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Disease is an emerging threat to coral reef ecosystems

worldwide, highlighting the need to understand how

environmental conditions interact with coral immune

function and associated microbial communities to affect

holobiont health. Increased coral disease incidence on reefs

adjacent to permanently moored platforms on Australia’s

Great Barrier Reef provided a unique case study to

investigate environment–host–microbe interactions in situ.

Here, we evaluate coral-associated bacterial community (16S

rRNA amplicon sequencing), immune function (protein-

based prophenoloxidase-activating system), and water quality

parameters before, during and after a disease event. Over the

course of the study, 31% of tagged colonies adjacent to

platforms developed signs of white syndrome (WS), while all

control colonies on a platform-free reef remained visually

healthy. Corals adjacent to platforms experienced significant

reductions in coral immune function. Additionally, the corals

at platform sites that remained visually healthy throughout

the study had reduced bacterial diversity compared to
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healthy colonies at the platform-free site. Interestingly, prior to the observation of macroscopic

disease, corals that would develop WS had reduced bacterial diversity and significantly greater

community heterogeneity between colonies compared to healthy corals at the same location. These

results suggest that activities associated with offshore marine infrastructure impacts coral

immunocompetence and associated bacterial community, which affects the susceptibility of corals

to disease.
ing.org/journal/rsos
R.Soc.open

sci.6:190355
1. Introduction
Coral disease has the potential to significantly reduce coral cover and diversity on reefs, and is predicted

to be on the rise [1,2]. While coral disease prevalence is low on Indo-Pacific reefs, increasingly frequent

localized disease events have been linked to local anthropogenic impacts including eutrophication,

sedimentation, terrestrial pollution and increased ocean temperatures [3–7]. To understand

connections between changing marine environments and disease, and to effectively manage disease

outbreaks, studies that explore how environmental stressors affect both the immunocompetence of

corals and the structure of coral-associated microbial communities are needed. However, holistic

studies that simultaneously examine the interplay among environmental stressors, host physiology

and associated microbes within coral reef ecosystems are lacking ([8], but see [9,10]).

Corals are complex organisms comprised of diverse and dynamic consortia of eukaryotes,

prokaryotes and archaea, whose symbioses are essential to coral health [11–16]. Many coral-associated

bacteria potentially complement important host functions, such as nitrogen fixation and sulfur cycling,

that allow corals to thrive in oligotrophic waters [17–19]. Others protect their hosts from harmful

pathogens by producing antimicrobial compounds and potentially disrupting the pathogens’ cell-to-

cell communication [20–22]. While coral-associated microbial communities can be beneficial to their

hosts, changes in environmental and/or host conditions can dramatically shift microbial community

structure, with potentially negative effects for the coral host. For example, in favourable habitats,

corals host highly stable microbial communities, while those in unfavourable habitats host less

structured and more diverse communities [23]. Furthermore, environmental perturbations can reduce

the capacity of the host and/or the microbiome to regulate community composition, resulting in an

unpredictable and unstable microbial community state [24]. For example, shifts in bacterial

assemblages have been recorded on coral colonies exposed to thermal, nutrient, carbon and pH stress

[25]. Ritchie [20] also noted a loss of antimicrobial activity within coral mucus during a warm thermal

anomaly that coincided with a bleaching event, and Bourne et al. [26] reported microbial community

shifts on healthy colonies prior to visual signs of bleaching.

The fate of the coral host appears to be linked to the diversity and composition of its associated

microbial consortium. For example, bacterial community shifts have been proposed to be a primary

driver of coral bleaching [27], and a number of other diseases including Aspergillosis [28], white

plague and black band disease [29–31], have been linked to altered coral-associated microbial

assemblages [32–35]. Paradoxically, it is still unknown if these changes arise as a cause or

consequence of pathogenesis [36,37]. Nevertheless, shifts in coral-associated microbiota are emerging

as a useful indicator of altered coral health state [38].

Corals also possess an innate immune system that helps protect them from infection by potentially

harmful organisms. One of the best-studied components of the coral immune system is the

prophenoloxidase-activating system, or melanization cascade, which involves the conversion of

prophenoloxidase to phenoloxidase and the subsequent deposition of melanin following pathogen

detection or injury [39]. Melanin helps seal wounds and forms a potent physico-chemical barrier that

restricts the movement of invading organisms. In many invertebrate species, disease resistance and

basal activity of the prophenoloxidase system are positively correlated with higher baseline activity

levels, conferring greater disease resistance to individuals and populations [40–43]. In corals, activity of

the prophenoloxidase system has been used as a proxy for immune function, and elevated activity

of the melanization cascade has been linked to tissue damage during in vitro pathogen exposures and

in situ coral infection [10,44–48]. While coral innate immunity clearly plays an important role in

maintaining coral health on reefs, little is known about the potential influence of environmental stress

on immunological pathways, how innate immune function changes during the entire course of disease

progression (i.e. from initially healthy corals through disease infection and subsequent recovery or

death), and how disease progression relates to microbial community structure.
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Tourism on the Great Barrier Reef (GBR) represents a $6.4 billion per year commercial industry in

Australia [49]. Tourism on the reef is geographically concentrated, with 85% of tourist activities

focused in the Cairns and Whitsundays regions, and day trips to pontoons representing the largest

component of the tourism industry [50,51]. Impacts of pontoon structures on the surrounding reef

community may include damage from installation of moorings, shading of the reef, concentrated

visitor activity (i.e. physical fin damage [52], short term water quality changes from sunscreen [53]

and human waste [54]), and potential seabird guano runoff resulting in decreased water quality.

While there is strong motivation for tourism operators to protect reefs associated with platforms, there

is great complexity of coral response to stress, and previous work has identified that additional

anthropogenic impacts associated with offshore marine tourist structures appear to overwhelm the

immune system, resulting in increased immune gene expression and higher disease incidence [47].

Reports of localized increased disease prevalence at offshore reef platforms on the GBR [55] provided

an opportunity to undertake a case study to holistically investigate the complex interplay that occurs

among environmental stress, coral-associated microbial communities, coral immune function and

disease onset in situ. We combine ecological disease monitoring, water quality assessment, protein-

based immune function characterization and microbial community profiling using 16S rRNA gene

amplicon pyrosequencing to build a baseline understanding of the interactions that occur between the

coral host and its microbiota during environmental stress to culminate in disease. Specifically, we

compare coral immune function and coral-associated microbial communities (i) between healthy corals

adjacent to reef platforms versus healthy corals at a nearby control site, and (ii) among corals before,

during and after initial signs of coral disease white syndromes (WSs).
5

2. Material and methods
2.1. Study site
The case study was conducted at Hardy Reef (1984403300 S, 14981005700 E), a mid-shelf reef situated 75 km

offshore of the Whitsunday Island group in the central region of the Great Barrier Reef Marine Park

(figure 1) from November 2010 to June 2011. Hardy Reef had one 45 m � 12 m platform which

accommodated up to 400 visitors per day [50], and an unused smaller platform (24 m � 10 m)

approximately 300 m south of the main tourist platform (figure 1). The smaller platform was previously

used for tourism, however use of this platform ceased approximately 1 year prior to this study. Both

platforms were permanently moored approximately 5 m from the reef crest, and provided tourists with

snorkel and diving tours, air-conditioned lounges, and fresh water showers and toilet facilities.

In addition to the two platform sites, we also monitored a control site situated 800 m to the south and

down-current of the unused platform that had no permanent structures and received no tourists (figure 1).

2.2. Weather monitoring and water quality sample collection
The Whitsundays region of the GBR has a monsoonal climate, with a summer wet season from

approximately December to March. Daily water temperature, rainfall and light intensity data were

collected by the Australian Institute of Marine Science (AIMS) weather station located at the main

tourist platform (data available from http://www.aims.gov.au). Means for these physical variables

were calculated using daily values from a 14-day period including, and immediately preceding, each

month’s sampling date. Daily visitor data were not available and thus visitor concentration was

unable to be included as a water quality covariate.

