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PREDICTION OF DIELECTRIC VIRIAL COEFFICIENTS 

FOR GAS MIXTURES FROM MOLECULAR THEORY 

by 

1/ 2/ 
K. R. Van Doren— and J. L. Gordon— 

ABSTRACT 

Statistical mechanical expressions for the first two dielectric 

virial coefficients are derived, and these expressions are reduced to 

computational forms for several well-known molecular models. 

INTRODUCTION 

The Helium Research Center is currently engaged in research con¬ 

cerning dielectric properties of gas mixtures; part of this research 

deals with the prediction of these dielectric properties from molecular 

theory. A virial expansion for the Clausius-Mosotti function has been 

proposed to account for the density dependence of this function, and 

statistical mechanical expressions have been derived for the first two 

3/ 
virial coefficients (1^, 2), — The derivations of these expressions 

are herein expanded in considerable detail, and reductions of these 

expressions to computational forms are performed for several well-known 

molecular models. 

1/ Research mathematician, Helium Research Center, Bureau of Mines, 

Amarillo, Tex. 

2J Research chemist. Helium Research Center, Bureau of Mines, 

Amarillo, Tex. 

3/ Underlined numbers in parentheses refer to items in the list of 

references at the end of this report. 
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PRELIMINARY CONCEPTS 

Whenever a gas mixture is subjected to a uniform electric field, 

the dipole moments of the molecules of the mixture tend to align them¬ 

selves in the direction of the field. These dipole moments are generally 

the sum of a permanent dipole moment and an induced dipole moment. The 

permanent dipole moment arises from a displacement of the centers of 

positive charge and of negative charge in the normal structure of the 

molecule (i.e„, the structure of the molecule when no external forces 

are acting upon it); the induced dipole moment arises from a temporary 

displacement of these centers of charge from their normal positions. 

The temporary displacement of these centers of charge is determined by 

the force exerted by the electric field upon the charges within the mole¬ 

cule and by the ability of the molecule to deform from its normal struc¬ 

ture; this ability is called the polarizability of the molecule. A 

quantitative definition of the dipole moment of a molecule is given in 
% 

Appendix A, p 30, and a quantitative definition of the polarizability of a 

molecule is given in Appendix B, p. 38. 

The macroscopic electric field, E, within the gas mixture is, in 

general, different from the external electric field, D, to which the gas 

mixture is subjected, since the dipole moments of the molecules give rise 

to electric fields. The relationship between these two fields is 

—* 

D = eE, 

where e denotes the dielectric constant of the gas mixture. It is shown 

in (6) that 
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D = E + 4TTP. 

where P denotes the polarization of the gas mixture, which is equal to 

the average dipole moment per unit volume of the mixture. 

The polarization of the gas mixture is related to the local electric 

field, F, at a molecule by the equation, 

f 0 ) 
where n denotes the number of molecules per unit volume and X denotes 

the electric susceptibility per molecule of the gas mixture. Combina¬ 

tion of this equation with the above two equations yields 

(s-l)E = 4TTnX(e)F, 

which implies that F has the direction of E. The usual expression for F 

is 

F=j (6+2 )E 

as shown in (3) and (6). Thus, 

4TTN (e) 

3 x U) 

where N = Avogadro's number. However, Kirkwood (5_) has shown that the 

—fr 

above expression for F is valid only for very low densities, so that 

equation 1, which is known as the Clausius-Mosotti equation, is valid 

only for very low densities. A more general equation, 

G&X,= A<T>+ )+ c(T)-(t )2+- ■ ■ > (2) 
m m 

has been proposed (1_, 2_) to account for the variation of the Clausius- 
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/e-l\ 1 
Mosotti function, with temperature, T, and molar density, — 

The coefficients A(T), B('T), C(T), etc., are the dielectric virial 

coefficients. Expressions for A(T) and B(T) can be derived by using 

equation 1 to evaluate the following limits: 

m 

A = vllm (Sj)v 
V -»® 

m 

and 

B = lim 

V 
m 

l(Sf)va V 
m 

Although equation 1 is 

the second limit could 

difference, 

valid for very low densities, its use in evaluating 

lead to an erroneous expression for B; for if the 

V 
m 

4ITN (e) 
~Y~ X 

is of the order of L 
V s 

m. 

then 

lim 

V -»» 

-> 
-A V 

m 

m 

is not the same as the second limit above. Because this difference is 

not known, equation 1 is used to evaluate the limit and thereby obtain 

first approximation to B. Further investigation is needed either to 

confirm or to refine the expression thus obtained for B. 

a 

GENERAL EXPRESSIONS FOR A AND B 

Consider an assembly of N molecules in a macroscopic spherical 

volume, V , which is maintained at a constant temperature, T, throughout. 

The molecules in this assembly possess potential energy due to inter- 
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molecular forces. If they are subjected to a uniform external electric 

field, D, they will also possess potential energy due to the interaction 

of their dipole moments (induced or permanent) with the electric field. 

_^ th 
Letting |i denote the dipole moment of the j molecule of species i, the 

potential energy of this molecule due to the interaction of its dipole 

—* —* 4. j 
moment with the external electric field is given by -(p, -D).— Thus the 

4J A discussion of this expression is given in Appendix A, p. 30. 

potential energy of the molecules depends upon their positions and the 

orientations of their dipole moments. Their positions and orientations can 

be specified by a single configuration vector, t, which has 5N components 

(3 for the position of each molecule, and 2 more for its orientation). The 

total potential energy of the molecules is given by—^ 

5/ A discussion of this expression is given in Appendix B, p. 38. 

V(t )- 
MD)- 

i j 

It follows from statistical mechanics (4) that the probability that the 

configuration at a given instant will lie in the range t to t-HAt is given 

by 

At exp 
V(-) , JL 

kT kT 
D) 

LA 

i j 

where the integration in the denominator is over the entire range of t. 

