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ABSTRACT 

The theory of a free electron method for measuring e/filo is 

described. This method consists essentially in the use of a well 

defined, rotating, high-frequency magnetic field as a phasing valYe 

to determine the velocity of an electron stream. Use of the rel

ati vis ti cal Ly correct energy equation : then yields e/m
0

, if the 

potential of the electron stream is known. As shown below the 

use of a resonant cavity operating in the TM110 mode, approximateq

produces such a field. 

The apparatus which was designed and constructed to support 

the cavity, maintain high-vacuum, provide radio-frequency, produce 

and measure the electron beam, and measure the parameter of interre t 

is described. Included also are circuit diagrams of the various 

control and measurement electronic circuits. 

Finally, data are given which determine essentially the re

solving power of the instrument. Estimates are made as to the 

probable ultimate accuracy of the measurement. It is shown that 

an accuracy of 1 part in 10,000 should be easily obtainable in a 

given run, and that accuracies of several parts in 100,000 should 

be possible with more data. 
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I. The Theory of the Experiment. 

1.6 General Introduction. 

For many years the specific electronic charge (e/m) has been 

a subject of considerable interest to physicists. It remains today 

the most uncertain of the important physical constants, the best value 

being the least-squares value of DuMond & Cohen1 who give 

e/m = (1.758897 ~ .000032) x 107 e.m.u./gr. 

as of 1950. ~e best direct measurement is the 1937 one of Du.nnington2 

who quotes 

e/m = (l.7597 ± .0004) x 107 e.m.u./gr. 

It is true that superior accuracy has been obtained by ihdirect 

measurements, for example the experiments of Thomas, Driscoll & Hipple3 

who give 

e/m = (l.75890 * .00005) x 107 e.m.u./gr. 

All such indirect experiments, however, measure e/m for bound electrons 

and are subject to i .naccuracies in associated physical constants from 

which e/m must be derived. Then too, a derived value of a:ny physical 

constant is not suitable for a least-squares adjustment of the atomic 

constantsl. Clearly therefore, a new and more accurate free electron, 

i.e. deflection, direct value for e/m is highly desirable. 

Now any deflection method for measuring e/filo depends upon measur-

ing the velocity of an electron, v, which has fallen through a known 

potential difference, v. Application of the relativistic energy equation 

eV = 
where c is the velocity of light, will then yield e/fno• 

The present method is similar in principle to that of 

1. J.W.M. DuMond & E.R. Cohen, unpublished report to the N.R.c. 
2. F.G. Dunnington, Phys. Rev. ~. 475, (1937) 
3. H.A. Thomas, R.L. Driscoll, & J.A. Hipple, Phys. Rev. ~,787, (1950) 
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Kirchnerl, though quite different in detail. In a preliminary and 

exploratory experiment c. H. Wilts2 investigated the possibilities 

of using cavity resonators to produce deflection fields. In the 

present experiment rotating magnetic fields are used to produce 

deflection, for as will be shown, a higher resolving power can be 

obtained than with non-rotating field deflection. An electron 

entering the cavity is acted upon by this rotating magnetic field 

during its time of transit, ti', and leaves the cavity with a trans-

verse component of velocity which depends upon this transit time, 

As is shown below, if the transit time is adjusted to coincide with 

an integral number,n, of cycles of the parameter k/'en ( k/:?:rt is 

approximately equal to the rotation frequene,., ! . ) then the elec-

tron emerges with no net transverse component of velocity. The 

cavity can accordingly be used as a sort of "phasing valve• vel-

ocity detector; for when integral cycle transit has obtained the 

axial, i.e. total, velocity of the electrons is approximately 

v = d/tJ'. ~ df/n ••••• (a> 

where d is the length of the cavity. A more accurate equation 

for v is obtained below. 

The ultimate value of e/'fno will, by an inspection of equa

tions (1) and (2), be seen to depend on the measurement of: a) a 

voltage, v., b) a length, d, and c) ~radio frequency, fo 

1.1 The Equations of Motion of the Electrons. 

Consider a system ot rectangular ca.rtesian coordinates with a 

uniform magnetic field, B1sin(2nft), in the y direction and a sim

ilar field B:acos(2nft), in the x direction. Let the electron beam 

1. F. Kirchner, Phys. Zeits., 30, 773 (1929) 
2. C. H. Wilts, Do::torate thesis, Cal. Tech. Library 
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be initially traveling in the z direction with the velocity v 
0

• 

x 

Ba cos (::?nft) 

beam 

/. 
Fig. 1. 

The equations of motion referred 

to this coordinate system, (see 

Fig. 1.) are: 

I . 
b2y cos( 2nf t) 

II I 
x = b1 z sin{ 2nft) 
II t 
Y = -b2z eos(2nft) 

. •••• ( l) 

••••• (2) 

••••• ( 3) 

Where the dot implies differentiation with respect to time and 

the abbreviation 

b _ B1e 
i - - ( ) me • • • • • 4 

has been employed to represent the cyc1otr~n f~eq~encf. (he:re . tn e.s.u) 

1.2 Non-rotating case. (B1 = 0) 

If we set ·Bi = ·o in the equations of motion of 1.1 we obtain 

simply a non•rot.ating 'uniform magnetic field. Clearly from Eq. (2) of 1.1 

if ! is originally zero it will remain so, and we shall have motion 

in the y-z plane. 
I ii 

If we differentiate 1.1 (3) and eliminate z and z 

we obtain 

Upon employing the transformation u = 

2 1 2 4=-!a.-' 
du (2nrrY 

...... ( 1) 

sin(2nft), (1) becomes 

• •••• ( 2) 

which is readily seen to have sinusoid.al solutions. If we take 

I ti I II 
as boundary conditions at t = O; x = x = y = y = 0 z = v0 
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and transform the time viz: t = nT + e + ~/2:nf ; T = l/f where 

~ measures the phase of entry of an electron and e measures the dif• 

ference between the transit time and an integral number of cycles. 

Then 

~ = v0 sin ~(b2/2n:flsin ¢ + sin 2nf9 cos ¢ - cos 2nfe sin ¢ >1 (3) 

= v 0 sin C( 

Similarly, 

~ :r v
0 

COS q .•.• ( 4) 

So that we shall define: 

C( = tan-1 y/~ = (b2/ 'lff) · sin nfe cos (Tlfe - ¢> .••• ( 5) 

1 . 3 Shape of current peak for non-rotating field. 