Beginning in January, five replicate water samples were collected in 50 ml sterile syringes approximately

1 m above the reef substrate at each sampling location and time point. Sub-samples were analysed for

dissolved inorganic nutrients (ammonium, nitrite, nitrate, phosphate, silicate) and dissolved organic

nitrogen (DON), phosphorus (DOP) and carbon (DOC). Five additional replicate samples were collected

in 500 ml plastic bottles for salinity measurements using a Portasal Model 8410A Salinometer (Guildline,

Ontario, Canada). Duplicate sub-samples were immediately filtered through 0.45 mm syringe filters

(Sartorius MiniSart N, Goettingen, Germany) and collected in 10 ml acid-washed screw-cap tubes for

dissolved nutrient quantification. DOC samples were acidified by adding 100 ml of analytical-grade

hydrochloric acid (32%). All samples were immediately snap frozen in liquid nitrogen and stored at

2308C prior to laboratory analysis. Inorganic dissolved nutrient concentrations were determined by

standard wet chemical methods [56] implemented on a segmented flow analyser [57]. Dissolved

http://www.aims.gov.au
http://www.aims.gov.au
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Figure 1. Map showing location of (a) study site at Hardy Reef, which lies 75 km offshore within the (b) central sector of Australia’s
Great Barrier Reef Marine Park. (c) Three coral monitoring and sampling sites: tourist platform, unused platform, and a control site.
(d ) The unused platform lies approximately 300 m south of the tourist platform and the control site lies an additional 800 m south
of the unused platform 2. Aerial images: Google Earth.
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inorganic nitrogen (DIN) was calculated by summing the separately measured ammonium, nitrite and

nitrate values, and dissolved inorganic phosphorus (DIP) represents total phosphate. Analyses of total

dissolved nitrogen and phosphorus (TDN and TDP) were carried out using persulphate digestion of

filtered water samples [58], which were then re-analysed for inorganic nutrients, as described above.

DON and DOP were calculated by subtracting DIN and DIP concentrations from the TDN and TDP

values, respectively. DOC concentrations were measured by high temperature combustion (6808C), using

a Shimadzu Total Organic Carbon TOC-5000A carbon analyser (Kyoto, Japan).

2.3. Coral monitoring and sample collection
At 2–3 m depth within each of the three locations monitored, eight similarly-sized (30–40 cm diameter)

visually healthy colonies of the coral Acropora millepora were tagged with a plastic cattle tag, which was

inscribed with a unique colony identification number and attached to the colony with a plastic cable tie.

Care was taken to select colonies separated by a minimum of 5 m to minimize the risk of confoundment

due to potential vector transmission of infectious disease agents. Tagged colonies were photographed

and their health states visually assessed each month. Additionally, samples for bacterial community

profiling and immunological analyses were collected at four time points: November (late austral

spring), January (early austral summer, wet season), February (mid austral summer, wet season) and

June (early austral winter, dry season). At each time point, one branch (approximately 5 cm in length)

was sampled from the middle of each tagged colony using surgical bone cutters and placed in
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a plastic bag on SCUBA. If a colony displayed signs of disease, an apparently healthy portion of a branch

was collected approximately 1 cm from the disease lesion boundary, rather than the middle of the colony.

All tagged colonies were photographed before and after sample collection. Coral samples were placed in

15 ml cryogenic tubes, snap-frozen in liquid nitrogen and stored at 2808C until processing. To attempt to

minimize bias resulting from triggering an immune response as a result of physical injury from fragment

removal [48] or bacterial proliferation, samples were collected in the same order during each monthly

time period and frozen within 15 min of collection. Additionally, the lesion itself was not included in

further sample processing as the initial PO response due to injury is local to the lesion [48].

2.4. Genomic DNA extraction and PCR amplification of bacterial 16S rRNA gene
Frozen coral fragments were crushed in a sterile, stainless steel, liquid nitrogen chilled mortar and pestle

using a hydraulic press. Bacterial DNA was then extracted from 100 mg (wet weight) aliquots of the

crushed coral powder using the PowerPlant DNA Isolation Kit (MoBio, Carlsbad, CA) according to

the manufacturer’s instructions. Purified DNA was stored at 2808C until PCR amplification. Library

preparation and bacterial tag-encoded FLX-titanium amplicon pyrosequencing based on the V1–V3

region (E. coli position: 27–519) of the small-subunit ribosomal RNA (16S) gene was performed at

MRDNA (Shallowater, TX) on all samples with forward primer 27F (GAGTTTGATCNTGGCTCAG)

and reverse primer 519R (GTNTTACNGCGGCKGCTG), as described previously [59,60].

2.5. Sequence processing and selection of operational taxonomic units
Sequence reads were processed using the Quantitative Insights Into Microbial Ecology 1 (QIIME) pipeline,

as described previously [61]. Briefly, samples were demultiplexed by sample-specific barcodes, low quality

reads were discarded (minimum read length: 150 bp; maximum read length: 500 bp; minimum average

Phred score: 25; maximum ambiguous bases: 6; maximum homopolymer run: 6; maximum primer

mismatches: 0), and chimeric sequences were discarded (Chimera Slayer [62]). Operational taxonomic

units (OTUs) were identified (method: Uclust, threshold: 97% [63]), and representative sequences were

chosen by consensus and assigned a taxonomy (method: PyNAST [64], template: GreenGenes v13_8

[65]). A lane mask was applied to hide uninformative regions and a phylogenetic tree was constructed

(method: FastTree [66]). Following processing, 148 182 classifiable, non-chimeric reads of sufficient

quality remained, averaging 2554 reads per sample. Prior to downstream analysis, sequence data for all

samples was rarefied to 685 reads to remove sequencing effort heterogeneity. These sequence data are

available from the GenBank Sequence Read Archive (SRA) under accession number SRP148975.

2.6. Protein extract preparation and assays
Total potential phenoloxidase (tpPO; [48]) activity was measured as a proxy for innate immune function

following the methods described by Palmer et al. [45], with minor modifications. Tissue was airbrushed

from frozen coral fragments (approx. 4 cm2) into 10 ml of ice-cold extraction buffer (50 mM Tris-HCl, pH

7.8 with 50 mM dithiothreitol) and homogenized for 45 s (IKA T10 Basic homogenizer, Malaysia). The

resulting tissue slurry was centrifuged at 3500 rpm for 5 min and the supernatant collected and stored

at 2308C until use. Total tissue protein content was determined using the DC Protein Assay (Bio-Rad,

Hercules, CA, USA) according to the manufacturer’s standard assay protocol. The assay was held at

room temperature for 20 min and the endpoint absorbance at 750 nm was measured using a

Spectramax M2 spectrophotometer (Molecular Devices, Sunnyvale, CA, USA).

Twenty microlitres of tissue extract from each sample was added in triplicate to a clear 96 well

microtiter plate, followed by the addition of 40 ml of Tris buffer (50 mM, pH 7.8) and 25 ml of trypsin

(0.1 mg ml21). For blanks, tissue extract was replaced by 20 ml of extraction buffer. After a 20-min

incubation at room temperature, 30 ml of dopamine hydrochloride (10 mM, Sigma-Aldrich, St. Louis,

MO, USA) was added. The kinetic absorbance at 490 nm was determined at 5-min intervals for

45 min. Total potential PO activity was calculated as the change in absorbance using the linear

portion of the reaction curve over time, standardized to the total protein content of each sample.

2.7. Data analyses
To better tease apart the effects of location and health state, samples were separated into three groups on the

basis of their proximity to artificial structures and visually-assessed health state during the study:
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(i) colonies at the control site that remained visually healthy during the entire study period (control), (ii)

colonies at the platform sites that remained visually healthy during the entire study period (platform)

and (iii) colonies at the platform sites that developed signs of the coral disease white syndrome (WS) at

any point during the study. No colonies of A. millepora at the control site displayed visual signs of WS at

any point in the study.

