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PREFACE

The object of this book is to present the elements of the

Differential Calculus in a form easily accessible for the under-

graduate. It is possible, from the very beginning, to illustrate

the ideas and methods of the Calculus by means of applications

to physics and geometry, which the student can readily grasp,

and which will seem to him of interest and value. To do this,

the stress in the illustrative examples worked in the text must

be laid hrst of all on the thought which underlies the method

of solution, in distinction from the exposition of a process, re-

duced in the worst teaching to rules, whereby the answer can

be obtained. The treatment of maxima and minima. Chapter

III, § § 2, 3, and curve tracing. Chapter III, § 5 and Chapter VII,

§ 10, will serve to show what is here meant.

It is, however, also essential that the student receive thorough

training in the formal processes and the technique of the Cal-

culus, and this side has been treated with care and complete-

ness. Note, for example, the differentiation of composite

functions in Chapter II, § 8, and the exposition of the use of

differentials in differentiating in Chapter IV, §§ 4, 5.

An important application of the graphical methods, with

which the Calculus is so intimately associated, is that of

solving approximately numerical equations which do not

come under the standard rules of algebra and trigonometry.

Hitherto, however, little attempt has been made to present

this subject, simple as it is, in any systematic and elementary

manner. In Chapter VII the common methods in use by

physicists and others who apply the Calculus are set forth

and illustrated by simple examples.

The book might have included a brief treatment of curva-

ture and evolutes, and the cycloid. But probably most
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teachers of the Calculus will prefer to take up integration

next, and so the closing chapter is devoted to the last of the

elementary functions, the inverse trigonometric functions, with

special reference to their one great application in the elements

of mathematics, namely, their application to integration.

The book is so written that it can be adapted, if desired, to

an abridged course, in which, after the fundamentals of the

first three chapters have been covered, any of the remaining

topics can be treated briefly, and thus a wide scope in subject

matter is possible, even when the time is short.

Cambridge, Massachusetts,

January, 1921.
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CALCULUS

CHAPTER I

INTRODUCTION

The Calculus was invented in the seventeenth century by
the mathematician, astronomer, and physicist. Sir Isaac Newton
in England, and the philosopher Leibniz in Germany. The

reaction of the invention on geometry and mathematical physics

was most important. In fact, by far the greatest part of the

mathematics and the physics of the present day owes its

existence to this invention.

1. Functions. The word function, in mathematics, was

first applied to an expression involving one or more letters

which represent variable quantities ; as, for example, the

expressions

(a) y?, 2a;3-3rr + l;

(6) V^, Va- — ic2

;

(c)

^"^ ^y qa; + hy

a-\-x' a;2 + 2/2' Va;^ -j- ?/2 + ^2

'

(d) sin a;, log a?, tan~ia;.

In the second example under (p), two letters enter ; but a
is thought of as chosen in advance and then held fast, x alone

being variable. A quantity of this kind is called a constant.

Thus
ax-\-

is a function of x which depends on two constants, a and 6.

1
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Such expressions are written in symbolic, or abbreviated,

form as f{x), f(x, y) (read : "/ of a?," "/of x and 2/" etc.)

;

other letters in common use being F, <^, <l>, etc.* Thus the

equation

(1) f{x) = 2x^-2>x-\-l

defines the function /(a;) in the present case to be 2x^— 'dx-\-l.

Again,

(2) <\>{x, y, z) = x'- + y' -\- z'-

is an equation defining the function cfi{x, y, z) as cc^ + y^ -\- z\

We shall be concerned for the present with functions of one

single variable, as illustrated by (1) above. Here, x is called

the independent variable, since we assign to it any value we
like. The value of the function, or more briefly, the function^

is called the dependent variable, and is often denoted by a

single letter, as
=f(x)

or y = 2:i^-Sx-^l.

Graphs. A function

of a single variable,

can be represented

geometrically by its

graph, and this repre-

sentation is of great aid

in studying the proper-

ties of the function.

The independent vari-

able is laid off as the

a;-coordinate, or ab-

scissa, and the depend-

_. . ent variable, or func-

* To distinguish between /(«) and F(x), read the first " small/ of x "

and the second, " large J?' of x."
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tion, as the y-coordinate, or ordinate. Thus the graph of the

function ^, . „

fix) = x^

is the curve

Illustrations from Geometry and Physics. The familiar

formulas of geometry and physics afford simple examples of

functions. Thus the area, A, of a circle is given by the

formula A = irf-,

where r denotes the radius, tt being the fixed number 3.1416.

Here, r is thought of as the independent variable, — it may
have any positive value whatever,— and A is the function, or

dependent variable.

Again, for the three round bodies, the volumes are :

(a) F= |7rr3, sphere

;

(6) . F=7rr2/i, cylinder;

(c) V='^r'^h, cone.

In (6) and, (c), h denotes the altitude and r, the radius of

the base ; V is here a function of the two independent

variables, r and h.

The surfaces of these bodies are given by the formulas :

(«) aS' = 47rr2, sphere

;

08) S^ l-nrli, cylinder

;

(y) S = ttH, cone

;

I, in the last formula, denoting the slant height. Thus we
have three further examples of functions of one or of two

variables.

The formula for a freely falling body is

where s denotes the distance fallen and t the time
; ^ is a

constant, for it has just one value after the units of time and
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length liave been chosen. Here, t is the independent variable

and s is the function. If, however, we solve this equation

for t

:

,

^ 9

then s becomes the independent variable and t, the function.

Sometimes two variables are connected by an equation, as

pv = c,

where p denotes the pressure of a gas and v its volume, the

temperature remaining constant. Here, either variable can

be chosen as the independent variable, and when the equation

is solved for the other variable, the latter becomes the de-

pendent variable, or function. Thus, if we write

P

p is the independent variable, and v is expressed as a function

of p. But if we write
c

P = -,
V

the roles are reversed.

TJie Independent Variable Restricted. Often the independent

variable is restricted to a certain interval, as in the case of the

function
y = Va2 — x\

Here, x must lie between — a and a :

— a-^ x-^a,

since other values of x make a^ — a;^ negative, and the above

expression has no meaning.

This was also the case with the geometric examples above

cited. There, r, h, I were necessarily positive, since there is

no such thing, for example, as a sphere of zero or negative

radius.

The independent variable may also be restricted to being a

positive whole number, as in the case of the sum of the first n
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terms of a geometric progression

:

s„ = a -\-ar-{- ar^ -h — + ar"~^

Here,
a— ar""

1-r

Suppose a = 1, r = ^, the progression thus becoming

1+1+1+...+_!_„.^ 2 22
^ 2"-i

Then

i_i" 2^'
2

and we have an example of a function with the independent

variable ^ natural number, i.e. a positive integer.

In the case of the functions treated in the calculus, the do-

main of the independent variable is a continuum, i.e., for func-

tions of a single variable, an interval, as

a ^ flj^ &, or <x.

Ordinarily, the later letters of the alphabet, particularly

X, y, 2, are used to represent variables, the early letters denot-

ing constants. Thus it will be understood, when such an ex-

pression as
ax^ -[-hx-\- c

is written down, that a, 6, c are constants and x is the variable.

Multiple-Valued Functions; Principal Value. The expres-

sions above cited are all examples of single-valued functions

;

i.e. to each value of the independent variable x corresponds

but one value of the function. A function may, however, be

multiple-valued; as in the case of the function y defined by
the equation

cc2 + 2/2 = a^.

Here
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and so is a double-valued function. This function is, however,

completely represented by means of the two single-valued

functions,

y = Va^ — a;2 and

Graph ofy^ when

Fig. 2

They form the branches of this multiple-valued function.

The student should notice that the radical sign ^ is defined

as meaning the positive square root, not either the positive or

the negative square root at pleasure. If it is desired to ex-

press the negative square root, the minus sign must be written

in front of the radical sign, — ^. Thus V4 = 2, and not — 2.

This does not mean that 4 has only one square root. It means

that the notation V4 calls for the positive, and not for the

negative, of these two roots.

and not - 2. For (—2)2= 4, and -^ means the positive root.

And, generally,

(1)
\ Va2 = -

if X is positive
;

if X is negative.

A similar remark applies to the symbol ^^, which is like-

wise used to mean the positive 2nth root. Moreover,

The function ,-
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is often called the principal value of the double-valued function

defined by the equation

2/2 = a;.

Since multiple-valued functions are studied by means of

single-valued functions, it will be understood henceforth, un-

less the contrary is explicitly stated, that the word function

means single-valued function.

Absolute Value. It is frequently desirable to use merely

the numerical, or absolute value of a quantity, and to have a

notation for the same. The notation is: \x\, read "absolute

value of «." Thus

|-3| = 3 and |3| = 3.

We can now write in a single formula what was formerly

stated by the two equations (1), namely the definition of the

radical sign, V •

(2) V^-|a|.

Again, by the difference of two numbers we often mean the

value of the larger less the smaller. Thus the difference of 4

and 10 is 6 ; and the difference of 10 and 4 is also 6. The

difference of a and 6, in this sense, can be expressed as either

16— a
I

or |a — 6|.

Continuous Functions. A function, f{x), is said to be con-

tinuous if a slight change in x produces but a slight change in

the value of the function. Thus the polynomials are readily

shown to be continuous ; cf. Chap. II, § 5, and all the func-

tions with which we shall have to deal are continuous, save at

exceptional points.

As an example of a function which is discontinuous at a

certain point may be cited the function (see Fig. 3)

/(x)=l.
X
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When X approaches the value 0, the function increases nu-

merically without limit. The graph of the function has the

axis of y as an asymptote.

The fractional rational functions are continuous except at

the points at which the denominator vanishes.

Thas the function

X- — 1

is continuous except at the points

X = 1 and X = —1. Here, the

function becomes infinite. Its

graph is the curve

^ x2 + 1

^ {x-i){x + iy

which evidently has the lines « = 1

and ic = — 1 as asymptotes.

The function

Fig. 3 f{x) = tan x

is continuous except when x is an odd multiple of 7r/2,

271 + 1

EXERCISES

1. If /(a;)=ic2_4a;4.3,

show that /(1) = 0, /(2)=-l, /(3) = 0.

Compute /(O),/(4). Plot the graph of the function.

2. If <^(a;) = 4a;3

compute <^(2) and <^(V3).

3. If F{x)^ 2x-Z
x + 7

'

compute F(-\/2) correct to three significant figures.

Ans. -.0204.
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4. If ^(x) = (pc^ — a;)sin x,

find all the values of x for which

$(0)=0.

5. If i[/{x)=x^ — X~^j

find.// (8).

6. Solve the equation

x^ — xy -\- 3 = 5y

for y, thus expressing 2/ as a function of x.

7. If /W=a%
show that /(a?)/(?/) =f(x -I- y).

express x as a function of ?/.

9. Draw the graph of the function

f{x)=x'^-j-4.x-\-S,

taking 1 cm. as the unit.

Suggestion : Write the function in the form, {x -\-l)(x + 3).

10. Draw the graph of the function

f(x) = X^ — 4:X.

11. Draw the graph of the function

and hence illustrate the ' two discontinuities which this func-

tion has.

12. Draw the graph of the function

a;2 (a; - 1)^
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13. For what values of x are the following functions dis-

continuous ?

(a) f{x) = cot aj

;

(c) f(x) = esc a;

;

(b) fix) = sec a;

;

(d) f{x) = tan
|

14. Express the double-valued function defined by the

equation
aj2 _ ^,2 = _ 1

in terms of two single-valued functions.

15. Express the quadruple-valued function defined by the

equation
y^ -2y'^ + x^ = ()

in terms of four single-valued functions.

16. Express the sum s„ of the first n terms of the arithmetic

progression

a+(a + 6)-t-(a + 2&)+ ••. +{a + n — lh)

as a function of n.

Thus obtain the sum of the first n positive integers as a

function of n.

17. If P dollars are put at simple interest for one year at

r per cent, (a) express the amount A (principal and interest)

as a function of P and r. (6) Express the amount A at the

end of n years, the interest being compounded annually, as a

function of P, r, and n. (c) Express the amount A at the

end of one year, if the interest is compounded m times in the

year at equal intervals, as a function of P, r, m.

2. Continuation. General Definition of a Function. The con-

ception of the function is broader than that of the mathemati-

cal formulas mentioned in the last paragraph. Let us state

the definition in its most general form.

Definition of a Function. The variable y is said to be a

function of the variable x if there exists a law whereby, when x

is given, y is determined.
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Consider, for example, a quantity of gas confined in a cham-

ber,— for instance, the charge of the mixture of gasolene and

air as it is being compressed in the cylinder of an automobile.

The charge exerts at each instant a definite pressure, p, of so

many pounds per square inch on the walls of the chamber,

and this pressure varies with the volume, v, occupied by the

charge. In the small fraction of a second under consideration,

presumably but little heat is gained or lost through the walls

of the chamber, and thus p is a function of v,

In this case, the function is given approximately by the math-

ematical formula

where C denotes a certain constant. But that which is of first

importance for our conception is not the formula, but the fact

that to each value of v there corresponds a definite value of p.

In other words, there is a definite graph of the relation be-

tween V and p. The representation of the relation by a math-

ematical formula is, indeed, important; but what we must
first see clearly is the fact that there is a definite relation to

express.

As another illustration take the curve traced out by the

pen of a self-registering thermometer of the kind used at a

meteorological station. The instrument consists of a cylindri-

cal drum turned

slowly by clock-

work at uniform

speed about a

vertical axis, a

sheet of paper yig. 4

being
,

wound
firmly round the drum. A pen is held against the paper, and

the height of the pen above a certain level is proportional to

the height of the temperature above the temperature corre-
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spending to that level. The apparatus is set in operation, and

when the drum has been turning for a day, the paper is taken

off and spread out flat. Thus we have before us the graph of

the temperature for the day in question, the independent

variable being the time (measured in hours from midnight)

and the dependent variable being the temperature, represented

by the other coordinate of a point on the curve.

One more illustration,— that of the resistance of the atmos-

phere to a rifle bullet. This resistance, measured in pounds,

depends on the velocity of the bullet, and it is a matter of

physical experiment to determine the law. But that which

is of first importance for our conceptions is the fact that there

is a law, whereby, when the velocity, v, is given an arbitrary

value within the limits of the velocities considered, there cor-

responds to this V a definite value, R, of the resistance. We
say, then, that i? is a function of v and write

In this connection, cf. the chapter on Mechanics, § 7, Graph

of the Resistance, in the author's Differential and Integral

Calculus.



CHAPTER II

DIFFERENTIATION OF ALGEBRAIC FUNCTIONS
GENERAL THEOREMS

1. Definition of the Derivative. The Calculus deals with

varying quantity. If 2/ is a function of x, then x is thought

of, not as having one or another special value, but as flowing

or growing, just as we think of time or of the expanding cir-

cular ripples made by a stone dropped into a placid pond.

And y varies with x, sometimes increasing, sometimes decreas-

ing. Now if we consider the change in x for a short interval,

say from x = ccq to ic = x', the corresponding change in y, as y
goes from y^ to y', will be in general almost proportional to

the change in x. For the ratio of these changes is

X — Xq

and this quantity changes only slightly when x' is nearly

equal to Xq, Let us study this last statement minutely.

y // .

pX^
^..^ F

^2/0
1

1 X

a•0 ^'

Fig. 5

The above ratio has a simple geometric meaning, if we draw
the graph of the function ; for

PM=x'-Xo', MP' = y'-y,,
13
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X' — Xq

where t' denotes the angle which the secant PP makes with

the axis of x. Now let x' approach Xq as its limit. Then t'

approaches as its limit the angle r which the tangent line of

the graph at P makes with the axis of x, and hence

lim ^ ^ = tan t
x'^-XqX — Xq •

( read : "limit, as x' approaches Xq, of ^ ~ ^^ \
V x'-Xq J

The determination of this limit and the discussion of its mean-

ing is the fundamental problem of the Differential Calculus.

Such are the concepts which underlie the idea of the deriva-

tive of a function. We turn now to a precise formulation of

the definition. Let

(1) y =/(*)

be a given function of x. Let Xq be an arbitrary value of x,

and let 2/0 be the corresponding value of the function :

(2) !/o =/(^o).

Give to X an increment,* Ax ; i.e. let x have a new value, x',

and denote the change in x, namely, x' — Xq, by Axr

x^ — Xq = Ax, x' = Xq-\- Ax.

The function, y, will thereby have changed to the value

(3) 2/'=/(^•')

and hence have received an increment. Ay, where

y'-yQ = Ay, y'^y^ + Ay.

* The student must not think of this symbol as meaning A times x.

We might have used a single letter, as h, to represent the difference in

question : x'=: Xq -\- h ; but h would not have reminded us that it is the

increment of x, and not of y, with which we are concerned. The notation

is read "deitax."



DIFFERENTIATION OF ALGEBRAIC FUNCTIONS 15

Equation (3) is equivalent to the following

:

(4) ?/o -h Ay = /{xq + Aa?)

.

From equations (2) and (4) we obtain by subtraction the

equation

and hence

^ ^/(a?o+Aa;)-/(a;o)

Aic Ao;

^y =/(a^o 4- ^x) -fi^o),

(5)

Definition of a Derivative. The limit which the ratio

(5), yiamely — , approaches when Aa; approaches zero

:

i\x

(6) lim^
/ix^ Acc Ai^ Ax

ts caZZec? ^Ae deri'vative of y with respect to x and is denoted by

Djy or DJ{x) (read :
"D x of y ")

:

(7)

In this definition Aa; may be negative as well as positive, and

the limit (6) must be the same when Aa; approaches from the

negative side as when it approaches from the positive side.

To differentiate a

function is to find its

derivative.

The geometrical in-

terpretation of the

analytical process of

differentiation is to

find the slope of the

graph of the function.

For,

tanr'=^
Aaj

y

^ ^.^<:^^^Ax
1

yd f
! 1

X
Xa X'

Fig. 6

and
tan r = lim tan r' = lim -^ = Djy.

F'=p Ax^ Aa?
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2. Differentiation of x"". Suppose n has the value 3, so that

it is required to differentiate the function

(1) y = ^.

We must follow the definition of § 1 step by step. Begin,

then, by assigning to x a particular value, Xq, which is to be

held fast during the rest of the process, and compute from

equation (1) the corresponding value y^ of y :

(2) 2/0 = ^0^.

Next, give to x an arbitrary increment, Aa^, denote the corre-

sponding increment in y by A?/, and compute it. To this end

we first write down the equation

(3) 2/o-f A2/=GTo+Aa.f.

The right-hand side of this equation can be expanded by the

binomial theorem, and hence (3) can be written in a new form :*

(4) 2/0 -h Ay = x^^ -h 3 a^o^Ax -f 3 ^oAa^^ 4. Aa^.

Subtract equation (2) from equation (4) :

A2/ = 3 Xq'^x -\- 3 ajflAa;- + Aa;^.

Next, divide through by Aa:

:

^ = 3xo2 + 3a;oAa; -f Aa;*^.

Aa;

We are now ready to let Aa; approach as its limit :

limM 3= lim (3 a; 2 _^ 3 r^^y^ _^ Aa;2).

*It is at this point that the specific properties of the function x^ come
into play. Here, it is the''binomial theorem that enables us ultimately

to compute the limit. In the differentiations of later paragraphs and

chapters it will always be some characteristic property of the function in

hand which will make possible a transformation at this point.
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The limit of the left-hand side is, by definition, D^y. On the

right-hand side, each of the last two terms in the parenthesis

approaches the limit 0, and so their sum approaches 0, also.

The first term does not change with ^x. Hence, the whole

parenthesis approaches the limit Sa^o^. We have, then, as the

final result

:

t^ o <,

The subscript has now served its purpose, which was, to

remind us that Xq is not to vary with Ax*, and it may be

dropped. Thus
d.^=z^..

The differentiation of the function x^ in the general case

that n is any positive integer can be carried through in pre-

cisely the same manner. As the result of the first step we have

(5) 2/0 = «o"-

Next comes

:

(6) 2/o -f- A?/ = {xq -f Ax)%

and we now apply the binomial theorem to the expression on

the right-hand side. Thus

(7) 2/0 + A2/ = a^o" + nx^--^^x + ^^^ ~J-^ x^^-^^x^ + - + Ax\

On subtracting (5) from (7) we have :

A?/ = nxQ^'^ii.x -\—^^~ ^ Xq'^'-Ax^' -f-
••• + Ace".

Now divide through by A.t :

^ = nxo'^-i + ^^?~"^-^
a;o'-"^Aa; + • • • + Aa7«-i, ~

Ax 1-2

and let Ax approach the limit zero

:

lim^ = lim fnxo^-'- + ^('*^ -}) Xq--^Ax -f • • • + Ax--\
Ax^ Ax Az^O V 1-2 J

Each term of the parenthesis after the first is the product

of a constant factor and a positive power of Ax. This second
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factor approaches zero when Ax approaches zero ; consequently

the whole term approaches zero. There is only a fixed num-
ber of these terms, and so the whole parenthesis approaches

the limit najo""^ Hence

D,y = nxo'^-K

On dropping the subscript we obtain the final result

:

(8) B,x- = ?ia;"-i.

In particular, if n = 1, we have

(9) D^x^l.

EXERCISES

Differentiate the following seven functions, applying the

process of § 1 step by step.

1. y = 4.x\ . Ans. D,y = 12 x\

2. y==x^.

3. y = 2x'-3x-\-l. Ans. Djy = 4 a; — 3.

4. y=zx' -a^. Ans. Djy = 7x^ — 5x^.

5.=^ f(x)=l-2x^. Ans. DJ{x)= -Sa^.

6. <f>{x)=x'^-2x-\-l'

7. F(x)= {l-xy.

8. Let y = 5x— X-,

and take Xq = 1 ; then ?/o
= 4. If Ax == .2, then Ay = .56 and

^ = 2.8. Show further that,
Ax

for Ax

and
for Ax

= .1, Ay = .29,

= .01, Ay = .0299,

f=2.9;Ax

^=2.99.
Ax

* It is immaterial whether we write

y = 1-2x4 or /(x) = 1 - 2x4.
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Plot the curve accurately for values of x from a? = to

x = 5, taking 1 cm. as the unit, and draw the secants * in

each of the three foregoing cases.

What appears to be the slope of the curve at the point

(xq, i/o)= (l> 4)? Prove your guess to be correct.

9. In Ex. 7, let Xq = — 1. If Ax is given successively the

lues .01 and — .01, compute Ay and —^•
Ax

10. Complete the following table :

Ax Ay tanr' =
Âx

.1

.01

.001

for each of the functions :

(a) 2/ = a;2-2a; + l, Xo = 2',

(6) y = x — a^, a^o = - 1

;

(c) y = 3a?'^ — x, Xq = 0.

11. By means of the general theorem (8) write down the

derivatives of the following functions :

/y»4 . rp5 • /v»10. /v. . /yi99

By means of the definition of § 1 differentiate each of the

following functions

:

12.

13.

14.

y

y =

1

X
A71S. i>.2/ = -

1

x^'
Ans. D.J/ = -

1
Ans. D,y = -

* The student should recall from his earlier work how to draw a straight

line on squared paper when a point and the slope of the Hne are given.
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3. Derivative of a Constant. The function

f(x)=c,

where c denotes a constant, has for its graph a right line paral-

lel to the axis of x. Since the derivative of a function is repre-

sented geometrically by the slope of its graph, it is clear that

the derivative of this function is zero

:

D,c = 0.

It is instructive, however, to obtain this result analytically

by the process of § 1. We have here :

yo -f Ay =f(xo-\-Ax)=C',

hence A?/ = and ^ = 0.
Ace

Now allow Ax to approach 0. The value of Ay/Ax is always

0, and hence its limit * is :

lim^ = 0, or D,c = 0.
Ar(^=o Aa;

* We note here an error frequently made in presenting the subject of

Umits in school mathematics. It is there often stated that '
' a variable X

approaches a limit Ait X comes indefinitely near to A, but never reaches

-4." This last requirement is not a part of the conception of a variable's

approaching a limit. It is true that it is often inexpedient to allow the

independent variable to reach its limit. Thus, in differentiating a func-

tion, the ratio Ay/Ax ceases to have a meaning when Ax = 0, since divi-

sion by is impossible. The problem of differentiation is not to find the

value of Ay/Ax when Ax = ; such a question would be absurd. What
we do is to allow Ax to approach zero as its limit without ever reaching

that limit. We can do this for the reason that Ax is the independent

variable.

When, however, it is Ay or Ay/Ax that is under consideration, we have

to do with dependent variables, and we have no control over them, as to

whether they reach their Umit or not. Thus in the case of the text both

Ay and Ay/Ax are constants (=0). When Ax approaches 0, they always

have one and the same value, and so, under the correct conception of

approach to a limit each approaches a limit, namely 0.
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We can state the result by saying : The derivative of a con-

stant is 0.

4. Differentiation of ^x. -Let us differentiate

2/ = Va;.

Here, 2/0 = V^, yQ + i^y= V^^+Aa,

Ay ^ Va^o + Aa; — Va^p

A.^ Aa;

We cannot as yet see what limit the right-hand side approaches

when Aa; approaches 0, for both numerator and denominator

approach 0, and - has no meaning. We can, however, trans-

form the fraction by multiplying numerator and denominator

by the sum of the radicals and recalling the formula of Elemen-

tary Algebra : ^^ _ 52 =(« _ h){a + h).

Thus
A?/ _ Va^o -f Ao; — ^Xq Vo^q + Aa; -|- Vcfp

^^ ~ ^^ Vx'o + Aa; +V^
_J^ . (g^o + Aa;)— a^o

Aa; Va^o H- Aa.' + Va^o Va^o + Aa; -}- ViCo^

and hence lim^ = lim—3=33:333:3:;: ^ = 33

.

^^ Aa; Ax=o -y/r^^ 4_ ^a- -h Va^o 2Va^o

Dropping the subscript, we have

:

2Va;

EXERCISES

1. Differentiate the function y = Ans. D^y =
^/x 2Vaj3

show that i>_,2/ =

2. If 2/=V2-3a;,

-3

2V2-3X
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3. Prove: DWl — x = —
2VI-X

4. Prove : D.^a + hx —
2Va + hx

5. Three Theorems about Limits. Infinity.* In the further

treatment of differentiation the following theorems are needed.

Theorem I. Tlie limit of the sum of two variables is equal to

the sum of their limits:

lim (X + F)= limX -f lim T.

In this theorem we think of X and T as two dependent

variables, each of which approaches a limit

:

limX=^ \imT=B.

We do not care what the independent variable may be. In

the applications of the theorem to computing derivatives, the

independent variable will always be Ace, and it will be allowed

to approach 0, without ever reaching its limit.

Since X approaches A, it comes nearer and nearer to this

value. Let the difference between the variable and its limit

be denoted by c ; then the limit of e is :

(1) X-^ = e, X==.l + c;

lim £ = 0.

Similarly, let

(2) Y-B=.rj, r=J5 + >7;

then lim 1; = 0.

* This paragraph should be read carefully and its content grasped,

but the student should not be required to reproduce it at this stage of his

work. He will meet frequent applications of its principles, and he should

turn back each time to these pages and read anew the theorem involved,

with its proof. When he has thus come to see the full meaning and im-

portance of these theorems, he should demand of himself that he be able

readily to reproduce the proofs.
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It will be convenient to think of these numbers as repre-

sented geometrically by points on the scale of numbers, thus :—s—1 rt r^-
Fig. 7

Of course, A and B may be negative or 0. e and r} may be

negative as well as positive, or even 0.

Consider the variable X -f- F. Its value from (1) and (2) is :

X-{-T=A-}-B-{-e-\-rj.

Hence lim (X+Y) = lim (^4 + J5 + e + ry).

But since lim e = and lim r) = 0, the limit of the right-hand

side of this equation is A-\- B, or

\im(X-\-Y)=A-{-B.

Consequently, lim (X + F)= lim X -\- lim F, q. e. d.

CoROLLAKY. The limit of the sum of any fixed number of

variables is equal to the sum of the limits of these variables

:

lim (Xi + X^2 + - + X„) = lim Xi -|- lim Xg H h lim X^.

Suppose n = 3. Then

Xi + X2 -h X3 =(Xi 4- X2)-f X3.

From Theorem I it follows that

lim (Xi + X2 + X3) = lim (Xi + X2) + lim X3.

Applying the Theorem again, we have

lim (Xi + X2)= lim Xj + lim X2.

Hence the corollary is true for n —2>. It can now be estab-

lished for ?i = 4 ; and so on. By the method of Mathematical

Induction it can be proven generally. Or, the proof of the

main theorem may be extended directly to the present

theorem.
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Theorem II. The limit of the product of tivo variables is

equal to the product of their limits

:

lim (XF) = (liniX)(lim Y).

Erom equations (1) and (2) it follows that

or XT= AB + Be ^ A-q + ^-q.

Hence lim XY= lim {AB + 5e + ^77 -f- £77).

Since A and B are constants, each of the last three terms in

the parenthesis approaches the limit 0, and so the limit of the

parenthesis is AB. Hence

lim{XY)=:AB,

or lim {XY)= (lim X)(lim F), q. e. d.

Corollary. The limit of the jyroduct of u variables is equal

to the product of the limits of these variables

:

lim (X1X2 •.. X„)= (lim Xi)(lim X^) •• (lim X„).

The proof is similar to that of the corollary under Theorem I.

Remark. As a particular case under Theorem II we have

:

lim(CX) = C(limX),

where G is a constant.

Theorem III. The limit of the quotient of two variables is

equal to the quotient of their limits, provided that the limit of the

divisor is not 0:

lim^= lHL^, iflimF^O.
Y lim F'

From equations (1) and (2) above we have

:

Y B + rj'



DIFFERENTIATION OF ALGEBRAIC FUNCTIONS 25

Subtract AjB from each side of tliis equation and reduce

:

X A^ A + c A ^ Be -At)
Y B B-{-7} B B2-\-Brj'

Hence X^^ ^e-^,
Y B B^-\-Br}'

and lim^^limf^H-^^^H^Y
Y \B B'-^Brjj

We wish to show that

lim^lZlA^O.
B^-^Brj

The numerator is seen at once to approach zero. The limit of

the denominator is B^. Let ^ be a positive number less than

H B'

Fig. 8

B^. Then the denominator will finally become and remain

greater than H, and hence the numerical value of the quotient

in question will not exceed the numerical value of

Be- Art

H
But the limit of this expression is zero, and hence

1- X A
lim — = —

,

T X limX ,
or lim — =

, q.e. d.Y limF' ^

In particular, we see that, if a variable approaches unity as

its limit, its reciprocal also approaches unity :

If limX=l, then lim — = 1.
2\.
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Also, lim-—:=X lim X'

where C is a constant and lim X=^0.

Remark. If the denominator Y approaches as its limit,

no general inference about the limit of the fraction can be

drawn, as the following examples show. Let Y have the

values :

Y=^ J_ -J_ A.
10' 100' 1000' ' 10-' *

(1) If the corresponding values of X are :111 1X =
102' 100^' 10002' ' 102"'

X 1
then lim — = lim— = 0.

(2) If X =

Y 10^111 1

Vio' vioo' viooo' ' ^^'

then X/F=10"/2 approaches no limit, but increases beyond

all limit.

(3) If X
10' 100' 1000' '10"' '

where c is any arbitrarily chosen fixed number, then

lim^=:c.
Y

1 1

^ ^ ~io' "iob' 1000' ~ 10,000' '

then X/ Y assumes alternately the values + 1 and — 1, and

hence, although remaining finite, approaches no limit.

To sum up, then, we see that when X and Y both approach

as their limit, their ratio may approach any limit whatever,

or it may increase beyond all limit, or finally, although remain-
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ing finite, i.e. always lying between two fixed numbers, no mat-

ter how widely the latter may differ from each other in value,

— it may jump about and so fail to approach a limit.

Infinity. If \\mX = A^O and lim T= 0, then X/ Y in-

creases beyond all limit, or becomes infinite. A variable Z is

said to become infinite when it ultimately becomes and re-

mains greater numerically than any preassigned quantity, how-

ever large.* If it takes on only positive values, it becomes

positively infinite; if only negative values, it becomes negatively

infinite. We express its behavior by the notation

:

lim Z = cf:> or lim Z = + oo or lim Z = —ao.