Consider an electron beam of width s deflected as in 1.2 and 

after drifting a space D being collected on a slit also of wtdt~ s. 

s~ 
r====r=== 

I D 

LL 
col lecT•"" 

Fig. 2 

{See Fig. 2.) Choosing the slit width 

equal to the beam width yields a Sharp 

top to the current peak collected through 

the slit . Now as an inspection of 

Eq. 1.2 (5) will show that « varies 

sinusoidally in ¢ and that there 

consequently exht values of ~ , i.e . 

phases of entry, for which \a:I £. s/D. Therefore some current will 

be col.lected no matter what the transit time may be. As will be shown 

later, t}le rota.ting field case does not $uffer from this defect. Now 

if 8 is so small that 1C(\ ~· · s/D for any value of ~ then 

211' 

I = ~Io/an (1 • Cf.. D/s) d~ 0 •••• { 1) 

0 
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where I 0 is the incident current. This occurs when 

sin Ttf8 ~ snf /Db2 = g BS\V . • ••• (2) 

However for 9 sufficiently large we define 

• t 

~2 = eos-1 g/sin(T1f8) 

a.nd the current accordingly is 

« (~) = 0 

• nf8 ; « (~) = s/D 

I = 4r¢a lo (1 • ({ D/s)d~ 

••.• ( 3) 

)~an ••••• ( 4) 

Performing the integrations indicated in (1) and (4). we obtain 

I = 2;0 \ s1n•1,gjsin(nf8~ - ~in(nfe)Vg + '{a1n2(nf8)/g2 - + .. (5) 

for lsin(T1f8)\ ~ g , Ell d 

I = I 0 ( 1 - ~sin(T1f8)1/ng ) ~ 10 ( 1 • 2Dbg8/ns) 

for lsin(nf9)I ~ g. A plot of this current distribution is shown in 

Fig. 4 , where 1 t is contrasted with the current peak obtained from the 

rotating field calculations. 

1.4 Rotating Field Case. 

As we have seen, the equations of motion a.re given by 1.1 (1),(2), 

(3)o We take b1 = b2 = b thus obtat~ing a field rotating at angular 
0 

frequency w = 2nf. If now we differentiate Eq. 1.1(1) twice and 

M n 1-- t substitute for ~. y, x f and y from the equations of motion we. O·btain 

'"' (ba ~ >" _,z = - + ~ z .... (1) 

Let us denote 

0 ••• ~ 2) 

b .a~ di t i fl fl o I '' I and taking as oun~ry eon · ons x = y = x = y = z = 0 ; z = v0 when 
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t = 0, we see that Eq. (1) has the solution 

•••. ( 3) 

Or integrating, 

••...• ( 4) 

I 
Now if we substitute this value of z into 1.1 (2) and 191 (3) and 

integrate we will obtain 

~ = - wk_2oc1 - cos kt)cos(wt) + b~o sin ktsin(wt) ••• (5) 

I = • wbvo(l - cos kt)sin(wt) '"' ~sin kt cos('wt) •••• (6) 
it2 . k 

And if we further define 

2 2 2 
~ (1 - cos kt) + sin kt •. , &) 
k 

, , • I Note that y = x = r = 0, when t = 2nn k , •o that current peaks sim-

ilar to those of 1.3 may be expected when this condition is satisfiede 

1.5 Theoretical Equation for e/fflo. 

Suppose that the rotating field of 1.4 is produced in a resonant 

cavity of length d so that the field is confinEi:.<l to approximatel11 

this length9 If then the transit time is adjusted until t = 2nn/k 

we have 

l.l!'i1' 

d = \ 1 dt 
0 

1.<.il" 
-.< 

= f ~(b2cos kt + Jl ) dt • · 2rJrrVQW4/k6 •• (1) 

0 

1. An investigation into the amount of bulging into the .· .hole in the 
end of the cavity where the electron beam enters, and of the effect 
of this bulging on the electron trajectory is being carried on by Prof. 
w. R. Sm,ythe. This effect will bring in a small correction upon the 
value of e/m0 as experimentally determined, but this correction can 
be calculated with extreme precision. 
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where To is such as to fulfill the transit time conditicn mentioned 
a 
above. We accordingly obtain as the entering velocity for a current 

peak 

•••• (2) 

Therefore, for a given current peak, if V is the beam voltage, we 

have 

or 

e/mo = 

•••• ( 3) 

- c2 
v 

••.• ( 4) 

It is to be noted that b =Be/me is itself a function of e/mo; 

however, as b.(.< W ; this will not affect the obtainable accuracy. 

In order to eliminate contact potentials etc., it is probably 

preferable to use the voltage difference (V2 - V1) between two 

successive current peaks, in which case 

1.6 Deflection of the Electan Beam. 

If we perform a further integration of the equations 1.4 (5) and 

(6), we will obtain 

x ._. -~~ + ~ + ~)coo kt J sin wt + i!;o ain kt cos "\ .(l) 

Y = ?l_S + (1 +~)cos k~ cos wt + 2;0 sin kt ein wt - ~ •• (a) 

Let us define 



Then differentiating we obtain 

~r2) = 2:ti + 2yy = 0 dt 
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I t I 
at t = 2nn k since x = y = 0 here. 

Furthermore after a second differentiatinn and after substituting for 

the values of ~. y, etc. at t = 2nn/k we have 

Therefore r is a maximum at t = 2nn/k. This maximum value is 

given by 

rmax = = 4vosin nmr ..,, "'"IC ••• ( 3) 

Note that this result is independent of n approximately, for if we 

assume that b~~ k ~ w, so that w/k =il - b2/'~
1 

~ 1 - t ~ /&2 and 
2 

that sin nm/K ~ (•l )n + 1 ~ we obtain 

2nnbvB 
• k2 •••• ( 4) 

or substituting for v0 from 1.5 (2) we finally obtain 

r ~ dbk 
max - ? 

which is independent of n. This comes about because although an 

additional deflection is produced each cycle that the electron is 

in the cavity, the deflection is less per, cycle the larger n, as 

this corresponds to smaller v0 for fixed d. The above results 

will be given numerical values later in the report when design 
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considerations are discussed. 

1.7 Shape of Current Peak in Rotating field Case. 

Consider an electron beam of circular cross section and of 

diameter s, which is collected by a circular orifice also of dia-

meter s, located a distance D from the cavity. Figure 2 above applies 

equally well to this caseo Suppose now that the bea.m spent a time't'in 

the cavity. It accordingly leaves with a transverse velocity t, given 

by 1.4,(7), with t ='1'. Its axial velocity is given by 1.4,(4). 

Therefore for all those electrons which enter the cavity at some part-

icular time there is produced at the collecting orifice a displacement R 

of the beam given approximately by 

D:f-
R = r = 

Dkb (w2/1t2(1 • cos w1')2 + sin2 k1" Ji 
o2 cos k + w2 

.... (1) 

Electrons entering the cavity at some different moment but hav~ 

ing the same transit time will suffer the same displacement but in a 

different direction. Figure 3 shows 

a typical moment at the collector. 