Bacterial community (alpha) diversity was assessed using Faith’s phylogenetic distance, a

phylogenetic measure of diversity based on total branch length of the bacterial 16S rRNA gene

phylogeny, calculated in QIIME 1 [67,68]. Beta diversity (between sample diversity) was assessed

using the unweighted UniFrac distance metric (a phylogeny-based distance metric that avoids treating

semi-quantitative pyrosequencing results as quantitative and is more sensitive to the influence of rare

taxa in shaping coral-associated bacterial communities) [69]. A UniFrac dissimilarity matrix based on

bacterial sequences at the OTU level was used to construct unconstrained two-dimensional principal

coordinates analysis (PCO) plots to visualize differences between bacterial community assemblages

[70,71]. Additionally, permutational multivariate analysis of variance (PERMANOVA; [70]) was used

to test for statistical differences between: (i) bacterial community assemblages associated with colonies

remaining visually healthy throughout the study period at platform versus control sites, and

(ii) colonies located at the platform sites remaining visually healthy throughout the study versus those

developing WS. This analysis was based on unweighted UniFrac dissimilarity matrices, type III partial

sums of squares and 9999 random permutations of the residuals under the reduced model. Post hoc
pair-wise comparisons among locations and health states were conducted when significant main

effects were detected. Additionally, the similarity percentages routine (SIMPER) was used to

investigate the contribution of individual bacterial OTUs to the observed separation between sample

groups. The SIMPER analysis was based on a zero-adjusted Bray–Curtis similarity matrix [70] using

presence/absence-transformed data at the lowest phylogenetic level (i.e. OTU level).

Differences in water quality variables (salinity, DIN, DIP, silicate, DON, DOP, DOC) among sampling

locations and months, and interactions between these factors were determined by two-way, fixed-factor

PERMANOVA using a Gower Metric-based distance matrix [71]. The factor ‘Location’ contained two

levels (platform and control), and the factor ‘Month’ contained three levels (January, February and

June). Post hoc pair-wise comparisons among locations and months were conducted when significant

main effects were detected. The Gower Metric was deemed the most appropriate resemblance

measure because the water quality variables employed in the analyses were on different scales, there

were no zero values, and the various physical and chemical variables merited equal weighting

(e.g. equal differences between values have the same influence on association, regardless of scale).

To identify water quality variables responsible for driving differences among sampling locations for

each month (those contributing the most to patterns in multivariate space), we used a PCO performed

on the original Gower matrix [71]. Correlations of the ordination axes using the original water

concentration data were overlaid as vectors on a bi-plot. All multivariate analyses were performed

using Primer 6.0 statistical software (Primer-e Ltd, UK).

Mean total potential phenoloxidase enzymatic activity and bacterial community alpha diversity were

analysed using univariate repeated measures analyses of variance across the four sampling months

(‘Time’), which was tested as the within-subject factor, and three ‘Health State’ groups (as described

above: healthy near control, healthy near platform, and WS near platform), which was tested as the

between-groups factor. Analyses were conducted on log-transformed data and the assumption of

sphericity [72] was assessed prior to interpretation (a ¼ 0.05). All post hoc comparisons were

performed using Tukey’s honestly significant difference (HSD) analyses. Univariate analyses were

performed using R v. 3.0.2 [73].
3. Results
3.1. Physical environment characteristics and colony condition
All tagged colonies monitored at the control site (n ¼ 8) remained visually healthy throughout

the duration of the study (figure 2a–c,g). All tagged colonies located adjacent to the two platforms

(n ¼ 16) were visually healthy at the beginning of the study in November and December (figure 2g).

In January, five colonies located at platform sites (i.e. one at the large used platform and four at the

small unused platform) displayed tissue loss exposing intact white skeleton, characteristic signs of

WS. Lesions radiated from the centre of colonies as diffuse, acute to sub-acute areas of tissue loss,
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Figure 2. Time-series examples of two tagged colonies of A. millepora. Both colonies were visually healthy in November 2010 at the
control site (a) and a platform site (d). Subsequent visual health status was assessed in January 2011 (b: apparently healthy at control site;
e: WS signs at platform site) and the final visual health status was assessed in June 2011 (c: apparently healthy at control site; f: recovered
from WS at platform site, but displaying partial-colony mortality). Time series of colony health status by month (g).
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with no evidence of predation. WS-induced tissue loss represented mortality of 40% to 50% of the tissue

surface area of affected colonies (figure 2a,d ). Between December 1 and January 1, the reef experienced

the greatest increase in mean daily water temperature (þ1.48C; electronic supplementary material, figure

S1c) recorded throughout the eight-month study, as well as 7 consecutive days of rain that, when

averaged, was greater than 1 standard deviation above the mean amount accumulated over the entire

study period (mean+ s.d. ¼ 5.4+13.1 mm d21 for the study, 20.4+ 9.6 mm d21 over this 7-day

period). In February, no new colonies developed disease signs and, apart from one colony at a

platform site with progressing WS, all disease lesions had ceased progression and no characteristic

WS bands were evident (figure 2f,g). Between January 26 and February 6, the reef experienced the

highest mean daily wind speed, light intensity, water temperature and rain accumulation (electronic

supplementary material, figure S1a–d). During this period, a severe tropical cyclone passed 270 km

north of the Whitsunday region and the reef experienced 4 consecutive days of rain, representing 3

standard deviations above the study mean (3-day mean+ s.d. ¼ 63.2+16.6 mm d21). No further

disease development or lesion progression was observed in March, and all colonies previously

recorded with WS at platform sites appeared visually healthy, with healed tissue margins around

areas of partial colony mortality. By June, none of the 24 tagged colonies had succumbed to the

disease, but rather all tagged colonies were again visually healthy.
3.2. Spatial and temporal patterns in water quality
Water quality parameters did not vary between the platform and control sites (pseudo-F ¼ 0.75,

p ¼ 0.61), however they did vary significantly among sampling months (pseudo-F ¼ 19.0, p , 0.001,

figure 3, electronic supplementary material, tables S1 and S2). Seasonal differences in salinity and

silicate strongly separated the wet austral summer months of January and February from the drier

month of June along the first PCO axis (60.4% of total variation, figure 3 and electronic

supplementary material, table S3). February was characterized by higher concentrations of dissolved

inorganic nitrogen (DIN) and lower concentrations of dissolved organic carbon (DOC) and dissolved

organic nitrogen (DON), resulting in the slight distinction between the two summer months along the

second PCO axis (19.3% of total variation, figure 3; electronic supplementary material, table S1). There
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was no significant interaction between month and sampling location (pseudo-F ¼ 3.5, p , 0.001, figure 3,

electronic supplementary material, table S1).

3.3. Anthropogenic influence on coral-associated bacterial communities and coral immune
function

Amplicon sequencing resulted in 148 182 classifiable, non-chimeric reads of sufficient quality, with an

average of 2554 reads per sample. Bacterial communities from all coral samples were dominated by

Proteobacteria (70% of reads; mostly Xanthomonadales, 33% of reads) and Oceanospirillales (15% of

reads; electronic supplementary material, figure S2). Bacterial communities associated with healthy

colonies at each location (i.e. healthy colonies at platform sites versus healthy colonies at control site) fell

into consistent phylogenetic clusters over the eight-month sampling period (d.f. ¼ 1, pseudo-F ¼ 1.43, p
¼ 0.03, figure 4, electronic supplementary material, table S4). Clustering within location, visualized by a

partitioning of the samples in the PCO ordination (figure 4a), indicates that healthy samples from

platform sites were more similar to each other in bacterial phylogenetic structure than they were to

healthy control site samples (d.f. ¼ 1, pseudo-F ¼ 1.43, p ¼ 0.03, electronic supplementary material, table

S4). While overall bacterial communities did not differ significantly between sampling time points (d.f. ¼

3, pseudo-F ¼ 1.04, p ¼ 0.34, electronic supplementary material, table S4), differences between locations

were most pronounced in January (d.f. ¼ 1, pseudo-F ¼ 1.58, p ¼ 0.005, figure 4b) and June (d.f. ¼ 1,

pseudo-F ¼ 1.32, P ¼ 0.03, figure 4c, electronic supplementary material, table S4).

