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1. Lecture - Hilbert-Kunz theory and vector bundles

1.1. Hilbert-Kunz theory. In 1969, Kunz considered first the following
function and the corresponding limit [16].

Definition 1.1. Let K denote a field of positive characteristic p, let K ⊆ R
be a noetherian ring and let I ⊆ R be an ideal which is primary to some
maximal ideal. Then the Hilbert-Kunz function is the function

ϕI : N −→ N, e 7−→ ϕI(e) = length (R/I [p
e]) ,

where I [p
e] is the extended ideal under the e-th iteration of the Frobenius

homomorphism

R −→ R, f 7−→ fp
e

.

Definition 1.2. Let K denote a field of positive characteristic p, let K ⊆ R
be a noetherian ring and let I ⊆ R be an ideal which is primary to some
maximal ideal of height d. Then the Hilbert-Kunz multiplicity of I is the
limit (if it exists)

lim
e→∞

length (R/I [p
e])

ped
= lim

e→∞

ϕI(e)

ped
.

The Hilbert-Kunz multiplicity of the maximal ideal of a local noetherian ring
R is called the Hilbert-Kunz multiplicity of R. The existence of Hilbert-Kunz
multiplicity was proven by Monsky [19].

Theorem 1.3. Let K denote a field of positive characteristic p, let K ⊆ R
be a noetherian ring and let I ⊆ R be an ideal which is primary to some
maximal ideal. Then the Hilbert-Kunz multiplicity eHK(I) exists and is a
positive real number.

With the help of the Hilbert-Kunz multiplicity of a local noetherian ring one
may characterize when R is regular, as the following theorem shows (which
was initiated by Kunz in 1969 but finally proven by Watanabe and Yoshida
in 2000 [23]).
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Theorem 1.4. Let R be a local noetherian ring of positive characteristic.
Then the following hold.

(1) The Hilbert-Kunz multiplicity of R is eHK(R) ≥ 1.
(2) If R is unmixed, then eHK(R) = 1 if and only if R is regular.

1.2. Vector bundles. We will have a look at Hilbert-Kunz theory and tight
closure (to be introduced in the next lecture) from the viewpoint of vector
bundles. To motivate this concept, which exists in algebraic geometry, differ-
ential geometry, topology, mathematical physics, we go back to linear algebra.
Let K be a field. We consider a system of linear homogeneous equations over
K,

f11t1 + · · ·+ f1ntn = 0,

f21t1 + · · ·+ f2ntn = 0,

...

fm1t1 + · · ·+ fmntn = 0,

where the fij are elements in K. The solution set to this system of homo-
geneous equations is a vector space V over K (a linear subspace of Kn), its
dimension is n− rk(A), where

A = (fij)ij

is the matrix given by these elements. Suppose now that X is a geometric
object (a topological space, a manifold, a variety, a scheme, the spectrum of
a ring) and that instead of elements in the field K we have functions

fij : X −→ K

on X (which are continuous, or differentiable, or algebraic). We form the
matrix of functions A = (fij)ij, which yields for every point P ∈ X a

matrix A(P ) over K. Then we get from these data the space

V =

(P ; t1, . . . , tn) | A(P )

t1...
tn

 = 0

 ⊆ X ×Kn

together with the projection to X. For a fixed point P ∈ X, the fiber VP of
V over P is the solution space to the corresponding system of homogeneous
linear equations given by inserting P into fij. In particular, all fibers of the
map

V −→ X ,

are vector spaces (maybe of non-constant dimension). These vector space
structures yield an addition1

V ×X V −→ V, (P ; s1, . . . , sn; t1, . . . , tn) 7−→ (P ; s1 + t1, . . . , sn + tn) ,

1V ×X V is the fiber product of V → X with itself.
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(only points in the same fiber can be added). The mapping

X −→ V, P 7−→ (P ; 0, . . . , 0) ,

is called the zero-section. If we have just one equation with functions f1, . . . , fn
and if U ⊆ X denotes the open subset where not all fi vanish, then we get
a short exact sequence

0 −→ V |U −→ U ×Kn −→ U ×K −→ 0 .

If D(fi) ⊆ U denotes the locus where fi does not vanish, then we get a
linear isomorphism

V |D(fi) −→ D(fi)×Kn−1, (t1, . . . , tn) 7−→ (t1, . . . , ti−1, ti+1, , . . . , , tn) ,

as we can reconstruct

ti = − 1

fi
(t1f1 + · · ·+ ti−1fi−1 + ti+1fi+1 + · · ·+ tnfn)

from the other variables. This local trivialization also shows that, on the
intersection D(fi)∩D(fj), the transformation between two trivializations is
linear. So locally, the object V |U is trivial, but globally it might be compli-
cated.

We now consider the scheme version of a vector bundle and in particular of
a syzygy bundle (kernel bundle), trying to keep the idea that we are dealing
with objects from linear algebra, but over a varying base. Let R denote a
commutative ring, let I denote an ideal and fix generators I = (f1, . . . , fn).
This defines a short exact sequence of R-modules

0 −→ Syz (f1, . . . , fn) −→ Rn f1,...,fn−→ I −→ 0 .

The syzygy module Syz (f1, . . . , fn) is not locally free on X = Spec (R).
However, on the open subset

U = D(I) =
n⋃
i=1

D(fi) ⊆ X

defined by the ideal, this module will be locally free, since it is free on each
D(fi), using the same trivialization as above. Moreover, on U we get the
short exact sequence

0 −→ Syz (f1, . . . , fn)|U −→ OnU
f1,...,fn−→ OU −→ 0

of coherent sheaves. Later on, I will be an m-primary ideal in a local noe-
therian ring R and then

U = X \ {m}
will be the punctured spectrum of R. The sheaves occurring in the last
sequence are locally free in the following sense.

Definition 1.5. A coherent OX-module F on a scheme X is called locally
free of rank r, if there exists an open covering X =

⋃
i∈I Ui and OUi

-module-
isomorphisms F|Ui

∼= (OUi
)r for every i ∈ I.
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An equivalent concept of a locally free sheaf is the concept of a geometric
vector bundle.