The c~oss hatched area is that over 

which the beam is actually being col-

lected. It is to be noted that the 

Figure 3. beam displacement which was mention-

ed in section 1.6 would alter the above results; (namely by displac-

ing the beam into a ring, at the collector.) ~nis effect is removed> 

however, by locating the collimating slit at the entrance to the final 
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drift length tube, rather than at the entrance to the cavity. A. some-

what larger .:aperture. is placed at the entrance to the cavity in order 

to reduce the number of electrons passing through, but this is made 

large enough so that it does not constitute the limiting aperture of 

the system. 

No\V the collected current is for R< s 

I = cross hatched area 
Io n s2/4 

21 0 { TI l arc cos (R/s) 

= + g(l ... R2 )~1 • • .. (2) 
s 

8
2 1:}\ 

And for R (. s 

I = O 

For valu.es of1"s'Ufficiently removed from nT 1 :it > s, and thus the current 

actually goes to zero. This current distribution is plotted in Figure 4 

as is that of l.3(5~ the non-rotating case. In both cases the field 

strengths chosen are close to those actually used in the experiment. It 

can be seen that the rotating field case yields the sharper peak. It 

must be remembered however that it takes twice the R.F. power to produce 

a rotating field of a given strength than a stationary one. The principal 

advantage of the rotating field case is its circular sy~~etry with con-

sequent lack of cross-fire electrons. 

The above calculations assume a.n idealized current distribution, but 

as will be seen in section III, the experimental results are in fair 

agreement. 
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1.8 Considerations of Cylinirical Cavity in the TM110 Mode. 

The fol lowing results have been ta.ken from 1'Static and Dynamic 

Electricity" second editian, by W. R. Smythe. The genera l results 

are to be found there in section 15.17 page 534, &535. We have 

specialized those results for the Til110 mode. The resonant frequency of 

a right circular cylindrical cavity is given by 

vr =2nf=c~ 

where c is the velocity of light and~ , the wave number, obeys 

the boundary value relation 

where a is the radi~s of the cavity. Taking the 3.832 root of J 1 

and using 2617 megacycles for f, yields 

2a = 13.9736 cm. = 50487 inches. 

The electric field in the cavity has only a z, component, (using 

p.,fJ,t,the usual cylindrical coordinates), and is given at resonance by 

where c 1 is an arbitrary constant which measures, essentially, the 

power input to the cavity. The magnetic field lies in the f-~ pla.ne 

and is given by 

The "Q!' of the cavity is given by the formula which follows. In tbis 



-13-

formu.la o, andtare respectively the skin depth and the !U.rface 

R. F. cond~ctivity. 

Q, = ce8td 6@ 
2(a + d) 

= 
~'l(a + 4) 

, 
wheret" is the permeability of the cavity wall. For our cavity 

t = 4.8 x 107 Mb..os/meter, using the value for copper, and 

S =+0.073/ff' meters. The length d, is 3.063 cm. This yields 

Q, = 14,800 

1 
As chromium and molybdenum are somewhat more resistive than copper 

the actual Q, should be about 10,000. The relation between magnetic 

field strength at the center of the cavity and input power is 

P = c2(pa)2(J0 (pa>] 2d:sa 
f<Qj 

If we insert the numerical values already obtained above, we obtain, 

putting B here in Gauss, the handy working formula 

for a Q of 10,000. That is it ta.kes 2 watts to produce one Gauss 

of nonarotating magnetic field ~t the center of the cavity. 

The magnetic field configuration described by the formula above 

has been plotted and is shown in Figure 5a. The lines shown are those 

which surround equal amounts of flux. 

l. See section 2.2 



-14-

/ -------
----~. · 

\ 

\ 

full. 

Figu.re 50.. Magnetic Field Distribution in Cavity. 

\ 
" 

\ 
I 

' \ 

\ 
I 
I 
I 



-15-

II. The Design of the Apparatus. 

2.0 Introductiono 

The equipment necessary to carry out a measurement of e/m
0 

based on the theory given in I above involves many problems of vac

~um, Radio Frequency , Electron Ballistics, electronics, etc. An 

at tempt was made to obtain an integrated plan in which these factors 

combined to determin,e the final design. The apparatu.s consists of 

four main, and essentially independent, parts. We shall, accordingly, 

first treat general considerations and then each of these parts 

separately. 

2.1 General Design Considerationso 

It was clear from the outset that the heart of the apparatus 

would consist of a long evacuated tube with an electron so'tlll'ce at 

one end, a collector at the other end, and the cavity somewhere 

in bet\'l'een. In figure §,a cross sectional view of the final design 

arrived at is shown. The vacuum envelope and header are made of 

aluminum for reasons both of lightness and because aluminum is a 

good vacuum metal from the standpoint of occluded gas. All of the 

vacuum joints in the envelope u.se 11 0-ring11 seals. ( "O-rings11 are a 

seamless molded rubber ring available from The Los Angeles Plastic 

and Rubber Products Coo ) Metal to metal aluminum joints are arc 

welded. Type 51ST Alcoa aluminum was used as it is the most readily 

weldable of the aluminum alloys. We were perhaps fortunate that no 

vacuum lea.ks occurred in the welds. Immediately inside of these 

aluminum tubes are a series of six concentric tubes made alternately 
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of Mu-metal and copper. As Mu-metal has an enormous permeability these 

tubes form an excellent magnetic shield. This shielding is necessary 

not only to remove the field of the earth but also to screen out all 

a. c. magnetic fields. In order to minimize the virtual vacuum leaks 

arising from the space between the concentric cylinders of the shield. 

radial holes were drilled through the cylinders. (altholagh in different 

locations in each cylinder in order to eliminate magnetic "leaks"). The 

cavity region is shielded with so ft iron cylinders. not shown. In use 

these cylinders are demagnetized by applying a strong 60 cycle a.a. 

magnetic field. 

The entire structure of the vacuum envelope is supported on the 

vacuum header which is bolted to a brass plate which in turn is bolted 

to a wooden framework as shown in Figure 7. Tes ts have shown that the 

geometrical alignment of the apparatus is satisfactory with no additional 

support. 

2.2 The Cavity Section. 

The cavity is supported inside of a large brass ring (see figure 8) 

which also serves as a header for cavity cooling water and is drilled 

to provide a vacuum pumping area around the cavity. The ca.vity itself 

is made in three pieces, two end plates and a spacing ring. These 

pi eces must be optically flat in order that the cavity length can be 

accurately determined. It is planned that this measurement will be 

made by interferometric methods. 

some 200 watts by water cooling. 

It must also be possible to remove 

The end plates of the cavity were 

made from i" copper plate and electroplated on one side with an .020" 

layer of chromium. Chromium has the same electrical conductivity as 
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Figure 7 . . 

Figure B. 
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gold and the scratch hardness is the same as for sapphire. It is there

fore an ideal material for polishing and also makes a suitable cavity 

wall. Copper cooling pipes were soldered to the reat of these copperM 

chromium plates and they w·ere then polished to an optical flat by the 

optical shop of the Mount Wilson Observatory. The spacing ring for the 

cavity was made of molybd.enum, for that metal has the most advantageous 

ratio of thermal conductivity to coefficient of expansion. Appendix I. 

contains a calculation which shows that sufficient cooling is obtained 

by conduction to negate any changes in length due to expansion. 

