ROBINSON'S

VEWGEOMETRYETRICONOMETRTH
Coconio shotions ANALYTIOAL GEOMETR R

1053
Eut Fety $10.185=$
Sefositic March 28.1862

K E Y

To

ROBINSON'S

NEI GEOIETRY AND TRIGONOMETRY,

CONIC SECTIONS AND ANALYTICAL GEOMETRY.

> WITH

SOME ADDITIONAL ASTRONOMICAL PROBLEMS.

DESIGNED FOR TEACHERS AND STUDENTR.

NEW YORK:
PUBLISHED BY IVISON, PHINNEY \& CO., 48 \& 50 WALKER STREET. CHICAGO: S. C. GRIGGS \& CO., $39 \& 41$ LAKE ST.
NF $=$ In ep $23 / 62$
ROBINSON'S

Abstract

The most Complete, most Practical, and most Scientific Series of

 Mathematical Text-Books ever issued in this country.(IN TWENTY VOLUMES.)

I. Robinson's Progressive Primary Arithmetic, 15
II. Robinson's Progressive Intellectual Arithmetic, 25
III. Robinson's Rudiments of Written Arithmetic, 25
IV. Robinson's Progressive Practical Arithmetic, 56
V. Robinson's Key to Practical Arithmetic, 50
VI. Robinson's Progressive Higher Arithmetic, 75
VII. Robinson's Key to Higher Arithmetic, 75
VIII. Robinson's New Elementary Algebra, 75
IX. Robinson's Key to Elementary Algebra, 75
X. Robinson's University Algebra, - 125
XI. Robinson's Key to University Algebra, 100
XII. Robinson's New University Algebra, (in press,)-
150
XIII. Robinson's New Geometry and Trigonometry,
XIV. Robinson's Surveying and Navigation, - 150
XV. Robinson's Analyt. Geometry and Conic Sections, - 150
XVI. Robinson's Differen. and Int. Calculus, (in preparation,) - 150
XVII. Robinson's Elementary Astronomy, 75
XVIII. Robinson's University Astronomy, 175
XIX. Robinson's Mathematical Operations, 225
XX. Robinson's Key to Geometry and Trigonometry, Conic Sections and Analytical Geometry, - - - - 100

PREFACE.

A Key to a Text-book on the Higher Mathematics, if not a new creation, is by no means a common thing. And it is a question undecided in the minds of many, whether a Key to any mathematical work is an aid, or a hindrance to the teacher.

The value of a Key depends upon the use to which it is applied. Class, and school-room duties so fully occupy the time of a majority of teachers, as to make a Key a great convenience, if not a necessity. And teachers of limited acquirements, as well as private students, will often find a Key of great service.

A Key should never be used to supersede investigation and labor, but to give direction to study, and make labor more effective. It should lessen the mechanical labor of teaching, by showing how to study, and how to teach, by giving the best forms of analysis, the best arrangement of the work, new and improved methods of operations, and often by developing methods of solu-
tion too elaborate to find a place in the Text, thus giving to those who use a Key, more extended and enlarged views of the applications of Mathematical Science.

In the preparation of the present work, great care has been taken to give full and comprehensive solutions of the examples and problems in Robinson's Plane and Solid Geometry, Plane and Spherical Trigonometry, and Analytical Geometry, and by means of cuts, more fully to explain and demonstrate the principles involved, thus making it a sort of commentary on the Text itself, and which in the hands of a good teacher may prove a valuable auxiliary in teaching.

Several pages of miscellaneous Astronomical examples have been added after Trigonometry. As soon as the New Calculus and Surveying, which are in preparation, are completed, a Key to those works will be also added to this.

KEY TO
 ROBINSON'S
 NEW GE0METRY AND TRIG0N0METRY.

PRACTICAL PROBLEMS.

(Book V.-Page 143.)
Ex. 1. The vertical angle being 60°, and the sum of all the angles being 180, therefore the sum of the other two angles, is 120°, and, as these angles must be equal to each other, each one must be 60°, and the triangle is equilateral as well as isosceles. Each side is therefore equal to the base 6 .

Ex. 2. As the two oblique angles of any right angled triangle equal 90°, and as one of them is 30°, the other must be 60°. Describe an equilateral triangle, each angle of which will be 60°. Divide either angle into two equal parts, by a line which will divide the opposite side into two equal parts, and the triangle into two equal triangles. The least angle, in either of these triangles is 30°, and the side opposite 30° will be half of the hypotenuse, and this is a general truth. Namely, That in every right angled triangle whose least angle is 30°, the side opposite that angle is one-half of the hypotenuse.

Therefore, if in this example the least side is 12 , the hypotenuse is 24 .

Ex. 3. Let $A B, C D$, represent two parallels, and $A C$ the perpendicular distance between them, equal 10. Take $A D$, in your divides, double the distance $A C$, and strike an arc, cutting $C D$ in D. Join $A D$, and the angle $A D C$ will be equal to 30°, because $A C D$ is a right angled
 triangle, and its hypotenuse double the side $A C$ (By Ex. 2). But $D A B=A D C$, being alternate angles, and because $D A B=30^{\circ}$, its adjacent angle is $180^{\circ}-30^{\circ}=150^{\circ}$.

Hence the answer must be 30° and 150°.
Ex. 4. We may use the same parallels as in (Ex. 3), to illustrate this example. Let $A C=20$, take $C D=20$, and join $A D$, and then will $A C=C D$, and $A C D$ will be an isosceles triangle, and the angles $A D C$ and $C A D$, equal to each other. Their sum must be 90°, therefore each one of them must be 45°. Now as $C A B=90^{\circ}$, and $C A D=45^{\circ}$, therefore, $D \cdot A B=45^{\circ}$, and $D A E=90^{\circ}+45^{\circ}=135^{\circ}$.

Because $\overline{A C}^{2}+\overline{C D}^{2}=\overline{A D}^{2}, A C=20$,

$$
\overline{A D}^{2}=800=400 \times 2 . \text { Whence } A D=20 \sqrt{2} . \quad \text { Ans. }
$$

Ex. 5. Let $D E$ be one parallel, and $A B$ a perpendicular to the other parallel. Take $B E=$ $B C$ and $B D$ any distance greater than $B C$. Assume $A D=15, A C=$ $A E=10$, and $A B=8$. Now, by the well known property of the right
 angled triangle, we have
$C B^{2}=\overline{B E}^{2}=\overline{10}^{2}-S^{2}=6^{2}$. Whence, $C B=6=B E$.
Also, $\overline{D B}^{2}=\overline{15}^{2}-8^{2}=23 \times 7=161$
Whence, $D B=\sqrt{161}=12.69$, and $D E=18.69$ and $D C=6.69$ Ans.

Ex. 6. This problem is the same as (Ex. 5,) except in data, therefore use the same cut as before.

Make $A B=12, A D=20, A C=A E=18$.
Now, $\overline{B D}^{2}=\left(\overline{20}^{2}-\overline{12}^{2}\right)=32 \times 8=16 \times 16$. Whence, $B D=16$.

$$
{\overline{C B^{2}}}^{2}=\overline{B E}^{2}=\overline{18}^{2}-\overline{12}^{2}=30 \times 6=180 . \quad C B=13.416 .
$$ $\left.\begin{array}{l}\text { Sum, } D E=29.416 \\ \text { Diff. } D C=2.584\end{array}\right\}$ Ans.

$\left.\begin{array}{l}\text { The area of the triangle } A D E=(29.416) 6=176.496 \\ \text { The area of the triangle } A D C=(2.584) 6=15.504\end{array}\right\}$ Ans.

Ex. 7. This example produces a right angled triangle, the hypotenuse is 6 , and one side 2 , one half of the chord. Therefore the other side is,

$$
\sqrt{6^{2}-2^{2}}=\sqrt{32}=4 \sqrt{2} . \quad \text { Ans. }
$$

Ex. 8. The two parallel chords being equal, they must be equally distant from the center, and be on opposite sides of the center.

Let $A B, C D$, be those paralells ; and from the center draw $O B, O D$; and $O E, O G$, each perpendicular to $A B$, and $C D$; then $E O G$, will be one right line through the center. $E G=6$, therefore $E O=3$. $A B=8$; hence, $E B=4$; and in the right angled triangle $E O B$, we have $\overline{O B^{2}}=4^{2}+3^{2}=25$. Whence, $O B=5$. Ans.

Ex. 9. This is a problem of the same kind as (Ex. 8,) and therefore we may use the same cut.
Let $A B, C D$, be the parallel chords. Put $A B=16$,
$C D=12$, and $E G=14$. Place $O B=O D=R, E O=x$, $O G=y$. Then $E G=x+y=14$, or $y=14-x$.

$$
\begin{array}{ll}
\text { And } & x^{2}+8^{2}=R^{2} \\
\text { Also } & y^{2}+6^{2}=R^{2}
\end{array}
$$

Whence $x^{2}+8^{2}=y^{2}+6^{2}=(14-x)^{2}+6^{2}$

$$
x^{2}+28=\overline{14}^{2}-28 x+x^{2}
$$

Or $28 x+28=\overline{14}^{2}$

$$
2 x+2=14, \text { or } x=6 . \quad \text { Whence } y=8,
$$

And $R^{2}=8^{2}+6^{2}=100$, or $R=10$. Ans.
Ex. 10. Let x represent the perpendicular required, which is the perpendicular drawn from the vertex of an isosceles triangle to the center of its base.

Then $x^{2}=15^{2}-5^{2}=20.10=2(10)^{2}$, or $x=10 \sqrt{2}$. Ans.

Ex. 11. Let $A B C$ be the triangle, bisect $C B$ in $E, A C$ in F. And join $A E$ and $B F$, and through the point of intersection O, draw $C O$, and produce it to D.

Because $C B$ is bisected in E, the triangles $A B E$ and $A E C$
 are equal. Or the triangle $A E C$ is half the triangle $A B C$.

In like manner, we prove that the triangle $B F C$ is half $A B C$, because $A C$ is bisected in F. But $B O C$ consists of two equal triangles, $B O E$ and $E O C$, each of which may be represented by b, and $A O C$ consists of the equal triangles, $A O F$ and $F O C$, each of which may be represented by a. Therefore $B F C$ consists of $2 b+a$, and $A E C$ consists of $2 a+b$. Whence, $2 b+a=2 a+b$. That is, $\quad b=a$.
Now it is obvious that, $B F C$ is equal to three triangles, each equal to a, or each equal to b.

Hence, the triangle $A F B$ must be equal to $3 a$, and $A O B$ equal to $2 a$. But the triangle $A B C$ is equal to $6 a$. That is, $A O B$ is equal to one third of $A B C$.

Or, $6 a$ to $2 a$ as 3 to 1. Ans.

Ex. 12. If the diameter of a circle is 32 , its radius is 16 . Hence, $C B=16, C A=16$, and we have two right angled triangles, $C G B$ and $C D A ; G B=10$,
 half of one chord, and $A D=4$, half of the other paralle] chord.

Now, these two right angled triangles give us

$$
\begin{aligned}
& \overline{C D}^{2}=\overline{16}^{2}-4^{2}=20 \times 12=240, \\
& \overline{C G}^{2}=\overline{16}^{2}-\overline{10}^{2}=26 \times 6=156,
\end{aligned}
$$

Whence

$$
C D=\sqrt{240}=15.49+
$$

$$
\text { And } \quad C G=1^{\prime} \widetilde{156}=12.49+
$$

Diff. $=D G=3$, if the parallels be the same side of the center, but when on opposite sides, their sum 27.98 will be the distance between the parallels.

Ex. 13. Here $C D=12, A B=8, B D=5$. Conceive $C A$ and $D B$ produced until they meet, thus forming a triangle of which $A B$ is the base. Also conceive a line drawn from the vertex of this triangle perpendicular
 to the base, and designate it by x.

Now by proportional triangles, we shall have,

$$
x: 8:: x+5: 12
$$

$$
\text { And } \quad 12 x=8 x+40 . \text { Whence, } x=10 \text {. }
$$

The area of the triangle on $A B$ as a base, is therefore
$4 x=40$. The area of the trapezoid is $\frac{12+8}{2} \times 5=50$, and the area of the whole triangle on the base $C D$ is 90 . Ans.

Ex. 14. Let $A B C$ be the triangle $A B=697, A C=813$, $C B=534$.

Now by (Th. 24, B. II.), we have
$A D: D B:: 813: 534$
271: 178
Whence, $178 A D=271 . D B$. And $A D+D B=697$ $178 A D+178 D B=697 \times 178$
That is, $\quad 271 D B+178 D B=697 \times 178$
$449 B D=697 \times 178$ 697×178
$B D=\frac{}{449}$
$\left.\begin{array}{l}\text { Thus we find } B D=276.316 \text {, the less part. } \\ \text { Whence } A D=420.684 \text {, the greater part. }\end{array}\right\}$ Ans.
Examples 15, 16, and 17, solutions in text-book.

Ex. 18. By referring back to (Ex. 15), we observe, that $H C$ must be taken from $D H$. But $D H=\sqrt{51}$, and $H C=\sqrt{40}$, hence if $H C$ were taken from $D H$, the point C from D would then be $(\sqrt{51}-\sqrt{40})$. But $A D=16$. Whence, according to this condition,

$$
\begin{aligned}
\overline{A C}^{2} & =(\sqrt{51}-\sqrt{\overline{40}})^{2}+\overline{16^{3}} \\
& =91-2 \sqrt{2040}+256=347-2 \sqrt{2040} . \\
\text { Or, } \overline{A C}^{2} & =347-2 \sqrt{2040}=347-90.332=256.668 .
\end{aligned}
$$

$\left.\begin{array}{l}\text { Whence, } \quad A C=16.021 \\ \text { Area of the triangle is } \frac{1}{2}(9 \sqrt{51}+7 \sqrt{40}) .\end{array}\right\}$ Ans.

Ex. 19. Let E be the position of the observer's eye, $E F=40$ feet, $F H=24$ feet, $E D$ the required distance which we designate by x, and $D B=$ 90 rods, which must be reduced to feet thus

$$
90 \times 16 \frac{1}{2}, \text { or } 45 \times 33
$$

Now by proportional triangles $E F H, E D B$, we have, 40:24: : $x: 45 \times 33$
Or, $10: 6:: x: 45 \times 33$ or, $6 x=45 \times 330$

$$
2 x=45 \times 110
$$

$$
\text { or, } \quad x=2475 \text { feet. Ans. }
$$

Ex. 20. Illustrated in text-book.

Ex. 21. Let $A B C$ be a triangle divided into two parts by the line $D E$, parallel to the base $A B$.

Let $C D E$ be taken, as 1 , and the other part $A B D E$, as 3. Then the whole triangle $A B C$ will be represented by 4 , the triangle $C D E$, being unity.

Now by (Th. 22, B. II.), we have,

$$
\overline{C D^{2}}: \overline{C B}^{2}:: 1: 4
$$

Square root, $C D: C B:: 1: 2$.
Whence $C B=2 C D$, or $C D$ equals one half of $C B$, and therefore $C E$ equals one half of $C A$.

Ex. 22. Let the last triangle represent the triangle in this example also. That is, place $A B=320$, and as the angles adjacent to the base are 90° and 60°, the angle opposite at C must be 30°. The side opposite 90° must be
double of the side opposite 30°, as was explained in (Ex. 2), of this key. Therefore, $A C=640$.

Again, because the angle $B=90^{\circ}$.

That is,

$$
\begin{aligned}
\overline{A B}^{2}+\overline{B C}^{2} & ={\overline{A C^{2}}}^{2} \\
\overline{320}^{2}+{\overline{B C^{2}}}^{2} & =\overline{640}^{2} \\
\overline{B C}^{2}=\overline{640}^{2}-\overline{320}^{2} & =(320)^{2}\left(2^{2}-1\right)=\overline{320}^{2} \times 3 . \\
B C & =320 \sqrt{3}=554.24 . \quad \text { Ans. }
\end{aligned}
$$

Or,
Whence,
Ex. 25. Draw $A B$ of any indefinite length, and from the point A draw $A C$, making an angle of 32° with $A B$, and

from B draw the line $B C$, making with $B A$ an angle equal to 84°. Produce $A B$ to D. Because the sum of the three angles of any triangle is equal to two right angles, the angle C of the triangle $A B C$, must be

$$
C=180^{\circ}-\left(32^{\circ}+84^{\circ}\right)=64
$$

The exterior angle $C^{\prime} B D=180^{\circ}-84^{\circ}=96^{\circ}$, and because $E B D$ is one half of it, the exterior angle $E B D$ of the triangle $A E B$ is 48°. But the exterior angle $E B D=E+E A B=$ $E+16^{\circ}$.

Therefore, $E+16^{\circ}=48^{\circ}$, and $E=32^{\circ}$, one half the angle C, a general result.

Ex. 26. Let $A B$ and $C D$ be two parallels, and $A C$ a line
 between them; because the two interior angles between two parallels are equal to two right angles, therefore, one half of each of them, added together, must make one right angle. That is, the angle $E A C$, and $E C A$ together, make one right angle, therefore the third angle at E , of the triangle $A E C$, must be a right angle.

Ex. 27. Let $A B C D$ be any trapezoid, and draw its diagonals $A D$ and $C B$, intersecting in E. The two triangles $A E B$ and $C E D$ are equi-angular and similar. The opposite angles at E are equal ; and because, $A B$ and $C D$ are parallel, the alternate angles $E A B$ and $E D C$ are equal,
 and so are the alternate angles $E B A$ and $E C D$, therefore the two triangles $A E B$ and $C E D$, are equi-angular, and $A B$ and $C D$, sides opposite the equal angles E, are homologous. Therefore, by (Th. 20, B. II.), we have

$$
\overline{A B}^{2}: \overline{C D}^{2} \text {, as } A E B \text { is to } C E D .
$$

Ex. 28. Let $A B C$ be any triangle, the sum of its three angles is 180°. Take any point P within it, and draw $P B, P C$. If we designate the angle between $A B$ and $P B$ by a, and
 between $A C$ and $P C$ by b, then the angles at the base of the triangle $P B C$, will be less than the angles at the base of the triangle $A B C$ by the angles a and b. But as the sum of the angles of every triangle make two right angles, therefore the angle $B P C$ is greater than the angle A, by the sum of the two angles a and b.

Ex. 29. Let $A B$ and $C D$ be 12 and 20 respectively, and the perpendicular $A G$ equal 8. Let $H K$ represent the line between the parallels. Then
 $H L=14 \frac{1}{2}-12=2 \frac{1}{2}$. And we have,

$$
C E: A G=H L: A g
$$

Or,

$$
8: \quad 8=2 \frac{1}{2} \quad: A g
$$

Hence, $\quad A g=2 \frac{1}{2}$, and $g G=5 \frac{1}{2}$.
Area of $A B C D$ is $\frac{20+12}{2} \times 8=128$.
Area of $A B K H$ is $\frac{14.5+12}{2} \times 2 \frac{1}{2}=33 \frac{1}{8}$.
Area of $H K D C$ is $\frac{20+14.5}{2} \times 5 \frac{1}{2}=94 \frac{7}{8}$.

Ex. 30. The triangles $A C D$ and $A D B$ are similar, and therefore, the sides about the angle A are proportional, giving the proportion

$$
A C: A D:: A D: A B
$$

But $A C$ expressed in feet is the product of 7956 by 5280 , plus $A B=40$ feet.

$$
7956 \times 5280=42007680
$$

Now the above proportion becomes,

$$
42007720: A D:: A D: 40
$$

Whence, $\quad \overline{A D}^{2}=1680308800$
Sq. root $A D=40992$ feet nearly, or 7 miles and 4032 feet.

Ex. 31. As the triangle $A B D$ in the circle is to be equilateral, it must also be equiangular. Hence, the line $A C$ from one of the angles to the center must bisect the angle A, and each division must be $30^{\circ} . A C=2$, and the side opposite
30° is half $A C$, therefore, $C E=1$, and $D E=3$. Place $A E=x$.

Then, the right angled triangle $A E C$ gives $x^{2}+1=4$.
Whence, $x=\sqrt{3}$. But $A E$ into $D E$, is the area sought.
That is, $3 \sqrt{3}$, is the area of the triangle $A B D$.

Ex. 32. Let $A B=12, A C=11, C B=10$. From C draw $C D$ perpendicular to $A B$. Take H the middle point between A and B, and draw $H P$ at right angles to $A B$, until it meets a perpendicular drawn from the middle point between A and C; then P will be the location of the well. Draw $P G$
 parallel to $A B, A H=H B=6$. $P H$ is common to the two triangles $A P H$ and $P H B$, therefore, $A P=P B, A P=P C$ by construction. Place $P H=x$ and $H D=y$.

$$
\text { Then, } A D=6+y \text { and } D B=6-y \text {. }
$$

Now $(6+y)^{2}+\overline{C D}^{2}=\overline{11}^{2}$, and $(6-y)^{2}+\overline{C D}^{2}=\overline{10}^{2}$.
By substitution, $24 y=121-100=21$, or $y=\frac{7}{8}$.
This value of y substituted in the preceding equation gives

$$
\begin{array}{rr}
& \left(5 \frac{1}{8}\right)^{2}+\overline{C D}^{2}=100, \\
\text { Or, } & 25+\frac{10}{8}+\frac{1}{6}+\overline{C D}^{2}=100, \\
\text { Or, } & 210+\frac{1}{8}+8 \overline{C D}^{2}=800 .
\end{array}
$$

Whence, $\quad \delta \overline{C D}^{2}=589.875$, and $C D=8.587$.
Secondly. In the right angled triangles $A H P$ and $C P G$, we have,

$$
6^{2}+x^{2}=R^{2} . \quad R=A P=P C=P B .
$$

And

$$
(8.587-x)^{2}+\left(\frac{7}{3}\right)^{2}=R^{2} .
$$

From these two equations, we obtain x, and afterwards R.

Ex. 33. The required perpendicular will obviously bisect the base of the triangle, and divide the figure into two equal right angled triangles. Represent the common perpendicular by x. Then $\quad x^{2}+36=400$, or, $x^{2}=364, x=19.07$. Area sought $=(19.07) 6$.

Ex. 35. This problem is a supplement to (Ex. 34), which is explained in the text-book.

In (Ex. 34), we have the two sides of a right angled triangle (27.3) and (35.76). This problem demands the hypoteeuse to that triangle, and its division into parts in the ratio of (27.3) to (35.76). (Th. 24, B. II.)

Place $a=27.3$, and $b=35.76$, and $x+y=$ the required hypotenuse, then $\quad x+y=\sqrt{a^{2}+b^{2}}$

But, $\quad x: y:: a: b . \quad$ Or, $b x=a y$
Multiply (1) by b, then

$$
\begin{equation*}
b x+b y=b \sqrt{a^{2}+b^{2}} \tag{2}
\end{equation*}
$$

That is, $a y+b y=b \sqrt{a^{2}+b^{2}}$

$$
\begin{aligned}
& y=\frac{b \sqrt{a^{2}+b^{2}}}{a+b} \\
& x=\frac{a \sqrt{a^{2}+b^{2}}}{a+b}
\end{aligned}
$$

And

Ex. 36. If 6 feet makes a descent of 1 foot, what distance will be required for a descent of 4 feet. Represent that distance by x.

Then,
$6: 1:: x: 4 . \quad$ Or, $x=24$. Ans.

Ex. 37. Let $A B C$ represent the triangle, and $D E$ a side of the inscribed square.

Place $A D=x, D E=12=a$.
Now by proportional triangles we have,
$x: a:: x+a: B C$. Whence $B C=\frac{a(x+a)}{x}$

Also,

$$
\overline{A B}^{2}+\overline{B C}^{2}=\overline{A C}^{2}
$$

That is, $\quad(x+a)^{2}+\frac{a^{2}}{x^{2}}(x+a)^{2}=\overline{35}^{2}$
Or, $\quad x^{2}(x+a)^{2}+a^{2}(x+a)^{2}=\overline{35}^{2} x^{2}$
That is, $\left(x^{2}+a^{2}\right)(x+a)^{2}=\overline{35}^{2} x^{2}$
Or, $\quad\left(x^{2}+a^{2}\right)\left(x^{2}+2 a x+a^{2}\right)=(35)^{2} x^{2}$
Whence $\left(x^{2}+a^{2}\right)^{2}+2 a x\left(x^{2}+a^{2}\right)=(35)^{2} x^{2}$.
Place $y=x^{2}+a^{2}$. Then, $y^{2}+2 a x \cdot y=(35)^{2} x^{2}$.

$$
\begin{aligned}
y^{2}+2 a x \cdot y+a^{2} x^{2} & =\left(a^{2}+(35)^{2} x^{2}\right. \\
& =1369 x^{2} .
\end{aligned}
$$

Square root

$$
\begin{aligned}
y+a x & =37 x \\
y & =25 x .
\end{aligned}
$$

But $\quad y=x^{2}+144$. Therefore, $x^{2}+144=25 x$

$$
\begin{aligned}
x^{2}-25 x & =-144 . \\
x & =16, \text { or } 9 .
\end{aligned}
$$

From this equation we find,
That is,
$A D=16$ or 9 . But $D B=12$, whence $A B=28$ or 21 . Ans.
To find $B C$ we have $\quad B C=a \frac{(x+a)}{x}=\frac{12(16+12)}{16}=21$.

$$
\text { Or, } \frac{12(9+12)}{9}=28
$$

Ex. 38. Taking the triangle as in the preceding Example, we observe that the least hypotenuse in a triangle containing the same square, must require $A D=D E$, or $A B=B C$.

If $A D=D E, A B$ must be equal to $2 D E$, because $D B=$ $D E$. Therefore $A B=2 \alpha$, and $B C=2 \alpha$. Each side double the side of the square.

B 00 K VII. PRACTICAL PROBLEMS.

(Page 229.)
Ex. 1. The result sought is $\frac{1}{6} \pi D^{3}$. $\frac{1}{6} \pi=0.5236$, and $D=12$. Whence, $\frac{1}{6} \pi D^{\prime}=(1728 \times 0.5236)=904.78$. Ans.

Ex. 2. The result required in this problem, is expressed by $\frac{1}{3} \pi H^{2}(3 R-H)$. (See Geometry, page 229).

When applied to this problem, $H=3, R=6, \pi=3.1416$. Whence,
$\frac{1}{3} \pi H^{2}(3 R-H)=(1.0472) 9 \times 15=141.372$ cubic in. Ans.
Ex. 3. To solve this problem, we place $4 \pi R^{2}=68,2 R$ being the value sought. Whence,

$$
\sqrt{\frac{68}{3.1416}}=4.652 . \quad \text { Ans. }
$$

Ex. 4. In this problem the result s sught is $2 \pi R H$, but in the preceding Example, the value of $2 R$ was found to be 4.652 feet. $H=2$ feet. $2 \pi=6.2832$.

Therefore, the result sought is the product of the factors, $(4.652)(6.2832)=29.229+$ square feet. Ans.

Ex. 5. For the solidity of any sphere, we have $\frac{1}{6} \pi D^{3}$, $\frac{1}{6} \pi=0.5236$, and in this problem $D=4.652$. Whence,

$$
\frac{1}{6} \pi D^{3}=(4.632)^{3}(0.5236)=52.72 . \quad \text { Ans. }
$$

For the solidity of the segment, we have the general formula, $\frac{1}{3} \pi H^{2}(3 R-H)$, and for this example we have $H=2$ feet, and $R=2.326$. Whence, $3 R-H=4.978$, and the solidity sought is the product of the three factors,
(1.0472)4(4.978), which is 20.852. Ans.

Ex. 6. The general expression for the solidity of a segment of a sphere having two bases, is

$$
\frac{1}{6} \pi H^{3}+\frac{\pi H}{2}\left(R^{\prime 2}+R^{\prime \prime 2}\right)
$$

R^{\prime} and $R^{\prime \prime}$ being the radii of the bases, and H the perpendicular distance between them.

In this Example the radius of the sphere is 10 , and $H=2$. $\left(R^{\prime}\right)^{2}$ and $\left(R^{\prime \prime}\right)^{2}$ must be computed.

For the greater segment, we have,

$$
\left(R^{\prime}\right)^{2}=100-9, \text { and }\left(R^{\prime \prime}\right)^{2}=100-25
$$

Whence,
$(0.5236)(8)+(3.1416)(166)=525.7$ cubic feet. Ans.
For the smaller segments, we have, $\left(R^{\prime}\right)^{2}=100-25=75$.

$$
\text { and } \quad\left(R^{\prime \prime}\right)^{2}=100-49=51
$$

Whence,
$4.1888+(3.1416)(126)=400.0304$ cubic feet. Ans.
Ex. 7. Let the circle $A F B$ represent a central section of the sphere, $F E$ the diameter of the segment required. Let $D E=8, A D=4$, and $A C=E C=R$; then in the triangle $C D E$, $D C=R-4$,
And, $(R-4)^{2}+8^{2}=R^{2}$. Whence, $R=10$. Now for the solidity of the segment, we
 have

$$
\frac{1}{3} \pi H^{2}(3 R-H)=(1.0472) 16(30-4)=435.6352 . \quad \text { Ans. }
$$

Ex. 8. Let $A B$ and $D E$ be the diameter of the segment,
 and they are parallel, and their distance asunder being 9 inches, $A G=7$, and $D H=9$, and $A C$ and $D C=$ each to R. Place $C H=x$, and the two right angled triangles $A G C$ and $D C H$, give

$$
7^{2}+(9-x)^{2}=R^{2}, 9^{2}+x^{2}=R^{2}
$$

Whence, $\quad 49+9^{2}-18 x+x^{2}=9^{2}+x^{2}$, or $18 x=49, x=2 \frac{1}{1} \frac{3}{8}$.
Now $\quad R^{2}=81+\left(\frac{49}{18}\right)^{2}=\frac{26244+2401}{324}=\frac{28645}{324}$.

$$
R=9.4027 . \quad \text { Ans. }
$$

For the value of the segment, we have,

$$
.5236 .(729)+\frac{9 .(3.1416)}{2}(81+49)=2219.5+
$$

Ex. 9. In this example, the height of the segment is 6 , and the solution is

$$
.5236(216)+\frac{6 .(3.1416)}{2}-(300+144)=4297.7
$$

Ex. 10. The contents of the segments will be

$$
\frac{1}{6} \pi\left(2^{3}\right)+\frac{2 \pi}{2}(100+36)=431.45 \mathrm{cu} . \mathrm{mi} .
$$

To find the diameter,

Let $\quad C A=x, C G=y$
Then, $C H=y+2$. Hence,

$$
\begin{align*}
& x^{2}=y^{2}+100 \tag{1}\\
& x^{2}=(y+2)^{2}+36 \tag{2}
\end{align*}
$$

Whence we have

$$
\begin{aligned}
(y+2)^{2} & =y^{2}+100 \\
y & =15 .
\end{aligned}
$$

And from (1),
$x=\sqrt{2} \overline{25+100}=18.027$, radius.

B 00 K VII.

APPLICATION OF ALGEBRA TO GEOMETRY.

PROBLEM VI.

In a right angled triangle, having given the base, and the sum of the perpendicular and hypotenuse to find these two sides.

Let $A B C$ be the triangle, $A B=b$, and $A C+C B=S$, and $B C=x$.

Whence, $\quad A C=S-x$.
But $\quad \overline{A B}^{2}+\overline{B C}^{2}=\overline{A C}^{2}$
That is, $b^{2}+x^{2}=(S-x)^{2}=S^{2}-2 S x+x^{2}$

$$
2 S x=S^{2}-b^{2}
$$

$$
x=\frac{S^{2}-b^{2}}{2 S}=C B, A C=S-\frac{S^{2}-b^{2}}{2 S}=\frac{S^{2}+b^{2}}{2 S}
$$

PROBLEM VII.
Given the base and altitude of a triangle, to divide it into three equal parts, by lines parallel to the base.

Let $A B C$ represent the \triangle. Conceive a perpendicular let drop from C to the base $A B$, and represent it by b. Put $2 a=A B$. Then $a b=$ the area of the triangle.

Let x be the distance from C to $F D$; then by (Th. 22, Bk. II.),

$$
x^{2}: b^{2}:: \frac{1}{3} a b: a b
$$

Whence,

$$
x: b:: 1: \sqrt{3} . \quad \text { Or, } x=\frac{b}{\sqrt{ } 3} .
$$

If x represents the distance from C to $G E$, then

$$
\begin{aligned}
& x^{2}: b^{2}::{ }_{3}^{2} a b: a b . \\
\text { Or, } \quad & x: b: \quad \wedge^{2}: \sqrt{ } 3 . \quad x=\frac{\sqrt{ } 2 \cdot b}{\sqrt{ } 3} .
\end{aligned}
$$

We perceive by this that the divisions of the perpendicular are independent of the base, and that we may divide the triangle into any required number of parts, m, n, p, etc., equal or unequal.

PROBLEM VIII.

In any equilateral triangle, given the lengths of three perpendiculars drawn from any point within to the sides, to determine the sides.

Let $A B C$ be an equilateral triangle, and because $C D$ is drawn perpendicular to the base, it bisects the base. Place $A D=x$. Then $A B, B C, A C$ each equal $2 x$. Take $P O=a, P G=b, P H=c$. The area of the triangle $A B C$ equals $(C D) x$. But in the right angled triangle $A D C$, we have, $\overline{C D}^{2}+x^{2}=4 x^{2}$. Whence, $C D=x \sqrt[3]{3}$, and the area of the triangle $A B C$, therefore is $x^{2}, \overline{3}$.

Again, the area of the triangle $A P B$, is $\left(P G \times \frac{A B}{2}\right)$, or $b x$. Area $B P C=a x$ and $A P C=c x$, and the sum of these three interior triangles, equals the triangle $A B C$.

That is, $\quad x^{2} \sqrt{3}=a x+b x+c x$
Whence, $\quad 2 x=\frac{2(a+b+c)}{l^{\overline{3}}}$ the length of a side.

PROBLEM IX.

In a right angled triangle, having given the base (3), and the difference between the hypotenuse and perpendicular (1) to find the sides.

Place $\quad A B=3, A C-C B=1$.
Make $\quad C B=x$, then $A C=1+x$.
And $9+x^{2}=1+2 x+x^{2}$.
Whence, $\quad 2 x=8, x=4$. Then, $A C=5$

PROBLEM X.
In a right angled triangle, having given then hypotenuse (5), and the difference between the base and perpendicular (1), to find the sides.

Place $\quad A C=5, C B-A B=1, A B=x$.
Then $\quad C B=1+x$.
Now $x^{2}+(1+x)^{2}=25$.

$$
2 x^{2}+2 x=24 .
$$

Whence, $\quad x=3, B C=4$. Ans.

PROBLEM XI.

Having given the area of a rectangle inscribed in a given triangle to determine the side of the rectangle.

When we say that a triangle is given, we mean that the base and perpendicular are given.

Let $A B C$ be the triangle, $A B$ $=b, C D=p, C I=x$; then $I D=\mathrm{A}$
 $p-x$.

By proportional triangles, we have,

$$
C I: E F:: C D: A B
$$

That is, $\quad x: \quad E F:: p: b . \quad E F=\frac{b x}{p}$.
By the problem $\frac{b x}{p}(p-x)=a$. The symbol a being the given area.

Whence,

$$
x^{2}-p x=-\frac{a p}{b} . \quad x=\frac{1}{2} p \pm \sqrt{\frac{1}{4} p^{2}-\frac{a p}{b}} .
$$

PROBLEM XII.

In a triangle having given the ratio of the two sides, together with both the segments of the base, made by a perpendicular from the vertical angle, to determine the sides of the triangle.

Let $A C B$ be the \triangle, (see last figure.) $A D=a, B D=b$, and $C D=x$. Then $A C=\sqrt{a^{2}+x^{2}}$, and $C B=\sqrt{b^{2}+x^{2}}$.

The ratio of $A C$ to $C B$ is given, and let that ratio be as 1 to r; then

Whence,

$$
\begin{aligned}
& \sqrt{a^{2}+x^{2}}: \sqrt{\sqrt{b^{2}+x^{2}}:: 1: r .} \\
& a^{2}+x^{2}: b^{2}+x^{2}:: 1: r^{2} . \\
& b^{2}+x^{2}=a^{2} r^{2}+r^{2} x^{2} . \\
& x^{2}=\frac{a^{2} r^{2}-b^{2}}{1-r^{2}} .
\end{aligned}
$$

Or,

But $A C=\sqrt{ } \overline{a^{2}+x^{2}}$, and as x^{2} is now known, $A C$ is known.
PROBLEM XIII.

In any triangle having given the base, the sum of the other two sides, and the length of a line drawn from the vertical angle to the middle of the base, to find the sides of the triangle.

Let $A D E$ be the \triangle. Suppose C to be the middle of the base.

Put $A C=a, D C$ or $C E=b$, $A E=x, D A+A E=c$; then $D A$ $=c-x$.

Now by (Th. 42, B. I.), we have,

$$
(D A)^{2}+(A E)^{2}=2(A C)^{2}+2(D C)^{2}
$$

That is,

$$
c^{2}-2 c x+2 x^{2}=2 a^{2}+2 b^{2} .
$$

Or,

$$
\begin{aligned}
4 x^{2}-4 c x+c^{2} & =4 a^{2}+4 b^{2}-c^{2} \\
2 x-c & =\sqrt{4 a^{2}+4 b^{2}-c^{2}} .
\end{aligned}
$$

Whence x becomes known, and consequently the sides become known.

PROBLEMXIV.

To determine a right angled triangle, having given the length of two lines drawn from the acute angles to the middle of the opposite sides.

Let $A B C$ be the triangle. Bisect $A B$ in $E, C B$ in D, and join $C E=a$, and $A D=b$.

Place $D B=x$, and $B E=y$.
Now in the two right angled triangles $A B D$, and $C B E$, we have,

$$
\begin{align*}
& 4 y^{2}+x^{2}=b^{2} \tag{1}\\
& 4 x^{2}+y^{2}=a^{2} \tag{2}
\end{align*}
$$

Sum

$$
\begin{equation*}
\overline{5\left(x^{2}+y^{2}\right)=\left(a^{2}+b^{2}\right)} \tag{3}
\end{equation*}
$$

Or,
$x^{2}+y^{2}=\frac{1}{5}\left(a^{2}+b^{2}\right)$
But
$4 x^{2}+y^{2}=a^{2}$
Sub. (3) from (4), and $3 x^{2}=\frac{4}{5} a^{2}-\frac{1}{5} b^{2}$.
Whence,
$x=\left(\frac{4}{15} a^{2}-{ }_{1}^{1} \frac{1}{5} b^{2}\right)^{\frac{1}{2}}$
Also,

$$
y=\left(\frac{4}{15} b^{2}-\frac{1}{15} a^{2}\right)^{\frac{1}{2}} .
$$

PROBLEMXV.

To determine a right angled triangle having given the perimeter and the radius of the inscribed circle.

Let $A B C$ be the triangle, draw $A O, C O$ to the centre of the circle and it is obvious that the two right angled triangles $A E O, A D O$, are equal to each other. Also, $C F O=$ $C D O$, and $B E O F$ is a square, each side equal to the radius of the circle.

Place $E B=B F=r, A E=A D=x$, and $C F=C D=y$. Designate the given perimeter by $2 p$.

Then

$$
\begin{align*}
2 x+2 y+2 r & =2 p \\
x+y+r & =p \\
x+y & =(p-r) \tag{1}
\end{align*}
$$

Also, by the right angled triangle, we find,

$$
\begin{equation*}
(x+r)^{2}+(y+r)^{2}=(x+y)^{2} \tag{2}
\end{equation*}
$$

Or, $\quad x^{2}+2 r x+r^{2}+y^{2}+2 r y+r^{2}=x^{2}+2 x y+y^{2}$.
Reducing and, $\quad 2 r(x+y)+2 r^{2}=2 x y$.
Or,

$$
r(p-r)+r^{2}=x y .
$$

Whence,

$$
\begin{equation*}
x y=r p \tag{3}
\end{equation*}
$$

Equations (1) and (3) will readily give the values of x and y, which solves the problem.

PROBLEM XVI.

To determine a triangle, having given the base, the perpendicular, and the ratio of the two sides.

Let $A B C$ be the $\triangle . ~ A B=b$, $C D=a, D B=x$. Then

$$
\begin{aligned}
& A C=\sqrt{(b-x)^{2}+a^{2}} . \\
& C B=\sqrt{a^{2}+x^{2}} .
\end{aligned}
$$

Let the given ratio of the sides be as m to n; then

$$
\sqrt{(b-x)^{2}+a^{2}}: \sqrt{a^{2}+x^{2}}:: m: n .
$$

This proportion will give the value of x, then $A C$ and $C B$ will be known.

PROBLEM XVII.

To determine a right angled triangle, having given the hypotenuse, and a side of its inscribed square.

Let $A B C$ be the triangle, and $D E=\alpha$,
 a side of the inscribed square. Place $C D=x$, and $A F=y$.

Also, let $\quad A C=h$.
Then, $(x+a)^{2}+(y+a)^{2}=h^{2}$.
And $x: a:: a: y$,
Expanding (1), transposing, etc., gives

$$
x^{2}+y^{2}+2 a(x+y)=h^{2}-2 a^{2} .
$$

From

$$
\begin{equation*}
\text { (2) } 2 x y=2 a^{2} \text {. } \tag{4}
\end{equation*}
$$

Sum of (3) and (4) $x^{2}+2 x y+y^{2}+2 a(x+y)=h^{2}$.
Or,
Whence,

$$
\begin{equation*}
(x+y)^{2}+2 a(x+y)=h^{2} \tag{5}
\end{equation*}
$$

Equations (4) and (7) will give the value of x and y, and solve the problem.

PROBLEM XVIII.

To determine the radii of three equal circles inscribed in a given circle, touching each other, and each touching the circumference of the given circle.

Every circle consists of 360°, and therefore if three circles
are to be placed in a given circle, each one of them must occupy a section of 120°, one third of 360°.

Let $A C B$ be one of those sectors, and it is obvious that the centre of one of the interior circles must be on the radius $C D$ of the larger circle, $C D$ dividing the angle $A C B$ into two equal parts.

It is also obvious that the interior
 circle which is placed in the sector $A C B$, must touch the given circle in the point D, and touch the radii $C A, C B$, in the points t, t, equidistant from C, and so situated that perpendiculars $O t$, $O t$, shall be equal to $O D$.

Place $O D=O t=x$, then x represents the radius of one of the required circles, and let R represent $C D$, the radius of the given circle.

In the right angled triangles $O t C$ the angle $t C O=60^{\circ}$, angle $t=90^{\circ}$, therefore the angle $t O C=30^{\circ}, C O=R-x$; and in every right angled triangle, when one of the acute angles is 30°, the side opposite to that angle is one half the hypotenuse, therefore, $t C=\frac{R-x}{2}$

But

$$
\overline{t O}^{2}+\overline{t C}^{2}=\overline{C O}^{2}
$$

That is, $\quad x^{2}+\frac{(R-x)^{2}}{4}=(R-x)^{2}$.
Or,

$$
\begin{aligned}
& x^{2}=\frac{3}{4}\left(R^{2}-2 R x+x^{2}\right) . \\
& x^{2}=3 R^{2}-6 R x . \\
& \quad x=R(2 \sqrt{3}-3) . \quad \text { Ans. }
\end{aligned}
$$

PROBLEM XIX.

In a right angled triangle, having given the perimeter, and the perpendicular let fall from the right angle on the hypotenuse, to determine the triangle; that is, its sides.

Let $A B C$ be the \triangle, and represent its primeter by p. Put $A D=a, A B=x$, $A C=y$. Then $B C=p-x-y$.

Because $B A C$ is a right angle,

$$
\begin{equation*}
x^{2}+y^{2}=p^{2}-2 p(x+y)+x^{2}+2 x y+y^{2} \tag{1}
\end{equation*}
$$

$B C \cdot A D=2$ times the area of the triangle $A B C$.
Also, $A C \cdot A B=2$ times the area of the triangle $A B C$.
Therefore,

$$
\begin{equation*}
a(p-x-y)=x y \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
2 p(x+y)=p^{2}+2 x y \tag{3}
\end{equation*}
$$

Double (2),

$$
\begin{equation*}
2 a p-2 a(x+y)=2 x y \tag{4}
\end{equation*}
$$

Whence,

$$
\begin{gather*}
(2 a+2 p)(x+y)-2 a p=p^{2} \tag{5}\\
x+y=\frac{p^{2}+2 a p}{2 a+2 p} \tag{6}
\end{gather*}
$$

Because $B C=p-x-y, B C=p-\frac{p^{2}+2 a p}{2 a+2 p}=\frac{p^{2}}{2 a+2 p}$
From (2) we observe that $x y=\frac{a p^{2}}{2 a+2 p}$
Equations (6) and (7), will readily give x and y.

PROBLEM XX.

To determine a right angled triangle, having given the hypotenuse, and the difference of two lines drawn from the two acute angles to the centre of the inscribed circle.

Let $A B C$ be the triangle, and O the center of its inscribed circle, $A O$ and $C O$ being joined, the triangle $A O C$ is formed, and $A O$ being produced to meet a perpendicular from $C, C O D$ is an exterior angle.
$A O$ bisects the angle at A, and $C O$ bisects the angle $A C B$.

Therefore, the angle $C O D$, is equal to half the angles A and C of the right angled triangle $A B C$. Consequently $C O D$ is $45^{\circ} ; D$ being 90°, the angle $O C D=45^{\circ}$, whence $O D=C D$. Let $C O=x$, and $A O=d+x, d$ being the given difference between $A O, O C$. Also, let $O D=y$, and $A C=h$.

