the alkalies, which had produced such unpleasant sensations in the stomach, that he could not be prevailed on to try them again in any form.

Under these cucumstances he readily acceded to a new plan of treatment. He was directed to omit the use of spırituous medicines, and to take twenty grains of magnesia three tumes a day in water, but this operding too powertully upon the bowels, the same quantity of magnesia was taken twice a day only, with an addition of five drops of laudanum to each dose.

This plan was pursued without intermission for three weeks, and he received considerable benefit, as tar as concerned the state of the stomach, and pain in the region of the kidney. The urme, which was examined once a week, was also, on the whole nuproved, but it occasionally deposited a very coptours'sediment, consisting of uric acid, with a variable proportion of mucous secretion.

After a further centinuance of the dose of magnesia for three weeks, the uine was often much loaded with uric acid and mucus; but these appearances, which before the use of the magnessa were continual, are now only occustonal, so that the disposition to form a redundant quantity of usic acid is much diminished: it is also deserving of remark, that there has not been the slaghtest symptom of gout from the time of the last attack, which is móre than a year back, a longer interval of ease than the patient has experienced for the last six years.

He has now discontinued the regu lar use of the magnesia; but on percerving any unpleasabt sensation in the stomach, he returns to it for a week or ten days, and then agan leaves it off.

Mr. Brande tried the effects on the urine of vanous doses of sub carbonate of soda, with an excess of carbonic acid, of potash, of lime, of nragnesta, and of carbonic acid, from which it appeared that the thme had very little effect, either in the form of chalk, or lime water, that the carbonic acad (which was found to be very grateful to the stomach) caused the phosptates to be vorded in
solution in the urne; but when is was left off at any time, they were voided in the form of white sand, that the alkalies occasioned too cop:ons and sudden a precipitation of the phosphates; and that the magnesia, even in very large doses; nether produced so rapid an effect on the urime, nor so copious a separation of the phosphates, as the alkalies did: and on this its value as a medicine in calculous disorders seems materially to depend.

African Hemp.

A speces of hemp manufactured from the leaves of a particular kind of palm, which abounds in Sierra Leone, and its neighbourhood, has been recently sent to England; and being made into cord, subjected to experiments calculated to ascertain its strength, as compared with the same length and weight of common hempen coid, the result was very salistactory; it being found that hempen cord broke with a weight of 43 pounds and three fifths, while the African cord did not give way to less weight than 53 pounds two fifths, making a drfference in favour of the latter of 10 pountis in 43 pounds.

An' account of the Method of Manufacturng Salt at Moutiers, in the Department of Mont Blanc. By M. Berthetr, Mine Engineer. Journal Des Mines. Cemtenned from p. 148, No. XXV.
The brme that runs along the ropes speedily evaporates, and leaves on them a crystallme deposition of muriate of soda which encreases continually. In very fine weather, a boiling will yeeld all its salt in 12 or 16 houss; in general 27 bollings are passed in 45 days. By that time the ropes are coated very thick, so as to be sometimes 0.06 metres ($\left(2 \frac{1}{2} \mathrm{~mm}\right.$.) in arameter; they are then stripped of their salt, whech operation is called abattue, or a fall of salt. A small and very srmple machine is used for this purpose, which has the advantage of stripping 46 ropes at once. It is formed of a piece of wood which serves as an ans to a large pulley cut in halt, so as to form a
semicurcle only. This axis turns in a rectangular frame, and is furmshed with non plates. The machine is housted to the top of the shed by means of a moveable soller. The principal piece is then placed between two rows of ropes, and two men rock it from side to side by drawing alternately the rope that runs over the pulley, while at the same time they permit the machine to descend slowly. The salt on the ropes being shut m between the frame and the axis armed with iron, is broken by the shocks, and falls on the floor of the shed. If any remans in some places, a workman beats it olf with a tool which also serves to clear the top of the ropes where the machne cannot be raised on account of the rooting. They make from one to three falls in a year according to the seasons. When it rains there is scarcely any evaporation, and the shed is kept closed by means of the blinds which are rolled up in fne weather. It is because the rope shed was originally constructed for the purpose of evaporating the saturated brine from the bonlers, that pumps could not be used to ranse the brine. It was feared that the salt clystallizing in the pipes would embarrass the motion of the pistons.The salt from the ropes, and that which crystallizes in the cisterns is collected into a storehouse used for that purpose only.

In every boiling a deposit sticks to the bottom of the bollers, which comes from the schelot that is not entrely taken away, and from the evaporation of some portion of the brine in contact with the iron plate and more strongly heated than the remainder of the liquid. Every 12 or 15 bolings, this sediment is knocked off by means of a hammer, and heaped up in the yard under the name of (ecailles) scales. The thicker these scales are, the more the e_{s} borlers are injured by the fire. The bottom gets hotter, dilates unequally, becomes uneven and trequently cracks, so that the brine runs into the fire. When the workman per. ceives this, he encreases the heat under the crack, that the expansion of the metal may close the crack; but
if this does not suffice, it is stopped by means of small. bags filled with quicklime put into the boiler.
The mother waters ale all conveyed into a single cistern, where they are left the whole winter whhout being touched. They deposit threp different sediments successively, the last of which is crystallised sulphate of soda (Glauber's salt) nearly pure.This is , taken away at the beginning of spring, and deposited in a separate warehouse, along with such pieces of the same salt as they can pick out from the other sedument the cistern is then emptied and the contents flung away.

