OF FIX	TYPE OF FIX	LONGITUDE	LATITUDE
1. 0800	celp,tiol	$15^{\circ} 8^{\circ} 38^{\prime} \mathrm{W}$	$18^{\circ} 38^{\circ} \mathrm{N}$

2.
3. 1200 CELESTHC 158 47.2 W 17
4.
5. CELCOSTAC 159 23.7W
6.

DATE \qquad
Time at sunrise $=0605$ Position at sunrise $=16002 \mathrm{~m} / 3^{\circ} 56$
Time at sunset $=19 / 10$ Position at sunset $=16035011010$
Miles traveled from 0000 hours to sunrise $=$
Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours $=$
TIME OF FIX

1. 0800
2.
3. 1200
4.
5.
6. 2000 CELESTIAL $160^{\circ} 34^{\circ} \cdot \omega$

Time at sunrise $\triangleq 600$ Position at sunrise $=$
Time at sunset $=1904$ Position at sunset $=7^{\circ} 13^{\circ} \mathrm{V} / 612^{\circ} 28.5^{\circ}$
Miles traveled from 0000 hours to sunrise =
Miles traveled from sunrise to sunset $=1 / 0$
Miles traveled from sunset to 2400 hours $=40$
TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE

1. 0800 CELESTML $161^{\circ} 15^{-1} 0^{\prime \prime} a \operatorname{q.~} 000^{\prime \prime} \mathrm{C}$
2. 1200
3.2000
$161>7$
8641.8

$$
7=26.3
$$

4.
5.
6.

DATE

Time at sunrise $=0626$ Position at sunrise $=A+$ Paluyra l .
Time at sunset $=1905$ Position at sunset $=A 7$ Palmyra 1 s .
Miles traveled from 0000 hours to sunrise $=65^{5}$
Miles traveled from sunrise to sunset $=0$
Miles traveled from sunset to 2400 hours $=0$
TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE
1.

A7 Anchor palmyra Is.
2.
3.
4.
5.
6.

DATE \qquad 6 June 64
Time at sunrise $=0626$ Position at sunrise $=4 t$ Palmyra $/ \mathrm{s}$.
Time at sunset $=\$ 406$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise =
Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours $=$
TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE
1.
At anchor palmyra is.
2.
3.
4.
5.
6.

DATE \qquad
Time at sunrise $=0626$ Position at sunrise $=A+\mathrm{Paluyra} \mathrm{s}$.
Time at sunset $=1906$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=$
Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours =
1.
2.
At ankhs: Palmyra is.
3.
4.
5.

6
\qquad
Time at sunrise $=0626$ Position at sunrise $=$ Palyrra $/ \mathrm{s}$.
Time at sunset $=1904$ Position at sunset $=161^{\circ} 4 / 8^{\circ} \mathrm{W} 05^{\circ} 32^{\circ} \mathrm{V}$
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=30$
Miles traveled from sunset to 2400 hours $=3 \mathrm{~d}$
$\frac{\text { TIME OF FIX } \frac{\text { TYPE OF FIX }}{\text { I. } 2000} \text { LONGITUDE } \quad \text { LATITUDE }}{161041.6 \mathrm{w} 5^{63} 31}$
2.
3.
4.
5.
6.

DATE

Time at sunrise $=0626$ Position at sunrise $=$ AT washington 1%
Time at sunset $=1401$ Position at sunset $=$ At Washragton $/ \mathrm{s}$.
Miles traveled from 0000 hours to sunrise $=35$
Miles traveled from sunrise to sunset $=0$
Miles traveled from sunset to 2400 hours $=0$
TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE

1. 2000 Padarttisi it t62.30iw
4040.4
2. At anchor washington is.
3.
4.
5.
6.

\qquad 10 June 64

Time at sunrise $=0600$ Position at sunrise $=$ $=$ washington ls .
Time at sunset $=1901$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise =
Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours $=$
0
$\frac{\text { TIME OF FIX TYPE OF FIX LONGITUDE }}{\frac{1000}{100} \text { R. Radar it Vial } 162^{\circ} 30.1 \%}$
2.
3.
4.
5.
6.