Then

$$
\begin{equation*}
2 y^{2}=x^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\overline{A D}^{2}+\overline{D C}^{2}=\overline{A C}^{2} \tag{2}
\end{equation*}
$$

That is, $\quad(x+y+d)^{2}+y^{2}=h^{2}$
Expanding $x^{2}+y^{2}+d^{2}+2 x y+2 d x+2 d y+y^{2}=h^{2}$.
Substituting the value of $2 y^{2}$, as found in (1), and

$$
\begin{gathered}
2 x^{2}+2 x y+2 d(x+y)=h^{2}-d^{2} \\
2 x^{2}+\frac{2 x^{2}}{\sqrt{2}}+2 d\left(x+\frac{x}{\sqrt{2}}\right)=h^{2} \\
(2+\sqrt{2}) x^{2}+(2+\sqrt{2}) d^{2} x=h^{2}-d^{2} \\
x^{2}+d x=\frac{h^{2}-d^{2}}{2+\sqrt{\prime}^{2}}=m . \\
x=-\frac{d}{2} \pm \sqrt{m+\frac{d^{2}}{4}} .
\end{gathered}
$$

Whence,

PROBLEM XXI.

To determine a triangle, having given the base, the perpendicular and the difference of the two sides.

Let $A B C$ be the \triangle. Put $B D=x$, $D C=y, \quad A C=z, \quad A B=z+d, A D=a$, $B C=b$. By the conditions,

$$
\begin{align*}
x+y & =b \tag{1}\\
x^{2}+a^{2} & =z^{2}+2 d z+d^{2} \tag{2}\\
y^{2}+a^{2} & =z^{2} \tag{3}\\
\hline x^{2}-y^{2} & =2 d z+d^{2}
\end{align*}
$$

By subtracting,
Factoring,

$$
\begin{equation*}
(x+y)(x-y)=d(2 z+d) \tag{4}
\end{equation*}
$$

That is,

$$
b(x-y)=d(2 z+d)
$$

From this we have the proportion,

$$
b:(2 z+d):: d:(x-y)
$$

This propertion is the following rule given in trigonometry, viz. :

In any plane triangle, as the base is to the sum of the sides, so is the difference of the sides to the difference of the segments of the base.

We return to the solution. From (1) we have,

$$
x=b-y \text {, whence } x^{2}-y^{2}=b^{2}-2 b y \text {. }
$$

From (3) $z=\sqrt{y^{2}+a^{2}}$. These values put in (4) give

$$
\begin{aligned}
b^{2}-2 b y & =2 d \sqrt{y^{2}+a^{2}}+d^{2} \\
\left(b^{2}-d^{2}\right)-2 b y & =2 d \sqrt{y^{2}+a^{2}}
\end{aligned}
$$

Squaring, $\quad\left(b^{2}-d^{2}\right)^{2}-4 b\left(b^{2}-d^{2}\right) y+4 b^{2} y^{2}=4 d^{2} y^{2}+4 a^{2} d^{2}$
Or, $\quad\left(b^{2}-d^{2}\right)^{2}-4 b\left(b^{2}-d^{2}\right) y+4\left(b^{2}-d^{2}\right) y^{2}=4 a^{2} d^{2}$

$$
\begin{aligned}
\left(b^{2}-d^{2}\right)-4 b y+4 y^{2} & =\frac{4 a^{2} d^{2}}{b^{2}-d^{2}} \\
b^{2}-4 b y+4 y^{2} & =\frac{4 a^{2} d^{2}}{b^{2}-d^{2}}+d^{2}=m^{2}
\end{aligned}
$$

Whence,
And,

$$
\begin{aligned}
b-2 y & = \pm m \\
y & =b+m, \text { or } b-m .
\end{aligned}
$$

PROBLEM XXII.

To determine a triangle, having given the base, the perpendicular, and the rectangle, or product of the two sides.

Let $A B C$ be the \triangle. Put $B D=x$, $D C=y, B C=b, A D=a$, and the rectangle, $(A B)(A C)=c$.

Now in the right angled triangles, $A D B, A D C$, we have,

$$
A B=\sqrt{x^{2}+a^{2}} . \quad A C=\sqrt{y^{2}+a^{2}} .
$$

Whence,

$$
\begin{align*}
\left(\sqrt{x^{2}+a^{2}}\right)\left(\sqrt{y^{2}+a^{2}}\right) & =c \tag{1}\\
x+y & =b \tag{2}
\end{align*}
$$

And,
From (1), $\quad x^{2} y^{2}+a^{2}\left(x^{2}+y^{2}\right)+a^{4}=c^{2}$
From (2),

$$
\begin{equation*}
x^{2}+y^{2}=b^{2}-2 x y \tag{3}
\end{equation*}
$$

This value substituted in (3), gives

$$
\begin{align*}
x^{2} y^{2}+a^{2} b^{2}-2 a^{2} x y+a^{4} & =c^{2} \\
x^{2} y^{2}-2 a^{2} x y+a^{4} & =c^{2}-a^{2} b^{2} \\
x y-a^{2} & = \pm \sqrt{c^{2}-a^{2} b^{2}} \\
x y & =a^{2} \pm \sqrt{c^{2}-a^{2} b^{2}} \tag{5}
\end{align*}
$$

Now equations (2) and (5) will give the values of x and y.

PROBLEM XXIII.

To determine a triangle, having given the lengths of the three lines drawn from the three angles to the middle of the opposite sides.

Let $A B C$ be the \triangle. Place $A D=a, B F=b$, and $C G=c$.

Also, put $B D=x$, one half of the base, $B G=y$, one half of the side $A B$, and $F C=z$, one half of
 the side $A C$. Now by (Th. XLII., B. I.), we have,

$$
\overline{A B}^{2}+\overline{A C}^{2}=2 \overline{B D}^{2}+2 \overline{A D}^{2}
$$

That is

$$
\begin{equation*}
4 y^{2}+4 z^{2}=2 x^{2}+2 a^{2} \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
4 x^{2}+4 y^{2}=2 z^{2}+2 b^{2} \tag{2}
\end{equation*}
$$

And, $4 x^{2}+4 z^{2}=2 y^{2}+2 c^{2}$
Reduced sum,

$$
\begin{equation*}
6 x^{2}+6 y^{2}+6 z^{2}=2\left(a^{2}+b^{2}+c^{2}\right) \tag{3}
\end{equation*}
$$

Or,
From (1)

$$
2 x^{2}+2 y^{2}+2 z^{2}=\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)=m
$$

By subtraction

$$
2 x^{2}=-x^{2}+m-a^{2}
$$

Or,

$$
2 y^{2}+2 z^{2}=x^{2}+a^{2}
$$

$$
3 x^{2}=m-a^{2} . \quad \text { Whence, } x=\frac{\sqrt{m-a^{2}}}{t^{\prime}}
$$

In like manner we find $y=\frac{\sqrt{m-c^{2}}}{\sqrt{3}}$.
And, $z=\frac{\sqrt{m-b^{2}}}{\sqrt{3}}$. Double of these values will be the sides required.

PROBLEM XXIV.

In a triangle having given the three sides, to find the radius of the inscribed circle.

Let $A B C$ be the \triangle. From the center of the circle O, let fall the perpendiculars $O G, O E, O D$, on the sides.

These perpendiculars are all equal, and each equal to the radius re-
 quired.

Let the side opposite to the angle A, be represented by a, the side opposite B, by b, and opposite C, by c. Put $O E$, $O D$, etc., equal to r.

It is obvious that the double area of the $\triangle B O C$ is expressed by $a r$; the double area of $A O B$ by $c r$; the double area of $A O C$ by $b r$. Therefore, the double area of $A B C$ is

$$
(a+b+c) r
$$

From A let drop a perpendicular on $B C$, and call it x.
Then $a x=$ the double area of $A B C$. Consequently,

$$
\begin{equation*}
(a+b+c) r=a x \tag{1}
\end{equation*}
$$

The perpendicular from A will divide the base $B C$ into two
segments, one of which is $\sqrt{c^{3}-x^{2}}$, the other, $\sqrt{\overline{b^{2}-x^{2}}}$, and the sum of these is a; therefore,

$$
\begin{align*}
\sqrt{c^{2}-x^{2}}+\sqrt{\overline{b^{2}-x^{2}}} & =a \tag{2}\\
\sqrt{c^{2}-x^{2}} & =a-\sqrt{\overline{b^{2}-x^{2}}} \\
c^{2}-x^{2} & =a^{2}-2 a \sqrt{b^{2}-x^{2}}+b^{2}-x^{2} \\
2 a \sqrt{b^{2}-x^{2}} & =a^{2}+b^{2}-c^{2} \\
\sqrt{\overline{b^{2}-x^{2}}} & =\frac{a^{2}+b^{2}-c^{2}}{2 a}=m
\end{align*}
$$

Whence,

$$
\begin{aligned}
b^{2}-x^{2} & =m^{2} \\
x & =\sqrt{b^{2}-m^{2}}
\end{aligned}
$$

This value of x put in (1), gives

Whence,

$$
\begin{aligned}
(a+b+c) r & =a \sqrt{\overline{b^{2}-m^{2}}} \\
r & =\frac{a \sqrt{b^{2}-m^{2}}}{a+b+c},
\end{aligned}
$$

the required result.

PROBLEM XXV.

To determine a right angled triangle, having given the side of the inscribed square, and the radius of the inscribed circle.

Let $A B$ be one side of the triangle, and $B G$ a side of the inscribed square, which we designate by a. And let $B H=r$, a radius of the inscribed circle.

Then $\quad G H=a-r=d$.
Join $A E$, touching the circle at K,
 and $B D$, touching the circle at P .

Conceive the lines $A E$ and $B D$ produced, meeting at a point. C, then $A B C$ is the triangle sought.

Let

$$
A H=A K=x, \text { and } K C=C P=y .
$$

Then $\quad A C=$ the hypotenuse $=(x+y)$. (Prob. XV.) $A B=x+r$, and $C B=y+r$.

$$
\begin{equation*}
(x+r)^{2}+(y+r)^{2}=(x+y)^{2} \tag{1}
\end{equation*}
$$

Again $\quad A G=x-d, G E=a$, and $C D=y-d$.
Now,

$$
A G: G E:: E D: C D
$$

That is, $\quad(x-d): a:: a: y-d$.
Whence,

$$
\begin{equation*}
x y-d(x+y)+d^{2}=a^{2} \tag{2}
\end{equation*}
$$

Expanding and reducing (1), we obtain,

$$
2 r(x+y)+2 r^{2}=2 x y
$$

Or,

$$
\begin{equation*}
x y=r(x+y)+r^{2} \tag{3}
\end{equation*}
$$

From (2)

$$
x y=d(x+y)+a^{2}-d^{2}
$$

$$
0=(r-d)(x+y)+r^{2}+d^{2}-a^{2}
$$

Whence,

$$
\begin{equation*}
x+y=\frac{r^{2}+d^{2}-a^{2}}{d-r} \tag{5}
\end{equation*}
$$

This value of $(x+y)$ placed in equation (3) and reduced, and we obtain,

$$
\begin{equation*}
x y=\frac{r\left(d^{2}-a^{2}+d r\right)}{d-r} \tag{6}
\end{equation*}
$$

Equations (5) and (6) will give separate values of x and y, and thus solve the problem.

PROBLEM XXVI.

To determine a triangle and the radius of the inscribed circle, having given the lengths of three lines drawn from the three angles to the center of that circle.

Let $A B C$ be the \triangle, O the center of the circle.

Put $A O=a, O B=b, \quad O C=c$. $A O$ bisects the angle A :

Produce $A O$ to D. Then because the angle A is bisected,
$C D: D B:: A C: A B$.
Put $A B=x, A C=y$, and let the ratio of $A B$ to $B D$ be n; then $n x=B D$ and $n y=C D$.

Now as the angle C is bisected by $C O$, we have,

$$
A C: C D:: A O: O D
$$

That is, $\quad y: n y:: a$: $O D$
Whence, $\quad O D=n a$.
Because $A D$ bisects the angle A, we have, (Th. XX. Book III.)

$$
\begin{equation*}
x y=a^{2}(1+n)^{2}+n^{2} x y \tag{1}
\end{equation*}
$$

Also,

$$
\begin{equation*}
n x^{2}=b^{2}+n a^{2} \tag{2}
\end{equation*}
$$

And,
$n y^{2}=c^{2}+n a^{2}$
From (1),

$$
\begin{equation*}
x y=\frac{a^{2}(1+n)^{2}}{1-n^{2}}=\frac{a^{2}(1+n)}{1-n} \tag{3}
\end{equation*}
$$

The product of (2) and (3), gives

$$
\begin{equation*}
n^{2} x^{2} y^{2}=\left(c^{2}+n a^{2}\right)\left(b^{2}+n a^{2}\right) \tag{5}
\end{equation*}
$$

Squaring (4), and multiplying the result by n^{2}, also gives

$$
\begin{equation*}
n^{2} x^{2} y^{2}=\frac{a^{4}(1+n)^{2} n^{2}}{(1-n)^{2}} \tag{6}
\end{equation*}
$$

Equating (5) and (6), gives

$$
\left(c^{2}+n a^{2}\right)\left(b^{2}+n a^{2}\right)(1-n)^{2}=a^{4}\left(1+n^{2}\right) n^{2}
$$

This equation contains only one unknown quantity n, but it rises to the fourth power-hence this problem is not susceptible of a solution under this notation, short of an equation of the 4 th degree.

When a, b, and c, are numerically given, cases may occur in which the resulting equation may be of a low degree. When $b=c$, then $x=y$.

The three sides being determined, the radius of the inscribed circle is then found by Problem XXIV.

PROBLEMXXVII.

To determine a right angled triangle, having given the hypotenuse, and the radius of the inscribed circle.

Let $A B C$ be the \triangle. Place $A E=x, E B=E O=r$, and $C F=y$. Then,

$$
A B=x+r
$$

$$
B C=y+r
$$

And, $\quad A C=(x+y)=h$.
Now, $(x+r)^{2}+(y+r)^{2}=(x+y)^{2}$.

Expanding and reducing the above, we have

$$
r(x+y)+r^{2}=x y
$$

That is,

$$
x y=r^{2}+h r
$$

And,
Whence,

$$
x=\frac{1}{2} h+\frac{1}{2} \sqrt{h^{2}-4} \overline{h r-4 r}
$$

And,

$$
x+y=h
$$

$$
y=\frac{1}{2} h-\frac{1}{2} \sqrt{h^{2}-4 h r}-4 r^{2} .
$$

PROBLEM XXVIII.

Here the problem is given in general terms-this same problem is numerically given in (Book V. Prob. 8), and is solved in this key, on page (7).

```
PROBLEM XXIX.
```

This problem involves the same relations as (Prob. 12, Book V.), which is solved in this key, on page (9).

PROBLEM XXX.

The radius of a circle being given, also the rectangle of the segments of a chord, to determine the distance from the center to the point at which the chord is divided.

Let C be the center of the circle, $A B$ the chord, and P the given point in it. Join $C P$ and denote that distance by x.

Through P draw the chord $D H$ at right angles to $P C$. Then because $C P$ is a line from the center perpendicular to the chord $D H$, it must bisect that chord. (Th. I. Book III.)
$D P C$ is a right angled triangle, $D C=r$, then

$$
D P=\sqrt{r^{2}-x^{2}} .
$$

But because $D H$, and $A B$ intersect at P, we have,

$$
A P \cdot P B=D P \cdot P H=\overline{D P}^{2}
$$

Whence, $\quad A P \cdot P B=r^{2}-x^{2}$
Or,

$$
x=\sqrt{r^{2}-\overline{A P} \cdot \overline{P B}}
$$

That is the distance from the center to the required point will be found by subtracting the rectangle from the square of the radius of the circle, and extracting the square root of the remainder.

PROBLEM XXXI.

If each of the two equal sides of an isosceles triangle be represented by (a), and the base by (2b), what will be the radius of the inscribed circle in terms of a and b .

Let $A B C$ be the triangle, and

$$
A B=A C=a, B D=b
$$

Then $A D=\sqrt{a^{2}-b^{2}}$.
Place $O D=R=H O$.
Now, by the similar triangle $A H O, A B D$, we have
$A O: O H:: A B: D B$ $A D-R: R:: a: b$

That is, And,

Whence,

$$
b \sqrt{a^{2}-b^{2}}-b R=a R
$$

$$
R=\frac{b \sqrt{a^{2}-b^{2}}}{a+b}=\frac{b \sqrt{a-b}}{\sqrt{a+b}}
$$

PROBLEMXXXII.
From a point without a circle whose diameter is (d), a line equal to (d) is drawn to the concave terminating in the concave arc, and bisected at the first point of meeting the circumference. Required the distance of the point without from the center of the circle.

Let C be the center of the circle, and P a point without, and $A P=d$, the diameter of the circle, which is bisected by the circumference at B.

Join $C A, C B$, and $C P$. Because $A P$ is equal to the diameter of the circle, and it is
bisected in $B, A B$ must be equal to the radius of the circle ; that is, $A B=B C=C A$, and the triangle $A B C$ equiangular.

Also $B P=B C$, therefore the angle $B C P=B P C$. But the angle $C B P=120^{\circ}$, therefore the angle at P is 30°, and the angle $P C A=90^{\circ}$.

Hence,
Or,
Whence,
the value of the line sought.

MISCELLANEOUS PROPOSITIONS.

(Page 238.)
(3.) If from any point without a circle, two straight lines be drawn to the concave part of the circumference, making equal angles with the lines joining the same point and the center ; the parts of these lines which are intercepted wilhin the circle, are equal.

A

Let P be any point without a circle, and C the center of the circle. Join $P C$ and draw $P A, P B$ making equal angles with $P C$.

Join $C A, C B, C a$ and $C b$. We are to prove that $A a=B b$.

In the two triangles $P C A, P C B$, we have $C A=C B$, and $P C$ common to both triangles, and the angle $C P A$ opposite the side $A C$ is equal to $C P B$ opposite the equal side $B C$.

That is, the two triangles have three parts respectively
equal. Therefore, the three other parts are also equal, and $P A=P B$. In like manner by the two triangles $P C a, P C b$, we prove $P a=P b$.

Whence, by subtraction,

$$
P A-P a=P B-P b .
$$

That is, $A a=B b$, and the theorem is demonstrated.
(4.) If a circle be described on the radius of another circle, any straight line drawn from the point where they meet, to the outer circumference, is bisected by the interior one.

Let $A C$ be the radius of one circle and the diameter of another, as represented in the figure. From the point of contact A, of the two cir-
 cles, draw any line, as $A H$; this line is bisected in D. Join $D C$ and $H B$. Then $A D C$ being in a semicircle, is a right angle ; also, $A H B$ is a right angle, for the same reason : therefore, $D C$ and $H B$ are parallel. Whence,

$$
A D: A H:: A C: A B
$$

But as $A B$ is the double of $A C$, therefore $A H$ is the double of $A D$, or $A H$ is bisected in D, which was to be shown.
(5.) From two given points on the same side of a line given in position, to draw two straight lines, which shall contain a given angle and be terminated in that line.

Let $A B$ be the line given in position, and P and p the given points. To make the problem definite, we take the given angle at 35°.

Join $P p$, and draw $P p Q$ a right angle. Take 35° from

90°, and the remainder is 55°. Now, at P, make the angle $p P Q$ equal to 55°, then the third angle of the triangle $P Q p$ will be 35°, the given angle. But it is not located in the line $A B$.

About the triangle $P Q p$, describe the circle, and whence it cuts the lines $A B$, draw $P A, p A$, and the angle $P A p=P Q p$, because they are angles in the same segment of a circle ; and the angle is located as was required. The point B is another in the line when the angle would be the same in magnitude.

Scholium.-The given angle must be less than the angle $P C p$, otherwise the two lines from P, p, making the angle, would meet before they could reach the line given in position.
(6.) If from any point without a circle, lines be drawn touching it, the angle contained by the tangents is double the angle contained by the line joining the points of contact, and the diameter drawn through one of them.

Let P be a point without a circle, and $P A, P B$, tangents to the circle. Lines joining the center to the point of tangency, make right angles with the tangent lines. (Th. IV., Book III.). Join also $P C$ and $A B, P C$ is common to the two right angled triangles $P A C$ and $P B C$. Hence, $P B=P A$, and the angle at P is bisected by $P C$.
$A D$ is a line drawn from the right angle of the triangle $P A C$ perpendicular to its hypotenuse $P C$, and divides that triangle into two similar triangles (Th. XXV., Book II., 1). Hence the angle $D A C$ is equal to the angle $A P C$, or $B P A$, is double of the angle $B A C$, which was to be demonstrated.
(7.) If from any two points in the circumference of a circle, there be drawn two straight lines to a point in a tangent to that circle, they will make the greatest angle when draun to the point of contact.

Let A and B be the two points in the circle, and $C D$ a tangent line. The proposition requires us to demonstrate that the angle $A C B$ is greater
 than the angle $A D B . \quad A C B=A O B$, (Th. IX., Book III., Cor.) But $A O B$ is greater than $A D B$, (Book I., Th. XII., Cor. 1). Therefore, $A C B$ is also greater than $A D B$.
(8.) From a given point within a given circle, to draw a straight line which shall make with the circumference an angle less than any angle made by any other line drawn from that point.

Note.-An angle between a chord and a circumference is the same as between the chord and a tangent drawn through the same point. Thus the angle made by the chord $A B$, and the circumference at B is the same as between $A B$ and a tangent drawn through B.

Let C be the center of the circle, P a given point within
the circle not at the center. Join $C P$, and through P at right angles to $C P$ draw the chord $A B$.

The angle made between $A B$ and the circumference B is measured by by half the arc $B G A$, and this is less than any other angle made by any other line drawn through P, and the circumference.
Through P draw any other line as $F P G$. Now the angle which $P G$ makes with the circumference is measured by half the arc $G A F$. But $G A F$ is a greater arc than $B G A$, because $G F$ is greater than $A B$. $G F$ we know to be greater than $A B$, because $C D$ is less than $C P, C P$ being the hypotenuse of the right angled triangle $C D P$. Consequently the angle which $P B$ makes with the circumference is less than that which $P G$ makes with the circumference.
(9.) If two circles cut each other, the greatest line that can be drawn through either point of intersection, is that which is parallel to the line joining their centers.

Let c and C be the centers of two circles which cut each other, and A, one of the points of intersection. Now our object is to prove that a line drawn through A, parallel to $C c$, will be greater than any other line, as $G B$ drawn through A, and not parallel to $c C$.

From $c C$ draw perpendiculars $c d, C D$, to $G B . A B$ is bisected in D, and $A G$ in d, therefore, $d D$, is half $G B$. But $d D$ is less than $d m=c C$, because $d m$ is the hypotenuse of the right angled triangle $d D m$.

But if $G B$ were drawn parallel to $c C$ through A, then $d D$ would be equal to $c C$. Consequently a line drawn through A, parallel to $c C$, is the greatest possible through A, which was to be shown.
(10.) If from any point within an equilateral triangle perpendiculars be drawn to the sides, they are together equal to a perpendicular drawn from any of the angles to the opposite side.

Let $A B C$ be the equilateral $\triangle, C D$ a perpendicular from one of the angles on the opposite side; then the area of the \triangle is expressed by $\frac{1}{2} A B$ $\times C D$. Let P be any point within the triangle, and from it let drop the three perpendiculars $P G, P H, P O$.

The area of the triangle $A P B$ is expressed by $\frac{1}{2} A B \times P G$. The area of the $\triangle C P B$ is expressed by $\frac{1}{2} C B \times P O$: and the area of the $\triangle C P A$ is expressed by $\frac{1}{2} C A \times P H$. By adding these three expressions together, (observing that $C B$ and $C A$ are each equal to $A B$,) we have for the area of the whole $\triangle A C B, \frac{1}{2} A B(P G+P H+P O$.)

Therefore, $\quad \frac{1}{2} A B \times C D=\frac{1}{2} A B(P G+P H+P O$.
Dividing by $\frac{1}{2} A B$, gives $C D=P G+P H+P O$.
(11.) If the points bisecting the sides of any triangle be joined, the triangle so formed will be one-fourth of the given triangle.

If the points of bisection be joined, the triangle so formed will be similar to the given Δ, (Th. XX., Book II.)

Then, the area of the given Δ will be to the area of the Δ formed by joining the bisecting points, as the square of a
line is to the square of its half; that is, 2^{2} to 1 , or as 4 to 1. Hence the Δ formed is $\frac{1}{4}$ of the given triangle.
(12.) The difference of the angles at the base of any triangle, is double the angle contained by a line drawn from the vertex perpendicular to the base, and another bisecting the angle at the vertex.

Let $A B C$ be a \triangle. Draw $A M$ bisecting the vertical angle, and draw $A D$ perpendicular to the base.

The theorem requires us to prove that the difference between the angles B and C is double of the angle MAD.

By hypothesis, the angle $C A M=M A B$.
That is,

$$
\begin{equation*}
C A M=M A D+D A B \tag{1}
\end{equation*}
$$

By (Th. XII., B. I., Cor. 4) $\left\{\begin{array}{ll}C+C A M+M A D & =90^{\circ} \\ B+D A B & =90^{\circ}\end{array}\right\}$
Therefore, $\quad B+D A B=C+C A M+M A D$
Taking the value of $C A M$ from (1), and placing it in (4), gives $B+D A B=C+M A D+D A B+M A D$.

Reducing $(B-C)=2 M A D$, which verifies the text.
(13.) If from the three angles of a triangle, lines be drawn to the middle of the opposite sides, these lines will intersect each other in the same point.

Let $A B C$ be a \triangle, bisect $B C$ in $E, A C$ in F.

Join $A E$ and $B F$, and through their point of intersection 0 , draw the line
$C D$. Now if we prove $A D=D B$, the theorem is true.

Triangles whose bases are in the same line, and vertices in the same point, are to one another as their bases ; and when the bases are equal, the triangles are equal. For this reason the $\triangle A F O=\triangle F C O$, and the $\triangle C O E=\triangle E O B$.

Put $\triangle A F O=a$; then $\triangle F C O=a$. Also, put $\triangle C O E=b$, as represented in the figure.

Because $C B$ is bisected in E, the $\triangle A C E$ is half of the whole $\triangle A B C$. Because $A C$ is bisected in F, the $\triangle B F C$ is half the whole $\triangle A B C$.

That is, $\quad 2 a+b=2 b+a$.
Whence, $\quad a=b, \quad$ and the four triangles above the point O are equal to each other.

Lee the area of the $\triangle A D O$ be represented by x, and the area of $D O B$ by y.

Now taking $C D$ as the base of the triangles, we have

$$
2 a: x:: C O: O D
$$

Also, $2 b=2 a: y:: C O: O D$
Whence, $\quad 2 a: x:: 2 a: y$. Or, $x=y$.
Therefore, $\quad A D=D B$.
Scholium.-If the triangle, $A B C$ be regarded as a thin lamina of matter, its center of gravity must be somewhere in the line $A E$; for the part $A E C=$ the part $A E B$. For a similar reason, the center of gravity must be somewhere in the line $B F$. Hence it must be at their intersection, 0 .

Again, the triangle $A E B=$ the triangle $A D C$. And since $x=y$, and $a=b$, we have,

$$
2 x+a=2 a+x, \text { or, } a=x .
$$

Hence, $\quad \triangle A O B=\frac{1}{3} \triangle A C B$; and $O D=\frac{1}{3} C D$.
(14.) The three straight lines which bisect the three angles of a triangle, meet in the same point.

Let $A B C$ be any triangle, bisect two of its angles A and B, the bisecting lines meeting at O.

Let fall perpendiculars from O on the
 three sides, $O D, O G, O H$.
Join $C O$, and now if we can demonstrate that $C O$ bisects the angle C the proposition will be proved. The two right angled triangles $A O D, A O G$ have a common hypotenuse, $A O$, and equal angles respectively, therefore, $O D=O G$. In like manner, by the two right angled triangles, $D O B$ and $O H B$, we prove $O D=O H$. Whence, $G O=O H$, and the hypotenuse $O O$ is common to each of the triangles, $C G O$ and $C H O$, therefore their angles are equal, and the angle C is bisected by the line $C O$. Hence the bisecting lines all meet at the point O, and the proposition is proved.

Cor.-Let the student observe that $O D, O G, O H$, each, is equal to the radius of the inscribed circle.
(16.) The figure formed by joining the points of bisection of the sides of a trapezium, is a parallelogram.

Let $A B C D$ be a trapezium. Draw the diagonals $A C, B D$. Bisect the sides in a, b, c, and d. Join $a b c d$. We are to prove that this figure is a
 parallelogram.
$A B D$ is a \triangle whose sides are bisected in a and b; therefore, $a b$ is parallel to $B D$, (Th. XVII., Book II.) In the same manner we can prove that $d c$ is parallel to $B D$. Consequently $a b$ and $d c$ are parallel. It may likewise be shown
that $a d$ and $b c$ are parallel. Hence the figure $a b c d$ is a parallelogram.
(17.) If squares be described on the three sides of a right angled triangle, and the extremities of the adjacent sides be joined, the triangles so formed are equivalent to the given triangle, and to each other.
Let $A B C$ be the original right angled triangle; on its sides describe the squares $A D$, $B G$, and $A H$.

Join $K E, D F$, $H G$, thus forming the triangles $K A E, D B F$, and $H C G$, and we are
 to prove each of them equal to the triangle $A B C$, and to each other.

We will now prove the triangle $A L K$ equal to $A B C$, as follows,
$\begin{array}{ll}\text { The angle } & L A B=90^{\circ}, \\ \text { Also } & K A C=90^{\circ} .\end{array}$
From each of these equals take away the common angle $L A C$, and the remaining angles $K A L$ and $C A B$ must be equal. Again, $A L K$ is right angled at L, and $A B C$ right angled at B, and the hypotenuse $A K$ of the triangle $A L K$, is equal to $A C$ the hypotenuse of $A B C$. Therefore, $A L K$ is equal to $A B C$.

Whence, $\quad A L=A B=A E$, and $K L=B C$.
Now, because $A L=A E$, the area of the triangle $K A E$ is
equal to the area $A L K$, or $A B C$, and this is one of the facts which was to be demonstrated.

In like manner because $A C H=90^{\circ}$, and $B C M=90^{\circ}$, taking away the common angle $M C A$ from each of these equals, we have the angle $H C M=A C B$; but $H C=A C$ and the triangles right angled, one at M, the other at B. Therefore, the triangle $H C M$ is equal in all respects to $A B C$.

That is, $C M=C B$, but $C B=C G$, therefore $M C=C G$; consequently the area of the triangle $H C G=$ the area $H C M$, or $A B C$.

Now, because the area $\quad K A L=A B C$
And the area $\quad H C G=A B C$
Therefore, area $K A L=$ the area $H C G$.
The triangle $B D F=A B C$, because the opposite angles at B are equal, each $90^{\circ} . A B=B D$, and $C B=B F$; and the proposition is fully demonstrated.
(18.) If squares be described on the hypotenuse and sides of a right angled triangle, and the extremities of the sides of the former, and the adjacent sides of the others, be joined, the sum of the squares of the lines joining them, will be five times the square of the hypotenuse.

The two triangles $K L E$, and $H M G$ are right angled triangles, right angles at L, and at M. Observe also that $A E=A B=A L$.

Whence, $E L=2 A B$.

Also, $K L=B C, B C=C G=C M$. Whence, $M G=2 B C$.
But

$$
\overline{E L}^{2}+\overline{K L}^{2}=\overline{E K}^{2}
$$

And
$\overline{M G}^{2}+\overline{M H}^{2}=\overline{H G}^{2}$
That is,
$\overline{(2 A B)^{2}+(B C)^{2}=(E K)^{2}}$
And
$(2 B C)^{2}+(A B)^{2}=(H G)^{2}$
By adding (1) and (2), observing that $(2 A B)^{2}$ is $4 \overline{A B}^{2}$

$$
5 \overline{A B}^{2}+5 \overline{B C}^{2}=(E K)^{2}+(H G)^{2}
$$

That is, $\quad 5$ times $(A C)^{2}=(E K)^{2}+(H G)^{2}$
which verifies the proposition.
Cor.-The area of the whole figure is double the square on $A C$, and 4 times the area of the triangle $A B C$.
(19.) The vertical angle of an oblique angled triangle, inscribed in a circle, is greater or less than a right angle, by the angle contained between the base and the diameter drawn from the extremity of the base.

Let $A C B$ be the vertical angle of a triangle, its base the chord $A B$. From the extremity of the base B, draw the diameter of the circle $B D$ Join $C D$.

Because $B D$ is a diameter the angle $B C D$ is a right angle ; therefore, the angle $A C B$
is greater than a right angle by the angle $A C D$. But $A C D$ $=A B D$, each being measured by half the arc $A D$.

That is, $A C B$ is greater than a right angle by the angle $A B D$, which was to be demonstrated.

Or, let $A^{\prime} B C$ be the triangle in a circle, and $A^{\prime} C B$ its vertical angle. This is less than a right angle, by the angle $A^{\prime} C D$, or $A^{\prime} B D$.
(20.) If the base of any triangle be bisected by the diameter of its circumscribing circle, and from the extremity of that diameter, a perpendicular be let fall upon the longer side, it will divide that side into segments, one of which will be equal to half the sum, and the other to half the difference of its sides.

Let $A B C$ be the \triangle, bisect its base by the diameter of the circle drawn at right angles to $A B$.

From the center O let fall $O m$ at right angles to $A C$, it will then bisect $A C$. From the extremity of the diameter H, draw $H h$ perpendicular to $A C$, and consequently parallel to $O m$. Produce $H h$ to M and join $M L$. Complete and letter the figure as represented.

The two triangles $A a b$ and $H h a$ are equiangular. The angle a is common to them, and each has a right angle by construction, therefore the angle $H=$ the angle A, and the arc $M L=$ the arc $C B$, (Th. IX., Book III., C.) ; therefore $C B=M L$. The angle $H M L$ is a right angle, because it is in a semicircle, therefore, $M L$ is parallel to $A C$, and $M L$ is bisected in n.

Now $A m=\frac{1}{2} A C . \quad n L=m d=\frac{1}{2} M L=\frac{1}{2} B C$.
Therefore by addition, $A m+m d=\frac{1}{2}(A C+C B)$.
Or,

$$
A d=\frac{1}{2}(A C+C B .)
$$

But, if $A d$ is the half sum of the sides, $d C$ or $A h$ must be the half difference; for the half sum and half difference make the greater of any two quantities.
(21.) A straight line drawn from the vertex of an equilateral triangle, inscribed in a circle, to any point in the opposite circumference, is equal to the sum of the two lines drawn from the extremities of the base to the same point.

Let $A B C$ be an equilateral triangle inscribed in a circle, and designate each side by a, as represented in the figure.

Take any point D on the arc $B C$, and join $A D$ and designate it by x. Join $B D$ and $D C$.

We are required to demonstrate that $x=B D+D C$.

Observe that $A B D C$ is a quadrilateral inscribed in a circle, and by (Th. XXI., Book III.), we
 must have,

$$
a x=a(B D)+a(D C)
$$

Dividing each side by a, and $x=B D+D C$, which was to be demonstrated.
(22.) The straight line bisecting any angle of a triangle inscribed in a circle, cuts the circumference in a point equidistant from the extremities of the side opposite to the bisected angle, and from the center of the circle inscribed in the triangle.

Let $A B C$ be a triangle in a circle, and draw $C D$ bisecting the angle at C, and draw $B G$ bisecting the angle at B. The intersection of these two bisecting lines at O, is the center of an imaginary circle inscribed in the triangle $A B C$.

The line $C D$ bisects the
 angle at C by hypothesis, therefore, the are $A D=$ the arc
$B D$. Hence the chord $A D=$ the chord $B D$, and thus the first part of the theorem is proved.

In like manner, because $B G$ bisects the angle B, the arc $A G=$ the $\operatorname{arc} G C$.

Now in the triangle $D B O$, the angle $D B O$ or $D B G$ is measured by half the sum of the arc, $A D+A G$. And the angle $D O B$ is measured by half of the sum of the arcs $D B+G C$. But $A D+A G=D B+G C$. Therefore, the angles $D B O$ and $D O B$ are equal, and the triangle is isosceles, and $D B=D O$.

In like manner we can prove that $D A=D O$, and the second point of the theorem is demonstrated.
(23.) If from the center of a circle, a line be drawn to any point in a chord of an arc, the square of that line, together with the rectangle of the segments of the chord, will be equal to the square on the radius of the circle.

Let C be the center of a circle, and P any point in the chord $A B$. Join PC, then we are required to prove that

$$
\overline{P C}^{2}+A P \cdot P B=\overline{C Q}^{2} .
$$

Through P draw the chord $R Q$ at right angles to $P C$, and join $C Q$.

Because $C P$ is a line perpendicular from the center to a chord it bisects the chord. Hence, $R P=P Q$.

And because two chords intersect at P, we have,

$$
A P \cdot P B=R P \cdot P Q=\overline{P Q}^{2} .
$$

Add $\overline{C P}^{2}$ to each member of this last equation, and we have,

$$
\overline{C P}^{2}+A P \cdot P B=\overline{P Q}^{2}+\overline{P C}^{2}
$$

But by the right angled triangle $P C Q$, we perceive that the second member is equal to $\overline{C Q}^{2}$. Therefore,

$$
\overline{C P}^{2}+A P \cdot P B=\overline{C Q}^{2},
$$

which was to be demonstrated.
(24.) If two points be taken in the diameter of a circle equidistant from the center, the sum of the squares of the two lines drawn from these points to any point in the circumference, will always be the same.

Take the same circle as in the preceding theorem, and let $G C=C H$. Take any point in the circumference as D, and join $D G, D C, D H$.

Now because the base of the triangle $G D H$ is bisected in C, we have by (Th. XLII., Book I.),

$$
\overline{G D}^{2}+\overline{D H}^{2}=2 \overline{D C}^{2}+2 \overline{G C}^{3} .
$$

But at whatever point on the circumference D may be placed, $D C$ and $G C$ will always retain the same value. Therefore, the sum of the squares of the other two sides is constantly equal to the same sum.
(25.) If on the diameter of a semicircle, two equal circles be described, and in the space enclosed by the three circumferences, a circle be inscribed, its diameter will be two thirds the diameter of either of the equal circles.

Let $A B$ be the diameter of one of the two equal circles and construct the figure as here represented.

We are required to show the relation between $C B$ and $E D$.

Place $C B=r$ and $E D=x$.
Then $B E=2 r$, and $B D=$ $2 r-x, C D=r+x$.

In the right angled triangle $C B D$, we have,

$$
\overline{C B}^{2}+\overline{B D}^{2}=\overline{C D}^{2}
$$

That is,

$$
\begin{aligned}
r^{2}+(2 r-x)^{2} & =(r+x)^{2}, \\
r^{2}+4 r^{2}-4 r x+x^{2} & =r^{2}+2 r x+x^{2} \\
6 r x & =4 r^{2}, \text { and } x=\frac{2}{3} r .
\end{aligned}
$$

Or,
Whence,
(26.) If a perpendicular be drawn from the vertical angle of any triangle to the base, the difference of the squares of the sides is equal to the difference of the squares of the segments of the base.

Let $A B C$ be a triangle. From
 A let fall $A D$ perpendicular on $B C$, making two right angled triangles $A D B, A D C$. These triangles give $(A D)^{2}+(D B)^{2}=(A B)^{2}$ $(A D)^{2}+(D C)^{2}=(A C)^{2}$
By subtraction $(\overline{B D})^{2}-(D C)^{2}=(A B)^{2}-(A C)^{2}$.
This equation demonstrates the theorem.
Cor.-By factoring the above equation, we have,

$$
(B D+D C)(B D-D C)=(A B+A C)(A B-A C)
$$

Observing that $B D+D C=B C$, and changing this equation into a proportion, we have,

$$
B C: A B+A C=A B-A C:(B D-D C)
$$

(This is Prop. 6, Plane Trigonometry, Page 256, Geometry.)

This proportion is true whatever relation exist between $A B$ and $A C$. When $A B=A C$, then $B D=D C$ and the preceding proportion becomes

$$
B C: 2 A B:: 0: 0
$$

This is an apparent absurdity, but we can reconcile it to truth by taking the product of the extremes and means, and we have,

$$
(B C) 0=(2 A B) 0
$$

An equation obviously true,
Or, $\frac{B C}{2 A B}=\frac{0}{0}$, and 0 divided by 0 is any quantity whatever, Hence, $0: 0:: a:$ to any quantity whatever.
(27.) The square described on a side of an equilateral triangle is equal to three times the square of the radius of the circumscribing circle.

Let $A B C$ be an equilateral triangle. Let fall the perpendicular $A E$ on the base, that line will bisect the angle A. Draw $B D$ bisecting the angle at B.

We will now prove $A D=B D$; then D must be the center of the
 circumscribing circle.

Each angle of an equilateral triangle is $60^{\circ}\left(\frac{1}{3}\right.$ of $\left.180^{\circ}\right)$. Bisecting each of these angles, we have, $D B A, D A B$, each 30°, and therefore $A D=D B$, and hence, if D be taken as the center of circle with $D B$ or $D A$ as radius, that circle will circumscribe the triangle. Put $A B=2 a$, then $B E=a$.

Also, place $B D=x$, then $D E=\frac{1}{2} x$. (It being the side of a right angled triangle opposite 30°). (Prob. 2 of this Key.)

Now by the right angled triangle $D B E$, we have,

$$
(B E)^{2}+(D E)^{2}=(B D)^{2} .
$$

That is,

$$
a^{2}+\frac{1}{4} x^{2}=x^{2}, \text { or, } 3 x^{2}=4 a^{2} .
$$

But $\left(4 a^{2}\right)=(A B)^{2}$. That is, $3 x^{2}=(A B)^{2}$, which demonstrates the theorem.
(28.) The sum of the sides of an isosceles triangle, is less than the sum of the sides of any other triangle on the same base, and between the same parallels.

Let $A B C$ be the isosceles triangle. $A B=A C$. Through the point A draw $G A H$ parallel to $B C$.

Take G any other point on the line $G H$, and draw $B G$ and $G C$.

We are to show that $A B+A C$ is less than $B G+G C$. Produce $A B$ to D, making $A D=A B$, or $A C$.
Then by reason of the parallels $G H$ and $B C$, the angle $D A H$ is equal to the angle $A B C$, and $H A C=A B C$.

Because $A D=A C$, the angle $A D H=$ the angle $A C H$.
Whence the two triangles $A D H$ and $A C H$, are equal in all respects, and $G H$ is perpendicular to $D C$; whence any point in the line $G H$ is equally distant from the two points D and C.

Now the straight line $B D=B A+A C$, and because $D G=$ $G C, D G+G B=G B+G C$. But $D G+G B$, the two sides of a \triangle are greater than the third side $D B$; therefore $G B+G C$ is greater than $B D$, that is, greater than $B A+A C$.
(29.) In any triangle, given one angle, a side adjacent to the given angle, and the difference of the other two sides, to construct the triangle.

Draw $A B$ equal to the given side. From one extremity of the base A, draw $A C$ indefinitely, making the angle $B A C$, equal to the given angle. (Prob.
 V., Book IV.)

Take $A D$ equal to the given difference between the other two sides and join $D B$. From the point B make the angle $D B C$ equal to the angle $B D C$, and the point C will be the vertex of the triangle required. Because $B C=C D$, and $A D$ was made equal to the given difference of two sides, and $A B$ the given side.
(30.) In any triangle, given the base, the sum of the other two sides, and the angle opposite the base, to construct the triangle.

Take any point A, and from it draw the line $A D$, equal to the sum of the sides.

At the extremity D, make the angle $A D B$ equal to half of the given angle opposite the base. From A as a center, with the dis-
 tance $A m$ equal to the given base, describe an arc, $m n B$, cutting $D B$ in n and B.

From B draw $B C$ making the angle $D B C$, equal to the
angle D. Also from n draw $n C^{\prime}$ parallel to $B C$, then $A B C$ and $A n C^{\prime}$, are triangles corresponding to the given conditions.

For, $A B=A n=A m$, the given base. The angles $A C B$, or $A C^{\prime} n$ opposite the respective bases, $A B, A n$, are equal to the given angle, because $A C B$ being the exterior angle of the triangle $C D B$, is equal to the sum of D and $D B C$; but $D B C$ was made equal to D by construction, and D was made equal to half the given angle.

The same reasoning applies to the triangle $D C^{\prime} n$.
Also, $C D=C B$ by construction, therefore $A C+C B=$ $A C+C D$, or $A D$ the sum of the given sides.
(31.) In any triangle, given the base, the angle opposite to the base, and the difference of the other two sides, to construct the triangle.

Let $A B C$ be the triangle. To discover its proper or direct construction, we must suppose the problem solved, and then analyze it.
If $A B$ is the given base, and $A D$ the given difference of the other sides, it is then obvious that $D C=C B$, and knowing the angle C which is given, we can determine each of the other angles of the triangle $C B D$.

Therefore, $C D B$ is known, and its supplement $A D B$ is known. Whence the angle

$$
A D B=90^{\circ}+\frac{1}{2} C .
$$

Take any point A and draw $A C$ indefinitely. From the
scale of equal parts take $A D=$ to the given difference, and make the angle

$$
A D B=90^{\circ}+\frac{1}{2} C .
$$

Take the given base from the scale of equal parts in the dividers, and with one foot on A as a center, strike an arc, cutting $D B$ in B. The line $A B$ will be the base.

From the point B, and from the line $B D$ make the angle $D B C=B D C$, and produce $D C$ and $B C$ until they meet in C, and we have the triangle $A B C$, as was required.

PLANE TRIGONOMETRY.

SECTION II.

(Page 289.)

Note.-In each of the following examples in this section, there are six parts, three angles A, B, and C, and the three corresponding sides a, b, c, A being opposite to a, etc. Each of the following examples may be referred to one and the same triangle. The right angle always at B, and in right angled trigonometry this part is always given, and not generally expressed. The right angle and two other parts being given, the remaining three parts can be determined.

Ex. 2. Given $A C, 73.26$, and the angle $A, 49^{\circ} 12^{\prime} 20^{\prime \prime}$, to find the other parts.