The cavity is shown assembled in Fig. 9a and disassembled in Fig. 9b 

Note the holes in the spacing ring through which the R.F. power is 

coupled to the cavity, and the deflection plates which are mounted in 

a lucite cylinder. 

At either end of the cavity and bolted to the end plates are 

threaded cylinders which hold the collimating holes. This provides 

a well aligned structure and insures that the electron beam passes 

through the center of the cavity. Both of the end plates and the 

spacing ring are a tight fit in the brass sµpp0r~ ring and are pressed 

together by spring loaded flanges. The aluminum tubes of the envelope 

are bolted to the brass spacing ring and in this way the entire struc

ture is aligned. 

2.3 The Electron Source. 

The electron gun design finally employed is shown in Fig. 10. 

This structure consists simply of a diode with an orifice in the anode. 

It is mounted in such a way that it can be tilted by adjusting screws 



Figure 9a. 

Figure 9b. 
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about an axis through the 0-ring which seals it to the systemo In an 

earli.er model deflecting plates were used but these gave trouple due 

to charging and were finally entirely eliminated. The anode consists 

(as can be seen in Fig. 10) of a plate and attached tube of stainless 

steel which provides a space free of electric fields over the first 

few inches of the electron path. The cathode plate consists of a 

punched plate of stainless steel again attached to a stainless steel 

tube concentric to the anode tube for purposes of alignment. The in

sulators used are Isola.ntite. The shape of the cathode-anode structure 

has been calcmlated 'tu J.R. Pierce1 to give a parallel beam in the 

cathode-anode region. The cathode itself is a nickel stamprng coated 

~ith Barium Oxide and indirectly heated by a tungsten heater. This 

cathode is of the stand.a.rd type used by R.C.A. in their cathode-ray 

tubes, and we are indebted to Dr. H.V. Neher for kindly providing us 

with a supply. Unfortunately no suitable heating filaments were ob

tainable commercially and so the filaments which we use are wound from 

0.006" tungsten wire in the form of a helix. They are coated with 

alumina by sintering. They operate at about 2 amperes at 9 volts and 

do not seem to produce objectionable magnetic fields. 

It is possible to operate an oxide coated cathode at about 1200 °K. 

This is several hundred degrees cooler than the temperature necessary for 

even a thoriated tungsten filament and consequently the spread in thermal 

energies of the emitted electrons is correspondingly reduced. 

In Fig. 11, is shown the circuit employed to supply a regulated 

voltage to the electron gun. A three stage, battery stabilized regul-

1. J.R. Pierce: The Production of Electron Beams. John Wiley & Sons. 
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ator is used for the lOa>volt supply which must carry the entire electron 

emission current of the gun--some 200 to 500 microamperes. A boosting 

battery bank is supplied for switching between peaks. Since this supply 

need carry only the current in the beam (approximately 10 microamperes.) 

it has small load regulation and is therefore not regulated. 

2.4 The Collector. 

The collector is held by an 0-ring seal in an alumiminum pla.te 

which also serves to hold the ion vacuum gauge and a viewing aperture 

and mirroro The collector is shown in Fig. 12. As can be seen from 

the figure the collector consists of a Faraday cup which is insulated by 

a Kovar-glass seal from a concentric shielding tube which in turn has 

the 0-ring groove in its outer wall. At the end of the collector tube 

is a plate containing the final collimating hole. This plate is mounted 

on a bearing with a spring return and can oo either put in place or 

removed from the path of the electron beam at will by simply rotating 

the entire collector structure in the 0-ring seal. 

In operation it is customary first to measure the total beam 

current with the collimating hole removed, and then with it in position. 

A tiny spot of zinc sulfide is placed close to the hole and the remain-

der of the collimating hole plate is coated with Willemite. One can locate 

the hole then, by aligning the phosphorescent zinc sulfide spot and the 

fluorescing electron spot. 

The electron current col l ected in the Faraday cup is measured by 

a D. c. amplifier of rather standard design. The circuit diagram for this 

amplifier is given in Fig. 13. The 954 tube is operated at reduced 

filament current for greater s t ability . In operation t he collector a:rxl 
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the entire amplifier including its case are kept at +45 V in order to 

avoid the secondary emission of electrons by the collector. 

2.5 The R. F. System. 

In Fig. 15 a block diagram for the R. F. Sy.stem is given. As can 

be seen from this dis.gram the system is essentially the following. A 

Sperry SRL-6 Klystron oscillator, which is rated at 5 watts at 2617 

megacycles, drives two Sperry 8529 Klystrons, which are rated at 100 

watts each, through a power and phase splitter. This "phase-splitter" 

is a. coaxial line structure with a moving feed point. The line 

impedances are such as to get equal power division, and the movable 

feed provides variable phase. The output of the 8529fs feeds two 

wave guide sections which are in turn coupled by means of probes to 

coaxial lines. All of the lines of the system are provided with stub 

tuners and slots for standing wave detection. In operation it is 

necessary to adjust all stubs for unity standing wave inthe lines. 

The coaxial lines are inductively coupled to the cavity. In Fig. 9a 

one can see one of the coupling loop sections lying just to the left 

of the cavity. These loops are operating in time and space quadrature 

and thus yield the rotating magnetic field. The entire R.F. system is 

visible in the foreground of Fig. 7. A better view of the coaxial 

coupling lines is shown in Fig. 8. 

The power supply for the SRL-6 Klystron was made from two war

surplus dynamotors placed end to end and driven as generators by an 

external one h.p. motor. This arrangement gives two 1000 volt at 300 ~ 

sources as well as two 28 V d.c. sources at 10 amp. each. One of these 
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1000 volt sources operates the SRL-6 Klystron through a battery stabil

ized voltage regulator and supply. The reflector voltage for the SRL-6 

is supplied by batteries. The circuit for the SBL-6 regulator and 

supply is shown in Fig. 16. The 8529 Klystrons have disc cathodes 

which are indirectly heated by bombard.ment with 1000 volt electrons. The 

other lOCXIJVolt supply from the ~namotors mentioned above is used for 

this bombarder supply. The high voltage (4000 volts. ) for the amplifier 

Klystrons is supplied by a 6000 volt generator which is part of the 

permanent equipment of the Bridge Laboratory. This generator is very 

large and heavy and is capable of supplying several amperes. As our 

load is relatively quite small (600 MA) the large rotational inertia 

of the machine insures a steady voltage. Both the oscillator and the 

amplifier Klystrons require forced air cooling. This is supplied 

by four blowers which operate on 28 volts D.C. and are operated in 

series on the 110 volt d.c. house line. In addition to the air cooling 

the anodes of the 8529 1s must be water cooled. 