But this notation does not imply that infinity is a limit ; the

variable in this case approaches no limit. And so the notation

should not be read " Z approaches infinity " or " Z equals

infinity ; but " Z becomes infinite.^'

Thus if the graph of a function has its tangent at a certain

point parallel to the axis of ordinates, we shall have for that

point

:

lim —^ = 00
;

read : " Ay/Ax becomes infinite when Ax approaches 0."

Some writers find it convenient to use the expression "a
variable approaches a limit " to include the case that the vari-

able becomes infinite. We shall not adopt this mode of ex-

pression, but shall understand the words ^' approaches a limit

"

in their strict sense.

If a function f(x) becomes infinite when x approaches a cer-

tain value a, as for example

f(x)= - for a = 0,

* Note that the statement sometimes made that '
' Z becomes greater

than any assignable quantity '

' is absurd. There is no quantity that is

greater than any assignable quantity.
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we denote this by writing

/(a)=a)

(or f(a)=-\-oc or =— oo, if this happens to be the case

and we wish to call attention to the fact). ,,

It is in this sense that the equation

tan 90°=00

is to be understood in Trigonometry. The equation does not

mean that 90° has a tangent and that the value of the latter is

CO . It means that, as x approaches 90° as its limit, tan x

exceeds numerically any number one may name in advance,

and stays above this number as x continues to approach 90°

without ever reaching its limit, 90°.

Definition of a Continuous Function. We can now make more
explicit the definition given in Chapter I by saying: f(x) is

continuous at the point a; = a if

\imf(x)= f(a).
x=o

From Exercises 1-3 below it follows that the polynomials

are continuous for all values of x, and that the fractional

rational functions are continuous except when the denominator

vanishes.

EXERCISES

1. Show that, if n is any positive integer,

\im{X-)= {limXy.

2. If G (x)= Co + Cia;'+ C2X^ + ••• 4- c^x"",

then lim G(x)= G (a)= Cq + Cia + Cztt^ + ••• + c^a".

3. If G(x) and F(x) are any two polynomials and if F{a)=^0,

then limM^ = ^(^.^ F{x) Fia)
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4. If X remains finite and F approaches as its limit, show

^^^*
lim(Xy)=0.

5. Show that j-^ x^-\-l ^ 1

Suggestion. Begin by dividing the numerator and the de-

nominator by a'2.

Evaluate the following limits :

^ r .1-4-1 ^ T 12.^6 + 5
6. lim — 7. lim ^

^3 _7 a; + 3 x=co 4ic6 -i-Sx* -j-lx"^— 1

T ax -\- bx~^ ^ 1 • ax + 6:c"i
8. lim -• 9. lim

—

— -•

x=os ex -f- dx ^ x=o ex -\- dx '

, ^ 1
. Vl + .^2 ic2 + a; 4-

1

10. lim- 11. lim— ^ ^

12. limXl+£!±^. 13. lim
^

.

6. General Formulas of Differentiation.

Theorem I. The derivative of the product of a constant and

a function is equal to the product of the constant into the deriva-

tive of the function

:

(I) DXcu)=cP,u,

For, let y == cu.

Then Vq = cwo,

7jo-\-Ay = c(uo + Aw),

hence A?/ = cAu,

Ay^^Au^
Ax Ax'

and
Ax^Aa; .\r^\ Ax J
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The limit of the left-hand side is D^y. On the right, Au/^x
approaches D^u as its limit. Hence by § 5, Theorem II, the

limit of the right-hand side is cD^u, and we have

D^(cu)= cD^u, q. e. d.

Theorem II. Hie derivative of the sum of two functions is

equal to the sum of their derivatives

:

(H) D^{u -\-v)=: Dji H- D^v.

For, let y = u-\- V.

Then Vo = Uq 4- Vq,

yo + Ay = Uq-\- Au -|- Vq + Av

hence Ay = Au -\- AVy

and
Ay _ Au Av

Ax Ax Ax

When Ax approaches 0, the first term on the right approaches

D^u and the second D^v. Hence by § 5, Theorem I, the whole

right-hand side approaches D^u -}- D_^v, and we have

Ai=oAaj Ai-o\Aa; AxJ ax^oAo; Az=oAa;

or D^y — D^u -f- D^v^ q. e. d.

Corollary. The derivative of the sum of any number of

functions is equal to the sum of their derivatives.

If we have the sum of three functions, we can write

u -\- V -\- w =: u -\-(y -\- w).

Hence D^u ^v+w)= D^u -f i)^(v + w)

= D^u + D^v -f D^io.

Next, we can consider the sum of four functions, and so on.

Or we can extend the proof of Theorem II immediately to the

sum of n functions.
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Polynomials. We are now in a position to differentiate any

polynomial. For example:

= DX7 x') + DX- 5 X') -f D^x + D,2

= 7I),x' - 5 Z>,x'3 H- 1 = 28x'3 - Wx'' + 1.

EXERCISES

Differentiate the following functions :

1. y = 2x'^-3x-\-l. • Ans. D,y = 4 a? — 3.

2. ^ = a H- 5a; + ca;-. ^ns. D^y =h -\-2cx.

3. 2/ = a.-4 - 3 a.'S + a.' — 1. Ans. D^y = 4a;3 — 9 a;- + 1.

4. ?/ = a + 5a; 4- cx^ -f cZa;^.

5. y = Ayis. 3a;^ — Q>^ — 1.

''^^ 2h h

7. 7ra^-3fa;'^+V3. Ans. ^.ir^-l^x.

8. Differentiate

(a) v^t — 16 fi with respect to ^

;

(6) a + 6s + cs2 with respect to s
;

(c) .Olly^ — 8.15 m2/2 — .9Zm with respect to y.

9. Find the slope of the curve

4?/ = a;4-8a;-l

at the point (1, — 2). Ans. — 1.

10. At what angle does the curve

Sy = 4:X — x^

cut the negative axis of a; ?
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11. At wliat angles do the curves y = x- and y = x^ intersect ?

Ans. 0° and 8° 7'.

12. At what angles do the curves y = x^ — 3x and y = x

intersect? Ans. 26° 34' and 38° 40'.

7. General Formulas of Differentiation, Continued.

Theorem III. The derivative of a product is given by the

formula

:

(III) D,{uv)= uDj) -h vD,u.

Let y =L uv.

Then 2/o = ^h'^Qi

yQ-\-/ly= (»o + AiO {vq + Av),

Ay = UqAv + VqAu + AuAv,

Ay Av
,

Au . Av

,
Ax Ax Ax Ax

and, by Theorem I, § 5

:

lim --•i = limf ?(o— )+ limf'yo— )+ limf Azi —
^x^Ax Ax^\ AxJ Ax^\ AxJ ^x=o\ Ax

By Theorem II, § 5, the last limit has the value 0, since

lim Aw = and lim (Av/Aa;)= D^v. The first two limits have

the values UqD^v and VqD^u respectively.* Hence, dropping

the subscripts, we have :

D^y = uD^v -\- vDjiy q. e. d.

By a repeated application of this theorem the product of

any number of functions can be differentiated. AVhen more

* More strictly, the notation should read here, before the subscripts

are dropped : [DxV]a=xoi etc. Similarly in the proofs of Theorem I, II,

andV.
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than two factors are present, the formula is conveniently writ-

ten in the form

:

/-fx D^uvw) _ Dji D^v D^io

UVW U V w

For a reason that will appear later, this is called the loga-

rithmic derivative of uviv.

Theorem IV. The derivative of a quotient is given hy the

formula :*

(IV) D f-\= ^'-^^^^ ~ ^^^"^
.

Let
. y = --

V

Then 2,0
=B.,

y„ + A^ = !fo±|»^

A?/ = ^^" 4- A?6 Up _ Vq/1u — iig^v

Vo-\-Av Vq Vq(vo-^^v)
'

„. A7i Av
Ay _ Ax Ax
Ax VQiyQ -\- Av)

By Theorem III of § 5 we have

:

T ( Au Av
, . Ay _ Ar=a=o y Ax Ax)

Ax^ Ax
""

lim [vq (vo H- Av^]
'

Applying Theorems I and II of § 5 and dropping the sub-

scripts we obtain

:

D,y = ~^— ^, q.e.d.

* The student may find it convenient to remember this formula by
putting it into words :

'
' The denominator into the derivative of the

numerator, minus the numerator into the derivative of the denominator,

over the square of the denominator. '

'
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Example 1. Let _ 2 — 3x

Then n^ = (^-^^)^x(^-^^0-(^-^^')^^a-2a^)^ (i-2xy '

_(l-2x)(-3)-(2-3x)(-2)_ 1

(l-2a:)'^ (l-2x)2

Example 2. To prove that the theorem

is true when n is a negative integer, n — —m. Here

a;" = — •

x""

Hence D.x" = — = = — mrc"'" -.

On replacing m in this last expression by its value, — n, the

proof is complete.

EXERCISES

Differentiate the following functions :

2. 2/ = T-7—,• ^^^^- A2/= ~^^
1 4- aj2 (1 + a;2)2

' 1-X ^^
(l_a;)2

y=^' ^ Ans. 2)^2/ = ^'^ + ^'

l + a? {1 + x)

1-^ ^ n -2
5. s = Ans. D^s —

1 +

«

' (1 + ty

t±^. '

Ans ^' + ^«^-«^
2 + a *

2!2^2a;s-}-a2'
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• o. •

9.
'

10.

a2-^2

ic3 + a3

x-^a

a-\-hx-\- cx^

X

3_4a; + cc3

a;2 + gz

a;4 + a^

11.
"'•^""^"^

. ^7lS. C--

12. - --. 13. ^^±i.
a;2 cc^

8. General Formulas of Differentiation, Concluded. Com-

posite Functions.

Theorem V. If u is expressed as a function of y and y in

twm as a function of x

:

then

(V) D^u=^D^U'D,y.

Here yo = cf> (xq), Uq =/(2/o) ,

2/0 + A?/ = cf>(xQ + Ax), Wo + ^^ =f{yo + ^y),

Au=f{yo-^Ay)-f{yQ),

^^^f(yo-\-^y)-fiyo) . ^.
Ax Ay Ax

When Ax approaches 0, Ay also approaches 0, and hence the

limit of the right-hand side is

flim
&^ + ^y)-f(yo)\fii^ ^)=DJiy)D^y.

\^v^ Ay J\^,^ AxJ

The limit of the left-hand side is D^u. Consequently

D,u = DyU . D,y, q. e. d.

This equation can also be written in the form

:

(V') Dji = DJ{y)DM^)-
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The truth of the theorem does not depend on the particular

letters by which the variables are denoted. We may replace,

for example, x by t and y\sj x\

D^u = D^u Dpi.

Dividing through by the second factor on the right, we thus

obtain the formula

:

(V") A„ = |^.

Example 1. In § 4 we differentiated the function ^x, and

we saw that other radicals can be differentiated in a similar

manner. But each new differentiation required the evaluation

of lim Ay/Ax by working through the details of a limiting

process. Theorem V enables us to avoid such computations,

as the following example will show.

To differentiate the function

u = Va.2 — x\

Let y = a^ — x\

Then u=^y,

and the differentiation thus comes directly under Theorem V,

if we set _
/(?/)= V2/, <i>(x)=a^-x'>^.

Hence we have

:

(1) D^u = D^^y D^a^ - x^).

Now, the formula ^^ /-_ 1

does not mean that the independent variable must be denoted

by the letter x. If the independent variable is y, the formula

reads

:

2Vy
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Consequent!}^ (1) can be written in the form

;

(2) B^u-^-±^(-2x) =—-^^.

We have, then, as the final result :

DM — X

Va-

Example 2. To differentiate the function

^
(1 - xf

Let z = l — X.

Then ' y = z~^.

To apply Theorem V in the present case, the letters u and y
must be replaced respectively by y and z. Thus Theorem V
reads here: D,y = D^D^z,

or D,y = D^-W,(l - x).

Since Formula (8) of § 2 has been extended to negative in-

tegral values of n by § 7, Ex. 2, we have

:

B^-'=-3z-\

Hence B,y = - ^z-\-l)=-,
z^

or D. ^

'^

(1 - xf (1 - xy

EXERCISES

Differentiate the following functions :

1. y=^a^-{-x\ Ans.

2.* y =—== • Ans. —

Va^ + x^

Va- - x"^ V(a2 - x'^y

* Note that Formula (8) of § 2 has also been shown to hold for the

71=-^; §4, Ex. 1.
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3. y=Vl + x-i-xK Ans. ^ + ^^
2Vl 4- a; 4- a;2

4. y = — Ans.
V3 - 2 cc 4- 4 a;2 V3 - 2 a; + 4 a;-

Ans. 1 + -^-

(1 - xy (1 - a;)4

6. u =f\\ , Ans. A+4-

(l+2a^)^ -^ (2+a;)3

9. y=(-A_Y- 10. 21 =
1 — xJ l—2x-\-x^

11.* K = x(l — a.')*. Ans. (1 — 5 x)(l — xf.

12. ?t = a;(a + 6a;)", ^?is. [a 4-(n + l)6a;](a + 6x')""\

13. u = x%a-\-bxY. 14. i( = 3-3(1 — a;)4.

15. u = xVa — a;.

16. u = xWa^ — X-.

X
18. u =

Va2 a;^

^'c4-l
20. tt=V^^-^'

dx

22. 2/ =
(a;2 - 1)2

a^-Sbx^-^-Sb'^x-b^

^* =

Ans.
^^-^-^

2Va-a'

17. : a;Vl H- a; + a;2.

19 w = X

VI + » + a;2

21.t ?^ =
1

{a'^-2axy

23. u = 1

l-\-x + x^

9,5 1^ = a-\-b

b — x {a-\-bxy

* Use Theorem III.

t Do not use Theorem IV.
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9. Differentiation of Implicit Algebraic Functions. When
X and y are connected by such a relation as

a;2 + 2/2 = a2,

or a^ — 2xy -\- y^ = 0,

or xy sin y = x-\-y log x,

i.e. if y is given as a function of x by an equation,

F(x, y)=0 or ^ (x, y)=^ (x, y),

which must first be solved for y, then y is said to be an implicit

function of x. If we solve the equation for y, thus obtaining

the equation

y thereby becomes an explicit function of x.

By an algebraic function of x is meant a function y which

satisfies an equation of the form

G{x,y) = (),

where G (x, y) is an irreducible polynomial in x and y ; i.e. a

polynomial that cannot be factored and written as the product

of two polynomials.

Thus the polynomials are algebraic functions ; for if

2/ = ao 4- ciiX + • • • + a^^x" = P(x),

then y satisfies the algebraic equation

G{x,y)=y-P(x)=:0.

Similarly, the fractious in x are algebraic functions ; for if

where P(x) and Q(x) are poljmomials having no common
factor, then y satisfies the algebraic equation



40 CALCULUS

The polynomials and the fractions are also called rational

functions. Thus, .^ ax + hy

ic2 + 2/^

is a rational function of the two independent variables x and y.

Again, all roots of polynomials, as

y = Vl 4- a; + ^>

or such functions as

' i — X

are algebraic, as is seen on freeing the equation from radicals

and transposing. The converse, however,— namely, that every

algebraic function can be expressed by means of rational func-

tions and radicals,— is not true.

In order to differentiate an algebraic function, it is sufficient

to differentiate the equation as it stands. Thus if

(1) x^-^f^^ a\

we have

(2) i)X' + D^f- = D,a\

To find the value of the second term, apply Theorem V, § 8.

Thus Z>,2/2 = D^fD^y = 2yD,y.

This last factor, D^y, is precisely the derivative we wish to

iind, and it is given by completing the differentiations indi-

cated in (2)

:

o , o n a2x-\-2yD,y = 0j

and solving this equation for D^y

:

y

The final result is, of course, the same as if we had solved

equation (1) ioi y :

y=± Va2 - a;2,
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and then differentiated

:

Va2 -x^ y

In the case, however, of the equation

(3) 0^3 -20^2/ + 2/^ = 0,

we cannot solve for y and obtain an explicit function expressed

in terms of radicals. Nevertheless, the equation defines y as

a perfectly definite function of x ; for, on giving to x any

special numerical value, as x = 2, we have an algebraic func-

tion for y,— here, ^ , r, r^

and the roots of this equation can be computed to any degree

of precision.

To find the derivative of this function, differentiate equation

(3) as it stands with respect to x :

(4) D,x^ - 2DXxy) + D,y^ = 0.

The second term in this last equation can be evaluated by

Theorem III of § 7 : ^ , ,
D,(xy) = xDjy + y,

where Djj denotes the derivative we wish to find.

To the evaluation of the third term in (4) Theorem V of § 8

applies: ^ . ^ ,^

^^^^^^
3ic2 - 2 xD,y -2y + 5y'D,y = 0.

Solving this equation for D^y, we have as the final result

:

'^ 5y'-2x

Thus, for example, the curve is seen to go through the point

(1, 1), and its slope there is

(i>.2/)(i,i)=-i.
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The differentiation of implicit functions as set forth in the

above examples is based on the assumptions a) that the given

equation defines 2/ as a function oi x; b) that this function has

a derivative. The proof of these assumptions belongs to a

more advanced stage of analysis. In the case, however, of the

equations we meet in practice,— for example, such equations

as come from a problem in geometry or physics,— the condi-

tions for the existence of a solution and of its derivative are

fulfilled, and we shall take it for granted henceforth that this

is true of the implicit functions we meet.

Derivative ofx""^ n Fractional. We are now in a position to

prove the theorem ^ .

for the case that n is a fraction. Let

Q

where p, q are whole numbers which are prime to each other.

Let
p

y = x^.

Then y. x'p.

Differentiating each side of this equation with respect to cc,

we have

:

^, ^
D,y^ = D,x-,

and since, by Theorem V, § 8,

D^y^ = DyD^y = qy'-^D,y,

qy-W.y^px^-^
it follows that

or D.y='
pxP~^

q ?/«-!

This last denominator has the value

(a;2)2-i = / ^
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Hence ^ = ^^ = 0-.'
.

We see, then, that

D y = ^x^~^ = nx^'-K q- e. d.

If, finally, n is a negative fraction, 7i = — m, the proof can

be given precisely as was done in § 7, Ex. 2. Thus the theorem

D^x" == nx"'~'^

is now established for all commensurable values of n.

The theorem is true even when n is irrational, e.g. n = tt or

V2 ; the proof depends on the logarithmic function and will

be given when that function has been differentiated.

Example. Differentiate the function

y = V a^ — x^.

Apply Theorem V, § 8, setting

z = a^ — x^.

Then D,y = D^z^= D,z^D,z = i 2"^(- 3 a;^).

Hence D^Va^ — x^ = -——

EXERCISES

2 a?^ — 3 x'^y -{- A^xy -\- Q>y^ = 0,

Ans. D^y^ ^^'-^^y + ^y
^^

3aj2 + 4a;-|-18?/^

y^ — 2 xy"^ — 0^,

3. Show that the curve

a;4-2a;2/- +2/^-|-3£c-32/ =

cuts the axis of x at the origin at an angle of 45^^

1. If

find D,y.

2. If

find D,y.
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4. Plot the curve oi^ -\- y^ = 81,

taking 1 cm. as the -iinit. Show that this curve is cut orthog-

onally by the bisectors of the angles made by the coordinate

axes.

Differentiate the following functions :

5. u = Vl — X. Ans.

6. It = Va^ — 2 aa; + .-^2. Ans.

5</(i-xy
-2

7. u = S/c^ — 3c^x-\-S cx^ — 0?. Ans. —

SVa — X

3

5W-2ca; +

8. u = \\ 9. u = x-\/'a + hx -f cx^.
^1 — X

10. I* = ! ^ns. —,

2></x\i - xy

11 V0^ — ^ 4- V « + a? 4 a? -\- aVa^ — x-

Va— X — Va + ^ x^Va' — a;2

12. y = Va^'. 13. r =Vcte.

14. ?^ = Ans. Dai — ~

X

1+x
15. y = -^ y

_

• 16. it = a;V2
^^

17. v = 4a/^2_^— -1

18. (2/2 4.i)V2/3-2/. Ans.
'^y'^ ^y^- l

2V2/^-2/



DIFFERENTIATION OF ALGEBRAIC FUNCTIONS 45

20.
^~^

• 21

V2 aa; — x^

22. u = ic(a2 — a;^)^ 23. ?t=(6 — 0v6 + ^.

24. Find the slope of the curve y = x^ in the point whose

abscissa is 2. Ans. tan r = .115.

25. Ifpv^'^=c, find D,2^.

x — 1
26. If 2/V.T = 1 + .1', find D^y. Ans. --

2x^x
27. Differentiate y in two ways, where

xyT^4:y = Sx,

and show that the results agree.

28. The same, when y"- = 2 mx.

29. Show that the curves

Zy = 2x + x^y^, 2?/-f-3.TH-?/5:=a^2/,

intersect at right angles at the origin.

30. Find the angle at which the curves

2xz=x'^ — xy-\-x^, x^ -^y^-[- 5x = 7y,

intersect at the origin. Ans. tan <^ = 1.4.



CHAPTER III

APPLICATIONS

1. Tangents and Normals. By the tangent line, or simply

the tangent, to a curve at any one of its points, P, is meant the

straight line through P,

whose slope is the same as

that of the curve at that

point.

Let the coordinates of P
be denoted by (a^o, y^). Now,
the equation of the straight

line through P, whose slope is A, is

y-yo = H^- ^o).

On the other hand, the slope of the curve at any point is D^y.

If we denote the value of this slope at (xq, ?/o) by {D^y)o, this

will be the desired value of A

:

Hence the equation of the tangent to the curve

y=f(x) or F{x,y)=0

at the point (a^o, yo) is

(1) y-yo= (D,y)o{x - Xo).

Since the normal is perpendicular to the tangent, its slope,

A', is the negative reciprocal of the slope of that line, or

1
A' =

(^x2/)o

46
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Hence the equation of the normal to the curve at (Xq, yo) is

(2) y-yQ=r- —i— (x - Xq) or x-Xq^ {D,y\ • {y - yo)=0.
(.D,y)o

Exam2)le 1. To find the equation of the tangent to the

curve
y-x^

in the point x = ^, 2/
~

i- Here

D^y = Sx^, (D^y),=:[Sx^lJ_ = i.

Hence the equation of the tangent is

y-^ = ^(x-^) or 3x-4:y-l = 0.

Example 2. Let the curve be an ellipse

:

^ + ^= 1

Differentiating the equation as it stands, we get

:

Hence the equation of the tangent is

y-yo = -^(x-xoy

This can be transformed as follows

:

a^yoy — a^y^^ = — If-x^x + h'^x^^

b^xox + a^yoy = aV + &W = «'&',

^j_M=:l
a2 52
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EXERCISES

1. Find the equation of the tangent of the curve

y =iX^ — X

at the origin ; at the point where it crosses the positive axis

of X. Ans. a;H-?/ = 0; 2x' — ?/ — 2 = 0.

2. Find the equation of the tangent and the normal of the

circle
iC2 + 2/2 = 4

at the point (1, V3) and check your answer.

3. Show that the equation of the tangent to the hyperbola

at the point (jcq, 2/o) is

a2 62

4. Show that the equation of the tangent of the parabola

2/2 = 2 ma;

at the point (a?o, 2/o) is

2/o2/ = m{x + a;o).

5. Show that the equation of the tangent of the parabola

2/2 = m2 — 2mx
at the point {xq, 2/0) is

2/0?/ = m2 — m{x +Xq).

6. Show that the equation of the tangent of the equilateral

hyperbola
xy = a^

at the point (xq, 2/0) is

yoX + Xoy = 2a^.

7. Find the equation of the tangent to the curve

ic^ _|_ 2/3 = a2(ic — y)
Sit the origin. Ans. x = y.
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8. Show that the area of the triangle formed by the coordi-

nate axes and the tangent of the hyperbola

xy — a^

at any point is constant.

9. Find the equation of the tangent and the normal of the

curve
x^ = a^y^

in the point distinct from the origin in which it is cut by the

bisector of the positive coordinate axes.

10. Show that the portion of the tangent of the curve

X^ + 2/3 _ (5j,-3

at any point, intercepted between the coordinate axes, is

constant.

11. The parabola y"^ = 2 ax cuts the curve

a^ — 3 axy 4-7/^ =

at the origin and at one other point. Write down the equa-

tion of the tangent of each curve in the latter point.

12. Show that the curves of the preceding question intersect

in the second point at an angle of 32° 12'.

2. Maxima and Minima. Problem. From a piece of tin

3 ft. square a box is to be made by cutting out equal squares

from the four corners and

bending up the sides. Deter-

mine the dimensions of the
I

^y\
box of this description which

i i

will hold the most. —t- 1—

.

Z—2x

Solution. Let x be the — —
length of the side of the

square removed; then the

dimensions of the box are as indicated in the diagrams. De-

noting the cubical content of the box by w, we have :

3-2£c
Fig. 10
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1)

or

2)

u = x(3-2xy

= 9x-12a;2-t-4a^.

The problem is, then, to find the value of x which makes u

as large as possible, x being restricted from the nature of the

case to being positive and less than |

:

3) < a^ < f

.

The problem can be treated graphically by plotting the

curve 1). We wish to find the highest point on this curve.

It appears to be the point

for which x = ^, u = 2,

since other values of x

which have been tried lead

to smaller values of ti.

The foregoing method

has the advantage that it

is direct, for it assumes no

knowledge of mathematics

beyond curve plotting. It

has the disadvantage that

curve plotting, even in the

simplest cases, is labori-

ous ; and, furthermore, we
have not really proved

that a; = i is the best

value. We have merely failed to find a better one.

The Calculus supplies a means of meeting both the difficul-

ties mentioned, and yielding a solution with the greatest ease.

The problem is to find the highest point on the curve. At
this point, the tangent of the curve is evidently parallel to

the axis of x. Consequently, the slope of the tangent, i.e.

tan r = D^u, must have the value here :

Fig. 11

D.u = 0.
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All we need do, therefore, is to compute D^u, most con-

veniently from equation 2), and set the result equal to :

Z),w = 9-24a; + 12a;2 = 0.

On solving this quadratic equation for x, we find two roots,

^ _ 1 3
-^^ — "2 > "2-

Only one of these, however, lies within the range 3) of possible

values for x, namely, the value x — J,
and hence this is the

required value.

EXERCISES

1. Work the foregoing problem for the case that the tin is

a rectangle 1 by 2 ft.

Plot accurately the graph, taking 10 cm. as the unit, and

determine in this way what appears to be the best value for a;,

correct to one eighth of an inch.

Solve the problem by the Calculus, and show that the best

value for x is .21132 ft., or 2.5359 in.

2. A farmer wishes to fence off a rectangular pasture along

a straight river, one side of the pasture being formed by the

river and requiring no fence. He has barbed wire enough to

build a fence 1000 ft. long. What is the area of the largest

pasture of the above description which he can fence off ?

3. Show that, of all rectangles having a given perimeter,

the square has the largest area.

4. Show that, of all rectangles having a given area, the

square has the least perimeter.

5. Each side of a shelter tent is a rectangle

6 X 8 ft. How must the tent be pitched so as to

afford the largest amount of room inside ? The

ends are to be open.

Ans. The angle along the ridge-pole must be a right

angle.

Fig. 12
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6. Divide the number 12 into two parts such that the sum
of their squares may be as small as possible.

(What is meant is such a division as this : one part might

be 4, and then the other would be 8. The sum of the squares

would here be 16 + 64 = 80.)

7. Divide the number 8 into two such parts that the sum
of the cube of one part and twice the cube of the other may be

as small as possible.

8. Divide the number 9 into two such parts that the

product of one part by the square of the other may be as large

as possible.

9. Divide the number 8 into two such parts that the product

of one part by the cube of the other may be as large as possible.

10. At noon, one ship, which is steaming east at the rate

of 20 miles an hour, is due south of a second ship steaming

south at 16 miles an hour, the distance between them being

82 miles. If both ships hold their courses, show that they

will be nearest to each other at 2 p.m.

11. If, in the preceding problem, the second ship lies to

from noon till one o'clock, and then proceeds on her southerly

course at 16 miles an hour, when will the ships be nearest to

each other?

12. Find the least value of the function

y^zx^ + Qx+lO. Ans. 1.

13. What is the greatest value of the function

y = 8 X — x^

for positive values of a: ?

14. For what value of x does the function

12V^
l+4aj

attain its greatest value ? Ans. x = \.
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15. At what point of the interval a < x < h, a being posi-

tive, does the function

attain its least value ?
{x — c(){b — X)

Ans. X = Va6.

16. Find the most advantageous length for a lever, by-

means of which to raise a

weight of 490 lb. (see Fig. 13), q
if the distance of the weight

from the fulcrum is 1 ft. and the

lever weighs 5 lb. to the foot.

1 (490)

lOic

Fig. 13

3. Continuation: Auxiliary Variables. It frequently,— in

fact, usually,— happens that it is more convenient to formu-

late a problem if more variables are introduced at the outset

than are ultimately needed. The following examples will

serve to illustrate the method.

Example 1. Let it be required to find the rectangle of

greatest area which can be inscribed in a given circle.

It is evident that the area of the

rectangle will be small when its alti-

tude is small and also when its base

is short. Hence the area will be

largest for some intermediate shape.

Let u denote the area of the rec-

tangle. Then

(1) u = 4: xy.

But X and y cannot both be chosen

arbitrarily, for then the rectangle

will not in general be inscriptible in the given circle. In fact,

it is clear from the Pythagorean Theorem that x and y must

satisfy the relation

:

(2) x^^y^ = a?.

We could now eliminate y between equations (1) and (2),

thus obtaining u in terms of x alone ; and it is, indeed, im-

FiG. 14
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portant to think of this elimination as performed, for there is

only one independent variable in the problem. The graph of

u, regarded as a function of x, starts at the origin, rises as x

increases, but finally comes back to the axis of x again when
x=za. All this we read off, either from the

meaning of u and x in the problem or from

^ equations (1) and (2).

It is better, however, in practice not to elimi-

nate y, but to differentiate equations (1) and

(2) with respect to x as they stand, and then set D^u = 0.

Thus from (1),

D,u = 4.{y-\-xD,y)=:0,

and from (2), 2 a; + 2 yD,y = 0.

From the second of these equations we see that

y

Substituting for D^y this value in the first equation, we get

:

y = or 2/2 = ^2.

y

Since x and y are both positive numbers, it follows that

y = x.

Hence the maximum rectangle is a square.

EXERCISES

1. Work the same problem for an ellipse, instead of a

circle.

2. Work the problem for the case of a variable rectangle

inscribed in a fixed equilateral triangle.

Example 2. To find the most economical dimensions for a

tin dipper, to hold a pint.
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Here, the amount of tin required is to be as small as pos-

sible, the content of the dipper being given. Let u denote the

surface, measured in square inches. Then

a) u = 2iTrli -\- irr"^.

But r and h cannot both be chosen arbitrarily, for

then the dipper would not in general hold a pint.

If V denotes the given volume, measured in cubic Fig. 16

inches, then, since this volume can also be expressed as Trr^/i,

we have

h) 7rr% = V.

Differentiating equation a) with respect to r and setting

B^u = 0, we have :

D,u z=Tr\2h-\- 2rD,h -}- 2 r( = 0,
or *

c) A + rD,h + r = 0.

Differentiating h) we get

:

d) 7rl2rh-^rW,h\=zO.

Now, r cannot = in this problem, and so we may divide this

last equation through by r, as well as by tt :

e) 2h + rD,h = 0.

It remains to eliminate DJi between equations c) and e).

From e),

r

Substituting this value of DJi in c), we find

:

/) h-2h-{-r = 0, or r = h.

Hence the depth of the dipper must just equal its radius.

Discussion. Just what have we done here ? The steps we
have taken are suggested clearly enough by the solution of
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Example 1. We have chosen one of the two variables, r and

^, as the independent variable (here, r) ; differentiated the

function w, which is to be made a minimum, with respect to r,

and set D;ui = 0. Then we differentiated the second equation

b), likewise with respect to r, eliminated D^u, and solved.

But what does it all mean ? What is behind it all ?

Just this : the quantity ?t, in the nature of the case, is a

function of r. For, when to ?- is given aru/ positive value, a

dipper can be constructed which will fulfill the requirements.

Now, if r is very large, we shall have a shallow pan, and evi-

dently the amount of tin required to make it will be large ;
—

i.e. u will also have a large value.