As to the schelots, they are flung into the yard of the boiling houses, where they form coniderable heaps, ot which no use is made. That which is last formed is the only part of them that is collected, and 'put aside along with the scales.

The salt works do not work up all the brine yielded by the spring;. In the winter, the smallest spring is sufficient, because the graduation goes on very slow, and the sheds will scarcely keep two bollers in use, and even these are sometimes stopped In summer the evaporation goes on quicher, so that all' the four bollers are in almost constant use; and the the small spring not fumishing sutficient water, some of the brine from the larger ones is blought into use; but even in the most favourable wea.ther, not one fourth of the brme is worked up.

The uood used for fuel is a mixture of larch and fir, barked and cut in lengths of between 1.2 and 1.3 metres, which are split. In ge, neral it requires 30 steres for a bolling in summer, and as far as 68 in wimter when the arr is cold, moist, and rainy.

The following experiment was made in the summer of the year 13, and all the substances weighed with great care.

Substances Consumed.

4690 myilagiammes of brine at 20 hydrom. contaming 1050 of salme matters.

50 steres of wood, viz. 25 for the preparatory bolling, and 25 ior collecting the salt.

Products.	
$\begin{aligned} & \left.\left.\begin{array}{l} 34 \text { of schelot } \\ \text { contaning } \end{array}\right\} \begin{array}{r} 790 \end{array}\right\} \text { of saline substances. } \\ & 790 \text { of salt. } \end{aligned}$	
$\left.\begin{array}{c} \text { Qi of scales. } \\ 51 \text { of mother } \\ \text { water. } \end{array}\right\} \begin{gathered} 21 \\ 20 \end{gathered}$	
	865. collected. 185. lost.

1050.

This loss is greater than in actual prartice, the scales were calcmed be tore they were weighed, and the mother water could not be accurately collected.
Each bolling produces in the rope shed, on a medium, 1750 inyilagiammes (17 ton) of salt, viz. 1650 deposited on the ropes, and 100 in the boller. But this salt is much pures than that made by boning, and the mother water is more in quantity. the common fall of salt is 15,000 nyriagranmes (150 ton) of salt.
The annual produce is from 4 to 5000 myriagr. (scores of libs) of schelot, or the lakings': from 2500 to 3000 of scales that stick to the bonlers, 70,000 of salt collected in the boiless, and 30,000 from the rope sheds, and from 9 to 10,000 of sulphate of soda, or Glauber's salt, besides the mother water.

I he faggots in the sheds No. 1 and 2 are changed every three years, as they become sotten in that time, and the sheds themselves ate obliged to undergo a thorough reparr every 5 or 6 yeas.

The faggots in No. 3 become so thichly coated in 3 or 4 years that they must be changed; but the woodwoik becomes coated with sulphate of lime, which preserves it.

The faggots in No. 4 are useful for a longer period; it is said that they would last more than 18 years it the brine were constantly giadudted up to 14°.

30,000 faggots are used annually, wheh cost 75 fr. per thousand.

To be Continued.
On the causes and prevention of the Curl in Potatoes, from papers by Mr Willaam Hollizs.

Trans Soc Aits, No. 8.
The first cause of the cusl in po-
tatoes must be traced to the manner in which the seed was rased m the preceding year. If the potatoes be set late in the season, that is from the mildle of May to the middle of June, m a rich soll well manured, having a southern aspect ; and of the summer should be not and dry, thl (we will suppose) the beginning of August, when the blow of the plants has fallen oif, then the seed will be exhausted in feeding the plant only, and very few potatoes will appear. bhould the weather now become monst and gental, the plants especially if they should be eatthed, will blow atipsh, and a plentiful crop of very large potatoes may yet be produced.
These potatoes are perfectly fit for use as food; but as they were produced from the stalk of the plant after the seed itself was exhausted. they will be defective in mosture and vegetative power, and the plants which proceed from them the follow: mg year will be found to be carl. ed.

The curl may be produced withous manure or earthing piovided the potatoes be sown (at the end of May) thick together, in a rich son, and covered with fean, or other litter betore the plants appear. The ram lots the fern or litter, and enables it to penerate to the roots; and the plants are forced ds in the preceding experment, to a second growth, and blow. The seed thus rased produced plants that were cuiled.

The forcing potatoes by cultivation as above described, the author finds to be the cause of the cuil, both from his own experiments, repeated tor several years successively, and also from the observations he made on the practice and ill success of has neighbours.

Both healthy and curled plants may be lalsed from the same potatoe la the following manner,

Dig up, in the beginning of October, some potatoes raised as above described. Among the largest will be found some, that have in different puits, different degiees of moisture, the least at the butt, and the most at the crown end, the quantity of monsture gladually encreasmg from