2.6 Protective Systems. 

The complexity and value of many of the parts of the apparatus mal£ 

it imperative to guard various components of the system from accidental 

damage. We have accordingly installed the following protective devices. 

A possible water failure could, in the case of the vacuum system, 

deposit cracked pump oil throughout the apparatus. In the case of the 

Klystrons a water failure during operation would irreparably damage the 

tubes. We have therefore put interlocking water switches in the ex

haust lines of the cooling water to both the oil pump and to the Klystrons. 

In the case of the oil pump this switch turns the pump power off in 
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the event of water failure, thus permitting tl'e pump to cool before the 

loss of the high vacuum. The Klystron water switch removes the R.F. 

driving power, and the high voltage when the water fails. If the blower 

power fails, a relay turns off the Klystron filaments, In as much 

as the high voltage is interlocked with the filaments, it is removed also. 

A possible vacuum failure, say caused by a cracked glass seal, might 

if it occurred during operation, cause the cavity to go into a continuous 

discharge and would thus dangerously raise the standing wave ratio at the 

output seal of the high power Klystrons. This problem has been met in 

the most direct way by placing small probes in the waveguide opposite 

to the output seals. The pick.up of these probes is rectified by 

crystals and through an amplifier operates relays which shut off the 

Klystron power. To guard against both high standing wave ratio and 

possible crystal failure, which would leave the system unprotected, the 

power is shut off if the crystal output becomes either too high or too 

low. 

The Klystron protective circuit is shown in Fig. 14. 
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III. Jxpa:dnental Results and Conclusions. 

3.0 Introduction. 

In this section we shall describe the experimental results ob

tained and draw conclusions therefrom which bear upon the ultimate 

accuracy of the measurement of e/m. At this stage of the experi• 

ment, however, we had not as yet set up the apparatus for the precise 

measurements of voltage, frequency and length referred to at the end 

of 1.0. These results, therefore, will yield only estimates as to 

the resolving power of the instrument, and will permit estimates as 

to the ultimate accuracy of the actual e/m measurement when it is 

made. 

3.1 Experimental Results--Current Peaks. 

Typical measured current peaks, of the type predicted in section 

1.7, are shown in Fig.17 and Fig. 18. It will be convenient in describ

ing these curves to define the term "half-width" to mean the change in 

beam voltage necessary to reduce l/!0 from 1, its value at the synchron

ous voltage, to 0.5. It is essentially therefore, the familiar, "half 

width at half maximum. 11 

It is clear from an inspection of Eq. 1.7,(1),&(a), that the shape 

of the current peaks depends on a large number of parameterso It must 

be remembered too, that the theoretical peak shapes derived in section 

1.7 and shown in Fig.4, are based on an idealization of the current dist

ribution in the beam. Actually, the beam does not have a uniform "disc" 

of intensity, but, rather, exhibits an umbra and penumbra, characteristic 

of the illumination of one hole through another. It is somewhat surpris

ing therefore, that the agreement between the theoretical curve of Fig. 4 
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a.nd the measured curves of say Fig. 17, is so striking. By a fortuitous 

choice of scale, as anlatter of fact, the curve of n = 4 in Fig. 17 almost 

exactly coincides, apart from its rounded top, to the theoretical curve of 

Fig. 4. This agreement with theory makes it possible to estimate the mag-

nitude of the rotating magnetic field in the cavity. The half-width in 

Fig. 4 occurs at approximately)') !?"= .002. Now since !~= i tlV/V, and since 

Fig. 4 was calculated for B = 5 gauss, s = .01011 we obtain 

t:JV = 

or, 

B = 

5 s ;a 
• 002 XB x. 002!1: n x v 0 

10 .! J..o 
n tlV 

= 10 !!g 
nB 

Insertihg the values av= 12, V0 = 1125 (see table I below) from the 

n = 4 curve of Fig. 17 we obtain B = 3.3 Gauss. 

In Fig. 17 can be found, plotted to the same scale, current peaks 

for both the n = 3 case and the n = 4 case. In the following table we 

have listed the theoretical values for the synchronous voltages in the 

various eases, as calculated from the relativistically correct Eq. 1.5,(4) 

TABLE I. 

n V (volts.) 

2 4575.4 
3 2006.2 
4 1125.6 
5 719.5 

where the accepted present value of e/m has been inserted, Since these 

voltages range over a large scale, one would expect the half-widths of 

different peaks to vary considerably. In fact, as all curves are of 

the same shape when plotted against n ~ , the half width of the n = 3 

peak and th& of the n = 4 peak should be in the ratio 

= 4 ~ = 
3 V4 

4 x aoOG.a 
3 x 1125.6 
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The measured half widths, as can be seen from Fig 17, a.re 28 volts for the 

n = 3 peak, and 12 volts for then= 4 peak. These are in the ratio of 

2.34 which compares very favorably with the theoretical value. 

The voltage measuring equipment used for these measurements, while 

giving fairly accurate changes in voltage, did not give the absolute values 

of V0 • Voltage variations were obtained by setting the 500K potentiometer 

of Figure 11. This potentiometer was a Beckman Helipot, and is linear to 

j~. It was felt however, that part of the scatter of points might be due 

to drift in the beam potential and therefore a crude voltage divider a.tXi. 

type K, Leeds and Northrup, potentiometer, in the usual voltage bridge 

circuit was used as a check. This voltage ~as indeed found to drift from 

time to time, and the use of the type K improved the scatter somewhat. 

It was also possible with the type K, set-up to check at least roughly, 

the voltage V0 , of the peaks. In the following table these rough results 

are given 

n 

3 
4 

TABLE II. 
V 0( theoretical) 

2006.2 
1125.6 

V0 (measured) 

2054 
1157 

The fact that these do not agree is not significant, firstly, because the 

voltage divider used was made up out of 1% resistors, and secondly because 

the effect of cavity bulging fields has not been included. (See footnote 1 

section 1.4) Since both values are high, however, this mav give evidence 

that the cavity bulging fields tend to increase the effective length of 

the cavity. It ca.n be shown, that to first order, there is no correction 

necessary when either the hole is very small at the entrance to the cavity 
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or when the cavity end plate is very thin. There is no a priori reason 

therefore to expect the correction to be in a given direction. 

3.2 Effect of Beam Size. 

It can be seen from a.n inspection of Eq. 1.4,(2) that the half-width 

of a given peak depends almost linearly on R/so It is desirable therefore, 

to make the beam size and the collector hole as small as possible. A series 

of measurements were carried out in attempt to find the optimum size. In 

Fig. 18 there is plotted, to the same scale, curves for two different values 

of s. In curve A the hole in the electron gun anode is .008" and the 

collimator hole is .0045". This corresponds to a total beam size of .017" 

with the center of the penumbra occUlTin:; at 0013. The collector hole is 

.014" and the half width of the resulting peak is 28 volts. On the other 

hand in curve B the electron gun hole is .00411 and the collimator hole is 

again .0045". This corresponds to a total beam size of .013 with the 

center of the penumbra occuring at .010. The collector hole used was 

.009" and the half ... \'fidth is 17 volts. Now it willbenoted that the 

half-widths of these two curves are in the ratio of 28/17 = 1.659 while 

the collector hole sizes are in the ratio of 14/9 = 1.55. 