But what if r is small ? We shall then have a high cylinder

of minute cross sections, i.e. a pipe. Is it clear that u, the

surface, will be large in this case, too ? I fear not, for it is

purely a relative question as to how high such a pipe must be

to hold a pint, and I see no way of guessing intelligently.

By means of equation 6), however, we see that

and if we substitute this value in a), we get

u = 27rr -^ + 7r7'2 = fL}Lj^Tfr\
irr^ r

From this last formula it is clear that,

when r is small, u actually is large.

The graph of iCy regarded as a func-

tion of r, is therefore in character as

^ shown by the accompanying figure.

It is a continuous curve lying above

the axis of r, very high when r is small,

and also very high when r is large. It has, therefore, a

lowest point, and for this value of r, the area u of the dipper

will be least. But at this lowest point the slope of the curve,

D;u, has the value 0. Thus we see, first, that we have a genu-

O
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ine minimum problem ;— there is actually a dipper of small-

est area. Secondly, equations c) and d) must hold, and since

from these equations it follows by elimination that r = h, there

is only one such dipper, and its radius is equal to its altitude.

The problem is, then, completely solved.

We inquired merely for the shape of the dipper. If the size

had been asked for, too, it could be found by solving b) and /)
for ?• and h, and expressing V in cubic inches :

F=^ = 28.875,*^

7rr3 = 28.87, r = 2.095.

It can happen in practice.that a function attains its greatest

or its least value at the end of the interval. In that case, the

derivative does not have to vanish. Usu-

ally, the facts are patent, and so no special

investigation is needed. But it is neces-

sary to assure oneself that a given problem

which looks like one of the above does not

come under this head, and this is done, as

in the cases discussed in the text, by show-

ing that near the ends of the interval the values of the func-

tion are larger, for a minimum problem, than for values well

within the interval.

EXERCISE

Discuss in a similar manner the best shape for a tomato can

which is to hold a quart. Here, the tin for the top must also

be figured in. Show that the height of such a can should be

equal to the diameter of the base. As to the size of the can,

its height should be 4.19 in.

A General Remark. It might seem as if the method used in

the solution of the above problems were likely to be insecure,

since the graph of such a function u might, in the very next

problem, look like the accompanying figure. In such a case,

there would be several values of x, for each of which D^u = 0,
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and we should not know wMch one to take. Curiously enough,

this case does not arise in practice,— at least, I have never

come across a physical problem which

led to this difficulty. In problems

like the above, there must be at least

one X for which D^u — ; and when
we solve a given problem, we actually

find only one x which fulfills the con-

FiG. 19 dition. Thus there is no ambiguity.

EXERCISES

1. A 300-gallon tank is to be built with a square base and

vertical sides, and is to be lined with copper. Find the most

economical proportions.

Ans. The length and breadth must each be double the

height.

2. Find the cylinder of greatest volume which

can be inscribed in a given cone of revolution.

Ans. Its altitude is one-third that of the cone.

3. What is the cylinder of greatest convex

surface that can be inscribed in the same cone ?

Ans. Its altitude is half that of the cone.

T"

2a

Fig. 20

4. Of all the cones which can be inscribed in a given sphere,

find the one whose lateral area is greatest.

Ans. Its altitude exceeds the radius of the sphere by 33|^ %
of that radius.

5. Find the volume of the greatest cone of revolution which

can be inscribed in a given sphere.

6. If the top and bottom of the tomato can considered in

the Exercise of the text are cut from sheets of tin so that a

regular hexagon is used up each time, the waste being a total

loss, what will then be the most economical proportions for

the can ?
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7. If the strength of a beam is proportional to its breadth

and to the square of its depth, find the shape of the strongest

beam that can be cut from a circular log.

Ans. The ratio of depth to breadth is V2.

8. Assuming that the stiffness of a beam is proportional to

its breadth and to the cube of its depth, find the dimensions

of the stiffest beam that can be sawed from a log one foot in

diameter.

9. What is the shortest distance from the point (10, 0) to

the parabola
?/2 = 4 a; ?

10. What points of the curve

2/2 = x^

are nearest (4, 0) ?

11. A trough is to be made of a long rectangular-shaped

piece of copper by bending up the edges so as to give a rec-

tangular cross-section. How deep should it be made, in order

that its carrying capacity may be as great as possible ?

12. Assuming the density of water to be given from 0° to

30° C. by the formula

where po denotes the density at freezing, t the temperature,

and

a =5.30 X 10-^ (3 = - 6.53 x lO-^, y = 1.4 x lO'^,

show that the maximum density occurs at ^ = 4.08°.

13. Tangents are drawn to the arc of the ellipse

^' +^ = 1

which lies in the first quadrant. Which one of them cuts off

from that quadrant the triangle of smallest area ?

14. Work the same problem for the parabola

2/2 = a2 — 4 ax.
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O
Fig. 21

15. Show that, of all circular sectors having the same perim-

eter, that one has the largest area for which the sum of the

two straight sides is equal to the curved side.

4. Increasing and Decreasing Functions. The Calculus

affords a simple means of determining whether a function is in-

creasing or decreasing as the independent variable increases.

Since the slope of the

graph is given by D^y^

we see that when Dj^
is positive, y increases

as X increases, but

when D^y is negative,

y decreases as x in-

creases. Figure 21 shows the graph in general when D^y is

positive.

In each figure both x and y have been taken as positive.

But what is said above in the text is equally true when one or

both of these variables are negative ; for the words increase

and decrease as here used mean algebraic, not numerical, in-

crease or decrease. Thus if the temperature is ten degrees below

zero (i.e. —10°) and it changes to eight below (—8°), we say

the temperature has risen. If

we measure the time t, in hours

from noon, then 10 a.m. will

correspond to t = — 2. Let ic

denote the temperature, meas-

ured in degrees. Then a tem-

perature chart for 24 hours

from midnight to midnight might look like the accompanying

figure. At any instant, t = f, for which the slope of the curve,

DtU, is positive, the temperature is rising, no matter whether

the thermometer is above zero or below, and no matter whether

t is positive or negative ; and similarly, when D^w is negative,

the temperature is falling.

Again, suppose the amount of business a department store

Fig. 22
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does in a year, as represented by the net receipts each day, be

plotted as a curve {y = receipts, measured in dollars ; x =
time, measured in days), the curve being smoothed in the

usual way. Then a point of the curve at which the derivative

is positive {i.e. D^y > 0) indicates that, at that time, the busi-

ness of the firm was increasing ; whereas a point at which

Djj < means that the business was falling off.

We can state the result in the form of a general theorem,

the proof of which is given by inspection of the figure (Fig. 21)

and the other forms of the figure, brought out in the above

discussion.

Theorem : When x increases, then

(a) if Djy>Oy y increases;

(h) if D^y < 0, y decreases.

Application. As an application consider the condition that

a curve y=/(aj) have its concave side turned upward, as in

Fig. 23. The slope of the curve is

a function oi x: ^

Fig. 23

tan T = <i>{x).

For, when x is given, a point of

the curve, and hence also the

slope of the curve at this point, is

determined. Consider the tangent line at a variable point P.

If we think of P as tracing out the curve and carrying the

tangent along with it, the tangent will turn in the counter

clock-wise sense, the slope thus increasing algebraically as x

increases, whenever the curve is concave upward. And con-

versely, if the slope increases as x increases, the tangent will

turn in the counter clock-wise sense and the curve will be con-

cave upward. Now by the above theorem, when

D^ tan T > 0,

tanr increases as x increases. Hence the curve is concave

upward, when D^ tan t is positive ; and conversely.
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The , derivative D^ tan r is the derivative of the derivative

of y. This is called the second derivative of ?/, and is denoted

as follows

:

-^ .-n. . -r.

.

DXD.y)=B^^y

(read :
" D x second of y ").*

The test for the curve's being concave downward is obtained

in a similar manner, and thus we are led to the following

important theorem.

Test for a Curve's being Concave Upward, etc. T%e

curve

is CONCAVE UPWARD whcn DJ^y > ;

CONCAVE DOWNWARD ivkeii DJ^y < 0.

A point at which

the curve changes

from being concave

upward and be-

comes concave

downward (or vice

versa) is called a

point of inflection.

Since D^^y changes

sign at such a point,

this function will necessarily, if continuous, vanish there.

Hence

:

A necessary condition for a point of inflection is that

nj^y = 0.

Example. Consider the curve

y = x^ — Sx.

* The derivative of the second derivative, Dj^{D^hf)^ is called the third

derivative and is written D^^^ and so on.

Fig. 24
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Its slope at any point is given by the equation

2)^ = 3x2-3.

The second derivative of y with ^_^ y

respect to x has the value

Thus we see that this curve is

concave upward for all positive

values of x, and concave down- pj^ 25

ward for all negative values. In

character it is as shown in the accompanying figure.

EXERCISES

For what values of x are the following functions increasing ?

For what values decreasing ?

1. ?/ = 4 — 2a;2.

2. y = x'^ — 2x-\-Z.

Ans. Increasing, when a; > 1 ; decreasing, when x < 1.

3. y = 5-\-12x — x^.

4. y = x^ — 27x-\-7.

Ans. Increasing, when x > S, and when x < — 3 ;
decreas-

ing, when — 3 < a; < 3,

5. y = 5 -\- 6x — x^. 6. y = x — x^.

7. y = xi^ — 9x^-{-12x — l.

In what intervals are the following curves concave upward

;

in what, downward ?

8. y = x^ — Sx^-{-7x — 5.

Ans. Concave upward, when a; > 1 ; concave downward,

when a; < 1.



64 CALCULUS

9. 2/ = 15 + 8a; + 3a;2 — a;3. 10. y = x^ — 6x^ -- ic — 1.

11. 2/ = 3 — 9ic + 24a;2— 4a^. 12. y = 2x^ — x\

13. y = x* — 4:x^ — 6x + ll. 14. ?/ = — 121a; + Ta;^ — a;^

15. y = 13-}-2Sx- 24a;2 + 12^3 _ ^^

5. Curve Tracing. In the early work of plotting curves

from their equations the only way we had of finding out what

the graph of a function looked like was by computing a large

number of its points. We are now in possession of powerful

methods for determining the character of the graph with

scarcely any computation. For, first, we can find the slope of

the curve at any point ; and, secondly, we can determine in

what intervals the curve is concave upward, in what concave

downward.*

Example. Let it be required to plot the curve

(1) 3y = x^- 3x^-^1.

a) Determine first its slope at any point

:

(2) SD,y=3x^-6x, D,y = x^-2x.

* There are two great applications of the graphical representation of a

function. One is quantitative, the other, qualitative. By the first I mean
the use of the graph as a table, for actual computation. Thus in the use

of logarithms it is desirable to have a graph of the function y = logio x

drawn accurately for values of x between 1 and 10 ; for by means of such

a graph the student can read off the logarithms he is using, correct to two

or three significant figures, and so obtain a check on his numerical work.

There is, however, a second large and important class of problems, in

which the character of a function is the important thing, a minute deter-

mination of its values being in general irrelevant.

A case in point is the determination of the number of roots of an alge-

braic equation, e.g.
x^ — x^ — 4:X + 1 = 0,

Here, we plot the curve . ^^ a ^ , t' ^ yr=x3 — x2 — 4x-|-l

and inquire where it cuts the axis of x. For this purpose it is altogether

adequate to know the character of the curve, and for treating this problem

the methods of the present paragraph yield a powerful instrument.
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It is always useful to know the points 'at which the tangent

to the curve is parallel to the axis of x. These are obtained

by setting D^y = and solving. Thus we get from (2) the

equation

:

a;2_2aj=0.

The roots of this equation are

x = and x = 2

Now determine accurately the points having these abscissas,

plot them, and draw the tangents there :

2/|.=o=i; 2/U=-l.

We do not yet

know whether the

curve lies above its

tangent in one of

these points, or be-

low its tangent ; it

might even cross

its tangent, for the

point might be a

point of inflection. These questions will all be answered by
aid of the second derivative.

b) Compute the second derivative

:

D,^y = 2x - 2 =2(x-l).

We see that it is positive when x is greater than 1 and nega-

tive when X is less than 1 :

Fig. 26

D.'y > when 1 <«;

Dj'y < when X<1.

DJ^y = when x=l.

Hence the curve has a point of inflection when x = l. This

is a most important point on the curve. We will compute its
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coordinates accurately, determine the slope of the curve there,

and draw accurately the tangent there.

This is the last of the important tangents which we need to

draw. Since the curve is concave upward to the right of the

line X = 1, and concave downward to the left of that line, it

must be in character as indicated. We see, then, that it cuts

the axis of x between and 1, and again to the right of the

point x = l', and it cuts that axis a third time to the left of

the origin.

These last two points can be located more accurately by

computing the function for a few simple values of x.

hence the curve cuts the axis of x between x = 2 and a; = 3.

2/L=-i = -3;

hence the curve cuts the axis between x= and x — — 1.

Incidentally we have shown that the cubic equation

a:3 _ 3a;2 ^ 1 =

has three real roots, and we have located each between two

successive integers.

EXERCISES

Discuss in a similar manner the following curves. In par-

ticular :

a) Determine the points at which the tangent is horizontal,

if such exist, and draw the tangent at each of these points

;

b) Determine the intervals in which the curve is concave

upward, and those in which it is concave downward
;

c) Determine the points of inflection, if any exist, and draw

the tangent in each of these points

;

I
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d) Draw in the curve.*

In most cases it is desirable to take 2 cm. as the unit.

1. 2/ = a3_|_ Sx'^ — 2.

2. y = a^-3x-{-l.

3. y = x^ -^Sx + 1.

4. 6y = 2x^-Sx^-12x-^6.

6. 6y = 2a^-\-3x^-12x-4:.

6. y = x^-\~x^ + x-\-l.

Suggestion. Show that the derivative has no real roots and

hence, being continuous, never changes sign.

7. 12y = 4c»3 - 6^2 + 12a; - 9.

8. y = 2x^ — x — a^.

9. 12y = 4a^ + ISa;^ -\~2Tx-\- 12.

10. y = l — 4:X-{-6x^ — 3x^.

11. 2/ = l + 2ic + a;2 — a;3.

12. 42/ = a^-6ic2 + 8. 13. y ='x^ - Sx"^ -^ ^.

14. y = x — x^. \5. y — x-\-x^.

16. 2/ = a^ -f a;2. 17. y^x^ — x^.

18. ?/ = 3a;5 + 5«3 4-15a; + 2.

19. 602/ = 2aj« -h 15a:4 ^ 60a;2 - 30.

6. Relative Maxima and Minima. Points of Inflection. A
function

(1) ^=/(»)

* Since a curve separates very slowly from its tangent near a point of

inflection, the material graph of the curve must necessarily coincide with

the material graph of the tangent for some little distance.
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is said to have a maximum at a point a? = a^o if its value at Xq is

larger than at any other point in the neighborhood of Xq. But

such a maximum need not represent the largest value of the

function in the complete interval a ^ a; ^ 6, as is shown by

Fig. 27, and for this reason

it is called a relative maxi-

mum^ in distinction from

a maximum maximorum,

or an absolute maximum.

A similar definition

holds for a minimum, the

word " larger " merely being replaced by " smaller."

It is obvious that a characteristic feature of a maximum is

that the tangent there is parallel to the axis of a;, the curve

being concave downward. Similarly for a minimum, the curve

here being concave upward. Hence the following

Test for a Maximum or a Minimum. If

(a) [i)^]_=0, [Z).22,]_^<0,

the function has a maximum for x = Xq ; if

(6) [i)^]«=0, [X»,%„^>0,

it has a minimum.

The condition is sufficient, but not necessary ; cf . § 7.

Example. Let y = x^ — ^x"^ -\-l.

Here i),y = 6a^-6a; = 6 a;(a;2 _ l)(a;2 + 1),

and hence D^^y = for a; = — 1, 0, 1.

Thus the necessary condition for a maximum or a minimum,

Z>^2/ = 0, is satisfied at each of the points a: = — 1, 0, 1.

To complete the determination, if possible, compute the

second derivative,
^^.^^^go^.g,

and determine its sign at each of these points :



Fig. 28
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[Z)^^]^_i = 24 > 0, .'. X = — 1 gives a minimum;

[P^y']j^ =— 6<0, .'. x= gives a maximum;

[2>/2/]^i = 24 > 0, .-. X — 1 gives a minimum.

Points of Inflection. A point of inflection is characterized

geometrically by the phenomenon that, as a point P describes

the curve, the tangent at P
ceases rotating in the one di-

rection and, turning back, be-

gins to rotate in the opposite

direction. Hence the slope

of the curve, tan t, has either

a maximum or a minimum at

a point of inflection.

Conversely, if tan r has a

maximum or a minimum, the curve will have a point of inflec-

tion. For, suppose tan t is at a maximum when x = Xq. Then

as X, starting with the value Xq, increases, tan t, i.e. the slope

of the curve, decreases algebraically, and so the curve is con-

cave downward to the right of Xq. On the other hand, as x

decreases, tan t also decreases, and so the curve is concave up-

ward to the left of Xq.

Now, we have just obtained a theorem which insures us a

maximum or a minimum in the case of any function which

satisfies the conditions of the theorem. If, then, we choose

as that function, tan t, the theorem tells us that tan t will

surely be at a maximum or a minimum if

D^ tan T = 0, DJ^ tan t :?b 0.

Hence, remembering that

tan T = D^y,

we obtain the following

Test for a Point of Inflection. If

the curve has a point of inflection at x= Xq.
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This test, like the foregoing for a maximum or a minimum,

is sufficient, but not necessary ; cf. § 7.

Example, Let

21 y = aj4 + 2x^ - 12a;2 + 14a; - 1.

Then 21 Dji = 4a;3 + Ga^^ _ 24.x + 14,

271)/?/ = 12a:2 + 12aj - 24 = 12(a; - l){x + 2),

27Z)/y = 12(2a; + l).

Setting D/z/ = 0, we get the points aj = 1 and a; = — 2. And
since

27[i>/2/]^i= 36 ^ 0, 27[i>,32/]__2=- 36 ^ 0,

we see that both of these points are points of inflection.

The slope of the curve in these points is given by the

equations:
g.^^^^^^^^^o, 27[Z),,]„_,= 54.

Hence the curve is parallel to the axis of x at the first of these

points ; at the second its slope is 2.

EXERCISES

Test the following curves for maxima, minima, and points

of inflection, and determine the slope of the curve in each

point of inflection.

1. 2/ = 4a^— 15a;2+12x+l. ' 3. ^y = x^ — 2^x^-{-3x'^—l.

2. 2/ = ^ + ^ + ^- A. y ={x — l)\x + 2)2.

5. 2/ =
2 + 3a;2

6. 2/=(l — a;2)3.

7. Deduce a test

for distinguishing be-

tween two such points of inflection as those indicated in

Fig. 29.
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7. Necessary and Sufficient Conditions. In order to under-

stand the nature of the tests obtained in the foregoing paragraph

it is essential that the student have clearly in mind the mean-

ing of a necessary condition and of a sufficient condition. Let

us illustrate these ideas by means of some simple examples.

d) A necessary condition that a quadrilateral be a square is

that its angles be right angles. But the condition is obviously

not suflB.cient ; all rectangles also satisfy it.

h) A sufficient condition that a quadrilateral be a square is

that its angles be right angles and each side be 4 in. long.

But the condition is obviously not necessary ; the sides might

be 6 in. long.

c) A necessary and siifficient condition that a quadrilateral

be a square is that its angles be right angles and its sides be

mutually equal.

As a further illustration consider the following. It is a

well-known fact about whole numbers that if the sum of the

digits of a whole number is divisible by 3, the number is divis-

ible by 3 ; and conversely. Also, if the sum of the digits of a

whole number is divisible by 9, the number is divisible by 9

;

and conversely. Hence we can say :

i) A necessary condition that a whole number be divisible

by 9 is that the sum of its digits be divisible by 3. But the

condition is not sufficient.

ii) A sufficient condition that a whole number be divisible

by 3 is that the sum of its digits be divisible by 9. But the

condition is not necessary.

iii) A necessary and sufficient condition that a whole num-

ber be divisible by 3 (or 9) is that the sum of its digits be

divisible by 3 (or 9).

Turning now to the considerations of § 6, we see that a

necessary condition for a minimum is that

D,y =
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at the point in question, x = Xq. But this condition is not

sufficient. When it is fulfilled, the function may have a

maximum, or it may have a point of inflection with horizontal

tangent.

On the other hand, the condition

lDjjl^ = 0, [Z);^y].„.>0

is sufficient for a minimum. But it is not necessary. Thus

the function

(1) y=x^

obviously has a minimum when x = 0. The necessary condi-

tion, D^y = 0, is of course fulfilled :

But here D,-y = 12 x^, and [^xV]x=o

is not positive ; it is 0.

Again, as was shown in § 4, a necessary condition for a point

of inflection is that t^ „ /v

DJ'y =

at that point. But this condition is not sufficient. Thus in

the case of the curve (1) this condition is fulfilled at the

origin. But the origin is not a point of inflection.

Remark. It may seem to the student that such tests are

unsatisfactory since they do not apply to all cases and thus

appear to be incomplete. But their very strength lies in the

fact that they do not tell the truth in too much detail. They

single out the big thing in the cases which arise in practice

and yield criteria which can be applied with ease to the great

majority of these cases.

8. Velocity; Rates. By the average velocity with which a

point moves for a given length of time t is meant the distance

s traversed divided by the time

:

average velocity = -•

t



APPLICATIONS 73

Thus a railroad train which covers the distance between two

stations 15 miles apart in half an hour has an average speed

of 15/-^= 30 miles an hour.

When, however, the point in question is moving sometimes

fast and sometimes slowly, we can describe its speed approxi-

mately at any given instant by considering a short interval

of time immediately succeeding the instant ^o in question, and

taking the average velocity for this short interval.

For example, a stone dropped from rest falls according to

the law : ^ ^ „

To find how fast it is going after the lapse of ^o seconds. Here

(1) ^0 = 16^.

A little later, at the end of f seconds from the beginning of

the fall,

(2) s' = 16f^

and the average velocity for the interval of f — to seconds is

(3) ^^^^0 ft. per second.
t — ^0

Let us consider this average velocity, in particular, after the

lapse of 1 second

:

^
to = 1, So = 16.

Let the interval of time, f — tQ, be -^ sec. Then

s' = 16 X 1.12 ^ 19 36^

s' - s^ 3.36

f - 1^ .1

= 33.6 ft. a second.

Thus the average velocity for one-tenth of a second immedi-

ately succeeding the end of the first second of fall is 33.6 ft. a

second.

Next, let the interval of time be y^ sec. Then a similar

computation gives, to three significant figures

:

^^-=^ = 32.2 ft. a second.
t'-to
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And when the interval is taken as y^-g-g- sec, the average

velocity is 32.0 ft. a second.

These numerical results indicate that we can get at the

speed of the stone at any desired instant to any desired degree

of accuracy by direct computatidn ; we need only to reckon

out the average velocity for a sufficiently short interval of

time succeeding the instant in question.

We can proceed in a similar manner when a point moves

according to any given law. Can we not, however, by the aid

of the Calculus avoid the labor of the computations and at the

same time make precise exactly what is meant by the velocity

of the point at a given instant? If we regard the interval

of time t' — ^0 as an increment of the variable t and write

t' — tQ = M, then s' — Sq = As will represent the corresponding

increment in the function, and thus we have

:

average velocity =—
Now allow A« to approach as its limit. Then the average

velocity will in general approach a limit, and this limit lue take

as the definition of the velocity^ v, at the instant to

:

lim (average velocity from t = tQtot = t')

= actual velocity * at instant t = tQj

or v = lim— = D^s.

Hence it appears that the velocity of a point is the time-

derivative of the space it has traveled. In the case of a

freely falling body this velocity is

v = D,s=^ 32 1.

In the foregoing definition, s has been taken as the distance

actually traversed by the moving point, P. More generally,

let s denote the length of the arc of the curve on which P is

moving, s being measured from an arbitrarily chosen fixed

* Sometimes called the instantaneous velocity.
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point of that curve. Either direction along the curve may be

chosen as the positive sense for s. Thus, in the case of a

freely falling body, 5 might be taken as the distance of the

body above the ground. If h denotes the initial distance, then

s -^s' — h,

where .s' denotes the distance actually traversed by P
at any given instant. Hence

or DtS = — DiS\ Fig. 30

Here DtS gives numerically the value of the velocity, but DiS is

a negative quantity.

We will, accordingly, extend the conception of velocity,

defining the velocity v of the point as D^s:

Thus the numerical value of v or i)jS will always give the

speedy or the value of the velocity in the earlier sense. In

case s increases with the time, 2>^s is positive and represents

the speed. If, however, s decreases with the time, D^s is nega-

tive, and the velocity, v, is therefore here negative, the speed

now being given by — -y or — 2)^5. In all cases,

Speed=|v| = \D,s\.

Example. Let a body be projected upward with an initial

velocity of 96 ft. a second. Assuming from Physics the law

that s = 96^ -16^2^

find its velocity a) at the end of 2 sec.

h) at the end of 5 sec.

Solution. By definition, the velocity at any instant is

'y = As = 96 -32^.
Hence

a) v 1^2 = 64.

6) 'yU = -64.
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The meaning of these results is that, at each of the two

instants, the speed is the same, namely, 64 ft. a second (and

the height above the ground is also seen to be the same,

s = 128 ft.). But when t = 2, D^s is positive ; hence s is in-

creasing with the time and the body is rising. When f = 5,

D^s is negative ; hence s is decreasing with the time, and the

body is descending.

Rates. Consider any length or distance, r, which is chang-

ing with the time, and so is a function of the time. Let r^

denote the value of r at a given instant, t = to, and let r' be the

value of r at a later instant, t = t'. Then the increase in ?•

will be r' — ro = Ar and that in t will be t' — tQ = At. Thus in

the interval of time of A^ seconds succeeding the instant t = ^o>

average rate of increase of r =— •

Now let At approach as its limit. Then the average rate of

increase will in general approach a limit, and this limit we take

as the definition of the rate of increase of r at the instant t^ :

lim (average rate of increase from t = tQto t = t')

= actual rate of increase at instant ^ = ^o

T Ar rk= lim— = D.r.
At=0 At

In other words, the rate at which r is increasing at any in-

stant is defined as the time-derivative of r.

If r is decreasing, Z>^?* will be a negative quantity ; and con-

versely, if D^r is negative, then r is decreasing. In either case,

the numerical value of D^r gives the rate of change of r
;
just

as, in the case of velocities, the numerical value of D^s gives

the speed.

More generally, instead of r, we may have any physical

quantity, u, as an area or a volume or the current in an electric

circuit or the number of calories in a given body.
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In all these cases, the rate at which u is increasing is defined

as the time-derivative of u, i.e. as DtU ; and the rate of change

of w is
I

D^u \.

Example. At noon, one ship is steaming east at the rate of

18 miles an hour, and a second ship, 40 miles north of the first,

is steaming south at the rate of 20 miles an hour. At what

rate are they separating from each other at one o'clock ?

Solution. The relation between r and t is

here given by the Pythagorean Theorem

:

^2 = (40 _ 200' +(18^)2,

or

(1) r2 = 1600 - 1600^ + 724^2.

Hence

(2) r = V1600 - 1600^ + 724^2. Fig. 31

We wish to find D{i\ This can be done by differentiating

equation (2) ; but that would be poor technique, since it is

simpler to differentiate equation (1) through with respect to t:

2rD^r = - 1600 + 1448^,

(3)
^^^,^-800 + 724^,

r

Equation (3) gives the rate at which r is increasing at any

instant t : i.e. t hours past noon, or at t o'clock.

Setting now, in particular, t = 1, we obtain

:

D,r L-i = -^^= - 2.825.
'

V724

The meaning of this result is twofold. First, since DtV is

negative when t = l, the ships are not receding from each

other, but are coming nearer together. Secondly, the rate of

change of the distance between them is, at one o'clock, 2.825

miles an hour.
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Let the student determine how long they will continue to

approach each other, and what the shortest distance between

them will be.

Remark. It is important for the student to reflect on the

method of solution of this problem, since it is typical. We
were asked to find the rate of recession at just one instant, t=l.

We began by determining the rate of recession generally, i.e.

for an arbitrary instant, t = t. Having solved the general

problem^ we then, as the last step in the process, brought into

play the specific value of t which alone we cared for, namely,

t = l.

The student will meet this method again and again,— in

integration, in mechanics, in series, etc. We can formulate

the foregoing remark suggestively as follows : By means of

the Calculus we can often determine a particular physical

quantity, like a velocity, an area, or the time it takes a body,

acted on by known forces, to reach a certain position. The
method consists in first determining a function, whereby the

general problem is solved for the variable case ; and then, as

the last step in the process, the special numerical values with

which alone the proposed question is concerned, are brought

into play.

EXERCISES

1. The height of a stone thrown vertically upward is given

by the formula

:

. ^ ^ .. «

When it has been rising for one second, find (a) its average

velocity for the next -^ sec.
;

(b) for the next
y-J-g-

sec.
;

(c) its

actual velocity at the end of the first second
;

(d) how high it

will rise.

Ans. (a) 14.4 ft. a second
; (6) 15.84 ft. a second

;
(c) 16 ft.

a second
;

(d) 36 ft.

2. One ship is 80 miles due south of another ship at noon,

and is sailing north at the rate of 10 miles an hour. The
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second ship sails west at the rate of 12 miles an hour. Will

the ships be approaching each other or receding from each

other at 2 o'clock ? What will be the rate at which the dis-

tance between them is changing at that time ? How long will

they continue to approach each other ?

3. If two ships start abreast half a mile apart and sail due

north at the rates of 9 miles an hour and 12 miles an hour,

how far apart will they be at the end of half an hour ? How
fast will they be receding at that time ?

4. Two ships are steaming east, one at the rate of 18 miles

an hour, the other at the rate of 24 miles an hour. At noon,

one is 50 miles south of the other. How fast are they sepa-

rating at 7 P.M. ?

5. A ladder 20 ft. long rests against a house. A man
takes hold of the lower end of the ladder and walks off with

it at the uniform rate of 2 ft. a second. How fast is the upper

end of the ladder coming down the wall when the man is 4 ft.

from the house ?

6. A kite is 150 ft. high and there are 250 ft. of cord out.

If the kite moves horizontally at the rate of 4 m. an hour

directly away from the person who is flying it, how fast is the

cord being paid out ? Ans. 3^ m. an hour.

7. A stone is dropped into a placid pond and sends out

a series of concentric circular ripples. If the radius of the

outer ripple increases steadily at the rate of 6 ft. a second,

how rapidly is the area of the water disturbed increasing at

the end of 2 sec. ? Ayis. 452 sq. ft. a second.

8. A spherical raindrop is gathering moisture at such a

rate that the radius is steadily increasing at the rate of 1 mm.
a minute. How fast is the volume of the drop increasing

when the diameter is 2 mm. ?

9. A man is walking over a bridge at the rate of 4 miles an

hour, and a boat passes under the bridge immediately below

him rowing 8 miles an hour. The bridge is 20 ft. above the
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boat. How fast are the boat and the man separating 3 min-

utes later ?

Suggestion. The student should make a space model for

this problem by means, for example, of the edge of a table, a

crack in the floor, and a string ; or

by two edges of the room which do

not intersect, and a string. He
should then make a drawing of his

model such as is here indicated.

Fig. 32

10. A locomotive running 30

miles an hour over a high bridge

dislodges a stone lying near the

track. The stone begins to fall just as the locomotive passes

the point where it lay. How fast are the stone and the loco-

motive separating 2 sec. later ? *

11. Solve the same problem if the stone drops from a point

40 ft. from the track and at the same level, when the locomo-

tive passes.

12. A lamp-post is distant 10 ft. from a street crossing and

60 ft. from the houses on the opposite side of the street. A
man crosses the street, walking on the crossing at the rate of

4 miles an hour. How fast is his shadow moving along the

walls of the houses when he is halfway over?

* BocHER, Plane Analytic Geometry, p. 230.



CHAPTER IV

INFINITESIMALS AND DIFFERENTIALS

1. Infinitesimals. An infinitesimal is a variable which it is

desirable to consider only for values numerically small and

which, when the formulation of the problem in hand has pro-

gressed to a certain stage, is allowed to approach as its limit.

Thus in the problem of differentiation, or finding the limit

(1) \im^=Djj,

Aa; and Ay are infinitesimals ; for we allow Aa; to approach

as its limit, and then A^/ also approaches 0..