While there was no significant interaction between location and time point, to further characterize

microbial community dynamics resulting in disease, we examined fine-scale changes within each

sampled time point. In January, a loss of bacterial taxa associated with corals from platform sites was

identified as the major driver of bacterial community differences between healthy corals at platform

versus control sites. Twenty-three out of the 24 (96%) OTUs that each explained greater than or equal

to 1% of the separation between locations (identified by SIMPER) were less common on platform site

corals (electronic supplementary material, table S3). The single OTU that was more common on

platform site corals belonged to the genus Burkholderia and was present in 80% of platform corals

compared to only 25% of control corals (electronic supplementary material, table S3). Furthermore,

bacterial diversity on healthy platform site corals (mean phylogenetic diversity: 6.2+ 1.4, mean+ s.e.)

was nearly 50% lower than on corals at the control site (11.8+ 0.3) (HSD, p ¼ 0.008, figure 5a). At the

same time, bacterial communities associated with healthy platform corals became less stable between
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individuals, which can be roughly visualized as the amount of within-location dispersion (variability) in

the PCO ordination (figure 4b). However, community stability among healthy samples did not differ

significantly between platform (mean within-location UniFrac distance: 0.81+0.02) and control sites

(0.76+ 0.01) (HSD, p . 0.05, figure 5b), suggesting that differences in bacterial community diversity

(i.e. alpha diversity) rather than among-colony heterogeneity (i.e. beta diversity) underpins the

dissimilarity detected between these locations.

In June, disparities in among-colony bacterial community composition (i.e. beta diversity) appeared to

drive the separation observed between healthy corals at the two locations. However, in contrast to January

samples, bacterial community structure was far more consistent (i.e. homogeneous) among healthy

platform site corals (mean UniFrac distance+ s.e.: 0.66+0.01) than control site corals (mean within-

location UniFrac distance: 0.84+0.02) (HSD, p ¼ 0.002, figure 4b). These differences in bacterial

community stability can be visualized as the large dispersion of control site samples relative to the more

tightly clustered platform samples in the PCO ordination (figure 4c). Unlike patterns found in January,

loss of specific bacterial taxa and reduced overall diversity did not appear to drive community

differences. Nearly 30% (10 out of 37) of OTUs explaining greater than or equal to 1% of the separation

between locations were more abundant at control sites (electronic supplementary material, table S5), and

overall bacterial diversity did not differ significantly between locations (HSD, p . 0.05, figure 4a).

Total potential phenoloxidase activity levels (D absorbance mg protein21 min21) of healthy corals

varied significantly between locations (F ¼ 5.7, p ¼ 0.02), but not among months (F ¼ 1.2, p ¼ 0.33),

with a significant interaction between location and month (F ¼ 2.7, p ¼ 0.028). In both November

and June, mean tpPO activity of healthy corals near reef platforms was approximately 50% lower

than mean activity of corals at the control site (November: platform [0.07+0.01 s.e.] versus control

[0.15+ 0.04 s.e.], HSD, p ¼ 0.021; June: platform [0.06+ 0.008 s.e.] versus control [0.12+ 0.02 s.e.],

HSD, p ¼ 0.034; figure 6). However, mean tpPO activity did not differ between locations in January or

February ( p . 0.05; figure 6).

3.4. Influence of white syndrome on coral-associated bacterial communities and coral
immune function

At platform sites, bacterial taxa present in communities associated with corals that developed WS in

January did not differ significantly from those associated with corals remaining healthy over the

course of the study (i.e. healthy colonies at platform sites versus WS-affected colonies at platform

sites) (d.f. ¼ 1, pseudo-F ¼ 1.16, p ¼ 0.20, electronic supplementary material, table S4) and no

significant differences were detected among sampling time points (d.f. ¼ 3, pseudo-F ¼ 1.13, p ¼ 0.14,

electronic supplementary material, table S4). The lack of consistent clustering according to health state,
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visualized as the absence of partitioning of the samples in the PCO ordination (electronic supplementary

material, figure S3), indicates that overall, bacterial communities on corals developing WS were not

different to communities on corals remaining healthy throughout the study.

Although consistent shifts in bacterial community membership were not detected between healthy

and WS-affected corals, two key changes in bacterial community structure were observed in

apparently healthy corals that would develop WS disease signs. In November, two months prior to

the first recorded visual signs of disease, the diversity of bacteria associated with apparently healthy

colonies that would subsequently develop WS (mean+ s.e.: 4.4+ 0.8) was nearly 40% lower than on

those remaining healthy (7.2+0.8, HSD, p ¼ 0.03, figure 5a). Additionally, variation in bacterial

communities among corals (i.e. beta diversity) was significantly greater on pre-WS colonies (mean

UniFrac distance: 0.84+0.03) relative to corals remaining healthy throughout the study (mean

UniFrac distance: 0.74+0.01; HSD, p ¼ 0.001, figure 5b). These results indicate that bacterial

communities on pre-WS corals were less diverse and more variable than on corals remaining healthy,

even before the first visible appearance of macroscopic disease signs.

In June, following the cessation of disease progression, beta diversity (i.e. among colony community

differences) was significantly higher for post-WS colonies (mean UniFrac distance+ s.e.: 0.78+ 0.02)

compared to samples of platform corals remaining healthy throughout the study (mean UniFrac

distance+ s.e.: 0.66+0.01; HSD, p ¼ 0.002, figure 5b). However, bacterial diversity did not differ

significantly between the two groups (HSD, p . 0.05, figure 5a).

In November, prior to the first visual signs of disease, tpPO activity did not differ significantly

between colonies that would later develop WS (mean tpPO activity+ s.e.: 0.08+ 0.007) and platform

corals remaining healthy throughout the study (0.07+ 0.01; p . 0.05, figure 6). In January, when

macroscopic disease signs were first observed, mean tpPO activity of WS-infected colonies (0.15+
0.02) was slightly elevated relative to healthy colonies (0.10+ 0.01), but these differences were not

significant (HSD, p . 0.05). In February, when all but one WS case had ceased progression, mean

tpPO activity in WS-affected colonies (0.18+0.06) was threefold higher than in those remaining

healthy (0.06+0.007; HSD, p ¼ 0.03, figure 6). In June, when all WS cases had healed, mean tpPO

activity of colonies that had previously suffered WS tissue loss did not differ significantly from mean

activity of those that had remained healthy throughout the study (0.07+ 0.009 versus 0.06+0.008,

respectively; HSD, p ¼ 0.87; figure 6).
4. Discussion
In this case study, we report significant reductions in immune function and loss of bacterial diversity on

healthy corals adjacent to reef platforms relative to healthy corals at a platform-free control site. During

the austral summer (January), levels of WS peaked at platform sites, affecting 31% of corals monitored,

while all tagged corals at the control site remained visually healthy throughout the study. While there

were no overall significant differences between bacterial community over the course of the study

between diseased and healthy corals, fine-scale differences were detected over time. In November,

two months before the first visual signs of disease, colony-level bacterial diversity associated with

corals that would go on to develop disease signs in January was significantly lower relative to corals

remaining healthy at platform sites. At the same time, bacterial communities became significantly

more variable among corals that would become diseased compared to the more stable communities

that characterized healthy corals at this time. This observation is consistent with previous coral

microbiome studies that contributed to the postulated Anna Karenina principle, which states that

stressors reduce the capacity of the host and/or their microbiomes to regulate microbial community

composition leading to unstable and often stochastic community states [24]. These results suggest that

proximity to reef platforms impacts coral immunocompetence and coral-associated bacterial

community structure and diversity, which may in turn influence the susceptibility of corals to disease.