From 90° take A, and we have $C=40^{\circ} 47^{\prime} 40^{\prime \prime}$.

As $\sin .90^{\circ}$.	10.000000		10.000000
To $\sin .49^{\circ} 12^{\prime} 20^{\prime \prime}$	9.879129	cos.	9.815144
So is 73.26	$\underline{1.864867}$	log.	1.864867
To $B C, 55.462$	$\overline{1.743996}$		$\overline{1.680011}$
	Ans. $B C, 55.46$.	$A B, 47.87$.	

Ex. 3. Given $A B, 469.34$, and the angle $A, 51^{\circ} 26^{\prime} 17^{\prime \prime}$, to find the other parts.

From 90° take A, and $C=38^{\circ} 33^{\prime} 43^{\prime \prime}$.

	For $B C$.	For $A C$.	
As sin. $C, 38^{\circ} 33^{\prime} 43^{\prime \prime}$	9.794739	sin. C	9.794739
Sin. A	9.893171	sin. 90°	10.000000
$A B, 469.34$	$\underline{2.671488}$	$A B$	$\underline{2.671488}$
(Sin. $A)(A B)$	$\underline{12.564659}$	$A C$	2.876749
$B C, 588.74$	2.769920	$A C$	752.92. Ans.

Ex. 4. Given $A B, 493$, and the angle $C, 20^{\circ} 14^{\prime}$, to find the other parts.

The remaining angle A is of course, $69^{\circ} 46^{\prime}$.

	For CB.		For AC.
As $\sin . C, 20^{\circ} 14^{\prime}$	9.538880	$\sin . C$	9.538880
Cos. C, or \sin. A	9.972338 \}	sin. 90	10.000000
AB, 493	2.692847 \}	$A B$	2.692847
	12.665185	$A C, 1425$	$=\overline{3.153967}$
$C B, 1337.53$	3.126305		

Ex. 5. Given $A B, 331$, and the angle $A, 49^{\circ} 14^{\prime}$, to find the other parts.

The angle $C=40^{\circ} 46^{\prime}$.

	For CB.		For AC.
As sin. C	9.814900	$\sin . C$	9.814900
Cos. C or Sin. A	9.879311 \}	$\sin .90^{\circ}$	10.000000
$A B$	2.519828 \}	$A B$	2.519828
	$\overline{12.399139}$	$A C, 506.91$	2.704928
$C B, 383.92$	2.584239		

Ex. 6. Given $A C, 45$, and the angle $C, 37^{\circ} 22^{\prime}$, to find the other parts.

The angle A must be $52^{\circ} 38^{\prime}$.

	For $C B$.		For AB.
As sin. 90°	10.000000	$\sin .90^{\circ}$	10.000000
Sin. $C, 37^{\circ} 22^{\prime}$	9.783127	$\sin . A$	9.900240
$A C$	$\underline{1.653212}$	$A C$	1.653212
$A B, 27.311$	1.436339	$C B, 35.764$	1.553452

Ex. 7. Given $A C, 4264.3$, and the angle $A, 56^{\circ} 29^{\prime} 13^{\prime \prime}$, to find the other parts.

The angle C must be $33^{\circ} 30^{\prime} 47^{\prime \prime}$.
For CB. For $A B$.

As $\sin 90^{\circ}$	10.000000	$\sin .90^{\circ}$	10.000000
$\operatorname{Sin} . A, 56^{\circ} 29^{\prime} 13^{\prime \prime}$	9.921041	$\sin . C$	9.742038
$A C$	3.629848	$A C$	3.629848
$C B, 3555.4$	3.550889	$A B, 2354.4$	$\boxed{3.371886}$

Ex. 8. Given $A B, 42.2$, and the angle $A, 31^{\circ} 12^{\prime} 49^{\prime \prime}$, to find the other parts.

The angle C must be $58^{\circ} 47^{\prime} 11^{\prime \prime}$.
For BC. For $A C$.

As $\sin . C, 58^{\circ} 47^{\prime} 11^{\prime \prime} \quad 9.932088 \quad \sin . C$. 9.932088
$\operatorname{Sin} . A, 31^{\circ} 12^{\prime} 49^{\prime \prime} \quad 9.714522 \sin 90^{\circ} \quad 10.000000$
$A B$
$\frac{1.625312}{11.339834} \quad A B, 49.34 \quad \frac{1.625312}{1.693223}$
$B C, 25.57 \quad 1.407746$

Ex. 9. Given $A B, 8372.1$, and $B C, 694.73$, to find the other parts.
(By Prop. III. Plane Trig., 2d part, we have,) 8372.1 : $694.73:: R: \tan . A$.

Whence, $\quad \tan . A=\frac{(694.73) R}{8372.1} \quad \begin{array}{llr}\text { log. } & 12.841816 \\ \text { log. } & 3.922835\end{array}$
$\tan . A=\tan .4^{\circ} 44^{\prime} 37^{\prime \prime}=8.918981$
Therefore the angle
$C=85^{\circ} 15^{\prime} 23^{\prime \prime}$
For the hypotenuse we have,

$$
\text { As } \sin . A: 694.73:: R: A C
$$

As before;

log. (694.73) $R=$	12.841816
Sin. A	8.917489
AC, 8400.9	3.924327

Ex. 10. Given $A B, 63.4, A C, 85.72$, to find the other parts.

As $\quad A C: \sin .90^{\circ}:: A B: \sin . C$	
Log. $(A B . R)$	11.802089
Log. $A C, 85.72$	1.933082
Sin. $C=47^{\circ} 41^{\prime} 56^{\prime \prime}$	9.869007
Again,	As R

Ex. 11. Given $A C, 7269$, and $A B, 3162$, to find the other parts.

As in Example 10, Log. (AB.R) 13.499962
Log. $A C, 7269 \quad 3.861475$

Sin. $C, 25^{\circ} 47^{\prime} 7^{\prime \prime} \quad 9.638487$
A $64^{\circ} 12^{\prime} 53^{\prime \prime}$

As	$\sin . C, 25^{\circ} 47^{\prime} 7^{\prime \prime}$	9.638487
Is to	$A B, 3162$	3.499972
So is	$\sin . A=\cos . C$	$\underline{9.954450}$
		$\underline{13.454422}$
	Log. $B C=\log .6545$	3.815935

Ex. 12. Given $A C$ ', 4824, and $B C, 2412$, to find the other parts.

In this example the hypotenuse is double of the side $B C$, therefore the angle opposite $B O$ or A, must be 30°, and the angle $C, 60^{\circ}$.

If we call $B C, 1, A C, 2$, and $A B, x$, then $x^{2}+1=4$, and $x=\sqrt{3}$. Whence, $A B=2412 \sqrt{3}=4178$, nearly.

Ex. 13. In this cample the hypotenuse of the right angled triangle is $94,770,000$ miles, and the most acute angle only $16^{\prime} 6^{\prime \prime}$, the double of the side opposite this small angle is required.

The difficulty here is to obtain the sine of $16^{\prime} 6^{\prime \prime}$ to a sufficient degree of accuracy from the common table. This is explained on page 288 , Text-book. Or we may operate as follows,

As	Sin. 90°	10.000000
Is to	94,770,000 log.	7.976671
So is	$\sin .16^{\prime} 6^{\prime \prime}=(16.1) \sin .1^{\prime}$	$6.463726, \sin .1^{\prime}$
	Log. 16.1	1.206826
	443850	5.647223
	2	
Sun's	diameter $\overline{887700}$	

Ex. 14. Solution, As $94,779,0007.976671$

$$
\begin{array}{ll}
R & 10.000000
\end{array}
$$

Log. $3956 \quad 3.597256$
Sine of solar parallax=
$5.620585=8.61^{\prime \prime}$. Ans.

Ex. 15. The distance from the earth to the moon, at mean distance in miles, is $(60.3)(3960)$.

Statement, As $\sin .90^{\circ}: \sin .15^{\prime} 32^{\prime \prime}::(60.3)(3960): M$. Observe that $15^{\prime} 32^{\prime \prime}=932^{\prime \prime}$, $\sin .932^{\prime \prime}=932$ times $\sin .1^{\prime \prime}$. Solution.

Log. 60.3
1.780317

Log. 3960
Sin. $1^{\prime \prime}$ (see page 288, Geom.)
Log. 932
$R, 1078.9 \quad 3.033003$
2
Diameter of moon, 2157.8 Ans.
(PRACTICAL PROBLEMS.)
(Page 295.)

Note.-One triangle will serve for the solution of nearly all the following examples in this section. But the learner should draw his figure as near as he can according to the data given in each example. He will thus be less likely to make mistakes than he otherwise would.

Let $A B C$ be any oblique angled triangle.

Ex. 1. Given $A B, 697$, the angle $A, 81^{\circ} 30^{\prime} 10^{\prime \prime}$, and the angle $B, 40^{\circ}$
 $30^{\prime} 44^{\prime \prime}$, to find the other parts.

Because the sum of the three angles make two right angles, or 180°. Therefore,

$$
C=180^{\circ}-\left(81^{\circ} 30^{\prime} 10^{\prime \prime}+40^{\circ} 30^{\prime} 44^{\prime \prime}\right)=57^{\circ} 59^{\prime} 6^{\prime \prime}
$$

As
Sin. $C: A B:: \sin . A: B C$.

Whence,	To sine $A, 81^{\circ} 30^{\prime} 11^{\prime \prime}$ Add, 697	$\begin{aligned} & 9.995207 \\ & 2.843233 \end{aligned}$
		12.838440
	Sub. sin. $C, 57^{\circ} 59^{\prime} 6^{\prime \prime}$	9.928350
	$B C, 813$ log.	2.910090
Again,	Sin. $C: A B:: \sin . B: A C$	
	Sin. B	9.812652
		12.655885
	Sin. C, as before	9.928350
	AC, 534	2.727535

Ex. 2. Given $A C, 720.8$, the angle $A, 70^{\circ} 5^{\prime} 22^{\prime \prime}$, and $B, 59^{\circ} 35^{\prime} 36^{\prime \prime}$, to find the other parts.

The angle C must be $50^{\circ} 19^{\prime} 2^{\prime \prime}$.
As $\quad \operatorname{Sin} . B: A C:: \sin . A: B C=\frac{A C \cdot \sin . A}{\operatorname{Sin} .} \bar{B}$.
Also, $\quad \operatorname{Sin} . B: A C:: \sin . C: A B=\frac{A C \cdot \sin C}{\operatorname{Sin} . \bar{B}}$.

Sin. A	9.973232		$\sin . C$	9.886260
$A C, 720.8$	$\underline{2.857815}$		$\underline{2.857815}$	
	$\underline{12.831047}$		$\underline{12.744075}$	
Sin. B	$\underline{9.935737}$		$\sin . B$	9.935737
$B C, 785.8$	2.895310	$A B, 643.2$	2.808338	

Ex. 3. Given $B C, 980.1$, the angle $A, 7^{\circ} 6^{\prime} 26^{\prime \prime}$, and the angle $B, 106^{\circ} 2^{\prime} 23^{\prime \prime}$, to find the other parts.

The angle C must be $66^{\circ} 51^{\prime} 11^{\prime \prime}$.
As $\quad \operatorname{Sin} . A: B C:: \sin . B: A C=\frac{B C \cdot \sin . B}{\sin . A}$.
$\operatorname{Sin} . A: B C:: \sin . C: A B=\frac{B C \cdot \sin . C}{\operatorname{Sin} . A}$.

Sin. B	9.982755	$\sin . C$	9.963552
$B C$	$\underline{2.991270}$	$B C$	2.991270
	12.974025		12.954822
Sin. A	$\underline{9.092463}$	$\sin . A$	9.092463
$A C, 7613.1$	$\underline{3.881562}$	$A B, 7283.8$	3.862359

Ex. 4. Given $A B, 896.2, B C, 328.4$, and the angle $C, 113^{\circ} 45^{\prime} 20^{\prime \prime}$ to find the other parts.

As $\quad A B: \sin . C:: B C: \sin . A=\frac{B C \cdot \sin . C}{A B}$.
$\sin . C=\cos .23^{\circ} 45^{\prime} 20^{\prime \prime} \quad 9.761550$
BC, 328.4
2.516403
12.477953
$A B, 896.2$
2.952405

Sin. $A=\sin .19^{\circ} 35^{\prime} 46^{\prime \prime}$
9.525548

Now having the angles A and C, we subtract their sum from 180°, and thus find the remainder $B, 46^{\circ} 38^{\prime} 54^{\prime \prime}$. Ans.

With this angle we determine $A C$.

Ex. 5. Given $A C=4627, B C, 5169$, and the angle A, $70^{\circ} 25^{\prime} 12^{\prime \prime}$, to find the other parts.

As

$$
B C: \sin . A:: A C: \sin . B=\frac{A C \cdot \sin . A}{B C}
$$

Sin. $A, 70^{\circ} 25^{\prime} 12^{\prime \prime}$	9.974132
$A C, 4627$	$\underline{3.665299} \overline{13.639431}$
$B C, 5169$	$\underline{3.713407}$
$\operatorname{Sin} . B, 57^{\circ} 29^{\prime} 56^{\prime \prime}$	9.926024

We now have the angles A and B, subtracting their sum from 180°, gives $C=52^{\circ} 4^{\prime} 52^{\prime \prime}$. Ans.

For $A B$, we have,
Sin. $A: B C:: \sin . C: A B=\frac{B C \cdot \sin . C}{\sin . A}$.

$B C$	3.713407.
Sin. $C, 52^{\circ} 4^{\prime} 52^{\prime \prime}$	9.897011
	13.610418
Sin. A	$\underline{9.974132}$
$A B, 4328$	3.636286

Ex. 6. Given $A B, 793.8, B C, 481.6, A C, 500$, to find the angles.

Note.-Here all three sides are given, and the solution is by formulas found on page 259, Geometry.

The angles of a triangle are denoted by A, B, C, and the sides opposite by a, b, c. A opposite a, etc.

The formulas are $\frac{1}{2}(a+b+c)=S$.
$\operatorname{Cos} .{ }^{2} \frac{1}{2} A=\frac{S(S-a)}{b c} ; \cos .{ }^{2} \frac{1}{2} B=\frac{S(S-b)}{a c} ; \cos .{ }^{2} \frac{1}{2} C=\frac{S(S-c)}{a b} ;$
the radius being unity.
By logarithms the formulas become
Log. $\left(\cos . \frac{1}{2} A\right)=\log . S(S-a)-\log . b c$. \&c.
$a=481.6$
$\left\{\begin{array}{l}b=500 \\ c=793.8\end{array}\right.$
$2) \overline{1775.4}$
Log. S
Log. $(S-a) \quad 2.608633\}$ add.
Log. $S(S-a) 5.556899$
$887.7=S$
a, 481.6
$406.1=(S-a) \quad \log \cdot\left(\cos ^{2} \frac{1}{2} A\right) \quad-1.958218(2$, div.
$\log .\left(\cos . \frac{1}{2} A\right)-1.979109$
To correspond to table II., add
Cos. $\frac{1}{2} A=\cos .17^{\circ} 37^{\prime} 46^{\prime \prime}$
10.
9.979109

$$
A=\overline{35^{\circ} 15^{\prime} 32^{\prime \prime}}
$$

Having thus found one of the angles, the other may be determined by the direct proportion between the sides and the sines of the opposite angles.

Ex. \%. Given $A B, 100.3, A C, 100.3$, and $B C, 100.3$, to find the angles.

Here the sides are equal to each other, the triangle is therefore equiangular as well as equilateral. Consequently each angle is one third of 180°, or 60°.

Ex. 8. Given $A B, 92.6, B C, 46.3$, and $A C, 71.2$, to find the angles.

Note.-In example 6 we obtained the angle A, for radius unity. Here we will find the angle B, for radius R, whose \log. is 10 . The formula must be

$$
\text { Cos. } \frac{1}{2} B=\left(\frac{R^{2} S(S-b)}{a c}\right)^{\frac{1}{2}} .
$$

By logarithms this becomes,

$$
\log .\left(\cos . \frac{1}{2} B\right)=\frac{1}{2}\left(\log . R^{2} S(S-b)-\log . a c\right)
$$

$$
\begin{aligned}
& b=71.2 \\
& \left\{\begin{array}{l}
a=46.3 \\
c=92.6
\end{array}\right. \\
& \text { 2) } \overline{210.1} \\
& \log . a, \quad 1.665581 \quad 23.550955 \\
& 105.05=S \\
& 71.2 \\
& \text { Log. } R^{2}= \\
& \log . S \\
& 2.021396 \\
& \text { log. }(S-b) \quad 1.529559 \\
& \text { log. } 1.966611 \\
& \overline{33.85}=S-b \text {. } \\
& \text { Cos. } \frac{1}{2} B=\cos .24^{\circ} 23^{\prime} 45^{\prime \prime} \quad 9.959381 \\
& B=\quad \frac{2}{48^{\circ} 47^{\prime} 30^{\prime \prime}} .
\end{aligned}
$$

Now, $\quad b: \sin . B:: a: \sin . A=\frac{a \sin . B}{b}$.

Log. $a=$	1.665581
Sin. $B=$	9.876402
	11.541983
Log. $b=$	1.852480
Sin. $A=\sin .29^{\circ} 17^{\prime} 22^{\prime \prime}$	$\underline{9.689503}$

Hence,

$$
C=101^{\circ} 55^{\prime} 8^{\prime \prime}
$$

Ex. 9. Given $A B, 4963, B C, 5124, A C, 5621$, to find the angles.

$a=5124$	For the angle C	
$b=5621$	log. R^{2}	20.
$c=4963$	log. S	3.895091
$\overline{15708}$	log. $(S-c)$	3.461048
$S=\overline{7854}$	log. a, 3.709609	$\overline{27.356139}$
$S-c=2891$	log. b, 3.749814	
	7.459423	7.459423
		2) $\overline{19.896716}$
	$\operatorname{cos.} \frac{1}{2} C=\cos .27^{\circ} 23^{\prime} 27.5^{\prime \prime}$	9.948358
	$C=54^{\circ} 46^{\prime} 55^{\prime \prime}$	

For the angle A $c: \sin . C:: a: \sin . A$.

Sin. C	9.912202
Log. a	3.709609
	13.621811
Log. c	3.695744
Sin. $A=\sin .57^{\circ} 30^{\prime} 28^{\prime \prime}$	$\underline{9.926067}$

Ex. 10. Given $A B, 728.1, B C, 614.7, A C, 583.8$ to find the angles.

	$=614.7$		log. R^{2}	20.000000
	$=583.8$, log.	2.766264	log. S	2.983762
	$=728.1$ \} log.	2.862191	log. $(S-a)$	2.542327
	1926.6	5.628455		25.526089
	$\overline{963.3}$			5.628455
	614.7			2)$\lcm{19.897634}$
$(S-a)$	$\overline{348.6}$	$\operatorname{cos.} \frac{1}{2} A=\mathrm{c}$	$27^{\circ} 16^{\prime} 26^{\prime \prime}$	9.948817
			2	
		A	$\overline{54^{\circ} 32^{\prime} 52^{\prime \prime}}$	

Now as

$$
a: \sin A:: b: \sin . B=\frac{b \sin . A}{a}
$$

log. b	2.766264
sin. A	9.910944
	12.677208
log. $a, 614.7$	$\underline{2.788663}$
in. $50^{\circ} 40^{\prime} 58^{\prime \prime}$	9.888545

Ex. 11. Given $A B, 96.74, B C, 83.29$, and $A C, 111.42$, to find the angles.

$a=83.29$	log. R^{2}	20.000000
$b=111.42$ \}	log. S	2.163534
$c=96.74\}$	$\log .(S-a)$) 1.795428
2) $\overline{291.45}$	log. b, 2.046963	$\overline{23.958962}$
$S \quad \overline{145.725}$	log. c, 1.985606	
$a \quad 83.29$	$\overline{4.032569}$	4.032569
$(S-a) \quad \overline{62.435}$		2) $\overline{19.926393}$
$\operatorname{Cos.} \frac{1}{2} A=\cos .23^{\circ} 15^{\prime} 22.5^{\prime \prime}=$		9.963196

$$
A=\quad \frac{2}{46^{\circ} 30^{\prime} 45^{\prime \prime}}
$$

As

$a: \sin . A:: b:$	$\sin . B$
Sin. $A=$	9.860652
b	$\underline{2.046963}$
	11.907615
a	$\underline{1.920593}$
$B, \sin .76^{\circ} 346^{\prime \prime}$	9.987022

A and B being as above, C must be $57^{\circ} 25^{\prime} 29^{\prime \prime}$.
Ex. 12. Given $A B, 363.4, B C, 148.4$, and the angle $B, 102^{\circ} 18^{\prime} 27^{\prime \prime}$, to find the other parts.

Here we have two sides and their included angle given, and we apply (Prop. VII., Plane Trig., page 257), which is $\left.\begin{array}{l}363.4 \\ 148.4\end{array}\right\}$ sum. : $\left.\begin{array}{l}363.4 \\ 148.4\end{array}\right\}$ diff. : : $\tan \left(\frac{C+A}{2}\right): \tan \left(\frac{C-A}{2}\right)$

We observe that C must be greater than the angle A, because C is opposite the greater side.

$$
511.8: 215:: \tan .38^{\circ} 50^{\prime} 47^{\prime \prime}: \tan , \frac{C-A}{2}
$$

Log. $215 \quad 2.332438$
Tan. $\frac{C+A}{2}, 38^{\circ} 50^{\prime} 47^{\prime \prime} \quad 9.905986$
$\overline{12.238424}$
Log. $511.8 \quad 2.709100$
Tan. $\frac{1}{2}(C-A) 18^{\circ} 41^{\prime} 29^{\prime \prime}=\overline{9.529324}$

$$
\frac{1}{2}(C+A) 38^{\circ} 50^{\prime} 47^{\prime \prime}
$$

Sum $C \quad \overline{57^{\circ} 32^{\prime} 16^{\prime \prime}}$
Diff. A $\left.20^{\circ} 9^{\prime} 18^{\prime \prime}\right\}$ Ans.
As
Sin. $C: c(363.4):: \sin . B: b$.
Sin. $B, 102^{\circ} 18^{\prime} 27^{\prime \prime}=\cos .12^{\circ} 18^{\prime} 27^{\prime \prime} \quad 9.989903$
log. $363.4 \quad \frac{2.560385}{12.550288}$
$\sin . C, 57^{\circ} 32^{\prime} 16^{\prime \prime} \quad 9.926211$
$\log . A C=\log .420 .8 \quad 2.624077$

Ex. 13. Given $A B, 632, B C, 494$, and the angle A, $20^{\circ} 16^{\prime}$, to find the other parts, the angle C being acute.

If no mention were made requiring the angle C to be acute, the data, would give the triangle $A B C^{\prime}$, for the solution as well as the triangle $A B C$.

In such cases it is customary to solve both triangles, and call the solution ambiguous.

As,	$B C: A B:: \sin . A: \sin . C$	
Or,	$494: 632:: \sin .20^{\circ} 16^{\prime}: \sin . C$	
	Log. $\sin .20^{\circ} 16^{\prime}$	9.539565
	$\log .632$	$\underline{2.800717}$
		12.340282
	log. 494	2.693727
	$C, 26^{\circ} 18^{\prime} 19^{\prime \prime}$	9.646555

A and C taken from 180°, gives $133^{\circ} 25^{\prime} 41^{\prime \prime}$, for B. Lastly for $A C$, we have,

$$
\operatorname{Sin} . A: B C:: \sin . B: A C(b)
$$

Sin. $B, 133^{\circ} 25^{\prime} 41^{\prime \prime}=\cos .43^{\circ} 25^{\prime} 41^{\prime \prime}$
log. $B C$

$\sin . A$	9.539565
$A C, 1035.7$	3.015241

Ex. 14. Given $A B, 53.9, A C, 46.21$, and the angle B, $58^{\circ} 16^{\prime}$ to find the other parts.

As,
$46.21: \sin . B, 58^{\circ} 16^{\prime}:: 53.9: \sin . C$
Sin. $B, 58^{\circ} 16^{\prime}$
9.929677
$A B, 53.9$
1.731589
$\overline{11.661266}$
AC, 46.21
1.664736

Sin. $C, 82^{\circ} 46^{\prime}$
9.996530
B and C being known, their sum, $141^{\circ} 2^{\prime}$ taken from 180°, gives $38^{\circ} 58^{\prime}$, for the angle A. Ans.

As, $\quad \sin . C: A B, 53.9: \sin . A, 38^{\circ} 58^{\prime}: B C$

Sin. $38^{\circ} 58^{\prime}$	9.798560
$A B, 53.9$	$\underline{1.731589}$
Sin. $C, 82^{\circ} 46^{\prime}$	$\underline{11.530149}$
$B C, 34.16$	$\underline{1.596530}$

Ex. 15. Given $A B, 2163, B C, 1672$, and the angle C, $112^{\circ} 18^{\prime} 22^{\prime \prime}$, to find the other parts.

As, $\quad \sin . C: A B, 2163:: \sin . A: B C, 1672$.
Whence,
Sin. $A=\frac{1672 \sin . C}{2163}$.

Sin. $C=\cos .22^{\circ} 18^{\prime} 22^{\prime \prime}$	9.966221
log. 1672	$\underline{3.223236}$
	13.189457
log. 2163	$\underline{3.335057}$
$\operatorname{Sin} . A, 45^{\circ} 39^{\prime} 22^{\prime \prime}$	9.854400

Now, A and C being known, B must be $22^{\circ} 2^{\prime} 16^{\prime \prime}$. Sin. $A: 1672:: \sin . B, 22^{\circ} 2^{\prime} 16^{\prime \prime}: A C$.

Sin. $22^{\circ} 2^{\prime} 16^{\prime \prime}$	9.574283
$B C, 1672$	3.223236
	12.797519
Sin. $A, 45^{\circ} 39^{\prime} 22^{\prime \prime}$	$\underline{9.854400}$
$A C, \quad 877.2$	2.943119

Ex. 16. Given $A B, 496, B C, 496$, and the angle B, $38^{\circ} 16^{\prime}$ to find the other parts.

In this example we observe that $A B=B C$, therefore, the
angles A and C, must be equal to each other, and the value of each must be

$$
\frac{1}{2}\left(180^{\circ}-38^{\circ} 16^{\prime}\right)=70^{\circ} 52^{\prime}
$$

Now, \quad Sin. $70^{\circ} 52^{\prime}: 496:: \sin .38^{\circ} 16^{\prime}: A C$.

$$
A C=\frac{496 \cdot \sin .38^{\circ} 16^{\prime}}{\sin .70^{\circ} 52^{\prime}}
$$

Sin. $38^{\circ} 16^{\prime}$
9.791917

Log. 496
$\frac{2.695482}{12.487399}$
12.487399

Sin. $70^{\circ} 52^{\prime}$
$A C=325.1$
9.975321
2.512078

Ex. 17. Given $A B, 428$, the angle $C, 49^{\circ} 16^{\prime}$, and $(A C+$ $C B)=918$, to find the other parts.

Note.-This problem is the same as 30, in Book VIII., Geometry, page 242, and its general solution is given in this Key, on page 59.

Either triangle, $A B C$ or $A B^{\prime} C^{\prime \prime}$ will correspond with the data. We will take the triangle $A B C$, and commence by solving the triangle $A B D$.

Because $C B=C D$, the angle $A C B$ is double of the angle D.
Therefore, $D=24^{\circ} 38^{\prime}, A D=918, A B=428$.

As
$428: \sin D:: 918: \sin . A B D$.

Log. 918 2.962843

Sin. $24^{\circ} 38^{\prime}$
9.619938
12.582781

Log. 428
Sin. $A B B^{\prime}, 63^{\circ} 22^{\prime} 48^{\prime \prime}$
2.631444
9.951337

Or,	$A B D=$	$116^{\circ} 37^{\prime} 12^{\prime \prime}$
Sub.	$C B D=$	$24^{\circ} 38^{\prime} 00$
Diff. $=$	$A B C=$	$\frac{91^{\circ} 59^{\prime} 12^{\prime \prime}}{}$

To $A B C$, add $A C B, 49^{\circ} 16^{\prime}$, and their sum, $141^{\circ} 15^{\prime} 12^{\prime \prime}$, taken from 180° gives $A=38^{\circ} 44^{\prime} 48^{\prime \prime}$.

Lastly, $\quad \sin . C: A B:: \sin A: B C$.
Which is, Sin. $49^{\circ} 16^{\prime}: 428:: \sin .38^{\circ} 44^{\prime} 48^{\prime \prime}: B C$.

Sin. $38^{\circ} 44^{\prime} 48^{\prime \prime}$
Log. 428
9.796490
2.631444
12.427934

Sin. $49^{\circ} 16^{\prime}$
BC, 353.5
9.879529
2.548405

Now, as $(A C+B C)=918$, we have $A C=918-353.5=$ 564.5. In like manner, solving the triangle $A B^{\prime} C^{\prime}$, we shall have $A C^{\prime}=353.5$, and $B^{\prime} C^{\prime \prime}=564.5$.

Ex. 18. Given a side and its opposite angle, and the difference of the other two sides, to construct the triangle and find the other parts.

Let $A B C$ be the triangle. $A C=126$, $B=29^{\circ} 46^{\prime}$, and $A M$, the difference between $A B$ and $B C,=43$.

From 180° take $29^{\circ} 46^{\prime}$ and divide the remainder by 2 . This gives the angle $B M C$ or $B C M$. $B M C$ taken from 180°, gives $A M C$.

Now in the triangle $A M C$, we have the two sides $A C$, $126, A M, 43$, and the angle $A M C$, to find the angle A. The computation is as follows: $180^{\circ}-29^{\circ} 46^{\prime}=150^{\circ} 14^{\prime}$; half, $=75^{\circ} 7^{\prime}=B M C$. $180^{\circ}-75^{\circ} 7^{\prime}=104^{\circ} 53 \prime=A M C$. Now in the $\triangle A M C$, we have

$$
A C: A M:: \sin .104^{\circ} 53^{\prime}: \sin . A C M
$$

$$
\begin{array}{lr}
126: 43:: \cos .14^{\circ} 53^{\prime}: \sin . A C M \\
\text { Cos. } 14^{\circ} 53^{\prime} & 9.985180 \\
\text { Log. } 43 & \frac{1.633468}{11.618648} \\
& \text { Log. } 126 \\
\text { Sin. } A C M=\sin .19^{\circ} 15^{\prime} 28^{\prime \prime} & \frac{2.100371}{9.518277}
\end{array}
$$

Now to $B C M, 75^{\circ} 7^{\prime}$ add $A C M, 19^{\circ} 15^{\prime} 28^{\prime \prime}$, and we have $A C B, 94^{\circ} 22^{\prime} 28^{\prime \prime}$. Subtracting $19^{\circ} 15^{\prime} 28^{\prime \prime}$ from $75^{\circ} 7^{\prime}$, that is, $A C M$ from $B M C$, and the difference must be

$$
A=55^{\circ} 51^{\prime} 32^{\prime \prime}
$$

Lastly, As $\sin . B: A C, 126:: \sin . A, 55^{\circ} 51^{\prime} 32^{\prime \prime}: C B$.

Sin. A	9.917851
126	2.100371
	12.018222
Sin. $B, 29^{\circ} 46^{\prime}$	9.695892
$B C, 210.05$	2.322330

Ex. 19. Given $A B, 1269, A C, 1837$, and the including angle $A, 53^{\circ} 16^{\prime} 20^{\prime \prime}$, to find the other parts.

Solution by the same formulas as in 12.

But $\quad \frac{1}{2}(B+C)=63^{\circ} 21^{\prime} 50^{\prime \prime}$
Sum $=\quad B=83^{\circ} 23^{\prime} 47^{\prime \prime}$. Diff. $C=43^{\circ} 19^{\prime} 53^{\prime \prime}$.

Lastly,	Sin. $B: b:: \sin . A: a(B C)$	
	Sin. $A, 53^{\circ} 16^{\prime} 20^{\prime \prime}$	9.903896
	Log. $b, 1837$	$\underline{3.264109}$
		$\underline{13.168005}$
	Sin. $B, 83^{\circ} 23^{\prime} 47^{\prime \prime}$	9.997109
	$A C, 1482.16$	3.170896

SECTION III.
APPLICATION OF PLANE TRIGONOMETRY.

(Page 305.)
(1.) Required the height of a wall whose angle of elevation, at the distance of 463 feet is observed to be $16^{\circ} 21^{\prime}$.

This example presents a right angled triangle, the base of which is 463 , and the acute angle at the extremity of the base $16^{\circ} 21^{\prime}$.

Let $x=$ the required height ; then

$$
\begin{gathered}
R: \tan .16^{\circ} 21^{\prime}:: 463: x=\frac{463 \tan .16^{\circ} 21^{\prime}}{R} \\
\text { Log. } 463 \\
\text { Tan. } 16^{\circ} 21^{\prime} \\
\text { Ans. } 135.8
\end{gathered}
$$

(2.) We solve this example by the adjoining geometrical figure.
$A B C$ is a triangle, $C B D$ its exterior angle.

Whence, $\quad C B D=A C B+A$.
That is, $31^{\circ} 18^{\prime}=A C B+26^{\circ} 18^{\prime}$, or, $A C B=5^{\circ}, A B=214$.

Sin. $5^{\circ}: 214:: \sin .26^{\circ} 18^{\prime}: C B$.
Whence,

$$
B C=\frac{214 \cdot \sin .26^{\circ} 18^{\prime}}{\sin .5^{\circ}}
$$

Again, in the triangle $C B D$ we have

$$
\sin 90^{\circ}: C B:: \sin .31^{\circ} 18^{\prime}: C D
$$

That is, $\operatorname{Sin} .90^{\circ}: \frac{214 \cdot \sin .26^{\circ} 18^{\prime}}{\sin .5^{\circ}}:: \sin .31^{\circ} 18^{\prime}: C D$.
Whence, $\quad C D=\frac{214 \cdot \sin .26^{\circ} 18^{\prime} \cdot \sin .31^{\circ} 18^{\prime}}{\sin .90^{\circ} \cdot \sin .5^{\circ}}$.

214	
Sin. $26^{\circ} 18^{\prime}$	2.330414
Sin. $31^{\circ} 18^{\prime}$	9.646474
Log. Num.	$\underline{9.715602}$
Sin. $90^{\circ} \quad 10.000000$	21.692490
Sin. $5^{\circ} \underline{8.940296}$	$\underline{18.940296}$
$C D=565.2$	

(3.) Here the perpendicular of a right angled triangle is given 149.5 feet, and the vertical angle $57^{\circ} 21^{\prime}$. The opposite angle is therefore $32^{\circ} 39^{\prime}$.

As, Sin. $32^{\circ} 39^{\prime}$: 149.5 : : $\sin .57^{\circ} 21^{\prime}$: Ans.
Or, As Cos. $57^{\circ} 21^{\prime}: 149.5:: \sin .57^{\circ} 21^{\prime}$: Ans.

$$
\begin{array}{cc}
\text { Ans. }=149.5 \cdot \frac{\sin .57^{\circ} 21^{\prime}}{\operatorname{cos.} 57^{\circ} 21^{\prime}}=149.5 \cdot \tan .57^{\circ} 21^{\prime} . \\
149.5 & 2.174641 \\
\tan .57^{\circ} 21^{\prime} & \frac{10.193307}{2.367948} \\
\text { Ans. }=233.3 &
\end{array}
$$

(4.) Here are two right angled triangles to be solved. The angle of depression, is equal to the angle opposite to the perpendicular.

Hence, for the distance of the mean object, we have the following proportion.

Sin. $48^{\circ} 10^{\prime}: 138:: \cos .48^{\circ} 10^{\prime}$: Dis.
Dis. $=138 \cdot \frac{\cos .48^{\circ} 10^{\prime}}{\sin .48^{\circ} 10^{\prime}}=138$. cot. $48^{\circ} 10^{\prime}$.

138
cot. $48^{\circ} 10^{\prime}$
Least dis. 123.52
The greatest dis. $=138 . \cot .18^{\circ} 52^{\prime}$
(5.) Here is but one acute angled plane triangle, and the angle opposite to the base is found thus.

$$
\begin{aligned}
& 31^{\circ} 15^{\prime} \\
& 86^{\circ} 27^{\prime} \\
& \hline 11742 \\
& 180 \\
& \hline 62^{\circ} 18^{\prime}
\end{aligned}
$$

Let x represent the distance from one extremity of the base to the house, and y represent the distance of the other extremity. Then

Sin. $62^{\circ} 18^{\prime}: 312:: \sin .31^{\circ} 15^{\prime}: x$
Sin. $62^{\circ} 18^{\prime}: 312:: \sin .86^{\circ} 27^{\prime}: y$.
$x=312 \frac{\sin .31^{\circ} 15^{\prime}}{\sin .62^{\circ} 18^{\prime}} \quad y=312, \frac{\sin .86^{\circ} 27^{\prime}}{\sin .62^{\circ} 18^{\circ}}$.
$\begin{array}{llll}312 & 2.494155 & 312 & 2.494155\end{array}$
$\operatorname{Sin} .31^{\circ} 15^{\prime} \quad \frac{9.714978}{12.209133} \quad \sin .86^{\circ} 27^{\prime} \quad \frac{9.999166}{12.493321}$
$\begin{array}{llll}\text { Sin. } 62^{\circ} 18^{\prime} & 9.947136 & \sin .62^{\circ} 18^{\prime} & 9.947136 \\ x=182.8 & 2.261997 & y=351.7 & 2.546185\end{array}$
(6.) This is in many respects the same as (5), except in numbers.

Sin. $60^{\circ}: 260:: \sin .40^{\circ}: x$.	
Log. 260	2.414973
Sin. 40°	$\underline{9.808067}$
	12.223040 Sin. 60° 192.8
	$\underline{9.937531}$

192.8 is the distance from one extremity of the base to the tree, but this line (192.8) makes an angle with the base of 80°. Let 192.8 be a hypotenuse of a right angled triangle, and the angles are 80° and 10°.

The side opposite 80° is the line or distance required.
Sin. $90^{\circ}: 192.8:: \sin .80^{\circ}$: perpendicular.
192.8

Sin. 80°
Ans. 190.1
2.285509
9.993351
$\overline{2.278860}$
(7.) Let $B C$ be the eminence, 268 feet, and $A D$ the steeple. Draw $C E$ parallel to the horizontal $A B$. Then $E C D=40^{\circ} 3^{\prime}$, $E C A=C A B=56^{\circ} 18^{\prime}$.
$D C A=56^{\circ} 18^{\prime}-40^{\circ} 3^{\prime}=16^{\circ} 15^{\prime}, D A C=$ $90^{\circ}-56^{\circ} 18^{\prime}=33^{\circ} 42^{\prime}$.

In the $\triangle A B C$, we have

Sin. $56^{\circ} 18^{\prime}: 268:: \sin .90^{\circ}: A C$.

$$
A C=\frac{268 \times R}{\sin .56^{\circ} 18^{\prime}}
$$

In the $\triangle A D C$, we have the supplement to the angle $A D C$, equal to $16^{\circ} 15^{\prime}$ added to $33^{\circ} 42^{\prime}$, or $49^{\circ} 57^{\prime}$; therefore,

As $\quad \operatorname{Sin} . A D C: A C:: \sin . D C A: A D$.

That is, $\operatorname{Sin} .49^{\circ} 57^{\prime}: \frac{268 \times R}{\sin .56^{\circ} 18^{\prime}}:: \sin .16^{\circ} 15^{\prime}: A D$.
Log. $A D=$
$\log .\left[268 . R . \sin .16^{\circ} 15^{\prime}\right]-\log .\left[\sin .49^{\circ} 57^{\prime} \cdot \sin .56^{\circ} \cdot 18^{\prime}\right]=$
$[2.428135+10+9.446893]-[9.883936+9.920099]=$ $21.875028-19.804035=2.070993$
Whence, $A D=117.76$ feet.

(8.) Let C and D be the two objects, and A the point at which both can be seen.
$A D=1428, A C=1840$, and the angle at $A \quad 36^{\circ} 18^{\prime} 24^{\prime \prime}$

From 180°
Angles C and $D=143^{\circ} 41^{\prime} 36^{\prime \prime}$

$$
\frac{1}{2} \text { sum } \quad 71^{\circ} 50^{\prime} 48^{\prime \prime}
$$

Here we will apply the following theorem in trigonometry.
As the sum of two sides is to their difference, so is the tangent of half the sum of the angles at the base, to the tangent of half their difference.

Let $x=$ the half difference between D and C.
Then,
3268 : 412
Or,
817 : 103 : : tan. $71^{\circ} 50^{\prime} 48^{\prime \prime}: \tan . x$.

Log. 103
Tan. $71^{\circ} 50^{\prime} 48^{\prime \prime}$
10.484284
12.497121

817
Tan. $x=$ tan. $21^{\circ} 1^{\prime} 55^{\prime \prime}$
$71^{\circ} 50^{\prime} 48^{\prime \prime}$
Angle $D=92^{\circ} 52^{\prime} 43^{\prime \prime}$
Angle $C=50^{\circ} 48^{\prime} 53^{\prime \prime}$
2.912222
9.584899
$\operatorname{Sin} .50^{\circ} 48^{\prime} 53^{\prime \prime}: 1428:: \sin .36^{\circ} 18^{\prime} 24^{\prime \prime}: C D$.

1428
Sin. $36^{\circ} 18^{\prime} 24^{\prime \prime}$

Sin. $50^{\circ} 48^{\prime} 53^{\prime \prime}$
Ans. 1090.85
3.154728
9.772400
12.927128
9.889362
2.037766
(9.) Let $A B$ represent the mountain, and $A D$ the visible distance. $A B$ produced will pass through the center of the earth at C. From D draw $C D$ perpendicular to $A D$. Join $B D . A D C$ is a right angled triangle.
$C A D=90^{\circ}-2^{\circ} 13^{\prime} 27^{\prime \prime}=87^{\circ} 46^{\prime} 33^{\prime \prime}$. $A C D=2^{\circ} 13^{\prime} 27^{\prime \prime} . \quad A D B=\frac{1}{2} A C D=1^{\circ} 6^{\prime}$
 $43.5^{\prime \prime} . ~ A B D=91^{\circ} 6^{\prime} 43.5^{\prime \prime}$.

Now in the $\triangle A B D$, we have
Sin. $1^{\circ} 6^{\prime} 43.5^{\prime \prime}: 3:: \sin .91^{\circ} 6^{\prime} 43.5^{\prime \prime}: A D$.
Sin. $91^{\circ} 6^{\prime} 43.5^{\prime \prime}=\cos .1^{\circ} 6^{\prime} 43.5^{\prime \prime} \quad 9.999919$
Log. 3
0.477121
10.477040

Sin. $1^{\circ} 6^{\prime} 43.5^{\prime \prime}$ 8.287976

Log. $A D, 154.54$
2.189064

In the triangle $A D C$, we have

$$
\sin . A C D: A D:: \cos A C D: C D .
$$

Cos. $A C D=\operatorname{cos.} 2^{\circ} 13^{\prime} 27^{\prime \prime}$	9.999674
$A D$	$\frac{2.189064}{12.188738}$
Sin. $A C D=\sin .2^{\circ} 13^{\prime} 27^{\prime \prime}$	$\underline{8.588932}$
$C D$	3.599806
Log. 2	$\underline{0.301030}$
Diameter, log. 7958 miles,	3.900836

(10.) Let H be the location of the headland, A the posisition of the ship when the first observation was taken, and B its position when the last observation was taken.
$A B=20$ miles, and $m A, m B$, meridians passing through the eye of the observer at the two stations.

The data gives us the angle $m A B$ $=47^{\circ} 49^{\prime}, m B H=87^{\circ} 11^{\prime}$, the sum of these two angles taken from 180°, gives the angle $A B H=45^{\circ}$.

The angle $B A H$, is obviously equal to the sum of $47^{\circ} 49^{\prime}$, and $39^{\circ} 23^{\prime}$, which is $87^{\circ} 12^{\prime}$. The sum of $87^{\circ} 12^{\prime}$ and 45° taken from 180° gives $A H B=47^{\circ} 48^{\prime}$.

We now have $A B=20$ miles one side, and each of the angles, A, B, and H, to find $A H$, and $B H$.

For $A H$ Sin. $47^{\circ} 48^{\prime}: 20:: \sin 45^{\circ}: A H$
For $B H, \quad \sin .47^{\circ} 48^{\prime}: 20:: \sin .87^{\circ} 12^{\prime}: B H$.

Sin. 45°	9.849485	$\sin .87^{\circ} 12^{\prime}$	9.999481
Log. 20	$\underline{1.301030}$		1.301030
	11.150515 Sin. $47^{\circ} 48^{\prime}$ $\frac{9.869704}{1.300511}$ AH, 19.09 1.280811 $B H, 26.96$	$\underline{9.869704}$	

(11.) By (Th. XVIII., Book III.), the length of a line drawn from the top of the tower to touch the surface of the sea, must be, $\sqrt{7960.5280 .100}$, and from the same point on the sea, the line extended to the mast head of the ship must be $\sqrt{7960.5280 .90}$. The problem requires the sum of these two lines.

The computation by logarithms is as follows,

Log. 7960
Log. 5280
Log. 100

3.900913		3.900913
3.722634		3.722634
2.000000	$\log .90$	1.954243
$\overline{9.623547}$		$2 \lcm{9.577790}$
4.811773	61502.8	$\frac{1.788895}{}$

Sum in feet, 126332.4 log. 5.101514
. Log. 5280
Sum in miles, Add $\frac{1}{13}$ for refraction
23.92
1.84
25.76 Ans.
(12.) As Sin. $35^{\circ}: 143$ feet $:: \cos .35^{\circ}:$ Dist.

Whence, \quad Dist. $=143 . \frac{\cos .35^{\circ}}{\sin .35^{\circ}}=143 . \cot .35^{\circ}$.