Again, if we denote the value of the difference Ay/Ax — D^y

by e, so that

(2) f-A^ = c,

Ax

then € is an infinitesimal. For, when Ax approaches 0, the

left-hand side of equation (2) approaches 0, and so € is a vari-

able which approaches as its limit, i.e. an infinitesimal.

Principal Infinitesimal. When we are dealing with a num-

ber of infinitesimals, a, /8, y, etc., it is usually possible to

choose any one of them as the independent variable, the others

then becoming functions of it, or dependent variables. That

infinitesimal which is chosen as the independent variable is

called the princijoal infinitesimal.

Thus, if the infinitesimals are a and (3, and if

2a
(3) 13 =

l + Sa'

81
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it is natural to choose a as the principal infinitesimal. But

it is perfectly possible to take ft as the principal infinitesimal.

a then becomes the dependent variable, and is expressed in

terms of /S by solving equation (3) for a

:

^ ^ 2-3)8

Oi'der of Infinitesimals. We are going to separate infinitesi-

mals into classes, according to the relative speed with which

they approach 0. Suppose we let a set the pace, taking on

the values .5, .1, .01, .001, etc. Consider, for example, a?.

Then a? takes on the respective values .25, .01, .0001, etc., and

hence runs far ahead of a

:

a .5 .1 .01 .001 ...

Or .25 .01 .0001 .000001 ...

Furthermore, the closer the two get to 0, the relatively nearer

a^ is to 0. Thus, when a = .5, a? is twice as close ; but when

a = .01, a^ is one hundred times as close ; and so on.

Again, consider the infinitesimal ^a. It is always twice as

close to as « is. Similarly, 10 a is always one-tenth as close

as a.

From these examples we see that there is a decided difference

between the relative behavior of a and ka on the one hand,

and that of a and a^ on the other. For, ka is keeping pace

relatively with a, whereas a^ runs indefinitely ahead of a, rela-

tively. Consequently, we should put ka into the same class

with a, whereas a^ forms the starting point for a new class.

To this latter class would belong such infinitesimals as ^a"^ or

4a'^ — a^ ; and the former class would include, for example,

2a -f 3a- and -f^-o«
— lOOOa^. Let the student make out a

table like the above for each of these examples.

What is the common property of all infinitesimals of the

same class ? Is it not, that, for two infinitesimals, the relative

speed with which they approach is nearly, or quite, a fixed

number not zero ? It is this idea which lies at the bottom of
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the conception of the order of an infinitesimal, and it is for-

mulated in a precise definition as follows :

Definition. Two infinitesimals, /? and y, are said to be of

the same order if their ratio approaches a limit not ;

y

Thus ^=2a + «2 and y = 3«-a3

are of the same order. For,

(B

^

2a + a?^ 2-\-a

y 3 a — a^ 3 — a^

'

and hence, when a approaches 0,

y 6 — a^ 6

Similarly, 12 a^ + 3 a^ and 6 a^ — 7 a^ are infinitesimals of the

same order.

An infinitesimal /? is said to be of higher order than y if

lim^= 0,

y

Thus if ^=9«2 and y = 2a + 6a\

ft
is of higher order than a. For,

g^ 9ct2 ^ 9a

and hence, when a approaches 0,

y 2 + o a*

Finally, (3 is said to be of lower order than y if

(5) lim — = 00
,

y

(read: "j8/y becomes infinite ^^ ; not "/8/y equals infinity."*).

* The student should now turn back to Chapter II, § 5, and read again

carefully what is said there about infinity. In particular, he should im-
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Thus if /S = Va and y = 6 a -\- a^,

fi is of lower order than y. For

^^ V^ ^ 1

When a approaches 0, it is evident that the last fraction in-

creases without limit, or ^
lim ^ = 00 .

y

First Order, Second Order, etc. An infinitesimal j3 is said to

be of thejirst order if it is of the same order as the principal

infinitesimal, a ; i.e. if ^
lim'^=A":^0.

a

If /8 is of the same order as a^, i.e. if

lim4 = i^^0,

then /3 is said to be of the second order. And, generally, if /8

is of the same order as a", i.e. if

lim^=K=^0,
I

a'

then ^ is said to be of the n-th order.

Thus if

fi=2a or ^ = _iL_ or ;8 = a + ««,

2 — a
then y8 is of the first order.

But if

yS = 2 a2 + a3 oj. ^ ^ __«— ^j. ^ ^ ^2^
3 + a

then y8 is of the second order.

press on his mind the fact that infinity is not a limit and that in the

notation iised in (5) the = sign does not mean that one number is equal

to another number. The formula is not an equation in the sense in which

2x = 3 or a'^ — b^ = (a — b) (a-\- b) is an equation. The formula means
no more and no less than that the variable ^/y increases in value without

limit.
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If0=Va, then /3 _.

and lim -^^ = 1 :^ 0.

Hence ft is of the order i.

It is easily seen that if two infinitesimals fi and y are, under

the present definition, each of order n, then they also satisfy

the earlier definition of being of the same order. For, let

lim^ = 7f^0 and lim^^^i^tO.

Then, if we denote the diff^erences ^/a" — K and y/a" — L
respectively by e and rj, so that

(6) i--K=€ and l.-.L=rr},

these variables, e and -q, will be infinitesimals. For, the left-

hand side of each of the equations (6) approaches 0.

From equations (6) it follows that

^ = K-\-€ and ^-=^ + 77.

a" a"
'

On dividing one of these equations by the other we have

:

y L + 7]

We are now ready to allow a to approach as its limit. Then

lim^=lim^+i.
y L + 7)

By Theorem III of Chapter 2, § 5 this last limit has the value

L -{- r) lim (L -\-ri) L

Hence, finally
M^§.= E^(i, a.e.d.

y i
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EXERCISES
1. Show that

^ = 5a — lla2_|_ ^3 and y = 7a + a4

are infinitesimals of the same order.

2. Show that

y8 = 2a-3a2 and y = 2a + a4

are infinitesimals of the same order, but that their difference,

y8 ~ y, is of higher order than ^ (or y).

3. Show that B = is an infinitesimal of the second^ a? -2
order, referred to a as principal infinitesimal.

4. Show that p =V a2
-f- 2 a^ is of the first order, referred

to a.

5. Show that (i = V2a + 13 a^ is of lower order than a.

6. Show that the order of ^ in question 5 is n = i.

Determine the order of each of the following infinitesimals,

referred to a as the principal infinitesimal

:

7. ia-|-18a3. 11. ^^3 _ ^^

8. -a+V2a3-^a^ ^^ 2^_«i2 + ai3.

la'
^' 13-«

'

13. ^/2a2-a3

10.

15. If ft and y are infinitesimals of orders n and m respec-

tively, show that their product, /8y, is an infinitesimal of order

n -\-m.

16. If y8 and y are infinitesimals of the same order, show

that their sum is, in general, an infinitesimal of the same

order.

Are there exceptions ? Illustrate by examples.
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2. Continuation ; Fundamental Theorem. Principal Part of

an Infinitesimal. Let ^ be an infinitesimal of order n, and

let a be the principal infinitesimal. Then

lim-^=/r^O.
a"

Moreover, as pointed out in the last paragraph,

(1)
l = K+.,

where e is infinitesimal. From (1) it follows that

(2) ^ = Ka'' + €a\

This last equation gives a most important analysis {i.e. break-

ing up) of (3 into two parts, each of which is simple for its

own peculiar reason.

i) Ka" is the simplest infinitesimal of the nth. order imagi-

nable,— a monomial in the independent variable, the function

y = Kx\

ii) ea" is an infinitesimal of higher order than the nth.

The first part, ^a", is called the principal part of /5.

By far the most important case in practice is that of infini-

tesimals /3 of the j^rs^ order, ii = 1. Here

a" a
K+e

and y8 = Ka + ea.

Hence we see that the principal part of an infinitesimal of the

first order is proportional to the principal infinitesimal.

Example 1. Let /? = 2a — a?.

Then ^ is obviously of the first order, or n = 1, and here

a** a
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Clearly, then, K=2, e = — a,

and the principal part of y8 is 2a.

Example 2. Let ^ _ 2 a-

Here, obviously, n = 2, and

.. ^ ,. 2 2hm — = lim = -•

2
Hence ^=-« By definition,

a**

In the present case, then,

2 2 8a
7_4a 7 7(7-4a)

EXERCISE

Determine the principal parts of a goodly number of the

infinitesimals occurring in the Exercises at the end of § 1.

Equivalent Infinitesimals. Two infinitesimals, as ^ and y,

shall be said to be equivalent if the limit of their ratio is unity

:

lim^=l.
y

For example^ the following pairs of infinitesimals are equiv-

alent :

i) 2 a + a2 and 2 a + a^

ii) ^a^ — a? and

iii) V2a-|-5a2 and V2a-7al

An infinitesimal and its principal part are always equivalent

infinitesimals. For, if Ka"" is the principal part of ^, then

/5 = ^a« + rj,
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where rj is of higher order than Ka". Hence

-^ = 1+-^, lini-^=H-lim-^.

But lira -qjKce = 0, and the statement is established.

Two infinitesimals which have the same principal parts are

equivalent, and conversely.

Equivalent infinitesimals are of the same order ; but the

converse is not true.

The difference between two equivalent infinitesimals, /S and

y, namely, ^ — y, is of higher order than /5 or y. For

y y

hence lim ^-^^ = lim f^ - l\

=Aim^Vl = 0, q.e.d.

Conversely, if /3 and y are two infinitesimals whose differ-

ence, /3 — y, is of higher order than jS or y, then (3 and y are

equivalent.

For, since ^"^^^-1,
y y

it follows that j.^/^ _^\ lim^^.

The right-hand side of this equation is by hypothesis, and

the left-hand side is equal to

lim^^_l.
yJ

Hence lim^ = 1, q. e. d.

y

We come now to a theorem of prime importance in the

Infinitesimal Calculus.
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Fundamental Theorem. The limit of the ratio of two infini-

tesimals, r,

lim^,
y

is unchanged if the numerator infinitesimal /8 he replaced by any

equivalent infinitesimal /8' and the denominator infinitesimal y be

replaced by any equivalent infinitesimal y'.

In other words

:

^ ^,

lim^=lini&
y y

provided iimA=l and limX=i.
^' y'

The proof is immediate. It is obvious that

Hence by Theorem II, Chapter II, § 5 we have

iim£'=(iim|)(ii.g(u.r).

But the first and third limits on the right-hand side are each

equal to 1 by hypothesis. Hence

lim"^ = lim", q. e. d.

y y

The theorem can be stated in the following equivalent

form

:

The limit of the ratio of two infinitesimals is the same as the

limit of the ratio of their principal parts.

The student must not generalize from this theorem and

infer that an infinitesimal can always and for all purposes be

replaced by an equivalent infinitesimal. Thus if

P = 2a-\-a? and y = 2a-a2,

their difference, ^ — y = a? -\- a^,
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is an infinitesimal of the second order. On the other hand,

is equivalent to y. But it is not true that the difference of ft

and y', namely,
(3 - y' = a^

is an infinitesimal of the second order. It is obviously of

order 3. Thus replacing y by an equivalent infinitesimal has

here changed the order of the difference jS — y.

3. Differentials. Let y=f(x)

be a function of x, and let Djj be its derivative

:

lim -^ = D^.

Let the difference ^y/^x — D^y be denoted by e. Then

Aa;
and

(1) Ai/ = JD^yAx + eAx.

Since x is the independent variable, Ax can be taken as the

principal infinitesimal. D^y does not vary with Ax; it is a

constant, for we are considering its value at a fixed point

X = Xq. Since, moreover, D^y is not in general zero, equation

(1) represents Ay as the sum of its principal part, D^yAx, and

an infinitesimal of higher order, eAx.

Definition of a Differential. The expression D^yAx is called

the differential of the function, and is denoted by dy :

(2) dy = D^yAx, or df(x)= DJ(x)Ax.

(read :
" differential y " or " differential f(x) " or " dy" etc.).

Thus if 2/ = x'^,

dy = 2xAx, or dx^ = 2xAx.
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Since the definition (2) holds for every function y =/(»), it

can be applied to the particular function

Hence

(3)

/(»)

dx — Djx t^x — Ax.

But it is not in general true that A?/ and dy are equal, since e

is in general different from 0. Thus we see that the differen-

tial of the independent variable is equal to the increment of that

variable ; but the differential of the dependent variable is not in

general equal to the increment of that variable.

By means of (3) equation (2) can now be written in the form

(4) dy = D^ydx.

Hence

(5)
dx

Geometrically, the increment A?/ of the function is repre-

sented by the line MP', Fig. 33 ; and the differential, dy, is

equal to MQ, for from (5)

tan T — -"^

or

dx

dy = dx tan t.

X'

Fig. 33

-^

In other words, Ay repre-

sents the distance from the

level of P to the cm-ve,

when X — x' ; dy, the dis-

tance from the level of P
to the tangent. Moreover, the difference

Ay — dy = eAa;

is shown geometrically as the line QP', and is obviously from

the figure an infinitesimal of higher order than Ax = PM.
It is also clear from the figure that Ay and dy are equal

when and only when the curve y = f{x) is a straight line ; i.e.
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when/(a;) is a linear function,

fix)= ax + b.

Hitherto x has been taken as the independent variable, Aaj

as the principal infinitesimal. We come now to the theorem

on which the whole value of differentials for the purpose of

performing differentiation depends.

Theorem. The relation (4) :

cly = D^y dx,

is true, even lohen x and y are both depe7tdent on a third vari-

able, t.

Suppose, namely, that x and y come to us as functions of a

third variable, t :

(6) x^<i>{t), y = il^(t),

and that, when we eliminate t between these two equations, we
obtain the function ^, ^

Then dx and dy have the following values, in accordance with

the above definition, since t, not x, is now the independent

variable, A^ the principal infinitesimal

:

dy = D^y At, dx = D^x At.

We wish to prove that

dy = D^y dx.

Now by Theorem V of Chap. II, § 5 :

Dty = D^yDtX.

Hence, multiplying through by A^, we get

:

D^yM = DJJ D^xAt,

or dy = D^y dx, q. e. d,
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With this theorem the explicit use of Theorem V in Chap.

II, § 5 disappears, Formula V of that theorem now taking on

the form of an algebraic identity :

du _ du dy
^

dx dy dx

To this fact is due the chief advantage of differentials in the

technique of differentiation.

Differentials of Higher Order. It is possible to introduce

differentials of higher order by a similar definition

:

(7) d''y = DJ'yAx% dhj=zD,^yAa^, etc.,

X being the independent variable. We should then have by (3)

(8) d'y=DJ^ydx' or ^=1)/?/, etc.

Unfortunately, however, relation (8) does not continue to

hold when x and y both depend on a third variable, t. For

example, suppose ^„ ,
^„

Then y = a-^ x.

When t is taken as the independent variable, we have ac-

cording to relation (8)

:

d''y=:B,hjdt^ = 2dt^;

it follows that

^^dsi^^^ dx = 2tdt,

d^y ^ 2dt^ ^1^1
dx^ 4.tMt^ 2^2 2x'

On the other hand, when x is taken as the independent vari-

able, relation (8) becomes

d^y = DJ^ydx'^ = 0,

and consequently ^2.,

dx''
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Thus the quotient, J, is seen to have two entirely distinct

values according as t or x is taken as the independent variable.

We will agree, therefore, to discard this definition. The nota-

tion J as meaning D^y is, however, universally used in the

Calculus, and so we will accept the definitions

fi=D,^, ri^DJ'y, etc.,
dx^ dx^

interpreting the left-hand sides of these equations, however,

not as ratios, but as a single ^ homogeneous (and altogether

clumsy !) notation for that which is expressed more simply by

Cauchy's D.

Remark. The operator D^ shall be written when desired as

—
. Thus

dx
T\ ^ d X
D^ appears as

a — X dxa — X

Again, the equation

D:~y = DXD^y)
appears as

d^y _ d dy

dx^ dx dx

Finally, the following notation is sometimes used :

J = D,^y dx, J= DJy dx, etc.
dx dx-

4. Technique of Differentiation. Consider, for example,

Formula II, Chapter II, § 6

:

On writing this formula in terms of differentials, we have

d(n i-v) _ du dv

dx dx dx
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Now multiply this equation through by dx

:

d(u -{-v)=du -{- dv.

Hence the theorem : The differential of the sum of two functions

is equal to the sum of the differentials of these functions.

The others of the General Formulas, Chapter II, §§ 6, 7,

can be treated in a similar way and lead to corresponding

theorems in differentials, embodied in the following important

group of formulas.

General Formulas of Differentiation.

I. d{cu)=cdu.

II. d{it -\-v)= du -h dv.

III. d{icv) ^udv -\- V du.

JY 7
"^ _ vdu — u dv

v~ V^

As already explained, Theorem V reduces to an obvious

algebraic identity

:

ri r} rl

dx dy dx^

and so does not need to be tabulated.

Of the special formulas hitherto considered, only two need

be tabulated, namely

:

Special Formulas of Differentiation.

1. dc = 0.

2. dx"" = nx''~^dx.

The first of these formulas says that the differential of a

constant is zero. The second is valid, not only when x is the

independent variable, but when x is any function whatever of

the independent variable, t. Thus if

(1) u=^l^t I
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and we set

(2) x = l-
equation (1) becomes

(3) u==x

Hence du = -^x'^dx.

But dx = dl-}-d(—t)=0 — dt,

and thus _ dt du
du = —-z— or

2Vl-t ^i 2Vl-t

The student should copy off neatly on a card the size of a

postal the General Formulas I-IV, the Special Formulas 1.,

2., leaving room for a few further special formulas. All the

differentiations of the elementary function of the Calculus are

based on these two groups of formulas.

To differentiate a function means henceforth to find either

its derivative or its differential. Of course, when one of these

is known, the other can be found by merely multiplying or

dividing by the differential of the independent variable.

We proceed to show by a few typical examples how differen-

tials are used in differentiation.

Example 1. Let u = 12 — 5x-{-7a^.

To find du.

Take the differential of each side of this equation, and apply

at the same time Formula II

:

du = c?(12)+ d(- 5x)-\- d(7x^).

By Formula 1, d(12) = 0.

By Formula I,

d{—5x)= — 5dx and c?(7a^)= 7c?jc».

Hence du = — 5dx -\- 21x^ dx

= {-5-\-21x')dx

and ^= _5-f21a;2.
dx



98 CALCULUS

These steps correspond precisely to the steps the student

would take if he were using derivatives, only he would not

have written them all out in detail. He would have written

down at sight : ^ k , 01 9

He can avail himself of the facility he has already acquired

and shorten the work as follows. Since

du = DjidXy

he can begin by writing

du = ( )dx,

and then fill in the parenthesis with the derivative.*

Example 2. Let

To find du.

By Formula IV we have

:

^^^
(0.2 -f- a;2)r?(a2 _ x2) - (a2 _ a;2)d(a2 + x^)

(a2 + x'^y

{a^ + x''){-2xdx)-{cC'- x')(2xdx)

{a^ + x^f

4 a'-x dx

{a^^-\-xY

du 4 a'^x

dx (a2 + x'-y

The student would probably prefer to work this example as

follows. Remembering that

du = Dji dXy

* The student must be careful not to omit any differentials. If one

term of an equation has a differential as a factor, every term must have

a differential as a factor. Such an equation as

du = - 5 + 21 x2

is absurd, since the left-hand side is an infinitesimal and the right-hand

not. Moreover, there is no such thing as d^u.
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begin by writing

du = dx,

and then fill in the fraction by the old familiar methods of

Chapter II.

In the two examples just considered, the processes with

differentials correspond precisely to those with derivatives^

with which the student is already familiar. This will always

be true in any differentiation in which composite functions are

not involved ; i.e. whenever, according to our earlier methods,

the vanished Theorem Y of Chapter II, § 8 was not used. It

is in the differentiation of composite functions that the method

of differentials presents advantages over the earlier method.

We turn in the next paragraphs to such examples.

EXERCISES

Differentiate each of the following functions by the method

of differentials, and test the result by the methods of Chap-

ter II.

Ans. du = 3 x^dx — 3 dx.

Ans. dy = hdx -\-2 ex dx.

Ans. dw = —3 z^dz.

Ans. — =96-32 i.

dt

ds
Ans. — = Vo-{-gt.

A , —2dx
Ans. du =

1. U = if3 — 3 cc -h 1.

2. y = a-\-bx-{- ex"-.

3. w = a^ — z^.

4. s = 96t-16t^.

5. s = Vot + igt^.

6.
1-x

u = - .

1 + x {l-\-xf

X ^ J dx — x'^dx
y = • Ans. dy = .

z =———-^ Ans. dz = dx.
2x 2a;2

3-2x-^a^ ,^ ^4_^4
^ = . . o ,

• 10. y =
4 + a;2 - a^ ' a^ + a^x^ + x*
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5. Continuation. Differentiation of Composite Functions.

Example 3. Let u = Vl -\-x + x^.

To find ^•
dx

Here, we begin by computing du. To do this, introduce a

new variable, y, setting

y =zl -\- X -\- x^.

Then u = yK

Next, take the differential of each side of this equation. By
Special Formula 2 above,

,
du = dy^= J-t/

^(^V'

Moreover, dy = (1 + 2 x)d.x.

Hence ^^_ (1 + 2 0:^0.

2VI -h x + x'

and
du 1 + 2 it-

d^ 2Vl + a; + x2

Let the student carry through the above differentiation by

the methods of Chapter II and compare his work step by step

with the foregoing. He will find that, although the two

methods are in substance the same, the method of differentials

is simpler in form, since no explicit use of Theorem Y here is

made.

Abbreviated Method* The solution by differentials can be

still further abbreviated by not introducing explicitly a new

* The student should not hasten to take this step himself. He will do

well to omit the text that follows till he has worked a score or more of

problems in differentiating composite functions as set forth under Ex-

ample 3, introducing each time explicitly a new variable, as y, z, etc.

Not until he comes himself to feel that the abbreviation is an aid, shoyild

he attempt to use it.



INFINITESIMALS AND DIFFERENTIALS 101

variable, y. The problem is to find du, when

u={l + x + x'^)^.

Now, Special Formula 2, as has already been pointed out,

holds, not merely when x is the independent variable, but for

Siiij function whatsoever. It might, for example, equally well

be written in the form :

d [cf>{x)y^ = ?i[<^(a;)]"-i d(li{x).

In the present case, then, the content of that theorem,— the

essential and complete truth it contains,— enables us to write

down at once the equation :

d(l + x-{- x")^ = 1(1 4- a; -h x^Y^ d(l + x + x^).

This last differential is computed at sight, and thus the

answer is obtained in two steps.

Even these two steps are carried out mentally as a single

process, when the student has reached the highest point in the

technique of differentiation. He then thinks of the formula :

, /- dxdwx =
2Vx

realizes that it holds, not merely when x is the independent

variable, but for any function of x, and so writes down first

the easy part of the right-hand side of the equation, thus

:

(?Vl -hx-\- x^

2V1 + X + X'-

carrying in his head the fact that the numerator is the differen-

tial of the radicand, i.e. d(l -\- x -\- x^). This differentiation he

performs mentally, and thus has the final answer with no

intermediate work on paper :

7 /T~". \

—9 (l-\-2x)dx
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Example 4. The method of differentials is especially use-

ful in the case of implicit functions. Thus, to find the deriva-

tive of y with respect to x when

Take the differential of each side

:

^x^dx - 3xdy - Sydx + Sy'dy = 0.

Next, collect the terms in dx by themselves ; the others will

contain dy as a factor

:

(3a;2 _ Sy)dx-\-(Sf - Sx)dy = 0.

Hence
dy^Sy-Sx^^
dx Sy^ — 3x

EXERCISES

Differentiate the following twelve functions by the method

of differentials and also by the methods of Chapter II (in

either order), introducing each time explicitly the auxiliary

variable, if one is used.

1. u=Va^-ha^x''-^x\ Ans. du = (
^'^

+

_2jg^)gg_ .

2. 2/ = — Ans. dy =
Vl - a;2 (1 _ a;2)f

Z. u = • Ans. du
1 - X (1 - xy

Suggestion. Introduce an auxiliary variable y =-1 —x.

Then u = y~^..1 . du 2
^. u = — Ans

(1 - xy dx (1 - xy

1 + a;2
'

daj (1 + 7?y
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6. s= ^' Ans. ^= 2^^'

(a + ty dt (a + t)

7. 2x^-xy + 'iy^ = D. Ans. ^ = ^^~^
dx X — Sy

8. xy = a?. Ans. -/ = — -^

dx X

10. h — = 1. ^^is. -^ =
a2 62 da; a^?/

11. 2a;2 + 32/2 = 10. - ^ns. ^ = _|i^'
da; 3?/

12. 2a;//-a:-f ^ = 0. ^^is. ^ = Ljz2i/
da; 2a;-j-l

The student can work the problems at the end of Chapter

II by the method of differentials. For further practice, if de

sired, the following examples are appended.

du Tx^ — 2x' — l
13. u — {x^ + 1) Va;3 — x. Aiis.

«^^ 2^x^ - X

14. y={x-{-2h){x-hy. Ans. ^ = 3{x'-b^)
dx

1 e ^ A du a'
15. u = Ans. — =

Va2 - a;2 dx V(a2 - x'-f

- „ la — X y. du a

a; da; 2a;Vaa; — a;

1 ~ a; — C6 . du a^
17. n= . Ans. — =

V2ax-x^ ^^ V(2aa;-a;2y

18. u = f'L±^Y Ans. ^=2. ^
dx x^ — a^

19. z=^ ^"
. ^Tis. — =4

2/2 y di/ ~
2/^
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„, Ix^ — X -\-l . dit
21. tt=\ ^ Ans. — =

^x;' -\-x4-l dx

3a4

j-x + l dx (a;2+a; + l)Va^ + x2H-l

ort (x — 01^)^ A du 8Vx' — x^
22. w = ^^ —• Ans. — =

x^ dx Sa^

/ ^ hi A <^u 4:(x^ ~ ah^
23. u={x^ — a^Y. Ans. — =—5^ ^

dx 3^.1

24. u=.x(x^-{-5)i Ans. — = 5(a^ + l)(£c3^5y^.
dx

25. xi-\-yi=aK Ans. ^=-^jl.
dx ^x



CHAPTER V

TRIGONOMETRIC FUNCTIONS

1. Radian Measure. In Trigonometry, the radian measure

of an angle was introduced, apparently for no good purpose.

The reason lies in the importance for the Calculus of this new
system of measurement, and will become clear in the next

paragraph, when we come to differentiate the sine. We will

first recall the definition.

Let a circle be described with its centre at the vertex of

the angle ; let r denote the length of the radius of the circle

and s, that of the intercepted arc. Then
the radian measure, 6, of the angle is

defined as the ratio s/r

:

(1) = i.

Fig. 34

For a right angle, ^ = ~-, and hence 6 =-- A straight angle

has the measure

e = 7r = 3.14159 26535 89793 • • ..

Let <^ be the measure of the given angle in degrees. Then

6 and </> are proportional,

e = ccii,

where c is a constant. To determine c, use a convenient angle

whose measure is known in both systems ; for example, a

straight angle. For the latter,

= 7r and ff> = 180.

105
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Substituting these values in the above equation we fitd

:

cl80, c
TT

180
and hence

^ ^ 180^' ^
TT

This equation can also be written in the form

(3)
o^ = A_

\^
TT 180

and thus an easily remembered rule of conversion from radian

measure to degree measure, or the opposite, obtained : The

radian measure of an angle is to ir as its degree measure is to 180.

The unit of angle in radian measure, i.e. the angle for which

^ = 1 and hence s = r,

is called the radian. It is obvious geometrically that it is a

little less than 60°. Its precise value (to hundredths of a sec-

ond) is given by (2)

:

<^ 1^1 = ^^^ = 57° 17' 44.81" (= 57.29578°).
TV

On the other hand, the radian measure of an angle of 1° is

^|„_i = -^-=.01745 32925 19943 .•.
10-1

^^^

The student should practice expressing the more important

angles, as 30°, 45°, 60°, 90°, 120°, etc., in radian measure until

he is thoroughly familiar with the new representation for

them.

If, in particular, the radius of the circle is taken as unity,

then 6 and s are the same number

:

(4) 6 = s, when r = 1

;

or the arc is equal to the angle. Thus the radian measure of an

angle might have been defined as the length of the intercepted
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arc in the unit circle {i.e. the circle of unit radius with its

centre at 0).

Graph of sin x. It is important for the student to make an

accurately drawn graph of the function

y = sin X,

X being taken in radian measure. Let the unit of length, as

usual, be the same on both axes, and let it be chosen as 1 cm.

For this purpose Peirce's Table of Integrals (the table of

Trigonometric Functions near the end) is especially convenient,

since the outside column gives the angles in radian measure,

and thus as many points of the graph as are desired can be

plotted directly from the tables.

y y=sin X

vStt

Fig. 35

Since sin (tt — x)= sin x

each determination of the coordinates (x, y) of a point on the

graph, for which < .t < ^ jdelds at once a second point,

namely (tt — x^ y). Thus one arch of the curve is readily con-

structed from the Tables.*

From this arch a templet, or curved ruler, is made as fol-

lows. Lay a card under the arch and with a needle prick

through enough points so that the templet can be cut ac-

curately with the scissors.

By means of the templet further arches can be drawn me-
chanically, and thus the curve is readily continued in both

* The graph could be made directly without tables from purely geomet-
rical considerations. Draw a circle of unit radius. Construct geomet-
rically convenient angles, as those obtained from a right angle by
successive bisectors. Measure any one of these angles, '^ABP„, in ra-

dians and this number will be the abscissa of the point on the graph, the
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directions to the edges of the paper.* Put this curve in the

upper quarter of a sheet of centimetre paper.

The graph brings out clearly the property of the function

expressed by the word periodic. The function admits the

period 27r, since . , ^ ,sm (£c + 2 7r) = sm x

Graph of cos x. By means of the templet the graph of the

function
y = cos X

can now be drawn mechanically. This function also admits

the period 2 tt : , ^ .

cos (a; + z tt)= cos x.

ordinate being the perpendicular dropped from P„ on the hne BA. Thus,

if n = 3, the coordinates of the point on the grapli are :

„ 3 7r

Fig. 36

= 1.18, y = .92.

A second point of the arch,

that corresponding to P5, has

X the same y, its coordinate be-

ing

= 1.96, y .92.

Of course, the distance tt must be laid off on the axis of x by measure-

ment ; it cannot be constructed geometrically from the unit length. This

done, the further abscissae are found by successive bisectors.

* In order to obtain the most satisfactory figure, observe that the

curve has a point of inflection at each of its intersections with the axis of

X, the tangent there making an angle of ± 45° with that axis. Since a

curve separates very slowly from an inflectional tangent, it will be well to

draw these tangents with a ruler. On laying down the templet, the curve

can then be ruled in from the latter with great accuracy. It will not

separate sensibly from its tangent for a considerable distance from a

point of inflection.
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Put the graph in the second quarter of the sheet, choosing the

axis of y for this curve in the same vertical line as the axis of

y for the sine curve above. There remains the lower half of

the sheet for the next graph.

Graph of tan x. The same tables make it easy to plot points

profusely on the graph of the function

y = tan x

in the interval 0^ a: < ^. Take the axis of y in the same ver-

^

Fig. 38

tical line as in the case of the preceding graphs. This done, a

second templet is made and by means of it the graph is drawn

mechanically for values of x such that — - < x < 0.
A

It is desirable furthermore to plot the function in the two

adjacent intervals
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2^^^ 2'' H<^<
IT

2'

in order to suggest the fact that this function admits the

period tt :
, , . ^
tan (x + tt) = tan x.

2. Differentiation of sin x. To differentiate the function

(1) y = sin X,

apply the definition of a derivative given in Chap. II, § 1.

Give to X an arbitrary value

Xq and compute the corre-

sponding value ?/o of y ;

?/o
= sin Xq.

Then give x an increment A.r,

and compute again the corre-

sponding value of y :

?/o -f A?/ = sin {xq H- ^x).