Hence, the average value of p, is 
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, lii exp 
rpq 

v£) j_ 
kT kT 

(H ) = 
pq 

exp ZS^ij 'D). 
i j 

dT 

Assuming that (ll ) has the same direction as D, then (ll ) = (ll . e)e, 
pq Ppq pq 

where e denotes a unit vector in the direction of D. Thus, 

j^pq g>exp 
T_ mi + -L 

kT kT 
dT 

(M* ) = e(p, • e ) 
pq pq 

exp >©..•§) 
kT kT Zj Z_j '' ij 

i j 

dT 

(3) 

Since all the molecules of species p are identical, then (ll )=(ll ,) 
pq P1 

for q=l,2,3 ,••*,x -N, where x denotes the mole fraction of species p. 
P P 

(e) 
It now follows from the definitions of P and x that 

p = >xpn(M,pi)’ 

and 

(e) IT /■ 

x =FZxp(V'e) 

-r * 

where F = D+E/and W is the component of the average polarizing field due 

to the electric moments of the molecules. Therefore, 

T . (e) V (PP1 } D 
lim x = lim )x — jT—v 

D-*0 D^0^P ° F 

V V =-»“ p 
m m 

=..iimZxp ^ ^pt^ 
V -H» 

m p 
D=0 

5 
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s ince •e) = 0 for D=0 and 
i . D , 
Um - = 1. 

D .-*0 

V 
m 

The partial derivative in 

this equation can be evaluated using equation 3 as follows. 

dD®pl‘e) 

J?<Vg)+Va)£ 3D(^ij'e)+‘ kT 
exp 

V(T) D 

kT kT 
dT 

i J 1 J i j 

$exp dT 

1 J 

kT dD^ij 6 )+kI "ij 
e) exp j£± 

kT 
+. 

D_ 

kT M- 
3-J 

e)jdT 

1 J 1 J 1 J 

Sexp 
v(t), d 

kT +kT ij 

A \ 

e) dT 

Hence, 

lim y 

D-*0 

(e) 
= Yx 

L p 

v ,00 

lim 

V 
m 

t d /-* 

LxBD(Mjpl 
/\ \\ . 
e;;+ 

kT L 
j 

pi e)(?ij *e)> 

m 

(4) 

where 

The second term on the right side of equation 4 can be simplified 

by considering the relationship between (|i •(!..) and (p, »e)(p,..-e) 
pi 'ij Pi i-J 

when D=0. Letting e^ and e^ denote unit vectors which are perpendicular 

to e and to each other, it follows that 
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^ij ^ij’e^§+(^ij °e2^e2+^ij e3^e3 

Therefore, 

= (M;pi'®)(Slj^)+(M:p1-62)(?ij-§2)+^pl'g3)(iIij-S3)- 

Since the orientations of ll , and ll . . are uncorrelated for D=0, unless 
Pi 

i=p and j =1, then 

<(tpl-e)(5. .-e)> = {(apl.e)>.((?...8)>, 

unless i=p and j=l. But 

= <(?ij,g3)) = 0 

and 

<(P_-g)2} = ( (M^ j • e£ )2> = < j " )2> 

because of the random orientation of ll . . for D=0. Hence 
ij 

unless i=p and j*l, and 

<^PiV» 3((Spl-S) > 

Thus , 

A 4TrN V 1 * A = —r— > x lim 

3 L P V 
p m 

L^pL'^^^pl^pl^J 
(5) 

and 

B = lim V 

V —»co 
m 

f 47TN 

m l 3 ^Xp LWV c"_r3kT'VH,pl:V 
-A (6) 

Equations 5 and 6 provide means for deriving statistical mechanical 

expressions for the first two dielectric virial coefficients. 
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THE FIRST DIELECTRIC VIRIAL COEFFICIENT 

An expression for the first dielectric virial coefficient can be 

obtained by evaluating the limit on the right side of equation 5. For 

a dilute gas mixture, it is sufficient to consider only binary molecular 

encounters in deriving an expression for (|i^*e)o It is shown in Appen¬ 

dix B that for two interacting molecules, neither of which has a permanent 

dipole moment, the expression for (jl^ £) averaged over all possible orien¬ 

tations is given approximately by 

2ot. a 

(|i " e ) 
pq av q>d(1+-T"£) 

where O', denotes the molecular polarizability of species i and r denotes 

1 2clq'2D 
the distance between the two molecules., The term - -1, ^ represents the 

6 
-» r 

component in the direction of D of the dipole moment induced in the mole¬ 

cule of species p by the dipole moment of the molecule of species i. 

Differentiation of the above expression with respect to D yields 
9rv rj 

Thus the contribution to -•§)) due to the induced dipole moments of 
6D pi 

species i is given by 

R 
m 

r (r)^ 

2 r* exPf 
2x/Ney.G' \ .. 

i 1 P J 6 
0 

Pi 
kT 

4TTr2dr 

R 
m 

r 0^.- (r )n 
exp 

PL 
kT 

4TTr2dr 

0 

where R denotes the radius of V and 0 .(r) denotes the potential func- 
m m Po¬ 

tion for the intermolecular forces between molecules of species p and i. 

Therefore, 



. 



wv-e» 
= O' +2tto \ r 

Rm T ^pi(r)1 
exPj^ " "rx J , 

x. a . \ --—r——d r 
1 1 J 4 

0 

P L, 
i 

m 

exp 
r 0 • (r)-n 

kT _ 
r dr 

0 

12 

(7) 

Because 0 -»0 as r-*00, there exists a value, b, of r such that exp 

is essentially equal to 1 for r>b, so that 

r_V'(r> 

R 
m 

r (r)n 
exp 

0 

i' ■ , iA . r 

”jr dr = 

0 

kT 

2 13 3 
r d r-hr( R -b ) . 