It is felt that the hole sizes used for curve B constitute a sort 

of practical limit. It is true that further decreases in hole size would 

lead to narrower pea.ks, but at the expense of current intensity with the 

attendant difficulties of measurement. Then too, a.s will be stated more 

fully later in section 3.7, the effect of charging at the holes becomes 

much more troublesome as the hole size is decreased. 
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3.3 General Considerations af Error. 

In the sections that follow we shall discuss separately the 

various factors which contribute to the overall error of measurement. 

It is clear from the measured curves, however, that the error in the 

final measurement, from any and all causes, can be kept below one 

hundred parts per million. When our best curves were plotted to a very 

large scale, various 11 best choices" of the lines through the points 

gave V 1s at intersection which varied from one another in the case 
0 

of the n = 4 curves for example, by only O.l volt in 1150. When it is 

considered that it should be possible by means pointed out below to 

reduc e the scatter of the points considerably, a resolving power of 

one part in 104, does not seem at a.11 optimistic. 

We had of course, no way of checking on the reproducibility of 

V0 from curve to curve, but there is no theoretical reason to expect 

variations, and it is confidently expected that when accurate voltage 

measuring equipment is installed, no lack of repetition will be found. 

It seems that if the scatter of points is kept to a minimum that it is 

possible to resolve 1/100 th of the half-width of a peak. 

3.4 Errors Due to the R. F. System. 

The precision with which the resonant frequency of the cavity 

itself can be measured is not at present known. It should be possible 

by standard methods easily to measure a frequency to one part in a 

million provided that the frequency is itself stable to that accuracy. 

But quite aside from the effect of stability on the frequency measure-

ment, the stability of the R. F. system has a pronounced effect on the 



-39-

resolving power. Clearly all of the points on a current peak, if they are 

to mean anything, must be taken at the same value of magnetic field strength, 

frequency, and relative phase of the two modes producing the rotating 

field. The 8529 Klystrons are extremely sensitive to anode voltage varia-

tions--such variation producing considerable phase shift. It was found 

possible to change the relative phase by 9CP by changing the anode voltage 

by only ~. It is true that phase variations tend more to affect the 

11 wings11 of the peak curve, but -a large phase variation can, nevertheless, 

not be tolerated. The 6000 volt D.c. generator used for this anode voltage 

in intrinsically quite stable but is subject to slow drifts and must be 

periodically checked 

The amplitude of each mode must also, of course, remain constant 

throughout a given measurement. The peak width is relatively insensitive 

to R. F. power variation, depending as it does on the square root of the 

R.F. power. In the table below are given half widths for n = 4 curves 

taken at different settings of the attenuator between the SRL-6 Klystron 

and the 8529 amplifiers 

Attenuator 
Setting (db) 

8 
12 
16 

TABLE III. 

Half-width 
(volts.) 

12 
15 
18 

The amplifier Klystrons are not linear in their output vs. input charac-

teristic, and thus the db attenuator values above must not be takmas an 

accurate indication of the output power. 

It was found that the SRL-6 Klystron becomes unstable if the atten-
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uation is reduced below 8db. It may be possible by installing an autorratic 

frequency control circuit, not only to operate at higher power and lower 

attenuation, but also to improve the iDherent frequency stability of the 

overall R.F. system. 

It is comforting to note that changes in R.F. power while affecting 

the resolving power, do not introduce systematic errors. Uncertain ti es 

in frequency do introduce systematic errors, but as pointed out above, it 

should be possible to determine and hold constant the frequency with high 

precision. 

3.5 Errors due to electron beam. 

The customary procedure in taking point measurements for a peak 

curve is to set the beam potential and read the collected current with 

the R.F. first off, then on, then off again. In this .. :way, the effect 

of drifts in total emission are minimized. Nevertheless, the measurement 

of I/I 0 involves the major source of error in these measurements. The 

D.O. amplifier used employed a 20 microampere panel meter with a scale 

the linearity of which is good to perhaps t1fa. Assuming that one could 

read this meter accurately to about t of a scale diviaion the error of 

reg,ding may account for ai%. The ordinates of the points of the peak

curve could conceivably be off as much as 4%9 

The beam potential was, as mentioned above, found to be subject 

to drifts. These drifts while slow enough not to be troublesome if 

the voltage was being measured absolutely could nevertheless, during the 

cour.se of a long run (say 3/4 hour) have sufficient cumulative effect to 

make the peak curves slightly asyllllJletric. This potential supply will 
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hardly be suitable in its present form for the final measurement, and 

revisions are planned and in progresso 

It is clear that since the purpose of the experiment is to measure 

the velocities of electrons corresponding to a given potential, that a 

spread in the initial velocities at the electron emitter will introduce 

error. The emitter is operated at a temperature of about 1000 ox and 

thus has an average spread in electron energies corresponding to about 

.17 volts 1
0 It can be shown

1
that when the spread in electron energies 

is small compared to the half width of the peak curve, the effect is sim:p-

ly to round off the toF of the peak but not to produce any shift of the 

center. Here the half widths are of the order of 50 times the thermal 

spread and the error introduced is thus an order of magnitude smaller 

than that which is significant in this measurement. 

An.other source of observational uncertainties is the geometrical 

alignment of the apparatus as a whole. As mentioned in section 1.7, it 

is necessary to place the final collimating hole at the exit to the 

cavity in order to avoid the displacement effect of the beam in the cavity. 

As long as the diameter of the beam entering the cavity is several times 

as large as the magnitude of this displacement, the collimating hole 

will lie within the umbra of the displaced beam and will thus be ill-

uminated vtith the undisplaced beam intensityo If however, due to poor 

geometrical alignment the collimating hole lies in the penumbra, then the 

collected current is less than I 0 for two reasons--one the displaciJ,Uent 

effect already mentioned and the other of course, the true effect of 

the beam potential differing from V0 • As long as this decrement of the 

1. Here the well known relationi mean energy = 2kT has been used. 
2. See Appendix II. 
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current due to displacement is small and constant it is not serious, for 

it simply introduces a renormalization of all of the peak curves. To 

the extent that it reduces the current of course it also reduces the 

sensitivity at the collector, and, of course, if the geometry varies 

during a. run the data are · invalidated. It is possible by removing the 

collector hole by the technique referred to in section 2.4, to obtain 

good geometrical alignment; for, with the hole removed and the beam 

potential close to a peak, no change of collected current should occur 

when the R.F. is switched on and off o The alignment should be checked in 

this wa;y before every run. 