Log. 143
2.155336

Cot. 35°
Ans. 204.22
10.154773
$\overline{2.310109}$

Whence,
(13.) Let $C D$ be the breadth of the river, or the distance sought, $A B=500$ yards, the measured base.

The angle $A B C=53^{\circ}$, and $B A C, 79^{\circ}$ 12'. Whence the angle $A C B=47^{\circ} 48^{\prime}$.

Now,
Sin. $47^{\circ} 48^{\prime}: 500:: \sin .79^{\circ} 12^{\prime}: B C$.

$$
B C=\frac{500 \cdot \sin .79^{\circ} 12^{\prime}}{\sin .47^{\circ} 48^{\prime}}
$$

Again in the right angled triangle $D B C$, we have
$\sin . D: B C:: \sin B: D C$.

That is, $\quad \operatorname{Sin} .90: B C:: \sin .53^{\circ}: D C$.
Whence, $\quad D C=\frac{500 \cdot \sin .79^{\circ} 12^{\prime} \cdot \sin .53^{\circ}}{\sin .47^{\circ} 48^{\prime} \cdot \sin .90^{\circ}}$.

Log. 500	2.698970	
Sin. $79^{\circ} 12^{\prime}$	9.992239	
Sin. 53°	$\underline{9.902349}$	
	$\underline{22.593558}$	numerator,

Log. $R, \sin .47^{\circ} 48^{\prime} \quad 19.869704$ denominator.
Log. $C D=\log .529 .48 \quad 2.723854$

(14.) Let L represent the length of the inclined plane, and P its perpendicular height.

The angle $C B D=46^{\circ}$, and $C A B$ $=31^{\circ}$. Whence, $A C B=15^{\circ}$, and $A B=200$. The triangle $A B C$ gives the proportion
$\sin 15^{\circ}: 200:: \sin .31^{\circ}: \quad L=\frac{200 \cdot \sin .31^{\circ}}{\sin .15^{\circ}}$
From the triangle $C B D$, we obtain,
$\operatorname{Sin} .90^{\circ}: L:: \sin .46^{\circ}: P=\frac{L \cdot \sin .46^{\circ}}{\sin .90^{\circ}}$.
That is, $\quad P$ or $C D=\left(\frac{200 \cdot \sin .31^{\circ}}{\sin .15^{\circ}}\right) \frac{\sin .46^{\circ}}{\sin .90^{\circ}}$.

Log. 200
2.301030

Log. sin. 31°
9.711839

Log. sin. 46°
Log. of numerator
21.869803

Log. of denominator $19.412996=R . \sin .15^{\circ}$
Log. 286.28
2.456807
(15.) Take the same triangle as in the preceding example.

Then, $P=\frac{300 \cdot \sin .32^{\circ} \cdot \sin .58^{\circ}}{R \cdot \sin .26^{\circ}}$, Dis. $=\frac{300 \cdot \sin .32^{\circ} \cdot \cos .58^{\circ}}{R \cdot \sin .26^{\circ}}$

Log. 300
Sin. 32°
Sin. 58°
Log. num.
Log. denom.
$P=307.54$
2.477121
2.477121
9.724210
9.724210
9.928420
$\cos .58^{\circ}$
9.724210
21.925541
22.129751
19.641842
2.487909
dis. $192.18 \quad 2.283699$
(16.) Here we have a triangle, one side of which is 440 yards, and the adjacent angles, $83^{\circ} 45^{\prime}$, and $85^{\circ} 15^{\prime}$, therefore the angle opposite must be 11°.

Now, for the side of the triangle which is opposite the angle $85^{\circ} 15^{\prime}$, we have the following proportion.

Sin. $11^{\circ}: 440:: \sin .85^{\circ} 15^{\prime}: x$.
For the other side, we have
$\operatorname{Sin} .11^{\circ}: 440:: \sin .83^{\circ} 45^{\prime}: y$.
For x.
2.643453

For y.
Log. 440
Sin. $85^{\circ} 15^{\prime \prime}$
$\frac{9.998506}{12.641959}$
$\sin .83^{\circ} 45^{\prime} \quad \frac{9.997411}{12.640864}$
$\operatorname{Sin} .11^{\circ}$

$$
2298.05
$$

$$
9.280599
$$

3.360265
(17.) Let A and B be the positions of the ship, when the observations were taken.

Then $A B=12$ miles in the direction north east.

Then, also $A L$, is the direction to the land, and $B L$, is
 another direction to the same point.

The angle $L A B$ is 5 points of the compass, or $56^{\circ} 15^{\prime}$, and the angle $A B L$, is 9 points, or $101^{\circ} 15^{\prime}$.

Hence, the angle at L must be $22^{\circ} 30^{\prime}$.
Now, $\quad \operatorname{Sin} .22^{\circ} 30^{\prime}: 12:: \sin .56^{\circ} 15^{\prime}: B L$.

$$
B L=\frac{12 \sin .}{\sin .} \frac{56^{\circ} 15^{\prime}}{22^{\circ} 30^{\prime}}
$$

Log. 12
Sin. $56^{\circ} 15^{\prime}$

Sin. $22^{\circ} 30^{\prime}$
Ans. 26.072
1.079181
9.919846
10.999027
9.582840
1.416187

(18.) This problem requires the adjoining figure.

We must compute the angle $C A B$, to find $B A O$.

And from the triangle $A B D$, we must compute the angle $A B D$, to find $A B O$.
We compute the angle $C A B$, by the following formula (Prop. 8, Plane Trigonometry.)

$$
\operatorname{Cos.} \frac{1}{2} A=\sqrt{\frac{R^{2} s(s-a)}{b c}}
$$

For the triangle $A B C$,

$$
a=560, b=100, c=500
$$

Whence,

$$
s=580, \text { and } s-a=20
$$

$$
\text { Cos. } \frac{1}{2} A=\sqrt{\frac{R^{2} 580 \times 20}{100 \times 500}}=\sqrt{\frac{R^{2} 116}{500}}
$$

Log. $R^{2} 116$	22.064458
Log. 500	$\frac{2.698970}{}$
Cos. $\frac{1}{2} A=61^{\circ} 12^{\prime} 21^{\prime \prime}=$	$\frac{29.365488}{9.682744}$

A
$B A O=\frac{2}{122^{\circ} 24^{\prime} 42^{\prime \prime}}$
$\frac{180^{\circ} 35^{\prime} 18^{\prime \prime}}{}$

In the triangle $A B D$, changing D to $C^{\prime \prime}$, then to find the angle B, we have

Cos. $\frac{1}{2} B=\sqrt{\frac{\bar{R}^{2} s(s-b)}{a c}}$ a formula in which

$$
\begin{gathered}
a=100, \quad b=550, \quad c=500 \\
s=575, \text { and } s-b=25 .
\end{gathered}
$$

Whence,
Cos. $\frac{1}{2} B=\sqrt{\frac{R^{2} 575 \times 25}{100 \times 500}}=\sqrt{\frac{R^{2} 115}{400}}$.
$R^{2} 115$
400
$\operatorname{Cos.} \frac{1}{2} B=\operatorname{cos.} 57^{\circ} 34^{\prime} 31^{\prime \prime}$
22.060698
2.602060
2) $\overline{19.458638}$
9.729319

B	$\frac{2}{115^{\circ} 9^{\prime} 2^{\prime \prime}}$
$A B O$	$\frac{180}{64^{\circ} 50^{\prime} 58^{\prime \prime}}$
$B A O$	$\frac{57^{\circ} 35^{\prime} 18^{\prime \prime}}{122^{\circ} 26^{\prime} 16^{\prime \prime}}$
Angle $O=$	$\frac{180^{\circ}}{57^{\circ} 33^{\prime} 44^{\prime \prime}}$

$\operatorname{Sin} .57^{\circ} 33^{\prime} 44^{\prime \prime}: 500:: \sin .57^{\circ} 35^{\prime} 18^{\prime \prime}: B 0=500.14$.

(19.) Let $A C D$ be 45 minutes of a degree, although in the figure before us, it is many degrees.

Let A be the position of the eye of the observer, and conceive the line $A B$, to touch the earth at t.

Then the angle $A C t=4^{\prime} 15^{\prime \prime}$.
Hence, $\quad t C H=40^{\prime} 45^{\prime \prime}$.
Join $t H$.
Now the angle made between the chord $t H$ and the tangent $t B$, is measured by half the arc, therefore, the angle $B t H=20^{\prime} 22 \frac{1^{\prime \prime}}{}$ 。

The angle $D A B$ is $31^{\prime} 20^{\prime \prime}$, and $B D$ is the visible part of the mountain, and $B H$ is the invisible part. We must first compute the tangents $A t$, and $t B$.

$$
\begin{aligned}
& R: \tan .4^{\prime} 15^{\prime \prime}:: 3956: t A \\
& R: \tan .40^{\prime} 45^{\prime \prime}:: 3956: t B
\end{aligned}
$$

Log. 3956
3.597256

*tan.	$40^{\prime} 45^{\prime \prime}$
$t B$	46.8954
$A t$	4.8907
$A B$	51.7861

3.597256

Tan. $4^{\prime} 15^{\prime \prime}$
7.092115
*tan. $40^{\prime} 45^{\prime \prime}$
8.073874

At 4.8907
0.689371
$t B \quad 46.8954$
1.671130
$A B \quad \overline{51.7861}$

[^0]Sin. $2 \alpha=2 \sin . \alpha . \cos . \alpha$.
Put

$$
a=\left(40^{\prime} 45^{\prime \prime}\right) \div 8=5^{\prime} 5.625^{\prime \prime}
$$

Then, we have
Log. 2

$$
\begin{array}{r}
.301030 \\
7.170764 \text { (See page 288, Trig.) } \\
\frac{10.000000}{7.471794}=\sin .10^{\prime} 11.25^{\prime \prime} .
\end{array}
$$

In the triangle $t B H$, we have
Sin. $89^{\circ} 39^{\prime} 37 \frac{1_{2}^{\prime \prime}}{}: 46.8954$: : sin. $20^{\prime} 22 \frac{1}{2}^{\prime \prime}: B H$.

Log. $t B$
1.671130

Sin. $20^{\prime} 22 \frac{1}{2}^{\prime \prime}$

Sin. $89^{\circ} 39^{\prime} 37^{\prime \prime}$
$B H$, in parts of a mile .27795

In the triangle $A B D$, we have
Sin. $88^{\circ} 47^{\prime} 55^{\prime \prime}: 51.7861:: \sin .31^{\prime} 20^{\prime \prime}: B D$.

	Log. 51.7861		1.714213
(See note)	Sin. $31^{\prime} 20^{\prime \prime}$		7.959727
			9.673940
	Sin. $88^{\circ} 48^{\prime}$		9.999905
part,	BD, . 47210		$-\overline{1.674035}$
le part,	BH,		
mountain	$\overline{0.75005}$	log.	-1.875090
Log. 528	feet in a mile,		3.722634
in feet, 396			3.597724

2d Solution.

We can also solve this problem by means of the triangle $A C D$ alone.

The angle $C A D=90^{\circ} 27^{\prime} 5^{\prime \prime} . C=45^{\prime}$, therefore the angle $D=88^{\circ} 47^{\prime} 55^{\prime \prime}$.
$\operatorname{Sin} . D: A C:: \sin . C A D: C D$.

Log. 2
Cos. $10^{\prime} 11.25^{\prime \prime}$

$$
\text { Log. } 2 \text {. } 301030
$$

$$
\text { Cos. } 20^{\prime} 22.5^{\prime \prime} \quad 9.999993
$$

$$
\begin{aligned}
& \frac{9.999998}{7.772822}=\sin .20^{\prime} 22.5^{\prime \prime} . \\
& \frac{.301030}{8.999993} \\
& \frac{9.073845}{8.999971} \\
& 8.073874
\end{aligned}=\sin .40^{\prime} 45^{\prime \prime} .
$$

Sin. $88^{\circ} 47^{\prime} 55^{\prime \prime}: A C:: \sin .90^{\circ} 27^{\prime} 5^{\prime \prime}: C D$.

$$
\begin{align*}
C D & =\frac{A C \cdot \sin .90^{\circ} 27^{\prime} 5^{\prime \prime}}{\sin .88^{\circ} 47^{\prime} 55^{\prime \prime}} \\
C D-A C & =\frac{A C \cdot \sin .90^{\circ} 27^{\prime} 5^{\prime \prime}}{\sin .88^{\circ} 47^{\prime} 55^{\prime \prime}}-A C \\
C D-A C & =\frac{A C\left(\sin .90^{\circ} 27^{\prime} 5^{\prime \prime}-\sin .88^{\circ} 47^{\prime} 55^{\prime \prime}\right)}{\sin .88^{\circ} 47^{\prime} 55^{\prime \prime}} \tag{1}
\end{align*}
$$

But we have, Eq. (16), Plane Trigonometry,
$\operatorname{Sin} . A-\sin . B=2 \cos . \frac{1}{2}(A+B) \sin . \frac{1}{2}(A-B)$.
Applying this to equation (1) above, and taking $A C=3956$ miles, which is sufficiently near the truth for accuracy in the required result, the operation will be as follows :

We will now compute the value of $A m$. From (Th. 18, Book III., Geometry,) we have

$$
2 A C \times A m=\overline{A t}^{2}, \text { nearly }
$$

Or,

$$
A m=\frac{\overline{A t}}{}{ }^{2} .
$$

And taking again, $A C=3956$, we have

(20.) Note.-This problem is a singular and a very instructive one. We can not directly make use of the given side or line 500 yards, and we are forced to make a similar geometrical figure by assuming another base, and using the given angles.

These angles make the lines intersect at C and D, and $C D$ must be computed, and if found to be 500 , then 100 is the true distance between the ships. After we have computed $C D$, we call it a.
Then, because this figure is similar to the true figure, we have

$$
\begin{gathered}
a: 500:: 100: A B . \\
A B=\frac{50000}{a} .
\end{gathered}
$$

Whence,
The angle $A C B=38^{\circ} 43^{\prime}$, and $A D B=31^{\circ} 58^{\prime}$.
In the triangle $A B C$, we have

$$
\text { Sin. } 38^{\circ} 43^{\prime}: 100:: \sin .93^{\circ} 37^{\prime}: B C
$$

In the triangle $A B D$ we have

$$
\begin{array}{lr}
\text { Sin. } 31^{\circ} 58^{\prime}: 100:: \sin .52^{\circ} 12^{\prime}: B D \tag{2}\\
\text { Log. } 100 \sin .93^{\circ} 37^{\prime} & 11.999134 \\
\text { Log. } \sin .38^{\circ} 43^{\prime} & \underline{9.796206} \\
\text { Log. } B C, 159.561 & \frac{2.202928}{}
\end{array}
$$

Log. 100 sin. $52^{\circ} 12^{\prime} \quad 11.897712$
Log. sin. $31^{\circ} 58^{\prime}$
9.723805

Log. BD, 149.247
2.173907
$C B+B D=308.808 . \quad C B-D B=10.314$.

In the triangle $C B D$, we have
$308.808: 10.314:: \tan .65^{\circ} 55^{\prime}: \tan . \frac{1}{2}(D-C)$.
Log. 10.3141 .013427
Log. tan. $65^{\circ} 55^{\prime} \quad 10.349719$
11.363146

Log. $308.808 \quad 2.489689$
Tan. $\frac{1}{2}(D-C)=4^{\circ} 16^{\prime} 24^{\prime \prime}$
8.873457
$\frac{1}{2}(D+C)=65^{\circ} 55^{\prime}$
$D=70^{\circ} 11^{\prime} 24^{\prime \prime}$
Sin. $70^{\circ} 11^{\prime} 24^{\prime \prime}: 159.561:: \sin .48^{\circ} 10^{\prime}: C D$.
$\left.\begin{array}{lr}\text { Log. } 159.561 & 2.202928 \\ \text { Log. } \sin .48^{\circ} 10^{\prime} & \begin{array}{r}9.872208 \\ 12.075136 \\ \text { Log. } \sin .70^{\circ} 11^{\prime} 24^{\prime \prime}\end{array} \\ \begin{array}{l}9.973507 \\ \text { Log. } C D=126.366\end{array} & \begin{array}{l}2.101629 \\ \text { Log. } 50000\end{array} \\ \text { Log. } A B, 395.68 & \underline{4.698970}\end{array}\right\}$ sub. log. $C D$.

To obtain the true values of $C B, B D$, \&c., we must multiply the results in this computation by 3.9568 . That is, the sides of the true figure are very nearly equal to 4 times the sides of this computed figure.

SPHERICAL TRIGONOMETRY.

(Page 310.)
To solve right angled spherical triangles, the student will find it most convenient to apply Napier's Circular points.

Every triangle consists of three sides and two angles, besides the right angle, or five parts.

Either one of these parts taken at pleasure may be called a middle part. Then there will be two adjacent parts, and two opposite parts.

Then we can easily remember, that
1st. Radius into the sine of the middle part, is equal to the product of the tangents of the adjacent parts.

2d. Radius into the sine of the middle part, is equal to the product of the cosines of the opposite parts.

The parts are the two sides, the complements of the hypotenuse, and the complement of the oblique angles.

We can remember these rules by this consideration, that each rule expresses an equation.

The first member of each of these equations is radius into some sine, the second member is the product of two tangents or two cosines.

The student must rely on his own judgment, in selecting a part to be called the middle part.

Let $A B C$ represent any right angled spherical triangle, the right angle at B.

If the hypotenuse is greater than 90°, then the triangle will be represented by $A^{\prime} B C$, and in that case one side will be greater than 90°, and the angle opposite to that side greater than 90°.

For the sake of perspicuity, we recommend the natural construction of each triangle presented for solution. This course will banish all doubts from the mind of the student as to what the results should be, \&c. The solution of one triangle will in all cases be the solution of a whole hemisphere of triangles, as we are about to show by the following examples.

RIGHT ANGLED SPHERICAL TRIGONOMETRY.

(Page 356.)
In a right angled spherical triangle $A B C$ (right angles always at B), given $A B=118^{\circ} 21^{\prime} 4^{\prime \prime}$, and the angle $A=$ $23^{\circ} 40^{\prime} 12^{\prime \prime}$.

Remark.-This triangle is represented in the adjoining figure by the
 triangle $A^{\prime} B C$, but we always operate on the triangle $A B C$ of the figure, the one whose parts are each less than 90°.

Whence, $\quad A B=180^{\circ}-118^{\circ} 21^{\prime} 4^{\prime \prime}=61^{\circ} 38^{\prime} 56^{\prime \prime}=c$.

To this triangle we apply equation (16), page 335, Textbook), observing that
$\operatorname{Sin} . A^{\prime}=\cos . A$ and $\tan . b^{\prime}=\cot . b$.
Whence, $\quad R . \cos . ~ A=\tan .61^{\circ} 38^{\prime} 56^{\prime \prime}$ cot. b.
Or.
Cot. $b=\frac{R . \cos . A}{\tan . c}$
$A C$ cot. $63^{\circ} 42^{\prime} 5^{\prime \prime}$
$A^{\prime} C \quad \frac{180^{\circ}}{116^{\circ} 17^{\prime} 55^{\prime \prime}}$

For the angle c.
As $\operatorname{Sin} .63^{\circ} 42^{\prime} 5^{\prime \prime}: R:: \sin .61^{\circ} 38^{\prime} 56^{\prime \prime}: \sin . C$.

$R . \sin . c=$	19.944510
Sin. b	$\underline{9.952549}$
$C=79^{\circ} 0^{\prime} 34^{\prime \prime}$	9.991961

(2.) In a spherical $\triangle A B C$, given $A B=53^{\circ} 14^{\prime} 20^{\prime \prime}$, and the angle $A=91^{\circ} 25^{\prime} 53^{\prime \prime}$.

Here the proposed triangle is $A B C$, but we shall operate on its supplemental triangle $A^{\prime} B^{\prime} O . \quad A B=A^{\prime} B$. The angle $C A^{\prime} B^{\prime}=90^{\circ}-\left(1^{\circ} 25^{\prime} 53^{\prime \prime}\right)=88^{\circ} 34^{\prime} 7^{\prime \prime}$.

Eq. (16.) R. cos. $88^{\circ} 34^{\prime} 7^{\prime \prime}=\tan$. $53^{\circ} 14^{\prime} 20^{\prime \prime}$. cot. $A^{\prime} C$.

Or, Cot. $A^{\prime} C=\frac{\text { R.sin. } 1^{\circ} 25^{\prime} 53^{\prime \prime}}{\text { Tan. } 53^{\circ} 14^{\prime} 20^{\prime \prime}} \frac{18.397585}{10.126658}$| Cot. $A^{\prime} C$ | $88^{\circ} 55^{\prime} 51^{\prime \prime}$ |
| :---: | :---: |
| 8.270927 | |
| $A C$ | $\frac{180}{91^{\circ} 4^{\prime} 9^{\prime \prime}}$. |

For $O B$, we have $\quad R: \sin . A^{\prime} C:: \sin . A^{\prime}: \sin . B^{\prime} C$.

Whence, $\quad \sin . B^{\prime} C=\frac{\sin .88^{\circ} 55^{\prime} 51^{\prime \prime}, \sin .88^{\circ} 34^{\prime} 7^{\prime \prime} \text {. }}{R}$

$$
\begin{array}{ll}
\text { Sin. } 88^{\circ} 55^{\prime} 51^{\prime \prime} & 9.999925 \\
\text { Sin. } 88^{\circ} 34^{\prime} 7^{\prime \prime} & \underline{9.999864} \\
B^{\prime} C, \sin .88^{\circ} 12^{\prime} 50^{\prime \prime} & 9.999789
\end{array}
$$

Sup. $=B C, 91^{\circ} 47^{\prime} 10^{\prime \prime}$. Ans.
$\operatorname{Sin} . A^{\prime} C: \sin .90^{\circ}:: \sin . A B: \sin C$.
R.sin. $A B$
19.903707
$\sin . A C=\sin . \dot{A}^{\prime} C 88^{\circ} 55^{\prime} 51^{\prime \prime}$ Ans. Sin. $C=53^{\circ} 15^{\prime} 8^{\prime \prime}$ 9.999925 $\overline{9.903782}$
(3.) In this example,

Let $A B=102^{\circ} 50^{\prime} 25^{\prime \prime}$, and the angle $B A C=113^{\circ} 14^{\prime} 37^{\prime \prime}$, but we shall operate on the supplemental triangle $A B^{\prime} C ; A B^{\prime}=$ $77^{\circ} 9^{\prime} 35^{\prime \prime}$, and $C A B^{\prime}=65^{\circ} 45^{\prime} 23^{\prime \prime}$.

Eq. (16), calling A the middle part,
R.cos. $66^{\circ} 45^{\prime} 23^{\prime \prime}=\cot . A C . \tan .77^{\circ} 9^{\prime} 35^{\prime \prime}$.

$$
\begin{array}{rr}
\text { Cot. } A C=\frac{R . \cos .66^{\circ}, \& c .}{\operatorname{Tan} . A B} & \frac{19.596202}{10.642190} \\
\text { Ans. Cot. } A C=\cot .84^{\circ} 51^{\prime} 36^{\prime \prime} & 8.954012
\end{array}
$$

For $B^{\prime} C$, we have

R.cos. $A C=\cos . A B^{\prime} . \cos :$	$B^{\prime} C$.
R.cos. $A C, 84^{\circ} 51^{\prime} 36^{\prime \prime}$	18.952258
Cos. $A B^{\prime} 77^{\circ} 9^{\prime} 35^{\prime \prime}$	$\underline{9.346811}$
Cos. $B^{\prime} C, 66^{\circ} 13^{\prime} 33^{\prime \prime}$	9.605447

And Supplement, $B C, 113^{\circ} 46^{\prime} 27^{\prime \prime}$. Ans.
For the angle C, we have
Sin. $A C: R:: \sin . A B^{\prime}: \sin . C$.
Log. R.sin. $A B^{\prime} 77^{\circ} 9^{\prime} 35^{\prime \prime} \quad 19.989002$
Sin. $A C, 84^{\circ} 51^{\prime} 36^{\prime \prime} \quad 9.998250$
$\operatorname{Sin} . A C B^{\prime}, \sin .78^{\circ} 13^{\prime} 4^{\prime \prime} \quad \overline{9.990752}$
Supple. $A C B=101^{\circ} 46^{\prime} 56^{\prime \prime}$. Ans.

(4.) Let $A B^{\prime} C$ in the last cut represent the triangle to be solved, $A B^{\prime}=48^{\circ} 24^{\prime} 16^{\prime \prime}$, and $B^{\prime} C, 59^{\circ} 38^{\prime} 27^{\prime \prime}$.

Whence,
$R . \cos . A C=\cos .48^{\circ} 24^{\prime} 16^{\prime \prime} . \cos .59^{\circ} 38^{\prime} 27^{\prime \prime}$.
Cos. $48^{\circ} 24^{\prime} 16^{\prime \prime} \quad 9.822082$
Cos. $59^{\circ} 38^{\prime} 27^{\prime \prime} \quad 9.703652$
Cos. $A C$, cos. $70^{\circ} 23^{\prime} 42^{\prime \prime}$ 9.525734. Ans. For the angles, we have the following proportions. Sin. $70^{\circ} 23^{\prime} 42^{\prime \prime}: \sin .90^{\circ}:: \sin 48^{\circ} 24^{\prime} 16^{\prime \prime}: \sin . C$: : sin. $59^{\circ} 38^{\prime} 27^{\prime \prime}: \sin . A$.

| Log. $R . \sin .48^{\circ} 24^{\prime} 16^{\prime \prime}$ | 19.873814 |
| ---: | ---: | ---: |
| Sin. $70^{\circ} 23^{\prime} 42^{\prime \prime}$ | 9.974064 |
| Angle $C, 52^{\circ} 32^{\prime} 56^{\prime \prime}$ | 9.899750 |

$$
\begin{array}{rr}
\text { Log. } R . \sin .59^{\circ} 38^{\prime} 27^{\prime \prime} & 19.935948 \\
\sin .70^{\circ} 23^{\prime} 42^{\prime \prime} & 9.974064 \\
\text { Angle } A, 66^{\circ} 20^{\prime} 40^{\prime \prime} & 9.961884 .
\end{array}
$$

(5.) In this example, $A B$ is $151^{\circ} 23^{\prime} 9^{\prime \prime}$, and $B C^{\prime}, 16^{\circ} 35^{\prime} 14^{\prime \prime}$.

We operate on the supplemental triangle $A^{\prime} B C^{\prime}$. Whence

$$
A^{\prime} B=28^{\circ} 36^{\prime} 51^{\prime \prime} . \quad \text { And, }
$$

R. $\cos . A^{\prime} C^{\prime}=\cos .28^{\circ} 36^{\prime} 51^{\prime \prime} . \cos .16^{\circ} 35^{\prime} 14^{\prime \prime}$.

Cos. $28^{\circ} 36^{\prime} 51^{\prime \prime}$ Cos. $16^{\circ} 35^{\prime} 14^{\prime \prime}$ $A^{\prime} C^{\prime}, \cos .32^{\circ} 43^{\prime} 9^{\prime \prime}$ $A C^{\prime}, \quad 147^{\circ} 16^{\prime} 51^{\prime \prime}$.
9.943427
$\frac{9.981540}{9.924967}$
Ans.

For the angle C,
$\sin . A^{\prime} C^{\prime \prime}: \sin .90^{\circ}:: \sin . A^{\prime} B: \sin . A^{\prime} C^{\prime} B$.

Log. $R . \sin .28^{\circ} 36^{\prime} 51^{\prime \prime}$	19.680253
Sin. $A^{\prime} C^{\prime} .32^{\circ} 43^{\prime} 9^{\prime \prime}$	9.732814
$\sin . A^{\prime} C^{\prime} B, 62^{\circ} 22^{\prime} 35^{\prime \prime}$	9.947439

Its supplement, or $A C^{\prime \prime} B=117^{\circ} 37^{\prime} 25^{\prime \prime}$
For the angle A, we have

$$
\begin{array}{cr}
\text { R.sin. } 16^{\circ} 35^{\prime} 14^{\prime \prime} & 19.455568 \\
\sin .32^{\circ} 43^{\prime} 9^{\prime \prime} & \underline{9.732813} \\
\text { Sin. } A=31^{\circ} 52^{\prime} 49^{\prime \prime} & 9.722755 . \text { Ans. }
\end{array}
$$

(6.) Here $A^{\prime} B, 73^{\circ} 4^{\prime} 31^{\prime \prime}, A^{\prime} C^{\prime}, 86^{\circ} 12^{\prime} 15^{\prime \prime}$.

Required the other side and angles.
Sin. $A^{\prime} C^{\prime}: \sin .90^{\circ}:: \sin . A^{\prime} B: \sin , B C^{\prime} A^{\prime}$.
Log. R.sin. $73^{\circ} 4^{\prime} 31^{\prime \prime} \quad 19.980771$
$A^{\prime} C^{\prime \prime}, \sin .86^{\circ} 12^{\prime} 15^{\prime \prime} \quad 9.999046$
Sin. $B C^{\prime} A^{\prime}, \sin .73^{\circ} 29^{\prime} 40^{\prime \prime} \overline{9.981725}$. Ans.
To obtain $B C^{\prime}$, we apply one of the equations in circular parts.

$$
\text { R.cos. } C^{\prime}=\tan B C^{\prime} \cdot \cot . A^{\prime} C^{\prime}
$$

$\begin{array}{rr}\text { Tan. } B C^{\prime}=\frac{R . \cos . C^{\prime}}{\cot . A^{\prime} C^{\prime \prime}} & 19.453484 \\ B C^{\prime} 76^{\circ} 51^{\prime} 20^{\prime \prime} & 8.821819 \\ 10.631665 . \text { Ans. }\end{array}$

(7.) Let $A B^{\prime} C^{\prime}$ represent the proposed triangle.

Then, $A B^{\prime}=47^{\circ} 26^{\prime} 35^{\prime \prime}$, and $A C^{\prime}=$ $118^{\circ} 32^{\prime} 12^{\prime \prime}$.

We operate on the opposite supplemental triangle, $A^{\prime} B C^{\prime}$.

Now, $\quad A^{\prime} B=47^{\circ} 26^{\prime} 35^{\prime \prime} . \quad A^{\prime} C^{\prime \prime}=61^{\circ} 27^{\prime} 48^{\prime \prime}$.
Sin. $61^{\circ} 27^{\prime} 48^{\prime \prime}: I I .:: \sin .47^{\circ} 26^{\prime} 35^{\prime \prime}: \sin . C^{\prime}$

$$
\begin{array}{rlr}
\operatorname{Sin} . C^{\prime} & =\frac{R \cdot \sin .47^{\circ} 26^{\prime} 35^{\prime \prime}}{\sin .61^{\circ} 27^{\prime} 48^{\prime \prime}} & 19.867235 \\
C^{\prime} & =A C^{\prime \prime} B^{\prime}=56^{\circ} 58^{\prime} 44^{\prime \prime} & \frac{9.943748}{9.923487 .} \text { Ans. }
\end{array}
$$

Again, we have
$R . \cos 56^{\circ} 58^{\prime} 44^{\prime \prime}=\cot .61^{\circ} 27^{\prime} 48^{\prime \prime} . \tan . B C^{\prime \prime}$.
Whence,

$$
\begin{array}{rlr}
\operatorname{Tan} . B C^{\prime}= & \frac{R . \cos .56^{\circ} 58^{\prime} 44^{\prime \prime}}{\cot .61^{\circ} 27^{\prime} 48^{\prime \prime}} & 19.736355 \\
B C^{\prime \prime}, \tan .45^{\circ} 33^{\prime} 40^{\prime \prime} & \frac{9.735427}{10.000928} \\
B^{\prime} C^{\prime} \quad \frac{180^{\circ}}{134^{\circ} 56^{\prime} 20^{\prime \prime} .} & \text { Ans. }
\end{array}
$$

To find the angle A, we have
$\sin . A^{\prime} C^{\prime}: \sin .90^{\circ}:: \sin . B C^{\prime}: \sin . B A^{\prime} C^{\prime}$.
Log. R.sin. $B C^{\prime \prime}, 45^{\circ} 3^{\prime} 40^{\prime \prime} \quad 19.849948$
$\begin{array}{ll}\text { Sin. } A^{\prime} C^{\prime}, 61^{\circ} 27^{\prime} 48^{\prime \prime} & \frac{9.943748}{9.906200} \\ \text { in. } B A^{\prime} C^{\prime}, 53^{\circ} 40^{\prime} 58^{\prime \prime} & \end{array}$
Supplement $A, 126^{\circ} 19^{\prime} 2^{\prime \prime}$ Ans.

(8.) Let $A B^{\prime} C^{\prime}$ represent the triangle, $A B^{\prime}, 40^{\circ} 18^{\prime} 23^{\prime \prime}$, and $A C^{\prime}, 100^{\circ} 3^{\prime} 7^{\prime \prime}$. Required the other side and the oblique angles.

We operate as before on the supplemental triangle $A^{\prime} B C^{\prime} . \quad A B^{\prime}=A^{\prime} B=$ $40^{\circ} 18^{\prime} 23^{\prime \prime} . \quad A^{\prime} C^{\prime \prime}=79^{\circ} 56^{\prime} 53^{\prime \prime}$.

1st. For the angle C^{\prime}, we have
Sin. $A^{\prime} C^{\prime}: \sin .90^{\circ}:: \sin . A^{\prime} B: \sin . C^{\prime}$.
Log. R. sin. $40^{\circ} 18^{\prime} 23^{\prime \prime}$
19.810821
$A^{\prime} C^{\prime \prime}, \sin .79^{\circ} 56^{\prime} 53^{\prime \prime}$ $C^{\prime \prime}, \sin .41^{\circ} 4^{\prime} 6^{\prime \prime}$ 9.993282 9.817533. Ans.

To find $B C^{\prime}$, take the angle C^{\prime} for a middle part, then by Napier's Circular Parts, we have

Tan. $B C^{\prime \prime}$, cot. $A^{\prime} C^{\prime}=R . \cos .41^{\circ} 4^{\prime} 6^{\prime \prime}$.

Log. $R . \cos .41^{\circ} 4^{\prime} 6^{\prime \prime}$	19.877329
$A^{\prime} C^{\prime \prime}, \cot .79^{\circ} 56^{\prime} 53^{\prime \prime}$	9.248616
$B C^{\prime}, \tan .76^{\circ} 46^{\prime} 8^{\prime \prime}$	$\underline{10.628713}$

Supplement $B^{\prime} C^{\prime \prime}, 103^{\circ} 13^{\prime} 52^{\prime \prime}$. Ans.
For the angle A, we have
Sin. $A^{\prime} C^{\prime \prime}: \sin .90^{\circ}:: \sin . B C^{\prime}: \sin . A^{\prime}$.
Log. R.sin. $76^{\circ} 46^{\prime} 8^{\prime \prime}$
$\sin .79^{\circ} 56^{\prime} 53^{\prime \prime}$
$A^{\prime}, \sin .81^{\circ} 21^{\prime} 7^{\prime \prime} \quad 9.995034$
Supplement $C^{\prime \prime} A B^{\prime}=98^{\circ} 38^{\prime} 53^{\prime \prime}$. Ans.
(9.) In the right angled spherical triangle $A B C$, given $A C, 61^{\circ} 3^{\prime} 22^{\prime \prime}$, and the angle A, $49^{\circ} 28^{\prime} 12^{\prime \prime}$, to find the other parts.
 As, $\operatorname{Sin} .90^{\circ}: \sin . A C, 61^{\circ} 3^{\prime} 22^{\prime \prime}:: \sin . A, 49^{\circ} 28^{\prime} 12^{\prime \prime}: \sin . B C$.

$$
\begin{aligned}
& A C, \sin .61^{\circ} 3^{\prime} 22^{\prime \prime} \\
& A, \sin .49^{\circ} 28^{\prime} 12^{\prime \prime} \\
& B C, \sin .41^{\circ} 41^{\prime} 32^{\prime \prime} \\
& \text { we have the equation, } \\
& \quad \text { R.cos. } A C=\cos . A B . \cos . B C .
\end{aligned}
$$

$$
\text { Cos. } A B=\frac{R . \cos . A C}{\cos . B C}
$$

$$
19.684803
$$

Cos. $49^{\circ} 36^{\prime} 6^{\prime \prime}$
9.873162
9.811641. Ans.

For the angle C, we have
Sin. $A C, 61^{\circ} 3^{\prime} 22^{\prime \prime}: R$. : : sin. $A B, 49^{\circ} 36^{\prime} 6^{\prime \prime}: \sin . C$.

$$
\begin{array}{cr}
R . \sin . A B & 19.881703 \\
\sin . A C & 9.942054 \\
C, \sin .60^{\circ} 29^{\prime} 20^{\prime \prime} & 9.939649 . \text { Ans. }
\end{array}
$$

(10.) Here we have given one side of a right angled spherical triangle, and its opposite angle, to determine the other parts of the triangle, $A B^{\prime} C . A B^{\prime}=29^{\circ} 12^{\prime} 50^{\prime \prime}$, and $C=37^{\circ} 26^{\prime} 21^{\prime \prime}$.

In such cases the answers are said to be ambiguous, for the data give us no indication of which triangle is intended, $A B^{\prime} C$ or $A^{\prime} B C$. Because, $A B^{\prime}=A^{\prime} B=$ $29^{\circ} 12^{\prime} 50^{\prime \prime}$, and $A^{\prime} C B=A C B^{\prime}=37^{\circ} 26^{\prime} 21^{\prime \prime}$.

To find $A C$, we have
Sin. $A B^{\prime}, 29^{\circ} 12^{\prime} 50^{\prime \prime}: \sin .37^{\circ} 26^{\prime} 21^{\prime \prime}:: \sin . A C: R$.

$$
\operatorname{Sin} . A C=\frac{R . \sin .29^{\circ} 12^{\prime} 50^{\prime \prime}}{\sin .37^{\circ} 26^{\prime} 21^{\prime \prime}} \quad \begin{array}{r}
19.688483 \\
A C, \sin .53^{\circ} 24^{\prime} 13^{\prime \prime} \\
\frac{9.783846}{9.904637 .} \text { Ans. }
\end{array}
$$

Supplement $A^{\prime} C, 126^{\circ} 35^{\prime} 47^{\prime \prime}$.
To find $B^{\prime} C$.

$$
R . \cos . A C=\cos . A B^{\prime} \cos . B^{\prime} C .
$$

$$
\begin{array}{cr}
\operatorname{Cos.} B^{\prime} C=\frac{R . \cos .53^{\circ} 24^{\prime} 13^{\prime \prime}}{\cos 29^{\circ} 12^{\prime} 50^{\prime \prime}} & 19.775372 \\
B^{\prime} C, \cos .46^{\circ} 55^{\prime} 2^{\prime \prime} & \underline{9.940916} \\
\text { 9.834456. Ans. }
\end{array}
$$

Or its supplement.
For the angle A, we have
Sin. $53^{\circ} 24^{\prime} 13^{\prime \prime}: R .:: \sin .46^{\circ} 55^{\prime} 2^{\prime \prime}: \sin . A$.
$\begin{array}{rrr}\text { Log. } R . \sin .46^{\circ} 55^{\prime} \quad 2^{\prime \prime} & 19.863542 & \\ \sin .53^{\circ} 24^{\prime} 13^{\prime \prime} & \underline{9.904637} & \\ \operatorname{Sin} . A, 65^{\circ} 27^{\prime} 57^{\prime \prime} & 9.958905 . & \text { Ans. }\end{array}$
Or its supplement.
(11.) This example may require the solution of the triangle $A B C$, in adjoining figure, or of the triangle $A^{\prime} B^{\prime} C$.

But the solution of either of these supplemental triangles is effected by the triangle $A^{\prime} \cdot B C$, which is a common supplemental triangle. We have

$$
\begin{gathered}
A B=A^{\prime} B^{\prime}=100^{\circ} 10^{\prime} 3^{\prime \prime} \\
A C B=A^{\prime} C B^{\prime}=90^{\circ} 14^{\prime} 2 \dot{0}^{\prime \prime}
\end{gathered}
$$

Also, $\quad A^{\prime} B=79^{\circ} 49^{\prime} 57^{\prime \prime}$, and $A^{\prime} C B=89^{\circ} 45^{\prime} 40^{\prime \prime}$. $\operatorname{Sin} C: \sin A^{\prime} B:: \sin .90^{\circ}: \sin A^{\prime} C$.
Or, $\sin .89^{\circ} 45^{\prime} 40^{\prime \prime}: \sin .79^{\circ} 49^{\prime} 57^{\prime \prime}:: R .: \sin . A^{\prime} C$. Whence,

$$
\begin{gathered}
\sin . A^{\prime} C=\frac{R . \sin .79^{\circ} 49^{\prime} 57^{\prime \prime}}{\sin .89^{\circ} 45^{\prime} 40^{\prime \prime}} \quad \frac{19.993126}{9.999996} \\
A^{\prime} C, \sin .79^{\circ} 50^{\prime} 8^{\prime \prime} . \\
A C, \quad \frac{180^{\circ}}{100^{\circ} 9^{\prime} 52^{\prime \prime} .} \text { Ans. }
\end{gathered}
$$

By Eq. (20), Napier's Circular Parts, we have
R.cos. $C=\cos .79^{\circ} 49^{\prime} 57^{\prime \prime} . \sin . A$.

Cos. $C=\cos .89^{\circ} 45^{\prime} 40^{\prime \prime}=\sin .0^{\circ} 14^{\prime} 20^{\prime \prime}=\sin .860^{\prime \prime}=860 \sin .1^{\prime \prime}$. Log. sin. $1^{\prime \prime} 4.685575$ (See page 288 Text-book.)
Log. R. $860 \quad 12.934498$
Log. R. cos. C 17.620073
Log. cos. $79^{\circ} 49^{\prime} 57^{\prime \prime} \quad 9.246810$
$B A C=\sin .1^{\circ} 21^{\prime} 12^{\prime \prime} \quad \overline{8.373263 .}$ Ans.
For $B C$, we have

$$
R .: \sin . A^{\prime} C:: \sin . A: \sin B O .
$$

Sin. $A^{\prime} C, 79^{\circ} 50^{\prime} 8^{\prime \prime}$
9.99313C

Sin. $A, \quad 1^{\circ} 21^{\prime} 12^{\prime \prime}$
8.373263
$B C$, sin. $1^{\circ} 19^{\prime} 55^{\prime \prime}$
8.366393. Ans.
(12.) This example may be represented

$\sin . A^{\prime} C=\frac{R . \sin . A^{\prime} B}{\sin .61^{\circ} 2^{\prime} 15^{\prime \prime}}$ [R. : $\sin . A^{\prime} C$.
19.909925
9.941976
$A^{\prime} C, 68^{\circ} 15^{\prime} 26^{\prime \prime}$
$A C, \frac{180^{\circ}}{111^{\circ} 44^{\prime} 34^{\prime \prime}}$. Ans.
For $B C$, we have $\quad R . \sin . B C=\tan . A^{\prime} B . \cot . C$.
Tan. $A^{\prime} B$
10.144485

Cot. C
Sin. $B C, 50^{\circ} 31^{\prime} 32^{\prime \prime} \quad \overline{9.887566}$

$$
B^{\prime} C=\frac{180^{\circ}}{129^{\circ} 28^{\prime} 28^{\prime \prime}}
$$

For the angle $B A^{\prime} C$,
R.cos. $B A^{\prime} C=\tan . A^{\prime} B . \cot . A^{\prime} C$.

Tan. $A^{\prime} B$
10.144485

Cot. $A^{\prime} O$
Cos. $B A C=\cos . B A^{\prime} C, \quad 56^{\circ} 12^{\prime} 16^{\prime \prime} \quad-\overline{9.745255}$

$$
B^{\prime} A C=\frac{180^{\circ}}{123^{\circ} 47^{\prime} 44^{\prime \prime}}
$$

(13.) This example may be made to correspond to the triangle $A C B$, or to the triangle $A^{\prime} B^{\prime} C$, because the opposite angles $A C B, A^{\prime} C^{\prime} B^{\prime}$ are equal, and $A B=$ $A^{\prime} B$.

But we shall operate on the triangle $A^{\prime} B C$, which is supplemental to each of the other two.

Because $\quad A B=121^{\circ} 26^{\prime} 25^{\prime \prime}, A^{\prime} B=58^{\circ} 33^{\prime} 35^{\prime \prime}$.
Because $\quad A C B=111^{\circ} 14^{\prime} 37^{\prime \prime}, A^{\prime} C B=68^{\circ} 45^{\prime} 23^{\prime \prime}$.
For the side $A^{\prime} C$, we have

$$
\sin C: \sin . A^{\prime} B:: R .: \sin . A^{\prime} C .
$$

$\begin{array}{rr}\text { Log. } R . \sin .58^{\circ} 33^{\prime} 35^{\prime \prime} & 19.931043 \\ \text { Sin. } C, 68^{\circ} 45^{\prime} 23^{\prime \prime} & \underline{9.969439} \\ A^{\prime} C, \sin .66^{\circ} 15^{\prime} 38^{\prime \prime} & 9.961604\end{array}$
Supplement, or $A C, 113^{\circ} 44^{\prime} 22^{\prime \prime}$. Ans.
For the angle A, or $B A C$, we have

$$
\operatorname{Tan} . A^{\prime} B . \cot . A^{\prime} C=R . \cos . A^{\prime}=R . \cos . A .
$$

Or, Cos. $A=\tan .58^{\circ} 33^{\prime} 35^{\prime \prime} . \cot .66^{\circ} 15^{\prime} 38^{\prime \prime}$. Tan. $58^{\circ} 33^{\prime} 35^{\prime \prime}$
10.213698

Cot. $66^{\circ} 15^{\prime} 38^{\prime \prime}$
9.643246
A, cos. $43^{\circ} 59^{\prime} 55^{\prime \prime} \quad \overline{9.856944}$
Or, supplement, $\quad B^{\prime} A^{\prime} C, 136^{\circ} 0^{\prime} 5^{\prime \prime}$. Ans.
For the side $B C$, we have
$R .: \sin . A^{\prime} C:: \sin . A^{\prime}: \sin . B C$.