3 m 

kT J 

Hence, 

<^Pi-S)>i «P +2N“pI 

R 
m 

r 1 r ^pi(r)- 

xi“i ^ kT-. 
o r 

1,„3 3 r r 0pi 1 
T Rm”b ,+ H H 

0 

dr 

2. 
r dr 

(8) 

OD 

Thus, if \ 

0 

exp 
r 0^(0- 

kT 

4 
lr exists, then 

1 * / ^ A \ V _ ( ^ ) 

llm <3D(Ve)) P ’ v ~*a> r 
m 

where denotes the polarizability of an isolated molecule of species 

p. Therefore, the contribution to (—r°(ji -e)) due to the induced dipole 
oU pi 





13 

moments of the other molecules does not affect the above limit. It is 

reasonable to assume that the limit is the same even if the molecules 

have permanent dipole moments. It follows from this assumption and 

equation 5 that 

A 
4TfN 

3 3kT J’ 
P 

(9) 

where (i 
(0) 
P 

denotes the permanent dipole moment of a molecule of species p. 

THE SECOND DIELECTRIC VIRIAL COEFFICIENT 

FOR MIXTURES OF NON-POLAR GASES 

An expression for the second dielectric virial coefficient for a 

mixture of non-polar gases can be obtained by evaluating the limit on 

the right side of equation 6. It follows from equations 6 and 9 that 

B = lim V 

V ->» 
m 

m l 3 Lj p L<M(iIpl'S))‘Q;p0)+3M<^pl''2pl))J J’ 

since li/^=0 for non-polar gases. Using equation 8 to evaluate -e)) 
p pi 

vields 

R 
m 

x.a. 
1 1 

exp 0pi(r)i 
kT  

4 
dr 

B ,. T7 r 8ttn v 2 
B = lim V \ —-— )x a 

m L 3 
V ~>°° P P 

0 
+ 

m 
1 j(^-b3)+^exp 

0 

0„i(rh 

kT J 

2, 
r dr 

4TTN 

9kTLTpN^pl 
P 

2 2 
32TT N 

co r 0-(r)n 

X X.Q1 Ot. 
p 1 p 1 

exp^ ..ELL 
kT J 

4 

, . , . 4TTN „ 
dr+ lim ■ m V 

P i 
V 

m 

9kT m Ixp< 6 PrV»* (10) 3 

0 
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4TT 3 
since V ="^”R . The limit on the right side of this equation may be 

m J m 

different from zero for non-polar gases, even in the absence of an elec¬ 

trical field, because of the dipole moments induced in a molecule by the 

permanent quadrupole moments of other molecules. Assuming that all the 

molecules are cylindrically symmetric, then the dipole moment induced in 

a molecule of species p by the permanent quadrupole moment of a molecule 

of species i is given by (see Appendix A, p. 30) 

30. 

Qi 
P 5 r r 

“■(5cos^y -1 )-e ^rcosy , 

where r denotes the vector from the molecule of species p to the molecule 

of species i, e^ denotes a unit vector in the direction of the axis of 

cylindrical symmetry of the molecule of species i, y is the angle between 

the vectors r and e^, and is the quadrupole moment of the molecules of 

species i as defined in Appendix A. Thus, 

2 2 
9a 0. r 2 

^pl'^pl 
L 
10 

2 2 
—(5cos y-1) -(r-e)(5cos y-l)rcosy+r cos y 

_■ 

„ 2 2 
9a ©. 

p^i (5 41 2 1 
g ^--cos y-jcos y+£ 

Therefore, the contribution to ((P *5 )) due to the permanent quadru¬ 

pole moments of molecules of species i is 

R 
m TT 

n 22 C r 1 (5 41 2 1\ 
^ ^ ~8{7^os Y-^os Y+47exp 

r_0£i(r)n 

kT J 
r^sinydydr 

x .N ■ 
l 

0 0 

R 
m TT 

5 W 
o o 

»pi(r)- 

kT J 

2 
r sinydydr 
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Hence, 
R 

m r- t>Di<-*h 

kT  
exp 

dr 

«W 
!V n2 0 

3N<* )x.@. — 
p Z_, 11 R 

m 

exp 
»Pi(r)i 

kT J 
2, 

r dr 

0 

Because 0^(r)-*O as r-*00, there exists a value, b, or r such that 

exp 
r 0 . (r )n r ^pl ^ 

kT J 
is essentially equal to 1 for r>b, so that 

R 
m 

exp 
r 0 .(r)n 
r pi ' 

kT J 
2, 

r dr exp 
r 0 .(r)n 
r P1 n 

0 0 

kT J 
2 13 3 

r dr4r(R -bJ) 
3 m 

and, consequently, 

«vV> 
2 V 2 

3 No* )x.@. 
P O i i 

R 
m 

•exp 
r »Pi(rh 

kT J 
dr 

0 

J(Vb3)+ S exp 
0 

0Dl(r)- 
kT J 

2, 
r dr 

Thus , 

i . 4TTN. 
lim 

V ,^ „ 16TT2N2 V 

00 

V ~*co 
m 

9kT m Z_i px Vhpl ^pl 
d 

(0)' 
x.©2 

exp 
r 0 . (r)- 
r__£2_ 

kT . 

3kT Z_jpLp J Z-J i~ i _ 
p i 0 

4TL3 
since V =*= ^-R . It follows from this equation and equation 10 that 

dr, 
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B = 

2 2 
32TTN 

x x. a 
(0)' 

a. 
(0) 

3 LL p 1L p J l 

P i 

CO 

0 

exp 
kT  

4 
dr 

2 2 
16Tf N 

+ "v:'L. x x. 