Definition 1.6. Let X denote a scheme. A scheme V equipped with a
morphism

p : V −→ X

is called a geometric vector bundle of rank r over X if there exists an open
covering X =

⋃
i∈I Ui and Ui-isomorphisms

ψi : Ui × Ar = Ar
Ui
−→ V |Ui

= p−1(Ui)

such that for every open affine subset U ⊆ Ui ∩Uj, the transition mappings

ψ−1j ◦ ψi : Ar
Ui
|U −→ Ar

Uj
|U

are linear automorphisms, i.e. they are induced by an automorphism of the
polynomial ring Γ(U,OX)[T1, . . . , Tr] given by Ti 7→

∑r
j=1 aijTj.

We will work with both concepts and switch between them as needed.

1.3. The graded case. We will restrict now to the standard-graded case in
order to work on the corresponding projective variety. Let R be a standard-
graded normal domain over an algebraically closed field K. Let

Y = Proj (R)

be the corresponding projective variety and let

I = (f1, . . . , fn)

be an R+-primary homogeneous ideal with generators of degrees d1, . . . , dn.
Then we get on Y the short exact sequence

0 −→ Syz (f1, . . . , fn)(m) −→
n⊕
i=1

OY (m− di)
f1,...,fn−→ OY (m) −→ 0 .

Here Syz (f1, . . . , fn)(m) is a vector bundle, called the syzygy bundle, its rank
is n− 1.

Our approach to the computation of the Hilbert-Kunz multiplicity is by using
the presenting sequence

0 −→ Syz (f1, . . . , fn) −→
n⊕
i=1

OY (−di)
f1,...,fn−→ OY −→ 0

and twists of its e-th Frobenius pull-backs, that is

0 −→ Syz (f q1 , . . . , f
q
n)(m) −→

n⊕
i=1

OY (m− qdi)
fq1 ,...,f

q
n−→ OY (m) −→ 0

(where q = pe), and to relate the asymptotic behavior of

length (R/I [q]) = dimK (R/I [q]) =
∞∑
m=0

dimK (R/I [q])m
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to the asymptotic behavior of the global sections of the Frobenius pull-backs

(F e∗(Syz (f1, . . . , fn))(m) = Syz (f q1 , . . . , f
q
n)(m).

What we want to compute is just the cokernel of the complex of global
sections of the above sequence, namely

dimK (R/I [q])m = h0(Y,OY (m))−
n∑
i=1

h0(Y,OY (m−qdi))+h0(Y, Syz (f q1 , . . . , f
q
n)(m)).

The summation over m is finite (but the range depends on q), and the terms

h0(Y,OY (m)) = dimK Γ(Y,OY (m)) = dimK Rm

are easy to control, so we have to understand the behavior of the global
syzygies

H0(Y, Syz (f q1 , . . . , f
q
n)(m))

for all q and m, at least asymptotically. This is a Frobenius-Riemann-Roch
problem.

By this translation of Hilbert-Kunz theory into a projective setting, we gain
the following.

(1) We work with projective varieties; if we look at local rings with an
isolated singularity, we even work on smooth projective varieties.

(2) We work with locally free sheaves. Taking Frobenius pull-backs is
then exact. The mentioned Frobenius-Riemann-Roch problem is not
specific for syzygy bundles, but should be addressed in general.

(3) We can use the advanced methods of algebraic geometry, like intersec-
tion theory, Riemann-Roch theorem, vanishing theorems, ampleness,
cohomology, moduli spaces.

This is still a difficult problem in general. However, if the local normal
ring has dimension two and the corresponding variety is a smooth projective
curve, then our understanding is good enough to solve the main problems
from Hilbert-Kunz theory. The main advantages in the curve case compared
with higher-dimensional varieties are the following.

(1) The degree of a vector bundle is independent of a polarization.
(2) There are only the 0th and the first cohomology, which are directly

related by Serre-duality.
(3) The Riemann-Roch theorem relates these notions.
(4) Semistability gives good criteria for having no global sections.

We introduce these concepts on a smooth projective curve C over an alge-
braically closed field K.

Definition 1.7. Let C denote a smooth projective curve over an algebraically
closed field K. For a locally free sheaf G on C of rank r we define its degree
by the degree of the determinant sheaf

∧r G.
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The determinant bundle is an invertible sheaf and corresponds therefore to
a Weil divisor, say

D =
∑
P∈C

nPP,

its degree is defined by
∑

P∈C nP . The degree of the curve itself is defined
as the degree of OC(1). The degree of bundles is additive on short exact
sequences of locally free sheaves. Applying additivity to

0 −→ Syz (f1, . . . , fn)(m) −→
n⊕
i=1

OC(m− di)
f1,...,fn−→ OC(m) −→ 0

we get

deg (Syz (f1, . . . , fn)(m)) = ((n− 1)m−
n∑
i=1

di) deg (C).

Definition 1.8. Let S be a vector bundle on a smooth projective curve C.

It is called semistable, if µ(T ) = deg(T )
rk(T ) ≤

deg(S)
rk(S) = µ(S) for all subbundles

T ⊆ S.
Suppose that the base field has positive characteristic p > 0. Then S is
called strongly semistable, if all (absolute) Frobenius pull-backs F e∗(S) are
semistable.

The rational number µ(S) = deg(S)
rk(S) is called the slope of a vector bundle.

An important property of a semistable bundle of negative degree is that it
can not have any global section 6= 0. The semistable bundles are those for
which there exists a moduli space.

Example 1.9. Let R = K[x, y, z]/(x3 + y3 + z3), where K is a field of
positive characteristic p 6= 3, I = (x2, y2, z2), and

C = Proj (R).

The equation x3 + y3 + z3 = 0 yields the short exact sequence

0 −→ OC −→ Syz
(
x2, y2, z2

)
(3) −→ OC −→ 0 .

This shows that Syz (x2, y2, z2) is strongly semistable.