Hence

A?/ = sin {xq -f- Ax) — sin Xq^

M' 31
Fig. 39

(2)
Ay _ sin (a'o + Ax) — sin Xq

Ax Ax

It is at this point in the process that the specific properties

of the function sin x come into play. Here, the representa-

tion of sin a; by means of the unit circle, familiar from the

beginning of Trigonometry, is the key to the solution. From
the figure it is clear that

sin a^o = MP, sin {xq -h Ax)= M'P',

Ay = sin (a^o + Aa;) — sin Xq = QP\ Ax = PP\

Hence
Ay^QP'
Aa; pp'

(3)
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and so we want to know the limit approached by the latter

ratio

:

^ p,

lim^^.

By virtue of the Fundamental Theorem of Chap. IV, § 2, we

can replace this ratio by a simpler one, since the arc PP and

the chord PP^ are equivalent infinitesimals :
^

Um^' = l.

Hence lim S^' = lim 2^

.

p'^p ppt p'=p pp^

On the other hand, the triangle QPP^ is a triangle of refer-

ence for the ^ QPP' = <^, and so

^'=sin<^.
PP

When P' approaches P, the secant PP' {i.e. the indefinite line

determined by the two points P and P') approaches the tan-

gent PT at P, and thus

lim<^ = ^ QPT=~-Xo,
p'=p 2

Finally, then.

lim ^— = lim sin </> = sinf - — a-Q )= cos Xq.
p=p ppi p-=p \2 J

and consequently t Ay^ -^ Iim —^ = cos Xq,

* The student should assure himself of the truth of this statement by
visualizing the figure (making an accurate dra^^ing with ruler and com-
pass for angles of 30°, 15°, and 7|°, the circle used being 10 in. in

diameter) and realizing that, when P' is near P, the difference in length

between the arc and the chord is but a minute per cent of the length of

either one. A formal proof will be found below.
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or, on dropping the subscript,

(4) D_^sm X — cos x.

This theorem gives rise to the following theorem in dif-

ferentials :

(5) d sin X = cos x dx.

Reason for the Radian. The reason for measuring angles in

terms of the radian as the unit now becomes clear. Had we
used the degree, the increment Ax would not have been equal

to PP' ; we should have had :

.^-^ = ^^, or A.=^PP'.
360 27r ' TT

Hence (3) would have read :

Ax 180 *

pp<'

and thus the formula of differentiation would have become

:

D^ sin X = -^ cos x.
180

The saving of labor in not being obliged to multiply by this

constant each time we differentiate is great. Still more impor-

tant, however, is the elimination of a multiplier which is of

the nature of an extraneous constant, whose presence would

have obscured the essential simplicity of the formulas of the

Calculus.

EXERCISE

Prove in a similar manner that

D^ cos a; = — sin x.

3. Certain Limits. In the foregoing paragraph we have made
use of the fact that the ratio of the arc to the chord approaches

1 as its limit. A formal proof of this theorem, based on the
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axioms of geometry, can be given as follows. Draw the tan-

gent at P and erect a perpendicular at P' cutting the tangent

in Q. Denote the angle ^ F'FQ by a.

Then . ^
FP' <FP' < PQ + P'Q;

p
for i) a straight line is the shortest dis-

tance between two points ; and ii) a convex curved line is less

than a convex broken line which envelops it and has the same

extremities. But

PQ =I^, P'Q = PP'tsina.
cos a

Hence ppi i

1 < < h tan a.
ppi cos a

When a approaches 0, the right-hand member of the double

inequality approaches 1 ; hence the middle member must also

approach 1, or s_y

lim = 1, q. e. d.
pjj,

The foregoing proof holds, not merely for a circle, but for

any curve with a convex arc FP'. Consequently the theorem

is established generally.

\P
TJie Limit lim ^i5_^. From Fig. 41

it is clear that

MP= sin a, AP= a, Fig. 41

and hence
sin a _MP
« ~AP'

By direct inspection of the figure it is seen, then, that

(1) iim?a^=i.
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A formal proof of this equation can be given as follows.

From Fig. 42 ^
PP' = 2sina, PP' = 2a.

Hence
since ^PP^

and therefore, by the proposition just established,

a=0 a P'=^Pppf

Another Proof of (1). The area of the sector OAP, Fig. 42,

is -i- a, and it obviously lies between the areas of the triangles

. OMP and OPN. Hence

^ sin a cos a < .V a < ^ tan a

or ^ a ^ 1
cos a < -^ <

sm a cos a

Fig. 42

7p' When a approaches 0, each of the ex-

treme terms approaches 1, and so the

middle term must also do so, q. e. d.

From Peirce's Tables, p. 130, we see that

sin 4° 40' •-= .0814,

and the same angle, measured in radians, also has the value

.0814, to three significant figures. Thus for values of a not

exceeding .0814, sin a differs from a by less than one part in

800, or one-eighth of one per cent.

The Limits lim
a=0

cos a , T 1
and lim — cos a From Fig. 42,

the first of these limits is seen to have the value

l-(
lim = 0.
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A formal proof can be derived at once by the method em-

ployed in the evaluation of the next limit,

T 1 — cos a
lim

Expressing 1 — cos a in terms of the half angle, we have

1

Hence

and

cos a = 2 sin2 - -

2sm.-- ^

lim -^^^ = llim

sin-

ce

L 2 J

• asm-
2

a

L 2 J

2

_1
~2

EXERCISES

In the accompanying figure determine the following limits

when a approaches :

1. lim

2. lim

AR
MP
Aq

3.

AP

lim^MP
MA

6. lim
p<i

Ans. -

.

2

Ans. 1.

4. lim

7. lim

FiG. 43

UP
AP
PQ
AN

5. lim

8. lim

PN
AP
RQ
PN

Determine the principal part of each of the following infini-

tesimals, referred to a as principal infinitesimal

:

9. MP. Ans. a. 10. PR. Ans.^a. 11. RQ.

12. PN 13. AQ. 14. MA. Ans. la^.

15. Pq. 16. MN. 17. AQ - MP.
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4. Critique of the Foregoing Differentiation. The differenti-

ation of sin X as given in § 1 has the advantage of being direct

and lucid, and thus easily remembered. Each analytic step is

mirrored in a simple geometric construction. It has the dis-

advantage, however, of incompleteness. For, first, we have

allowed Aa;, in approaching 0, to pass only through positive

values ; and secondly we have assumed a^o to lie between and

\ IT. Hence there are in all seven more cases to consider.

An analytic method that is simple and at the same time

general is the following. Eecall the Addition Theorem for

the sine

:

sin (a 4- &) = sin a cos h + cos a sin 6,

sin (a — 6)= sin a cos h — cos a sin 6,

whence sin (a + 6)— sin (a — Z>) = 2 cos a sin h.

Let a + 6 = O/'o -f- Ax, a — h — Xq.

Solving these last equations for a and 6, we get

:

, /\x , A.r

(A/v'X _ A37
Xq + ~j-\ sin -^,

and the difference-quotient becomes

sin^-
Ay f _^^^\ ^— = cos .r„ A—r-

Aa; V 2 y ^^

The first factor on the right approaches the limit cosojq

when A.T approaches 0. On setting \^x=. a, the second fac-

tor becomes
smct

a

Hence the factor approaches 1. Thus

lim -^ = cos Xq,
Ax=^ Ax
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or, on dropping the subscript,

D^ sin X = cos x.

5. Differentiation of cos a;, tana;, etc. To differentiate the

function cos x, introduce a new variable, y, by the equation

y=^—x. Hence x = - — y,

and cos x = cos /--?/]= sin y.

Taking the differential of each side of the equation thus ob-

tained, we have

:

d cos X = cfsin y = cos ydy.

But cos y = sin x and dy = — dx.

Hence

(1) dGOSX = — sinxdx.

To differentiate the function tan x, set

. since
tan X =

cos a;

cos a; (J sin a; — sintcdcosa;

cos^a;

cos ' xdx-\- sin 2 xdx dx

Hence d tan x =

cos^a? cos^aj'

and thus

(2) d tan x = sec^ x dx.

TT
It is shown in a similar manner (or by setting x = - — y in

the equation just deduced) that

(3) d cot a; = — csc^ x dx.

These are the important formulas of differentiation for the

trigonometric functions. By means of them all other differen-

tiations of these functions can be readily performed. Thus,
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to differentiate the function sec Xj set

sec X = (cos x)~K

dcosx __ sm_xdx

C0S2 X C0S2 X
Then d sec x =

It is not desirable to tabulate tlie result, since one rarely

has occasion to differentiate either sec x or esc x, and when the

occasion does arise, the differentiation can be worked out

directly, as above.

The student should now add to his card of Special Formulas

the four main formulas just obtained. This card will now read

as follows

:

1. dc = 0.

2. dx"" = nic""! dx.

3. d sin X = cos x dx.

4. d cos X = — sin x dx.

5. d tan x = sec^ x dx.

6. d cot X = — csc^ X dx.

6. Shop Work. To acquire facility in the use of the new
results, the student should work a generous number of simple

examples, for which the following are typical.

Example 1. To differentiate the function

u = sin ax.

Let y = ax.

Then u = sin y,

and du = dsiny = cos ydy.

But dy = a dx.

Hence, substituting, we have

du = a cos axdx or — sin aa; = a cos ax.
dx
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The solution can be abbreviated as follows. The equation

d sin X = cos x dx

is true, not merely when x is the independent variable. It

holds, for example, in the form

d sin y = cos y dy,

Avhere y is any function of x. Hence we can write immediately

dsin ax = cos ax d(ax),

and thus obtain the result

d sin ax — a cos ax dx.

Example 2. To differentiate the function

1^ = VI — A;2 sin2 <^.

Let 2 = 1 — A:2 sin2 ^_

Then

du = dz^ = iz-^dz',

dz = - k^ d siii^ (fi.

Let y = sin <^.

Then dy = cos
<f>

d<ji

and (7sin2<^ = d y^ = 2y dy = 2 sin cf> cos cf) d(f>.

Hence du = \z-^{-2k^ sin c^ cos <^c?</))

or
du _ ^'2 sin (^ cos <^

^^ VI - k'^ sin2 <^

* Exampie 3. If CTn />• _l_ OTr» ij -v ti

to find -^. Take the differential of each side of the equation:
dx

cos xdx-{- cos y dy = dx — dy.

Hence (cos x — l)dx + (cos y + l)dy =

and
gy^l-cosa^^
dx 1 -\- cos 2/
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EXERCISES

Differentiate the following functions.

I. u = cos ax.

2. y = C0S2 X.

3. y = CSC X.

4. w-tan^.
2

5. u = cot 2a;.

6. u = sec 3a;.

8. u = sin^ X.

10. u = X -{- tan X.

12. u — sec2 X.

sin X
14. M

16. u = :
—

"

. 17. «=l±^i5^.
1 — sin a;

1

1 — cos a;

= VI + COS X.

1 — COS a;

1 + cos a;

sin a;

a + b cos a;*

_ 1

du _^ — a sin ax.

dy^
dx

— 2 sin a; cos x

dy_
dx

csc^ X cos X.

du

dx~
^sec2^.2 '"'2

d,u _
dx''

-2csc2 2a?.

7 . u = tan2 ax.

9 . u = 1 — sin X.
,

1 . u = COS^ X.

3 . u = sin a; cos x.

du

dx" -^-1-
du __

dx~
1 siB^.
V2 2

18. ?^ = . 19. u
a cos x-\-h sin a;

1
20. w= = 21. u = -

sin a; -f cos a; (a + & cos xf
du

22.* w = vers x. t" = ^^^ ^•
ax

23.* u = covers a;.
—- = — cos x.
dx

* The versed sine and the coversed sine are defined as follows

:

vers X = 1 — cos X

;

covers x = 1 — sin x.
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24. u = x3m2x.

26. «=tang-5).

28. u = tan—— •

1 — X

30. w = sin a; + cos 2 ic.

32. ^= "^

X
eos-

X
*

25.

27. «=cot(|-|).

29.
sin ttx

X

31. IC = X2 cos ttX.

33.
_ cos (^

VI — A:2 sin2 (^

^.v._ cos {x-{-y)— cos ?/

dx sin {x -\-y)-{- X sin 2/

Vl — A;2 sin- <j>

34. xcos2/= sin(a; + ?/).

35. tana;— cot 2/= sin a; sin y. 36. sin a; + sin ?/ = 1.

37. tan 6 -f tan <^ = 2 tan </> tan ^. 38. x = ?/ sin y.

7. Maxima and Minima. By means of the new functions

studied in this chapter the range of problems in maxima and

minima which can be treated by the Calculus has been materi-

ally enlarged. No new principles are involved ; the student

should go over carefully the paragraphs of Chap. Ill relating

to this subject, before he proceeds farther with the present

paragraph.

Example 1. A man in a rowboat 1 mile off shore wishes to

go to a point which is 2 miles inland and 4 miles up the

beach. If he can row at the rate of 5 miles an hour, but can

walk only 3 miles an hour after he lands, in what direction

should he row in order to get to his destination in the shortest

possible time ?

In the first place, it is clear that the straight line AEB is

not the best path. For, if he rows toward a point P slightly

farther up the beach, the amount by which he lengthens the

leg AP of his path is very nearly equal to the amount by which
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lie shortens the leg PB.^ Consequently the time is short-

ened.

On the other hand, P obviously ought not to be taken so

far up the beach as D.

The minimum occurs,

therefore, for some in-

termediate point.

Let the angles $, <fi

be taken as indicated

in the figure. Then,

,/iB
yy^y^ /y /x /y /y /y /

2

X 0/
c eX /

y^ ^-''^ P D
1 ^X^--^""^^

A
Fig. 44

time from ^ to P

:

since t = -,
V

AP
5 5 cos 6

'

2
time from P to P =— =

3 3 cos (9

Hence the total time, %i, which is to be made a minimum is

(1)
5cos^

+
3cos ^

Moreover, Q and <^ are connected with each other by a rela-

tion which is readily obtained by expressing the distance CD
in two ways

:

(2) tan^ -f-2tan<^ = 4.

We are now ready to compute du/dd and set it equal to :

daosO _2dcos<f>
~

3 cos2 <^'

\

da
b cos-

sec2 sin
dfl + 2l52!ilH^d^

(3)
du _ sec2 ^ sin ^ 2 sec^ (fism<f)d<f>

de~ 5 3 ~de'

* Let the student not leave this statement till he is absolutely con-

vinced of its truth. An accurate figure on a large scale will bring the

fact out clearly.
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On setting du/dO = 0, we obtain the equation

:

... sec2 sin __ 2setf<^sin<^ d<f>

^^
5 ~ 3 'dS'

Next, differentiate (2)

:

sec- ^d^ + 2 sec2 <^ c?<^ = 0,

(5) sec2^ = — 2sec2<^

or

d^

dO

(6)

Now, divide equation (4) by equation (5) :
*

sin ^ sin <^ sin ^ 5

sin
<f>

3

The result, stated in words, is as follows : sin is to sin
<f>

as

the velocity in water is to the velocity on land.

Let the student work the general problem, in which all the

data are taken in literal form, and verify the general result

just stated.

In order actually to determine 0, equations (2) and (6) must

be solved as simultaneous :

/^x f tan ^ + 2 tan <^ = 4,

I 3 sin ^ = 5 sin <^.

This is done best by the method of Trial and Error, as it is

called in Physics ; Successive Approximations being the name
usually given to it in Mathematics. It is a most important

method in both sciences, and the student should let no oppor-

tunity go by to use the method whenever, as here, he meets a

case which calls for it. Of. Chap. YII, § 5.

The Corresponding Problem in Optics. We have stated and

solved a problem which is not lacking in interest, but which

appears to have no scientific importance. This very problem,

however, occurs in Optics. The velocity of light is different in

* i.e. divide the left-hand side of (4) by the left-hand side of (5) for a

new left-hand side ; and do the same thing for the right-hand sides.
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different media, such as air and water. Suppose two media to

be in contact with each other, the common boundary being a

plane. Let ^ be a luminous point, from which rays emanate

in all directions. When the rays strike the bounding surface,

they are all refracted and enter the second medium in case the

velocity of light in that medium is less than in the first. One

of the refracted rays will pass through a given point B. And
now the law of light is that the time required for the light to

pass from ^4 to S is less for this path than for any other

possible path.

If, then, the velocity of light in the first medium is w * and

in the second medium, v, we have

:

sin u

sm ^ V

where n is the index of refraction for the passage from the first

medium into the second.

EXERCISES

1. A wall 27 ft. high is 64 ft. from a house. Find the length

of the shortest ladder that will reach the house if one end

rests on the ground outside the wall.

Take the angle which the ladder makes with the horizontal

as the independent variable.

2. The equal sides of an isosceles triangles are each 8 in.

long, the base being variable. Show that the triangle of

maximum area is the one which has a right angle.

Take one of the base angles as the independent variable, <^.

3. A gutter is to be made out of a long strip of copper

9 in. wide by bending the strip along two lines parallel to the

edges and distant respectively 3 in. from an edge. Thus the

cross-section will be a broken line, made up of three straight

lines, each 3 in. long. How wide should the gutter be at the

* The letter u used here has nothing to do with the u used above in

solving the problem.
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top, in order that its carrying capacity may be as great as

possible ? Ans. 6 in.

4. Johnny is to have a piece of pie, the perimeter of which

is to be 12 in. If Johnny may choose the plate on which the

pie is to be baked, what size plate would he naturally select ?

5. A can-buoy in the form of a double cone is to be made
from two equal circular iron plates by cutting out a sector

from each plate and bending up the plate. If the radius of

each plate is a, find the radius of the base of the cone when
the buoy is as large as possible. Ans. aVf

.

6. From a circular piece of filter paper a sector is to be cut

and then bent into the forru of a cone of revolution. Show
that the largest cone will be obtained if the angle of the sector

is .8165 of four right angles.

7. Two solid spheres, whose diameters are 8 in. and 18 in.,

have their centres 35 in. apart. At what point in their line

of centres and between the spheres should a light be placed in

order to illuminate the largest amount of spherical surface ?

Ans. 8 in. from the centre of the smaller sphere.

8. Find the most economical proportions for a conical tent.

9. A block of stone is to be drawn along the floor by a rope.

Find the angle which the rope should make with the horizontal

in order that the tension may be as small as possible.

Ans. The angle of friction.

10. A block of stone is to be drawn up an inclined plane by

a rope. Find the angle which the rope should make with the

plane, in order that the tension in the rope be as small as

possible.

11. A statue ten feet high stands on a pedestal that is 50 ft.

high. How far ought a man whose eyes are 5 ft. above the

ground to stand from the pedestal in order that the statue may
subtend the greatest possible angle ?

12. A steel girder 25 ft. long is moved on rollers along a

passageway 12.8 ft. wide, and into a corridor at right angles
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to the passageway. Neglecting the horizontal width of the

girder, find how wide the corridor must be in order that the

girder may go round the corner. Ans. 5,4 ft.

13. A gutter whose cross-section is an arc of a circle is to be

made by bending into shape a strip of copper. If the width

of the strip is a, find the radius of the cross-section when the

carrying capacity of the gutter is a maximum. Ans. aj-K.

14. A long strip of paper 8 in. wide is cut off square at one

end. A corner of this end is folded over on to the opposite

side, thus forming a triangle. Find the area of the smallest

triangle that can thus be formed.

15. In the preceding question, when will the length of the

crease be a minimum ?

1.6. The captain of a man-of-war saw, one dark night, a

privateersman crossing his path at right angles and at a

distance ahead of c miles. The privateersman was making

a miles an hour, while the man-of-war could make only h miles

in the same time. The captain's only hope was to cross the

track of the privateersman at as short a distance as possible

under his stern, and to disable him by one or two well-directed

shots ; so the ship's lights were put out and her course altered

in accordance with this plan. Show that the man-of-war

crossed the privateersman's track - Va- — IP- miles astern of

the latter.

If a = 6, this result is absurd. Explain.

17. The illumination of a small plane surface by a luminous

point is proportional to the cosine of the angle between the

rays of light and the normal to the surface, and inversely pro-

portional to the square of the distance of the luminous point

from the surface. At what height on the wall should an arc

light be placed in order to light most brightly a portion of

the floor a ft. distant from the wall ?

Ans. About -J-^ a ft. above the floor.
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18. A town A situated on a straight river, and another town

B, a miles farther down the river and b miles back from the

river, are to be supplied with water from the river pumped
by a single station. The main from the waterworks to A
will cost $ m per mile and the main to B will cost $ 71 per mile.

Where on the river-bank ought the pumps to be placed?

19. A telegraph pole 25 ft. high is to be braced by a stay

20 ft. long, one end of the stay being fastened to the pole and

the other end to a short stake driven into the ground. How
far from the pole should the stake be located, in order that the

stay be most effective ?

20. Into a full conical wine-glass whose depth is a and

generating angle a there is carefully dropped a spherical ball

of such a size as to cause the greatest overflow. Show that the

radius of the ball is
a sm a

sin a -i- cos 2 a

21. A foot-ball field 2 a ft. long and 2 6 ft. broad is to be

surrounded by a running track consisting of two straight sides

(parallel to the length of the field) joined by semicircular ends.

The track is to be 4 c ft. long. Show how it should be made
in order that the shortest distance between the track and the

foot-ball field may be as great as possible.

22.* The number of ems (or the number of sq. cms. of text)

on this page and the breadths of the margins being given,

what ought the length and breadth of the page to be that the

amount of paper used may be as small as possible ?

23. Assuming that the values of diamonds are proportional,

other things being equal, to the squares of their weights, and

that a certain diamond which weighs one carat is worth $ m,

show that it is safe to pay at least $ 8m for two diamonds

which together weigh 4 carats, if they are of the same quality

as the one mentioned.

* Exs, 22-25 do not involve Trigonometry.
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24, When a voltaic battery of given electromotive force

(E volts) and given internal resistance (r ohms) is used to

send a steady current through an external circuit of M ohms

resistance, an amount of work, W, equivalent to

^'^
X 10^ ergs

is done each second in the outside circuit. Show that, if dif-

ferent values be given to M, W will be a maximum when

25. An ice cream cone is to hold one-eighth of a pint. The

slant height is I, and half the angle at the vertex is x. Find

the value of x that will make the cost of manufacture of the

cone a minimum. {^Ans. x = 35°.27.)

8. Tangents in Polar Coordinates. Let

be the equation of a curve in polar coordinates. We wish to

find the direction of its tangent. The direction will be known

if we can determine the angle \p between the radius vector pro-

duced and the tangent. Let P, with the coordinates (?'o, ^o)? ^6

an arbitrary point

T of the curve and

P':(ro+ Ar, ^o+ A(9)

a neighboring point.

Draw the chord

PP^ and denote

the Z OP'P by ,/r'.

Then obviously

p'=p
;

To determine if/Q,

drop a perpendic-

ular PM from P on

the radius vector OP^ and draw an arc PJSf of a circle with

as centre. The right triangle MP'P is a triangle of refer-



TRIGONOMETRIC FUNCTIONS 129

ence for the angle ip' and

^ MP
Hence

P'M
(1) cot j/tq = Km cot xp' = lim

i"=p p-=p MP

In the latter ratio we can replace P'M and MP by more

convenient infinitesimals ; cf. Chap. IV, § 2. We observe that

MP= ?o sin A^ ; hence lim = lim = 1

;

i.e. MP and ?-o^^ are equivalent infinitesimals.

Furthermore, P'Jf and P^^= A?' are also equivalent infini-

tesimals. For ^,^^ ^,^^ ,^-,^P'M=P'N-[- NM
and NM =rQ —

?*o
cos A^.

Hence

1 — cos A^
NM '^ A^
Ar Ar

AS

Now, by § 3,
J
.^ 1 - cos A(9 ^ ^

On the other hand, t Ar r\

and this quantity is not, in general, 0. Hence

lim^=0.
A0^ Ar

Returning to equation (1) we can now write the last limit in

the form

:

t^/ ti^ a ^
T P'M T Ar 1 ,^lim = lim = — DqV

;

p=p MP aq^TqAO Tq

or, dropping subscripts,

(2) coti{/ = -Dgr,
r
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In terms of differentials, this result can be written in either

of the two forms :

(3) cotil/=
clr

tanj// = rdO

rdO^ ' dr

Example. Consider the parabola in polar form :

m
1 — cos <^

To determine \p. Here,

^^^ msmc}>d<t>

Hence
(1 - cos <^)2

cot^^ msin<^d(^ 1 - cos <^

(1 — cos
<f>y~ md(f)

_ sin^

1 — cos <^

In particular, at the extremity

of the latus rectum, we have :

•^=1+^,

and thus we obtain anew the result that the tangent there

makes an angle of 4o° with the axis of the parabola.

Again, at the vertex.

cotU^,=0,

and the tangent there is verified as perpendicular to the axis.

From the above equation,

,
,

sin <f>cotj^ = ^—

,

1 — cos <^

a simple relation between ij/ and <^ can be deduced. Since

sm<f>
2sin^cos^

T = ;
— = cot^.

2sin2
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it follows that
cotV, = -cot*.

But, for any angle, x,

cot (tt — X)= — cot X.

Setting x =
\l/

in the above equation, we have

:

cot (jr — ij/)= cot f

Hence *
, <t>

or, the supplement of if/ is equal to ^ . Thus we have a new

proof of the familiar property of the parabola, that the tangent

at any point P of the curve bisects the angle between the focal

radius, OP, and a parallel to the axis, drawn through P.

EXERCISES

1. Plot the spiral, r = 0,

and show that the angle at which it crosses the prime direction

when0 = 27r is 80° 57'.

2. Plot the spiral,
, __ 1

Show that it has an asymptote parallel to the prime vector.

Suggestion. Consider the distance of a point P of the curve

from the prime direction, and find the limit of this distance

when approaches 0.

Determine the angle at which the radius vector correspond-

ing to ^ = 7r/2 meets this curve.

3. Plot the cardioid,

r = a (1 — cos <^),

* The trigonometric equation admits a second solution, namely,

(it —
\f/) + IT = 0/2. If, however, we agree to take and \p so that

< < 2 TT and < i/' < tt, this second solution is ruled out.
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and show that , , sin
<f>cot if/

= — •

1 — cos <^

At what angle is the curve cut by a line through the cusp

perpendicular to the axis ?

4. Prove that, for the cardioid,

^ 2

5. Show that the tangent to the cardioid is parallel to the

axis of the curve when
<f)
= ^tt.

6. At what points of the cardioid is the tangent perpen-

dicular to the axis of the curve ?

7. Determine the rectangle which circumscribes the cardioid

and has two of its sides parallel to the axis of the curve.

8. Show that, for the lemuiscate,

9-2 = a2 cos 2 0,

the angle ij/ is given by the equation

:

cot »^ = — tan 2^.

Hence, show that
, tt

, o /i
'

9. At what points of the lemniscate is the tangent parallel

to the axis * of the curve ?

Ans. At the point for which 6 = 7r/6, and the points which

correspond to it by symmetry.

10. The points of the curve

at which the tangent is parallel to the prime vector, are evi-

dently those for which
-^

y = r siii<f>,

* The axis of any curve is a line of symmetry. The lemniscate has

two such lines. The axis referred to in the text is that one of these lines

which passes through the vertices of the curve.
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considered as a function of <^ through the mediation of the

equation of the curve, has a maximum, a minimum, or a certain

point of inflection. For these points, then,

^ = r cos <f) -f sin d>— = 0.

Show that this condition is equivalent to the one used above

in the special cases considered, namely

:

if/+ cfi=:7r.

11. Plot the curve, r = a cos 20,

taking a= 5 cm. Show that for this curve

cotj/A = -2tan2^.

12. At what points of the curve of question 11 is the tan-

gent parallel to the axis ?

Ans. For one of the points, tan =
V5

13. Plot the curve, r = a cos 30,

taking a = 5 cm. Show that

coti/^ = — 3 tan3^.

14. At what points of the curve of question 13 is the tan-

gent parallel to the axis of the lobe ?

Ans. For one of these points, tan 0=\^1 ~\-
2_

15. The equation __ m
1 -f- sin <fi

represents a parabola referred to its focus as pole. Give a

direct proof that the tangent to this curve at any point bisects

the angle formed by the focal radius drawn to this point and

a parallel to the axis through the point.

16. Show that the tangent to the hyperbola

r = ?
1 — V3 cos <^
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at the extremity of tlie latus rectum makes an angle of 60°

with the transverse axis.

17. Prove that the tangent to the ellipse

r =^_t
V3 — cos cf>

at the extremity of the latus rectum makes an angle of 30°

with the major axis.

9. Differential of Arc. Let

(1) 2/=/W
be the equation of a given curve. Let P, with the coordinates

(x, 2/), be a variable point, and A a fixed point of the curve.

Denote the length of the arc AP by s. Then s is a function

of X ; for, when x is given, we know P and thus s.

It is possible to determine the derivative of s, D^s, as fol-

lows. By the Pythagorean Theorem we have (Chap. IV, Fig. 33),

PF^ = Ax^ + ^2/^.

Let Ax approach as its limit. Then

lim
f
^Y = 1 + lim ("MY = 1 + (D^yy.

Since by § 3 the chord PP^ and the arc PP'= As are

equivalent infinitesimals, it follows from the Fundamental

Theorem of Chap. IV, § 2 that, in the above equation, PP'
can be replaced by As. Hence

Ax^\ Ax J Ax^\AxJ

and consequently

(2) {D,sy=l+(D.yy.
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On replacing the derivatives in (2) by their values in terms

of differentials, we have

or \dxj \dxj

(3) ds2 = da;2 4. dy'^.

This formula is easily interpreted geometrically by means

of the triangle PMQ, Fig. 33. Since

PM= dx and MQ = dy,

it follows from the Pythagorean Theorem that

(4) PQ-= ds.

It is obvious geometrically that ds and As differ from each

other by an infinitesimal of higher order; i.e. that they are

equivalent infinitesimals.*

Formulas for sin t, cos t. From the triangle PMQ we can

write down two further formulas

:

/ex • dy dx
(5) sin T = -^

,

cos T =—
ds ds

These formulas presuppose a suitable choice of r. As s in-

creases, the point P describes the curve in a definite sense.

Let this be chosen as the positive sense of the tangent line at

P. Then t shall be the angle between the positive axis of x

and this line. If t were taken as the angle which the op-

positely directed tangent makes with the positive axis of x,

the — sign must be written before each right-hand side in (5).

The formulas (5) suggest that x and y can be taken as func-

tions of s :

x=<t>(s), y = ^(s).

* In case the coordinates x and y are expressed as functions of a third

variable t, dx will not in general be equal to Aa;, but will differ from it by
an infinitesimal of higher order. The triangle PMQ will then be replaced

by a similar triangle PMi Qi, in which Mi lies on the line PM, its distance

from M being an infinitesimal of higher order.
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This is, of course, always possible, since, when s is given, P,

and hence also x and y, are determined.

Since

(6) ds = ± ^dx' 4- dy
,

we have from (5)

/r7\ •
,

dij
,

dx
(7) sinT = ±

—

' COST—

^

no matter what choices of s and t are made.* Furthermore,

dy

(8) sinT:= + — ^^ cosT = ±

Which sign is to be used in (8) depends on which of the two

possible determinations has been chosen for t. Thus t in a

given case might be 30° or 30° + 180° = 210°. If the first

choice were made, t = 30°, then sin r, cos t, and dy/dx = tan t

would all be positive quantities, and hence the upper signs

must be taken. But if the other choice, t = 210°, is made, then

sin T and cos t are negative, and the lower signs hold.

Example. Consider the parabola

y = x\

Let P be a point of the curve which lies in the first quadrant.

Since

tanT = ^-^ = 2a;
dx

is here positive, t may be taken as an angle of the first quad-

rant. In that case, formulas (8) give

2x 1Sm T = :z=zz=z

,

COS T = —^^::z= •

Vl + 4ic2 Vl + 4x2

• The signs in (6) and (7) are not necessarily the same ; also in (7) and (8).
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If P is a point of the curve which lies in the second quad-

rant, tan T is negative, and r is an angle of the second or fourth

quadrant. If we choose to take t as an angle of the second

quadrant, formulas (8) become

2x 1sm T = , cos r =

We may, however, equally well take t as an angle of the fourth

quadrant. Then

"Ix 1
sinT = , cos T =

Vl + 4a;2 Vl + 4a;-

In each case, one of the numbers, sin r and cos r, is positive,

the other, negative.

Polar Coordinates. Similar considerations in the case of

the curve ^,^,

lead to the following formulas ; cf . Fig. 45 : •

Hence lim f^Y= lim
f^V lim f^Y.