00 

Qi 
(0)- 

3kT Z_i Z_i p 1L p 

P 1 

®i 

exp 
r 0 . (r 
' pi 

kT 
dr, 

0 

B = 
32TT2N2 Vx2' 

O' 
(oy 

PL p J 

3 
00 

i r ^pp^^ 
^exp dr 

0 

16TT2N2 V 2f (0) 

+ _3kT— 4xpL“ 

00 

2 
pL“p J®p^xp 

0 

1 r 0pD(r) 22. 
kT J 

dr 

32TT2N2 V (0) (0)r (0), coy 
+ ■ ■ > x x.a • a. a to) 

3 4_, p l p i L p iJ 

P<i 

00 

0 

r 0„-r (r)“i 

*xp I4L 
kT J 

dr 

2 2 
, 16TTN 

+ TEr- A xpxi 

p<i 

co 

(oy 
a 

«- p . 

_ (oy 2i r i 
©.+ oi: © r \ -T-exp 
i L i J pJ J 6 

0 
kT 

dr 
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B 

, —2.3. 
1011 JN 

CO 

(0) (0) 
x x.Or a; 
pip i 

(0)_^ (0) 
L P ;0>]\ 

ixp 
r 0 .(r)n 

kT J 
dr 

P i 0 

2 2 
8TT N 
3kT 

P i 

00 

coy 
Of 

L p . 
®.+ a: 

(oy 
;xp 

r 0 • (r )- 
121 

kT 
dr, 

0 

Therefore, 

B x x. B . , 
P i Pi 

(ID 

where 

B 

2 2 
16TTN (0) (0) 

cr : 
p i 

00 - 0 . (r 
pi 

r (0) (o)i 
a TCk'; 

- p 1 - 

n exp kT J 
J 4 

0 
r 

dr 

+ 
2 2 

8TT N 
3kT { Of 

(o y 
eiT°'i 

(oy 
© 

2 

CO 

0 

exp 
kT J 

dr 

The integrals in the above expression cannot be evaluated until the 

functional form of 0^^(i) is specified. Several forms have been pro¬ 

posed on the basis of various molecular models; the evaluation of the 

above expression is performed for some of them in the following sections. 

The models are considered in order of increasing complexity; generally 

speaking, the more complicated of these models are the more realistic 

ones . 
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THE RIGID ELASTIC SPHERE MODEL 

The rigid elastic sphere model considers the molecules as rigid 

elastic spheres which neither attract nor repel each other. The inter- 

molecular potential function for this model is 

c 0, for r>CT ., 

v>-{ , " co, for r<CT . , 
pi 

where a . = ■r(a +a.), and ct and c. denote the diameters of the molecules 
pi 2 p 1 p l 

of species p and i. For this model, 

B . 
Pi 

16TTV (0) (0) 
- .oi a: 

3 pi 

CO 

(o)(oy 
a '-Hx: 

L p i . 

dr 8TT2N2 f 
4 3kT l 

© . + Oi . 
,(0)' 

l J s 
a . 
pi 

dr 
6' 

Therefore, 

B . 
Pi 

16TfV (0) (0) 
Qi: ■ 

9a3. P 1 
Pi 

L p l . 
+■ 

2 2 
8JJ N 

15kTa' 
Pi 

2 
©.+ a. 

,(o y (12) 

POINT CENTERS OF REPULSION 

This model considers the molecules as points which repel each other 

with a force whi,Qh is inversely proportional to the distance between 

them. The intermolecular potential function for this model is 

As 6 -» 00 , 0 . 
Pi 

rigid elastic 

"softness" of 

0 . (r) = , d > 0, 6 > 0. 
P 6 

r 

approaches the intermolecular potential function for the 

sphere model, so that 6 is a measure of the "hardness" or 

the molecules. For point centers of repulsion, 



■ O'* • r- 1 
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B . 
pi 

2 2 
16TTN 

00 

O y°yo)r*(o vo)i c 
P 1 L P 1 J J 

0 

dr 

+ 
2 2 

8TTN 
3kT 

(oy 
a 

L p J '1 L l 

2T (0)1 
©..+! v) j dr 

T • 1 Letting y = — 
6/ 

it follows that 

B . 
Pi 

2 2 
16TT N 

3 

(0) (0) 
a o>; 

P i 

(0) (oy 
a ■ +ct; 

L p 1 . 

0 
r 

00 

exp(-yj 

4 

4 / d \6 

°pi\ kTy/ 

1_ 

l/_l_\6l dy 
FYkTyy' J y 

2 2 
8TT N f 

3kT 1 

2 
©.Hi a ,(oy 

0 

CO 

exp(-y ) 

6 

1 

6\kTy/ J 
dy_ 

y ‘ 

Therefore, 

B . 
Pi 

16TT2N2 (0) (0) 
~TT~~ m ■ ot. 
36 p l 

(o) (oy 
ot +ot: 

L P i . 
exp(~y)dy 

+ 
2 2 

80 

36 { y-0)' 
L P ■ 

© . + Ot . ' © 
(0)^21 /kT\6 

pi \ d) 
exp(-y)dy 

0 
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Thus, 

16Tf2N2 (0) (0) 
B . = -7-Q?v 'ct) 
pi o0 Pi WISf if) 

+ 
2 2 

8TTN ■f rff(o)i 
^ L p J 

2 

0 (13) 

x-1 
where r(x)= \y exp(~y)dy is the gamma function 

THE SUTHERLAND MODEL 

The Sutherland model considers the molecules as rigid elastic 

spheres which attract each other with a force which is inversely pro¬ 

portional to the distance between them. The intermolecular potential 

energy function for this model is 

,CT iv6 

-e , for r>o 
pi\ r / pi 

co for r<a . , 
P1 

where e .>0 and 6>0» As 6-* 00 5 this model approaches the rigid elastic 
pi 

sphere model, but 6 is a measure of the "strength" or "weakness" of 

the attractive force, rather than the "softness" or "hardness" of the 

molecules (c.f. , point centers of repulsion). The quantity repre¬ 

sents the maximum energy of attraction and is sometimes called the 

"depth of the potential well." For the Sutherland model, 
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B . 
Pi 

ibTT L (.0; (0; 
—-— or a: 

3 p 1 

00 

(OV (0)' 
0T 

L P 1 . 
G . 

