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In this work, we have determined the structures of
lithium methanesulfonate, Li(CH3SO3), and potassium
methanesulfonate, K(CH3SO3), and analysed their vibrational
spectra. The lithium salt crystallizes in the monoclinic space
group C2/m with two formula units in the primitive cell.
The potassium salt is more complex, crystallizing in I4/m
with 12 formula units in the primitive cell. The lithium ion is
fourfold coordinated in a distorted tetrahedron, while the
potassium salt exhibits three types of coordination: six-,
seven- and ninefold. Vibrational spectroscopy of the
compounds (including the 6Li and 7Li isotopomers) confirms
that the correlation previously found, that in the infrared
spectra there is a clear distinction between coordinated and
not coordinated forms of the methanesulfonate ion, is also
valid here. The lithium salt shows a clear splitting of
the asymmetric S–O stretch mode, indicating a bonding
interaction, while there is no splitting in the spectrum of the
potassium salt, consistent with a purely ionic material.

1. Introduction
Derivatives of methanesulfonic acid, CH3SO3H, which are also
known as mesylates, occur widely in chemistry as esters or salts.
Some of the organic derivatives are important biologically. This
arises because mesylate is a good leaving group in nucleophilic
substitution reactions as a result of the efficient delocalization of
negative charge between the three oxygen atoms. Thus methyl-
and ethylmethanesulfonate are DNA alkylating agents and have
been used for many years as DNA damaging agents to induce
mutagenesis and in recombination experiments [1,2]. Busulfan
(1,4-butanediol dimethanesulfonate) has been used to treat
chronic myeloid leukaemia [3].
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Metal methanesulfonate salts (M[CH3SO3]x, e.g. M=Na, K, Mg, Ca) occur naturally via the oxidation of

dimethyl sulfide and subsequent reaction with the cations present in the ocean [4]. These may then act as
condensation nuclei for clouds [5,6]. The alkali metal salts find use in a variety of applications. The
potassium salt is used in studies of potassium channels in cells [7] and has been proposed as a novel eluent
for liquid chromatography of oligosaccharides [8]. The lithium salt has been tested in a variety of Li-ion
batteries [9] because it offers a more stable alternative to the LiPF6 presently used in lithium batteries [10].

We have previously investigated the vibrational spectroscopy of the parent acid, methanesulfonic
acid [11] and some of its salts, M =Na, Cs, Cu, Ag, Cd [12]. In the course of our previous work, we
have observed a correlation between the type of bonding (ionic or complexed) present and the
asymmetric S–O stretch mode in the infrared spectrum. In the present study, we examine the lithium
and potassium methanesulfonate salts to further test the correlation. As a prerequisite to this, we have
also determined the crystal structures of the compounds.
 os
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2. Experimental
2.1. Materials
K(CH3SO3) (98%), CH3SO3H (99%), 6Li2CO3 (95% 6Li) and 7Li2CO3 (99% 7Li) were purchased from
Aldrich and used as received. 6Li(CH3SO3) and

7Li(CH3SO3) were made by the stoichiometric reaction
of methanesulfonic acid with the appropriate carbonate. The carbonate (6Li: 1.81 g, 7Li: 1.84 g) was
suspended in distilled water and the methanesulfonic acid (4.71 g) added dropwise with continuous
stirring. The solution was then evaporated to dryness on a hotplate. The yield was 96%.

2.2. X-ray crystallography
Single crystal X-ray diffraction data were collected from suitable crystals at 150 K with the Mo Kα
wavelength using a Rigaku Oxford diffraction Xtalab Synergy S instrument equipped with a liquid
nitrogen stream and hybrid pixel array detector (HyPix). The JANA2006 software was used to solve
the crystal structure using the built-in charge-flipping algorithm [13]. Details of the refinement are
given in table 1 and the CIF files have been deposited with the Cambridge Structural Database. No
evidence of impurity phases was found in either dataset.