Now, the chord PP' and the arc PP' — As are equivalent

infinitesimals. Moreover, PM and Ar are equivalent ; and

MP and roA^ are equivalent. Hence

{D,sy={D,ry + r,\

Dropping the subscript and writing the derivatives in terms

of differentials we have, then :

(9) . f^Y=r^:Y+'-'\de) \do)

(10) ds^==dr^-\-r^de^.

or
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Furthermore,

(11) sm ib =—

,

cos \I/ = —

,

ds ds

the tangent PT being drawn in the direction of the increasing

s, and if/ being taken as the angle from the radius vector pro-

duced to the positive tangent.

10. Rates and Velocities. The principles of velocities and

rates were treated in Chapter III, § 8. We are now in a

position to deal with a wider range of problems.

We note the following formulas. Let a point P describe

Let s denote the length of the arc, measured from an arbitrary-

point in an arbitrary sense, and let r be the angle from the

positive direction of the axis of x to the tangent at P drawn

in the direction of the increasing arc. Then the components

of the velocity {v — ds/dt) ofP along the axes are, respectively :

/^. dx dy
(1) — = v cos T, -^ = y sm T.
^ ^

dt dt

Let a point P describe the curve
,

(2) T = F(e).

Let s denote the length of the arc, measured from an arbitrary

point in an arbitrary sense ; and let if/ be the angle from the

radius vector, produced beyond P, to the tangent at P drawn

in the direction of the increasing arc. Then the components

of the velocity (v — ds/dt) of P along the radius vector pro-

duced and perpendicular to the same (the sense of the increas-

ing being taken as positive for the latter) are respectively

:

/o\ dr
,

dO • ,

(o) — = v cos ip, r— =v sm \L.

^ ^
dt

^
dt

^

Example 1. A railroad train is running at the rate of 30

miles an hour along a curve in the form of a parabola

:

2^2 = 1000 a;,
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the axis of the parabola being east and west, and the foot being

taken as the unit of length. The sun is just rising in the east.

Find how fast the shadow of the locomotive is moving along

the wall of the station, which is north and south, when the

distance of the shadow from the axis of the parabola is 300 ft.

The first thing to do is to draw a suitable figure, introduce

suitable variables, and set down all the data not already put

into evidence by the figure. Thus in the

present case we have, in addition to the ac-

companying figure, the further data : (a) the

velocity of the train ; this must be expressed

in feet per second, since we wish to retain

the foot as the unit of length for the equa-

tion of the curve. Now, 30 miles an hour

is equivalent" to 44 feet a second. On the other hand, another

expression for the velocity is ds/dt. Hence we have, on

equating these two values,

— =44.
dt

(b) We must set down explicitly at this point the equation

of the curve,
'

2/2= 1000 a;.

To sum up, then, we first draw the figure and then write

down the supplementary data :

Given a) — = 44,^
dt

and b) y'^ = 1000x.

The second thing to do is to make clear what the problem

is. In the present case it can be epitomized as follows :

Tojind (^)

We are now ready to consider what methods are at our dis-

posal for solving the problem. We observe that ds occurs in
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the data. Obviously, then, we must make use of the one gen-

eral theorem we know which gives an expression for ds when
the equation of the curve comes to us in Cartesian coordinates,

— namely, the theorem

:

ds'^ = dx^ H- dy\

Since dx occurs neither in the data nor in the conclusion,

we wish to eliminate it. This can be done by means of the

equation of the path b). Differentiating b) we have

:

2 ydy = 1000 dx.

Hence dx = 4^.
500

Consequently ds- = / -^ + dy"^

500

and ds = yj-^+ldy.

The next step is obvious ; divide through by dt

:

\ 5002 ^ fjit

ds

dt >/ 5002 fii

In this last equation, replace ds/dt by its known value from

a), and we now have an equation for determining dy/dt

:

dy 44

\ 5002
+ 1

Finally, bring into action the particular value of y with

which alone the proposed equation is concerned, namely,

2/ = 300

:

^dy\ _ 44 ^ 44 ^3^ ^3^
<^ijy-m V.62 + 1 Vl.36

or, the rate at which the shadow is moving along the wall of

the station is 37.73 ft. a second.
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Angular Velocity. By the angular velocity, w, with which a

line is turning in a given plane is meant the rate at which the

angle, <^, made by the rotating line with a fixed line, is in-

creasing :

aq>

dt

Example 2. A point is describing the cardioid

r=a{l — cos 0)

at the rate of c ft. a second. Find the rate at which the

radius vector drawn to the point is turning when 6 = 7r/2.

The formulation of this problem is as follows :

Given «)
dt

and ^) r = (I (1 — cos 0).*

To find

Since, from § 9 (10)

and from h),
ds^^dr^ + r^dO',

it follows that
dr—a sin 6 dd,

ds2 = a2 sin2 ae^ ^ a\l - cos Of d^

= a2d^2[sin2|9 + 1 - 2 cos ^ + cos2 ^]

=2 amer- . (1 - cos (9)= 4 a^ sin2 - de\

Hence, s being measured from the cusp,

ds = 2asin-d^,
2 '

, ds rt ' BdB
and — = 2 a sin

dt 2dt

* The student should make a free-hand drawing of the curve.
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Consequently, by the aid of a)

dO _ c

di~
'^

2 a sin -

2

and thus, finally /clO

\dtJe=- aV2

EXERCISES

1. A point describes a circle of radius 200 ft. at the rate

of 20 ft. a second. How fast is its projection on a fixed

diameter travelling when the distance of the point from the

diameter is 100 ft. ? Ans. 10 ft. a second.

2. A flywheel 15 ft. in diameter is making 3 revolutions a

second. The sun casts horizontal rays which lie in or are

parallel to the plane of the flywheel. A small protuberance

on the rim of the wheel throws a shadow on a vertical wall.

How fast is the shadow moving when it is 4 ft. above the

level of the axle ?

3. A revolving light sends out a bundle of rays that are

approximately parallel, its distance from the shore, which is

a straight beach, being half a mile, and it makes one revolu-

tion in a minute. Find how fast the light is travelling along

the beach when at the distance of a quarter of a mile from the

nearest point of the beach.

4. A point moves along the curve r = 1/6 at the rate of

6 ft. a second. How fast is the radius vector turning when

^ = 27r?

5. In the example of the ladder, Chap. Ill, § 8, Ex. 5, find

how fast the ladder is rotating at the instant in question.

6. At what rate is the direction of the second ship from the

first changing at the instant in question, in Ex. 2 of Chap. Ill,

§8?
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Fig. 48

7. How fast is the direction of the man from the lamp-

post changing in Ex. 12 of Chap. Ill, § 8 ?

8. The sun is just setting as a baseball is thrown vertically

upward so that its shadow mounts to the highest point of the

dome of an observator}^ The dome is 50 ft. in diameter.

Find how fast the shadow of the ball is moving along the

dome one second after it begins to fall, and also how fast it is

moving just after it begins to fall.

9. Let AB, Fig. 48, represent the rod that connects the

piston of a stationary engine with the fly-wheel. If u denotes

the velocity of A in its rectilinear path,

and V that of B in its circular path, / a/V^^^/
show that

^i =(sin -|- cos tan cf>)v.

10. Find the velocity of the piston of

a locomotive when the speed of the axle of the drivers is given.

11. A drawbridge 30 ft.

long is being slowly raised

by chains passing overa wind-

lass and being drawn in at

the rate of 8 ft. a minute. A
distant electric light sends

out horizontal rays and the

bridge thus casts a shadow

on a vertical wall, consisting of the other half of the bridge,

which has been already raised. Find how fast the shadow

is creeping up the wall when half the chain has been

drawn in.

12. A man walks across the floor of a semicircular rotunda

100 ft. in diameter, his speed being 4 ft. a second, and his

path the radius perpendicular to the diameter joining the

extremities of the semicircle. There is a light at one of the

latter points. Find how fast the man's shadow is moving along

the wall of the rotunda when he is halfway across.

Fig. 49
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13. A man in a train that is running at full speed looks out

of the window in a direction perpendicular to the track. If

he fixes his attention successively for short intervals of time

on objects at different distances from the train, show that the

rate at which he has to turn his eyes to follow a given object

is inversely proportional to its distance from him.

14. Water is flowing out of a vessel of the form of an in-

verted cone, whose semi-vertical angle is 30°, at the rate of a

quart in 2 minutes, the opening being at the vertex. How
fast is the level of the water falling when there are 4 qt. of

water still in ?

15. Suppose that the locomotive of the first of the Examples

worked in the text is approaching the station at night at the

rate of 20 miles an hour, its headlight sending out a bundle

of parallel rays. How fast will the spot of light be moving

along the wall of the station when the distance of the head-

light from the vertex A of the parabola, measured in a straight

line, is 500 ft. ?

Assume that the wall is perpendicular to the axis of the

parabola and distant 75 ft. from the vertex.

16. In the preceding question, how fast will the bundle of

rays be rotating ?

17. A point describes a circle with constant velocity. Show

that the velocity with which its projection moves along a given

diameter is proportional to the distance of the point from this

diameter.

18. A point P describes the arc of the ellipse

9a;2 + 42/2 = 36,

which lies in the first quadrant, at the rate of 12 ft. a second.

The tangent at P cuts off a right triangle from the first quad-

rant. How fast is the area of this triangle changing when P
passes through the extremity of the latus rectum ? Is the area

increasing or decreasing ?
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19. A point P describes the cardioid

r = 5 (1 - cos 0)

at the rate of 12 cm. a second. The tangent at P cuts the

axis of the curve in Q. How fast is Q moving when 6 — 7r/2 ?

20. The sun is just setting in the west as a horse is running

around an elliptical track at the rate of m miles an hour. The

axis of the ellipse lies in the meridian. Find the rate at

which the horse's shadow moves on a fence beyond the track

and parallel to the axis.



CHAPTER VI

LOGARITHMS AND EXPONENTIALS

1. Logarithms. The logarithms with which the student is

familiar are those which are ordinarily used for computation.

The base is 10, and the definition of log^o x is as follows

:

y — logio X if 10^ = X.

These are called denary, or Briggs^s, or common logarithms.

More generally, any positive number, a, except unity, can

be taken as the base, the definition of log^ x then being

:

(1) y = log^x if a^=x.

y = log X

Fig. 50

The accompanying figure represents in character the graph

of the function log^ x for any a > 1. It is drawn to scale for

146
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a = 2.71828. The reason for this choice of a will appear

shortly.

From the definition it follows at once that

(2) log, 1 = 0, log,a = l.

Only positive numbers have logarithms. For, a^ is always

positive. Hence, if x be given a negative value (or the value

0), the second equation under (1) above cannot be satisfied by

any value of y.

The two leading properties of logarithms are expressed by

the equations :
*

(I) logP+logQ = log(PQ)

(II) logP'' = n\ogP.

Here, P and Q are any two positive numbers whatever, and n

is any number, positive, negative, or zero. The base, a, is

arbitrary. Thus
log 10 = log 2 4- log 5

and log VT = log 7^ = i log 7.

From equation (I) it follows that

(3) logl = -logQ

and

(4) log 1= log P- log Q.

For, if we set P=l/Q in (I), we have

But, by (2),

log 1 = log - + log Q.

log 1 = 0.

* The student should recall the proofs of these theorems, which he

learned in the earher study of logarithms, and make sure that he can

reproduce them. Proofs of the theorems are given in the author's

Differential and Integral Calculus^ p. 76.
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Hence
i 1 i .^ j^og- = -logQ, q.e.d.

Again, write (1) in the form

log (FQ') = log P -{. log Q',

and now set Q' = 1/Q. Then

log^=logP+logi.

But logi = -logQ.

Hence
p

log - = log P - log Q, q, e. d.

For example,

log (tt + 6) - log a = log (l + _Y

as we see by setting, in equation (4),

P=a-\-h, Q = a.

As a further example of the application of equation (II) we
may cite the following :

For, if P=a + 6 and n=-, the left-hand side of this equa-

tion has the value 7i log P.

A Further Property of Logarithms. When it is desired to

express a logarithm given to a certain base, a, in terms of

logarithms taken to a second base, h, the following relation is

needed

:

(III) log,x =^.
log, a

The proof of (III) is as follows. Let

y = log^ X, ay = x.
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Take the logarithm of each side of this equation to the base h :

(5) logj, a^ = log, X.

But the left-hand side can be transformed by (II), if in (II)

we take h as the base, thus having

log, P^ = n log, P.

Here, let

P=a, ^ = y-

Then log^, a«' = ?/ log^, a,

and (5) now becomes :

y log, a = log, X.

Hence

2, = ^l6i:, or log„a: = -^^^, q.e.d.
log, a log, a

Example. Let 6 == 10 and let a = 2.718. To find log^ 2.

From (III),

log^ 2 = J2Sm^ ^ .3010 ^ g^32^
^"

logio 2.718 .4343

Two Identities. Just as, for example,

Va^ = a; and (va;)^ = ic,

no matter what value x may have, so we can state two identi-

ties for logarithms and exponentials. In the second equation

(1), replace y by its value from the first equation. Thus the

equation

(6) a^°sa' = x

is seen to hold for all positive values of x.

Secondly, replace x in the first equation (1) by its value

from the second equation :

y = log„ a\

We can equally well write x instead of y, understanding

now by x any number whatever, and we have, then, the
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identity

(7) log„ a' = X.

This equation holds for all values of x, positive, negative, or

zero.

EXERCISES
1. Show that , ^„_ ^.„^

logio -8950 = — .0482.

2. Find logio .09420. Ans. -1.0259.

3. Compute 2.718-5642. Ans. 1.758.

4. Compute 2.718--87i°. Ans, 0.4186.

6. Compute tt'". 6. Compute V2^^.

7. Show that

log tan 6 = log sin ^ — log cos ^, < ^ < -•

8. Show that

log sin 6 + log cos = log ^^ ^, < 6 <l
9. Show that

log ^-^=1^^ = 2 log sin
^,

< ^ <2,r.

10. If {x, y) are the Cartesian coordinates of a point distinct

from the origin, and (r, 6) the polar coordinates of the same

point, show that " .
i i / o . !\log r = ^ log {x"' + y^y

11. Prove that

log (a2 - 62) = log (a + 6) + log (a - 6),

provided a-\-h and a — 6 are both positive quantities.

12. Simplify the expression

log(l + a;«)-log(l+x-).

13. Show that

V(e^ — e-^)' + 4 = e^ + e-',

where e has the value 2.7182.
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14. Simplify the expression

15. Show that

2. Differentiation of Logarithms. In order to differentiate

the function
,

y = log„ X,

it is necessary to go back to the definition of a derivative,

Chap. II, § 1, and carry through the process step by step.

Grive to X an arbitrary positive value, Xq, and compute the

corresponding value, 2/0, of the function

:

(1) 2/0 = log. a^o-

Next, give to x an increment A.-y (subject merely to the restric-

tion that Xq + Ax is positive and Ax ^ 0) and compute the new
value, 2/0+ ^2/j of the function

:

(2) 2/0 + ^2/ = loga (a^'o -h ^x)'

From (1) and (2) it follows that

^y ^ logg (^0 4- Ax) — log, Xq

Ax Ax

It is at this point that the specific properties of the loga-

rithmic function come into play for the purpose of transform-

ing the last expression. By § 1, (4),

loga (a^o + Ax) - log„ xo = log„ (1 +^\
and hence

(3) ^=iiogyi+
Ax Ax \^

We next replace the variable Ax by a new variable t as

follows

:
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t=— or ^x = x4.
Xq

kes on the form

Ax Xot x„ "J
log. (1 +

From (II), § 1, the bracket is seen to have the value

log„(l + 0^
and hence

As Aaj approaches as its limit, t also approaches 0, and so

(5) lim^ = ilimlog.(H-0^.

I

Now, the variable (1 + ^) ' approaches a limit when I ap-

proaches 0, and this limit is the number which is represented

in mathematics by the letter e ; cf. § 3. Its value to five

places of decimals is

e = 2.71828 ...
;

cf. § 3. Moreover, log x is a continuous function of x, as is

shown in a detailed study of this function.* Hence

lim log„ (1 -f t) ^= log,
I
lim (1 + ^ } = loga e-

On substituting this value in the right-hand side of (5) we
have:

Xq

* Such a treatment is too • advanced to be pursued with profit at this

stage. Cf. the author's Differential and Integral Calculus, Appendix,

p. 417.
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or, on dropping the subscript

:

(6) DJog^x = ^-^^^>

Thus if the usual base, a = 10, be taken, the formula

becomes

:

.r^. J. 1
.4343...

X

Discussion of the Bes^ilt. We have met a similar situation

before, in the differentiation of the sine. There, if angles be

measured in degrees, the fundamental formula reads :

D^ sin X = -^ cos x.
180

In order to get rid of this inconvenient multiplier, we
changed the unit of angle from the degree to the radian, and

then the formula became :

D^ sin x = cos x.

In the present case, it is possible to do a similar thing. The
base, a, is wholly in our control, to choose as we like. Now,
for any base, the logarithm of the base is unity, § 1, (2)

:

log, a = l.

If, then, we choose as our base the number e

:

a = e = 2.71828 ...

the multiplier becomes

(8) log, e = log, e = l.

For this reason, e is taken as the base of the logarithms

used in the Calculus.* These are called natural logarithms.

They are also called hyperbolic, or Naperian logarithms,— the

latter name after Napier, the inventor of logarithms. But

* The notation e for this number is due to Euler, 1728.
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Napier * was the very man who introduced denary logarithms

into mathematics, and so the use of his name in connection

with natural logarithms is misleading.

Since natural logarithms are always meant in the formulas

of the calculus, unless the contrary is explicitly stated, it is

customary to drop the index e from the notation log^ x and

to write

(9) y = log X, if e^ = x.

The identities (6) and (7) of § 1 now take on the form :

(10) e'°e'=:x,

(11) log e'^ = X.

The formula of differentiation becomes

:

(12) D, log X _1
X

In differential form it reads :

(13) flog.
dx

1

(14) d log X = dx

X

Example. Differentiate the function

71 = log sin X.

Let y = sin x.

Then u = log y,

du = d log 2/ = -^

,

dy = cos xdx^
y

and
, cos xdx . ,
du = = cot xaa;.

sin X

* Napier was a Scotchman, and his discovery was published in 1614.
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Hence d log sin x = cot xdx,

or — log sin x = cot x.
dx ^

EXERCISES

Differentiate the following functions.

1. u — log cos x. — = — tan x.
dx

— = cot X -f- tan X.
dx

du -2

2. u = log tan X.

3. u = log cot X.

4. u = log sec X.

6.
"-^°^l-x-

7.
a — X

8. u = log Va^ + x^.

9. u = log (1 — cos x).

10. u = log (1 + cos x).

dx sin 2 a;

5. w = log CSC X.

du 1 1

dx X 1 — X

du __ 2a
dx a^ — ic2

du X

dx o? 4- ^-'

du .x— = cot -•
dx 2

, X=:— tan--
dx

1

3. The Limit lim (1 + t) K Since this limit is fundamental

in the differentiation of the logarithm, a detailed discussion

of it is essential to completeness. Let us set

(1) s={l + t)i

and compute the value of s for values of t near 0. Suppose

t = .1. Then
s = (Ll)io,
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and this number is found by the usual processes with loga-

rithms to be 2.59.

Further pairs of corresponding values {t, s) are found in a

similar manner. In particular, the student can verify the

correctness of the following table of values :
^

_0.1 -.01 -.001 . . . +.001 +.01 +0.1

2.87 2.73 2.72 . . . 2.72 2.70 2.59

The foregoing table indicates strongly that, when t ap-

proaches the limit from either side, the variable s is

approaching a limit whose value, to three significant figures, is

2.72. This is in fact the case.f The exact value of the limit

is denoted by the letter e :

(2) lim (l + ty = e = 2.71828 •••.

4. The Compound Interest Law. The limit (2) of § 3 pre-

sents itself in a variety of problems, typical for which is that

of finding how much interest a given sum of money would

bear if the interest were compounded continuously, so that

there is no loss whatever. For example, $ 1000, put at in-

terest at 6%, amounts in a year to $1060, if the interest is

not compounded at all. If it is compounded every six months,

we have ..p,

$ 1000(1 +-^
as the amount at the end of the first six months, and this

must be multiplied by (l4-^— ) to yield the amount at the

end of the second six months, the final amount thus being

+siooofi
-^^

* To compute the middle entries in this table a six-place table of

logarithms is needed.

t For a rigorous proof cf . the author's Differential and Integral Cal-

culus, p. 79.
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It is readily seen that if the interest is compounded n times

in a year, the principal and interest at the end of the year will

amount to / a/-\ «

1000(^1 + :^Y

dollars, and we wish to find the limit of this expression when
n = 00. To do so, write it in the form :

1000
('^ft]

and set t
='— . The bracket thus becomes

n

(1 + ty,

and its limit is e. Hence the desired result is

1000e«^ = 1061.84.*

EXERCISE

If $ 1000 is put at interest at 4 % , compare the amounts of

principal and interest at the end of 10 years, (a) when the

interest is compounded semiannually, and (h) when it is com-

pounded continuously. Ans. A difference of $ 5.88.

5. Differentiation of e"". Before beginning this paragraph

the student will turn to Chap. YIII and study carefully § 1.

Since

(1) y = G'' a-nd X = log y

are equivalent equations, the former function can be differen-

tiated by taking the differential of each side of the latter

equation

:

,

dx = d log 2/ =— •

y

* The actual computation here is expeditiously done by means of

series ; see the chapter on Taylor's Theorem.
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Hence

or

(2)

(3)

The function

CALCULUS

cly _
dx

Fig. 51

(4) y = a'

could be differentiated in a similar manner. It is, however,

simpler to take the logarithm of each side of (4) and then dif-

ferentiate the new equation

:

logy = loga"" = .^loga,

dy

(5)

d log y = -^ = dx log a.

y

da'' = a'\ogadx.

Differentiation of x"". It is now possible to complete the dif-

ferentiation of this function for the case that n is irrational.
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Since by § 2, (10), x = e'''^',

it follows that ^,n ^ ^nlogx^

and hence
da:"=de"'°«^

3^gnio^x^7(,j log a;)

^^niogxndx
X

Thus finally,

-a^n^dx^
X

(6) dx"" = nx"~'^dx,

159

no matter what value n may have, provided merely that n is

a constant.

Differentiation of f[xy^''\ Let it be required, for example,

to differentiate the function

y = of.

Here, both base and exponent are variable. Begin by tak-

ing the logarithm of each side of the equation

:

Hence

or

and so, finally,

or

log y = log x'^ = X log X.

d log y = d(x log x),

^ = {l + logx)dx,
y

dy — y{l -{- log x) dx

d a;^ = af (1 + log x) dx.

The general case, y _ frxy^""^

can be treated in a similar manner.
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6. Graph of the Function x^". For positive values of n the

irvp.scurves

Fig. 52

lie as indicated in the figure. When n = 1, we have the ray

from the origin, which bisects the angle between the positive

axes of X and y.



LOGARITHMS AND EXPONENTIALS 161

When n > 1, the curve is always concave upward ; when
n < 1, it is concave downward.

All the curves start at the origin and pass through the

point (1, 1).

For values of a; > 1, the larger n, the higher the curve lies.

For values ot x < 1, the reverse is the case.

Let X have any fixed value greater than unity : x = x' > 1.

Consider the ordinate ,„

As n increases, x'" increases continuously. This property is

the basis of the property of logarithms included in the word

contimious.

For proofs of the foregoing statements cf. the author's

Differential and Integral Calculus, p. 27 and Appendix, p. 417.

7. The Formulas of Differentiation to Date. The student

will now bring his card of formulas up to date by supple-

menting it so that it will read as follows :

GENERAii Formulas of Differentiation

I. dcu = c du.

II. d {u -\-v)= du-\- dv.

III. d(uv)=udv -\-vdu.

j^ ^fu\ _vdu — udv

\v) v^

Special Formulas of Differentiation

1) dc = 0.

2) dx'^ = nx"^'^ dx.

3) d sin X = cos x dx.

4) d cos x = — sin x dx.

5) d tan x = sec^ x dx.
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6) d cot x = — csc2 X dx.

7) dlogx = -.
X

8) de^ = e^c?a;.

9) da"" = a' log a dx.

To obtain facility in the use of the new results it is desirable

that the student work a good number of simple exercises.

Example 1. To differentiate the function .

u = e'^^

Let y = ax.

Then u = e%

du = de" = e" dy = e"''{adx).

Hence

de'"" = ae""" dx or
dx

de'"" = ae""' c?x or — e"* = ae"

Example 2. If -

1/. = A cos (?i^ + y),
show that *

d^u
, 5 ^

To do this, compute first — . The computation is readily
dt

effected by taking the differential of each side of the given

equation

:

du = Ad cos (7it -\- y)

= A[— sin (7it -h y)d (nt + y)]

= — An sin (nt 4- y) dt,

* Such an equation as the following is called a differential equation,

and any function which, when substituted for it, satisfies the equation is

called a solution.
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— = -^wsin(«^-f y),
dt

dhi
Next, compute —-. Since

dht_dfdii\ \dtj
^

dt^~dt\dt) dt

we take the differential of each side of the equation for

dl— )= — ^'^ f? sill {'id + y)

= — An [cos {7lt -f y)d{nt -\- y)]

= — Aii^ cos {nt 4- y) dt.

Hence, on dividing through by dt, we have

:

— = — An^ cos (nt + y).
dp ^ ^^

If now we multiply the given value of u by n^ and add the

product to the value just obtained for —^, the result is iden-

tically 0, i.e. for all values of t :

d?u
, 9 A A
1- nhi = 0, q. e. a.

dt'

EXERCISES

Differentiate the following functions.

1. u = e-^\ ^ = -2xe--\
dx

2. u = e'^°*. —= e"°=^ cos x.
dx

3. u = (e^ + e--y. ^ = 2(e2--e-2-).
ax
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4. 2t = 10^ — = (2.30259 -OlO^
dx

5. u = x^nO'. ~=xnO-(10H- 2.30259a:).
dx

6. 21 = log (sec x -f- tan x). — = sec x.
dx

7. u = x'^\ogx. ^— =aj(l-f-21ogx).
da;

8. i< = a;^ log (a — a?). 9. it = e"^ log (2a; -j- 3),

10, u = e~"^ cos (nt — y). 11. u = e'^^A cos nt-\-B sin n^).

a; log a; . / , i\ du log a;
12. u = ^ log (x -\- 1). — =—^

a; + l ^^ ^ ^ ax {x-\-iy

du 1
13. %i = log {x + Va;2 — a-).

dx vVc2 _ cfi

(Z?t 1
14. u = log {x + va2 -f a;2).

dx Va2 + a;^

15. u^\og{e^e-'). 16.
,,^sjP^ + cosa;,

e*

17. u = log tan - •

2
= CSC X.

dx

18. .. = logtan(^| + |).
|=see.

19
du 1

da; 1 — sin x

20
V2 4;

22

24

du 1

da; 1 + sin X

21. n = log Vl + sin 6.

X

23. u = log Vl — cos X. u = Ve^".

25. z«=(10i+')'. 26 . ii=Va-^

27.
U-h6y

28 w = Vio^
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29. u = af^'^^ — = af''^^-! (sin x -\- x cos x log x).
dx

30. u = (sin .r)^°'^. — = (sin xy^''-^ (cos2 a.- — sin^ x log sin x).

1

31. ?^ = x^. 32. u = (cos xY'"'''. 33. ?i = (tan .^•)^

34. ?^ = (log.T-)^ 35. ?/ = (! + a)". 36. u = (x^)

37. If ?« = A cos ?ii + B sin ?if, show that

dht
, <, ^u 7l2?/ = 0.

2x

38. If ^^ = Ce"''' cos (VM- — K^i + y), show that

dhi . n du . ^ r.

dt^ dt



CHAPTER VII

APPLICATIONS

1. The Problem of Numerical Computation. It often

happens in practice that we wish to solve a numerical equa-

tion in one unknown quantity, or a pair of simultaneous

equations in two unknowns, to which the standard methods

with which we are familiar do not apply ; for example,

J
2 cot ^ + 2 = cot

<f>,

\ 2 cos -\- cos cfi = 2.

Such equations usually come to us from physical problems,

and the solution is required only to a limited degree of

accuracy, — say, to two, three, or possibly four significant fig-

ures. Any method, therefore, which yields an approximate

solution correct to the prescribed degree of accuracy furnishes

a solution of the problem.

In particular, the problem of the determination of the

error in the result due to errors in the observations comes

under this head.

2. Solution of Equations. Known Graphs.

Example 1. Let it be required to solve the equation

1) cos a; = X.

We can evidently replace this problem by the following

:

To find the abscissa of the point of intersection of the curves

2) y = cos X, y = X'

166
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The first of these curves we have plotted accurately to scale.

The second is the right line through the origin, which bisects

the angle between the positive coordinate axes. It is, there-

fore, sufficient to lay down a ruler on the graph of the former

curve, so that its edge lies along the right line in question,

and observe where this line cuts the curve. The result lies

between
X = .7 and x = .8,

and - may fairly be taken as a) = .75. It is understood, as

usual in approximate values, that the last figure tabulated does

not claim complete accuracy ; but we are entitled to a some-

what better result than would be given by the first figure

alone.

Example 2. To solve the equation

3) a;3 + 2a,'-2 = 0.

Suppose we have plotted the curve

4) y = a^

accurately from a table of cubes. Then the problem can con-

veniently be formulated as follows :

To find the abscissa of the point of intersection of the curves

5) y = x^ and y = 2 —2x.

The details are left to the student.

Example 3. To find the positive root of the equation

6) e-i- + 2.92 a; = 2.14.

Here, we can connect up with the graph of the function e'

by making a simple transformation. Let

7) a:'=-iic; x = -2x'.

The equation then becomes

8) e-'-5.84aj' = 2.14,
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and we seek to determine the abscissa of that point of inter-

section of the curves (for simplicity, we drop the accent)

9) y=:e^ and ?/ = 5.84x + 2.14

which lies to the left of the origin. The second place of

decimals in the coefficients is not to be taken too seriously ; we
make as accurate a drawing as the graph and a well-sharpened

pencil permit. Having thus determined the negative a:' from

the graphs of 9), we find the desired positive x by substituting

this value in equations 7). The execution of the details is

left to the student.

Exa7iiple 4. Solve the equation

e^ = tan x, < .« < ^ •

If one of the curves

?/ = e^ or
ij
= tan x

were plotted on transparent paper, or celluloid, it could be

laid down on the other with the axes coinciding and the inter-

section read off. The same result can be attained by holding

the actual graphs up in front of a bright light.

In cases as simple as this, however, free-hand graphs will

often yield a good first approximation, and further approxima-

tions can be secured by the numerical methods of the later

paragraphs.

EXERCISES*

1. Solve the equation

cos X = 2x.

2. Find the root of the equation

3 sin X = 2x

which lies between and tt.

* In solving these exercises only so great accuracy is expected as can

be attained from well-drawn graphs of the standard curves. It will be

shown in later paragraphs how the solutions can be improved analytically

and carried to any desired degree of accuracy.
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3. Solve: cc-htana^ = l, < a; < -•

4. Solve

:

3 cos a; — 5a; = 6, — -<a;<0.
Li

5. Find the root of the equation

log a;2 + 2 = a;

which lies between anS 1.

6. Solve: sin 2 a; = a;.

7. Find all the roots of the equation

\2%^ 4i4a; + 3 =
8. The same for

^x'' -5x -1 = 0.

9. The same for
x' — ad--1 = 0.

Solve the following equations :

10. cos3 + .47 cos - 1.23 = 0, < ^ < 90°.

11. sni a; = V 1 — x^. 12. a;- -f- cos^ a; = 4.

13. Show that the equation

tan X = X

has an infinite number of roots. These can be written in the

form
X^ = mr + e„,

where e^ is numerically small when n is numerically large.

14. Find the largest value of P for which the equation

cos X + Pa; = 1

admits a solution in the interval < a; < tt.

15. Find the point of the parabola

2y = x''-

which is nearest to the point (2, 0),
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16. Find the radius of the circle whose center is at (0, 2)

and which is tangent to the parabola

2/2 = X.

3. Interpolation. Consider the equation

1) /W=o.

Suppose a root has been located with some degree of accuracy.