3.6 Errors Arising from the Measurement of Cavity Lengtho 

It is intended that for the final measurement of e/m the length of 

the cavity will be measured with extreme precision by interferometric 

mean!!. As pointed out in section 1.5, however, the fact that the mag

netic fields bulge into the holes where the electrons enter the cavity 

must be taken into account. It appears that this effect will tend to 

increase the effective length of the cavity by perhaps 1% or so, and 

as the amount and effect of this bulging can be calculated to extreme 

precision it should introduce no systematic error. It is planned, 

however, to check the calculations experimentally by the following 

method. Additional spacing rings have been provided so that. the length 

of the cavity can be changed. Since the same end plates are used, and 

since the frequency of the ™110 mode does not depend on the length of 

the cavity, any differences between e/m as measured for the two different 

lengths will give a direct measure of the bulging effect. It does 

appear, however, that the length measurements will not constitute the 
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limiting condition on the overall accuracy. 

3.7 Errors due to Charging of Pinholes. 

It has been found that after the electron beam is allowed to bombard 

a surface for any extended length of time (say 10 hours) that a deposit 

of insulating material builds up on the surface and becomes charged by 

the electron beam. At the anode of the electron gun this charged layer 

can become so thick that it can actually shut off the beam entirely. The 

effect is also serious at the collimating holes, for it has been observed 

that when the collimating hole becomes charged, the bea~ is both blown up 

in size and deflected in position. This condition does not introduce 

systematic error, but, clearly, if the beam size is increased for any 

reason the resolving power is correspondiagly decreased. Then too, if 

the beam is deflected by the charged hole, it becomes increasingly diff· 

icult to center the beam on the collector hole, as changes in current 

intensity will cause the team to wander around. 

From the operational point of view therefore, it is essential that 

runs be made only when the holes are clean. Up to the present time, it 

has been the policy to elea.n t he holes before each run. This necessitates 

letting the system down to air, however, and it would be very desirable 

to introduce some system for cleaning the holes inside the vacuum. It is 

possible that providing a filament from which gold could be evaporated onto 

the collimating ho1e s would accomplish this purpose. 

3.8 Diseussion of the Ultimate Obtainable Accuracy. 

The final measurement of e/m "ill, in addition to the resolving 

power of the apparatus, involve the measurement of a length, a voltage 
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difference, and a radio frequency. Of these the limiting factor is almost 

certainly the voltage. As pointed out in section 1.5, it is possible to 

eliminate the effects of contact potentials, thermal e.m.f.'s etc. provided 

that they are constant throughout a run by measuring not the voltage of a 

peak, but the voltage difference between two successive peaks. The voltages 

will be measured by setting up a precision voltage divider and comparing 

the divided voltage with the e.m.f. of a bank of standard cells which is 

O\¥ned by the Institute and has been calibrated at the National Bureau of 

Standards. The National Bureau of Standards considers this calibration 

to be reliable to 10 parts in a million, and this will set an upper limit 

on the precision of the measurement. 

The limiting factor in a given measurement is set by the resolving 

power of the instrument. As stated above this should be at least 100 parts 

per million. If then systematic errors have been eliminated and the errors 

in a given measurement can be considered truly random in distribution, it 

should be possible to extend to the limit of the voltage measurement by 

taking sufficient numbers of readings to provide good statistical averag-

ing. 

3.9 Suggestions for Improvements on the Apparatus. 

Many improvements have alrea~ been suggested in the secticns above, but 

we 3Ummar12e them here. 

l. Elimination of drifts from the beam potential source. 
2. An improved method of cleaning pl:ilholes. 
3o A device for monitoring the phase and amplitude of the R.F. 
4. A detecting instrument whose scale is more extended. 
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.APPENDIX I. 

Calculation of the Heat Flow Problem in the Walls of the Cavityo 

We shall calculate the flow of heat in the side walls of the cavity 

under the simplifying assumption that the curvature can be neglected and 

the problem solved as a two dimensional one. It shall further be assumed 

y T = 0 that thermal equilibrium has been 

1 established so that the temperature, T, 

Q, 
obeys Laplace's equation 

b 

Yo VT = 0 

x In Figo 19 at the left we have shown 

Fig. 19 the coordinate system employed. 

We solve first for the temperature distribution when a unit source of 

heat is placed at y = y0 , x = O, and shall then integrate this to obtain 

a uniform heat source distribution in y. The baindary conditions to 

be satisfied are T = 0, at y = 0 and at y = b; ~ T = 0 at x = a and at 
~ x 

x = 0 except at (x = 0, y = y0 ). We thus choose a particular solution 

of Laplace's equation 

T = f An (coshn~a.·coshn~ ... 
ll=o 

sinhnrra.sinhnnx) sin!ml. 
b b b n o(l) 

whiek satisfies the boundary conditions at y = 0, y = b, and x = a. At x = 0 

we write 

a Tl ox x • •••oo(2) 
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We now multiply both sides of (2) by si~ dy and integrate between 

O and b. We obtain. using k for the coefficient of heat conductivity 

Sin? );;\;.o = :~ sin P1lYo 
b 

" = -Ap f oinh~ ) siI/l~ ~ 
crtq 0 

Therefore, the coefficient Ap becomes 

sin Pn.lb 
Ap = Jk'. ...,,... 

sinh p~a ••. ( 3) 

If we now let Q, -+ % dyo , and T ~dT, and integrate, we obtain for 

the case of uniform distribution of heat sources 

T = 7 .. _g.__ ~ l f nTia nnx . foaa: nnbk nTT si~ tcosh~oshb - sinhnna.sinhnTTx] sin!$Z 
b . b b 

b 

(0 
where we have used the fact that ~sin~ dy = [

O for n even 

2b/nTI for n odd. 

x = O, y = b/2, for that point will We shall calculate T at the point 

be the hottest, and will show that the temperature rise is negligibleo Now 

~§kt (-1)n coth (2n + l)TTa 
, o (2n + l )2 b 

T(x = 0, y = b/2) = 

Let us now choose a/b = 3. This corresponds to the actual ratio of dimen-

wions in the cavity. This means that all of the hyperbolic cotangents 

have large arguments a.nd are essentially equal to unity. We obtain 

therefore, for T 

•••••.. ( 4) 
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Now the lieat conductivity of Molybdenum is .346 cal.fem.sec.deg., and we 

take as a pessimistic figure 40 watts as the amount of power dissipated 

in the cavity side walls. This gives ~ = .3 cal./sec. cm. Putting 

these values into the expression (4) above gives 

T = o.a oc temperature rise above the ends. 

This rise will cause a negligible change in the cavity length. It will 

as pointed out in the body of the text however, be necessary to find the 

length of the cavity as a function of the temperature of the end plates. 
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Appendix. II. 

Effect of Thermal Electron Velocities on the Current Peak Shape. 

It is of considerable interest to determine whether or not the 

thermal distribution of initial electron velocities seriously limits 

the accuracy \d th wlUch the center of a current peak can be located. 