Sin. $A^{\prime} C$	9.961604
Sin. A^{\prime}	9.841760
$B C, \sin .39^{\circ} 29^{\prime} 3^{\prime \prime}$	9.803364

Supplement, or $B^{\prime} C, 140^{\circ} 30^{\prime} 57^{\prime \prime} A C$.

QUADRANTAL TRIANGLES.

Quadrantal spherical triangles have one side equal to 90 degrees, and all such triangles can be solved by right angled spherical trigonometry, as illustrated in the Text-book.

The following are not solved in the Text-book.

PRACTICAL PROBLEMS.

(Page 361.)
(1.) In a quadrantal triangle, given the quadrantal side, 90°, a side adjacent, $67^{\circ} 3^{\prime}$, and the included angle, $49^{\circ} 18^{\prime}$ to find the other parts.

Ans. $\left\{\begin{array}{l}\text { The remaining side is } 53^{\circ} 5^{\prime} 44^{\prime \prime} \text {; the angle oppo- } \\ \text { site the quadrantal side, } 108^{\circ} 32^{\prime} 29^{\prime \prime} \text {; and the re- } \\ \text { maining angle, } 60^{\circ} 48^{\prime} 54^{\prime \prime} .\end{array}\right.$

The triangle corresponding to this example is represented by $A P C . A P=90^{\circ}$, $P C=67^{\circ} 3^{\prime}$, and the angle at $P=$ $49^{\circ} 18^{\prime}$.

We operate upon the triangle $A B C$, having $A B=P=49^{\circ} 18^{\prime}$, and $B C=$ $90^{\circ}-\left(67^{\circ} 3^{\prime}\right)=22^{\circ} 57^{\prime}$.

For $A C$,

$$
\underline{9.964187} 9.778500 . \text { Ans. }
$$

For the angles A and C, we have the proportions

$$
\begin{aligned}
\operatorname{Sin} . A C: R . & :: \sin . A B: \sin C \\
& :: \sin B C: \sin . A
\end{aligned}
$$

For C.
For A.
Log. R.s.sin. $49^{\circ} 18^{\prime} 19.879746$ Log. R.sin. $22^{\circ} 57^{\prime} 19.590984$

$\sin .53^{\circ} 5^{\prime} 44^{\prime \prime}$	9.902894	$\sin . A C$	9.902894
$C, 71^{\circ} 27^{\prime} 31^{\prime \prime}$	9.976852	$A, 29^{\circ} 11^{\prime} 6^{\prime \prime}$	9.688090

Sup. $A C P, 108^{\circ} 32^{\prime} 29^{\prime \prime}$. Ans. Com. PAC, $60^{\circ} 48^{\prime} 54^{\prime \prime}$ Ans.
(2.) In a quadrantal triangle, given the quadrantal side, 90°, one angle adjacent, $118^{\circ} 40^{\prime} 36^{\prime \prime}$, and the side opposite this last-mentioned angle, $113^{\circ} 2^{\prime} 28^{\prime \prime}$, to find the other parts.
Ans. $\left\{\begin{array}{l}\text { The remaining side is } 54^{\circ} 38^{\prime} 57^{\prime \prime} \text {; the angle oppo- } \\ \text { site, } 51^{\circ} 2^{2} 35^{\prime \prime} \text {; and the angle opposite the qaud- } \\ \text { rantal side, } 72^{\circ} 26^{\prime} 21^{\prime \prime} \text {. }\end{array}\right.$
The triangle $A^{\prime} P C$ corresponds to this example. $A^{\prime} P C=A^{\prime} B=118^{\circ} 40^{\prime} 36^{\prime \prime}$.
Whence, $A B=61^{\circ} 19^{\prime} 24^{\prime \prime}, \quad A^{\prime} C=$ $113^{\circ} 2^{\prime} 28^{\prime \prime}$; therefore $A C=66^{\circ} 57^{\prime} 32^{\prime \prime}$. $B C$ is the complement of $P C$, the side required.

For $B C$ in the triangle $A B C$, we have

$$
\text { R.cos. } A C=\cos . A B . \cos . B C .
$$

Cos. $B C=$	$\frac{R . \cos .66^{\circ} 57^{\prime} 32^{\prime \prime}}{\cos 61^{\circ} 19^{\prime} 24^{\prime \prime}}$	19.592611
	$B C, \cos .35^{\circ} 21^{\prime} 3^{\prime \prime}$	$\underline{9.681120}$
ce, $\quad P C=54^{\circ} 38^{\prime} 57^{\prime \prime}$. Ans.		

For the angles A and C.
$\operatorname{Sin} . A C: R .:: \sin . A B: \sin . C$
$\operatorname{Sin} . A C: R .:: \sin . B C: \sin . A$.
For C.
Log. R. sin. $61^{\circ} 19^{\prime} 24^{\prime \prime}$
19.943168

Sin. $A C, 66^{\circ} 57^{\prime} 32^{\prime \prime}$
Sin. $C=72^{\circ} 26^{\prime} 21^{\prime \prime}$
Log. R.sin. $35^{\circ} 21^{\prime} 3^{\prime \prime}$
9.963894
$\overline{9.979274}$. Ans. For A.

Sin. $A C, 66^{\circ} 57^{\prime} 32^{\prime \prime}$
19.762365

Sin. $38^{\circ} 57^{\prime} 26^{\prime \prime}$
9.963894
9.798471

Com. $51^{\circ} 2^{\prime} 34^{\prime \prime}$. Ans. P $A^{\prime} C$.
(3.) In a quadrantal triangle given the quadrantal side 90°, and the two adjacent angles, one $69^{\circ} 13^{\prime} 46^{\prime \prime}$, the other $72^{\circ} 12^{\prime} 4^{\prime \prime}$, to find the other parts.
$\left\{\begin{array}{l}\text { One of the remaining sides is } 70^{\circ} 8^{\prime} 39^{\prime \prime} \text {, the other }\end{array}\right.$ Ans. $\left\{\begin{array}{l}\text { is } 73^{\circ} 17^{\prime} 29^{\prime \prime}, \text { and the angle opposite the quad- } \\ \text { rantal side is } 96^{\circ} 12^{\prime \prime} 23^{\prime \prime} .\end{array}\right.$ rantal side is $96^{\circ} 13^{\prime} 23^{\prime \prime}$.

The triangle is represented by $P A C$. Taking the angle $P=69^{\circ} 13^{\prime} 46^{\prime \prime}$, then $A B=69^{\circ} 13^{\prime} 46^{\prime \prime}$, and the angle $B A C$ must equal $90^{\circ}-\left(72^{\circ} 12^{\prime} 4^{\prime \prime}\right)$, or, $17^{\circ} 47^{\prime} 56^{\prime \prime}=A$.

Now, by taking the angle A for a middle part, we have the equation, Cot. $A C . \tan . A B=R . \cos . A$.
Whence,

$$
\begin{aligned}
\text { Cot. } A C= & \frac{R . \cos . A, 17^{\circ} 47^{\prime} 56^{\prime \prime}}{\tan .69^{\circ} 13^{\prime} 46^{\prime \prime}} \\
A C, \cot .70^{\circ} 8^{\prime} 39^{\prime \prime} & \cdot \frac{10.421044}{9.557654 .} \text { Ans. }
\end{aligned}
$$

For the side $B C$, of the triangle $A B C$, we have $R .: \sin . A C:: \sin . A: \sin . B C$.
Sin. $A C, 70^{\circ} 8^{\prime} 39^{\prime \prime}$
9.973382

Sin. $A, \quad 17^{\circ} 47^{\prime} 56^{\prime \prime}$
9.485262
$B C$, sin. $16^{\circ} 42^{\prime} 31^{\prime \prime}$
9.458644

Complement, $P C, 73^{\circ} 17^{\prime} 29^{\prime \prime}$. Ans.
For the angle C, of the triangle $A B C$, we nave $R . \cos . A C=\cot . A . \cot . C$.
R.cos. $A C$ 19.531037

Cot. A
Cot. $C, 83^{\circ} 46^{\prime} 37^{\prime \prime}$
10.493436
9.037601

Supplement, $P C A=96^{\circ} 13^{\prime} 23^{\prime \prime}$. Ans.
(4.) In a quadrantal triangle, given the quadrantal side, 90°, one adjacent side, $86^{\circ} 14^{\prime} 40^{\prime \prime}$, and the angle opposite to that side, $37^{\circ} 12^{\prime} 20^{\prime \prime}$, to find the other parts.
$A n s .\left\{\begin{array}{l}\text { The remaining side is } 4^{\circ} 43^{\prime} 2^{\prime \prime} \text {; the angle opposite } \\ 2^{\circ} 51^{\prime} 23^{\prime \prime} \text {; and the angle opposite the quadrantal } \\ \text { side, } 142^{\circ} 42^{\prime} 3^{\prime \prime} \text {. }\end{array}\right.$
The triangle is represented by $P A C$, $P C=86^{\circ} 14^{\prime} 40^{\prime \prime}$, and $P A C=37^{\circ} 12^{\prime} 20^{\prime \prime}$.

Whence, the angle A, of the triangle $A B C=52^{\circ} 47^{\prime} 40^{\prime \prime}$, and $B C, 3^{\circ} 45^{\prime} 20^{\prime \prime}$.

For $A C$, we have
$\operatorname{Sin} . A: \sin . B C:: R .: \sin . A C$.

$$
\begin{array}{cr}
\text { Log. } R . \sin . B C, 3^{\circ} 45^{\prime} 20^{\prime \prime} & 18.816240 \\
\sin . A, 52^{\circ} 47^{\prime} 40^{\prime \prime} & 9.901170 \\
\operatorname{Sin} . A C, 4^{\circ} 43^{\prime} 2^{\prime \prime} & 8.915070 .
\end{array}
$$

For $A B$, we have
$R . \cos . A=\cot . A C . \tan . A B$.
R.cos. $52^{\circ} 47^{\prime} 40^{\prime \prime}$
19.781523

Cot. $4^{\circ} 43^{\prime} 2^{\prime \prime}$
11.083454

Tan. $A B, 2^{\circ} 51^{\prime} 23^{\prime \prime}$
8.698069. Ans.

For the angle C, of the triangle $A B C$, R.cos. $A C=\cot . A . \cot . C$.
R.cos. $4^{\circ} 43^{\prime} 2^{\prime \prime}$
19.998527
$\cot 52^{\circ} 47^{\prime} 40^{\prime \prime}$
9.880353

Cot. $C, 37^{\circ} 17^{\prime} 57^{\prime \prime}$
10.118174

Supplement, $P C A=142^{\circ} 42^{\prime} 3^{\prime \prime}$. Ans.
(5.) In a quadrantal triangle, given the quadrantal side, 90°, and the other two sides, one $118^{\circ} 32^{\prime} 16^{\prime \prime}$, the
other $67^{\circ} 48^{\prime} 40^{\prime \prime}$, to find the other parts-the three angles.

SThe angles are $64^{\circ} 32^{\prime} 21^{\prime \prime}, 121^{\circ} 3^{\prime} 40^{\prime \prime}$, and $77^{\circ} 11^{\prime}$ Ans. $\left\{\begin{array}{l}6^{\prime \prime} \text {; the greater angle opposite the greater side, } \\ \text { of course. }\end{array}\right.$

This problem requires the solution of the triangle $A^{\prime} P C$, or $P^{\prime} A C$, each one may by hypothesis correspond with the data. That is, $A^{\prime} C$ or $P^{\prime} C=118^{\circ}$ $32^{\prime} 16^{\prime \prime}$, and $P C$ or $A C=67^{\circ} 48^{\prime} 40^{\prime \prime}$. We will take $P^{\prime} A C$. Then, $B C=$ $118^{\circ} 32^{\prime} 16^{\prime \prime}$, less 90°.

That is, $\quad B C=28^{\circ} 32^{\prime} 16^{\prime \prime}$.
In the triangle $A B C$, we have $A C$ and $B C$.
To find the angle A, or $C A B$, we have
$\operatorname{Sin} . A C, 67^{\circ} 48^{\prime} 40^{\prime \prime}: R$. : : $\sin .28^{\circ} 32^{\prime} 16^{\prime \prime}: \sin . A$.

Log. $R . \sin .28^{\circ} 32^{\prime} 16^{\prime \prime}$	19.679191
$\sin 67^{\circ} 48^{\prime} 40^{\prime \prime}$	$\underline{9.966585}$
Sin. $A, 31^{\circ} 3^{\prime} 40^{\prime \prime}$	9.712606
Add 90° and $P^{\prime} A C=121^{\circ} 3^{\prime} 40^{\prime \prime}$.	Ans.

The side $A B$, is the measure of the angles P and P^{\prime}, and the angle C is also an angle in the triangle $P^{\prime} A C$.

For $A B, \quad R .: \cos . A B:: \cos . B C: \cos . A C$.

$$
\begin{array}{rr}
\text { Cos. } A B=\frac{R . \cos . A C, 67^{\circ} 48^{\prime} 40^{\prime \prime}}{\cos . B C, 28^{\circ} 32^{\prime} 16^{\prime \prime}} & 19.577102 \\
\text { Angle } P^{\prime}=A B, 64^{\circ} 32^{\prime} 21^{\prime \prime} & \underline{9.943743} \\
9.633359 . & \text { Ans. }
\end{array}
$$

For the angle C, we have

$$
\operatorname{Sin} . A C: R .:: \sin A B: \sin C .
$$

Log. R.sin. $A B, 64^{\circ} 32^{\prime} 21^{\prime \prime}$
19.955630

Log. R.sin. $A C, 67^{\circ} 48^{\prime} 40^{\prime \prime}$
9.966585
$\sin . C, 77^{\circ} 11^{\prime} 6^{\prime \prime} \quad 9.989045$. Ans.
(6.) In a quadrantal triangle, given the quadrantal side, 90°, the angle opposite, $104^{\circ} 41^{\prime} 17^{\prime \prime}$, and one adjacent side, $73^{\circ} 21^{\prime} 6^{\prime \prime}$, to find the other parts.

Ans. $\left\{\right.$ Remaining side, $49^{\circ} 42^{\prime} 16^{\prime \prime}$; remaining angles, $47^{\circ} 32^{\prime} 38^{\prime \prime}$, and $67^{\circ} 56^{\prime} 13^{\prime \prime}$.

This example refers to the triangle $A P C$, because the given angle is greater than 90°. We must operate on the triangle $A B C$.

The angle $A C B=180-\left(104^{\circ} 41^{\prime} 17^{\prime \prime}\right)$ $=75^{\circ} 18^{\prime} 43^{\prime \prime}$, and $A C, 73^{\circ} 21^{\prime} 6^{\prime \prime}$.
For $A B$, we have
R. : $\sin . A C:: \sin . C: \sin . A B$.
Whence,
$\sin . A B=\sin . A C . \sin . C$.

Sin. $75^{\circ} 18^{\prime} 43^{\prime \prime}$
$A C, \sin .73^{\circ} 21^{\prime} 6^{\prime \prime}$
$A P C=A B, \sin . A B, 67^{\circ} 56^{\prime} 13^{\prime \prime}$
9.985571
9.981402
9.966973. Ans.

For the side $B C$, we have
$R .: \cos A B:: \cos . B C: \cos A C$.
$\begin{array}{cr}\text { Cos. } B C=\frac{R . \cos . A C}{\cos A B} & 19.457120 \\ \text { Cos. } B C, 40^{\circ} 17^{\prime} 44^{\prime \prime} & \frac{9.574757}{8.882363}\end{array}$
Complement, $P C=49^{\circ} 4 \cdot 2^{\prime} 16^{\prime \prime}$. Ans.
For the angle A, we have
Sin. $A C: R$. : : $\sin . B C: \sin . A$.
Log. R.sin. $B C$
19.810723
$\sin .73^{\circ} 21^{\prime} 6^{\prime \prime}$
9.981402

Sin. $A, 42^{\circ} 27^{\prime} 22^{\prime \prime}$
9.829321

Complement, $P A C=47^{\circ} 32^{\prime} 38^{\prime \prime}$. Ans.

OBLIQUE ANGLED SPHERICAL TRIGONOMETRY.

PRACTICAL EXAMPLES.

(Page 367.)
Note.-Here, as in Plane Trigonometry, the sides are represented by a, b, c, and the angles opposite by A, B, C, that is, A opposite a, B opposite b, and C opposite c.
(1.) Given $b=118^{\circ} 2^{\prime} 14^{\prime \prime}, c=120^{\circ} 18^{\prime} 33^{\prime \prime}$, and the included angle $A=27^{\circ} 22^{\prime} 34^{\prime \prime}$, to find the other parts.

Here we have two sides, and the included angle.

This triangle is represented by $A B C$, but we operate on the supplemental triangle $A^{\prime} B C$.

We may let fall the perpendicular $C D$, dividing the triangle $A^{\prime} B C$ into the two right angled spherical triangles, $A^{\prime} D C$, and $B D C$.

Or we may solve either triangle $A B C^{\prime}$ or $A^{\prime} B C$ directly, by applying Equations (8) and (9), (page 3ธั0, Geometry), which are

$$
\begin{aligned}
& \text { Tan. } \frac{1}{2}(C+B)=\frac{\cot \cdot \frac{1}{2} A \cdot \cos \cdot \frac{1}{2}(c-b)}{\cos \cdot \frac{1}{2}(c+b)} \\
& \text { Tan. } \frac{1}{2}(C-B)=\frac{\cot \cdot \frac{1}{2} A \cdot \sin \cdot \frac{1}{2}(c-b)}{\sin \cdot \frac{1}{2}(c+b)} \\
& c=120^{\circ} 18^{\prime} 33^{\prime \prime} . \quad \text { Whence, } A^{\prime} B=59^{\circ} 41^{\prime} 27^{\prime \prime} \\
& b=118^{\circ} 2^{\prime} 14^{\prime \prime}
\end{aligned}
$$

Sum $238^{\circ} 20^{\prime} 47^{\prime \prime}$ half sum $119^{\circ} 10^{\prime} 23.5^{\prime \prime}$.
Diff. $\quad 2^{\circ} 16^{\prime} 19^{\prime \prime}$ half diff. $1^{\circ} 8^{\prime} 9.5^{\prime \prime}$.

Cot. $\frac{1}{2} A=13^{\circ} 41^{\prime} 17^{\prime \prime}$	10.613406		10.613406
$\operatorname{cos.} 1^{\circ} 8^{\prime} 9.5^{\prime \prime}$	$\underline{9.999915}$	sin.	$\frac{8.297218}{20.613321}$
	$\frac{9.687932 n}{18.910624}$		
Cos. $119^{\circ} 10^{\prime} 23.5^{\prime \prime}$	\sin.	9.941090	
Tan. $\frac{1}{2}(C+B)\left(83^{\circ} 13^{\prime} 42^{\prime \prime}\right)$	$10.925389 n$		
Tan. $\frac{1}{2}(C-B)\left(5^{\circ} 19^{\prime} 34^{\prime \prime}\right)$			8.969534

Note.-The cosine of an arc greater than 90° is negative. Hence the cosine 119° is minus, and we place n against the \log. to show that it is negative. And since $\tan . \frac{1}{2}(C+B)$ is negative also, the arc muşt terminate in the 2 d quadrant - it is therefore the supplement of $83^{\circ} 13^{\prime} 42^{\prime \prime}$; hence

$$
\begin{aligned}
& \frac{1}{2}(C+B) 96^{\circ} 46^{\prime} 18^{\prime \prime} \\
& \frac{1}{2}(C-B) \quad 5^{\circ} 19^{\prime} 34^{\prime \prime} \\
& \hline
\end{aligned}
$$

$\left.\begin{array}{l}\text { Sum } C, \overline{102^{\circ}} 5^{\prime} 52^{\prime \prime} \\ \text { Diff. } B, 91^{\circ} 26^{\prime} 44^{\prime \prime}\end{array}\right\}$ Ans.
For the side $B C$, we subtract C from 180°, giving $77^{\circ} 54^{\prime} 8^{\prime \prime}$ for the angle $A^{\prime} C B$.
Sin. $77^{\circ} 54^{\prime} 8^{\prime \prime}: \sin .59^{\circ} 41^{\prime} 27^{\prime \prime}:: \sin .27^{\circ} 22^{\prime} 34^{\prime \prime}: \sin . \alpha$.

Sin. $59^{\circ} 41^{\prime} 27^{\prime \prime}$
Sin. $27^{\circ} 22^{\prime} 34^{\prime \prime}$
9.936170
9.662597
$\overline{19.598767}$
Sin. $77^{\circ} 54^{\prime} 8^{\prime \prime}$
Sin. $a, 23^{\circ} 57^{\prime} 13^{\prime \prime}$
9.990246
9.608521. Ans.
(2.) Given

$$
\begin{aligned}
& A=81^{\circ} 38^{\prime} 17^{\prime \prime} \\
& \left.B=70^{\circ} \quad 9^{\prime} 38^{\prime \prime}\right\} \text { to find } a, b \text {, and } c \text {. } \\
& C=64^{\circ} 46^{\prime} 32^{\prime \prime} \text { By formula (W), (page 348, Geom.) } \\
& \text { 2) } 216^{\circ} 34^{\prime} 27^{\prime \prime} \\
& S \longdiv { 1 0 8 ^ { \circ } 1 7 ^ { i } 1 3 . 5 ^ { \prime \prime } } \\
& \sin . \frac{1}{2} a=\left(\frac{-\cos \cdot S \cdot \cos \cdot(S-A)}{\sin \cdot B \cdot \sin \cdot C}\right)^{\frac{1}{2}} . \\
& 81^{\circ} 38^{\prime} 17^{\prime \prime} \\
& S-A \quad \overline{26^{\circ} 38^{\prime} 56.5^{\prime \prime}}
\end{aligned}
$$

Note.-The arc S being greater than 90°, its cosine is minus, and subtracting a minus quantity as the sign in the formula indicates, makes it plus.

Cos. $S, 108^{\circ} 17^{\prime} 13.5^{\prime \prime}$	9.496623
Cos. $(S-A), 26^{\circ} 38^{\prime} 56.5^{\prime \prime}$	9.951226
	19.447849

$\begin{array}{l}\text { Sin. } B, 70^{\circ} 9^{\prime} 38^{\prime \prime} \\ \text { Sin. } C, 64^{\circ} 46^{\prime} 32^{\prime \prime}\end{array} \quad 9.973427$? $\}$
Sin. $\left.C, 64^{\circ} 46^{\prime} 32^{\prime \prime} \quad 9.956479\right\}$ sum,

Sin. $\frac{1}{2} a .($ Radius unity $)=$
For the radius of tables, add
Tabular sin. of $\frac{1}{2} a=35^{\circ} 2^{\prime} 6.3^{\prime \prime}$
2) -1.517943
19.929906
-1.758971
10.
9.758971

2

$$
a=\overline{70^{\circ} 4^{\prime} 13^{\prime \prime}} . \quad \text { Ans. }
$$

Because,

$$
\frac{\sin . b}{\sin B}=\frac{\sin . a}{\sin . A}
$$

Therefore, Sin. $b=\sin . B \cdot \frac{\sin . a}{\sin . A}$. Sin. $c=\sin . C \cdot \frac{\sin . a}{\sin . A}$.
Sin. $a .70^{\circ} 4^{\prime} 13^{\prime \prime} \quad 9.973179$
Sin. $A, 81^{\circ} 38^{\prime} 17^{\prime \prime} \quad 9.995358$

$$
-\overline{1.977821}
$$

-1.977821

Sin. B	$\frac{9.973427}{9.951248}$		$\sin . C$
$b=59^{\circ} 16^{\prime} 21^{\prime \prime}$	9.956479		
$b, 63^{\circ} 21^{\prime} 24^{\prime \prime}$			Ans.

(3.) Given $a, 93^{\circ} 27^{\prime} 34^{\prime \prime}, b, 100^{\circ} 4^{\prime} 26^{\prime \prime}$, and $c, 96^{\circ} 14^{\prime} 50^{\prime \prime}$, the three sides to find the three angles.

By formula, on page 343.
Cos. $\frac{1}{2} A=\left(\frac{\sin . S \cdot \sin .(S-a)}{\sin . b \cdot \sin . c .}\right)^{\frac{1}{2}}$ (Radius unity.)

We may now obtain the other angles by Equations (8) and (9), (page 350, Geom.)

$$
\begin{aligned}
b & =100^{\circ} 4^{\prime} 26^{\prime \prime} \\
c & =96^{\circ} 14^{\prime} 50^{\prime \prime} \\
\frac{1}{2}(b+c) & =98^{\circ} 9^{\prime} 38^{\prime \prime} \\
\frac{1}{2}(b-c) & =1^{\circ} 54^{\prime} 48^{\prime \prime}
\end{aligned}
$$

$$
\begin{array}{lrlr}
\text { Cot. } \frac{1}{2} A, & 9.964707 & & 9.964707 \\
\text { Cos. } \frac{1}{2}(b-c) & 9.999758 & \sin . & 8.523587 \\
& & & \\
& 19.964465 & & 18.488294
\end{array}
$$

$$
\begin{array}{lrcc}
\text { Cos. } \frac{1}{2}(b+c) & 9.152128 n & \sin . & 9.995580 \\
\text { Tan. } \frac{1}{2}(B+C) & 10.812337 n & \tan . \frac{1}{2}(B-C) & 8.492714
\end{array}
$$

$$
\begin{aligned}
\frac{1}{2}(B+C) & =98^{\circ} 45^{\prime} 27^{\prime \prime} \\
\frac{1}{2}(B-C) & =1^{\circ} 46^{\prime} 52^{\prime \prime} \\
B & =100^{\circ} 32^{\prime} 19^{\prime \prime} \\
C & =96^{\circ} 58^{\prime} 35^{\prime \prime}
\end{aligned}
$$

(4.) Given two sides, $b, 84^{\circ} 16^{\prime}, c, 81^{\circ} 12^{\prime}$, and the angle $C, 80^{\circ} 28^{\prime}$, to find the other parts.

When this triangle is constructed, we find that the data will correspond equally well to the triangle $A B C$, and to $A B^{\prime} C$, in the adjoining cut.

Hence the result is said to be ambiguous. In such cases the operator is expected to determine both results.

Observe that $A B=A B^{\prime}$, hence the triangle $A B B^{\prime}$ is isosceles, and $A D$ the perpendicular from A bisects $B B^{\prime}$ in D, making two right angled spherical triangles, $A D C$ and $A D B^{\prime}$. Their sum is the triangle $A C B^{\prime}$, and their difference $A B C$.

For the angles at B, or at B^{\prime}, we have the proportion Sin. $c, 81^{\circ} 12^{\prime}: \sin . C, 80^{\circ} 28^{\prime}:: \sin . b, 84^{\circ} 16^{\prime}: \sin . B$.
$\sin . B=\frac{\sin .84^{\circ} 16^{\prime} \cdot \sin .80^{\circ} 28^{\prime}}{\sin .81^{\circ} 12^{\prime}}$.
Sin. $84^{\circ} 16^{\prime} \quad 9.997822$
Sin. $80^{\circ} 28^{\prime}$
9.993960
19.991782

Sin. $81^{\circ} 12^{\prime} \quad 9.994857$
Sin. B^{\prime}, or $A B D, 83^{\circ} 11^{\prime} 24^{\prime \prime}$
9.996925

Supplement, $96^{\circ} 48^{\prime} 36^{\prime \prime}=A B C$. Ans.

By Equation (16), Napier's Circular Parts (page 335, Geometry), we have

Tan. $C D . \cot . b=R . \cos . C=R . \cos .80^{\circ} 28^{\prime}$.

$$
\begin{array}{cr}
\text { Tan. } C D=\frac{R . \cos .80^{\circ} 28^{\prime}}{\cot .84^{\circ} 16^{\prime}} & \frac{19.219116}{9.001738} \\
& 10.217378
\end{array}
$$

In like manner, we obtain $B D$, from the triangle $A B D$.

That is, Tan. $B D=\frac{P . \cos 83^{\circ} 11^{\prime} 24^{\prime \prime}}{\cot c .81^{\circ} 12^{\prime}} \quad$| 19.074002 |
| ---: |
| $B D, \tan .37^{\circ} 27^{\prime} 2^{\prime \prime}$ |$\frac{9.189794}{9.884208}$

But $\quad C D, \quad 58^{\circ} 46^{\prime} 31^{\prime \prime}$
Sum $C B^{\prime}$, or $a, \quad \overline{96^{\circ} 13^{\prime} 33^{\prime \prime}}$. Ans. Diff. $C B$, or $a, \quad 21^{\circ} 19^{\prime} 29^{\prime \prime}$. Ans.
For the angles A, we have

$$
\frac{\operatorname{Sin} . A}{\operatorname{Sin} . a}=\frac{\sin . C}{\sin . c}, \text { or } \sin . A=\sin . a \cdot \frac{\sin . C}{\sin . c}
$$

Sin. a. $21^{\circ} 19^{\prime} 29^{\prime \prime} \quad 9.560688 \sin$ c. $96^{\circ} 13^{\prime} 33^{\prime \prime} 9.997431$
Sin. $C-\sin$ c -1.999103 -1.999103 A, $\sin .21^{\circ} 16^{\prime} 43^{\prime \prime} \quad \overline{9.559791} \quad A$, $\sin .97^{\circ} 13^{\prime} 45^{\prime \prime} \quad \overline{9.996534}$ Ans.
(5.) Given one side $c, 64^{\circ} 26^{\prime}$, and the adjacent angles
 $A, 49^{\circ}$, and $B, 52^{\circ}$, to find the other parts.

Let $A B C$ represent the triangle, and from one extremity of the given side, let fall the perpendicular $B D$, making the two right angled spherical triangles, $A D B$ and $C D B$.

By Equation (16), Napier's Circular Parts (Geom., p. 335), we have Tan. $A D$. cot. $64^{\circ} 26^{\prime}=$ R.cos. 49°. R.cos. 49°
19.816943

Cot. $64^{\circ} 26^{\prime}$
9.679795

Tan. $A D, 53^{\circ} 54^{\prime}$
$\overline{10.137148}$
For the angle $A B D$, we have
Sin. $64^{\circ} 26^{\prime}: R .:: \sin .53^{\circ} 54^{\prime}: \sin . A B D$.
R.sin. $53^{\circ} 54^{\prime} \quad 19.907406$

Sin. $64^{\circ} 26^{\prime}$
Angle $A B D=63^{\circ} 35^{\prime} 51^{\prime \prime}$
9.955247
9.952159
$A B C \quad 52$
Angle $C B D=\overline{11^{\circ} 35^{\prime} 51^{\prime \prime}}$

In the triangle $A B D$, we have
R. : sin. $64^{\circ} 26^{\prime}:: \sin . A, 49^{\circ}: \sin . B D$.

Sin. 49°	9.877780
Sin. $64^{\circ} 26^{\prime}$	9.955247
$B D$, sin. $42^{\circ} 54^{\prime} 26^{\prime \prime}$	9.833027

For $B C$, or a of the triangle $A B C$, we use the equation
Tan. $B D$. cot. $B C=R$:cos. $11^{\circ} 35^{\prime} 51^{\prime \prime}$.

R.cos. $11^{\circ} 35^{\prime} 51^{\prime \prime}$	19.991042
Tan. $42^{\circ} 54^{\prime} 26^{\prime \prime}$	9.968246
Cot. $B C, 43^{\circ} 29^{\prime} 49^{\prime \prime}$	$\underline{10.022796}$. Ans.

For $A C$, or b, we have
$\operatorname{Sin} .49^{\circ}: \sin .43^{\circ} 29^{\prime} 49^{\prime \prime}:: \sin .52^{\circ}: \sin . A C$.
Sin. $43^{\circ} 29^{\prime} 49^{\prime \prime} \quad 9.837788$

Sin. $52^{\circ} \quad 9.896532$
19.734320

Sin. 49°
b, or $A C$, $\sin .45^{\circ} 56^{\prime} 46^{\prime \prime} \quad \frac{9.877780}{9.856540 .}$ Ans.
For the angle C, we have

$$
\text { R.cos. } B C=\cot . C B D . \cot . B C D .
$$

R.cos. $43^{\circ} 29^{\prime} 49^{\prime \prime}$

Cot. $C B D, 11^{\circ} 35^{\prime} 51^{\prime \prime}$
Cot. $B C D, 81^{\circ} 31^{\prime} 56^{\prime \prime}$

$$
B C A=98^{\circ} 28^{\prime} 4^{\prime \prime} \quad A n s
$$

(6.) Result obvious.
(7.) Given two sides and an angle opposite one of them to determine the other parts. $a=77^{\circ} 25^{\prime} 11^{\prime \prime}, c=128^{\circ} 13^{\prime} 47^{\prime \prime}$, and the angle $C=131^{\circ} 11^{\prime} 12^{\prime \prime}$.

To find the angle A, we have

$$
\frac{\operatorname{Sin} . A}{\operatorname{Sin} . a}=\frac{\sin . O}{\sin . c}=\frac{\sin .131^{\circ} 11^{\prime} 12^{\prime \prime}}{\sin .128^{\circ} 13^{\prime} 47^{\prime \prime}}=\frac{\cos .41^{\circ} 11^{\prime} 12^{\prime \prime}}{\cos .38^{\circ} 13^{\prime} 47^{\prime \prime}}
$$

We have now to determine B and b, and the process will be apparent after we construct the triangle, as represented in the adjoining figure.

The data gives the triangle $A B C ; A B^{\prime} C$ is a supplemental triangle. From B^{\prime}, let fall the perpendicular $B^{\prime} D$.

In the right angled triangle $A B^{\prime} D$, we have the angle A, and the hypotenuse $A B^{\prime}$. $A B^{\prime}$ being the supplement of c.

From the two triangles $A D B^{\prime}$ and $C^{\prime \prime} D B^{\prime}$, we can obtain $A D$, and $D C^{\prime}$, and their sum taken from 180°, will give $A C$, or b.

The angle $D C^{\prime \prime} B$, is the supplement of C, which is

$$
48^{\circ} 48^{\prime} 48^{\prime \prime}
$$

By Napier's Circular Parts, we have

$$
\text { Cot. } A B^{\prime} \text {.tan. } A D=R . \cos . A
$$

Or, Tan. $A D=\frac{R \cdot \cos .69^{\circ} 13^{\prime} 59^{\prime \prime}}{\cot .51^{\circ} 46^{\prime} 13^{\prime \prime}}$
19.549698

Tan. $A D, 24^{\top} 13^{\prime} 56^{\prime \prime} \quad \overline{9.653302}$
Also, Tan. $C^{\prime \prime} D=\frac{R . \cos .48^{\circ} 48^{\prime} 48^{\prime \prime}}{\cot a \cdot, 77^{\circ} 25^{\prime} 11^{\prime \prime}} \quad 19.818566$

$$
A D+D C^{\prime}=\overline{95^{3} 30^{\prime} 40^{\prime \prime}}
$$

Supplement $A C^{\prime}, 84^{\circ} 29^{\prime} 20^{\prime \prime}=b$. Ans.

Lastly, for the angle B, we have

$$
\begin{aligned}
& \frac{\operatorname{Sin} . B}{\text { Sin. } b}=\frac{\sin . A}{\sin . a} \text {, or } \sin . B=\frac{\sin . b . \sin . A}{\sin . a} \\
& \text { Sin. } b \\
& \text { Sin. } A \\
& \text { Sin. } a \\
& \text { Sin. } B, 72^{\circ} 28^{\prime} 42^{\prime \prime} \\
& \hline \frac{9.997988}{19.968814} \\
& \text { S } \\
& \hline 9.989446 \\
& \hline .979368 .
\end{aligned} \text { Ans. } .
$$

(8.) Given $a=68^{\circ} 34^{\prime} 13^{\prime \prime}$ to find A, B, and C.

$$
b=59^{\circ} 21^{\prime} 18^{\prime \prime} \quad \text { sin. com. } 065328
$$

$$
c=112^{\circ} 16^{\prime} 32^{\prime \prime} \quad \text { sin. com. } 033684
$$

$$
\text { 2) } 240^{\prime \prime} 12^{\prime} 3^{\prime \prime}
$$

Use formula (T), $120^{\circ} 6^{\prime} 1.5^{\prime \prime} \quad S . \sin . \quad 9.937090$ (p. 343, Geom.) $68^{\circ} 34^{\prime} 13^{\prime \prime}$

$$
\begin{array}{r}
51^{\circ} 31^{\prime} 48.5^{\prime \prime}(S-a) \sin . \frac{9.893726}{} \\
\quad \text { 2) } \frac{19.929828}{9.964914}
\end{array}
$$

2
A, $\overline{45^{\circ} 26^{\prime} 38^{\prime \prime}}$. Ans.
Now, Sin. $B=\sin . b . \frac{\sin . A}{\sin . a}$, and $\sin . C=\sin . c . \frac{\sin . A}{\sin . a}$.

$\operatorname{Sin} . b=$	9.934672	$\sin . c=$	9.966316
Sin. $A-\sin . a=$	-1.883936		-1.883936
$B, \sin .41^{\circ} 11^{\prime} 30^{\prime \prime}$	$\underline{9.818608}$	$C, 134^{\circ} 53^{\prime} 55^{\prime \prime}$	$\frac{9.850252}{}$
			Ans.

Note.-We take C greater than 90°, because c was given greater than 90°. The logarithm gives $45^{\circ} 6^{\prime} 5^{\prime \prime}$, and its supplement is the angle required.
(9.) Same formula as applied to the preceding.

$$
\begin{aligned}
& \text { Given } a=89^{\circ} 21^{\prime} 37^{\prime \prime} \text { to find } A, B \text {, and } C \text {. } \\
& b=97^{\circ} 18^{\prime} 39^{\prime \prime} \quad \text { sin. com. } 003546 \\
& c=86^{\circ} 53^{\prime} 46^{\prime \prime} \quad \text { sin. com. } 000637 \\
& \text { 2) } 273^{\circ} 34^{\prime} 2^{\prime \prime} \\
& 136^{\circ} 47^{\prime} 1^{\prime \prime} S . \sin . \quad 9.835536 \\
& 89^{\circ} 21^{\prime} 37^{\prime \prime} \\
& \overline{47^{\circ} 25^{\prime} 24^{\prime \prime}}(S-a) \quad \text { sin. } 9.867097 \\
& \text { 2) } 19.706816 \\
& 9.853408 \\
& \text { Cos. } \frac{1}{2} A, 44^{\circ} 28^{\prime} \cdot 40^{\prime \prime} \\
& A, \overline{88^{\circ} 57^{\prime} 20^{\prime \prime}} . \text { Ans. }
\end{aligned}
$$

Now we have, $\operatorname{Sin} . B=\sin . b . \frac{\sin . A}{\sin . a}$, and $\sin . C=\sin . c . \frac{\sin . A}{\sin . a}$.
$\begin{array}{llll}\text { Sin. } b & 9.996454 & \sin . c & 9.999362\end{array}$
Sin. A-sin. $a \quad-1.999955 \quad-1.999955$
$B, \sin .97^{\circ} 21^{\prime} 26^{\prime \prime} \quad \overline{9.996409} \quad C=88^{\circ} 47^{\prime \prime} 17^{\prime \prime} \quad \overline{9.999317}$
(10.) Given $a=31^{\circ} 26^{\prime} 41^{\prime \prime}, c=43^{\circ} 22^{\prime} 13^{\prime \prime}$, and the angle $A=12^{\circ} 16^{\prime}$, to find the other parts.

This example applies to the adjacent figure.
$A B C$ and $A B C^{\prime \prime}$, either one, will correspond with so much of the data as is given. Hence the result is ambiguous.

$$
\text { But, } \quad \operatorname{Sin} . C=\sin . c \cdot \frac{\sin . A}{\sin . a} \text {. }
$$

$c, \sin .43^{\circ} 22^{\prime} 13^{\prime \prime}$	9.836774
$A, \sin .12^{\circ} 16^{\prime}$	$\frac{9.327281}{19.164055}$
$a, \sin .31^{\circ} 26^{\prime} 41^{\prime \prime}$	$\underline{9.717400}$
$C^{\prime}, \sin .16^{\circ} 14^{\prime} 27^{\prime \prime}$	9.446655

Or, $C, 163^{\circ} 45^{\prime} 33^{\prime \prime}$. Ans.
In the right angled spherical triangle $A D B$, we have $R .: \sin . c:: \sin . A .: \sin B D$.
Sum as above, omitting radius, Sin. $B D, 8^{\circ} 23^{\prime} 22^{\prime \prime}=9.164055$.
In the same triangle we have, $R . \cos . c=\cos . A D . \cos . B D$.
R.cos. c
19.861493

Cos. $B D$
Cos. $A D=42^{\circ} 42^{\prime} 37^{\prime \prime}$
9.995327
$\overline{9.866166}$
In the right angled triangle $C B D$, we have $R . \cos . a=\cos . C D . \cos . B D$.
R.cos. a
19.931022

Cos. $B D$
Cos. $C D, 30^{\circ} 24^{\prime} 57^{\prime \prime}$
$A D=42^{\circ} 42^{\prime} 37^{\prime \prime}$
Sum $=A C^{\prime}=b, 73^{\circ} 7^{\prime} 34^{\prime \prime}$. Ans.。
Diff. $=A C=b, 12^{\circ} 17^{\prime} 40^{\prime \prime}$. Ans.
To find the angles at B, we have the following proportion.

Sin. $a: \sin . A:: \sin .12^{\circ} 17^{\prime} 40^{\prime \prime}: \sin . A B C$.
$\begin{array}{lr}\text { Sin. } A & 9.327281 \\ \text { Sin. } 12^{\circ} 17^{\prime} 40^{\prime \prime} & 9.328248 \\ & 18.655529 \\ \text { Sin. } a & \underline{9.717400} \\ A B C, 4^{\circ} 58^{\prime} 30^{\prime \prime} & 8.938129\end{array}$

Sin. $a .: \sin . A .:: \sin .73^{\circ} 7^{\prime} 34^{\prime \prime}: \sin . A B C^{\prime}$.

Sin. A
9.327281

Sin. $73^{\circ} 7^{\prime} 34^{\prime \prime}$

Sin. a
$C^{\prime \prime} B A, \quad 22^{\circ} 56^{\prime} 16^{\prime \prime}$
$A B C^{\prime} \frac{180^{\circ}}{157^{\circ} 3^{\prime} 44^{\prime \prime}}$
9.980888
19.308169
9.717400
9.590769
$A B C^{\prime \prime} 157^{\circ} 3^{\prime} 44^{\prime \prime}$
(11.) In a triangle $A B C^{\prime}$, we have given, $A, 56^{\circ} 18^{\prime} 40^{\prime \prime}$, $B, 39^{\circ} 10^{\prime} 38^{\prime \prime}$, and $A D, 32^{\circ} 54^{\prime} 16^{\prime \prime}$, a seginent of the base made by a perpendicular let fall from the angle C, on to the side $A B$, to determine the triangle. The angle C being obtuse.

This is an ambiguous case. For, in the lune $B^{\prime \prime} B^{\prime}$, let $B^{\prime \prime}=$ $B^{\prime}=39^{\circ} 10^{\prime} 38^{\prime \prime}$. Take a point, C, nearer to $B^{\prime \prime}$ than to B^{\prime}, and draw $C B$ equal to $C B^{\prime \prime}$. Then the triangle $C B^{\prime \prime} B$ will be isosceles, and we shall have $C B B^{\prime \prime}=B^{\prime \prime}=B^{\prime}$. Suppose $C A$, and the perpendicular $C D$, be drawn, making $C A B=56^{\circ} 18$ $40^{\prime \prime}$, and $A D=32^{\circ} 54^{\prime} 16^{\prime \prime}$. Now since $B^{\prime}=C B A$, the given parts belong equally to the two triangles, $C A B$, and $C A B^{\prime}$. It will be observed, however, that $C B$ and $C B^{\prime}$ are supplements of each other, because $C B=C B^{\prime \prime}$.

Tan. $32^{\circ} 54^{\prime} 16^{\prime \prime}$. cot. $A C=R . \cos . A .56^{\circ} 18^{\prime} 40^{\prime \prime}$.
R.cos. $56^{\circ} 18^{\prime} 40^{\prime \prime}$
19.744045

Tan. $32^{\circ} 54^{\prime} 16^{\prime \prime}$
9.810931
(b) cot. $A C, 49^{\circ} 23^{\prime} 41^{\prime \prime}$
9.933114. Ans.

For $C D$, we have

$$
R .: \sin . A C:: \sin . A: \sin . C D .
$$

Sin. $A C$	9.880363
Sin. A	9.920155
Sin. $C D, 39^{\circ} 10^{\prime} 35^{\prime \prime}$	9.800518

Now in the right angled triangle $C D B$, we have
Sin. $B: \sin . C D:: R .: \sin C B$.
R.sin. $C D$
19.800518

Sin. B
Sin. $C B, 89^{\circ} 40^{\prime} \quad 9.999993$
Or, $\quad C B^{\prime}=90^{\circ} 20^{\prime}$.

Note.-It will be observed that arcs which differ from 90° by less than 1°, can not be determined accurately to seconds, when the sine is used; and we can not use the cosine or tangent in this case.

For the angle $A C D$, we have

Sin. $A C: R .:: \sin . A D$: sin. $A C D$.
R.sin. $A D, 32^{\circ} 54^{\prime} 16^{\prime \prime}$	19.734991
Sin. $A C, 49^{\circ} 23^{\prime} 41^{\prime \prime}$	9.880363
Sin. $A C D, 45^{\circ} 41^{\prime} 12^{\prime \prime}$	9.854628

To determine the angles, $D C B$ and $D C B^{\prime}$, we have
R.cos. $D C B=\tan . C D . \cot . C B$.
R.cos. $D C B^{\prime}=\tan . C D . \cot . C B^{\prime}$.