4.1. Reduced coral-associated bacterial diversity and community stability precede white
syndrome coral disease

The significant reduction in bacterial diversity associated with individual corals and the significant

increase in among-colony bacterial community heterogeneity in corals that developed WS, months

before the first visual signs of disease, highlights the important role that diversity is likely to play in

stabilizing microbial communities that govern coral health. WS levels at platform sites peaked during
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the warm, rainy austral summer, affecting 31% of tagged platform site corals in January, while all tagged

control site corals remained visually healthy throughout the study. The timing of this disease event

corresponded with a period of marked microbial disturbance at platform sites, even among healthy

corals. On both macroscopic and microscopic scales, biodiversity stabilizes ecological systems through

functional redundancy and complementarity, with different species flourishing under different

conditions and thereby buffering the impacts of environmental change [74–78]. On macroscopic

scales, decreased species diversity often leads to elevated risk of abrupt and potentially irreversible

ecosystem collapse [74,75,78–81]. At the microbial level, reduced bacterial diversity within

mammalian organs (e.g. the intestine) is known to diminish the ability of individuals to resist

infection, assimilate nutrients and maintain the aggregate function of a healthy microbiome [82–85].

While little is known about the mechanisms between coral-associated microbial diversity and coral

health, an array of microbes is now recognized as essential to coral resilience [15,86]. The results

presented here support that a loss of microbial diversity may impact coral holobiont resilience, an

observation consistent with the Anna Karenina principle [24].

Coral-associated microbes contribute significantly to coral health through nutrient cycling, antibiotic

production and disruption of pathogen-to-pathogen communication [17,18,20,21]. Diverse microbial

assemblages are therefore likely to provide a high level of functional redundancy, helping to buffer

the impacts of environmental perturbations and maintain coral health. However, when microbial

diversity is suppressed, as we see in November prior to the first visual signs of WS, functional

redundancy is potentially reduced, hindering the coral-associated microbial communities’ ability to

maintain physiological functions that are vital to the health of the coral host. Furthermore, increased

between-coral microbial community heterogeneity immediately prior to developing macroscopic WS

disease signs suggests a loss of stability in community structure that may underpin bacterial

community resistance and/or resilience. Taken together, decreased microbial diversity on individual

corals and elevated heterogeneity among corals prior to disease onset suggests that an overall

disruption in microbial community structure, rather than infection by a single pathogenic species,

could contribute to disease development [87]. We however cannot eliminate the possibility of an

unidentified disease agent impacting these corals between November and January, initiating or

potentially precipitating the transition from an apparently healthy to a diseased state.
4.2. Reduced coral-associated bacterial diversity and coral immune function adjacent to reef
platforms

Reduced bacterial diversity and suppression of coral immune function in apparently healthy corals

adjacent to reef platforms reveals a potential mechanism contributing to the observed 15-fold increase in

coral disease levels near reef platforms previously reported by Lamb & Willis [55]. While the exact

cause of these shifts could not be identified in the current study, it does not appear that nutrient inputs

either directly or indirectly are associated with the reef platforms as patterns are more closely associated

with seasonal differences. However, other potential factors influencing differences among platform and

platform-free locations should be explored. On macroscopic ecosystem scales, persistent human

disturbances are known to alter the stability and diversity of ecological systems [74,75,78–81] and

microscopic bacterial communities are similarly sensitive to environmental perturbations [88]. While

little is known about specific environmental drivers of coral-associated microbial diversity, evidence

from soil microbiology studies indicates that both chemical and physical disturbance can significantly

reduce bacterial diversity in disturbed soils [89,90]. Marine microbes on oligotrophic coral reefs are

generally nutrient limited, so disturbances increasing the availability of nutrients are expected to play a

similarly important role in shaping bacterial community structure [91,92]. Microbial community shifts

have been recorded on colonies of Porites cylindrica exposed to nutrient-rich fish farm effluent [93], as

well as corals experimentally exposed to elevated nutrient levels [25,94]. Microbial shifts associated with

elevated iron concentrations adjacent to shipwreck sites have also been linked to coral mortality [95]. In

addition, higher levels of microbial pollution, sediment and plastic waste have all been linked to coral

disease [5,7,96], but microbial links between these factors and disease remain unidentified.

Disruptions in coral-associated community structure and the appearance of visual disease signs also

coincided with significant changes in coral immune function. Previous observations of low baseline

phenoloxidase activity and melanin levels among healthy Indo-Pacific acroporids suggest that when

corals in this family are challenged with injury, pathogenic agents and/or environmental perturbation,

they must significantly upregulate their immune function to avoid infection [6,10,43–48,97]. Since a
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microbial shift was observed prior to visual disease signs, one might expect a corresponding immune

response. However, the lack of preemptive immune system activation, and the previously reported

reduced levels of components of the lectin-complement system (one of the most effective innate

immune effector mechanisms) in these corals compared to those that remained visually healthy near

the platforms [47] suggests corals affected were either unable to detect oncoming disease and/or were

physiologically incapable of mounting a preemptive immune response. In January, corals responded

to disease using TLR signalling and complement system activation along with an increase in

phenoloxidase activities [47]. This response was likely sufficient to halt disease progression by

February, in part due to the significant elevation of phenoloxidase activity among WS-affected corals

when cessation of tissue loss associated with WS lesions was first observed. This suggests a potential

role for phenoloxidase in WS cessation and/or wound healing, which is consistent with previous

observations of elevated phenoloxidase levels at the border of WS lesions [45] and wound lesions [48].

Baseline levels of total potential phenoloxidase activity in control corals potentially conferred disease

resistance, but could also reflect a response to a separate insult, and longer term data would be

required to better establish baseline activity. However, not all platform site corals developed disease

despite their relatively low tpPO activity levels, highlighting the intricate interplay between host,

environmental and microbial factors that govern coral health and disease.

Recently, it was shown that corals near platforms had increased expression levels of genes involved in

the Toll-like receptor (TLR) signalling pathway, particularly in summer [47]. As TLR signalling is crucial for

the detection of microbes and the initiation of the immune response, and was shown to regulate the

microbiome in cnidarians through anti-microbial peptide (AMP) secretion [98], the increased levels

potentially indicate microbial stressors were present at these locations. However, the reduced levels of

immune effectors, such as tpPO activity, could suggest that the antimicrobial defences were negatively

impacted, contributing to disease development. In contrast, the baseline levels of tpPO activity in

control site corals potentially conferred disease resistance. Although the exact mechanisms remain

unknown, elevated nutrient levels have been shown to reduce immunocompetence in a range of marine

invertebrate species [99–102]. For example, transcript levels encoding for prophenoloxidase decreased

by 60% in blue shrimp (Litopenaeus stylirostris) exposed to elevated ammonia levels [99,103]. Similarly,

reduced PO activity and immune cell counts were found in abalone (Haliotis diversicolor supertexta)

under elevated ammonia concentrations. Abalone exposed to elevated nitrite levels also showed

weakened immune function, characterized by reduced phagocytic activity and decreased pathogen

clearing efficiencies, despite increased phenoloxidase activity [100]. These studies demonstrate that

elevated nutrient levels can have deleterious effects on marine invertebrate immunocompetence, thereby

increasing disease susceptibility, and suggest that similar phenomena could occur in corals.