More precisely, suppose that

fix;) and /{x^)

are of opposite signs. If the function f(x) is continuous in

the interval x^^ x '^X2 and if its derivative is always posi-

tive (or always negative) in this interval, then the function is

always increasing (or always decreasing) and so must have

just one root between x^ and x^.

The root can be found approximately as follows. Consider

the graph of the function

2) y=f{^)-

Let y^=f{x^), 2/2=/(i^2),

and draw the chord through the points (x^, y{) and (ajg, 2/2).

The point in which this chord cuts the axis of x will obviously

yield a further approximation to the root

sought. Denote this last value by X.

The equation of the chord is^ 3)
^i -V-Vi.

Fig. 53
^2 - ^1 2/2 - ?/l

On setting y = and solving for x, we
have, as the value of X, the following

:

4)
• X^x.-^'^^^^y,,

y-i - vi

or

5) X=^x, ^^^iziJh—f(xX
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We have explained the method in detail and developed, in

equations 4) and 5), the analytic formula for the determina-

tion of the new approximation, X. In practice, however, it is

usually simpler to draw the straight lines of Fig. 53 accurately

on a generous scale and read off from the figure the value of X.

Example. Consider equation 3) of § 2, Ex. 2 :

6) x^ + 2x-2 = 0.

The curve in question is here

7) y = x^ + 2x-2,

and the graphical solution of § 2 shows that the root is about

X = .7 or .8.

Let X = xi — .7 ; then y^ is found to have the value

y,-^- .257.

Next, let x = X2 = .^'f then y^ = .112.

We have, then, to lay a secant through the points

(^1, Vi) = (-^, - -257) and (x^, 2/2) = (-8, .112).

Its equation is given by 3) *
:

X— .7 _ y + .257

.8-.7~.112 + .257'

On setting y = in this equation and solving for x, we get,

X=.7+:^^^^ = .7693.
.369

In order to see about how close this approximation is, com-

pute the corresponding value of y :

2/L=.7693 = -.0063.

We get, then, about two places of decimals, x = .77.

* It is desirable that the student should make this determination

graphically, as indicated above in the text. He should take 10 cm. to

represent the interval of length .1, from Xi = .7 to X2 = .8.
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It is possible to apply the method again, taking now

(a^i, 2/0= (.7693, -.0063)

and {x2, 2/2) as before. We leave this as an exercise to the

student. He should make both the graphical determination

with an enlarged scale and the analytic determination of

formula 4).

The Method ; Not, the Formula. The student may be

tempted to use the formula 4) or 5), rather than to go back

to the method by which it was derived. This would be un-

fortunate, for the formula is not easily remembered, whereas

the method, once appreciated, can never be forgotten. If the

student finds himself in a lumber camp with nothing but the

ordinary tables at hand, he may solve his equation if he has

once laid hold of the method. It is true that the best way is

for him to treat first the literal case and deduce the formula.

But this he may not be able to do if he has relied on the

formula in the book.

EXERCISES

Apply the method to a good number of the problems at the

end of § 2.

4. Newton's Method. Suppose again that it is a question of

solving the equation

1) ./•(^) = o,

and suppose we have already succeeded in finding a fairly

good approximation, x = Xi.

Consider the graph of the function

2) i/==./'W-

Compute yi =f{x^). To improve the approximation, draw the

tangent at the point (x^, y^). Its equation is :
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Evidently, this line will cut the axis of a; at a point very near

the point in which the curve 2) cuts this axis. If, then, we

set y = in 3) and solve for a:, we shall ob- y

tain a second approximation to the root of

1) which we seek. The value of this root

will be

4) X=.Ti- 2/1 Fig. 54

Example 1. Let us apply the method to the Example

studied in § 3. In order, however, to have simpler numbers

to work with, take .Ti = .77 and compute the corresponding

yi ; it is found to be : y\= — .0035.

{x,,y,)= {.71, -.0035).

We must next compute dy/clx from the equation

y = x^-[-2x — 2\

^ = 3x'^ + 2, (^\ = 3.779.
dx \dx)^^,Tj

On substituting these values in 3), we have

:

7/ + .0035 =3.779 (a; -.77).

Now set 2/ = and solve. The result is that given by 4) :

^^ , .0035 r^^f^ax = .i i -\ — .i i 09.
3.779-

We have tabulated four figures in the result because this is-

about the degree of accuracy that seems likely. To test this

point, compute y for the value of x which has been found

:

2/U =.7709=-.0001.

Since the slope of the graph is greater than unity, the error

in X is less than one unit in the fourth place. It is easy to

verify the result by computing y for the next larger four-place

value oi x:
, ,

^^^o
y U.7710 = + -0003.
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Thus we have a complete proof that the root lies between

.7709 and .7710, and we see that it lies about one quarter of

the way from the first to the second value.

Example 2. It is shown that the equation of the curve in

which a chain hangs,— the Catenary,— is

where a is a constant. The length of the arc, measured from

the vertex, is

6) «=!(•''-«

Let it be required to compute the dip in a chain 32 feet long,

its ends being supported at the same level, 30 feet apart.

We can determine the dip from 5) if we know a, and we
can get the value of a from 6) by setting s = 16, a; = 15

:

16

Leta; =— . Then

/ 1.5 15x

and we wish to know where the curve

7) 2/=/(a;) = 6--e--f|aj

crosses the axis of x.

This curve starts from the origin and, since

g=/'(x) = e' + e-'-«

is negative for small values of x, the curve enters the fourth

quadrant. Moreover,

^ = e^ - e-^ > 0, a? > 0,
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and hence the graph is always concave upward. Finally,

/(l) = e_e-i-2A = .217>0,

and so the equation has one and only one positive root, and

this root lies between and 1.

It will probably be better to locate the root with somewhat

greater accuracy before beginning to apply the above method.

Let us compute, therefore, /(I). By the aid of Peirce's Tables

we find

:

/(.5) = 1.6487 - .6065 - 1.0667 = - .0245 < 0.

Comparing these two values of the function

:

/(.5) = -.02, /(I) = .22,

and remembering that the curve is concave upward, so that

the root is somewhat larger than the value obtained by direct

interpolation (this value corresponding to the intersection of

the chord Avith the axis of x) we are led to choose as our first

approximation Xi = .6 :

/(.6) = 1.8221 - .5488 - 1.2800 = -.0067,

/'(.6) = 1.8221 + .5488 - 2.1333 = .2376.

Hence the value of the next approximation is

X = .6 - ~ -^^^^ = .6 + .0282 = .628.
.2376

To get the next approximation we compute

/(.628) = 1.8739 - .5337 - 1.3397 = .0005.

Hence the value of the root to three significant figures is .628

with a possible error of a unit or two in the last place, and the

value of a we set out to compute is, therefore, 15/.628 = 23.9.

Remark. Newton's method, like the other methods of this

chapter, has the advantage that an error in computing the new
approximation will not be propagated in later computations.

Such an error will in general hinder us, because we are not
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likely to get so good an approximation. But the one test for

the accuracy of the approximation is the accurate computa-

tion of the corresponding y, and if this is done right, we see

precisely how close we are to the desired root.

The function f{x) is usually simple, and it is easy to see

whether the curve is concave upward or concave downward
near the point where it crosses the axis. We thus have a

means of improving the approximation at the same time that

we simplify the new value of x. For, if the curve lies to the

right of its chord, the approximation by interpolation will be

too small ; and if the curve lies to the right of its tangent be-

tween the point of tangency and the axis of x, the approxima-

tion given by Newton's method will also be too small.

Comparison of the Two Methods. When looked at from their

geometric side the two methods appear much alike, the first

seeming somewhat simpler, since it does not involve the use

of derivatives. Why bother, then, with Newton's method?

It is not a theoretical question, but purely one of convenience

in carrying out the numerical work. It will be found that, as

a rule, the first method is preferable in the early stages

(usually, merely in the first stage). When, however, a fairly

good approximation has been reached, the numerical work in-

volved in Newton's method is generally shorter than that

required by interpolation.

EXERCISES

Apply the method to the Exercises of § 2. When, however,

the approximation given by the graphical method of § 1 is

crude, the method of interpolation may be used to improve it.

5. Direct Use of the Tables.

Example 1. Let us recur to the first example studied, Ex. 1,

§2:

1) cos x — x.
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The graphical solution gave x = .75. Turn now to a table

of natural cosines in radian measure, preferably Peirce's Tables.

As we run down the table, we find the entries

:

RADIANS

.7389

.7418

cos NAT

.7392

.7373

Thus X is seen to lie between .7389 and .7418. It is an ex-

cellent exercise for the student to work out the interpolation

for himself before we take it up at the end of the paragraph.

The answer is : x = .7391.

Example 2. Consider the equation

2) tan X = e*,

the desired root lying between and 7r/2.

A free-hand drawing of the graphs of the functions

y = tan x, y = ^"^

shows that x lies between 1 and 1,5. So the next step is taken

conveniently by opening Peirce's Tables to the Trigonometric

Functions and Huntington's to the Exponentials, and writing

down the two pairs of values of the functions which came

nearest together

:

x tan X e"

1.3

1.4

3.60

5.80

3.67

4.06

Thus the root is seen to lie between 1.3 and 1.4.

The general case which the above examples are intended to

illustrate is the following : — To solve the equation

f{x) = cl>(x),

where f(x) and <f>{x) are tabulated functions, or functions

readily computed.
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When the solution has progressed to the point indicated

by the examples, the next step can be taken by interpolation,

or by Newton's method, as will now be explained.

Interpolation. When two values of the independent varia-

ble near together, Xi and 0^2? have been found such that f{x) is

greater than <j>{x) for one of them and less than <^{x) for the

other, the best approximation to take next is the one given by
the abscissa of the point of intersection of the chords of the

graphs of the functions.

This value, X, can be found as follows.

Suppose that

fi^i) < ^(^1) and f{x.2) > <f>(x2).

Introduce the following notation :

/(^2)-</>(^2)= A2,

X — Xi = h.

From the figure, the triangles

AiCBi and A2CB2 are similar,

and

A,B, = Ai, A.,B2 = A2.

Their altitudes, when C is taken

as the vertex, are respectively h

and 8 — h. Hence

A h~h

3)

On solving this equation for h we find

Ai-f A,
8.

If/(iCi) > <f>(x{) and/(a;2) < (f>(x2), the result still holds, for

Aj and A2 now become negative, but their numerical values
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correspond to the lengths of the sides of the triangles in

question.

It is easy to express in words the result embodied in 3).

Rule. In order to see luhat fraction of S = x^ — x^ must he

added to x^ in order to give X, form the differences

Then thefractio7i is the quotient of the first of these differences by

their sum.

In practice, an accurately drawn figure on a large scale will

often afford a quicker and sufficiently accurate solution.

Example. Returning to Ex. 1 above, we have

:

f(x) = cos X, <f>(x)= X
;

8 = X2-x, = .0029, x^ = .7389, x^ = .7418.

«^(a;i)-/(xi)- -.0004 ;
/(a?2)- <^(^2)= - .0045.

:5004 0029 = :-^-^ = .0002.
.0049 49

Hence the value of the new approximation is

X=.7389 + .0002 = .7391.

The student will have no difficulty in completing Ex. 2 above

in a similar manner. It turns out that the correction is here

less than one tenth of 8, and hence it does not influence the

second place of decimals : x' = 1.30.

Newton's Method. If a higher degree of accuracy is desired,

it is well now to apply Newton's method to the function

F{x)= f{x)-<t>(x).

In the case of Ex. 1 above it is pretty clear that we already

have four-place accuracy, and the computation of F{x) for the

value X= .7391 would only verify the result. This is as far

as we can go with four-place tables. If we needed greater
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accuracy, we should use Newton's method and five or six-place

tables.

Example 2 has been carried only to two-place accuracy, or

three significant figures. We can obtain two further figures

with the tables at our disposal.

y = F(x)= tan X — e"".

iji = F{1.30)= 3.602 - 3.669 = - .067.

^=sec^a;-e% ^1 =13.97-3.67 = 10.30
dx <^a^L=i.3o

X = 1.30 + :j^ = 1.3067.
-LU.o

To test this result, however, would require five-place tables.

EXERCISES

Solve the following equations :

1. cot.T = x, < .T < TT. 2. e''+loga;=l.

3. The hyperbolic sine (sh x or sinh x) and cosine (ch x or

cosh x) are defined as follows :

sh a; =
,

ch x =—'

,

2 2

and are tabulated in Peirce's Tables, pp. 120-123. By means

of these, reduce the treatment of Ex. 2, § 4, to the methods of

the present paragraph.

6. Successive Approximations. We come now to one of the

most important of all the methods of numerical computation.

In physics it is known as the method of Trial and Error ; in

mathematics it goes under the name of the method of Succes-

sive Approximations.

The problem is that of solving a pair of simultaneous

equations,

1) F{x,y)=0, H^,y) = 0.
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The cases which, arise in practice are characterized in general

by two things : First, there is only one solution of the equa-

tions which interests us, and the physical problem enables us

to make a fairly good guess at it for the first approximation.

Secondly, each of the equations 1) is simple, the curve can

readily be plotted in character, and the equation can be solved

with ease numerically for the dependent variable when a nu-

merical value has been given to the independent variable. But

elimination of one of the unknowns, though sometimes possible,

is not expedient, since the resulting equation is hard to solve.

The method is as follows. Plot the curves 1) in character

with sufficient accuracy to determine which of them is steeper

{i.e. has the numerically larger slope) at their point of inter-

section. Let

Ci: F{x,y)=(i or 2/=/W
be the one that is less steep,

O2

:

$(«, 2/)= or x = 4>{y),

y
//

h -A
Vi

m «
Cj ^2

y c>\
V

Vi \ r-"^!ISP^
y. y 1^

\
X

x^ .^\

Fig. 56 Fig. 57

the other. Then, making the best guess we can to start with,

X = £Ci, compute y^ from the equation of 0\ :

and substitute this value in the equation of C^, thus getting

the second approximation

:

^'2 = <^(2/i)-

Proceeding with x^ in the same manner, we obtain first 2/2?

then a;3, and so on.
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The successive steps of tlie process are shown geometrically

by the broken lines of the figures.

The success of the method depends on the ease with which

y can be determined when x is given in the case of Ci, while

for C2 X must be easily attainable from y. If the curves hap-

pened to have slopes numerically equal but opposite in sign,

the process would converge slowly or not at all. But in this

case the arithmetic mean of a^j and x^ will obviously give a

good approximation.

The method has the advantage that each computation is

independent of its predecessor. An error, therefore, while it

may delay the computation, will not vitiate the result.

Example. A beam 1 ft. thick is to be inserted in a panel

10 X 15 ft. as shown in the figure. How long must the beam
be made ?

We have

:

sin <^ -f I cos <^ = 15,

cos <^ + Z sin <^ = 10.

Hence cos^ <^ — sin^ <j[) = 10 cos <^ — 15 sin <^.

Fig. 58 Now an expression of the form

a cos <^ — & sin <^

can always be written as

Va? 4- &2/^ ^
cos <j>

^
sin <^ )

=VoM^ cos (</> + a),

a ^

where cos a =—^zz= >
sm a

In the present case, then,

cos 2 «^ = V325 cos
{(f> -f- a),

10 15
where cos a =———

,

sm a
V325 V325

Thus a is an angle of the first quadrant and

tan a = f

,

a = 56° 16'
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Our problem may be formulated, then, as follows : To find

the abscissa of the point of intersection of the curves :

y — cos 2 <^, 2/ = V325 cos (<^ + a).

We know from the figure a good approximation to start

with, namely

:

tan <^ = I, <^ = 33° 44'.

For this value of <j) the slopes are given by the equations :
*

1?5 . ^ = _ 2 sin 2<f, = - 2 sin 67° 28' = - 1.8,

1§5 .^ = - V325 sin (<^ 4- a)= - V325 = - 18.

Hence we have

:

Ci

:

y = cos 2 <^

;

C2 : y = V325 cos (<j> + a) or <^ = cos""i—^^

—

— a.

V325
Beginning with the approximation

. <^i = 33° 44',

we compute y^ = cos 67° 28'= .3832.

Passing now to the curve C2, we compute its ^ when its

y = yi'-

.3832= V325 cos (<^o + a), <^2 = 32° 31'.

We now repeat the process, beginning with
<l>2
= 32° 31' and

^^^ •

2/2 = cos ^B'^ 02' =.4221,

.4221 = V325 cos (<^3 + a), (^3 = 32° 23'.

A further repetition gives <^4 = 32° 22', and this is the value

of the root we set out to determine.

* Since the degree is here taken as the unit of angle, the formulas of

differentiation involve the factor ir/lSO ; of. Chap. V, § 2.
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EXERCISES

1. Solve the same problem for a beam 2 ft. thick.

2. A cord 1 ft. long has one end fastened at a point 2 ft.

above a rough table, and the other end is

tied to a rod 2 ft. long. How far can the

rod be displaced from the vertical through
— and still remain in equilibrium when

released ?

The equations on which the solution depends are

:

f2

cot -\--= cot
<f>,

2 cos + cos
<f>
= 2.

If the coefficient of friction /x = \, find the value of <^.

3. A heavy ring can slide on a smooth vertical rod. To
the ring is fastened a weightless cord of length 2 a, carrying an

equal ring knotted at its middle point and having its further

end made fast at a distance a from the rod. Find the position

of equilibrium of the system.

4. Solve Example 2, § 4, by the method of successive ap-

proximations.

7. Arrangement of the Numerical Work in Tabular Form.

In the foregoing paragraphs we have laid the chief stress on

setting forth the great ideas which underlie these powerful

methods of numerical computation. There are, however, cer-

tain details of technique which are important, not only for

ease in keeping in view the results obtained, but also for

accuracy, since they reduce the numerical work to a system.

We will illustrate what we mean by an example.

Example. Let it be required to find all the values of x be-

tween 0° and 360° which satisfy the equation

sin X = logio (1 — cos x).
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A free-hand graph of each of the functions

1) y = sm X, y = logio (1 - cos x)

shows that there is one root between
0° and 180° and a second between

180° and 360°. But these roots

cannot be located with any great

accuracy in this manner. It is nec-

essary to do exact table work, and

to keep the successive results in

such form that they are convenient

for later reference.

To this end such a table as the following is useful,

with the trial value x = 150°.

Begin

X 150°

cosx

1 — COS x

logio (1 - COS a;)

- .8660

1.8660

.2709

sinx .5000

Since the ordinate of the sine curve is larger than that of the

logarithmic curve, it is clear from the figure that x is too small.

Try X = 160°.

Before proceeding further let us ask ourselves whether the

above scheme is the simplest for the example in hand. Eor

the special value x = 150° we know cos x without reference to

the tables, and hence one entry of the tables was sufficient.

But when x = 160°, it will be necessary to enter the tables first

for cos X, a second time for logio (1 — cos x), and still a third

time for sin x.

* Paper ruled in small squares is convenient for these tables, tlie in-

dividual digits being written in separate squares.
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cos x — 2 sin2
2'

logio (1 - cos X) = logio sin'^ -+ log^o 2

= 2 log sin ^+.3010.

Hence it is possible to get along with only two entries of the

tables if we make use of the following scheme.

X 160° 164° 163° 3'

\^ 80° 82° 81° 32'

logio sin i X 1.9934 1.9958 1.9952

2 logio sin I a; 1.9868 1.9916 1.9904

+ .3010 .2878 .2926 .2914

sin (180 - x) .3420 .2756 .2916

The ordinate of the sine curve is still in excess, but only

slightly so. Try x = 164°. It is seen that the curves have

now crossed. Moreover, the two approximations for x—
namely, 160° and 164°— are so near together that we can with

advantage apply the method of interpolation of § 5. We

</) (x) = sin x, f{x) = logio (1 - cos a;)
;

.Ti = 160°,

<i> (ici) = .3420,

<f>{x,) = .2756,

xo = 164°,

f{xO = .2878,

f{x,) = .2926,

8 = 4°;

Ai = .0542

;

As = .01 70;

Ai + Ao
8 ^--2^ 4 = 3.05.

.0712

Thus the correction is seen to be 3.05°, or 3° 3', and

the new approximation is :

X = 163° 3'.
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For this value of x the values of the two functions, f(x) and

<^ (x), differ by a quantity which is comparable with the error

of the tables, and the problem is solved.

EXERCISES

1. Determine the other root in the above problem.

2. Solve the equation :

cot X = logio (1 + sin ic), < X < 90°.

3. Find the positive root of the equation

e"^ = x^ — X,

Suggestion. Tabulate x, x^ (from a table of cubes), x^ — x,

and e'"".

8. Algebraic Equations. By an algebraic equation is meant

an equation of the form

1) aoOJ" + aix"--^ + ... 4- a„ = 0, ^o ^ 0,

where n denotes a positive integer.

If the coefficients (Xq? <*i>
••• ^^^ numerical, the roots can be

approximated to by the method of interpolation or by Newton's

method. In either case it becomes necessary to compute the

value of the polynomial

f{x) = ofox'^ 4- aia^"-i -\- " -\- a„

for several values of x, the later ones of which will be at least

three- or four-place numbers. There are labor-saving devices

for performing these computations, to which we now turn.

Numerical Computation of Polynomials. Let a cubic poly-

nomial, for example, be given

:

f(^x) = ax^ -\- hx"^ -\- cx-{- d,

and let it be required to compute f{x) for the value x = m.

Write down the following scheme :

_a am -f h am^ -f ^^>^ + c f('^)

am am^ -f hm am^ + hm^ -\- cm
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the explanation of which is as follows. Begin with the first

coeflB-cient, a, and multiply it by m to get the expression am
which stands below the line. To this expression add the

second coefficient, b, to get the second expression above the

line, am + b. Next, multiply this expression by m to get

the expression which stands below it, and continue the process.

The last entry above the line will be the required value,

/(m) = am^ + 6m- + cm + d.

Example. Let

and let it be required to compute the value of f(x) for x = .8.

Here, the scheme is as follows

:

7 -.4 2.68 -4.856

5.6 - .32 2.144

and hence

/(.8) = - 4.856.

It will be observed that the process requires only additions

(or subtractions) and multiplications. The former can be per-

formed mentally. The latter are executed most simply by

one of the machines now in general use with computers.

These instruments, combined with the method of this para-

graph, have rendered Horner's method for solving numerical

algebraic equations obsolete.

EXERCISE

Compute the value of

5.1x' - 3.42 ic^ -h 1.432a; + .8543

for x = .1876.

In the problems which arise in physics, however, it is not

a question of computing all the roots of a numerical equation,

about which nothing is known beyond the coefficients. Usu-

ally, the equation is a cubic or biquadratic, and only one root

is required. Moreover, from the nature of the problem, a close
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guess at the value of this root can be made at the outset.

Then the methods set forth in this paragraph and in §§ 2, 3

lead quickly to the desired result.

EXERCISES

Solve the following equations, being given that there is one

root, and only one, between 0° and 90°

:

1. 4 cos3 ^ - 3 cos ^ = .5283, 0° < 6* < 90°.

2. sin3 - .75 sin 6 = .1278, 0° < ^ < 90°.

3. Find the root of the equation

x^ + 2.6a:3 - 5.2^2 - lOAx + 5.0 =

which lies between and 1.

4. Find the root of the equation

3a;*-12a^ + 12a;2-4 =

which lies between 2 and 3.

9. Contiimation. Cubics and Biquadratics. Aside from the

special problem of numerical computation, the simpler alge-

braic equations present an intrinsic interest which should not

be ignored.

Transformations, a) Let the cubic equation

1) f(x) = ax^ -\- bx"^ + ex + d ^ 0, a^O,

be given, and let x be replaced by y, where

2) y = x — h, x = y -\-h.

Then

fix) = a{y + hf + b{y + hy +c{y + h)-{-d = <^{y)

= af + {^ah-^h)f^-\-'-,

where the later coefficients are easily written down.
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If ?/ = y8 is a root of the equation

3) <f>(y) = o,

then x== (3 -\-h

will be a root of equation 1). For, it is always true that

when X and y are connected by the relation 2).

Here, h is any number we please. In particular, h can

always be so chosen that the coefficient of the second term of

3) will drop out. It is sufficient to set

4) 3ah-[-b = 0, or h = -— .

Sa

Obviously, the same method can be used to transform an

algebraic equation of any degree into a new equation whose

second term is lacking.

EXERCISES

Transform the following equations into equations in which

the second term is lacking.

1. x^-^-x'-x-^-l^O. 2. 3 a^ - 4 ic2 + 2 = 0.

3. X* -^ x^ — x""' -{- 1 = 0. 4. 5og^ — 4.a^-\-x'--{-x — 80=0.

5. 3x*—7a^-\-x''--x — l = 0. 6. x^ -\- x^ -\-
x"-

-\- x -[- 1 = 0.

b) Let the equation

5) f(x)=^X* +i>a;2 -f gx + r =

be given, and let x be replaced by y, where

6) y=j, x=ky.
fC

Then
f{x) = lcY + k'^py^ + kqy + r.

Denoting this last polynomial by <i>(y), we have

for all values of x and y which are connected by the relation 6).
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It is clear that, if y = /? is a root of the equation

T) </»(2/) = 0,

then x = k/3 will be a root of 5).

The factor k is arbitrary, and we can always determine it so

that, on dividing equation 7) through by k :

the coefficient of y^ will be numerically equal to unity (provided

that p =^0):

i) ^=1 or k = ^p, if p>0;
k^

ii) ^ = —1 or k =V— p, if p<0.

In this way, equation 5) can be reduced to one of the two

forms

/8) y'-f--\-Ay + B = 0.

If, in particular, p = and q ^ 0, 5) can be reduced to the

form

; y) y^^y^B = 0.

P The method can be applied to any algebraic equation whose

second term is lacking

:

a;'* + CzX""'^ + c^x""-^ + ••• + c„ = 0.

EXERCISES

1. Replace the equation

7a;4-175aj2 + 16aj + 10 =

by an equation of the type /?), and state precisely the relation

of the roots of the second equation to those of the first.
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2. Show that, if in the equation

a^fC" 4- aiX""-^ + — + a„ = 0,

where ao =^ and a„ =^ 0, the transformation

1
2/ = -

X

is made, the roots of the new equation,

«n2/" + «n-i2/""^ + ••• + ao =

are the reciprocals of the roots of the given equation.

3. If on transforming equation 1) by 2), where h is deter-

mined by 4), the constant term in the resulting equation 3),

<^(y) = 0, does not vanish, the further transformation

8) y = -', or x = --\- h,
z z

will carry 1) into an equation in which the linear term is lack-

^^^'-
A2^ -^ Bz"^ -\- D == 0. A^O, D^O.

The theorem holds in full generality for an algebraic equa-

tion of any higher degree. State it accurately.

4. Replace the equation

od* — 4:X^ — 6 X' -\- 16 X — 4: =

by an equation of the type

Ay' + Bf-\-Cf-\-n = 0.

Oraphical Treatment. We have already seen that the cubic

x^ -\- px -\- q =

can be solved graphically by cutting the standard graph

y=^x^
by the straight line,

Since the general cubic can be reduced by the transformation

2) to a cubic of this type, we may consider the general problem

of the graphical solution of a cubic as solved.

(
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To obtain a similar solution for the general biquadratic,

9) ox-^ + bx^ -h ex'- 4- dT + e = 0, a =^ 0,

begin by reducing it to one of the three forms :

i) y'-\-y'-j-Ay-\-B = 0;

ii) y^-yi^Ay + B = 0;

iii) y' -\-Ay-^B = 0.

An equation of type i)

:

x^ + x^^-[-Ax-\-B = 0,

can be solved graphically by cutting the standard curve

y = x^

by the parabola

y = — x""- — Ax — B.

A similar procedure leads to a solution in the case of each

of the other two types, ii) and iii).

Tlie Method of Curve Plotting. Let the coefficients a, e in

equation 9) be different from 0. By means of Ex. 3, p. 192, the

equation can be reduced to one of the following type

:

Ax' -{-B3^-\- Cx"' H- ^ = 0.

In order to discuss the number and location of the roots of

this equation, it is sufficient to plot the curve

y = Ax' 4- Bx^ 4- Coj^ + JE,

Since all the maxima, minima, and points of inflection of this

curve can be determined by means, at most, of quadratic equa-

tions, the problem is readily solved in any given numerical case.

EXERCISES

Determine the number of real roots of each of the following

equations, and locate them approximately.

1. 3a;4 + 8ic3 _90a;2+ 100 = 0.

2. 3x'-{-Sx'-90x''' + 500^0.
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3. 3a;4 4-8a^-90ft;2 4.1500 = 0.

4. Show that the equation

has no real roots.

How many real roots has each of the following equations ?

5. x^-5x-^l = 0. 6. a^ + 7a;-l=0.

7. a^-4.x-\-l = 0. 8. a.-^- 3a; -2 = 0.

9. x^-x-\-3 = 0. 10. Ax^-15x'^-\-12x-hl = 0.

11. 3a;4 + 4x3_|_6a;'2-l = 0. 12. 3x^ - 4.x^ + 12x'' -\-7 = 0.

13. How many positive roots has the equation

Qx' -{-8x^- 12a;' - 24a; - 1 = ?

14. Has the equation

Sx^-Sx^-{-12a^-^l =
any real roots ?

15. By means of the graph of the function

y = x^-\-px + q

show that the equation

x^ -\- px -\- q =
has

(a) 1 real root when ^ -f i. > ;

(b) 3 real roots when k~~^4 <^ ^ >

Z7 4

(c) 2 real roots when -^4-^ = 0, {p and g not both 0}

(d) 1 real root when ^ + i- = 0, {p = q = 0}

In case (c) it is customary to count one of the roots twice

;

in case (d), to count the root three times.
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16. Extend the criterion of Ex. 15 to the case of the general

cubic
ax^ -\- hx"^ + C.T -|- d = 0.

10. Curve Plotting. We will close this chapter by consider-

ing the application of the principles set forth in the earlier

paragraph on curve plotting (Chap. Ill, § 5) to some interest-

ing curves of a more complex nature.

1)

Example 1. To plot the curve

1 1
y = +

X — 1 X--\- 1

The curve is obviously not symmetric in either axis ; but

the test for symmetry in the origin is fulfilled, since on replac-

ing xhj — X and y hj — y the new equation,

1 . 1
y = + x+l

is equivalent to the original equation, 1). Incidentally we
observe that the curve passes through the origin.

In consequence of the symmetry just noted it will be

sufficient to plot the curve for positive values of x and then

rotate the figure about the origin through 180°.

To each positive

value of X but one

there corresponds

one value of y.

When X approaches

1 as its limit from

above {i.e. always

remaining greater

than 1), y becomes

positively infinite.

Hence the line a; = 1

is an asymptote for

one branch of the

curve. Fig. 61
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AVhen x approaches 1 from below, y becomes negatively-

infinite, and hence this same line, a; = 1, is an asymptote for a

second branch of the curve.

For all other positive values of a;, y is continuous.

The slope of the curve is given by the equation

2)
dx \{x-\y- ' (x + i)2/

and is seen to be negative for all values of x for which y is

continuous. Thus, in particular, the curve is seen to have no

maxima or minima, or in fact any points at which the tangent

is horizontal.

The second derivative is given by the formula

^
dx' \{x - Vf (x H- 1)^

When « > 1, the right-hand side of this equation is always

positive, and so the curve is concave upward in this interval.

Moreover, it is evident from 1) that, when a; = +00, y ap-

proaches from above, and so the positive axis of x is also an

asymptote.

In the interval < a; < 1, the second derivative is surely

sometimes negative, for this is obviously the case when x

is only slightly less than 1. Is d^y/dx' always negative in

this interval ? If not, it must pass through the value ;

for a continuous function cannot change from a positive to

a negative value without taking on the intermediate value

0.* Let us set, then, the right-hand side of equation 3)

equal to and solve:

0.
\{x- rf (x + iy

* How must tlie graph of a continuous function look, which is some-

times positive and sometimes negative ? It must cross the axis of ab-

scissas, must it not ? At the point or points where it crosses, the function

has the value 0.
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This equation is equivalent to the following ;

1 ^ 1

{x-iy (x-^iy

Extracting the cube root of each side of this equation, we have

:

1 ^ 1_
x — 1 x-^1

Clearing of fractions we find :

x-]-l=-(x-l),

or 2a; = 0.

Hence a; = is the only value of x for which (Py/dx"^ can

vanish, and we see at once that the right-hand side of 3) does

vanish for x = 0.