Tan. $C D=9.911102$
Cot. $C B=7.764761$
Cos. $D C B=\overline{7.675863}$

$$
D C B=89^{\circ} 44^{\prime}
$$

Add

$$
A C D=45^{\circ} 41^{\prime}
$$

Cot. $C B^{\prime}=7.764761 n$
Cos. $D C B^{\prime}=\overline{7.675863 n}$
$D C B^{\prime}=90^{\circ} 16^{\prime}$ $A C D=45^{\circ} 41^{\prime}$

$$
A C B=\overline{135^{\circ} 25^{\prime}} \quad \text { Ans. } \quad A C B^{\prime}=\overline{135^{\circ} 57} \quad \text { Ans. }
$$

For the sides $A B$ and $A B^{\prime}$, we have
$\operatorname{Sin} . B: \sin , A C:: \sin . A C B: \sin . A B$.
Sin. $B^{\prime}: \sin . A C:: \sin . A C B^{\prime}: \sin . A B^{\prime}$.

Sin. $A C=9.880363$
Sin. $A C B=\frac{9.846304}{19.726667}$
Sin. $B=9.800525$
Sin. $A B=\overline{9.926142}$
$A B=122^{\circ} 29^{\prime}$ Ans.

Sin. $A C=9.88 .0363$
Sin. $A C B^{\prime}=\frac{9.842163}{19.722526}$
Sin. $B^{\prime}=9.800525$
Sin. $A B^{\prime}=\overline{9.922001}$
$A B^{\prime}=123^{\circ} 19^{\prime}$ Ans.
(12.) Given the angles A, B, C, and required the sides a, b, c. (Prop. 6, Sec. I., Spherical Geometry.)
$A=80^{\circ} 10^{\prime} 10^{\prime \prime}$ sup. $99^{\circ} 49^{\prime} 50^{\prime \prime}$
$B=58^{\circ} 48^{\prime} 36^{\prime \prime} \quad 121^{\circ} 11^{\prime} 24^{\prime \prime} \quad$ sin. com. 067803
$C=91^{\circ} 52^{\prime} 42^{\prime \prime} \quad 88^{\circ} 7^{\prime} 18^{\prime \prime} \quad$ sin. com. 0.000233

2) $309^{\circ} 8^{\prime} 32^{\prime \prime}$		
S,	$\overline{154^{\circ} 34^{\prime} 16^{\prime \prime}} \mathrm{sin}$.	9.632852
a,	$99^{\circ} 49^{\prime} 50^{\prime \prime}$	
$(S-a)$	$\overline{54^{\circ} 44^{\prime} 26^{\prime \prime}}$ sin.	9.911981
		2)$\lcm{19.612869}$
Cos. $\frac{1}{2} A, 50^{\circ} 10^{\prime} 49^{\prime \prime}$		9.806434
2		
$\overline{100^{\circ} 11^{\prime} 38^{\prime \prime}}$		
Supplement $a=79^{\circ} 38^{\prime} 22^{\prime \prime}$. Ans.		

Note.-The preceding process strictly corresponds to theory, but the result will be the same, if we take out the arc, whose sine corresponds to the given logarithm, and the double of that arc will be the side α.
Thus, the sine of $39^{\circ} 49^{\prime} 11^{\prime \prime}$, is 9.806434 , and the double of $39^{\circ} 49^{\prime} 11^{\prime \prime}$, is $79^{\circ} 38^{\prime} 22^{\prime \prime}$, or a.

Now, $\operatorname{Sin} . b=\sin . B \cdot \frac{\sin . a}{\sin . A}$, and $\sin . c=\sin . C . \frac{\sin . a}{\sin . A}$.

Sin. B,	9.932197	$\sin . C$,	9.999767
Sin. $a-\sin . A$.	-1.999284		-1.999284
$b=58^{\circ} 39^{\prime} 16^{\prime \prime}$	$\overline{9.931481}$	$c=86^{\circ} 12^{\prime} 50^{\prime \prime}$	$\overline{9.999051}$

SECTIONV.

APPLICATION OF SPHERICAL TRIGONOMETRY TO THE SOLUTION OF PROBLEMS IN ASTRONOMY.

(Page 373.)
(2.) In latitude $42^{\circ} 40^{\prime} \mathrm{N}$., when the sun's declination is $23^{\circ} 12^{\prime} \mathrm{N}$., what time will the sun set?

Tan. $42^{\circ} 40^{\prime}$	9.964588
Tan. $23^{\circ} 12^{\prime \prime}$	9.632053
Sin. $23^{\circ} 16^{\prime} 7^{\prime \prime}$	9.596641

This arc, $23^{\circ} 16^{\prime \prime} 7^{\prime \prime}$, reduced to time at the rate of 4 minutes to one degree, gives $\quad 1^{h} 33^{m} 4^{s}$.

Add
Sun sets,

6
$\overline{7^{h} 33^{m} 4^{s}}$. sun rises, $4^{h} 26^{m} 56^{s}$.
(3.) What time will the sun set in latitude $42^{\circ} 4^{\prime}$ north, and sun's declination $15^{\circ} 21^{\prime}$ south ?

Tan. $42^{\circ} 40^{\prime}$	9.964588
Tan. $15^{\circ} 21^{\prime}$	$\underline{9.438554}$
Sin. $14^{\circ} 39^{\prime} 21^{\prime \prime}$	9.403142

This arc corresponds to $58^{m} 37^{s}$ in time, which is the interval between six o'clock and sun set, and as the observer is north, and the declination south, the sun must set before six, that is, at $5^{h} 1^{m} 23^{s}$, apparent time. The sun must rise same day at $6^{h} 58^{m} 37^{s}$, A.M.
(4.) Lat. $52^{\circ} 30^{\prime}$ north (London), and the sun's declination $18^{\circ} 41^{\prime}$ south. Required, times of sunrise and sunset.

Tan. $52^{\circ} 30^{\prime}$	10.115019
Tan. $18^{\circ} 42^{\prime}$	9.529535
Sin. $26^{\circ} 10^{\prime} 30^{\prime \prime}$	9.644554

This arc corresponds in time to $1^{h} 44^{m} 42^{3}$, to which add 6^{h} for sunrise, and subtract it from six hours for sunset.

Whence,
Ans.
(5.) This problem is clearly represented by the adjoining cut. $N S$ is the earth's axis, $N E S$ the meridian, $E Q$ the equator, $\mathrm{c} n$ the parallel of declination.

The right angled spherical triangle amn, will give the position of the sun, and times of sunrise and sunset, and the right angled triangle, $a b c$, or $a c$, will be the altitude of the sun, when east and west.

The arc am corresponds to the times after and before six, when the sun sets and rises, and an is the arc on the horizon towards the north from the east and west points, when the sun rises and sets.

In short, the solution will be as in the preceding exam-
ples, and the triangle $a m n$ in this cut will illustrate all of them.

Tan. $D, 23^{\circ} 24^{\prime}$	9.636226
Tan. $L, 59^{\circ} 56^{\prime}$	10.237394
Sin. $48^{\circ} 22^{\prime} 32^{\prime \prime}$, am,	9.873620

In time, $3^{h} 13^{m} 30^{s}$.
Adding this interval to 6 hours, gives the time of sunset, and subtracting it from 6 hours, will give the time of sunrise.

For the point n on the horizon, we have
Sin. man, or cos. lat. : $\sin . D .:: R$. : sin. an.

$$
\begin{array}{cr}
\text { Sin. } a n=\frac{R . \sin . D}{\cos L} & 19.598952 \\
N \text {. of } E \text {., } \sin .52^{\circ} 26^{\prime} 18^{\prime \prime} & 9.699844 \\
\hline 9.899108
\end{array}
$$

In the right angled spherical triangle $a b c$, we have the angle $E a Z$, the latitude, and $b c$, the declination.

Sin. L. : sin. bc, $23^{\circ} 24^{\prime}:: ~ R . ~: ~ s i n . ~ a c . ~$
$a c$ is the altitude of the sun when the sun is at the point c, east or west on the prime vertical.

$$
\begin{array}{lr}
\text { Sin. Alt. }=\frac{P . \sin . D}{\sin . L} & 19.598952 \\
\text { Sin. } a c, 27^{\circ} 18^{\prime} 57^{\prime \prime} & \underline{9.937238} \\
\hline 9.661714
\end{array}
$$

To find $b a$, the time before and after six o'clock, apparent time, when the sun is east and west, we have

$$
\begin{array}{lr}
\text { R. : cos. } a b:: \cos . b c: \operatorname{cos.} a c . \\
\text { Cos. } a b=\frac{R . \cos . a c}{\cos . b c} & 19.948653 \\
\text { Cos. } a b, 14^{\circ} 30^{\prime} 30^{\prime \prime} & \underline{9.962727} \\
9.985926
\end{array}
$$

This arc ($14^{\circ} 30^{\prime} 33^{\prime \prime}$) reduced to time, is equivalent to 58 minutes 2 seconds. Hence the sun is east at $6^{h} 58^{m} 2^{s}$, A.M., and it is west at $5^{2} 1^{m} 55^{\circ}$, P.M., in latitude $59^{\circ} 56^{\prime}$
when the sun's declination is $23^{\circ} 24^{\prime}$ north. Problem (2,) [page 376].

By the formula on same page (Text-book), we must operate as follows,

True Alt.,	$36^{\circ} 12^{\prime}$		
Lat. north,	$40^{\circ} 21^{\prime}$	cos. com:	. 0.117986
North polar dis.	$93^{\circ} 20^{\prime}$	sin. com.	0.000735
	2) $\overline{169^{\circ} 53^{\prime}}$		
	$84^{\circ} 56^{\prime} 30^{\prime \prime}$	cos.	8.945320
	$36^{\circ} 12^{\prime}$		
	$48^{\circ} 44^{\prime} 30^{\prime \prime}$	sin.	9.876070
			2) 18.940111
	Sin. $\frac{1}{2} P, 17^{\circ} 10^{\prime} 1^{\prime \prime}$		9.470055

The double of this angle, or ($34^{\circ} 202^{\prime \prime}$), changed into time, is $2^{h} 17^{m} 20^{\beta}$, the interval of time from apparent noon.

Whence, from noon, $\quad 12^{n} 0^{m i} 0^{s}$
Take,
$2^{h} 17^{m} 20^{s}$
$9^{h} 42^{m} 40^{s}$ A.M., apparent time.
(3.) Alt., $40^{\circ} \quad 8^{\prime}$

Latitude, $\quad 21^{\circ} \quad 2^{\prime} \quad$ cos. com. 0.029945
South polar dis.

is. $\quad 108^{\circ} 32^{\prime}$	sin. com.	0.0132
2) $\overline{169^{\circ} 42^{\prime}}$		
$84^{\circ} 51^{\prime}$	cos.	8.9531
$40^{\circ} 8^{\prime}$		
$\overline{44^{\circ} 43^{\prime}}$	sin.	9.8473
		2)18.8535
$\frac{1}{2} P, \sin .15^{\circ} 29^{\prime} 40^{\prime \prime}$		9.4267
2		
$30^{\circ} 59^{\prime} 20^{\prime \prime}$	$3^{m} 57^{s}$, P.I	I. Ans.

A Geographical Problem, (page 377, Text-book.)
Required, the number of degrees on a great circle between New Orleans and Rome, also the number of miles taking 69.16 miles to each degree.

Let P, be the north pole on the earth, N, the position of New Orleans, and R the position of Rome, which positions
 are

	Latitude.	Longitude.
New Orleans,	$29^{\circ} 57^{\prime} 30^{\prime \prime} N$.	$90^{\circ} \mathrm{W}$.
Rome,	$41^{\circ} 53^{\prime} 54^{\prime \prime} N$.	$12^{\circ} 28^{\prime} 40^{\prime \prime} E$.

The co. latitude of N. O. is $N P=60^{\circ} 2^{\prime} 30^{\prime \prime}$.
co. latitude of Rome is $P R=48^{\circ} 6^{\prime} 6^{\prime \prime}$.
And the sum of longitudes is $102^{\circ} 28^{\prime} 40^{\prime \prime}$, which is the angle $N P R$. The supplement of the angle $N P R$, is $R P D$, $77^{\circ} 31^{\prime} 20^{\prime \prime}$. $R D$, is the perpendicular let fall on NP produced.

Now, in the triangle $P R D$, we have

$$
\begin{array}{cc}
R . ~: ~ \sin . P R, 48^{\circ} 6^{\prime} 6^{\prime \prime}:: \sin .77^{\circ} 31^{\prime} 20^{\prime \prime}: \sin . R D . \\
\text { Sin. } P R & 9.871767 \\
\text { Sin. } P & \underline{9.989619} \\
\text { Sin. } R D, 46^{\circ} 36^{\prime} 53^{\prime \prime} & 9.861386 \\
R . \cos . P R=\cos . P D . \cos . R D . \\
\text { Cos. } P D=\frac{R . \cos . P R .}{\cos . R D} & 19.824654 \\
\text { Cos. } P D=\cos .13^{\circ} 32^{\prime} 21^{\prime \prime} & 9.836894 \\
\text { Add } N P, & 60^{\circ} 2^{\prime} 30^{\prime \prime} \\
\text { Sum, or } N D, & 73^{\circ} 34^{\prime} 51^{\prime \prime}
\end{array}
$$

In the right angled triangle $N D R$, we have

R.cos. $N R=\cos . N D . \cos$	
Cos. $N D$,	$73^{\circ} 34^{\prime} 51^{\prime \prime}$
Cos. $D R, 46^{\circ} 36^{\prime} 53^{\prime \prime}$	9.451268
Cos. $N R, 78^{\circ} 48^{\prime} 15^{\prime \prime}$	$\underline{9.836894}$

That is, the distance in degrees is $78^{\circ} .8041$, and at the rate of 69.16 miles to each degree, gives 5450.1 English miles.

We can compute this side more concisely by using the formula

$$
\operatorname{Cos} . c=\cos .(a+b)+2 \cos .{ }^{2} \frac{1}{2} C \cdot \sin . a \cdot \sin . b .
$$

Let the angle $N P R=C=102^{\circ} 28^{\prime} 40^{\prime \prime}, a=60^{\circ} 2^{\prime} 30^{\prime \prime}$, and $b=48^{\circ} 6^{\prime} 6^{\prime \prime}, c=$ the arc $N R$.

Nat. Cos. $(a+b)=$ Nat. cos. $108^{\circ} 8^{\prime} 36^{\prime \prime}=-.31139$.

Log. 2
Cos. $\frac{1}{2} C, R=1$

Sin. a
Sin. b
Nat. number,
Add, $\quad-0.31139$

Nat. cos. $78^{\circ} 48^{\prime} 15^{\prime \prime} \quad .19416$. Ans. samẹ as before.

Ncte.-There are nine examples on page 379, Text-book; we shall show the solutions of only two or three of them, by a special formula, which we think the most concise, all things considered. Others may solve them by this or any one of the other methods, explained in the Geometry.

The difference of the right ascensions of the two bodies at the time designated, changed into arc, will be the included angle of a spherical triangle, and the complements of the declinations are the two sides of such a triangle ; the third side is required and we designate it by x. The angle at the pole of the celestial equator, we designate by P, and a and b the sides.

Now, by the Fundamental Equation in Spherical Trigonometry, we have. (See page 342, Geom.)

$$
\begin{equation*}
\operatorname{Cos.} P=\frac{\cos \cdot x-\cos \cdot a \cdot \cos \cdot b}{\sin \cdot a \cdot \sin . b} . \tag{1}
\end{equation*}
$$

Let D be the greater declination, and d the less.
Then D, and d, are complements of a and b, and cos. $a=$ $\sin . D$, and $\sin . a=\cos . D$, and the above equation becomes,

$$
\text { Cos. } P=\frac{\cos \cdot x-\sin \cdot D \cdot \sin \cdot d}{\cos \cdot D \cdot \cos \cdot d}
$$

Subtracting each member from unity, we obtain

$$
\begin{aligned}
1-\cos . P & =1-\frac{\cos \cdot x-\sin \cdot D \cdot \sin \cdot d}{\cos \cdot D \cdot \cos \cdot d} \\
1-\cos . P & =\frac{(\cos . D \cdot \cos \cdot d+\sin \cdot D \cdot \sin \cdot d)-\cos \cdot x}{\cos D \cdot \cos \cdot d}
\end{aligned}
$$

That is,

$$
2 \sin ^{2} \frac{1}{2} P=\frac{\cos \cdot(D-d)-\cos \cdot x}{\cos D \cdot \cos . d}
$$

Whence, Cos. $x=\cos .(D-d)-2 \sin .{ }^{2} \frac{1}{2} P . \cos . D . \cos . d(F)$ This formula is essentially the same as that in the Textbook.

In that, the given sides of the triangle are used. In this, it is the complements of those sides.

EXAMPLES.

June 24, 1860. At noon, mean time.

$$
R . A .
$$

Declination.

Moon,	$10^{2} 51^{m} 36.5^{s}$	$d=$	$3^{\circ} 35^{\prime} 24^{\prime \prime} N$.
Jupiter,	$\frac{8^{h} 4^{n} 27.6^{s}}{2^{h} 47^{m} 8.9^{s}} \quad(D-d)=$	$20^{\circ} 51^{\prime} 36.8^{\prime \prime} N$.	
Diff.	$17^{\circ} 16^{\prime} 12.8^{\prime \prime}$		
Or,	$41^{\circ} 47^{\prime} 13.5^{\prime \prime}=P$		
	$20^{\circ} 53^{\prime} 36.8^{\prime \prime}=\frac{1}{2} P$.		

We now apply the formula (F).

Log. 2	0.301030
Log. sin. $\frac{1}{2} P, 20^{\circ} 53^{\prime} 36.8^{\prime \prime}$	-1.552221
Log. sin. $\frac{1}{2} P, 20^{\circ} 53^{\prime} 36.8^{\prime \prime}$	-1.552221
Log. $\cos D, 20^{\circ} 51^{\prime} 36.8^{\prime \prime}$	-1.970557
Log. $\cos . d, \frac{3^{\circ} 35^{\prime} 24^{\prime \prime}}{}$	-1.999147
Nat. num. 0.237233	-1.375176

Nat. cos. $(D-d)=0.954915$
Diff. $=$ Nat. $\cos . x=0.717682=44^{\circ} 8^{\prime} 12^{\prime \prime}$. Ans.
Notes.-1. The three remaining problems in the same group are solved in the same manner.
2. Let the student observe that if the natural sine or cosine is required to more than 5 decimal places, the logarithmic sine or cosine should first be taken out; and from this, diminishing the index by 10 , the number may be obtained correctly to 6 or 7 places. Conversely, if the arc is required from the natural sine or cosinc, first find the logarithm, then the are.

We shall now solve one or two in the next group, where the distances are greater than 90°, and the declinations on opposite sides of the equator. The formula employed is the same. Recollect, however, that the cosine of an arc, greater than 90°, must be taken with a minus sign.

Example 1st., October 6, 1860. At noon.

	R. A.		Declination.
Sun	$12^{n} 49^{n} 29.3^{s}$	$-d$	$5^{\circ} 18^{\prime} 42.6^{\prime \prime}$ S
Moon,	$5^{\text {h }} 41^{\text {ms }} 20.8^{\text {s }}$	D	$26^{\circ} 8^{\prime} 00 \quad N$
	$7^{n} \quad 8^{m} 8.55^{\text {c }}$		$31^{\circ} 26^{\prime} 42.6^{\prime \prime}$

In arc, $\quad 107^{\circ} 2^{\prime} 7.5^{\prime \prime}=P$
$53^{\circ} 31^{\prime} 3.8^{\prime \prime}=\frac{1}{2} P$.
Log. $2 \quad 0.301030$
Log. sin. $53^{\circ} 31^{\prime} 3.8^{\prime \prime} \quad-1.905278$
Log. sin. $53^{\circ} 31^{\prime} 3.8^{\prime \prime} \quad-1.905278$
Cos. $26^{\circ} 8^{\prime} \quad-1.953166$
Cos. $\quad 5^{\circ} 18^{\prime} 42.6^{\prime \prime} \quad-1.998130$
Nat. N. $\quad-1.155798 \quad-0.062882$
Nat. cos. $(D-d) \quad 0.853139$
Diff., cos. $x, \quad-\overline{0.302659}=107^{\circ} 37^{\prime} 2^{\prime \prime}$.

We will work the next example in this group by Equations (8) and (9), page 350, Text-book.

Making C the included angle, and A, the angle opposite the greater polar distance.

$\odot R A$,	$12^{h} 49^{m} 56.7^{s}$	Dec.	$5^{\circ} 21^{\prime} 35.4^{\prime \prime}$	S.	
$\odot R A$,	$\frac{5^{h} 48^{m} 30.1^{s}}{7^{h} 1^{m} 26.6^{s}}$	Dec.	26°	$3^{\prime} 20^{\prime \prime}$	N.

In degrees,

$$
\begin{aligned}
105^{\circ} 21^{\prime} 39^{\prime \prime} & =C \\
52^{\circ} 40^{\prime} 49.5^{\prime \prime} & =\frac{1}{2} C .
\end{aligned}
$$

The distance from the north pole to the center of the sun, is the sun's declination added to 90°, which we designate by a. Therefore,

$$
a=95^{\circ} 21^{\prime} 35.4^{\prime \prime}
$$

The moon from the same point is $b=63^{\circ} 56^{\prime} 40^{\prime \prime}$

Half sum, is
Half diff., is

$$
\begin{aligned}
& \frac{1}{2}(a+b)=79^{\circ} 39^{\prime} \quad 7.7^{\prime \prime} \\
& \frac{1}{2}(a-b)=15^{\circ} 42^{\prime} 27.7^{\prime \prime}
\end{aligned}
$$

Cot. $\frac{1}{2} C, \quad 9.882147 \quad$ cot. $\frac{1}{2} C, \quad 9.882147$
Cos. $\frac{1}{2}(a-b) \quad \frac{9.983467}{19.865614} \quad \sin . \frac{1}{2}(a-b) \quad \frac{9.432536}{19.314683}$

Cos. $\frac{1}{2}(a+b) \quad 9.254364 \quad \sin . \frac{1}{2}(a+b) \quad 9.992878$
Tan. $\frac{1}{2}(A+B), \overline{10.611250} \tan . \frac{1}{2}(A-B) \overline{9.321805}$
$\frac{1}{2}(A+B), \quad 76^{\circ} 14^{\prime} 47^{\prime \prime} \quad \frac{1}{2}(A-B) 11^{\circ} 50^{\prime} 56^{\prime \prime}$
$\frac{1}{2}(A-B), \quad 11^{\circ} 50^{\prime} 56^{\prime \prime}$
Diff. $=B=64^{\circ} 23^{\prime} 51^{\prime \prime}$
Lastly, for the side sought, we have the proportion $\operatorname{Sin} . B, 64^{\circ} 23^{\prime} 51^{\prime \prime}: \sin . b, 63^{\circ} 56^{\prime} 40^{\prime \prime}:: \sin .105^{\circ} 21^{\prime} 39^{\prime \prime}: \sin . x$.

Sin. b	9.953454
Sin. $C=\cos .15^{\circ} 21^{\prime} 39^{\prime \prime}$	9.984201
	19.937655
Sin. B	$\frac{9.955116}{9.982539}$

Sin. $106^{\circ} 8^{\prime} 19^{\prime \prime}=\cos .16^{\circ} 8^{\prime} 19^{\prime \prime} \quad 9.982539$
We prefer the other formula.

ASTRONOMICAL PROBLEMS.

The following Astronomical problems were included in Robinson's Geometry, as first published, but being deemed too difficult for such a work, were omitted in the New Geometry.
(1.) In latitude $40^{\circ} 48^{\prime}$ north, the sun bore south $78^{\circ} 16^{\prime}$ west, at $3^{h} 38^{m}$ P. M., apparent time. Required his altitude and declination, making no allowance for refraction.

Ans. The altitude, $35^{\circ} 46^{\prime}$, and declination, $15^{\circ} 32^{\prime}$ north.

Let $H h$ be the horizon, Z the zenith of the observer, P the north pole, and $P S$ a meridian through the sun.
$P Z$ is the co-latitude, $49^{\circ} 12^{\prime}$, and $P S$ is the co-declination or polar distance, one of the arcs sought. $Z S$ is the co-altitude, or $S T$ is the altitude of the sun at the time of observation.

The angle $Z P S$ is found by reducing $3^{h} 38^{m}$ to degrees at the rate of 4^{m} to one degree ; hence, $Z P S=54^{\circ} 30^{\prime}$.

Because $H Z S=78^{\circ} 16^{\prime}, P Z S=101^{\circ} 44^{\prime}$. From Z let fall the perpendicular $Z Q$ on $P S$. Then in the right angled spherical $\triangle P Z Q$, equation (13) gives us**

$$
\begin{array}{rlr}
R . \sin . Z Q & =\sin . P Z \sin . P & \\
\sin . P Z & =\sin .49^{\circ} 12^{\prime} & 9.879093 \\
\sin . P & =\sin .54^{\circ} 30^{\prime} & 9.910686 \\
\sin Z Q & =\sin .38^{\circ} 2^{\prime} 42^{\prime \prime} & \underline{9.789779}
\end{array}
$$

[^1]To obtain the angle $P Z Q$, we apply equation (19), which gives
R.cos. $P Z Q=$ cot. $P Z . \tan . Z Q$.

That is, $\quad R . \cos . P Z Q=\tan .40^{\circ} 48^{\prime} . \tan .38^{\circ} 2^{\prime} 42^{\prime \prime}$.
Tan. $40^{\circ} 48^{\prime} \quad 9.936100$
Tan. $38^{\circ} 2^{\prime} 42^{\prime \prime} \quad 9.893513$

$P Z Q=\cos .47^{\circ} 30^{\prime} 30^{\prime \prime} \quad \overline{9.829613}$ | $P Z S$ | $=101^{\circ} 44^{\prime}$ |
| :--- | :--- |
| $S Z Q=$ | $54^{\circ} 13^{\prime} 30^{\prime \prime}$ |

To obtain $Z S$ or its complement, we again apply (19)
(19) $\quad R . \cos . S Z Q=$ cot. $Z S . \tan . Z Q$.

That is, $\quad R . \cos .54^{\circ} 13^{\prime} 30^{\prime \prime}=\tan . S T . \tan .38^{\circ} 2^{\prime} 42^{\prime \prime}$.

R.cos. $54^{\circ} 13^{\prime} 30^{\prime \prime}=$	19.766761
$\tan .38^{\circ} \quad 2^{\prime} 42^{\prime \prime}=$	9.893513
Tan. $36^{\circ} 46^{\prime}$, nearly	9.873248

To find $P S$, we take the following proportion, Sin. $P: \sin . Z S:: \sin . P Z S: \sin . P S$.
That is,
Sin. $54^{\circ} 30^{\prime}: \cos .36^{\circ} 46^{\prime}:: \sin .101^{\circ} 44^{\prime}: \sin . P S$.

Cos. $11^{\circ} 44^{\prime}$	9.990829
Cos. $36^{\circ} 46^{\prime}$	9.903676
	19.894505
Sin. $54^{\circ} 30^{\prime}$	$\underline{9.910686}$
$P S$, sin. $74^{\circ} 28^{\prime}$	9.983819

Whence, the sun's distance from the equator must have been $15^{\circ} 32^{\prime}$ north.
(2.) In north latitude, when the sun's declination was $14^{\circ} 20^{\prime}$ north, his altitudes, at two different times on the
same forenoon, were $43^{\circ} 7^{\prime}+$, and $67^{\circ} 10^{\prime}+$: and the change of azimuth, in the interval, $45^{\circ} 2^{\prime}$. Required the latitude. Ans. $34^{\circ} 21^{\prime} 14^{\prime \prime}$ north.

Let $P K$ be the earth's axis, $Q q$ the equator, and $H h$ the horizon.

Also, let Z be the zenith of the observer, $S m$ the first altitude, $T n$ the second, and the angle $T Z S=45^{\circ} 2^{\prime}$. Our first operation must be on the triangle $Z T S$. $Z T=22^{\circ} 50^{\prime}, Z S=46^{\circ} 53^{\prime}$, and we must find $T S$, and the angle $T S Z$.

From T, conceive $T B$ let fall on $Z S$, making two right angled \triangle 's ; and to avoid confusion in the figure, we will keep the are $T B$ in mind, and not actually draw it.

Then the $\triangle Z T B$ furnishes this proportion,

$$
R: \sin .22^{\circ} 50^{\prime}:: \sin .45^{\circ} 2^{\prime}: \sin . T B=\sin .15^{\circ} 56^{\prime} 8^{\prime \prime}
$$

To find $Z B$ we have the following proportion, $R: \cos . Z B:: \cos .15^{\circ} 56^{\prime} 8^{\prime \prime}: \cos 22^{\circ} 50^{\prime}$.
Whence, we find $Z B=16^{\circ} 34^{\prime} 13^{\prime \prime}$. Now in the right angled spherical $\triangle T B S$, we have $T B=15^{\circ} 56^{\prime} 8^{\prime \prime}, B S=$ $46^{\circ} 53^{\prime}-16^{\circ} 34^{\prime} 13^{\prime \prime}$, or $B S=30^{\circ} 18^{\prime} 47^{\prime \prime}$; and $T S$ is found from the following proportion,

$$
R: \cos 15^{\circ} 56^{\prime} 8^{\prime \prime}:: \cos .30^{\circ} 18^{\prime} 47^{\prime \prime}: \cos . T S
$$

This gives $T S=33^{\circ} 53^{\prime} 26^{\prime \prime}$. To find the angle $T S Z$, we have the proportion,

Sin. $33^{\circ} 53^{\prime} 26^{\prime \prime}: R:: \sin . T B 15^{\circ} 56^{\prime} 8^{\prime \prime}: \sin . T S Z$.
Whence, the angle $T S Z=29^{\circ} 29^{\prime} 49^{\prime \prime}$.
The next step is to operate on the isosceles spherical \triangle $P T S$. We require the angle TSP.

Conceive a meridian drawn bisecting the angle at P, it will
also bisect the base $T S$, forming two equal right angled spherical triangles.

Observe that $P S=75^{\circ} 40^{\prime}$ and $\frac{1}{2} T S=16^{\circ} 56^{\prime} 43^{\prime \prime}$.
To find the angle $T S P$, we apply equation (19), in which $a=16^{\circ} 56^{\prime} 43^{\prime \prime}, b=75^{\circ} 40^{\prime}$, and the equation becomes,

$$
\text { R.cos. } T S P=\cot .75^{\circ} 40^{\prime} \cdot \tan .16^{\circ} 56^{\prime} 43^{\prime \prime}
$$

Whence, $T S P=85^{\circ} 32^{\prime} 5^{\prime \prime}$, and $P S Z=85^{\circ} 32^{\prime} 5^{\prime \prime}-29^{\circ} 29^{\prime} 49^{\prime \prime}$ $=56^{\circ} 2^{\prime} 16^{\prime \prime}$.

The third step is to operate on the $\triangle Z S P$; we now have its two sides $Z S$ and $S P$, and the included angle.

From Z conceive a perpendicular arc let fall on $S P$, calling it $Z B$; then the right angled spherical triangle $S Z B$, gives

$$
\text { R. : } \sin . Z S:: \sin . Z S B: \sin . Z B .
$$

That is,
R. : $\sin .46^{\circ} 53^{\prime}:: \sin .56^{\circ} 2^{\prime} 16^{\prime \prime}: \sin . Z B=\sin .37^{\circ} 15^{\prime} 37^{\prime \prime}$.

To find $S B$, we have the following proportion,

$$
R .: \cos S B:: \cos . Z B: \cos Z S
$$

That is, $R .: \cos . S B:: \cos .37^{\circ} 15^{\prime} 37^{\prime \prime}: \cos .46^{\circ} 53^{\prime}$.
Whence, $S B=30^{\circ} 49^{\prime} 18^{\prime \prime}$. Now, from $P S, 75^{\circ} 40^{\prime}$, take $S B, 30^{\circ} 49^{\prime} 18^{\prime \prime}$, and the difference must be $B P, 44^{\circ} 50^{\prime} 42^{\prime \prime}$.

Lastly, to obtain $P Z$, and consequently $Z Q$ the latitude, we have

$$
R .: \cos Z B:: \cos . B P: \cos . Z P=\sin . Z Q .
$$

That is, $R .: \cos 37^{\circ} 15^{\prime} 37^{\prime \prime}:: \cos .44^{\circ} 50^{\prime} 42^{\prime \prime}: \sin . Z Q=$ $\sin .34^{\circ} 21^{\prime} 14^{\prime \prime}$ north.

This is the result by a careful computation, and it differs $1^{\prime} 14^{\prime \prime}$ from the answer given in the text-book.

This is a modification of latitude by double altitudes, but in real double altitudes the arc $T S$ is measured from the elapsed time between the observations, and the angle $T Z S$ is not given.
(3.) In latitude $16^{\circ} 4^{\prime}$ north, when the sun's declination is $23^{\circ} 2^{\prime}$ north. Required the time in the afternoon, and the sun's altitude and bearing when his azimuth neither increases nor decreases.

Ans. Time, $3^{h} 9^{n} 26^{s}$ P.M., altitude, $45^{\circ} 1^{\prime}$, and bearing north $73^{\circ} 16^{\prime}$ west.

Let $P p$ be the earth's axis, $H h$ the horizon, $Q q$ the equator, $Q Z$ and $P h$, each equal to $16^{\circ} 4^{\prime}$ north, and $Q d, q d$, each equal to $23^{\circ} 2^{\prime}$; then the dotted curve $d d$ represents the parallel of the sun's declination.

Through Z and N an infinite number of vertical circles can be drawn, one of these will touch the curve $d d$; let it be $Z O N$.

At the point O where this circle touches the curve $d d$ will be the position of the sun at the time required, and $P O Z$ will be a right angled spherical \triangle, right angled at O. The problem requires the complement of $Z O$, and the time corresponding to the angle $Z P O$.

In the spherical $\triangle P O Z$, we have

$$
R .: \cos P O:: \cos Z O: \cos P Z
$$

That is, $\quad I$. : $\sin .23^{\circ} 2^{\prime}:: \sin$. altitude : $\sin .16^{\circ} 4^{\prime}$.
Whence, sin. alt. $=\frac{R . \sin .16^{\circ} 4^{\prime}}{\sin .23^{\circ} 2^{\prime}}=\sin .45^{\circ} 1^{\prime}$ nearly. Ans.
To find the angle at P, we have the following proportion, Cos. $16^{\circ} 4^{\prime}: R .:: \cos 45^{\circ} 1^{\prime}: \sin . P$.
Whence, $\sin . P=\sin .47^{\circ} 21^{\prime} 40^{\prime \prime}$, and $Z P O=47^{\circ} 21^{\prime} 40^{\prime \prime}$, which being changed into time, at the rate of 15° to one hour, gives $3^{h} 9^{m} 26^{s}$.

To find the angle $P Z O$, we have the proportion, Cos. $16^{\circ} 4^{\prime}: R .:: \cos .23^{\circ} 2^{\prime}: \sin . P Z O=\sin .73^{\circ} 16^{\prime}$.
(4.) The sun set south-west $\frac{1}{2}$ south, when his declination was $16^{\circ} 4^{\prime}$ south. Required the latitude. Ans. $69^{\circ} 1^{\prime}$ north.

Draw a circle as before. Let $H h$ be the horizon, Z the zenith, P the pole. The great circle $P Z H$ is the meridian, and $Z C N$ at right angles to it, and of course east and west. Let $B C$ be a portion of the equator, and $B O$ the arc of declination. The posi-
 tion on the horizon where the sun set is the arc $H O=45^{\circ}-$ $5^{\circ} 37^{\prime} 30^{\prime \prime}=39^{\circ} 22^{\prime} 30^{\prime \prime}$.

Consequently, the arc $O C=50^{\circ} 37^{\prime} 30^{\prime \prime}$.
In the right angled spherical triangle $B O C$, we have $B C$, $B O$ given to find the angle $B C O$, which is the complement of the latitude, or the complement of the angle $B C Z$.

To find the angle $B C O$, we apply equation (14).

$$
R \cdot \sin . B O=\sin . O C \cdot \sin . B C O .
$$

That is, $\quad R . \sin .16^{\circ} 4^{\prime}=\sin .50^{\circ} 37^{\prime} 30^{\prime \prime}$.sin. $B C O$.
R.sin. $16^{\circ} 4^{\prime}$

Sin. $50^{\circ} 37^{\prime} 30^{\prime \prime}$
Cos. $69^{\circ} 1^{\prime}$ nearly
19.442096
9.888186
9.553910

Scholium.-The arc $B C$ on the equator measures the angle $B P C$, corresponding to the time from 6 o'clock to sunrise or sunset. This are is called the arc of ascensional difference in astronomy. The time of sunset is before six, if the latitude is north and the declination south, as in this example, but after six, if the latitude and declination are both north or both south.

To obtain this arc, the latitude and declination must be given ; that is, $B O$ and the angle $B C O$, the complement of the latitude. Here we apply (12), that is, $R . \sin . B C=\tan . D . \tan . L$,
an equation in which D represents the declination, and L the latitude.
(5.) The altitude of the sun, when on the equator, was $14^{\circ} 28^{\prime}+$ bearing east $22^{\circ} 30^{\prime}$ south. Required the latitude and time. Ans. Latitude $56^{\circ} 1^{\prime}$, and time $7^{h} 46^{m} 11^{s}$, A.M.

Let S be the pasition of the sun on the equator. (See the last figure.) Draw the arc $Z S$, and the right angled spherical $\triangle Z Q S$ is the one we have to operate upon.

Then $Z S$ is the complement of the given altitude, and the angle $Q Z S$, is the complement of $22^{\circ} 30^{\prime}$. The portion of the equator between Q and S, changed into time, will be the required time from noon, and the arc $Q Z$ will be the required latitude.

First for the arc $Q S$.

$$
R: \sin . Z S:: \sin Q Z S: \sin . Q S
$$

That is,
R. : cos. $14^{\circ} 28^{\prime}:: \cos 22^{\circ} 30^{\prime}: \sin . Q S=63^{\circ} 27^{\prime} 19^{\prime \prime}$.

But $63^{\circ} 27^{\prime} 19^{\prime \prime}$ at the rate of 4^{m} to one degree, corresponds to $4^{h} 13^{m} 49^{s}$ from noon-and as the altitude was marked +, rising, it was before noon, or at $7^{h} 46^{n} 11^{s}$ in the morning.

To find the arc $Q Z$, we have the following proportion, R. : cos. $63^{\circ} 27^{\prime} 19^{\prime \prime}:: \cos . Q Z: \sin .14^{\circ} 28^{\prime}$.
Whence, $\cos . Q Z=\cos .56^{\circ} 1^{\prime}$ nearly, and $56^{\circ} 1^{\prime}$ is the latitude sought.
(6.) The altitude of the sun was $20^{\circ} 41^{\prime}$ at $2^{h} 20^{m}$ P.M. when his declination was $10^{\circ} 28^{\prime}$ south. Required his azimuth and the latitude.

Ans. Azimuth south $37^{\circ} 5^{\prime}$ west, latitude $51^{\circ} 58^{\prime}$ north.

This problem furnishes the spherical $\triangle P Z O$, in which the side $Z O$ is the complement of $20^{\circ} 41^{\prime}$ or $69^{\circ} 19^{\prime}$. $P O=90^{\circ}+10^{\circ} 28^{\prime}=100^{\circ} 28^{\prime}$, and the angle $Z P O$ is $2^{h} 20^{m}$, changed into degrees at the rate of 15° to one
 hour, or $Z P O=35^{\circ}$.

Now in the triangle $Z P O$, we have
Sin. $Z O: \sin . Z P O:: \sin . P O: \sin . P Z O$.
That is,
Cos. $20^{\circ} 41^{\prime}: \sin .35^{\circ}:: \cos .10^{\circ} 28^{\prime}: \sin . P Z O=\sin .37^{\circ} 5^{\prime}$.
In the right angled spherical $\triangle B O Z$, we apply equation (16).
(16). $\quad R . \cos .37^{\circ} 5^{\prime}=\tan .20^{\circ} 41^{\prime}$.tan. $B Z$.

R.cos. $37^{\circ} 5^{\prime}$	19.901872
Tan. $20^{\circ} 41^{\prime}$	9.576958
Tan. $B Z=\tan .64^{\circ} 40^{\prime}$	$\underline{10.324914}$

To find $P B$ in the right angled $\triangle B P O$, we apply the same equation (16).
R. cos. $35^{\circ}=-\tan .10^{\circ} 28^{\prime} \tan . P B$.

R.cos. 35°	19.913365
Tan. $10^{\circ} 28^{\prime \prime}$	$\underline{9.266555}$
Cot. $12^{\circ} 42^{\prime \prime}$	10.646810

But $P B$ is obviously greater than 90°, therefore the point B is $12^{\circ} 42^{\prime}$ below the equator; but from B to Z is $64^{\circ} 40^{\prime}$; therefore, from Z to the equator, or the latitude, is the difference between $64^{\circ} 40^{\prime}$ and $12^{\circ} 42^{\prime}$, or $51^{\circ} 58^{\prime}$ north. Ans. Lat. $51^{\circ} 58^{\prime}$ north.
(7.) If in August 1840, Spica was observed to set $2^{h} 26^{m}$ 14^{s} before Arcturus, what was the latitude of the observer,
no account being taken of the height of the eye above the sea, nor of the effect of refraction? Ans. $36^{\circ} 47^{\prime} 38^{\prime \prime}$ north.

By a catalogue of the stars to be found in the author's Astronomy, or in any copy of the English Nautical Almanac, we find the positions of these stars in 1840, to have been as follows:
Spica, right ascension, $13^{h} 16^{m} 46^{s} \quad$ Dec. $10^{\circ} 19^{\prime} 40^{\prime \prime}$ south. Arcturus, " " $14^{h} \quad 8^{m} 25^{s} \quad$ Dec. $20^{\circ} \quad 1^{\prime} \quad 4^{\prime \prime}$ north.

Let $L=$ the latitude sought. Put $d=10^{\circ} 19^{\prime} 40^{\prime \prime}$, and $D=20^{\circ} 1^{\prime} 4^{\prime \prime}$.

The difference in right ascensions is $51^{m} 39^{s}$, and this would be about the time that Arcturus would set after Spica, provided the observer was near the equator or a little south of it ; but as the interval observed was $2^{h} 26^{m} 14^{s}$, the observer must have been a considerable distance in north latitude. In high southern latitudes Arcturus sets before Spica.

When an observer is north of the equator, and the sun or star south of it, the sun or star will set within six hours after it comes to the meridian.

When the observer and the object are both north of the equator, the interval from the meridian to the horizon is greater than six hours.

The difference between this interval and six hours, is called the ascensional difference, and it is measured in arc by $B C$ in the figure to the 4 th example.

Now let $x=$ the ascensional difference of Spica corresponding to the latitude L, and $y=$ that of Arcturus corresponding to the same latitude; then by the scholium to the 4th example, calling radius unity, we shall have

$$
\begin{align*}
& \sin . x=\tan . L \cdot \tan . d \tag{1}\\
& \sin . y=\tan . L \cdot \tan . D \tag{2}
\end{align*}
$$

The star Spica came to the observer's meridian at a certain time, that we may denote by M.

Then $\quad M+\left(6-\frac{x}{15}\right)=$ the time Spica set.
And $M I+51^{m} 39^{s}+\left(6+\frac{y}{15}\right)=$ the time Arcturus set.
By subtracting the time Spica set from the time Arcturus set, we shall obtain an expression equal to $2^{h} 26^{m} 14^{s}$.

That is, $\quad 51^{m} 39^{s}+\frac{x}{15}+\frac{y}{15}=2^{n} 26^{m} 14^{s}$.

$$
\begin{array}{ll}
\text { Or, } & \frac{x}{15}+\frac{y}{15}=1^{n} 34^{n n} 35^{s} \\
& x+y=15\left(1^{n} 34^{n} 35^{s}\right)
\end{array}
$$

Equation (3) expresses time. Equation (4) expresses arc.
When we divide arc by 15 , we obtain time, one degree being the unit for arc, and one hour the unit for time ; therefore, when we multiply time by 15 , we obtain arc ; that is, 1^{h} multiplied by 15 , gives 15°; hence (4) becomes

$$
\begin{align*}
& x+y=23^{\circ} 38^{\prime} 45^{\prime \prime}=a \\
& x=a-y \tag{5}
\end{align*}
$$

That is, the $a r c x$ is equal to the difference of the $a r c s a$ and y; but to make use of these arcs and avail ourselves of equations (1) and (2), we must take the sines of the arcs, (see equation (8), plane trigonometry) ; then (5) becomes

$$
\begin{equation*}
\sin . x=\sin . a \cdot \cos . y-\cos . a \cdot \sin . y \tag{6}
\end{equation*}
$$

Substituting the values of $\sin . x$ and $\sin . y$ from (1) and (2), (6) becomes

Tan. L. $\tan . d=\sin . a . \cos . y-\cos . a . \tan . L . \tan . D(7)$
Squaring (2), $\quad \sin .{ }^{2} y=\tan .{ }^{2} L . \tan .{ }^{2} D$.
Subtracting each member from unity, and observing that $\left(1-\sin .{ }^{2} y\right)$ equals $\cos .{ }^{2} y$, then
$\operatorname{Cos} .{ }^{2} y=1-\tan .{ }^{2} L \cdot \tan .{ }^{2} D$.
Or, Cos. $y=\sqrt{1-\tan .{ }^{2} L \cdot \tan .^{2} D}$.