2.3. Vibrational spectroscopy
Inelastic neutron scattering (INS) spectra were recorded at less than 20 K using TOSCA [14] at ISIS.1

Infrared spectra were recorded using a Bruker Vertex70 FTIR spectrometer, over the range 100–
4000 cm−1 at 4 cm−1 resolution with a DLaTGS detector using 64 scans and the Bruker Diamond ATR.
The use of the ultra-wide range beamsplitter enabled the entire spectral range to be recorded without
the need to change beamsplitters. The spectra have been corrected for the wavelength-dependent
variation in path length using the Bruker software. FT-Raman spectra were recorded with a Bruker
MultiRam spectrometer using 1064 nm excitation, 4 cm−1 resolution, 500 mW laser power and 64
scans. All the infrared and Raman spectra were measured in air at room temperature.

2.4. Computational studies
The plane wave pseudopotential-based program CASTEP was used for the calculation of the vibrational
transition energies and their intensities [15,16]. The generalized gradient approximation (GGA) Perdew–
Burke–Ernzerhof (PBE) functional was used in conjunction with optimized norm-conserving
pseudopotentials. The plane-wave cut-off energy was 830 eV. For the Li salt a 4 × 6 × 4 (48 k-points)
Monkhorst–Pack grid was used, for the K salt a 8 × 8 × 3 (96 k-points) grid was used. All of the
calculations were converged to better than |0.009| eV Å−1. After geometry optimization, the vibrational
spectra were calculated in the harmonic approximation using density functional perturbation theory
(DFT) [17]. This procedure generates the vibrational eigenvalues and eigenvectors, which allows
visualization of the modes within Materials Studio2 and is also the information needed to calculate the
1http://www.isis.stfc.ac.uk.
2https://3dsbiovia.com/products/collaborative-science/biovia-materials-studio/.
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Table 1. Crystal data and structure refinement for lithium and potassium methanesulfonates.

sample LiCH3SO3 KCH3SO3

empirical formula CH3LiO3S CH3KO3S

formula weight 102.0 134.2

temperature (K) 150(2) 299(4)

wavelength (Å) 0.71073 (Mo Kα) 0.71073 (Mo Kα)

crystal system monoclinic tetragonal

space group C2/m I4/m

unit cell dimensions a = 7.8181(3) Å

b = 7.4574(3) Å

c = 6.5288(3) Å

β = 90.17(2)˚

a = 22.1326(3) Å

c = 6.0532(1) Å

volume (Å3) 380.63(3) 2965.17(8)

Z 4 24

density (calculated) (g cm−3) 1.7805 1.8036

absorption coefficient (mm−1) 0.678 1.37

F(000) 208 1632

crystal size (mm3) 0.07 × 0.06 × 0.02 0.1 × 0.06 × 0.04

theta range for data collection (°) 3.10–37.34 1.84–29.56

index ranges −13≤ h≤ 13

102≤ k≤ 12

10≤ l≤ 11

−28≤ h≤ 22

−28≤ k≤ 29

−7≤ l≤ 7

reflections collected 8457 20 507

independent reflections (I > 3σ(I )/all) 936/1018 1731/2078

R(int) 0.0336 0.0253

absorption correction empirical numerical Gauss integration

max. and min. transmission 1.0 and 0.89 1.0 and 0.851

refinement method full-matrix least squares on F2 full-matrix least squares on F2

data/constraints/parameters 1018/2/38 2078/6/115

goodness-of-fit on F2 (I > 3σ(I )/all) 3.05/2.93 2.61/2.40

final R-indices (I > 3σ(I )) R1 = 0. 0296

wR2 = 0. 0922

R1 = 0.0300

wR2 = 0.0814

final R-indices (all data) R1 = 0. 0321

wR2 = 0. 0926

R1 = 0.0373

wR2 = 0.0825

largest diff. peak and hole (e Å−3) 0.86 and 0.37 0.56 and −0.43
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INS spectrum using the program ACLIMAX [18]. Transition energies for isotopic species were calculated
from the dynamical matrix that is stored in the CASTEP checkpoint file using the PHONONS utility [19].
We emphasize that the transition energies have not been scaled.
3. Results and discussion
3.1. Structural studies
The structures of the lithium and potassium salts of methanesulfonic acid have been previously
determined; however, as far as we are aware, neither has been deposited in a recognized database,