PI 

+ 
2 2 , 

8TT N r 

3kT 1 

00 

Oi 
- P 

(0)' 

J ©.+ oi. ,(0)' 
®2} 

pJ 

a . 
Pi 

Letting y = it follows that 

B . 
Pi 

i^V°y°Vo>^o)] 
3 p i L p i J 

0 

J 

3 

7 exp(y) ct 
-4 

Pi 
Iel 
kT 

4 

6 
__ _£i 
6 A kT d 

kT 

2 2 
8TT N 

3kT 

r (0)' 
or 

L p , 
©.+ a: 

(oy 
5_ 

y6exp(y) cr^ 

Therefore, 
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„ 167T2N2 (0) (0) 
B . = —r— 'ot: 

P i 

(O^COJY!^ a' +a. 
- P i kT / 

Pi 
kT 

0 

y6 exp(y) dy 

+ 
8TT2N2 { 

r (o)i 
O' 

2 
©.+ 

r (o)i 
Qi . ®2} 

l L P - l 1 J - Pj. 

36 a . kT 
pi 

e • \ 
-£±) 
kT/ 

_P1 
kT 

0 

y6 exp(y) dy 

The integrals in the above expression can be evaluated by expanding exp(y) 

in a power series, with the results that 

lei 
kT 3 tt 1 00 

^ y6 exp(y) dy = ^ 

0 

e . 
_E1 
kT 3 

y 

n=0 0 

n 

dy 
n ’ ^ 

00 

n 

e .v 6 

kT/ 

+n 

/3 \ ’ 

=0 V5T/n* 

and 

e 4 

kT 5 

Y exp(y) dy = 

0 

00 kT 

y 

n=0 0 

Y 
n 

n 

dy = 

oo 

n 

kT 

r+m 
o 

( 5 
= 0 V6 

+n n! 

Thus , 



. 



23 

B . 
pi 

2 2 
167T N 

3 
30 <J . 

PI 

3 

(0) (0) 
cy oi; 

P i 
cy (0) 

P 

00 

n=0 

+ 
18TT2N2{ [V0)l @ 2J (0)1 

.-H cy; @2} l L p J i L i J 

36 ct5 . kT 
pi 

5 

n=0 

(14) 

THE LENNARD-JONES (12-6) MODEL 

The Lennard-Jones model essentially combines the Sutherland model 

with point centers of repuls ion. According to the Lennard-Jones model, 

the molecules attract each other when the distance between them is 

larger than their collision diameter, ct and they repel each other 

when this distance is less than ct .. The intermolecular potential 
pi 

function for this model is 

0 . (r) 
pi 

= 4e 
/O .\12 ,q . v6~, 

i' 

piL 
J-2L 

7 pi 
>o 

6/ 

6/ Exponents other than 12 and 6 can be used with this model, but 

these are most common. 

As in the Sutherland model, e . represents the maximum energy of 
Pi 

attraction: the maximum attraction occurs when r = ct . /"?• For the 
Pi 

Lennard-Jones (12-6) model, 
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B . 
P1 

16Tr2N2a,(0)Q.(0) 
3 p i 

(0), (0)' 
4. 

L p i . 

exp 
r- /CT 

_£i. 
12 a .v6- 

i 

dr 

2 2 
8TTN 

3kT 

CO 

(oy 
a 

L p - 

' 2 
0.4 
l 

■ (oy 
a: 

i 
© 

exp 

0 

-4e . 
El 

kT 
dr. 

Letting x = it follows that 

16TT2N2 (0) (0) 
B . = —-—• or 'a: 
pi 3 p 1 

0 

(cn (oy 
ot 4ey; 

L P 1 . 

exp 

CO 

/ 6 . \ 2 “t'- 

•x+2(m^) x . 

/ /4e -\ 

T4 (_£i, 
pi\ xkT J 

12 

*0" .\/4g .<.12 , 

-E±V_Ei.) dx 
12 A xkT / x 

4 

2 2 
8TT N 

3kT i Qi 
(o y 

0.4 a 

pi\xkT 

,4® -AA 
rj p1/ dx 

12/V xkT/ x 

Therefore, 
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B . 
pi 

2 2 ATI'^’V4' *-ni iN 

9cr' 

(0) (0)f (0), (0) 
o/; av +a; 

P i L P i 

pi 

3 
"4 
x exp -x+2 

(kF 

ii 9 _ 

•) ^2] dx 

Letting y it follows that 

B 4tt2n2 (o) (or (oi (o) 
B . = —-—a ot: a -k*: 

3 p i L p i pi 9 o' 
7 

1 
2 

00 

4 / 2 
x exp(-x)•exp( x y )dx 

Pi 0 

2 2 
2TT N 

gkTa^. 
pi 

©.+ a. 
i 

(0 )■ 

5 =o X 1 
"6 r "i2 , . 
y \ x exp(-X)» exp 

0 

The integrals in the above expression can be evaluated by expanding 
l 

exp^x^y^ in a power series, with the results that 



■ 



26 

and 

00 00 00 

^ x4exp(-x)°exp(x2y) = ) ^ 
J 
0 

T (x2y) 
x —7T~ n o 

n 

exp(-x)dx 

n=0 0 

00 

n 

h\ 

n=0 0 

oo (2n-3 

x exp(-x)dx 

CO CO 

^ x12exp(-x)-exp(x2y)= ^ 

JL 
12 

x 

( 2 \n 
lx y) 

n. 
exp(-x)dx 

0 n=0 

00 CO 

n n 

n=0 0 

x 

6n-7 

12 
exp(-x)dx, 

Hence, 

41T2N2 (0) (0) 
B . = —— a a: 