Example 1.10. Let C be the smooth Fermat quartic given by x4 + y4 + z4,
and consider on it the syzygy bundle Syz (x, y, z) (which is also the restricted
cotangent bundle from the projective plane). This bundle is semistable. Sup-
pose that the characteristic is 3. Then its Frobenius pull-back is Syz (x3, y3, z3).
The curve equation gives a global non-trivial section of this bundle of total
degree 4. But the degree of Syz (x3, y3, z3)(4) is negative, hence it can not
be semistable anymore.
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Definition 1.11. Let S be a vector bundle on a smooth projective curve
C over an algebraically closed field K. Then the (uniquely determined)
filtration

0 = S0 ⊂ S1 ⊂ . . . ⊂ St−1 ⊂ St = S
of subbundles such that all quotient bundles Sk/Sk−1 are semistable with de-
creasing slopes µk = µ(Sk/Sk−1), is called the Harder-Narasimhan filtration
of S.

Theorem 1.12. Let C denote a smooth projective curve over an algebraically
closed field of positive characteristic p, and let S be a vector bundle on C.
Then there exists a natural number e ∈ N such that the Harder-Narasimhan
filtration of the eth Frobenius pull-back F e∗(S), say

0 = S0 ⊂ S1 ⊂ . . . ⊂ St−1 ⊂ St = F e∗(S)

has the property that the quotients Sk/Sk−1 are strongly semistable.

This theorem is due to A. Langer [18] and holds also in higher dimension. An
immediate consequence of this is that the Harder-Narasimhan filtration of
all higher Frobenius pull-backs are just the pull-backs of this filtration. With
these filtrations we can at least Frobenius-asymptotically control the global
sections of the pull-backs and hence also the Hilbert-Kunz multiplicity. This
implies the following theorem [3], [22].

Theorem 1.13. Let R be a two-dimensional standard-graded normal do-
main over an algebraically closed field of positive characteristic. Let I =
(f1, . . . , fn) be a homogeneous R+-primary ideal with homogeneous generators
of degree di. Let S = Syz (f1, . . . , fn) be the syzygy bundle on C = Proj (R)
and suppose that the Harder-Narasimhan filtration of F e∗(S) is strong, and
let µk, k = 1, . . . , t, be the corresponding slopes. We set νk = −µk

deg (C)pe
and

rk = rk (Sk/Sk−1). Then the Hilbert-Kunz multiplicity of I is

eHK(I) =
deg (C)

2

(
t∑

k=1

rkν
2
k −

n∑
i=1

d2i

)
.

In particular, it is a rational number.

Corollary 1.14. Let R = K[x, y, z]/(H) be a normal homogeneous hyper-
surface domain of dimension two and degree δ over an algebraically closed
field of positive characteristic. Then there exists a rational number ν2,
3
2
≤ ν2 ≤ 2, such that the Hilbert-Kunz multiplicity of R is

eHK(R) = δ
(
ν22 − 3ν2 + 3

)
.
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2. Lecture - Tight closure and torsors

2.1. Tight closure.

Definition 2.1. Let R be a noetherian domain of positive characteristic and
let I ⊆ R be an ideal. The tight closure of I is the ideal

I∗ =
{
f ∈ R | there exists z 6= 0 such that zf q ∈ I [q] for all q = pe

}
.

This theory was introduced by M. Hochster and C. Huneke (see [12], [13],
[14], [15]). There is a direct relation between Hilbert-Kunz multiplicity and
tight closure.

Theorem 2.2. Let (R,m) be an analytically unramified and formally equidi-
mensional local noetherian ring of positive characteristic, let I ⊆ R be an
m-primary ideal. Let f ∈ R. Then

f ∈ I∗ if and only if eHK((I, f)) = eHK(I) .

We try to understand tight closure from the perspective of bundles and will
have again a look at the syzygy bundle. Let R denote a noetherian normal
domain and let I = (f1, . . . , fn) denote an ideal of height I at least 2 (think
of a local normal domain of dimension at least 2 and an m-primary ideal
I, or the graded version of this). Let U = D(I) ⊆ Spec (R) and consider
again the short exact sequence

0 −→ Syz (f1, . . . , fn)|U −→ OnU
f1,...,fn−→ OU −→ 0

of locally free sheaves on U . Another element f ∈ R = Γ(U,OU) (because
of the height condition) defines via the long exact sequence of cohomology
the cohomology class c = δ(f) ∈ H1(U, Syz (f1, . . . , fn)). When R contains
a field of positive characteristic, we try to understand tight closure in terms
of this cohomology class. Quite directly, we have the eth absolute Frobenius
on U . As the sheaves are locally free, we have

F e∗(Syz (f1, . . . , fn)) = Syz (f q1 , . . . , f
q
n),

and the eth Frobenius pull-back of the cohomology class is

F e∗(c) ∈ H1(D(I), F e∗(Syz (f1, . . . , fn)) ∼= H1(D(I), Syz (f q1 , . . . , f
q
n))

(q = pe), and this is the cohomology class corresponding to f q. By the
height assumption, we have zF e∗(c) = 0 if and only if zf q ∈ (f q1 , . . . , f

q
n),

and this holds for all e if and only if f ∈ I∗ by definition. This shows
already that under the given conditions, tight closure does only depend on
the cohomology class. In the graded case, we can also translate the tight
closure question f ∈ I∗ for homogeneous data into the question whether the
corresponding cohomology class c ∈ H1(Y, Syz (f1, . . . , fn)(m)) on Proj (R)
is tightly zero in the sense that zF e∗(c) = 0 holds for some homogenous
z 6= 0 (z considered inside some ample invertible sheafOY (`)). This property
of being tightly zero is relevant for every cohomology class in any locally free
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sheaf. Here, this translation is in particular helpful for inclusion results. For
exclusion results we have to go another way and consider torsors.

2.2. Torsors and forcing algebras. We come back to the situation of a
system of linear homogeneous equations over a field K with which we tried
to motivate the concept of a vector bundle. However, we now consider a
system of linear inhomogeneous equations,

f11t1 + · · ·+ f1ntn = f1,

f21t1 + · · ·+ f2ntn = f2,

...

fm1t1 + · · ·+ fmntn = fm.