The lack of significant differences in nutrient levels detected between platform and control sites in this

study may reflect the relatively infrequent water quality sampling regime and the absence of November

samples. This low-resolution dataset could have missed sporadic nutrient pulse events like seabird guano

runoff associated with periodic rainfall. Reef platforms often accommodate large numbers of seabirds

that deposit nitrogen, phosphorus and potassium-rich guano [104] that during periods of heavy

rainfall, is washed from the platforms into the surrounding seawater. Additionally, pulses of high

visitor concentrations could introduce short-term water quality changes from human waste or cause

stress to corals through physical damage. Alternatively, other unidentified parameters could underlie

the observed reductions in immune function and microbial diversity on corals adjacent to reef

platforms. Future work would benefit from higher resolution water quality sampling combined with

longer-term monitoring of more colonies over time. Identification of environmental drivers will be

critical to the effective management of offshore reef platforms and should remain a research priority.

Interestingly, disease incidence was higher at the unused platform than the platform where visitors

are permitted, suggesting that the infrastructure itself, rather than human presence, may be

responsible for inducing stress. Further study should evaluate if the patterns observed in this case

study are consistent at reefs adjacent to other reef platforms or marine infrastructure, and should

incorporate visitor concentration in analyses.
5. Conclusion
This study assessed the interplay among coral hosts, associated microbial communities and

environmental drivers preceding and throughout a disease event that affected corals adjacent to

offshore marine-based infrastructure. Here, we did not observe significant differences in microbial
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community structure between diseased and healthy corals, however we did detect significant reductions

in bacterial diversity and significantly more variable bacterial communities on corals that would develop

WS at reef platforms, two months before the first visible signs of disease. The loss of microbial diversity

on corals adjacent to reef platforms and also on corals prior to the development of disease signs suggests

that microbial diversity plays an important role in the maintenance of coral holobiont function. We also

found significant reductions in coral immune function and coral-associated bacterial diversity adjacent to

reef platforms, even among corals remaining visually healthy throughout the eight-month study. While

we were unable to identify the mechanistic driver(s) of these changes, such information can be critical for

effective reef management. Importantly, corals have the potential for long lifespans, and thus the seven-

month span of this study represents only a snapshot of disease dynamics. Hence population level disease

surveys should be combined with the methods used herein (i.e. microbial and immunity analyses) to

better detail the dynamics of disease at reefs with tourist platforms. In conclusion, these results

indicate that activities associated with proximity to reef platforms (i.e. anthropogenic disturbance

and/or nutrient enrichment from seabird guano runoff ) impacts coral immunocompetence and coral-

associated bacterial community structure and diversity, which affects a coral’s susceptibility to disease.
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Söderhäll K. 2010 Proteolytic cascades and their
involvement in invertebrate immunity. Trends
Biochem. Sci. 35, 575 – 583. (doi:10.1016/j.tibs.
2010.04.006)

40. Mucklow PT, Vizoso DB, Jensen KH, Refardt D,
Ebert D. 2004 Variation in phenoloxidase
activity and its relation to parasite resistance
within and between populations of Daphnia
magna. Proc. R. Soc. Lond. B 271, 1175 – 1183.
(doi:10.1098/rspb.2004.2707)

41. Newton K, Peters R, Raftos D. 2004
Phenoloxidase and QX disease resistance in
Sydney rock oysters (Saccostrea glomerata). Dev.
Comp. Immunol. 28, 565 – 569. (doi:10.1016/j.
dci.2003.10.004)

42. Butt D, Raftos D. 2008 Phenoloxidase-associated
cellular defence in the Sydney rock oyster,
Saccostrea glomerata, provides resistance
against QX disease infections. Dev. Comp.
Immunol. 32, 299 – 306. (doi:10.1016/j.dci.
2007.06.006)

43. Palmer CV, Bythell JC, Willis BL. 2010 Levels of
immunity parameters underpin bleaching and
disease susceptibility of reef corals. FASEB J. 24,
1935 – 1946. (doi:10.1096/fj.09-152447)

44. Palmer CV, Mydlarz LD, Willis BL. 2008 Evidence
of an inflammatory-like response in non-
normally pigmented tissues of two scleractinian
corals. Proc. R. Soc. B 275, 2687 – 2693. (doi:10.
1098/rspb.2008.0335)
45. Palmer CV, Bythell JC, Willis BL. 2011 A
comparative study of phenoloxidase activity in
diseased and bleached colonies of the coral
Acropora millepora. Dev. Comp. Immunol. 35,
1098 – 1101. (doi:10.1016/j.dci.2011.04.001)

46. Mydlarz LD, Couch CS, Weil E, Smith G, Harvell
CD. 2009 Immune defenses of healthy, bleached
and diseased Montastraea faveolata during a
natural bleaching event. Dis. Aquat. Organ. 87,
67 – 78. (doi:10.3354/dao02088)

47. van de Water JAJM, Lamb JB, van Oppen MJH,
Willis BL, Bourne DG. 2015 Comparative
immune responses of corals to stressors
associated with offshore reef-based tourist
platforms. Conserv. Physiol. 3, cov032. (doi:10.
1093/conphys/cov032)

48. van de Water JAJM, Ainsworth TD, Leggat W,
Bourne DG, Willis BL, van Oppen MJH. 2015 The
coral immune response facilitates protection
against microbes during tissue regeneration.
Mol. Ecol. 24, 3390 – 3404. (doi:10.1111/
mec.13257)

49. O’Mahony J, Simes R, Redhill D, Heaton K,
Atkinson C, Hayward E, Nguyen M. 2017 At
what price? The economic, social and icon value
of the Great Barrier Reef. Brisbane, Australia:
Deloitte Access Economics.

50. Harriott VJ. 2002 Marine tourism impacts and
their management on the Great Barrier Reef.
Townsville, Australia: CRC Reef Research Centre.

51. Smith A, Monkivitch J, Koloi P, Hamilton G,
Myers S. 2005 A review of Environmental Impact
Assessment of tourism pontoons on the Great
Barrier Reef. Christchurch: Great Barrier Reef
Marine Park Authority.

52. Hawkins JP, Roberts CM. 1992 Effects of
recreational SCUBA diving on fore-reef slope
communities of coral reefs. Biol. Conserv. 62,
171 – 178. (doi:10.1016/0006-3207(92)91045-T)

53. Corinaldesi C, Marcellini F, Nepote E, Damiani E,
Danovaro R. 2018 Impact of inorganic UV filters
contained in sunscreen products on tropical
stony corals (Acropora spp.). Sci. Total Environ.
637 – 638, 1279 – 1285. (doi:10.1016/j.
scitotenv.2018.05.108)

54. Johannes RE. 1975 Chapter 2. Pollution and
degradation of coral reef communities. In
Elsevier Oceanography Series (eds EJF Wood,
RE Johannes), pp. 13 – 51. Amsterdam, The
Netherlands: Elsevier Scientific Publishing.

55. Lamb JB, Willis BL. 2011 Using coral disease
prevalence to assess the effects of concentrating
tourism activities on offshore reefs in a tropical
marine park. Conserv. Biol. 25, 1044 – 1052.
(doi:10.1111/j.1523-1739.2011.01724.x)

56. Ryle VD, Mueller HR, Gentien P. 1981
Automated analysis of nutrients in tropical sea
waters. Science Data Report No. 3. Townsville,
Australia: Australian Institute of Marine Science.