This value of cos. y put in (7), gives
Tan.L. $\tan . d=\sin . a .4 \overline{1-\tan .{ }^{2} L . \tan .{ }^{2} D-\cos . a . \tan . L . \tan . D(8)}$
By transposition and division,

$$
\left(\frac{\text { Tan. } d+\cos . a \cdot \tan . D}{\sin . a}\right) \cdot \tan \cdot L=\sqrt{1-\tan \cdot{ }^{2} L \cdot \tan \cdot{ }^{2} D}
$$

Squaring,

$$
\left(\frac{\text { Tan. } d+\cos \cdot a \cdot \tan . D}{\sin \cdot a}\right)^{2} \cdot \tan \cdot{ }^{2} L=1-\tan \cdot{ }^{2} L \cdot \tan ^{2} D
$$

Dividing by $\tan .{ }^{2} L$, and observing that $\frac{1}{\tan .{ }^{2} L}=\cot .{ }^{2} L$ we have $\left(\frac{\text { Tan. } d+\cos . a . \tan . D}{\sin . a}\right)^{2}=\cot .^{2} L-\tan .{ }^{2} D$

$$
\text { Or, } \quad \begin{aligned}
\operatorname{Cot} \cdot{ }^{2} L & =\tan .^{2} D+\left(\frac{\tan \cdot d+\cos \cdot a \cdot \tan . D}{\sin \cdot a}\right)^{2} \\
& =\tan ^{2} D+\left(\frac{\tan \cdot d}{\sin \cdot a}+\frac{\tan \cdot D}{\tan \cdot a}\right)^{2}
\end{aligned}
$$

We must now find the numerical value of the second member. Using logarithmic sines, cosines, tangents, \&c., we must diminish the indices by 10 , because the equation refers to radius unity.
Log. $\tan . D .=-1.561485 ; \tan .{ }^{2} D=-1.122970=0.132730$ num
Log. tan. $d \quad-1.260623 \quad$ log. $\tan . D \quad-1.561485$

$\sin . a$	-1.603233	$\frac{\tan . a .}{}-1.641318$	
0.454349	-1.657390	0.832083	-1.920167

$0.454349+0.832083=1.286432 \quad(1.286432)^{2}=1.654906$
Whence, $\quad \cot ^{2} L=0.132730+1.654906=1.787636$
Square root, cot. $L=1.337025$
Taking the log. of this number, increasing its index by 10 will give the log. cot. in our tables.
Log. $1.337025=0.126139+10 .=10.126139=\cot .36^{\circ} 47^{\prime} 38^{\prime \prime}$.
(8.) On the 14 th of November, 1829, Menkar was ob-
served to rise $48^{m} 3^{s}$ before Aldebaran : what was the latitude of the observer. Ans. $39^{\circ} 33^{\prime} 53^{\prime \prime}$ north.

The position of these two stars in the heavens, November 1829, were as follows :
Menkar, right ascension, $2^{h} 53^{m} 21^{s}$. Dec. $3^{\circ} 24^{\prime} 52^{\prime \prime}$ north. Aldebaran, $\quad{ }^{h} \quad 4^{n} 26^{m}$. Dec. $16^{\circ} 19^{\prime} 31^{\prime \prime}$ north.

Aldebaran passes the meridian $1^{h} 32^{m} 46^{s}$ after Menkar. Now let M represent the time Menkar was on the meridian, then $M+1^{h} 32^{n h} 46^{s}$ represents the time Aldebaran was on the meridian. Also, let $x=$ the arc of ascensional difference corresponding to the latitude and the star Menkar, and y that of the star Aldebaran.

Then, $\quad M-\left(6+\frac{x}{15}\right)=$ the time Menkar rose.
And, $M+1^{h} 32^{m} 46^{s}-\left(6+\frac{y}{15}\right)=$ the time Aldebaran rose.
Subtracting the upper from the lower, the difference must be $48^{m} 3^{s}$; that is,

$$
1^{h}+32^{m} 46^{s}-\frac{y}{15}+\frac{x}{15}=48^{m} 3^{s}
$$

Whence, $\quad \frac{x}{15}-\frac{y}{15}=-44^{m} 43^{s}=-0.74527$.
That is, 1^{n} being the unit, $44^{m} 43^{s}=0.74527$ of an hour, and multiplying by 15 , we shall have as many degrees of arc as we have units ; therefore,

$$
\begin{aligned}
x-y=-(0.74527) 15 & =-11^{\circ} 10^{\prime} 45^{\prime \prime}=-a \\
x & =y-a
\end{aligned}
$$

$$
\begin{equation*}
\sin . x=\sin . y \cdot \cos . a-\cos . y \cdot \sin . a \tag{1}
\end{equation*}
$$

Put $d=3^{\circ} 24^{\prime} 52^{\prime \prime}, D=16^{\circ} 19^{\prime} 31^{\prime \prime}$, and $L=$ the required latitude. Then by scholium to the 4 th example,
$\sin . x=\tan . d . \tan . L . \quad \sin . y=\tan . D . \tan . L$.

The values of $\sin . x$ and $\sin . y$, substituted in (1), give
Tan. d.tan. $L=\cos$. $a . \tan . D . \tan . L-\cos . y . \sin . a$
But, $\sin .{ }^{2} y=\tan .{ }^{2} D \cdot \tan .{ }^{2} L$, and $1-\sin .{ }^{2} y=1-\tan .{ }^{2} D \cdot \tan .{ }^{2} L$.

Or,
Or,
$\cos .{ }^{2} y=1-\tan ^{2} D \cdot \tan .^{2} L$.
$\cos . y=\sqrt{1-\tan ^{2} D \cdot \tan .^{2} L}$.

By substituting this value of cos. y in (2) and transposing, we find
$\operatorname{Sin} . a \sqrt{1-\tan .{ }^{2} D . \tan .{ }^{2} L}=(\cos . \alpha . \tan . D .-\tan . d) \tan . L:$
Dividing by sin. a, and observing that $\frac{\cos \cdot a}{\sin . a}=\frac{1}{\tan . a}$, we have

$$
\sqrt{1-\tan ^{2} D \cdot \tan .^{2} L}=\left(\frac{\tan \cdot D}{\tan \cdot a}-\frac{\tan \cdot d}{\sin \cdot a}\right) \tan . L .
$$

Squaring and dividing by $\tan ^{2} L$, and at the same time observing that $\frac{1}{\tan . L}=\cot . L$, and we shall have

$$
\operatorname{Cot} \cdot{ }^{2} L-\tan .{ }^{2} D=\left(\frac{\tan \cdot D}{\tan \cdot a}-\frac{\tan \cdot d}{\sin \cdot a}\right)^{2}
$$

We will now find the numerical value of the known quantities.
$\left.\begin{array}{lrlr}\text { Log. tan. } D & -1.466718 & \text { log. tan. } d & -2.775712 \\ \text { Log. tan. } a & -1.295849 & & \log . \sin . a\end{array}\right)-1.287530$

$$
\operatorname{Tan}{ }^{2} D=0.085790 \quad 1.482072-0.307738=1.174334
$$

Whence,
Or,

$$
\cot ^{2} L-0.085790=(1.174334)^{2}
$$

$$
\cot ^{2} L=1.464849
$$

$$
\cot . 亡=1.210309
$$

Log. cot. $L+10=10.082896=\cot .39^{\circ} 33^{\prime} 53^{\prime \prime}$. Ans.
(9.) In latitude $16^{\circ} 40^{\prime}$ north, when the sun's declination was $23^{\circ} 18^{\prime}$ north, I observed him twice, in the same fore-
noon, bearing north $68^{\circ} 30^{\prime}$ east. Required the time of observation, and his altitude at each time.
Ans. Times, $6^{h} 15^{m} 40^{s}$, A.M., and $10^{h} 32^{m} 48^{s}$, A.M., altitude, $9^{\circ} 59^{\prime} 33^{\prime \prime}$, and $68^{\circ} 29^{\prime} 43^{\prime \prime}$.

the second.
In the spherical $\triangle P Z S^{\prime}$ there is given $P Z, P S^{\prime}$ and the angle $P Z S^{\prime}$; also, in the $\triangle P Z S$ there is given $P Z, P S$, and the angle $P Z S$. Observe that $P S S^{\prime}$ is an isosceles \triangle.

Describe the meridian $P B$ bisecting the angle $S^{\prime} P S$, and then we have three right angled spherical triangles, $B P S$, $B P S^{\prime}$, and $B P Z$; taking the last, we have the following proportion:

$$
\text { R. : } \sin P Z:: \sin P Z B: \sin P B .
$$

That is,

$$
R .: \cos .16^{\circ} 40^{\prime}:: \sin .68^{\circ} 30^{\prime}: \sin . P B=\sin .63^{\circ} 2^{\prime} 27^{\prime \prime}
$$

To find $Z B$, we take the following proportion, (see page 185, Observation 1, Robinson's Geometry),

$$
R .: \cos Z B:: \cos B P: \cos P Z .
$$

That is, $\quad R .: \cos Z B:: \cos 63^{\circ} 2^{\prime} 27^{\prime \prime}: \sin .16^{\circ} 40^{\prime}$.

$$
R . \sin .16^{\circ} 40^{\prime} \quad 19.457584
$$

Cos. $63^{\circ} 2^{\prime} 27^{\prime \prime}$
Cos. $Z B, 50^{\circ} 45^{\prime} 22^{\prime \prime}$
9.656439
9.801145

To find $S^{\prime} B$, we have

$R .: \cos . S^{\prime \prime} B:: \cos .63^{\circ} 2^{\prime} 27^{\prime \prime}: \sin .23^{\circ} 18^{\prime}$.	
$R . \sin .23^{\circ} 18^{\prime}$	19.597196
$\cos .63^{\circ} 22^{\prime} 27^{\prime \prime}$	9.656439
Cos. $S^{\prime \prime} B, 29^{\circ} 15^{\prime} 5^{\prime \prime}$	9.940757

Observe that $S^{\prime} B=B S$; therefore, $Z S=50^{\circ} 45^{\prime} 22^{\prime \prime}+29^{\circ}$ $15^{\prime} 5^{\prime \prime}=80^{\circ} 0^{\prime} 27^{\prime \prime}$, and $Z S^{\prime}=50^{\circ} 45^{\prime} 22^{\prime \prime}-29^{\circ} 15^{\prime} 5^{\prime \prime}=21^{\circ}$ $30^{\prime} 17^{\prime \prime}$, the complements of the altitudes. Consequently the altitude at the first observation was $9^{\circ} 59^{\prime} 33^{\prime \prime}$, and at the second, $68^{\circ} 29^{\prime} 43^{\prime \prime}$.

To find the time from noon at the first observation, we have the following proportion,

Sin. $P S: \sin . P Z S:: \sin . Z S: \sin . Z P S$.
That is,
Cos. $23^{\circ} 18^{\prime}: \sin .68^{\circ} 30^{\prime}:: \sin .80^{\circ} 0^{\prime} 26^{\prime \prime}: \sin . Z P S=\sin .86^{\circ} 5^{\prime \prime} 7^{\prime \prime}$
Had the angle been 90°, the time would have been just 6^{h}, but the angle $3^{\circ} 54^{\prime} 53^{\prime \prime}$ less ; this corresponds to $15^{m} 40^{\text {s }}$, in time. Therefore, the time was $6^{h} 15^{m} 40^{s}$. For the time at the second observation, we have

Cos. $23^{\circ} 18^{\prime}$: $\sin .68^{\circ} 30^{\prime}:: \sin .21^{\circ} 30^{\prime} 17^{\prime \prime}: \sin . Z P S^{\prime}$

$$
\left[=\sin .21^{\circ} 47^{\prime} 57^{\prime \prime}\right.
$$

$21^{\circ} 47^{\prime} 57^{\prime \prime}=1^{h} 27^{m} 12^{s}$ from noon, or $10^{h} 32^{m} 48^{s}$ apparent time in the morning.
(10.) An observer in north latitude marked the time when the stars Regulus and Spica were eclipsed by a plumb line,that is, when they were both in the same vertical plane passing through the zenith of the observer. One hour and ten minutes afterwards, Regulus was on the observer's meridian. What was the observer's latitude?

The positions of the stars in the heavens were
Regulus, right ascension, $10^{h} 0^{m} 10^{\circ}$. Dec. $12^{\circ} 43^{\prime}$ north. Spica, " " $13^{h} 17^{m} 2^{3}$. Dec. $10^{\circ} 21^{\prime} 20^{\prime \prime}$ south.

Let R be the position of Regulus, S the position of Spica, P the pole, and Z the zenith.

Then the side $P S=100^{\circ} 21^{\prime} 20^{\prime \prime}$, $P R=77^{\circ} 17^{\prime}$, and the angle $R P S=$ $3^{h} 16^{m} 52^{s}$, converted into degrees ; that is, $R P S=49^{\circ} 13^{\prime}$.

One hour and ten minutes reduced to arc, give $17^{\circ} 30^{\prime}$; but the stars revolve according to siderial, not solar time, and to reduce solar to siderial arc, we must increase it by about its $\frac{1}{3} \frac{1}{5} 5$ th part ; this gives about 3^{\prime} to add to $17^{\circ} 30^{\prime}$, making $17^{\circ} 33^{\prime}$ for the angle $Z P R$. Our ultimate object is to find $P Z$, the complement of the latitude.

In the $\triangle P R S$, we have the two sides $P R, P S$, and the included angle P, from which we must find $R S$ and the angle $S R P$, and we can let a perpendicular fall from R on to the side $P S$ and solve it by the usual way ; but to show that a wide field is open for a bold operator, we will put the unknown arc $R S=x$, the side opposite $R=r$, and opposite $S=s$, and apply one of the equations in formula (S), page 191, Robinson's Geometry.

That is,

$$
\cos . P=\frac{\cos . x-\cos \cdot r \cdot \cos . s}{\sin r \cdot \sin . s}
$$

Whence, Cos. P.sin. r.sin. $s+\cos . r . \cos . s=\cos . x$.
We now apply this equation, recollecting that radius is unity, which will require us to diminish indices of the logarithms by 10 .

Cos. $P=\cos .49^{\circ} 13^{\prime}$	-1.815046		
Sin. $r=\sin .100^{\circ} 21^{\prime} 20^{\prime \prime}$	-1.992868	$-\cos$	-1.254683
Sin. $s=\sin .77^{\circ} 17^{\prime}$	-1.989214	cos.	-1.342679
0.62680	-1.797128	. 03957	-2.597362
Cos. $x=0$.	8-0.03957	$=.587$	

Whence, by the table of natural cosines, we find

$$
x=54^{\circ} 2^{\prime} 20^{\prime \prime} .
$$

To find the angle $S R P$ or $Z R P$, we have
Sin. $54^{\circ} 2^{\prime} 20^{\prime \prime}: \sin .49^{\circ} 13^{\prime}:: \sin .100^{\circ} 21^{\prime} 20^{\prime \prime}: \sin . Z R P$.
Whence, $\quad Z R P=66^{\circ} 57^{\prime} 37^{\prime \prime}$.
Let fall the perpendicular $R B$ on $P Z$ produced, then the right angled spherical $\triangle P B R$ gives this proportion, R. : $\sin .77^{\circ} 17^{\prime}:: \sin .17^{\circ} 33^{\prime}: \sin , R B=\sin .17^{\circ} 6^{\prime} 22^{\prime \prime}$.
To find $P B$, we have
$R .: \cos . P B:: \cos .17^{\circ} 6^{\prime} 22^{\prime \prime}: \cos .77^{\circ} 17^{\prime}$.
Whence, $P B=76^{\circ} 41^{\prime}$.
Now, to find the angle $B R P$, we have
Sin. $77^{\circ} 17^{\prime}: R .:: \sin .76^{\circ} 41^{\prime}: \sin . B R P=\sin .86^{\circ} 1^{\prime}$.
From $P R B$ take $P R Z$, and $Z R B$ will remain ; that is,
From $86^{\circ} 1^{\prime}$ take $66^{\circ} 57^{\prime} 37^{\prime \prime}$, and $Z R B=19^{\circ} 3^{\prime} 23^{\prime \prime}$.
By the application of equation (12), we find that
$R . \sin .17^{\circ} 6^{\prime} 22^{\prime \prime}=\tan . B Z . \cot 19^{\circ} 3^{\prime} 23^{\prime \prime}$.
Whence, $\quad B Z=5^{\circ} 48^{\prime}$
And,
$P Z=76^{\circ} 41^{\prime}-5^{\circ} 48^{\prime}=70^{\circ} 53^{\prime}$.
The complement of $70^{\circ} 53^{\prime}$ is $19^{\circ} 7^{\prime}$, the latitude sought.
By this example we perceive that by the means of a meridian line, a good watch, and a plumb line, any person having a knowledge of spherical trigonometry, and having a catalogue of the stars at hand, can determine his latitude by observation.

[^2]
KEYTO
 ROBINNON'S
 A N ALYTICAL GE 0 METRY.

CHAPTERI.

STRAIGHTLINES.

(Page 105.)
Ex. 3. $y=2 x+5$.
Draw the rectangular coordinate axes, $X X, Y Y^{\prime}$.
Then, when $y=0$, the
 equation, give $x=-\frac{5}{2}$ $=-2 \frac{1}{2}$, and when $x=0$, $y=5$; hence the line represented by the equation cuts the axis of X at the distance $-2 \frac{1}{2}$, and the axis of Y at the distance +5 from the origin or zero point.

Assuming any convenient unit, lay it off on the axis several times, in both the positive and negative directions, and draw a line cutting the axis of X at $-2 \frac{1}{2}$, and the axis of Y at +5 from the origin. This will be $(3,3)$, the line required, since two points determine the position of a line.

Ex. 4. $y=-3 x-3$.
Making $y=0$. in this equation gives $x=-1$, and $x=0$ gives $y=-3$; hence, this line cuts the axis of X at -1 and
the axis of Y at -3 . Laying off these distances on their respective axes, and drawing through the points thus determined the line $(4,4)$ it is that required.

Ex. 5. $\quad 2 y=3 x+5$, or $y=\frac{3}{2} x+\frac{5}{2}$.
In this equation $y=0$ makes $x=-\frac{5}{3}=-1 \frac{2}{3}$, and $x=0$ makes $y=\frac{5}{2}=2 \frac{1}{2}$. The line (5,5), drawn through the points in the axis, given by these values of x and y, is that represented by the equation.

Ex. 6. $y=4 x-3$.

The values of x and y given by this equation, by making first, $y=0$, and then $x=0$, are $x=\frac{3}{4}, y=-3$. The line is $(6,6)$.

The lines of which equations 4 and 6 are the equations both intersect the axis of Y at the distance -3 from the origin.

Ex. \%. $y=-2 x+3$.
Making in this equa-
 tion $y=0$ and $x=0$, successively, we find $x=\frac{3}{2}=1 \frac{1}{2}, y=3$, and the required line is $(7,7)$.

Ex. 8. $y=2 x-3$.
Proceeding with this as with the preceding equation, we get $x=1 \frac{1}{2}$, $y=-3$; and $(8,8)$ is the line responding to this equation.
In the triangle $C A B$ since $O A$ and $O B$ are each equal 3 ,
$A B$, the base, is equal to 6 , and because $O C$ is perpendicular to the base and bisects it the triangle is isoceles. $O C$ is equal to $1 \frac{1}{2}$ by the construction.

Ex. 9. $3 x+5 y-15=0$, or $y=-\frac{3}{5} x+3$.
The suppositions $y=0$ and $x=0$, made successively, give $x=5, y=3$, and the line $(9,9)$ drawn through the point +5 on the axis of X, and the point +3 on the axis of Y responds to the equation.

Ex. 10. $2 x-6 y+7=0$, or $y=\frac{1}{3} x+\frac{7}{6}$.
From this we find the intersections of the line with the axes of X and Y respectively to be at the distances $-\frac{7}{2}$ and $+\frac{7}{6}$ from the origin, and $(10,10)$ is the required line.

Ex. 11. $x+y+2=0$, or $y=-x-2$.
This line cuts both the axes at the distance -2 from the origin and makes with each an angle of 45°. It is the line (11, 11).

Ex. 12. $-x+y+3=0$, or $y=x-3$.
This line cuts both axes at the distance of 3 units from the origin ; the axis of X at +3 , the axis of Y at -3 , it therefore makes with each an angle of 45°. It is the line (12, 12).

Ex. 13. $2 x-y+4=0$, or $y=2 x+4$.
In this $y=0$ gives $x=-2$, and $x=0$ gives $y=4$; hence, the line $(13,13)$ which cuts the axis of X at -2 , and the axis of Y at +4 is that which responds to the equation.

If we solve any equation of the first degree between two variables with reference to one of the variables it will take either the form $y=a x+b$, or $x=a^{\prime} y+b^{\prime}$. Now a denotes the tangent of the angle that the line makes with the axis of X,
and a^{\prime} denotes the tangent of the angle the same line makes with the axis of Y, while b is the distance from the origin to the point in which the line cuts the axis of Y, and Z^{\prime} the distance from the origin to the point in which the line cuts the axis of X.

To construct this line we may draw through the origin a line making with the axis of X an angle having a for its tangent, and then the line drawn parallel to this through the point on the axis of Y at the distance b from the origin will be that represented by the equation.

To make this construction assume any convenient unit of measure, and lay it off on the axis of X from the origin to the right, that is, in the positive direction. Through the extremity of this unit draw a parallel to the axis of Y, and mark off on this parallel from the axis of X the distance a units, above the axis of X if a is positive, below if it is negative. The line which connects the origin with the point thus determined on the parallel will make with the axis of X an angle of which a is the tangent, and it is, therefore, parallel to the required line. If, then, we lay off the distance b units on the axis of Y, above, or below the origin, according as b is positive or negative, and through the extremity of this line we draw a line parallel to that passing through the origin we shall have the required line.

Thus, to construct the line represented by the equation $2 x-y+4=0$ (example 13), we solve it with reference to y and get $y=2 x+4$.

We lay off the distance $O T=$ unity on the axis of X from
the origin to the right and on the parallel to the axis of Y, at this distance, mark off $T T^{\prime \prime}=$ two units above the axis of X, because in this example $a=+2$.

Then make $O B=4$, draw $O T$ and through B draw $B A$ parallel to $O T^{\prime \prime}$, and the line given by tho equation is constructed.

With this explanation the student will find no difficulty in applying this method of construc-
 tion to all of the above examples.
(Page 108.)
To prove that equations (6) and (7) are different forms of the same equation.

By clearing equation (6) of fractions it becomes

$$
y x^{\prime \prime}-y^{\prime} x^{\prime \prime}-y x^{\prime}+y^{\prime} x^{\prime}=y^{\prime \prime} x-y^{\prime} x-y^{\prime \prime} x^{\prime}+y^{\prime} x^{\prime}
$$

Canceling and transposing we find

$$
\begin{equation*}
y x^{\prime \prime}-y x^{\prime}=y^{\prime} x^{\prime \prime}+y^{\prime \prime} x-y^{\prime} x-y^{\prime \prime} x^{\prime} . \tag{8}
\end{equation*}
$$

Equation (7) treated in the same way gives, first,

$$
y x^{\prime \prime}-y^{\prime \prime} x^{\prime \prime}-y x^{\prime}+y^{\prime \prime} x^{\prime}=y^{\prime \prime} x-y^{\prime} x-y^{\prime \prime} x^{\prime \prime}+y^{\prime} x^{\prime \prime} .
$$

And finally

$$
\begin{equation*}
y x^{\prime \prime}-y x^{\prime}=y^{3} x^{\prime \prime}+y^{\prime \prime} x-y^{\prime} x-y^{\prime \prime} x^{\prime} . \tag{9}
\end{equation*}
$$

Since equations (8) and (9) are the same equations, (6) and (7) from which they were derived must represent the same line.

Equation (6) being

$$
y-y^{\prime}=\frac{y^{\prime \prime}-y^{\prime}}{x^{\prime \prime}-x^{\prime}}\left(x-x^{\prime}\right)
$$

the suppositions $y=y^{\prime}$, and $x=x^{\prime}$ reduces both members to zero; hence the line passes through the first point of which the co-ordinates are y^{\prime} and x^{\prime}.

If in this equation we suppose $y=y^{\prime \prime}$ and $x=x^{\prime \prime}$ it becomes

$$
y^{\prime \prime}-y^{\prime}=\frac{y^{\prime \prime}-y^{\prime}}{x^{\prime \prime}-x^{\prime}}\left(x^{\prime \prime}-x^{\prime}\right)
$$

Dividing both members of this last equation by $y^{\prime \prime}-y^{\prime}$ and clearing of fractions it reduces to

$$
x^{\prime \prime}-x^{\prime}=x^{\prime \prime}-x^{\prime} \text { or } 0=0 .
$$

Therefore, the co-ordinates of both points when substituted for the variables x and y in equation (6) satisfy that equation, which is the condition that the line shall pass through these points.
(Page 109.)
Ex. 2. Placing in the equation

$$
\begin{equation*}
y-y^{\prime}=\frac{y^{\prime \prime}-y^{\prime}}{x^{\prime \prime}-x^{\prime}}\left(x-x^{\prime}\right) \tag{a}
\end{equation*}
$$

for $x^{\prime}, x^{\prime \prime}$, and $y^{\prime}, y^{\prime \prime}$ their values, this equation becomes

$$
y+1=\frac{-\frac{10}{6}+1}{4 \frac{1}{2}+4}(x+4)
$$

Reducing

$$
\begin{array}{rlrl}
& & y+1 & =-\frac{4}{51} x-\frac{1}{5} \frac{6}{1} . \\
\text { Or, } & y & =-\frac{4}{5} 10 x-1 \frac{1}{5} \frac{1}{1} .
\end{array}
$$

Ex. 3. Making the substitutions in equation (a), (last example) for $x^{\prime}, x^{\prime \prime}$, and $y^{\prime}, y^{\prime \prime}$, it becomes

$$
y-5=\frac{3-5}{-3-6}(x-6)
$$

Or,

$$
y-5=\frac{2}{9} x-\frac{12}{9} .
$$

Whence,

$$
y=\frac{3}{9} x+3 \frac{3}{3} .
$$

(Page 112).
Ex. 2. The equations

$$
\begin{aligned}
& 2 y=5 x+8 \\
& 3 y=-2 x+6
\end{aligned}
$$

become by dividing through by the coefficients of y,

$$
\begin{aligned}
& y=\frac{5}{2} x+4 \\
& y=-\frac{2}{3} x+2 .
\end{aligned}
$$

Making $\quad a=\frac{5}{2}$ and $a^{\prime}=-\frac{2}{3}$ the formula.

$$
m=\frac{a^{\prime}-a}{1+a a^{\prime}}
$$

Becomes

$$
m=\frac{-\frac{2}{3}-\frac{5}{2}}{1-\frac{10}{6^{0}}}=4 \frac{3}{4}=4.75
$$

(Page 114.)
Ex 1. By making $a=-2, a^{\prime}=5, b=1$ and $b^{\prime}=10$, in the formula

$$
\begin{aligned}
& x_{1}=-\frac{b-b^{\prime}}{a-a^{\prime}} \text { it becomes } \\
& x_{1}=-\frac{1-10}{-2-5}=-\frac{9}{7} .
\end{aligned}
$$

The same substitutions in

$$
\begin{aligned}
& y_{1}=\frac{a^{\prime} b-a b^{\prime}}{a^{\prime}-a} \text { give } \\
& y_{1}=\frac{5+20}{5+2}=\frac{25}{7}=3 \frac{4}{7} .
\end{aligned}
$$

(Page 115.)

Ex. 1. In the formula for the perpendicular,

$$
\text { Per. }= \pm \frac{b+a x^{\prime}-y^{\prime}}{\sqrt{a^{2}+1}}
$$

we must make $a=3, b=-10, x^{\prime}=4$, and $y^{\prime}=5$. These values being substituted, we have

$$
\text { Per. }= \pm \frac{-10+12-5}{\sqrt{3^{2}+1}}= \pm \frac{-3}{\sqrt{10}}
$$

Multiplying the numerator and denominator of this by
$\sqrt{10}$ and passing the 3 under the radical by squaring, we have finally

$$
\text { Perpendicular }=\frac{1}{10} \sqrt{90} .
$$

Ex. 2. Here $a=-5, b=-15, x^{\prime}=4, y^{\prime}=5$, and by placing these in the formula for the perpendicular, we find

$$
\begin{aligned}
\text { Per. } & = \pm \frac{-15-20-5}{\sqrt{5^{2}+1}}= \pm \frac{-40}{\sqrt{26}} \\
& ={ }_{5}^{1} \times 40 \sqrt{26}=\frac{203+}{26}=7.84+.
\end{aligned}
$$

(Page 118.)
Ex. 3. Dividing both of the equations

$$
\begin{aligned}
& 3 y+5 x=4 \\
& 2 y=3 x+4
\end{aligned}
$$

through by y and transposing, they become

$$
\begin{aligned}
& y=-\frac{5}{3} x+\frac{4}{3} \\
& y=\frac{3}{2} x+2
\end{aligned}
$$

Here $a=-\frac{5}{3}, a^{\prime}=\frac{3}{2}, b=\frac{4}{3}, b^{\prime}=2$. Placing these values in the formula

$$
\begin{aligned}
& x_{1}=-\left(\frac{b-b^{\prime}}{a-a^{\prime}}\right), \text { we get } x_{1}=-\frac{\frac{4}{3}-2}{-\frac{5}{3}-\frac{3}{2}}=-\frac{-\frac{2}{3}}{-\frac{10^{0}}{6}-\frac{9}{6}} \\
&=-\frac{2 \times 6}{3 \times 19}=-\frac{4}{19} .
\end{aligned}
$$

Making the same substitutions in the formula

$$
y_{1}=\frac{a^{\prime} b-a b^{\prime}}{a^{\prime}-a} \text { we get } y_{l}=\frac{\frac{3}{2} \times \frac{4}{3}+\frac{5}{3} \times 2}{\frac{3}{2}+\frac{5}{3}}=\frac{2+\frac{10}{3}}{\frac{9}{6}+\frac{10}{6}}=\frac{\frac{16}{3}}{\frac{10}{6}}=\frac{32}{19} .
$$

To get the natural tangent of 30° we have

$$
\text { Tan. } 30^{\circ}=\frac{\sin .30^{\circ}}{\cos .30^{\circ}}=\frac{.50000}{.86603}=.5773
$$

These values of x_{1}, y_{1}, and tan. 30° placed in the equation

$$
\begin{aligned}
& y-y_{1}=\tan .30^{\circ}\left(x-x_{1}\right) \text { give } \\
& y-\frac{32}{19}=0.5773\left(x+\frac{4}{19}\right)
\end{aligned}
$$

(Page 119.)

Ex. 4. By transposing and dividing through by the coefficients of y, the equations

$$
\begin{aligned}
& 2 y-3 x=-1 \\
& 2 y+3 x=3 .
\end{aligned}
$$

Become

$$
\begin{aligned}
& y=\frac{3}{2} x-\frac{1}{2} . \\
& y=-\frac{3}{2} x+\frac{3}{2} .
\end{aligned}
$$

Whence $a=\frac{3}{2}, a^{\prime}=-\frac{3}{2}, b=-\frac{1}{2}, b^{\prime}=\frac{3}{2}$.
These values put in the formulæ

$$
x_{1}=\frac{b-b^{\prime}}{a^{\prime}-a}, \quad y_{1}=\frac{a^{\prime} b-a b^{\prime}}{a^{\prime}-a}, \text { give } x_{1}=\frac{2}{3}, \quad y_{l}=\frac{1}{2} .
$$

The point C in which the lines intersect may then be constructed. Since the first line $(1,1)$, intersects the axis of Y at the distance $-\frac{1}{2}$, and the second line $(2,2)$ intersects it at the distance $\frac{3}{2}$, the distance $A B$ is 2 ; and because the lines $(1,1)$ and $(2,2)$ are equally inclined to the axis of X on opposite sides, they are also equally inclined to the axis of Y on opposite sides ; hence, the triangle $A B C$ is isosceles. The side $A C=B C=\sqrt{1+\left(\frac{2}{3}\right)^{2}}=\sqrt{\frac{13}{9}}=\frac{1}{3} \sqrt{13}=\frac{3.605+}{3}=1.201+$.

The perpendicular, $C D$, of the triangle is $\frac{2}{3}$; hence the area of the triangle is $=\frac{1}{3} \times 2=0.66+$.

(Page 119.)

Ex. 5. The equations

$$
\begin{aligned}
& -2 \frac{1}{5} y+3 \frac{1}{2} x=-2 \frac{1}{4} \\
& 2 \frac{2}{5} y-\frac{2}{3} x=4
\end{aligned}
$$

by transposing and dividing through by the coefficients of y become

$$
\begin{aligned}
& y=\frac{3}{2} x+\frac{4}{4} \frac{5}{4} \\
& y=\frac{5}{1} x+\frac{5}{3} .
\end{aligned}
$$

Whence $a=\frac{35}{2}, a^{\prime}=\frac{5}{1 \varepsilon}, b=\frac{45}{4}, b^{\prime}=\frac{5}{3}$,
substituting these in the formula for x_{1} and y, we get

$$
x_{1}=-\frac{\frac{4}{4} \frac{5}{4}-\frac{5}{3}}{\frac{3}{2} \frac{5}{2}-\frac{5}{18}}=-\frac{-\frac{85}{13}}{\frac{5}{3} \frac{20}{6} \frac{2}{6}}=\frac{3 \times 17}{104}=\frac{51}{104}=0.49
$$

and $y_{1}=\frac{\frac{5}{18} \times \frac{45}{4} \frac{5}{4}-\frac{35}{2} \times \frac{5}{3}}{\frac{5}{18}-\frac{35}{2} \frac{5}{2}}=\frac{\frac{25}{8}-\frac{175}{8}}{-\frac{17}{6} 9}=1.8$.
The form of the equation of a line passing through two given points is

$$
y-y^{\prime \prime}=\frac{y^{\prime \prime}-y_{1}}{x^{\prime \prime}-x_{1}}\left(x-x^{\prime \prime}\right)
$$

and this will become the equation of the required line when we make $x_{l}=0.49, y_{l}=1.8, x^{\prime \prime}=3, y^{\prime \prime}=0$. In this case the expression $\frac{y^{\prime \prime}-y_{1}}{x^{\prime \prime}-x_{1}}$ reduces to $-0.7171+$.

Placing these values in the above equation we get

$$
y=-0.7171 x+0.7171 \times 3=-0.7171 x+2.1523
$$

And substituting the values of the two points in the formula.

$$
D=\sqrt{\left(x^{\prime \prime}-x_{1}\right)^{2}+\left(y^{\prime \prime}-y_{1}\right)^{2}} .
$$

We have

$$
\begin{aligned}
& D=\sqrt{(2.51)^{2}+(1.8)^{2}} . \\
& \text { CHAPSTER II. } \\
& \text { THE CIRCLE. }
\end{aligned}
$$

(Page 139.)
Ex. 1. In all these examples the equation to be referred to is

$$
y^{2} \mp c y=\frac{R^{2}-c^{2}}{2}
$$

Comparing the equation $x^{2}+11 x=80$ with this, we have
$c=11, \frac{R^{2}-c^{2}}{2}=80$; whence $R^{2}=160+121=281 . \quad R=\sqrt{281}$ $=16.76$, with which we proceed as explained in the text.

Ex. 2. $x^{2}-3 x=28$.
Here $c=-3, \frac{R^{2}-c^{2}}{2}=28$; whence $R^{2}=56+9=65, R$
$=\sqrt{65}=8.06$.
Ex. 3. $x^{2}-x=2$.
In this $c=-1, \frac{R^{2}-c^{2}}{2}=2, R^{2}=5, R=\sqrt{5}=2.23$.
Ex. 4. $x^{2}-12 x=-32$.
In this $c=-12, \frac{R^{2}-c^{2}}{2}=-32, R^{2}=80, R=8.94$.
Ex. 5. $x^{2}-12 x=-36$.
This gives, $c=-12, \frac{R^{2}-c^{2}}{2}=-36 . \quad R^{2}=72, \quad R=8.48$.
Ex. 6. $x^{2}-12 x=-38$.
Whence $c=-12, \frac{R^{2}-c^{2}}{2}=-38, \mathrm{R}^{2}=68, R=8.24$.
Ex. \%. $x^{2}+6 x=-10$.
Whence $c=6, \frac{R^{2}-c^{2}}{2}=-10, R^{2}=16, R=4$.

CHAPTERIV.

THE PARABOLA.
(Page 187.)
Ex. 3. $x^{2}-\frac{2}{1 \overline{1}} x=8$.
Comparing this with the equation

$$
R^{2}+2 b R=2 c-b^{2}
$$

we see that $b=-\frac{1}{11}, 2 c-b^{2}=8$; whence $2 c=8+{ }_{1} \frac{1}{2} \frac{1}{1}=\frac{96}{1} \frac{9}{1}$,
$c=\frac{9}{2} \frac{6}{4} \frac{9}{2}=4+$. We construct the pole by laying off the distance 4 on the axis to the right, for the abscissa of the pole, and the distance $-\frac{1}{1} \frac{1}{1}$ for the ordinate.

The values of x will be found to be $+2.9+$ and $-2.7+$.
Ex. 4. $\frac{3}{4} x^{2}+\frac{3}{5} x=\frac{7}{1} 1$, or $x^{2}+\frac{4}{5} x=\frac{2}{3} \frac{3}{3}$.
Here $2 b=\frac{4}{5}, b=\frac{2}{5}, 2 c-b^{2}=\frac{2}{3} \frac{3}{3}, 2 c=\frac{2}{3} \frac{5}{3}+\frac{4}{25}, c=.504+$. If the pole be constructed with these coordinates, the distances from the pole, above and below the axis, to the intersection of the perpendicular radius vector with the curve are $.6+$ and $1.4+$.

$$
\text { Ex. 5. } \frac{1}{4} y^{2}-\frac{1}{6} y=2 \text {, or } y^{2}-\frac{2}{3} y=8 \text {. }
$$

We find for this $2 b=-\frac{2}{3}, b=-\frac{1}{3}, 2 c-b^{2}=8,2 c=8+\frac{1}{9}$, whence $c=8.1+$. Constructing the pole with these coördinates, and drawing the perpendicular radius vector, we shall find the distances from the pole to the intersections with the curve to be $=3.17+$ and $-2.5+$.

CHAPTER VI.

INTERPRETATION OF EQUATIONS.

(Page 223.)
Ex. 1. We find the abscissas of the vertices of the diameter whose equation is $y=-x$, by placing the quantity $-2 x(x-2)$ under the radical in the general value of y equal to zero ; that is we make

$$
-2 x(x-2)=0
$$

which gives the two values $x^{\prime}=0, x^{\prime \prime}=2$. These values of x substituted in the equation of the diameter $y=-x$, give $y^{\prime}=0, y^{\prime \prime}=-2$; hence $x^{\prime}=0, y^{\prime}=0$ are the coordinates of one vertex, and $x^{\prime \prime}=2, y^{\prime \prime}=-2$ are those of the other.

The abscissa of the center $x=1$, and giving x this value in the proposed equation it reduces to

$$
y^{2}+2 y+3-4=0
$$

Or,

$$
y^{3}+2 y=1
$$

Whence,

$$
y=-1 \pm \sqrt{2}=-1 \pm 1.41+
$$

That is

$$
y=+.41+\text { and } y=-2.41+
$$

(Page 236.)
Ex. 6. In the equation

$$
y^{2}-2 x y-x^{2}-2 y+2 x+3=0,
$$

we see, by comparing it with the general equation that $A=1$, $B=-2, C=-1$; hence $B^{2}-4 A C>0$ and the equation represents an hyperbola.

Solving the equation with reference to y, we find

$$
y=x+1 \pm \sqrt{2\left(x^{2}-\overline{1}\right)}
$$

Placing the quantity under the radical in this value of y, equal to zero we have $x=+1$, and $x=-1$ for the abscissas of the vertices of the diameter which bisects the chords parallel to the axis of Y; hence the axis of Y bisects this diameter and is the conjugate to it.

By making y equal to zero in the proposed equation it becomes

$$
x^{2}-2 x=3
$$

Whence, $\quad x=1 \pm \sqrt{3+1}=1 \pm 2, x=+3$, or -1 .

Ex. 7. Comparing the equation

$$
y^{2}-2 x y+2 x^{2}-2 x+4=0
$$

with the general equation, we find,

$$
A=1, B=-2, C=2 ; \text { therefore } B^{2}-4 A C<0
$$

and the analytical condition for the ellipse is satisfied ; but since the equation can be put under the form

$$
(y-x)^{2}+(x-1)^{2}+3=0
$$

we see that all real values of x and y will make the first
number the sum of three positive quantities, and hence such values cannot satisfy the equation.
(Page 237.)
Ex. 8. $y^{2}-2 x y+x^{2}+x=0$.
This represents the parabola, because $A=1, B=-2, C=1$ and, therefore, $B^{2}-4 A C=0$. The curve passes through the origin, since the equation contains no absolute term and is therefore satisfied by $x=0, y=0$.

Solving the equation in respect to y, we find

$$
y=x \pm \sqrt{-x}
$$

from which we conclude that all positive values of x will give imaginary values to y, or that the curve does not extend in the direction of x positive.

If the equation be solved with reference to x we shall find

$$
x=\frac{2 y-1}{2} \pm \sqrt{-y^{2}+\frac{4 y^{2}-4 y+1}{4}}=\frac{2 y-1}{2} \pm \frac{1}{2} \sqrt{1-4 y} .
$$

The radical part of this value of x shows that any positive value of y greater than $\frac{1}{4}$, will render x imaginary, but that x will be real for all negative values of y. Hence the curve extends indefinitely in the direction of x and y negative. Substituting $\frac{1}{4}$ for y, in the equation, it becomes

$$
\begin{array}{ll}
\text { Or, } & \frac{1}{16}-\frac{1}{2} x+x^{2}+x=0 \\
\text { Or } & x^{2}+\frac{1}{2} x+\frac{1}{16}=\left(x+\frac{1}{4}\right)^{2}=0
\end{array}
$$

$$
\text { Whence, } \quad x+\frac{1}{4}=0, \quad x=-\frac{1}{4} \text {. }
$$

A line drawn through the point whose coördinates are $y=+\frac{1}{4}, x=-\frac{1}{4}$, parallel to the axis of X, will limit the curve in the direction of y positive ; but it will be unlimited in the direction of y negative.

Ex. 9. $y^{3}-2 x y+x^{2}-2 y-1=0$.

The curve represented by this equation is the parabola.

Since we have for it, $A=1, B=-2, C=1$, and, therefore,

$$
B^{2}-4 A C=0
$$

Transposing and factoring it becomes

$$
y^{2}-2(x+1) y=-x^{2}+1
$$

Whence,

$$
\begin{aligned}
& \qquad y=x+1 \pm \sqrt{-x^{2}+1+x^{2}+2 x+1}=x+1 \pm \sqrt{2(x+1)} \\
& \text { Also, } \\
& \text { Whence, } \quad x^{2}-2 x y=-y^{2}+2 y+1, \\
& \text { W=y } \quad \sqrt{2 y+1}
\end{aligned}
$$

The value of y shows that all negative values of x greater, numerically, than -1 will render y imaginary, and the value of x shows that all negative values of y greater, numerically, than $-\frac{1}{2}$ will render x imaginary. The curve is therefore limited in the direction of the negative axes ; but it is unlimited in the opposite direction.

Ex. 10. $y^{2}-4 x y+4 x^{2}=0$.
Since in this equation, $A=1, B=-4, C=4$, we have $B^{2}-4 A C=0$ which is the condition for the parabola. But we have also the further conditions (page 219),

$$
B D-2 A E=0, \quad D^{2}-4 A F=0
$$

In consequence of the first of these conditions, the parabola would reduce to two parallel straight lines, and in consequence of the second, the two straight lines reduce to one, or coincide.

The first member of the equation is a perfect square, and we therefore have

$$
(y-2 x)^{2}=0, \text { or } y=2 x
$$

Hence the line to which the parabola reduces, passes through the origin of coorrdinates and makes, with the axis of X, an angle, having 2 for its natural tangent. The degrees and minutes of the angle are found thus

> Log. $2=0.301030$
> Log. $R=10.000000$

Log. tangent $63^{\circ} 26^{\prime}, 10.301030$.

The complement of $63^{\circ} 26^{\prime}$ is $26^{\circ} 34^{\prime}$, which is the angle the line makes with the axis of Y.

Ex. 11. $y^{2}-2 x y+2 x^{2}-2 y+2 x=0$.
Here $A=1, B=-2, C=2$. Hence $B^{2}-4 A C<0$, and the curve is an ellipse.

Solving the equation with reference to y, we get

$$
y=x+1 \pm \sqrt{-x^{2}+1}
$$

Placing the quantity under the radical sign equal to zero, to get the abscissas of the vertices of the diameter whose equation is $y=x+1$, we find

$$
x= \pm 1, \text { or } x=+1 \text { and } x=-1 .
$$

The value of y shows that all substitutions for x, numerically greater than 1 , positive or negative, will render y imaginary. Hence parallels to the axis of Y, drawn at a unit's distance from it on either side, will limit the curve.

CHAPTERVII.

ON THE INTERSECTION OF LINES AND THE GEOMETRICAL SOLUTION OF EQUATIONS.

(PaGE 243.)

Ex. 3. Given $y^{3}-48 y=128$, to find the values of y by construction.

Making $y=n z$ and substituting in the given equation it becomes

$$
n^{3} z^{3}-48 n z=128
$$

Whence, $\quad z^{3}-\frac{48}{n^{2}} z=\frac{128}{n^{3}}$.

If now, we assume $n=4$, this equation will reduce to

$$
z^{3}-3 z=2
$$

and the construction of the values of z is the same as in example 2 ; that is $z=2, z=-1, z=-1$, and since $y=n z$, and $n=4$ we have,

$$
\text { Ans. } y=+8,-4,-4
$$

Ex. 4. Given $y^{3}-13 y=-12$, to find the values of y by construction.