The solution set T of this inhomogeneous system may be empty, but never-
theless it is tightly related to the solution space of the homogeneous system.
First of all, there exists an action

V × T −→ T, (v, t) 7−→ v + t ,

because the sum of a solution of the homogeneous system and of a solution of
the inhomogeneous system is again a solution of the inhomogeneous system.
This action is a group action of the group (V,+, 0) on the set T . Moreover,
if we fix one solution t0 ∈ T (supposing that at least one solution exists),
then there exists a bijection

V −→ T, v 7−→ v + t0 .

This means that the group V acts simply transitive on T , and so T can be
identified with the vector space V , however not in a canonical way.

Suppose now that X is a geometric object and we have functions

fij, fi : X −→ K

on X (which are continuous, or differentiable, or algebraic). As before, we
get for the fij a bundle with an addition and such that the fibers are vector
spaces.

Then we can form the set

T =

(P ; t1, . . . , tn) | A(P )

t1...
tn

 =

f1(P )
...

fn(P )

 ⊆ X ×Kn

with the projection to X. Again, every fiber TP of T over a point P ∈ X is
the solution set to the system of inhomogeneous linear equations which arises
by inserting P into fij and fi. The actions of the fibers VP on TP (coming
from linear algebra) extend to an action

V ×X T −→ T, (P ; t1, . . . , tn; s1, . . . , sn) 7−→ (P ; t1 + s1, . . . , tn + sn) .
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Also, if a (continuous, differentiable, algebraic) map

s : X −→ T

with s(P ) ∈ TP exists, then we can construct a (continuous, differentiable,
algebraic) isomorphism between V and T . However, different from the situ-
ation in linear algebra (which corresponds to the situation where X is just
one point), such a section does rarely exist.

These objects T have new and sometimes difficult global properties which we
try to understand. We will work mainly in an algebraic setting and restrict
to the situation where just one equation

f1T1 + · · ·+ fnTn = f

is given. Then in the homogeneous case ( f = 0) the fibers are vector spaces
of dimension n − 1 or n, and the later holds exactly for the points P ∈ X
where f1(P ) = . . . = fn(P ) = 0. In the inhomogeneous case the fibers are
either empty or of dimension n− 1 or n. We give a typical example.

Example 2.3. Let X denote a plane (like K2,R2,A2
K) with coordinate func-

tions x and y. We consider an inhomogeneous linear equation of type

xat1 + ybt2 = xcyd.

The fiber of the solution set T over a point 6= (0, 0) is one-dimensional,
whereas the fiber over (0, 0) has dimension two (for a, b, c, d ≥ 1). Many
properties of T depend on these four exponents.

In (most of) these example, we can observe the following behavior. On an
open subset, the dimension of the fibers is constant and equals n−1, whereas
the fiber over some special points degenerates to an n-dimensional solution
set (or becomes empty).

Definition 2.4. Let V denote a geometric vector bundle over a scheme X.
A scheme T → X together with an action

β : V ×X T −→ T

is called a geometric (Zariski)-torsor for V (or a principal fiber bundle or a
principal homogeneous space) if there exists an open covering X =

⋃
i∈I Ui

and isomorphisms
ϕi : T |Ui

−→ V |Ui

such that the diagrams (we set U = Ui and ϕ = ϕi)

V |U ×U T |U
β−→ T |U

Id×ϕ ↓ ↓ ϕ
V |U ×U V |U

α−→ V |U
commute, where α is the addition on the vector bundle.

The torsors of vector bundles can be classified in the following way.
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Proposition 2.5. Let X denote a noetherian separated scheme and let

p : V −→ X

denote a geometric vector bundle on X with sheaf of sections S. Then there
exists a correspondence between first cohomology classes c ∈ H1(X,S) and
geometric V -torsors.

Remark 2.6. Let S denote a locally free sheaf on a scheme X. For a coho-
mology class c ∈ H1(X,S) one can construct a geometric object: Because
of H1(X,S) ∼= Ext1(OX ,S), the class defines an extension

0 −→ S −→ S ′ −→ OX −→ 0 .

This extension is such that under the connecting homomorphism of coho-
mology, 1 ∈ Γ(X,OX) is sent to c ∈ H1(X,S). The extension yields a
projective subbundle2

P(S∨) ⊂ P(S ′∨).
If V is the corresponding geometric vector bundle of S, one may think of
P(S∨) as P(V ) which consists for every base point x ∈ X of all the lines in
the fiber Vx passing through the origin. The projective subbundle P(V ) has
codimension one inside P(V ′), for every point it is a projective space lying
(linearly) inside a projective space of one dimension higher. The complement
is then over every point an affine space. One can show that the global
complement

T = P(S ′∨) \ P(S∨)
is another model for the torsor given by the cohomology class. The advantage
of this viewpoint is that we may work, in particular when X is projective, in
an entirely projective setting.

Within the algebraic setting, torsors can also be realized as open subsets of
spectra of forcing algebras.

Definition 2.7. Let R be a commutative ring and let f1, . . . , fn and f be
elements in R. Then the R-algebra

R[T1, . . . , Tn]/(f1T1 + · · ·+ fnTn − f)

is called the forcing algebra of these elements (or these data).

Theorem 2.8. Let R denote a noetherian ring, let I = (f1, . . . , fn) denote
an ideal and let f ∈ R be another element. Let c = δ(f) ∈ H1(D(I), Syz (f1, . . . , fn))
be the corresponding cohomology class and let

B = R[T1, . . . , Tn]/(f1T1 + · · ·+ fnTn − f)

2S∨ denotes the dual bundle. According to our convention, the geometric vector bundle
corresponding to a locally free sheaf T is given by Spec

(
⊕k≥0S

k(T )
)

and the projective

bundle is Proj
(
⊕k≥0S

k(T )
)
, where Sk denotes the kth symmetric power.
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denote the forcing algebra for these data. Then the scheme Spec (B)|D(I)

together with the natural action of the syzygy bundle on it is isomorphic to
the torsor given by c.

Forcing algebras provide a natural framework for closure operations in gen-
eral, it is however a special feature of tight closure that the induced torsor
contains the relevant information.