We have thus proven that the continuous function 3) is no-

where in the interval < a; < 1, and since it is negative in

part of this interval, it is negative throughout. Hence the

curve is concave downward throughout the interval.

It is now easy to complete the graph. The curve has one

point of inflection,— namely, the origin,— and the slope there

is, by 2), equal to — 2.

EXERCISES

noit the following curves :

1. y= '
• 2. 2/= ^^

•^ 3 + a;2

3. y- \+ \- 4. .-i+ \x-2 x+2 X x-l

5. y=x+x+l 6. V- ^
^-x^-1

7. -i- 8. V- ^

{1-xy

9.
1

10. V- ^

(x + 1?
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11. y = x-\--' 12. y=ix — -'
X X

13. 2/
= \-x^ — 2x. 14. ^ = 7—^ 6a; — a;2.

1 — X 3 -\-x

15., =^-^. 16.. = ^- '

x — laj-fl X X— 1

Example 2. To plot the curve

4) y2=x^-]- xK

We observe first of all that the curve is symmetric in the

axis of X. It is sufiicient, therefore, to plot the curve for posi-

tive values of y, and then fold this part of the curve over on

the axis of x. The curve goes through the origin.

Unlike the examples hitherto considered, this curve does

not permit an arbitrary choice of x. It is only when the right-

hand side is positive or zero, i.e. when

a;2 + a^ ^ 0,

or

x'il-j-x)^ or a;> -1,

that there will be a corresponding value of y and thus a point

with the given abscissa.

Obviously, the curve cuts the axis of x at the origin and at

the point a; = — 1. We have, then, essentially two problems

:

i) to plot the curve for a; > ;

ii) to plot the curve for — 1 < x < 0.

i) When x > 0, the positive value of y is given by the

equation

5) y = x-Vl -j- X.

Hence

6)
dy _ 2 + 3 a;

dx~2^T^
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For positive values of x the right-hand side of this equation

is always positive, and hence there are no horizontal tangents

in the interval under consideration ; the slope of this part of

the curve is always positive. In particular, the slope at the

origin is unity

:

dx
= 1.

7)

The second derivative has the value

^2y _ 4 + 3a;

dx' 4(1 + xy

The right-hand side of this equation is always

positive in this interval, and thus it appears

that the curve is concave upward for all posi-

tive values of x.
Fig. 62

ii) When — 1 < a; < 0, the positive value of y is no longer

given by the formula 5), since x is now negative. "* In the

present case,

8) y--= - X-s/1 + X,

and

9)

consequently

dy

dx

2 + 3a;

2Vl + a;'

10)
d'y_

dx'^'

44-3a;

4(1 + xf

The first derivative will vanish if, and only if)

2 + 3a; = 0,

or x = -i.

* The student must have clearly in mind the definition of the function

expressed by the y/ sign, which was laid down in Chap, I, § 1. This func-

tion is the positive square root of the radicand ; it can never take on a

negative value.
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It is, therefore, important to determine the corresponding

point on the curve and draw the tangent there

:

2/U=-,= -(-|)Vl-|=
2V3
9
= .38.

Two other important points for the present curve are the

origin and the point 1, y = 0. At these

points the slope has the following values

:

= -1;
dx dx

— 00.

Fig. 63 Draw the corresponding tangents. fl

From the expression 10) for the second derivative it is

clear that, when — 1 < a; < 0, the right-hand side of this

equation is always negative, and

hence the curve is concave down-

ward throughout the whole in-

terval in question. We can now
draw in the curve in this interval.

Fig. 63.

The curve is now complete above

the axis of x. It remains, therefore,

merely to fold this part over on that

axis. The entire curve is shown in

Fig. 64.

EXERCISES

Plot the following curves :

1. if = a;^ - 0.-3. 2. if = x- 2x'- -+ y?.

3. f^={x-af{Ax^B)

Suggestion : Write the second factor in the form

Ax-{- B = A{x — b), where b = —,

and make two cases : i) ^ > ; ii) A<0. Discuss the omitted

case, A = 0.

Fig. 64 -
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4. y- = X' — x^. 5. y'~ = x- -\- x*.

Example 3. To plot the curve

11) y^ = x(x-l)(x-2).

The curve lies wholly in the regions

^ a; ^ 1 and 2^x.

It is symmetric in the axis of x, and hence it is sufficient to

plot it for positive values of y.

The function

y Vx(x-l)(x-2)

is continuous in the interval O^x^ 1. It starts with the

value when x = 0, increases, and finally decreases to when
X = 1.

When X, starting with the
^'^

value 2, increases, y, starting

with the value 0, increases,

always remaining positive, and

increasing without limit as x be-

comes infinite.

So much from considerations of continuity. A more specific

discussion of the character of the curve can be given by means

of the derivatives of the function.

The slope is given by the formula

dy

1 2

Fig. 65

12)

or

13)

22/
dx

dy

3x2 -6a; + 2

3a:-2_6^^,_^2

dx 2Vx(x-l){x-2)

The slope is infinite when x = or 1

:

dy\
-^\ = 00.

dy

dx
CO.

At these points, the tangent is vertical.
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The slope is when

3a^2_6a,_^2 = 0.

The roots of this equation are

.=1 + ^., .=1- 1

V3

The first of these values does not correspond to any point on

the curve. The second, x= .42, yields a horizontal tangent,

the ordinate being

y=J-^ =.62
3V3

Plot this point and draw the tangent. From the above dis-

cussion on the basis of continuity it is obvious that this point

must be a maximum, and we see that there

are no other maxima or minima. But it

is not clear that the curve has no points of

inflection in this interval.
Fig. 66 rjy^

treat this question, compute the sec-

ond derivative. This might be done by means of formula 13)

;

but it is simpler to use 12) :

2y^ + 2'^=6x-6,

y^^3x-3-^.
^dx^ dx^

Substitute here the value of dy/dx from 13) and reduce

:

\A\ f^y = 3a;^-12a;3-f-12.-?;^-4
^

^fto^ 4a;(a;-l)(a;-2)

And now we seem to be in difficulty. How are we going to

tell when d'^yjdx^ is positive, when negative ?

First of all, y is positive, and so the sign of d^yjdx^ will be

the same as that of the right-hand side of the equation.

Secondly, in the interval in question, < a; < 1, the denomi-

nator is positive.
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All turns, then, on whether the numerator, i.e. the function

15) u = Z:x^-12:x? + 12a;2 _ 4,

is positive or negative. To answer this question, plot the

graph of the function 15). The slope of the graph is given by

the equation

16) '^ = 12 rcs _ 36 ^1 j^24.x = 12x{x-l){x -2).
dx

In the interval in question, the right-hand side of this last

equation is always positive. Hence u increases with x through-

out the interval 0^x<l, and consequently attains its great-

est value at the end-point, x = l. Here,

w |x=i = - l.

We see, therefore, that u is negative

throughout the whole interval in question,

and consequently the graph of 1) is concave

downward in this interval.

The reasoning by which we determined whether u is pos-

itive or negative is an excellent illustration of the practical

application of the methods of curve plotting which we have

learned. It is in no wise a question of the precise values of

u which correspond to x. The question is merely : Is u posi-

tive, or is it negative? Without the labor of a single com-

putation involving table work we have answered this ques-

tion with the greatest ease. Such questions as these arise

again and again in physics, and the aid which the calculus is

able to render here is most important.

One further point. It may seem to have been a fluke that

we were able to factor the polynomial in 16) and thus simplify

so materially the further discussion. And yet, in the problems

which arise in practice,— the problems with 3^ pedigree,— just

such simplifications as this present themselves with great

frequency.

1

Fig. 67
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To complete the graph, it remains to consider the interval

2 ^ ic < 00. Since
:Q0.^1

dx\

the tangent to the curve is vertical at the point where the curve

meets the axis of x. It is clear, then, that the curve must be

concave downward for a while, and so d'^y/dx- < for values

of X slightly greater than 2. This is verified from 14), since

17) nU=-4.
On the other hand, when x is large, ii is positive and d^y/dx^

is positive. Hence the curve is concave upward. There must
be, therefore, a point of inflection in the interval, and there

may be several.

From 14) we see that the second derivative will vanish when
and only when 3^. _ ^g^ + i2x^ -i = 0.

The problem is, then, to determine the number of roots of

this equation which are greater than 2, and to compute them.

Again, it is a question of

the graph of 15). When
X > 2, we see from 16)

that

> 0.
du

dx

Hence u steadily increases

with X. Now, from 17),

u starts with a negative

value, and u is positive

and large when x is large.

Hence u vanishes for just

one value of x which is

greater than 2. Since

u |^^3 = 23, this root is seen

to lie between 2 and 3.

^'^' ^^ It can be determined to

any required degree of accuracy by the foregoing methods of
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this chapter, which find herewith a practical application. To

two places of decimals it is 2.47.

I

EXERCISES

Plot the following curves :

1. y = x^ — X. 2. y =zx — 3?.

3. 2/2 = x^ -f X. 4. 2/^ = 1 -..A

5. i/ = {x'^-l){x'^-4.). 6. f=.{l-x^){x^-^).

7 V^- ^ • 8. ,._ 1
^' ^ -^-x (a;-2_l)(,,2_4)

q ,,2 _ ^
. 10. 7/2- •^'

.

^- y -l-x ^ l + o;

11 „2 — ^
12. y> _ ^'

"• ^ -1+^2- ^ l-x2

1 q ,,2 _ ^ . 14. V2- ^'
.

''• ^ -x-1 ^ 1+^

15. ?/- = a.-3 — 4a:- + 3a;. 16. 2/ = sin£c+ sin 2x.

17, ?/ = sin X— sin2a:. 18. y = cos X -h cos 2£C.

19. ?/= cos a; — cos 2 a;. 20. 2/ = a; + sin a;, ^ cc ^ TT.



CHAPTER VIII

THE INVERSE TRIGONOMETRIC FUNCTIONS

1. Inverse Functions. Let

(1) y==f{x)

be a given function of x, and let us solve this equation for x as

a function of y :

(2) <^ = Hy)-

Then <^ {y) is called the inverse function^ or the inverse of the

function /(cc). Thus if /(a?) = a^, we have

y = o^.

Hence x — V^/,

and <l>{y) is here the function -\/y.

When the given function is tabulated, the table also serves

as a tabulation of the inverse function. It is necessary merely

to enter it from the opposite direction. Thus, if we have a

table of cubes, we can use it to find cube roots by simply re-

versing the roles of the two columns.

In the same way, the graph of the function (1) serves as the

graph of the function (2), provided in the latter case we take

y as the independent variable, and x as the dependent variable,

or function.

The graph of the inverse function, plotted with x as the in-

dependent variable, can be obtained from the former graph as

follows. Make the transformation of the plane which is de-

fined by the equations

:

(3)
"'; =

^'l or ^ = 2/;,l

206



THE INVERSE TRIGONOMETRIC FUNCTIONS 207

It is easy to interpret this transformatiou. Any point, whose

coordiDates are {x, y), is carried over into a point {x', y') situ-

ated as follows : Draw a line L through the origin bisecting the

angle between the positive

axes of coordinates. Drop

a perpendicular from {x, y)

on L and produce it to an

equal distance on the other

side of L. The point thus

determined is the point

{x', y'). The proof of this

statement is immediately

evident from the figure.

Thus it appears that the

transformation (3) can be

generated by rotating the

plane about L through

180°.

The transformation is also spoken of as a reflection in L,

since if a plane mirror were set at right angles to the plane of

(x, y) and so that the line L would lie in the surface of the

mirror, the image of any figure, as seen in the mirror, would

be the transformed figure.

Monotonic Functions. A function, f{x)y is said to be mono-

tonic if it is single-valued and if, as x increases, f{x) always

increases, or else always decreases. We shall be concerned only

with functions which are, in general, continuous. It is obvious

that the inverse of a monotonic function is also monotonic.

A given function,

2/ = /(^),

can in general be considered as made up of a number of pieces,

each of which is monotonic in a certain interval.* Thus the

function

Fig. 69

W y = x^

* There are functions which do not have this property ; but they do

not play an important idle in the elements of the Calculus.
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can be taken as made up of two pieces, corresponding respec-

tively to those portions of the graph which lie in the first and

the second quadrants, the corresponding intervals for x being

liere _ oo < a; < 0, < a; < oo.

Each of the pieces, of which /(a?) is made up, has a monotonic

inverse, and thus the function <^(x) inverse to f{x) is repre-

sented by a number of monotonic functions.

In the example just cited, the inverse function is multiple-

valued :

(5) 2/ = ±V^.

But one of the two pieces into which the original function was

divided yields the single-valued function

(6) 2/=V^',

the so-called principal value of the multiple-valued function

(5); the other,
y = _V^,

the remainder of (5).

The derivative of a monotonic function cannot change sign
;

but it can vanish or become infinite at special points. Thus

y = Va^ — x^, ^ a; ^ a,

is a decreasing monotonic function. Its derivative is, in gen-

eral, negative ; but when a; = 0, it vanishes, and when x = a,

it becomes infinite.

Differentiation of an Inverse Function. The function <^(.r)

inverse to a given function f{x) can be differentiated as follows.

By definition, the two equations

(7) y = 4>(^) and x=f{y)

are equivalent ; they are two forms of one and the same rela-

tion between the variables x and y. Their graphs are identical.

Take the differential of each side of the second equation

:

dx = df(y)==DJ{y)-dy,
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Hence

(8)
dy ^ 1

dx DJ{y)

To complete the formula, express the right-hand side of (8)

ill terms of x by means of (7).

2. The Inverse Trigonometric Functions. The inverse trigo-

nometric functions are chiefly important because of their

application in the Integral Calculus. They are defined as

follows.

(a) The Function sin" 1% The inverse of the function

y = sin X(1)

is obtained as explained in § 1 by solving this equation for x

as a function of y, and is written

:

(V) x=sm-^y,

read " the anti-sine of ?/." * In order to

obtain the graph of the function

(2) y = sin'^cc

we have, then, merely to reflect the graph

of (1) in the bisector of the angle made
by the positive coordinate axes. We
are thus led to a multiple-valued func-

tion, since the line x = x\—l^x'^l)
cuts the graph in more than one point,

— in fact, in an infinite number of points.

For most purposes of the Calculus, how-

ever, it is allowable and advisable to pick

* The usual notation on the Continent for sin-i x, tan-i x. etc., is arc sin x,

arc tan x, etc. It is clumsy, and is followed for a purely academic reason
;

namely, that sin-ix might be misunderstood as meaning the minus first

power of sin x. It is seldom that one has occasion to write the recipro-

cal of sin X in terms of a negative exponent. When one wishes to do so,

all ambiguity can be avoided by writing (sin x)-i.
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out just one value of the function (2), most simply the value

that lies between y — — 7r/2 and y = -\- tt/2, and to understand

by sin~^cc the single-valued function thus obtained. This de-

termination is called the principal value of the multiple-valued

function sin^^cc. Its graph is the portion of the curve in

Fig. 70 that is marked by a heavy line. This shall be our

convention, then, in the future unless the contrary is explic-

itly stated, and thus

(3) y = sin~i x

is equivalent to the relations :

(30 x=smy, -l<y<^'
In particular,

sin-i =. 0, sin-i 1 = '', sin-^ (- !)= --•
2' ^ ^ 2

The student should now prepare a second plate, showing

the graphs of the three functions sin"^ x, cos"^ x, tan~i x. Place

the first in the upper left-hand corner of the sheet ; the second,

in the upper right-hand corner ; and the third on the lower

half-sheet. All of these curves can be ruled from the templets.

Use a line lead-pencil ; then mark in the principal value of

the function in a clean, firm red line. Also mark, in each fig-

ure, all the principal points, as is done in Fig. 70 of the text.

Differentiation of sin~^ x. In order to differentiate the func-

tion . ,

y = sin~i X,

make the equivalent equation,

X = sin y

the point of departure. Then

dx = d sin y = cos y dy.

Hence ^ = J_.
dx cos y
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The right-hand side of this equation can be expressed in

terms of x as follows. Since

sin2 y -|- cos^ y = 1

and since smy = x, we have
,

cos2 2/ = 1 — if'-, cos ?/ = ± Vl — if2.

We have agreed, however, to understand by sin-io; the

principal value of this function. Hence y is subject to the

restriction : — 7r/2 ^ 2/ ^ V^j ^^^ consequently cos y is posi-

tive (or zero). We must, therefore, take the upper sign before

the radical,* the final result thus being

:

(4)
'- '— sin~^ o: =
dx Vl - a;2

or

(4') d sin~i X = dx

Vi-

(6) The Function cos~ix. The treatment here is precisely

similar. The definition is as follows :

(5) y z= COS~l X if COS y,

(read :
" anti-cosine x ").

The graph of the function cos~ix is as

shown in Fig. 71. Like sin"ia;, this function

is also infinitely multiple-valued. A single-

valued branch is selected by imposing the

further condition

0^?/^7r.

This determination is known as the principal

value of cos"i x :

(6) y = C0S~1 X, 0^y<7r.

* Geometrically the slope of the portion of the graph in question is

always positive, and so we must use the positive square root of 1 — x^.
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It will be understood hencefortli that the principal value is

meant unless the contrary is explicitly stated.

In preparing the graph of this function, mark the principal

value as a firm red line.

To differentiate the function cos~i x, use the implicit form
of equation (5)

:

X = cos y.

Hence
dx = d cos y = — sin y dy

and d,/_

dx sm y

For the principal value, sin y is positive, and hence

(7) —cos-ix= ^
'

dx Vl - x^

or

dx
{7') d cos-i x= —

Vl

The principal values of the functions sin~i x and cos~i x are

connected by the identical relation

:

(8) sin~i x 4- cos~i a; = - •

By means of this relation, the differentiation of cos~*a;

could have been performed immediately.

(c) T}ie Function tan~i x. Here, the definition is as follows :

(9) y = tan"i x if a; = tan y^

(read :
" anti-tangent x '').

The principal value is defined as that determination which

lies between — 77/2 and 7r/2 :

(10) 2/ = tan-ia;, _|<2/<|.

In preparing the graph of this function, mark the principal

value as a firm red line.
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y
8ff

2

rr

2_ .

X

.-^ .

2^---

2

Fig. 72

To differentiate tan~ia; use the implicit form (9). Hence

dx = d tan ?/ = sec^ y dy,

dy^ 1

c?a; sec^ i/

Since sec^ y — 1 -\- tan2 1/

and tan y = x,\t follows that

1
(11)

or

(12)

— tan~ia;^
,

dx l-{-x^

dtdjnr'^x — dx

1H-CC2

(d) The Function cot~i x. Here, the definition is

:

(13) y = cot~i X if x = cot ?/,

(read :
" anti-cotangent x ").

The principal value is chosen as that one which lies between

and TT

:

(14) = COt"^ X, 0<y<7r.
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The differentiation can be performed as in the case of the

function tan"i a;, but still more simply by means of the identi-

cal relation connecting the principal values of tan'^a; and

cot~i X :

(15)

Hence

(16)

or

(17)

tan-1 X + cot-
1

TJ"

^cot-!« = - 1

lH-a;2'

dcot"^X = - dx

1 -f-a;2

It is well for the student to make a graph of this function,

also, drawing in the principal value, as usual, in red.

The following identity holds for positive values of a;, when
the principal values of the functions are used

:

(18) tan-i- = cot-la;, 0<a;.
X

For negative values of x it reads :

(18') tan-ii = cot-i x-ir, a; < 0.
X

Remarks. The other inverse trigonometric functions, sec'ia;,

csc-^a:, can be treated in a similar manner. They are, how-

ever, without importance in practice. Their principal values

cannot be defined by means of a single continuous curve.

The graph necessarily consists of more than one piece ; it is

most natural to take it as consisting of two pieces.

Corresponding to the Addition Theorem for each of the

trigonometric functions, there are functional relations for the

inverse trigonometric functions. Thus, for tan~i x :

(19) tan~i u -\- tan-i v = tan"
1 — uv

These relations, however, are not always true when the

principal value of each of the functions is taken, and for this
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reason it is usually better not to employ them. If, however,

in a particular case, u and v are each numerically less than

unity, the principal values can be used throughout in (19).

3. Shop Work. The student will now add to his list of

Special Formulas the four new formulas of this chapter. The

list of formulas of differentiation is now complete. It reads

as follows.

Special Formulas of Differentiation

1. dc=0.'

2. ' dx"" :=nx'^~^dx.

3. d sin X = cos x dx.

4. d cos cc = — sin x dx.

5. d tan X = sec^ x dx.

6. d cot x = — csc2 X dx.

8.

9.

10.

11.

12.

13.

dlogx ax

X

de = e^ dx.

da" = a" log a dx.

d sin~^ X
dx

Vl-a;2

d cos~^ X
dx

VI -3^

dtSiB-^X
dx

1+0^2

dCOt-^X:
dx

It is important that the student gain facility in the use of

the new results.



216 CALCULUS

Example 1. Differentiate the function

u = cos~i -

,

a > 0.
a

Let

Then u = cos"i y,

du = d cos"i y

- ..^y
,

a

dx

TTpTipp

VI- f

a dx

Vi-gJ
v^-'

and, finally,

dcos-1* _ ^^
a Va2 - a;2

In abbreviated form,

i cos-i
X o
'°"v-e:

Va2 — a:2

Example 2. Differentiate the function

K = tan 1 ' — •

3

Here,

3 |c7a; 3da;
du=

^ /2a; + lY 10-|-4a;4-4a;2 5 4-2a; + 2a;'2

V 3 ; 9

or
dx 5 + 2a;-h2a;2
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The student should notice that the method used in the text

for deriving the fundamental formulas of differentiation is not

to be repeated in the applications. It is these formulas them-

selves that should be used. Thus, to solve Ex. 1 by writing

X
cos u = -

a

and then differentiating would be logically irreproachable, but

bad technique.

EXERCISES

Differentiate each of the following functions.

d'l 1 r . .^

t

1. u = sin~i--
a

2. u — tan-i-.
a

3. w = cot-i-.
a

4. u — sin~^(n sin x).

5. M = cos-i^~^.
2

6. . = sin-i2-'-l.

V2

8. t^ = cot-ii.
X

10. w-tan-1 ^^
.

1 — a;-

11.

12. t^-sin-i^-^.
X

dx V^ 5
^^

— X

'

du 1

dx a^ + x'

du =
a'"

dx

du _ I cos X'

dx vr— nP- sin2 x

du— — 1

dx V3 + 2ir-

7. w = cot-i^i-^.
6

9. u = tan~^--
x

du^ 2

dx 1 4- a;2

d?t _ 3

dx~ 1 + x'^'

X
13. It = cos~i

14. u = sm-^(2xVl-x^). ~= ^ - . |]a;<
(^05 Vn^^' "" V2
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15. f = cos-i-. — = -2siii2^.
2 dt

16. i=siD-i-. ^=3cos3«.
dt

ds

n '
' dt

17. ^=COS"l-+y. — = — ?isill7l(^ — y)-

18. u = x?>YQr^x. 19. ?t =

20. u =

X

1 du

sin-i X dx Vl - x'^ (sin-i aj)2

21. u = a cos 1 22. lA = tan 1

a X 4- a

23. lA = cot 1—! 24 ?t = sm i '

hx — a bx -\- a

„-. / ., V _, a du ^x^ — d^ [.
25. ?fc =Vx— a- — a cos !-• — = —

, a > 0.
£c dx X

• -,x
,
Va- — X- du. -ya? — x^ ^ ^

26. i6 = smi-H — = , a > 0.
a aj dx x^

27. ?f = tan-i{ 2 tan-V
V V

28. ?( = tan-i(3 tan Q).

dii^ 2

f?a; 5 — 3 cos a;

r^w 3

cie 5-4cos2^

4. Continuation. Numerical Computation. By means of

the Tables the numerical value of any of the functions of this

chapter can be determined when a specific numerical value has

been chosen for the independent variable. It is, however, an

important aid to ease and security in such computations to be

able, in advance, to make sure of the early significant figures

and the location of the decimal point. There are two impor-

tant geometrical methods for achieving this end. One is the

representation of the trigonometric functions by suitable lines

connected with the unit circle ; the other consists in the graphs

introduced above, in § 2.
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First of all, however, it should be pointed out that there are

two distinct problems. One is to find all values of x which

satisfy such equations as

(a) sin X = .2318

;

(6) cos x = - .4322
;

(c) tan x = - 1.4861.

The other is to find the principal value of an inverse trigono-

metric function ; for example,

sin-1.2318
;

cos-i (- .4322)
;

tan-i (- 1.4861)

The methods of treating these problems are identical.

First Geometric Method. Equations (a), (6), (c) can be

solved graphically by the aid of the unit circle representation

with an error corresponding to a degree or two, the results

being expressed in radians if the problem comes from the

Calculus.

For example, consider equation (h). The student should

provide himself with an accurately drawn circle of his own
construction, executed on the accurate centimeter-millimeter

paper commercially procurable ; the radius of the circle being

10 cm. and its center at a principal intersection of the rulings.

To solve equation (6), he will lay a straight-edge on his

plate, parallel to the secondary (or y-) axis and at a distance

of 4 cm., 3J mm. to the left of that axis. Marking the two

points of intersection of the straight-edge with the circle by
fine pencil lines easily erased, he now measures one of the

acute angles involved by means of his protractor and thus

determines the two solutions of (5) lying between 0° and 360°

correct to minutes or thereabouts. By aid of the Tables the

values can at once be converted into radian measure.

Arithmetic Solutions. From the figure before him the stu-

dent now sees clearly a right triangle, one leg of which is

known. The determination of the angle he needs is merely a

problem in the solution of a right triangle by the tables, and
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he proceeds to carry this work through to the degree of accu-

racy which the tables permit.

Equations (a) and (c) are treated in a similar manner. The
point of this method is that the student is trained to visualize

a figure, and not to try to remember a table that looks like

sin J. 4- -h — —

.

For, such tables vanish in a short time, and when the student

needs his trigonometry in later work, he is helpless.

In terms of the inverse functions, this first problem consists

in finding all the values of the multiple-valued function cos~i x

for the value of the variable, x = — .4322.

Second Geometric Method. This method consists in reading

off from the graph the tAvo values which lie between and 27r,

and then adding to these arbitrary positive or negative multi-

ples of 2 IT.

The graph suggests, moreover, how to determine these values

arithmetically by the aid of a table of sines or cosines of angles

of the first quadrant. It also suggests a further refinement of

the graphical method, of which the student will do well to

avail himself,— namely, this. Let him make an accurate

graph of the function
^ ^ y= sm X

on cm.-mm.-paper, taking 10 cm. as the unit and measuring

the angle in radians, x ranging from to ir/2. This half-arch

supplements the four graphs of the functions sin x, cos x, sin"i x,

cos"ix and serves as a 3-place table for determining their values

(with a possible error of two or three units in the third place).

To sum up, then, there are two geometric methods ; 1) the

unit-circle method ; 2) the graphs of the functions, the latter

being supplemented by the 10-cm. graph just described. Either

of the geometric methods suggests how to use the tables correctly

and affords an altogether satisfactory check on the tables.

When the accurately drawn graphs are not at hand, free-

hand drawings indicate clearly how to use the tables with

security and accuracy.
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EXERCISES

1. Determine both in degrees and radians all values of x

which satisfy the above equations (a), (6), (c), using each time

all of the geometric methods set forth, and also the tables.

2. Find the value of each of the following functions. It is

understood that the priiicipal value is meant. Use first the

method of the graphs. Then determine from the tables.

Check by unit-circle and protractor.

i) sin-i(- .1643); ii) cos-i(.6417)

;

iii) tan-i(- 2.8162).

3. By means of a free-hand drawing of the graph estimate

the value of each of the following functions. Remember that

a curve recedes from its tangent very slowly near a point of

inflection.

a) sin-1.113; h) tan-i(- .214) ; c) cos-i.l72;

d) tan-i(-7.4); e) cot-i(- .152)
; /) cos-i(- .998) ;

g) sin-i(-.21); h) sin-i.89; i) tan-i5.2;

j) cot-17.3; k) cos-i(-.138); I) sin-i(- .138).

In what cases is your error large ; in what, small ?

5. Applications. The inverse trigonometric functions afford

a convenient means of solving the following problem in Optics.

A ray of light is refracted in a

prism. Show that its deviation from

its original direction is least when

the incident ray and the refracted

ray make equal angles with the

faces of the prism.

The study of this problem has a
p^^^ yg

vivid interest for the student who

has seen the laboratory experiment of admitting a ray of

sunlight into a darkened room, allowing it to pass through
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a prism, thus being refracted, and throwing it finally, dis-

persed, on a screen.

Let AP be the incident ray ; PQ, its path through the

prism ; and QB the ray which emerges. Then the deflection

of PQ is obviously ^ — <^ and the further deflection of QB is

0' —
cf>' ',

so that the total deflection, u, is

:

(1) u = e-<t> + 0'-it>' = e-{-0'-(ct>^ cf>').

On the other hand, the sum of the angles of the triangle

Hence

(2) <f>-\-<t>'=a.

We can, therefore, write (1) in the form

:

(3) It = 0-^0' -a.

This is the quantity it is desired to make a minimum. and
6' are, however, connected by a relation which can be obtained as

follows. We have by the law of refraction (cf. Chap. V, § 7)

:

... sin 6 sinO'
(4) = ?i, = n.

sm
<f>

sm <j>'

Let V = 1/n. Then

(5) sin<^ = vsin^ or <^ = sin~i(vsin^).

Similarly,

(6) sin
<l>'
= v sin 0' or <^' = sin~i (v sin 0').

Substituting these values of <^ and <f>'
in equation (2) we have

the desired relation

:

(7) sin-i (v sin 0) + sin-i (v sin $') = a.

Our problem now is completely formulated ; it is : To make
the function u given by (3) a minimum, when 6 and 6' are con-

nected by (7)

:

I
u = e-\-0' -a,

(8)
[ sin~i (v sin 6) -|- sin"i (v sin 0') = a.



THE INVERSE TRIGONOMETRIC FUNCTIONS 223

Take 6 as the independent variable. Then

and the condition

— = gives —- = — 1.

d6
^

dO

Next, take "the differential of each side of the second equa-

tion (8)

:

d (v sin 6) d (v sin 6') _ r.

r ,
— ^)

or

Hence

Vl - v2 sin2 e Vl - v2 sin2

VCOS^C?^ VCOS^^C?^^ _ r.

Vl - v2 sin2 e Vl - v2 sin2 6'

/-.^x cos cos ^^
(<^^'\^o

Vl - v2 sin2 6 Vl-v2sin2(9'U^y

But dO'/dO = — 1. Consequently

/-J

1

N

cos ^ cos B'

Vl - v2 sin2 e Vl - V' sin2 $'

One solution of this equation is ^ = B\— the solution de-

manded by the theorem. But conceivably there might be

other solutions, and then it would not be clear which one of

them makes u a minimum. We can readily show, however,

that equation (11) has no further solutions. Square each side

:

cos2^ _ cos2^^

1- v2sin2 6'""l-i/2sin2^'*

Clear of fractions and express each cosine in terms of the sine

:

(1 - v2 sin2 e'){l - sin2 ^)= (1 - v^ sin2 6){1 - sin2 0').

Multiply out and suppress equal terms on the two sides :

- sin2 6 - v2 sin2 6' = - sin2 6' — v- sin2 ^,

(i/2 ~ 1) sin2 ^ = (v2 - 1) sin2 Q'.
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Hence
sm2 = sin- 0', sin = sin 6',

and consequently the only angles of the first quadrant which

can satisfy (11) are equal angles, = 6'.

From (5) and (6) it follows that cfi = <f>'.
Hence, from (2)

and so 6= sin
2'

u=:2 sin"

.(.sing,

1

(

71 sin
^ J

— a.

That u is a minimum, is clearly indicated by the labora-

tory experiment. It can be proven analytically as follows.

From (9)

Differentiate (10) as it stands ; then, after the differentia-

tion, set dd'/cW = — 1 and 6 = 6'. It is seen at once that

— < 0, hence — > 0.

and u has a minimum.

EXERCISE

The bottom of a mural painting 4 ft. high is 12 ft. above

the eye of the observer. How far back from the wall should

he stand, in order that the angle subtended by the painting be

as large as possible ?

Suggestion. Take the distance, x, of the observer from the

wall as the independent variable, and express the angle of

elevation of the bottom and the top of the painting in terms

of X.
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