Comparing this equation with equation (G) page 241, we have

$$
4-4 a=-13,8 b=-12
$$

Whence, $a=4 \frac{1}{4}, b=-1 \frac{1}{2}$.
Constructing the parabola with the distance from the focus to the directix for the unit, we then lay off on its axis, in the positive direction, the distance $A D=4 \frac{1}{4}$, then
 $D C=-1 \frac{1}{2}$ will determine the center of the circle. The circumference described with C as a center and $C A$ as a radius, cuts the parabola in the points $m, m^{\prime}, m^{\prime \prime}$, which are at the distances from the axis of the parabola $+1,+3$, and -4 , respectively ; hence

$$
\text { Ans. } y=+1,+3,-4
$$

The different values of x, on page 246 , corresponding to the assumed values $30.0388,25 \cdots-5$, \&c., of y are thus found ;

Equation (A) page 245, when $y=30.0388$ becomes

$$
x^{3}=13 x+12=30.0388
$$

Or,

$$
x^{3}-13 x=18.0388
$$

Whence, $4-4 a=-13,8 b=18.0388$ (see eq. (G) page 241).
Therefore, $\quad a=4 \frac{1}{4}, b=2.25485$.

These values of a and b will give us the center of the circumference, the intersections of which with the parabola, determine the values of x.

So when $y=25$ we shall have

$$
\begin{aligned}
x^{3}-13 x & =13 \\
4-4 a=-13, \quad 8 b & =13 ; \quad a=4 \frac{1}{4}, b=1 \frac{5}{8}
\end{aligned}
$$

and so on, the value of a being constantly equal to $4 \frac{1}{4}$.

CHAPTERS VIII., and IX.

STRAIGHT LINES IN SPACE AND PLANES.

(Page 269.)
Ex. 1. What is the distance between two points in space of which the coördinates are

$$
x=1, y=-5, z=-3 ; x^{\prime}=4, y^{\prime}=-4, z^{\prime}=1 .
$$

Substituting these values of $x, y, z, x^{\prime}, y^{\prime}, z^{\prime}$, in the formula

$$
D^{2}=\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}
$$

found on page 254 (Prop. 6), and taking the square root we get

$$
\begin{aligned}
& D=\sqrt{(3+2)^{2}+(5+1)^{2}+(-2-6)^{2}} \\
& D=\sqrt{25+36+64}=\sqrt{125}=11.180+. \quad \text { Ans. }
\end{aligned}
$$

Ex. 2. Of which the coördinates are

$$
x=1, y=-5, z=-3 ; x^{\prime}=4, y^{\prime}=-4, z=1
$$

As in Example 1, substituting these values of the coördinates of the two points we find

$$
\begin{aligned}
D & =\sqrt{(1-4)^{2}+(-5+4)^{2}+(-3-1)^{2}} \\
& =\sqrt{9+1+16}=\sqrt{26} \\
& =5.098+=5_{\frac{1}{4}-0} \text { nearly. }
\end{aligned}
$$

Ans.

Ex. 3. The equations of the projections of a straight line on the coördinate planes $(x z),(y z)$, are

$$
x=2 z+1, \quad y=\frac{1}{3} z-2,
$$

required the equation of the projection on the plane $(x y)$.
Multiplying the second equation through by 6 , we have

$$
6 y=2 z-12
$$

which makes the coefficients of z the same in the two equations. Subtracting the first equation from this last, member from member, we get

$$
\begin{gathered}
6 y-x=-13 \\
y=\frac{1}{6} x-2 \frac{1}{6} . \quad \text { Ans. }
\end{gathered}
$$

Or,
Ex. 4. The equations of the projections of a line on the coördinate planes ($x y$) and ($y z$), are

$$
2 y=x-5 \text { and } 2 y=z-4
$$

Required the equation of the projection on the plane ($x z$).
By subtracting the second of these equations from the first, member from member, we have

$$
0=x-z-1, \text { or } x=z+1 . \quad \text { Ans. }
$$

Ex. 5. Required the equations of the three projections of a straight line, which passes through two points, whose coördinates are

$$
x^{\prime}=2, y^{\prime}=1, z^{\prime}=0 ; \text { and } x^{\prime \prime}=-3, y^{\prime \prime}=0, z^{\prime \prime}=-1
$$

Placing these values of $x^{\prime}, x^{\prime \prime}, y^{\prime}, \& c$., in the formulas on page 252 (Prop. 8), which are

$$
x-x^{\prime}=\frac{x^{\prime \prime}-x^{\prime}}{z^{\prime \prime}-z^{\prime}}\left(z-z^{\prime}\right) ; y-y^{\prime}=\frac{y^{\prime \prime}-y^{\prime}}{z^{\prime \prime}-z^{\prime}}\left(z-z^{\prime}\right),
$$

the first becomes

$$
\left.\begin{array}{l}
x-2=\frac{-3-2}{-1} z, \text { or } x=5 z+2 \\
y-1=\frac{-1}{-1} z, \text { or } y=z+1
\end{array}\right\} \text { Answers. }
$$

which are the equations of the projections of the required line on the planes $(x z)$, $(y z)$.

We eliminate z from these equations by subtracting the first from the second after multiplying the second through by 5 :

Thus

$$
\begin{aligned}
5 y & =5 z+5 \\
x & =5 z+2
\end{aligned}
$$

Subtract and

$$
\overline{5 y-x=5-2}, \text { or } 5 y=x+3
$$

Ans.
Which is the equation of the projection of the line on the plane ($x y$).

Ex. 6. Required the angle included between two lines whose equations are

$$
\left.\begin{array}{l}
x=3 z+1 \\
y=2 z+6
\end{array}\right\} \text { of the 1st ; and }\left\{\begin{array}{l}
x=z+2 \\
y=-z+1
\end{array}\right\} \text { of the } 2 \mathrm{~d} \text {. }
$$

Referring to the formula

$$
\text { Cos. } V=\frac{1+a a^{\prime}+b b^{\prime}}{\sqrt{1+a^{2}+b^{2}} \sqrt{1+a^{12}+b^{\prime 2}}}
$$

found on page 257 , Prop. 8, and comparing the coefficients of z in the given equations with those of the equations in that proposition, we have

$$
a=3, a^{\prime}=1 ; b=2, b^{\prime}=-1
$$

These values substituted in the formula give

$$
\begin{gathered}
\text { Cos. } V=\frac{1+3-2}{1+9+4} \downarrow^{\prime} 1+1+1 \\
=\frac{2}{1^{\prime} 42}=\frac{1}{2^{1}} \sqrt{42} . \\
\quad \sqrt{42}=6.4808 ; \text { hence } \frac{1}{2^{\top}} \sqrt{\prime}{ }^{\prime} \overline{42}=.308609 .
\end{gathered}
$$

That is

$$
\text { Cos. } V=.308609
$$

The table gives .30846 for the cosine of $72^{\circ} 2^{\prime}$, and .30874 for the cosine of $72^{\circ} 1^{\prime}$; hence we have the proposition

$$
28: 13:: 60^{\prime \prime}: x^{\prime \prime}=28^{\prime \prime}
$$

And $V=72^{\circ} 1^{\prime} 28^{\prime \prime}$. Ans.

Ex. \%. Find the angles made by the lines, designated in the preceding example, with the coördinate axes.

Formulas (5), (6) and (7), page 255, Prop. (7), are

$$
\begin{align*}
& \text { Cos. } X=\frac{a}{ \pm \sqrt{1+a^{2}+b^{2}}} \tag{5}\\
& \text { Cos. } Y=\frac{b}{ \pm \sqrt{1+a^{2}+b^{2}}} . \tag{6}\\
& \text { Cos. } Z=\frac{1}{ \pm \sqrt{1+a^{2}+b^{2}}} . \tag{7}
\end{align*}
$$

In these, to find the angles the first line makes with the coördinate axes, we must make $a=3, b=2$.

These values placed in the above formulas give

$$
\text { Cos. } \begin{aligned}
X & =\frac{3}{ \pm \sqrt{1+9+4}}=\frac{3}{ \pm \sqrt{14}} \\
& =\frac{3 \sqrt{14}}{14}=\frac{1}{14} \sqrt{126}=\frac{1}{14}(11.224+) .
\end{aligned}
$$

Cos. $X=.80179$. By the table, $X=36^{\circ} 42^{\prime}$. Ans.
Cos. $Y=\frac{2}{ \pm \sqrt{14}}=\frac{1}{14} \sqrt{1} 56=\frac{1}{14}(7.4833+)$
Cos. $Y=.53452 . \quad y=57^{\circ} 41^{\prime} 20^{\prime \prime} . \quad$ Ans.
Cos. $Z=\frac{1}{ \pm \sqrt{14}}=\frac{1}{14} \sqrt{14}=\frac{1}{1^{\frac{1}{4}}}(3.7416+)$
Cos. $Z=.26727 . \quad z=74^{\circ} 29^{\prime} 54^{\prime \prime} . \quad$ Ans.
In like manner to find the angles that the second line makes with the coördinate axes, we must make $a=a^{\prime}=1$, $b=b^{\prime}=-1$. Formulas (5) and (7) then give

Cos. $X=\operatorname{cos.} Z=\frac{1}{\sqrt{3}}=\frac{1}{3}, 3=\frac{1}{3}(1.73205)$
Cos. $X=\cos . Z=.57735, \quad X=Z=54^{\circ} 44^{\prime}$. Ans.
Since $b^{\prime}=-1$, the cosine of Y must be taken with a minus sign, if the cosines of X and Z are taken with the plus sign,
and the converse. But these cosines have the same numerical value ; therefore Y is the supplement of $54^{\circ} 44^{\prime}$; that is

$$
Y=125^{\circ} 16^{\prime} . \quad \text { Ans. }
$$

Ex. 8. Having given the equations of two straight lines in space, as

$$
\left.\begin{array}{l}
x=3 z+1 \\
y=2 z+6
\end{array}\right\} \text { of the 1st ; and }\left\{\begin{array}{l}
x=z+2 \\
y=-z+\beta^{\prime}
\end{array}\right\} \text { of the } 2 \mathrm{~d},
$$

to find the value of β^{\prime}, so that the lines shall actually intersect, and to find the coördinates of the point of intersection.

If the equation

$$
\frac{a-a^{\prime}}{a-a}=\frac{\beta-\frac{\beta^{\prime}}{b-b^{\prime}}}{}
$$

found on page 252 , Prop. 4 , is satisfied by the constants in the equations of any two straight lines, such lines will intersect. Any five of these constants being given, the equation will determine the sixth. In the present example we have $x=1, x^{\prime}=2, a=3, a^{\prime}=1, b=2, b^{\prime}=-1, \beta=6$, from which to find β^{\prime}.

Placing these values in the above equation it becomes

$$
\frac{1-2}{3-1}=\frac{6-\beta^{\prime}}{2+1}
$$

Whence

$$
2 \beta^{\prime}=15 ; \quad \beta^{\prime}=7 \frac{1}{2} . \quad \text { Ans. }
$$

The formulas for the values of x and y, the coördinates of the point of intersection given on the same page, are

$$
x=\frac{a a-a a^{\prime}}{a-a^{\prime}}, \quad y=\frac{b \beta^{\prime}-b \beta^{\prime}}{b-b^{\prime}} .
$$

Substituting in these the values of $a, a^{\prime}, a, a^{\prime}, \beta, \beta^{\prime}$, we get

$$
x=\frac{6-1}{2}=2 \frac{1}{2}, \text { and } y=\frac{15+6}{3}=7
$$

The value of z may be found from any one of the given equations, by substituting for x or y, the value just found.

Take for example the 1 st, $x=3 z+1$; it becomes $2 \frac{1}{2}=3 z$ -1 ; whence $6 z=3, z=\frac{1}{2}$.

Hence the

$$
\text { Ans. }\left\{\begin{array}{l}
\beta^{\prime}=7 \frac{1}{2}, y=7 . \\
x=2 \frac{1}{2}, z=\frac{1}{2} .
\end{array}\right.
$$

Ex. 9. Given the equation of a plane

$$
8 x=3 y+z-4=0,
$$

to find the points in which it cuts the three axes, and the perpendicular distance from the origin to the plane.

The point in which the axis of X pierces the plane is found by making $y=0, z=0$, in the equation, by which we get $8 x-4=0$, or $x=\frac{1}{2}$. Similarly by making $x=0, z=0$, we have $y=-1 \frac{1}{3}$; and $x=0, y=0$, gives $z=4$.

Formula (7), page 276, which is

$$
p=\frac{D}{\sqrt{A^{2}+B^{2}+C^{2}}},
$$

will give the perpendicular distance from the origin to the plane by making $A=8, B=-3, C=1, D=-4$.

These values give us

$$
\begin{aligned}
p & =\frac{-4}{ \pm \sqrt{64+9+1}}=\frac{4}{\sqrt{74}}=\frac{4 \sqrt{74}}{74} \\
& =\frac{\sqrt{1184}}{74}=\frac{34.409}{74}=.4649+
\end{aligned}
$$

Hence the

$$
\text { Ans. }\left\{\begin{array}{l}
x_{l}=\frac{1}{2}, y_{l}=-1 \frac{1}{3}, z_{l}=4 . \\
p=.4649+.
\end{array}\right.
$$

Ex. 10. Find the equations for the intersections of the two planes,

$$
\begin{aligned}
& 3 x-4 y+2 z-1=0 \\
& 7 x-3 y-z+5=0
\end{aligned}
$$

If z be eliminated between these two equations the resulting equation will be the equation of the projection of the
intersection on the plane ($x y$). We eliminate by multiplying the second equation through by 2 and then adding it to the first, member to member ; thus

Add

$$
\begin{aligned}
3 x-4 y+2 z-1 & =0 \\
14 x-6 y-2 z+10 & =0 \\
\hline 17 x-10 y+9=0 . & \text { 1st Ans. }
\end{aligned}
$$

We eliminate y from the given equations by multiplying the first through by 3 , and the second by 4 , and subtracting the first result from the second.

Thus,

$$
28 x-12 y-4 z+20=0
$$

Subtract,

$$
\frac{9 x-12 y+6 z-3=0}{19 x-10 z+23=0 .} \quad \text { 2d } A n s .
$$

We find the angle included between the two planes by the formula

$$
\text { Cos. } V=\frac{A A^{\prime}+B B^{\prime}+C C^{\prime}}{\sqrt{A^{2}+B^{2}+C^{2}} \sqrt{A^{12}+B^{12}+C^{12}}},
$$

in which we must make $A=3, B=-4, C=2, A^{\prime}=7, B^{\prime}=-3$, $C^{\prime}=-1$. These substitutions will give

$$
\text { Cos. } \begin{aligned}
& V=\frac{21+12-2}{\sqrt{9+16+4}} \sqrt{49+9+1} \\
&=\frac{31}{\sqrt{29} \sqrt{59}}=\frac{31}{\sqrt{1711}} \\
&=\frac{31 \sqrt{1711}}{1711}=\frac{\sqrt{1644271}}{1711}=\frac{1282.24}{1711}
\end{aligned}
$$

Hence, Cos. $V=.74940 ; V=41^{\circ} 27^{\prime} 41^{\prime \prime}$. Ans.
Ex. 12. The equations of a line in space are

$$
x=-2 z+1, \text { and } y=3 z+2
$$

Find the inclination of this line to the plane represented by the equation

$$
8 x-3 y+z-4=0
$$

The formula to be used in this example is that found on page 268 , Prop. 7 , which is

$$
\text { Sin. } v=\frac{A a+B b+C}{\sqrt{1+a^{2}+b^{2}} v{\overline{C^{2}}+B^{2}+A^{2}}_{2}} .
$$

In this we must make $a=-2, b=3, A=8, B=-3$, $C=1$, which will give

$$
\begin{aligned}
\operatorname{Sin} . v & =\frac{-16-9+1}{\sqrt{1+4+9} \sqrt{1+64+9}}=\frac{24}{\sqrt{14} \sqrt{74}}=\frac{12}{\sqrt{7} \sqrt{37}} \\
& =\frac{\sqrt{37296}}{259}=\frac{193.147+}{259}=.74571 .
\end{aligned}
$$

Whence

$$
v=48^{\circ} 13^{\prime} 13^{\prime \prime}
$$

Ans.

Ex. 13. Find the angles made by the plane whose equation is

$$
8 x-3 y+z-4=0
$$

with the coördinate planes.
The formulas to be used in this case are
$\operatorname{Cos} .(x y)=\frac{ \pm C}{\sqrt{A^{2}+B^{2}+C^{2}}}, \quad \cos .(x z)=\frac{ \pm B}{\sqrt{A^{2}+B^{2}+C^{2}}}$,
$\cos .(y z)=\frac{ \pm A}{\sqrt{A^{2}+B^{2}+C^{2}}}$, and are found on page 264 , Prop. 3.
By comparing the given equation with the general equation of the plane, we find, $A=8, B=-3, C=1$.

These values being substituted in the first of the above formulas it becomes

$$
\text { Cos. }(x y)=\frac{ \pm 1}{\sqrt{64+9+1}}=\frac{ \pm 1}{\sqrt{74}}=\frac{1}{T^{4}} \sqrt{74}
$$

Cos. $(x y)=\frac{1}{7^{\frac{1}{4}}}(8.6023)=.11625$.
The Table gives $83^{\circ} 19^{\prime} 27^{\prime \prime}$ for the angle whose natural cosine is this decimal.

Similarly the second formula gives

$$
\text { Cos. }(x z)=\frac{\mp 3}{\sqrt{74}}=-\frac{1}{74} \sqrt{666}=-.34874
$$

and the third

$$
\operatorname{Cos.}(y z)=\frac{ \pm 8}{\sqrt{74}}=\frac{1}{7^{4}} \sqrt{4736}=.92998
$$

which correspond respectively to the angles $110^{\circ} 24^{\prime} 38^{\prime \prime}$ and $21^{\circ} 34^{\prime} 5^{\prime \prime}$.

Hence the

$$
\text { Ans. }\left\{\begin{array}{rrrrr}
83^{\circ} & 19^{\prime} & 27^{\prime \prime} & \text { with } & \text { the plane }(x y) . \\
110^{\circ} 24^{\prime} 38^{\prime \prime} & \text { " } & \text { " } & \text { " } & (x z) . \\
21^{\circ} 34^{\prime} & 5^{\prime \prime} & \text { " } & \text { " } & \text { " } \\
(y z) .
\end{array}\right.
$$

Ex. 15. Find the equation of the plane which will cut the axis of Z at 3 , the axis of X at 4 , and the axis of Y at 5 .

The equation of the required plane must have the form

$$
A x+B y+C z+D=0
$$

and such values of the coefficients A, B and C, are to be found as will cause the plane represented by the equation to cut the coördinate axes at the specified points.

Referring to the Scholium on page 260, we find the following expressions for the distances from the origin to the points in which a plane cuts the axes, viz. :

$$
x=-\frac{D}{A}=O P, \quad y=-\frac{D}{B}=O Q, \quad z=-\frac{D}{C}=O R
$$

If in these we give to x, y and z, their values by the conditions of the problem, we have

$$
3=-\frac{D}{C}, \quad 5=-\frac{D}{B}, \quad 4=-\frac{D}{A}
$$

Whence, $\quad C=-\frac{D}{3}, A=-\frac{D}{4}, B=-\frac{D}{5}$.
Substituting these values in the general equation of the plane it becomes

$$
-\frac{\mathrm{D}}{4} x-\frac{D}{3} y-\frac{D}{3} z+D=0
$$

Or,

$$
15 x+12 y+20 z=60
$$

by multiplying through by $-\frac{60}{D}$; and by dividing this last equation through by 3 we get finally.

$$
\text { Ans. } 5 x+4 y+6 \frac{2}{3} z=20 .
$$

Ex. 16. Find the equation of the plane which will cut the axis of X at 3 , the axis of Z at 5 , and which will pass at the perpendicular distance 2 from the origin. At what distance from the origin, will this plane cut the axis of Y ?

Let $P Q R$ be the required plane cutting the axis of X at P, making $O P=3$, and the axis of Z at R making $O R=5$. $O p$ is the perpendicular let fall from the origin upon the plane, and by condition it is equal to 2.

Conceive a plane to be passed through the axis of Z, and the perpendicular $O p$ intersecting the required plane in the line $R S$, and the plane $(x y)$ in $O S$. Since the plane through $O R$ and $O p$ is perpendicular to both the planes $(x y)$ and $P Q R$, it is perpendicular to their intersection, $P Q$. In the figure we therefore have the right angled triangles $R O P, R O S, R O P, R P S, O P S$ and $O P Q$.

From the triangle $R O p$, we have

$$
R p=\sqrt{\overline{\overline{R O}-\overline{O P}^{2}}=1^{\prime} \overline{5^{2}-2^{2}}=\sqrt{21}, ~, ~}
$$

and from the triangles $R O P, R O S$,

$$
\begin{aligned}
& R p: O R:: O R: R S, \\
\text { Or, } & \sqrt{21}: 5:: 5: R S=\frac{25}{\sqrt{21}} .
\end{aligned}
$$

The triangle $R O P$ gives

$$
R P=\sqrt{\overline{\overline{L O}^{2}+\overline{P O}^{2}}=\sqrt{5^{2}+3^{2}}=\sqrt{34}, ~, ~ \text {, }}
$$

Whence, $\quad P S=\sqrt{\overline{\overline{R P}}-\overline{R S^{2}}}=\sqrt{34-\frac{625}{21}}=\sqrt{\frac{3}{29} \frac{9}{1}}$.

Then from the similar right angled triangles $O P S, O P Q$, we have

$$
P S: O P:: O P: P Q
$$

Or, $\quad \sqrt{\frac{\overline{8} \frac{9}{2}}{1}}: 3:: 3: P Q=\frac{9}{\sqrt{\frac{3}{2} \frac{9}{1}}}=\frac{9 \sqrt{21}}{\sqrt{89}}$.
Whence, $\quad O Q=\sqrt{\overline{P Q^{2}}-\overline{O P^{2}}}=\sqrt{\frac{81 \times 21}{89}}-9=\sqrt{\frac{\overline{900}}{89}}$
$=\frac{30}{\sqrt{ } 89}$, which may have either sign.
The equation of the plane will be what the equation

$$
A x+B y+C z+D=0
$$

becomes, when we substitute in it the values of A, B and C, given by the equations

$$
5=-\frac{D}{C}, \quad 3=-\frac{D}{A}, \quad \frac{30}{\sqrt{89}}=-\frac{D}{B} .
$$

We thus get

$$
-\frac{D}{3} x-\frac{\sqrt{89} D}{30}-y-\frac{D}{5} z+D=0
$$

Or,

$$
10 x+\sqrt{ } \overline{89} y+6 z-30=0
$$

which is the equation of the required plane, and it cuts the axis of Y at the distance $O Q=\frac{30}{\sqrt{89}}$, from the origin.

Ex. 1\%. Find the equations of the intersection of the two planes whose equations are

$$
\begin{aligned}
& 3 x-2 y-z-4=0 \\
& 7 x+3 y+z-2=0
\end{aligned}
$$

By adding these equations, member to member, we eliminate z and get for our result

$$
10 x+y-6=0
$$

which is the equation of the projection of the intersection of the two planes on the plane ($x y$).

Multiplying the same equations through, the first by 3, and the second by 2 , we have

$$
9 x-6 y-3 z-12=0
$$

Add, $\quad 14 x+6 y+2 z-4-0$
And our result $23 x-z-16=0$, is the equation of the projection of the intersection on the plane ($x z$).

In like manner multiplying the first through by 7 , and the second by 3 , we find

$$
21 x-14 y-7 z-28=0
$$

Subtract,

$$
21 x+9 y+3 z-6=0
$$

And our result, $\quad 23 y+10 z+22=0$, is the equation of the projection of the intersection on the plane ($y z$).

Ex. 18. Find the inclination of the planes whose equations are expressed in Example 17.

The equations of the planes are

$$
\begin{aligned}
& 3 x-2 y-z-4=0 \\
& 7 x+3 y+z-2=0
\end{aligned}
$$

The formula for the cosine of the inclination of these two planes is

$$
\text { Cos. } V=\frac{A A^{\prime}+B B^{\prime}+C C^{\prime}}{\sqrt{A^{2}+B^{2}+C^{2}} \sqrt{A^{12}+B^{12}+C^{12}}},
$$

found on page 267 , Prop 6. In this we must make the following substitutions, viz. :

$$
A=3, B=-2, C=-1 ; \quad A^{\prime}=7, \quad B^{\prime}=3, C=+1
$$

by which we get
Cos. $V=\frac{21-6-1}{\sqrt{9+4+1} \sqrt{49+9+1}}=\frac{14}{\sqrt{14}+59}=\frac{\sqrt{14}}{\sqrt{59}}$,
Whence, Cos. $V=\frac{\sqrt{14}}{\sqrt{59}}=\frac{\sqrt{14} \sqrt{59}}{59}=\frac{\sqrt{826}}{59}=.48712$,
and by the Table this is found to correspond to the angle $60^{\circ} 50^{\prime} 55^{\prime \prime}$, or the supplementary angle, $119^{\circ} 9^{\prime} 5^{\prime \prime}$. Ans.

Ex. 19. A plane intersects the coördinate plane (x z), at an inclination of 50°, and the coördinate plane ($y z$), at an inclination of 84°. At what angle will this plane intersect the plane ($x y$)?

We employ in this case the formula

$$
\operatorname{Cos.}{ }^{2}(x y)+\operatorname{cos.}^{2}(x z)+\operatorname{cos.}^{2}(y z)=1,
$$

which is found on page 264. From it we get

$$
\operatorname{Cos.}^{2}(x y)=1-\cos ^{2}(x z)-\cos ^{2}(y z) .
$$

But $\cos .(x z)=\cos .50^{\circ}=.64279$, and $\cos .(y z)=\cos .84^{\circ}=.10453$.
Whence, $\operatorname{Cos.}^{2}(x y)=1-.4241054050-.0109265209$
Cos. $(x y)=\sqrt{.5758945950}=.75887$,
which by the Table corresponds to the angle $40^{\circ} 38^{\prime} 6^{\prime \prime}$. Ans.

MISCELLANEOUS PROBLEMS.

Ex. 1. The greatest or major axis of an ellipse is 40 feet, and a line drawn from the center, making an angle of 36° with the major axis and terminating in the ellipse, is 18 feet long; required the minor axis of this ellipse, its area and eccentricity.

Suppose $A B$ to be the major axis, C the center, and F the focus of the ellipse, and let $C p$ be the line drawn from the center making an angle of 36° with $A B$, and terminating in the curve at p. From p let fall the per-
 pendicular $p D$ on the axis, and produce this perpendicular to meet the circumference described on $A B$, as a diameter in P, and draw $C P$.

Then in the right angled triangle $C_{p} D$ we have

$$
\begin{aligned}
& 1: \sin . p C D:: C p: p D=C p \cdot \sin \cdot p C D \\
& 1: \cos p C D:: C p: C D=C p \cdot \cos \cdot p C D
\end{aligned}
$$

In the Table we find $\sin .36^{\circ}=.58779, \cos .36^{\circ}=.80902$,
Hence,
$p D=18 \times .58779=10.58022$,
And $\quad C D=18 \times .80902=14.56236$.
From the right angled triangle $C P D$, we get

$$
\begin{aligned}
P D & =\sqrt{\overline{C P}^{2}-\overline{C D}^{2}}=\sqrt{400-212.062439} \\
& =\sqrt{187.937561}=13.709 .
\end{aligned}
$$

Now we have an ordinate of the ellipse drawn to its transverse axis, and the corresponding ordinate of the circle described on that axis. Calling the semi-transverse axis A, and the semi-conjugate axis B, we have,

$$
A: B:: P D: p D
$$

That is $\quad 20: B:: 13.709: 10.58022$.
Whence,

$$
B=\frac{20 \times 10.58022}{13.709}=15.4376
$$

And $\quad 2 B=30.8752$.
The area of an ellipse is measured by the product of its semi-axes multiplied by $3.14159+$.

Hence for the required ellipse, we have

$$
\text { Area }=\pi A B=3.14159 \times 20 \times 15.4376=969.972+
$$

Denoting the eccentricity by E, we have

$$
E=\frac{\sqrt{A^{2}-B^{2}}}{A}=\frac{\sqrt{400-238.3195}}{20}=\frac{12.715}{20}=.63575
$$

Collecting our results we therefore have

$$
\text { Ans. } \begin{cases}\text { Minor axis, } 30.8752 & \text { feet. } \\ \text { Area, } 969.972 & \text { sq. feet. } \\ \text { Eccentricity, } .63575 & \text { feet. }\end{cases}
$$

In the second miscellaneous problem it was assumed that if the side of an equilateral triangle be denoted by a, the
line drawn from the center to the vertex of either angle of the triangle, will be represented by $\frac{a}{\sqrt{3}}$. To prove this, let
 $A B C$ be an equilateral triangle of which D is the center, by which we mean the center of the inscribed or circumscribed circle. Draw $A D$ and $C D$, producing the latter to meet the base of the triangle in E.

Now since the angle $C A E$ is 60° and $A D$ bisects this angle, the angle $D A E$ is 30°, and $D E$ is therefore equal to one half of $A D$. Denote $A B$ by a and $D E$ by x; then $A D=2 x$.

In the right angled triangle $A D E$, we have

$$
\begin{array}{ll}
& \overline{A E}^{2}+\overline{D E}^{2}=\overline{A D}^{2}, \\
\text { Or, } & \frac{a^{2}}{4}+x^{2}=4 x^{2}, \quad 3 x^{2}=\frac{a^{2}}{4} . \\
\text { Hence, } & x=\frac{a}{2 \sqrt{3}}, \quad 2 x=A D=\frac{a}{\sqrt{3}},
\end{array}
$$

which was to be proved.

FASQUELLE'S

FRENCH SERIES.

By LOUIS FASQUELLE, LL.D.,
Professor of Mrodern Languages in the University of Michigan.

CHARACTERISTIC FEATURES.

1. The plan of this popular Series embraces a combinatior of the two rival systems; the Oral, adopted by Ollendorff, Robertson, Manesca, and others, with the old Classical, or Grammatical System. One of its principal features is a constant comparison of the construction of the French and English Languages.
2. Another important feature consists in the facility with which the instructor or student can elect in the course of study the practice and theory combined, or as much or as little of either as he deems proper.
3. The "Course" commences with a complete though short treatise on pronunciation, presenting the power of each letter as initial, medial, or final, and also its sound when final and carried to the next word, in reading or speaking.
4. The changes in the words are presented in the most simple manner, and copiously exemplified by conversational phrases.
5. The rules of composition, grammatical and idiomatical, are introduced gradually, so as not to offer too many difficulties at one time.
6. The verbs are grouped by tenses, and comparisons instituted, showing their resemblance or difference of termination in the different conjugations.
7. The second, or theoretical part, offers, in a condensed form, a solution of the principal difficulties of the language.
8. The Rules are deduced from the best authorities, and illustraded by short extracts from the best French writers.
9. A treatise on gender is given, containing rules for determining gender by the meaning of words, and also by the termination.
10. The Irregular, Defective, and Peculiar verbs are presented in an Alphabetical Table, producing a Complete Dictienary of these verbs.

FASQUELLE'S FRENCH SERIES.

I. FASQUELLE'S FRENCH COURSE:
 OR, NEW METHOD OF LEARNING TIE FRENCI LANGEAGE Revised and enlarged. Price, \$1 25.

Embracing both the Analytic and Synthetic modes of Instruction. By Louis Fasquelle, LL.D., Professor of Modern Languages in the University of Nichigan.

This work is on the plan of "Woodbury's Method with Ge? man." It pursues the same gradual course, and comprehends the same wide scope of instruction. It is the leading book in the best literary institutions in the United States, and has also been reprinted in England, where it has an extended sale.

II A KEY TO THE EXERCISES IN FASQUELLE'S FRENCH COURSE.

Price, 75 cents.

III. FASQUELLE'S COLLOQUIAL FRENCH READER.

260 Pages. Duodecimo. Price, 75 cents.
Containing Interesting Narratives from the best French writers, for translation into English, accompanied by Conversational Exercises. With Grammatical References to Fasquelle's New French Method ; explanation of the most difficult passages, and a copious Vocabulary.

IV. FASQUELLE'S TÉLÉMAQUE. 12mo. Price, 75 cents.

Les Aventures de Télémaque. Par M. Fenélon. A New Edition, with notes. The Text carefully prepared from the most approved French Editions.

The splendid production of Fenélon is here presented in a beautiful mechanica dress, with copious references to Fasquelle's Grammar, full notes explanatory of dim culties in the text, and a full vocabulary.

V. NAPOLEON. BY ALEXANDER DUMAS. Price, 75 cents.

Arranged for the use of Colleges and Schools; with Conversational Exercises on the plan of Fasquelle's Colloquial French Reader, Explanatory Notes, and Idiomatical and Grammatical References to the "New French Method." By Louis Fasqualle, LL.D.

VI. FASQUELLE'S CHEFS D'שUVRE DE RACINE.

332 Pages, 12-mo. Price, 75 cents.
For Colleges and Schools. With Explanatory Notes and Grammatical References to the " New French Method."
This Edition contains five of Racine's bost plays: Les Platdaurs, Andromaque, Iphigenie, Esther, and Athalie. The Notes will be found, in all the plays, sufficiently full, without being diffuse; in Les Plaideurs, the only comedy written by Racine, the explanations, howevcr, are much fuller than the others.

VII. FASQUELLE'S INTRODUCTORY FRENCH COURSE.

18mo. Price, 56 cents.
A new work, on the plan of the larger "Course," adapted to Beginners.

VIII. FASQUELLE'S MANUAL OF FRENCH CONVERSATION.

12mo. Price, 75 cents.
A Complete Manual of Conversation, Idioms, etc., with references to Fasquelle's Course.

Testimonials of Teachers and Professers.

Fasquelle's French Series has been recommended by Statr Superintendents and Boards of Education, by hundreds of distinguished Professors and Teachers, whose testimonials would fill a volume. The following are specimens :

Joseph Wm. Jenis, Professor of Languages in the University of Urbana, O., says:-"I have taught many classes in the French language, and d not hesitate to say, that 'Fasquelle's French Course' is superior to any other French Grammar I have met with, for teaching French to those whose mother-tongue is English. It combines, in an almirable manner, the excellences of the old, or classic, snd the new, or Ollendorflian methods, avoiding the faults of both."

Messrs. Guillaume H. Talbot, T. A. Pelletier, E. H. Vian, H. Sest, and N. B. De Montrarchy, well known to the community as among the most eminent teachers in BOSTON, unite in a testimonial in which they "heartily and unanimously testify, that the work is held in high esteem and approbation among us, and that we consider it the very best heretofore published on the subject of which it treats. For the true interest of all engaged in the study of the spoken French, wo कould advise its universal adoption."

FASQUELLE'S FRENCH SERIES.

Messieurs Masset and Villeplait, Professors of the French Language in New York, write :- "We consider 'Fasquelle's French Course' a valuable and appropriate addition to the different grammars of the French Language. The arrangement adopted is systematic, and so simplified as greatly to facilitate the progress of the student."

Prof. Alphonse Brunner, of Cincinnati, says:-" Having been a teacher of my vernacular tongue-the French-for ten ycars, in my opinion, it is the best book yet prepared. I recommend it as superior to the old theoretical grammars."

Prof. J. B. Torricelli, of Dartmouth College, writes:-"I taxe pleasure in recommending to the teacher as well as to the private student, 'Fasquelle's New Method,' as the best yet published. Its adoption in our Colleges and Seminaries has given entire satisfaction. Mr. Fasquelle deserves the thanks of all lovers of the French language."

Rev. Charles Collins, D.D., President of Dickinson College, Pa.:-"We have introduccd Fasquelle's French Scries with very decided approbation."
Prof. Everett, of Bowdoin College, Me.:-"Fasquelle's French Course is decidedly the best grammar ever published."
Edward North, A.M., Professor of Languages, Hamilton College, N. Y.:-"Fasquclle's French Course I continue to use, and to like. It is worthy of its inmense popularity."

Rev. George B. Jewett, late Professor of Modern Languages, Amherst College:-"I have examined Fasquelle's French Series with much pleasure and satisfaction. They form an admirable series."

Prof. Charles Gobelle, Professor of Modern Languages, Newbury Female Collegiatc Institute, Vt. :-"I have been using Fasquelle's French Course during the past two years in one of the best schools in New England. It is the very best book 1 know of for instruction in the French language."

Prof. T. Peyre-Ferry, Teacher of French in the New Jersey Normal School, Trenton:-"Fasquelle's Coursc is the best work ever published of the kind. It enables the pupil to acquire a practical knowledge of the French language."

Rev. G. W. Quereau, A.M., Principal of Conference Seminary, Greenwich, R. I. :-"Fasquclle's Course is our standard text-book in French. We use it becausc we think it best. I speak with some confidence, and am satisfied that it is decidedly superior to any other book of the kind."

James B. Angell, A.M., Professor of Modern Languages in Brown University, writes:-"I gladly testify to the excellence of Fasquelle's French Course, which I have used in my classes for three years."
P. N. Legendre, Professor of French, New Haven, Ct., says:-"Never has a work come under my notice, that blends so happily and har-, moniously the great rival elements of the language. My pupils study it with pleasure."
E. J. P. Wohrange, Professor of Modern Languages in the N. Y. Central College, writes:-"'Fasquclle's Course' is at the same time original end complete in itsclf, superseding all systems now in use."

The N. Y. Daily Times says :-" Prof. F. is somewhat of en enthusiast as to his method of teaching, and being blessed with as much sense as experience, makes a better arranged text-book, and grades the difficulties more hap filly than any other modern teacher."
The Philadelphia Daily News speaks of the "Napoleon," as "a very concise and interesting French history which, edited as it is by Prof. Fasquelle, can not fail to prove a very popular school-book. The narrative is in Dumas' most brilliant and attractive style."

The N. Y. Independent says of the "Napoleon" :-"It combines the advantages of a stirring biography to invite the student, a good French otyle and grammatical and critical exercises and annotations."

GRAY'S
 BOTANICAL SERIES.

The most full, scholarly, and attractive apparatus for the study of Botany to be found in the language. The books have recently been warmly endorsed by Profs. agassiz, Silllman, Torrey, Hitcicock, Henry, and nearly evcry scientist of eminence in this country, and by Drs. Lindley, Hooker, and other distinguished Botanists in Europe. They are used in hundreds of Colleges, Academies, and Institutes in this ccuntry, and in the University op Cambridge, England; University of Edinburg, Scotland; Trinity College, Dublin, \&e.
GRAY'S "HOW PLANTS GROW." For Young People. 500 cuts......... \$ 75
GRAY'S LESSONS IN BOTANY. 362 drawings.................................... 100
GRAY'S MANUAL OF BOTANY. (School Edition.)..................................... 15 . 11
GRAY'S MANUAL AND LESSONS, in 1 vol.. 225
GRAY'S MANUAL WITH MOSSES, ETC. Illustrated. 250
GRAY'S STRUCTURAL AND SYSTEMATIC BOTANY.. (Reviseä and
improved Edition of "Botanical Text-Book").
200

WELLS'

SCIENTIFIC SERIES.

By DAVID A. WELLS, A.M., Editor of "Annual of Scientific Discovery," "Knowledgc is Power," \&c. Einbodying the latcst researches in physical science, and excelling in their lucid style, numerous facts, copious illustrations (over 700), and practical applications of science to the arts of every-day life, and endorsed by hundreds of eninent and successful practical Educators in all parts of the country, and the Press.
Mr. Wclls' scientific qualifications have been approved by the most eminent scholars in the country-among them Profs. Bache, Agassiz, Ifenry, Iorsford, Wyman, Lieutenant Maury, and others.
WELLS', SCIENCE OF COMMON THINGS. With cuts....................... \$ 75
WELLS' NATURAL PHILUSOPIIY. 372 cuts. Revised. (25,000 sold)..... 100
WELLS' PRINCIPLES OF CIIEMISTRY. 242 cuts............................. 100
WELLS' FIRST PRINCIPLES OF GEOLOGY. 250 cuts......................... 75

COLTON AND FITCH'S GEOGRAPHIES.

This serles is the most full, practical, nccurate, and satisfactory, ever published. They are all beautifully illustratcd, and the maps drawn on a uniform system of scales, so as to present the relative sizes of the different countries at a glance. They are the leading geographical series in the country, and have been officially recommended by several State Superintendents, Boards of Education, \&c.
THE PRIMER OF GEOGRAPHY
\$ 25

PHYSICAL GEOGRAPHY.................................

WILLSON'S

SCHOOL HISTORIES.

Discriminating and cordial testimonials have been given by several State Superintendents, by upwards of seventy Presidents and Profcssors of Collegzs in different parts of the United States, by over five hundred Principals of Academies, Institutes, \&c.
WILLSON'S PRIMARY AMERICAN HISTORY. \$ 34
WILLSON'S HISTORY OF THE UNITED STATES. (Nero, enlarged, and illustrated edition) 88
WILLSON'S AMERICAN HISTORY. (Schooi Édition) 150
WILLSON'S AMERICAN HISTORY. (Library Edition) 200
WILLSON'S OUTLINES OF IIISTORY. (School Edition) 125
WILLSON'S OUTLINES OF IIISTORY. (Oniversity Edition). 200
WILLSON'S CHART OF AMERICAN IIISTORY. (Rollers). 600

ROBINSON'S COMPLETE MATHEMATICAL SERIES.

By HORATIO N. ROBINSON, A.M., late Prof. of Mathematics in the U. S. Navy.
Most of the books of the series have bcen thoroughly revised and corrected, and published in superior style. For extent of research, and facility and aptress of illustration, the author is unsurpassed, and his long experience as a practical mathematician and teacher guarantees the utility and sound science of his works. They have received the unqualified approval of most eminent educators, including several Stata Superintendents of Public Instruction, and many Prcsidents and Professors in Colleges. They are already used and preferred to any others in thousands of the best Colleges, Academies, and High Schools throughout the Union.
ROBINSON'S PROGRESSIVE PRIMARY ARITHMETIC................. 15
ROBINSON'S PROGRESSIVE INTELLECTUAL ARITHMETIC.......... 25
ROBINSON'S THEORETICAL AND PRACTICAL ARITHMETIC....... $56 \frac{1}{2}$
ROBINSON'S KEY TO PRACTICAL ARITHMETIC......................... 50
ROBINSON'S HIGIIER ARITHMETIC. (In press)............................. 75
ROBINSON'S KEY TO HIGHER ARITHMETIC. (In press.).............. 75
ROBINSON'S ELEMENTARY ALGEBRA
75
ROBINSON'S NEW ELEMENTARY ALGEBRA................................... 75
ROBINSON'S KEY TO NEW ELEMENTARY ALG̈EBß̈A....................... 75
ROBINSON'S UNIVERSITY ALGEBRA... 125
ROBINSON'S KEY TO UNIVERSITY ALGEBRA................................. 100
ROBINSON'S GEOMETRY AND TRIGONOMETRY............................... 150
ROBINSON'S SURVEYING AND NAVIGATION............................... 150
ROBINSON'S ANALYTICAL GEOMETRY AND CONIC SECTIONS.... 150
ROBINSON'S MATHEMATICAL OPERATIONS............................... 225
ROBINSON'S ELEMENTARY ASTRONOMY....................................... ${ }^{75}$
ROBINSON'S UNIVERSITY ASTRONOMY... 175

ROBINSON'S KEY TO ALGEBRA, GEOMETRY, SURVEYING, AND CALCULUS.

SPENCERIAN PENMANSHIP.

The Spencerian Systcm of Penmanship is a scientific, methodical, beautiful and complete series of writing books, eminently practical, and admirably adapted to impart a correct knowledge of the art. They bave been adopted as the text-book on penmanship by many of the Commercial Colleges in the United States, among which are Bryant \& Stratton's Chain of Commercial Colleges at New York, Philadelphia, Albany, Buffalo, Cleveland, Detroit, Chicago, St. Louis, and Pittsburgh (the most extensive Chain of Colleges in the world), and have recently been adopted in the Public Schools of the cities of Buffalo, Cleveland, Detroit, St. Louis, Rochester, Oswego, and other large cities and towns. The School Series is complete in the first five Nos.
SPENCERIAN PENMANSHIP. Newly cugraved. In 9 Nos.
Nos. $1,2,3-$ BEGINNERS' COUISE.
No. 4-CAPITALS

No. 6-ANALYTICAL AND SYNTIIETICAL REVIEW OF TIIE SYS-
No. 7-GENERAL BUSINESS FORMS (containing nearly 150 lines)..................... $12 \frac{1}{4}$
No. 8-ANALYSIS OF THE SYSTEM IN ITS APPLICATION TO $12 \frac{1}{2}$
No. 9-LADIES' BOOK OF FORMS FOR PRACTICE.............................
(The first five Nos. constitute the "Common School Series;" the last four Nos. the "Commercial and High School Series.")
COMPENDIUM OF THE SPENCERIAN SYSTEM. 60 pages (over 400 lines), illustrating Chirography in its analytical, practical, and ornamental forms.

Paper
Cloth.. 150
Cloth, full gilt.................................. 200
SPENCERIAN CHART OF LETTERS. Size, 38 by 44 inches:
Mounted on rollers and varnished.. 00
Canvas back (not mounted).. general explanations of the Elements and Rules of the System. The Elements are all given and numbered,-their slope, shading, and proportions, together with their combinations, giving the perfectly formed letters, are fully e'ucidated; 30 that when the pupil has fixed in his mind a perfect ideal of the elements and letters as here exhibited, he becomes a teachor writo himself.

[^0]: * The sine or tangent of an arc exceeding 20^{\prime} and less than 2° can not be computed accurately by the common method nor by the method explained on page 288, (Plane Trigonometry.)

 In the present case we may employ the familiar formula.

[^1]: * To apply the equations without confusion, letter each right angled spherical triangle $A B C$, right angled at B, then A must be written in place of P; and when operating on $Z S Q$, write A in place of S, and C for the angle $S Z Q$.

[^2]: * Observe that r is greater than 90°, its cosine is therefore, negative in value, rendering the product, cos. $r . \cos . s$, or .03957 , negative.