2.3. Tight closure and solid closure. Forcing algebras occurred in the
work of Hochster on solid closure. The following theorem of Hochster [11,
Theorem 8.6] gives a characterization of tight closure in terms of forcing
algebra and local cohomology.

Theorem 2.9. Let R be a normal excellent local domain with maximal ideal
m over a field of positive characteristic. Let f1, . . . , fn generate an m-primary
ideal I and let f be another element in R. Then f ∈ I∗ if and only if

H
dim(R)
m (A) 6= 0, where A = R[T1, . . . , Tn]/(f1T1 + · · ·+ fnTn + f) denotes

the forcing algebra of these elements.

If the dimension d is at least two, then

Hd
m(R) −→ Hd

m(B) ∼= Hd
mB(B) ∼= Hd−1(D(mB),OB) .

This means that we have to look at the cohomological properties of the
complement of the exceptional fiber over the closed point, i.e. the torsor
given by these data. If Hd−1(D(mB),OB) = 0 then this is true for all
quasicoherent sheaves instead of just the structure sheaf. This property
can be expressed by saying that the cohomological dimension of D(mB) is
≤ d−2 and thus smaller than the cohomological dimension of the punctured
spectrum D(m), which is exactly d− 1. So belonging to tight closure can be
rephrased by saying that the formation of the corresponding torsor does not
change the cohomological dimension.

If the dimension is two, then we have to look whether the first cohomology of
the structure sheaf vanishes. This is true (by Serre’s cohomological criterion
for affineness) if and only if the open subset D(mB) is an affine scheme (the
spectrum of a ring).

The right hand side of the equivalence in Theorem 2.9 (the non-vanishing
of the top-dimensional local cohomology) is independent of any characteris-
tic assumption, and can be taken as the basis for the definition of another
closure operation, called solid closure. So the theorem above says that in
positive characteristic, tight closure and solid closure coincide. There is also
a definition of tight closure for algebras over a field of characteristic 0 by
reduction to positive characteristic.

2.4. The graded two-dimensional case. In the situation of a forcing alge-
bra of homogeneous elements, this torsor T can also be obtained as Proj (B),
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where B is the (not necessarily positively) graded forcing algebra. In par-
ticular, it follows that the containment f ∈ I∗ is equivalent to the property
that T is not an affine variety. For this properties, positivity (ampleness)
properties of the syzygy bundle are crucial. We need again the concept of
semistability introduced in the first lecture.

For a strongly semistable vector bundle S on C and a cohomology class
c ∈ H1(C,S) with corresponding torsor we obtain the following affineness
criterion.

Theorem 2.10. Let C denote a smooth projective curve over an algebraically
closed field K and let S be a strongly semistable vector bundle over C together
with a cohomology class c ∈ H1(C,S). Then the torsor T (c) is an affine
scheme if and only if deg (S) < 0 and c 6= 0 (F e(c) 6= 0 for all e in positive
characteristic3).

This result rests on the ampleness of S ′∨ occuring in the dual exact sequence
0 → OC → S ′∨ → S∨ → 0 given by c (this rests on work of Gieseker and
Hartshorne(see [9], [10]). It implies for a strongly semistable syzygy bundle
the following degree formula for tight closure.

Theorem 2.11. Suppose that Syz (f1, . . . , fn) is strongly semistable. Then

Rm ⊆ I∗ for m ≥
∑
di

n− 1
and (for almost all prime numbers) Rm∩I∗ ⊆ I for m <

∑
di

n− 1
.

If we take on the right hand side IF , the Frobenius closure of the ideal,
instead of I, then this statement is true for all characteristics. As stated, it
is true in a relative setting for p large enough.

We indicate the proof of the inclusion result. The degree condition implies
that c ∈ δ(f) = H1(C,S) is such that S = Syz (f1, . . . , fn)(m) has non-
negative degree. Then also all Frobenius pull-backs F ∗(S) have non-negative
degree. Let L = O(k) be a twist of the tautological line bundle on C such
that its degree is larger than the degree of ω−1C , the dual of the canonical sheaf.
Let z ∈ H0(Y,L) be a non-zero element. Then zF e∗(c) ∈ H1(C,F e∗(S) ⊗
L), and by Serre duality we have

H1(C,F e∗(S)⊗ L) ∼= H0(F e∗(S∨)⊗ L−1 ⊗ ωC)∨.

On the right hand side we have a semistable sheaf of negative degree, which
can not have a non-trivial section. Hence

zF e∗(c) = 0,

and therefore f belongs to the tight closure.

In general, there exists an exact criterion for the affineness of the torsor T (c)
depending on c and the strong Harder-Narasimhan filtration of S.

3Here one has to check only finitely many es and there exist good estimates how far one
has to go. Also, in a relative situation, this is only an extra condition for finitely many
prime numbers.
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Theorem 2.12. Let C denote a smooth projective curve over an algebraically
closed field K and let S be a vector bundle over C together with a cohomology
class c ∈ H1(C,S). Let

S1 ⊂ S2 ⊂ . . . ⊂ St−1 ⊂ St = F e∗(S)

be a strong Harder-Narasimhan filtration. We choose i such that Si/Si−1 has
degree ≥ 0 and that Si+1/Si has degree < 0. We set Q = F e∗(S)/Si. Then
the following are equivalent.

(1) The torsor T (c) is not an affine scheme.
(2) Some Frobenius power of the image of F e∗(c) inside H1(X,Q) is 0.

3. Lecture - Plus closure and trivializable bundles

3.1. Plus closure. For an ideal I ⊆ R in a domain R define its plus closure
by

I+ = {f ∈ R | there exists a finite domain extension R ⊆ T such that f ∈ IT}.

Equivalent: Let R+ be the absolute integral closure of R. This is the integral
closure of R in an algebraic closure of the quotient field Q(R) (first considered
by Artin [1]). Then

f ∈ I+ if and only if f ∈ IR+ .

The plus closure commutes with localization.

We also have the inclusion I+ ⊆ I∗. Here the question arises:

Question: Is I+ = I∗?

This question is known as the tantalizing question in tight closure theory.