DATE \qquad
Time at sunrise $=0628$ Position at sunrise $=$ washington is.
Time at sunset $=1901$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=$
0

Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours $=$

4.
5.
6.

DATE \qquad 12 J

Time at sunrise $=063 /$ Position at sunrise $=$ Washington $/ \mathrm{s}$.
Time at sunset $=1852$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=$
Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours $=$

4.
5.
6.

DATE \qquad
Time at sunrise $=063$ Position at sunrise $=$ Washington $/ \mathrm{s}$.
Time at sunset $=183^{\circ}$ Position at sunset $=159^{\circ} 52^{\circ} \mathrm{W}$
$03^{\circ} 35^{\circ} \mathrm{N}$
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=7 \mathrm{~s}^{\circ}$
Miles traveled from sunset to 2400 hours $=56$

4.
5.
6.

DATE \qquad 14 June 64
Time at sunrise $=0625^{\circ}$ Position at sunrise $=.15^{\circ} 0^{\circ} 1 \mathrm{~s}^{\prime} \mathrm{W}$
Time at sunset $=1841$ Position at sunset $=$ (hrl)tsas 1 s .
Miles traveled from 0000 hours to sunrise $=87$
Miles traveled from sunrise to sunset $=\quad$ \& 4
Miles traveled from sunset to 2400 hours $=$ (1)

2.
3.
4.
5.
6.

DATE

Time at sunrise $=062$ Position at sunrise $=$ Chrotwas $/ \mathrm{s}$.
Time at sunset $=184 /$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=0$
Miles traveled from sunset to 2400 hours $=0$
TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE

1. AT anchor Cliristuas is.
2.
3.
4.
5.
6.

\qquad
Time at sunrise $=8625^{\circ}$ Position at sunrise $=$ C4outaza) 1$)$
Time at sunset $=18$ g/ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=0$
Miles traveled from sunset to 2400 hours $=0$
TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE

1. At anchor (aristas is.
2.
3.
4.
5.
6.

DATE \qquad
Time at sunrise $=062$, Position at sunrise $=$ (hiotoras 15 .
Time at sunset $=184$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=$ $=0$

Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours =
1.
At anchor Chrituas Is
2.
3.
4.
5.
6.

DATE \qquad 18 June 64
Time at sunrise $=0625^{\circ}$ Position at sunrise $=$ Christmas 1 s
Time at sunset $=1841$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise =
Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours =
TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE

2.
3.
4.
5.
6.

DATE

Time at sunrise $=062$ Position at sunrise $=$ Chwotras ls.
Time at sunset $=1841$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=$
Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours =
TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE
1.
At ahchoo Cloristuas folaud.
2.
3.
4.
5.
6.
\qquad
Time at sunrise $=062$, Position at sunrise $=$ (hutisis $/ \mathrm{s}$.
Time at sunset $=1841$ Position at sunset $=1.5^{\circ} 32^{\circ} \mathrm{W} \quad 01^{\circ} 54^{\prime} \mathrm{N}$
Miles traveled from 0000 hours to sunrise \quad ?
Miles traveled from sunrise to sunset $=27$
Miles traveled from sunset to 2400 hours $=$ 47

2.
3.
4.
5.
6.

DATE 21)Nh 64
Time at sunrise $=0620$ Position at sunrise $=$
Time at sunset $=1826$ Position at sunset $=$

$$
15^{\circ} 6^{\circ} 4 s^{\prime \prime} \mathrm{a} \quad 00^{\circ} 05^{\prime \prime}
$$

$$
156^{\circ} 14 \mathrm{w}^{\circ} \quad 01022^{\circ}
$$

Miles traveled from 0000 hours to sunrise = 75

Miles traveled from sunrise to sunset =
77
Miles traveled from sunset to 2400 hours $=$ 47

4.
5.