In order to calculate the order of magnitude of this effect, we assume 

that the peak in the absence of thermal velocities is ideal, i.e. 

sharp and symmetric when plotted on a voltage scale. On this ideal 

peak is superimposed the smearing effect of a thermal velocity dis

tribution given by 

N(u) = u exp(-mu2/2kT) du 

This is the Maxwell-Boltzmann distribution which gives the fraction of 

the total number of emitted electrons which cross a surface with comp

onents of velocity perpendicular to that surface lying between u and 

u + du. In terms of voltage rather tha.n velocity this distribution 

becomes; 

N(u) = N(V) = exp(•eV/~) dV = exp(-aV) dV 

where we have used the abbreviation a = e/lr.T • 

We desire to calculate the equation of the sides of the current 

peak; that is, we desire to find the current I(V0 ) , as a function of 

the applied voltage V0 • It is therefore necessary to integra te the 

contributions to the current at V0 , coming from all the electrons 

which have higher e11ergies. We shall explain the integrals which 

follow in terms of the notation introduced in Figure 20. The 

current I(V0 ). up to a normalizing factor, B, is given by the 
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Figure 20. 

e. 

-l5 .:.10 -5 5 10 15 
Peak Width--volts. 

Figure 21. 
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following integrals 

Vp l Y3Y4 dV 

0 

•..• ( 1) 

valid for V0 to the left. 

where in the first integral for example, Y1 is proportional :fo the fraction 

of electrons at voltage V from peak which are collected, and Y2 is the fac-

tor which essentially gives the probability of their collection. These 

integrals des:cr.ibe the case when V0 h to the left of center as shown in 

Figure 20. When V0 is to the right we have 

•.....• ( z) 

valid for V
0 

to the right. 

From the definitions of Figure 20, these integrals can be written in the 

following form. Eq. (1) becomes, putting all constants into B: 

B I(Vo) 

(0 
= -1<~-V) exp(aV .. al,b) dV + 

~ 

ti- v) exp(-av -aV,) dV 

0 
...• ( 3) 

Eq. (2) on the other han~, becomes 

B I 1(V0 ) = exp( aV0 ... av ) dV •••• ( 4) 

All of these integrations are elementary. Carrying out the integrations 

in Eq.•s (3) & (4), we obtain 

= + 1 - 2exp( •aV 0 ) + exp( •aV p + -a'b) 
a,2 
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The normalizing factor B is chosen to be B = l/qa , because as a-+«>, 

This normalization givew 

I(V0 ) = q(Vp ... V0 ) + i~ .. 2exp(-a.V0 ) + exp(-aVP -aV0~ ••• (6) 

Similarly, 

I 1 (V0 ) = q('!i - V0 ) - ~+ • exp( aV0 - &Vp)] •••• ( 7) 

Now putting in the values e = 1.6 x l0-19 coulomb, k = 1.4 x io-16 erg/degree, 

and using T = 1000 °x , we find that a = 10. This is a very large value 

in all exponents and thus when v0 is neither, very close to 0110r very 

close to VP' a ll of the exponential terms are negligible and the current 

is shifted up in the case of I, and down in the case of It by the amount 

q/a. Essentially this means that the original ideal peak is shifted to 

the left. This situation is illustrated in Fig. 21 where a peak of 

half-~idth 10 volts is shown. in this case q = t/10 = l/26 and the 

voltage shift is given by 

AV = llI/q = l/a. = 1/10 volt 

a I = q/ a = 1/200 Io 

The c:iffect of the ther:nal distribution near the peak and near the wings 

of the peak has been calculated from (6), and (7) above and is !!hown 

in Fig. 22 a,b,&c. respectively. Note that V above is independent of 

q, except near the top a.nd at the wings and that therefore the voltage 

shift is the same for peaks of di.ffering slopes. This means that the 

n = 3 say and n : 4, peaks are shifted by the same amount which will 

cancel when voltage differences ~re taken. The thermal distrib~tion 

therefore, canbe treated as just one more constant cancelling e.m.f. 



- 52-

.o 

.o 
I 

.oo 

-.4 -.3 -.2 -.l 0 ~l .2 
Peak Voltage--volts. 

Figure 22a. 

\ 

0 .l .4 .5 .6 .7 .4 

Voltage, arbitrary origin. 
Fi~re 22b. 

.4 

~ 

'\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

.3 .2 .l 
(VP - V0 ) volts 

Figure 22c. 

.Ol 
I 

0 



-53-

In all of the diagrams of Fig. 22, curve A refers to the ideal peak 

that would bs obtained if all of the electrons were emitted at zero vel

ocity, and curve B is the actual peak obtained if thermal velocities 

are taken into account. It is interesting to note by comparing Fig.22b 

and Fig 22c. that on the leading edge of the peak an exponential rise 

takes place, while on the trailing edge the eurrent goes rigorously to 

zero when V0 =VP • This is due to the fact that all of the electron 

velocities due to thermal agitation are in the forward direction, and 

add to the energy imparted to them by the voltage applied. Thus in 

Figure 22b., we can say that even though the applied voltage is 

too small to put us on the peak, nevertheless, some current will be 

collected. The integrals used in calculating Fig. 22b though not shown 

are very similar to Eq. (3)., and the integration is straightforward. 

It should be pointed out that the above calculations are valid for 

the case 1¥hen the emission is temperature limited. It is customary 

to operate the electron source under these conditions. 
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APPENDIX III. 

Table of Symbols Used in the Text. 

a radius of cavity 
exponent in Maxwell-Boltzmann distribution. 

b cyclotron frequency of the electron 

B magnetic flux density 
normalizing factor 

c velocity of light 

d length of the cavity 

D beam drift dhtance 

e char~e on the electron 

E electric field intensity 

f frequency 

g dimensionless parameter--nonQrotating field case 

I collected beam current••r.f. on 

I 0 collected beam current••r.f. off 

k effective synchronous frequency 
Boltzmann constant 
heat conductivity 

m mass of the electron 

P power 

q see Fig. 20 

Q dimensionless cavity para.meter 
magnitude of heat source 

r radius of the deflected beam 

R amount of beam deflection after drifting 

s wid~h of slit or pinhole 

t time 



T period of the R.F 
temperature 

u thermal velocity 
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v velocity of electron 

V voltage 

w (2/T)n = 2nf 

x rectangular cartesian coordinate 

y rectangualr cartesian coordinate 

Yi See Figure 20. 

z rectangular eartesian coordinate 
cylindrical coordinate 

« beam deflectionangle--rotating case 

/3 wave number 

t r.f o conductivity 

8 skin depth 

Q non-integral part of transit time--non-rotating case 

<:" permeability 

I' eylindrica.l coordinate 

~ transit time 

¢ cylindrical coordinate 
phase of electron entry -- non-rotating caseo 