In terms of forcing algebras and their torsors, the containment inside the plus
closure means that there exists a d-dimensional closed subscheme inside the
torsor which meets the exceptional fiber (the fiber over the maximal ideal) in
isolated points, and this means that the so-called superheight of the extended
ideal is d. In this case the local cohomological dimension of the torsor must
be d as well, since it contains a closed subscheme with this cohomological
dimension. So also the plus closure depends only on the torsor.

In characteristic zero, the plus closure behaves very differently compared
with positive characteristic. If R is a normal domain of characteristic 0, then
the trace map shows that the plus closure is trivial, I+ = I for every ideal
I.

3.2. Plus closure in dimension two. Let K be a field and let R be a
normal two-dimensional standard-graded domain over K with corresponding
smooth projective curve C. A homogeneous m-primary ideal with homo-
geneous ideal generators f1, . . . , fn and another homogeneous element f of
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degree m yield a cohomology class

c = δ(f) = H1(C, Syz (f1, . . . , fn)(m)).

Let T (c) be the corresponding torsor. We have seen that the affineness of
this torsor over C is equivalent to the affineness of the corresponding torsor
over D(m) ⊆ Spec (R) (and to the property of not belonging to the tight
closure). Now we want to understand what the property f ∈ I+ means for
c and for T (c). Instead of the plus closure we will work with the graded plus
closure I+gr, where f ∈ I+gr holds if and only if there exists a finite graded
extension R ⊆ S such that f ∈ IS. The existence of such an S translates
into the existence of a finite morphism

ϕ : C ′ = Proj (S) −→ Proj (R) = C

such that ϕ∗(c) = 0. Here we may assume that C ′ is also smooth. Therefore,
we discuss the more general question when a cohomology class c ∈ H1(C,S),
where S is a locally free sheaf on C, can be annihilated by a finite morphism

C ′ −→ C

of smooth projective curves. The advantage of this more general approach is
that we may work with short exact sequences (in particular, the sequences
coming from the Harder-Narasimhan filtration) in order to reduce the prob-
lem to semistable bundles which do not necessarily come from an ideal situ-
ation.

Lemma 3.1. Let C denote a smooth projective curve over an algebraically
closed field K, let S be a locally free sheaf on C and let c ∈ H1(C,S) be
a cohomology class with corresponding torsor T → C. Then the following
conditions are equivalent.

(1) There exists a finite morphism

ϕ : C ′ −→ C

from a smooth projective curve C ′ such that ϕ∗(c) = 0.
(2) There exists a projective curve Z ⊆ T.

Proof. If (1) holds, then the pull-back ϕ∗(T ) = T×CC ′ is trivial (as a torsor),
as it equals the torsor given by ϕ∗(c) = 0. Hence ϕ∗(T ) is isomorphic to a
vector bundle and contains in particular a copy of C ′. The image Z of this
copy is a projective curve inside T .

If (2) holds, then let C ′ be the normalization of Z. Since Z dominates C,
the resulting morphism

ϕ : C ′ −→ C

is finite. Since this morphism factors through T and since T annihilates the
cohomology class by which it is defined, it follows that ϕ∗(c) = 0. �
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We want to show that the cohomological criterion for (non)-affineness of a
torsor along the Harder-Narasimhan filtration of the vector bundle also holds
for the existence of projective curves inside the torsor, under the condition
that the projective curve is defined over a finite field. This implies that
tight closure is (graded) plus closure for graded m-primary ideals in a two-
dimensional graded domain over a finite field.

3.3. Annihilation of cohomology classes of strongly semistable sheaves.
We deal first with the situation of a strongly semistable sheaf S of degree 0.
The following two results are due to Lange and Stuhler [17]. We say that a
locally free sheaf is étale trivializable if there exists a finite étale morphism
ϕ : C ′ → C such that ϕ∗(S) ∼= OrC′ . Such bundles are directly related to
linear representations of the étale fundamental group.

Lemma 3.2. Let K denote a finite field (or the algebraic closure of a finite
field) and let X be a smooth projective curve over K. Let S be a locally free
sheaf over X. Then S is étale trivializable if and only if there exists some n
such that F n∗S ∼= S.

Theorem 3.3. Let K denote a finite field (or the algebraic closure of a finite
field) and let X be a smooth projective curve over K. Let S be a strongly
semistable locally free sheaf over X of degree 0. Then there exists a finite
morphism

ϕ : Y −→ X

such that ϕ∗(S) is trivial.

Proof. We consider the family of locally free sheaves F e∗(S), e ∈ N. Because
these are all semistable of degree 0, and defined over the same finite field,
we must have (by the existence of the moduli space for vector bundles) a
repetition, i.e.

F e∗(S) ∼= F e′∗(S)

for some e′ > e. By Lemma 3.2, the bundle F e∗(S) admits an étale triv-
ialization ϕ : Y → X. Hence the finite map F e ◦ ϕ trivializes the bundle.

�

Theorem 3.4. Let K denote a finite field (or the algebraic closure of a
finite field) and let X be a smooth projective curve over K. Let S be a
strongly semistable locally free sheaf over X of nonnegative degree and let c ∈
H1(X,S) denote a cohomology class. Then there exists a finite morphism

ϕ : Y −→ X

such that ϕ∗(c) is trivial.

Proof. If the degree of S is positive, then a Frobenius pull-back F e∗(S) has
arbitrary large degree and is still semistable. By Serre duality we get that
H1(X,F e∗(S)) = 0. So in this case we can annihilate the class by an iteration
of the Frobenius alone.
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So suppose that the degree is 0. Then there exists by Theorem 3.3 a finite
morphism which trivializes the bundle. So we may assume that S ∼= OrX .
Then the cohomology class has several components ci ∈ H1(X,OX) and
it is enough to annihilate them separately by finite morphisms. But this
is possible by the parameter theorem of K. Smith [21] (or directly using
Frobenius and Artin-Schreier extensions). �

3.4. The general case. We look now at an arbitrary locally free sheaf S
on C, a smooth projective curve over a finite field. We want to show that
the same numerical criterion (formulated in terms of the Harder-Narasimhan
filtration) for non-affineness of a torsor holds also for the finite annihilation
of the corresponding cohomomology class (or the existence of a projective
curve inside the torsor).