57. Bran L, Luebbe L. 1997 Directory of
Autoanalyser Methods. Norderstedt, Germany:
Bran and Luebbe GmbH.

58. Valderrama JC. 1981 The simultaneous analysis
of total nitrogen and total phosphorus in
natural waters. Mar. Chem. 10, 109 – 122.
(doi:10.1016/0304-4203(81)90027-X)

59. Suchodolski JS, Dowd SE, Westermarck E, Steiner
JM, Wolcott RD, Spillman T, Harmoinen JA. 2009
The effect of the macrolide antibiotic tylosin on

http://dx.doi.org/10.1128/AEM.07800-11
http://dx.doi.org/10.1016/j.tim.2015.03.008
http://dx.doi.org/10.3354/meps322001
http://dx.doi.org/10.1038/ismej.2011.45
http://dx.doi.org/10.7717/peerj.2275
http://dx.doi.org/10.1111/mec.13251
http://dx.doi.org/10.1038/nmicrobiol.2017.121
http://dx.doi.org/10.1111/j.1462-2920.2009.01935.x
http://dx.doi.org/10.1038/ismej.2007.112
http://dx.doi.org/10.1038/ismej.2008.104
http://dx.doi.org/10.3354/dao069089
http://dx.doi.org/10.1128/AEM.00843-06
http://dx.doi.org/10.1128/AEM.00843-06
http://dx.doi.org/10.1038/ismej.2008.131
http://dx.doi.org/10.1038/ismej.2009.103
http://dx.doi.org/10.1046/j.1462-2920.2002.00308.x
http://dx.doi.org/10.1128/AEM.68.5.2214-2228.2002
http://dx.doi.org/10.1128/AEM.68.5.2214-2228.2002
http://dx.doi.org/10.1046/j.1462-2920.2003.00427.x
http://dx.doi.org/10.1046/j.1462-2920.2003.00427.x
http://dx.doi.org/10.3354/dao069079
http://dx.doi.org/10.1016/j.jembe.2007.02.015
http://dx.doi.org/10.1016/j.jembe.2007.02.015
http://dx.doi.org/10.1038/ismej.2007.88
http://dx.doi.org/10.1038/ismej.2007.88
http://dx.doi.org/10.1007/s00227-017-3097-x
http://dx.doi.org/10.1007/s00227-017-3097-x
http://dx.doi.org/10.1016/j.tibs.2010.04.006
http://dx.doi.org/10.1016/j.tibs.2010.04.006
http://dx.doi.org/10.1098/rspb.2004.2707
http://dx.doi.org/10.1016/j.dci.2003.10.004
http://dx.doi.org/10.1016/j.dci.2003.10.004
http://dx.doi.org/10.1016/j.dci.2007.06.006
http://dx.doi.org/10.1016/j.dci.2007.06.006
http://dx.doi.org/10.1096/fj.09-152447
http://dx.doi.org/10.1098/rspb.2008.0335
http://dx.doi.org/10.1098/rspb.2008.0335
http://dx.doi.org/10.1016/j.dci.2011.04.001
http://dx.doi.org/10.3354/dao02088
http://dx.doi.org/10.1093/conphys/cov032
http://dx.doi.org/10.1093/conphys/cov032
http://dx.doi.org/10.1111/mec.13257
http://dx.doi.org/10.1111/mec.13257
http://dx.doi.org/10.1016/0006-3207(92)91045-T
http://dx.doi.org/10.1016/j.scitotenv.2018.05.108
http://dx.doi.org/10.1016/j.scitotenv.2018.05.108
http://dx.doi.org/10.1111/j.1523-1739.2011.01724.x
http://dx.doi.org/10.1016/0304-4203(81)90027-X


royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190355
16
microbial diversity in the canine small intestine as

demonstrated by massive parallel 16S rRNA gene
sequencing. BMC Microbiol. 9, 210.

60. Handl S, Dowd SE, Garcia-Mazcorro JF, Steiner
JM, Suchodolski JS 2011. Massive parallel 16S
rRNA gene pyrosequencing reveals highly
diverse fecal bacterial and fungal communities
in healthy dogs and cats. FEMS Microbiol. Ecol.
76, 301 – 310.

61. Caporaso JG et al. 2010 QIIME allows analysis of
high-throughput community sequencing data.
Nat. Methods 7, 335 – 336. (doi:10.1038/nmeth.
f.303)

62. Haas BJ et al. 2011 Chimeric 16S rRNA sequence
formation and detection in Sanger and 454-
pyrosequenced PCR amplicons. Genome Res. 21,
494 – 504. (doi:10.1101/gr.112730.110)

63. Edgar RC. 2010 Search and clustering orders of
magnitude faster than BLAST. Bioinformatics 26,
2460 – 2461. (doi:10.1093/bioinformatics/btq461)

64. Caporaso JG, Bittinger K, Bushman FD, DeSantis
TZ, Andersen GL, Knight R. 2009 PyNAST: a
flexible tool for aligning sequences to a
template alignment. Bioinformatics 26,
266 – 267. (doi:10.1093/bioinformatics/btp636)

65. DeSantis TZ et al. 2006 Greengenes, a chimera-
checked 16S rRNA gene database and
workbench compatible with ARB. Appl. Environ.
Microbiol. 72, 5069 – 5072. (doi:10.1128/AEM.
03006-05)

66. Price MN, Dehal PS, Arkin AP. 2009 FastTree:
computing large minimum evolution trees with
profiles instead of a distance matrix. Mol. Biol.
Evol. 26, 1641 – 1650. (doi:10.1093/molbev/
msp077)

67. Faith DP. 1992 Conservation evaluation and
phylogenetic diversity. Biol. Conserv. 61, 1 – 10.
(doi:10.1016/0006-3207(92)91201-3)

68. Faith DP, Baker AM. 2006 Phylogenetic diversity
(PD) and biodiversity conservation: some
bioinformatics challenges. Evol. Bioinform. 2,
121 – 128. (doi:10.1177/117693430600200007)

69. Lozupone C, Knight R. 2005 UniFrac: a new
phylogenetic method for comparing microbial
communities. Appl. Environ. Microbiol. 71,
8228 – 8235. (doi:10.1128/AEM.71.12.8228-
8235.2005)

70. Clarke KR, Gorley RN. 2006 PRIMER v6: user
manual/tutorial (Plymouth routines in
multivariate ecological research). Plymouth:
Primer-E Ltd.

71. Anderson M, Gorley RN, Clarke RK. 2008
Permanovaþ for primer: guide to software and
statistical methods. Devon, UK: Primer-E
Limited.

72. Anderson TW. 1958 An introduction to
multivariate statistical analysis. New York,
NY: Wiley.

73. R Core Team. 2016 R: a language and
environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing.
See https://www.R-project.org.

74. McCann KS. 2000 The diversity – stability
debate. Nature 405, 228 – 233. (doi:10.1038/
35012234)

75. Ives AR, Carpenter SR. 2007 Stability and
diversity of ecosystems. Science 317, 58 – 62.
(doi:10.1126/science.1133258)
76. Loreau M. 2010 From populations to ecosystems:
theoretical foundations for a new ecological
synthesis. Princeton, NJ: Princeton University Press.

77. Barnosky AD et al. 2012 Approaching a state
shift in Earth’s biosphere. Nature 486, 52 – 58.
(doi:10.1038/nature11018)

78. Hooper DU et al. 2012 A global synthesis reveals
biodiversity loss as a major driver of ecosystem
change. Nature 486, 105 – 108. (doi:10.1038/
nature11118)

79. Rietkerk M, Dekker SC, De Ruiter PC, van de
Koppel J. 2004 Self-organized patchiness and
catastrophic shifts in ecosystems. Science 305,
1926 – 1929. (doi:10.1126/science.1101867)

80. Kéfi S, Rietkerk M, Alados CL, Pueyo Y,
Papanastasis VP, ElAich A, De Ruiter PC. 2007
Spatial vegetation patterns and imminent
desertification in Mediterranean arid
ecosystems. Nature 449, 213 – 217. (doi:10.
1038/nature06111)

81. Hughes TP et al. 2018 Global warming
transforms coral reef assemblages. Nature 556,
492 – 496. (doi:10.1038/s41586-018-0041-2)

82. Flanagan JL et al. 2007 Loss of bacterial
diversity during antibiotic treatment of
intubated patients colonized with Pseudomonas
aeruginosa. J. Clin. Microbiol. 45, 1954 – 1962.
(doi:10.1128/JCM.02187-06)