Figure 1. Two unit cells of the C2/m structure of Li(CH3SO3). The c-axis is vertical. (Grey = carbon, white = hydrogen, red = oxygen,
yellow = sulfur, purple = lithium.)
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e.g. the Cambridge Structural Database (CSD) [20]. Brief descriptions are provided in conference
abstracts (Li [21], K [22]), and the atomic coordinates of the Li salt are given in a thesis [23]; those of
the K salt are unavailable. The structure is an essential requirement for the periodic-DFT calculations
that we will use to assign the spectra; accordingly, we have re-determined both structures. Table 1
summarizes the results of the structural determinations and figures 1 and 2 show the structures.

Li(CH3SO3) is a relatively simple structure with two formula units arranged centrosymmetrically in
the primitive cell. In contrast, K(CH3SO3) is much more complicated with 12 formula units in the
primitive cell, comprising three groups of four, each group being on a Wyckoff h site.

Table 2 presents some selected distances. In both structures the methanesulfonate ion lies on a mirror
plane, so has Cs symmetry; however, the molecular symmetry is close to C3v. Otherwise, the
methanesulfonate ion is unremarkable, the molecular geometry is very similar to that found in
Na(CH3SO3) [24] and Cs(CH3SO3) [25].

In contrast to the similarity of the methanesulfonate ion in both structures, the coordination of the
metal ions is very different: distorted tetrahedral for Li and multiple coordinate for K. On the basis of
the infrared spectrum of the Li salt, it had been suggested that the lithium was coordinated to the
methanesulfonate [26]. Figure 1 shows that this deduction is correct. Analyses [27,28] of Li–O
compounds found that tetrahedral coordination was the most common with <Li–O> = 1.96 Å [27],
1.972 Å [28], completely in accord with that seen here (2 × 1.922, 2 × 2.000 Å). In particular, the Li ion
in Li(CF3SO3) [29] shows Li–O distances of 1.873, 1.901, 1.988 and 1.995 Å.

In K(CH3SO3), the potassium ion occupies three distinct sites, with sixfold, sevenfold and ninefold
coordination. In each case, the site symmetry is Cs. The coordination polyhedra consist of a distorted
octahedron, a capped trigonal prism (the cap being on one of the rectangular faces) and a very distorted
square antiprism with one of the triangular faces capped. As may be seen in table 3, the K–O distances
fall well within the ranges commonly found for the particular type of coordination [28]. Only for sixfold
coordination is the average distance seen here apparently somewhat shorter than usually seen, however,
the modal K–O distance of 714 structures is 2.72 Å [28], exactly as found here (2.718 Å).

A common motif of the structures of metal methanesulfonates is the separation into polar and non-
polar regions. It can be seen from figure 1 that Li(CH3SO3) conforms to this expectation, as it forms a



Figure 2. Four unit cells of the I4/m structure of K(CH3SO3) viewed along the c-axis. (Grey = carbon, white = hydrogen, red =
oxygen, yellow = sulfur, green = potassium.)
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structure with alternating layers of sulfonate and methyl groups. K(CH3SO3) is a much more complex
structure; in this case, there are channels running along the c-axis that the methyl groups protrude
into (highlighted by the large circle in figure 2) with a concentric ring of sulfonate groups and
potassium ions. There is an apparent second smaller mixed ring (highlighted by the small circle in
figure 2); however, this is deceiving because as figure 3 shows, the methyl and sulfonate groups
‘interdigitate’ to minimize the interactions.

3.2. Vibrational spectroscopy
Figures 4 and 5 show the infrared, Raman and INS spectra of the Li and K salts, respectively. The infrared
and Raman spectra of the Li salt [21,23,26] and the infrared spectrum of the K salt [30] have been reported
previously. The present spectra are in general agreement with the literature spectra but have an extended
transition energy range, and the INS spectra are previously unreported. The spectra of the two salts are
broadly similar and do not hint at the complexity of the structure of the K salt. As seen in our previous
work [12], the INS spectra are dominated by the methyl modes, particularly the rock (approx. 950 cm−1)
and the torsion (200–300 cm−1). In the K salt, the latter are especially intense. The methyl modes appear
only weakly in the infrared and Raman spectra, but they do permit clear observation of the C–H stretch
modes that are difficult to see in the INS spectra with this instrument [31]. The infrared and Raman
spectra show predominantly the sulfonate modes: S–O stretches (1000–1300 cm−1), C–S stretch (approx.
800 cm−1), O–S–O bends (500–600 cm−1) and the sulfonate rock (approx. 350 cm−1). Modes involving
significant lithium motion are seen in the range 300–500 cm−1 (indicated by � in figure 4).