Theorem 3.5. Let K denote a finite field (or the algebraic closure of a
finite field) and let X be a smooth projective curve over K. Let S be a locally
free sheaf over X and let c ∈ H1(X,S) denote a cohomology class. Let
S1 ⊂ . . . ⊂ St be a strong Harder-Narasimhan filtration of F e∗(S). We
choose i such that Si/Si−1 has degree ≥ 0 and that Si+1/Si has degree < 0.
We set Q = F e∗(S)/Si. Then the following are equivalent.

(1) The class c can be annihilated by a finite morphism.
(2) Some Frobenius power of the image of F e∗(c) inside H1(X,Q) is 0.

Proof. Suppose that (1) holds. Then the torsor is not affine and hence by
Theorem 2.12 also (2) holds.

So suppose that (2) is true. By applying a certain power of the Frobenius,
we may assume that the image of the cohomology class in Q is 0. Hence the
class stems from a cohomology class ci ∈ H1(X,Si). We look at the short
exact sequence

0 −→ Si−1 −→ Si −→ Si/Si−1 −→ 0 ,

where the sheaf on the right hand side has a nonnegative degree. Therefore
the image of ci in H1(X,Si/Si−1) can be annihilated by a finite morphism
due to Theorem 3.4. Hence, after applying a finite morphism, we may as-
sume that ci stems from a cohomology class ci−1 ∈ H1(X,Si−1). Going on
inductively we see that c can be annihilated by a finite morphism. �

Theorem 3.6. Let C denote a smooth projective curve over the algebraic
closure of a finite field K, let S be a locally free sheaf on C and let c ∈
H1(C,S) be a cohomology class with corresponding torsor T → C. Then T
is affine if and only if it does not contain any projective curve.

Proof. Due to Theorem 2.12 and Theorem 3.5, for both properties the same
numerical criterion does hold. �
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These results imply the following theorem in the setting of a two-dimensional
graded ring.

Theorem 3.7. Let R be a standard-graded, two-dimensional normal domain
over (the algebraic closure of) a finite field. Let I be an R+-primary graded
ideal. Then

I∗ = I+.

This is also true for non-primary graded ideals and also for submodules in
finitely generated graded submodules. Moreover, G. Dietz [8] has shown that
one can get rid also of the graded assumption (of the ideal or module, but
not of the ring).

4. Lecture - Deformations and localization problem

After having understood tight closure and plus closure in the two-dimensional
situation we proceed to a special three-dimensional situation, namely families
of two-dimensional rings parametrized by a one-dimensional base scheme.

4.1. Affineness under deformations. We consider a base scheme B and
a morphism

Z −→ B

together with an open subscheme W ⊆ Z. For every base point b ∈ B we
get the open subset

Wb ⊆ Zb

inside the fiber Zb. It is a natural question to ask how properties of Wb vary
with b. In particular, we may ask how the cohomological dimension of Wb

varies and how the affineness (the cohomological dimension of a scheme X is
the maximal number i such that H i(X,F) 6= 0 for some quasicoherent sheaf
F . A noetherian scheme is affine if and only if its cohomological dimension
is 0. Tight closure can be characterized by the cohomological dimension of
torsors) may vary.

In the algebraic setting, we have a commutative K-algebra D, a commutative
D-algebra S and an ideal a ⊆ S (so B = Spec (D) Z = Spec (S) and
W = D(a)) which defines for every prime ideal p ∈ Spec (D) the extended
ideal ap in S ⊗D κ(p). Then in this situation, D(ap) ⊆ Spec (S ⊗D κ(p)) is
the fiber over p.

This question is already interesting when B = Spec (D) is an affine one-
dimensional integral scheme, in particular in the following two situations.

(1) B = Spec (Z). Then we speak of an arithmetic deformation and want
to know how affineness varies with the characteristic and what the
relation is to characteristic zero.
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(2) B = A1
K = Spec (K[t]), where K is a field. Then we speak of a

geometric deformation and want to know how affineness varies with
the parameter t, in particular how the behavior over the special points
where the residue class field is algebraic over K is related to the
behavior over the generic point.

It is fairly easy to show that if the open subset in the generic fiber is affine,
then also the open subsets are affine for almost all special points.

We deal with this question where W is a torsor over a family of smooth
projective curves (or a torsor over a punctured two-dimensional spectrum).
The arithmetic as well as the geometric variant of this question are directly
related to questions in tight closure theory. Because of the above mentioned
degree criteria in the strongly semistable case (see Theorem 2.11), a weird
behavior of the affineness property of torsors is only possible if we have a
weird behavior of strong semistability.

4.2. Arithmetic deformations. We start with the arithmetic situation,
the following example is due to Brenner and Katzman [6].

Example 4.1. Consider Z[x, y, z]/(x7 + y7 + z7) and take the ideal I =
(x4, y4, z4) and the element f = x3y3. Consider reductions Z → Z/(p).
Then

f ∈ I∗ holds in Z/(p)[x, y, z]/(x7 + y7 + z7) for p ≡ 3 mod 7

and

f 6∈ I∗ holds in Z/(p)[x, y, z]/(x7 + y7 + z7) for p ≡ 2 mod 7 .

In particular, the bundle Syz (x4, y4, z4) is semistable in the generic fiber, but
not strongly semistable for any reduction p ≡ 2 mod 7. The corresponding
torsor is an affine scheme for infinitely many prime reductions and not an
affine scheme for infinitely many prime reductions.

In terms of affineness (or local cohomology) of quasiaffine schemes, this ex-
ample has the following properties: the open subset given by the ideal

(x, y, z) ⊆ Z/(p)[x, y, z, s1, s2, s3]/
(
x7 + y7 + z7, s1x

4 + s2y
4 + s3z

4 + x3y3
)

has cohomological dimension 1 if p = 3 mod 7 and has cohomological di-
mension 0 (equivalently, D(x, y, z) is an affine scheme) if p = 2 mod 7.