1 CO 

pi 9a3. p 
PI 

i L p 

' (OV (0)' 
a : 2 V xl r/ 2n+l ^ 

n=0 

+ 
2 2 

2Tf N 

9kTa" 
pi 

' 2 f (0)' 
©.+ a: ' 

L L 1 

5 oo 

n=0 

(tt). 
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where r is the gamma function, as before, 

term in this expression can be written as 

1 

/e i\2 
Since y = 2, the second 

rrV { r (o)i O’ 
2 

®.+| 
r (o)i 

0i ) ®2} l L p J l LX- pj 

18e .ct^. 
pi. pi 

7 » 

n=0 

6n+5\ 
12 J ' 

Thus , 

w 4TT2N2 (0) (0) 
B . = —7- a oi) 

3 p i Pi- Pa' 

' (0V (0)“ oiv +a: 
- p t . 

y 

i 
'2 

03 

n 

n l 
r 2n+l 

4 

pi n=0 

1T2n2 { r (o)i Qi 
2 

®.-H 
r (o)i 

0i) 
2\ 

® r 
L p .J l 1 J pj 

18 e . qj . 
pi pi 

7 00 

n=0 

r / 6n+5 

V 12 
(151 

SUMMARY 

The prediction of the first and second dielectric virial coefficients 

for gas mixtures from molecular theory requires a knowledge of the follow¬ 

ing molecular properties: (1) the polarizability, 0i^\ and the permanent 

dipole and quadrupole moments, and © , of an isolated molecule of 
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species p of the mixture, and (2) the intermolecular parameters for the 

particular model used. The intermolecular parameters and permanent 

dipole and quadrupole moments can be determined from experimental PVT 

data or transport property data (3^,7^). Experimental dielectric data 

can be used to determine and by means of a curve fit of the 
P P 

form given in equation 9 to a plot of A vs T. Then B can be predicted 

by using these values for o/^ and the values for © and the inter- 
P P 

molecular parameters determined as mentioned above by means of equations 

12, 13, 14, or 15o It is also possible to determine the values for ©^ 

and the intermolecular parameters from experimental dielectric data by 

means of a curve fit of the form given in equations 12, 13, 14, or 15. 

7/ 
to a plot of B vs To A Mathatron— program for the prediction of B 

7/ Specific trade names used are given for information only and do 

npt imply endorsement by the Bureau of Mines, 

using equation 15 is available at the Helium Research Center, and an 

IBM 1620 program for the determination of the values for ©^ and the 

intermolecular parameters by means of a curve fit of the form given in 

equation 15 to a plot of B vs T is available at the Helium Activity 

Branch of Automatic Data Processing, 
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APPENDIX A 

A molecule can be considered as an assembly of 2m point charges, 

m of which have an elementary positive charge, e, and m of which have an 

elementary negative charge, -e. The positions of the positive charges 

can be specified by m vectors: r^, r^, r^,‘*’,r , and the positions of 

the negative charges can be specified by m vectors: "r^^, r > ^+3, 

14 

*'•, r2m- The center of positive charge is specified by the vector: 

m 

r+ = m V 
i=l 

and the center of the negative charge is specified by the vector 

2m 

l 
m 

r. 
1 

i=m+l 

Letting T = "r -r , it follows that 

m 2m 

mer = e( IV I ~i) 
i=l i=m+l 

m 2m 

i=l i=m+l 

2m 

i=l 
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where 

e, if l=i=m 

e, if m+l=i=2m. 

2m 

The vector |jl = I q^r^ is called the dipole moment of the molecule; 

i=l 

as shown above, it is equal to the product of the total positive charge 

and the vector £ , which represents the displacement of the center of 

positive charge from the center of negative charge. 

The concept of a simple dipole is useful in visualizing the electri 

cal properties of the molecule which arise from the fact that it has a 

dipole moment. A simple dipole consists of a positive point charge, q, 

and a negative point charge, -q, which are separated by a distance, d, 

which is of the order of molecular dimensions. If q = me, d = PC I - -t, 

and the charges q and -q are located at the centers of positive charge 

and negative charge, then the dipole moment of the simple dipole is 

qr +(-a)r = me( r -r ) 

so that the dipole moment of the simple dipole is identical to the 

dipole moment of the molecule. 

The electric field due to a simple dipole can be derived as follows 
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U(r) = electrostatic potential 

at r due to dipole r 

2+\-a-Z) 

and, similarly, 

then 

U(r) = 1 
r { 1+ l -4(r^) 

l 
,2 

4r ]{ 1+ 
£ +4(r.£ 

4r2 

1_ 
'2. 

2]} 
Expanding the right side of this equation by using the binomial series 
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yields 

2 

fFM1 

2 
-4(r^)j 

4r 

•1+: 
^2+4(r 

4r" 

•7)1 3 r- ̂ 2+4(?.7r2 

4r' 

+ 

provided -1< 
•t -4(7-7) 

4r" 

—♦ —t X 

<1„ Hence, U(r) = for r»t . 