Table 2. Selected bond distances (Å) of lithium and potassium methanesulfonates.

distance

Li(CH3SO3) K(CH3SO3)

observed calculated observed calculated

C1–H 0.939, 2 × 0.848 1.095, 2 × 1.094 2 × 0.950, 0.978 1.095, 2 × 1.096

C2–H 2 × 0.920, 0.934 3 × 1.096

C3–H 0.934, 2 × 0.854 2 × 1.094, 1.096

C123–S 1.743 1.771 1.752, 1.743, 1.756 1.783, 1.783, 1.783

S1–O 1.443, 2 × 1.471 1.485, 2 × 1.469 2 × 1.451, 1.452 2 × 1.474, 1.477

S2–O 1.434, 2 × 1.452 1.465, 2 × 1.479

S3–O 1.422, 2 × 1.414 1.472, 2 × 1.474

M–O 2 × 1.922,

2 × 2.000

2 × 1.925,

2 × 1.993

K1: 2.666,

2 × 2.804,

2 × 2.827,

2 × 2.947,

2 × 3.062

K1: 2.715,

2 × 2.813,

2 × 2.842,

2 × 2.972,

2 × 3.070

K2: 2.646,

2 × 2.677,

2.712,

2 × 2.799

K2: 2.680,

2 × 2.702,

2.712

2 × 2.828

K3: 2 × 2.689,

2 × 2.753,

2 × 2.974,

3.061

K3: 2 × 2.692,

2 × 2.775,

2 × 2.938,

2.963

Table 3. The coordination around the K+ ions of potassium methanesulfonate. Short, Long and Ave. are the shortest, longest
and average K–O distances (all in Å).

coordination number

K(CH3SO3) literature [28]

Short Long Ave. Short Long Ave.

6 2.646 2.799 2.718 2.447 3.587 2.828

7 2.689 3.061 2.842 2.524 3.554 2.861

9 2.666 3.062 2.883 2.491 3.797 2.955
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To provide more definitive assignments requires periodic-DFT calculations. Figure 6 compares the
observed and calculated INS spectra of Li(CH3SO3) and K(CH3SO3). It can be seen that the agreement
is reasonable in terms of both the transition energy and the relative intensities. This is more so for the
Li compound because the calculation is for the entire Brillouin zone, whereas it is for the Γ-point only
for the K compound because of the complexity of the system. The intensity mismatch in the region
greater than 800 cm−1 is likely to be the result of the Debye–Waller factor being too large because the
lattice mode region is calculated to be too strong.

Nonetheless, the agreement is sufficiently good as to allow definitive assignments. Li(CH3SO3)
crystallizes in the monoclinic space group C2/m (no. 12) with two formula units in the primitive cell,
thus there are 54 modes in total comprising 3 acoustic modes, 9 optic translational modes of the ions,
together with 6 librational and 36 internal modes of the methanesulfonate ion. Similarly, K(CH3SO3)
crystallizes in the tetragonal space group I4/m (no. 87) with 12 formula units in the primitive cell,
thus there are 324 modes in total comprising three acoustic modes, 69 optic translational modes of the