6

DATE \qquad
Time at sunrise $=0620$ Position at sunrise $=15^{\circ} 5^{\circ} 28^{\prime} h 03^{\circ} 07^{\prime}$ Time at sunset $=1819$ Position at sunset $=$ maIden $/ \mathrm{s}$.
Miles traveled from 0000 hours to sunrise $=68$
Miles traveled from sunrise to sunset $=55^{-}$
Miles traveled from sunset to 2400 hours $=0$
TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE

1. 0800	Celestial	15°	32 w	$3^{\circ} 24.5^{\circ}$
2. 1200	Rado.trijval	15°	04.3 W	3°
56.35				
3. 2000	$\prime 2$	15°	59.6 w	40

4.
5.
6.

DATE \qquad
Time at sunrise $=0633$ Position at sunrise $=$ maiden $/ \mathrm{s}$.
Time at sunset $=1820$ Position at sunset $=$ MaIden 15 .
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=0$
Miles traveled from sunset to 2400 hours $=0$
TIME OF FIX TYPE OF FIX LONGITUDE LATITUDE

4.
5.
6.

DATE \qquad
Time at sunrise $=0626$ Position at sunrise $=$ Madden $/ \mathrm{F}$.
Time at sunset $=1831$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise $=$
Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours $=$

4.
5.
6.

DATE \qquad
Time at sunrise $=0626$ Position at sunrise $=M a / d e n / s$.
Time at sunset $=1822$ Position at sunset $=$ Syarbue/t f .
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=104$
Miles traveled from sunset to 2400 hours $=0$

4.
5.
6.
\qquad
Time at sunrise $=0634$ Position at sunrise $=5$ Parbuen 15.
Time at sunset $=1826$ Position at sunset $=$
Miles traveled from 0000 hours to sunrise =
Miles traveled from sunrise to sunset $=0$
Miles traveled from sunset to 2400 hours $=0$

4.
5.
6.

DATE 27 Jun $6 y$
Time at sunrise $=0633$ Position at sunrise $=5$ arrbuc/r ls .
Time at sunset $=1823$ Position at sunset $=$ "
Miles traveled from 0000 hours to sunrise =
Miles traveled from sunrise to sunset =
Miles traveled from sunset to 2400 hours =

4.
5.
6.

DATE \qquad
Time at sunrise $=0623$ Position at sunrise $=$ STarbue/ 15 .
Time at sunset $=1823$ Position at sunset $=15^{\wedge} 7^{\circ} 02^{\circ} \mathrm{W} 06^{\circ} 23^{\prime} \mathrm{s}$
Miles traveled from 0000 hours to sunrise $=0$
Miles traveled from sunrise to sunset $=80$
Miles traveled from sunset to 2400 hours $=62$

| TIME OF FIX | TYPE OF FIX | LONGITUDE | LATITUDE |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1. 0900 | Radar + Vise | $15^{\circ} 5^{\circ} 37.4 \mathrm{w}$ | $05^{\circ} 38.35$ |
| 2. 1200 | | $156^{\circ} 02.5 \%$ | $05^{\circ} 41.05$ |

3. 2000

$$
\text { celestial } \quad 15^{\circ} 7^{\circ} 13.2^{\circ} \mathrm{L} \quad 06^{\circ} 30^{\circ} \mathrm{s}
$$

5.
6.

DATE \qquad
Time at sunrise $=0640$ Position at sunrise $=15^{\circ} 4^{\circ} 15^{\circ} \mathrm{W} 07^{\circ} 5^{\circ} 4^{\prime} 5$
Time at sunset $=1835^{\circ}$ Position at sunset $=161^{\circ} 22^{\circ} \mathrm{W} 09^{\circ} 23^{\prime} \mathrm{s}$
Miles traveled from 0000 hours to sunrise $=1 / 3$
Miles traveled from sunrise to sunset $=153$
Miles traveled from sunset to 2400 hours $=58$

4.
5.
6.

[^0]: * a preliminary list