83. Chang JY, Antonopoulos DA, Kalra A, Tonelli A,
Khalife WT, Schmidt TM, Young VB. 2008
Decreased diversity of the fecal microbiome in
recurrent Clostridium difficile—associated
diarrhea. J. Infect. Dis. 197, 435 – 438. (doi:10.
1086/525047)

84. Fukuda S et al. 2011 Bifidobacteria can protect
from enteropathogenic infection through
production of acetate. Nature 469, 543 – 547.
(doi:10.1038/nature09646)

85. Pflughoeft KJ, Versalovic J. 2012 Human
microbiome in health and disease. Annu. Rev.
Pathol. Mech. Dis. 7, 99 – 122. (doi:10.1146/
annurev-pathol-011811-132421)

86. Peixoto RS, Rosado PM, Leite DCDA, Rosado AS,
Bourne DG. 2017 Beneficial microorganisms for
corals (BMC): proposed mechanisms for coral
health and resilience. Front. Microbiol. 8, 341.
(doi:10.3389/fmicb.2017.00341)

87. Egan S, Gardiner M. 2016 Microbial dysbiosis:
rethinking disease in marine ecosystems. Front.
Microbiol. 7, 991. (doi:10.3389/fmicb.2016.
00991)

88. Allison SD, Martiny JBH. 2008 Resistance,
resilience, and redundancy in microbial
communities. Proc. Natl Acad. Sci. USA 105, 11
512 – 11 519. (doi:10.1073/pnas.0801925105)

89. Buckley DH, Schmidt TM. 2001 The structure of
microbial communities in soil and the lasting
impact of cultivation. Microb. Ecol. 42, 11 – 21.
(doi:10.1007/s002480000)

90. Johnsen K, Jacobsen CS, Torsvik V, Sørensen J.
2001 Pesticide effects on bacterial diversity in
agricultural soils – a review. Biol. Fertil. Soils 33,
443 – 453. (doi:10.1007/s003740100351)

91. Li Zweifel U, Norrman B, Hagström Å. 1993
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Domazet-Lošo T, Bosch TCG. 2012 MyD88-
deficient Hydra reveal an ancient function of
TLR signaling in sensing bacterial colonizers.
Proc. Natl Acad. Sci. USA 109, 19 374 – 19 379.
(doi:10.1073/pnas.1213110109)

99. Cheng W, Hsiao I-S, Chen J-C. 2004 Effect of
ammonia on the immune response of Taiwan
abalone Haliotis diversicolor supertexta and its
susceptibility to Vibrio parahaemolyticus. Fish
Shellfish Immunol. 17, 193 – 202. (doi:10.1016/j.
fsi.2004.03.004)

100. Cheng W, Hsiao I-S, Chen J-C. 2004 Effect of nitrite
on immune response of Taiwan abalone Haliotis
diversicolor supertexta and its susceptibility to
Vibrio parahaemolyticus. Dis. Aquat. Organ. 60,
157 – 164. (doi:10.3354/dao060157)

101. Liu C-H, Chen J-C. 2004 Effect of ammonia on
the immune response of white shrimp
Litopenaeus vannamei and its susceptibility to
Vibrio alginolyticus. Fish Shellfish Immunol.
16, 321 – 334. (doi:10.1016/S1050-4648(03)
00113-X)

102. Tseng I-T, Chen J-C. 2004 The immune response
of white shrimp Litopenaeus vannamei and its
susceptibility to Vibrio alginolyticus under nitrite
stress. Fish Shellfish Immunol. 17, 325 – 333.
(doi:10.1016/j.fsi.2004.04.010)

103. Le Moullac G, Haffner P. 2000 Environmental
factors affecting immune responses in Crustacea.
Aquaculture 191, 121 – 131. (doi:10.1016/
S0044-8486(00)00422-1)

104. Szpak P, Longstaffe FJ, Millaire J-F, White CD. 2012
Stable isotope biogeochemistry of seabird guano
fertilization: results from growth chamber studies
with Maize (Zea mays). PLoS ONE 7, e33741.
(doi:10.1371/journal.pone.0033741)

http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1101/gr.112730.110
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1093/bioinformatics/btp636
http://dx.doi.org/10.1128/AEM.03006-05
http://dx.doi.org/10.1128/AEM.03006-05
http://dx.doi.org/10.1093/molbev/msp077
http://dx.doi.org/10.1093/molbev/msp077
http://dx.doi.org/10.1016/0006-3207(92)91201-3
http://dx.doi.org/10.1177/117693430600200007
http://dx.doi.org/10.1128/AEM.71.12.8228-8235.2005
http://dx.doi.org/10.1128/AEM.71.12.8228-8235.2005
https://www.R-project.org
https://www.R-project.org
http://dx.doi.org/10.1038/35012234
http://dx.doi.org/10.1038/35012234
http://dx.doi.org/10.1126/science.1133258
http://dx.doi.org/10.1038/nature11018
http://dx.doi.org/10.1038/nature11118
http://dx.doi.org/10.1038/nature11118
http://dx.doi.org/10.1126/science.1101867
http://dx.doi.org/10.1038/nature06111
http://dx.doi.org/10.1038/nature06111
http://dx.doi.org/10.1038/s41586-018-0041-2
http://dx.doi.org/10.1128/JCM.02187-06
http://dx.doi.org/10.1086/525047
http://dx.doi.org/10.1086/525047
http://dx.doi.org/10.1038/nature09646
http://dx.doi.org/10.1146/annurev-pathol-011811-132421
http://dx.doi.org/10.1146/annurev-pathol-011811-132421
http://dx.doi.org/10.3389/fmicb.2017.00341
http://dx.doi.org/10.3389/fmicb.2016.00991
http://dx.doi.org/10.3389/fmicb.2016.00991
http://dx.doi.org/10.1073/pnas.0801925105
http://dx.doi.org/10.1007/s002480000
http://dx.doi.org/10.1007/s003740100351
http://dx.doi.org/10.3354/meps101023
http://dx.doi.org/10.1073/pnas.0709765105
http://dx.doi.org/10.1371/journal.pone.0007319
http://dx.doi.org/10.1371/journal.pone.0007319
http://dx.doi.org/10.3389/fmars.2018.00101
http://dx.doi.org/10.1038/ismej.2011.114
http://dx.doi.org/10.1126/science.aal1956
http://dx.doi.org/10.1007/s10750-015-2243-z
http://dx.doi.org/10.1073/pnas.1213110109
http://dx.doi.org/10.1016/j.fsi.2004.03.004
http://dx.doi.org/10.1016/j.fsi.2004.03.004
http://dx.doi.org/10.3354/dao060157
http://dx.doi.org/10.1016/S1050-4648(03)00113-X
http://dx.doi.org/10.1016/S1050-4648(03)00113-X
http://dx.doi.org/10.1016/j.fsi.2004.04.010
http://dx.doi.org/10.1016/S0044-8486(00)00422-1
http://dx.doi.org/10.1016/S0044-8486(00)00422-1
http://dx.doi.org/10.1371/journal.pone.0033741

	Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals
	Introduction
	Material and methods
	Study site
	Weather monitoring and water quality sample collection
	Coral monitoring and sample collection
	Genomic DNA extraction and PCR amplification of bacterial 16S rRNA gene
	Sequence processing and selection of operational taxonomic units
	Protein extract preparation and assays
	Data analyses

	Results
	Physical environment characteristics and colony condition
	Spatial and temporal patterns in water quality
	Anthropogenic influence on coral-associated bacterial communities and coral immune function
	Influence of white syndrome on coral-associated bacterial communities and coral immune function

	Discussion
	Reduced coral-associated bacterial diversity and community stability precede white syndrome coral disease
	Reduced coral-associated bacterial diversity and coral immune function adjacent to reef platforms

	Conclusion
	Ethics
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