Figure 3. Expanded view of the apparent ‘mixed’ ring in the I4/m structure of K(CH3SO3). (Grey = carbon, white = hydrogen,
red = oxygen, yellow = sulfur, the K+ ions are omitted for clarity.)
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−1 is ×10 ordinate expanded
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ions, together with 36 librational and 216 internal modes of the methanesulfonate ion. This means
that each mode of the ‘free’ M(CH3SO3) species will give rise to four (Li) or 12 (K) factor group
components. Inspection of figures 4 and 5 gives no indication of significant factor group splitting in
the spectra, with the exception of the multiple methyl torsions in the K compound, and this
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is confirmed by the calculations. In the K salt, the methanesulfonates occupy three independent
Wyckoff h sites and each of these is responsible for one of the torsion modes at 213, 257 and 286 cm−1,
(the fourth very strong mode at 343 cm−1 is a rocking mode of the sulfonate group, which results in a
large displacement of the methyl group, accounting for its intensity). Table 4 lists the observed modes
and the average of the factor group splitting (except for the torsions) of the calculated modes with
their assignments.

As seen previously [12], only the methyl-related modes (C–H bends, rock and torsion), have
significant intensity in the INS spectrum and demonstrates that the coupling between the CH3 and
SO3 functionalities in the ion is weak. The strongest modes in the infrared and Raman spectra are
motions of the sulfonate group, as these involve significant charge distortions that generate the intensity.

As noted earlier, the metal coordination is distinctly different in the two compounds: fourfold for Li
and six-, seven- and ninefold for K. The bond distances are also very different: 1.922–2.000 for Li and
2.652–3.222 for K. We take these differences to indicate that the interaction with Li is significantly
stronger than for K. The calculated spectra provide support for this idea. Figure 7 shows pseudo-INS
spectra calculated by setting the cross section of the atom of interest to 100 barn and all other atoms
to 0 barn. Thus only modes that involve motion of the atom will contribute to the spectrum. For the
K salt, it can be seen that all the metal ion modes occur below 200 cm−1 (figure 7a), while for the Li
salt there are two groups of metal ion modes at 300–350 and 400–480 cm−1 (figure 7b,c). Inspection of
the mode animations shows that the former arise from a coupled motion with the sulfonate rock
modes. The latter can be considered to be either Li translations or Li–O bond stretching. In the K salt,
the distances are consistent with a purely ionic material, so by calculating the spectrum for the K salt
but with a mass of 7 amu, i.e. ‘7K’, we approximate what the transition energies would be for a Li ion
that is only involved in ionic interactions. The result is shown in figure 7d and it can be seen that the
maximum energy is 350 cm−1, approximately 100 cm−1 below that seen in the Li salt. This suggests
that there is an additional interaction in the Li salt, thus the description of the modes as Li–O bond
stretching is the better choice.

In previous work [12], we showed that in compounds with coordinated methanesulfonate ions,
the asymmetric S–O stretch mode is both strongly perturbed and is downshifted with respect to
purely ionic compounds. This is best seen in the infrared spectra and a comparison of the Li and K
salts with those studied earlier—Cs(CH3SO3), Na(CH3SO3), Ag(CH3SO3), Cd(H2O)2(CH3SO3)2 and
Cu(H2O)4(CH3SO3)2—is shown in figure 8. It can be seen that the degeneracy of the S–O asymmetric
stretch at 1100–1250 cm−1 is lifted and two modes appear. (For the Cd salt, this manifests as a
pronounced broadening of the band.) While the spectrum of the K salt is very similar to that of the
Cs and Na salts, the distinct splitting of the S–O asymmetric stretch in the Li salt is reminiscent of
that found in the coordination compounds, consistent with Li–O bonding.
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4. Conclusion
In this work, we have determined the structures of lithium and potassium methanesulfonates and
analysed their vibrational spectra. The structural study shows that the metal coordination is not
unusual, although the presence of three types—six-, seven- and ninefold—in the potassium salt is
noteworthy. The vibrational spectroscopy confirms that the correlation previously found [12], that in
the infrared spectrum there is a clear distinction between coordinated and not coordinated forms of
the methanesulfonate ion, is also valid here. The lithium salt shows a clear splitting of the asymmetric
S–O stretch mode, indicating a bonding interaction, while there is no splitting in the spectrum of the
potassium salt, consistent with a purely ionic material.
Data accessibility. The datasets supporting this article are available from the Science and Technology Facilities data
repository eData at: http://dx.doi.org/10.5286/edata/739. The structures of lithium methanesulfonate and
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