The electric field due to the simple dipole is given by the 

expression, 

-grad U(r) 

where i denotes the unit vector from the center of charge in the direction 

of 't, j and k denote unit vectors which are perpendicular to each other 

A 

and to i at the center of charge, and x, y, and z denote the components 

^ ss. 
of r in the directions of i, j, and k. Thus, 

-grad U< 
•f 1 5(r^) 3(r»E) Sri A r 1 S(r.|i) 3(r-u ) Sri 

L 3 Sx . 4 Sx_ "j L 3 3y 4 Sy_ 

S(r-|i) _ 3(r-u) 

Sz r4 

Sr 

Sz_ 

= -3-^5^ ^ (ix+jy+kz) 

r 

1 (>'. ^ A \ 
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j A 

where jjl , p, , and |l denote the components of |i in the directions of i, 
X y Z y 

A A 

j, and k. Therefore, 

, TT/-X 3(?-u)r U 
-grad U(r) = ■■ - — . 

r r 

If a simple dipole is subjected to a uniform electric field, D, then 

its potential energy becomes a function of its orientation with respect 

to the field. This can be seen from the following considerations. 

potential 

This expression is also valid for the potential energy of the molecule 

when it is subjected to a uniform electric field.—^ 

_1 / Debeye, Polar Molecules, p. 27. Dover Publications, Inc., New York, 

N. Y., 1929. 

The electric field due to the charge distribution of the molecule 

can be expanded into a series, the first two non-zero terms of which are 

the contributions to the electric field due to the dipole and quadrupole 



■ 'f 
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V •• ' ■ ' • • .i \ 

: if 

'••••' ' - ■ • |- J, 

•• 



35 

2/ 
moments of the molecule.- The quadrupole moment of a cylindrically 

2/ Reitz, J. R., and F. J. Milford, Foundations of Electromagnetic 

Theory, pp. 39-41. Addison-Wesley Publishing Co., Reading, Mass., 

2nd ed., 1967. 

symmetric molecule can be shown to be identical to the quadrupole moment 

of a simple quadrupole, which consists of a positive point charge, 2q/, 

and two negative point charges, -q', which lie on a line containing the 

positive point charge and are located at equal distances from it, as 

shown below 

U(r) = electrostatic potential 

at r due to quadrupole 

= ill. q' _ q7 
/r7 /r + d/ It - cf/ 

Because /r/ = V r-r = r, /r+3/ = V (r+d) • (r+d) , and /r-d/ = \!(r-d) • (r-d)~. 

then 

U(r) 

\[(t-t) 2(r*d) + (d*d) 

q / 

+ 2xd + d‘ - 2xd + d2 
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' i *=4 —* 

where d = /d/ = v d d, and x denotes the component of r in the direction 

of d. The second and third terms on the right can be expanded into series 

as follows 

q 

r 
1 + 

2xd + d' 

l 
-.2 

2 , 2 
r + 2xd + d 

t 

1 - -r 
2xd + d‘ + pEd_+_di) + 

. - /~2xd + d N\ r. • • i i 
provided -1 < r-~—I < 1, Similarly 

r 

/ / 
q 
r 

1 - 
2 

2xd + d 

2 2 
d - 2xd\ 

V + 

provided -1 < (~—< 1« Hence, 

U(r) 
3 

4 
+ 

2 2 

4-¥~ 
r 

+ 

3x 

Thus , 

U(r) 
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whenever r » d. The quadrupnle moments of simple quadrupoles and 

cylindrically symmetric molecules are usually represented by a scalar 

quantity, ©, even though the quadrupole moment is itself a second-order 

2 
tensor. For the simple quadrupole, © = -2q 7d . Therefore, 

U(r) = 
(~ 2 2 

2r 
5 V 

3x - r 

The electric field due to the simple quadrupole is given by the expression. 

•grad U(r) = 
: au : au r au 

+ J a7 + ka^ 

where i denotes the unit vector from the center of charge in the direction 

r—4 A A. 

of d, j and k denote unit vectors which are perpendicular to each other 

A 

and i at the center of the charge, and y and z denote the components of r 

in the directions of j and k. Using the above expression for U(r), 

■grad U(r) ■a- r;, 6x 
2r 5 L1 

2r 
a. y g 
i 2r ° ~ - k • 2r ■ ~ 

r r 

+ -&■ M2 - r2) 1 ~ + J • X + k • ^ 
2r6 V Mr 

fa o7J\ , 5©_ 
5 - 3ix) + 76 l3*2 -r2) (£ 

r 2r 

J. 
5 

, i j. 15x 
r11 + ~r ' zj 

2 r 

3ix 

3© 

5 

r /5x 

2 \ 2 
r 

- IX 
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For the consideration of contributions to the electric field due to 

an arbitrary charge distribution in ascending orders of multiple moments, 

refer to Jackson, J„ D , Classical Electrodynamics, Chapter 4, John Wiley 

& Sons, Inc., New York, 1963. 
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APPENDIX B 

The polarizability, of an isolated molecule of species p is 

defined by the equation, 

' = c/°>3 

where u/ denotes the dipole moment induced in the molecule by a uniform 
P 

weak electric field, D. The polarizability, 0^, of a molecule of species 

p in the presence of other molecules is defined by the equation, 

|l = Oi F, 
P P 

where |i here denotes the dipole moment induced in the molecule by a 

weak local electric field, F, at the molecule. If all the molecules 

are subjected to a uniform weak electric field, D, then 

F = D + E/ , 

—¥ 

where E' denotes the electric field at the molecule of species p due to 

the dipole moments of the other molecules. Because u/ is a function of 
P 

the other molecules, which are in turn functions of the total dipole 

moment, a complex interaction situation arises. 

Consider the interaction of the induced dipoles of two non-polar 

—* 

molecules in the presence of a uniform weak electric field, D. If the 

distance between the molecules is large compared to molecular dimensions, 

then the equations describing the interaction are 
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—* —* —* 

M, = Of [D + E' .] 
pq p ijj 

and 

M* . . = or.[D + E' ], 
ij iL pqJ 

where . and E' denote the electric fields due to the dipole moments 
ij pq 

of the molecules of species i and p. Using the expression derived in 

Appendix A for the electric field due to a simple dipole, 

= d 
pq p 

o /"* ^ \r~* 3(r.. )r 
B + —-UJ... 

r 

tiT 
3 . 

and 

LL . . = Or. 
IJ 1. 