4.3. Geometric deformations - A counterexample to the localization
problem. Let S ⊆ R be a multiplicative system and I an ideal in R. Then
the localization problem of tight closure is the question whether the identity

(I∗)S = (IRS)∗

holds.
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Here the inclusion ⊆ is always true and ⊇ is the problem. The problem
means explicitly:

If f ∈ (IRS)∗, can we find an h ∈ S such that hf ∈ I∗ holds in R?

Proposition 4.2. Let Z/(p) ⊂ D be a one-dimensional domain, D ⊆ R of
finite type and I an ideal in R. Suppose that localization holds and that

f ∈ I∗ holds in R⊗D Q(D) = RD∗ = RQ(D)

( S = D∗ = D \ {0} is the multiplicative system). Then f ∈ I∗ holds in
R⊗D κ(p) for almost all p in Spec D.

Proof. By localization, there exists h ∈ D, h 6= 0, such that hf ∈ I∗ in R.
By persistence of tight closure (under a ring homomorphism), we get

hf ∈ I∗ in Rκ(p) .

The element h does not belong to p for almost all p, so h is a unit in Rκ(p)

and hence
f ∈ I∗ in Rκ(p)

for almost all p. �

In order to get a counterexample to the localization property we will look
now at geometric deformations:

D = Fp[t] ⊂ Fp[t][x, y, z]/(g) = S,

where t has degree 0 and x, y, z have degree 1 and g is homogeneous. Then
(for every homomorphism Fp[t]→ K to a field)

S ⊗Fp[t] K

is a two-dimensional standard-graded ring over K. For the residue class fields
of points of A1

Fp
= Spec (Fp[t]) we have basically two possibilities.

• K = Fp(t), the function field. This is the generic or transcendental case.

• K = Fq, the special or algebraic or finite case.

How does f ∈ I∗ vary with K? To analyze the behavior of tight closure in
such a family we can use what we know in the two-dimensional standard-
graded situation.

In order to establish an example where tight closure does not behave uni-
formly under a geometric deformation, we first need a situation where strong
semistability does not behave uniformly. Such an example was given, in
terms of Hilbert-Kunz theory, by Paul Monsky in 1998 [20].

Example 4.3. Let

g = z4 + z2xy + z
(
x3 + y3

)
+
(
t+ t2

)
x2y2.

Consider
S = F2[t, x, y, z]/(g).
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Then Monsky proved the following results on the Hilbert-Kunz multiplicity
of the maximal ideal (x, y, z) in S ⊗F2[t] L, L a field:

eHK(S ⊗F2[t] L) =

{
3 for L = F2(t)

3 + 1
4d

for L = Fq = F2(α), (t 7→ α, d = deg(α)) .

We consider S as an F2[t]-algebra, the corresponding morphism Spec (S)→
A1

F2
and the corresponding smooth projective relative curve C = Proj (S)→

A1
F2

. The fibers are Spec
(
Sκ(p)

)
and Cκ(p) respectively.

By the geometric interpretation of Hilbert-Kunz theory, the computations
mentioned in Example 4.3 mean that the restricted cotangent bundle

Syz (x, y, z) = (ΩP2)|C
is strongly semistable in the transcendental case, but not strongly semistable
in the algebraic case. In fact, for d = deg(α), t 7→ α, where L = F2(α),
the d-th Frobenius pull-back destabilizes (meaning that it is not semistable
anymore).

The maximal ideal (x, y, z) can not be used directly, as it is tightly closed.
However, we look at the second Frobenius pull-back which is (characteristic
two) just

I =
(
x4, y4, z4

)
.

By the degree formula, we have to look for an element of degree 6. Let’s
take f = y3z3. This is our example (x3y3 does not work). First, by strong
semistability in the transcendental case, we have

f ∈ I∗ in S ⊗ F2(t)

by the degree formula. If localization would hold, then by Proposition 4.2, f
would also belong to the tight closure of I for almost all algebraic instances
Fq = F2(α), t 7→ α. Contrary to that we show that for all algebraic instances,
the element f belongs never to the tight closure of I.

Lemma 4.4. Let Fq = Fp(α), t 7→ α, deg(α) = d. Set Q = 2d−1. Then

xyfQ /∈ I [Q].

Proof. This is an elementary but tedious computation. �

Theorem 4.5. Tight closure does not commute with localization.

Proof. One knows in our situation that xy is a so-called test element. Hence
Lemma 4.4 shows that f /∈ I∗ �

In terms of affineness of quasiaffine schemes (or local cohomology), this ex-
ample has the following properties: the open subset given by the ideal

(x, y, z) ⊆ F2(t)[x, y, z, s1, s2, s3]/
(
g, s1x

4 + s2y
4 + s3z

4 + y3z3
)
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has cohomological dimension 1 if t is transcendental and has cohomological
dimension 0 (equivalently, D(x, y, z) is an affine scheme) if t is algebraic.

Corollary 4.6. Tight closure is not plus closure in graded dimension two
for fields with transcendental elements.

Proof. Consider
R = F2(t)[x, y, z]/(g).

In this ring y3z3 ∈ I∗, but it can not belong to the plus closure. Else there
would be a curve morphism

Y −→ CF2(t)

which annihilates the cohomology class c and this would extend to a mor-
phism of relative curves over A1

F2
almost everywhere. �

Corollary 4.7. There is an example of a smooth variety Z and an effective
divisor D ⊂ Z and a projective morphism

Z −→ A1
F2

such that (Z \D)η is not an affine variety over the generic point η, but for
every algebraic point x the fiber (Z \D)x is an affine variety.

Proof. Take C → A1
F2

to be the Monsky quartic and consider the syzygy
bundle

S = Syz
(
x4, y4, z4

)
(6)

together with the cohomology class c determined by f = y3z3. This class
defines an extension

0 −→ S −→ S ′ −→ OC −→ 0

and hence P(S∨) ⊂ P(S ′∨). Then P(S ′∨) \ P(S∨) is an example with the
stated properties by the previous results. �

It is an open question whether such an example can exist in characteristic
zero.
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