D + 

3 (r •(! )r - 
pq pq 

where a and a. denote the molecular polarizabilities for species p and 
pi 

-mm} 
i and r denotes the vector from the molecule of species p to the molecule 

of species i. These equations can be solved for and p. by first 

" mi 

solving for (r-u ) and (ru..) and then substituting these expressions 
pq ij ° r 

into the equations. It follows from the first equation that 

r *M< 
pq 

= Qi 
P L 

(r 0) + 

3(r-jj, . )(r-r) (r »u,. . )-, 
Lln 

3 

Qt 

2 (r "|i. . )n 

(r D) + --UJ- 
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Similarly, 

(r-ll . . ) = a. (r-D) + 
ij i L 

2 (r - jj, ) 
pq 

-] 

Solving these two equations for (r°lJ'pq) and (r' (JL ^ ^ ) 

(r “(jl ) 
Ppq 

-* / 2a . 

Vr‘DV + "T" 
r 

a a. 

- 4 -£-rL 

and 

(r “|i. . ) 
'ij 

a..(r*D)^l + 

2a; 

1 - 4 

a a. 
P i 

Substituting these expressions into the original equations yields 

2a 

3a a. ( r ° D ) (1-1 — 

^p 
LL +“TLL.. = aD + 

pq r3 p 

p i 

5 ( Vi 
r l1 - 4 — 

r 

and 

^ ^ —* 

|i . . + “ |i 
iJ r3 rpq 

a.D + 
i 

2a, 

3a a. (r°D)( 1 + -r 
pi \ 3 

r 

r^ ( 1 
a a 

4 
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Solving these equations for ll , 
pq 

—* ( 
a D ( 1 

P ' 

O'. 
1 

3a a 
P 

.(r-D)^ 

a 

i + -4 
a a., 

M- pq a a 
+ 

r^ ( 1 

a a. 
E i 

a a.K 

- 4 -V- 

This expression for ll has singularities at r = foToT. and at 
pq Pi 

r = 2 J~a a. • Because Ja a. is of the order of the volume occupied 
p i p l 

by a molecule,these singularities occur when the distance between the 

1/ See section 5~2 of Reitz and Milford, loc cit. 

mo lecules is of the order of molecular dimensions; therefore, the singu-r 

larities can be attributed to the breakdown at these distances of the 

expressions for the fields due to the dipole moments of the molecules. 

Thus, the singularities are artifical; they can be removed by expanding 

_ 1 
the expressions for p, ^ into power series " and truncating these series 

appropriately. Since an average, involving (ppq“e) is needed rather than 

^ ^ A 

p, ^ itself, a simpler procedure is to average ((i^"e) over all possible 

orientations of the two molecules and then to expand the resulting 

expressions into series. Using the above, expression for p,, 
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(|JL • e) 
Ppq 

f ol.k f a ot oi.k „ 
V l1 ' ~v 3c,PaiD v1 + *2 -tjr)cos e 

1 - 

ot ot. 
P i 

+ 

1 - 

a a. 
JLJ. 1 - 4 

ot a. 
p i 

where |3 denotes the angle between the vectors r and 15. Averaging this 

A 

expression over all possible orientations of r with respect to e yields 

^pq 6^av 

a D 
P 

z ot.s / a oi ot.s 
(l - -i) Vl D (l + - 2 -V) 

a a. 
iJLJ. 

+ 

r3 [1 

oi a. 
£JL 1 - 4 

ot Oi . 
. R.1 

(II -e) 
vppq av 

Oi D 
P 

cy ± 

6 
r 

ot a, 
1 + 

f «i 
1 + 2 -~ 

r 

\1 - 4 

O' Oi. 
p 1 

Expanding 
Oi Oi 

Oi. 

1 + 2 t 

and 

1-4 

oi a 
JL-L 

into power series in — and 

performing the indicated multiplication yields 

-e) 
pq av 

Oi D 
P 

1 + 2 
O' a. 

-V-+ 2 D 
r 

2 
0! Oi . 

_E_1 + 

(J * e ) 
*pq av 

, Oi Oi. 

%D (x + 2 -V 

Thus, 
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A 

t 

« 

2 
2a. a D 

The term —■ represents the component in the direction of D of 

r 

thp dipole moment induced in the molecule of species p by the dipole 

moment of the molecule of species i, and it is therefore a dipole-dipole 

2/ 
interaction term. Even when D=0, a similar term can arise.— The effect 

2] See Section 1.3 of Hirschfelder, J. 0., C. F. Curtiss, and R. B. 

Bird. Molecular Theory of Gases and Liquids. John Wiley & Sons, 

Inc., New York, 1954, 1,249 pp. 

of the dipole-dipole interaction term on the potential energy of phe two- 

molecule configuration when D=0 is included in the intermolecular poten¬ 

tial energy function, 0^^(r), for the two molecules. The effects of 

dipole-dipole interaction terms on the total potential energy of the N- 

molecule configuration when D=0 are included in the intermolecular 

potential energy function, V(t), for the configuration t* If the dipole- 

dipole interaction term for D^O is neglected, the total potential energy 

for the configuration is approximately V(t) (ll . . -D), since the ij 
i J 

potential energy of interaction of [j, with D is equal to -(p,_-D), as 

shown in Appendix A. However, if the dipole-dipole interaction term for 

D^O is included, the expression for the total potential energy is much 

more complicated. Perhaps a better approximation to the total potential 

energy would be V(t) - ^ since E includes the polarization 

_* i j 
effects of Do Although this approximation yields an expression for 

i iwy 

(|i ) which is different from the one derived in the text, the resulting 
pq 

v 

expressions for A and B are the same for both approximations. 
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